filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_24427
from setuptools import find_packages, setup with open('README.md', 'r') as readme: long_description = readme.read() setup( name='epa-sld-update', package_dir={"": "src"}, packages=find_packages('src'), version='0.0.0', description='EPA Access to Jobs', long_description=long_description, author='Renaissance Planning', license='Apache 2.0', )
the-stack_106_24428
from dagster_graphql.client.util import parse_raw_log_lines from dagster_k8s.utils import get_pod_names_in_job, retrieve_pod_logs, wait_for_job_success from dagster import check def wait_for_job_and_get_logs(job_name, namespace): '''Wait for a dagster-k8s job to complete, ensure it launched only one pod, and then grab the logs from the pod it launched. ''' check.str_param(job_name, 'job_name') check.str_param(namespace, 'namespace') wait_for_job_success(job_name, namespace=namespace) pod_names = get_pod_names_in_job(job_name, namespace) assert len(pod_names) == 1 pod_name = pod_names[0] raw_logs = retrieve_pod_logs(pod_name, namespace=namespace) return parse_raw_log_lines(raw_logs.split('\n'))
the-stack_106_24429
#classe para tratar os dados do dataset from dataset import Dataset #classe para tratar os dados do modelo from model import Model #classe para logs e metricas from log import Log dataset = Dataset('dados1', 'dados2') x, y = dataset.normalize_dataset_train() real_cpf, normalized_df_production = dataset.normalize_dataset_production() model = Model(x, y, normalized_df_production) predict_value = model.model_learning() log = Log(real_cpf, predict_value) log.results()
the-stack_106_24431
from django.utils.deprecation import MiddlewareMixin from django.shortcuts import HttpResponse, redirect, reverse from django.conf import settings import re from rbac import models class RbacMiddleware(MiddlewareMixin): def process_request(self, request): # 获取当前访问url地址 url = request.path_info request.current_menu_id = None request.breadcrumb_list = [{'title': '首页', 'url': '/index/'}, ] # 白名单 for i in settings.WHITE_LIST: if re.match(i, url): return # 没有登录 跳转登录页面 is_login = request.session.get('is_login', False) if not is_login: return redirect(reverse('host:login')) # 已经登录 可以访问不需要权限校验的URL for i in settings.NO_PERMISSION_LIST: if re.match(i, url): return # 真正需要进行权限校验的地址 permission = request.session.get(settings.PERMISSION_SESSION_KEY) for i in permission.values(): if re.match(r'^{}$'.format(i['url']), url): # {'url': '/department_list/', 'id': 1, 'pid': None} 二级菜单 父权限 # {'url': '/department_add/', 'id': 2, 'pid': 1} 子权限 id = i['id'] pid = i['pid'] pname = i['pname'] if pid: # 有PID 当前访问的是子权限 request.current_menu_id = pid # 添加父权限的信息 # parent = models.Permission.objects.get(pk=pid) # request.breadcrumb_list.append({'title': parent.title, 'url': parent.url}) request.breadcrumb_list.append( {'title': permission[pname]['title'], 'url': permission[pname]['url']}) request.breadcrumb_list.append({'title': i['title'], 'url': i['url']}) else: # 没有PID 当前访问的是父权限 request.current_menu_id = id request.breadcrumb_list.append({'title': i['title'], 'url': i['url']}) return return HttpResponse('没有权限,请联系管理员')
the-stack_106_24437
"""Sensor platform for Trakt""" from homeassistant.const import ATTR_ATTRIBUTION, CONF_NAME, CONF_CLIENT_ID from homeassistant.helpers.entity import Entity from .const import ATTRIBUTION, DOMAIN async def async_setup_entry(hass, config_entry, async_add_entities): """Set up device tracker for Mikrotik component.""" coordinator = hass.data[DOMAIN][config_entry.entry_id] async_add_entities([TraktUpcomingCalendarSensor(coordinator)], True) class TraktUpcomingCalendarSensor(Entity): """Representation of a Trakt Upcoming Calendar sensor.""" def __init__(self, coordinator): """Initialize the sensor.""" self.coordinator = coordinator self._name = coordinator.config_entry.data[CONF_NAME] @property def name(self): """Return the name of the sensor.""" return self._name @property def unique_id(self): """Return the unique id of the entity.""" return self.coordinator.config_entry.data[CONF_CLIENT_ID] @property def should_poll(self): """Disable polling.""" return False @property def state(self): """Return the state of the sensor.""" return len(self.coordinator.calendar) if self.coordinator.calendar else 0 @property def icon(self): """Return the icon to use in the frontend.""" return "mdi:calendar" @property def unit_of_measurement(self): """Return the unit of measurement this sensor expresses itself in.""" return "shows" @property def extra_state_attributes(self): """Return the state attributes of the sensor.""" attributes = { "data": self.coordinator.data, ATTR_ATTRIBUTION: ATTRIBUTION, } return attributes async def async_added_to_hass(self): """Handle entity which will be added.""" self.async_on_remove( self.coordinator.async_add_listener(self.async_write_ha_state) ) async def async_update(self): """Request coordinator to update data.""" await self.coordinator.async_request_refresh()
the-stack_106_24439
#!/usr/bin/env python # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example adds a Universal App campaign. To get campaigns, run get_campaigns.py. To upload image assets for this campaign, run upload_image.py. The LoadFromStorage method is pulling credentials and properties from a "googleads.yaml" file. By default, it looks for this file in your home directory. For more information, see the "Caching authentication information" section of our README. """ import datetime import uuid from googleads import adwords def main(client): # Initialize appropriate services. campaign_service = client.GetService('CampaignService', version='v201802') budget_id = CreateBudget(client) # Create the Universal App campaign. universal_app_campaign = { 'name': 'Interplanetary Cruise App #%s' % uuid.uuid4(), # Recommendation: Set the campaign to PAUSED when creating it to stop the # ads from immediately serving. Set to ENABLED once you've added targeting # and the ads are ready to serve. 'status': 'PAUSED', 'advertisingChannelType': 'MULTI_CHANNEL', 'advertisingChannelSubType': 'UNIVERSAL_APP_CAMPAIGN', # Set the campaign's bidding strategy. Universal app campaigns only # support TARGET_CPA bidding strategy. 'biddingStrategyConfiguration': { # Set the target CPA to $1 / app install. 'biddingScheme': { 'xsi_type': 'TargetCpaBiddingScheme', 'targetCpa': { 'microAmount': '1000000' } }, 'biddingStrategyType': 'TARGET_CPA' }, # Note that only the budgetId is required 'budget': { 'budgetId': budget_id }, # Optional fields 'startDate': (datetime.datetime.now() + datetime.timedelta(1)).strftime('%Y%m%d'), 'endDate': (datetime.datetime.now() + datetime.timedelta(365)).strftime('%Y%m%d'), } universal_app_campaign['settings'] = [ # Set the campaign's assets and ad text ideas. These values will # be used to generate ads. { 'xsi_type': 'UniversalAppCampaignSetting', 'appId': 'com.labpixies.colordrips', 'appVendor': 'VENDOR_GOOGLE_MARKET', 'description1': 'A cool puzzle game', 'description2': 'Remove connected blocks', 'description3': '3 difficulty levels', 'description4': '4 colorful fun skins', # Optional: You can set up to 20 image assets for your campaign. # See upload_image.py for an example on how to upload images. # # 'imageMediaIds': [INSERT_IMAGE_MEDIA_ID(s)_HERE] } ] # Optimize this campaign for getting new users for your app. universal_app_campaign_setting = universal_app_campaign['settings'][0] universal_app_campaign_setting['universalAppBiddingStrategyGoalType'] = ( 'OPTIMIZE_FOR_INSTALL_CONVERSION_VOLUME') # Optional: If you select the OPTIMIZE_FOR_IN_APP_CONVERSION_VOLUME goal type, # then also specify your in-app conversion types so AdWords can focus your # campaign on people who are most likely to complete the corresponding in-app # actions. # # Conversions type IDs can be retrieved using ConversionTrackerService.get. # universal_app_campaign['selectiveOptimization'] = { # 'conversionTypeIds': [INSERT_CONVERSION_TYPE_ID(s)_HERE] # } # Optional: Set the campaign settings for Advanced location options. universal_app_campaign['settings'].append({ 'xsi_type': 'GeoTargetTypeSetting', 'positiveGeoTargetType': 'DONT_CARE', 'negativeGeoTargetType': 'DONT_CARE' }) # Construct operations and add campaigns. operations = [{ 'operator': 'ADD', 'operand': universal_app_campaign }] campaigns = campaign_service.mutate(operations)['value'] # Display results. if campaigns: for campaign in campaigns: print(('Universal App Campaign with name "%s" and id "%s" was added.' % (campaign['name'], campaign['id']))) # Optional: Set the campaign's location and language targeting. No other # targeting criteria can be used for Universal App campaigns. SetCampaignTargetingCriteria(client, campaign) else: print('No Universal App campaigns were added.') def CreateBudget(client): """Creates a budget and returns its budgetId. Args: client: An AdWordsClient instance. Returns: An int budgetId for the created Budget. """ budget_service = client.GetService('BudgetService', version='v201802') # Create a budget. budget = { 'name': 'Interplanetary Cruise App Budget #%s' % uuid.uuid4(), 'amount': { 'microAmount': '50000000' }, 'deliveryMethod': 'STANDARD', 'isExplicitlyShared': False } budget_operations = [{ 'operator': 'ADD', 'operand': budget }] # Create the budget and return its ID. budget_id = budget_service.mutate(budget_operations)['value'][0]['budgetId'] return budget_id def SetCampaignTargetingCriteria(client, campaign): """Sets targeting criteria for the given campaign. Args: client: An AdWordsClient instance. campaign: A suds object representing the campaign we wish to attach targeting criteria. """ campaign_criterion_service = client.GetService('CampaignCriterionService') # Create locations. The IDs can be found in the documentation or retrieved # with the LocationCriterionService. criteria = [ { 'xsi_type': 'Location', 'id': 21137 # California }, { 'xsi_type': 'Location', 'id': 2484 # Mexico }, { 'xsi_type': 'Language', 'id': 1000 # English }, { 'xsi_type': 'Language', 'id': 1003 # Spanish } ] operations = [{ 'operator': 'ADD', 'operand': { 'campaignId': campaign['id'], 'criterion': criterion } } for criterion in criteria] response = campaign_criterion_service.mutate(operations) if response and 'value' in response: # Display the added campaign targets. for criterion in response['value']: print(('Campaign criteria of type "%s" and id "%s" was added.' % (criterion['criterion']['type'], criterion['criterion']['id']))) if __name__ == '__main__': # Initialize client object. adwords_client = adwords.AdWordsClient.LoadFromStorage() main(adwords_client)
the-stack_106_24441
#!/usr/bin/env python # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Import libraries and modules import tensorflow as tf # Set logging verbosity to INFO for richer output tf.logging.set_verbosity(tf.logging.INFO) # The number of video classes NUM_CLASSES = 4716 # Create an input function to read our training and validation data # Then provide the results to the Estimator API def read_dataset_video(file_pattern, mode, batch_size): def _input_fn(): print("\nread_dataset_video: _input_fn: file_pattern = {}".format(file_pattern)) print("read_dataset_video: _input_fn: mode = {}".format(mode)) print("read_dataset_video: _input_fn: batch_size = {}".format(batch_size)) # This function will decode frame examples from the frame level TF Records def decode_example(serialized_examples): # Create feature map feature_map = { 'video_id': tf.FixedLenFeature(shape = [], dtype = tf.string), 'labels': tf.VarLenFeature(dtype = tf.int64), 'mean_rgb': tf.FixedLenFeature(shape = [1024], dtype = tf.float32), 'mean_audio': tf.FixedLenFeature(shape = [128], dtype = tf.float32) } # Parse TF Records into our features features = tf.parse_single_example(serialized = serialized_examples, features = feature_map) print("\nread_dataset_video: _input_fn: decode_example: features = {}".format(features)) # shape = video_id = (), mean_rgb = (1024,), mean_audio = (128,), labels = SparseTensor object # Extract and format labels sparse_labels = features.pop("labels") # SparseTensor object print("read_dataset_video: _input_fn: decode_example: sparse_labels = {}\n".format(sparse_labels)) labels = tf.cast(x = tf.sparse_to_dense(sparse_indices = sparse_labels.values, output_shape = (NUM_CLASSES,), sparse_values = 1, validate_indices = False), dtype = tf.float32) print("read_dataset_video: _input_fn: decode_example: labels = {}\n".format(labels)) # shape = (NUM_CLASSES,) return features, labels # Create list of files from file pattern file_list = tf.gfile.Glob(filename = file_pattern) #print("read_dataset_video: _input_fn: file_list = {}".format(file_list)) # Create dataset from file list dataset = tf.data.TFRecordDataset(filenames = file_list) print("read_dataset_video: _input_fn: dataset.TFRecordDataset = {}".format(dataset)) # Decode TF Record dataset examples dataset = dataset.map(map_func = lambda x: decode_example(serialized_examples = x)) print("read_dataset_video: _input_fn: dataset.map = {}".format(dataset)) # Determine amount of times to repeat file and if we should shuffle based on if we are training or evaluating if mode == tf.estimator.ModeKeys.TRAIN: num_epochs = None # read files forever # Shuffle the dataset within a buffer dataset = dataset.shuffle(buffer_size = batch_size * 10, seed = None) print("read_dataset_video: _input_fn: dataset.shuffle = {}".format(dataset)) else: num_epochs = 1 # read files only once # Repeat files num_epoch times dataset = dataset.repeat(count = num_epochs) print("read_dataset_video: _input_fn: dataset.repeat = {}".format(dataset)) # Group the data into batches dataset = dataset.batch(batch_size = batch_size) print("read_dataset_video: _input_fn: dataset.batch = {}".format(dataset)) # Create a iterator and then pull the next batch of features and labels from the example queue batch_features, batch_labels = dataset.make_one_shot_iterator().get_next() print("read_dataset_video: _input_fn: batch_features = {}".format(batch_features)) print("read_dataset_video: _input_fn: batch_labels = {}\n".format(batch_labels)) return batch_features, batch_labels return _input_fn # Create our model function to be used in our custom estimator def video_level_model(features, labels, mode, params): print("\nvideo_level_model: features = {}".format(features)) print("video_level_model: labels = {}".format(labels)) print("video_level_model: mode = {}".format(mode)) # 0. Configure network # Get dynamic batch size current_batch_size = tf.shape(features['mean_rgb'])[0] print("video_level_model: current_batch_size = {}".format(current_batch_size)) # Stack all of the features into a 3-D tensor combined_features = tf.concat(values = [features['mean_rgb'], features['mean_audio']], axis = 1) # shape = (current_batch_size, 1024 + 128) print("video_level_model: combined_features = {}".format(combined_features)) # 1. Create the DNN structure now # Create the input layer to our frame DNN network = combined_features # shape = (current_batch_size, 1024 + 128) print("video_level_model: network = combined_features = {}".format(network)) # Add hidden layers with the given number of units/neurons per layer for units in params['hidden_units']: network = tf.layers.dense(inputs = network, units = units, activation = tf.nn.relu) # shape = (current_batch_size, units) print("video_level_model: network = {}, units = {}".format(network, units)) # Connect the final hidden layer to a dense layer with no activation to get the logits logits = tf.layers.dense(inputs = network, units = NUM_CLASSES, activation = None) # shape = (current_batch_size, NUM_CLASSES) print("video_level_model: logits = {}".format(logits)) # Select the top k logits in descending order top_k_logits = tf.nn.top_k(input = logits, k = params['top_k'], sorted = True) # shape = (current_batch_size, top_k) print("video_level_model: top_k_logits = {}".format(top_k_logits)) # Since this is a multi-class, multi-label problem we will apply a sigmoid, not a softmax, to each logit to get its own probability probabilities = tf.sigmoid(logits) # shape = (current_batch_size, NUM_CLASSES) print("video_level_model: probabilities = {}".format(probabilities)) # Select the top k probabilities in descending order top_k_probabilities = tf.sigmoid(top_k_logits.values) # shape = (current_batch_size, top_k) print("video_level_model: top_k_probabilities = {}".format(top_k_probabilities)) # Select the top k classes in descending order of likelihood top_k_classes = top_k_logits.indices # shape = (current_batch_size, top_k) print("video_level_model: top_k_classes = {}".format(top_k_classes)) # The 0/1 predictions based on a threshold, in this case the threshold is if the probability it greater than random chance predictions = tf.where( condition = probabilities > 1.0 / NUM_CLASSES, # shape = (current_batch_size, NUM_CLASSES) x = tf.ones_like(tensor = probabilities), y = tf.zeros_like(tensor = probabilities)) print("video_level_model: predictions = {}".format(predictions)) top_k_predictions = tf.where( condition = top_k_probabilities > 1.0 / NUM_CLASSES, # shape = (current_batch_size, top_k) x = tf.ones_like(tensor = top_k_probabilities), y = tf.zeros_like(tensor = top_k_probabilities)) print("video_level_model: top_k_predictions = {}\n".format(top_k_predictions)) # 2. Loss function, training/eval ops if mode in [tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL]: # Since this is a multi-class, multi-label problem, we will use sigmoid activation and cross entropy loss loss = tf.losses.sigmoid_cross_entropy(multi_class_labels = labels, logits = logits) train_op = tf.contrib.layers.optimize_loss( loss = loss, global_step = tf.train.get_global_step(), learning_rate = 0.01, optimizer = "Adam") eval_metric_ops = { "accuracy": tf.metrics.mean_per_class_accuracy(labels = labels, predictions = predictions, num_classes = NUM_CLASSES) } else: loss = None train_op = None eval_metric_ops = None # 3. Create predictions predictions_dict = {"logits": top_k_logits.values, "probabilities": top_k_probabilities, "predictions": top_k_predictions, "classes": top_k_classes} # 4. Create export outputs export_outputs = {"predict_export_outputs": tf.estimator.export.PredictOutput(outputs = predictions_dict)} # 5. Return EstimatorSpec return tf.estimator.EstimatorSpec( mode = mode, predictions = predictions_dict, loss = loss, train_op = train_op, eval_metric_ops = eval_metric_ops, export_outputs = export_outputs) # Create our serving input function to accept the data at serving and send it in the right format to our custom estimator def serving_input_fn(): # This function fixes the shape and type of our input strings def fix_shape_and_type_for_serving(placeholder): # String split each string in the batch and output the values from the resulting SparseTensors split_string = tf.map_fn( fn = lambda x: tf.string_split(source = [placeholder[x]], delimiter=',').values, elems = tf.range(start = 0, limit = tf.shape(input = placeholder)[0]), dtype = tf.string) # shape = (batch_size, input_sequence_length) print("serving_input_fn: fix_shape_and_type_for_serving: split_string = {}".format(split_string)) # Convert each string in the split tensor to float feature_tensor = tf.string_to_number(string_tensor = split_string, out_type = tf.float32) # shape = (batch_size, input_sequence_length) print("serving_input_fn: fix_shape_and_type_for_serving: feature_tensor = {}".format(feature_tensor)) return feature_tensor # This function fixes dynamic shape ambiguity of last dimension so that we will be able to use it in our DNN (since tf.layers.dense require the last dimension to be known) def get_shape_and_set_modified_shape_2D(tensor, additional_dimension_sizes): # Get static shape for tensor and convert it to list shape = tensor.get_shape().as_list() # Set outer shape to additional_dimension_sizes[0] since we know that this is the correct size shape[1] = additional_dimension_sizes[0] # Set the shape of tensor to our modified shape tensor.set_shape(shape = shape) # shape = (batch_size, additional_dimension_sizes[0]) print("serving_input_fn: get_shape_and_set_modified_shape_2D: tensor = {}, additional_dimension_sizes = {}".format(tensor, additional_dimension_sizes)) return tensor # Create placeholders to accept the data sent to the model at serving time feature_placeholders = { # all features come in as a batch of strings, shape = (batch_size,), this was so because of passing the arrays to online ml-engine prediction 'video_id': tf.placeholder(dtype = tf.string, shape = [None]), 'mean_rgb': tf.placeholder(dtype = tf.string, shape = [None]), 'mean_audio': tf.placeholder(dtype = tf.string, shape = [None]) } print("\nserving_input_fn: feature_placeholders = {}".format(feature_placeholders)) # Create feature tensors features = { "video_id": feature_placeholders["video_id"], "mean_rgb": fix_shape_and_type_for_serving(placeholder = feature_placeholders["mean_rgb"]), "mean_audio": fix_shape_and_type_for_serving(placeholder = feature_placeholders["mean_audio"]) } print("serving_input_fn: features = {}".format(features)) # Fix dynamic shape ambiguity of feature tensors for our DNN features["mean_rgb"] = get_shape_and_set_modified_shape_2D(tensor = features["mean_rgb"], additional_dimension_sizes = [1024]) features["mean_audio"] = get_shape_and_set_modified_shape_2D(tensor = features["mean_audio"], additional_dimension_sizes = [128]) print("serving_input_fn: features = {}\n".format(features)) return tf.estimator.export.ServingInputReceiver(features = features, receiver_tensors = feature_placeholders) # Create custom estimator's train and evaluate function def train_and_evaluate(args): # Create custom estimator's train and evaluate function estimator = tf.estimator.Estimator( model_fn = video_level_model, model_dir = args['output_dir'], params = {'hidden_units': args['hidden_units'], 'top_k': args['top_k']}) # Create train spec to read in our training data train_spec = tf.estimator.TrainSpec( input_fn = read_dataset_video( file_pattern = args['train_file_pattern'], mode = tf.estimator.ModeKeys.TRAIN, batch_size = args['batch_size']), max_steps = args['train_steps']) # Create exporter to save out the complete model to disk exporter = tf.estimator.LatestExporter(name = 'exporter', serving_input_receiver_fn = serving_input_fn) # Create eval spec to read in our validation data and export our model eval_spec = tf.estimator.EvalSpec( input_fn = read_dataset_video( file_pattern = args['eval_file_pattern'], mode = tf.estimator.ModeKeys.EVAL, batch_size = args['batch_size']), steps = None, exporters = exporter, start_delay_secs = args['start_delay_secs'], throttle_secs = args['throttle_secs']) # Create train and evaluate loop to train and evaluate our estimator tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
the-stack_106_24443
print(' '*20+'Version: String Encoder v0.0.1.5') print('.'*150) print('@copyright Bijoy_Maji') print('By - Bijoy Maji. Email:- [email protected]') print('Note: There have a problem with some key. if you find it , please mail me the key at majibijoy00@gmail.') print('.'*150) import random import math as m #input stering in_put=input('Enter your string:') #genarate a key for encription output=[in_put[i] for i in range(len(in_put))] #gggggsjgfdvghggjgsjg words_list1=[['l', 'z', 'x', 'c', 'v', 'b','u','i','o','p','a','s'], ['d', 'f', 'g', 'h', 'j', 'k', 'q','w','e','r','t','y'], ['n', 'm', '~', '!', '#', '$', '%', '^', '&', '*', '(', ')'], ['_', '+', '@', '-', '=', '{', '}', '|', '[', ']', ':', '"'], ['`', ';', "'", '<', '>', '?', ',', '.', '/', '€', '¤', ' '], ['Z', 'X', 'C', 'V', 'B', 'Y', 'U', 'I', 'O', 'P', 'A', 'S'], ['D', 'F', 'G', 'H', 'J', 'K', 'L','Q', 'W', 'E', 'R', 'T' ], ['N', 'M', '0','5', '6', '7', '8', '9','1', '2', '3', '4']] lower_words="qwertyuiopasdfghjklzxcvbnm" upper_words=lower_words.upper() number="0123456789" symbols='''~!#$%^&*()_+@-={}|[]:"`;'<>?,./€¤ ''' words=lower_words+symbols+upper_words+number words_list=[words[i] for i in range(len(words))] output1=[words_list.index(i) for i in output] xp,yp,zp=[],[],[] chack_key=input("Have you a key ? (y/n):") yes1=['y','Y','yes','Yes'] no1=['n','N','No','no'] key=[] keyerror=0 try: if chack_key in no1: #key work key=[str(int(random.uniform(0,9))) for i in range (10) ] elif chack_key in yes1: key_in=input('Input our key: ') key_2=['@','$', 'G','A','#','%','X','!','_','+','/','&','z','r','H','Q','W','D','Y','~'] key_1=[key_in[i] for i in range(len(key_in))] j=int(key_1[10]) key_3=[] key_4=[] position=[] z=[] for i in range(12,len(key_1),2): key_3.append(key_1[i]) for k in key_1[:10]: if k in key_2: key_4.append(k) z.append(key_1.index(k)) position.append(key_2.index(k)-j) y=[] for l in range (min(position),max(position)+1): y.append(key_3[position.index(l)]) c=0 for a in z: key_1[a]=y[c] c=c+1 key=key_1[:10] else: print("Sorry! only 'y' and 'n' are accepted") keyerror +=1 # mixing word with key word_with_key=[] for p in key: word_with_key.append(8-int(p)) for q in word_with_key: if q==8: word_with_key.remove(q) for i in word_with_key: if word_with_key.count(i)>1: word_with_key.remove(i) key_len_en=len(word_with_key) for i in range(8): if i not in word_with_key: word_with_key.append(i) #print ('word_with_key: ',word_with_key) new_words_list=[] for i in word_with_key: new_words_list.append(words_list1[i]) for j in output1 : a1=int((j+1)/12) b1=int((j+1)%12) yp.append(b1-1) if (j+1)%12==0: xp.append(a1-1) zp.append(new_words_list[a1-1][b1-1]) else: xp.append(a1) zp.append(new_words_list[a1][b1-1]) key_2=['@','$', 'G','A','#','%','X','!','_','+','/','&','z','r','H','Q','W','D','Y','~'] j=int(random.uniform(-1,5)) main_constant=j x=[] for i in key: position=key.index(i) counter =0 if key.count(i)>1: x.append(i) j3=int(random.uniform(0,len(key_2))) x.append(key_2[j3]) position1=key.index(i) j+=1 key[key.index(i,position1+1)]=key_2[j] key.append(str(main_constant)) j2=int(random.uniform(11,len(key_2))) key.append(key_2[j2]) key=key+x key_3=key[0] for key_in_word in range(1,len(key)): key_3=key_3+key[key_in_word] if chack_key in no1: print('Your key is: ',key_3) #print('Words=',new_words_list) #print('Your encoded string:',output) #print('Out put:',output1) #print(xp,yp,zp) result=zp[0] for key_in_word in range(1,len(zp)): result=result+zp[key_in_word] if keyerror ==0: print('Encoded string is :',result) except: print ("some error in input key ! Enter right key and try again !")
the-stack_106_24445
#!/usr/bin/env python # Copyright (C) 2012-2013, The CyanogenMod Project # (C) 2017, The LineageOS Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import base64 import json import netrc import os import re import sys try: # For python3 import urllib.error import urllib.parse import urllib.request except ImportError: # For python2 import imp import urllib2 import urlparse urllib = imp.new_module('urllib') urllib.error = urllib2 urllib.parse = urlparse urllib.request = urllib2 from xml.etree import ElementTree product = sys.argv[1] if len(sys.argv) > 2: depsonly = sys.argv[2] else: depsonly = None try: device = product[product.index("_") + 1:] except: device = product if not depsonly: print("Device %s not found. Attempting to retrieve device repository from TeamHorizon Github (http://github.com/TeamHorizon)." % device) repositories = [] try: authtuple = netrc.netrc().authenticators("api.github.com") if authtuple: auth_string = ('%s:%s' % (authtuple[0], authtuple[2])).encode() githubauth = base64.encodestring(auth_string).decode().replace('\n', '') else: githubauth = None except: githubauth = None def add_auth(githubreq): if githubauth: githubreq.add_header("Authorization","Basic %s" % githubauth) if not depsonly: githubreq = urllib.request.Request("https://api.github.com/search/repositories?q=%s+user:TeamHorizon+in:name+fork:true" % device) add_auth(githubreq) try: result = json.loads(urllib.request.urlopen(githubreq).read().decode()) except urllib.error.URLError: print("Failed to search GitHub") sys.exit() except ValueError: print("Failed to parse return data from GitHub") sys.exit() for res in result.get('items', []): repositories.append(res) local_manifests = r'.repo/local_manifests' if not os.path.exists(local_manifests): os.makedirs(local_manifests) def exists_in_tree(lm, path): for child in lm.getchildren(): if child.attrib['path'] == path: return True return False # in-place prettyprint formatter def indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i def get_manifest_path(): '''Find the current manifest path In old versions of repo this is at .repo/manifest.xml In new versions, .repo/manifest.xml includes an include to some arbitrary file in .repo/manifests''' m = ElementTree.parse(".repo/manifest.xml") try: m.findall('default')[0] return '.repo/manifest.xml' except IndexError: return ".repo/manifests/{}".format(m.find("include").get("name")) def get_default_revision(): r = ('p') return r.replace('refs/heads/', '').replace('refs/tags/', '') def get_from_manifest(devicename): try: lm = ElementTree.parse(".repo/local_manifests/roomservice.xml") lm = lm.getroot() except: lm = ElementTree.Element("manifest") for localpath in lm.findall("project"): if re.search("android_device_.*_%s$" % device, localpath.get("name")): return localpath.get("path") return None def is_in_manifest(projectpath): try: lm = ElementTree.parse(".repo/local_manifests/roomservice.xml") lm = lm.getroot() except: lm = ElementTree.Element("manifest") for localpath in lm.findall("project"): if localpath.get("path") == projectpath: return True # Search in main manifest, too try: lm = ElementTree.parse(get_manifest_path()) lm = lm.getroot() except: lm = ElementTree.Element("manifest") for localpath in lm.findall("project"): if localpath.get("path") == projectpath: return True # ... and don't forget the lineage snippet try: lm = ElementTree.parse(".repo/manifests/snippets/lineage.xml") lm = lm.getroot() except: lm = ElementTree.Element("manifest") for localpath in lm.findall("project"): if localpath.get("path") == projectpath: return True return False def add_to_manifest(repositories, fallback_branch = None): try: lm = ElementTree.parse(".repo/local_manifests/roomservice.xml") lm = lm.getroot() except: lm = ElementTree.Element("manifest") for repository in repositories: repo_name = repository['repository'] repo_target = repository['target_path'] print('Checking if %s is fetched from %s' % (repo_target, repo_name)) if is_in_manifest(repo_target): print('TeamHorizon/%s already fetched to %s' % (repo_name, repo_target)) continue print('Adding dependency: TeamHorizon/%s -> %s' % (repo_name, repo_target)) project = ElementTree.Element("project", attrib = { "path": repo_target, "remote": "github", "name": "TeamHorizon/%s" % repo_name, "revision": "p"}) if 'branch' in repository: project.set('revision',repository['branch']) elif fallback_branch: print("Using fallback branch %s for %s" % (fallback_branch, repo_name)) project.set('revision', fallback_branch) else: print("Using default branch for %s" % repo_name) lm.append(project) indent(lm, 0) raw_xml = ElementTree.tostring(lm).decode() raw_xml = '<?xml version="1.0" encoding="UTF-8"?>\n' + raw_xml f = open('.repo/local_manifests/roomservice.xml', 'w') f.write(raw_xml) f.close() def fetch_dependencies(repo_path, fallback_branch = None): print('Looking for dependencies in %s' % repo_path) dependencies_path = repo_path + '/xenonhd.dependencies' syncable_repos = [] verify_repos = [] if os.path.exists(dependencies_path): dependencies_file = open(dependencies_path, 'r') dependencies = json.loads(dependencies_file.read()) fetch_list = [] for dependency in dependencies: if not is_in_manifest(dependency['target_path']): fetch_list.append(dependency) syncable_repos.append(dependency['target_path']) verify_repos.append(dependency['target_path']) else: verify_repos.append(dependency['target_path']) dependencies_file.close() if len(fetch_list) > 0: print('Adding dependencies to manifest') add_to_manifest(fetch_list, fallback_branch) else: print('%s has no additional dependencies.' % repo_path) if len(syncable_repos) > 0: print('Syncing dependencies') os.system('repo sync --force-sync %s' % ' '.join(syncable_repos)) for deprepo in verify_repos: fetch_dependencies(deprepo) def has_branch(branches, revision): return revision in [branch['name'] for branch in branches] if depsonly: repo_path = get_from_manifest(device) if repo_path: fetch_dependencies(repo_path) else: print("Trying dependencies-only mode on a non-existing device tree?") sys.exit() else: for repository in repositories: repo_name = repository['name'] if re.match(r"^android_device_[^_]*_" + device + "$", repo_name): print("Found repository: %s" % repository['name']) manufacturer = repo_name.replace("android_device_", "").replace("_" + device, "") default_revision = get_default_revision() print("Default revision: %s" % default_revision) print("Checking branch info") githubreq = urllib.request.Request(repository['branches_url'].replace('{/branch}', '')) add_auth(githubreq) result = json.loads(urllib.request.urlopen(githubreq).read().decode()) ## Try tags, too, since that's what releases use if not has_branch(result, default_revision): githubreq = urllib.request.Request(repository['tags_url'].replace('{/tag}', '')) add_auth(githubreq) result.extend (json.loads(urllib.request.urlopen(githubreq).read().decode())) repo_path = "device/%s/%s" % (manufacturer, device) adding = {'repository':repo_name,'target_path':repo_path} fallback_branch = None if not has_branch(result, default_revision): if os.getenv('ROOMSERVICE_BRANCHES'): fallbacks = list(filter(bool, os.getenv('ROOMSERVICE_BRANCHES').split(' '))) for fallback in fallbacks: if has_branch(result, fallback): print("Using fallback branch: %s" % fallback) fallback_branch = fallback break if not fallback_branch: print("Default revision %s not found in %s. Bailing." % (default_revision, repo_name)) print("Branches found:") for branch in [branch['name'] for branch in result]: print(branch) print("Use the ROOMSERVICE_BRANCHES environment variable to specify a list of fallback branches.") sys.exit() add_to_manifest([adding], fallback_branch) print("Syncing repository to retrieve project.") os.system('repo sync --force-sync %s' % repo_path) print("Repository synced!") fetch_dependencies(repo_path, fallback_branch) print("Done") sys.exit() print("Repository for %s not found in the TeamHorizon Github repository list. If this is in error, you may need to manually add it to your local_manifests/roomservice.xml." % device)
the-stack_106_24446
# Write a function that extracts the words from a given text as a parameter. # A word is defined as a sequence of alpha-numeric characters. import re, os def extract_words(text): # pattern = re.compile('\w+\') # words = re.findall(pattern, text) # return words return re.split("[^\w]+", text) # print(extract_words("Today I'm shopping for 2 notebooks and 10 kilos of onions")) # Write a function that receives as a parameter a regex string, a text string and a whole number x, # and returns those long-length x substrings that match the regular expression. def get_substrings_that_matches(regex, text, x): # pattern = re.compile(regex) # matches = re.findall(pattern, text) # return [m for m in matches if len(m) is x] return [word for word in re.findall(regex, text) if len(word) is x] # print(get_substrings_that_matches('(\w+)', "I am a computer science student", 7)) # Write a function that receives as a parameter a string of text characters and a list of regular expressions and # returns a list of strings that match on at least one regular expression given as a parameter. def strings_that_matches_at_least_one_patterns(list_of_strings, patterns): def match_at_least_one_regex(s, patterns): for pattern in patterns: if re.search(pattern, s) is not None: return True return False return [s for s in list_of_strings if match_at_least_one_regex(s, patterns)] # print(strings_that_matches_at_least_one_patterns(["I", "payed", "150 dollars for 1 night", "at the museum"], # ["(\d+)"])) # Write a function that, for a text given as a parameter, censures words that begin and end with vowels. # Censorship means replacing characters from odd positions with *. def censure_words(text): words = extract_words(text) censored = [] for word in words: pattern = '^[aeiou].*[aeiou]$' if re.match(pattern, word, flags=re.IGNORECASE): word = word.replace(word[0], '*') word = word.replace(word[len(word) - 1], '*') censored.append(word) return censored # print(censure_words('Ana are mere dulci, are apatie')) # Write a function that recursively scrolls a directory and displays those files whose name # matches a regular expression given as a parameter or contains a string that matches the same expression. # Files that satisfy both conditions will be prefixed with ">>" def get_files_that_match_pattern(regex): def fully_matches_regex(file_name, pattern): if re.match(pattern + "$", file_name) is not None: return True return False def matches_regex(file_name, pattern): if re.search(pattern, file_name) is not None: return True return False path = 'C:\\facultate\\an3\\sem1\\python\\python\\labs' for (root, directories, files) in os.walk(path): for filename in files: file_path = os.path.join(root, filename) if os.path.isfile(file_path): if fully_matches_regex(filename, regex) and matches_regex(filename, regex): print('>>' + filename) elif fully_matches_regex(filename, regex) or matches_regex(filename, regex): print(filename) print(get_files_that_match_pattern('problem5.py'))
the-stack_106_24447
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more§ # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import with_statement import os import sys import tempfile from libcloud import _init_once from libcloud.test import LibcloudTestCase from libcloud.test import unittest from libcloud.compute.ssh import ParamikoSSHClient from libcloud.compute.ssh import ShellOutSSHClient from libcloud.compute.ssh import have_paramiko from libcloud.utils.py3 import StringIO from libcloud.utils.py3 import u from libcloud.utils.py3 import assertRaisesRegex from mock import patch, Mock, MagicMock if not have_paramiko: ParamikoSSHClient = None # NOQA paramiko_version = '0.0.0' else: import paramiko paramiko_version = paramiko.__version__ @unittest.skipIf(not have_paramiko, 'Skipping because paramiko is not available') class ParamikoSSHClientTests(LibcloudTestCase): @patch('paramiko.SSHClient', Mock) def setUp(self): """ Creates the object patching the actual connection. """ conn_params = {'hostname': 'dummy.host.org', 'port': 8822, 'username': 'ubuntu', 'key': '~/.ssh/ubuntu_ssh', 'timeout': '600'} _, self.tmp_file = tempfile.mkstemp() os.environ['LIBCLOUD_DEBUG'] = self.tmp_file _init_once() self.ssh_cli = ParamikoSSHClient(**conn_params) def tearDown(self): if 'LIBCLOUD_DEBUG' in os.environ: del os.environ['LIBCLOUD_DEBUG'] @patch('paramiko.SSHClient', Mock) def test_create_with_password(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu', 'password': 'ubuntu'} mock = ParamikoSSHClient(**conn_params) mock.connect() expected_conn = {'username': 'ubuntu', 'password': 'ubuntu', 'allow_agent': False, 'hostname': 'dummy.host.org', 'look_for_keys': False, 'port': 22} mock.client.connect.assert_called_once_with(**expected_conn) self.assertLogMsg('Connecting to server') @patch('paramiko.SSHClient', Mock) def test_deprecated_key_argument(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu', 'key': 'id_rsa'} mock = ParamikoSSHClient(**conn_params) mock.connect() expected_conn = {'username': 'ubuntu', 'allow_agent': False, 'hostname': 'dummy.host.org', 'look_for_keys': False, 'key_filename': 'id_rsa', 'port': 22} mock.client.connect.assert_called_once_with(**expected_conn) self.assertLogMsg('Connecting to server') def test_key_files_and_key_material_arguments_are_mutual_exclusive(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu', 'key_files': 'id_rsa', 'key_material': 'key'} expected_msg = ('key_files and key_material arguments are mutually ' 'exclusive') assertRaisesRegex(self, ValueError, expected_msg, ParamikoSSHClient, **conn_params) @patch('paramiko.SSHClient', Mock) def test_key_material_argument(self): path = os.path.join(os.path.dirname(__file__), 'fixtures', 'misc', 'test_rsa.key') with open(path, 'r') as fp: private_key = fp.read() conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu', 'key_material': private_key} mock = ParamikoSSHClient(**conn_params) mock.connect() pkey = paramiko.RSAKey.from_private_key(StringIO(private_key)) expected_conn = {'username': 'ubuntu', 'allow_agent': False, 'hostname': 'dummy.host.org', 'look_for_keys': False, 'pkey': pkey, 'port': 22} mock.client.connect.assert_called_once_with(**expected_conn) self.assertLogMsg('Connecting to server') @patch('paramiko.SSHClient', Mock) def test_key_material_argument_invalid_key(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu', 'key_material': 'id_rsa'} mock = ParamikoSSHClient(**conn_params) expected_msg = 'Invalid or unsupported key type' assertRaisesRegex(self, paramiko.ssh_exception.SSHException, expected_msg, mock.connect) @patch('paramiko.SSHClient', Mock) @unittest.skipIf(paramiko_version >= '2.7.0', 'New versions of paramiko support OPENSSH key format') def test_key_file_non_pem_format_error(self): path = os.path.join(os.path.dirname(__file__), 'fixtures', 'misc', 'test_rsa_non_pem_format.key') # Supplied as key_material with open(path, 'r') as fp: private_key = fp.read() conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu', 'key_material': private_key} mock = ParamikoSSHClient(**conn_params) expected_msg = 'Invalid or unsupported key type' assertRaisesRegex(self, paramiko.ssh_exception.SSHException, expected_msg, mock.connect) def test_key_material_valid_pem_keys_invalid_header_auto_conversion(self): # Test a scenario where valid PEM keys with invalid headers which is # not recognized by paramiko are automatically converted in a format # which is recognized by paramiko conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu'} client = ParamikoSSHClient(**conn_params) # 1. RSA key type with header which is not supported by paramiko path = os.path.join(os.path.dirname(__file__), 'fixtures', 'misc', 'test_rsa_non_paramiko_recognized_header.key') with open(path, 'r') as fp: private_key = fp.read() pkey = client._get_pkey_object(key=private_key) self.assertTrue(pkey) self.assertTrue(isinstance(pkey, paramiko.RSAKey)) # 2. DSA key type with header which is not supported by paramiko path = os.path.join(os.path.dirname(__file__), 'fixtures', 'misc', 'test_dsa_non_paramiko_recognized_header.key') with open(path, 'r') as fp: private_key = fp.read() pkey = client._get_pkey_object(key=private_key) self.assertTrue(pkey) self.assertTrue(isinstance(pkey, paramiko.DSSKey)) # 3. ECDSA key type with header which is not supported by paramiko path = os.path.join(os.path.dirname(__file__), 'fixtures', 'misc', 'test_ecdsa_non_paramiko_recognized_header.key') with open(path, 'r') as fp: private_key = fp.read() pkey = client._get_pkey_object(key=private_key) self.assertTrue(pkey) self.assertTrue(isinstance(pkey, paramiko.ECDSAKey)) def test_key_material_valid_pem_keys(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu'} client = ParamikoSSHClient(**conn_params) # 1. RSA key type with header which is not supported by paramiko path = os.path.join(os.path.dirname(__file__), 'fixtures', 'misc', 'test_rsa.key') with open(path, 'r') as fp: private_key = fp.read() pkey = client._get_pkey_object(key=private_key) self.assertTrue(pkey) self.assertTrue(isinstance(pkey, paramiko.RSAKey)) # 2. DSA key type with header which is not supported by paramiko path = os.path.join(os.path.dirname(__file__), 'fixtures', 'misc', 'test_dsa.key') with open(path, 'r') as fp: private_key = fp.read() pkey = client._get_pkey_object(key=private_key) self.assertTrue(pkey) self.assertTrue(isinstance(pkey, paramiko.DSSKey)) # 3. ECDSA key type with header which is not supported by paramiko path = os.path.join(os.path.dirname(__file__), 'fixtures', 'misc', 'test_ecdsa.key') with open(path, 'r') as fp: private_key = fp.read() pkey = client._get_pkey_object(key=private_key) self.assertTrue(pkey) self.assertTrue(isinstance(pkey, paramiko.ECDSAKey)) @patch('paramiko.SSHClient', Mock) def test_create_with_key(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu', 'key_files': 'id_rsa'} mock = ParamikoSSHClient(**conn_params) mock.connect() expected_conn = {'username': 'ubuntu', 'allow_agent': False, 'hostname': 'dummy.host.org', 'look_for_keys': False, 'key_filename': 'id_rsa', 'port': 22} mock.client.connect.assert_called_once_with(**expected_conn) self.assertLogMsg('Connecting to server') @patch('paramiko.SSHClient', Mock) def test_create_with_password_and_key(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu', 'password': 'ubuntu', 'key': 'id_rsa'} mock = ParamikoSSHClient(**conn_params) mock.connect() expected_conn = {'username': 'ubuntu', 'password': 'ubuntu', 'allow_agent': False, 'hostname': 'dummy.host.org', 'look_for_keys': False, 'key_filename': 'id_rsa', 'port': 22} mock.client.connect.assert_called_once_with(**expected_conn) self.assertLogMsg('Connecting to server') @patch('paramiko.SSHClient', Mock) def test_create_without_credentials(self): """ Initialize object with no credentials. Just to have better coverage, initialize the object without 'password' neither 'key'. """ conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu'} mock = ParamikoSSHClient(**conn_params) mock.connect() expected_conn = {'username': 'ubuntu', 'hostname': 'dummy.host.org', 'allow_agent': True, 'look_for_keys': True, 'port': 22} mock.client.connect.assert_called_once_with(**expected_conn) @patch.object(ParamikoSSHClient, '_consume_stdout', MagicMock(return_value=StringIO(''))) @patch.object(ParamikoSSHClient, '_consume_stderr', MagicMock(return_value=StringIO(''))) def test_basic_usage_absolute_path(self): """ Basic execution. """ mock = self.ssh_cli # script to execute sd = "/root/random_script.sh" # Connect behavior mock.connect() mock_cli = mock.client # The actual mocked object: SSHClient expected_conn = {'username': 'ubuntu', 'key_filename': '~/.ssh/ubuntu_ssh', 'allow_agent': False, 'hostname': 'dummy.host.org', 'look_for_keys': False, 'timeout': '600', 'port': 8822} mock_cli.connect.assert_called_once_with(**expected_conn) mock.put(sd) # Make assertions over 'put' method mock_cli.open_sftp().chdir.assert_called_with('root') mock_cli.open_sftp().file.assert_called_once_with('random_script.sh', mode='w') mock.run(sd) # Make assertions over 'run' method mock_cli.get_transport().open_session().exec_command \ .assert_called_once_with(sd) self.assertLogMsg('Executing command (cmd=/root/random_script.sh)') self.assertLogMsg('Command finished') mock.close() def test_delete_script(self): """ Provide a basic test with 'delete' action. """ mock = self.ssh_cli # script to execute sd = '/root/random_script.sh' mock.connect() mock.delete(sd) # Make assertions over the 'delete' method mock.client.open_sftp().unlink.assert_called_with(sd) self.assertLogMsg('Deleting file') mock.close() self.assertLogMsg('Closing server connection') def assertLogMsg(self, expected_msg): with open(self.tmp_file, 'r') as fp: content = fp.read() self.assertTrue(content.find(expected_msg) != -1) def test_consume_stdout(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu'} client = ParamikoSSHClient(**conn_params) client.CHUNK_SIZE = 1024 chan = Mock() chan.recv_ready.side_effect = [True, True, False] chan.recv.side_effect = ['123', '456'] stdout = client._consume_stdout(chan).getvalue() self.assertEqual(u('123456'), stdout) self.assertEqual(len(stdout), 6) conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu'} client = ParamikoSSHClient(**conn_params) client.CHUNK_SIZE = 1024 chan = Mock() chan.recv_ready.side_effect = [True, True, False] chan.recv.side_effect = ['987', '6543210'] stdout = client._consume_stdout(chan).getvalue() self.assertEqual(u('9876543210'), stdout) self.assertEqual(len(stdout), 10) def test_consume_stderr(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu'} client = ParamikoSSHClient(**conn_params) client.CHUNK_SIZE = 1024 chan = Mock() chan.recv_stderr_ready.side_effect = [True, True, False] chan.recv_stderr.side_effect = ['123', '456'] stderr = client._consume_stderr(chan).getvalue() self.assertEqual(u('123456'), stderr) self.assertEqual(len(stderr), 6) conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu'} client = ParamikoSSHClient(**conn_params) client.CHUNK_SIZE = 1024 chan = Mock() chan.recv_stderr_ready.side_effect = [True, True, False] chan.recv_stderr.side_effect = ['987', '6543210'] stderr = client._consume_stderr(chan).getvalue() self.assertEqual(u('9876543210'), stderr) self.assertEqual(len(stderr), 10) def test_consume_stdout_chunk_contains_part_of_multi_byte_utf8_character(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu'} client = ParamikoSSHClient(**conn_params) client.CHUNK_SIZE = 1 chan = Mock() chan.recv_ready.side_effect = [True, True, True, True, False] chan.recv.side_effect = ['\xF0', '\x90', '\x8D', '\x88'] stdout = client._consume_stdout(chan).getvalue() self.assertEqual('ð\x90\x8d\x88', stdout) self.assertEqual(len(stdout), 4) def test_consume_stderr_chunk_contains_part_of_multi_byte_utf8_character(self): conn_params = {'hostname': 'dummy.host.org', 'username': 'ubuntu'} client = ParamikoSSHClient(**conn_params) client.CHUNK_SIZE = 1 chan = Mock() chan.recv_stderr_ready.side_effect = [True, True, True, True, False] chan.recv_stderr.side_effect = ['\xF0', '\x90', '\x8D', '\x88'] stderr = client._consume_stderr(chan).getvalue() self.assertEqual('ð\x90\x8d\x88', stderr) self.assertEqual(len(stderr), 4) class ShellOutSSHClientTests(LibcloudTestCase): def test_password_auth_not_supported(self): try: ShellOutSSHClient(hostname='localhost', username='foo', password='bar') except ValueError as e: msg = str(e) self.assertTrue('ShellOutSSHClient only supports key auth' in msg) else: self.fail('Exception was not thrown') def test_ssh_executable_not_available(self): class MockChild(object): returncode = 127 def communicate(*args, **kwargs): pass def mock_popen(*args, **kwargs): return MockChild() with patch('subprocess.Popen', mock_popen): try: ShellOutSSHClient(hostname='localhost', username='foo') except ValueError as e: msg = str(e) self.assertTrue('ssh client is not available' in msg) else: self.fail('Exception was not thrown') def test_connect_success(self): client = ShellOutSSHClient(hostname='localhost', username='root') self.assertTrue(client.connect()) def test_close_success(self): client = ShellOutSSHClient(hostname='localhost', username='root') self.assertTrue(client.close()) def test_get_base_ssh_command(self): client1 = ShellOutSSHClient(hostname='localhost', username='root') client2 = ShellOutSSHClient(hostname='localhost', username='root', key='/home/my.key') client3 = ShellOutSSHClient(hostname='localhost', username='root', key='/home/my.key', timeout=5) cmd1 = client1._get_base_ssh_command() cmd2 = client2._get_base_ssh_command() cmd3 = client3._get_base_ssh_command() self.assertEqual(cmd1, ['ssh', 'root@localhost']) self.assertEqual(cmd2, ['ssh', '-i', '/home/my.key', 'root@localhost']) self.assertEqual(cmd3, ['ssh', '-i', '/home/my.key', '-oConnectTimeout=5', 'root@localhost']) if __name__ == '__main__': sys.exit(unittest.main())
the-stack_106_24448
from pathlib import Path from setuptools import setup from csv_dataset import __version__ # Utility function to read the README file. # Used for the long_description. It's nice, because now 1) we have a top level # README file and 2) it's easier to type in the README file than to put a raw # string in below ... def read(fname): return open(Path(__file__).parent / 'docs' / 'README.md').read() def read_requirements(filename): with open(filename) as f: return f.read().splitlines() settings = dict( name='csv-dataset', packages=['csv_dataset'], version=__version__, author='kaelzhang', author_email='', description=('csv-dataset helps to read csv files and create descriptive and efficient input pipelines for deep learning in a streaming fashion'), license='MIT', keywords='csv-dataset', url='https://github.com/kaelzhang/python-csv-dataset', long_description=read('README.md'), long_description_content_type='text/markdown', python_requires='>=3.7', install_requires=read_requirements('requirements.txt'), tests_require=read_requirements('test-requirements.txt'), classifiers=[ 'Topic :: Software Development :: Libraries :: Python Modules', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: MIT License', ] ) if __name__ == '__main__': setup(**settings)
the-stack_106_24449
from typing import Union, Any from pyqtgraph.Qt import QtWidgets, QtGui from amitypes import Array1d, Array2d, Array3d from ami.flowchart.library.common import CtrlNode, GroupedNode from ami.flowchart.library.CalculatorWidget import CalculatorWidget, FilterWidget, gen_filter_func, sanitize_name import ami.graph_nodes as gn import numpy as np import itertools import collections class Constant(CtrlNode): """ Constant """ nodeName = "Constant" uiTemplate = [('constant', 'doubleSpin')] def __init__(self, name): super().__init__(name, terminals={"Out": {'io': 'out', 'ttype': float}}) def to_operation(self, **kwargs): constant = self.values['constant'] return gn.Map(name=self.name()+"_operation", **kwargs, func=lambda: constant) class Identity(GroupedNode): """ Identity """ nodeName = "Identity" def __init__(self, name): super().__init__(name, terminals={"In": {'io': 'in', 'ttype': Any}, "Out": {'io': 'out', 'ttype': Any}}, allowAddInput=True) def to_operation(self, **kwargs): return gn.Map(name=self.name()+"_operation", **kwargs, func=lambda *args: args) class MeanVsScan(CtrlNode): """ MeanVsScan creates a histogram using a variable number of bins. Returns a dict with keys Bins and values mean of bins. """ nodeName = "MeanVsScan" uiTemplate = [('binned', 'check', {'checked': False}), ('bins', 'intSpin', {'value': 10, 'min': 1}), ('min', 'intSpin', {'value': 0}), ('max', 'intSpin', {'value': 10})] def __init__(self, name): super().__init__(name, global_op=True, terminals={ 'Bin': {'io': 'in', 'ttype': float}, 'Value': {'io': 'in', 'ttype': float}, 'Bins': {'io': 'out', 'ttype': Array1d}, 'Counts': {'io': 'out', 'ttype': Array1d} }) def to_operation(self, inputs, outputs, **kwargs): outputs = self.output_vars() if self.values['binned']: bins = np.histogram_bin_edges(np.arange(self.values['min'], self.values['max']), bins=self.values['bins'], range=(self.values['min'], self.values['max'])) map_outputs = [self.name()+'_bin', self.name()+'_map_count'] reduce_outputs = [self.name()+'_reduce_count'] def func(k, v): return np.digitize(k, bins), (v, 1) def mean(d): res = {bins[i]: 0 for i in range(0, bins.size)} for k, v in d.items(): try: res[bins[k]] = v[0]/v[1] except IndexError: pass keys, values = zip(*sorted(res.items())) return np.array(keys), np.array(values) nodes = [ gn.Map(name=self.name()+'_map', inputs=inputs, outputs=map_outputs, func=func, **kwargs), gn.ReduceByKey(name=self.name()+'_reduce', inputs=map_outputs, outputs=reduce_outputs, reduction=lambda cv, v: (cv[0]+v[0], cv[1]+v[1]), **kwargs), gn.Map(name=self.name()+'_mean', inputs=reduce_outputs, outputs=outputs, func=mean, **kwargs) ] else: map_outputs = [self.name()+'_map_count'] reduce_outputs = [self.name()+'_reduce_count'] def mean(d): res = {} for k, v in d.items(): res[k] = v[0]/v[1] keys, values = zip(*sorted(res.items())) return np.array(keys), np.array(values) nodes = [ gn.Map(name=self.name()+'_map', inputs=[inputs['Value']], outputs=map_outputs, func=lambda a: (a, 1), **kwargs), gn.ReduceByKey(name=self.name()+'_reduce', inputs=[inputs['Bin']]+map_outputs, outputs=reduce_outputs, reduction=lambda cv, v: (cv[0]+v[0], cv[1]+v[1]), **kwargs), gn.Map(name=self.name()+'_mean', inputs=reduce_outputs, outputs=outputs, func=mean, **kwargs) ] return nodes class MeanWaveformVsScan(CtrlNode): """ MeanWaveformVsScan creates a 2d histogram using a variable number of bins. Returns a dict with keys Bins and values mean waveform of bins. """ nodeName = "MeanWaveformVsScan" uiTemplate = [('binned', 'check', {'checked': False}), ('bins', 'intSpin', {'value': 10, 'min': 1}), ('min', 'intSpin', {'value': 0}), ('max', 'intSpin', {'value': 10})] def __init__(self, name): super().__init__(name, global_op=True, terminals={ 'Bin': {'io': 'in', 'ttype': float}, 'Value': {'io': 'in', 'ttype': Array1d}, 'X Bins': {'io': 'out', 'ttype': Array1d}, 'Y Bins': {'io': 'out', 'ttype': Array1d}, 'Counts': {'io': 'out', 'ttype': Array2d} }) def to_operation(self, inputs, outputs, **kwargs): if self.values['binned']: bins = np.histogram_bin_edges(np.arange(self.values['min'], self.values['max']), bins=self.values['bins'], range=(self.values['min'], self.values['max'])) map_outputs = [self.name()+'_bin', self.name()+'_map_count'] reduce_outputs = [self.name()+'_reduce_count'] def func(k, v): return np.digitize(k, bins), (v, 1) def mean(d): res = {} for k, v in d.items(): try: res[bins[k]] = v[0]/v[1] except IndexError: pass missing_keys = set(bins).difference(res.keys()) k, v = d.popitem() for k in missing_keys: res[k] = np.zeros(v[0].shape) keys, values = zip(*sorted(res.items())) stack = np.stack(values, axis=1) return np.arange(0, stack.shape[0]), np.array(keys), stack nodes = [ gn.Map(name=self.name()+'_map', inputs=inputs, outputs=map_outputs, func=func, **kwargs), gn.ReduceByKey(name=self.name()+'_reduce', inputs=map_outputs, outputs=reduce_outputs, reduction=lambda cv, v: (cv[0]+v[0], cv[1]+v[1]), **kwargs), gn.Map(name=self.name()+'_mean', inputs=reduce_outputs, outputs=outputs, func=mean, **kwargs) ] else: map_outputs = [self.name()+'_map_count'] reduce_outputs = [self.name()+'_reduce_count'] def mean(d): res = {} for k, v in d.items(): res[k] = v[0]/v[1] keys, values = zip(*sorted(res.items())) stack = np.stack(values, axis=1) return np.arange(0, stack.shape[0]), np.array(keys), stack nodes = [ gn.Map(name=self.name()+'_map', inputs=[inputs['Value']], outputs=map_outputs, func=lambda a: (a, 1), **kwargs), gn.ReduceByKey(name=self.name()+'_reduce', inputs=[inputs['Bin']]+map_outputs, outputs=reduce_outputs, reduction=lambda cv, v: (cv[0]+v[0], cv[1]+v[1]), **kwargs), gn.Map(name=self.name()+'_mean', inputs=reduce_outputs, outputs=outputs, func=mean, **kwargs) ] return nodes class StatsVsScan(CtrlNode): """ StatsVsScan creates a histogram using a variable number of bins. Returns a dict with keys Bins and values mean, std, error of bins. """ nodeName = "StatsVsScan" uiTemplate = [('binned', 'check', {'checked': False}), ('bins', 'intSpin', {'value': 10, 'min': 1}), ('min', 'intSpin', {'value': 0}), ('max', 'intSpin', {'value': 10})] def __init__(self, name): super().__init__(name, global_op=True, terminals={ 'Bin': {'io': 'in', 'ttype': float}, 'Value': {'io': 'in', 'ttype': float}, 'Bins': {'io': 'out', 'ttype': Array1d}, 'Mean': {'io': 'out', 'ttype': Array1d}, 'Stdev': {'io': 'out', 'ttype': Array1d}, 'Error': {'io': 'out', 'ttype': Array1d}, }) def to_operation(self, inputs, outputs, **kwargs): outputs = self.output_vars() def reduction(cv, v): cv.extend(v) return cv if self.values['binned']: bins = np.histogram_bin_edges(np.arange(self.values['min'], self.values['max']), bins=self.values['bins'], range=(self.values['min'], self.values['max'])) map_outputs = [self.name()+'_bin', self.name()+'_map_count'] reduce_outputs = [self.name()+'_reduce_count'] def func(k, v): return np.digitize(k, bins), [v] def stats(d): res = {bins[i]: (0, 0, 0) for i in range(0, bins.size)} for k, v in d.items(): try: stddev = np.std(v) res[bins[k]] = (np.mean(v), stddev, stddev/np.sqrt(len(v))) except IndexError: pass keys, values = zip(*sorted(res.items())) mean, stddev, error = zip(*values) return np.array(keys), np.array(mean), np.array(stddev), np.array(error) nodes = [ gn.Map(name=self.name()+'_map', inputs=inputs, outputs=map_outputs, func=func, **kwargs), gn.ReduceByKey(name=self.name()+'_reduce', inputs=map_outputs, outputs=reduce_outputs, reduction=reduction, **kwargs), gn.Map(name=self.name()+'_stats', inputs=reduce_outputs, outputs=outputs, func=stats, **kwargs) ] else: map_outputs = [self.name()+'_map_count'] reduce_outputs = [self.name()+'_reduce_count'] def stats(d): res = {} for k, v in d.items(): stddev = np.std(v) res[k] = (np.mean(v), stddev, stddev/np.sqrt(len(v))) keys, values = zip(*sorted(res.items())) mean, stddev, error = zip(*values) return np.array(keys), np.array(mean), np.array(stddev), np.array(error) nodes = [ gn.Map(name=self.name()+'_map', inputs=[inputs['Value']], outputs=map_outputs, func=lambda a: [a], **kwargs), gn.ReduceByKey(name=self.name()+'_reduce', inputs=[inputs['Bin']]+map_outputs, outputs=reduce_outputs, reduction=reduction, **kwargs), gn.Map(name=self.name()+'_stats', inputs=reduce_outputs, outputs=outputs, func=stats, **kwargs) ] return nodes class Combinations(CtrlNode): """ Generate combinations using itertools.combinations. """ nodeName = "Combinations" uiTemplate = [('length', 'intSpin', {'value': 1, 'min': 1})] def __init__(self, name): super().__init__(name, terminals={'In': {'io': 'in', 'ttype': Array1d}, 'Out': {'io': 'out', 'ttype': Array1d}}) self.output_terms = [] def state_changed(self, *args, **kwargs): super().state_changed(*args, **kwargs) while len(self.output_vars()) > self.values['length']: self.removeTerminal(self.output_terms.pop()) while len(self.output_vars()) < self.values['length']: self.output_terms.append(self.addOutput()) def to_operation(self, **kwargs): length = self.values['length'] def func(*args): r = list(map(np.array, zip(*itertools.combinations(*args, length)))) if r: return r else: return [np.array([])]*length return gn.Map(name=self.name()+"_operation", func=func, **kwargs) class Export(CtrlNode): """ Send data back to worker. """ nodeName = "Export" uiTemplate = [('alias', 'text')] def __init__(self, name): super().__init__(name, terminals={"In": {'io': 'in', 'ttype': Any}, "Out": {'io': 'out', 'ttype': Any}}, exportable=True) try: import sympy class CalcProc(): def __init__(self, params): self.params = params self.func = None def __call__(self, *args, **kwargs): # note: args get passed in order of input terminals on node from top to bottom # sympy symbols need to be defined in same order for this to work correctly if self.func is None: self.func = sympy.lambdify(**self.params, modules=["numpy", "scipy"]) args = list(args) for idx, arg in enumerate(args): if type(arg) is np.ndarray: args[idx] = arg.astype(np.float64, copy=False) return self.func(*args, **kwargs) class Calculator(CtrlNode): """ Calculator """ nodeName = "Calculator" def __init__(self, name): super().__init__(name, terminals={'In': {'io': 'in', 'ttype': Union[float, Array1d, Array2d, Array3d]}, 'Out': {'io': 'out', 'ttype': Any}}, allowAddInput=True) self.values = {'operation': ''} def isChanged(self, restore_ctrl, restore_widget): return restore_widget def display(self, topics, terms, addr, win, **kwargs): if self.widget is None: self.widget = CalculatorWidget(terms, win, self.values['operation']) self.widget.sigStateChanged.connect(self.state_changed) return self.widget def to_operation(self, **kwargs): args = [] expr = self.values['operation'] # sympy doesn't like symbols name likes Sum.0.Out, need to remove dots. for arg in self.input_vars().values(): rarg = sanitize_name(arg) args.append(rarg) expr = expr.replace(arg, rarg) params = {'args': args, 'expr': expr} return gn.Map(name=self.name()+"_operation", **kwargs, func=CalcProc(params)) except ImportError as e: print(e) try: from ami.flowchart.library.PythonEditorWidget import PythonEditorWidget, PythonEditorProc class PythonEditor(CtrlNode): """ Write a python function. """ nodeName = "PythonEditor" def __init__(self, name): super().__init__(name, allowAddInput=True, allowAddOutput=True) self.values = {'text': ''} self.input_prompt = None self.output_prompt = None def terminal_prompt(self, name='', title='', **kwargs): prompt = QtWidgets.QWidget() prompt.layout = QtWidgets.QFormLayout(parent=prompt) prompt.name = QtGui.QLineEdit(name, parent=prompt) prompt.type_selector = QtGui.QComboBox(prompt) prompt.ok = QtGui.QPushButton('Ok', parent=prompt) for typ in [Any, bool, float, Array1d, Array2d, Array3d]: prompt.type_selector.addItem(str(typ), typ) prompt.layout.addRow("Name:", prompt.name) prompt.layout.addRow("Type:", prompt.type_selector) prompt.layout.addRow("", prompt.ok) prompt.setLayout(prompt.layout) prompt.setWindowTitle("Add " + name) return prompt def onCreate(self): self.addInput() self.addOutput() def addInput(self, **kwargs): if 'name' not in kwargs: kwargs['name'] = self.nextTerminalName('In') self.input_prompt = self.terminal_prompt(**kwargs) self.input_prompt.ok.clicked.connect(self._addInput) self.input_prompt.show() def _addInput(self, **kwargs): name = self.input_prompt.name.text() ttype = self.input_prompt.type_selector.currentData() kwargs['name'] = name kwargs['ttype'] = ttype kwargs['removable'] = True self.input_prompt.close() return super().addInput(**kwargs) def addOutput(self, **kwargs): if 'name' not in kwargs: kwargs['name'] = self.nextTerminalName('Out') self.output_prompt = self.terminal_prompt(**kwargs) self.output_prompt.ok.clicked.connect(self._addOutput) self.output_prompt.show() def _addOutput(self, **kwargs): name = self.output_prompt.name.text() ttype = self.output_prompt.type_selector.currentData() kwargs['name'] = name kwargs['ttype'] = ttype kwargs['removable'] = True self.output_prompt.close() return super().addOutput(**kwargs) def isChanged(self, restore_ctrl, restore_widget): return restore_widget def display(self, topics, terms, addr, win, **kwargs): if self.widget is None: if not self.values['text']: self.values['text'] = self.generate_template(self.inputs().keys(), self.outputs().keys()) self.widget = PythonEditorWidget(win, self.values['text'], export=True, node=self) self.widget.sigStateChanged.connect(self.state_changed) return self.widget def generate_template(self, inputs, outputs): args = [] for arg in inputs: rarg = sanitize_name(arg) args.append(rarg) args = ', '.join(args) template = f""" class EventProcessor(): def __init__(self): pass def begin_run(self): pass def end_run(self): pass def begin_step(self, step): pass def end_step(self, step): pass def on_event(self, {args}, *args, **kwargs): # return {len(self.outputs())} output(s) return""" return template def to_operation(self, **kwargs): proc = PythonEditorProc(self.values['text']) return gn.Map(name=self.name()+"_operation", **kwargs, func=proc, begin_run=proc.begin_run, end_run=proc.end_run, begin_step=proc.begin_step, end_step=proc.end_step) class Filter(CtrlNode): """ Filter """ nodeName = "Filter" def __init__(self, name): super().__init__(name, terminals={'In': {'io': 'in', 'ttype': Any}, 'Out': {'io': 'out', 'ttype': Any}}, allowAddInput=True, allowAddOutput=True) self.values = collections.defaultdict(dict) def display(self, topics, terms, addr, win, **kwargs): if self.widget is None: self.widget = FilterWidget(terms, self.output_vars(), win) self.widget.sigStateChanged.connect(self.state_changed) return self.widget def to_operation(self, **kwargs): values = self.values inputs = list(self.input_vars().values()) outputs = list(self.output_vars()) for idx, inp in enumerate(inputs): inputs[idx] = sanitize_name(inp) func = gen_filter_func(values, inputs, outputs) return gn.Map(name=self.name()+"_operation", **kwargs, func=PythonEditorProc(func)) except ImportError as e: print(e)
the-stack_106_24450
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import csv import random import argparse import operator import numpy as np import os, sys, json import os.path as osp from tqdm import tqdm from scipy import spatial from numpy.random import choice from random import shuffle from house_parse import HouseParse from question_string_builder import QuestionStringBuilder from nltk.stem import WordNetLemmatizer # for reproducibility random.seed(0) np.random.seed(0) # hard thresholding OBJECT_RATIO_THRESH = 1.5 ROOM_RATIO_TRHESH = 1.5 DIST_LOW_THRESH, DIST_HIGH_THRESH = 0.2, 1.2 blacklist_objects = { 'color': [ 'container', 'containers', 'stationary_container', 'candle', 'coffee_table', 'column', 'door', 'floor_lamp', 'mirror', 'person', 'rug', 'sofa', 'stairs', 'outdoor_seating', 'kitchen_cabinet', 'kitchen_set', 'switch', 'storage_bench', 'table_lamp', 'vase', 'candle', 'roof', 'stand', 'beer', 'chair', 'chandelier', 'coffee_table', 'column', 'trinket', 'grill', 'book', 'books', 'curtain', 'desk', 'door', 'floor_lamp', 'hanger', 'workplace', 'glass', 'headstone', 'kitchen_set', 'mirror', 'plant', 'shelving', 'place_setting', 'ceiling_fan', 'stairs', 'storage_bench', 'switch', 'table_lamp', 'vase', 'decoration', 'coffin', 'wardrobe_cabinet', 'window', 'pet', 'cup', 'arch', 'household_appliance' ], 'dist_compare': [ 'column', 'door', 'switch', 'person', 'household_appliance', 'decoration', 'trinket', 'place_setting', 'coffin', 'book' 'cup', 'chandelier', 'arch', 'pet', 'container', 'containers', 'stationary_container', 'shelving', 'stand', 'kitchen_set', 'books', 'ceiling_fan', 'workplace', 'glass', 'grill', 'roof', 'outdoor_seating', 'kitchen_cabinet', 'headstone', 'beer' ], 'object_compare': [ 'container', 'containers', 'stationary_container', 'candle', 'coffee_table', 'column', 'door', 'floor_lamp', 'mirror', 'person', 'rug', 'sofa', 'stairs', 'outdoor_seating', 'kitchen_cabinet', 'kitchen_set', 'switch', 'storage_bench', 'table_lamp', 'vase', 'candle', 'roof', 'stand', 'beer', 'chair', 'chandelier', 'coffee_table', 'column', 'trinket', 'grill', 'book', 'books', 'curtain', 'desk', 'door', 'floor_lamp', 'hanger', 'workplace', 'glass', 'headstone', 'kitchen_set', 'mirror', 'plant', 'shelving', 'place_setting', 'ceiling_fan', 'stairs', 'storage_bench', 'switch', 'table_lamp', 'vase', 'decoration', 'coffin', 'wardrobe_cabinet', 'window', 'pet', 'cup', 'arch', 'household_appliance', 'garage_door' ] } blacklist_rooms = [ 'loggia', 'storage', 'guest room', 'hallway', 'wardrobe', 'hall', 'boiler room', 'terrace', 'room', 'entryway', 'aeration', 'lobby', 'office', 'freight elevator', 'passenger elevator' ] class roomEntity(): translations = { 'toilet': 'bathroom', 'guest room': 'bedroom', 'child room': 'bedroom', } def __init__(self, name, bbox, meta): self.name = list( set([ self.translations[str(x)] if str(x) in self.translations else str(x) for x in name ])) self.id = meta['id'] self.bbox = bbox self.meta = meta # {id, type, valid, modelId, nodeIndices, roomTypes, bbox} self.type = 'room' self.name.sort(key=str.lower) self.entities = self.objects = [] def addObject(self, object_ent): self.objects.append(object_ent) def isValid(self): return len(self.objects) != 0 class objectEntity(): translations = { 'bread': 'food', 'hanging_kitchen_cabinet': 'kitchen_cabinet', 'teapot': 'kettle', 'coffee_kettle': 'kettle', 'range_hood_with_cabinet': 'range_hood', 'dining_table': 'table', 'coffee_table': 'table', 'game_table': 'table', 'office_chair': 'chair', 'bench_chair': 'chair', 'chair_set': 'chair', 'armchair': 'chair', 'fishbowl': 'fish_tank/bowl', 'fish_tank': 'fish_tank/bowl', 'single_bed': 'bed', 'double_bed': 'bed', 'baby_bed': 'bed' } def __init__(self, name, bbox, meta, obj_id, room_id): if name in self.translations: self.name = self.translations[name] else: self.name = name self.bbox = bbox self.meta = meta self.type = 'object' self.id = obj_id self.room_id = room_id assert self.id == meta['id'] # check if named_id equals to provided id self.entities = self.rooms = [] def addRoom(self, room_ent): self.rooms.append(room_ent) def isValid(self): return len(self.rooms) != 0 class Engine(): ''' Templates and functional forms. ''' template_defs = { 'object_dist_compare': [ 'filter.rooms', 'unique.rooms', 'filter.objects', 'unique.objects', 'blacklist.dist_compare', 'object_dist_pair', 'query.object_dist_compare' ], 'object_color_compare': [ 'filter.rooms', 'unique.rooms', 'filter.objects', 'unique.objects', 'blacklist.object_compare', 'object_color_pair', 'query.object_color_compare' ], 'object_size_compare' : [ 'filter.rooms', 'unique.rooms', 'filter.objects', 'unique.objects', 'blacklist.object_compare', 'object_size_pair', 'query.object_size_compare' ], 'room_size_compare': [ 'filter.rooms', 'unique.rooms', 'room_size_pair', 'query.room_size_compare' ], 'room_dist_compare': [ 'filter.rooms', 'unique.rooms', 'room_dist_pair', 'query.room_dist_compare' ], } templates = { # object distance comparisons 'object_closer_inroom': 'is the <OBJ> closer to the <OBJ> than to the <OBJ> in the <ROOM>?', 'object_farther_inroom': 'is the <OBJ> farther from the <OBJ> than from the <OBJ> in the <ROOM>?', # object color comparison 'object_color_compare_inroom': 'does the <OBJ> have same color as the <OBJ> in the <ROOM>?', 'object_color_compare_xroom': 'does the <OBJ1> in the <ROOM1> have same color as the <OBJ2> in the <ROOM2>?', # object size comparison 'object_bigger_inroom': 'is the <OBJ> bigger than <OBJ> in the <ROOM>?', 'object_smaller_inroom': 'is the <OBJ> smaller than <OBJ> in the <ROOM>?', 'object_bigger_xroom': 'is the <OBJ1> in the <ROOM1> bigger than <OBJ2> in the <ROOM2>?', 'object_smaller_xroom': 'is the <OBJ1> in the <ROOM1> smaller than <OBJ2> in the <ROOM2>?', # room size comparison 'room_bigger': 'is the <ROOM1> bigger than the <ROOM2>?', 'room_smaller': 'is the <ROOM1> smaller than the <ROOM2>?', # room distance comparison 'room_closer': 'is the <ROOM> closer to <ROOM> than to the <ROOM>?', 'room_farther': 'is the <ROOM> farther from <ROOM> than from the <ROOM>?', } def __init__(self, object_counts_by_room_file, env_obj_colors_file, debug=False): self.template_fns = { 'filter': self.filter, 'unique': self.unique, 'query': self.query, 'blacklist': self.blacklist, 'thresholdSize': self.thresholdSize, 'object_dist_pair': self.objectDistPair, 'object_color_pair': self.objectColorPair, 'object_size_pair': self.objectSizePair, 'room_size_pair': self.roomSizePair, 'room_dist_pair': self.roomDistPair, } self.query_fns = { 'query_object_dist_compare': self.queryObjectDistCompare, 'query_object_color_compare': self.queryObjectColorCompare, 'query_object_size_compare': self.queryObjectSizeCompare, 'query_room_size_compare': self.queryRoomSizeCompare, 'query_room_dist_compare': self.queryRoomDistCompare, } self.blacklist_objects = blacklist_objects self.blacklist_rooms = blacklist_rooms self.use_threshold_size = True self.use_blacklist = True self.debug = debug self.ent_queue = None self.q_str_builder = QuestionStringBuilder() self.q_obj_builder = self.questionObjectBuilder # update if os.path.isfile(object_counts_by_room_file) == True: self.global_obj_by_room = json.load(open(object_counts_by_room_file, 'r')) self.negative_exists = {} else: print('Not loading env_lists/800env_object_counts_by_room.json') # load colors assert osp.isfile(env_obj_colors_file) self.env_obj_color_map = json.load(open(env_obj_colors_file, 'r')) def cacheHouse(self, Hp): """ Get objects and rooms info for current parsed house. """ self.house = Hp self.entities = {'rooms': [], 'objects': []} for i in self.house.rooms: room = roomEntity(i['type'], i['bbox'], i) for j in room.meta['nodes']: obj = objectEntity( self.house.objects['0_' + str(j)]['fine_class'], self.house.objects['0_' + str(j)]['bbox'], self.house.objects['0_' + str(j)], obj_id='0_' + str(j), room_id=room.id) room.addObject(obj) obj.addRoom(room) self.entities['objects'].append(obj) self.entities['rooms'].append(room) self.isValid() def isValid(self): # print('checking validity...') for i in self.entities['rooms']: if i.isValid() == False and self.debug == True: print('ERROR', i.meta) continue for i in self.entities['objects']: if i.isValid() == False and self.debug == True: print('ERROR', i.meta) continue def clearQueue(self): self.ent_queue = None def remain_single_name_rooms(self): """filter those elements with no/multiple room names.""" ent = self.ent_queue['elements'] if self.ent_queue['type'] == 'objects': self.ent_queue['elements'] = [x for x in ent if len(x.rooms) == 1 and len(x.rooms[0].name) == 1] if self.ent_queue['type'] == 'rooms': self.ent_queue['elements'] = [x for x in ent if len(x.name) == 1] def executeFn(self, template): for i in template: if '.' in i: _ = i.split('.') fn = _[0] param = _[1] else: fn = i param = None res = self.template_fns[fn](param) if isinstance(res, dict): return res else: # return unique questions only return list({x['question']: x for x in res}.values()) def getVolume(self, bbox): # return volume of bbox return (bbox['max'][0]-bbox['min'][0]) * (bbox['max'][1]-bbox['min'][1]) * (bbox['max'][2]-bbox['min'][2]) def getArea(self, bbox): # return 2D bird-view area return (bbox['max'][0]-bbox['min'][0]) * (bbox['max'][2]-bbox['min'][2]) def thresholdSize(self, *args): assert self.ent_queue != None assert self.ent_queue['type'] == 'objects' ent = self.ent_queue sizes = [self.getVolume(x.bbox) for x in ent['elements']] idx = [i for i, v in enumerate(sizes) if v < 0.0005] for i in idx[::-1]: del ent['elements'][i] self.ent_queue = ent return self.ent_queue def blacklist(self, *args): assert self.ent_queue != None ent = self.ent_queue if ent['type'] == 'objects': template = args[0] names = [x.name for x in ent['elements']] idx = [i for i, v in enumerate(names) if v in self.blacklist_objects[template]] for i in idx[::-1]: del ent['elements'][i] elif ent['type'] == 'rooms': names = [x.name for x in ent['elements']] idx = [ i for i, v in enumerate([ any([k for k in x if k in self.blacklist_rooms]) for x in names ]) if v == True ] for i in idx[::-1]: del ent['elements'][i] self.ent_queue = ent return self.ent_queue def filter(self, *args): """select object/rooms according to args[0] or self.ent_queue['type']""" # if ent_queue is empty, execute on parent env entitites if self.ent_queue == None: self.ent_queue = {'type': args[0], 'elements': self.entities[args[0]]} else: ent = self.ent_queue assert args[0] != ent['type'] ent = { 'type': args[0], 'elements': [z for y in [x.entities for x in ent['elements']] for z in y] } self.ent_queue = ent # remove blacklisted rooms if self.ent_queue['type'] == 'rooms' and self.use_blacklist == True: self.ent_queue = self.blacklist() if self.ent_queue['type'] == 'objects' and self.use_threshold_size == True: self.ent_queue = self.thresholdSize() return self.ent_queue def unique(self, *args): """select those objects/rooms that occurs only once in this house""" assert self.ent_queue != None ent = self.ent_queue # unique based on either rooms or objects (only) if ent['type'] == 'objects': names = [x.name for x in ent['elements']] idx = [i for i, v in enumerate([names.count(x) for x in names]) if v != 1] elif ent['type'] == 'rooms': # for room = ['dining room', 'kitchen'], we count all appeared room names names = [name for x in ent['elements'] for name in x.name] idx = [] for i, x in enumerate(ent['elements']): for name in x.name: if names.count(name) != 1: idx.append(i) break else: raise NotImplementedError for i in idx[::-1]: del ent['elements'][i] names = [x.name for x in ent['elements']] self.ent_queue = ent return self.ent_queue def query(self, *args): assert self.ent_queue != None ent = self.ent_queue return self.query_fns['query_' + args[0]](ent) """ Returned ent_queue is list of (obj1, obj2, obj3, 'closer') and (obj3, obj2, obj1, 'farther') where d(obj1, obj2) < d(obj2, obj3) """ # only works with objectEntities for now def objectDistPair(self, *args): self.remain_single_name_rooms() # remove 0/multiple-name rooms ent = self.ent_queue assert ent['type'] == 'objects' h_low_threshold, h_high_threshold = DIST_LOW_THRESH, DIST_HIGH_THRESH pairwise_distances = self.house.getAllPairwiseDistances(ent['elements']) # list of [(obj1, obj2, distance)] updated_ent_queue = {'type': ent['type'], 'elements': []} for i in ent['elements']: sub_list = [ x for x in pairwise_distances if x[0].meta['id'] == i.meta['id'] or x[1].meta['id'] == i.meta['id'] ] sub_list = [ x for x in sub_list if x[0].rooms[0].name == x[1].rooms[0].name ] far = [x for x in sub_list if x[2] >= h_high_threshold] close = [x for x in sub_list if x[2] <= h_low_threshold] if len(far) == 0 or len(close) == 0: continue for j in far: far_ent = 1 if j[0].name == i.name else 0 for k in close: close_ent = 1 if k[0].name == i.name else 0 updated_ent_queue['elements'].append([k[close_ent], i, j[far_ent], 'closer']) updated_ent_queue['elements'].append([j[far_ent], i, k[close_ent], 'farther']) self.ent_queue = updated_ent_queue return self.ent_queue def queryObjectDistCompare(self, ent): qns = [] for i in ent['elements']: template = 'object_%s_inroom' % i[3] qns.append(self.q_obj_builder(template, i[:3], 'yes', 'object_dist_compare_inroom')) qns.append(self.q_obj_builder(template, i[:3][::-1], 'no', 'object_dist_compare_inroom')) return qns """ Returned ent_queue is list of [(room1, room2, room3, farther/closer)] """ def roomDistPair(self, *args): self.remain_single_name_rooms() # remove 0/multiple-name rooms ent = self.ent_queue assert ent['type'] == 'rooms' h_low_threshold, h_high_threshold = 2, 8 # TODO: replace geodesic distance with shortest path pairwise_distances = self.house.getAllPairwiseRoomDistances(ent['elements']) # list of [(room1, room2, distance)] updated_ent_queue = {'type': ent['type'], 'elements': []} for i in ent['elements']: sub_list = [ x for x in pairwise_distances if x[0].meta['id'] == i.meta['id'] or x[1].meta['id'] == i.meta['id'] ] far = [x for x in sub_list if x[2] >= h_high_threshold] close = [x for x in sub_list if x[2] <= h_low_threshold] if len(far) == 0 or len(close) == 0: continue for j in far: far_ent = 1 if j[0].name == i.name else 0 for k in close: close_ent = 1 if k[0].name == i.name else 0 updated_ent_queue['elements'].append([k[close_ent], i, j[far_ent], 'closer']) updated_ent_queue['elements'].append([j[far_ent], i, k[close_ent], 'farther']) self.ent_queue = updated_ent_queue return self.ent_queue def queryRoomDistCompare(self, ent): qns = [] for i in ent['elements']: template = 'room_%s' % i[3] qns.append(self.q_obj_builder(template, i[:3], 'yes', 'room_dist_compare')) qns.append(self.q_obj_builder(template, i[:3][::-1], 'no', 'room_dist_compare')) return qns """ Returned ent_queue is list of (obj1, color1, obj2, color2) """ def objectColorPair(self, *args): self.remain_single_name_rooms() # remove 0/multiple-name rooms ent = self.ent_queue assert ent['type'] == 'objects' updated_ent_queue = {'type': ent['type'], 'elements': []} num_objects = len(ent['elements']) for i in range(num_objects): for j in range(num_objects): object_i, object_j = ent['elements'][i], ent['elements'][j] if object_i.id == object_j.id: continue if (self.house.id + '.' + object_i.id not in self.env_obj_color_map) or \ (self.house.id + '.' + object_j.id not in self.env_obj_color_map): continue # get colors color_i = self.env_obj_color_map[self.house.id + '.' + object_i.id] color_j = self.env_obj_color_map[self.house.id + '.' + object_j.id] updated_ent_queue['elements'].append([object_i, color_i, object_j, color_j]) self.ent_queue = updated_ent_queue return self.ent_queue def queryObjectColorCompare(self, ent): # ent = {type, elements: [(object1, color1, object2, color2)]} qns = [] for obj1, color1, obj2, color2 in ent['elements']: rm = 'inroom' if obj1.rooms[0].name == obj2.rooms[0].name else 'xroom' template = 'object_color_compare_%s' % rm ans = 'yes' if color1 == color2 else 'no' q_type = 'object_color_compare_%s' % rm qns.append(self.q_obj_builder(template , [obj1, obj2], ans, q_type)) return qns """ Returned ent_queue is list of [(obj1, obj2, size_cmp)] """ def objectSizePair(self, *args): self.remain_single_name_rooms() # remove 0/multiple-name rooms RATIO_TRHESH = OBJECT_RATIO_THRESH ent = self.ent_queue assert ent['type'] == 'objects' updated_ent_queue = {'type': 'objects', 'elements': []} num_objects = len(ent['elements']) for i in range(num_objects): for j in range(num_objects): object_i, object_j = ent['elements'][i], ent['elements'][j] if object_i.id == object_j.id: continue # get 3D volume size_i = self.getVolume(object_i.bbox) size_j = self.getVolume(object_j.bbox) if max(size_i, size_j) > min(size_i, size_j) * RATIO_TRHESH: size_cmp = 'bigger' if size_i > size_j else 'smaller' updated_ent_queue['elements'].append([object_i, object_j, size_cmp]) self.ent_queue = updated_ent_queue return self.ent_queue def queryObjectSizeCompare(self, ent): # ent = {type, elements: [(object1, object2, bigger/smaller)]} qns = [] for obj1, obj2, size_cmp in ent['elements']: rm = 'inroom' if obj1.rooms[0].name==obj2.rooms[0].name else 'xroom' template = 'object_%s_%s' % (size_cmp, rm) q_type = 'object_size_compare_%s' % rm qns.append(self.q_obj_builder(template, [obj1, obj2], 'yes', q_type)) qns.append(self.q_obj_builder(template, [obj2, obj1], 'no', q_type)) return qns """ Returned ent_queue is list of [(room1, room2, size_cmp)] """ def roomSizePair(self, ent): self.remain_single_name_rooms() # remove 0/multiple-name rooms RATIO_TRHESH = ROOM_RATIO_TRHESH ent = self.ent_queue assert ent['type'] == 'rooms' updated_ent_queue = {'type': 'rooms', 'elements': []} num_rooms = len(ent['elements']) for i in range(num_rooms): for j in range(num_rooms): room_i, room_j = ent['elements'][i], ent['elements'][j] if room_i.id == room_j.id: continue # get 2D bird-view area size_i = self.getArea(room_i.bbox) size_j = self.getArea(room_j.bbox) if max(size_i, size_j) > min(size_i, size_j) * RATIO_TRHESH: size_cmp = 'bigger' if size_i > size_j else 'smaller' updated_ent_queue['elements'].append([room_i, room_j, size_cmp]) self.ent_queue = updated_ent_queue return self.ent_queue def queryRoomSizeCompare(self, ent): # ent = {type: rooms, elements: [(room1, room2, bigger/smaller)]} qns = [] for room1, room2, size_cmp in ent['elements']: template = 'room_%s' % size_cmp q_type = 'room_size_compare' qns.append(self.q_obj_builder(template, [room1, room2], 'yes', q_type)) qns.append(self.q_obj_builder(template, [room2, room1], 'no', q_type)) return qns """ Question Builder """ def questionObjectBuilder(self, template, q_ent, a_str, q_type=None): if q_type == None: q_type = template q_str = self.templates[template] bbox = [] # object_dist_compare (we don't need xroom here) if q_type in ['object_dist_compare_inroom']: for ent in q_ent: q_str = self.q_str_builder.prepareString(q_str, ent.name, ent.rooms[0].name[0]) bbox.append({'id': ent.id, 'type': ent.type, 'box': ent.bbox, 'name': ent.name, 'room_id': ent.room_id, 'target': True}) mat = {} # room_dist_compare if q_type == 'room_dist_compare': for ent in q_ent: q_str = self.q_str_builder.prepareString(q_str, '', ent.name[0]) bbox.append({'id': ent.id, 'type': ent.type, 'box': ent.bbox, 'name': ent.name[0], 'target': True}) mat = {} # object_color_compare if q_type in ['object_color_compare_inroom', 'object_color_compare_xroom']: if 'inroom' in template: for ent in q_ent: q_str = self.q_str_builder.prepareString(q_str, ent.name, ent.rooms[0].name[0]) color = self.env_obj_color_map[self.house.id + '.' + ent.id] bbox.append({'id': ent.id, 'type': ent.type, 'box': ent.bbox, 'name': ent.name, 'color': color, 'room_id': ent.room_id, 'target': True}) else: q_str = self.q_str_builder.prepareStringForTwo(q_str, q_ent[0].name, q_ent[1].name, q_ent[0].rooms[0].name[0], q_ent[1].rooms[0].name[0]) for ent in q_ent: color = self.env_obj_color_map[self.house.id + '.' + ent.id] bbox.append({'id': ent.id, 'type': ent.type, 'box': ent.bbox, 'name': ent.name, 'color': color, 'room_id': ent.room_id, 'target': True}) mat = {} # object_size_compare if q_type in ['object_size_compare_inroom', 'object_size_compare_xroom']: if 'inroom' in template: for ent in q_ent: q_str = self.q_str_builder.prepareString(q_str, ent.name, ent.rooms[0].name[0]) size = self.getVolume(ent.bbox) bbox.append({'id': ent.id, 'type': ent.type, 'box': ent.bbox, 'name': ent.name, 'size': size, 'room_id': ent.room_id, 'target': True}) else: q_str = self.q_str_builder.prepareStringForTwo(q_str, q_ent[0].name, q_ent[1].name, q_ent[0].rooms[0].name[0], q_ent[1].rooms[0].name[0]) for ent in q_ent: size = self.getVolume(ent.bbox) bbox.append({'id': ent.id, 'type': ent.type, 'box': ent.bbox, 'name': ent.name, 'size': size, 'room_id': ent.room_id, 'target': True}) mat = {} # room_size_compare if q_type == 'room_size_compare': q_str = self.q_str_builder.prepareStringForTwo(q_str, '', '', q_ent[0].name[0], q_ent[1].name[0]) for ent in q_ent: size = self.getArea(ent.bbox) bbox.append({'id': ent.id, 'type': ent.type, 'box': ent.bbox, 'name': ent.name[0], 'size': size, 'target': True}) mat = {} return { 'question': q_str, 'answer': a_str, 'type': q_type, 'meta': mat, 'bbox': bbox } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--dataDir', default='../data', help='Data directory') parser.add_argument('--dataJson', default='eqa_v1.json', help='questions and splits') parser.add_argument('--HouseApiDir', default='../pyutils/House3D', help='house3d api dir') parser.add_argument('--cacheDir', default='../cache/question-gen-outputs', help='directory for saving generated questions') parser.add_argument('--outputJson', default='questions_from_engine_v2.json', help='output json file') parser.add_argument('--object_counts_by_room_file', default='env_lists/800env_object_counts_by_room.json', help='roomTp to objT to cnt') parser.add_argument('--env_obj_colors_file', default='env_lists/env_obj_colors_v2.json', help='obj to color mapping') args = parser.parse_args() # load splits splits = json.load(open(osp.join(args.dataDir, 'eqa_v1', args.dataJson), 'r'))['splits'] for split, hids in splits.items(): print('There are %s %s house_ids.' % (len(hids), split)) house_ids = [hid for split, hids in splits.items() for hid in hids] print('There are in all %s house_ids.' % len(house_ids)) # HouseParse and QA-engine Hp = HouseParse(dataDir=osp.join(args.dataDir, 'SUNCGdata'), objrenderPath=osp.join(args.HouseApiDir, 'House3D')) E = Engine(args.object_counts_by_room_file, args.env_obj_colors_file) # # try one house # hid = splits['train'][2] # Hp.parse(hid); E.cacheHouse(Hp) # qns = E.executeFn(E.template_defs['room_size_compare']) # pprint(qns) # SAVE QUESTIONS TO A JSON FILE T = ['object_dist_compare', 'object_color_compare', 'object_size_compare', 'room_size_compare'] # T = E.template_defs.keys() num_envs = len(house_ids) idx, all_qns = 0, [] empty_envs = [] for i in tqdm(range(num_envs)): Hp.parse(house_ids[i]) num_qns_for_house = 0 for t in T: E.cacheHouse(Hp) qns = E.executeFn(E.template_defs[t]) num_qns_for_house += len(qns) E.clearQueue() for k in qns: k['id'] = idx k['house'] = house_ids[i] idx += 1 all_qns.append(k) if num_qns_for_house == 0: empty_envs.append(house_ids[i]) print('Houses with no questions generated (if any) : %d' % len(empty_envs)) print('%s qns generated for %s.' % (len(all_qns), T)) # simple stats for each type qtype_to_qns = {} for qn in all_qns: if qn['type'] not in qtype_to_qns: qtype_to_qns[qn['type']] = [] qtype_to_qns[qn['type']] += [qn] for qtype in qtype_to_qns.keys(): print('%s questions for [%s]' % (len(qtype_to_qns[qtype]), qtype)) # save if not osp.isdir(args.cacheDir): os.makedirs(args.cacheDir) output_file = osp.join(args.cacheDir, args.outputJson) json.dump(all_qns, open(output_file, 'w')) print('Written to %s.' % output_file)
the-stack_106_24452
# -*- coding: utf-8 -*- from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('taxbrain', '0045_taxsaveinputs_ald_invinc_ec_base_ryanbrady'), ] operations = [ migrations.RemoveField( model_name='taxsaveinputs', name='CTC_new_ps', ), ]
the-stack_106_24453
import BirdRoostLocation.LoadSettings as settings import os import pandas def create_subset_labels(csv_input_path, subset_path, csv_output_path): full = pandas.read_csv(csv_input_path) subset = pandas.read_csv(subset_path) full_basenames = {} subset_basenames = [] full_file_list = list(full["AWS_file"]) subset_file_list = list(subset["file_names"]) for i, file_name in enumerate(full_file_list): fbasename = file_name[:23] full_basenames[fbasename] = i for i, file_name in enumerate(subset_file_list): sbasename = file_name[2:25] if sbasename in full_basenames: subset_basenames.append(full_basenames[sbasename]) output_pd = full.loc[subset_basenames] output_pd.to_csv(csv_output_path, index=False) def main(): create_subset_labels( csv_input_path=settings.LABEL_CSV, subset_path=settings.SUBSET_CSV, csv_output_path=settings.SUBSET_LABEL_CSV, ) if __name__ == "__main__": os.chdir(settings.WORKING_DIRECTORY) main()
the-stack_106_24454
import tweepy import random import time # Twitter API Keys import os consumer_key = os.getenv("consumer_key") consumer_secret = os.getenv("consumer_secret") access_token = os.getenv("access_token") access_token_secret = os.getenv("access_token_secret") # Setup Tweepy API Authentication auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth, parser=tweepy.parsers.JSONParser()) happy_quotes = [ "For every minute you are angry you lose sixty seconds of happiness. - Ralph Waldo Emerson", "Folks are usually about as happy as they make their minds up to be. - Abraham Lincoln", "Happiness is when what you think, what you say, and what you do are in harmony. - Mahatma Gandhi", "Count your age by friends, not years. Count your life by smiles, not tears. - John Lennon", "Happiness is a warm puppy. - Charles M. Schulz", "The happiness of your life depends upon the quality of your thoughts. - Marcus Aurelius", "Now and then it's good to pause in our pursuit of happiness and just be happy. - Guillaume Apollinaire"] def happy_it_up(): """Tweet a Random Happiness Quote.""" # Tweet a random quote msg = f"Happiness Tweet {time.time()}: {random.choice(happy_quotes)}" api.update_status(msg) # Print success message print("Tweeted successfully!") print(msg) t_end = time.time() + 60 * 5 while time.time() < t_end: happy_it_up() time.sleep(60)
the-stack_106_24455
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making GameAISDK available. This source code file is licensed under the GNU General Public License Version 3. For full details, please refer to the file "LICENSE.txt" which is provided as part of this source code package. Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. """ from manage.server import Server def main(): server = Server() if server.init() is True: server.run() server.finish() if __name__ == '__main__': main()
the-stack_106_24460
import os import sys from PySide6 import QtCore, QtWidgets, QtGui import idaapi from . import exceptions def capture_widget(widget, path=None): """Grab an image of a Qt widget Args: widget: The Qt Widget to capture path (optional): The path to save to. If not provided - will return image data. Returns: If a path is provided, the image will be saved to it. If not, the PNG buffer will be returned. """ pixmap = widget.grab() if path: pixmap.save(path) else: image_buffer = QtCore.QBuffer() image_buffer.open(QtCore.QIODevice.ReadWrite) pixmap.save(image_buffer, "PNG") return image_buffer.data().data() def get_widget(title): """Get the Qt widget of the IDA window with the given title.""" tform = idaapi.find_widget(title) if not tform: raise exceptions.FormNotFound("No form titled {!r} found.".format(title)) return idaapi.PluginForm.FormToPyQtWidget(tform) def resize_widget(widget, width, height): """Resize a Qt widget.""" widget.setGeometry(0, 0, width, height) def get_window(): """Get IDA's top level window.""" tform = idaapi.get_current_widget() # Required sometimes when closing IDBs and not IDA. if not tform: tform = idaapi.find_widget("Output window") widget = idaapi.PluginForm.FormToPyQtWidget(tform) window = widget.window() return window class MenuManager(object): """IDA Menu Manipulation Use this class to add your own top-level menus. While this is discouraged by the SDK: > You should not change top level menu, or the Edit,Plugins submenus (documentation for `attach_action_to_menu`, kernwin.hpp) Adding top-level menus is useful sometimes. Nonetheless, you should be careful and make sure to remove all your menus when you are done. Leaving them handing would force users to restart IDA to remove them. Usage of this class should be as follows: >>> # Use the manager to add top-level menus >>> menu_manager = MenuManager() >>> menu_manager.add_menu("My Menu") >>> # Use the standard API to add menu items >>> idaapi.attach_action_to_menu("My Menu/", ":My-Action:", idaapi.SETMENU_APP) >>> # When a menu is not needed, remove it >>> menu_manager.remove_menu("My Menu") >>> # When you are done with the manager (and want to remove all menus you added,) >>> # clear it before deleting. >>> menu_manager.clear() """ def __init__(self): super(MenuManager, self).__init__() self._window = get_window() self._menu = self._window.findChild(QtWidgets.QMenuBar) self._menus = {} def add_menu(self, name): """Add a top-level menu. The menu manager only allows one menu of the same name. However, it does not make sure that there are no pre-existing menus of that name. """ if name in self._menus: raise exceptions.MenuAlreadyExists("Menu name {!r} already exists.".format(name)) menu = self._menu.addMenu(name) self._menus[name] = menu def remove_menu(self, name): """Remove a top-level menu. Only removes menus created by the same menu manager. """ if name not in self._menus: raise exceptions.MenuNotFound( "Menu {!r} was not found. It might be deleted, or belong to another menu manager.".format(name)) self._menu.removeAction(self._menus[name].menuAction()) del self._menus[name] def clear(self): """Clear all menus created by this manager.""" for menu in self._menus.values(): self._menu.removeAction(menu.menuAction()) self._menus = {}
the-stack_106_24463
# Sampling a truncated multivariate Gaussian by Rejection sampling from Mode # ("A New Rejection Sampling Method for Truncated Multivariate Gaussian Random Variables # Restricted to Convex Sets" https://hal.archives-ouvertes.fr/hal-01063978/document) # Author: Liaowang Huang <[email protected]> import numpy as np import cvxpy as cp class RsmSampler: def __init__(self, mu, Sigma, f, g): """ :param mu: (m,) mean :param Sigma: (m,m) covariance matrix :param f: (q,m) matrix, where q is the number of linear constraints. The constraints require each component of the m-dimensional vector fX+g to be non-negative :param g: (q,) vector with the constant terms in the above linear constraints. """ self.mu = mu self.Sigma = Sigma if f is not None: valid = np.logical_and(g < np.inf, g > -np.inf) g = g[valid] f = f[valid] self.mode = mu self.f = f self.g = g self.reject = 0 self.mode = self.mode_solver() def mode_solver(self): """ mode = arg min x^T*Sigma^-1*x """ if self.f is None: return self.mu m = len(self.mu) xi = cp.Variable(m) obj = cp.Minimize(cp.matrix_frac(xi, self.Sigma)) constraints = [self.f * (xi + self.mu) + self.g >= 0] prob = cp.Problem(obj, constraints) prob.solve() # print("status:", prob.status) if prob.status != "optimal": raise ValueError('cannot compute the mode') return xi.value def rsm_tmg(self): """ Sampling from a multivariate normal N(mu, Sigma) with constraints f*x+g >= 0 the rejection sampling method in paper A New Rejection Sampling Method for Truncated Multivariate Gaussian Random Variables Restricted to Convex Set. is used. """ if self.f is None: return np.random.multivariate_normal(self.mu, self.Sigma) while True: state = np.random.multivariate_normal(self.mode, self.Sigma) u = np.random.uniform() if np.all(self.f @ (state + self.mu) + self.g >= 0) and \ u <= np.exp(self.mode.dot(np.linalg.solve(self.Sigma, self.mode)) - state.dot(np.linalg.solve(self.Sigma, self.mode))): break self.reject += 1 return state + self.mu def rsm(n, mu, Sigma, f, g, verbose=False): """ Sampling from a multivariate normal N(mu, Sigma) with constraints f*x+g >= 0 the rejection sampling method is used. :param n: Number of samples. :param mu: (m,) mean :param Sigma: (m,m) covariance matrix. :param f: (q,m), f*x+g >= 0 must be satisfied. :param g: (q,) :param verbose: print acceptance rate if true. """ rsm_sampler = RsmSampler(mu, Sigma, f, g) dim = len(mu) samples = np.zeros((n, dim)) for i in range(n): samples[i] = rsm_sampler.rsm_tmg() if verbose: print("Acceptance rate is {}".format(n / (n + rsm_sampler.reject))) return samples
the-stack_106_24464
def copy_untouched_quantities(old_state, new_state): for key in old_state.keys(): if key not in new_state: new_state[key] = old_state[key] def add(state_1, state_2): out_state = {} if 'time' in state_1.keys(): out_state['time'] = state_1['time'] for key in state_1.keys(): if key != 'time': out_state[key] = state_1[key] + state_2[key] if hasattr(out_state[key], 'attrs'): out_state[key].attrs = state_1[key].attrs return out_state def multiply(scalar, state): out_state = {} if 'time' in state.keys(): out_state['time'] = state['time'] for key in state.keys(): if key != 'time': out_state[key] = scalar * state[key] if hasattr(out_state[key], 'attrs'): out_state[key].attrs = state[key].attrs return out_state
the-stack_106_24466
""" Voice rooms module. Gives users the power to create and manage their own voice chat channels instead of relying on pre-defined channels. """ import asyncio import copy import functools import os import re from typing import Callable, Dict, List, Optional, Tuple, Union import yaml from discord import ( Colour, Guild, HTTPException, Member, Message, Role, TextChannel, VoiceChannel, VoiceState ) from discord.abc import GuildChannel from discord.ext import commands from discord.ext.commands import Context from loguru import logger from ophelia import settings from ophelia.output.error_handler import OpheliaCommandError from ophelia.output.output import ( disp_str, get_input, response_config, response_options, response_switch, send_message, send_message_embed, send_simple_embed ) from ophelia.settings import voiceroom_max_mute_time from ophelia.utils.discord_utils import ( ARGUMENT_FAIL_EXCEPTIONS, in_vc, vc_is_empty, vc_members ) from ophelia.utils.text_utils import escape_formatting from ophelia.voicerooms.config_options import VOICEROOMS_GENERATOR_CONFIG from ophelia.voicerooms.message_buffer import MessageBuffer from ophelia.voicerooms.mute_manager import MuteManager from ophelia.voicerooms.name_filter import NameFilterManager from ophelia.voicerooms.rooms.generator import ( Generator, GeneratorLoadError, RoomCreationError ) from ophelia.voicerooms.rooms.roompair import ( RoomMode, RoomPair, RoomRateLimited ) CONFIG_VOICEROOM_TIMEOUT = settings.voiceroom_empty_timeout CONFIG_TIMEOUT_SECONDS = settings.long_timeout CONFIG_MAX_TRIES = settings.max_tries CONFIG_PATH = settings.file_voicerooms_config class VoiceroomsCog(commands.Cog, name="voicerooms"): """ Custom Voice Rooms. Manage user-initiated voice rooms and accompanying text rooms. """ __slots__ = [ "bot", "generators", "rooms", "vc_room_map", "text_room_map", "message_buffer", "name_filter", "generator_lock", "mute_managers" ] # Using forward references to avoid cyclic imports # noinspection PyUnresolvedReferences def __init__(self, bot: "OpheliaBot") -> None: """ Initializer for the VoiceroomsCog class. :param bot: Ophelia bot object """ self.bot = bot self.generators: Dict[int, Generator] = {} self.rooms: Dict[int, RoomPair] = {} self.vc_room_map: Dict[int, int] = {} self.text_room_map: Dict[int, int] = {} self.message_buffer = MessageBuffer() self.name_filter = NameFilterManager.load_filters() self.generator_lock = asyncio.Lock() # We have to keep track of users who will be unmuted on their # next VC join because we are unable to unmute them if they # leave a VC in a muted state. This is a limitation set by # Discord and we can't really circumvent it because the other # kind of muting (using permissions) doesn't allow instant # muting. self.mute_managers: Dict[int, MuteManager] = {} def get_mute(self, guild_id: int) -> MuteManager: """ Get guild mute manager from guild ID. :param guild_id: Guild ID :return: Mute manager corresponding to guild ID """ return self.mute_managers.setdefault(guild_id, MuteManager(guild_id)) # pylint: disable=too-few-public-methods class VoiceroomsDecorators: """ Voiceroom decorators for checking relevant voicerooms before going to command logic. """ @classmethod def pass_voiceroom(cls, func: Callable) -> Callable: """ Decorator to pass voiceroom pair under a given owner directly to the command. :param func: Async function to be wrapped :return: Wrapped function """ @functools.wraps(func) async def wrapped( self: "VoiceroomsCog", context: Context, *args, **kwargs ) -> None: """ Inner function. :param self: VoiceroomsCog instance :param context: Command context """ author = context.author if author.id not in self.rooms: raise OpheliaCommandError("voicerooms_no_room") await func( self, context=context, room=self.rooms[author.id], *args, **kwargs ) return wrapped # pylint: enable=too-few-public-methods async def cog_save_all(self) -> None: """Save all generator configurations before bot shutdown.""" # Dump all logs await self.message_buffer.dump() # Delete all channels for room_key in copy.copy(list(self.rooms.keys())): await self.rooms[room_key].destroy() # Saves all generators await self.save_generators() # Saves all room name filters await self.name_filter.save_filters() async def save_generators(self) -> None: """Save all generator configurations for future use.""" generators_dict = {} for channel_id, generator in self.generators.items(): generators_dict[str(channel_id)] = await generator.to_dict() with open(CONFIG_PATH, "w", encoding="utf-8") as save_target: yaml.dump( generators_dict, save_target, default_flow_style=False ) async def load_generators(self) -> None: """Load all generator configurations for use.""" if not os.path.exists(CONFIG_PATH): return with open(CONFIG_PATH, "r", encoding="utf-8") as file: generators_dict = yaml.safe_load(file) if generators_dict is None: return for channel_id_str, gen_dict in generators_dict.items(): try: channel_id = int(channel_id_str) generator = await Generator.from_dict(self.bot, gen_dict) self.generators[channel_id] = generator # Create new guild mute manager guild_id: int = generator.generator_channel.guild.id if guild_id not in self.mute_managers: self.mute_managers[guild_id] = MuteManager(guild_id) except GeneratorLoadError: logger.warning( "Failed to load generator with ID {}", channel_id_str ) @commands.Cog.listener() async def on_message(self, message: Message) -> None: """ Checks incoming messages for any that require logging in temporary text channels. :param message: Message """ channel_id = message.channel.id if channel_id in self.text_room_map: if message.author.bot: return owner_id = self.text_room_map[channel_id] try: log_channel = self.rooms[owner_id].log_channel await self.message_buffer.log_message(log_channel, message) except KeyError: # Zombie room, delete channel. await message.channel.delete() self.text_room_map.pop(channel_id, None) @commands.Cog.listener() async def on_guild_channel_delete(self, channel: GuildChannel) -> None: """ Cleans up any generators or rooms associated with deleted channels. :param channel: Deleted channel """ # noinspection PyUnresolvedReferences channel_id = channel.id if channel_id in self.vc_room_map: await self.delete_room(self.vc_room_map[channel_id]) elif channel_id in self.text_room_map: await self.delete_room(self.text_room_map[channel_id]) elif channel_id in self.rooms: await self.delete_room(channel_id) elif channel_id in self.generators: self.generators.pop(channel_id, None) await self.save_generators() @commands.Cog.listener() async def on_voice_state_update( self, member: Member, before: VoiceState, after: VoiceState ) -> None: """ Detects when a user joins or leaves a voice channel. :param member: Guild member :param before: Previous voice state :param after: New voice state """ if before.channel == after.channel: if before.mute and not after.mute: await self.get_mute(member.guild.id).register_unmute(member) elif not before.mute and after.mute: await self.get_mute(member.guild.id).register_mute(member) return if after.channel is not None: await self.on_voice_join(member, after.channel) if before.channel is not None: await self.on_voice_leave(member, before.channel, after.channel) async def on_voice_join( self, member: Member, channel: VoiceChannel ) -> None: """ Handles members joining voice channels. :param member: Guild member :param channel: Voice channel joined """ channel_id = channel.id guild_id = channel.guild.id # Unmute first, even if the user is gonna be muted again # later by another VC room await self.get_mute(guild_id).handle_join(member) if channel_id in self.generators: await self.on_generator_join(member, self.generators[channel_id]) if channel_id in self.vc_room_map: owner_id = self.vc_room_map[channel_id] if member.id == owner_id: return try: room: RoomPair = self.rooms[owner_id] text_channel = room.text_channel voice_channel = room.voice_channel # Grant read and write permissions: overwrite = text_channel.overwrites_for(member) overwrite.update(send_messages=True, read_messages=True) await text_channel.set_permissions(member, overwrite=overwrite) # Let room object do its thing await room.handle_join(member, self.get_mute(guild_id)) # If on joinmute, mute user and set a timer for unmuting: # This won't apply to the owner due to the filter # a few lines back (intentional) if room.current_mode == RoomMode.JOINMUTE: # Welcome user if room.is_tempmute(): await send_message( channel=text_channel, text=disp_str("voicerooms_joinmute_welcome").format( mention=member.mention, name=voice_channel.name, time=room.joinmute_seconds ), mass_ping_guard=True ) # Schedule unmute await room.schedule_unmute( member, self.get_mute(guild_id) ) else: message = await send_message( channel=text_channel, text=disp_str("voicerooms_permmute_welcome").format( mention=member.mention, name=voice_channel.name ), mass_ping_guard=True ) # Prepare unmute reaction asyncio.create_task(room.react_unmute( bot=self.bot, message=message, owner_id=owner_id, member=member, mute_manager=self.get_mute(guild_id) )) except KeyError: # Invalid zombie room; delete VC. await channel.delete() self.vc_room_map.pop(channel_id, None) async def on_generator_join( self, member: Member, generator: Generator ) -> None: """ handles members joining generator channels. :param member: Guild member :param generator: Room generator """ async with self.generator_lock: if member.id in self.rooms: return try: room: RoomPair = await generator.create_room( member, self.name_filter ) await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_create_room").format( name=member.display_name, id=member.id ) ) except RoomCreationError: # Room has already been destroyed; fail silently. return self.rooms[member.id] = room self.vc_room_map[room.voice_channel.id] = member.id self.text_room_map[room.text_channel.id] = member.id # Check if room is occupied, or if the user has left the # room during channel creation. if vc_is_empty(room.voice_channel): await self.delete_room(member.id) return async def on_voice_leave( self, member: Member, channel: VoiceChannel, to_channel: Optional[VoiceChannel] ) -> None: """ Handles members leaving voice channels. :param member: Guild member :param channel: Voice channel left :param to_channel: Voice channel that the member moved to """ channel_id = channel.id guild_id = channel.guild.id if channel_id in self.vc_room_map: owner_id = self.vc_room_map[channel_id] try: room: RoomPair = self.rooms[owner_id] text_channel = room.text_channel voice_channel = room.voice_channel # Let room object do its thing to_room: Optional[RoomPair] = None if to_channel is not None and to_channel.id in self.vc_room_map: to_owner_id = self.vc_room_map[to_channel.id] to_room = self.rooms[to_owner_id] await room.handle_leave( member, to_room, self.get_mute(guild_id) ) # Before we remove permissions, we check that the user is # not an owner. if member.id != owner_id: await text_channel.set_permissions(member, overwrite=None) # In case of a misclick, give the user a chance to rejoin: await asyncio.sleep(CONFIG_VOICEROOM_TIMEOUT) # While waiting, the channel might have been deleted. if channel_id not in self.vc_room_map: return # Check if channel is empty: if vc_is_empty(voice_channel): await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_delete_room").format( room=room.voice_channel.name, name=member.display_name, id=member.id ) ) await self.delete_room(owner_id) return except KeyError: # Zombie room. await channel.delete() self.vc_room_map.pop(channel_id, None) @commands.group( "voiceroom", invoke_without_command=True, aliases=["voicechat", "voice", "vr", "vc"] ) @commands.bot_has_permissions(administrator=True) @commands.guild_only() async def voiceroom(self, context: Context, *_) -> None: """ Main voice room command, displays list of subcommands. :param context: Command context """ await send_simple_embed(context, "voicerooms_commands") @staticmethod async def update_room_membership( room: RoomPair, member_or_role: Union[Member, Role], new_value: Optional[bool] = True, ) -> None: """ Update a member or a role's permissions in a room. Used for adding or removing roles from a private room, including the default @everyone role which is used to set a room public or private. :param room: Room pair :param member_or_role: Member or role to be added or removed :param new_value: New permissions value """ voice_channel = room.voice_channel voice_overwrite = voice_channel.overwrites_for(member_or_role) if new_value is not None: voice_overwrite.update(connect=new_value) await voice_channel.set_permissions( member_or_role, overwrite=voice_overwrite ) else: await voice_channel.set_permissions(member_or_role, overwrite=None) @voiceroom.command(name="public") @VoiceroomsDecorators.pass_voiceroom async def set_public(self, context: Context, *_, **kwargs) -> None: """ Set current voice room to public. This sets the default connection permissions to None instead of True since what we want is to default to the server base perms which would allow the server to control which roles get to join using role perms. :param context: Command context """ room: RoomPair = kwargs["room"] everyone = context.guild.default_role await self.update_room_membership(room, everyone, None) await send_simple_embed(context, "voicerooms_public") await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_public").format( room=room.voice_channel.name, name=escape_formatting(context.author.name), id=context.author.id ) ) room.current_mode = RoomMode.PUBLIC await room.unmute_all(self.get_mute(context.guild.id)) @voiceroom.command(name="joinmute") @VoiceroomsDecorators.pass_voiceroom async def set_joinmute( self, context: Context, *, mute_time: Optional[int], **kwargs ) -> None: """ Set the current voice room to joinmute mode. This will temporarily mute every new member who joins the room for a configured amount of time :param context: Command context :param mute_time: Amount of time new joins are muted for """ room: RoomPair = kwargs["room"] # Check if mute_time is valid if mute_time is None: room.joinmute_seconds = 0 await send_simple_embed(context, "voicerooms_permmute") elif 0 < mute_time <= voiceroom_max_mute_time: room.joinmute_seconds = mute_time await send_simple_embed(context, "voicerooms_joinmute", mute_time) else: raise OpheliaCommandError( "voicerooms_mute_too_long", voiceroom_max_mute_time ) # Underlying permissions are the same as public rooms everyone = context.guild.default_role await self.update_room_membership(room, everyone, None) # Update room mode await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_joinmute").format( room=room.voice_channel.name, name=escape_formatting(context.author.name), id=context.author.id, time=mute_time ) ) room.current_mode = RoomMode.JOINMUTE @voiceroom.command(name="private") @VoiceroomsDecorators.pass_voiceroom async def set_private(self, context: Context, *_, **kwargs) -> None: """ Set current voice room to private. :param context: Command context """ room: RoomPair = kwargs["room"] everyone = context.guild.default_role await self.update_room_membership(room, everyone, False) await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_private").format( room=room.voice_channel.name, name=escape_formatting(context.author.name), id=context.author.id ) ) await send_simple_embed(context, "voicerooms_private") room.current_mode = RoomMode.PRIVATE await room.unmute_all(self.get_mute(context.guild.id)) for member in vc_members(room.voice_channel): await self.update_room_membership(room, member, True) @voiceroom.command(name="end") @VoiceroomsDecorators.pass_voiceroom async def room_end(self, context: Context, *_, **kwargs) -> None: """ Delete current room. :param context: Command context """ room: RoomPair = kwargs["room"] await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_delete_room").format( room=room.voice_channel.name, name=escape_formatting(context.author.name), id=context.author.id ) ) await self.delete_room(context.author.id) @voiceroom.command(name="add") @VoiceroomsDecorators.pass_voiceroom async def room_add( self, context: Context, *, added: Union[Member, Role], **kwargs ) -> None: """ Add a role or user to a voice room. :param context: Command context :param added: Discord member or role """ room: RoomPair = kwargs["room"] await self.update_room_membership(room, added, True) await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_add").format( room=room.voice_channel.name, name=escape_formatting(context.author.name), id=context.author.id, target=escape_formatting(added.name), target_id=added.id ) ) await send_simple_embed(context, "voicerooms_add", added.mention) @voiceroom.command(name="remove", aliases=["kick"]) @VoiceroomsDecorators.pass_voiceroom async def room_remove( self, context: Context, *, removed: Union[Member, Role], **kwargs ) -> None: """ Remove a role or user from a voice room. :param context: Command context :param removed: Discord member or role """ room: RoomPair = kwargs["room"] if isinstance(removed, Role) and "mod" in removed.name.lower(): raise OpheliaCommandError("voicerooms_remove_mod") if context.author == removed: raise OpheliaCommandError("voicerooms_remove_self") await self.update_room_membership(room, removed, None) await send_simple_embed(context, "voicerooms_remove", removed.mention) await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_remove").format( room=room.voice_channel.name, name=escape_formatting(context.author.name), id=context.author.id, target=escape_formatting(removed.name), target_id=removed.id ) ) if isinstance(removed, Member): if in_vc(removed, room.voice_channel): await removed.move_to(None) else: for member in vc_members(room.voice_channel): if removed in member.roles: await member.move_to(None) @voiceroom.command(name="blacklist", aliases=["ban"]) @VoiceroomsDecorators.pass_voiceroom async def room_blacklist( self, context: Context, *, removed: Member, **kwargs ) -> None: """ Blacklist a member from a voiceroom. :param context: Command context :param removed: Discord member or role """ room: RoomPair = kwargs["room"] if context.author == removed: raise OpheliaCommandError("voicerooms_remove_self") await self.update_room_membership(room, removed, False) await send_simple_embed( context, "voicerooms_blacklist", removed.mention ) await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_blacklist").format( room=room.voice_channel.name, name=escape_formatting(context.author.name), id=context.author.id, target=escape_formatting(removed.name), target_id=removed.id ) ) if in_vc(removed, room.voice_channel): await removed.move_to(None) @voiceroom.command(name="unblacklist", aliases=["unban"]) @VoiceroomsDecorators.pass_voiceroom async def room_unblacklist( self, context: Context, *, removed: Member, **kwargs ) -> None: """ Remove a member from a room blacklist. :param context: Command context :param removed: Discord member to remove from blacklist """ room: RoomPair = kwargs["room"] await self.update_room_membership(room, removed, None) await send_simple_embed( context, "voicerooms_unblacklist", removed.mention ) await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_unblacklist").format( room=room.voice_channel.name, name=escape_formatting(context.author.name), id=context.author.id, target=escape_formatting(removed.name), target_id=removed.id ) ) @voiceroom.command(name="mute", aliases=["silence"]) @VoiceroomsDecorators.pass_voiceroom async def room_mute( self, context: Context, *, member: Member, **kwargs ) -> None: """ Mute a member. :param context: Command context :param member: Member to mute """ room: RoomPair = kwargs["room"] if context.author == member: raise OpheliaCommandError("voicerooms_mute_self") if not in_vc(member, room.voice_channel): raise OpheliaCommandError("voicerooms_mute_not_present") await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_mute").format( room=room.voice_channel.name, name=escape_formatting(context.author.name), id=context.author.id, target=escape_formatting(member.name), target_id=member.id ) ) await room.mute_user(member, self.get_mute(context.guild.id)) await send_simple_embed(context, "voicerooms_mute", member.mention) @voiceroom.command(name="unmute", aliases=["unsilence"]) @VoiceroomsDecorators.pass_voiceroom async def room_unmute( self, context: Context, *, member: Member, **kwargs ) -> None: """ Unmte a member. :param context: Command context :param member: Member to mute """ room: RoomPair = kwargs["room"] if context.author == member: raise OpheliaCommandError("voicerooms_unmute_self") if not in_vc(member, room.voice_channel): raise OpheliaCommandError("voicerooms_unmute_not_present") await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_unmute").format( room=room.voice_channel.name, name=escape_formatting(context.author.name), id=context.author.id, target=escape_formatting(member.name), target_id=member.id ) ) await room.unmute_user(member, self.get_mute(context.guild.id)) await send_simple_embed(context, "voicerooms_unmute", member.mention) @voiceroom.command(name="name", aliases=["rename"]) @VoiceroomsDecorators.pass_voiceroom async def room_name( self, context: Context, *, new_name: str, **kwargs ) -> None: """ Set the name of the voice room. :param context: Command context :param new_name: New room name """ if await self.name_filter.bad_name(context.guild.id, new_name): raise OpheliaCommandError("voicerooms_name_invalid") room: RoomPair = kwargs["room"] prev: str = room.voice_channel.name try: await room.rename(new_name) except RoomRateLimited as e: raise OpheliaCommandError("voicerooms_ratelimited") from e except HTTPException as e: raise OpheliaCommandError("voicerooms_name_invalid") from e await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_rename").format( name=escape_formatting(context.author.name), id=context.author.id, prev=escape_formatting(prev), curr=escape_formatting(new_name) ) ) await send_simple_embed(context, "voicerooms_name", new_name) @voiceroom.command(name="size", aliases=["resize"]) @VoiceroomsDecorators.pass_voiceroom async def room_size( self, context: Context, *, size: int, **kwargs ) -> None: """ Set the size of the voice room. :param context: Command context :param size: New room size """ room: RoomPair = kwargs["room"] prev: int = room.voice_channel.user_limit try: await room.voice_channel.edit(user_limit=size) await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_resize").format( name=escape_formatting(context.author.name), id=context.author.id, prev=prev, curr=size ) ) await send_simple_embed(context, "voicerooms_size") except (*ARGUMENT_FAIL_EXCEPTIONS, KeyError, ValueError) as e: raise OpheliaCommandError("voicerooms_size_invalid") from e @voiceroom.command(name="bitrate") @VoiceroomsDecorators.pass_voiceroom async def room_bitrate( self, context: Context, *, bitrate: int, **kwargs ) -> None: """ Set the bitrate of the voice room. :param context: Command context :param bitrate: New bitrate """ room: RoomPair = kwargs["room"] prev: int = room.voice_channel.bitrate try: await room.voice_channel.edit(bitrate=bitrate * 1000) await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_bitrate").format( name=escape_formatting(context.author.name), id=context.author.id, prev=prev / 1000, curr=bitrate ) ) await send_simple_embed(context, "voicerooms_bitrate", bitrate) except ARGUMENT_FAIL_EXCEPTIONS as e: raise OpheliaCommandError("voicerooms_bitrate_invalid") from e async def transfer_room( self, room: RoomPair, old_owner: Member, new_owner: Member ) -> None: """ Transfer ownership of a room from one user to another user. :param room: Pair of rooms :param old_owner: Previous owner :param new_owner: New Owner """ # Check if new owner is a bot if new_owner.bot: raise OpheliaCommandError("voicerooms_transfer_bot") # Check if member already owns a room if new_owner.id in self.rooms: raise OpheliaCommandError("voicerooms_transfer_already_owner") try: await room.transfer( old_owner, new_owner, self.get_mute(new_owner.guild.id) ) except RoomRateLimited as e: raise OpheliaCommandError("voicerooms_ratelimited") from e old_id = old_owner.id new_id = new_owner.id self.text_room_map[room.text_channel.id] = new_id self.vc_room_map[room.voice_channel.id] = new_id self.rooms[new_id] = self.rooms.pop(old_id) await self.message_buffer.log_system_msg( log_channel=room.log_channel, text_channel=room.text_channel, text=disp_str("voicerooms_log_transfer").format( name=escape_formatting(old_owner.name), id=old_id, new_name=escape_formatting(new_owner.name), new_id=new_id ) ) await room.text_channel.edit( topic=disp_str( "voicerooms_topic_format" ).format(new_owner.display_name) ) @voiceroom.command(name="transfer") @VoiceroomsDecorators.pass_voiceroom async def ownership_transfer( self, context: Context, *, new_owner: Member, **kwargs ) -> None: """ Command to transfer ownership of a room to another user. :param context: Command context :param new_owner: New owner """ room: RoomPair = kwargs["room"] # Check if member is in the voice room if not in_vc(new_owner, room.voice_channel): raise OpheliaCommandError("voicerooms_transfer_bad_owner") await self.transfer_room(room, context.author, new_owner) await send_simple_embed( context, "voicerooms_transfer", new_owner.mention ) @voiceroom.command(name="list", aliases=["rooms", "knock"]) async def list_rooms(self, context: Context) -> None: """ Command to list all voicerooms and to allow users to knock on them to request for access. :param context: Command context """ non_private_rooms: List[Tuple[int, RoomPair]] = [] private_rooms: List[Tuple[int, RoomPair]] = [] for owner_id, room in self.rooms.items(): if room.voice_channel.guild.id == context.guild.id: if room.current_mode == RoomMode.PRIVATE: private_rooms.append((owner_id, room)) else: non_private_rooms.append((owner_id, room)) if not non_private_rooms and not private_rooms: await send_simple_embed(context, "voicerooms_list_no_rooms") return rooms_desc: str = "" pub_rooms_descs: List[str] = [] if non_private_rooms: for (owner_id, room) in non_private_rooms: pub_rooms_descs.append( disp_str("voicerooms_public_room").format( name=room.voice_channel.name, owner_id=owner_id ) ) rooms_desc += disp_str("voicerooms_public_list").format( pub="\n".join(pub_rooms_descs) ) priv_rooms_descs: List[str] = [] if private_rooms: owner_id: int room: RoomPair for num, (owner_id, room) in enumerate(private_rooms): priv_rooms_descs.append( disp_str("voicerooms_private_room").format( num=num + 1, # So that it starts from 1 name=room.voice_channel.name, owner_id=owner_id ) ) rooms_desc += disp_str("voicerooms_private_list").format( priv="\n".join(priv_rooms_descs) ) await send_simple_embed(context, "voicerooms_list_rooms", rooms_desc) # Wait for knocking if private_rooms: try: message = await get_input( self.bot, context, settings.short_timeout, check=lambda txt: ( txt.isnumeric() and 0 < int(txt) <= len(private_rooms) ) ) owner_id, room = private_rooms[int(message.content) - 1] # Knock confirm await send_simple_embed( context, "voicerooms_knock_confirm", owner_id ) # Sending the knocking message await send_message( channel=room.text_channel, text=disp_str("voicerooms_knock").format( owner_id=owner_id, mention=context.author.mention ) ) except asyncio.exceptions.TimeoutError: return @voiceroom.command(name="forcetransfer", aliases=["ftransfer"]) @commands.has_guild_permissions(administrator=True) async def force_transfer( self, context: Context, old_owner: Member, new_owner: Member ) -> None: """ Command to force a transfer form a member to another member. :param context: Command context :param old_owner: Old owner :param new_owner: New owner """ if old_owner.id not in self.rooms: raise OpheliaCommandError("voicerooms_transfer_bad_old_owner") room: RoomPair = self.rooms[old_owner.id] await self.transfer_room(room, old_owner, new_owner) await send_simple_embed( context, "voicerooms_transfer", new_owner.mention ) @voiceroom.command(name="setup", aliases=["generator", "gen"]) @commands.has_guild_permissions(administrator=True) async def create_generator(self, context: Context) -> None: """ Configure voice room generator. :param context: Command context """ message = await send_simple_embed( context, "voicerooms_generator", colour=Colour(settings.embed_color_important) ) await response_config( bot=self.bot, context=context, message=message, config_items=VOICEROOMS_GENERATOR_CONFIG, response_call=self.confirm_create_generator, timeout_seconds=CONFIG_TIMEOUT_SECONDS, timeout_exception=OpheliaCommandError("voicerooms_timeout"), response_tries=CONFIG_MAX_TRIES ) async def confirm_create_generator( self, context: Context, config_vars: dict ) -> None: """ Confirm creation of generator. :param context: Command context :param config_vars: Configuration variables """ author = context.author text_category = config_vars["text_category"] voice_category = config_vars["voice_category"] generator_channel: VoiceChannel = config_vars["generator_channel"] log_channel = config_vars["log_channel"] sample_voice_channel: VoiceChannel = config_vars["sample_voice_channel"] sample_text_channel: TextChannel = config_vars["sample_text_channel"] default_voice_perms = sample_voice_channel.overwrites owner_voice_perms = sample_voice_channel.overwrites_for(author) default_voice_perms.pop(author, None) default_text_perms = sample_text_channel.overwrites owner_text_perms = sample_voice_channel.overwrites_for(author) default_text_perms.pop(author, None) generator = Generator( voice_category=voice_category, text_category=text_category, generator_channel=generator_channel, default_voice_perms=default_voice_perms, owner_voice_perms=owner_voice_perms, default_text_perms=default_text_perms, owner_text_perms=owner_text_perms, log_channel=log_channel ) self.generators[generator_channel.id] = generator await send_simple_embed( context, "voicerooms_generator_success", generator_channel.name ) @voiceroom.command(name="updategen", aliases=["updategenerator", "ug"]) @VoiceroomsDecorators.pass_voiceroom @commands.has_guild_permissions(administrator=True) async def generator_update( self, context: Context, *, channel_id_str: str, **kwargs ) -> None: """ Update generator permission settings. :param context: Command context :param channel_id_str: Generator ID as a string """ guild: Guild = context.guild if not channel_id_str.isnumeric(): raise OpheliaCommandError("voicerooms_error_not_channel_id") channel_id = int(channel_id_str) channel = guild.get_channel(channel_id) if channel_id not in self.generators or channel is None: raise OpheliaCommandError("voicerooms_error_invalid_channel") room: RoomPair = kwargs["room"] author = context.author prompt = await send_simple_embed(context.channel, "voicerooms_update") await response_switch( bot=self.bot, context=context, message=prompt, options={ "y": self.confirm_update_generator(room, author, channel), "n": self.cancel_update_generator }, timeout_seconds=CONFIG_TIMEOUT_SECONDS, timeout_exception=OpheliaCommandError("voicerooms_timeout") ) def confirm_update_generator( self, room: RoomPair, author: Member, generator_channel: VoiceChannel ) -> Callable: """ Confirm generator update. :param room: Room pair used as a template :param author: Room owner :param generator_channel: Generator to be updated """ async def func(context: Context) -> None: """Internal function.""" default_voice_perms = room.voice_channel.overwrites owner_voice_perms = room.voice_channel.overwrites_for(author) default_voice_perms.pop(author, None) default_text_perms = room.text_channel.overwrites owner_text_perms = room.text_channel.overwrites_for(author) default_text_perms.pop(author, None) self.generators[generator_channel.id].update_perms( default_voice_perms=default_voice_perms, owner_voice_perms=owner_voice_perms, default_text_perms=default_text_perms, owner_text_perms=owner_text_perms ) await send_simple_embed(context, "voicerooms_update_confirm") return func @staticmethod async def cancel_update_generator(context: Context) -> None: """ Cancel generator update. :param context: Command context :param config_vars: Ignored """ await send_simple_embed(context, "voicerooms_update_cancel") @voiceroom.command(name="listgen", aliases=["listgenerators", "lg"]) @commands.has_guild_permissions(administrator=True) async def generator_list(self, context: Context) -> None: """ List all generators in a server. :param context: Command context """ guild: Guild = context.guild string_builder = [] for channel_id in self.generators: channel = guild.get_channel(channel_id) if channel is not None: string_builder.append( disp_str("voicerooms_list_item").format( channel.id, channel.name ) ) await send_message_embed( channel=context, title=disp_str("voicerooms_list_title"), desc="\n".join(string_builder) ) @voiceroom.command(name="listall", aliases=["la"]) @commands.is_owner() async def generator_listall(self, context: Context) -> None: """ List all generators. :param context: Command context """ string_builder = [] for channel_id in self.generators: channel = self.bot.get_channel(channel_id) name = ( disp_str("voicerooms_list_none") if channel is None else channel.name ) string_builder.append( disp_str("voicerooms_list_item").format(channel_id, name) ) await send_message_embed( channel=context, title=disp_str("voicerooms_listall_title"), desc="\n".join(string_builder) ) @voiceroom.command(name="admindelete", aliases=["admindel", "ad"]) @commands.has_guild_permissions(administrator=True) async def generator_admindelete( self, context: Context, *, channel_id_str: str ) -> None: """ Delete a generator from a server. :param context: Command context :param channel_id_str: String of generator voice channel ID """ guild: Guild = context.guild if not channel_id_str.isnumeric(): raise OpheliaCommandError("voicerooms_error_not_channel_id") channel_id = int(channel_id_str) channel = guild.get_channel(channel_id) if channel_id not in self.generators or channel is None: raise OpheliaCommandError("voicerooms_error_invalid_channel") self.generators.pop(channel_id, None) await self.save_generators() await send_simple_embed(context, "voicerooms_delete_success") @voiceroom.command(name="filter", aliases=["f"]) @commands.has_guild_permissions(administrator=True) async def list_filters( self, context: Context, *, regex_str: Optional[str] ) -> None: """ Adds or removes a room name filter from a guild, or lists all filters if no arguments are provided. :param context: Command context :param regex_str: Regex filter to add or remove """ if regex_str is None: await send_simple_embed( context, "voicerooms_filter_list", "\n".join( f"`{filt}`" for filt in await self.name_filter.list_filters(context.guild.id) ) ) return try: added = await self.name_filter.add_filter( context.guild.id, regex_str ) if added: await send_simple_embed( context, "voicerooms_filter_added", regex_str ) else: await send_simple_embed( context, "voicerooms_filter_deleted", regex_str ) except re.error as e: raise OpheliaCommandError("voicerooms_filter_regex_error") from e @voiceroom.command(name="forcedelete", aliases=["forcedel", "fd"]) @commands.is_owner() async def generator_forcedelete( self, context: Context, *, channel_id_str: str ) -> None: """ Force delete a generator. :param context: Command context :param channel_id_str: String of generator voice channel ID """ channel_id = int(channel_id_str) if channel_id not in self.generators: raise OpheliaCommandError("voicerooms_error_invalid_channel") self.generators.pop(channel_id, None) await self.save_generators() await send_simple_embed(context, "voicerooms_delete_success") async def delete_room(self, owner_id: int) -> None: """ Delete room. This method need not be used on bot shutdown since it would do the necessary steps of cleaning up the dictionary mappings. :param owner_id: Room owner """ room = self.rooms.pop(owner_id, None) if room is None: return self.vc_room_map.pop(room.voice_channel.id, None) self.text_room_map.pop(room.text_channel.id, None) await room.destroy()
the-stack_106_24468
"""Support for SmartThings Cloud.""" import asyncio import logging from typing import Iterable from aiohttp.client_exceptions import ( ClientConnectionError, ClientResponseError) from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_ACCESS_TOKEN from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send) from homeassistant.helpers.entity import Entity from homeassistant.helpers.typing import ConfigType, HomeAssistantType from .config_flow import SmartThingsFlowHandler # noqa from .const import ( CONF_APP_ID, CONF_INSTALLED_APP_ID, DATA_BROKERS, DATA_MANAGER, DOMAIN, EVENT_BUTTON, SIGNAL_SMARTTHINGS_UPDATE, SUPPORTED_PLATFORMS) from .smartapp import ( setup_smartapp, setup_smartapp_endpoint, validate_installed_app) REQUIREMENTS = ['pysmartapp==0.3.0', 'pysmartthings==0.6.1'] DEPENDENCIES = ['webhook'] _LOGGER = logging.getLogger(__name__) async def async_setup(hass: HomeAssistantType, config: ConfigType): """Initialize the SmartThings platform.""" await setup_smartapp_endpoint(hass) return True async def async_setup_entry(hass: HomeAssistantType, entry: ConfigEntry): """Initialize config entry which represents an installed SmartApp.""" from pysmartthings import SmartThings if not hass.config.api.base_url.lower().startswith('https://'): _LOGGER.warning("The 'base_url' of the 'http' component must be " "configured and start with 'https://'") return False api = SmartThings(async_get_clientsession(hass), entry.data[CONF_ACCESS_TOKEN]) remove_entry = False try: # See if the app is already setup. This occurs when there are # installs in multiple SmartThings locations (valid use-case) manager = hass.data[DOMAIN][DATA_MANAGER] smart_app = manager.smartapps.get(entry.data[CONF_APP_ID]) if not smart_app: # Validate and setup the app. app = await api.app(entry.data[CONF_APP_ID]) smart_app = setup_smartapp(hass, app) # Validate and retrieve the installed app. installed_app = await validate_installed_app( api, entry.data[CONF_INSTALLED_APP_ID]) # Get devices and their current status devices = await api.devices( location_ids=[installed_app.location_id]) async def retrieve_device_status(device): try: await device.status.refresh() except ClientResponseError: _LOGGER.debug("Unable to update status for device: %s (%s), " "the device will be ignored", device.label, device.device_id, exc_info=True) devices.remove(device) await asyncio.gather(*[retrieve_device_status(d) for d in devices.copy()]) # Setup device broker broker = DeviceBroker(hass, devices, installed_app.installed_app_id) broker.event_handler_disconnect = \ smart_app.connect_event(broker.event_handler) hass.data[DOMAIN][DATA_BROKERS][entry.entry_id] = broker except ClientResponseError as ex: if ex.status in (401, 403): _LOGGER.exception("Unable to setup config entry '%s' - please " "reconfigure the integration", entry.title) remove_entry = True else: _LOGGER.debug(ex, exc_info=True) raise ConfigEntryNotReady except (ClientConnectionError, RuntimeWarning) as ex: _LOGGER.debug(ex, exc_info=True) raise ConfigEntryNotReady if remove_entry: hass.async_create_task( hass.config_entries.async_remove(entry.entry_id)) # only create new flow if there isn't a pending one for SmartThings. flows = hass.config_entries.flow.async_progress() if not [flow for flow in flows if flow['handler'] == DOMAIN]: hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={'source': 'import'})) return False for component in SUPPORTED_PLATFORMS: hass.async_create_task(hass.config_entries.async_forward_entry_setup( entry, component)) return True async def async_unload_entry(hass: HomeAssistantType, entry: ConfigEntry): """Unload a config entry.""" broker = hass.data[DOMAIN][DATA_BROKERS].pop(entry.entry_id, None) if broker and broker.event_handler_disconnect: broker.event_handler_disconnect() tasks = [hass.config_entries.async_forward_entry_unload(entry, component) for component in SUPPORTED_PLATFORMS] return all(await asyncio.gather(*tasks)) class DeviceBroker: """Manages an individual SmartThings config entry.""" def __init__(self, hass: HomeAssistantType, devices: Iterable, installed_app_id: str): """Create a new instance of the DeviceBroker.""" self._hass = hass self._installed_app_id = installed_app_id self.devices = {device.device_id: device for device in devices} self.event_handler_disconnect = None async def event_handler(self, req, resp, app): """Broker for incoming events.""" from pysmartapp.event import EVENT_TYPE_DEVICE from pysmartthings import Capability, Attribute # Do not process events received from a different installed app # under the same parent SmartApp (valid use-scenario) if req.installed_app_id != self._installed_app_id: return updated_devices = set() for evt in req.events: if evt.event_type != EVENT_TYPE_DEVICE: continue device = self.devices.get(evt.device_id) if not device: continue device.status.apply_attribute_update( evt.component_id, evt.capability, evt.attribute, evt.value) # Fire events for buttons if evt.capability == Capability.button and \ evt.attribute == Attribute.button: data = { 'component_id': evt.component_id, 'device_id': evt.device_id, 'location_id': evt.location_id, 'value': evt.value, 'name': device.label } self._hass.bus.async_fire(EVENT_BUTTON, data) _LOGGER.debug("Fired button event: %s", data) updated_devices.add(device.device_id) _LOGGER.debug("Update received with %s events and updated %s devices", len(req.events), len(updated_devices)) async_dispatcher_send(self._hass, SIGNAL_SMARTTHINGS_UPDATE, updated_devices) class SmartThingsEntity(Entity): """Defines a SmartThings entity.""" def __init__(self, device): """Initialize the instance.""" self._device = device self._dispatcher_remove = None async def async_added_to_hass(self): """Device added to hass.""" async def async_update_state(devices): """Update device state.""" if self._device.device_id in devices: await self.async_update_ha_state(True) self._dispatcher_remove = async_dispatcher_connect( self.hass, SIGNAL_SMARTTHINGS_UPDATE, async_update_state) async def async_will_remove_from_hass(self) -> None: """Disconnect the device when removed.""" if self._dispatcher_remove: self._dispatcher_remove() @property def device_info(self): """Get attributes about the device.""" return { 'identifiers': { (DOMAIN, self._device.device_id) }, 'name': self._device.label, 'model': self._device.device_type_name, 'manufacturer': 'Unavailable' } @property def name(self) -> str: """Return the name of the device.""" return self._device.label @property def should_poll(self) -> bool: """No polling needed for this device.""" return False @property def unique_id(self) -> str: """Return a unique ID.""" return self._device.device_id
the-stack_106_24469
import abc from itertools import chain from pathlib import Path from typing import Set, List, Dict, Iterator, Tuple, Any, Union, Type, Optional, Callable from dbt.dataclass_schema import StrEnum from .graph import UniqueId from dbt.contracts.graph.compiled import ( CompiledSingularTestNode, CompiledGenericTestNode, CompileResultNode, ManifestNode, ) from dbt.contracts.graph.manifest import Manifest, WritableManifest from dbt.contracts.graph.parsed import ( HasTestMetadata, ParsedSingularTestNode, ParsedExposure, ParsedMetric, ParsedGenericTestNode, ParsedSourceDefinition, ) from dbt.contracts.state import PreviousState from dbt.exceptions import ( InternalException, RuntimeException, ) from dbt.node_types import NodeType SELECTOR_GLOB = "*" SELECTOR_DELIMITER = ":" class MethodName(StrEnum): FQN = "fqn" Tag = "tag" Source = "source" Path = "path" Package = "package" Config = "config" TestName = "test_name" TestType = "test_type" ResourceType = "resource_type" State = "state" Exposure = "exposure" Metric = "metric" Result = "result" SourceStatus = "source_status" def is_selected_node(fqn: List[str], node_selector: str): # If qualified_name exactly matches model name (fqn's leaf), return True if fqn[-1] == node_selector: return True # Flatten node parts. Dots in model names act as namespace separators flat_fqn = [item for segment in fqn for item in segment.split(".")] # Selector components cannot be more than fqn's if len(flat_fqn) < len(node_selector.split(".")): return False for i, selector_part in enumerate(node_selector.split(".")): # if we hit a GLOB, then this node is selected if selector_part == SELECTOR_GLOB: return True elif flat_fqn[i] == selector_part: continue else: return False # if we get all the way down here, then the node is a match return True SelectorTarget = Union[ParsedSourceDefinition, ManifestNode, ParsedExposure, ParsedMetric] class SelectorMethod(metaclass=abc.ABCMeta): def __init__( self, manifest: Manifest, previous_state: Optional[PreviousState], arguments: List[str] ): self.manifest: Manifest = manifest self.previous_state = previous_state self.arguments: List[str] = arguments def parsed_nodes( self, included_nodes: Set[UniqueId] ) -> Iterator[Tuple[UniqueId, ManifestNode]]: for key, node in self.manifest.nodes.items(): unique_id = UniqueId(key) if unique_id not in included_nodes: continue yield unique_id, node def source_nodes( self, included_nodes: Set[UniqueId] ) -> Iterator[Tuple[UniqueId, ParsedSourceDefinition]]: for key, source in self.manifest.sources.items(): unique_id = UniqueId(key) if unique_id not in included_nodes: continue yield unique_id, source def exposure_nodes( self, included_nodes: Set[UniqueId] ) -> Iterator[Tuple[UniqueId, ParsedExposure]]: for key, exposure in self.manifest.exposures.items(): unique_id = UniqueId(key) if unique_id not in included_nodes: continue yield unique_id, exposure def metric_nodes( self, included_nodes: Set[UniqueId] ) -> Iterator[Tuple[UniqueId, ParsedMetric]]: for key, metric in self.manifest.metrics.items(): unique_id = UniqueId(key) if unique_id not in included_nodes: continue yield unique_id, metric def all_nodes( self, included_nodes: Set[UniqueId] ) -> Iterator[Tuple[UniqueId, SelectorTarget]]: yield from chain( self.parsed_nodes(included_nodes), self.source_nodes(included_nodes), self.exposure_nodes(included_nodes), self.metric_nodes(included_nodes), ) def configurable_nodes( self, included_nodes: Set[UniqueId] ) -> Iterator[Tuple[UniqueId, CompileResultNode]]: yield from chain(self.parsed_nodes(included_nodes), self.source_nodes(included_nodes)) def non_source_nodes( self, included_nodes: Set[UniqueId], ) -> Iterator[Tuple[UniqueId, Union[ParsedExposure, ManifestNode, ParsedMetric]]]: yield from chain( self.parsed_nodes(included_nodes), self.exposure_nodes(included_nodes), self.metric_nodes(included_nodes), ) @abc.abstractmethod def search( self, included_nodes: Set[UniqueId], selector: str, ) -> Iterator[UniqueId]: raise NotImplementedError("subclasses should implement this") class QualifiedNameSelectorMethod(SelectorMethod): def node_is_match(self, qualified_name: str, fqn: List[str]) -> bool: """Determine if a qualified name matches an fqn for all package names in the graph. :param str qualified_name: The qualified name to match the nodes with :param List[str] fqn: The node's fully qualified name in the graph. """ unscoped_fqn = fqn[1:] if is_selected_node(fqn, qualified_name): return True # Match nodes across different packages elif is_selected_node(unscoped_fqn, qualified_name): return True return False def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: """Yield all nodes in the graph that match the selector. :param str selector: The selector or node name """ parsed_nodes = list(self.parsed_nodes(included_nodes)) for node, real_node in parsed_nodes: if self.node_is_match(selector, real_node.fqn): yield node class TagSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: """yields nodes from included that have the specified tag""" for node, real_node in self.all_nodes(included_nodes): if selector in real_node.tags: yield node class SourceSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: """yields nodes from included are the specified source.""" parts = selector.split(".") target_package = SELECTOR_GLOB if len(parts) == 1: target_source, target_table = parts[0], None elif len(parts) == 2: target_source, target_table = parts elif len(parts) == 3: target_package, target_source, target_table = parts else: # len(parts) > 3 or len(parts) == 0 msg = ( 'Invalid source selector value "{}". Sources must be of the ' "form `${{source_name}}`, " "`${{source_name}}.${{target_name}}`, or " "`${{package_name}}.${{source_name}}.${{target_name}}" ).format(selector) raise RuntimeException(msg) for node, real_node in self.source_nodes(included_nodes): if target_package not in (real_node.package_name, SELECTOR_GLOB): continue if target_source not in (real_node.source_name, SELECTOR_GLOB): continue if target_table not in (None, real_node.name, SELECTOR_GLOB): continue yield node class ExposureSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: parts = selector.split(".") target_package = SELECTOR_GLOB if len(parts) == 1: target_name = parts[0] elif len(parts) == 2: target_package, target_name = parts else: msg = ( 'Invalid exposure selector value "{}". Exposures must be of ' "the form ${{exposure_name}} or " "${{exposure_package.exposure_name}}" ).format(selector) raise RuntimeException(msg) for node, real_node in self.exposure_nodes(included_nodes): if target_package not in (real_node.package_name, SELECTOR_GLOB): continue if target_name not in (real_node.name, SELECTOR_GLOB): continue yield node class MetricSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: parts = selector.split(".") target_package = SELECTOR_GLOB if len(parts) == 1: target_name = parts[0] elif len(parts) == 2: target_package, target_name = parts else: msg = ( 'Invalid metric selector value "{}". Metrics must be of ' "the form ${{metric_name}} or " "${{metric_package.metric_name}}" ).format(selector) raise RuntimeException(msg) for node, real_node in self.metric_nodes(included_nodes): if target_package not in (real_node.package_name, SELECTOR_GLOB): continue if target_name not in (real_node.name, SELECTOR_GLOB): continue yield node class PathSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: """Yields nodes from inclucded that match the given path.""" # use '.' and not 'root' for easy comparison root = Path.cwd() paths = set(p.relative_to(root) for p in root.glob(selector)) for node, real_node in self.all_nodes(included_nodes): if Path(real_node.root_path) != root: continue ofp = Path(real_node.original_file_path) if ofp in paths: yield node elif any(parent in paths for parent in ofp.parents): yield node class PackageSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: """Yields nodes from included that have the specified package""" for node, real_node in self.all_nodes(included_nodes): if real_node.package_name == selector: yield node def _getattr_descend(obj: Any, attrs: List[str]) -> Any: value = obj for attr in attrs: try: value = getattr(value, attr) except AttributeError: # if it implements getitem (dict, list, ...), use that. On failure, # raise an attribute error instead of the KeyError, TypeError, etc. # that arbitrary getitem calls might raise try: value = value[attr] except Exception as exc: raise AttributeError(f"'{type(value)}' object has no attribute '{attr}'") from exc return value class CaseInsensitive(str): def __eq__(self, other): if isinstance(other, str): return self.upper() == other.upper() else: return self.upper() == other class ConfigSelectorMethod(SelectorMethod): def search( self, included_nodes: Set[UniqueId], selector: Any, ) -> Iterator[UniqueId]: parts = self.arguments # special case: if the user wanted to compare test severity, # make the comparison case-insensitive if parts == ["severity"]: selector = CaseInsensitive(selector) # search sources is kind of useless now source configs only have # 'enabled', which you can't really filter on anyway, but maybe we'll # add more someday, so search them anyway. for node, real_node in self.configurable_nodes(included_nodes): try: value = _getattr_descend(real_node.config, parts) except AttributeError: continue else: if selector == value: yield node class ResourceTypeSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: try: resource_type = NodeType(selector) except ValueError as exc: raise RuntimeException(f'Invalid resource_type selector "{selector}"') from exc for node, real_node in self.parsed_nodes(included_nodes): if real_node.resource_type == resource_type: yield node class TestNameSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: for node, real_node in self.parsed_nodes(included_nodes): if isinstance(real_node, HasTestMetadata): if real_node.test_metadata.name == selector: yield node class TestTypeSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: search_types: Tuple[Type, ...] # continue supporting 'schema' + 'data' for backwards compatibility if selector in ("generic", "schema"): search_types = (ParsedGenericTestNode, CompiledGenericTestNode) elif selector in ("singular", "data"): search_types = (ParsedSingularTestNode, CompiledSingularTestNode) else: raise RuntimeException( f'Invalid test type selector {selector}: expected "generic" or ' '"singular"' ) for node, real_node in self.parsed_nodes(included_nodes): if isinstance(real_node, search_types): yield node class StateSelectorMethod(SelectorMethod): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.modified_macros: Optional[List[str]] = None def _macros_modified(self) -> List[str]: # we checked in the caller! if self.previous_state is None or self.previous_state.manifest is None: raise InternalException("No comparison manifest in _macros_modified") old_macros = self.previous_state.manifest.macros new_macros = self.manifest.macros modified = [] for uid, macro in new_macros.items(): if uid in old_macros: old_macro = old_macros[uid] if macro.macro_sql != old_macro.macro_sql: modified.append(uid) else: modified.append(uid) for uid, macro in old_macros.items(): if uid not in new_macros: modified.append(uid) return modified def recursively_check_macros_modified(self, node, visited_macros): # loop through all macros that this node depends on for macro_uid in node.depends_on.macros: # avoid infinite recursion if we've already seen this macro if macro_uid in visited_macros: continue visited_macros.append(macro_uid) # is this macro one of the modified macros? if macro_uid in self.modified_macros: return True # if not, and this macro depends on other macros, keep looping macro_node = self.manifest.macros[macro_uid] if len(macro_node.depends_on.macros) > 0: return self.recursively_check_macros_modified(macro_node, visited_macros) # this macro hasn't been modified, but we haven't checked # the other macros the node depends on, so keep looking elif len(node.depends_on.macros) > len(visited_macros): continue else: return False def check_macros_modified(self, node): # check if there are any changes in macros the first time if self.modified_macros is None: self.modified_macros = self._macros_modified() # no macros have been modified, skip looping entirely if not self.modified_macros: return False # recursively loop through upstream macros to see if any is modified else: visited_macros = [] return self.recursively_check_macros_modified(node, visited_macros) # TODO check modifed_content and check_modified macro seems a bit redundent def check_modified_content(self, old: Optional[SelectorTarget], new: SelectorTarget) -> bool: different_contents = not new.same_contents(old) # type: ignore upstream_macro_change = self.check_macros_modified(new) return different_contents or upstream_macro_change def check_modified_macros(self, _, new: SelectorTarget) -> bool: return self.check_macros_modified(new) @staticmethod def check_modified_factory( compare_method: str, ) -> Callable[[Optional[SelectorTarget], SelectorTarget], bool]: # get a function that compares two selector target based on compare method provided def check_modified_things(old: Optional[SelectorTarget], new: SelectorTarget) -> bool: if hasattr(new, compare_method): # when old body does not exist or old and new are not the same return not old or not getattr(new, compare_method)(old) # type: ignore else: return False return check_modified_things def check_new(self, old: Optional[SelectorTarget], new: SelectorTarget) -> bool: return old is None def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: if self.previous_state is None or self.previous_state.manifest is None: raise RuntimeException("Got a state selector method, but no comparison manifest") state_checks = { # it's new if there is no old version "new": lambda old, _: old is None, # use methods defined above to compare properties of old + new "modified": self.check_modified_content, "modified.body": self.check_modified_factory("same_body"), "modified.configs": self.check_modified_factory("same_config"), "modified.persisted_descriptions": self.check_modified_factory( "same_persisted_description" ), "modified.relation": self.check_modified_factory("same_database_representation"), "modified.macros": self.check_modified_macros, } if selector in state_checks: checker = state_checks[selector] else: raise RuntimeException( f'Got an invalid selector "{selector}", expected one of ' f'"{list(state_checks)}"' ) manifest: WritableManifest = self.previous_state.manifest for node, real_node in self.all_nodes(included_nodes): previous_node: Optional[SelectorTarget] = None if node in manifest.nodes: previous_node = manifest.nodes[node] elif node in manifest.sources: previous_node = manifest.sources[node] elif node in manifest.exposures: previous_node = manifest.exposures[node] elif node in manifest.metrics: previous_node = manifest.metrics[node] if checker(previous_node, real_node): yield node class ResultSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: if self.previous_state is None or self.previous_state.results is None: raise InternalException("No comparison run_results") matches = set( result.unique_id for result in self.previous_state.results if result.status == selector ) for node, real_node in self.all_nodes(included_nodes): if node in matches: yield node class SourceStatusSelectorMethod(SelectorMethod): def search(self, included_nodes: Set[UniqueId], selector: str) -> Iterator[UniqueId]: if self.previous_state is None or self.previous_state.sources is None: raise InternalException( "No previous state comparison freshness results in sources.json" ) elif self.previous_state.sources_current is None: raise InternalException( "No current state comparison freshness results in sources.json" ) current_state_sources = { result.unique_id: getattr(result, "max_loaded_at", None) for result in self.previous_state.sources_current.results if hasattr(result, "max_loaded_at") } current_state_sources_runtime_error = { result.unique_id for result in self.previous_state.sources_current.results if not hasattr(result, "max_loaded_at") } previous_state_sources = { result.unique_id: getattr(result, "max_loaded_at", None) for result in self.previous_state.sources.results if hasattr(result, "max_loaded_at") } previous_state_sources_runtime_error = { result.unique_id for result in self.previous_state.sources_current.results if not hasattr(result, "max_loaded_at") } matches = set() if selector == "fresher": for unique_id in current_state_sources: if unique_id not in previous_state_sources: matches.add(unique_id) elif current_state_sources[unique_id] > previous_state_sources[unique_id]: matches.add(unique_id) for unique_id in matches: if ( unique_id in previous_state_sources_runtime_error or unique_id in current_state_sources_runtime_error ): matches.remove(unique_id) for node, real_node in self.all_nodes(included_nodes): if node in matches: yield node class MethodManager: SELECTOR_METHODS: Dict[MethodName, Type[SelectorMethod]] = { MethodName.FQN: QualifiedNameSelectorMethod, MethodName.Tag: TagSelectorMethod, MethodName.Source: SourceSelectorMethod, MethodName.Path: PathSelectorMethod, MethodName.Package: PackageSelectorMethod, MethodName.Config: ConfigSelectorMethod, MethodName.TestName: TestNameSelectorMethod, MethodName.TestType: TestTypeSelectorMethod, MethodName.ResourceType: ResourceTypeSelectorMethod, MethodName.State: StateSelectorMethod, MethodName.Exposure: ExposureSelectorMethod, MethodName.Metric: MetricSelectorMethod, MethodName.Result: ResultSelectorMethod, MethodName.SourceStatus: SourceStatusSelectorMethod, } def __init__( self, manifest: Manifest, previous_state: Optional[PreviousState], ): self.manifest = manifest self.previous_state = previous_state def get_method(self, method: MethodName, method_arguments: List[str]) -> SelectorMethod: if method not in self.SELECTOR_METHODS: raise InternalException( f'Method name "{method}" is a valid node selection ' f"method name, but it is not handled" ) cls: Type[SelectorMethod] = self.SELECTOR_METHODS[method] return cls(self.manifest, self.previous_state, method_arguments)
the-stack_106_24471
import os import logging import shutil import tempfile import re from pathlib import Path from ocs_ci.helpers.helpers import storagecluster_independent_check from ocs_ci.ocs.resources.pod import get_all_pods from ocs_ci.ocs.utils import collect_ocs_logs from ocs_ci.ocs.must_gather.const_must_gather import GATHER_COMMANDS_VERSION from ocs_ci.ocs.ocp import get_ocs_parsed_version logger = logging.getLogger(__name__) class MustGather(object): """ MustGather Class """ def __init__(self): self.type_log = None self.root = None self.files_path = dict() self.empty_files = list() self.files_not_exist = list() self.files_content_issue = list() @property def log_type(self): return self.type_log @log_type.setter def log_type(self, type_log): if not isinstance(type_log, str): raise ValueError("log type arg must be a string") self.type_log = type_log def collect_must_gather(self): """ Collect ocs_must_gather and copy the logs to a temporary folder. """ temp_folder = tempfile.mkdtemp() collect_ocs_logs(dir_name=temp_folder, ocp=False) self.root = temp_folder + "_ocs_logs" def search_file_path(self): """ Search File Path """ version = get_ocs_parsed_version() if self.type_log == "OTHERS" and storagecluster_independent_check(): files = GATHER_COMMANDS_VERSION[version]["OTHERS_EXTERNAL"] else: files = GATHER_COMMANDS_VERSION[version][self.type_log] for file in files: self.files_not_exist.append(file) for dir_name, subdir_list, files_list in os.walk(self.root): if file in files_list: self.files_path[file] = os.path.join(dir_name, file) self.files_not_exist.remove(file) break def validate_file_size(self): """ Validate the file is not empty """ for path, subdirs, files in os.walk(self.root): for file in files: file_path = os.path.join(path, file) if Path(file_path).stat().st_size == 0: logger.error(f"log file {file} empty!") self.empty_files.append(file) def validate_expected_files(self): """ Make sure all the relevant files exist """ self.search_file_path() self.verify_noobaa_diagnostics() for file, file_path in self.files_path.items(): if not Path(file_path).is_file(): self.files_not_exist.append(file) elif Path(file_path).stat().st_size == 0: self.empty_files.append(file) elif re.search(r"\.yaml$", file): with open(file_path, "r") as f: if "kind" not in f.read().lower(): self.files_content_issue.append(file) def compare_running_pods(self): """ Compare running pods list to "/pods" subdirectories """ if self.type_log != "OTHERS": return must_gather_helper = re.compile(r"must-gather-.*.-helper") pod_objs = get_all_pods(namespace="openshift-storage") pod_names = [] for pod in pod_objs: if not must_gather_helper.match(pod.name): pod_names.append(pod.name) for dir_name, subdir_list, files_list in os.walk(self.root): if re.search("openshift-storage/pods$", dir_name): pod_path = dir_name pod_files = [] for pod_file in os.listdir(pod_path): if ( not must_gather_helper.match(pod_file) and (re.match(r"compute-*", pod_file) is None) and (re.match(r"ip-*", pod_file) is None) ): pod_files.append(pod_file) assert set(sorted(pod_files)) == set(sorted(pod_names)), ( f"List of openshift-storage pods are not equal to list of logs " f"directories list of pods: {pod_names} list of log directories: {pod_files}" ) def print_invalid_files(self): """ Print Invalid Files """ if any([self.empty_files, self.files_not_exist, self.files_content_issue]): error = ( f"Files don't exist:\n{self.files_not_exist}\n" f"Empty files:\n{self.empty_files}\n" f"Content issues:\n{self.files_content_issue}" ) self.empty_files = list() self.files_not_exist = list() self.files_content_issue = list() raise Exception(error) def verify_noobaa_diagnostics(self): """ Verify noobaa_diagnostics folder exist """ if self.type_log == "OTHERS" and get_ocs_parsed_version() >= 4.6: flag = False logger.info("Verify noobaa_diagnostics folder exist") for path, subdirs, files in os.walk(self.root): for file in files: if re.search(r"noobaa_diagnostics_.*.tar.gz", file): flag = True if not flag: logger.error("noobaa_diagnostics.tar.gz does not exist") self.files_not_exist.append("noobaa_diagnostics.tar.gz") def validate_must_gather(self): """ Validate must_gather """ self.validate_file_size() self.validate_expected_files() self.print_invalid_files() self.compare_running_pods() def cleanup(self): """ Delete temporary folder. """ logger.info(f"Delete must gather folder {self.root}") if re.search("_ocs_logs$", self.root): shutil.rmtree(path=self.root, ignore_errors=False, onerror=None)
the-stack_106_24472
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from rasa_core import restore def test_restoring_tracker(trained_moodbot_path, recwarn): tracker_dump = "data/test_trackers/tracker_moodbot.json" agent, tracker = restore.recreate_agent(trained_moodbot_path, tracker_dump=tracker_dump) # makes sure there are no warnings. warnings are raised, if the models # predictions differ from the tracker when the dumped tracker is replayed assert [e for e in recwarn if e._category_name == "UserWarning"] == [] assert len(tracker.events) == 7 assert tracker.latest_action_name == "action_listen" assert not tracker.is_paused() assert tracker.sender_id == "mysender" assert tracker.events[-1].timestamp == 1517821726.211042
the-stack_106_24474
from bc.data import Table, Prototype, BytecodeDump, Instruction, InsType, Const from bc.stream import Stream class DumpWriter(object): def __init__(self, dump: BytecodeDump, filename, encoding): self.dump = dump self.encoding = encoding self.filename = filename self.stream: Stream = None self.prototype_datas = {} def write(self): self.stream = Stream.open(self.filename, 'wb') # self.stream = Stream.open(BytesIO()) self._write_header() self._write_prototypes() self.stream.close() def _write_header(self): self.stream.write_bytes(Const.MAGIC) self.stream.write_byte(self.dump.version) self.stream.write_uleb128(self.dump.is_big_endian | self.dump.is_stripped | self.dump.has_ffi) if not self.dump.is_stripped: name = self.dump.name.encode(self.encoding) self.stream.write_uleb128(len(name)) self.stream.write_bytes(name) self.stream.byteorder = 'big' if self.dump.is_big_endian else 'little' def _write_prototypes(self): for prototype in self._sorted_prototypes(): self._write_prototype(prototype) # end of prototypes self.stream.write_uleb128(0) def _write_prototype(self, prototype: Prototype): self.stream.write_byte(prototype.has_ffi | prototype.has_iloop | prototype.is_jit_disabled | prototype.has_sub_prototypes | prototype.is_variadic) self._write_counts(prototype) self._write_instructions(prototype) self._write_upvalues(prototype) self._write_constants(prototype) self._write_numerics(prototype) self._write_debug_info(prototype) def _write_counts(self, prototype: Prototype): self.stream.write_byte(len(prototype.argument_count)) self.stream.write_byte(prototype.frame_size) self.stream.write_byte(len(prototype.upvalues)) self.stream.write_uleb128(len(prototype.constants)) self.stream.write_uleb128(len(prototype.numerics)) self.stream.write_uleb128(len(prototype.instructions) - 1) if prototype.debug_info_size > 0: self.stream.write_uleb128(prototype.debug_info_size) self.stream.write_uleb128(prototype.first_line_number) self.stream.write_uleb128(prototype.line_count) def _write_instructions(self, prototype: Prototype): for ins in prototype.instructions[1:]: # ignore head self._write_instruction(prototype, ins) def _write_instruction(self, prototype: Prototype, ins: Instruction): a, b, cd = 0, 0, 0 arg_count = 0 if ins.A_TYPE is not None: a = self._process_operand(prototype, ins.A_TYPE, ins.a) arg_count += 1 if ins.B_TYPE is not None: b = self._process_operand(prototype, ins.B_TYPE, ins.b) arg_count += 1 if ins.CD_TYPE is not None: cd = self._process_operand(prototype, ins.CD_TYPE, ins.cd) arg_count += 1 if arg_count == 3: codeword = ins.OPCODE | (a << 8) | (b << 24) | (cd << 16) else: codeword = ins.OPCODE | (a << 8) | (cd << 16) self.stream.write_uint(codeword) def _process_operand(self, prototype: Prototype, operand_type, operand): if operand_type in (InsType.STR, InsType.TAB, InsType.FUN, InsType.CDT): return len(prototype.constants) - operand - 1 elif operand_type == InsType.JMP: return operand + 0x8000 elif operand_type == InsType.NUM: return operand else: return operand def _write_upvalues(self, prototype: Prototype): for uv in prototype.upvalues: self.stream.write_uint(uv, 2) def _write_constants(self, prototype: Prototype): for c in prototype.constants: ref = c.ref if isinstance(ref, str): ref = ref.encode(self.encoding) self.stream.write_uleb128(len(ref) + Const.BCDUMP_KGC_STR) self.stream.write_bytes(ref) elif isinstance(ref, Table): self.stream.write_uleb128(Const.BCDUMP_KGC_TAB) self._write_table(ref) elif isinstance(ref, Prototype): self.stream.write_uleb128(Const.BCDUMP_KGC_CHILD) # elif isinstance(ref, tuple): # stream.write_uleb128(Const.BCDUMP_KGC_COMPLEX) # stream.write_float(ref[0]) # stream.write_float(ref[1]) # elif isinstance(ref, tuple): # stream.write_uleb128(Const.BCDUMP_KGC_I64) # stream.write_float(ref) def _write_numerics(self, prototype: Prototype): for n in prototype.numerics: self.stream.write_uleb128_33(n) def _write_table(self, table: Table): self.stream.write_uleb128(len(table.array)) self.stream.write_uleb128(len(table.dictionary)) for item in table.array: self._write_table_item(item) for item in table.dictionary: self._write_table_item(item[0]) self._write_table_item(item[1]) return table def _write_table_item(self, value): if value is True: self.stream.write_uleb128(Const.BCDUMP_KTAB_TRUE) elif value is False: self.stream.write_uleb128(Const.BCDUMP_KTAB_FALSE) elif value is None: self.stream.write_uleb128(Const.BCDUMP_KTAB_NIL) elif isinstance(value, str): value = value.encode(self.encoding) self.stream.write_uleb128(len(value) + Const.BCDUMP_KTAB_STR) self.stream.write_bytes(value) elif isinstance(value, int): self.stream.write_uleb128(Const.BCDUMP_KTAB_INT) self.stream.write_signed_int(value) elif isinstance(value, float): self.stream.write_uleb128(Const.BCDUMP_KTAB_NUM) self.stream.write_float(value) else: print(type(value)) def _write_debug_info(self, prototype: Prototype): if prototype.debug_info: self._write_line_info(prototype) self._write_upvalue_names(prototype) self._write_variable_info(prototype) def _write_line_info(self, prototype: Prototype): if prototype.line_count >= 65536: line_info_size = 4 elif prototype.line_count >= 256: line_info_size = 2 else: line_info_size = 1 for v in prototype.debug_info.addr_to_line_map[1:]: self.stream.write_uint(v - prototype.first_line_number, line_info_size) def _write_upvalue_names(self, prototype: Prototype): for v in prototype.debug_info.upvalue_variable_names: self.stream.write_zstring(v.encode(self.encoding)) def _write_variable_info(self, prototype: Prototype): last_addr = 0 for info in prototype.debug_info.variable_infos: if info.type == info.T_VISIBLE: self.stream.write_zstring(info.name.encode(self.encoding)) else: self.stream.write_byte(Const.INTERNAL_VARNAMES.index(info.name)) self.stream.write_uleb128(info.start_addr - last_addr) self.stream.write_uleb128(info.end_addr - info.start_addr) last_addr = info.start_addr self.stream.write_byte(Const.VARNAME_END) def _sorted_prototypes(self): def get_prototypes(pt: Prototype): children = [] for c in pt.constants: if isinstance(c.ref, Prototype): children = get_prototypes(c.ref) + children return children + [pt] prototypes = [] for prototype in self.dump.prototypes: prototypes.extend(get_prototypes(prototype)) return prototypes
the-stack_106_24476
# Globales import tensorflow as tf AUTOTUNE = tf.data.AUTOTUNE BATCH_SIZE = 32 BUFFER_SIZE = 20000 EMBEDDING_DIM = 512 MAX_SEQ_LENGTH = 200 INPUT_VOCAB_SIZE = 8500 TARGET_VOCAB_SIZE = 8000 EPS_LAYERNORM = 1e-6
the-stack_106_24477
""" ============================================================================= t-SNE: The effect of various perplexity values on the shape ============================================================================= An illustration of t-SNE on the two concentric circles and the S-curve datasets for different perplexity values. We observe a tendency towards clearer shapes as the perplexity value increases. The size, the distance and the shape of clusters may vary upon initialization, perplexity values and does not always convey a meaning. As shown below, t-SNE for higher perplexities finds meaningful topology of two concentric circles, however the size and the distance of the circles varies slightly from the original. Contrary to the two circles dataset, the shapes visually diverge from S-curve topology on the S-curve dataset even for larger perplexity values. For further details, "How to Use t-SNE Effectively" https://distill.pub/2016/misread-tsne/ provides a good discussion of the effects of various parameters, as well as interactive plots to explore those effects. """ # Author: Narine Kokhlikyan <[email protected]> # License: BSD print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter from sklearn import manifold, datasets from time import time n_samples = 300 n_components = 2 (fig, subplots) = plt.subplots(3, 5, figsize=(15, 8)) perplexities = [5, 30, 50, 100] X, y = datasets.make_circles(n_samples=n_samples, factor=0.5, noise=0.05) red = y == 0 green = y == 1 ax = subplots[0][0] ax.scatter(X[red, 0], X[red, 1], c="r") ax.scatter(X[green, 0], X[green, 1], c="g") ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis("tight") for i, perplexity in enumerate(perplexities): ax = subplots[0][i + 1] t0 = time() tsne = manifold.TSNE( n_components=n_components, init="random", random_state=0, perplexity=perplexity ) Y = tsne.fit_transform(X) t1 = time() print("circles, perplexity=%d in %.2g sec" % (perplexity, t1 - t0)) ax.set_title("Perplexity=%d" % perplexity) ax.scatter(Y[red, 0], Y[red, 1], c="r") ax.scatter(Y[green, 0], Y[green, 1], c="g") ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) ax.axis("tight") # Another example using s-curve X, color = datasets.make_s_curve(n_samples, random_state=0) ax = subplots[1][0] ax.scatter(X[:, 0], X[:, 2], c=color) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) for i, perplexity in enumerate(perplexities): ax = subplots[1][i + 1] t0 = time() tsne = manifold.TSNE( n_components=n_components, init="random", random_state=0, perplexity=perplexity ) Y = tsne.fit_transform(X) t1 = time() print("S-curve, perplexity=%d in %.2g sec" % (perplexity, t1 - t0)) ax.set_title("Perplexity=%d" % perplexity) ax.scatter(Y[:, 0], Y[:, 1], c=color) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) ax.axis("tight") # Another example using a 2D uniform grid x = np.linspace(0, 1, int(np.sqrt(n_samples))) xx, yy = np.meshgrid(x, x) X = np.hstack( [ xx.ravel().reshape(-1, 1), yy.ravel().reshape(-1, 1), ] ) color = xx.ravel() ax = subplots[2][0] ax.scatter(X[:, 0], X[:, 1], c=color) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) for i, perplexity in enumerate(perplexities): ax = subplots[2][i + 1] t0 = time() tsne = manifold.TSNE( n_components=n_components, init="random", random_state=0, perplexity=perplexity ) Y = tsne.fit_transform(X) t1 = time() print("uniform grid, perplexity=%d in %.2g sec" % (perplexity, t1 - t0)) ax.set_title("Perplexity=%d" % perplexity) ax.scatter(Y[:, 0], Y[:, 1], c=color) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) ax.axis("tight") plt.show()
the-stack_106_24480
# coding: utf-8 """ Provides error handler for non API errors """ import logging import flask from api import helpers import config from main import app @app.errorhandler(400) # Bad Request @app.errorhandler(401) # Unauthorized @app.errorhandler(403) # Forbidden @app.errorhandler(404) # Not Found @app.errorhandler(405) # Method Not Allowed @app.errorhandler(410) # Gone @app.errorhandler(418) # I'm a Teapot @app.errorhandler(500) # Internal Server Error def error_handler(err): """If error occured we flash it onto screen and render index""" logging.exception(err) try: err.code except AttributeError: err.code = 500 err.name = 'Internal Server Error' if flask.request.path.startswith('/api/'): return helpers.handle_error(err) flask.flash(err.name) return flask.render_template('index.html') if config.PRODUCTION: @app.errorhandler(Exception) def production_error_handler(err): # pylint: disable=missing-docstring return error_handler(err)
the-stack_106_24481
from opentrons import __version__ from opentrons.protocol_api import MAX_SUPPORTED_VERSION def test_health(api_client, hardware): hardware.fw_version = "FW111" hardware.board_revision = "BR2.1" expected = { 'name': 'opentrons-dev', 'api_version': __version__, 'fw_version': 'FW111', 'board_revision': 'BR2.1', 'logs': ['/logs/serial.log', '/logs/api.log'], 'system_version': '0.0.0', 'protocol_api_version': list(MAX_SUPPORTED_VERSION), "links": { "apiLog": "/logs/api.log", "serialLog": "/logs/serial.log", "apiSpec": "/openapi.json", "systemTime": "/system/time" } } resp = api_client.get('/health') text = resp.json() assert resp.status_code == 200 assert text == expected
the-stack_106_24483
#!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest import uuid from datetime import timedelta from mock import patch from polyaxon.managers.cli import CliConfigManager from polyaxon.schemas.cli.cli_config import CliConfig from polyaxon.utils.tz_utils import now from tests.utils import BaseTestCase @pytest.mark.managers_mark class TestCliConfigManager(BaseTestCase): def test_default_props(self): assert CliConfigManager.is_global() is True assert CliConfigManager.IS_POLYAXON_DIR is False assert CliConfigManager.CONFIG_FILE_NAME == ".cli" assert CliConfigManager.CONFIG == CliConfig @pytest.mark.managers_mark class TestCliConfigManagerMethods(BaseTestCase): def setUp(self): super().setUp() self.filename = uuid.uuid4().hex CliConfigManager.CONFIG_FILE_NAME = self.filename def tearDown(self): path = CliConfigManager.get_config_filepath(create=False) if not os.path.exists(path): return os.remove(path) def test_set_compatibility(self): with patch.object(CliConfigManager, "set_config") as patch_fct: CliConfigManager.reset(current_version=True) assert patch_fct.call_count == 1 def test_should_check(self): with patch.object(CliConfigManager, "reset") as patch_fct: result = CliConfigManager.should_check() assert patch_fct.call_count == 1 assert result is True CliConfigManager.reset( last_check=now(), current_version="0.0.5", installation={"key": "uuid", "version": "1.1.4-rc11", "dist": "foo"}, compatibility={"cli": {"min": "0.0.4", "latest": "1.1.4"}}, ) with patch.object(CliConfigManager, "reset") as patch_fct: result = CliConfigManager.should_check() assert patch_fct.call_count == 0 assert result is False CliConfigManager.reset( last_check=now() - timedelta(seconds=10000), current_version="0.0.5", installation={"key": "uuid", "version": "1.1.4-rc11", "dist": "foo"}, compatibility={"cli": {"min": "0.0.4", "latest": "1.1.4"}}, ) with patch.object(CliConfigManager, "reset") as patch_fct: result = CliConfigManager.should_check() assert patch_fct.call_count == 1 assert result is True CliConfigManager.reset( last_check=now(), current_version="0.0.2", installation={"key": "uuid", "version": "1.1.4-rc11", "dist": "foo"}, compatibility={"cli": {"min": "0.0.4", "latest": "1.1.4"}}, ) with patch.object(CliConfigManager, "reset") as patch_fct: result = CliConfigManager.should_check() # Although condition for showing a message, do not reset assert patch_fct.call_count == 0 assert result is False
the-stack_106_24484
""" The :class:`~allennlp.common.params.Params` class represents a dictionary of parameters (e.g. for configuring a model), with added functionality around logging and validation. """ from typing import Any, Dict, List from collections import MutableMapping, OrderedDict import copy import json import logging import os from overrides import overrides import _jsonnet from allennlp.common.checks import ConfigurationError from allennlp.common.file_utils import cached_path logger = logging.getLogger(__name__) # pylint: disable=invalid-name def unflatten(flat_dict: Dict[str, Any]) -> Dict[str, Any]: """ Given a "flattened" dict with compound keys, e.g. {"a.b": 0} unflatten it: {"a": {"b": 0}} """ unflat: Dict[str, Any] = {} for compound_key, value in flat_dict.items(): curr_dict = unflat parts = compound_key.split(".") for key in parts[:-1]: curr_value = curr_dict.get(key) if key not in curr_dict: curr_dict[key] = {} curr_dict = curr_dict[key] elif isinstance(curr_value, dict): curr_dict = curr_value else: raise ConfigurationError("flattened dictionary is invalid") if not isinstance(curr_dict, dict) or parts[-1] in curr_dict: raise ConfigurationError("flattened dictionary is invalid") else: curr_dict[parts[-1]] = value return unflat def with_fallback(preferred: Dict[str, Any], fallback: Dict[str, Any]) -> Dict[str, Any]: """ Deep merge two dicts, preferring values from `preferred`. """ preferred_keys = set(preferred.keys()) fallback_keys = set(fallback.keys()) common_keys = preferred_keys & fallback_keys merged: Dict[str, Any] = {} for key in preferred_keys - fallback_keys: merged[key] = copy.deepcopy(preferred[key]) for key in fallback_keys - preferred_keys: merged[key] = copy.deepcopy(fallback[key]) for key in common_keys: preferred_value = preferred[key] fallback_value = fallback[key] if isinstance(preferred_value, dict) and isinstance(fallback_value, dict): merged[key] = with_fallback(preferred_value, fallback_value) else: merged[key] = copy.deepcopy(preferred_value) return merged def parse_overrides(serialized_overrides: str) -> Dict[str, Any]: if serialized_overrides: ext_vars = dict(os.environ) return unflatten(json.loads(_jsonnet.evaluate_snippet("", serialized_overrides, ext_vars=ext_vars))) else: return {} class Params(MutableMapping): """ Represents a parameter dictionary with a history, and contains other functionality around parameter passing and validation for AllenNLP. There are currently two benefits of a ``Params`` object over a plain dictionary for parameter passing: #. We handle a few kinds of parameter validation, including making sure that parameters representing discrete choices actually have acceptable values, and making sure no extra parameters are passed. #. We log all parameter reads, including default values. This gives a more complete specification of the actual parameters used than is given in a JSON file, because those may not specify what default values were used, whereas this will log them. The convention for using a ``Params`` object in AllenNLP is that you will consume the parameters as you read them, so that there are none left when you've read everything you expect. This lets us easily validate that you didn't pass in any `extra` parameters, just by making sure that the parameter dictionary is empty. You should do this when you're done handling parameters, by calling :func:`Params.assert_empty`. """ # This allows us to check for the presence of "None" as a default argument, # which we require because we make a distinction bewteen passing a value of "None" # and passing no value to the default parameter of "pop". DEFAULT = object() def __init__(self, params: Dict[str, Any], history: str = "", loading_from_archive: bool = False, files_to_archive: Dict[str, str] = None) -> None: self.params = _replace_none(params) self.history = history self.loading_from_archive = loading_from_archive self.files_to_archive = {} if files_to_archive is None else files_to_archive def add_file_to_archive(self, name: str) -> None: """ Any class in its ``from_params`` method can request that some of its input files be added to the archive by calling this method. For example, if some class ``A`` had an ``input_file`` parameter, it could call ``` params.add_file_to_archive("input_file") ``` which would store the supplied value for ``input_file`` at the key ``previous.history.and.then.input_file``. The ``files_to_archive`` dict is shared with child instances via the ``_check_is_dict`` method, so that the final mapping can be retrieved from the top-level ``Params`` object. NOTE: You must call ``add_file_to_archive`` before you ``pop()`` the parameter, because the ``Params`` instance looks up the value of the filename inside itself. If the ``loading_from_archive`` flag is True, this will be a no-op. """ if not self.loading_from_archive: self.files_to_archive[f"{self.history}{name}"] = cached_path(self.get(name)) @overrides def pop(self, key: str, default: Any = DEFAULT) -> Any: """ Performs the functionality associated with dict.pop(key), along with checking for returned dictionaries, replacing them with Param objects with an updated history. If ``key`` is not present in the dictionary, and no default was specified, we raise a ``ConfigurationError``, instead of the typical ``KeyError``. """ if default is self.DEFAULT: try: value = self.params.pop(key) except KeyError: raise ConfigurationError("key \"{}\" is required at location \"{}\"".format(key, self.history)) else: value = self.params.pop(key, default) if not isinstance(value, dict): logger.info(self.history + key + " = " + str(value)) # type: ignore return self._check_is_dict(key, value) def pop_int(self, key: str, default: Any = DEFAULT) -> int: """ Performs a pop and coerces to an int. """ value = self.pop(key, default) if value is None: return None else: return int(value) def pop_float(self, key: str, default: Any = DEFAULT) -> float: """ Performs a pop and coerces to a float. """ value = self.pop(key, default) if value is None: return None else: return float(value) def pop_bool(self, key: str, default: Any = DEFAULT) -> bool: """ Performs a pop and coerces to a bool. """ value = self.pop(key, default) if value is None: return None elif isinstance(value, bool): return value elif value == "true": return True elif value == "false": return False else: raise ValueError("Cannot convert variable to bool: " + value) @overrides def get(self, key: str, default: Any = DEFAULT): """ Performs the functionality associated with dict.get(key) but also checks for returned dicts and returns a Params object in their place with an updated history. """ if default is self.DEFAULT: try: value = self.params.get(key) except KeyError: raise ConfigurationError("key \"{}\" is required at location \"{}\"".format(key, self.history)) else: value = self.params.get(key, default) return self._check_is_dict(key, value) def pop_choice(self, key: str, choices: List[Any], default_to_first_choice: bool = False) -> Any: """ Gets the value of ``key`` in the ``params`` dictionary, ensuring that the value is one of the given choices. Note that this `pops` the key from params, modifying the dictionary, consistent with how parameters are processed in this codebase. Parameters ---------- key: str Key to get the value from in the param dictionary choices: List[Any] A list of valid options for values corresponding to ``key``. For example, if you're specifying the type of encoder to use for some part of your model, the choices might be the list of encoder classes we know about and can instantiate. If the value we find in the param dictionary is not in ``choices``, we raise a ``ConfigurationError``, because the user specified an invalid value in their parameter file. default_to_first_choice: bool, optional (default=False) If this is ``True``, we allow the ``key`` to not be present in the parameter dictionary. If the key is not present, we will use the return as the value the first choice in the ``choices`` list. If this is ``False``, we raise a ``ConfigurationError``, because specifying the ``key`` is required (e.g., you `have` to specify your model class when running an experiment, but you can feel free to use default settings for encoders if you want). """ default = choices[0] if default_to_first_choice else self.DEFAULT value = self.pop(key, default) if value not in choices: key_str = self.history + key message = '%s not in acceptable choices for %s: %s' % (value, key_str, str(choices)) raise ConfigurationError(message) return value def as_dict(self, quiet=False): """ Sometimes we need to just represent the parameters as a dict, for instance when we pass them to a Keras layer(so that they can be serialised). Parameters ---------- quiet: bool, optional (default = False) Whether to log the parameters before returning them as a dict. """ if quiet: return self.params def log_recursively(parameters, history): for key, value in parameters.items(): if isinstance(value, dict): new_local_history = history + key + "." log_recursively(value, new_local_history) else: logger.info(history + key + " = " + str(value)) logger.info("Converting Params object to dict; logging of default " "values will not occur when dictionary parameters are " "used subsequently.") logger.info("CURRENTLY DEFINED PARAMETERS: ") log_recursively(self.params, self.history) return self.params def as_flat_dict(self): """ Returns the parameters of a flat dictionary from keys to values. Nested structure is collapsed with periods. """ flat_params = {} def recurse(parameters, path): for key, value in parameters.items(): newpath = path + [key] if isinstance(value, dict): recurse(value, newpath) else: flat_params['.'.join(newpath)] = value recurse(self.params, []) return flat_params def duplicate(self) -> 'Params': """ Uses ``copy.deepcopy()`` to create a duplicate (but fully distinct) copy of these Params. """ return Params(copy.deepcopy(self.params)) def assert_empty(self, class_name: str): """ Raises a ``ConfigurationError`` if ``self.params`` is not empty. We take ``class_name`` as an argument so that the error message gives some idea of where an error happened, if there was one. ``class_name`` should be the name of the `calling` class, the one that got extra parameters (if there are any). """ if self.params: raise ConfigurationError("Extra parameters passed to {}: {}".format(class_name, self.params)) def __getitem__(self, key): if key in self.params: return self._check_is_dict(key, self.params[key]) else: raise KeyError def __setitem__(self, key, value): self.params[key] = value def __delitem__(self, key): del self.params[key] def __iter__(self): return iter(self.params) def __len__(self): return len(self.params) def _check_is_dict(self, new_history, value): if isinstance(value, dict): new_history = self.history + new_history + "." return Params(value, history=new_history, loading_from_archive=self.loading_from_archive, files_to_archive=self.files_to_archive) if isinstance(value, list): value = [self._check_is_dict(new_history + '.list', v) for v in value] return value @staticmethod def from_file(params_file: str, params_overrides: str = "") -> 'Params': """ Load a `Params` object from a configuration file. """ # redirect to cache, if necessary params_file = cached_path(params_file) ext_vars = dict(os.environ) file_dict = json.loads(_jsonnet.evaluate_file(params_file, ext_vars=ext_vars)) overrides_dict = parse_overrides(params_overrides) param_dict = with_fallback(preferred=overrides_dict, fallback=file_dict) return Params(param_dict) def to_file(self, params_file: str, preference_orders: List[List[str]] = None) -> None: with open(params_file, "w") as handle: json.dump(self.as_ordered_dict(preference_orders), handle, indent=4) def as_ordered_dict(self, preference_orders: List[List[str]] = None) -> OrderedDict: """ Returns Ordered Dict of Params from list of partial order preferences. Parameters ---------- preference_orders: List[List[str]], optional ``preference_orders`` is list of partial preference orders. ["A", "B", "C"] means "A" > "B" > "C". For multiple preference_orders first will be considered first. Keys not found, will have last but alphabetical preference. Default Preferences: ``[["dataset_reader", "iterator", "model", "train_data_path", "validation_data_path", "test_data_path", "trainer", "vocabulary"], ["type"]]`` """ params_dict = self.as_dict(quiet=True) if not preference_orders: preference_orders = [] preference_orders.append(["dataset_reader", "iterator", "model", "train_data_path", "validation_data_path", "test_data_path", "trainer", "vocabulary"]) preference_orders.append(["type"]) def order_func(key): # Makes a tuple to use for ordering. The tuple is an index into each of the `preference_orders`, # followed by the key itself. This gives us integer sorting if you have a key in one of the # `preference_orders`, followed by alphabetical ordering if not. order_tuple = [order.index(key) if key in order else len(order) for order in preference_orders] return order_tuple + [key] def order_dict(dictionary, order_func): # Recursively orders dictionary according to scoring order_func result = OrderedDict() for key, val in sorted(dictionary.items(), key=lambda item: order_func(item[0])): result[key] = order_dict(val, order_func) if isinstance(val, dict) else val return result return order_dict(params_dict, order_func) def pop_choice(params: Dict[str, Any], key: str, choices: List[Any], default_to_first_choice: bool = False, history: str = "?.") -> Any: """ Performs the same function as :func:`Params.pop_choice`, but is required in order to deal with places that the Params object is not welcome, such as inside Keras layers. See the docstring of that method for more detail on how this function works. This method adds a ``history`` parameter, in the off-chance that you know it, so that we can reproduce :func:`Params.pop_choice` exactly. We default to using "?." if you don't know the history, so you'll have to fix that in the log if you want to actually recover the logged parameters. """ value = Params(params, history).pop_choice(key, choices, default_to_first_choice) return value def _replace_none(dictionary: Dict[str, Any]) -> Dict[str, Any]: for key in dictionary.keys(): if dictionary[key] == "None": dictionary[key] = None elif isinstance(dictionary[key], dict): dictionary[key] = _replace_none(dictionary[key]) return dictionary
the-stack_106_24485
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from unittest import mock from flask_login import current_user from airflow.www.app import create_app from tests.test_utils.config import conf_vars from tests.test_utils.db import clear_db_pools class TestGoogleOpenID(unittest.TestCase): def setUp(self) -> None: with conf_vars( {("api", "auth_backend"): "tests.test_utils.remote_user_api_auth_backend"} ), mock.patch.dict('os.environ', SKIP_DAGS_PARSING='True'), conf_vars( {('api', 'enable_experimental_api'): 'true'} ): self.app = create_app(testing=True) self.appbuilder = self.app.appbuilder # pylint: disable=no-member role_admin = self.appbuilder.sm.find_role("Admin") tester = self.appbuilder.sm.find_user(username="test") if not tester: self.appbuilder.sm.add_user( username="test", first_name="test", last_name="test", email="[email protected]", role=role_admin, password="test", ) def test_success_using_username(self): clear_db_pools() with self.app.test_client() as test_client: response = test_client.get("/api/experimental/pools", environ_overrides={'REMOTE_USER': "test"}) assert "[email protected]" == current_user.email assert 200 == response.status_code assert "Default pool" in str(response.json) def test_success_using_email(self): clear_db_pools() with self.app.test_client() as test_client: response = test_client.get( "/api/experimental/pools", environ_overrides={'REMOTE_USER': "[email protected]"} ) assert "[email protected]" == current_user.email assert 200 == response.status_code assert "Default pool" in str(response.json) def test_user_not_exists(self): with self.app.test_client() as test_client: response = test_client.get( "/api/experimental/pools", environ_overrides={'REMOTE_USER': "INVALID"} ) assert 403 == response.status_code assert "Forbidden" == response.data.decode() def test_missing_remote_user(self): with self.app.test_client() as test_client: response = test_client.get("/api/experimental/pools") assert 403 == response.status_code assert "Forbidden" == response.data.decode() def test_user_should_be_logged_temporary(self): with self.app.test_client() as test_client: response = test_client.get( "/api/experimental/pools", environ_overrides={'REMOTE_USER': "INVALID"} ) assert 403 == response.status_code assert "Forbidden" == response.data.decode()
the-stack_106_24486
# Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """CTypes bindings for the Gumbo HTML5 parser. This exports the raw interface of the library as a set of very thin ctypes wrappers. It's intended to be wrapped by other libraries to provide a more Pythonic API. """ __author__ = '[email protected] (Jonathan Tang)' import sys import contextlib import ctypes import os.path import gumboc_tags _name_of_lib = 'libgumbo.so' if sys.platform.startswith('darwin'): _name_of_lib = 'libgumbo.dylib' elif sys.platform.startswith('win'): _name_of_lib = "gumbo.dll" try: # First look for a freshly-built .so in the .libs directory, for development. _dll = ctypes.cdll.LoadLibrary(os.path.join( os.path.dirname(__file__), '..', '..', '.libs', _name_of_lib)) except OSError: # PyPI or setuptools install, look in the current directory. _dll = ctypes.cdll.LoadLibrary(os.path.join( os.path.dirname(__file__), _name_of_lib)) except OSError: # System library, on unix or mac osx _dll = ctypes.cdll.LoadLibrary(_name_of_lib) # Some aliases for common types. _bitvector = ctypes.c_uint _Ptr = ctypes.POINTER class EnumMetaclass(type(ctypes.c_uint)): def __new__(metaclass, name, bases, cls_dict): cls = type(ctypes.c_uint).__new__(metaclass, name, bases, cls_dict) if name == 'Enum': return cls try: for i, value in enumerate(cls_dict['_values_']): setattr(cls, value, cls.from_param(i)) except KeyError: raise ValueError('No _values_ list found inside enum type.') except TypeError: raise ValueError('_values_ must be a list of names of enum constants.') return cls def with_metaclass(mcls): def decorator(cls): body = vars(cls).copy() # clean out class body body.pop('__dict__', None) body.pop('__weakref__', None) return mcls(cls.__name__, cls.__bases__, body) return decorator @with_metaclass(EnumMetaclass) class Enum(ctypes.c_uint): @classmethod def from_param(cls, param): if isinstance(param, Enum): if param.__class__ != cls: raise ValueError("Can't mix enums of different types") return param if param < 0 or param > len(cls._values_): raise ValueError('%d is out of range for enum type %s; max %d.' % (param, cls.__name__, len(cls._values_))) return cls(param) def __eq__(self, other): return self.value == other.value def __ne__(self, other): return self.value != other.value def __hash__(self): return hash(self.value) def __repr__(self): try: return self._values_[self.value] except IndexError: raise IndexError('Value %d is out of range for %r' % (self.value, self._values_)) class StringPiece(ctypes.Structure): _fields_ = [ ('data', _Ptr(ctypes.c_char)), ('length', ctypes.c_size_t), ] def __len__(self): return self.length def __str__(self): return ctypes.string_at(self.data, self.length) class SourcePosition(ctypes.Structure): _fields_ = [ ('line', ctypes.c_uint), ('column', ctypes.c_uint), ('offset', ctypes.c_uint) ] SourcePosition.EMPTY = SourcePosition.in_dll(_dll, 'kGumboEmptySourcePosition') class AttributeNamespace(Enum): URLS = [ 'http://www.w3.org/1999/xhtml', 'http://www.w3.org/1999/xlink', 'http://www.w3.org/XML/1998/namespace', 'http://www.w3.org/2000/xmlns', ] _values_ = ['NONE', 'XLINK', 'XML', 'XMLNS'] def to_url(self): return self.URLS[self.value] class Attribute(ctypes.Structure): _fields_ = [ ('namespace', AttributeNamespace), ('name', ctypes.c_char_p), ('original_name', StringPiece), ('value', ctypes.c_char_p), ('original_value', StringPiece), ('name_start', SourcePosition), ('name_end', SourcePosition), ('value_start', SourcePosition), ('value_end', SourcePosition) ] class Vector(ctypes.Structure): _type_ = ctypes.c_void_p _fields_ = [ ('data', _Ptr(ctypes.c_void_p)), ('length', ctypes.c_uint), ('capacity', ctypes.c_uint) ] class Iter(object): def __init__(self, vector): self.current = 0 self.vector = vector def __iter__(self): return self def __next__(self): # Python 3 if self.current >= self.vector.length: raise StopIteration obj = self.vector[self.current] self.current += 1 return obj def next(self): # Python 2 return self.__next__() def __len__(self): return self.length def __getitem__(self, i): try: # Python 2 numeric_types = (int, long) except NameError: # Python 3 numeric_types = int if isinstance(i, numeric_types): if i < 0: i += self.length if i > self.length: raise IndexError array_type = _Ptr(_Ptr(self._type_)) return ctypes.cast(self.data, array_type)[i].contents return list(self)[i] def __iter__(self): return Vector.Iter(self) Vector.EMPTY = Vector.in_dll(_dll, 'kGumboEmptyVector') class AttributeVector(Vector): _type_ = Attribute class NodeVector(Vector): # _type_ assigned later, to avoid circular references with Node pass class QuirksMode(Enum): _values_ = ['NO_QUIRKS', 'QUIRKS', 'LIMITED_QUIRKS'] class Document(ctypes.Structure): _fields_ = [ ('children', NodeVector), ('has_doctype', ctypes.c_bool), ('name', ctypes.c_char_p), ('public_identifier', ctypes.c_char_p), ('system_identifier', ctypes.c_char_p), ('doc_type_quirks_mode', QuirksMode), ] def __repr__(self): return 'Document' class Namespace(Enum): URLS = [ 'http://www.w3.org/1999/xhtml', 'http://www.w3.org/2000/svg', 'http://www.w3.org/1998/Math/MathML', ] _values_ = ['HTML', 'SVG', 'MATHML'] def to_url(self): return self.URLS[self.value] class Tag(Enum): @staticmethod def from_str(tagname): text_ptr = ctypes.c_char_p(tagname.encode('utf-8')) return _tag_enum(text_ptr) _values_ = gumboc_tags.TagNames + ['UNKNOWN', 'LAST'] class Element(ctypes.Structure): _fields_ = [ ('children', NodeVector), ('tag', Tag), ('tag_namespace', Namespace), ('original_tag', StringPiece), ('original_end_tag', StringPiece), ('start_pos', SourcePosition), ('end_pos', SourcePosition), ('attributes', AttributeVector), ] @property def tag_name(self): original_tag = StringPiece.from_buffer_copy(self.original_tag) _tag_from_original_text(ctypes.byref(original_tag)) if self.tag_namespace == Namespace.SVG: svg_tagname = _normalize_svg_tagname(ctypes.byref(original_tag)) if svg_tagname is not None: return str(svg_tagname) if self.tag == Tag.UNKNOWN: if original_tag.data is None: return '' return str(original_tag).lower() return _tagname(self.tag) def __repr__(self): return ('<%r>\n' % self.tag + '\n'.join(repr(child) for child in self.children) + '</%r>' % self.tag) class Text(ctypes.Structure): _fields_ = [ ('text', ctypes.c_char_p), ('original_text', StringPiece), ('start_pos', SourcePosition) ] def __repr__(self): return 'Text(%r)' % self.text class NodeType(Enum): _values_ = ['DOCUMENT', 'ELEMENT', 'TEXT', 'CDATA', 'COMMENT', 'WHITESPACE', 'TEMPLATE'] class NodeUnion(ctypes.Union): _fields_ = [ ('document', Document), ('element', Element), ('text', Text), ] class Node(ctypes.Structure): # _fields_ set later to avoid a circular reference def _contents(self): # Python3 enters an infinite loop if you use an @property within # __getattr__, so we factor it out to a helper. if self.type == NodeType.DOCUMENT: return self.v.document elif self.type in (NodeType.ELEMENT, NodeType.TEMPLATE): return self.v.element else: return self.v.text @property def contents(self): return self._contents() def __getattr__(self, name): return getattr(self._contents(), name) def __setattr__(self, name, value): return setattr(self._contents(), name, value) def __repr__(self): return repr(self.contents) Node._fields_ = [ ('type', NodeType), # Set the type to Node later to avoid a circular dependency. ('parent', _Ptr(Node)), ('index_within_parent', ctypes.c_size_t), # TODO(jdtang): Make a real list of enum constants for this. ('parse_flags', _bitvector), ('v', NodeUnion) ] NodeVector._type_ = Node class Options(ctypes.Structure): _fields_ = [ # TODO(jdtang): Allow the Python API to set the allocator/deallocator # function. Right now these are treated as opaque void pointers. ('allocator', ctypes.c_void_p), ('deallocator', ctypes.c_void_p), ('userdata', ctypes.c_void_p), ('tab_stop', ctypes.c_int), ('stop_on_first_error', ctypes.c_bool), ('max_errors', ctypes.c_int), ('fragment_context', Tag), ('fragment_namespace', Namespace), ] class Output(ctypes.Structure): _fields_ = [ ('document', _Ptr(Node)), ('root', _Ptr(Node)), # TODO(jdtang): Error type. ('errors', Vector), ] @contextlib.contextmanager def parse(text, **kwargs): options = Options() for field_name, _ in Options._fields_: try: setattr(options, field_name, kwargs[field_name]) except KeyError: setattr(options, field_name, getattr(_DEFAULT_OPTIONS, field_name)) # We have to manually take a reference to the input text here so that it # outlives the parse output. If we let ctypes do it automatically on function # call, it creates a temporary buffer which is destroyed when the call # completes, and then the original_text pointers point into invalid memory. text_ptr = ctypes.c_char_p(text.encode('utf-8')) output = _parse_with_options(ctypes.byref(options), text_ptr, len(text)) try: yield output finally: _destroy_output(ctypes.byref(options), output) _DEFAULT_OPTIONS = Options.in_dll(_dll, 'kGumboDefaultOptions') _parse_with_options = _dll.gumbo_parse_with_options _parse_with_options.argtypes = [_Ptr(Options), ctypes.c_char_p, ctypes.c_size_t] _parse_with_options.restype = _Ptr(Output) _tag_from_original_text = _dll.gumbo_tag_from_original_text _tag_from_original_text.argtypes = [_Ptr(StringPiece)] _tag_from_original_text.restype = None _normalize_svg_tagname = _dll.gumbo_normalize_svg_tagname _normalize_svg_tagname.argtypes = [_Ptr(StringPiece)] _normalize_svg_tagname.restype = ctypes.c_char_p _destroy_output = _dll.gumbo_destroy_output _destroy_output.argtypes = [_Ptr(Options), _Ptr(Output)] _destroy_output.restype = None _tagname = _dll.gumbo_normalized_tagname _tagname.argtypes = [Tag] _tagname.restype = ctypes.c_char_p _tag_enum = _dll.gumbo_tag_enum _tag_enum.argtypes = [ctypes.c_char_p] _tag_enum.restype = Tag __all__ = ['StringPiece', 'SourcePosition', 'AttributeNamespace', 'Attribute', 'Vector', 'AttributeVector', 'NodeVector', 'QuirksMode', 'Document', 'Namespace', 'Tag', 'Element', 'Text', 'NodeType', 'Node', 'Options', 'Output', 'parse']
the-stack_106_24487
# -*- coding=utf-8 import requests import logging import hashlib import base64 import os import sys import time import copy import json import xml.dom.minidom import xml.etree.ElementTree from requests import Request, Session from datetime import datetime from six.moves.urllib.parse import quote, unquote, urlencode from six import text_type, binary_type from hashlib import md5 from dicttoxml import dicttoxml from .streambody import StreamBody from .xml2dict import Xml2Dict from .cos_auth import CosS3Auth from .cos_comm import * from .cos_threadpool import SimpleThreadPool from .cos_exception import CosClientError from .cos_exception import CosServiceError from .version import __version__ from .select_event_stream import EventStream from .resumable_downloader import ResumableDownLoader logger = logging.getLogger(__name__) class CosConfig(object): """config类,保存用户相关信息""" def __init__(self, Appid=None, Region=None, SecretId=None, SecretKey=None, Token=None, Scheme=None, Timeout=None, Access_id=None, Access_key=None, Secret_id=None, Secret_key=None, Endpoint=None, IP=None, Port=None, Anonymous=None, UA=None, Proxies=None, Domain=None, ServiceDomain=None, PoolConnections=10, PoolMaxSize=10): """初始化,保存用户的信息 :param Appid(string): 用户APPID. :param Region(string): 地域信息. :param SecretId(string): 秘钥SecretId. :param SecretKey(string): 秘钥SecretKey. :param Token(string): 临时秘钥使用的token. :param Scheme(string): http/https :param Timeout(int): http超时时间. :param Access_id(string): 秘钥AccessId(兼容). :param Access_key(string): 秘钥AccessKey(兼容). :param Secret_id(string): 秘钥SecretId(兼容). :param Secret_key(string): 秘钥SecretKey(兼容). :param Endpoint(string): endpoint. :param IP(string): 访问COS的ip :param Port(int): 访问COS的port :param Anonymous(bool): 是否使用匿名访问COS :param UA(string): 使用自定义的UA来访问COS :param Proxies(dict): 使用代理来访问COS :param Domain(string): 使用自定义的域名来访问COS :param ServiceDomain(string): 使用自定义的域名来访问cos service :param PoolConnections(int): 连接池个数 :param PoolMaxSize(int): 连接池中最大连接数 """ self._appid = to_unicode(Appid) self._token = to_unicode(Token) self._timeout = Timeout self._region = Region self._endpoint = Endpoint self._ip = to_unicode(IP) self._port = Port self._anonymous = Anonymous self._ua = UA self._proxies = Proxies self._domain = Domain self._service_domain = ServiceDomain self._pool_connections = PoolConnections self._pool_maxsize = PoolMaxSize if self._domain is None: self._endpoint = format_endpoint(Endpoint, Region) if Scheme is None: Scheme = u'https' Scheme = to_unicode(Scheme) if(Scheme != u'http' and Scheme != u'https'): raise CosClientError('Scheme can be only set to http/https') self._scheme = Scheme # 兼容(SecretId,SecretKey)以及(AccessId,AccessKey) if(SecretId and SecretKey): self._secret_id = to_unicode(SecretId) self._secret_key = to_unicode(SecretKey) elif(Secret_id and Secret_key): self._secret_id = to_unicode(Secret_id) self._secret_key = to_unicode(Secret_key) elif(Access_id and Access_key): self._secret_id = to_unicode(Access_id) self._secret_key = to_unicode(Access_key) else: raise CosClientError('SecretId and SecretKey is Required!') def uri(self, bucket, path=None, endpoint=None, domain=None): """拼接url :param bucket(string): 存储桶名称. :param path(string): 请求COS的路径. :return(string): 请求COS的URL地址. """ scheme = self._scheme # 拼接请求的url,默认使用bucket和endpoint拼接请求域名 # 使用自定义域名时则使用自定义域名访问 # 指定ip和port时,则使用ip:port方式访问,优先级最高 if domain is None: domain = self._domain if domain is not None: url = domain else: bucket = format_bucket(bucket, self._appid) if endpoint is None: endpoint = self._endpoint url = u"{bucket}.{endpoint}".format(bucket=bucket, endpoint=endpoint) if self._ip is not None: url = self._ip if self._port is not None: url = u"{ip}:{port}".format(ip=self._ip, port=self._port) if path is not None: if not path: raise CosClientError("Key is required not empty") path = to_unicode(path) if path[0] == u'/': path = path[1:] path = quote(to_bytes(path), '/-_.~') path = path.replace('./', '.%2F') request_url = u"{scheme}://{url}/{path}".format( scheme=to_unicode(scheme), url=to_unicode(url), path=to_unicode(path) ) else: request_url = u"{scheme}://{url}/".format( scheme=to_unicode(scheme), url=to_unicode(url) ) return request_url def get_host(self, Bucket): """传入bucket名称,根据endpoint获取Host名称 :param Bucket(string): bucket名称 :return (string): Host名称 """ return u"{bucket}.{endpoint}".format(bucket=format_bucket(Bucket, self._appid), endpoint=self._endpoint) def set_ip_port(self, IP, Port=None): """设置直接访问的ip:port,可以不指定Port,http默认为80,https默认为443 :param IP(string): 访问COS的ip :param Port(int): 访问COS的port :return None """ self._ip = to_unicode(IP) self._port = Port def set_credential(self, SecretId, SecretKey, Token=None): """设置访问的身份,包括secret_id,secret_key,临时秘钥token默认为空 :param SecretId(string): 秘钥SecretId. :param SecretKey(string): 秘钥SecretKey. :param Token(string): 临时秘钥使用的token. """ self._secret_id = to_unicode(SecretId) self._secret_key = to_unicode(SecretKey) self._token = to_unicode(Token) class CosS3Client(object): """cos客户端类,封装相应请求""" def __init__(self, conf, retry=1, session=None): """初始化client对象 :param conf(CosConfig): 用户的配置. :param retry(int): 失败重试的次数. :param session(object): http session. """ self._conf = conf self._retry = retry # 重试的次数,分片上传时可适当增大 if session is None: self._session = requests.session() self._session.mount('http://', requests.adapters.HTTPAdapter(pool_connections=self._conf._pool_connections, pool_maxsize=self._conf._pool_maxsize)) self._session.mount('https://', requests.adapters.HTTPAdapter(pool_connections=self._conf._pool_connections, pool_maxsize=self._conf._pool_maxsize)) else: self._session = session def get_conf(self): """获取配置""" return self._conf def get_auth(self, Method, Bucket, Key, Expired=300, Headers={}, Params={}): """获取签名 :param Method(string): http method,如'PUT','GET'. :param Bucket(string): 存储桶名称. :param Key(string): 请求COS的路径. :param Expired(int): 签名有效时间,单位为s. :param headers(dict): 签名中的http headers. :param params(dict): 签名中的http params. :return (string): 计算出的V5签名. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取上传请求的签名 auth_string = client.get_auth( Method='PUT', Bucket='bucket', Key='test.txt', Expired=600, Headers={'header1': 'value1'}, Params={'param1': 'value1'} ) print (auth_string) """ url = self._conf.uri(bucket=Bucket, path=Key) r = Request(Method, url, headers=Headers, params=Params) auth = CosS3Auth(self._conf, Key, Params, Expired) return auth(r).headers['Authorization'] def send_request(self, method, url, bucket, timeout=30, cos_request=True, **kwargs): """封装request库发起http请求""" if self._conf._timeout is not None: # 用户自定义超时时间 timeout = self._conf._timeout if self._conf._ua is not None: kwargs['headers']['User-Agent'] = self._conf._ua else: kwargs['headers']['User-Agent'] = 'cos-python-sdk-v' + __version__ if self._conf._token is not None: kwargs['headers']['x-cos-security-token'] = self._conf._token if self._conf._ip is not None: # 使用IP访问时需要设置请求host if self._conf._domain is not None: kwargs['headers']['Host'] = self._conf._domain elif bucket is not None: kwargs['headers']['Host'] = self._conf.get_host(bucket) kwargs['headers'] = format_values(kwargs['headers']) file_position = None if 'data' in kwargs: body = kwargs['data'] if hasattr(body, 'tell') and hasattr(body, 'seek') and hasattr(body, 'read'): file_position = body.tell() # 记录文件当前位置 kwargs['data'] = to_bytes(kwargs['data']) if self._conf._ip is not None and self._conf._scheme == 'https': kwargs['verify'] = False for j in range(self._retry + 1): try: if j != 0: time.sleep(j) if method == 'POST': res = self._session.post(url, timeout=timeout, proxies=self._conf._proxies, **kwargs) elif method == 'GET': res = self._session.get(url, timeout=timeout, proxies=self._conf._proxies, **kwargs) elif method == 'PUT': res = self._session.put(url, timeout=timeout, proxies=self._conf._proxies, **kwargs) elif method == 'DELETE': res = self._session.delete(url, timeout=timeout, proxies=self._conf._proxies, **kwargs) elif method == 'HEAD': res = self._session.head(url, timeout=timeout, proxies=self._conf._proxies, **kwargs) if res.status_code < 400: # 2xx和3xx都认为是成功的 return res elif res.status_code < 500: # 4xx 不重试 break except Exception as e: # 捕获requests抛出的如timeout等客户端错误,转化为客户端错误 logger.exception('url:%s, retry_time:%d exception:%s' % (url, j, str(e))) can_retry = False if 'data' in kwargs: body = kwargs['data'] if hasattr(body, 'tell') and hasattr(body, 'seek') and hasattr(body, 'read'): can_retry = True elif isinstance(body, text_type) or isinstance(body, binary_type): can_retry = True if j < self._retry and can_retry: if file_position is not None: try: kwargs['data'].seek(file_position) except IOError as ioe: raise CosClientError(str(ioe)) continue raise CosClientError(str(e)) if not cos_request: return res if res.status_code >= 400: # 所有的4XX,5XX都认为是COSServiceError if method == 'HEAD' and res.status_code == 404: # Head 需要处理 info = dict() info['code'] = 'NoSuchResource' info['message'] = 'The Resource You Head Not Exist' info['resource'] = url if 'x-cos-request-id' in res.headers: info['requestid'] = res.headers['x-cos-request-id'] if 'x-cos-trace-id' in res.headers: info['traceid'] = res.headers['x-cos-trace-id'] logger.warn(info) raise CosServiceError(method, info, res.status_code) else: msg = res.text if msg == u'': # 服务器没有返回Error Body时 给出头部的信息 msg = res.headers logger.error(msg) raise CosServiceError(method, msg, res.status_code) return None # s3 object interface begin def put_object(self, Bucket, Body, Key, EnableMD5=False, **kwargs): """单文件上传接口,适用于小文件,最大不得超过5GB :param Bucket(string): 存储桶名称. :param Body(file|string): 上传的文件内容,类型为文件流或字节流. :param Key(string): COS路径. :param EnableMD5(bool): 是否需要SDK计算Content-MD5,打开此开关会增加上传耗时. :kwargs(dict): 设置上传的headers. :return(dict): 上传成功返回的结果,包含ETag等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 上传本地文件到cos with open('test.txt', 'rb') as fp: response = client.put_object( Bucket='bucket', Body=fp, Key='test.txt' ) print (response['ETag']) """ check_object_content_length(Body) headers = mapped(kwargs) url = self._conf.uri(bucket=Bucket, path=Key) logger.info("put object, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) if EnableMD5: md5_str = get_content_md5(Body) if md5_str: headers['Content-MD5'] = md5_str rt = self.send_request( method='PUT', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, Key), data=Body, headers=headers) response = dict(**rt.headers) return response def get_object(self, Bucket, Key, **kwargs): """单文件下载接口 :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param kwargs(dict): 设置下载的headers. :return(dict): 下载成功返回的结果,包含Body对应的StreamBody,可以获取文件流或下载文件到本地. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 下载cos上的文件到本地 response = client.get_object( Bucket='bucket', Key='test.txt' ) response['Body'].get_stream_to_file('local_file.txt') """ headers = mapped(kwargs) final_headers = {} params = {} for key in headers: if key.startswith("response"): params[key] = headers[key] else: final_headers[key] = headers[key] headers = final_headers if 'versionId' in headers: params['versionId'] = headers['versionId'] del headers['versionId'] params = format_values(params) url = self._conf.uri(bucket=Bucket, path=Key) logger.info("get object, url=:{url} ,headers=:{headers}, params=:{params}".format( url=url, headers=headers, params=params)) rt = self.send_request( method='GET', url=url, bucket=Bucket, stream=True, auth=CosS3Auth(self._conf, Key, params=params), params=params, headers=headers) response = dict(**rt.headers) response['Body'] = StreamBody(rt) return response def get_object_sensitive_content_recognition(self, Bucket, Key, DetectType, **kwargs): """文件内容识别接口 https://cloud.tencent.com/document/product/460/37318 :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param DetectType(int): 内容识别标志,位计算 1:porn, 2:terrorist, 4:politics, 8:ads :param kwargs(dict): 设置下载的headers. :return(dict): 下载成功返回的结果,dict类型. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 下载cos上的文件到本地 response = client.get_object_sensitive_content_recognition( Bucket='bucket', DetectType=CiDetectType.PORN | CiDetectType.POLITICS, Key='test.png' ) print response """ headers = mapped(kwargs) final_headers = {} params = {} for key in headers: if key.startswith("response"): params[key] = headers[key] else: final_headers[key] = headers[key] headers = final_headers if 'versionId' in headers: params['versionId'] = headers['versionId'] del headers['versionId'] params['ci-process'] = 'sensitive-content-recognition' detect_type = '' if DetectType & CiDetectType.PORN > 0: detect_type += 'porn' if DetectType & CiDetectType.TERRORIST > 0: if len(detect_type) > 0: detect_type += ',' detect_type += 'terrorist' if DetectType & CiDetectType.POLITICS > 0: if len(detect_type) > 0: detect_type += ',' detect_type += 'politics' if DetectType & CiDetectType.ADS > 0: if len(detect_type) > 0: detect_type += ',' detect_type += 'ads' params['detect-type'] = detect_type params = format_values(params) url = self._conf.uri(bucket=Bucket, path=Key) logger.info("get object sensitive content recognition, url=:{url} ,headers=:{headers}, params=:{params}".format( url=url, headers=headers, params=params)) rt = self.send_request( method='GET', url=url, bucket=Bucket, stream=True, auth=CosS3Auth(self._conf, Key, params=params), params=params, headers=headers) data = xml_to_dict(rt.content) return data def get_presigned_url(self, Bucket, Key, Method, Expired=300, Params={}, Headers={}): """生成预签名的url :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param Method(string): HTTP请求的方法, 'PUT'|'POST'|'GET'|'DELETE'|'HEAD' :param Expired(int): 签名过期时间. :param Params(dict): 签入签名的参数 :param Headers(dict): 签入签名的头部 :return(string): 预先签名的URL. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取预签名链接 response = client.get_presigned_url( Bucket='bucket', Key='test.txt', Method='PUT' ) """ url = self._conf.uri(bucket=Bucket, path=Key) sign = self.get_auth(Method=Method, Bucket=Bucket, Key=Key, Expired=Expired, Headers=Headers, Params=Params) sign = urlencode(dict([item.split('=', 1) for item in sign.split('&')])) url = url + '?' + sign if Params: url = url + '&' + urlencode(Params) return url def get_presigned_download_url(self, Bucket, Key, Expired=300, Params={}, Headers={}): """生成预签名的下载url :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param Expired(int): 签名过期时间. :param Params(dict): 签入签名的参数 :param Headers(dict): 签入签名的头部 :return(string): 预先签名的下载URL. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取预签名文件下载链接 response = client.get_presigned_download_url( Bucket='bucket', Key='test.txt' ) """ return self.get_presigned_url(Bucket, Key, 'GET', Expired, Params, Headers) def delete_object(self, Bucket, Key, **kwargs): """单文件删除接口 :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param kwargs(dict): 设置请求headers. :return: dict. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 删除一个文件 response = client.delete_object( Bucket='bucket', Key='test.txt' ) """ headers = mapped(kwargs) params = {} if 'versionId' in headers: params['versionId'] = headers['versionId'] del headers['versionId'] url = self._conf.uri(bucket=Bucket, path=Key) logger.info("delete object, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, Key), headers=headers, params=params) data = dict(**rt.headers) return data def delete_objects(self, Bucket, Delete={}, **kwargs): """文件批量删除接口,单次最多支持1000个object :param Bucket(string): 存储桶名称. :param Delete(dict): 批量删除的object信息. :param kwargs(dict): 设置请求headers. :return(dict): 批量删除的结果. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 批量删除文件 objects = { "Quiet": "true", "Object": [ { "Key": "file_name1" }, { "Key": "file_name2" } ] } response = client.delete_objects( Bucket='bucket', Delete=objects ) """ lst = ['<Object>', '</Object>'] # 类型为list的标签 xml_config = format_xml(data=Delete, root='Delete', lst=lst) headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'delete': ''} params = format_values(params) url = self._conf.uri(bucket=Bucket) logger.info("delete objects, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='POST', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) format_dict(data, ['Deleted', 'Error']) return data def head_object(self, Bucket, Key, **kwargs): """获取文件信息 :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param kwargs(dict): 设置请求headers. :return(dict): 文件的metadata信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 查询文件属性 response = client.head_object( Bucket='bucket', Key='test.txt' ) """ headers = mapped(kwargs) params = {} if 'versionId' in headers: params['versionId'] = headers['versionId'] del headers['versionId'] url = self._conf.uri(bucket=Bucket, path=Key) logger.info("head object, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='HEAD', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, Key, params=params), headers=headers, params=params) return dict(**rt.headers) def copy_object(self, Bucket, Key, CopySource, CopyStatus='Copy', **kwargs): """文件拷贝,文件信息修改 :param Bucket(string): 存储桶名称. :param Key(string): 上传COS路径. :param CopySource(dict): 拷贝源,包含Appid,Bucket,Region,Key. :param CopyStatus(string): 拷贝状态,可选值'Copy'|'Replaced'. :param kwargs(dict): 设置请求headers. :return(dict): 拷贝成功的结果. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 文件拷贝 copy_source = {'Bucket': 'test04-1252448703', 'Key': '/test.txt', 'Region': 'ap-beijing-1'} response = client.copy_object( Bucket='bucket', Key='test.txt', CopySource=copy_source ) """ headers = mapped(kwargs) headers['x-cos-copy-source'] = gen_copy_source_url(CopySource) if CopyStatus != 'Copy' and CopyStatus != 'Replaced': raise CosClientError('CopyStatus must be Copy or Replaced') headers['x-cos-metadata-directive'] = CopyStatus url = self._conf.uri(bucket=Bucket, path=Key) logger.info("copy object, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, Key), headers=headers) body = xml_to_dict(rt.content) if 'ETag' not in body: logger.error(rt.content) raise CosServiceError('PUT', rt.content, 200) data = dict(**rt.headers) data.update(body) return data def upload_part_copy(self, Bucket, Key, PartNumber, UploadId, CopySource, CopySourceRange='', **kwargs): """拷贝指定文件至分块上传 :param Bucket(string): 存储桶名称. :param Key(string): 上传COS路径. :param PartNumber(int): 上传分块的编号. :param UploadId(string): 分块上传创建的UploadId. :param CopySource(dict): 拷贝源,包含Appid,Bucket,Region,Key. :param CopySourceRange(string): 拷贝源的字节范围,bytes=first-last。 :param kwargs(dict): 设置请求headers. :return(dict): 拷贝成功的结果. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 分块上传拷贝分块 copy_source = {'Bucket': 'test04-1252448703', 'Key': '/test.txt', 'Region': 'ap-beijing-1'} response = client.upload_part_copy( Bucket='bucket', Key='test.txt', PartNumber=1, UploadId='your uploadid', CopySource=copy_source ) """ headers = mapped(kwargs) headers['x-cos-copy-source'] = gen_copy_source_url(CopySource) headers['x-cos-copy-source-range'] = CopySourceRange params = {'partNumber': PartNumber, 'uploadId': UploadId} params = format_values(params) url = self._conf.uri(bucket=Bucket, path=Key) logger.info("upload part copy, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, headers=headers, params=params, auth=CosS3Auth(self._conf, Key, params=params)) body = xml_to_dict(rt.content) data = dict(**rt.headers) data.update(body) return data def create_multipart_upload(self, Bucket, Key, **kwargs): """创建分块上传,适用于大文件上传 :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param kwargs(dict): 设置请求headers. :return(dict): 初始化分块上传返回的结果,包含UploadId等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 创建分块上传 response = client.create_multipart_upload( Bucket='bucket', Key='test.txt' ) """ headers = mapped(kwargs) params = {'uploads': ''} params = format_values(params) url = self._conf.uri(bucket=Bucket, path=Key) logger.info("create multipart upload, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='POST', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, Key, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) return data def upload_part(self, Bucket, Key, Body, PartNumber, UploadId, EnableMD5=False, **kwargs): """上传分块,单个大小不得超过5GB :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param Body(file|string): 上传分块的内容,可以为文件流或者字节流. :param PartNumber(int): 上传分块的编号. :param UploadId(string): 分块上传创建的UploadId. :param kwargs(dict): 设置请求headers. :param EnableMD5(bool): 是否需要SDK计算Content-MD5,打开此开关会增加上传耗时. :return(dict): 上传成功返回的结果,包含单个分块ETag等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 分块上传 with open('test.txt', 'rb') as fp: data = fp.read(1024*1024) response = client.upload_part( Bucket='bucket', Body=data, Key='test.txt' ) """ check_object_content_length(Body) headers = mapped(kwargs) params = {'partNumber': PartNumber, 'uploadId': UploadId} params = format_values(params) url = self._conf.uri(bucket=Bucket, path=Key) logger.info("upload part, url=:{url} ,headers=:{headers}, params=:{params}".format( url=url, headers=headers, params=params)) if EnableMD5: md5_str = get_content_md5(Body) if md5_str: headers['Content-MD5'] = md5_str rt = self.send_request( method='PUT', url=url, bucket=Bucket, headers=headers, params=params, auth=CosS3Auth(self._conf, Key, params=params), data=Body) response = dict(**rt.headers) return response def complete_multipart_upload(self, Bucket, Key, UploadId, MultipartUpload={}, **kwargs): """完成分片上传,除最后一块分块块大小必须大于等于1MB,否则会返回错误. :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param UploadId(string): 分块上传创建的UploadId. :param MultipartUpload(dict): 所有分块的信息,包含Etag和PartNumber. :param kwargs(dict): 设置请求headers. :return(dict): 上传成功返回的结果,包含整个文件的ETag等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 分块上传 response = client.complete_multipart_upload( Bucket='bucket', Key='multipartfile.txt', UploadId='uploadid', MultipartUpload={'Part': lst} ) """ headers = mapped(kwargs) params = {'uploadId': UploadId} params = format_values(params) url = self._conf.uri(bucket=Bucket, path=Key) logger.info("complete multipart upload, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='POST', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, Key, params=params), data=dict_to_xml(MultipartUpload), timeout=1200, # 分片上传大文件的时间比较长,设置为20min headers=headers, params=params) body = xml_to_dict(rt.content) # 分块上传文件返回200OK并不能代表文件上传成功,返回的body里面如果没有ETag则认为上传失败 if 'ETag' not in body: logger.error(rt.content) raise CosServiceError('POST', rt.content, 200) data = dict(**rt.headers) data.update(body) return data def abort_multipart_upload(self, Bucket, Key, UploadId, **kwargs): """放弃一个已经存在的分片上传任务,删除所有已经存在的分片. :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param UploadId(string): 分块上传创建的UploadId. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 分块上传 response = client.abort_multipart_upload( Bucket='bucket', Key='multipartfile.txt', UploadId='uploadid' ) """ headers = mapped(kwargs) params = {'uploadId': UploadId} params = format_values(params) url = self._conf.uri(bucket=Bucket, path=Key) logger.info("abort multipart upload, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, Key, params=params), headers=headers, params=params) return None def list_parts(self, Bucket, Key, UploadId, EncodingType='', MaxParts=1000, PartNumberMarker=0, **kwargs): """列出已上传的分片. :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param UploadId(string): 分块上传创建的UploadId. :param EncodingType(string): 设置返回结果编码方式,只能设置为url. :param MaxParts(int): 设置单次返回最大的分块数量,最大为1000. :param PartNumberMarker(int): 设置返回的开始处,从PartNumberMarker下一个分块开始列出. :param kwargs(dict): 设置请求headers. :return(dict): 分块的相关信息,包括Etag和PartNumber等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 列出分块 response = client.list_parts( Bucket='bucket', Key='multipartfile.txt', UploadId='uploadid' ) """ headers = mapped(kwargs) decodeflag = True params = { 'uploadId': UploadId, 'part-number-marker': PartNumberMarker, 'max-parts': MaxParts} if EncodingType: if EncodingType != 'url': raise CosClientError('EncodingType must be url') params['encoding-type'] = EncodingType decodeflag = False else: params['encoding-type'] = 'url' params = format_values(params) url = self._conf.uri(bucket=Bucket, path=Key) logger.info("list multipart upload parts, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, Key, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) format_dict(data, ['Part']) if decodeflag: decode_result(data, ['Key'], []) return data def put_object_acl(self, Bucket, Key, AccessControlPolicy={}, **kwargs): """设置object ACL :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param AccessControlPolicy(dict): 设置object ACL规则. :param kwargs(dict): 通过headers来设置ACL. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置 object ACL response = client.put_object_acl( Bucket='bucket', Key='multipartfile.txt', ACL='public-read', GrantRead='id="qcs::cam::uin/123:uin/456",id="qcs::cam::uin/123:uin/123"' ) """ lst = [ # 类型为list的标签 '<Grant>', '</Grant>'] xml_config = "" if AccessControlPolicy: xml_config = format_xml(data=AccessControlPolicy, root='AccessControlPolicy', lst=lst) headers = mapped(kwargs) params = {'acl': ''} url = self._conf.uri(bucket=Bucket, path=Key) logger.info("put object acl, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, Key, params=params), headers=headers, params=params) return None def get_object_acl(self, Bucket, Key, **kwargs): """获取object ACL :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param kwargs(dict): 设置请求headers. :return(dict): Object对应的ACL信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取object ACL response = client.get_object_acl( Bucket='bucket', Key='multipartfile.txt' ) """ headers = mapped(kwargs) params = {'acl': ''} url = self._conf.uri(bucket=Bucket, path=Key) logger.info("get object acl, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, Key, params=params), headers=headers, params=params) data = xml_to_dict(rt.content, "type", "Type") if data['AccessControlList'] is not None and isinstance(data['AccessControlList']['Grant'], dict): lst = [] lst.append(data['AccessControlList']['Grant']) data['AccessControlList']['Grant'] = lst return data def restore_object(self, Bucket, Key, RestoreRequest={}, **kwargs): """取回沉降到CAS中的object到COS :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param RestoreRequest(dict): 取回object的属性设置 :param kwargs(dict): 设置请求headers. :return: None. """ params = {'restore': ''} headers = mapped(kwargs) if 'versionId' in headers: params['versionId'] = headers['versionId'] headers.pop('versionId') url = self._conf.uri(bucket=Bucket, path=Key) logger.info("restore_object, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) xml_config = format_xml(data=RestoreRequest, root='RestoreRequest') rt = self.send_request( method='POST', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, Key, params=params), headers=headers, params=params) return None def select_object_content(self, Bucket, Key, Expression, ExpressionType, InputSerialization, OutputSerialization, RequestProgress=None, **kwargs): """从指定文对象中检索内容 :param Bucket(string): 存储桶名称. :param Key(string): 检索的路径. :param Expression(string): 查询语句 :param ExpressionType(string): 查询语句的类型 :param RequestProgress(dict): 查询进度设置 :param InputSerialization(dict): 输入格式设置 :param OutputSerialization(dict): 输出格式设置 :param kwargs(dict): 设置请求headers. :return(dict): 检索内容. """ params = {'select': '', 'select-type': 2} headers = mapped(kwargs) url = self._conf.uri(bucket=Bucket, path=Key) logger.info("select object content, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) SelectRequest = { 'Expression': Expression, 'ExpressionType': ExpressionType, 'InputSerialization': InputSerialization, 'OutputSerialization': OutputSerialization } if RequestProgress is not None: SelectRequest['RequestProgress'] = RequestProgress xml_config = format_xml(data=SelectRequest, root='SelectRequest') rt = self.send_request( method='POST', url=url, stream=True, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, Key, params=params), headers=headers, params=params) data = {'Payload': EventStream(rt)} return data # s3 bucket interface begin def create_bucket(self, Bucket, **kwargs): """创建一个bucket :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 创建bucket response = client.create_bucket( Bucket='bucket' ) """ headers = mapped(kwargs) url = self._conf.uri(bucket=Bucket) logger.info("create bucket, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, auth=CosS3Auth(self._conf), headers=headers) return None def delete_bucket(self, Bucket, **kwargs): """删除一个bucket,bucket必须为空 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 删除bucket response = client.delete_bucket( Bucket='bucket' ) """ headers = mapped(kwargs) url = self._conf.uri(bucket=Bucket) logger.info("delete bucket, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf), headers=headers) return None def list_objects(self, Bucket, Prefix="", Delimiter="", Marker="", MaxKeys=1000, EncodingType="", **kwargs): """获取文件列表 :param Bucket(string): 存储桶名称. :param Prefix(string): 设置匹配文件的前缀. :param Delimiter(string): 分隔符. :param Marker(string): 从marker开始列出条目. :param MaxKeys(int): 设置单次返回最大的数量,最大为1000. :param EncodingType(string): 设置返回结果编码方式,只能设置为url. :param kwargs(dict): 设置请求headers. :return(dict): 文件的相关信息,包括Etag等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 列出bucket response = client.list_objects( Bucket='bucket', MaxKeys=100, Prefix='中文', Delimiter='/' ) """ decodeflag = True # 是否需要对结果进行decode headers = mapped(kwargs) url = self._conf.uri(bucket=Bucket) logger.info("list objects, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) params = { 'prefix': Prefix, 'delimiter': Delimiter, 'marker': Marker, 'max-keys': MaxKeys } if EncodingType: if EncodingType != 'url': raise CosClientError('EncodingType must be url') decodeflag = False # 用户自己设置了EncodingType不需要去decode params['encoding-type'] = EncodingType else: params['encoding-type'] = 'url' params = format_values(params) rt = self.send_request( method='GET', url=url, bucket=Bucket, params=params, headers=headers, auth=CosS3Auth(self._conf, params=params)) data = xml_to_dict(rt.content) format_dict(data, ['Contents', 'CommonPrefixes']) if decodeflag: decode_result( data, [ 'Prefix', 'Marker', 'NextMarker' ], [ ['Contents', 'Key'], ['CommonPrefixes', 'Prefix'] ] ) return data def list_objects_versions(self, Bucket, Prefix="", Delimiter="", KeyMarker="", VersionIdMarker="", MaxKeys=1000, EncodingType="", **kwargs): """获取文件列表 :param Bucket(string): 存储桶名称. :param Prefix(string): 设置匹配文件的前缀. :param Delimiter(string): 分隔符. :param KeyMarker(string): 从KeyMarker指定的Key开始列出条目. :param VersionIdMarker(string): 从VersionIdMarker指定的版本开始列出条目. :param MaxKeys(int): 设置单次返回最大的数量,最大为1000. :param EncodingType(string): 设置返回结果编码方式,只能设置为url. :param kwargs(dict): 设置请求headers. :return(dict): 文件的相关信息,包括Etag等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 列出bucket带版本 response = client.list_objects_versions( Bucket='bucket', MaxKeys=100, Prefix='中文', Delimiter='/' ) """ headers = mapped(kwargs) decodeflag = True url = self._conf.uri(bucket=Bucket) logger.info("list objects versions, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) params = { 'versions': '', 'prefix': Prefix, 'delimiter': Delimiter, 'key-marker': KeyMarker, 'version-id-marker': VersionIdMarker, 'max-keys': MaxKeys } if EncodingType: if EncodingType != 'url': raise CosClientError('EncodingType must be url') decodeflag = False params['encoding-type'] = EncodingType else: params['encoding-type'] = 'url' params = format_values(params) rt = self.send_request( method='GET', url=url, bucket=Bucket, params=params, headers=headers, auth=CosS3Auth(self._conf, params=params)) data = xml_to_dict(rt.content) format_dict(data, ['Version', 'DeleteMarker', 'CommonPrefixes']) if decodeflag: decode_result( data, [ 'Prefix', 'KeyMarker', 'NextKeyMarker', 'VersionIdMarker', 'NextVersionIdMarker' ], [ ['Version', 'Key'], ['CommonPrefixes', 'Prefix'], ['DeleteMarker', 'Key'] ] ) return data def list_multipart_uploads(self, Bucket, Prefix="", Delimiter="", KeyMarker="", UploadIdMarker="", MaxUploads=1000, EncodingType="", **kwargs): """获取Bucket中正在进行的分块上传 :param Bucket(string): 存储桶名称. :param Prefix(string): 设置匹配文件的前缀. :param Delimiter(string): 分隔符. :param KeyMarker(string): 从KeyMarker指定的Key开始列出条目. :param UploadIdMarker(string): 从UploadIdMarker指定的UploadID开始列出条目. :param MaxUploads(int): 设置单次返回最大的数量,最大为1000. :param EncodingType(string): 设置返回结果编码方式,只能设置为url. :param kwargs(dict): 设置请求headers. :return(dict): 文件的相关信息,包括Etag等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 列出所有分块上传 response = client.list_multipart_uploads( Bucket='bucket', MaxUploads=100, Prefix='中文', Delimiter='/' ) """ headers = mapped(kwargs) decodeflag = True url = self._conf.uri(bucket=Bucket) logger.info("get multipart uploads, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) params = { 'uploads': '', 'prefix': Prefix, 'delimiter': Delimiter, 'key-marker': KeyMarker, 'upload-id-marker': UploadIdMarker, 'max-uploads': MaxUploads } if EncodingType: if EncodingType != 'url': raise CosClientError('EncodingType must be url') decodeflag = False params['encoding-type'] = EncodingType else: params['encoding-type'] = 'url' params = format_values(params) rt = self.send_request( method='GET', url=url, bucket=Bucket, params=params, headers=headers, auth=CosS3Auth(self._conf, params=params)) data = xml_to_dict(rt.content) format_dict(data, ['Upload', 'CommonPrefixes']) if decodeflag: decode_result( data, [ 'Prefix', 'KeyMarker', 'NextKeyMarker', 'UploadIdMarker', 'NextUploadIdMarker' ], [ ['Upload', 'Key'], ['CommonPrefixes', 'Prefix'] ] ) return data def head_bucket(self, Bucket, **kwargs): """确认bucket是否存在 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 确认bucket是否存在 response = client.head_bucket( Bucket='bucket' ) """ headers = mapped(kwargs) url = self._conf.uri(bucket=Bucket) logger.info("head bucket, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='HEAD', url=url, bucket=Bucket, auth=CosS3Auth(self._conf), headers=headers) return None def put_bucket_acl(self, Bucket, AccessControlPolicy={}, **kwargs): """设置bucket ACL :param Bucket(string): 存储桶名称. :param AccessControlPolicy(dict): 设置bucket ACL规则. :param kwargs(dict): 通过headers来设置ACL. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置 object ACL response = client.put_bucket_acl( Bucket='bucket', ACL='private', GrantRead='id="qcs::cam::uin/123:uin/456",id="qcs::cam::uin/123:uin/123"' ) """ lst = [ # 类型为list的标签 '<Grant>', '</Grant>'] xml_config = "" if AccessControlPolicy: xml_config = format_xml(data=AccessControlPolicy, root='AccessControlPolicy', lst=lst) headers = mapped(kwargs) params = {'acl': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket acl, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_acl(self, Bucket, **kwargs): """获取bucket ACL :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置headers. :return(dict): Bucket对应的ACL信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置 object ACL response = client.get_bucket_acl( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'acl': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket acl, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content, "type", "Type") if data['AccessControlList'] is not None and not isinstance(data['AccessControlList']['Grant'], list): lst = [] lst.append(data['AccessControlList']['Grant']) data['AccessControlList']['Grant'] = lst return data def put_bucket_cors(self, Bucket, CORSConfiguration={}, **kwargs): """设置bucket CORS :param Bucket(string): 存储桶名称. :param CORSConfiguration(dict): 设置Bucket跨域规则. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket跨域配置 cors_config = { 'CORSRule': [ { 'ID': '1234', 'AllowedOrigin': ['http://www.qq.com'], 'AllowedMethod': ['GET', 'PUT'], 'AllowedHeader': ['x-cos-meta-test'], 'ExposeHeader': ['x-cos-meta-test1'], 'MaxAgeSeconds': 500 } ] } response = client.put_bucket_cors( Bucket='bucket', CORSConfiguration=cors_config ) """ lst = [ # 类型为list的标签 '<CORSRule>', '<AllowedOrigin>', '<AllowedMethod>', '<AllowedHeader>', '<ExposeHeader>', '</CORSRule>', '</AllowedOrigin>', '</AllowedMethod>', '</AllowedHeader>', '</ExposeHeader>'] xml_config = format_xml(data=CORSConfiguration, root='CORSConfiguration', lst=lst) headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'cors': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket cors, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_cors(self, Bucket, **kwargs): """获取bucket CORS :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): 获取Bucket对应的跨域配置. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket跨域配置 response = client.get_bucket_cors( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'cors': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket cors, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) if 'CORSRule' in data and not isinstance(data['CORSRule'], list): lst = [] lst.append(data['CORSRule']) data['CORSRule'] = lst if 'CORSRule' in data: allow_lst = ['AllowedOrigin', 'AllowedMethod', 'AllowedHeader', 'ExposeHeader'] for rule in data['CORSRule']: for text in allow_lst: if text in rule and not isinstance(rule[text], list): lst = [] lst.append(rule[text]) rule[text] = lst return data def delete_bucket_cors(self, Bucket, **kwargs): """删除bucket CORS :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 删除bucket跨域配置 response = client.delete_bucket_cors( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'cors': ''} url = self._conf.uri(bucket=Bucket) logger.info("delete bucket cors, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def put_bucket_lifecycle(self, Bucket, LifecycleConfiguration={}, **kwargs): """设置bucket LifeCycle :param Bucket(string): 存储桶名称. :param LifecycleConfiguration(dict): 设置Bucket的生命周期规则. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket生命周期配置 lifecycle_config = { 'Rule': [ { 'Expiration': {'Date': get_date(2018, 4, 24)}, 'ID': '123', 'Filter': {'Prefix': ''}, 'Status': 'Enabled', } ] } response = client.put_bucket_lifecycle( Bucket='bucket', LifecycleConfiguration=lifecycle_config ) """ # 类型为list的标签 lst = [ '<Rule>', '<Tag>', '<Transition>', '<NoncurrentVersionTransition>', '</NoncurrentVersionTransition>', '</Transition>', '</Tag>', '</Rule>' ] xml_config = format_xml(data=LifecycleConfiguration, root='LifecycleConfiguration', lst=lst) headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'lifecycle': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket lifecycle, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_lifecycle(self, Bucket, **kwargs): """获取bucket LifeCycle :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): Bucket对应的生命周期配置. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket生命周期配置 response = client.get_bucket_lifecycle( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'lifecycle': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket lifecycle, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) format_dict(data, ['Rule']) if 'Rule' in data: for rule in data['Rule']: format_dict(rule, ['Transition', 'NoncurrentVersionTransition']) if 'Filter' in rule: format_dict(rule['Filter'], ['Tag']) return data def delete_bucket_lifecycle(self, Bucket, **kwargs): """删除bucket LifeCycle :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 删除bucket生命周期配置 response = client.delete_bucket_lifecycle( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'lifecycle': ''} url = self._conf.uri(bucket=Bucket) logger.info("delete bucket lifecycle, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def put_bucket_versioning(self, Bucket, Status, **kwargs): """设置bucket版本控制 :param Bucket(string): 存储桶名称. :param Status(string): 设置Bucket版本控制的状态,可选值为'Enabled'|'Suspended'. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 打开多版本配置 response = client.put_bucket_versioning( Bucket='bucket', Status='Enabled' ) """ headers = mapped(kwargs) params = {'versioning': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket versioning, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) if Status != 'Enabled' and Status != 'Suspended': raise CosClientError('versioning status must be set to Enabled or Suspended!') config = dict() config['Status'] = Status xml_config = format_xml(data=config, root='VersioningConfiguration') rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_versioning(self, Bucket, **kwargs): """查询bucket版本控制 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): 获取Bucket版本控制的配置. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取多版本配置 response = client.get_bucket_versioning( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'versioning': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket versioning, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) return data def get_bucket_location(self, Bucket, **kwargs): """查询bucket所属地域 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): 存储桶的地域信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket所在地域信息 response = client.get_bucket_location( Bucket='bucket' ) print (response['LocationConstraint']) """ headers = mapped(kwargs) params = {'location': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket location, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) root = xml.etree.ElementTree.fromstring(rt.content) data = dict() data['LocationConstraint'] = root.text return data def put_bucket_replication(self, Bucket, ReplicationConfiguration={}, **kwargs): """设置bucket跨区域复制配置 :param Bucket(string): 存储桶名称. :param ReplicationConfiguration(dict): 设置Bucket的跨区域复制规则. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket跨区域复制配置 replication_config = { 'Role': 'qcs::cam::uin/735905558:uin/735905558', 'Rule': [ { 'ID': '123', 'Status': 'Enabled', 'Prefix': 'replication', 'Destination': { 'Bucket': 'qcs:id/0:cos:cn-south:appid/1252448703:replicationsouth' } } ] } response = client.put_bucket_replication( Bucket='bucket', ReplicationConfiguration=replication_config ) """ lst = ['<Rule>', '</Rule>'] # 类型为list的标签 xml_config = format_xml(data=ReplicationConfiguration, root='ReplicationConfiguration', lst=lst) headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'replication': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket replication, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_replication(self, Bucket, **kwargs): """获取bucket 跨区域复制配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): Bucket对应的跨区域复制配置. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket跨区域复制配置 response = client.get_bucket_replication( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'replication': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket replication, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) format_dict(data, ['Rule']) return data def delete_bucket_replication(self, Bucket, **kwargs): """删除bucket 跨区域复制配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 删除bucket跨区域复制配置 response = client.delete_bucket_replication( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'replication': ''} url = self._conf.uri(bucket=Bucket) logger.info("delete bucket replication, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def put_bucket_website(self, Bucket, WebsiteConfiguration={}, **kwargs): """设置bucket静态网站配置 :param Bucket(string): 存储桶名称. :param ReplicationConfiguration(dict): 设置Bucket的静态网站规则. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket跨区域复制配置 website_config = { 'IndexDocument': { 'Suffix': 'string' }, 'ErrorDocument': { 'Key': 'string' }, 'RedirectAllRequestsTo': { 'HostName': 'string', 'Protocol': 'http'|'https' }, 'RoutingRules': [ { 'Condition': { 'HttpErrorCodeReturnedEquals': 'string', 'KeyPrefixEquals': 'string' }, 'Redirect': { 'HostName': 'string', 'HttpRedirectCode': 'string', 'Protocol': 'http'|'https', 'ReplaceKeyPrefixWith': 'string', 'ReplaceKeyWith': 'string' } } ] } response = client.put_bucket_website( Bucket='bucket', WebsiteConfiguration=website_config ) """ xml_config = format_xml(data=WebsiteConfiguration, root='WebsiteConfiguration', parent_child=True) headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'website': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket website, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_website(self, Bucket, **kwargs): """获取bucket 静态网站配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): Bucket对应的静态网站配置. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket静态网站配置 response = client.get_bucket_website( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'website': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket website, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) if 'RoutingRules' in data and not isinstance(data['RoutingRules']['RoutingRule'], list): lst = [] lst.append(data['RoutingRules']['RoutingRule']) data['RoutingRules']['RoutingRule'] = lst if 'RoutingRules' in data: data['RoutingRules'] = data['RoutingRules']['RoutingRule'] return data def delete_bucket_website(self, Bucket, **kwargs): """删除bucket 静态网站配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 删除bucket静态网站配置 response = client.delete_bucket_website( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'website': ''} url = self._conf.uri(bucket=Bucket) logger.info("delete bucket website, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def put_bucket_logging(self, Bucket, BucketLoggingStatus={}, **kwargs): """设置bucket logging :param Bucket(string): 存储桶名称. :param BucketLoggingStatus(dict): 设置Bucket的日志配置. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket logging服务 logging_bucket = 'logging-beijing-1250000000' logging_config = { 'LoggingEnabled': { 'TargetBucket': logging_bucket, 'TargetPrefix': 'test' } } response = logging_client.put_bucket_logging( Bucket=logging_bucket, BucketLoggingStatus=logging_config ) """ xml_config = format_xml(data=BucketLoggingStatus, root='BucketLoggingStatus') headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'logging': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket logging, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) logging_rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_logging(self, Bucket, **kwargs): """获取bucket logging :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): Bucket对应的logging配置. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket logging服务配置 response = logging_client.get_bucket_logging( Bucket=logging_bucket ) """ headers = mapped(kwargs) params = {'logging': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket logging, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) return data def put_bucket_policy(self, Bucket, Policy, **kwargs): """设置bucket policy :param Bucket(string): 存储桶名称. :param Policy(dict): 设置Bucket的Policy配置. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket policy服务 bucket = 'test-1252448703' response = client.put_bucket_policy( Bucket=bucket, Policy=policy ) """ # Policy必须是一个json字符串(str)或者json对象(dict) body = Policy policy_type = type(body) if policy_type != str and policy_type != dict: raise CosClientError("Policy must be a json format string or json format dict") if policy_type == dict: body = json.dumps(body) headers = mapped(kwargs) headers['Content-Type'] = 'application/json' params = {'policy': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket policy, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=body, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_policy(self, Bucket, **kwargs): """获取bucket policy :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): Bucket对应的policy配置. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket policy服务配置 response = client.get_bucket_policy( Bucket=bucket ) """ headers = mapped(kwargs) params = {'policy': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket policy, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = {'Policy': json.dumps(rt.json())} return data def put_bucket_domain(self, Bucket, DomainConfiguration={}, **kwargs): """设置bucket的自定义域名 :param Bucket(string): 存储桶名称. :param DomainConfiguration(dict): 设置Bucket的自定义域名规则. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket自定义域名配置 domain_config = { 'DomainRule': [ { 'Name': 'www.abc.com', 'Type': 'REST', 'Status': 'ENABLED', 'ForcedReplacement': 'CNAME' }, ] } response = client.put_bucket_domain( Bucket='bucket', DomainConfiguration=domain_config ) """ lst = ['<DomainRule>', '</DomainRule>'] # 类型为list的标签 xml_config = format_xml(data=DomainConfiguration, root='DomainConfiguration', lst=lst) headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'domain': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket domain, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_domain(self, Bucket, **kwargs): """获取bucket 自定义域名配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): Bucket对应的自定义域名配置. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket自定义域名配置 response = client.get_bucket_domain( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'domain': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket domain, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) format_dict(data, ['DomainRule']) if 'x-cos-domain-txt-verification' in rt.headers: data['x-cos-domain-txt-verification'] = rt.headers['x-cos-domain-txt-verification'] return data def delete_bucket_domain(self, Bucket, **kwargs): """删除bucket 自定义域名配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 删除ucket自定义域名配置 response = client.delete_bucket_domain( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'domain': ''} url = self._conf.uri(bucket=Bucket) logger.info("delete bucket domain, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def put_bucket_origin(self, Bucket, OriginConfiguration={}, **kwargs): """设置bucket的回源规则 :param Bucket(string): 存储桶名称. :param OriginConfiguration(dict): 设置Bucket的回源规则. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket回源规则 origin_config = {} response = client.put_bucket_origin( Bucket='bucket', OriginConfiguration=origin_config ) """ lst = ['<OriginRule>', '</OriginRule>'] # 类型为list的标签 xml_config = format_xml(data=OriginConfiguration, root='OriginConfiguration', lst=lst) headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'origin': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket origin, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_origin(self, Bucket, **kwargs): """获取bucket 回源配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): Bucket对应的回源规则. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket回源规则 response = client.get_bucket_origin( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'origin': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket origin, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) format_dict(data, ['OriginRule']) return data def delete_bucket_origin(self, Bucket, **kwargs): """删除bucket 回源配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 删除bucket回源规则 response = client.delete_bucket_origin( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'origin': ''} url = self._conf.uri(bucket=Bucket) logger.info("delete bucket origin, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def put_bucket_inventory(self, Bucket, Id, InventoryConfiguration={}, **kwargs): """设置bucket的清单规则 :param Bucket(string): 存储桶名称. :param Id(string): 清单规则名称. :param InventoryConfiguration(dict): Bucket的清单规则. :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket清单规则 inventory_config = { 'Destination': { 'COSBucketDestination': { 'AccountId': '100000000001', 'Bucket': 'qcs::cos:ap-guangzhou::examplebucket-1250000000', 'Format': 'CSV', 'Prefix': 'list1', 'Encryption': { 'SSECOS': {} } }, 'IsEnabled': 'True', 'Filter': { 'Prefix': 'filterPrefix' }, 'IncludedObjectVersions':'All', 'OptionalFields': { 'Field': [ 'Size', 'LastModifiedDate', 'ETag', 'StorageClass', 'IsMultipartUploaded', 'ReplicationStatus' ] }, 'Schedule': { 'Frequency': 'Daily' } } response = client.put_bucket_inventory( Bucket='bucket', Id='list1', InventoryConfiguration=inventory_config ) """ lst = ['<Field>', '</Field>'] # 类型为list的标签 InventoryConfiguration['Id'] = Id xml_config = format_xml(data=InventoryConfiguration, root='InventoryConfiguration', lst=lst) headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'inventory': '', 'id': Id} url = self._conf.uri(bucket=Bucket) logger.info("put bucket inventory, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_inventory(self, Bucket, Id, **kwargs): """获取bucket清单规则 :param Bucket(string): 存储桶名称. :param Id(string): 清单规则名称. :param kwargs(dict): 设置请求headers. :return(dict): Bucket对应的清单规则. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket清单规则 response = client.get_bucket_inventory( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'inventory': '', 'id': Id} url = self._conf.uri(bucket=Bucket) logger.info("get bucket inventory, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) format_dict(data['OptionalFields'], ['Field']) return data def delete_bucket_inventory(self, Bucket, Id, **kwargs): """删除bucket 回源配置 :param Bucket(string): 存储桶名称. :param Id(string): 清单规则名称. :param kwargs(dict): 设置请求headers. :return(dict): None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 删除bucket清单规则 response = client.delete_bucket_origin( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'inventory': '', 'id': Id} url = self._conf.uri(bucket=Bucket) logger.info("delete bucket inventory, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def put_bucket_tagging(self, Bucket, Tagging={}, **kwargs): """设置bucket的标签 :param Bucket(string): 存储桶名称. :param Tagging(dict): Bucket的标签集合 :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket标签 tagging_set = { 'TagSet': { 'Tag': [ { 'Key': 'string', 'Value': 'string' } ] } } response = client.put_bucket_tagging( Bucket='bucket', Tagging=tagging_set ) """ lst = ['<Tag>', '</Tag>'] # 类型为list的标签 xml_config = format_xml(data=Tagging, root='Tagging', lst=lst) headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'tagging': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket tagging, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_tagging(self, Bucket, **kwargs): """获取bucket标签 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): Bucket对应的标签. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket标签 response = client.get_bucket_tagging( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'tagging': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket tagging, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) if 'TagSet' in data: format_dict(data['TagSet'], ['Tag']) return data def delete_bucket_tagging(self, Bucket, **kwargs): """删除bucket 回源配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 删除bucket标签 response = client.delete_bucket_tagging( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'tagging': ''} url = self._conf.uri(bucket=Bucket) logger.info("delete bucket tagging, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def put_bucket_referer(self, Bucket, RefererConfiguration={}, **kwargs): """设置bucket的防盗链规则 :param Bucket(string): 存储桶名称. :param RefererConfiguration(dict): Bucket的防盗链规则 :param kwargs(dict): 设置请求headers. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 设置bucket标签 referer_config = { 'Status': 'Enabled', 'RefererType': 'White-List', 'EmptyReferConfiguration': 'Allow', 'DomainList': { 'Domain': [ '*.qq.com', '*.qcloud.com' ] } } response = client.put_bucket_referer( Bucket='bucket', RefererConfiguration=referer_config ) """ lst = ['<Domain>', '</Domain>'] # 类型为list的标签 xml_config = format_xml(data=RefererConfiguration, root='RefererConfiguration', lst=lst) headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'referer': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket referer, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def get_bucket_referer(self, Bucket, **kwargs): """获取bucket防盗链规则 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): Bucket对应的防盗链规则. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket标签 response = client.get_bucket_referer( Bucket='bucket' ) """ headers = mapped(kwargs) params = {'referer': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket referer, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) if 'DomainList' in data: format_dict(data['DomainList'], ['Domain']) return data def delete_bucket_referer(self, Bucket, **kwargs): """删除bucket防盗链规则 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求headers. :return(dict): None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取bucket标签 response = client.delete_bucket_referer( Bucket='bucket' ) """ xml_config = '' headers = mapped(kwargs) headers['Content-MD5'] = get_md5(xml_config) headers['Content-Type'] = 'application/xml' params = {'referer': ''} url = self._conf.uri(bucket=Bucket) rt = self.send_request( method='PUT', url=url, bucket=Bucket, data=xml_config, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None # service interface begin def list_buckets(self, **kwargs): """列出所有bucket :return(dict): 账号下bucket相关信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取账户下所有存储桶信息 response = client.list_buckets() """ headers = mapped(kwargs) url = '{scheme}://service.cos.myqcloud.com/'.format(scheme=self._conf._scheme) if self._conf._service_domain is not None: url = '{scheme}://{domain}/'.format(scheme=self._conf._scheme, domain=self._conf._service_domain) rt = self.send_request( method='GET', url=url, bucket=None, headers=headers, auth=CosS3Auth(self._conf), ) data = xml_to_dict(rt.content) if data['Buckets'] is not None and not isinstance(data['Buckets']['Bucket'], list): lst = [] lst.append(data['Buckets']['Bucket']) data['Buckets']['Bucket'] = lst return data # Advanced interface def _upload_part(self, bucket, key, local_path, offset, size, part_num, uploadid, md5_lst, resumable_flag, already_exist_parts, enable_md5, traffic_limit): """从本地文件中读取分块, 上传单个分块,将结果记录在md5——list中 :param bucket(string): 存储桶名称. :param key(string): 分块上传路径名. :param local_path(string): 本地文件路径名. :param offset(int): 读取本地文件的分块偏移量. :param size(int): 读取本地文件的分块大小. :param part_num(int): 上传分块的序号. :param uploadid(string): 分块上传的uploadid. :param md5_lst(list): 保存上传成功分块的MD5和序号. :param resumable_flag(bool): 是否为断点续传. :param already_exist_parts(dict): 断点续传情况下,保存已经上传的块的序号和Etag. :param enable_md5(bool): 是否开启md5校验. :return: None. """ # 如果是断点续传且该分块已经上传了则不用实际上传 if resumable_flag and part_num in already_exist_parts: md5_lst.append({'PartNumber': part_num, 'ETag': already_exist_parts[part_num]}) else: with open(local_path, 'rb') as fp: fp.seek(offset, 0) data = fp.read(size) rt = self.upload_part(bucket, key, data, part_num, uploadid, enable_md5, TrafficLimit=traffic_limit) md5_lst.append({'PartNumber': part_num, 'ETag': rt['ETag']}) return None def _get_resumable_uploadid(self, bucket, key): """从服务端获取未完成的分块上传任务,获取断点续传的uploadid :param bucket(string): 存储桶名称. :param key(string): 分块上传路径名. :return(string): 断点续传的uploadid,如果不存在则返回None. """ if key and key[0] == '/': key = key[1:] multipart_response = self.list_multipart_uploads( Bucket=bucket, Prefix=key ) if 'Upload' in multipart_response: # 取最后一个(最新的)uploadid index = len(multipart_response['Upload']) - 1 while index >= 0: if multipart_response['Upload'][index]['Key'] == key: return multipart_response['Upload'][index]['UploadId'] index -= 1 return None def _check_single_upload_part(self, local_path, offset, local_part_size, remote_part_size, remote_etag): """从本地文件中读取分块, 校验本地分块和服务端的分块信息 :param local_path(string): 本地文件路径名. :param offset(int): 读取本地文件的分块偏移量. :param local_part_size(int): 读取本地文件的分块大小. :param remote_part_size(int): 服务端的文件的分块大小. :param remote_etag(string): 服务端的文件Etag. :return(bool): 本地单个分块的信息是否和服务端的分块信息一致 """ if local_part_size != remote_part_size: return False with open(local_path, 'rb') as fp: fp.seek(offset, 0) local_etag = get_raw_md5(fp.read(local_part_size)) if local_etag == remote_etag: return True return False def _check_all_upload_parts(self, bucket, key, uploadid, local_path, parts_num, part_size, last_size, already_exist_parts): """获取所有已经上传的分块的信息,和本地的文件进行对比 :param bucket(string): 存储桶名称. :param key(string): 分块上传路径名. :param uploadid(string): 分块上传的uploadid :param local_path(string): 本地文件的大小 :param parts_num(int): 本地文件的分块数 :param part_size(int): 本地文件的分块大小 :param last_size(int): 本地文件的最后一块分块大小 :param already_exist_parts(dict): 保存已经上传的分块的part_num和Etag :return(bool): 本地文件是否通过校验,True为可以进行断点续传,False为不能进行断点续传 """ parts_info = [] part_number_marker = 0 list_over_status = False while list_over_status is False: response = self.list_parts( Bucket=bucket, Key=key, UploadId=uploadid, PartNumberMarker=part_number_marker ) # 已经存在的分块上传,有可能一个分块都没有上传,判断一下 if 'Part' in response: parts_info.extend(response['Part']) if response['IsTruncated'] == 'false': list_over_status = True else: part_number_marker = int(response['NextPartNumberMarker']) for part in parts_info: part_num = int(part['PartNumber']) # 如果分块数量大于本地计算出的最大数量,校验失败 if part_num > parts_num: return False offset = (part_num - 1) * part_size local_part_size = part_size if part_num == parts_num: local_part_size = last_size # 有任何一块没有通过校验,则校验失败 if not self._check_single_upload_part(local_path, offset, local_part_size, int(part['Size']), part['ETag']): return False already_exist_parts[part_num] = part['ETag'] return True def download_file(self, Bucket, Key, DestFilePath, PartSize=20, MAXThread=5, EnableCRC=False, **Kwargs): """小于等于20MB的文件简单下载,大于20MB的文件使用续传下载 :param Bucket(string): 存储桶名称. :param key(string): COS文件的路径名. :param DestFilePath(string): 下载文件的目的路径. :param PartSize(int): 分块下载的大小设置,单位为MB. :param MAXThread(int): 并发下载的最大线程数. :param EnableCRC(bool): 校验下载文件与源文件是否一致 :param kwargs(dict): 设置请求headers. """ logger.debug("Start to download file, bucket: {0}, key: {1}, dest_filename: {2}, part_size: {3}MB,\ max_thread: {4}".format(Bucket, Key, DestFilePath, PartSize, MAXThread)) object_info = self.head_object(Bucket, Key) file_size = int(object_info['Content-Length']) if file_size <= 1024*1024*20: response = self.get_object(Bucket, Key, **Kwargs) response['Body'].get_stream_to_file(DestFilePath) return downloader = ResumableDownLoader(self, Bucket, Key, DestFilePath, object_info, PartSize, MAXThread, EnableCRC, **Kwargs) downloader.start() def upload_file(self, Bucket, Key, LocalFilePath, PartSize=1, MAXThread=5, EnableMD5=False, **kwargs): """小于等于20MB的文件简单上传,大于20MB的文件使用分块上传 :param Bucket(string): 存储桶名称. :param key(string): 分块上传路径名. :param LocalFilePath(string): 本地文件路径名. :param PartSize(int): 分块的大小设置,单位为MB. :param MAXThread(int): 并发上传的最大线程数. :param EnableMD5(bool): 是否打开MD5校验. :param kwargs(dict): 设置请求headers. :return(dict): 成功上传文件的元信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 根据文件大小自动选择分块大小,多线程并发上传提高上传速度 file_name = 'thread_1GB_test' response = client.upload_file( Bucket='bucket', Key=file_name, LocalFilePath=file_name, PartSize=10, MAXThread=10, ) """ file_size = os.path.getsize(LocalFilePath) if file_size <= 1024*1024*20: with open(LocalFilePath, 'rb') as fp: rt = self.put_object(Bucket=Bucket, Key=Key, Body=fp, EnableMD5=EnableMD5, **kwargs) return rt else: part_size = 1024*1024*PartSize # 默认按照1MB分块,最大支持10G的文件,超过10G的分块数固定为10000 last_size = 0 # 最后一块可以小于1MB parts_num = file_size // part_size last_size = file_size % part_size if last_size != 0: parts_num += 1 else: # 如果刚好整除,最后一块的大小等于分块大小 last_size = part_size if parts_num > 10000: parts_num = 10000 part_size = file_size // parts_num last_size = file_size % parts_num last_size += part_size # 创建分块上传 # 判断是否可以断点续传 resumable_flag = False already_exist_parts = {} uploadid = self._get_resumable_uploadid(Bucket, Key) if uploadid is not None: logger.info("fetch an existed uploadid in remote cos, uploadid={uploadid}".format(uploadid=uploadid)) # 校验服务端返回的每个块的信息是否和本地的每个块的信息相同,只有校验通过的情况下才可以进行断点续传 resumable_flag = self._check_all_upload_parts(Bucket, Key, uploadid, LocalFilePath, parts_num, part_size, last_size, already_exist_parts) # 如果不能断点续传,则创建一个新的分块上传 if not resumable_flag: rt = self.create_multipart_upload(Bucket=Bucket, Key=Key, **kwargs) uploadid = rt['UploadId'] logger.info("create a new uploadid in upload_file, uploadid={uploadid}".format(uploadid=uploadid)) # 上传分块 # 增加限速功能 traffic_limit = None if 'TrafficLimit' in kwargs: traffic_limit = kwargs['TrafficLimit'] offset = 0 # 记录文件偏移量 lst = list() # 记录分块信息 pool = SimpleThreadPool(MAXThread) for i in range(1, parts_num+1): if i == parts_num: # 最后一块 pool.add_task(self._upload_part, Bucket, Key, LocalFilePath, offset, file_size-offset, i, uploadid, lst, resumable_flag, already_exist_parts, EnableMD5, traffic_limit) else: pool.add_task(self._upload_part, Bucket, Key, LocalFilePath, offset, part_size, i, uploadid, lst, resumable_flag, already_exist_parts, EnableMD5, traffic_limit) offset += part_size pool.wait_completion() result = pool.get_result() if not result['success_all'] or len(lst) != parts_num: raise CosClientError('some upload_part fail after max_retry, please upload_file again') lst = sorted(lst, key=lambda x: x['PartNumber']) # 按PartNumber升序排列 # 完成分块上传 rt = self.complete_multipart_upload(Bucket=Bucket, Key=Key, UploadId=uploadid, MultipartUpload={'Part': lst}) return rt def _inner_head_object(self, CopySource): """查询源文件的长度""" bucket, path, endpoint, versionid = get_copy_source_info(CopySource) params = {} if versionid != '': params['versionId'] = versionid url = u"{scheme}://{bucket}.{endpoint}/{path}".format(scheme=self._conf._scheme, bucket=bucket, endpoint=endpoint, path=path) rt = self.send_request( method='HEAD', url=url, bucket=bucket, auth=CosS3Auth(self._conf, path, params=params), headers={}, params=params) storage_class = 'standard' if 'x-cos-storage-class' in rt.headers: storage_class = rt.headers['x-cos-storage-class'].lower() return int(rt.headers['Content-Length']), storage_class def _upload_part_copy(self, bucket, key, part_number, upload_id, copy_source, copy_source_range, md5_lst): """拷贝指定文件至分块上传,记录结果到lst中去 :param bucket(string): 存储桶名称. :param key(string): 上传COS路径. :param part_number(int): 上传分块的编号. :param upload_id(string): 分块上传创建的UploadId. :param copy_source(dict): 拷贝源,包含Appid,Bucket,Region,Key. :param copy_source_range(string): 拷贝源的字节范围,bytes=first-last。 :param md5_lst(list): 保存上传成功分块的MD5和序号. :return: None. """ rt = self.upload_part_copy(bucket, key, part_number, upload_id, copy_source, copy_source_range) md5_lst.append({'PartNumber': part_number, 'ETag': rt['ETag']}) return None def _check_same_region(self, dst_endpoint, CopySource): src_endpoint = get_copy_source_info(CopySource)[2] if src_endpoint == dst_endpoint: return True return False def copy(self, Bucket, Key, CopySource, CopyStatus='Copy', PartSize=10, MAXThread=5, **kwargs): """文件拷贝,小于5G的文件调用copy_object,大于等于5G的文件调用分块上传的upload_part_copy :param Bucket(string): 存储桶名称. :param Key(string): 上传COS路径. :param CopySource(dict): 拷贝源,包含Appid,Bucket,Region,Key. :param CopyStatus(string): 拷贝状态,可选值'Copy'|'Replaced'. :param PartSize(int): 分块的大小设置. :param MAXThread(int): 并发上传的最大线程数. :param kwargs(dict): 设置请求headers. :return(dict): 拷贝成功的结果. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 根据拷贝源文件的大小自动选择拷贝策略 copy_source = {'Bucket': 'testcopt-1252468703', 'Key': '/thread_1MB', 'Region': 'ap-guangzhou'} response = client.copy( Bucket='test', Key='copy_10G.txt', CopySource=copy_source, MAXThread=10 ) """ # 先查询下拷贝源object的content-length file_size, src_storage_class = self._inner_head_object(CopySource) dst_storage_class = 'standard' if 'StorageClass' in kwargs: dst_storage_class = kwargs['StorageClass'].lower() # 同园区且不改存储类型的情况下直接走copy_object if self._check_same_region(self._conf._endpoint, CopySource) and src_storage_class == dst_storage_class: response = self.copy_object(Bucket=Bucket, Key=Key, CopySource=CopySource, CopyStatus=CopyStatus, **kwargs) return response # 如果源文件大小小于5G,则直接调用copy_object接口 if file_size < SINGLE_UPLOAD_LENGTH: response = self.copy_object(Bucket=Bucket, Key=Key, CopySource=CopySource, CopyStatus=CopyStatus, **kwargs) return response # 如果源文件大小大于等于5G,则先创建分块上传,在调用upload_part part_size = 1024*1024*PartSize # 默认按照10MB分块 last_size = 0 # 最后一块可以小于1MB parts_num = file_size // part_size last_size = file_size % part_size if last_size != 0: parts_num += 1 if parts_num > 10000: parts_num = 10000 part_size = file_size // parts_num last_size = file_size % parts_num last_size += part_size # 创建分块上传 rt = self.create_multipart_upload(Bucket=Bucket, Key=Key, **kwargs) uploadid = rt['UploadId'] # 上传分块拷贝 offset = 0 # 记录文件偏移量 lst = list() # 记录分块信息 pool = SimpleThreadPool(MAXThread) for i in range(1, parts_num+1): if i == parts_num: # 最后一块 copy_range = gen_copy_source_range(offset, file_size-1) pool.add_task(self._upload_part_copy, Bucket, Key, i, uploadid, CopySource, copy_range, lst) else: copy_range = gen_copy_source_range(offset, offset+part_size-1) pool.add_task(self._upload_part_copy, Bucket, Key, i, uploadid, CopySource, copy_range, lst) offset += part_size pool.wait_completion() result = pool.get_result() if not result['success_all']: raise CosClientError('some upload_part_copy fail after max_retry') lst = sorted(lst, key=lambda x: x['PartNumber']) # 按PartNumber升序排列 # 完成分片上传 try: rt = self.complete_multipart_upload(Bucket=Bucket, Key=Key, UploadId=uploadid, MultipartUpload={'Part': lst}) except Exception as e: abort_response = self.abort_multipart_upload(Bucket=Bucket, Key=Key, UploadId=uploadid) raise e return rt def _upload_part_from_buffer(self, bucket, key, data, part_num, uploadid, md5_lst): """从内存中读取分块, 上传单个分块,将结果记录在md5——list中 :param bucket(string): 存储桶名称. :param key(string): 分块上传路径名. :param data(string): 数据块. :param part_num(int): 上传分块的序号. :param uploadid(string): 分块上传的uploadid. :param md5_lst(list): 保存上传成功分块的MD5和序号. :return: None. """ rt = self.upload_part(bucket, key, data, part_num, uploadid) md5_lst.append({'PartNumber': part_num, 'ETag': rt['ETag']}) return None def upload_file_from_buffer(self, Bucket, Key, Body, MaxBufferSize=100, PartSize=10, MAXThread=5, **kwargs): """小于分块大小的的文件简单上传,大于等于分块大小的文件使用分块上传 :param Bucket(string): 存储桶名称. :param key(string): 分块上传路径名. :param Body(fp): 文件流,必须实现了read方法. :param MaxBufferSize(int): 缓存文件的大小,单位为MB,MaxBufferSize/PartSize决定线程池中最大等待调度的任务数量 :param PartSize(int): 分块的大小设置,单位为MB :param MAXThread(int): 并发上传的最大线程数. :param kwargs(dict): 设置请求headers. :return(dict): 成功上传的文件的结果. """ if not hasattr(Body, 'read'): raise CosClientError("Body must has attr read") part_size = 1024*1024*PartSize # 先读一个块,如果直接EOF了就调用简单文件上传 part_num = 1 data = Body.read(part_size) if len(data) < part_size: rt = self.put_object(Bucket=Bucket, Key=Key, Body=data, **kwargs) return rt # 创建分块上传 rt = self.create_multipart_upload(Bucket=Bucket, Key=Key, **kwargs) uploadid = rt['UploadId'] lst = list() # 记录分块信息 MAXQueue = MaxBufferSize//PartSize if MAXQueue == 0: MAXQueue = 1 pool = SimpleThreadPool(MAXThread, MAXQueue) while True: if not data: break pool.add_task(self._upload_part_from_buffer, Bucket, Key, data, part_num, uploadid, lst) part_num += 1 data = Body.read(part_size) pool.wait_completion() result = pool.get_result() if not result['success_all']: raise CosClientError('some upload_part fail after max_retry') lst = sorted(lst, key=lambda x: x['PartNumber']) # 按PartNumber升序排列 # 完成分片上传 try: rt = self.complete_multipart_upload(Bucket=Bucket, Key=Key, UploadId=uploadid, MultipartUpload={'Part': lst}) except Exception as e: abort_response = self.abort_multipart_upload(Bucket=Bucket, Key=Key, UploadId=uploadid) raise e return rt def append_object(self, Bucket, Key, Position, Data, **kwargs): """文件块追加接口 :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param Position(int): 追加内容的起始位置. :param Data(string): 追加的内容 :kwargs(dict): 设置上传的headers. :return(dict): 上传成功返回的结果,包含ETag等信息. """ check_object_content_length(Data) headers = mapped(kwargs) params = {'append': '', 'position': Position} url = self._conf.uri(bucket=Bucket, path=Key) logger.info("append object, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='POST', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, Key, params=params), data=Data, headers=headers, params=params) response = dict(**rt.headers) return response def put_object_from_local_file(self, Bucket, LocalFilePath, Key, EnableMD5=False, **kwargs): """本地文件上传接口,适用于小文件,最大不得超过5GB :param Bucket(string): 存储桶名称. :param LocalFilePath(string): 上传文件的本地路径. :param Key(string): COS路径. :param EnableMD5(bool): 是否需要SDK计算Content-MD5,打开此开关会增加上传耗时. :kwargs(dict): 设置上传的headers. :return(dict): 上传成功返回的结果,包含ETag等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 上传本地文件到cos response = client.put_object_from_local_file( Bucket='bucket', LocalFilePath='local.txt', Key='test.txt' ) print (response['ETag']) """ with open(LocalFilePath, 'rb') as fp: return self.put_object(Bucket, fp, Key, EnableMD5, **kwargs) def object_exists(self, Bucket, Key): """判断一个文件是否存在 :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :return(bool): 文件是否存在,返回True为存在,返回False为不存在 .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 上传本地文件到cos status = client.object_exists( Bucket='bucket', Key='test.txt' ) """ try: self.head_object(Bucket, Key) return True except CosServiceError as e: if e.get_status_code() == 404: return False else: raise e def bucket_exists(self, Bucket): """判断一个存储桶是否存在 :param Bucket(string): 存储桶名称. :return(bool): 存储桶是否存在,返回True为存在,返回False为不存在. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 上传本地文件到cos status = client.bucket_exists( Bucket='bucket' ) """ try: self.head_bucket(Bucket) return True except CosServiceError as e: if e.get_status_code() == 404: return False else: raise e def change_object_storage_class(self, Bucket, Key, StorageClass): """改变文件的存储类型 :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :param StorageClass(bool): 是否需要SDK计算Content-MD5,打开此开关会增加上传耗时. :kwargs(dict): 设置上传的headers. :return(dict): 上传成功返回的结果,包含ETag等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 上传本地文件到cos response = client.change_object_storage_class( Bucket='bucket', Key='test.txt', StorageClass='STANDARD' ) """ copy_source = { 'Bucket': Bucket, 'Key': Key, 'Endpoint': self._conf._endpoint, 'Appid': self._conf._appid } response = self.copy_object( Bucket=Bucket, Key=Key, CopySource=copy_source, CopyStatus='Replaced', StorageClass=StorageClass ) return response def update_object_meta(self, Bucket, Key, **kwargs): """改变文件的存储类型 :param Bucket(string): 存储桶名称. :param Key(string): COS路径. :kwargs(dict): 设置文件的元属性. :return: None. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 上传本地文件到cos response = client.update_object_meta( Bucket='bucket', Key='test.txt', ContentType='text/html' ) """ copy_source = { 'Bucket': Bucket, 'Key': Key, 'Endpoint': self._conf._endpoint, 'Appid': self._conf._appid } response = self.copy_object( Bucket=Bucket, Key=Key, CopySource=copy_source, CopyStatus='Replaced', **kwargs ) return response def put_bucket_encryption(self, Bucket, ServerSideEncryptionConfiguration={}, **kwargs): """设置执行存储桶下的默认加密配置 :param Bucket(string): 存储桶名称. :param ServerSideEncryptionConfiguration(dict): 设置Bucket的加密规则 :param kwargs(dict): 设置请求的headers. :return: None. """ # 类型为list的标签 lst = [ '<Rule>', '</Rule>' ] xml_config = format_xml(data=ServerSideEncryptionConfiguration, root='ServerSideEncryptionConfiguration', lst=lst) headers = mapped(kwargs) params = {'encryption': ''} url = self._conf.uri(bucket=Bucket) logger.info("put bucket encryption, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='PUT', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), data=xml_config, headers=headers, params=params) return None def get_bucket_encryption(self, Bucket, **kwargs): """获取存储桶下的默认加密配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求的headers. :return(dict): 返回bucket的加密规则. """ headers = mapped(kwargs) params = {'encryption': ''} url = self._conf.uri(bucket=Bucket) logger.info("get bucket encryption, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='GET', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) data = xml_to_dict(rt.content) format_dict(data, ['Rule']) return data def delete_bucket_encryption(self, Bucket, **kwargs): """用于删除指定存储桶下的默认加密配置 :param Bucket(string): 存储桶名称. :param kwargs(dict): 设置请求的headers. :return: None. """ headers = mapped(kwargs) params = {'encryption': ''} url = self._conf.uri(bucket=Bucket) logger.info("delete bucket encryption, url=:{url} ,headers=:{headers}".format( url=url, headers=headers)) rt = self.send_request( method='DELETE', url=url, bucket=Bucket, auth=CosS3Auth(self._conf, params=params), headers=headers, params=params) return None def put_async_fetch_task(self, Bucket, FetchTaskConfiguration={}, **kwargs): """发起异步拉取对象到COS的任务 :param Bucket(string): 存储桶名称. :param FetchTaskConfiguration(dict): 异步拉取任务的配置. :kwargs(dict): 扩展参数. :return(dict): 异步任务成功返回的结果,包含Taskid等信息. .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 发起异步拉取任务 response = client.put_async_fetch_task( Bucket='bucket', FetchTaskConfiguration={ 'Url': 'Key': 'MD5': 'SuccessCallbackUrl': 'FailureCallbackUrl': } ) """ url = '{scheme}://{region}.migration.myqcloud.com/{bucket}/'.format(scheme=self._conf._scheme, region=self._conf._region, bucket=Bucket) if self._conf._domain is not None: url = '{scheme}://{domain}/{bucket}/'.format(scheme=self._conf._scheme, domain=self._conf._domain, bucket=Bucket) headers = {'Content-Type': 'application/json'} signed_key = Bucket + '/' rt = self.send_request( method='POST', url=url, bucket=None, data=json.dumps(FetchTaskConfiguration), headers=headers, auth=CosS3Auth(self._conf, signed_key), cos_request=False ) data = rt.json() return data def get_async_fetch_task(self, Bucket, TaskId, **kwargs): """获取异步拉取对象到COS的任务状态 :param Bucket(string): 存储桶名称. :param TaskId(string): 异步拉取任务查询的唯一标识. :kwargs(dict): 扩展参数. :return(dict): 异步任务的状态 .. code-block:: python config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, Token=token) # 获取配置对象 client = CosS3Client(config) # 获取异步拉取任务 response = client.get_async_fetch_task( Bucket='bucket', TaskId='string' ) """ url = '{scheme}://{region}.migration.myqcloud.com/{bucket}/{task_id}'.format(scheme=self._conf._scheme, region=self._conf._region, bucket=Bucket, task_id=TaskId) if self._conf._domain is not None: url = '{scheme}://{domain}/{bucket}/{task_id}'.format(scheme=self._conf._scheme, domain=self._conf._domain, bucket=Bucket, task_id=TaskId) headers = {'Content-Type': 'application/json'} signed_key = '{bucket}/{task_id}'.format(bucket=Bucket, task_id=TaskId) rt = self.send_request( method='GET', url=url, bucket=None, headers=headers, auth=CosS3Auth(self._conf, signed_key), cos_request=False ) data = rt.json() return data if __name__ == "__main__": pass
the-stack_106_24489
#!/usr/bin/python # # Copyright (c) 2012 Mikkel Schubert <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import sys import types from pypeline.common.utilities import \ fragment, \ split_before, \ Immutable, \ TotallyOrdered from pypeline.common.fileutils import open_ro from pypeline.common.formats._common import FormatError class FASTAError(FormatError): pass class FASTA(TotallyOrdered, Immutable): def __init__(self, name, meta, sequence): if not (name and isinstance(name, types.StringTypes)): raise FASTAError("FASTA name must be a non-empty string") elif not (isinstance(meta, types.StringTypes) or (meta is None)): raise FASTAError("FASTA meta-information must be a string, or None") elif not isinstance(sequence, types.StringTypes): raise FASTAError("FASTA sequence must be a string") Immutable.__init__(self, name = name, meta = meta, sequence = sequence) def write(self, fileobj = sys.stdout): """Prints a FASTA sequence (iterable), wrapping long sequences at 60 chars.""" fileobj.write(repr(self)) @classmethod def from_lines(cls, lines): """Parses FASTA sequences found in a sequence of lines, and returns a tuple for each FASTA record: ((name, meta-information), sequence) No assumptions are made about the line-lengths.""" lines = (line.rstrip() for line in lines) for record in split_before(lines, lambda v: v.startswith(">")): name = record[0] if (not name.startswith(">")) or (len(name) == 1): raise FASTAError("Unnamed FASTA record") elif len(record) == 1: raise FASTAError("FASTA record does not contain sequence: " + name[1:]) # Split out any meta information name_and_meta = name[1:].split(None, 1) if len(name_and_meta) < 2: name_and_meta.append(None) name, meta = name_and_meta yield FASTA(name = name, meta = meta, sequence = "".join(record[1:])) @classmethod def from_file(cls, filename): """Reads an unindexed FASTA file, returning a sequence of tuples containing the name and sequence of each entry in the file. The FASTA file may be GZIP/BZ2 compressed.""" fasta_file = open_ro(filename) try: for record in FASTA.from_lines(fasta_file): yield record finally: fasta_file.close() def __lt__(self, other): if not isinstance(other, FASTA): return NotImplemented return (self.name, self.meta, self.sequence) \ < (other.name, other.meta, other.sequence) def __hash__(self): return hash((self.name, self.meta, self.sequence)) def __repr__(self): """Process a printable FASTA sequence, wrapping long sequences at 60 chars.""" name = self.name if self.meta: name = "%s %s" % (name, self.meta) return ">%s\n%s\n" % (name, "\n".join(fragment(60, self.sequence)))
the-stack_106_24490
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from libcloud.dns.base import DNSDriver, Zone, Record from libcloud.dns.types import RecordType from libcloud.dns.types import ZoneDoesNotExistError, ZoneAlreadyExistsError from libcloud.dns.types import RecordDoesNotExistError from libcloud.dns.types import RecordAlreadyExistsError class DummyDNSDriver(DNSDriver): """ Dummy DNS driver. >>> from libcloud.dns.drivers.dummy import DummyDNSDriver >>> driver = DummyDNSDriver('key', 'secret') >>> driver.name 'Dummy DNS Provider' """ name = 'Dummy DNS Provider' website = 'http://example.com' def __init__(self, api_key, api_secret): """ :param api_key: API key or username to used (required) :type api_key: ``str`` :param api_secret: Secret password to be used (required) :type api_secret: ``str`` :rtype: ``None`` """ self._zones = {} def list_record_types(self): """ >>> driver = DummyDNSDriver('key', 'secret') >>> driver.list_record_types() ['A'] @inherits: :class:`DNSDriver.list_record_types` """ return [RecordType.A] def list_zones(self): """ >>> driver = DummyDNSDriver('key', 'secret') >>> driver.list_zones() [] @inherits: :class:`DNSDriver.list_zones` """ return [zone['zone'] for zone in list(self._zones.values())] def list_records(self, zone): """ >>> driver = DummyDNSDriver('key', 'secret') >>> zone = driver.create_zone(domain='apache.org', type='master', ... ttl=100) >>> list(zone.list_records()) [] >>> record = driver.create_record(name='libcloud', zone=zone, ... type=RecordType.A, data='127.0.0.1') >>> list(zone.list_records()) #doctest: +ELLIPSIS [<Record: zone=id-apache.org, name=libcloud, type=A...>] """ return self._zones[zone.id]['records'].values() def get_zone(self, zone_id): """ >>> driver = DummyDNSDriver('key', 'secret') >>> driver.get_zone(zone_id='foobar') ... #doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ZoneDoesNotExistError: @inherits: :class:`DNSDriver.get_zone` """ if zone_id not in self._zones: raise ZoneDoesNotExistError(driver=self, value=None, zone_id=zone_id) return self._zones[zone_id]['zone'] def get_record(self, zone_id, record_id): """ >>> driver = DummyDNSDriver('key', 'secret') >>> driver.get_record(zone_id='doesnotexist', record_id='exists') ... #doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ZoneDoesNotExistError: @inherits: :class:`DNSDriver.get_record` """ self.get_zone(zone_id=zone_id) zone_records = self._zones[zone_id]['records'] if record_id not in zone_records: raise RecordDoesNotExistError(record_id=record_id, value=None, driver=self) return zone_records[record_id] def create_zone(self, domain, type='master', ttl=None, extra=None): """ >>> driver = DummyDNSDriver('key', 'secret') >>> zone = driver.create_zone(domain='apache.org', type='master', ... ttl=100) >>> zone <Zone: domain=apache.org, ttl=100, provider=Dummy DNS Provider ...> >>> zone = driver.create_zone(domain='apache.org', type='master', ... ttl=100) ... #doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ZoneAlreadyExistsError: @inherits: :class:`DNSDriver.create_zone` """ id = 'id-%s' % (domain) if id in self._zones: raise ZoneAlreadyExistsError(zone_id=id, value=None, driver=self) zone = Zone(id=id, domain=domain, type=type, ttl=ttl, extra={}, driver=self) self._zones[id] = {'zone': zone, 'records': {}} return zone def create_record(self, name, zone, type, data, extra=None): """ >>> driver = DummyDNSDriver('key', 'secret') >>> zone = driver.create_zone(domain='apache.org', type='master', ... ttl=100) >>> record = driver.create_record(name='libcloud', zone=zone, ... type=RecordType.A, data='127.0.0.1') >>> record #doctest: +ELLIPSIS <Record: zone=id-apache.org, name=libcloud, type=A, data=127.0.0.1...> >>> record = driver.create_record(name='libcloud', zone=zone, ... type=RecordType.A, data='127.0.0.1') ... #doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): RecordAlreadyExistsError: @inherits: :class:`DNSDriver.create_record` """ id = 'id-%s' % (name) zone = self.get_zone(zone_id=zone.id) if id in self._zones[zone.id]['records']: raise RecordAlreadyExistsError(record_id=id, value=None, driver=self) record = Record(id=id, name=name, type=type, data=data, extra=extra, zone=zone, driver=self) self._zones[zone.id]['records'][id] = record return record def delete_zone(self, zone): """ >>> driver = DummyDNSDriver('key', 'secret') >>> zone = driver.create_zone(domain='apache.org', type='master', ... ttl=100) >>> driver.delete_zone(zone) True >>> driver.delete_zone(zone) #doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ZoneDoesNotExistError: @inherits: :class:`DNSDriver.delete_zone` """ self.get_zone(zone_id=zone.id) del self._zones[zone.id] return True def delete_record(self, record): """ >>> driver = DummyDNSDriver('key', 'secret') >>> zone = driver.create_zone(domain='apache.org', type='master', ... ttl=100) >>> record = driver.create_record(name='libcloud', zone=zone, ... type=RecordType.A, data='127.0.0.1') >>> driver.delete_record(record) True >>> driver.delete_record(record) #doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): RecordDoesNotExistError: @inherits: :class:`DNSDriver.delete_record` """ self.get_record(zone_id=record.zone.id, record_id=record.id) del self._zones[record.zone.id]['records'][record.id] return True if __name__ == "__main__": import doctest doctest.testmod()
the-stack_106_24493
import cv2 import os import imutils import numpy as np class FindItConfig(object): cv_method = cv2.TM_CCORR_NORMED def load_from_path(pic_path): """ load grey picture (with cv2) from path """ raw_img = cv2.imread(pic_path) raw_img = raw_img.astype(np.uint8) grey_img = cv2.cvtColor(raw_img, cv2.COLOR_BGR2GRAY) return grey_img class FindIt(object): def __init__(self): # config self.config = FindItConfig() # template pic dict, # { pic_name: pic_cv_object } self.template = dict() def load_template(self, pic_path=None, pic_object=None): """ load template picture """ assert (pic_path is not None) or (pic_object is not None), 'need path or cv object' if pic_object is not None: # pic_object: ('pic_name', cv_object) pic_name = pic_object[0] pic_data = pic_object[1] self.template[pic_name] = pic_data return abs_path = os.path.abspath(pic_path) self.template[abs_path] = load_from_path(abs_path) def find(self, target_pic_path=None, target_cv_object=None, scale=None): """ start matching """ assert self.template, 'template is empty' assert self.config.cv_method not in (cv2.TM_SQDIFF_NORMED, cv2.TM_SQDIFF), \ 'TM_SQDIFF & TM_SQDIFF_NORMED not supported' assert (target_pic_path is not None) or (target_cv_object is not None), 'need path or cv object' # load target if target_cv_object is not None: target_pic = target_cv_object else: target_pic = load_from_path(target_pic_path) result = list() for each_template_path, each_template in self.template.items(): # default scale if not scale: scale = (1, 3, 10) min_val, max_val, min_loc, max_loc = self.compare(target_pic, each_template, scale) min_loc, max_loc = map(lambda i: self.fix_location(each_template, i), [min_loc, max_loc]) # add to result list result.append({ 'path': each_template_path, 'min_val': min_val, 'max_val': max_val, 'min_loc': min_loc, 'max_loc': max_loc, }) self.reset() return self.build_result(target_pic_path, result) @staticmethod def fix_location(pic_object, location): """ location from cv2 should be left-top location, and need to fix it and make it central """ size_x, size_y = pic_object.shape old_x, old_y = location return old_x + size_x / 2, old_y + size_y / 2 def compare(self, pic, template_pic, scale): """ match template between picture and template (https://www.pyimagesearch.com/2015/01/26/multi-scale-template-matching-using-python-opencv/) :param pic: :param template_pic: :param scale: default to (1, 3, 10) :return: """ pic_height, pic_width = pic.shape[:2] result_list = list() for each_scale in np.linspace(*scale): # resize template resized_pic = imutils.resize(template_pic, width=int(template_pic.shape[1] * each_scale)) # if template's size is larger than raw picture, break if resized_pic.shape[0] > pic_height or resized_pic.shape[1] > pic_width: break res = cv2.matchTemplate(pic, resized_pic, self.config.cv_method) result_list.append(cv2.minMaxLoc(res)) # return the max one return sorted(result_list, key=lambda i: i[1])[-1] def build_result(self, target_path, result): """ build final result dict """ return { 'target_path': target_path, 'config': self.config.__dict__, 'data': result, } def reset(self): """ reset template, target and result """ self.template = dict()
the-stack_106_24494
"""Copyright (c) 2020 Chengjie Wu""" import time import numpy as np class GibbsLDA: def __init__(self, n_components=3, doc_topic_prior=None, topic_word_prior=None, iterations=1000, verbose=True): """Latent Dirichlet Allocation with Gibbs sampling :param n_components: int, number of topics :param doc_topic_prior: float, alpha. If None, 1/n_components*0.5 is set by default. :param topic_word_prior: float, beta. If None, 1/n_components*0.1 is set by default. :param iterations: int, iterations of Gibbs sampling :param verbose: bool, whether to print intermediate results """ self.loaded = False self.verbose = verbose self.n_components = n_components self.iterations = iterations self.doc_topic_prior = \ doc_topic_prior if doc_topic_prior else 1/n_components*0.5 self.topic_word_prior = \ topic_word_prior if topic_word_prior else 1/n_components*0.1 self.num_docs = None self.num_words = None self.dict_word2ind = None self.list_ind2word = None self.corpus = None self.alpha = None self.beta = None self.beta_sum = None self.n_mk = None self.n_kt = None self.n_k = None self.n_m = None self.z_mn = None # current z sampling state self.theta = None # best theta self.phi = None # best phi self.z_best = None # best z self.ll_best = None # best ll self.log = None # record log likelihood during training def load_state(self, X, file): """Load LDA state from file. :param X: a list of strings, corpus. Each string represents a document, and words are separated with space. :param file: string, file to load. :return: None. """ self._initializing_corpus(X, file) self.loaded = True def save_state(self, file): """Save LDA state to file. Note that we do not save the corpus. When the LDA is loaded next time, it MUST read in exactly the same corpus. Behaviors are undefined if not. :param file: string, file to save. :return: None. """ np.savez(file, z_mn=self.z_mn, theta=self.theta, phi=self.phi, z_best=self.z_best, ll_best=self.ll_best, log=self.log) def fit(self, X, y=None): """ Train LDA. :param X: a list of strings, corpus. Each string represents a document, and words are separated with space. If state is loaded, either through load_state or a previous call to fit, X is ignored. :param y: ignored. :return: None. """ if not self.loaded: self._initializing_corpus(X) self.loaded = True if self.verbose: print("Before training:", self.log_likelihood()) # NOTE: we keep the best theta & phi for it in range(self.iterations): start_time = time.time() self._gibbs_sampling_iteration() theta = self.calculate_theta( self.num_docs, self.n_components, self.alpha, self.n_mk) phi = self.calculate_phi( self.n_components, self.num_words, self.beta, self.n_kt) ll = self.log_likelihood(theta, phi) self.log.append(ll) if self.verbose: print("log likelihood:", self.log_likelihood(theta, phi)) if self.iterations < 30 or it >= 30: # we keep 30 iterations of Gibbs sampling as burning in if ll > self.ll_best: self.ll_best = ll self.theta = np.copy(theta) self.phi = np.copy(phi) self.z_best = np.copy(self.z_mn) end_time = time.time() if self.verbose: print("Iteration", it, ", best log-likelihood:", self.ll_best, ", time consumed:", end_time - start_time) def _initializing_corpus(self, X, z_file=None): self.num_docs = len(X) self.dict_word2ind = dict() self.list_ind2word = list() self.corpus = list() max_len = 0 for line in X: words = line.strip().split(" ") max_len = max(max_len, len(words)) document = list() for word in words: if word not in self.dict_word2ind: self.dict_word2ind[word] = len(self.list_ind2word) self.list_ind2word.append(word) document.append(self.dict_word2ind[word]) self.corpus.append(document) assert len(self.corpus) == self.num_docs for word, ind in self.dict_word2ind.items(): assert self.list_ind2word[ind] == word self.num_words = len(self.list_ind2word) if self.verbose: print("Number of documents:", self.num_docs) print("Number of words:", self.num_words) # get alpha and beta self.alpha = np.full(shape=(self.n_components,), fill_value=self.doc_topic_prior, dtype=np.float32) self.beta = np.full(shape=(self.num_words,), fill_value=self.topic_word_prior, dtype=np.float32) self.beta_sum = np.sum(self.beta) self.n_mk = np.zeros(shape=(self.num_docs, self.n_components), dtype=np.int32) self.n_kt = np.zeros(shape=(self.n_components, self.num_words), dtype=np.int32) self.n_k = np.zeros(shape=(self.n_components,), dtype=np.int32) self.n_m = np.zeros(shape=(self.num_docs,), dtype=np.int32) if z_file: db = np.load(z_file) self.z_mn = np.array(db["z_mn"]) self.theta = db["theta"] self.phi = db["phi"] self.z_best = db["z_best"] self.ll_best = db["ll_best"] self.log = db["log"] # initialization for m, dm in enumerate(self.corpus): for n, w_mn in enumerate(dm): k = self.z_mn[m, n] self.n_mk[m, k] += 1 self.n_m[m] += 1 self.n_kt[k, w_mn] += 1 self.n_k[k] += 1 else: # initialization self.z_mn = np.zeros(shape=(self.num_docs, max_len), dtype=np.int32) for m, dm in enumerate(self.corpus): for n, w_mn in enumerate(dm): k = np.random.randint(self.n_components) self.z_mn[m, n] = k self.n_mk[m, k] += 1 self.n_m[m] += 1 self.n_kt[k, w_mn] += 1 self.n_k[k] += 1 self.theta = self.calculate_theta( self.num_docs, self.n_components, self.alpha, self.n_mk) self.phi = self.calculate_phi( self.n_components, self.num_words, self.beta, self.n_kt) self.z_best = np.copy(self.z_mn) self.ll_best = self.log_likelihood() self.log = list() def _gibbs_sampling_iteration(self): """ One Gibbs sampling step. :return: None. """ for m, dm in enumerate(self.corpus): for n, w_mn in enumerate(dm): k = self.z_mn[m, n] self.n_mk[m, k] -= 1 self.n_m[m] -= 1 self.n_kt[k, w_mn] -= 1 self.n_k[k] -= 1 k = self._conditional_z( self.n_components, self.alpha, self.beta, self.n_mk, self.n_kt, m, w_mn, self.beta_sum, self.n_k) self.z_mn[m, n] = k self.n_mk[m, k] += 1 self.n_m[m] += 1 self.n_kt[k, w_mn] += 1 self.n_k[k] += 1 @staticmethod def _conditional_z(K, alpha, beta, n_mk, n_kt, m, t, beta_sum, n_k): """Sample new z_mt using conditional distribution.""" probability = \ (alpha + n_mk[m, :]) * ((beta[t] + n_kt[:, t]) / (beta_sum + n_k)) probability /= np.sum(probability) assert(np.all(probability >= 0.)) assert(1.0 - 1e-6 < np.sum(probability) < 1.0 + 1e-6) assert(len(probability) == K) return np.random.choice(K, p=probability) def calculate_theta(self, M=None, K=None, alpha=None, n_mk=None): """ Calculate theta. If parameters are not given, then corresponding parameters are picked from current LDA. :param M: int, number of documents. :param K: int, number of topics. :param alpha: numpy array of shape [K, ], alpha. :param n_mk: numpy array of shape [M, K], n_mk. :return: numpy array of shape [M, K], theta. """ M = M if M is not None else self.num_docs K = K if K is not None else self.n_components alpha = alpha if alpha is not None else self.alpha n_mk = n_mk if n_mk is not None else self.n_mk theta = n_mk + np.tile(alpha, (M, 1)) theta /= np.repeat(np.sum(theta, axis=1).reshape((-1, 1)), K, axis=1) return theta def calculate_phi(self, K=None, V=None, beta=None, n_kt=None): """ Calculate phi. If parameters are not given, then corresponding parameters are picked from current LDA. :param K: int, number of topics. :param V: int, number of words (size of vocabulary). :param beta: numpy array of shape [V, ], beta. :param n_kt: numpy array of shape [K, V], n_kt. :return: numpy array of shape [K, V], phi. """ K = K if K is not None else self.n_components V = V if V is not None else self.num_words beta = beta if beta is not None else self.beta n_kt = n_kt if n_kt is not None else self.n_kt phi = n_kt + np.tile(beta, (K, 1)) phi /= np.repeat(np.sum(phi, axis=1).reshape((-1, 1)), V, axis=1) return phi def log_likelihood(self, theta=None, phi=None): """ Calculate log likelihood with respect to this LDA's corpus. If parameters are not given, then corresponding parameters are picked from current LDA. :param theta: numpy array of shape [M, K], theta. :param phi: numpy array of shape [K, V], phi. :return: float, log likelihood. """ theta = theta if theta is not None else self.theta phi = phi if phi is not None else self.phi ret = 0. for m, dm in enumerate(self.corpus): for n, w_mn in enumerate(dm): tp = 0. for k in range(self.n_components): tp += theta[m, k] * phi[k, w_mn] ret += np.log(tp) return ret def get_representative_words(self, phi=None): """ Get top 10 representative words in each topic. If parameters are not given, then corresponding parameters are picked from current LDA. :param phi: numpy array of shape [K, V], phi. :return: None. """ phi = phi if phi is not None else self.phi for i in range(self.n_components): print("Topic", i) c = np.argsort(self.phi[i, :]) for j in c[-1:-11:-1]: print(self.list_ind2word[j], phi[i, j])
the-stack_106_24496
# Copyright 2017 StreamSets Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Note: This module lives separate from other related ones as it has custom SDC hook logic. import logging import os from uuid import uuid4 import pytest from streamsets.testframework.markers import cluster logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) @pytest.fixture(scope='module') def sdc_common_hook(): def hook(data_collector): data_collector.set_user('admin') data_collector.sdc_properties['stage.conf_hadoop.always.impersonate.current.user'] = 'true' return hook @pytest.fixture(autouse=True) def impersonation_check(sdc_executor): if sdc_executor.sdc_configuration.get('stage.conf_hadoop.always.impersonate.current.user') != 'true': pytest.skip('Hadoop FS impersonation requires stage.conf_hadoop.' 'always.impersonate.current.user to be set to true') @cluster('cdh', 'hdp') def test_hadoop_fs_strict_impersonation(sdc_builder, sdc_executor, cluster): """ Test strict impersonation (SDC-3704) of Hadoop FS target. The pipeline would look like: dev_data_generator >> hadoop_fs """ hdfs_path = os.path.join(os.sep, "tmp", str(uuid4())) pipeline_builder = sdc_builder.get_pipeline_builder() dev_data_generator = pipeline_builder.add_stage('Dev Data Generator') dev_data_generator.fields_to_generate = [{'field': 'text', 'precision': 10, 'scale': 2, 'type': 'STRING'}] hadoop_fs = pipeline_builder.add_stage('Hadoop FS', type='destination') hadoop_fs.set_attributes(data_format='TEXT', directory_template=hdfs_path, files_prefix='sdc-${sdc:id()}') dev_data_generator >> hadoop_fs pipeline = pipeline_builder.build(title='Hadoop FS impersonation pipeline').configure_for_environment(cluster) # Some ENVs like HDP will auto-set this field which is against logic of this test and hence we have to manually # reset that field back to empty value. hadoop_fs.hdfs_user = '' sdc_executor.add_pipeline(pipeline) try: sdc_executor.capture_snapshot(pipeline=pipeline, start_pipeline=True) sdc_executor.stop_pipeline(pipeline) # Validate that the files were created with proper user name. hdfs_fs_files = cluster.hdfs.client.list(hdfs_path) assert len(hdfs_fs_files) == 1 status = cluster.hdfs.client.status(f'{hdfs_path}/{hdfs_fs_files[0]}') assert status['owner'] == 'admin' finally: cluster.hdfs.client.delete(hdfs_path, recursive=True)
the-stack_106_24497
import sqlalchemy as db import os engine = db.create_engine('postgresql://user1:user1@localhost/mydb') for root, directories, filenames in os.walk('/home/user1/pg1/bin'): for directory in directories: print(os.path.join(root, directory)) for filename in filenames: print(os.path.join(root,filename)) metadata = db.MetaData() # census = db.Table('census', metadata, autoload=True, autoload_with=engine) files = db.Table('files', metadata, autoload=True, autoload_with=engine ) print(files.columns.keys) user = Table('user', metadata, Column('user_id', Integer, primary_key=True), Column('user_name', String(16), nullable=False), Column('email_address', String(60)), Column('nickname', String(50), nullable=False) )
the-stack_106_24498
#!/usr/bin/env python3 from glob import glob import json import os import sys import requests from socket import gethostname import hashlib import re # Authentication for user filing issue USE_GITHUB = True try: USERNAME = os.environ['GITHUB_USER'] except KeyError: print('WARN: Environent variable GITHUB_USER unset -- cannot write to github.') USE_GITHUB = False try: # Use a developer token if you have 2FA PASSWORD = os.environ['GITHUB_PASSWORD'] except KeyError: print('WARN: Environent variable GITHUB_PASSWORD unset -- cannot write to github.') USE_GITHUB = False # The repository to add this issue to REPO_OWNER = 'CodaProtocol' REPO_NAME = 'coda' """ Mask out actual line numbers and collumns, generate a signature based on stripped data """ def error_sig(string): output = '' for line in string.splitlines(True): if 'Called' in line or 'Raised' in line: line = re.sub("line (\d+), characters (\d+)-(\d+)", "line HIDDEN, characters HIDDEN", line) output += line sig = hashlib.md5(output.encode('utf-8')).hexdigest() return(sig) def make_github_issue(title, body=None, labels=None): '''Create an issue on github.com using the given parameters.''' # Our url to create issues via POST url = 'https://api.github.com/repos/%s/%s/issues' % (REPO_OWNER, REPO_NAME) # Create an authenticated session to create the issue session = requests.Session() session.auth = (USERNAME, PASSWORD) # Create our issue issue = {'title': title, 'body': body, 'labels': labels} # Add the issue to our repository r = session.post(url, json.dumps(issue)) if r.status_code == 201: print ('Successfully created Issue {0:s}'.format(title)) data = r.json() print ('URL: %s' % data['html_url']) else: print ('Could not create Issue {0:s}'.format(title)) print ('Response:', r.content) def yes_or_no(question): while "the answer is invalid": try: reply = str(input(question+' (y/n)[default: n]: ')).lower().strip() except KeyboardInterrupt: print('\nExiting') sys.exit(1) if len(reply) < 1: return False elif reply[0] == 'y': return True elif reply[0] == 'n': return False if __name__ == "__main__": crashdirs = glob('test-coda-CRASH-*/mina.log') seen_exns = [] for crashdir in crashdirs: with open(crashdir, encoding="ISO-8859-1") as fp: for count, line in enumerate(fp): if 'Fatal' in line: data = json.loads(line) try: exn_1000 = "".join( data['metadata']['exn'].splitlines())[:1000] exn = exn_1000[:130] + '...' except KeyError: exn = 'Unknown' if exn in seen_exns: # Duplicate continue else: seen_exns.append(exn) print('-'*80) print(crashdir) print('New: %s' % exn) body = 'Details:\n\n' body += 'Hash: %s\n' % error_sig(exn) body += 'Crash Timestamp: %s\n' % data['timestamp'] body += 'Host: `%s`\n\n' % gethostname() body += 'Partial trace:\n' body += '```\n' body += exn_1000.replace(' ', '\n') body += '...' body += '\n```' print(body) if sys.stdin.isatty(): # running interactively if yes_or_no('Create new issue?'): # FIXME - how to attach gz to issue. title = 'TESTING - CRASH - TESTNET - %s' % exn.strip() if USE_GITHUB: make_github_issue(title=title, body=body, labels=['testnet', 'robot']) else: print('Running non-interactively.')
the-stack_106_24500
import pygame from sys import exit from random import randint, choice class Player(pygame.sprite.Sprite): # inherates from pygame.sprite.Sprite def __init__(self): super().__init__() # inherate sprite class inside itself. #Needs 2 attributes at minimum player_walk1 = pygame.image.load('graphics/Player/player_walk_1.png').convert_alpha() player_walk2 = pygame.image.load('graphics/Player/player_walk_2.png').convert_alpha() self.player_walk = [player_walk1, player_walk2] self.player_index = 0 self.player_jump = pygame.image.load('graphics/Player/jump.png').convert_alpha() self.image = self.player_walk[self.player_index] # ALWAYS NEEDED self.rect = self.image.get_rect(midbottom=(80, 300)) # ALWAYS NEEDED self.gravity = 0 # player.gravity #Sound self.jump_sound = pygame.mixer.Sound('audio/audio_jump.mp3') self.jump_sound.set_volume(0.2) # Player Jump def player_input(self): # player keys = pygame.key.get_pressed() if keys[pygame.K_SPACE] and self.rect.bottom >= 300: # player.rect.bottom self.gravity = -20 # player.gravity self.jump_sound.play() # Gavity def apply_gravity(self): # player self.gravity += 1 # player.gravity self.rect.y += self.gravity # player.rect.y / player.gravity if self.rect.bottom >= 300: # player.rect.bottom self.rect.bottom = 300 # player.rect.bottom # Animation def animation_state(self): # Play walking animation if on floor, jump when not on floor if self.rect.bottom < 300: self.image = self.player_jump else: self.player_index += 0.1 # Increas walk picture change slowly # If the index gets to 1, reset index to 0 if self.player_index >= len(self.player_walk): self.player_index = 0 self.image = self.player_walk[int(self.player_index)] # Update def update(self): # player self.player_input() self.apply_gravity() self.animation_state() class Obstacle(pygame.sprite.Sprite): # inherates from pygame.sprite.Sprite def __init__(self, type): # Type of obsticle. Fly or Snail super().__init__() if type == 'fly': fly_1 = pygame.image.load('graphics/fly/Fly1.png').convert_alpha() fly_2 = pygame.image.load('graphics/fly/Fly2.png').convert_alpha() self.frames = [fly_1, fly_2] # fly_frames y_pos = 210 # y_pos of fly else: snail_1 = pygame.image.load('graphics/snail/snail1.png').convert_alpha() snail_2 = pygame.image.load('graphics/snail/snail2.png').convert_alpha() self.frames = [snail_1, snail_2] # snail_frames y_pos = 300 # Ground possition self.animation_index = 0 self.image = self.frames[self.animation_index] # ALWAYS NEEDED self.rect = self.image.get_rect(midbottom=(randint(900, 1100), y_pos)) # ALWAYS NEEDED # Animation State def animation_state(self): self.animation_index += 0.1 if self.animation_index >= len(self.frames): self.animation_index = 0 self.image = self.frames[int(self.animation_index)] # Update def update(self): self.animation_state() # Call animation_state def self.rect.x -= 6 # Subtract 6px every update self.destroy() # Remove extra def destroy(self): if self.rect.x <= -100: # If the X axis is greater than -100 self.kill() # Destroys Obstacle sprite def display_score(): current_time = int(pygame.time.get_ticks() / 1000) - start_time # in milliseconds score_surf = test_font.render(f'Score: {current_time}', False, (64, 64, 64)) score_rect = score_surf.get_rect(center=(400, 50)) screen.blit(score_surf, score_rect) return current_time def collision_sprite(): # sprite, group, bool if pygame.sprite.spritecollide(player.sprite, obstacle_group, False): obstacle_group.empty() return False else: return True """ Frames Per Second Math: 1 frame/second > (10px/s * 1fps) = 10px/s """ # In Pygame, the Origin point is the Top Left at 0,0 # To go right from the top left, increase X, to go down, increase Y pygame.init() # Initialize everything screen = pygame.display.set_mode((800, 400)) # ((width,height)) pygame.display.set_caption("Runner") # Window Title Bar clock = pygame.time.Clock() # Capital 'C' in Clock test_font = pygame.font.Font('font/Pixeltype.ttf', 50) # Font type, Font size game_active = False start_time = 0 score = 0 bg_Music = pygame.mixer.Sound('audio/music.wav') bg_Music.set_volume(0.3) bg_Music.play(loops = -1) # Groups player = pygame.sprite.GroupSingle() # Group Player class into Single instance player.add(Player()) obstacle_group = pygame.sprite.Group() """ Surfaces: Display Surface (game window), Regular Surface (any images) """ sky_surf = pygame.image.load('graphics/Sky.png').convert_alpha() # converts image for pygame to handle better ground_surf = pygame.image.load('graphics/ground.png').convert_alpha() # score_surf = test_font.render("My Game", False, (64,64,64)).convert_alpha() #text ino, AA, color # Intro Screen player_stand = pygame.image.load('graphics/Player/player_stand.png').convert_alpha() # player_stand = pygame.transform.scale(player_stand,(200,200)) #Scale Player # player_stand = pygame.transform.scale2x(player_stand) #Scale Player player_stand = pygame.transform.rotozoom(player_stand, 0, 2) player_stand_rect = player_stand.get_rect(center=(400, 200)) # Game Name game_name = test_font.render('Pixel Runner', False, (111, 196, 169)) game_name_rect = game_name.get_rect(center=(400, 80)) game_message = test_font.render('Press SPACE to start', False, (111, 196, 169)) game_message_rect = game_message.get_rect(center=(410, 330)) # Event Timer # Add +1 to every event to avoid errors with events obstacle_timer = pygame.USEREVENT + 1 pygame.time.set_timer(obstacle_timer,1500) #################################################################################################### """ Game While-Loop """ while True: # draw all elements for event in pygame.event.get(): # Check for a specific event if event.type == pygame.QUIT: # If someone has clicked the upper X to close the window pygame.quit() # Close the window, unintialize everything exit() # from sys.exit, stops the graphic error message if game_active: if event.type == obstacle_timer: # calling Obstacle class and type of obstacle obstacle_group.add(Obstacle(choice(['fly','snail','snail','snail']))) else: if event.type == pygame.KEYDOWN and event.key == pygame.K_SPACE: game_active = True start_time = int(pygame.time.get_ticks() / 1000) if game_active: # If game_active is True, run the code below # blit draws variable on surface at stated coordinates screen.blit(sky_surf, (0, 0)) screen.blit(ground_surf, (0, 300)) # Over 0, Down 300 score = display_score() player.draw(screen) # Specify 1 argument, what surface to draw on player.update() # update sprite obstacle_group.draw(screen) obstacle_group.update() # update sprite game_active= collision_sprite() # Collision else: screen.fill((94, 129, 162)) screen.blit(player_stand, player_stand_rect) score_message = test_font.render(f'Your Score: {score}', False, (111, 196, 169)) score_message_rect = score_message.get_rect(center=(410, 330)) screen.blit(game_name, game_name_rect) # If score is 0, display start message if score == 0: screen.blit(game_message, game_message_rect) # If score not 0, display score else: screen.blit(score_message, score_message_rect) pygame.display.update() # update everything clock.tick(60) # Tells the game not to run faster than 60 FPS
the-stack_106_24501
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath(os.path.join('..', '..', 'src'))) # -- Project information ----------------------------------------------------- project = '{{cookiecutter.project_name}}' copyright = 'Equinor' author = '{{cookiecutter.project_name}}' # The full version, including alpha/beta/rc tags release = 'version' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autosummary', 'sphinx.ext.napoleon', 'm2r' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # Extensions that recomonmark will use source_suffix = { '.rst': 'restructuredtext', '.txt': 'markdown', '.md': 'markdown', } # Auto generate API documentation for modules autosummary_generate = True # Default flags used by autodoc directives autodoc_default_options = { 'members': True, 'member-order': 'bysource', 'special-members': '__init__', } # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = 'sphinx_rtd_theme' html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # alabaster theme options: https://alabaster.readthedocs.io/en/latest/customization.html html_theme_options = { "description": "{{cookiecutter.project_description}}", "extra_nav_links": { "Index": "genindex.html", "Module Index": "py-modindex.html", "Search Page": "search.html" }, "github_banner": False, "note_bg": "#FFF59C", "show_powered_by": False, "show_related": False, "sidebar_collapse": False, } # Custom sidebar templates (often theme specific), maps document names to template names. # alabaster options: https://alabaster.readthedocs.io/en/latest/customization.html html_sidebars = { "index": [ "about.html", "navigation.html", "searchbox.html" ], "**": [ "about.html", 'navigation.html', "searchbox.html" ], } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [ # "_static" ] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. html_use_smartypants = False # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = True
the-stack_106_24502
import pytest from starlette.applications import Starlette from starlette.middleware import Middleware from starlette.middleware.base import BaseHTTPMiddleware from starlette.responses import PlainTextResponse, StreamingResponse from starlette.routing import Mount, Route, WebSocketRoute class CustomMiddleware(BaseHTTPMiddleware): async def dispatch(self, request, call_next): response = await call_next(request) response.headers["Custom-Header"] = "Example" return response def homepage(request): return PlainTextResponse("Homepage") def exc(request): raise Exception("Exc") def exc_stream(request): return StreamingResponse(_generate_faulty_stream()) def _generate_faulty_stream(): yield b"Ok" raise Exception("Faulty Stream") class NoResponse: def __init__(self, scope, receive, send): pass def __await__(self): return self.dispatch().__await__() async def dispatch(self): pass async def websocket_endpoint(session): await session.accept() await session.send_text("Hello, world!") await session.close() app = Starlette( routes=[ Route("/", endpoint=homepage), Route("/exc", endpoint=exc), Route("/exc-stream", endpoint=exc_stream), Route("/no-response", endpoint=NoResponse), WebSocketRoute("/ws", endpoint=websocket_endpoint), ], middleware=[Middleware(CustomMiddleware)], ) def test_custom_middleware(test_client_factory): client = test_client_factory(app) response = client.get("/") assert response.headers["Custom-Header"] == "Example" with pytest.raises(Exception) as ctx: response = client.get("/exc") assert str(ctx.value) == "Exc" with pytest.raises(Exception) as ctx: response = client.get("/exc-stream") assert str(ctx.value) == "Faulty Stream" with pytest.raises(RuntimeError): response = client.get("/no-response") with client.websocket_connect("/ws") as session: text = session.receive_text() assert text == "Hello, world!" def test_state_data_across_multiple_middlewares(test_client_factory): expected_value1 = "foo" expected_value2 = "bar" class aMiddleware(BaseHTTPMiddleware): async def dispatch(self, request, call_next): request.state.foo = expected_value1 response = await call_next(request) return response class bMiddleware(BaseHTTPMiddleware): async def dispatch(self, request, call_next): request.state.bar = expected_value2 response = await call_next(request) response.headers["X-State-Foo"] = request.state.foo return response class cMiddleware(BaseHTTPMiddleware): async def dispatch(self, request, call_next): response = await call_next(request) response.headers["X-State-Bar"] = request.state.bar return response def homepage(request): return PlainTextResponse("OK") app = Starlette( routes=[Route("/", homepage)], middleware=[ Middleware(aMiddleware), Middleware(bMiddleware), Middleware(cMiddleware), ], ) client = test_client_factory(app) response = client.get("/") assert response.text == "OK" assert response.headers["X-State-Foo"] == expected_value1 assert response.headers["X-State-Bar"] == expected_value2 def test_app_middleware_argument(test_client_factory): def homepage(request): return PlainTextResponse("Homepage") app = Starlette( routes=[Route("/", homepage)], middleware=[Middleware(CustomMiddleware)] ) client = test_client_factory(app) response = client.get("/") assert response.headers["Custom-Header"] == "Example" def test_middleware_repr(): middleware = Middleware(CustomMiddleware) assert repr(middleware) == "Middleware(CustomMiddleware)" def test_fully_evaluated_response(test_client_factory): # Test for https://github.com/encode/starlette/issues/1022 class CustomMiddleware(BaseHTTPMiddleware): async def dispatch(self, request, call_next): await call_next(request) return PlainTextResponse("Custom") app = Starlette(middleware=[Middleware(CustomMiddleware)]) client = test_client_factory(app) response = client.get("/does_not_exist") assert response.text == "Custom" def test_exception_on_mounted_apps(test_client_factory): sub_app = Starlette(routes=[Route("/", exc)]) app = Starlette(routes=[Mount("/sub", app=sub_app)]) client = test_client_factory(app) with pytest.raises(Exception) as ctx: client.get("/sub/") assert str(ctx.value) == "Exc"
the-stack_106_24504
# -*- coding: utf-8 -*- # author:lyh # datetime:2020/7/31 20:21 """ 169. 多数元素 给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 示例 1: 输入: [3,2,3] 输出: 3 示例 2: 输入: [2,2,1,1,1,2,2] 输出: 2 """ from typing import List class Solution: def majorityElement(self, nums: List[int]) -> int: count = 0 res = 0 for num in nums: if res == num: count += 1 elif count > 0: count -= 1 else: count = 1 res = num return res if __name__ == '__main__': print(Solution().majorityElement([3, 2, 3]), 3) print(Solution().majorityElement([2, 2, 1, 1, 1, 2, 2]), 2)
the-stack_106_24506
# Wrong answer 20% jipes = 0 turistas = 0 action = input() while action != "ABEND": if action == "SALIDA": jipes += 1 turistas += int(input()) elif action == "VUELTA": if jipes > 0: jipes -= 1 T = int(input()) if turistas > 0: turistas -= T else: break action = input() print(turistas) print(jipes)
the-stack_106_24507
from database import EventStream dataset_id = "dataset-id" version = "version" sink_id = "0agee" event_stream_id = f"{dataset_id}/{version}" event_stream_stack_name = f"event-stream-{dataset_id}-{version}" event_subscribable_stack_name = f"event-subscribable-{dataset_id}-{version}" event_sink_stack_name = f"event-sink-{dataset_id}-{version}-{sink_id}" cf_stack_template = { "description": "foo", "resources": {"foo": {"type": "bar", "properties": {"foo": "bar"}}}, } event_stream = EventStream( **{ "cf_stack_template": cf_stack_template, "cf_status": "CREATE_IN_PROGRESS", "cf_stack_name": f"event-stream-{dataset_id}-{version}", "id": event_stream_id, "create_raw": True, "updated_by": "larsmonsen", "updated_at": "2020-01-21T09:28:57.831435", "deleted": False, "subscribable": { "enabled": True, "cf_stack_template": cf_stack_template, "cf_stack_name": f"event-subscribable-{dataset_id}-{version}", "cf_status": "CREATE_IN_PROGRESS", }, "sinks": [ { "id": "c8sh5", "type": "s3", "config": {"write_interval_seconds": 300}, "cf_stack_template": cf_stack_template, "cf_stack_name": f"event-sink-{dataset_id}-{version}-c8sh5", "cf_status": "ACTIVE", }, { "id": sink_id, "type": "elasticsearch", "config": {"es_cluster": "some-uri"}, "cf_stack_template": cf_stack_template, "cf_stack_name": f"event-sink-{dataset_id}-{version}-{sink_id}", "cf_status": "CREATE_IN_PROGRESS", }, ], } )
the-stack_106_24509
import os, sys from flask import Flask, json app = Flask(__name__) @app.route('/', methods=['GET']) def get_method(): status=200 response = app.response_class( response=json.dumps({'status':'OK'}), status=status, mimetype='application/json' ) return response app.run(host='0.0.0.0', port=8088, debug=True)
the-stack_106_24510
from m5stack import * from m5ui import * from uiflow import * import espnow import wifiCfg import json import hat setScreenColor(0x111111) hat_BeetleC9 = hat.get(hat.BEETLEC) espnow.init() title0 = M5Title(title="Title", x=3 , fgcolor=0xFFFFFF, bgcolor=0x0000FF) label0 = M5TextBox(8, 56, "Text", lcd.FONT_Default,0xFFFFFF, rotate=0) label1 = M5TextBox(43, 57, "Text", lcd.FONT_Default,0xFFFFFF, rotate=0) label2 = M5TextBox(26, 86, "Text", lcd.FONT_Default,0xFFFFFF, rotate=0) rectangle0 = M5Rect(28, 105, 20, 20, 0xFFFFFF, 0xFFFFFF) color = None addr = None data = None message = None left = None right = None def set_led(): global color, addr, data, message, left, right color = message['color'] label2.setText(str(color)) if color == 'red': rectangle0.setBgColor(0xff0000) hat_BeetleC9.SetRGB(1, 0xff0000) else: rectangle0.setBgColor(0xffffff) hat_BeetleC9.SetAllRGB(0x000000) def set_dirction(): global color, addr, data, message, left, right left = message['left'] right = message['right'] label0.setText(str(left)) label1.setText(str(right)) hat_BeetleC9.SetPulse(0, left) hat_BeetleC9.SetPulse(1, right) def recv_cb(_): global color,addr,data,message,left,right addr, _, data = espnow.recv_data(encoder='str') message = json.loads(data) set_dirction() set_led() pass espnow.recv_cb(recv_cb) lcd.setBrightness(1) setScreenColor(0x000000) title0.setBgColor(0x330099) title0.setTitle('Beetcle-C')
the-stack_106_24515
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init from torch.nn.utils import weight_norm as norm import numpy as np import module as mm from CookieTTS.utils.model.layers import ConvNorm, LinearNorm class ReferenceEncoder(nn.Module): """ Reference Encoder. 6 convs + GRU + FC :param in_channels: Scalar. :param token_embedding_size: Scalar. :param activation_fn: activation function """ def __init__(self, hparams, activation_fn=None): super(ReferenceEncoder, self).__init__() self.token_embedding_size = hparams.token_embedding_size self.in_channels = hparams.n_frames_per_step # ref_enc_filters channels = [self.in_channels] + hparams.ref_enc_filters + [self.token_embedding_size] self.convs = nn.ModuleList([ mm.Conv2d(channels[c], channels[c+1], 3, stride=2, bn=True, bias=False, activation_fn=torch.relu) for c in range(len(channels)-1) ]) # (Batch, Time_domain/r, 128) self.gru = nn.GRU(self.token_embedding_size*2, self.token_embedding_size, batch_first=True) self.fc = nn.Sequential( nn.Linear(self.token_embedding_size, self.token_embedding_size), ) self.activation_fn = activation_fn def forward(self, x, hidden=None): """ :param x: (Batch, 1, Time_domain, n_mel_channels) Tensor. Mel Spectrogram :param hidden: Tensor. initial hidden state for gru Returns: y_: (Batch, 1, Embedding) Reference Embedding : Time_domain = Time_domain n_mel_channels = n_mel_channels Batch = batch """ y_ = x.transpose(1, 2).unsqueeze(1) # [B, n_mel, dec_T) -> [B, 1, dec_T, n_mel] for i in range(len(self.convs)): y_ = self.convs[i](y_) # [B, C, dec_T//64, n_mel//64] y_ = y_.transpose(1, 2) # [B, C, dec_T//64, n_mel//64] -> [B, dec_T//64, C, n_mel//64] shape = y_.shape y_ = y_.contiguous().view(shape[0], shape[1], shape[2]*shape[3]) # [B, dec_T//64, C, n_mel//64] -> [B, dec_T//64, C*n_mel//64] merge last 2 dimensions y_, out = self.gru(y_, hidden) # out = [1, B, T_Embed] y_ = self.fc(out.squeeze(0)) # [1, B, T_Embed] -> [B, T_Embed] if self.activation_fn is not None: y_ = self.activation_fn(y_) return y_.unsqueeze(1) # (Batch, 1, Embedding) class MultiHeadAttention(nn.Module): """ Multi-head Attention :param n_units: Scalars. :param token_embedding_size : Scalars. """ def __init__(self, hparams, n_units=128, outdim=5): super(MultiHeadAttention, self).__init__() self.token_embedding_size = hparams.token_embedding_size self.num_heads = hparams.num_heads self.token_num = outdim self.n_units = hparams.gstAtt_dim self.split_size = n_units // self.num_heads self.conv_Q = mm.Conv1d(self.token_embedding_size, n_units, 1) # in_channels, out_channels, kernel_size self.conv_K = mm.Conv1d(self.token_embedding_size, n_units, 1) # in_channels, out_channels, kernel_size self.fc_Q = nn.Sequential( nn.Linear(n_units, n_units), nn.Tanh(), ) self.fc_K = nn.Sequential( nn.Linear(n_units, n_units), nn.Tanh(), ) self.fc_V = nn.Sequential( nn.Linear(self.token_embedding_size, self.split_size), nn.Tanh(), ) self.fc_A = nn.Sequential( nn.Linear(n_units, self.token_num), nn.Tanh(), ) def forward(self, ref_embedding, token_embedding): """ :param ref_embedding: (B, 1, Embedding) Reference embedding :param token_embedding: (B, token_num, embed_size) Token Embedding Returns: y_: (B, token_num) Tensor. Style attention weight """ # (B, 1, n_units) Q = self.fc_Q(self.conv_Q(ref_embedding.transpose(1,2)).transpose(1,2)) # (B, 1, Embedding) -> (B, Embedding, 1) -> (B, Embedding, 1) -> K = self.fc_K(self.conv_K(token_embedding.transpose(1,2)).transpose(1,2)) # (B, token_num, n_units) V = self.fc_V(token_embedding) # (B, token_num, n_units) Q = torch.stack(Q.split(self.split_size, dim=-1), dim=0) # (n_heads, B, 1, n_units//n_heads) K = torch.stack(K.split(self.split_size, dim=-1), dim=0) # (n_heads, B, token_num, n_units//n_heads) V = torch.stack(V.split(self.split_size, dim=-1), dim=0) # (n_heads, B, token_num, n_units//n_heads) inner_A = torch.softmax( torch.matmul(Q, K.transpose(-2, -1)) / self.split_size**0.5, dim=-1 ) # (n_heads, B, 1, token_num) y_ = torch.matmul(inner_A, V) # (n_heads, B, 1, n_units//n_heads) y_ = torch.cat(y_.split(1, dim=0), dim=-1).squeeze() # (B, n_units) y_ = self.fc_A(y_) # (B, token_num) return y_ class GST(nn.Module): """ Style Token Layer Reference Encoder + Multi-head Attention, token embeddings :param token_embedding_size: Scalar. :param n_units: Scalar. for multihead attention *** """ def __init__(self, hparams): super(GST, self).__init__() if not hparams.ss_vae_gst: mha_outdim = hparams.token_num * (1+hparams.gst_vae_mode) else: mha_outdim = len(hparams.vae_classes) # VAE / SS-VAE self.vae = hparams.gst_vae_mode self.ss_vae = hparams.ss_vae_gst self.ss_vae_zu_dim = hparams.ss_vae_zu_dim if self.ss_vae: self.ss_vae_layers = nn.Sequential( nn.Linear(mha_outdim, 2*self.ss_vae_zu_dim), nn.Tanh(), ) # Encoder self.token_embedding_size = hparams.token_embedding_size self.token_num = hparams.token_num self.ref_encoder = ReferenceEncoder(hparams, activation_fn=torch.tanh) self.att = MultiHeadAttention(hparams, outdim=mha_outdim) self.token_embedding = nn.Parameter(torch.zeros( [self.ss_vae_zu_dim if self.ss_vae else self.token_num, self.token_embedding_size])) # (token_num, Embedding) init.normal_(self.token_embedding, mean=0., std=0.5) # Token activation function if hparams.token_activation_func == 'softmax': self.activation_fn = 0 elif hparams.token_activation_func == 'sigmoid': self.activation_fn = 1 elif hparams.token_activation_func == 'tanh': self.activation_fn = 2 elif hparams.token_activation_func == 'linear': self.activation_fn = 3 else: print(f'token_activation_func of {hparams.token_activation_func} is invalid\nPlease use "softmax", "sigmoid" or "tanh"'); raise # tanh on output embed self.output_tanh = True # torchMoji self.torchMoji_linear = hparams.torchMoji_linear if self.torchMoji_linear: self.map_lin = LinearNorm( hparams.torchMoji_attDim, self.token_num * (1+hparams.gst_vae_mode)) # Drop Tokens self.p_drop_tokens = hparams.p_drop_tokens self.drop_tokens_mode = hparams.drop_tokens_mode if self.drop_tokens_mode == 'embedding': self.embedding = nn.Embedding(1, self.token_num * (1+hparams.gst_vae_mode)) elif self.drop_tokens_mode == 'speaker_embedding': self.speaker_embedding = nn.Embedding(hparams.n_speakers, self.token_num * (1+hparams.gst_vae_mode)) def reparameterize(self, mu, logvar, rand_sample=None): # use for VAE sampling if rand_sample or self.training: std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def forward(self, ref, ref_mode=1): """ :param ref: (Batch, Time_domain, n_mel_channels) Tensor containing reference audio or (Batch, token_num) if not ref_mode :param ref_mode: Boolean. whether it is reference mode Returns: :style_embedding: (Batch, 1, Embedding) Style Embedding :style_tokens: (Batch, token_num) Tensor. Combination weight. """ token_embedding = self.token_embedding.unsqueeze(0).expand(ref.size(0), -1, -1) # (Batch, token_num, Embedding) style_embedding = None if np.random.uniform(0.0, 1.0) <= self.p_drop_tokens and self.training: # if drop_tokens if self.drop_tokens_mode == 'embedding': style_tokens = self.embedding(1) elif self.drop_tokens_mode == 'speaker_embedding': style_tokens = self.speaker_embedding(ref) # ref = speaker_ids elif self.drop_tokens_mode == 'zeros': style_tokens = torch.zeros(ref.shape[0],self.token_num).cuda() elif self.drop_tokens_mode == 'halfs': style_tokens = torch.ones(ref.shape[0],self.token_num).cuda() * 0.5 elif self.drop_tokens_mode == 'emotion_embedding': pass # replace with lookup table for emotions. else: # normal reference mode if ref_mode == 1: # get style_token from spectrogram ref = self.ref_encoder(ref) # (Batch, 1, Embedding) style_tokens = self.att(ref, token_embedding) # (Batch, token_num) elif ref_mode == 0:# get style_token from user input style_tokens = ref elif ref_mode == 2: # infer style_tokens from input_text using torchMoji attHidden = torchMoji(ref) # ref=input_text style_tokens = self.map_lin(attHidden) elif ref_mode == 3: # training for mapping torchMoji attHidden to tokens style_tokens = self.map_lin(ref) # ref = torchMoji attention hidden, style_tokens = style_tokens # Apply Activation function if self.activation_fn == 0: style_tokens = torch.softmax(style_tokens, dim=-1) elif self.activation_fn == 1: style_tokens = style_tokens.sigmoid() elif self.activation_fn == 2: style_tokens = style_tokens.tanh() if self.vae: if self.ss_vae: zs = style_tokens zu = self.ss_vae_layers(zs) # zu dist parameters else: zu = style_tokens mu, logvar = zu.chunk(2, dim=1) # [B, 2*n_tokens] -> [B, n_tokens], [B, n_tokens] style_tokens = self.reparameterize(mu, logvar) # [B, n_tokens], [B, n_tokens] -> [B, n_tokens] if style_embedding is None: style_embedding = torch.sum(style_tokens.unsqueeze(-1) * token_embedding, dim=1, keepdim=True) # [B, n_tokens] -> [B, 1, embed] if self.output_tanh: style_embedding = torch.tanh(style_embedding) if self.vae: if self.ss_vae: zs = F.log_softmax(zs, dim=1) return style_embedding, style_tokens, mu, logvar, zs else: return style_embedding, style_tokens, mu, logvar else: return style_embedding, style_tokens
the-stack_106_24517
import click from ...models import JudgeFactory from ...utils.constants import default_judge from ...utils.logging import logger from ...utils.exceptions import handle_exceptions from ...utils.launch import launch, substitute from ...utils import config judge_factory = JudgeFactory() OJs = judge_factory.available_judges @click.command(short_help="View a particular problem") @click.option('-j', '--judge', 'judge_name', type=click.Choice(OJs), prompt="Please provide a judge("+'|'.join(OJs)+")", default=default_judge) @click.option('-c', '--contest', type=click.STRING, help="contest code") @click.option("--browser", help='Browser to launch', default=config.read('settings.yml', 'browser_online')) @click.argument('PROBLEM_CODE') @handle_exceptions(BaseException) def main(judge_name, contest, problem_code, browser): ''' View a particular problem from the judge. ''' judge = judge_factory.get_judge(judge_name) problem_url = judge.get_problem_url(problem_code=problem_code, contest_code=contest) logger.debug('launching %s' % problem_url) keymap = { 'URL': problem_url } status, browser = substitute(browser, keymap) if status is True: problem_url = '' launch(browser, problem_url)
the-stack_106_24518
import random import torch import torchvision class Flip(object): def __init__(self, params, data_types): self.mode = params['Mode'] self.data_types = data_types self.pre_torch = False def forward(self, batch): horizontal_flip = False vertical_flip = False if self.mode == 'both' or self.mode == 'horizontal': horizontal_flip = random.random() < 0.5 if self.mode == 'both' or self.mode == 'vertical': vertical_flip = random.random() < 0.5 for i, inputs in enumerate(batch): if self.data_types[i] in ('image', 'video', 'array'): flip_dims = [] if horizontal_flip: flip_dims.append(3) if vertical_flip: flip_dims.append(2) if flip_dims: batch[i] = torch.flip(inputs, flip_dims) elif self.data_types[i] == 'detection': cls = inputs['detections'][:, 0] sx = inputs['detections'][:, 1] sy = inputs['detections'][:, 2] ex = inputs['detections'][:, 3] ey = inputs['detections'][:, 4] # if we flip the coordinates, the smaller one becomes the bigger one # so we need to swap the start/end coordinates too here, if we flip if horizontal_flip: sx, ex = 1-ex, 1-sx if vertical_flip: sy, ey = 1-ey, 1-sy inputs['detections'] = torch.stack([cls, sx, sy, ex, ey], dim=1) elif self.data_types[i] == 'shape': px = inputs['points'][:, 0] py = inputs['points'][:, 1] if horizonal_flip: px = 1-px if vertical_flip: py = 1-py inputs['points'] = torch.stack([px, py], dim=1) return batch
the-stack_106_24521
from folium import plugins import pandas as pd import numpy as np import folium class Map: def __init__(self, data: pd.DataFrame): lat = data.lat.sum()/len(data) lon = data.lon.sum()/len(data) self.map = folium.Map(location=[lat, lon], zoom_start=13) def print(self): return self.map class LocationsMap(Map): def __init__(self, data): # Removing outliers data = data.loc[data.distância < 10] super().__init__(data) first_sixth = np.quantile(data['preço'], 1 / 6) last_sixth = np.quantile(data['preço'], 5 / 6) ziped_data = zip( data['lat'], data['lon'], data['preço'], data['quartos'], data['banheiros'], data['vagas'], data['área'], data['link'], data['img1'] ) for lat, lon, preco, n_quartos, n_banheiros, n_vagas, area, link, img in ziped_data: html = f''' <img src="{img}" alt="Foto anúncio" style="width:100%;"> <table id="vertical-1" class="centerTable"> <tr> <th>Aluguel</th> <td>R$ {preco},00</td> </tr> <tr> <th>Quartos</th> <td>{n_quartos}</td> </tr> <tr> <th>Banheiros</th> <td>{n_banheiros}</td> </tr> <tr> <th>Vagas</th> <td>{n_vagas}</td> </tr> <tr> <th>Área</th> <td>{area} m²</td> </tr> </table> <div style="text-align:center"> <a href="{link}">link</a> </div>''' iframe = folium.IFrame(html, width=250, height=400) popup = folium.Popup(iframe) if preco <= first_sixth: color = "green" elif preco < last_sixth: color = "orange" else: color = "red" folium.Marker( location=[lat, lon], popup=popup, icon=folium.Icon(icon="building", prefix="fa", color=color), ).add_to(self.map) class HeatMap(Map): def __init__(self, data): # Removing outliers data = data.loc[data.distância < 10] # Remove the announcements with the same location data = data.groupby(by=['lat', 'lon'])['preço'].mean().reset_index() super().__init__(data) heat_data = zip( data['lat'], data['lon'], data['preço'] ) heat_map = folium.plugins.HeatMap(heat_data, name=None, min_opacity=0.5, gradient=None, overlay=True, control=True, show=True) heat_map.add_to(self.map)
the-stack_106_24523
# Copyright 2020 Toyota Research Institute. All rights reserved. import argparse import numpy as np import os import torch from glob import glob from cv2 import imwrite from packnet_sfm.models.model_wrapper import ModelWrapper from packnet_sfm.datasets.augmentations import resize_image, to_tensor from packnet_sfm.utils.horovod import hvd_init, rank, world_size, print0 from packnet_sfm.utils.image import load_image from packnet_sfm.utils.config import parse_test_file from packnet_sfm.utils.load import set_debug from packnet_sfm.utils.depth import write_depth, inv2depth, viz_inv_depth from packnet_sfm.utils.logging import pcolor #from packnet_sfm.datasets.kitti_based_valeo_dataset_fisheye_singleView import KITTIBasedValeoDatasetFisheye_singleView from packnet_sfm.datasets.kitti_based_valeo_dataset_fisheye_singleView import * from packnet_sfm.geometry.camera_fisheye_valeo import CameraFisheye from packnet_sfm.datasets.kitti_based_valeo_dataset_utils import \ pose_from_oxts_packet, read_calib_file, read_raw_calib_files_camera_valeo, transform_from_rot_trans from packnet_sfm.geometry.pose import Pose import open3d as o3d def is_image(file, ext=('.png', '.jpg',)): """Check if a file is an image with certain extensions""" return file.endswith(ext) def parse_args(): parser = argparse.ArgumentParser(description='PackNet-SfM 3D visualization of point clouds maps from images') parser.add_argument('--checkpoint1', type=str, help='Checkpoint (.ckpt)') parser.add_argument('--checkpoint2', type=str, help='Checkpoint (.ckpt)') parser.add_argument('--input1', type=str, help='Input file or folder') parser.add_argument('--input2', type=str, help='Input file or folder') parser.add_argument('--hasGTdepth1', type=int, choices=[0, 1], default=0) parser.add_argument('--hasGTdepth2', type=int, choices=[0, 1], default=0) parser.add_argument('--output1', type=str, help='Output file or folder') parser.add_argument('--output2', type=str, help='Output file or folder') parser.add_argument('--image_shape', type=int, nargs='+', default=None, help='Input and output image shape ' '(default: checkpoint\'s config.datasets.augmentation.image_shape)') parser.add_argument('--half', action="store_true", help='Use half precision (fp16)') parser.add_argument('--save', type=str, choices=['npz', 'png'], default=None, help='Save format (npz or png). Default is None (no depth map is saved).') args = parser.parse_args() assert args.checkpoint1.endswith('.ckpt'), \ 'You need to provide a .ckpt file as checkpoint' assert args.checkpoint2.endswith('.ckpt'), \ 'You need to provide a .ckpt file as checkpoint' assert args.image_shape is None or len(args.image_shape) == 2, \ 'You need to provide a 2-dimensional tuple as shape (H,W)' assert (is_image(args.input1) and is_image(args.output1)) or \ (not is_image(args.input1) and not is_image(args.input1)), \ 'Input and output must both be images or folders' assert (is_image(args.input2) and is_image(args.output2)) or \ (not is_image(args.input2) and not is_image(args.input2)), \ 'Input and output must both be images or folders' return args def get_next_file(idx, file): """Get next file given next idx and current file.""" base, ext = os.path.splitext(os.path.basename(file)) base_splitted = base.split('_') base_number = base_splitted[-1] return os.path.join(os.path.dirname(file), '_'.join(base_splitted[:-1]) + '_' + str(idx).zfill(len(base_number)) + ext) def get_base_folder(image_file): """The base folder""" return '/'.join(image_file.split('/')[:-6]) def get_frame_index_int(image_file): """Returns an int-type index of the image file""" return int(image_file.split('_')[-1].split('.')[0]) def get_camera_name(image_file): """Returns 'cam_i', i between 0 and 4""" return image_file.split('/')[-2] def get_sequence_name(image_file): """Returns a sequence name like '20180227_185324'.""" return image_file.split('/')[-3] def get_split_type(image_file): """Returns 'train', 'test' or 'test_sync'.""" return image_file.split('/')[-4] def get_images_type(image_file): """Returns 'images_multiview' or 'images_multiview_frontOnly.""" return image_file.split('/')[-5] def get_current_folder(image_file): """Get the current folder from image_file.""" return os.path.dirname(image_file) def get_path_to_theta_lut(image_file): """Get the current folder from image_file.""" return os.path.join(get_base_folder(image_file), 'calibrations_theta_lut', 'fisheye', get_split_type(image_file), get_sequence_name(image_file), get_sequence_name(image_file) + '_' + get_camera_name(image_file) + '_1280_800.npy') def get_path_to_ego_mask(image_file): """Get the current folder from image_file.""" return os.path.join(get_base_folder(image_file), 'semantic_masks', 'fisheye', get_split_type(image_file), get_sequence_name(image_file), get_sequence_name(image_file) + '_' + get_camera_name(image_file) + '.npy') def get_intrinsics(image_file, calib_data): """Get intrinsics from the calib_data dictionary.""" cam = get_camera_name(image_file) #intr = calib_data[cam]['intrinsics'] base_intr = calib_data[cam]['base_intrinsics'] intr = calib_data[cam]['intrinsics'] poly_coeffs = np.array([float(intr['c1']), float(intr['c2']), float(intr['c3']), float(intr['c4'])]) principal_point = np.array([float(base_intr['cx_offset_px']), float(base_intr['cy_offset_px'])]) scale_factors = np.array([1., float(intr['pixel_aspect_ratio'])]) return poly_coeffs, principal_point, scale_factors def get_depth_file(image_file): """Get the corresponding depth file from an image file.""" base, ext = os.path.splitext(os.path.basename(image_file)) return os.path.join(get_base_folder(image_file), 'depth_maps', 'fisheye', get_split_type(image_file), get_sequence_name(image_file), get_camera_name(image_file).replace('cam', 'velodyne'), base.replace('cam', 'velodyne') + '.npz') def get_extrinsics_pose_matrix(image_file, calib_data): """Get intrinsics from the calib_data dictionary.""" cam = get_camera_name(image_file) extr = calib_data[cam]['extrinsics'] t = np.array([float(extr['pos_x_m']), float(extr['pos_y_m']), float(extr['pos_z_m'])]) x_rad = np.pi / 180. * float(extr['rot_x_deg']) z1_rad = np.pi / 180. * float(extr['rot_z1_deg']) z2_rad = np.pi / 180. * float(extr['rot_z2_deg']) x_rad += np.pi # gcam #z1_rad += np.pi # gcam #z2_rad += np.pi # gcam cosx = np.cos(x_rad) sinx = np.sin(x_rad) cosz1 = np.cos(z1_rad) sinz1 = np.sin(z1_rad) cosz2 = np.cos(z2_rad) sinz2 = np.sin(z2_rad) Rx = np.array([[ 1, 0, 0], [ 0, cosx, sinx], [ 0, -sinx, cosx]]) Rz1 = np.array([[ cosz1, sinz1, 0], [-sinz1, cosz1, 0], [ 0, 0, 1]]) Rz2 = np.array([[cosz2, -sinz2, 0], [sinz2, cosz2, 0], [ 0, 0, 1]]) R = np.matmul(Rz2, np.matmul(Rx, Rz1)) T_other_convention = -np.dot(R,t) pose_matrix = transform_from_rot_trans(R, T_other_convention).astype(np.float32) #pose_matrix = invert_pose_numpy(pose_matrix) return pose_matrix def display_inlier_outlier(cloud, ind): inlier_cloud = cloud.select_by_index(ind) outlier_cloud = cloud.select_by_index(ind, invert=True) print("Showing outliers (red) and inliers (gray): ") outlier_cloud.paint_uniform_color([1, 0, 0]) inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8]) o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud]) @torch.no_grad() def infer_and_save_depth(input_file, output_file, model_wrapper, image_shape, half, save): """ Process a single input file to produce and save visualization Parameters ---------- input_file : str Image file output_file : str Output file, or folder where the output will be saved model_wrapper : nn.Module Model wrapper used for inference image_shape : Image shape Input image shape half: bool use half precision (fp16) save: str Save format (npz or png) """ if not is_image(output_file): # If not an image, assume it's a folder and append the input name os.makedirs(output_file, exist_ok=True) output_file = os.path.join(output_file, os.path.basename(input_file)) # change to half precision for evaluation if requested dtype = torch.float16 if half else None # Load image image = load_image(input_file) # Resize and to tensor image = resize_image(image, image_shape) image = to_tensor(image).unsqueeze(0) # Send image to GPU if available if torch.cuda.is_available(): image = image.to('cuda:{}'.format(rank()), dtype=dtype) # Depth inference (returns predicted inverse depth) pred_inv_depth = model_wrapper.depth(image)[0] if save == 'npz' or save == 'png': # Get depth from predicted depth map and save to different formats filename = '{}.{}'.format(os.path.splitext(output_file)[0], save) print('Saving {} to {}'.format( pcolor(input_file, 'cyan', attrs=['bold']), pcolor(filename, 'magenta', attrs=['bold']))) write_depth(filename, depth=inv2depth(pred_inv_depth)) else: # Prepare RGB image rgb = image[0].permute(1, 2, 0).detach().cpu().numpy() * 255 # Prepare inverse depth viz_pred_inv_depth = viz_inv_depth(pred_inv_depth[0]) * 255 # Concatenate both vertically image = np.concatenate([rgb, viz_pred_inv_depth], 0) # Save visualization print('Saving {} to {}'.format( pcolor(input_file, 'cyan', attrs=['bold']), pcolor(output_file, 'magenta', attrs=['bold']))) imwrite(output_file, image[:, :, ::-1]) @torch.no_grad() def infer_plot_and_save_3D_pcl(input_file1, input_file2, output_file1, output_file2, model_wrapper1, model_wrapper2, hasGTdepth1, hasGTdepth2, image_shape, half, save): """ Process a single input file to produce and save visualization Parameters ---------- input_file : str Image file output_file : str Output file, or folder where the output will be saved model_wrapper : nn.Module Model wrapper used for inference image_shape : Image shape Input image shape half: bool use half precision (fp16) save: str Save format (npz or png) """ if not is_image(output_file1): # If not an image, assume it's a folder and append the input name os.makedirs(output_file1, exist_ok=True) output_file1 = os.path.join(output_file1, os.path.basename(input_file1)) if not is_image(output_file2): # If not an image, assume it's a folder and append the input name os.makedirs(output_file2, exist_ok=True) output_file2 = os.path.join(output_file2, os.path.basename(input_file2)) # change to half precision for evaluation if requested dtype = torch.float16 if half else None # Load image image1 = load_image(input_file1).convert('RGB') image2 = load_image(input_file2).convert('RGB') # Resize and to tensor image1 = resize_image(image1, image_shape) image2 = resize_image(image2, image_shape) image1 = to_tensor(image1).unsqueeze(0) image2 = to_tensor(image2).unsqueeze(0) # Send image to GPU if available if torch.cuda.is_available(): image1 = image1.to('cuda:{}'.format(rank()), dtype=dtype) image2 = image2.to('cuda:{}'.format(rank()), dtype=dtype) # Depth inference (returns predicted inverse depth) pred_inv_depth1 = model_wrapper1.depth(image1) pred_inv_depth2 = model_wrapper2.depth(image2) pred_depth1 = inv2depth(pred_inv_depth1) pred_depth2 = inv2depth(pred_inv_depth2) base_folder_str1 = get_base_folder(input_file1) split_type_str1 = get_split_type(input_file1) seq_name_str1 = get_sequence_name(input_file1) camera_str1 = get_camera_name(input_file1) base_folder_str2 = get_base_folder(input_file2) split_type_str2 = get_split_type(input_file2) seq_name_str2 = get_sequence_name(input_file2) camera_str2 = get_camera_name(input_file2) calib_data1 = {} calib_data2 = {} calib_data1[camera_str1] = read_raw_calib_files_camera_valeo(base_folder_str1, split_type_str1, seq_name_str1, camera_str1) calib_data2[camera_str2] = read_raw_calib_files_camera_valeo(base_folder_str2, split_type_str2, seq_name_str2, camera_str2) path_to_theta_lut1 = get_path_to_theta_lut(input_file1) path_to_ego_mask1 = get_path_to_ego_mask(input_file1) poly_coeffs1, principal_point1, scale_factors1 = get_intrinsics(input_file1, calib_data1) path_to_theta_lut2 = get_path_to_theta_lut(input_file2) path_to_ego_mask2 = get_path_to_ego_mask(input_file2) poly_coeffs2, principal_point2, scale_factors2 = get_intrinsics(input_file2, calib_data2) poly_coeffs1 = torch.from_numpy(poly_coeffs1).unsqueeze(0) principal_point1 = torch.from_numpy(principal_point1).unsqueeze(0) scale_factors1 = torch.from_numpy(scale_factors1).unsqueeze(0) poly_coeffs2 = torch.from_numpy(poly_coeffs2).unsqueeze(0) principal_point2 = torch.from_numpy(principal_point2).unsqueeze(0) scale_factors2 = torch.from_numpy(scale_factors2).unsqueeze(0) pose_matrix1 = torch.from_numpy(get_extrinsics_pose_matrix(input_file1, calib_data1)).unsqueeze(0) pose_matrix2 = torch.from_numpy(get_extrinsics_pose_matrix(input_file2, calib_data2)).unsqueeze(0) pose_tensor1 = Pose(pose_matrix1) pose_tensor2 = Pose(pose_matrix2) ego_mask1 = np.load(path_to_ego_mask1) ego_mask2 = np.load(path_to_ego_mask2) not_masked1 = ego_mask1.astype(bool).reshape(-1) not_masked2 = ego_mask2.astype(bool).reshape(-1) cam1 = CameraFisheye(path_to_theta_lut=[path_to_theta_lut1], path_to_ego_mask=[path_to_ego_mask1], poly_coeffs=poly_coeffs1.float(), principal_point=principal_point1.float(), scale_factors=scale_factors1.float(), Tcw=pose_tensor1) cam2 = CameraFisheye(path_to_theta_lut=[path_to_theta_lut2], path_to_ego_mask=[path_to_ego_mask2], poly_coeffs=poly_coeffs2.float(), principal_point=principal_point2.float(), scale_factors=scale_factors2.float(), Tcw=pose_tensor2) if torch.cuda.is_available(): cam1 = cam1.to('cuda:{}'.format(rank()), dtype=dtype) cam2 = cam2.to('cuda:{}'.format(rank()), dtype=dtype) world_points1 = cam1.reconstruct(pred_depth1, frame='w') world_points1 = world_points1[0].cpu().numpy() world_points1 = world_points1.reshape((3,-1)).transpose() world_points2 = cam2.reconstruct(pred_depth2, frame='w') world_points2 = world_points2[0].cpu().numpy() world_points2 = world_points2.reshape((3,-1)).transpose() if hasGTdepth1: gt_depth_file1 = get_depth_file(input_file1) gt_depth1 = np.load(gt_depth_file1)['velodyne_depth'].astype(np.float32) gt_depth1 = torch.from_numpy(gt_depth1).unsqueeze(0).unsqueeze(0) if torch.cuda.is_available(): gt_depth1 = gt_depth1.to('cuda:{}'.format(rank()), dtype=dtype) gt_depth_3d1 = cam1.reconstruct(gt_depth1, frame='w') gt_depth_3d1 = gt_depth_3d1[0].cpu().numpy() gt_depth_3d1 = gt_depth_3d1.reshape((3,-1)).transpose() if hasGTdepth2: gt_depth_file2 = get_depth_file(input_file2) gt_depth2 = np.load(gt_depth_file2)['velodyne_depth'].astype(np.float32) gt_depth2 = torch.from_numpy(gt_depth2).unsqueeze(0).unsqueeze(0) if torch.cuda.is_available(): gt_depth2 = gt_depth2.to('cuda:{}'.format(rank()), dtype=dtype) gt_depth_3d2 = cam2.reconstruct(gt_depth2, frame='w') gt_depth_3d2 = gt_depth_3d2[0].cpu().numpy() gt_depth_3d2 = gt_depth_3d2.reshape((3, -1)).transpose() world_points1 = world_points1[not_masked1] world_points2 = world_points2[not_masked2] if hasGTdepth1: gt_depth_3d1 = gt_depth_3d1[not_masked1] if hasGTdepth2: gt_depth_3d2 = gt_depth_3d2[not_masked1] pcl1 = o3d.geometry.PointCloud() pcl1.points = o3d.utility.Vector3dVector(world_points1) img_numpy1 = image1[0].cpu().numpy() img_numpy1 = img_numpy1.reshape((3,-1)).transpose() pcl2 = o3d.geometry.PointCloud() pcl2.points = o3d.utility.Vector3dVector(world_points2) img_numpy2 = image2[0].cpu().numpy() img_numpy2 = img_numpy2.reshape((3,-1)).transpose() img_numpy1 = img_numpy1[not_masked1] pcl1.colors = o3d.utility.Vector3dVector(img_numpy1) img_numpy2 = img_numpy2[not_masked2] pcl2.colors = o3d.utility.Vector3dVector(img_numpy2) #pcl.paint_uniform_color([1.0, 0.0, 0]) #print("Radius oulier removal") #cl, ind = pcl.remove_radius_outlier(nb_points=10, radius=0.5) #display_inlier_outlier(pcl, ind) remove_outliers = True if remove_outliers: cl1, ind1 = pcl1.remove_statistical_outlier(nb_neighbors=10, std_ratio=1.3) #display_inlier_outlier(pcl, ind) inlier_cloud1 = pcl1.select_by_index(ind1) #inlier_cloud.paint_uniform_color([0.0, 1.0, 0]) outlier_cloud1 = pcl1.select_by_index(ind1, invert=True) outlier_cloud1.paint_uniform_color([0.0, 0.0, 1.0]) cl2, ind2 = pcl2.remove_statistical_outlier(nb_neighbors=10, std_ratio=1.3) #display_inlier_outlier(pcl, ind) inlier_cloud2 = pcl2.select_by_index(ind2) #inlier_cloud.paint_uniform_color([0.0, 1.0, 0]) outlier_cloud2 = pcl2.select_by_index(ind2, invert=True) outlier_cloud2.paint_uniform_color([0.0, 0.0, 1.0]) if hasGTdepth1: pcl_gt1 = o3d.geometry.PointCloud() pcl_gt1.points = o3d.utility.Vector3dVector(gt_depth_3d1) pcl_gt1.paint_uniform_color([1.0, 0.0, 0]) if hasGTdepth2: pcl_gt2 = o3d.geometry.PointCloud() pcl_gt2.points = o3d.utility.Vector3dVector(gt_depth_3d2) pcl_gt2.paint_uniform_color([1.0, 0.0, 0]) if remove_outliers: toPlot = [inlier_cloud1, inlier_cloud2] if hasGTdepth1: toPlot.append(pcl_gt1) if hasGTdepth2: toPlot.append(pcl_gt2) toPlotClear = list(toPlot) toPlot.append(outlier_cloud1) toPlot.append(outlier_cloud2) o3d.visualization.draw_geometries(toPlot) o3d.visualization.draw_geometries(toPlotClear) toPlot = [pcl1, pcl2] if hasGTdepth1: toPlot.append(pcl_gt1) if hasGTdepth2: toPlot.append(pcl_gt2) o3d.visualization.draw_geometries(toPlot) rgb1 = image1[0].permute(1, 2, 0).detach().cpu().numpy() * 255 rgb2 = image2[0].permute(1, 2, 0).detach().cpu().numpy() * 255 # Prepare inverse depth viz_pred_inv_depth1 = viz_inv_depth(pred_inv_depth1[0]) * 255 viz_pred_inv_depth2 = viz_inv_depth(pred_inv_depth2[0]) * 255 # Concatenate both vertically image1 = np.concatenate([rgb1, viz_pred_inv_depth1], 0) image2 = np.concatenate([rgb2, viz_pred_inv_depth2], 0) # Save visualization print('Saving {} to {}'.format( pcolor(input_file1, 'cyan', attrs=['bold']), pcolor(output_file1, 'magenta', attrs=['bold']))) imwrite(output_file1, image1[:, :, ::-1]) print('Saving {} to {}'.format( pcolor(input_file2, 'cyan', attrs=['bold']), pcolor(output_file2, 'magenta', attrs=['bold']))) imwrite(output_file2, image2[:, :, ::-1]) def main(args): # Initialize horovod hvd_init() # Parse arguments config1, state_dict1 = parse_test_file(args.checkpoint1) config2, state_dict2 = parse_test_file(args.checkpoint2) # If no image shape is provided, use the checkpoint one image_shape = args.image_shape if image_shape is None: image_shape = config1.datasets.augmentation.image_shape # Set debug if requested set_debug(config1.debug) # Initialize model wrapper from checkpoint arguments model_wrapper1 = ModelWrapper(config1, load_datasets=False) model_wrapper2 = ModelWrapper(config2, load_datasets=False) # Restore monodepth_model state model_wrapper1.load_state_dict(state_dict1) model_wrapper2.load_state_dict(state_dict2) # change to half precision for evaluation if requested dtype = torch.float16 if args.half else None # Send model to GPU if available if torch.cuda.is_available(): model_wrapper1 = model_wrapper1.to('cuda:{}'.format(rank()), dtype=dtype) model_wrapper2 = model_wrapper2.to('cuda:{}'.format(rank()), dtype=dtype) # Set to eval mode model_wrapper1.eval() model_wrapper2.eval() if os.path.isdir(args.input1): # If input file is a folder, search for image files files1 = [] for ext in ['png', 'jpg']: files1.extend(glob((os.path.join(args.input1, '*.{}'.format(ext))))) files1.sort() print0('Found {} files'.format(len(files1))) else: # Otherwise, use it as is files1 = [args.input1] if os.path.isdir(args.input2): # If input file is a folder, search for image files files2 = [] for ext in ['png', 'jpg']: files2.extend(glob((os.path.join(args.input2, '*.{}'.format(ext))))) files2.sort() print0('Found {} files'.format(len(files2))) else: # Otherwise, use it as is files2 = [args.input2] n_files = len(files1) # Process each file for fn1, fn2 in zip(files1[rank()::world_size()], files2[rank()::world_size()]): infer_plot_and_save_3D_pcl(fn1, fn2, args.output1, args.output2, model_wrapper1, model_wrapper2, bool(int(args.hasGTdepth1)), bool(int(args.hasGTdepth2)), image_shape, args.half, args.save) if __name__ == '__main__': args = parse_args() main(args)
the-stack_106_24526
#!usr/bin/python import socket import time sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) # para UDP udp_host = 'localhost' udp_port = 12345 msg = "hola mundo en minuscula" msg = bytes(msg,'utf-8') print ("IP destino:", udp_host) print ("Puerto:", udp_port) sock.sendto(msg,(udp_host,udp_port)) # envio a server UDP data,addr = sock.recvfrom(1024) #recepcion del servidor UDP print("Mensaje del servidor: ",data," direccion: ",addr) time.sleep(2) #esperamos dos segundos porque si para enviar mensaje de terminado msg = "" msg = bytes(msg,'utf-8') sock.sendto(msg,(udp_host,udp_port)) # Sending message to UDP server
the-stack_106_24527
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Brain that can continuously learn from human demonstrations.""" import glob import math import os import platform import random import shutil import time import uuid from learner.brains import data_protobuf_generator from learner.brains import demonstration_buffer from learner.brains import eval_datastore from learner.brains import imitation_loss from learner.brains import networks from learner.brains import numpy_replay_buffer from learner.brains import policies from learner.brains import saved_model_to_tflite_model from learner.brains import tfa_specs from log import falken_logging import tensorflow as tf # Used to workaround https://github.com/tensorflow/tensorflow/issues/41380 from tensorflow.python.framework import errors as tf_errors from tensorflow.python.lib.io import file_io as tf_file_io from tf_agents.agents.behavioral_cloning import behavioral_cloning_agent from tf_agents.policies import greedy_policy from tf_agents.policies import policy_saver from tf_agents.trajectories import time_step as ts from tf_agents.utils import common _DEFAULT_REPLAY_BUFFER_CAPACITY = 2 * 3600 * 10 # 2 hours at 10 fps. class UnknownHParamError(Exception): """Raised if there is an unknown hyperparameter in the assignment.""" class NoCheckpointFoundError(Exception): """Raised if not checkpoint was found at a specified location.""" class BCAgent(behavioral_cloning_agent.BehavioralCloningAgent): """A behavioral cloning based TF agent.""" def __init__(self, brain_spec, hparams, use_summaries): """Create a new BC tf-agent with the provided hyperparameters.""" assert brain_spec falken_logging.info(f'Creating BC Agent with hparams: {hparams}') self.actor_net = networks.FalkenNetwork(brain_spec, hparams) optimizer = tf.compat.v1.train.AdamOptimizer( learning_rate=hparams['learning_rate']) super().__init__( ts.time_step_spec(brain_spec.observation_spec.tfa_spec), brain_spec.action_spec.tfa_spec, optimizer=optimizer, cloning_network=self.actor_net, num_outer_dims=2, loss_fn=self._dict_loss, debug_summaries=use_summaries, train_step_counter=tf.Variable(0, dtype=tf.int64, trainable=False, name='train_step_counter'), summarize_grads_and_vars=False) self.initialize() # Force variable initialization. This triggers the initializers to # be called and pruned avoiding errand placeholders in the # checkpoint. self.policy.variables() def _dict_loss(self, experience, training=True): batch_size = ( tf.compat.dimension_value(experience.step_type.shape[0]) or tf.shape(experience.step_type)[0]) network_state = self.cloning_network.get_initial_state(batch_size) values, _ = self.cloning_network( experience.observation, experience.step_type, training=training, network_state=network_state) targets = experience.action return imitation_loss.dict_loss(values, targets) @staticmethod def update_derived_hparams(hparams): """Update a hyperparameter dictionary with derived parameters. Args: hparams: Hyperparameter dictionary to modify. Returns: Dictionary updated with derived hparameters. """ hparams['training_steps'] = ( int(math.ceil(hparams['training_examples'] / hparams['batch_size']))) return hparams @staticmethod def default_hparams(): """Return the default hyperparameters for BC Agent.""" return BCAgent.update_derived_hparams(dict( learning_rate=5e-4, fc_layers=[32], # 'feelers_version' is one of: # 'v1': Classic feelers. # 'v2': New feelers, as defined in go/updated-feelers. feelers_version='v1', feelers_v2_output_channels=3, feelers_v2_kernel_size=5, dropout=None, activation_fn='swish', # 'policy_type' is one of the following: # 'greedy': Selects the mode of the action distributions. # 'noisy': Stochastically samples from the action distributions. # 'greedy_float': Uses 'greedy' for float-valued actions and # 'noisy' for all others (e.g., categorical actions). policy_type='greedy_float', # Number of trajectories in each training batch processed by train(). batch_size=500, # Number of trajectories to process on each call to train(). training_examples=1000000, # Whether to compile the graphs. use_tf_function=True, # 'use_xla_jit' indicates whether we want to translate the inner # training loop using XLA JIT. use_xla_jit=True, # 'num_batches_to_sample' is the number of batches to sample before # entering the inner training loop. Presampled batches are used in a # round-robin fashion. A value of 50 should ensure that the sample is # representative even for larger replay buffers while adding around # ~35% to required memory compared to the replay buffer. num_batches_to_sample=50)) def evaluate(self, data): """Compute average eval loss for a trajectory of data.""" with tf.name_scope('eval_loss'): loss = self._dict_loss(data) return tf.math.reduce_mean(loss) def _outer_dim_length(nested_tensor): """Return length of the outer (time or batch) dimension.""" flat = tf.nest.flatten(nested_tensor) if not flat: return 0 else: return len(flat[0]) def _select_sub_trajectories(traj_generator, select_fraction, rng): """Selects a random subtrajectory of a specified length. This selects a contiguous segment from the input trajectory and returns the trajectory split into three sub-trajectories: Before the selected fragment, the selected fragment and after the selected fragment. Args: traj_generator: Generates pairs (trajectory, length) where length indicates the size of the outermost (=time) dimension of the trajectory data. select_fraction: Fraction of the trajectory to select. rng: Random number generator. Yields: Triplets of trajectory (before, selected, after), which randomly subdivide the trajectory object into three subtrajectories. The middle element has length select_fraction * trajectory_length. Note that tuple elements yielded will be None if any trajectory segment would have length 0. """ for trajectory, frames in traj_generator: select_frames = int(select_fraction * frames) if not select_frames: yield trajectory, None, None continue last_select_index = frames - select_frames start = rng.randint(0, last_select_index) end = start + select_frames assert end <= frames def select(start, end): if start == end: return None return tf.nest.map_structure( lambda x: x[start: end], # pylint: disable=cell-var-from-loop trajectory) # pylint: disable=cell-var-from-loop yield select(0, start), select(start, end), select(end, frames) def _create_checkpointer(checkpoint_dir, trackable_objects): """Create a checkpoint manager for the specified directory. Args: checkpoint_dir: Directory to manage and optionally load checkpoints from. trackable_objects: Dictionary of TensorFlow objects to save in the checkpoint. Returns: (checkpointer, restored) tuple where checkpointer is an instance to a TF agents Checkpointer instance and restored is a bool value indicating whether the checkpointer restored from the checkpoint. """ checkpointer = common.Checkpointer(ckpt_dir=checkpoint_dir, max_to_keep=1, **trackable_objects) if not checkpointer.checkpoint_exists: checkpointer.initialize_or_restore() return (checkpointer, checkpointer.checkpoint_exists) def _generate_random_steps(number_of_frames, brain_spec): """Generate demonstration_buffer.Step instances. Args: number_of_frames: Number of frames of random steps to generate. brain_spec: BrainSpec to use to generate the data. Yields: demonstration_buffer.Step instance populated with random data that conforms to the provided brain_spec. """ for i, step_phase in demonstration_buffer.generate_index_and_step_phase( number_of_frames, demonstration_buffer.StepPhase.SUCCESS): yield demonstration_buffer.Step( observation_pb=( data_protobuf_generator.DataProtobufGenerator.from_spec_node( brain_spec.observation_spec.proto_node, modify_data_proto=( data_protobuf_generator.DataProtobufGenerator. randomize_leaf_data_proto)))[0], reward=0, phase=step_phase, episode_id='0', action_pb=data_protobuf_generator.DataProtobufGenerator.from_spec_node( brain_spec.action_spec.proto_node, modify_data_proto=( data_protobuf_generator.DataProtobufGenerator. randomize_leaf_data_proto))[0], timestamp_micros=i) def _atomic_write_string_to_file(filename, contents, overwrite=True): """Write a string to a file. Args: filename: File to write. contents: What to write to the file. overwrite: Whether to overwrite the target file. Raises: tf_errors.OpError: If it's not possible to write the file. """ if not tf_file_io.has_atomic_move(filename): tf_file_io.write_string_to_file(filename, contents) else: temp_pathname = filename + '.tmp' + uuid.uuid4().hex tf_file_io.write_string_to_file(temp_pathname, contents) try: if overwrite and os.path.exists(filename): os.remove(filename) tf_file_io.rename(temp_pathname, filename, overwrite) except tf_errors.OpError: tf_file_io.delete_file(temp_pathname) raise def _patch_atomic_write_string_to_file(): """Patch for TensorFlow 2.5.0 to workaround file saving bug on Windows. See https://github.com/tensorflow/tensorflow/issues/41380 """ if platform.system().lower().startswith('windows'): tf_file_io.atomic_write_string_to_file = _atomic_write_string_to_file class ContinuousImitationBrain: """An ML powered brain that continuously learns from demonstration. Attributes: id: string, GUID for each Brain instance. spec_pb: BrainSpec proto that was used to create the Brain. policy_path: string, the path where the policies are stored. summary_path: string, the path where TF summaries are stored. checkpoint_path: string, the path where model checkpoints are stored. brain_spec: tfa_specs.BrainSpec created from spec_pb. tf_agent: tf_agent object, the agent created for the purposes of training. data_timestamp_micros: Either 0 if no data present or the timestamp up to which episode data has been fetched. latest_checkpoint: The latest local checkpoint or None if not present. policy_saver: PolicySaver instance which can be used to save the current policy. """ # Fraction of frames to keep in eval buffer. _EVAL_FRACTION = 0.2 # Seed for the RNG that divides episodes into training and eval set. # The implementation uses a fixed seed, since we sometimes offline scores need # to be compared across sessions (e.g., during a vizier study). _EVAL_SPLIT_SEED = 12345 # How often to write summaries in seconds. _SUMMARIES_FLUSH_SECS = 10 def __init__(self, brain_id, spec_pb, checkpoint_path, summary_path=None, replay_buffer_capacity=_DEFAULT_REPLAY_BUFFER_CAPACITY, hparams=None, write_tflite=True, use_summaries=False, compile_graph=True): """Create a new ContinuousImitationBrain. Args: brain_id: Deprecated, will be removed. spec_pb: BrainSpec proto describing the properties of the brain to create. checkpoint_path: string, path where the TF checkpoints will be stored. summary_path: string, path where the TF summaries will be stored. replay_buffer_capacity: Frame capacity of the replay buffer. hparams: dict with hyperparameters for BCAgent, or None if default hparams should be used. write_tflite: Whether to convert saved models to tf-lite when saving policies. use_summaries: Whether to write TF summaries. compile_graph: Whether to compile the graph. Raises: ValueError: if any of the paths isn't set. """ assert spec_pb _patch_atomic_write_string_to_file() _ = brain_id self.spec_pb = spec_pb self.brain_spec = tfa_specs.BrainSpec(spec_pb) self.tf_agent = None self._eval_split_rng = random.Random(self._EVAL_SPLIT_SEED) self._demo_buffer = None self._eval_datastore = None self._replay_buffer = None self._replay_buffer_capacity = replay_buffer_capacity # Non-parameter members: self._reinitialize_dataset() self._hparams = ( BCAgent.update_derived_hparams(dict(hparams)) if hparams else BCAgent.default_hparams()) self._write_tflite = write_tflite self._policy_saver = None # Stats logged while training. self._num_train_frames = tf.Variable(0, dtype=tf.int32, trainable=False, name='_num_train_frames') self._num_eval_frames = tf.Variable(0, dtype=tf.int32, trainable=False, name='_num_eval_frames') if not checkpoint_path or (use_summaries and not summary_path): raise ValueError( 'checkpoint_path and summary_path (when using summaries) must be ' 'set.') self._use_summaries = use_summaries self._summary_path = None self._train_summary_writer = None self.summary_path = summary_path # Optionally create the summary writer. self._checkpoint_path = checkpoint_path self._checkpoint_trackable_objects = None self._checkpointer = None self._get_experiences = None self._train_step = None self.reinitialize_agent(compile_graph) # Also sets up checkpointer. def _initialize_step_buffers(self): """Initialize the replay buffer, demo buffer and eval datastore.""" # TF Replay buffer self._replay_buffer = numpy_replay_buffer.NumpyReplayBuffer( self.tf_agent.collect_data_spec, capacity=self._replay_buffer_capacity) self._reinitialize_dataset() # Temporary data buffer that accumulates full episodes before dividing the # data between training and eval set self._demo_buffer = demonstration_buffer.DemonstrationBuffer( self.brain_spec) # Storage for eval data. self._eval_datastore = eval_datastore.EvalDatastore() self.clear_step_buffers() def reinitialize_agent(self, compile_graph=False): """Re-initialize the tf-agent. If the checkpoint directory is wiped before calling this, this will trigger a reinitialization of network weights. Args: compile_graph: Whether to pre-compile the graph. """ falken_logging.info('(Re-)initializing BCAgent.') if not self.tf_agent: self.tf_agent = BCAgent( self.brain_spec, self._hparams, use_summaries=self._use_summaries) # We trigger retracing of the train_step function on restart, since # otherwise, some of the variables seem to be reused. inital_time = time.perf_counter() if self._hparams['use_tf_function']: self._get_experiences = common.function( self._py_fun_get_experiences, autograph=True) self._train_step = common.function( self._py_fun_train_step, autograph=True, experimental_compile=self._hparams['use_xla_jit']) else: self._get_experiences = self._py_fun_get_experiences self._train_step = self._py_fun_train_step falken_logging.info('Retraced train functions in ' f'{time.perf_counter() - inital_time} secs.') # Initialize demo, eval and replay buffers. self._initialize_step_buffers() # Force JIT compilation. if compile_graph: self._compile_graph() # Keys are names, values are trackable objects (see tf.train.Checkpoint # for details on trackables). self._checkpoint_trackable_objects = { 'agent': self.tf_agent, 'train_step_counter': self.tf_agent.train_step_counter, 'actor_net': self.tf_agent.actor_net, } # Create a checkpointer and, if it exists, restore from a checkpoint. self._checkpointer, restored_from_checkpoint = _create_checkpointer( self._checkpoint_path, self._checkpoint_trackable_objects) # If we didn't restore from a checkpoint, try restoring from the initial # state. if not restored_from_checkpoint: self.tf_agent.train_step_counter.assign(0) # Reset the model weights. if compile_graph: self.tf_agent.actor_net.initialize_weights() def _compile_graph(self): """Force compilation of the graph.""" # Ideally we would execute the graph with a minimum number of steps (i.e set # batch_size, num_batches_to_sample and training_steps to 1) to avoid # biasing the initial weights and minimize initialization time. # However, using tf.Variable instances to configure training parameters # has a number of drawbacks: # - It's not possible to _currently_ communicate variables across device # boundaries with XLA enabled. # - When variables that affect control flow in the graph are modified, # partial recompilation occurs. # # So instead this populates the demonstration buffer with random data # and trains for a single step to force compilation. self._replay_buffer.Add(demonstration_buffer.batch_trajectories( demonstration_buffer.episode_steps_to_trajectories( _generate_random_steps(self._hparams['batch_size'] * self._hparams['num_batches_to_sample'], self.brain_spec), self.brain_spec))) self._reinitialize_dataset() inital_time = time.perf_counter() self.train() falken_logging.info(f'Compiled in {time.perf_counter() - inital_time}s') self.tf_agent.train_step_counter.assign(0) self._replay_buffer.Clear() self._reinitialize_dataset() @property def num_train_frames(self): """Number of frames collected for training.""" return int(self._num_train_frames) @property def num_eval_frames(self): """Number of frames collected for training.""" return int(self._num_eval_frames) @property def global_step(self): """Number of batched gradient updates / global steps.""" return int(self.tf_agent.train_step_counter) @property def hparams(self): """Hyperparameter settings in dict form used in the brain currently.""" return dict(self._hparams) @property def summary_path(self): """Get the directory to write summaries.""" return self._summary_path @summary_path.setter def summary_path(self, path): """Set the summary directory to write summaries. Args: path: Directory to write summaries if _use_summaries is True. """ # Create a train summary writer that flushes periodically. if self._summary_path != path: self._summary_path = path if self._use_summaries: self._train_summary_writer = tf.compat.v2.summary.create_file_writer( self._summary_path, flush_millis=self.SUMMARIES_FLUSH_SECS * 1000) self._train_summary_writer.set_as_default() else: self._train_summary_writer = None @property def checkpoint_path(self): """Get the checkpoint directory.""" return self._checkpoint_path @checkpoint_path.setter def checkpoint_path(self, path): """Set the checkpoint directory and try to load from the directory. Args: path: Directory to write checkpoints. """ self._checkpoint_path = path self._checkpointer, _ = _create_checkpointer( self._checkpoint_path, self._checkpoint_trackable_objects) def _reinitialize_dataset(self): """Force dataset recreation from the replay buffer on _setup_dataset().""" self._dataset = None self._dataset_iterator = None def _setup_dataset(self): """Set up dataset and iterator.""" if self._dataset: return # TF agents expects a time dimension, so we add one dummy dimension in # front. def _add_time_dim(tensor_nest): # Add dummy time dimension of 1. return tf.nest.map_structure(lambda x: tf.expand_dims(x, axis=0), tensor_nest) ds = self._replay_buffer.AsDataset().map(_add_time_dim).cache().repeat() ds = ds.shuffle( self._replay_buffer.size).batch(self._hparams['batch_size']) # We apply a second batch dimension so that a batch of batches can be # prefetched before we enter the XLA/jit translated train function. # (which does not like the 'next' operator) ds = ds.batch(self._hparams['num_batches_to_sample']) ds = ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) self._dataset = ds self._dataset_iterator = iter(ds) def train(self): """Trains the brain using the collected data.""" initial_count_steps = int(self.global_step) initial_time = time.perf_counter() # set up dataset + iterator self._setup_dataset() with tf.compat.v2.summary.record_if(self._use_summaries): # TODO(wun): Determine why this is necessary. Currently without # this line, the default summary writer somehow gets set to # None, resulting in an empty TensorBoard. if self._train_summary_writer: self._train_summary_writer.set_as_default() self._train_step(self._get_experiences(self._dataset_iterator)) falken_logging.info( f'Trained {int(self.global_step) - initial_count_steps} steps in ' f'{time.perf_counter() - initial_time} seconds from ' f'{self._num_train_frames.numpy()} training_frames.') falken_logging.info( f'Trained {self.tf_agent.train_step_counter.numpy()} steps in ' f'total from {self._num_train_frames.numpy()} training frames.') def record_step(self, observation_pb, reward, phase, episode_id, action_pb, timestamp_micros): """Records a known state+action from a given env. Args: observation_pb: The observation data for this step. reward: The reward for this step. phase: The phase of the episode this step represents. episode_id: Id for the episode that's collecting this step. action_pb: Action data from brain or user. timestamp_micros: Microsecond timestamp of the step. """ self._demo_buffer.record_step( demonstration_buffer.Step( observation_pb=observation_pb, reward=reward, phase=phase, episode_id=episode_id, action_pb=action_pb, timestamp_micros=timestamp_micros)) # Add new completed episodes to buffers. for before, eval_trajectory, after in _select_sub_trajectories( self._demo_buffer.flush_episode_demonstrations(), self._EVAL_FRACTION, self._eval_split_rng): if not eval_trajectory: # If episode is too short for splitting, stochastically assign it to # either eval or training. assert not after if self._eval_split_rng.random() < self._EVAL_FRACTION: before, eval_trajectory = eval_trajectory, before for trajectory in [before, after]: if not trajectory: # Skip empty trajectory chunks. continue self._replay_buffer.Add(trajectory) chunk_size = _outer_dim_length(trajectory) self._num_train_frames.assign_add(chunk_size) falken_logging.info(f'Added {chunk_size} training frames.') self._reinitialize_dataset() if eval_trajectory: self._eval_datastore.add_trajectory(eval_trajectory) chunk_size = _outer_dim_length(eval_trajectory) self._num_eval_frames.assign_add(chunk_size) self._eval_datastore.create_version() falken_logging.info(f'Added {chunk_size} eval frames.') def clear_step_buffers(self): """Clear all steps from demo, eval and replay buffers.""" # Reset training and eval counters. self._num_train_frames.assign(0) self._num_eval_frames.assign(0) # Clear buffers. self._replay_buffer.Clear() self._demo_buffer.clear() self._eval_datastore.clear() self._reinitialize_dataset() @property def latest_checkpoint(self): return self._checkpointer.manager.latest_checkpoint def _create_export_policy(self): """Creates the policy for export based on hparams.""" assert isinstance(self.tf_agent.policy, greedy_policy.GreedyPolicy) stochastic_policy = self.tf_agent.policy.wrapped_policy policy_type = self._hparams['policy_type'] if policy_type == 'greedy': return self.tf_agent.policy elif policy_type == 'greedy_float': return policies.GreedyFloatPolicy(stochastic_policy) elif policy_type == 'noisy': return stochastic_policy else: raise UnknownHParamError(f'unknown policy_type: {policy_type}') @property def policy_saver(self): if not self._policy_saver: policy = self._create_export_policy() self._policy_saver = policy_saver.PolicySaver(policy, batch_size=1) return self._policy_saver def export_saved_model(self, path): """Export saved model.""" # Wrap in GreedyPolicy to make sure behavior is smooth. falken_logging.info(f'Exporting policy with action signature ' f'{self.policy_saver.action_input_spec}') falken_logging.info(f'Exporting policy with policy_step_spec' f'{self.policy_saver.policy_step_spec}') falken_logging.info(f'Exporting policy with policy_state_spec' f'{self.policy_saver.policy_state_spec}') os.makedirs(path, exist_ok=True) self.policy_saver.save(path) falken_logging.info(f'Exported SavedModel to policy to {path}') def convert_model_to_tflite(self, saved_model_path, tflite_path): """Convert saved model to tf-lite model.""" filename = 'model.tflite' os.makedirs(tflite_path, exist_ok=True) tflite_file = os.path.join(tflite_path, filename) with open(tflite_file, 'wb') as f: f.write(saved_model_to_tflite_model.convert(saved_model_path, ['action'])) def save_checkpoint(self, save_dir): """Serializes the trained policy to disk and moves to save_dir. Args: save_dir: Directory to save the latest checkpoint. This directory *must* be on the same filesystem as checkpoint_path specified on construction of this object. """ global_step = self.tf_agent.train_step_counter self._checkpointer.save(global_step) checkpoint_path_prefix = self.latest_checkpoint checkpoint_dir = os.path.dirname(checkpoint_path_prefix) # Move information on the latest checkpoint from the local # tensorflow checkpoint dir to the export location at policy_path. # Checkpoint files start with '<checkpoint_name>.'. os.makedirs(save_dir, exist_ok=True) for checkpoint_filename, copy in ( [(fname, False) for fname in glob.glob(checkpoint_path_prefix + '.*')] + # Copy 'checkpoint' metadata file (tracks state of the checkpoint # manager). [(os.path.join(checkpoint_dir, 'checkpoint'), True)]): target_filename = os.path.join( save_dir, os.path.basename(checkpoint_filename)) if copy: shutil.copy(checkpoint_filename, target_filename) else: # Create a hard link to the checkpoint file in the output directory. os.link(checkpoint_filename, target_filename) def full_eval_from_datastore(self, eval_ds): """Same as compute_full_evaluation, but from an external EvalDatastore. Args: eval_ds: EvalDatastore instance to use to evaluate this brain instance. Yields: (eval_dataset_version_id, mean_score) tuples where eval_dataset_version_id is the version of the evaluation dataset and mean_score is the evaluation score of the brain against the dataset. """ prev_size = 0 prev_score = 0 # Successive versions just incrementally add data. Since we're computing an # average score for each version, we can compute the evaluation # incrementally as well. for version_id, size, delta in eval_ds.get_version_deltas(): delta_score = self.tf_agent.evaluate(delta) weight = size / (size + prev_size) mean_score = weight * delta_score + (1 - weight) * prev_score yield version_id, float(mean_score) # Cast to float from tensor. prev_score, prev_size = mean_score, size + prev_size def compute_full_evaluation(self, path=None): """Yields a sequence of pairs of the form (eval_version, eval_score). Args: path: An optional policy path if we want to evaluate a different version rather than the currently active one. Yields: A sequence of pairs of the form (eval_version, eval_score). Raises: NoCheckpointFoundError: If the path was set but no checkpoint was found. """ if path is None: yield from self.full_eval_from_datastore(self._eval_datastore) else: # Create a copy of this brain for eval: with tf.name_scope('eval_brain'): cp_path = os.path.join(os.path.join(path, 'checkpoint/')) eval_brain = ContinuousImitationBrain( '', spec_pb=self.spec_pb, checkpoint_path=cp_path, # TODO(lph): Check if we need to use a separate summary path. summary_path=self._summary_path, replay_buffer_capacity=self._replay_buffer_capacity, hparams=self._hparams) if not eval_brain.latest_checkpoint: raise NoCheckpointFoundError( f'No checkpoints found in dir {cp_path}, {cp_path}/* is ' + str(glob.glob(cp_path + '*'))) yield from eval_brain.full_eval_from_datastore(self._eval_datastore) def _py_fun_get_experiences(self, iterator): """Return a batch of batches for use in _py_fun_train_step. Args: iterator: A dataset iterator. Returns: A Trajectory object representing a nest of tensors, where each tensor has batch dimensions num_batches_to_sample x batch_size. """ return next(iterator) def _py_fun_train_step(self, experiences): """Train for a single step. We pre-sample batches and consider them as input so that this function can be translated via experimental_compile=True with JIT XLA compilation. (The 'next' function does not support JIT XLA compilation right now.) Args: experiences: A Trajectory with data batched across two dimensions. The outer batch dimension is 'num_batches_to_sample' the inner batch dimension is 'batch_size'. In each training step, we move round robin around the outer batch dimension and feed an inner batch to tf-agents' train function. (The datastructure is generated by calling the function on the generating dataset - which is already batched). """ num_batches = self._hparams['num_batches_to_sample'] for i in tf.range(self._hparams['training_steps']): def _select_outer_batch(tensor): """Selects the ith outer batch of a tensor.""" # Using the loop variable i is ok here, since we're only ever using the # function inside the loop. return tensor[i % num_batches] # pylint: disable=cell-var-from-loop # Data in experiences has two batch dimensions (see the generation of the # dataset object in _setup_dataset()). We now create an object # that selects an outer batch, thus leaving the resulting object with # only one batch dimension. experience = tf.nest.map_structure(_select_outer_batch, experiences) self.tf_agent.train(experience=experience)
the-stack_106_24528
# -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import from .base import * DEBUG = False TEMPLATE_DEBUG = False ALLOWED_HOSTS = ["*"] STATIC_ROOT = '/home/vagrant/static' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': '/tmp/db.sqlite3', } }
the-stack_106_24531
"""Deprecated Magic functions. """ from __future__ import print_function #----------------------------------------------------------------------------- # Copyright (c) 2012 The IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Our own packages from IPython.core.magic import Magics, magics_class, line_magic #----------------------------------------------------------------------------- # Magic implementation classes #----------------------------------------------------------------------------- @magics_class class DeprecatedMagics(Magics): """Magics slated for later removal.""" @line_magic def install_profiles(self, parameter_s=''): """%install_profiles has been deprecated.""" print('\n'.join([ "%install_profiles has been deprecated.", "Use `ipython profile list` to view available profiles.", "Requesting a profile with `ipython profile create <name>`", "or `ipython --profile=<name>` will start with the bundled", "profile of that name if it exists." ])) @line_magic def install_default_config(self, parameter_s=''): """%install_default_config has been deprecated.""" print('\n'.join([ "%install_default_config has been deprecated.", "Use `ipython profile create <name>` to initialize a profile", "with the default config files.", "Add `--reset` to overwrite already existing config files with defaults." ]))
the-stack_106_24535
import unittest from apiai_assistant.widgets import SelectItem from apiai_assistant.widgets import OptionInfo class SelectItemTestCase(unittest.TestCase): def test_basic(self): key = "foobar" title = "bario" w_slct_item = SelectItem(title=title, option_info=OptionInfo(key)) self.assertEqual( w_slct_item.render(), { "title": title, "description": None, "optionInfo": { "key": key, "synonyms": [] }, "image": None } ) if __name__ == '__main__': unittest.main()
the-stack_106_24536
# -*- coding: utf-8 -*- """ Created on Wed May 30 13:41:15 2018 @author: mzw06 """ import torch.nn as nn import torch.nn.functional as F class RNNModel(nn.Module): """Container a recurrent module.""" def __init__(self, rnn_type, ninp, ntag, nhid, nlayers, dropout=0): super(RNNModel, self).__init__() self.drop = nn.Dropout(dropout) if rnn_type in ['LSTM', 'GRU']: self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout) else: try: nonlinearity = {'RNN_TANH': 'tanh', 'RNN_RELU': 'relu'}[rnn_type] except KeyError: raise ValueError( """An invalid option for `--model` was supplied, options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']""") self.rnn = nn.RNN(ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout) self.decoder = nn.Linear(nhid, ntag) self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers self.init_weights() def init_weights(self): initrange = 0.1 self.decoder.bias.data.fill_(0) self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, input, hidden): output, hidden = self.rnn(input, hidden) output = self.drop(output) decoded = self.decoder(output) return decoded, hidden def init_hidden(self, bsz): weight = next(self.parameters()) if self.rnn_type == 'LSTM': return (weight.new_zeros(self.nlayers, bsz, self.nhid), weight.new_zeros(self.nlayers, bsz, self.nhid)) else: return weight.new_zeros(self.nlayers, bsz, self.nhid) class CNNModel(nn.Module): """Container of a CNN module. """ def __init__(self, activation=F.relu, num_classes=3, dropout=0.5): super(CNNModel, self).__init__() self.activation = activation # convolution layers self.conv1 = nn.Conv2d(1, 8, kernel_size=4) self.bn1 = nn.BatchNorm2d(8) self.conv2 = nn.Conv1d(8, 8, kernel_size=4) self.bn2 = nn.BatchNorm1d(8) self.conv3 = nn.Conv1d(8, 16, kernel_size=4) self.bn3 = nn.BatchNorm1d(16) # fully connected layers self.fc1 = nn.Linear(16*22, 32) self.bn5 = nn.BatchNorm1d(32) self.fc2 = nn.Linear(32, num_classes) # max pooling self.pool = nn.MaxPool1d(2, 2) # dropout self.drop = nn.Dropout(dropout) def forward(self, x): x = self.bn1(self.conv1(x)) x = self.activation(x) x = x.view(x.size(0), x.size(1), -1) x = self.bn2(self.conv2(x)) x = self.pool(self.activation(x)) x = self.bn3(self.conv3(x)) x = self.pool(self.activation(x)) x = x.view(x.size(0), -1) x = self.bn5(self.fc1(x)) x = self.activation(x) x = self.drop(x) x = self.fc2(x) return x
the-stack_106_24537
import newspaper from newspaper import Article import requests from dragnet import content_extractor, content_comments_extractor from eatiht import etv2 from eatiht import v2 import eatiht from readability.readability import Document import urllib from bs4 import BeautifulSoup TARGET = 'http://giaitri.vnexpress.net' # ARTICLE = 'http://suckhoe.vnexpress.net/tin-tuc/dinh-duong/uong-nuoc-lanh' \ # '-giup-giam-can-3536234.html' ARTICLE = 'http://www.baomoi.com/ios-cach-khac-phuc-van-de-dinh-ma-doc-tu' \ '-redirect-quang-cao-khi-vao-bat-ki-website-nao/c/19620631.epi' # ARTICLE = 'https://vnhacker.blogspot.com/2017/01/nuoc-my-va-nguoi-nhap-cu' \ # '.html' # Dragnet only works with py27 def try_dragnet(): # fetch HTML r = requests.get(ARTICLE) # get main article without comments content = content_extractor.analyze(r.content) print("======") print(content) # get article and comments content_comments = content_comments_extractor.analyze(r.content) print("======") print(content_comments) def try_newspaper(): vne = newspaper.build(TARGET) a = Article(ARTICLE, language='vi') for article in vne.articles: print(article.url) a.download() a.parse() print("FIN") def try_readability(): html = urllib.request.urlopen(ARTICLE).read() doc = Document(html) con = BeautifulSoup(doc.summary()).get_text() tit = doc.short_title() print("===READABILITY===") print("=CONTENT=") print(con) print("=TITLE=") print(tit) def try_eatiht(): print("===EATIHT V2===") tree = etv2.extract(ARTICLE) tree.bootstrapify() print(tree.get_html_string()) print("===V2===") print(v2.extract(ARTICLE)) print("===V1===") print(eatiht.extract(ARTICLE)) def main(): try_newspaper() if __name__ == '__main__': if __name__ == '__main__': main() # newspaper load target --> detect categories --> cached --> filter by domain # --> detect article list --> filter for remove temp URL (#, ?..) --> pick # random articles and detect format --> validate format --> send to worker # --> worker start crawling --> if error happen, notify back to master
the-stack_106_24538
""" Author: Dr. John T. Hwang <[email protected]> This package is distributed under New BSD license. LHS sampling; uses the pyDOE2 package. """ from __future__ import division from pyDOE2 import lhs from six.moves import range from scipy.spatial.distance import pdist, cdist import numpy as np from smt.sampling_methods.sampling_method import SamplingMethod class LHS(SamplingMethod): def _initialize(self): self.options.declare('criterion', 'c', values=['center', 'maximin', 'centermaximin', 'correlation', 'c', 'm', 'cm', 'corr','ese'], types=str, desc='criterion used to construct the LHS design '+ 'c, m, cm and corr are abbreviation of center, maximin, centermaximin and correlation, respectively') def _compute(self, nt): """ Compute the requested number of sampling points. Arguments --------- nt : int Number of points requested. Returns ------- ndarray[nt, nx] The sampling locations in the input space. """ xlimits = self.options['xlimits'] nx = xlimits.shape[0] if self.options['criterion'] != 'ese': return lhs(nx, samples=nt, criterion=self.options['criterion']) elif self.options['criterion'] == 'ese': return self._ese(nx,nt) def _maximinESE(self, X, T0=None, outer_loop=None, inner_loop=None, J=20, tol=1e-3, p=10, return_hist=False, fixed_index=[]): """ Returns an optimized design starting from design X. For more information, see R. Jin, W. Chen and A. Sudjianto (2005): An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 134:268-287. Parameters ---------- X : array The design to be optimized T0 : double, optional Initial temperature of the algorithm. If set to None, a standard temperature is used. outer_loop : integer, optional The number of iterations of the outer loop. If None, set to min(1.5*dimension of LHS, 30) inner_loop : integer, optional The number of iterations of the inner loop. If None, set to min(20*dimension of LHS, 100) J : integer, optional Number of replications of the plan in the inner loop. Default to 20 tol : double, optional Tolerance for modification of Temperature T. Default to 0.001 p : integer, optional Power used in the calculation of the PhiP criterion. Default to 10 return_hist : boolean, optional If set to True, the function returns information about the behaviour of temperature, PhiP criterion and probability of acceptance during the process of optimization. Default to False Returns ------ X_best : array The optimized design hist : dictionnary If return_hist is set to True, returns a dictionnary containing the phiP ('PhiP') criterion, the temperature ('T') and the probability of acceptance ('proba') during the optimization. """ # Initialize parameters if not defined if T0 is None: T0 = 0.005*self._PhiP(X, p=p) if inner_loop is None: inner_loop = min(20*X.shape[1], 100) if outer_loop is None: outer_loop = min(int(1.5*X.shape[1]), 30) T = T0 X_ = X[:] # copy of initial plan X_best = X_[:] d = X.shape[1] PhiP_ = self._PhiP(X_best, p=p) PhiP_best = PhiP_ hist_T = list() hist_proba = list() hist_PhiP = list() hist_PhiP.append(PhiP_best) # Outer loop for z in range(outer_loop): PhiP_oldbest = PhiP_best n_acpt = 0 n_imp = 0 # Inner loop for i in range(inner_loop): modulo = (i+1)%d l_X = list() l_PhiP = list() # Build J different plans with a single exchange procedure # See description of PhiP_exchange procedure for j in range(J): l_X.append(X_.copy()) l_PhiP.append(self._PhiP_exchange(l_X[j], k=modulo, PhiP_=PhiP_, p=p, fixed_index=fixed_index)) l_PhiP = np.asarray(l_PhiP) k = np.argmin(l_PhiP) PhiP_try = l_PhiP[k] # Threshold of acceptance if PhiP_try - PhiP_ <= T * np.random.rand(1)[0]: PhiP_ = PhiP_try n_acpt = n_acpt + 1 X_ = l_X[k] # Best plan retained if PhiP_ < PhiP_best: X_best = X_ PhiP_best = PhiP_ n_imp = n_imp + 1 hist_PhiP.append(PhiP_best) p_accpt = float(n_acpt) / inner_loop # probability of acceptance p_imp = float(n_imp) / inner_loop # probability of improvement hist_T.extend(inner_loop*[T]) hist_proba.extend(inner_loop*[p_accpt]) if PhiP_best - PhiP_oldbest < tol: # flag_imp = 1 if p_accpt>=0.1 and p_imp<p_accpt: T = 0.8*T elif p_accpt>=0.1 and p_imp==p_accpt: pass else: T = T/0.8 else: # flag_imp = 0 if p_accpt<=0.1: T = T/0.7 else: T = 0.9*T hist = {'PhiP': hist_PhiP, 'T': hist_T, 'proba': hist_proba} if return_hist: return X_best, hist else: return X_best def _PhiP(self,X, p=10): """ Calculates the PhiP criterion of the design X with power p. X : array_like The design where to calculate PhiP p : integer The power used for the calculation of PhiP (default to 10) """ return ((pdist(X)**(-p)).sum()) ** (1./p) def _PhiP_exchange(self,X, k, PhiP_, p, fixed_index): """ Modifies X with a single exchange algorithm and calculates the corresponding PhiP criterion. Internal use. Optimized calculation of the PhiP criterion. For more information, see: R. Jin, W. Chen and A. Sudjianto (2005): An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 134:268-287. Parameters ---------- X : array_like The initial design (will be modified during procedure) k : integer The column where the exchange is proceeded PhiP_ : double The PhiP criterion of the initial design X p : integer The power used for the calculation of PhiP Returns ------ res : double The PhiP criterion of the modified design X """ # Choose two (different) random rows to perform the exchange i1 = np.random.randint(X.shape[0]) while i1 in fixed_index: i1 = np.random.randint(X.shape[0]) i2 = np.random.randint(X.shape[0]) while i2 == i1 or i2 in fixed_index: i2 = np.random.randint(X.shape[0]) X_ = np.delete(X, [i1,i2], axis=0) dist1 = cdist([X[i1,:]], X_) dist2 = cdist([X[i2,:]], X_) d1 = np.sqrt(dist1**2 + (X[i2,k] - X_[:,k])**2 - (X[i1,k] - X_[:,k])**2) d2 = np.sqrt(dist2**2 - (X[i2,k] - X_[:,k])**2 + (X[i1,k] - X_[:,k])**2) res = (PhiP_**p + (d1**(-p) - dist1**(-p) + d2**(-p) - dist2**(-p)).sum())**(1./p) X[i1,k], X[i2,k] = X[i2,k], X[i1,k] return res def _ese(self,dim,nt): # Parameters of maximinESE procedure P0 = lhs(dim, nt, criterion = None) J = 20 outer_loop = min(int(1.5*dim), 30) inner_loop = min(20*dim, 100) D0 = pdist(P0) R0 = np.corrcoef(P0) corr0 = np.max(np.abs(R0[R0!=1])) phip0 = self._PhiP(P0) P, historic = self._maximinESE(P0, outer_loop=outer_loop, inner_loop=inner_loop, J=J, tol=1e-3, p=10, return_hist=True) return P
the-stack_106_24541
import markdown from peewee import DoesNotExist, fn import tornado.web from model.model import Post, User, Tag, PostTag from config.config import conf from util.gravatar import Gravatar class BaseHandler(tornado.web.RequestHandler): """基础 Handler 所有Handler都要继承此类以获取必要的应用内通用方法和数据 """ @property def gravatar(self): return Gravatar @property def markdown(self): return markdown.markdown def get(self): """捕获404""" self.send_error(404) def get_current_user(self): """用户验证 如果存在 cookie 则根据用户 cookie 获取用户信息并返回, 否则返回 None """ uid = self.get_secure_cookie('uid') if not uid: return None else: user = '' try: user = User.get(User.id == uid) except DoesNotExist: self.clear_cookie('uid') return user def write_error(self, status_code, **kwargs): """重写404错误页 """ if status_code == 404: self.render('public/404.html') elif status_code == 500: self.render('public/500.html') else: self.write('error:' + str(status_code)) @staticmethod def get_side(): """获取侧边栏内容 通用侧边栏数据 """ side = { 'recent_post': Post.select().limit(conf['RECENT_POST_NUM']), 'random_post': Post.select().order_by(fn.Rand()).limit(conf['RANDOM_POST_NUM']), 'tags': Tag.select(Tag, fn.Count(Post.id).alias('count')).join(PostTag).join(Post).group_by(Tag), } return side def success(self, message='操作成功', url=''): """操作成功提示 """ self.render('message/success.html', message=message, url=url) def failure(self, message="操作失败", url=''): self.render('message/failure.html', message=message, url=url) def error(self, message="出现错误了", url=''): """操作失败提示 """ self.render('message/error.html', message=message, url=url)
the-stack_106_24542
# coding=utf-8 from typing import List from src.data_structure.data_structure import ListNode class Solution: """ 反转链表 """ def reverse_list(self, head: ListNode) -> ListNode: """ :param head: :return: """ pre, cur = None, head while cur: next = cur.next cur.next = pre pre = cur cur = next return pre
the-stack_106_24545
#!/usr/bin/python # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' module: ec2_vpc_nacl short_description: create and delete Network ACLs. version_added: 1.0.0 description: - Read the AWS documentation for Network ACLS U(https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ACLs.html) options: name: description: - Tagged name identifying a network ACL. - One and only one of the I(name) or I(nacl_id) is required. required: false type: str nacl_id: description: - NACL id identifying a network ACL. - One and only one of the I(name) or I(nacl_id) is required. required: false type: str vpc_id: description: - VPC id of the requesting VPC. - Required when state present. required: false type: str subnets: description: - The list of subnets that should be associated with the network ACL. - Must be specified as a list - Each subnet can be specified as subnet ID, or its tagged name. required: false type: list elements: str egress: description: - A list of rules for outgoing traffic. Each rule must be specified as a list. Each rule may contain the rule number (integer 1-32766), protocol (one of ['tcp', 'udp', 'icmp', 'ipv6-icmp', '-1', 'all']), the rule action ('allow' or 'deny') the CIDR of the IPv4 or IPv6 network range to allow or deny, the ICMP type (-1 means all types), the ICMP code (-1 means all codes), the last port in the range for TCP or UDP protocols, and the first port in the range for TCP or UDP protocols. See examples. default: [] required: false type: list elements: list ingress: description: - List of rules for incoming traffic. Each rule must be specified as a list. Each rule may contain the rule number (integer 1-32766), protocol (one of ['tcp', 'udp', 'icmp', 'ipv6-icmp', '-1', 'all']), the rule action ('allow' or 'deny') the CIDR of the IPv4 or IPv6 network range to allow or deny, the ICMP type (-1 means all types), the ICMP code (-1 means all codes), the last port in the range for TCP or UDP protocols, and the first port in the range for TCP or UDP protocols. See examples. default: [] required: false type: list elements: list tags: description: - Dictionary of tags to look for and apply when creating a network ACL. required: false type: dict state: description: - Creates or modifies an existing NACL - Deletes a NACL and reassociates subnets to the default NACL required: false type: str choices: ['present', 'absent'] default: present author: Mike Mochan (@mmochan) extends_documentation_fragment: - amazon.aws.aws - amazon.aws.ec2 ''' EXAMPLES = r''' # Complete example to create and delete a network ACL # that allows SSH, HTTP and ICMP in, and all traffic out. - name: "Create and associate production DMZ network ACL with DMZ subnets" community.aws.ec2_vpc_nacl: vpc_id: vpc-12345678 name: prod-dmz-nacl region: ap-southeast-2 subnets: ['prod-dmz-1', 'prod-dmz-2'] tags: CostCode: CC1234 Project: phoenix Description: production DMZ ingress: # rule no, protocol, allow/deny, cidr, icmp_type, icmp_code, # port from, port to - [100, 'tcp', 'allow', '0.0.0.0/0', null, null, 22, 22] - [200, 'tcp', 'allow', '0.0.0.0/0', null, null, 80, 80] - [205, 'tcp', 'allow', '::/0', null, null, 80, 80] - [300, 'icmp', 'allow', '0.0.0.0/0', 0, 8] - [305, 'ipv6-icmp', 'allow', '::/0', 0, 8] egress: - [100, 'all', 'allow', '0.0.0.0/0', null, null, null, null] - [105, 'all', 'allow', '::/0', null, null, null, null] state: 'present' - name: "Remove the ingress and egress rules - defaults to deny all" community.aws.ec2_vpc_nacl: vpc_id: vpc-12345678 name: prod-dmz-nacl region: ap-southeast-2 subnets: - prod-dmz-1 - prod-dmz-2 tags: CostCode: CC1234 Project: phoenix Description: production DMZ state: present - name: "Remove the NACL subnet associations and tags" community.aws.ec2_vpc_nacl: vpc_id: 'vpc-12345678' name: prod-dmz-nacl region: ap-southeast-2 state: present - name: "Delete nacl and subnet associations" community.aws.ec2_vpc_nacl: vpc_id: vpc-12345678 name: prod-dmz-nacl state: absent - name: "Delete nacl by its id" community.aws.ec2_vpc_nacl: nacl_id: acl-33b4ee5b state: absent ''' RETURN = r''' task: description: The result of the create, or delete action. returned: success type: dict nacl_id: description: The id of the NACL (when creating or updating an ACL) returned: success type: str sample: acl-123456789abcdef01 ''' try: import botocore except ImportError: pass # Handled by AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.core import AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.ec2 import AWSRetry # VPC-supported IANA protocol numbers # http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml PROTOCOL_NUMBERS = {'all': -1, 'icmp': 1, 'tcp': 6, 'udp': 17, 'ipv6-icmp': 58} # Utility methods def icmp_present(entry): if len(entry) == 6 and entry[1] in ['icmp', 'ipv6-icmp'] or entry[1] in [1, 58]: return True def load_tags(module): tags = [] if module.params.get('tags'): for name, value in module.params.get('tags').items(): tags.append({'Key': name, 'Value': str(value)}) tags.append({'Key': "Name", 'Value': module.params.get('name')}) else: tags.append({'Key': "Name", 'Value': module.params.get('name')}) return tags def subnets_removed(nacl_id, subnets, client, module): results = find_acl_by_id(nacl_id, client, module) associations = results['NetworkAcls'][0]['Associations'] subnet_ids = [assoc['SubnetId'] for assoc in associations] return [subnet for subnet in subnet_ids if subnet not in subnets] def subnets_added(nacl_id, subnets, client, module): results = find_acl_by_id(nacl_id, client, module) associations = results['NetworkAcls'][0]['Associations'] subnet_ids = [assoc['SubnetId'] for assoc in associations] return [subnet for subnet in subnets if subnet not in subnet_ids] def subnets_changed(nacl, client, module): changed = False vpc_id = module.params.get('vpc_id') nacl_id = nacl['NetworkAcls'][0]['NetworkAclId'] subnets = subnets_to_associate(nacl, client, module) if not subnets: default_nacl_id = find_default_vpc_nacl(vpc_id, client, module)[0] subnets = find_subnet_ids_by_nacl_id(nacl_id, client, module) if subnets: replace_network_acl_association(default_nacl_id, subnets, client, module) changed = True return changed changed = False return changed subs_added = subnets_added(nacl_id, subnets, client, module) if subs_added: replace_network_acl_association(nacl_id, subs_added, client, module) changed = True subs_removed = subnets_removed(nacl_id, subnets, client, module) if subs_removed: default_nacl_id = find_default_vpc_nacl(vpc_id, client, module)[0] replace_network_acl_association(default_nacl_id, subs_removed, client, module) changed = True return changed def nacls_changed(nacl, client, module): changed = False params = dict() params['egress'] = module.params.get('egress') params['ingress'] = module.params.get('ingress') nacl_id = nacl['NetworkAcls'][0]['NetworkAclId'] nacl = describe_network_acl(client, module) entries = nacl['NetworkAcls'][0]['Entries'] egress = [rule for rule in entries if rule['Egress'] is True and rule['RuleNumber'] < 32767] ingress = [rule for rule in entries if rule['Egress'] is False and rule['RuleNumber'] < 32767] if rules_changed(egress, params['egress'], True, nacl_id, client, module): changed = True if rules_changed(ingress, params['ingress'], False, nacl_id, client, module): changed = True return changed def tags_changed(nacl_id, client, module): changed = False tags = dict() if module.params.get('tags'): tags = module.params.get('tags') if module.params.get('name') and not tags.get('Name'): tags['Name'] = module.params['name'] nacl = find_acl_by_id(nacl_id, client, module) if nacl['NetworkAcls']: nacl_values = [t.values() for t in nacl['NetworkAcls'][0]['Tags']] nacl_tags = [item for sublist in nacl_values for item in sublist] tag_values = [[key, str(value)] for key, value in tags.items()] tags = [item for sublist in tag_values for item in sublist] if sorted(nacl_tags) == sorted(tags): changed = False return changed else: delete_tags(nacl_id, client, module) create_tags(nacl_id, client, module) changed = True return changed return changed def rules_changed(aws_rules, param_rules, Egress, nacl_id, client, module): changed = False rules = list() for entry in param_rules: rules.append(process_rule_entry(entry, Egress)) if rules == aws_rules: return changed else: removed_rules = [x for x in aws_rules if x not in rules] if removed_rules: params = dict() for rule in removed_rules: params['NetworkAclId'] = nacl_id params['RuleNumber'] = rule['RuleNumber'] params['Egress'] = Egress delete_network_acl_entry(params, client, module) changed = True added_rules = [x for x in rules if x not in aws_rules] if added_rules: for rule in added_rules: rule['NetworkAclId'] = nacl_id create_network_acl_entry(rule, client, module) changed = True return changed def is_ipv6(cidr): return ':' in cidr def process_rule_entry(entry, Egress): params = dict() params['RuleNumber'] = entry[0] params['Protocol'] = str(PROTOCOL_NUMBERS[entry[1]]) params['RuleAction'] = entry[2] params['Egress'] = Egress if is_ipv6(entry[3]): params['Ipv6CidrBlock'] = entry[3] else: params['CidrBlock'] = entry[3] if icmp_present(entry): params['IcmpTypeCode'] = {"Type": int(entry[4]), "Code": int(entry[5])} else: if entry[6] or entry[7]: params['PortRange'] = {"From": entry[6], 'To': entry[7]} return params def restore_default_associations(assoc_ids, default_nacl_id, client, module): if assoc_ids: params = dict() params['NetworkAclId'] = default_nacl_id[0] for assoc_id in assoc_ids: params['AssociationId'] = assoc_id restore_default_acl_association(params, client, module) return True def construct_acl_entries(nacl, client, module): for entry in module.params.get('ingress'): params = process_rule_entry(entry, Egress=False) params['NetworkAclId'] = nacl['NetworkAcl']['NetworkAclId'] create_network_acl_entry(params, client, module) for rule in module.params.get('egress'): params = process_rule_entry(rule, Egress=True) params['NetworkAclId'] = nacl['NetworkAcl']['NetworkAclId'] create_network_acl_entry(params, client, module) # Module invocations def setup_network_acl(client, module): changed = False nacl = describe_network_acl(client, module) if not nacl['NetworkAcls']: nacl = create_network_acl(module.params.get('vpc_id'), client, module) nacl_id = nacl['NetworkAcl']['NetworkAclId'] create_tags(nacl_id, client, module) subnets = subnets_to_associate(nacl, client, module) replace_network_acl_association(nacl_id, subnets, client, module) construct_acl_entries(nacl, client, module) changed = True return(changed, nacl['NetworkAcl']['NetworkAclId']) else: changed = False nacl_id = nacl['NetworkAcls'][0]['NetworkAclId'] changed |= subnets_changed(nacl, client, module) changed |= nacls_changed(nacl, client, module) changed |= tags_changed(nacl_id, client, module) return (changed, nacl_id) def remove_network_acl(client, module): changed = False result = dict() nacl = describe_network_acl(client, module) if nacl['NetworkAcls']: nacl_id = nacl['NetworkAcls'][0]['NetworkAclId'] vpc_id = nacl['NetworkAcls'][0]['VpcId'] associations = nacl['NetworkAcls'][0]['Associations'] assoc_ids = [a['NetworkAclAssociationId'] for a in associations] default_nacl_id = find_default_vpc_nacl(vpc_id, client, module) if not default_nacl_id: result = {vpc_id: "Default NACL ID not found - Check the VPC ID"} return changed, result if restore_default_associations(assoc_ids, default_nacl_id, client, module): delete_network_acl(nacl_id, client, module) changed = True result[nacl_id] = "Successfully deleted" return changed, result if not assoc_ids: delete_network_acl(nacl_id, client, module) changed = True result[nacl_id] = "Successfully deleted" return changed, result return changed, result # Boto3 client methods @AWSRetry.jittered_backoff() def _create_network_acl(client, *args, **kwargs): return client.create_network_acl(*args, **kwargs) def create_network_acl(vpc_id, client, module): try: if module.check_mode: nacl = dict(NetworkAcl=dict(NetworkAclId="nacl-00000000")) else: nacl = _create_network_acl(client, VpcId=vpc_id) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) return nacl @AWSRetry.jittered_backoff(catch_extra_error_codes=['InvalidNetworkAclID.NotFound']) def _create_network_acl_entry(client, *args, **kwargs): return client.create_network_acl_entry(*args, **kwargs) def create_network_acl_entry(params, client, module): try: if not module.check_mode: _create_network_acl_entry(client, **params) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) @AWSRetry.jittered_backoff(catch_extra_error_codes=['InvalidNetworkAclID.NotFound']) def _create_tags(client, *args, **kwargs): return client.create_tags(*args, **kwargs) def create_tags(nacl_id, client, module): try: delete_tags(nacl_id, client, module) if not module.check_mode: _create_tags(client, Resources=[nacl_id], Tags=load_tags(module)) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) @AWSRetry.jittered_backoff() def _delete_network_acl(client, *args, **kwargs): return client.delete_network_acl(*args, **kwargs) def delete_network_acl(nacl_id, client, module): try: if not module.check_mode: _delete_network_acl(client, NetworkAclId=nacl_id) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) @AWSRetry.jittered_backoff(catch_extra_error_codes=['InvalidNetworkAclID.NotFound']) def _delete_network_acl_entry(client, *args, **kwargs): return client.delete_network_acl_entry(*args, **kwargs) def delete_network_acl_entry(params, client, module): try: if not module.check_mode: _delete_network_acl_entry(client, **params) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) @AWSRetry.jittered_backoff(catch_extra_error_codes=['InvalidNetworkAclID.NotFound']) def _delete_tags(client, *args, **kwargs): return client.delete_tags(*args, **kwargs) def delete_tags(nacl_id, client, module): try: if not module.check_mode: _delete_tags(client, Resources=[nacl_id]) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) @AWSRetry.jittered_backoff() def _describe_network_acls(client, **kwargs): return client.describe_network_acls(**kwargs) @AWSRetry.jittered_backoff(catch_extra_error_codes=['InvalidNetworkAclID.NotFound']) def _describe_network_acls_retry_missing(client, **kwargs): return client.describe_network_acls(**kwargs) def describe_acl_associations(subnets, client, module): if not subnets: return [] try: results = _describe_network_acls_retry_missing(client, Filters=[ {'Name': 'association.subnet-id', 'Values': subnets} ]) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) associations = results['NetworkAcls'][0]['Associations'] return [a['NetworkAclAssociationId'] for a in associations if a['SubnetId'] in subnets] def describe_network_acl(client, module): try: if module.params.get('nacl_id'): nacl = _describe_network_acls(client, Filters=[ {'Name': 'network-acl-id', 'Values': [module.params.get('nacl_id')]} ]) else: nacl = _describe_network_acls(client, Filters=[ {'Name': 'tag:Name', 'Values': [module.params.get('name')]} ]) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) return nacl def find_acl_by_id(nacl_id, client, module): try: return _describe_network_acls_retry_missing(client, NetworkAclIds=[nacl_id]) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) def find_default_vpc_nacl(vpc_id, client, module): try: response = _describe_network_acls_retry_missing(client, Filters=[ {'Name': 'vpc-id', 'Values': [vpc_id]}]) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) nacls = response['NetworkAcls'] return [n['NetworkAclId'] for n in nacls if n['IsDefault'] is True] def find_subnet_ids_by_nacl_id(nacl_id, client, module): try: results = _describe_network_acls_retry_missing(client, Filters=[ {'Name': 'association.network-acl-id', 'Values': [nacl_id]} ]) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) if results['NetworkAcls']: associations = results['NetworkAcls'][0]['Associations'] return [s['SubnetId'] for s in associations if s['SubnetId']] else: return [] @AWSRetry.jittered_backoff(catch_extra_error_codes=['InvalidNetworkAclID.NotFound']) def _replace_network_acl_association(client, *args, **kwargs): return client.replace_network_acl_association(*args, **kwargs) def replace_network_acl_association(nacl_id, subnets, client, module): params = dict() params['NetworkAclId'] = nacl_id for association in describe_acl_associations(subnets, client, module): params['AssociationId'] = association try: if not module.check_mode: _replace_network_acl_association(client, **params) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) @AWSRetry.jittered_backoff(catch_extra_error_codes=['InvalidNetworkAclID.NotFound']) def _replace_network_acl_entry(client, *args, **kwargs): return client.replace_network_acl_entry(*args, **kwargs) def replace_network_acl_entry(entries, Egress, nacl_id, client, module): for entry in entries: params = entry params['NetworkAclId'] = nacl_id try: if not module.check_mode: _replace_network_acl_entry(client, **params) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) @AWSRetry.jittered_backoff(catch_extra_error_codes=['InvalidNetworkAclID.NotFound']) def _replace_network_acl_association(client, *args, **kwargs): return client.replace_network_acl_association(*args, **kwargs) def restore_default_acl_association(params, client, module): try: if not module.check_mode: _replace_network_acl_association(client, **params) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) @AWSRetry.jittered_backoff() def _describe_subnets(client, *args, **kwargs): return client.describe_subnets(*args, **kwargs) def subnets_to_associate(nacl, client, module): params = list(module.params.get('subnets')) if not params: return [] all_found = [] if any(x.startswith("subnet-") for x in params): try: subnets = _describe_subnets(client, Filters=[ {'Name': 'subnet-id', 'Values': params}]) all_found.extend(subnets.get('Subnets', [])) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) if len(params) != len(all_found): try: subnets = _describe_subnets(client, Filters=[ {'Name': 'tag:Name', 'Values': params}]) all_found.extend(subnets.get('Subnets', [])) except botocore.exceptions.ClientError as e: module.fail_json_aws(e) return list(set(s['SubnetId'] for s in all_found if s.get('SubnetId'))) def main(): argument_spec = dict( vpc_id=dict(), name=dict(), nacl_id=dict(), subnets=dict(required=False, type='list', default=list(), elements='str'), tags=dict(required=False, type='dict'), ingress=dict(required=False, type='list', default=list(), elements='list'), egress=dict(required=False, type='list', default=list(), elements='list'), state=dict(default='present', choices=['present', 'absent']), ) module = AnsibleAWSModule(argument_spec=argument_spec, supports_check_mode=True, required_one_of=[['name', 'nacl_id']], required_if=[['state', 'present', ['vpc_id']]]) state = module.params.get('state').lower() client = module.client('ec2') invocations = { "present": setup_network_acl, "absent": remove_network_acl } (changed, results) = invocations[state](client, module) module.exit_json(changed=changed, nacl_id=results) if __name__ == '__main__': main()
the-stack_106_24546
#! /usr/bin/env python # Copyright 2019 Vimal Manohar # Apache 2.0. """This script converts an RTTM with speaker info into kaldi utt2spk and segments""" import argparse def get_args(): parser = argparse.ArgumentParser( description="""This script converts an RTTM with speaker info into kaldi utt2spk and segments""" ) parser.add_argument( "--use-reco-id-as-spkr", type=str, choices=["true", "false"], default="false", help="Use the recording ID based on RTTM and " "reco2file_and_channel as the speaker", ) parser.add_argument( "--append-reco-id-to-spkr", type=str, choices=["true", "false"], default="false", help="Append recording ID to the speaker ID", ) parser.add_argument( "rttm_file", type=str, help="""Input RTTM file. The format of the RTTM file is <type> <file-id> <channel-id> <begin-time> """ """<end-time> <NA> <NA> <speaker> <conf>""", ) parser.add_argument( "reco2file_and_channel", type=str, help="""Input reco2file_and_channel. The format is <recording-id> <file-id> <channel-id>.""", ) parser.add_argument("utt2spk", type=str, help="Output utt2spk file") parser.add_argument("segments", type=str, help="Output segments file") args = parser.parse_args() args.use_reco_id_as_spkr = bool(args.use_reco_id_as_spkr == "true") args.append_reco_id_to_spkr = bool(args.append_reco_id_to_spkr == "true") if args.use_reco_id_as_spkr: if args.append_reco_id_to_spkr: raise Exception( """Appending recording ID to speaker does not make sense when using --use-reco-id-as-spkr=true""" ) return args def main(): args = get_args() file_and_channel2reco = {} utt2spk = {} segments = {} for line in open(args.reco2file_and_channel): parts = line.strip().split() file_and_channel2reco[(parts[1], parts[2])] = parts[0] utt2spk_writer = open(args.utt2spk, "w") segments_writer = open(args.segments, "w") for line in open(args.rttm_file): parts = line.strip().split() if parts[0] != "SPEAKER": continue file_id = parts[1] channel = parts[2] try: reco = file_and_channel2reco[(file_id, channel)] except KeyError as e: raise Exception( "Could not find recording with " "(file_id, channel) " "= ({0},{1}) in {2}: {3}\n".format( file_id, channel, args.reco2file_and_channel, str(e) ) ) start_time = float(parts[3]) end_time = start_time + float(parts[4]) if args.use_reco_id_as_spkr: spkr = reco else: if args.append_reco_id_to_spkr: spkr = parts[7] + "_" + reco else: spkr = parts[7] st = int(start_time * 100) end = int(end_time * 100) utt = "{0}_{1:06d}_{2:06d}".format(spkr, st, end) utt2spk[utt] = spkr segments[utt] = (reco, start_time, end_time) for uttid_id in sorted(utt2spk): utt2spk_writer.write("{0} {1}\n".format(uttid_id, utt2spk[uttid_id])) segments_writer.write( "{0} {1} {2:7.2f} {3:7.2f}\n".format( uttid_id, segments[uttid_id][0], segments[uttid_id][1], segments[uttid_id][2], ) ) if __name__ == "__main__": main()
the-stack_106_24547
# Copyright 2019 The TensorTrade Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from enum import Enum from typing import Callable from tensortrade.base import TimedIdentifiable from tensortrade.base.exceptions import InvalidOrderQuantity, InsufficientFundsForAllocation from tensortrade.instruments import Quantity from tensortrade.trades import Trade, TradeSide, TradeType class OrderStatus(Enum): PENDING = 'pending' OPEN = 'open' CANCELLED = 'cancelled' PARTIALLY_FILLED = 'partially_filled' FILLED = 'filled' def __str__(self): return self.value class Order(TimedIdentifiable): """ Responsibilities of the Order: 1. Confirming its own validity. 2. Tracking its trades and reporting it back to the broker. 3. Managing movement of quantities from order to order. 4. Generating the next order in its path given that there is a 'OrderSpec' for how to make the next order. 5. Managing its own state changes when it can. """ def __init__(self, step: int, side: TradeSide, trade_type: TradeType, pair: 'TradingPair', quantity: 'Quantity', portfolio: 'Portfolio', price: float, criteria: Callable[['Order', 'Exchange'], bool] = None, path_id: str = None): if quantity.size == 0: raise InvalidOrderQuantity(quantity) self.step = step self.side = side self.type = trade_type self.pair = pair self.quantity = quantity self.portfolio = portfolio self.price = price self.criteria = criteria self.path_id = path_id or self.id self.status = OrderStatus.PENDING self.filled_size = 0 self.remaining_size = self.size self._specs = [] self._listeners = [] self._trades = [] self.quantity.lock_for(self.path_id) @property def size(self) -> float: if self.pair.base is self.quantity.instrument: return round(self.quantity.size, self.pair.base.precision) return round(self.quantity.size * self.price, self.pair.base.precision) @property def price(self) -> float: return self._price @price.setter def price(self, price: float): self._price = price @property def base_instrument(self) -> 'Instrument': return self.pair.base @property def quote_instrument(self) -> 'Instrument': return self.pair.quote @property def trades(self): return self._trades @property def is_buy(self) -> bool: return self.side == TradeSide.BUY @property def is_sell(self) -> bool: return self.side == TradeSide.SELL @property def is_limit_order(self) -> bool: return self.type == TradeType.LIMIT @property def is_market_order(self) -> bool: return self.type == TradeType.MARKET def is_executable_on(self, exchange: 'Exchange'): return self.criteria is None or self.criteria(self, exchange) def is_complete(self): return self.remaining_size == 0 def add_order_spec(self, order_spec: 'OrderSpec') -> 'Order': self._specs = [order_spec] + self._specs return self def attach(self, listener: 'OrderListener'): self._listeners += [listener] def detach(self, listener: 'OrderListener'): self._listeners.remove(listener) def execute(self, exchange: 'Exchange'): self.status = OrderStatus.OPEN instrument = self.pair.base if self.side == TradeSide.BUY else self.pair.quote wallet = self.portfolio.get_wallet(exchange.id, instrument=instrument) if self.path_id not in wallet.locked.keys(): try: wallet -= self.size * instrument except InsufficientFundsForAllocation: size = wallet.balance.size wallet -= size * instrument self.quantity = Quantity(instrument, size, path_id=self.path_id) wallet += self.quantity if self.portfolio.order_listener: self.attach(self.portfolio.order_listener) for listener in self._listeners or []: listener.on_execute(self, exchange) exchange.execute_order(self, self.portfolio) def fill(self, exchange: 'Exchange', trade: Trade): self.status = OrderStatus.PARTIALLY_FILLED fill_size = round(trade.size + trade.commission.size, self.pair.base.precision) self.filled_size += fill_size self.remaining_size -= fill_size for listener in self._listeners or []: listener.on_fill(self, exchange, trade) def complete(self, exchange: 'Exchange') -> 'Order': self.status = OrderStatus.FILLED order = None if self._specs: order_spec = self._specs.pop() order = order_spec.create_order(self, exchange) for listener in self._listeners or []: listener.on_complete(self, exchange) self._listeners = [] return order or self.release() def cancel(self, exchange: 'Exchange'): self.status = OrderStatus.CANCELLED for listener in self._listeners or []: listener.on_cancel(self, exchange) self._listeners = [] self.release() def release(self): for wallet in self.portfolio.wallets: wallet.deallocate(self.path_id) def to_dict(self): return { "id": self.id, "step": self.step, "status": self.status, "type": self.type, "side": self.side, "pair": self.pair, "quantity": self.quantity, "size": self.size, "filled_size": self.filled_size, "price": self.price, "criteria": self.criteria, "path_id": self.path_id } def to_json(self): return { "id": str(self.id), "step": self.step, "status": str(self.status), "type": str(self.type), "side": str(self.side), "base_symbol": str(self.pair.base.symbol), "quote_symbol": str(self.pair.quote.symbol), "quantity": str(self.quantity), "size": str(self.size), "filled_size": str(self.filled_size), "price": str(self.price), "criteria": str(self.criteria), "path_id": str(self.path_id) } def __iadd__(self, recipe: 'OrderSpec') -> 'Order': return self.add_order_spec(recipe) def __str__(self): data = ['{}={}'.format(k, v) for k, v in self.to_dict().items()] return '<{}: {}>'.format(self.__class__.__name__, ', '.join(data)) def __repr__(self): return str(self)
the-stack_106_24550
""" This module is an example of a barebones numpy reader plugin for napari. It implements the ``napari_get_reader`` hook specification, (to create a reader plugin) but your plugin may choose to implement any of the hook specifications offered by napari. see: https://napari.org/docs/plugins/hook_specifications.html Replace code below accordingly. For complete documentation see: https://napari.org/docs/plugins/for_plugin_developers.html """ import numpy as np import dask.array as da import dask from napari_plugin_engine import napari_hook_implementation from aicsimageio import AICSImage, imread color_maps = ["bop purple", "bop orange", "bop blue", "green", "blue"] SUPPORTED_FORMATS = ('.lif', '.czi') @napari_hook_implementation def napari_get_reader(path): """A basic implementation of the napari_get_reader hook specification. Parameters ---------- path : str or list of str Path to file, or list of paths. Returns ------- function or None If the path is a recognized format, return a function that accepts the same path or list of paths, and returns a list of layer data tuples. """ # we are not loading multiple files at a time if isinstance(path, str) and path.endswith(SUPPORTED_FORMATS): return reader_function return None def reader_function(path): """Take a path or list of paths and return a list of LayerData tuples. Readers are expected to return data as a list of tuples, where each tuple is (data, [add_kwargs, [layer_type]]), "add_kwargs" and "layer_type" are both optional. Parameters ---------- path : str or list of str Path to file, or list of paths. Returns ------- layer_data : list of tuples A list of LayerData tuples where each tuple in the list contains (data, metadata, layer_type), where data is a numpy array, metadata is a dict of keyword arguments for the corresponding viewer.add_* method in napari, and layer_type is a lower-case string naming the type of layer. Both "meta", and "layer_type" are optional. napari will default to layer_type=="image" if not provided """ print("reading file ", path) aics_img = AICSImage(path) # dims are normaly in "STCZYX" number_of_channels = aics_img.size_c number_of_time_points = aics_img.size_t nz = aics_img.size_z ny = aics_img.size_y nx = aics_img.size_x name_of_channels = aics_img.get_channel_names() pixel_x, pixel_y, pixel_z = aics_img.get_physical_pixel_size() scale = [1, pixel_z, pixel_y, pixel_x] print("number_of_channels", number_of_channels) print("number_of_time_points", number_of_time_points) print("name_of_channels", name_of_channels) print("scale", scale) print("nz", nz) layer_list = [] channel_dict = {} # for channel in name_of_channels: # channel_dict[channel] = {} if number_of_channels > 1: print("number_of_channels > 1") for cindex , channel_name in enumerate(name_of_channels): if number_of_time_points > 1: print("number_of_time_points > 1") if nz > 1: arr = da.stack( [ aics_img.get_image_dask_data('ZYX', S=0, C=cindex, T=tindex) for tindex in range(number_of_time_points) ] ) else: arr = da.stack( [ aics_img.get_image_dask_data('YX', S=0, C=cindex, T=tindex, Z=0) for tindex in range(number_of_time_points) ] ) scale = [1, pixel_y, pixel_x] else : if nz > 1: arr = aics_img.get_image_dask_data('ZYX', S=0, C=cindex, T=0) scale = [pixel_z, pixel_y, pixel_x] else: print("number_of_time_points < 1") print("nz < 1") print("cindex: ", cindex) print("channel_name: ", channel_name) arr = aics_img.get_image_dask_data('YX', S=0, C=cindex, T=0, Z=0) scale = [pixel_y, pixel_x] print("arr.shape",arr.shape) channel_dict[channel_name] = { "data" : dask.optimize(arr)[0], "colormap": color_maps[cindex % len(color_maps)] } else: if number_of_time_points > 1: if nz > 1: arr = da.stack( [ aics_img.get_image_dask_data('ZYX', S=0, C=0, T=tindex) for tindex in range(number_of_time_points) ] ) else: arr = da.stack( [ aics_img.get_image_dask_data('YX', S=0, C=0, T=tindex, Z=0) for tindex in range(number_of_time_points) ] ) scale = [1, pixel_y, pixel_x] else : if nz > 1: arr = aics_img.get_image_dask_data('ZYX', S=0, C=0, T=0) scale = [pixel_z, pixel_y, pixel_x] else: arr = aics_img.get_image_dask_data('YX', S=0, C=0, T=0, Z=0) scale = [pixel_y, pixel_x] channel_dict[channel_name] = { "data" : dask.optimize(arr)[0], "colormap": color_maps[0] } for channel_name, channel in channel_dict.items(): print("creating layer channel_name", channel_name) add_kwargs = { "name": channel_name, "blending" : 'additive', "rendering" : "mip", "scale": scale, "colormap": channel['colormap'] } print("channel['data'].shape", channel['data'].shape) layer_list.append( ( channel['data'], #data add_kwargs, # kwargs "image" # layer type ) ) return layer_list
the-stack_106_24551
# MIT License # Copyright (c) 2021 AWS Cloud Community LPU # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import re from datetime import datetime import time import secrets as keys import random from os import path import feedparser import tweepy import constants as C def message_creator(entry) -> str: """Returns news in a proper format Keyword arguments: entry : a perticular entry of rss feed used for extracting data. """ cleanr = re.compile( '<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});') summary = re.sub(cleanr, '', entry.summary) title_length = len(entry.title) + 40 summary_length = 280 - title_length message = entry.title + "\n\n" + \ summary[:summary_length] + "... " + entry.link return message def check_time(): while True: now = datetime.now() current_time = now.strftime("%H:%M:%S") time.sleep(30) if str(current_time) in ("06:00:00", "06:00:01", "06:00:02"): time.sleep(1) return "morning" if str(current_time) in ("14:00:00", "14:00:01", "14:00:02"): time.sleep(1) return "afternoon" if str(current_time) in ("22:00:00", "22:00:01", "22:00:02"): time.sleep(1) return "night" def feed_parser(): """Parses feed of AWS What's new and gives non duplicate news. """ if not path.exists(C.TITLE_STORE): open(C.TITLE_STORE, 'a').close() news_feed = feedparser.parse(C.AWS_FEED_URL) with open(C.TITLE_STORE, "r") as title_file: line_titles = title_file.readlines() for entry in news_feed.entries: flag = 0 for line_title in line_titles: if str(entry.title)+"\n" == line_title: flag = 1 if flag == 0: return entry return news_feed.entries[0] def main(): auth = tweepy.OAuthHandler(keys.API_KEY, keys.API_SECRET_KEY) auth.set_access_token(keys.ACCESS_TOKEN, keys.ACCESS_TOKEN_SECRET) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) while True: entry = feed_parser() time_status = check_time() print(entry.title, file=open(C.TITLE_STORE, 'a+')) message = message_creator(entry) print(len(message)) print(message) api.update_status(message) if __name__ == "__main__": main()
the-stack_106_24554
# -*- coding: utf-8 -*- """Version information for PyKEEN.""" import os import sys from functools import lru_cache from subprocess import CalledProcessError, check_output # noqa: S404 from typing import Optional __all__ = [ 'VERSION', 'get_version', 'get_git_hash', 'get_git_branch', 'env', ] VERSION = '1.4.1-dev' @lru_cache(maxsize=2) def get_git_hash(terse: bool = True) -> str: """Get the PyKEEN git hash. :return: The git hash, equals 'UNHASHED' if encountered CalledProcessError, signifying that the code is not installed in development mode. """ rv = _run('git', 'rev-parse', 'HEAD') if rv is None: return 'UNHASHED' if terse: return rv[:8] return rv @lru_cache(maxsize=1) def get_git_branch() -> Optional[str]: """Get the PyKEEN branch, if installed from git in editable mode. :return: Returns the name of the current branch, or None if not installed in development mode. """ return _run('git', 'branch', '--show-current') def _run(*args: str) -> Optional[str]: with open(os.devnull, 'w') as devnull: try: ret = check_output( # noqa: S603,S607 args, cwd=os.path.dirname(__file__), stderr=devnull, ) except CalledProcessError: return None else: return ret.strip().decode('utf-8') def get_version(with_git_hash: bool = False) -> str: """Get the PyKEEN version string, including a git hash. :param with_git_hash: If set to True, the git hash will be appended to the version. :return: The PyKEEN version as well as the git hash, if the parameter with_git_hash was set to true. """ return f'{VERSION}-{get_git_hash(terse=True)}' if with_git_hash else VERSION def env_table(tablefmt='github', headers=('Key', 'Value')) -> str: """Generate a table describing the environment in which PyKEEN is being run.""" import torch import platform from tabulate import tabulate import getpass import time rows = [ ('OS', os.name), ('Platform', platform.system()), ('Release', platform.release()), ('User', getpass.getuser()), ('Time', str(time.asctime())), ('Python', f'{sys.version_info[0]}.{sys.version_info[1]}.{sys.version_info[2]}'), ('PyKEEN', get_version()), ('PyKEEN Hash', get_git_hash()), ('PyKEEN Branch', get_git_branch()), ('PyTorch', torch.__version__), ('CUDA Available?', str(torch.cuda.is_available()).lower()), ('CUDA Version', torch.version.cuda or 'N/A'), ('cuDNN Version', torch.backends.cudnn.version() or 'N/A'), ] return tabulate(rows, tablefmt=tablefmt, headers=headers) def env_html(): """Output the environment table as HTML for usage in Jupyter.""" from IPython.display import HTML return HTML(env_table(tablefmt='html')) def env(file=None): """Print the env or output as HTML if in Jupyter. :param: The file to print to if not in a Jupyter setting. Defaults to sys.stdout :returns: A :class:`IPython.display.HTML` if in a Jupyter notebook setting, otherwise none. """ if _in_jupyter(): return env_html() else: print(env_table(), file=file) def _in_jupyter() -> bool: try: get_ipython = sys.modules['IPython'].get_ipython # type: ignore if 'IPKernelApp' not in get_ipython().config: raise ImportError("console") if 'VSCODE_PID' in os.environ: raise ImportError("vscode") except Exception: return False else: return True if __name__ == '__main__': print(get_version(with_git_hash=True))
the-stack_106_24555
import os import logging import subprocess from mlflow.exceptions import MlflowException from mlflow.utils.rest_utils import MlflowHostCreds from databricks_cli.configure import provider from mlflow.utils._spark_utils import _get_active_spark_session from mlflow.utils.uri import get_db_info_from_uri _logger = logging.getLogger(__name__) def _get_dbutils(): try: import IPython ip_shell = IPython.get_ipython() if ip_shell is None: raise _NoDbutilsError return ip_shell.ns_table["user_global"]["dbutils"] except ImportError: raise _NoDbutilsError except KeyError: raise _NoDbutilsError class _NoDbutilsError(Exception): pass def _get_java_dbutils(): dbutils = _get_dbutils() return dbutils.notebook.entry_point.getDbutils() def _get_command_context(): return _get_java_dbutils().notebook().getContext() def _get_extra_context(context_key): return _get_command_context().extraContext().get(context_key).get() def _get_context_tag(context_tag_key): tag_opt = _get_command_context().tags().get(context_tag_key) if tag_opt.isDefined(): return tag_opt.get() else: return None def acl_path_of_acl_root(): try: return _get_command_context().aclPathOfAclRoot().get() except Exception: # pylint: disable=broad-except return _get_extra_context("aclPathOfAclRoot") def _get_property_from_spark_context(key): try: from pyspark import TaskContext # pylint: disable=import-error task_context = TaskContext.get() if task_context: return task_context.getLocalProperty(key) except Exception: # pylint: disable=broad-except return None def is_databricks_default_tracking_uri(tracking_uri): return tracking_uri.lower().strip() == "databricks" def is_in_databricks_notebook(): if _get_property_from_spark_context("spark.databricks.notebook.id") is not None: return True try: return acl_path_of_acl_root().startswith("/workspace") except Exception: # pylint: disable=broad-except return False def is_in_databricks_job(): try: return _get_context_tag("jobId") is not None and _get_context_tag("idInJob") is not None except Exception: # pylint: disable=broad-except return False def is_dbfs_fuse_available(): with open(os.devnull, "w") as devnull_stderr, open(os.devnull, "w") as devnull_stdout: try: return ( subprocess.call( ["mountpoint", "/dbfs"], stderr=devnull_stderr, stdout=devnull_stdout ) == 0 ) except Exception: # pylint: disable=broad-except return False def is_in_cluster(): try: spark_session = _get_active_spark_session() return ( spark_session is not None and spark_session.conf.get("spark.databricks.clusterUsageTags.clusterId") is not None ) except Exception: # pylint: disable=broad-except return False def get_notebook_id(): """Should only be called if is_in_databricks_notebook is true""" notebook_id = _get_property_from_spark_context("spark.databricks.notebook.id") if notebook_id is not None: return notebook_id acl_path = acl_path_of_acl_root() if acl_path.startswith("/workspace"): return acl_path.split("/")[-1] return None def get_notebook_path(): """Should only be called if is_in_databricks_notebook is true""" path = _get_property_from_spark_context("spark.databricks.notebook.path") if path is not None: return path try: return _get_command_context().notebookPath().get() except Exception: # pylint: disable=broad-except return _get_extra_context("notebook_path") def get_cluster_id(): spark_session = _get_active_spark_session() if spark_session is None: return None return spark_session.conf.get("spark.databricks.clusterUsageTags.clusterId") def get_job_id(): """Should only be called if is_in_databricks_job is true""" return _get_context_tag("jobId") def get_job_run_id(): """Should only be called if is_in_databricks_job is true""" return _get_context_tag("idInJob") def get_job_type(): """Should only be called if is_in_databricks_job is true""" return _get_context_tag("jobTaskType") def get_webapp_url(): """Should only be called if is_in_databricks_notebook is true""" url = _get_property_from_spark_context("spark.databricks.api.url") if url is not None: return url try: return _get_command_context().apiUrl().get() except Exception: # pylint: disable=broad-except return _get_extra_context("api_url") def get_workspace_id(): try: return _get_command_context().workspaceId().get() except Exception: # pylint: disable=broad-except return _get_context_tag("orgId") def get_browser_hostname(): try: return _get_command_context().browserHostName().get() except Exception: # pylint: disable=broad-except return _get_context_tag("browserHostName") def get_workspace_info_from_dbutils(): dbutils = _get_dbutils() if dbutils: workspace_host = get_browser_hostname() workspace_id = get_workspace_id() return workspace_host, workspace_id return None, None def get_workspace_info_from_databricks_secrets(tracking_uri): profile, key_prefix = get_db_info_from_uri(tracking_uri) if key_prefix: dbutils = _get_dbutils() if dbutils: workspace_id = dbutils.secrets.get(scope=profile, key=key_prefix + "-workspace-id") workspace_host = dbutils.secrets.get(scope=profile, key=key_prefix + "-host") return workspace_host, workspace_id return None, None def _fail_malformed_databricks_auth(profile): raise MlflowException( "Got malformed Databricks CLI profile '%s'. Please make sure the " "Databricks CLI is properly configured as described at " "https://github.com/databricks/databricks-cli." % profile ) def get_databricks_host_creds(server_uri=None): """ Reads in configuration necessary to make HTTP requests to a Databricks server. This uses the Databricks CLI's ConfigProvider interface to load the DatabricksConfig object. If no Databricks CLI profile is found corresponding to the server URI, this function will attempt to retrieve these credentials from the Databricks Secret Manager. For that to work, the server URI will need to be of the following format: "databricks://scope:prefix". In the Databricks Secret Manager, we will query for a secret in the scope "<scope>" for secrets with keys of the form "<prefix>-host" and "<prefix>-token". Note that this prefix *cannot* be empty if trying to authenticate with this method. If found, those host credentials will be used. This method will throw an exception if sufficient auth cannot be found. :param server_uri: A URI that specifies the Databricks profile you want to use for making requests. :return: :py:class:`mlflow.rest_utils.MlflowHostCreds` which includes the hostname and authentication information necessary to talk to the Databricks server. """ profile, path = get_db_info_from_uri(server_uri) if not hasattr(provider, "get_config"): _logger.warning( "Support for databricks-cli<0.8.0 is deprecated and will be removed" " in a future version." ) config = provider.get_config_for_profile(profile) elif profile: config = provider.ProfileConfigProvider(profile).get_config() else: config = provider.get_config() # if a path is specified, that implies a Databricks tracking URI of the form: # databricks://profile-name/path-specifier if (not config or not config.host) and path: dbutils = _get_dbutils() if dbutils: # Prefix differentiates users and is provided as path information in the URI key_prefix = path host = dbutils.secrets.get(scope=profile, key=key_prefix + "-host") token = dbutils.secrets.get(scope=profile, key=key_prefix + "-token") if host and token: config = provider.DatabricksConfig.from_token( host=host, token=token, insecure=False ) if not config or not config.host: _fail_malformed_databricks_auth(profile) insecure = hasattr(config, "insecure") and config.insecure if config.username is not None and config.password is not None: return MlflowHostCreds( config.host, username=config.username, password=config.password, ignore_tls_verification=insecure, ) elif config.token: return MlflowHostCreds(config.host, token=config.token, ignore_tls_verification=insecure) _fail_malformed_databricks_auth(profile)
the-stack_106_24556
# encoding: utf-8 # Sample-based Monte Carlo Denoising using a Kernel-Splatting Network # Michaël Gharbi Tzu-Mao Li Miika Aittala Jaakko Lehtinen Frédo Durand # Siggraph 2019 # # Copyright (c) 2019 Michaël Gharbi # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Material classes for the PBRT scene generator.""" __all__ = ["MatteMaterial", "UberMaterial", "MirrorMaterial", "GlassMaterial", "MetalMaterial", "PlasticMaterial", "SubstrateMaterial"] class Material(): """Base material. Args: id(str): unique id to identify the material. bump_texture(Texture or None): float texture to use as bump map. """ def __init__(self, id=None, bump_texture=None): self.id = id self.textures = [] self.bump_texture = bump_texture if self.bump_texture is not None: if self.bump_texture.type != "float": # LOG.error("Bump texture should be of type `float`, got %s", # self.bump_texture.type) raise RuntimeError("Incorrect bump type error") self.textures.append(bump_texture) def pbrt(self): """Outputs PBRTv2 string representation. Returns: str: pbrt format. """ out = "" for tex in self.textures: out += tex.pbrt() if self.id: return out + 'MakeNamedMaterial "{}" "string type"'.format(self.id) else: return out + "Material" def suffix(self): """Generic PBRT parameters shared by all materials. Returns: (str): the pbrt string suffix parameterizing the texture. """ out = " " if self.bump_texture is not None: out += '"texture bumpmap" "{}"\n'.format(self.bump_texture.id) return out class MatteMaterial(Material): """PBRT Matte material. Args: id(str): unique id to identify the material. diffuse(list of 3 floats or None): color of the diffuse component. diffuse_texture(sbmc.scene_generator.Texture): texture for the diffuse component. Overrides `diffuse` if provided. bump_texture(Texture or None): float texture to use as bump map. """ def __init__(self, id=None, diffuse=None, diffuse_texture=None, bump_texture=None): super(MatteMaterial, self).__init__(id=id, bump_texture=bump_texture) self.diffuse = None self.diffuse_texture = None if diffuse_texture is None: if diffuse is None: self.diffuse = [1, 1, 1] else: self.diffuse = diffuse else: self.diffuse_texture = diffuse_texture self.textures.append(diffuse_texture) def pbrt(self): out = super(MatteMaterial, self).pbrt() out += ' "matte" ' if self.diffuse_texture is not None: out += '"texture Kd" "{}"\n'.format(self.diffuse_texture.id) else: out += '"rgb Kd" [{} {} {}]\n'.format(*self.diffuse) out += super(MatteMaterial, self).suffix() return out class UberMaterial(MatteMaterial): """PBRT Uber material. Args: id(str): unique id to identify the material. diffuse(list of 3 floats or None): color of the diffuse component. diffuse_texture(sbmc.scene_generator.Texture): texture for the diffuse component. Overrides `diffuse` if provided. glossy_reflection(float): intensity of the glossy reflection. specular_reflection(float): intensity of the specular reflection. roughness(float): roughness of the material. index(float): index of refraction of the material. opacity(float): opacity of the material (0 is transparent, 1 opaque). bump_texture(Texture or None): float texture to use as bump map. """ def __init__(self, id=None, diffuse=None, diffuse_texture=None, glossy_reflection=0.25, specular_reflection=0, roughness=0.1, index=1.5, opacity=1.0, bump_texture=None): super(UberMaterial, self).__init__( id=id, diffuse=diffuse, diffuse_texture=diffuse_texture, bump_texture=bump_texture) self.glossy_reflection = [glossy_reflection]*3 self.specular_reflection = [specular_reflection]*3 self.roughness = roughness self.index = index self.opacity = [opacity]*3 def pbrt(self): out = super(UberMaterial, self).pbrt() out = out.replace('"matte"', '"uber"').strip() out += ' "rgb Ks" [{} {} {}]'.format(*self.glossy_reflection) out += ' "rgb Kr" [{} {} {}]'.format(*self.specular_reflection) out += ' "float roughness" [{}]'.format(self.roughness) out += ' "float index" [{}]'.format(self.index) out += ' "rgb opacity" [{} {} {}]'.format(*self.opacity) out += super(UberMaterial, self).suffix() out += '\n' return out class MirrorMaterial(Material): """PBRT Mirror material. Args: id(str): unique id to identify the material. specular(list of 3 floats or None): color of the specular component. specular_texture(sbmc.scene_generator.Texture): texture for the specular component. Overrides `diffuse` if provided. bump_texture(Texture or None): float texture to use as bump map. """ def __init__(self, id=None, specular=None, specular_texture=None, bump_texture=None): super(MirrorMaterial, self).__init__(id=id, bump_texture=bump_texture) self.specular = None self.specular_texture = None if specular_texture is None: if specular is None: self.specular = [1, 1, 1] else: self.specular = specular else: self.specular_texture = specular_texture self.textures.append(specular_texture) def pbrt(self): out = super(MirrorMaterial, self).pbrt() out += ' "mirror" ' if self.specular_texture is not None: out += '"texture Kr" "{}"\n'.format(self.specular_texture.id) else: out += '"rgb Kr" [{} {} {}]\n'.format(*self.specular) out += super(MirrorMaterial, self).suffix() return out class GlassMaterial(Material): """PBRT Glass material. Args: id(str): unique id to identify the material. reflection(list of 3 floats or None): color of the reflection component. reflection_texture(sbmc.scene_generator.Texture): texture for the reflection component. Overrides `reflection` if provided. transmission(list of 3 floats or None): color of the transmission component. transmission_texture(sbmc.scene_generator.Texture): texture for the transmission component. Overrides `transmission` if provided. index(float): index of refraction of the material. bump_texture(Texture or None): float texture to use as bump map. """ def __init__(self, id=None, reflection=None, reflection_texture=None, transmission=None, transmission_texture=None, index=1.5, bump_texture=None): super(GlassMaterial, self).__init__(id=id, bump_texture=bump_texture) self.index = index self.reflection = None self.reflection_texture = None self.transmission = None self.transmission_texture = None if reflection_texture is None: if reflection is None: self.reflection = [1, 1, 1] else: self.reflection = reflection else: self.reflection_texture = reflection_texture self.textures.append(reflection_texture) if transmission_texture is None: if transmission is None: self.transmission = [1, 1, 1] else: self.transmission = transmission else: self.transmission_texture = transmission_texture self.textures.append(transmission_texture) def pbrt(self): out = super(GlassMaterial, self).pbrt() out += ' "glass" ' out += ' "float index" [{}] '.format(self.index) if self.reflection_texture is not None: out += '"texture Kr" "{}"\n'.format(self.reflection_texture.id) else: out += '"rgb Kr" [{} {} {}]\n'.format(*self.reflection) if self.transmission_texture is not None: out += '"texture Kt" "{}"\n'.format(self.transmission_texture.id) else: out += '"rgb Kt" [{} {} {}]\n'.format(*self.transmission) out += super(GlassMaterial, self).suffix() return out class MetalMaterial(Material): """PBRT Metal material. Args: id(str): unique id to identify the material. eta(list of 3 floats or None): colored index of refraction eta_texture(sbmc.scene_generator.Texture): texture for the colored index of refraction. Overrides `eta` if provided. k(list of 3 floats or None): colored absorption coefficient. k_texture(sbmc.scene_generator.Texture): texture for the k coefficient. Overrides `k` if provided. roughness(float): roughness of the material. bump_texture(Texture or None): float texture to use as bump map. """ def __init__(self, id=None, eta=None, eta_texture=None, k=None, k_texture=None, roughness=0.01, bump_texture=None): super(MetalMaterial, self).__init__(id=id, bump_texture=bump_texture) self.roughness = roughness self.eta = None self.eta_texture = None self.k = None self.k_texture = None if eta_texture is None: if eta is None: self.eta = [0.6, 0.5, 0.4] else: self.eta = eta else: self.eta_texture = eta_texture self.textures.append(eta_texture) if k_texture is None: if k is None: self.k = [2, 2, 3] else: self.k = k else: self.k_texture = k_texture self.textures.append(k_texture) def pbrt(self): out = super(MetalMaterial, self).pbrt() out += ' "metal" ' out += ' "float roughness" [{}] '.format(self.roughness) if self.eta_texture is not None: out += '"texture eta" "{}"\n'.format(self.eta_texture.id) else: out += '"rgb eta" [{} {} {}]\n'.format(*self.eta) if self.k_texture is not None: out += '"texture k" "{}"\n'.format(self.k_texture.id) else: out += '"rgb k" [{} {} {}]\n'.format(*self.k) out += super(MetalMaterial, self).suffix() return out class PlasticMaterial(Material): """PBRT Plastic material. Args: id(str): unique id to identify the material. diffuse(list of 3 floats or None): color of the diffuse component. diffuse_texture(sbmc.scene_generator.Texture): texture for the diffuse component. Overrides `diffuse` if provided. specular(list of 3 floats or None): color of the specular component. specular_texture(sbmc.scene_generator.Texture): texture for the specular component. Overrides `specular` if provided. roughness(float): roughness of the material. bump_texture(Texture or None): float texture to use as bump map. """ def __init__(self, id=None, diffuse=None, diffuse_texture=None, specular=None, specular_texture=None, roughness=0.01, bump_texture=None): super(PlasticMaterial, self).__init__(id=id, bump_texture=bump_texture) self.roughness = roughness self.diffuse = None self.diffuse_texture = None self.specular = None self.specular_texture = None if diffuse_texture is None: if diffuse is None: self.diffuse = [1.0, 1.0, 1.0] else: self.diffuse = diffuse else: self.diffuse_texture = diffuse_texture self.textures.append(diffuse_texture) if specular_texture is None: if specular is None: self.specular = [1, 1, 1] else: self.specular = specular else: self.specular_texture = specular_texture self.textures.append(specular_texture) def pbrt(self): out = super(PlasticMaterial, self).pbrt() out += ' "plastic" ' out += ' "float roughness" [{}] '.format(self.roughness) if self.diffuse_texture is not None: out += '"texture Kd" "{}"\n'.format(self.diffuse_texture.id) else: out += '"rgb Kd" [{} {} {}]\n'.format(*self.diffuse) if self.specular_texture is not None: out += '"texture Ks" "{}"\n'.format(self.specular_texture.id) else: out += '"rgb Ks" [{} {} {}]\n'.format(*self.specular) out += super(PlasticMaterial, self).suffix() return out class SubstrateMaterial(Material): """PBRT Substrate material. Args: id(str): unique id to identify the material. diffuse(list of 3 floats or None): color of the diffuse component. diffuse_texture(sbmc.scene_generator.Texture): texture for the diffuse component. Overrides `diffuse` if provided. specular(list of 3 floats or None): color of the specular component. specular_texture(sbmc.scene_generator.Texture): texture for the specular component. Overrides `specular` if provided. uroughness(float): roughness of the material in the u direction. vroughness(float): roughness of the material in the v direction. bump_texture(Texture or None): float texture to use as bump map. """ def __init__(self, id=None, diffuse=None, diffuse_texture=None, specular=None, specular_texture=None, uroughness=0.1, vroughness=0.1, bump_texture=None): super(SubstrateMaterial, self).__init__( id=id, bump_texture=bump_texture) self.uroughness = uroughness self.vroughness = vroughness self.diffuse = None self.diffuse_texture = None self.specular = None self.specular_texture = None if diffuse_texture is None: if diffuse is None: self.diffuse = [0.5, 0.5, 0.5] else: self.diffuse = diffuse else: self.diffuse_texture = diffuse_texture self.textures.append(diffuse_texture) if specular_texture is None: if specular is None: self.specular = [0.5, 0.5, 0.5] else: self.specular = specular else: self.specular_texture = specular_texture self.textures.append(specular_texture) def pbrt(self): out = super(SubstrateMaterial, self).pbrt() out += ' "substrate" ' out += ' "float uroughness" [{}] '.format(self.uroughness) out += ' "float vroughness" [{}] '.format(self.vroughness) if self.diffuse_texture is not None: out += '"texture Kd" "{}"\n'.format(self.diffuse_texture.id) else: out += '"rgb Kd" [{} {} {}]\n'.format(*self.diffuse) if self.specular_texture is not None: out += '"texture Ks" "{}"\n'.format(self.specular_texture.id) else: out += '"rgb Ks" [{} {} {}]\n'.format(*self.specular) out += super(SubstrateMaterial, self).suffix() return out
the-stack_106_24557
# -*- coding: utf-8 -*- from __future__ import absolute_import import logging import os from django.db import models from django.utils import six from django.utils.translation import ugettext_lazy as _ from .. import settings as filer_settings from ..utils.compatibility import GTE_DJANGO_1_10, PILImage from ..utils.filer_easy_thumbnails import FilerThumbnailer from ..utils.pil_exif import get_exif_for_file from .filemodels import File logger = logging.getLogger(__name__) class BaseImage(File): SIDEBAR_IMAGE_WIDTH = 210 DEFAULT_THUMBNAILS = { 'admin_clipboard_icon': {'size': (32, 32), 'crop': True, 'upscale': True}, 'admin_sidebar_preview': {'size': (SIDEBAR_IMAGE_WIDTH, 0), 'upscale': True}, 'admin_directory_listing_icon': {'size': (48, 48), 'crop': True, 'upscale': True}, 'admin_tiny_icon': {'size': (32, 32), 'crop': True, 'upscale': True}, } file_type = 'Image' _icon = "image" _height = models.IntegerField(null=True, blank=True) _width = models.IntegerField(null=True, blank=True) default_alt_text = models.CharField(_('default alt text'), max_length=255, blank=True, null=True) default_caption = models.CharField(_('default caption'), max_length=255, blank=True, null=True) subject_location = models.CharField(_('subject location'), max_length=64, blank=True, default='') file_ptr = models.OneToOneField( to='filer.File', parent_link=True, related_name='%(app_label)s_%(class)s_file', on_delete=models.CASCADE, ) @classmethod def matches_file_type(cls, iname, ifile, request): # This was originally in admin/clipboardadmin.py it was inside of a try # except, I have moved it here outside of a try except because I can't # figure out just what kind of exception this could generate... all it was # doing for me was obscuring errors... # --Dave Butler <[email protected]> iext = os.path.splitext(iname)[1].lower() return iext in ['.jpg', '.jpeg', '.png', '.gif'] def file_data_changed(self, post_init=False): attrs_updated = super(BaseImage, self).file_data_changed(post_init=post_init) if attrs_updated: try: try: imgfile = self.file.file except ValueError: imgfile = self.file_ptr.file imgfile.seek(0) self._width, self._height = PILImage.open(imgfile).size imgfile.seek(0) except Exception: if post_init is False: # in case `imgfile` could not be found, unset dimensions # but only if not initialized by loading a fixture file self._width, self._height = None, None return attrs_updated def save(self, *args, **kwargs): self.has_all_mandatory_data = self._check_validity() super(BaseImage, self).save(*args, **kwargs) def _check_validity(self): if not self.name: return False return True def sidebar_image_ratio(self): if self.width: return float(self.width) / float(self.SIDEBAR_IMAGE_WIDTH) else: return 1.0 def _get_exif(self): if hasattr(self, '_exif_cache'): return self._exif_cache else: if self.file: self._exif_cache = get_exif_for_file(self.file) else: self._exif_cache = {} return self._exif_cache exif = property(_get_exif) def has_edit_permission(self, request): return self.has_generic_permission(request, 'edit') def has_read_permission(self, request): return self.has_generic_permission(request, 'read') def has_add_children_permission(self, request): return self.has_generic_permission(request, 'add_children') def has_generic_permission(self, request, permission_type): """ Return true if the current user has permission on this image. Return the string 'ALL' if the user has all rights. """ user = request.user if not user.is_authenticated(): return False elif user.is_superuser: return True elif user == self.owner: return True elif self.folder: return self.folder.has_generic_permission(request, permission_type) else: return False @property def label(self): if self.name in ['', None]: return self.original_filename or 'unnamed file' else: return self.name @property def width(self): return self._width or 0 @property def height(self): return self._height or 0 def _generate_thumbnails(self, required_thumbnails): _thumbnails = {} for name, opts in six.iteritems(required_thumbnails): try: opts.update({'subject_location': self.subject_location}) thumb = self.file.get_thumbnail(opts) _thumbnails[name] = thumb.url except Exception as e: # catch exception and manage it. We can re-raise it for debugging # purposes and/or just logging it, provided user configured # proper logging configuration if filer_settings.FILER_ENABLE_LOGGING: logger.error('Error while generating thumbnail: %s', e) if filer_settings.FILER_DEBUG: raise return _thumbnails @property def icons(self): required_thumbnails = dict( (size, {'size': (int(size), int(size)), 'crop': True, 'upscale': True, 'subject_location': self.subject_location}) for size in filer_settings.FILER_ADMIN_ICON_SIZES) return self._generate_thumbnails(required_thumbnails) @property def thumbnails(self): return self._generate_thumbnails(BaseImage.DEFAULT_THUMBNAILS) @property def easy_thumbnails_thumbnailer(self): tn = FilerThumbnailer( file=self.file, name=self.file.name, source_storage=self.file.source_storage, thumbnail_storage=self.file.thumbnail_storage, thumbnail_basedir=self.file.thumbnail_basedir) return tn class Meta(object): app_label = 'filer' verbose_name = _('image') verbose_name_plural = _('images') abstract = True if GTE_DJANGO_1_10: default_manager_name = 'objects'
the-stack_106_24558
from core.NDUDE_2D_sup_te import Test_NDUDE_2D_sup # window size = k^2-1 k_arr = [3,5,7,9,11,13,15,17] delta_arr = [0.05, 0.1, 0.2, 0.25] ep_ = 15 # Available test dataset : 1) Set13_256, 2) Set13_512, 3) BSD20 test_data = 'BSD20' # if not a blind case is_blind_ = False case_ = None for delta_ in delta_arr: for k_ in k_arr: te_NDUDE_2D_sup = Test_NDUDE_2D_sup(case = case_, delta=delta_, k = k_, test_data = test_data, ep = ep_, is_blind = is_blind_) te_NDUDE_2D_sup.test_model()
the-stack_106_24559
from typing import NamedTuple import tensorflow as tf from .types import * from .query import * from ..args import ACTIVATION_FNS from ..attention import * from ..input import get_table_with_embedding from ..const import EPSILON from ..util import * from ..layers import * from ..activations import * MP_State = tf.Tensor class MP_Node(NamedTuple): id: str properties: tf.Tensor state: MP_State use_message_passing_fn = False use_self_reference = False def layer_normalize(tensor): '''Apologies if I've abused this term''' in_shape = tf.shape(tensor) axes = list(range(1, len(tensor.shape))) # Keep batch axis t = tf.reduce_sum(tensor, axis=axes ) t += EPSILON t = tf.reciprocal(t) t = tf.check_numerics(t, "1/sum") tensor = tf.einsum('brc,b->brc', tensor, t) tensor = dynamic_assert_shape(tensor, in_shape, "layer_normalize_tensor") return tensor def calc_normalized_adjacency(context, node_state): # Aggregate via adjacency matrix with normalisation (that does not include self-edges) adj = tf.cast(context.features["kb_adjacency"], tf.float32) degree = tf.reduce_sum(adj, -1, keepdims=True) inv_degree = tf.reciprocal(degree) node_mask = tf.expand_dims(tf.sequence_mask(context.features["kb_nodes_len"], context.args["kb_node_max_len"]), -1) inv_degree = tf.where(node_mask, inv_degree, tf.zeros(tf.shape(inv_degree))) inv_degree = tf.where(tf.greater(degree, 0), inv_degree, tf.zeros(tf.shape(inv_degree))) inv_degree = tf.check_numerics(inv_degree, "inv_degree") adj_norm = inv_degree * adj adj_norm = tf.cast(adj_norm, node_state.dtype) adj_norm = tf.check_numerics(adj_norm, "adj_norm") node_incoming = tf.einsum('bnw,bnm->bmw', node_state, adj_norm) return node_incoming def mp_matmul(state, mat, name): return tf.nn.conv1d(state, mat, 1, 'VALID', name=name) def calc_right_shift(node_incoming): shape = tf.shape(node_incoming) node_incoming = tf.concat([node_incoming[:,:,1:],node_incoming[:,:,0:1]], axis=-1) node_incoming = dynamic_assert_shape(node_incoming, shape, "node_incoming") return node_incoming def node_dense(nodes, units, name, activation="linear"): with tf.variable_scope(name): assert nodes.shape[-1].value is not None, "Nodes must have fixed last dimension" w = tf.get_variable("w", [1, nodes.shape[-1], units], initializer=tf.contrib.layers.variance_scaling_initializer(factor=1.0)) b = tf.get_variable("b", [1, units], initializer=tf.initializers.random_uniform) r = mp_matmul(nodes, w, 'matmul') + b r = ACTIVATION_FNS[activation](r) return r def node_gru(context, node_state, node_incoming, padded_node_table): all_inputs = [node_state, node_incoming] if context.args["use_mp_node_id"]: all_inputs.append(padded_node_table[:,:,:context.args["embed_width"]]) old_and_new = tf.concat(all_inputs, axis=-1) input_width = old_and_new.shape[-1] forget_w = tf.get_variable("mp_forget_w", [1, input_width, context.args["mp_state_width"]]) forget_b = tf.get_variable("mp_forget_b", [1, context.args["mp_state_width"]]) reuse_w = tf.get_variable("mp_reuse_w", [1, input_width, context.args["mp_state_width"]]) transform_w = tf.get_variable("mp_transform_w", [1, 2 * context.args["mp_state_width"], context.args["mp_state_width"]]) # Initially likely to be zero forget_signal = tf.nn.sigmoid(mp_matmul(old_and_new , forget_w, 'forget_signal') + forget_b) reuse_signal = tf.nn.sigmoid(mp_matmul(old_and_new , reuse_w, 'reuse_signal')) reuse_and_new = tf.concat([reuse_signal * node_state, node_incoming], axis=-1) proposed_new_state = ACTIVATION_FNS[context.args["mp_activation"]](mp_matmul(reuse_and_new, transform_w, 'proposed_new_state')) node_state = (1-forget_signal) * node_state + (forget_signal) * proposed_new_state return node_state
the-stack_106_24563
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2015 Carlos Jenkins <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from setuptools import setup def read(filename): """ Read a file relative to setup.py location. """ import os here = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(here, filename)) as fd: return fd.read() def find_version(filename): """ Find package version in file. """ import re content = read(filename) version_match = re.search( r"^__version__ = ['\"]([^'\"]*)['\"]", content, re.M ) if version_match: return version_match.group(1) raise RuntimeError('Unable to find version string.') setup( # Main name='webdev', version=find_version('webdev'), scripts=['webdev'], # Extra metadata author='Carlos Jenkins', author_email='[email protected]', url='https://github.com/carlos-jenkins/webdev', description='Small Development Web Server', long_description=read('README.rst'), classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Topic :: Utilities', ], )
the-stack_106_24564
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from abc import abstractmethod from ...quantization import FakeQuantize, Observer, QConfig from ...tensor import Tensor from ..module import Module class QATModule(Module): r""" Base class of quantized-float related Module, basically for QAT and Calibration. Use :meth:`~.QATModule.from_float_module` to generate a instance from float :class:`~.Module`. Or use :func:`~.quantize.quantize_qat` to do it recursively and automatically. Can also be converted to :class:`~.QuantizedModule` for deployment using :func:`~.quantize.quantize` further. """ with_weight = True with_act = True def __init__(self): super().__init__() self.weight_observer = None # type: Observer self.act_observer = None # type: Observer self.weight_fake_quant = None # type: FakeQuantize self.act_fake_quant = None # type: FakeQuantize def set_qconfig(self, qconfig: QConfig): r""" Set quantization related configs with ``qconfig``, including observer and fake_quant for weight and activation. """ def safe_call(func): return func() if func is not None else None if self.with_act: self.act_observer = safe_call(qconfig.act_observer) self.act_fake_quant = safe_call(qconfig.act_fake_quant) if self.with_weight: self.weight_observer = safe_call(qconfig.weight_observer) self.weight_fake_quant = safe_call(qconfig.weight_fake_quant) def _enable_exec(self, with_module, func, enable): if not with_module or not func: return if enable: func.enable() else: func.disable() def set_fake_quant(self, enable): self._enable_exec(self.with_act, self.act_fake_quant, enable) self._enable_exec(self.with_weight, self.weight_fake_quant, enable) def set_observer(self, enable): self._enable_exec(self.with_act, self.act_observer, enable) self._enable_exec(self.with_weight, self.weight_observer, enable) def _apply_fakequant_with_observer( self, target: Tensor, fake_quant: FakeQuantize, observer: Observer ): # do observer if observer is None: oup = target q_dict = None else: oup = observer(target) q_dict = observer.get_qparams() # do fake quant if fake_quant is not None: oup = fake_quant(oup, q_dict) # use qparams of fake_quant if have. if hasattr(fake_quant, "get_qparams"): q_dict = fake_quant.get_qparams() # set to tensor qparams. if q_dict is not None: oup.q_dict.update(q_dict) return oup def apply_quant_weight(self, target: Tensor): r""" Apply weight's observer and fake_quant from ``qconfig`` on ``target``. """ return self._apply_fakequant_with_observer( target, self.weight_fake_quant, self.weight_observer ) def apply_quant_activation(self, target: Tensor): r""" Apply weight's observer and fake_quant from ``qconfig`` on ``target``. """ return self._apply_fakequant_with_observer( target, self.act_fake_quant, self.act_observer ) def _get_method_result( self, method: str, fake_quant: FakeQuantize, observer: Observer ): if hasattr(fake_quant, method): return getattr(fake_quant, method)() elif hasattr(observer, method): return getattr(observer, method)() return None def get_weight_dtype(self): r""" Get weight's quantization dtype as the method from ``qconfig``. """ return self._get_method_result( "get_dtype", self.weight_fake_quant, self.weight_observer ) def get_activation_dtype(self): r""" Get activation's quantization dtype as the method from ``qconfig``. """ return self._get_method_result( "get_dtype", self.act_fake_quant, self.act_observer ) def get_weight_qparams(self): r""" Get weight's quantization parameters. """ return self._get_method_result( "get_qparams", self.weight_fake_quant, self.weight_observer ) def get_activation_qparams(self): r""" Get activation's quantization parameters. """ return self._get_method_result( "get_qparams", self.act_fake_quant, self.act_observer ) @classmethod @abstractmethod def from_float_module(cls, float_module: Module): r""" Return a :class:`~.QATModule` instance converted from a float :class:`~.Module` instance. """
the-stack_106_24565
'''Sequence to sequence example in Keras (character-level). This script demonstrates how to implement a basic character-level sequence-to-sequence model. We apply it to translating short English sentences into short French sentences, character-by-character. Note that it is fairly unusual to do character-level machine translation, as word-level models are more common in this domain. # Summary of the algorithm - We start with input sequences from a domain (e.g. English sentences) and correspding target sequences from another domain (e.g. French sentences). - An encoder LSTM turns input sequences to 2 state vectors (we keep the last LSTM state and discard the outputs). - A decoder LSTM is trained to turn the target sequences into the same sequence but offset by one timestep in the future, a training process called "teacher forcing" in this context. Is uses as initial state the state vectors from the encoder. Effectively, the decoder learns to generate `targets[t+1...]` given `targets[...t]`, conditioned on the input sequence. - In inference mode, when we want to decode unknown input sequences, we: - Encode the input sequence into state vectors - Start with a target sequence of size 1 (just the start-of-sequence character) - Feed the state vectors and 1-char target sequence to the decoder to produce predictions for the next character - Sample the next character using these predictions (we simply use argmax). - Append the sampled character to the target sequence - Repeat until we generate the end-of-sequence character or we hit the character limit. # Data download English to French sentence pairs. http://www.manythings.org/anki/fra-eng.zip Lots of neat sentence pairs datasets can be found at: http://www.manythings.org/anki/ # References - Sequence to Sequence Learning with Neural Networks https://arxiv.org/abs/1409.3215 - Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation https://arxiv.org/abs/1406.1078 ''' from __future__ import print_function import argparse import os import numpy as np from neuralnets.seq2seq import Seq2SeqAE, Seq2SeqRNN, Seq2SeqNoMaskRNN, Seq2SeqDeepRNN from neuralnets.grammar import TilingGrammar from neuralnets.utils import load_categories_dataset, decode_smiles_from_indexes, from_one_hot_array from neuralnets.shape_graph import smiles_variations from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, Callback from keras.utils import plot_model import matplotlib.pyplot as plt from matplotlib import rcParams rcParams['font.family'] = 'sans-serif' rcParams['font.sans-serif'] = ['Verdana'] from collections import Counter def most_common_elem(lst): data = Counter(lst) return data.most_common(1)[0][0] class PlotLearning(Callback): def set_filename(self, name='filename'): self.filename = name def on_train_begin(self, logs={}): self.i = 0 self.x = [] self.losses = [] self.val_losses = [] self.acc = [] self.val_acc = [] self.fig = plt.figure() self.logs = [] def on_epoch_end(self, epoch, logs={}): self.logs.append(logs) self.x.append(self.i) self.losses.append(logs.get('loss')) self.val_losses.append(logs.get('val_loss')) self.acc.append(logs.get('acc')) self.val_acc.append(logs.get('val_acc')) self.i += 1 f, (ax1, ax2) = plt.subplots(1, 2, sharex=True) ax1.plot(self.x, self.losses, label="loss") ax1.plot(self.x, self.val_losses, label="val_loss") ax1.legend() ax2.plot(self.x, self.acc, label="accuracy") ax2.plot(self.x, self.val_acc, label="validation accuracy") ax2.legend() plt.savefig(self.filename + '_loss_history.pdf', bbox_inches='tight') plt.close() NUM_EPOCHS = 1 BATCH_SIZE = 200 LSTM_SIZE = 512 WORD_LENGTH = 120 MODEL = 'rnn' def get_arguments(): parser = argparse.ArgumentParser(description='Sequence to sequence autoencoder network') parser.add_argument('data', type=str, help='The HDF5 file containing preprocessed data.') parser.add_argument('out', type=str, help='Where to save the trained model. If this file exists, it will be opened and resumed.') parser.add_argument('grammar', type=str, help='The HDF5 file with the tiling grammar.') parser.add_argument('--model', type=str, default=MODEL, help='What model to train: autoencoder, rnn, deep_rnn, no_mask_rnn.') parser.add_argument('--epochs', type=int, metavar='N', default=NUM_EPOCHS, help='Number of epochs to run during training.') parser.add_argument('--word_length', type=int, metavar='N', default=WORD_LENGTH, help='Length of input sequences') parser.add_argument('--batch_size', type=int, metavar='N', default=BATCH_SIZE, help='Number of samples to process per minibatch during training.') return parser.parse_args() def decode_sequence_ae(model, input_seq, input_mask, input_len, output_charset, bounds=None, max_length=WORD_LENGTH): num_decoder_tokens = len(output_charset) max_category = max(output_charset) # Encode the input as state vectors. #states_value = model.encoder.predict(input_seq) states_value = model.encoder.predict([input_seq, input_mask])#mask # Generate empty target sequence of length 1. target_seq = np.zeros((1, 1, num_decoder_tokens)) target_mask = np.zeros((1, 1, num_decoder_tokens))#mask # Populate the first character of target sequence with the start character. #target_seq[0, 0, max_category] = 1. target_min_bound = np.full(input_len, 0, dtype=int) target_max_bound = np.full(input_len, -1, dtype=int) if bounds != None: target_min_bound = np.array([pair[0] for pair in bounds]) target_max_bound = np.array([pair[1] for pair in bounds]) #print('input mask', input_mask) # Sampling loop for a batch of sequences # (to simplify, here we assume a batch of size 1). stop_condition = False decoded_sequence = [] while not stop_condition: #Update the target mask char_id = len(decoded_sequence) target_mask[0][0] = input_mask[0][char_id] #print('target mask', target_mask[0][0]) output_tokens, h, c = model.decoder.predict([target_seq, target_mask] + states_value) min_bound = target_min_bound[char_id] max_bound = target_max_bound[char_id] # if bounds != None: # min_bound = max_category - target_max_bound[char_id] + 1 # max_bound = max_category - target_min_bound[char_id] + 1 # Sample a token sampled_token_index = num_decoder_tokens - 1 if min_bound < max_bound: sampled_token_index = min_bound + np.argmax(output_tokens[0, -1, min_bound:max_bound]) sampled_category = output_charset[sampled_token_index] decoded_sequence.append(sampled_category) elif min_bound == 0 and max_bound == -1: sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_category = output_charset[sampled_token_index] decoded_sequence.append(sampled_category) else: decoded_sequence.append(max_category) # Exit condition: either hit max length # or find stop character. if len(decoded_sequence) >= input_len: stop_condition = True # Update the target sequence (of length 1). target_seq = np.zeros((1, 1, num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1. # Update states states_value = [h, c] return decoded_sequence def predict_sequence(model, input_seq, input_mask=None): if input_mask is None: return model.rnn.predict(input_seq) else: return model.rnn.predict([input_seq, input_mask]) def decode_sequence_rnn(model, input_seq, input_len, output_charset, input_mask=None): output_sequence = predict_sequence(model, input_seq, input_mask) decoded_sequence = [] while len(decoded_sequence) < input_len: char_id = len(decoded_sequence) sampled_token_index = np.argmax(output_sequence[0, char_id, :]) sampled_category = output_charset[sampled_token_index] decoded_sequence.append(sampled_category) return decoded_sequence def decode_sequence(model, grammar, input_charset, input_word, max_length=WORD_LENGTH, num_variants=10): if num_variants <= 1: num_variants = 1 ############################################################################################################## #Generate multiple string variants for the input graph ############################################################################################################## padded_node_ids = [] num_nodes = 0 for char_id, _ in enumerate(input_word): if input_word[char_id] in grammar.charset: padded_node_ids.append(num_nodes) num_nodes += 1 else: padded_node_ids.append(max_length) dummy_node_id = num_nodes for i, _ in enumerate(padded_node_ids): if padded_node_ids[i] == max_length: padded_node_ids[i] = dummy_node_id padded_node_ids.append(dummy_node_id) #ensure at least one occurrence smiles_variants, node_variants = smiles_variations(input_word, padded_node_ids, grammar, num_variants - 1) smiles_strings = [input_word] + smiles_variants node_lists = [padded_node_ids] + node_variants edge_lists = [] for word, nodes in zip(smiles_strings, node_lists): edge_lists.append(grammar.smiles_to_edges(word, nodes)) input_sequences = np.empty(dtype='float32', shape=(num_variants, max_length, len(input_charset))) input_masks = np.empty(dtype='float32', shape=(num_variants, max_length, grammar.categories_prefix[-1] + 1)) for i, word in enumerate(smiles_strings): input_sequences[i] = grammar.smiles_to_one_hot(word.ljust(max_length), input_charset) input_masks[i] = grammar.smiles_to_mask(word, max_length) ############################################################################################################## #Classify each string (estimate edge configurations) ############################################################################################################## output_charset = list(range(0, grammar.categories_prefix[-1] + 1, 1)) decoded_sequences = [] for i in range(num_variants): decoded_sequences.append(decode_sequence_rnn(model, input_sequences[i:i+1], len(smiles_strings[i]), output_charset, input_masks[i:i+1])) output_sequence = [] per_edge_categories = [] for edge_id, edge in enumerate(edge_lists[0]): local_categories = [decoded_sequences[0][edge_id]] if edge[0] != dummy_node_id or edge[1] != dummy_node_id: for j in range(1, num_variants): if edge in edge_lists[j]: #edge direction can be reversed in the other list idx = edge_lists[j].index(edge) local_categories.append(decoded_sequences[j][idx]) per_edge_categories.append(local_categories) output_sequence.append(most_common_elem(local_categories)) return output_sequence def main(): args = get_arguments() tile_grammar = TilingGrammar([]) tile_grammar.load(args.grammar) data_train, categories_train, masks_train, data_test, categories_test, masks_test, charset, charset_cats = load_categories_dataset(args.data) num_encoder_tokens = len(charset) num_decoder_tokens = len(charset_cats) #max_category = max(charset_cats) if categories_train.shape != masks_train.shape or data_train.shape[0] != categories_train.shape[0] or data_train.shape[1] != categories_train.shape[1]: print('Incompatible input array dimensions') print('Sample categories shape: ', categories_train.shape) print('Sample masks shape: ', masks_train.shape) print('Sample data shape: ', data_train.shape) print('Number of unique input tokens: ', num_encoder_tokens) print('Number of unique output tokens: ', num_decoder_tokens) encoder_input_data = data_train.astype(dtype='float32') decoder_input_masks = masks_train.astype(dtype='float32') decoder_input_data = categories_train.astype(dtype='float32') encoder_test_data = data_test.astype(dtype='float32') decoder_test_masks = masks_test.astype(dtype='float32') ############################################################################################################## #Sequence to sequence autoencoder ############################################################################################################## if args.model == 'autoencoder': decoder_target_data = np.zeros(categories_train.shape, dtype='float32') for w_id in range(decoder_input_data.shape[0]): for c_id in range(decoder_input_data.shape[1]): for one_h_id_c in range(decoder_input_data.shape[2]): if c_id > 0: # decoder_target_data will be ahead by one timestep # and will not include the start character. decoder_target_data[w_id][c_id-1][one_h_id_c] = 1. model = Seq2SeqAE() if os.path.isfile(args.out): model.load(charset, charset_cats, args.out, lstm_size=LSTM_SIZE) else: model.create(charset, charset_cats, lstm_size=LSTM_SIZE) if args.epochs > 0: checkpointer = ModelCheckpoint(filepath=args.out, verbose=1, save_best_only=True) reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.2, patience = 3, min_lr = 0.000001) filename, ext = os.path.splitext(args.out) plot_model(model.autoencoder, to_file=filename + '_autoencoder_nn.pdf', show_shapes=True) plot_model(model.decoder, to_file=filename + '_decoder_nn.pdf', show_shapes=True) plot = PlotLearning() plot.set_filename(filename) history = model.autoencoder.fit([encoder_input_data, decoder_input_data, decoder_input_masks], decoder_target_data, batch_size=args.batch_size, epochs=args.epochs, validation_split=0.2, callbacks=[checkpointer, reduce_lr, plot]) # Save model model.autoencoder.save(args.out) #test-decode a couple of train examples sample_ids = np.random.randint(0, len(data_train), 4) for word_id in sample_ids: print ('===============================') train_string = decode_smiles_from_indexes(map(from_one_hot_array, data_train[word_id]), charset) print ('train string: ', train_string) train_sequence = [] for char_id in range(categories_train[word_id].shape[0]): token_index = np.argmax(categories_train[word_id][char_id, :]) train_category = charset_cats[token_index] train_sequence.append(train_category) input_seq = encoder_input_data[word_id: word_id + 1] input_mask = decoder_input_masks[word_id: word_id + 1] category_bounds = tile_grammar.smiles_to_categories_bounds(train_string) decoded_seq_1 = decode_sequence_ae(model, input_seq, input_mask, len(train_string), charset_cats, category_bounds) #print ('decoded categories (w/ bounds):', decoded_seq_1) decoded_seq_2 = decode_sequence_ae(model, input_seq, input_mask, len(train_string), charset_cats) #print ('decoded categories (no bounds):', decoded_seq_2) print ('[train, decoded, decoded] categories :', zip(train_sequence[:len(train_string)], decoded_seq_1, decoded_seq_2)) # print ('categories bounds:', tile_grammar.smiles_to_categories_bounds(train_string)) #test-decode a couple of test examples sample_ids = np.random.randint(0, len(data_test), 8) for word_id in sample_ids: print ('===============================') test_string = decode_smiles_from_indexes(map(from_one_hot_array, data_test[word_id]), charset) print ('test string: ', test_string) test_sequence = [] for char_id in range(categories_test[word_id].shape[0]): token_index = np.argmax(categories_test[word_id][char_id, :]) test_category = charset_cats[token_index] test_sequence.append(test_category) #print ('test categories :', test_sequence[:len(test_string)]) input_seq = encoder_test_data[word_id: word_id + 1] input_mask = decoder_test_masks[word_id: word_id + 1] category_bounds = tile_grammar.smiles_to_categories_bounds(test_string) decoded_seq_1 = decode_sequence_ae(model, input_seq, input_mask, len(test_string), charset_cats, category_bounds) #print ('decoded categories (w/ bounds):', decoded_seq_1) decoded_seq_2 = decode_sequence_ae(model, input_seq, input_mask, len(test_string), charset_cats) #print ('decoded categories (no bounds):', decoded_seq_2) print ('[train, decoded, decoded] categories :', zip(test_sequence[:len(test_string)], decoded_seq_1, decoded_seq_2)) # print ('categories bounds:', tile_grammar.smiles_to_categories_bounds(test_string)) ############################################################################################################## #Simple (deep) RNN ############################################################################################################## elif args.model == 'rnn': model = Seq2SeqRNN() if os.path.isfile(args.out): model.load(charset, charset_cats, args.out, lstm_size=LSTM_SIZE) else: model.create(charset, charset_cats, lstm_size=LSTM_SIZE) if args.epochs > 0: checkpointer = ModelCheckpoint(filepath=args.out, verbose=1, save_best_only=True) reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.2, patience = 3, min_lr = 0.000001) filename, ext = os.path.splitext(args.out) plot_model(model.rnn, to_file=filename + '_rnn.pdf', show_shapes=True) plot = PlotLearning() plot.set_filename(filename) history = model.rnn.fit([encoder_input_data, decoder_input_masks], decoder_input_data, batch_size=args.batch_size, epochs=args.epochs, validation_split=0.2, callbacks=[checkpointer, reduce_lr, plot]) # Save model model.rnn.save(args.out) #test-decode a couple of train examples sample_ids = np.random.randint(0, len(data_train), 2) for word_id in sample_ids: print ('===============================') train_string = decode_smiles_from_indexes(map(from_one_hot_array, data_train[word_id]), charset) print ('train string: ', train_string) train_sequence = [] for char_id in range(categories_train[word_id].shape[0]): token_index = np.argmax(categories_train[word_id][char_id, :]) train_category = charset_cats[token_index] train_sequence.append(train_category) input_seq = encoder_input_data[word_id: word_id + 1] input_mask = decoder_input_masks[word_id: word_id + 1] decoded_seq_1 = decode_sequence_rnn(model, input_seq, len(train_string), charset_cats, input_mask) print ('(train, decoded) categories :', zip(train_sequence, decoded_seq_1)) #test-decode a couple of test examples sample_ids = np.random.randint(0, len(data_test), 2) for word_id in sample_ids: print ('===============================') test_string = decode_smiles_from_indexes(map(from_one_hot_array, data_test[word_id]), charset) print ('test string: ', test_string) test_sequence = [] for char_id in range(categories_test[word_id].shape[0]): token_index = np.argmax(categories_test[word_id][char_id, :]) test_category = charset_cats[token_index] test_sequence.append(test_category) input_seq = encoder_test_data[word_id: word_id + 1] input_mask = decoder_test_masks[word_id: word_id + 1] decoded_seq_1 = decode_sequence_rnn(model, input_seq, len(test_string), charset_cats, input_mask) print ('(test, decoded) categories :', zip(test_sequence, decoded_seq_1)) num_smiles_variants = 32 decoded_seq_2 = decode_sequence(model, tile_grammar, charset, test_string, max_length=args.word_length, num_variants=num_smiles_variants) print ('(test, decoded_1, decoded_' + str(num_smiles_variants) + ') categories :', zip(test_sequence, decoded_seq_1, decoded_seq_2)) ############################################################################################################### #Deep RNN ############################################################################################################### elif args.model == 'deep_rnn': model = Seq2SeqDeepRNN() if os.path.isfile(args.out): model.load(charset, charset_cats, args.out, lstm_size=LSTM_SIZE) else: model.create(charset, charset_cats, lstm_size=LSTM_SIZE) if args.epochs > 0: checkpointer = ModelCheckpoint(filepath=args.out, verbose=1, save_best_only=True) reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.2, patience = 3, min_lr = 0.000001) filename, ext = os.path.splitext(args.out) plot_model(model.rnn, to_file=filename + '_rnn.pdf', show_shapes=True) plot = PlotLearning() plot.set_filename(filename) history = model.rnn.fit([encoder_input_data, decoder_input_masks], decoder_input_data, batch_size=args.batch_size, epochs=args.epochs, validation_split=0.2, callbacks=[checkpointer, reduce_lr, plot]) # Save model model.rnn.save(args.out) #test-decode a couple of train examples sample_ids = np.random.randint(0, len(data_train), 2) for word_id in sample_ids: print ('===============================') train_string = decode_smiles_from_indexes(map(from_one_hot_array, data_train[word_id]), charset) print ('train string: ', train_string) train_sequence = [] for char_id in range(categories_train[word_id].shape[0]): token_index = np.argmax(categories_train[word_id][char_id, :]) train_category = charset_cats[token_index] train_sequence.append(train_category) input_seq = encoder_input_data[word_id: word_id + 1] input_mask = decoder_input_masks[word_id: word_id + 1] decoded_seq_1 = decode_sequence_rnn(model, input_seq, len(train_string), charset_cats, input_mask) print ('(train, decoded) categories :', zip(train_sequence, decoded_seq_1)) #test-decode a couple of test examples sample_ids = np.random.randint(0, len(data_test), 2) for word_id in sample_ids: print ('===============================') test_string = decode_smiles_from_indexes(map(from_one_hot_array, data_test[word_id]), charset) print ('test string: ', test_string) test_sequence = [] for char_id in range(categories_test[word_id].shape[0]): token_index = np.argmax(categories_test[word_id][char_id, :]) test_category = charset_cats[token_index] test_sequence.append(test_category) input_seq = encoder_test_data[word_id: word_id + 1] input_mask = decoder_test_masks[word_id: word_id + 1] decoded_seq_1 = decode_sequence_rnn(model, input_seq, len(test_string), charset_cats, input_mask) print ('(test, decoded) categories :', zip(test_sequence, decoded_seq_1)) num_smiles_variants = 32 decoded_seq_2 = decode_sequence(model, tile_grammar, charset, test_string, max_length=args.word_length, num_variants=num_smiles_variants) print ('(test, decoded_1, decoded_' + str(num_smiles_variants) + ') categories :', zip(test_sequence, decoded_seq_1, decoded_seq_2)) ############################################################################################################### #Simple RNN without masking ############################################################################################################### elif args.model == 'no_mask_rnn': model = Seq2SeqNoMaskRNN() if os.path.isfile(args.out): model.load(charset, charset_cats, args.out, lstm_size=LSTM_SIZE) else: model.create(charset, charset_cats, lstm_size=LSTM_SIZE) if args.epochs > 0: checkpointer = ModelCheckpoint(filepath=args.out, verbose=1, save_best_only=True) reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.2, patience = 3, min_lr = 0.000001) filename, ext = os.path.splitext(args.out) plot_model(model.rnn, to_file=filename + '_rnn.pdf', show_shapes=True) plot = PlotLearning() plot.set_filename(filename) history = model.rnn.fit(encoder_input_data, decoder_input_data, batch_size=args.batch_size, epochs=args.epochs, validation_split=0.2, callbacks=[checkpointer, reduce_lr, plot]) # Save model model.rnn.save(args.out) #test-decode a couple of train examples sample_ids = np.random.randint(0, len(data_train), 2) for word_id in sample_ids: print ('===============================') train_string = decode_smiles_from_indexes(map(from_one_hot_array, data_train[word_id]), charset) print ('train string: ', train_string) train_sequence = [] for char_id in range(categories_train[word_id].shape[0]): token_index = np.argmax(categories_train[word_id][char_id, :]) train_category = charset_cats[token_index] train_sequence.append(train_category) input_seq = encoder_input_data[word_id: word_id + 1] input_mask = decoder_input_masks[word_id: word_id + 1] decoded_seq_1 = decode_sequence_rnn(model, input_seq, len(train_string), charset_cats) print ('(train, decoded) categories :', zip(train_sequence, decoded_seq_1)) #test-decode a couple of test examples sample_ids = np.random.randint(0, len(data_test), 2) for word_id in sample_ids: print ('===============================') test_string = decode_smiles_from_indexes(map(from_one_hot_array, data_test[word_id]), charset) print ('test string: ', test_string) test_sequence = [] for char_id in range(categories_test[word_id].shape[0]): token_index = np.argmax(categories_test[word_id][char_id, :]) test_category = charset_cats[token_index] test_sequence.append(test_category) input_seq = encoder_test_data[word_id: word_id + 1] input_mask = decoder_test_masks[word_id: word_id + 1] decoded_seq_1 = decode_sequence_rnn(model, input_seq, len(test_string), charset_cats) print ('(train, decoded) categories :', zip(test_sequence, decoded_seq_1)) if __name__ == '__main__': main()
the-stack_106_24566
# -*- coding: utf-8 -*- from .types import Types from ..Helpers.commands import Dup, Store, Push, BLoad, Load, Add, DBLoad, Label, Jump, Pop, Jz class Loop: """ Генератор команд для организации циклов """ load_commands = { 'stack': BLoad, 'heap': DBLoad } @staticmethod def base(commands, data, check_break_condition, callback, load_counter=True, return_counter=False): """ Генерация команд для организации цикла. Условие останова - динамическое, передается извне. """ # Создаем метки и переменные, необходимые для прохождения цикла. counter = data.var(Types.INT) start_label = data.label() finish_label = data.label() continue_label = data.label() # Инициализируем счетчик цикла commands.add(Push, 0) \ .add(Store, counter) \ .add(Label, start_label) # Выполняем тело цикла if callback is not None: callback(counter, finish_label, continue_label) commands.add(Label, continue_label) # Инкрементируем счетчик цикла commands.add(Load, counter) \ .add(Push, 1) \ .add(Add) \ .add(Store, counter) # Выполняем переданное условие останова if check_break_condition is not None: check_break_condition(start_label, finish_label, counter) commands.add(Jump, start_label) \ .add(Label, finish_label) # Если требуется, загружаем на стек количество совершенных итераций if load_counter: commands.add(Load, counter) # Если требуется, возвращаем переменную, в которой содержится кол-во совершенных итераций if return_counter: return counter @staticmethod def simple(commands, data, callback, return_counter=False): """ Генерация команд для организация произвольного цикла. Критерий отстанова и сам останов должен реализовываться внутри callback. """ return Loop.base(commands, data, None, callback, False, return_counter) @staticmethod def stack(commands, data, callback, load_counter=True, return_counter=False): """ Генерация команд для организация цикла на стеке. Цикл завершается, если на стеке оказалось 0. """ def check_break_condition(a, finish_label, b): # Если после выполнения callback на стеке 0 - завершаем цикл. commands.add(Dup).add(Jz, finish_label) result = Loop.base(commands, data, check_break_condition, callback, load_counter, return_counter) # Очищаем оставшийся на стеке 0 (поскольку перед Jz использовали Dup). commands.add(Pop) return result @staticmethod def data(commands, data, start_pointer, callback=None, load_counter=True, return_counter=False, memory_type='heap'): """ Генерация команд для организация цикла в памяти. Цикл завершается, если в очередной ячейке стековой памяти оказалось 0. """ def check_break_condition(a, finish_label, _counter): # Если после выполнения callback в ячейке памяти 0 - завершаем цикл. commands.add(Load, start_pointer) \ .add(Load, _counter) \ .add(Add) \ .add(Loop.load_commands[memory_type], 0) \ .add(Jz, finish_label) return Loop.base(commands, data, check_break_condition, callback, load_counter, return_counter) @staticmethod def data_stack(commands, data, start_pointer, callback=None, load_counter=True, return_counter=False): """ Генерация команд для организация цикла в памяти. Цикл завершается, если в очередной ячейке стековой памяти оказалось 0. """ return Loop.data(commands, data, start_pointer, callback, load_counter, return_counter, memory_type='stack') @staticmethod def data_heap(commands, data, start_pointer, callback=None, load_counter=True, return_counter=False): """ Генерация команд для организация цикла в памяти. Цикл завершается, если в очередной ячейке heap-памяти оказалось 0. """ return Loop.data(commands, data, start_pointer, callback, load_counter, return_counter)
the-stack_106_24570
import six import json from kubernetes import watch from kubernetes.client.rest import ApiException from .apply import apply from .discovery import EagerDiscoverer, LazyDiscoverer from .exceptions import api_exception, KubernetesValidateMissing, ApplyException from .resource import Resource, ResourceList, Subresource, ResourceInstance, ResourceField try: import kubernetes_validate HAS_KUBERNETES_VALIDATE = True except ImportError: HAS_KUBERNETES_VALIDATE = False try: from kubernetes_validate.utils import VersionNotSupportedError except ImportError: class VersionNotSupportedError(NotImplementedError): pass __all__ = [ 'DynamicClient', 'ResourceInstance', 'Resource', 'ResourceList', 'Subresource', 'EagerDiscoverer', 'LazyDiscoverer', 'ResourceField', ] def meta_request(func): """ Handles parsing response structure and translating API Exceptions """ def inner(self, *args, **kwargs): serialize_response = kwargs.pop('serialize', True) serializer = kwargs.pop('serializer', ResourceInstance) try: resp = func(self, *args, **kwargs) except ApiException as e: raise api_exception(e) if serialize_response: try: if six.PY2: return serializer(self, json.loads(resp.data)) return serializer(self, json.loads(resp.data.decode('utf8'))) except ValueError: if six.PY2: return resp.data return resp.data.decode('utf8') return resp return inner class DynamicClient(object): """ A kubernetes client that dynamically discovers and interacts with the kubernetes API """ def __init__(self, client, cache_file=None, discoverer=None): # Setting default here to delay evaluation of LazyDiscoverer class # until constructor is called discoverer = discoverer or LazyDiscoverer self.client = client self.configuration = client.configuration self.__discoverer = discoverer(self, cache_file) @property def resources(self): return self.__discoverer @property def version(self): return self.__discoverer.version def ensure_namespace(self, resource, namespace, body): namespace = namespace or body.get('metadata', {}).get('namespace') if not namespace: raise ValueError("Namespace is required for {}.{}".format(resource.group_version, resource.kind)) return namespace def serialize_body(self, body): if hasattr(body, 'to_dict'): return body.to_dict() return body or {} def get(self, resource, name=None, namespace=None, **kwargs): path = resource.path(name=name, namespace=namespace) return self.request('get', path, **kwargs) def create(self, resource, body=None, namespace=None, **kwargs): body = self.serialize_body(body) if resource.namespaced: namespace = self.ensure_namespace(resource, namespace, body) path = resource.path(namespace=namespace) return self.request('post', path, body=body, **kwargs) def delete(self, resource, name=None, namespace=None, label_selector=None, field_selector=None, **kwargs): if not (name or label_selector or field_selector): raise ValueError("At least one of name|label_selector|field_selector is required") if resource.namespaced and not (label_selector or field_selector or namespace): raise ValueError("At least one of namespace|label_selector|field_selector is required") path = resource.path(name=name, namespace=namespace) return self.request('delete', path, label_selector=label_selector, field_selector=field_selector, **kwargs) def replace(self, resource, body=None, name=None, namespace=None, **kwargs): body = self.serialize_body(body) name = name or body.get('metadata', {}).get('name') if not name: raise ValueError("name is required to replace {}.{}".format(resource.group_version, resource.kind)) if resource.namespaced: namespace = self.ensure_namespace(resource, namespace, body) path = resource.path(name=name, namespace=namespace) return self.request('put', path, body=body, **kwargs) def patch(self, resource, body=None, name=None, namespace=None, **kwargs): body = self.serialize_body(body) name = name or body.get('metadata', {}).get('name') if not name: raise ValueError("name is required to patch {}.{}".format(resource.group_version, resource.kind)) if resource.namespaced: namespace = self.ensure_namespace(resource, namespace, body) content_type = kwargs.pop('content_type', 'application/strategic-merge-patch+json') path = resource.path(name=name, namespace=namespace) return self.request('patch', path, body=body, content_type=content_type, **kwargs) def apply(self, resource, body=None, name=None, namespace=None): body = self.serialize_body(body) body['metadata'] = body.get('metadata', dict()) name = name or body['metadata'].get('name') if not name: raise ValueError("name is required to apply {}.{}".format(resource.group_version, resource.kind)) if resource.namespaced: body['metadata']['namespace'] = self.ensure_namespace(resource, namespace, body) try: return apply(resource, body) except ApplyException as e: raise ValueError("Could not apply strategic merge to %s/%s: %s" % (body['kind'], body['metadata']['name'], e)) def watch(self, resource, namespace=None, name=None, label_selector=None, field_selector=None, resource_version=None, timeout=None): """ Stream events for a resource from the Kubernetes API :param resource: The API resource object that will be used to query the API :param namespace: The namespace to query :param name: The name of the resource instance to query :param label_selector: The label selector with which to filter results :param field_selector: The field selector with which to filter results :param resource_version: The version with which to filter results. Only events with a resource_version greater than this value will be returned :param timeout: The amount of time in seconds to wait before terminating the stream :return: Event object with these keys: 'type': The type of event such as "ADDED", "DELETED", etc. 'raw_object': a dict representing the watched object. 'object': A ResourceInstance wrapping raw_object. Example: client = DynamicClient(k8s_client) v1_pods = client.resources.get(api_version='v1', kind='Pod') for e in v1_pods.watch(resource_version=0, namespace=default, timeout=5): print(e['type']) print(e['object'].metadata) """ watcher = watch.Watch() for event in watcher.stream( resource.get, namespace=namespace, name=name, field_selector=field_selector, label_selector=label_selector, resource_version=resource_version, serialize=False, timeout_seconds=timeout ): event['object'] = ResourceInstance(resource, event['object']) yield event @meta_request def request(self, method, path, body=None, **params): if not path.startswith('/'): path = '/' + path path_params = params.get('path_params', {}) query_params = params.get('query_params', []) if params.get('pretty') is not None: query_params.append(('pretty', params['pretty'])) if params.get('_continue') is not None: query_params.append(('continue', params['_continue'])) if params.get('include_uninitialized') is not None: query_params.append(('includeUninitialized', params['include_uninitialized'])) if params.get('field_selector') is not None: query_params.append(('fieldSelector', params['field_selector'])) if params.get('label_selector') is not None: query_params.append(('labelSelector', params['label_selector'])) if params.get('limit') is not None: query_params.append(('limit', params['limit'])) if params.get('resource_version') is not None: query_params.append(('resourceVersion', params['resource_version'])) if params.get('timeout_seconds') is not None: query_params.append(('timeoutSeconds', params['timeout_seconds'])) if params.get('watch') is not None: query_params.append(('watch', params['watch'])) header_params = params.get('header_params', {}) form_params = [] local_var_files = {} # HTTP header `Accept` header_params['Accept'] = self.client.select_header_accept([ 'application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf' ]) # HTTP header `Content-Type` if params.get('content_type'): header_params['Content-Type'] = params['content_type'] else: header_params['Content-Type'] = self.client.select_header_content_type(['*/*']) # Authentication setting auth_settings = ['BearerToken'] return self.client.call_api( path, method.upper(), path_params, query_params, header_params, body=body, post_params=form_params, async_req=params.get('async_req'), files=local_var_files, auth_settings=auth_settings, _preload_content=False, _return_http_data_only=params.get('_return_http_data_only', True) ) def validate(self, definition, version=None, strict=False): """validate checks a kubernetes resource definition Args: definition (dict): resource definition version (str): version of kubernetes to validate against strict (bool): whether unexpected additional properties should be considered errors Returns: warnings (list), errors (list): warnings are missing validations, errors are validation failures """ if not HAS_KUBERNETES_VALIDATE: raise KubernetesValidateMissing() errors = list() warnings = list() try: if version is None: try: version = self.version['kubernetes']['gitVersion'] except KeyError: version = kubernetes_validate.latest_version() kubernetes_validate.validate(definition, version, strict) except kubernetes_validate.utils.ValidationError as e: errors.append("resource definition validation error at %s: %s" % ('.'.join([str(item) for item in e.path]), e.message)) # noqa: B306 except VersionNotSupportedError: errors.append("Kubernetes version %s is not supported by kubernetes-validate" % version) except kubernetes_validate.utils.SchemaNotFoundError as e: warnings.append("Could not find schema for object kind %s with API version %s in Kubernetes version %s (possibly Custom Resource?)" % (e.kind, e.api_version, e.version)) return warnings, errors
the-stack_106_24571
# Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging from django.conf import settings from django.core import urlresolvers from django.http import HttpResponse # noqa from django import shortcuts from django import template from django.template.defaultfilters import title # noqa from django.utils.http import urlencode from django.utils.translation import npgettext_lazy from django.utils.translation import pgettext_lazy from django.utils.translation import string_concat # noqa from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ungettext_lazy import six from horizon import conf from horizon import exceptions from horizon import messages from horizon import tables from horizon.templatetags import sizeformat from horizon.utils import filters from openstack_dashboard import api from openstack_dashboard.dashboards.project.access_and_security.floating_ips \ import workflows from openstack_dashboard.dashboards.project.instances import tabs from openstack_dashboard.dashboards.project.instances.workflows \ import resize_instance from openstack_dashboard.dashboards.project.instances.workflows \ import update_instance from openstack_dashboard import policy LOG = logging.getLogger(__name__) ACTIVE_STATES = ("ACTIVE",) VOLUME_ATTACH_READY_STATES = ("ACTIVE", "SHUTOFF") SNAPSHOT_READY_STATES = ("ACTIVE", "SHUTOFF", "PAUSED", "SUSPENDED") POWER_STATES = { 0: "NO STATE", 1: "RUNNING", 2: "BLOCKED", 3: "PAUSED", 4: "SHUTDOWN", 5: "SHUTOFF", 6: "CRASHED", 7: "SUSPENDED", 8: "FAILED", 9: "BUILDING", } PAUSE = 0 UNPAUSE = 1 SUSPEND = 0 RESUME = 1 SHELVE = 0 UNSHELVE = 1 def is_deleting(instance): task_state = getattr(instance, "OS-EXT-STS:task_state", None) if not task_state: return False return task_state.lower() == "deleting" class DeleteInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "delete" classes = ("btn-danger",) icon = "remove" policy_rules = (("compute", "compute:delete"),) help_text = _("Deleted instances are not recoverable.") @staticmethod def action_present(count): return ungettext_lazy( u"Delete Instance", u"Delete Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( u"Scheduled deletion of Instance", u"Scheduled deletion of Instances", count ) def allowed(self, request, instance=None): """Allow delete action if instance not currently being deleted.""" return not is_deleting(instance) def action(self, request, obj_id): api.nova.server_delete(request, obj_id) class RebootInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "reboot" classes = ('btn-danger', 'btn-reboot') policy_rules = (("compute", "compute:reboot"),) help_text = _("Restarted instances will lose any data" " not saved in persistent storage.") @staticmethod def action_present(count): return ungettext_lazy( u"Hard Reboot Instance", u"Hard Reboot Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( u"Hard Rebooted Instance", u"Hard Rebooted Instances", count ) def allowed(self, request, instance=None): if instance is not None: return ((instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance)) else: return True def action(self, request, obj_id): api.nova.server_reboot(request, obj_id, soft_reboot=False) class SoftRebootInstance(RebootInstance): name = "soft_reboot" @staticmethod def action_present(count): return ungettext_lazy( u"Soft Reboot Instance", u"Soft Reboot Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( u"Soft Rebooted Instance", u"Soft Rebooted Instances", count ) def action(self, request, obj_id): api.nova.server_reboot(request, obj_id, soft_reboot=True) class TogglePause(tables.BatchAction): name = "pause" icon = "pause" @staticmethod def action_present(count): return ( ungettext_lazy( u"Pause Instance", u"Pause Instances", count ), ungettext_lazy( u"Resume Instance", u"Resume Instances", count ), ) @staticmethod def action_past(count): return ( ungettext_lazy( u"Paused Instance", u"Paused Instances", count ), ungettext_lazy( u"Resumed Instance", u"Resumed Instances", count ), ) def allowed(self, request, instance=None): if not api.nova.extension_supported('AdminActions', request): return False if not instance: return False self.paused = instance.status == "PAUSED" if self.paused: self.current_present_action = UNPAUSE policy = (("compute", "compute_extension:admin_actions:unpause"),) else: self.current_present_action = PAUSE policy = (("compute", "compute_extension:admin_actions:pause"),) has_permission = True policy_check = getattr(settings, "POLICY_CHECK_FUNCTION", None) if policy_check: has_permission = policy_check( policy, request, target={'project_id': getattr(instance, 'tenant_id', None)}) return (has_permission and (instance.status in ACTIVE_STATES or self.paused) and not is_deleting(instance)) def action(self, request, obj_id): if self.paused: api.nova.server_unpause(request, obj_id) self.current_past_action = UNPAUSE else: api.nova.server_pause(request, obj_id) self.current_past_action = PAUSE class ToggleSuspend(tables.BatchAction): name = "suspend" classes = ("btn-suspend",) @staticmethod def action_present(count): return ( ungettext_lazy( u"Suspend Instance", u"Suspend Instances", count ), ungettext_lazy( u"Resume Instance", u"Resume Instances", count ), ) @staticmethod def action_past(count): return ( ungettext_lazy( u"Suspended Instance", u"Suspended Instances", count ), ungettext_lazy( u"Resumed Instance", u"Resumed Instances", count ), ) def allowed(self, request, instance=None): if not api.nova.extension_supported('AdminActions', request): return False if not instance: return False self.suspended = instance.status == "SUSPENDED" if self.suspended: self.current_present_action = RESUME policy = (("compute", "compute_extension:admin_actions:resume"),) else: self.current_present_action = SUSPEND policy = (("compute", "compute_extension:admin_actions:suspend"),) has_permission = True policy_check = getattr(settings, "POLICY_CHECK_FUNCTION", None) if policy_check: has_permission = policy_check( policy, request, target={'project_id': getattr(instance, 'tenant_id', None)}) return (has_permission and (instance.status in ACTIVE_STATES or self.suspended) and not is_deleting(instance)) def action(self, request, obj_id): if self.suspended: api.nova.server_resume(request, obj_id) self.current_past_action = RESUME else: api.nova.server_suspend(request, obj_id) self.current_past_action = SUSPEND class ToggleShelve(tables.BatchAction): name = "shelve" icon = "shelve" @staticmethod def action_present(count): return ( ungettext_lazy( u"Shelve Instance", u"Shelve Instances", count ), ungettext_lazy( u"Unshelve Instance", u"Unshelve Instances", count ), ) @staticmethod def action_past(count): return ( ungettext_lazy( u"Shelved Instance", u"Shelved Instances", count ), ungettext_lazy( u"Unshelved Instance", u"Unshelved Instances", count ), ) def allowed(self, request, instance=None): if not api.nova.extension_supported('Shelve', request): return False if not instance: return False self.shelved = instance.status == "SHELVED_OFFLOADED" if self.shelved: self.current_present_action = UNSHELVE policy = (("compute", "compute_extension:unshelve"),) else: self.current_present_action = SHELVE policy = (("compute", "compute_extension:shelve"),) has_permission = True policy_check = getattr(settings, "POLICY_CHECK_FUNCTION", None) if policy_check: has_permission = policy_check( policy, request, target={'project_id': getattr(instance, 'tenant_id', None)}) return (has_permission and (instance.status in ACTIVE_STATES or self.shelved) and not is_deleting(instance)) def action(self, request, obj_id): if self.shelved: api.nova.server_unshelve(request, obj_id) self.current_past_action = UNSHELVE else: api.nova.server_shelve(request, obj_id) self.current_past_action = SHELVE class LaunchLink(tables.LinkAction): name = "launch" verbose_name = _("Launch Instance") url = "horizon:project:instances:launch" classes = ("ajax-modal", "btn-launch") icon = "cloud-upload" policy_rules = (("compute", "compute:create"),) ajax = True def __init__(self, attrs=None, **kwargs): kwargs['preempt'] = True super(LaunchLink, self).__init__(attrs, **kwargs) def allowed(self, request, datum): try: limits = api.nova.tenant_absolute_limits(request, reserved=True) instances_available = limits['maxTotalInstances'] \ - limits['totalInstancesUsed'] cores_available = limits['maxTotalCores'] \ - limits['totalCoresUsed'] ram_available = limits['maxTotalRAMSize'] - limits['totalRAMUsed'] if instances_available <= 0 or cores_available <= 0 \ or ram_available <= 0: if "disabled" not in self.classes: self.classes = [c for c in self.classes] + ['disabled'] self.verbose_name = string_concat(self.verbose_name, ' ', _("(Quota exceeded)")) else: self.verbose_name = _("Launch Instance") classes = [c for c in self.classes if c != "disabled"] self.classes = classes except Exception: LOG.exception("Failed to retrieve quota information") # If we can't get the quota information, leave it to the # API to check when launching return True # The action should always be displayed def single(self, table, request, object_id=None): self.allowed(request, None) return HttpResponse(self.render()) class LaunchLinkNG(LaunchLink): name = "launch-ng" url = "horizon:project:instances:index" ajax = False classes = ("btn-launch", ) def get_default_attrs(self): url = urlresolvers.reverse(self.url) ngclick = "modal.openLaunchInstanceWizard(" \ "{ successUrl: '%s' })" % url self.attrs.update({ 'ng-controller': 'LaunchInstanceModalController as modal', 'ng-click': ngclick }) return super(LaunchLinkNG, self).get_default_attrs() def get_link_url(self, datum=None): return "javascript:void(0);" class EditInstance(policy.PolicyTargetMixin, tables.LinkAction): name = "edit" verbose_name = _("Edit Instance") url = "horizon:project:instances:update" classes = ("ajax-modal",) icon = "pencil" policy_rules = (("compute", "compute:update"),) def get_link_url(self, project): return self._get_link_url(project, 'instance_info') def _get_link_url(self, project, step_slug): base_url = urlresolvers.reverse(self.url, args=[project.id]) next_url = self.table.get_full_url() params = {"step": step_slug, update_instance.UpdateInstance.redirect_param_name: next_url} param = urlencode(params) return "?".join([base_url, param]) def allowed(self, request, instance): return not is_deleting(instance) class EditInstanceSecurityGroups(EditInstance): name = "edit_secgroups" verbose_name = _("Edit Security Groups") def get_link_url(self, project): return self._get_link_url(project, 'update_security_groups') def allowed(self, request, instance=None): return (instance.status in ACTIVE_STATES and not is_deleting(instance) and request.user.tenant_id == instance.tenant_id) class CreateSnapshot(policy.PolicyTargetMixin, tables.LinkAction): name = "snapshot" verbose_name = _("Create Snapshot") url = "horizon:project:images:snapshots:create" classes = ("ajax-modal",) icon = "camera" policy_rules = (("compute", "compute:snapshot"),) def allowed(self, request, instance=None): return instance.status in SNAPSHOT_READY_STATES \ and not is_deleting(instance) class ConsoleLink(policy.PolicyTargetMixin, tables.LinkAction): name = "console" verbose_name = _("Console") url = "horizon:project:instances:detail" classes = ("btn-console",) policy_rules = (("compute", "compute_extension:consoles"),) def allowed(self, request, instance=None): # We check if ConsoleLink is allowed only if settings.CONSOLE_TYPE is # not set at all, or if it's set to any value other than None or False. return bool(getattr(settings, 'CONSOLE_TYPE', True)) and \ instance.status in ACTIVE_STATES and not is_deleting(instance) def get_link_url(self, datum): base_url = super(ConsoleLink, self).get_link_url(datum) tab_query_string = tabs.ConsoleTab( tabs.InstanceDetailTabs).get_query_string() return "?".join([base_url, tab_query_string]) class LogLink(policy.PolicyTargetMixin, tables.LinkAction): name = "log" verbose_name = _("View Log") url = "horizon:project:instances:detail" classes = ("btn-log",) policy_rules = (("compute", "compute_extension:console_output"),) def allowed(self, request, instance=None): return instance.status in ACTIVE_STATES and not is_deleting(instance) def get_link_url(self, datum): base_url = super(LogLink, self).get_link_url(datum) tab_query_string = tabs.LogTab( tabs.InstanceDetailTabs).get_query_string() return "?".join([base_url, tab_query_string]) class ResizeLink(policy.PolicyTargetMixin, tables.LinkAction): name = "resize" verbose_name = _("Resize Instance") url = "horizon:project:instances:resize" classes = ("ajax-modal", "btn-resize") policy_rules = (("compute", "compute:resize"),) def get_link_url(self, project): return self._get_link_url(project, 'flavor_choice') def _get_link_url(self, project, step_slug): base_url = urlresolvers.reverse(self.url, args=[project.id]) next_url = self.table.get_full_url() params = {"step": step_slug, resize_instance.ResizeInstance.redirect_param_name: next_url} param = urlencode(params) return "?".join([base_url, param]) def allowed(self, request, instance): return ((instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance)) class ConfirmResize(policy.PolicyTargetMixin, tables.Action): name = "confirm" verbose_name = _("Confirm Resize/Migrate") classes = ("btn-confirm", "btn-action-required") policy_rules = (("compute", "compute:confirm_resize"),) def allowed(self, request, instance): return instance.status == 'VERIFY_RESIZE' def single(self, table, request, instance): api.nova.server_confirm_resize(request, instance) class RevertResize(policy.PolicyTargetMixin, tables.Action): name = "revert" verbose_name = _("Revert Resize/Migrate") classes = ("btn-revert", "btn-action-required") policy_rules = (("compute", "compute:revert_resize"),) def allowed(self, request, instance): return instance.status == 'VERIFY_RESIZE' def single(self, table, request, instance): api.nova.server_revert_resize(request, instance) class RebuildInstance(policy.PolicyTargetMixin, tables.LinkAction): name = "rebuild" verbose_name = _("Rebuild Instance") classes = ("btn-rebuild", "ajax-modal") url = "horizon:project:instances:rebuild" policy_rules = (("compute", "compute:rebuild"),) def allowed(self, request, instance): return ((instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance)) def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) return urlresolvers.reverse(self.url, args=[instance_id]) class DecryptInstancePassword(tables.LinkAction): name = "decryptpassword" verbose_name = _("Retrieve Password") classes = ("btn-decrypt", "ajax-modal") url = "horizon:project:instances:decryptpassword" def allowed(self, request, instance): enable = getattr(settings, 'OPENSTACK_ENABLE_PASSWORD_RETRIEVE', False) return (enable and (instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance) and get_keyname(instance) is not None) def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) keypair_name = get_keyname(datum) return urlresolvers.reverse(self.url, args=[instance_id, keypair_name]) class AssociateIP(policy.PolicyTargetMixin, tables.LinkAction): name = "associate" verbose_name = _("Associate Floating IP") url = "horizon:project:access_and_security:floating_ips:associate" classes = ("ajax-modal",) icon = "link" policy_rules = (("compute", "network:associate_floating_ip"),) def allowed(self, request, instance): if not api.network.floating_ip_supported(request): return False if api.network.floating_ip_simple_associate_supported(request): return False if instance.status == "ERROR": return False for addresses in instance.addresses.values(): for address in addresses: if address.get('OS-EXT-IPS:type') == "floating": return False return not is_deleting(instance) def get_link_url(self, datum): base_url = urlresolvers.reverse(self.url) next_url = self.table.get_full_url() params = { "instance_id": self.table.get_object_id(datum), workflows.IPAssociationWorkflow.redirect_param_name: next_url} params = urlencode(params) return "?".join([base_url, params]) class SimpleAssociateIP(policy.PolicyTargetMixin, tables.Action): name = "associate-simple" verbose_name = _("Associate Floating IP") icon = "link" policy_rules = (("compute", "network:associate_floating_ip"),) def allowed(self, request, instance): if not api.network.floating_ip_simple_associate_supported(request): return False if instance.status == "ERROR": return False return not is_deleting(instance) def single(self, table, request, instance_id): try: # target_id is port_id for Neutron and instance_id for Nova Network # (Neutron API wrapper returns a 'portid_fixedip' string) target_id = api.network.floating_ip_target_get_by_instance( request, instance_id).split('_')[0] fip = api.network.tenant_floating_ip_allocate(request) api.network.floating_ip_associate(request, fip.id, target_id) messages.success(request, _("Successfully associated floating IP: %s") % fip.ip) except Exception: exceptions.handle(request, _("Unable to associate floating IP.")) return shortcuts.redirect(request.get_full_path()) class SimpleDisassociateIP(policy.PolicyTargetMixin, tables.Action): name = "disassociate" verbose_name = _("Disassociate Floating IP") classes = ("btn-danger", "btn-disassociate",) policy_rules = (("compute", "network:disassociate_floating_ip"),) def allowed(self, request, instance): if not api.network.floating_ip_supported(request): return False if not conf.HORIZON_CONFIG["simple_ip_management"]: return False for addresses in instance.addresses.values(): for address in addresses: if address.get('OS-EXT-IPS:type') == "floating": return not is_deleting(instance) return False def single(self, table, request, instance_id): try: # target_id is port_id for Neutron and instance_id for Nova Network # (Neutron API wrapper returns a 'portid_fixedip' string) targets = api.network.floating_ip_target_list_by_instance( request, instance_id) target_ids = [t.split('_')[0] for t in targets] fips = [fip for fip in api.network.tenant_floating_ip_list(request) if fip.port_id in target_ids] # Removing multiple floating IPs at once doesn't work, so this pops # off the first one. if fips: fip = fips.pop() api.network.floating_ip_disassociate(request, fip.id) messages.success(request, _("Successfully disassociated " "floating IP: %s") % fip.ip) else: messages.info(request, _("No floating IPs to disassociate.")) except Exception: exceptions.handle(request, _("Unable to disassociate floating IP.")) return shortcuts.redirect(request.get_full_path()) class UpdateMetadata(policy.PolicyTargetMixin, tables.LinkAction): name = "update_metadata" verbose_name = _("Update Metadata") ajax = False icon = "pencil" attrs = {"ng-controller": "MetadataModalHelperController as modal"} policy_rules = (("compute", "compute:update_instance_metadata"),) def __init__(self, attrs=None, **kwargs): kwargs['preempt'] = True super(UpdateMetadata, self).__init__(attrs, **kwargs) def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) self.attrs['ng-click'] = ( "modal.openMetadataModal('instance', '%s', true, 'metadata')" % instance_id) return "javascript:void(0);" def allowed(self, request, instance=None): return (instance and instance.status.lower() != 'error') def instance_fault_to_friendly_message(instance): fault = getattr(instance, 'fault', {}) message = fault.get('message', _("Unknown")) default_message = _("Please try again later [Error: %s].") % message fault_map = { 'NoValidHost': _("There is not enough capacity for this " "flavor in the selected availability zone. " "Try again later or select a different availability " "zone.") } return fault_map.get(message, default_message) def get_instance_error(instance): if instance.status.lower() != 'error': return None message = instance_fault_to_friendly_message(instance) preamble = _('Failed to perform requested operation on instance "%s", the ' 'instance has an error status') % instance.name or instance.id message = string_concat(preamble, ': ', message) return message class UpdateRow(tables.Row): ajax = True def get_data(self, request, instance_id): instance = api.nova.server_get(request, instance_id) try: instance.full_flavor = api.nova.flavor_get(request, instance.flavor["id"]) except Exception: exceptions.handle(request, _('Unable to retrieve flavor information ' 'for instance "%s".') % instance_id, ignore=True) try: api.network.servers_update_addresses(request, [instance]) except Exception: exceptions.handle(request, _('Unable to retrieve Network information ' 'for instance "%s".') % instance_id, ignore=True) error = get_instance_error(instance) if error: messages.error(request, error) return instance class StartInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "start" classes = ('btn-confirm',) policy_rules = (("compute", "compute:start"),) @staticmethod def action_present(count): return ungettext_lazy( u"Start Instance", u"Start Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( u"Started Instance", u"Started Instances", count ) def allowed(self, request, instance): return ((instance is None) or (instance.status in ("SHUTDOWN", "SHUTOFF", "CRASHED"))) def action(self, request, obj_id): api.nova.server_start(request, obj_id) class StopInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "stop" classes = ('btn-danger',) policy_rules = (("compute", "compute:stop"),) help_text = _("The instance(s) will be shut off.") @staticmethod def action_present(count): return npgettext_lazy( "Action to perform (the instance is currently running)", u"Shut Off Instance", u"Shut Off Instances", count ) @staticmethod def action_past(count): return npgettext_lazy( "Past action (the instance is currently already Shut Off)", u"Shut Off Instance", u"Shut Off Instances", count ) def allowed(self, request, instance): return ((instance is None) or ((get_power_state(instance) in ("RUNNING", "SUSPENDED")) and not is_deleting(instance))) def action(self, request, obj_id): api.nova.server_stop(request, obj_id) class LockInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "lock" policy_rules = (("compute", "compute_extension:admin_actions:lock"),) @staticmethod def action_present(count): return ungettext_lazy( u"Lock Instance", u"Lock Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( u"Locked Instance", u"Locked Instances", count ) # TODO(akrivoka): When the lock status is added to nova, revisit this # to only allow unlocked instances to be locked def allowed(self, request, instance): if not api.nova.extension_supported('AdminActions', request): return False return True def action(self, request, obj_id): api.nova.server_lock(request, obj_id) class UnlockInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "unlock" policy_rules = (("compute", "compute_extension:admin_actions:unlock"),) @staticmethod def action_present(count): return ungettext_lazy( u"Unlock Instance", u"Unlock Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( u"Unlocked Instance", u"Unlocked Instances", count ) # TODO(akrivoka): When the lock status is added to nova, revisit this # to only allow locked instances to be unlocked def allowed(self, request, instance): if not api.nova.extension_supported('AdminActions', request): return False return True def action(self, request, obj_id): api.nova.server_unlock(request, obj_id) class AttachInterface(policy.PolicyTargetMixin, tables.LinkAction): name = "attach_interface" verbose_name = _("Attach Interface") classes = ("btn-confirm", "ajax-modal") url = "horizon:project:instances:attach_interface" policy_rules = (("compute", "compute_extension:attach_interfaces"),) def allowed(self, request, instance): return ((instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance) and api.base.is_service_enabled(request, 'network')) def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) return urlresolvers.reverse(self.url, args=[instance_id]) # TODO(lyj): the policy for detach interface not exists in nova.json, # once it's added, it should be added here. class DetachInterface(policy.PolicyTargetMixin, tables.LinkAction): name = "detach_interface" verbose_name = _("Detach Interface") classes = ("btn-confirm", "ajax-modal") url = "horizon:project:instances:detach_interface" def allowed(self, request, instance): return ((instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance) and api.base.is_service_enabled(request, 'network')) def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) return urlresolvers.reverse(self.url, args=[instance_id]) def get_ips(instance): template_name = 'project/instances/_instance_ips.html' ip_groups = {} for ip_group, addresses in six.iteritems(instance.addresses): ip_groups[ip_group] = {} ip_groups[ip_group]["floating"] = [] ip_groups[ip_group]["non_floating"] = [] for address in addresses: if ('OS-EXT-IPS:type' in address and address['OS-EXT-IPS:type'] == "floating"): ip_groups[ip_group]["floating"].append(address) else: ip_groups[ip_group]["non_floating"].append(address) context = { "ip_groups": ip_groups, } return template.loader.render_to_string(template_name, context) def get_size(instance): if hasattr(instance, "full_flavor"): template_name = 'project/instances/_instance_flavor.html' size_ram = sizeformat.mb_float_format(instance.full_flavor.ram) if instance.full_flavor.disk > 0: size_disk = sizeformat.diskgbformat(instance.full_flavor.disk) else: size_disk = _("%s GB") % "0" context = { "name": instance.full_flavor.name, "id": instance.id, "size_disk": size_disk, "size_ram": size_ram, "vcpus": instance.full_flavor.vcpus, "flavor_id": instance.full_flavor.id } return template.loader.render_to_string(template_name, context) return _("Not available") def get_keyname(instance): if hasattr(instance, "key_name"): keyname = instance.key_name return keyname return _("Not available") def get_power_state(instance): return POWER_STATES.get(getattr(instance, "OS-EXT-STS:power_state", 0), '') STATUS_DISPLAY_CHOICES = ( ("deleted", pgettext_lazy("Current status of an Instance", u"Deleted")), ("active", pgettext_lazy("Current status of an Instance", u"Active")), ("shutoff", pgettext_lazy("Current status of an Instance", u"Shutoff")), ("suspended", pgettext_lazy("Current status of an Instance", u"Suspended")), ("paused", pgettext_lazy("Current status of an Instance", u"Paused")), ("error", pgettext_lazy("Current status of an Instance", u"Error")), ("resize", pgettext_lazy("Current status of an Instance", u"Resize/Migrate")), ("verify_resize", pgettext_lazy("Current status of an Instance", u"Confirm or Revert Resize/Migrate")), ("revert_resize", pgettext_lazy( "Current status of an Instance", u"Revert Resize/Migrate")), ("reboot", pgettext_lazy("Current status of an Instance", u"Reboot")), ("hard_reboot", pgettext_lazy("Current status of an Instance", u"Hard Reboot")), ("password", pgettext_lazy("Current status of an Instance", u"Password")), ("rebuild", pgettext_lazy("Current status of an Instance", u"Rebuild")), ("migrating", pgettext_lazy("Current status of an Instance", u"Migrating")), ("build", pgettext_lazy("Current status of an Instance", u"Build")), ("rescue", pgettext_lazy("Current status of an Instance", u"Rescue")), ("soft-delete", pgettext_lazy("Current status of an Instance", u"Soft Deleted")), ("shelved", pgettext_lazy("Current status of an Instance", u"Shelved")), ("shelved_offloaded", pgettext_lazy("Current status of an Instance", u"Shelved Offloaded")), # these vm states are used when generating CSV usage summary ("building", pgettext_lazy("Current status of an Instance", u"Building")), ("stopped", pgettext_lazy("Current status of an Instance", u"Stopped")), ("rescued", pgettext_lazy("Current status of an Instance", u"Rescued")), ("resized", pgettext_lazy("Current status of an Instance", u"Resized")), ) TASK_DISPLAY_NONE = pgettext_lazy("Task status of an Instance", u"None") # Mapping of task states taken from Nova's nova/compute/task_states.py TASK_DISPLAY_CHOICES = ( ("scheduling", pgettext_lazy("Task status of an Instance", u"Scheduling")), ("block_device_mapping", pgettext_lazy("Task status of an Instance", u"Block Device Mapping")), ("networking", pgettext_lazy("Task status of an Instance", u"Networking")), ("spawning", pgettext_lazy("Task status of an Instance", u"Spawning")), ("image_snapshot", pgettext_lazy("Task status of an Instance", u"Snapshotting")), ("image_snapshot_pending", pgettext_lazy("Task status of an Instance", u"Image Snapshot Pending")), ("image_pending_upload", pgettext_lazy("Task status of an Instance", u"Image Pending Upload")), ("image_uploading", pgettext_lazy("Task status of an Instance", u"Image Uploading")), ("image_backup", pgettext_lazy("Task status of an Instance", u"Image Backup")), ("updating_password", pgettext_lazy("Task status of an Instance", u"Updating Password")), ("resize_prep", pgettext_lazy("Task status of an Instance", u"Preparing Resize or Migrate")), ("resize_migrating", pgettext_lazy("Task status of an Instance", u"Resizing or Migrating")), ("resize_migrated", pgettext_lazy("Task status of an Instance", u"Resized or Migrated")), ("resize_finish", pgettext_lazy("Task status of an Instance", u"Finishing Resize or Migrate")), ("resize_reverting", pgettext_lazy("Task status of an Instance", u"Reverting Resize or Migrate")), ("resize_confirming", pgettext_lazy("Task status of an Instance", u"Confirming Resize or Migrate")), ("rebooting", pgettext_lazy("Task status of an Instance", u"Rebooting")), ("reboot_pending", pgettext_lazy("Task status of an Instance", u"Reboot Pending")), ("reboot_started", pgettext_lazy("Task status of an Instance", u"Reboot Started")), ("rebooting_hard", pgettext_lazy("Task status of an Instance", u"Rebooting Hard")), ("reboot_pending_hard", pgettext_lazy("Task status of an Instance", u"Reboot Pending Hard")), ("reboot_started_hard", pgettext_lazy("Task status of an Instance", u"Reboot Started Hard")), ("pausing", pgettext_lazy("Task status of an Instance", u"Pausing")), ("unpausing", pgettext_lazy("Task status of an Instance", u"Resuming")), ("suspending", pgettext_lazy("Task status of an Instance", u"Suspending")), ("resuming", pgettext_lazy("Task status of an Instance", u"Resuming")), ("powering-off", pgettext_lazy("Task status of an Instance", u"Powering Off")), ("powering-on", pgettext_lazy("Task status of an Instance", u"Powering On")), ("rescuing", pgettext_lazy("Task status of an Instance", u"Rescuing")), ("unrescuing", pgettext_lazy("Task status of an Instance", u"Unrescuing")), ("rebuilding", pgettext_lazy("Task status of an Instance", u"Rebuilding")), ("rebuild_block_device_mapping", pgettext_lazy( "Task status of an Instance", u"Rebuild Block Device Mapping")), ("rebuild_spawning", pgettext_lazy("Task status of an Instance", u"Rebuild Spawning")), ("migrating", pgettext_lazy("Task status of an Instance", u"Migrating")), ("deleting", pgettext_lazy("Task status of an Instance", u"Deleting")), ("soft-deleting", pgettext_lazy("Task status of an Instance", u"Soft Deleting")), ("restoring", pgettext_lazy("Task status of an Instance", u"Restoring")), ("shelving", pgettext_lazy("Task status of an Instance", u"Shelving")), ("shelving_image_pending_upload", pgettext_lazy( "Task status of an Instance", u"Shelving Image Pending Upload")), ("shelving_image_uploading", pgettext_lazy("Task status of an Instance", u"Shelving Image Uploading")), ("shelving_offloading", pgettext_lazy("Task status of an Instance", u"Shelving Offloading")), ("unshelving", pgettext_lazy("Task status of an Instance", u"Unshelving")), ) POWER_DISPLAY_CHOICES = ( ("NO STATE", pgettext_lazy("Power state of an Instance", u"No State")), ("RUNNING", pgettext_lazy("Power state of an Instance", u"Running")), ("BLOCKED", pgettext_lazy("Power state of an Instance", u"Blocked")), ("PAUSED", pgettext_lazy("Power state of an Instance", u"Paused")), ("SHUTDOWN", pgettext_lazy("Power state of an Instance", u"Shut Down")), ("SHUTOFF", pgettext_lazy("Power state of an Instance", u"Shut Off")), ("CRASHED", pgettext_lazy("Power state of an Instance", u"Crashed")), ("SUSPENDED", pgettext_lazy("Power state of an Instance", u"Suspended")), ("FAILED", pgettext_lazy("Power state of an Instance", u"Failed")), ("BUILDING", pgettext_lazy("Power state of an Instance", u"Building")), ) class InstancesFilterAction(tables.FilterAction): filter_type = "server" filter_choices = (('name', _("Instance Name ="), True), ('status', _("Status ="), True), ('image', _("Image ID ="), True), ('flavor', _("Flavor ID ="), True)) class InstancesTable(tables.DataTable): TASK_STATUS_CHOICES = ( (None, True), ("none", True) ) STATUS_CHOICES = ( ("active", True), ("shutoff", True), ("suspended", True), ("paused", True), ("error", False), ("rescue", True), ("shelved", True), ("shelved_offloaded", True), ) name = tables.Column("name", link="horizon:project:instances:detail", verbose_name=_("Instance Name")) image_name = tables.Column("image_name", verbose_name=_("Image Name")) ip = tables.Column(get_ips, verbose_name=_("IP Address"), attrs={'data-type': "ip"}) size = tables.Column(get_size, sortable=False, verbose_name=_("Size")) keypair = tables.Column(get_keyname, verbose_name=_("Key Pair")) status = tables.Column("status", filters=(title, filters.replace_underscores), verbose_name=_("Status"), status=True, status_choices=STATUS_CHOICES, display_choices=STATUS_DISPLAY_CHOICES) az = tables.Column("availability_zone", verbose_name=_("Availability Zone")) task = tables.Column("OS-EXT-STS:task_state", verbose_name=_("Task"), empty_value=TASK_DISPLAY_NONE, status=True, status_choices=TASK_STATUS_CHOICES, display_choices=TASK_DISPLAY_CHOICES) state = tables.Column(get_power_state, filters=(title, filters.replace_underscores), verbose_name=_("Power State"), display_choices=POWER_DISPLAY_CHOICES) created = tables.Column("created", verbose_name=_("Time since created"), filters=(filters.parse_isotime, filters.timesince_sortable), attrs={'data-type': 'timesince'}) class Meta(object): name = "instances" verbose_name = _("Instances") status_columns = ["status", "task"] row_class = UpdateRow table_actions_menu = (StartInstance, StopInstance, SoftRebootInstance) launch_actions = () if getattr(settings, 'LAUNCH_INSTANCE_LEGACY_ENABLED', True): launch_actions = (LaunchLink,) + launch_actions if getattr(settings, 'LAUNCH_INSTANCE_NG_ENABLED', False): launch_actions = (LaunchLinkNG,) + launch_actions table_actions = launch_actions + (DeleteInstance, InstancesFilterAction) row_actions = (StartInstance, ConfirmResize, RevertResize, CreateSnapshot, SimpleAssociateIP, AssociateIP, SimpleDisassociateIP, AttachInterface, DetachInterface, EditInstance, UpdateMetadata, DecryptInstancePassword, EditInstanceSecurityGroups, ConsoleLink, LogLink, TogglePause, ToggleSuspend, ToggleShelve, ResizeLink, LockInstance, UnlockInstance, SoftRebootInstance, RebootInstance, StopInstance, RebuildInstance, DeleteInstance)
the-stack_106_24572
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from extensions.back.ReshapeMutation import ReshapeMutation from extensions.back.ReverseInputChannels import ApplyReverseChannels from mo.back.replacement import BackReplacementPattern from mo.front.common.partial_infer.utils import int64_array from mo.front.tf.graph_utils import create_op_node_with_second_input, create_op_with_const_inputs from mo.graph.graph import Graph from mo.ops.const import Const from mo.ops.reshape import Reshape from mo.ops.strided_slice import StridedSlice class ConvolutionNormalizer(BackReplacementPattern): enabled = True def pattern(self): return dict( nodes=[ ('node', dict(kind='op', type='Convolution')) ], edges=[] ) def replace_pattern(self, graph: Graph, match: dict): node = match['node'] if node.has_valid('kernel_spatial'): del node['kernel_spatial'] class V7ConvolutionWithGroupsResolver(BackReplacementPattern): """ Normalizes grouped convolution weights shape to fit special weights format [G*O I X Y] """ enabled = False @staticmethod def pattern(): return dict( nodes=[ ('node', dict(type='Convolution', group=lambda g: g is not None and g != 1)) ], edges=[] ) def replace_pattern(self, graph: Graph, match: dict): node = match['node'] group = node.group assert group > 1 weights_shape = node.in_port(1).data.get_shape() assert weights_shape is not None assert weights_shape[0] % group == 0 if weights_shape[0] == node.output: # weights are already is in [G*O I X Y] format return new_shape = int64_array([node.output, -1, *weights_shape[2:]]) reshape = create_op_node_with_second_input(graph, Reshape, int64_array(new_shape), {'override_output_shape': True}) node.in_port(1).get_connection().insert_node(reshape) class V10ConvolutionWithGroupsResolver(BackReplacementPattern): """ Normalizes grouped convolution weights shape to fit special weights format V10 IR: [G O I X Y] """ enabled = False @staticmethod def pattern(): return dict( nodes=[ ('node', dict(type='Convolution', group=lambda g: g is not None and g != 1)) ], edges=[] ) def replace_pattern(self, graph: Graph, match: dict): node = match['node'] group = node.group assert group > 1 weights_shape = node.in_port(1).data.get_shape() assert weights_shape is not None assert weights_shape[0] % group == 0 I = node.in_port(0).data.get_shape()[1] new_shape = int64_array([group, node.output / group, I / group, *weights_shape[2:]]) assert np.prod(weights_shape) == np.prod(new_shape), \ 'Initial weights shape {}, grouped weights shape {}'.format(weights_shape, new_shape) del node['group'] node['type'] = 'GroupConvolution' reshape = create_op_node_with_second_input(graph, Reshape, int64_array(new_shape), {'override_output_shape': True}) node.in_port(1).get_connection().insert_node(reshape) class ConvolutionWithGroupsResolver(BackReplacementPattern): """ Normalizes grouped convolution weights shape to fit special weights format V10 IR: [G O I X Y] lower IR versions: [G*O I X Y] """ enabled = True force_clean_up = True def run_before(self): return [ReshapeMutation] def run_after(self): return [ApplyReverseChannels] def find_and_replace_pattern(self, graph: Graph): V7ConvolutionWithGroupsResolver().find_and_replace_pattern(graph) PullReshapeThroughFQ().find_and_replace_pattern(graph) V10ConvolutionWithGroupsResolver().find_and_replace_pattern(graph) class PullReshapeThroughFQ(BackReplacementPattern): """ Before: ... -> FQ -> Reshape -> Convolution -> ... After: ... -> Reshape -> FQ (with aligned limits) -> Convolution -> ... """ enabled = False @staticmethod def pattern(): return dict( nodes=[ ('FQ', dict(type='FakeQuantize')), ('FQed', dict()), ('reshape', dict(type='Reshape')), ('reshaped', dict()), ('node', dict(type=lambda t: t in ['Convolution', 'GroupConvolution'])), ], edges=[ ('FQ', 'FQed'), ('FQed', 'reshape', {'in': 0}), ('reshape', 'reshaped'), ('reshaped', 'node', {'in': 1}), ] ) def replace_pattern(self, graph: Graph, match: dict): FQ = match['FQ'] reshape = match['reshape'] conv = match['node'] rank_reshape = reshape.in_port(0).data.get_shape().size != reshape.out_port(0).data.get_shape().size if not all([np.prod(FQ.in_port(i).data.get_shape()) == 1 for i in range(1, 5)]): # FakeQuantize has limits with multiple values, that should be reshaped too # Pulling Reshape through such FQ is a complex procedure because of broadcasting rules return new_rank = reshape.out_port(0).data.get_shape().size reshape.in_port(0).disconnect() reshape.out_port(0).disconnect() FQ.out_port(0).connect(conv.in_port(1)) FQ.in_port(0).get_connection().insert_node(reshape) reshape['need_shape_inference'] = True reshape['override_output_shape'] = True FQ['need_shape_inference'] = True FQ['override_output_shape'] = True if rank_reshape: # force rank of limit inputs to match 0-input rank # reshaping to lower range needs it the most due to FQ inner broadcast semantics for i in range(1, 5): reshape = create_op_node_with_second_input(graph, Reshape, int64_array([1] * new_rank), {'override_output_shape': True}) FQ.in_port(i).get_connection().insert_node(reshape) class DeconvolutionNormalizer(BackReplacementPattern): enabled = True force_clean_up = True def run_before(self): return [ReshapeMutation] def run_after(self): return [ApplyReverseChannels] @staticmethod def pattern(): return dict( nodes=[ ('node', dict(type='Deconvolution')) ], edges=[] ) def replace_pattern(self, graph: Graph, match: dict): node = match['node'] node_name = node.soft_get('name', node.id) if 2 in node.in_ports() and not node.in_port(2).disconnected(): # Third input represents output shape. Cutting its value according to scheme: # [N, C, spatial_dim_0, ..., spatial_dim_n] -> [spatial_dim_0, ..., spatial_dim_n] in_rank = node.in_port(0).data.get_shape().size shape_src = node.in_port(2).get_source() node.in_port(2).disconnect() ss_0 = create_op_with_const_inputs(graph, StridedSlice, {1: np.array([2], dtype=np.int32), 2: np.array([in_rank], dtype=np.int32), 3: np.array([1], dtype=np.int32)}, {'name': node_name + '/ss_0_port', 'begin_mask': np.array([1], dtype=np.int32), 'end_mask': np.array([0], dtype=np.int32), 'new_axis_mask': np.array([0], dtype=np.int32), 'shrink_axis_mask': np.array([0], dtype=np.int32), 'ellipsis_mask': np.array([0], dtype=np.int32)}) shape_src.connect(ss_0.in_port(0)) ss_0.out_port(0).connect(node.in_port(2)) # Specification: *padding amount* is deduced from relation of input and output spatial shapes del node['pad'] elif node.has_valid('original_output_spatial_shape'): # node had fixed output spatial shape set in original framework, so we restore it here const = Const(graph, {'value': int64_array(node.original_output_spatial_shape), 'name': node_name + '/original_spatial_shape'}).create_node() node.add_input_port(2, skip_if_exist=True) const.out_port(0).connect(node.in_port(2)) # Specification: *padding amount* is deduced from relation of input and output spatial shapes del node['pad'] group = node.soft_get('group', 1) if group != 1: assert group > 1 weights_shape = node.in_port(1).data.get_shape() assert weights_shape is not None I = node.in_port(0).data.get_shape()[1] assert I % group == 0 assert node.output % group == 0 new_shape = int64_array([group, I / group, node.output / group, *weights_shape[2:]]) assert np.prod(weights_shape) == np.prod(new_shape), \ 'Initial weights shape {}, grouped weights shape {}'.format(weights_shape, new_shape) reshape = create_op_node_with_second_input(graph, Reshape, int64_array(new_shape), {'override_output_shape': True}, node.in_port(1).get_source().node) node.in_port(1).get_connection().set_source(reshape.out_port(0)) node['type'] = 'GroupConvolutionBackpropData' else: node['type'] = 'ConvolutionBackpropData'
the-stack_106_24573
@staticmethod def fetch_statement(symbol, query='income-statement'): r = requests.get( 'http://www.nasdaq.com/symbol/{symbol}/financials?query={query}'.format( symbol=symbol, query=query)) soup = BeautifulSoup(r.content, 'html.parser') div = soup.find('div', attrs={'class': 'genTable'}) table = div.find('table') rows = table.find_all('tr') statements = [] result = [] for row in rows: header = row.find('th') if header: header = header.text.lower().replace(' ', '_').replace(':', '').replace( "'", "").replace('/', '-').replace( '.', '').replace(',', '') cols = row.find_all('td') if header == 'period_ending': cols = row.find_all('th') cols = [ele.text.strip().split('/')[-1] for ele in cols if ele] # cols.insert(0, header) attribute = [header] + cols[-4:] statements.append(attribute) # print(len(cols[-4:])) for i in range(1, len(cols[-4:])): # print(i+1) yearly = {item[0]: item[i] for item in statements if len(item) > 1} result.append(yearly) return result
the-stack_106_24574
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ This module contains the definition of a base class for feature map. Several types of commonly used approaches. """ import itertools import logging import numpy as np from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import Pauli from qiskit.qasm import pi from qiskit.aqua.operators import evolution_instruction from qiskit.aqua.components.feature_maps import FeatureMap, self_product logger = logging.getLogger(__name__) # pylint: disable=invalid-name class PauliExpansion(FeatureMap): """ Mapping data with the second order expansion followed by entangling gates. Refer to https://arxiv.org/pdf/1804.11326.pdf for details. """ CONFIGURATION = { 'name': 'PauliExpansion', 'description': 'Pauli expansion for feature map (any order)', 'input_schema': { '$schema': 'http://json-schema.org/draft-07/schema#', 'id': 'Pauli_Expansion_schema', 'type': 'object', 'properties': { 'depth': { 'type': 'integer', 'default': 2, 'minimum': 1 }, 'entangler_map': { 'type': ['array', 'null'], 'default': None }, 'entanglement': { 'type': 'string', 'default': 'full', 'enum': ['full', 'linear'] }, 'paulis': { 'type': ['array', 'null'], 'items': { 'type': 'string' }, 'default': None } }, 'additionalProperties': False } } def __init__(self, feature_dimension, depth=2, entangler_map=None, entanglement='full', paulis=None, data_map_func=self_product): """Constructor. Args: feature_dimension (int): number of features depth (Optional(int)): the number of repeated circuits. Defaults to 2 entangler_map (Optional(list[list])): describe the connectivity of qubits, each list describes [source, target], or None for full entanglement. Note that the order is the list is the order of applying the two-qubit gate. entanglement (Optional((str)): ['full', 'linear'], generate the qubit connectivity by predefined topology. Defaults to full paulis (Optional(list[str])): a list of strings for to-be-used paulis. Defaults to None. If None, ['Z', 'ZZ'] will be used. data_map_func (Optional(Callable)): a mapping function for data x """ paulis = paulis if paulis is not None else ['Z', 'ZZ'] self.validate(locals()) super().__init__() self._num_qubits = self._feature_dimension = feature_dimension self._depth = depth if entangler_map is None: self._entangler_map = self.get_entangler_map(entanglement, feature_dimension) else: self._entangler_map = self.validate_entangler_map(entangler_map, feature_dimension) self._pauli_strings = self._build_subset_paulis_string(paulis) self._data_map_func = data_map_func self._support_parameterized_circuit = True def _build_subset_paulis_string(self, paulis): # fill out the paulis to the number of qubits temp_paulis = [] for pauli in paulis: len_pauli = len(pauli) for possible_pauli_idx in itertools.combinations(range(self._num_qubits), len_pauli): string_temp = ['I'] * self._num_qubits for idx, _ in enumerate(possible_pauli_idx): string_temp[-possible_pauli_idx[idx] - 1] = pauli[-idx - 1] temp_paulis.append(''.join(string_temp)) # clean up string that can not be entangled. final_paulis = [] for pauli in temp_paulis: where_z = np.where(np.asarray(list(pauli[::-1])) != 'I')[0] if len(where_z) == 1: final_paulis.append(pauli) else: is_valid = True for src, targ in itertools.combinations(where_z, 2): if [src, targ] not in self._entangler_map: is_valid = False break if is_valid: final_paulis.append(pauli) else: logger.warning("Due to the limited entangler_map," " %s is skipped.", pauli) logger.info("Pauli terms include: %s", final_paulis) return final_paulis def _extract_data_for_rotation(self, pauli, x): where_non_i = np.where(np.asarray(list(pauli[::-1])) != 'I')[0] x = np.asarray(x) return x[where_non_i] def construct_circuit(self, x, qr=None, inverse=False): """ Construct the second order expansion based on given data. Args: x (Union(numpy.ndarray, list[Parameter], ParameterVector)): 1-D to-be-transformed data. qr (QuantumRegister, optional): the QuantumRegister object for the circuit, if None, generate new registers with name q. inverse (bool, optional): whether or not inverse the circuit Returns: QuantumCircuit: a quantum circuit transform data x. Raises: TypeError: invalid input ValueError: invalid input """ if len(x) != self._num_qubits: raise ValueError("number of qubits and data dimension must be the same.") if qr is None: qr = QuantumRegister(self._num_qubits, name='q') qc = QuantumCircuit(qr) for _ in range(self._depth): for i in range(self._num_qubits): qc.u2(0, pi, qr[i]) for pauli in self._pauli_strings: coeff = self._data_map_func(self._extract_data_for_rotation(pauli, x)) p = Pauli.from_label(pauli) inst = evolution_instruction([[1, p]], coeff, 1) qc.append(inst, qr) return qc
the-stack_106_24575
"""Broker API.""" import logging import time from binascii import hexlify import zmq from . import zhelpers from . import definitions from . import broker_worker_api from . import broker_service_api # pylint: disable=R0902,E1101,R1705,R0912 _logger = logging.getLogger(__name__) class Broker: """Broker API. Implements the Majordomo Protocol broker of http:#rfc.zeromq.org/spec:7 and spec:8 """ # We'd normally pull these from config data INTERNAL_SERVICE_PREFIX = b"mmi." HEARTBEAT_LIVENESS = 5 # 3-5 is reasonable HEARTBEAT_INTERVAL = 2500 # msecs HEARTBEAT_EXPIRY = HEARTBEAT_INTERVAL * HEARTBEAT_LIVENESS # --------------------------------------------------------------------- ctx = None # Our context socket = None # Socket for clients & workers poller = None # our Poller heartbeat_at = None # When to send HEARTBEAT services = None # known services workers = None # known workers waiting = None # idle workers verbose = False # Print activity to stdout # --------------------------------------------------------------------- def __init__(self, verbose=False): """ Initialize the broker state. @param verbose: boolean variable to turn on more verbose logging """ self.verbose = verbose self.services = {} self.workers = {} self.waiting = [] self.heartbeat_at = time.time() + 1e-3 * self.HEARTBEAT_INTERVAL self.ctx = zmq.Context() self.socket = self.ctx.socket(zmq.ROUTER) self.socket.linger = 0 self.poller = zmq.Poller() self.poller.register(self.socket, zmq.POLLIN) self.packets_client_in = 0 self.packets_client_out = 0 self.packets_workers_in = 0 self.packets_workers_out = 0 self.packets_processed = 0 # --------------------------------------------------------------------- def mediate(self): """Main broker work happens here.""" while True: try: items = self.poller.poll(self.HEARTBEAT_INTERVAL) except KeyboardInterrupt: break # Interrupted # if there is an request to the broker if items: msg = self.socket.recv_multipart() if self.verbose: logging.info("I: received message:") zhelpers.dump(msg) # get the data from the packet sender = msg.pop(0) empty = msg.pop(0) if empty != b"": _logger.error("E: invalid empty space in message") header = msg.pop(0) if definitions.C_CLIENT == header: self.process_client(sender, msg) elif definitions.W_WORKER == header: self.process_worker(sender, msg) else: logging.error("E: invalid message: %s", header) zhelpers.dump(msg) self.purge_workers() self.send_heartbeats() def destroy(self): """Disconnect all workers, destroy context.""" while self.workers: self.delete_worker(self.workers.values()[0], True) self.ctx.destroy(0) def process_client(self, sender, msg): """ Process a request coming from a client. @param sender: @param msg: @return: """ if len(msg) < 2: _logger.warning("E: did not receive the right msg length from the client") service = msg.pop(0) # Set reply return address to client sender msg = [sender, b""] + msg # if self.verbose: # self.packets_clients_in += 1 if service.startswith(self.INTERNAL_SERVICE_PREFIX): self.service_internal(service, msg) else: self.dispatch(self.require_service(service), msg) def process_worker(self, sender, msg): """ Process message sent to us by a worker. @param sender: @param msg: @return: """ if len(msg) < 1: _logger.error("E: msg length is <1, invalid msg.") # if self.verbose: # self.packets_workers_in += 1 command = msg.pop(0) # print(command) worker_ready = hexlify(sender) in self.workers worker = self.require_worker(sender) if definitions.W_READY == command: if len(msg) < 1: _logger.error("E: invalid service name.") service = msg.pop(0) # Not first command in session or Reserved service name if worker_ready or service.startswith(self.INTERNAL_SERVICE_PREFIX): self.delete_worker(worker, True) else: # Attach worker to service and mark as idle worker.service = self.require_service(service) self.worker_waiting(worker) elif definitions.W_REPLY == command: if worker_ready: # Remove & save client return envelope and insert the # protocol header and service name, then rewrap envelope. client = msg.pop(0) # empty = msg.pop(0) # ? msg = [client, b"", definitions.C_CLIENT, worker.service.name] + msg self.socket.send_multipart(msg) self.worker_waiting(worker) else: self.delete_worker(worker, True) elif definitions.W_HEARTBEAT == command: if worker_ready: worker.expiry = time.time() + 1e-3 * self.HEARTBEAT_EXPIRY else: self.delete_worker(worker, True) elif definitions.W_DISCONNECT == command: self.delete_worker(worker, False) else: _logger.error("E: invalid message command: %s", command) zhelpers.dump(msg) def delete_worker(self, worker, disconnect): """ Delete worker from all data structures, and deletes worker. @param worker: @param disconnect: @return: """ if worker is None: _logger.error("E: Worker is None, invalid msg.") if disconnect: self.send_to_worker(worker, definitions.W_DISCONNECT, None, None) if worker.service is not None: worker.service.waiting.remove(worker) self.workers.pop(worker.identity) def require_worker(self, address): """ Find the worker (creates if necessary). @param address: @return: """ if address is None: _logger.error("E: adders is None, invalid msg.") identity = hexlify(address) worker = self.workers.get(identity) if worker is None: worker = broker_worker_api.Worker(identity, address, self.HEARTBEAT_EXPIRY) self.workers[identity] = worker if self.verbose: _logger.info("I: registering new worker: %s", identity) return worker def require_service(self, name): """ Locate the service (creates if necessary). @param name: @return: """ if name is None: _logger.error("E: name is None, invalid msg.") service = self.services.get(name) if service is None: service = broker_service_api.Service(name) self.services[name] = service return service def bind(self, endpoint): """ Bind broker to endpoint, can call this multiple times. We use a single socket for both clients and workers. @param endpoint: @return: """ self.socket.bind(endpoint) _logger.info("I: broker/0.1.1 is active at %s", endpoint) def service_internal(self, service, msg): """ Handle internal service according to 8/MMI specification. @param service: @param msg: @return: """ returncode = b"501" _logger.debug("D : Handling internal request.") if service == b"mmi.service": name = msg[-1] returncode = b"200" if name in self.services else b"404" msg[-1] = returncode # insert the protocol header and service name after the routing envelope ([client, '']) msg = msg[:2] + [definitions.C_CLIENT, service] + msg[2:] self.socket.send_multipart(msg) def send_heartbeats(self): """Send heartbeats to idle workers if it's time.""" if time.time() > self.heartbeat_at: for worker in self.waiting: self.send_to_worker(worker, definitions.W_HEARTBEAT, None, None) self.heartbeat_at = time.time() + 1e-3 * self.HEARTBEAT_INTERVAL def purge_workers(self): """Look for & kill expired workers. Workers are oldest to most recent, so we stop at the first alive worker. """ while self.waiting: worker = self.waiting[0] if worker.expiry < time.time(): _logger.info("I: deleting expired worker: %s", worker.identity) self.delete_worker(worker, False) self.waiting.pop(0) else: break def worker_waiting(self, worker): """ Worker is now waiting for work. @param worker: @return: """ # Queue to broker and service waiting lists self.waiting.append(worker) worker.service.waiting.append(worker) worker.expiry = time.time() + 1e-3 * self.HEARTBEAT_EXPIRY self.dispatch(worker.service, None) def dispatch(self, service, msg): """ Dispatch requests to waiting workers as possible. @param service: @param msg: @return: """ if service is None: _logger.error("E: service is None, msg invalid.") # Queue message if any if msg is not None: service.requests.append(msg) self.purge_workers() while service.waiting and service.requests: msg = service.requests.pop(0) worker = service.waiting.pop(0) self.waiting.remove(worker) self.send_to_worker(worker, definitions.W_REQUEST, None, msg) def send_to_worker(self, worker, command, option, msg=None): """ Send message to worker. If message is provided, sends that message. @param worker: @param command: @param option: @param msg: @return: """ if msg is None: msg = [] elif not isinstance(msg, list): msg = [msg] # Stack routing and protocol envelopes to start of message # and routing envelope if option is not None: msg = [option] + msg msg = [worker.address, b"", definitions.W_WORKER, command] + msg if self.verbose: _logger.info("I: sending %r to worker", command) zhelpers.dump(msg) self.socket.send_multipart(msg)
the-stack_106_24576
# -*- coding: utf-8 -*- from collections import Counter __author__ = "Sergey Aganezov" __email__ = "aganezov(at)cs.jhu.edu" __status__ = "production" class KBreak(object): """ A generic object that can represent any k-break ( k>= 2) A notion of k-break arises from the bioinformatics combinatorial object BreakpointGraph and is first mentioned in http://home.gwu.edu/~maxal/ap_tcs08.pdf A generic k-break operates on k specified edges of spisific multicolor and replaces them with another set of k edges with the same multicolor on the same set of vertices in way, that the degree of vertices is kept intact. Initialization of the instance of :class:`KBreak` is performed with a validity check of supplied data, which must comply with the definition of k-break. Class carries following attributes carrying information about k-break structure: * :attr:`KBreak.start_edges`: a list of edges (in terms of paired vertices) that are to be removed by current :class:`KBreak` * :attr:`KBreak.result_edges`: a list of edges (in terms of paired vertices) that are to be created by current :class:`KBreak` * :attr:`KBreak.multicolor`: a :class:`bg.multicolor.Multicolor` instance, that specifies the multicolor of edges that are to be removed / created by current :class:`KBreak` Main operations: * :meth:`KBreak.valid_kbreak_matchings`: a method that checks if provided sets of started / resulted edges comply with the notions ob k-break definition """ def __init__(self, start_edges, result_edges, multicolor, data=None): """ Initialization of :class:`KBreak` object. The initialization process consists of multiple checks, before any assignment and initialization itself is performed. First checks the fact, that information about start / result edges is supplied in form of paired vertices. Then check is performed to make sure, that degrees of vertices, that current :class:`KBreak` operates on, is preserved. :param start_edges: a list of pairs of vertices, that specifies where edges shall be removed by current :class:`KBreak` :type start_edges: ``list(tuple(vertex, vertex), ...)`` :param result_edges: a list of pairs of vertices, that specifies where edges shall be created by current :class:`KBreak` :type result_edges: ``list(tuple(vertex, vertex), ...)`` :param multicolor: a multicolor, that specifies which edges between specified pairs of vertices are to be removed / created :type multicolor: :class:`bg.multicolor.Multicolor` :return: a new instance of :class:`Kbreak` :rtype: :class:`KBreak` :raises: ``ValueError`` """ self.start_edges = start_edges self.result_edges = result_edges self.multicolor = multicolor if data is None: data = self.create_default_data_dict() self.data = data for vertex_pair in self.start_edges: if len(vertex_pair) != 2: raise ValueError("Expected edges in a form of pairs of vertices.\n " "Not a pair of vertices ({issue}) in start edges." "".format(issue=str(vertex_pair))) for vertex_pair in self.result_edges: if len(vertex_pair) != 2: raise ValueError("Expected edges in a form of pairs of vertices.\n " "Not a pair of vertices ({issue}) in result edges." "".format(issue=str(vertex_pair))) if not KBreak.valid_kbreak_matchings(start_edges=self.start_edges, result_edges=self.result_edges): raise ValueError("Supplied sets of start and result edges do not correspond to " "correct k-break operation (either the set of vertices is not consistent, or " "the degrees of vertices change)") @property def is_a_two_break(self): return len(self.start_edges) == 2 @property def is_a_fusion(self): return self.is_a_two_break and any(map(lambda vertex_set: all(map(lambda vertex: vertex.is_irregular_vertex, vertex_set)), self.result_edges)) @classmethod def create_default_data_dict(cls): return { "origin": None } @staticmethod def valid_kbreak_matchings(start_edges, result_edges): """ A staticmethod check implementation that makes sure that degrees of vertices, that are affected by current :class:`KBreak` By the notion of k-break, it shall keep the degree of vertices in :class:`bg.breakpoint_graph.BreakpointGraph` the same, after its application. By utilizing the Counter class, such check is performed, as the number the vertex is mentioned corresponds to its degree. :param start_edges: a list of pairs of vertices, that specifies where edges shall be removed by :class:`KBreak` :type start_edges: ``list(tuple(vertex, vertex), ...)`` :param result_edges: a list of pairs of vertices, that specifies where edges shall be created by :class:`KBreak` :type result_edges: ``list(tuple(vertex, vertex), ...)`` :return: a flag indicating if the degree of vertices are equal in start / result edges, targeted by :class:`KBreak` :rtype: ``Boolean`` """ start_stats = Counter(vertex for vertex_pair in start_edges for vertex in vertex_pair) result_stats = Counter(vertex for vertex_pair in result_edges for vertex in vertex_pair) return start_stats == result_stats
the-stack_106_24577
from tacticalrmm.test import TacticalTestCase from .serializers import InstalledSoftwareSerializer from model_bakery import baker from unittest.mock import patch from .models import InstalledSoftware, ChocoLog from agents.models import Agent class TestSoftwareViews(TacticalTestCase): def setUp(self): self.authenticate() def test_chocos_get(self): url = "/software/chocos/" resp = self.client.get(url, format="json") self.assertEqual(resp.status_code, 200) self.check_not_authenticated("get", url) @patch("software.tasks.install_program.delay") def test_chocos_install(self, install_program): url = "/software/install/" agent = baker.make_recipe("agents.agent") # test a call where agent doesn't exist invalid_data = {"pk": 500, "name": "Test Software", "version": "1.0.0"} resp = self.client.post(url, invalid_data, format="json") self.assertEqual(resp.status_code, 404) data = {"pk": agent.pk, "name": "Test Software", "version": "1.0.0"} resp = self.client.post(url, data, format="json") self.assertEqual(resp.status_code, 200) install_program.assert_called_with(data["pk"], data["name"], data["version"]) self.check_not_authenticated("post", url) def test_chocos_installed(self): # test a call where agent doesn't exist resp = self.client.get("/software/installed/500/", format="json") self.assertEqual(resp.status_code, 404) agent = baker.make_recipe("agents.agent") url = f"/software/installed/{agent.pk}/" # test without agent software resp = self.client.get(url, format="json") self.assertEqual(resp.status_code, 200) self.assertEquals(resp.data, []) # make some software software = baker.make( "software.InstalledSoftware", agent=agent, software={}, ) serializer = InstalledSoftwareSerializer(software) resp = self.client.get(url, format="json") self.assertEqual(resp.status_code, 200) self.assertEquals(resp.data, serializer.data) self.check_not_authenticated("get", url) class TestSoftwareTasks(TacticalTestCase): @patch("agents.models.Agent.salt_api_cmd") def test_install_chocolatey(self, salt_api_cmd): from .tasks import install_chocolatey agent = baker.make_recipe("agents.agent") # test failed attempt salt_api_cmd.return_value = "timeout" ret = install_chocolatey(agent.pk) salt_api_cmd.assert_called_with( timeout=120, func="chocolatey.bootstrap", arg="force=True" ) self.assertFalse(ret) # test successful salt_api_cmd.return_value = "chocolatey is now ready" ret = install_chocolatey(agent.pk) salt_api_cmd.assert_called_with( timeout=120, func="chocolatey.bootstrap", arg="force=True" ) self.assertTrue(ret) self.assertTrue(Agent.objects.get(pk=agent.pk).choco_installed) @patch("agents.models.Agent.salt_api_cmd") def test_update_chocos(self, salt_api_cmd): from .tasks import update_chocos # initialize data online_agent = baker.make_recipe("agents.online_agent", choco_installed=True) baker.make("software.ChocoSoftware", chocos={}) # return data chocolately_list = { "git": "2.3.4", "docker": "1.0.2", } # test failed attempt salt_api_cmd.return_value = "timeout" ret = update_chocos() salt_api_cmd.assert_called_with(timeout=10, func="test.ping") self.assertTrue(ret) self.assertEquals(salt_api_cmd.call_count, 1) salt_api_cmd.reset_mock() # test successful attempt salt_api_cmd.side_effect = [True, chocolately_list] ret = update_chocos() self.assertTrue(ret) salt_api_cmd.assert_any_call(timeout=10, func="test.ping") salt_api_cmd.assert_any_call(timeout=200, func="chocolatey.list") self.assertEquals(salt_api_cmd.call_count, 2) @patch("agents.models.Agent.nats_cmd") def test_get_installed_software(self, nats_cmd): from .tasks import get_installed_software agent = baker.make_recipe("agents.agent") nats_return = [ { "name": "Mozilla Maintenance Service", "size": "336.9 kB", "source": "", "version": "73.0.1", "location": "", "publisher": "Mozilla", "uninstall": '"C:\\Program Files (x86)\\Mozilla Maintenance Service\\uninstall.exe"', "install_date": "0001-01-01 00:00:00 +0000 UTC", }, { "name": "OpenVPN 2.4.9-I601-Win10 ", "size": "8.7 MB", "source": "", "version": "2.4.9-I601-Win10", "location": "C:\\Program Files\\OpenVPN\\", "publisher": "OpenVPN Technologies, Inc.", "uninstall": "C:\\Program Files\\OpenVPN\\Uninstall.exe", "install_date": "0001-01-01 00:00:00 +0000 UTC", }, { "name": "Microsoft Office Professional Plus 2019 - en-us", "size": "0 B", "source": "", "version": "16.0.10368.20035", "location": "C:\\Program Files\\Microsoft Office", "publisher": "Microsoft Corporation", "uninstall": '"C:\\Program Files\\Common Files\\Microsoft Shared\\ClickToRun\\OfficeClickToRun.exe" scenario=install scenariosubtype=ARP sourcetype=None productstoremove=ProPlus2019Volume.16_en-us_x-none culture=en-us version.16=16.0', "install_date": "0001-01-01 00:00:00 +0000 UTC", }, ] # test failed attempt nats_cmd.return_value = "timeout" ret = get_installed_software(agent.pk) self.assertFalse(ret) nats_cmd.assert_called_with({"func": "softwarelist"}, timeout=20) nats_cmd.reset_mock() # test successful attempt nats_cmd.return_value = nats_return ret = get_installed_software(agent.pk) self.assertTrue(ret) nats_cmd.assert_called_with({"func": "softwarelist"}, timeout=20) @patch("agents.models.Agent.salt_api_cmd") @patch("software.tasks.get_installed_software.delay") def test_install_program(self, get_installed_software, salt_api_cmd): from .tasks import install_program agent = baker.make_recipe("agents.agent") # failed attempt salt_api_cmd.return_value = "timeout" ret = install_program(agent.pk, "git", "2.3.4") self.assertFalse(ret) salt_api_cmd.assert_called_with( timeout=900, func="chocolatey.install", arg=["git", "version=2.3.4"] ) salt_api_cmd.reset_mock() # successfully attempt salt_api_cmd.return_value = "install of git was successful" ret = install_program(agent.pk, "git", "2.3.4") self.assertTrue(ret) salt_api_cmd.assert_called_with( timeout=900, func="chocolatey.install", arg=["git", "version=2.3.4"] ) get_installed_software.assert_called_with(agent.pk) self.assertTrue(ChocoLog.objects.filter(agent=agent, name="git").exists())
the-stack_106_24578
from cereal import car from collections import defaultdict from common.numpy_fast import interp from common.kalman.simple_kalman import KF1D from opendbc.can.can_define import CANDefine from opendbc.can.parser import CANParser from selfdrive.config import Conversions as CV from selfdrive.car.honda.values import CAR, DBC, STEER_THRESHOLD, SPEED_FACTOR, HONDA_BOSCH from selfdrive.kegman_conf import kegman_conf GearShifter = car.CarState.GearShifter def parse_gear_shifter(gear, vals): val_to_capnp = {'P': GearShifter.park, 'R': GearShifter.reverse, 'N': GearShifter.neutral, 'D': GearShifter.drive, 'S': GearShifter.sport, 'L': GearShifter.low} try: return val_to_capnp[vals[gear]] except KeyError: return "unknown" def calc_cruise_offset(offset, speed): # euristic formula so that speed is controlled to ~ 0.3m/s below pid_speed # constraints to solve for _K0, _K1, _K2 are: # - speed = 0m/s, out = -0.3 # - speed = 34m/s, offset = 20, out = -0.25 # - speed = 34m/s, offset = -2.5, out = -1.8 _K0 = -0.3 _K1 = -0.01879 _K2 = 0.01013 return min(_K0 + _K1 * speed + _K2 * speed * offset, 0.) def get_can_signals(CP): # this function generates lists for signal, messages and initial values signals = [ ("XMISSION_SPEED", "ENGINE_DATA", 0), ("WHEEL_SPEED_FL", "WHEEL_SPEEDS", 0), ("WHEEL_SPEED_FR", "WHEEL_SPEEDS", 0), ("WHEEL_SPEED_RL", "WHEEL_SPEEDS", 0), ("WHEEL_SPEED_RR", "WHEEL_SPEEDS", 0), ("STEER_ANGLE", "STEERING_SENSORS", 0), ("STEER_ANGLE_RATE", "STEERING_SENSORS", 0), ("STEER_TORQUE_SENSOR", "STEER_STATUS", 0), ("STEER_TORQUE_MOTOR", "STEER_STATUS", 0), ("LEFT_BLINKER", "SCM_FEEDBACK", 0), ("RIGHT_BLINKER", "SCM_FEEDBACK", 0), ("GEAR", "GEARBOX", 0), ("SEATBELT_DRIVER_LAMP", "SEATBELT_STATUS", 1), ("SEATBELT_DRIVER_LATCHED", "SEATBELT_STATUS", 0), ("BRAKE_PRESSED", "POWERTRAIN_DATA", 0), ("BRAKE_SWITCH", "POWERTRAIN_DATA", 0), ("CRUISE_BUTTONS", "SCM_BUTTONS", 0), ("HUD_LEAD", "ACC_HUD", 0), ("ESP_DISABLED", "VSA_STATUS", 1), ("USER_BRAKE", "VSA_STATUS", 0), ("BRAKE_HOLD_ACTIVE", "VSA_STATUS", 0), ("STEER_STATUS", "STEER_STATUS", 5), ("GEAR_SHIFTER", "GEARBOX", 0), ("PEDAL_GAS", "POWERTRAIN_DATA", 0), ("CRUISE_SETTING", "SCM_BUTTONS", 0), ("ACC_STATUS", "POWERTRAIN_DATA", 0), ] checks = [ ("ENGINE_DATA", 100), ("WHEEL_SPEEDS", 50), ("STEERING_SENSORS", 100), ("SEATBELT_STATUS", 10), ("CRUISE", 10), ("POWERTRAIN_DATA", 100), ("VSA_STATUS", 50), ] if CP.carFingerprint == CAR.ODYSSEY_CHN: checks += [ ("SCM_FEEDBACK", 25), ("SCM_BUTTONS", 50), ] else: checks += [ ("SCM_FEEDBACK", 10), ("SCM_BUTTONS", 25), ] if CP.carFingerprint == CAR.CRV_HYBRID: checks += [ ("GEARBOX", 50), ] else: checks += [ ("GEARBOX", 100), ] if CP.radarOffCan: # Civic is only bosch to use the same brake message as other hondas. if CP.carFingerprint not in (CAR.ACCORDH, CAR.CIVIC_BOSCH, CAR.INSIGHT, CAR.CRV_HYBRID): signals += [("BRAKE_PRESSED", "BRAKE_MODULE", 0)] checks += [("BRAKE_MODULE", 50)] signals += [("CAR_GAS", "GAS_PEDAL_2", 0), ("MAIN_ON", "SCM_FEEDBACK", 0), ("CRUISE_CONTROL_LABEL", "ACC_HUD", 0), ("EPB_STATE", "EPB_STATUS", 0), ("CRUISE_SPEED", "ACC_HUD", 0)] checks += [("GAS_PEDAL_2", 100)] else: # Nidec signals. signals += [("BRAKE_ERROR_1", "STANDSTILL", 1), ("BRAKE_ERROR_2", "STANDSTILL", 1), ("CRUISE_SPEED_PCM", "CRUISE", 0), ("CRUISE_SPEED_OFFSET", "CRUISE_PARAMS", 0)] checks += [("STANDSTILL", 50)] if CP.carFingerprint == CAR.ODYSSEY_CHN: checks += [("CRUISE_PARAMS", 10)] else: checks += [("CRUISE_PARAMS", 50)] if CP.carFingerprint in (CAR.ACCORD, CAR.ACCORD_15, CAR.ACCORDH, CAR.INSIGHT): signals += [("DRIVERS_DOOR_OPEN", "SCM_FEEDBACK", 1), ("LEAD_DISTANCE", "RADAR_HUD", 0)] checks += [("RADAR_HUD", 50)] elif CP.carFingerprint in (CAR.CIVIC_BOSCH, CAR.CRV_HYBRID): signals += [("DRIVERS_DOOR_OPEN", "SCM_FEEDBACK", 1)] checks += [("RADAR_HUD", 50)] elif CP.carFingerprint == CAR.ODYSSEY_CHN: signals += [("DRIVERS_DOOR_OPEN", "SCM_BUTTONS", 1)] else: signals += [("DOOR_OPEN_FL", "DOORS_STATUS", 1), ("DOOR_OPEN_FR", "DOORS_STATUS", 1), ("DOOR_OPEN_RL", "DOORS_STATUS", 1), ("DOOR_OPEN_RR", "DOORS_STATUS", 1), ("WHEELS_MOVING", "STANDSTILL", 1)] checks += [("DOORS_STATUS", 3)] if CP.carFingerprint == CAR.CIVIC: signals += [("CAR_GAS", "GAS_PEDAL_2", 0), ("MAIN_ON", "SCM_FEEDBACK", 0), ("IMPERIAL_UNIT", "HUD_SETTING", 0), ("EPB_STATE", "EPB_STATUS", 0)] elif CP.carFingerprint == CAR.ACURA_ILX: signals += [("CAR_GAS", "GAS_PEDAL_2", 0), ("MAIN_ON", "SCM_BUTTONS", 0)] elif CP.carFingerprint in (CAR.CRV, CAR.ACURA_RDX, CAR.PILOT_2019, CAR.RIDGELINE): signals += [("MAIN_ON", "SCM_BUTTONS", 0)] elif CP.carFingerprint == CAR.FIT: signals += [("CAR_GAS", "GAS_PEDAL_2", 0), ("MAIN_ON", "SCM_BUTTONS", 0), ("BRAKE_HOLD_ACTIVE", "VSA_STATUS", 0)] elif CP.carFingerprint == CAR.ODYSSEY: signals += [("MAIN_ON", "SCM_FEEDBACK", 0), ("EPB_STATE", "EPB_STATUS", 0)] checks += [("EPB_STATUS", 50)] elif CP.carFingerprint in (CAR.PILOT, CAR.PILOT_2018): signals += [("MAIN_ON", "SCM_BUTTONS", 0), ("CAR_GAS", "GAS_PEDAL_2", 0)] elif CP.carFingerprint == CAR.ODYSSEY_CHN: signals += [("MAIN_ON", "SCM_BUTTONS", 0), ("EPB_STATE", "EPB_STATUS", 0)] checks += [("EPB_STATUS", 50)] # add gas interceptor reading if we are using it if CP.enableGasInterceptor: signals.append(("INTERCEPTOR_GAS", "GAS_SENSOR", 0)) signals.append(("INTERCEPTOR_GAS2", "GAS_SENSOR", 0)) checks.append(("GAS_SENSOR", 50)) return signals, checks def get_can_parser(CP): signals, checks = get_can_signals(CP) bus_pt = 1 if CP.isPandaBlack and CP.carFingerprint in HONDA_BOSCH else 0 return CANParser(DBC[CP.carFingerprint]['pt'], signals, checks, bus_pt) def get_cam_can_parser(CP): signals = [] if CP.carFingerprint in HONDA_BOSCH: signals += [("ACCEL_COMMAND", "ACC_CONTROL", 0), ("AEB_STATUS", "ACC_CONTROL", 0)] else: signals += [("COMPUTER_BRAKE", "BRAKE_COMMAND", 0), ("AEB_REQ_1", "BRAKE_COMMAND", 0), ("FCW", "BRAKE_COMMAND", 0), ("CHIME", "BRAKE_COMMAND", 0), ("FCM_OFF", "ACC_HUD", 0), ("FCM_OFF_2", "ACC_HUD", 0), ("FCM_PROBLEM", "ACC_HUD", 0), ("ICONS", "ACC_HUD", 0)] # all hondas except CRV, RDX and 2019 Odyssey@China use 0xe4 for steering checks = [(0xe4, 100)] if CP.carFingerprint in [CAR.CRV, CAR.ACURA_RDX, CAR.ODYSSEY_CHN]: checks = [(0x194, 100)] bus_cam = 1 if CP.carFingerprint in HONDA_BOSCH and not CP.isPandaBlack else 2 return CANParser(DBC[CP.carFingerprint]['pt'], signals, checks, bus_cam) class CarState(): def __init__(self, CP): self.kegman = kegman_conf() self.trMode = int(self.kegman.conf['lastTrMode']) # default to last distance interval on startup #self.trMode = 1 self.lkMode = True self.read_distance_lines_prev = 4 self.CP = CP self.can_define = CANDefine(DBC[CP.carFingerprint]['pt']) self.shifter_values = self.can_define.dv["GEARBOX"]["GEAR_SHIFTER"] self.steer_status_values = defaultdict(lambda: "UNKNOWN", self.can_define.dv["STEER_STATUS"]["STEER_STATUS"]) self.user_gas, self.user_gas_pressed = 0., 0 self.brake_switch_prev = 0 self.brake_switch_ts = 0 self.lead_distance = 255 self.hud_lead = 0 self.cruise_buttons = 0 self.cruise_setting = 0 self.v_cruise_pcm_prev = 0 self.blinker_on = 0 self.left_blinker_on = 0 self.right_blinker_on = 0 self.cruise_mode = 0 self.stopped = 0 # vEgo kalman filter dt = 0.01 # Q = np.matrix([[10.0, 0.0], [0.0, 100.0]]) # R = 1e3 self.v_ego_kf = KF1D(x0=[[0.0], [0.0]], A=[[1.0, dt], [0.0, 1.0]], C=[1.0, 0.0], K=[[0.12287673], [0.29666309]]) self.v_ego = 0.0 def update(self, cp, cp_cam): # car params v_weight_v = [0., 1.] # don't trust smooth speed at low values to avoid premature zero snapping v_weight_bp = [1., 6.] # smooth blending, below ~0.6m/s the smooth speed snaps to zero # update prevs, update must run once per loop self.prev_cruise_buttons = self.cruise_buttons self.prev_blinker_on = self.blinker_on self.prev_lead_distance = self.lead_distance self.prev_left_blinker_on = self.left_blinker_on self.prev_right_blinker_on = self.right_blinker_on # ******************* parse out can ******************* if self.CP.carFingerprint in (CAR.ACCORD, CAR.ACCORD_15, CAR.ACCORDH, CAR.INSIGHT): # TODO: find wheels moving bit in dbc self.standstill = cp.vl["ENGINE_DATA"]['XMISSION_SPEED'] < 0.1 self.door_all_closed = not cp.vl["SCM_FEEDBACK"]['DRIVERS_DOOR_OPEN'] self.lead_distance = cp.vl["RADAR_HUD"]['LEAD_DISTANCE'] elif self.CP.carFingerprint in (CAR.CIVIC_BOSCH, CAR.CRV_HYBRID): self.standstill = cp.vl["ENGINE_DATA"]['XMISSION_SPEED'] < 0.1 self.door_all_closed = not cp.vl["SCM_FEEDBACK"]['DRIVERS_DOOR_OPEN'] elif self.CP.carFingerprint == CAR.ODYSSEY_CHN: self.standstill = cp.vl["ENGINE_DATA"]['XMISSION_SPEED'] < 0.1 self.door_all_closed = not cp.vl["SCM_BUTTONS"]['DRIVERS_DOOR_OPEN'] else: self.standstill = not cp.vl["STANDSTILL"]['WHEELS_MOVING'] self.door_all_closed = not any([cp.vl["DOORS_STATUS"]['DOOR_OPEN_FL'], cp.vl["DOORS_STATUS"]['DOOR_OPEN_FR'], cp.vl["DOORS_STATUS"]['DOOR_OPEN_RL'], cp.vl["DOORS_STATUS"]['DOOR_OPEN_RR']]) self.seatbelt = not cp.vl["SEATBELT_STATUS"]['SEATBELT_DRIVER_LAMP'] and cp.vl["SEATBELT_STATUS"]['SEATBELT_DRIVER_LATCHED'] steer_status = self.steer_status_values[cp.vl["STEER_STATUS"]['STEER_STATUS']] self.steer_error = steer_status not in ['NORMAL', 'NO_TORQUE_ALERT_1', 'NO_TORQUE_ALERT_2', 'LOW_SPEED_LOCKOUT', 'TMP_FAULT'] # NO_TORQUE_ALERT_2 can be caused by bump OR steering nudge from driver self.steer_not_allowed = steer_status not in ['NORMAL', 'NO_TORQUE_ALERT_2'] # LOW_SPEED_LOCKOUT is not worth a warning self.steer_warning = steer_status not in ['NORMAL', 'LOW_SPEED_LOCKOUT', 'NO_TORQUE_ALERT_2'] if self.CP.radarOffCan: self.brake_error = 0 else: self.brake_error = cp.vl["STANDSTILL"]['BRAKE_ERROR_1'] or cp.vl["STANDSTILL"]['BRAKE_ERROR_2'] self.esp_disabled = cp.vl["VSA_STATUS"]['ESP_DISABLED'] # calc best v_ego estimate, by averaging two opposite corners speed_factor = SPEED_FACTOR[self.CP.carFingerprint] self.v_wheel_fl = cp.vl["WHEEL_SPEEDS"]['WHEEL_SPEED_FL'] * CV.KPH_TO_MS * speed_factor self.v_wheel_fr = cp.vl["WHEEL_SPEEDS"]['WHEEL_SPEED_FR'] * CV.KPH_TO_MS * speed_factor self.v_wheel_rl = cp.vl["WHEEL_SPEEDS"]['WHEEL_SPEED_RL'] * CV.KPH_TO_MS * speed_factor self.v_wheel_rr = cp.vl["WHEEL_SPEEDS"]['WHEEL_SPEED_RR'] * CV.KPH_TO_MS * speed_factor v_wheel = (self.v_wheel_fl + self.v_wheel_fr + self.v_wheel_rl + self.v_wheel_rr)/4. # blend in transmission speed at low speed, since it has more low speed accuracy self.v_weight = interp(v_wheel, v_weight_bp, v_weight_v) speed = (1. - self.v_weight) * cp.vl["ENGINE_DATA"]['XMISSION_SPEED'] * CV.KPH_TO_MS * speed_factor + \ self.v_weight * v_wheel if abs(speed - self.v_ego) > 2.0: # Prevent large accelerations when car starts at non zero speed self.v_ego_kf.x = [[speed], [0.0]] self.v_ego_raw = speed v_ego_x = self.v_ego_kf.update(speed) self.v_ego = float(v_ego_x[0]) self.a_ego = float(v_ego_x[1]) # this is a hack for the interceptor. This is now only used in the simulation # TODO: Replace tests by toyota so this can go away if self.CP.enableGasInterceptor: self.user_gas = (cp.vl["GAS_SENSOR"]['INTERCEPTOR_GAS'] + cp.vl["GAS_SENSOR"]['INTERCEPTOR_GAS2']) / 2. self.user_gas_pressed = self.user_gas > 0 # this works because interceptor read < 0 when pedal position is 0. Once calibrated, this will change self.gear = 0 if self.CP.carFingerprint == CAR.CIVIC else cp.vl["GEARBOX"]['GEAR'] self.angle_steers = cp.vl["STEERING_SENSORS"]['STEER_ANGLE'] self.angle_steers_rate = cp.vl["STEERING_SENSORS"]['STEER_ANGLE_RATE'] #self.cruise_setting = cp.vl["SCM_BUTTONS"]['CRUISE_SETTING'] self.cruise_buttons = cp.vl["SCM_BUTTONS"]['CRUISE_BUTTONS'] self.blinker_on = cp.vl["SCM_FEEDBACK"]['LEFT_BLINKER'] or cp.vl["SCM_FEEDBACK"]['RIGHT_BLINKER'] self.left_blinker_on = cp.vl["SCM_FEEDBACK"]['LEFT_BLINKER'] self.right_blinker_on = cp.vl["SCM_FEEDBACK"]['RIGHT_BLINKER'] self.brake_hold = cp.vl["VSA_STATUS"]['BRAKE_HOLD_ACTIVE'] if self.CP.carFingerprint in (CAR.CIVIC, CAR.ODYSSEY, CAR.CRV_5G, CAR.ACCORD, CAR.ACCORD_15, CAR.ACCORDH, CAR.CIVIC_BOSCH, CAR.INSIGHT, CAR.CRV_HYBRID): self.park_brake = cp.vl["EPB_STATUS"]['EPB_STATE'] != 0 self.main_on = cp.vl["SCM_FEEDBACK"]['MAIN_ON'] elif self.CP.carFingerprint == CAR.ODYSSEY_CHN: self.park_brake = cp.vl["EPB_STATUS"]['EPB_STATE'] != 0 self.main_on = cp.vl["SCM_BUTTONS"]['MAIN_ON'] else: self.park_brake = 0 # TODO self.main_on = cp.vl["SCM_BUTTONS"]['MAIN_ON'] can_gear_shifter = int(cp.vl["GEARBOX"]['GEAR_SHIFTER']) self.gear_shifter = parse_gear_shifter(can_gear_shifter, self.shifter_values) self.pedal_gas = cp.vl["POWERTRAIN_DATA"]['PEDAL_GAS'] # crv doesn't include cruise control if self.CP.carFingerprint in (CAR.CRV, CAR.ODYSSEY, CAR.ACURA_RDX, CAR.RIDGELINE, CAR.PILOT_2019, CAR.ODYSSEY_CHN): self.car_gas = self.pedal_gas else: self.car_gas = cp.vl["GAS_PEDAL_2"]['CAR_GAS'] self.steer_torque_driver = cp.vl["STEER_STATUS"]['STEER_TORQUE_SENSOR'] self.steer_torque_motor = cp.vl["STEER_STATUS"]['STEER_TORQUE_MOTOR'] self.steer_override = abs(self.steer_torque_driver) > STEER_THRESHOLD[self.CP.carFingerprint] self.brake_switch = cp.vl["POWERTRAIN_DATA"]['BRAKE_SWITCH'] if self.CP.radarOffCan: self.cruise_mode = cp.vl["ACC_HUD"]['CRUISE_CONTROL_LABEL'] self.stopped = cp.vl["ACC_HUD"]['CRUISE_SPEED'] == 252. self.cruise_speed_offset = calc_cruise_offset(0, self.v_ego) if self.CP.carFingerprint in (CAR.CIVIC_BOSCH, CAR.ACCORDH, CAR.INSIGHT, CAR.CRV_HYBRID): self.brake_switch = cp.vl["POWERTRAIN_DATA"]['BRAKE_SWITCH'] self.brake_pressed = cp.vl["POWERTRAIN_DATA"]['BRAKE_PRESSED'] or \ (self.brake_switch and self.brake_switch_prev and \ cp.ts["POWERTRAIN_DATA"]['BRAKE_SWITCH'] != self.brake_switch_ts) self.brake_switch_prev = self.brake_switch self.brake_switch_ts = cp.ts["POWERTRAIN_DATA"]['BRAKE_SWITCH'] if self.CP.carFingerprint in (CAR.CIVIC_BOSCH): self.hud_lead = cp.vl["ACC_HUD"]['HUD_LEAD'] else: self.brake_pressed = cp.vl["BRAKE_MODULE"]['BRAKE_PRESSED'] # On set, cruise set speed pulses between 254~255 and the set speed prev is set to avoid this. self.v_cruise_pcm = self.v_cruise_pcm_prev if cp.vl["ACC_HUD"]['CRUISE_SPEED'] > 160.0 else cp.vl["ACC_HUD"]['CRUISE_SPEED'] self.v_cruise_pcm_prev = self.v_cruise_pcm else: self.brake_switch = cp.vl["POWERTRAIN_DATA"]['BRAKE_SWITCH'] self.cruise_speed_offset = calc_cruise_offset(cp.vl["CRUISE_PARAMS"]['CRUISE_SPEED_OFFSET'], self.v_ego) self.v_cruise_pcm = cp.vl["CRUISE"]['CRUISE_SPEED_PCM'] # brake switch has shown some single time step noise, so only considered when # switch is on for at least 2 consecutive CAN samples self.brake_pressed = cp.vl["POWERTRAIN_DATA"]['BRAKE_PRESSED'] or \ (self.brake_switch and self.brake_switch_prev and \ cp.ts["POWERTRAIN_DATA"]['BRAKE_SWITCH'] != self.brake_switch_ts) self.brake_switch_prev = self.brake_switch self.brake_switch_ts = cp.ts["POWERTRAIN_DATA"]['BRAKE_SWITCH'] self.user_brake = cp.vl["VSA_STATUS"]['USER_BRAKE'] self.pcm_acc_status = cp.vl["POWERTRAIN_DATA"]['ACC_STATUS'] # Gets rid of Pedal Grinding noise when brake is pressed at slow speeds for some models if self.CP.carFingerprint in (CAR.PILOT, CAR.PILOT_2018, CAR.PILOT_2019, CAR.RIDGELINE): if self.user_brake > 0.05: self.brake_pressed = 1 # when user presses distance button on steering wheel if self.cruise_setting == 3: if cp.vl["SCM_BUTTONS"]["CRUISE_SETTING"] == 0: self.trMode = (self.trMode + 1 ) % 4 self.kegman = kegman_conf() self.kegman.conf['lastTrMode'] = str(self.trMode) # write last distance bar setting to file self.kegman.write_config(self.kegman.conf) # when user presses LKAS button on steering wheel if self.cruise_setting == 1: if cp.vl["SCM_BUTTONS"]["CRUISE_SETTING"] == 0: if self.lkMode: self.lkMode = False else: self.lkMode = True self.prev_cruise_setting = self.cruise_setting self.cruise_setting = cp.vl["SCM_BUTTONS"]['CRUISE_SETTING'] self.read_distance_lines = self.trMode + 1 if self.read_distance_lines != self.read_distance_lines_prev: self.read_distance_lines_prev = self.read_distance_lines # TODO: discover the CAN msg that has the imperial unit bit for all other cars self.is_metric = not cp.vl["HUD_SETTING"]['IMPERIAL_UNIT'] if self.CP.carFingerprint in (CAR.CIVIC) else False if self.CP.carFingerprint in HONDA_BOSCH: self.stock_aeb = bool(cp_cam.vl["ACC_CONTROL"]["AEB_STATUS"] and cp_cam.vl["ACC_CONTROL"]["ACCEL_COMMAND"] < -1e-5) else: self.stock_aeb = bool(cp_cam.vl["BRAKE_COMMAND"]["AEB_REQ_1"] and cp_cam.vl["BRAKE_COMMAND"]["COMPUTER_BRAKE"] > 1e-5) if self.CP.carFingerprint in HONDA_BOSCH: self.stock_hud = False self.stock_fcw = False else: self.stock_fcw = bool(cp_cam.vl["BRAKE_COMMAND"]["FCW"] != 0) self.stock_hud = cp_cam.vl["ACC_HUD"] self.stock_brake = cp_cam.vl["BRAKE_COMMAND"]
the-stack_106_24580
import os import signal import socket import sys import py import pytest import tox from tox.logs import ResultLog @pytest.fixture(name="pkg") def create_fake_pkg(tmpdir): pkg = tmpdir.join("hello-1.0.tar.gz") pkg.write("whatever") return pkg def test_pre_set_header(): replog = ResultLog() d = replog.dict assert replog.dict == d assert replog.dict["reportversion"] == "1" assert replog.dict["toxversion"] == tox.__version__ assert replog.dict["platform"] == sys.platform assert replog.dict["host"] == socket.getfqdn() data = replog.dumps_json() replog2 = ResultLog.from_json(data) assert replog2.dict == replog.dict def test_set_header(pkg): replog = ResultLog() d = replog.dict assert replog.dict == d assert replog.dict["reportversion"] == "1" assert replog.dict["toxversion"] == tox.__version__ assert replog.dict["platform"] == sys.platform assert replog.dict["host"] == socket.getfqdn() expected = {"basename": "hello-1.0.tar.gz", "sha256": pkg.computehash("sha256")} env_log = replog.get_envlog("a") env_log.set_header(installpkg=pkg) assert env_log.dict["installpkg"] == expected data = replog.dumps_json() replog2 = ResultLog.from_json(data) assert replog2.dict == replog.dict def test_addenv_setpython(pkg): replog = ResultLog() envlog = replog.get_envlog("py36") envlog.set_python_info(py.path.local(sys.executable)) envlog.set_header(installpkg=pkg) assert envlog.dict["python"]["version_info"] == list(sys.version_info) assert envlog.dict["python"]["version"] == sys.version assert envlog.dict["python"]["executable"] == sys.executable def test_get_commandlog(pkg): replog = ResultLog() envlog = replog.get_envlog("py36") assert "setup" not in envlog.dict setuplog = envlog.get_commandlog("setup") envlog.set_header(installpkg=pkg) setuplog.add_command(["virtualenv", "..."], "venv created", 0) expected = [{"command": ["virtualenv", "..."], "output": "venv created", "retcode": 0}] assert setuplog.list == expected assert envlog.dict["setup"] setuplog2 = replog.get_envlog("py36").get_commandlog("setup") assert setuplog2.list == setuplog.list @pytest.mark.parametrize("exit_code", [None, 0, 5, 128 + signal.SIGTERM, 1234]) @pytest.mark.parametrize("os_name", ["posix", "nt"]) def test_invocation_error(exit_code, os_name, mocker, monkeypatch): monkeypatch.setattr(os, "name", value=os_name) mocker.spy(tox.exception, "exit_code_str") result = str(tox.exception.InvocationError("<command>", exit_code=exit_code)) # check that mocker works, because it will be our only test in # test_z_cmdline.py::test_exit_code needs the mocker.spy above assert tox.exception.exit_code_str.call_count == 1 call_args = tox.exception.exit_code_str.call_args assert call_args == mocker.call("InvocationError", "<command>", exit_code) if exit_code is None: assert "(exited with code" not in result else: assert "(exited with code %d)" % exit_code in result note = "Note: this might indicate a fatal error signal" if (os_name == "posix") and (exit_code == 128 + signal.SIGTERM): assert note in result assert "({} - 128 = {}: SIGTERM)".format(exit_code, signal.SIGTERM) in result else: assert note not in result
the-stack_106_24582
from datetime import datetime, timedelta from glosowania.models import Decyzja, ZebranePodpisy, KtoJuzGlosowal from django.shortcuts import get_object_or_404 from django.db import IntegrityError from django.shortcuts import render from glosowania.forms import DecyzjaForm from django.http import HttpResponseRedirect, HttpResponse from django.contrib.auth.decorators import login_required from django.utils.translation import ugettext_lazy as _ from django.utils.translation import get_language from django.core.mail import EmailMessage from django.conf import settings as s from django.contrib.auth.models import User from django.template.loader import get_template from django.urls import reverse from django.contrib import messages from django.shortcuts import redirect import logging as l from django.utils import translation l.basicConfig(filename='wiki.log', datefmt='%d-%b-%y %H:%M:%S', format='%(asctime)s %(levelname)s %(funcName)s() %(message)s', level=l.INFO) HOST = s.ALLOWED_HOSTS[0] # ROOT = s.BASE_DIR # Dodaj nową propozycję przepisu: @login_required def dodaj(request): # nowy = DecyzjaForm(request.POST or None) if request.method == 'POST': form = DecyzjaForm(request.POST) if form.is_valid(): form = form.save(commit=False) form.autor = request.user form.data_powstania = datetime.today() form.ile_osob_podpisalo += 1 form.save() signed = ZebranePodpisy.objects.create(projekt=form, podpis_uzytkownika = request.user) # l.warning(f"{form.autor} _('added new law proposal:' form.tresc)") message = _("New proposal has been saved.") messages.success(request, (message)) SendEmail( _('New law proposal'), f'{request.user.username.capitalize()} ' + str(_('added new law proposal\nYou can read it here:')) + f' http://{HOST}/glosowania/details/{str(form.id)}' ) return redirect('glosowania:status', 1) else: form = DecyzjaForm() return render(request, 'glosowania/dodaj.html', {'form': form}) # Wyświetl głosowania: @login_required def status(request, pk): filtered_glosowania = Decyzja.objects.filter(status=pk) lang = get_language() zliczaj_wszystko() return render(request, 'glosowania/status.html', { 'filtered_glosowania': filtered_glosowania, 'lang': lang[0:2], # just en instead of en-us 'signatures': s.WYMAGANYCH_PODPISOW, 'signatures_span': timedelta(days=s.CZAS_NA_ZEBRANIE_PODPISOW).days, 'queue_span': timedelta(days=s.KOLEJKA).days, 'referendum_span': timedelta(days=s.CZAS_TRWANIA_REFERENDUM).days, 'vacatio_legis_span': timedelta(days=s.VACATIO_LEGIS).days, }) # Pokaż szczegóły przepisu @login_required def details(request, pk): szczegoly = get_object_or_404(Decyzja, pk=pk) if request.GET.get('podpisz'): nowy_projekt = Decyzja.objects.get(pk=pk) osoba_podpisujaca = request.user podpis = ZebranePodpisy(projekt=nowy_projekt, podpis_uzytkownika=osoba_podpisujaca) nowy_projekt.ile_osob_podpisalo += 1 podpis.save() nowy_projekt.save() message = _('Your signature has been saved.') messages.success(request, (message)) return redirect('glosowania:details', pk) if request.GET.get('tak'): nowy_projekt = Decyzja.objects.get(pk=pk) osoba_glosujaca = request.user glos = KtoJuzGlosowal(projekt=nowy_projekt, ktory_uzytkownik_juz_zaglosowal=osoba_glosujaca) nowy_projekt.za += 1 glos.save() nowy_projekt.save() message = _('Your vote has been saved. You voted Yes.') messages.success(request, (message)) return redirect('glosowania:details', pk) if request.GET.get('nie'): nowy_projekt = Decyzja.objects.get(pk=pk) osoba_glosujaca = request.user glos = KtoJuzGlosowal(projekt=nowy_projekt, ktory_uzytkownik_juz_zaglosowal=osoba_glosujaca) nowy_projekt.przeciw += 1 glos.save() nowy_projekt.save() message = _('Your vote has been saved. You voted No.') messages.success(request, (message)) return redirect('glosowania:details', pk) # check if already signed signed = ZebranePodpisy.objects.filter(projekt=pk, podpis_uzytkownika=request.user).exists() # check if already voted voted = KtoJuzGlosowal.objects.filter(projekt=pk, ktory_uzytkownik_juz_zaglosowal=request.user).exists() return render(request, 'glosowania/szczegoly.html', {'id': szczegoly, 'signed': signed, 'voted': voted}) def zliczaj_wszystko(): '''Jeśli propozycja zostanie zatwierdzona w niedzielę to głosowanie odbędzie się za 2 tygodnie''' propozycja = 1 brak_poparcia = 2 w_kolejce = 3 referendum = 4 odrzucone = 5 zatwierdzone = 6 # Vacatio Legis obowiazuje = 7 dzisiaj = datetime.today().date() decyzje = Decyzja.objects.all() for i in decyzje: if i.status != brak_poparcia and i.status != odrzucone and i.status != obowiazuje: # Jeśli nie jest w jakiś sposób zatwierdzone/odrzucone to procesujemy: # FROM PROPOSITION TO QUEUE if i.status == propozycja and i.ile_osob_podpisalo >= s.WYMAGANYCH_PODPISOW: i.status = w_kolejce i.data_zebrania_podpisow = dzisiaj # TODO: Referendum odbędzie się za 1 tydzień w niedzielę # 0 = monday, 1 = tuesday, ..., 6 = sunday i.data_referendum_start = i.data_zebrania_podpisow + timedelta(days=s.KOLEJKA) + timedelta(days=-dzisiaj.weekday()+0, weeks=1) i.data_referendum_stop = i.data_referendum_start + timedelta(days=s.CZAS_TRWANIA_REFERENDUM) i.save() SendEmail( str(_("Proposal no. ")) + str(i.id) + str(_(" is approved for referendum")), str(_("Proposal no. ")) + str(i.id) + str(_(" gathered required amount of signatures and will be voted from ")) + str(i.data_referendum_start) + str(_(' to ')) + str(i.data_referendum_stop) + '\n' + str(_("Click here to read proposal: http://")) + f"{HOST}/glosowania/details/{str(i.id)}" ) continue # FROM PROPOSITION TO NO_INTREST if i.status == propozycja and i.data_powstania + timedelta(days=s.CZAS_NA_ZEBRANIE_PODPISOW) <= dzisiaj: i.status = brak_poparcia i.save() # log('Propozycja ' + str(i.id) + ' zmieniła status na "brak poparcia".') SendEmail( # _(f"Proposal {str(i.id)} didn't gathered required amount of signatures"), # translation doesn't work this way str(_("Proposal no. ")) + str(i.id) + str(_(" didn't gathered required amount of signatures")), str(_("Proposal no. ")) + str(i.id) + str(_(" didn't gathered required amount of signatures")) + str(_(" and was removed from queue. ")) + str(_("Feel free to improve it and send it again.")) + '\n' + str(_("Click here to read proposal: http://")) + f"{HOST}/glosowania/details/{str(i.id)}" ) continue # FROM QUEUE TO REFERENDUM if i.status == w_kolejce and i.data_referendum_start <= dzisiaj: i.status = referendum i.save() # log('Propozycja ' + str(i.id) + ' zmieniła status na "referendum".') SendEmail( str(_("Referendum on proposal no. ")) + str(i.id) + str(_(" is starting now")), str(_("It is time to vote on proposal no. ")) + str(i.id) + '\n' + str(_("Referendum ends at ")) + str(i.data_referendum_stop) + '\n' + str(_("Click here to vote: http://")) + f"{HOST}/glosowania/details/{str(i.id)}" ) continue # FROM REFERENDUM TO VACATIO_LEGIS OR NOT_APPROVED if i.status == referendum and i.data_referendum_stop <= dzisiaj: if i.za > i.przeciw: i.status = zatwierdzone i.data_zatwierdzenia = i.data_referendum_stop i.data_obowiazuje_od = i.data_referendum_stop + timedelta(days=s.VACATIO_LEGIS) i.save() # log('Propozycja ' + str(i.id) + ' zmieniła status na "zatwierdzone".') SendEmail( str(_("Proposal no. ")) + str(i.id) + str(_("was approved")), str(_("Proposal no. ")) + str(i.id) + str(_("was approved in referendum and is now in Vacatio Legis period")) + '.\n' + str(_("The law will take effect on")) + i.data_obowiazuje_od + '\n' + str(_("Click here to read proposal: http://")) + f"{HOST}/glosowania/details/{str(i.id)}" ) continue else: i.status = odrzucone i.save() # log('Propozycja ' + str(i.id) + ' zmieniła status na "odrzucone"') SendEmail( str(_("Proposal no. ")) + str(i.id) + str(_("was rejected")), str(_("Proposal no. ")) + str(i.id) + str(_(" was rejected in referendum.")) + '\n' + str(_("Feel free to improve it and send it again.")) + '\n' + str(_("Click here to read proposal: http://")) + f"{HOST}/glosowania/details/{str(i.id)}" ) continue # FROM VACATIO_LEGIS TO LAW if i.status == zatwierdzone and i.data_obowiazuje_od <= dzisiaj: i.status = obowiazuje i.save() # log('Propozycja ' + str(i.id) + ' zmieniła status na "obowiązuje".') SendEmail( str(_("Proposal no. ")) + str(i.id) + str(_(" is in efect from today")), str(_("Proposal no. ")) + str(i.id) + str(_(" became abiding law today")) + '.\n' + str(_("Click here to read it: http://")) + f"{HOST}/glosowania/details/{str(i.id)}" ) continue def SendEmail(subject, message): # bcc: all active users # subject: Custom # message: Custom translation.activate(s.LANGUAGE_CODE) email_message = EmailMessage( from_email=str(s.DEFAULT_FROM_EMAIL), bcc = list(User.objects.filter(is_active=True).values_list('email', flat=True)), subject=f'{HOST} - {subject}', body=message, ) # l.warning(f'subject: {subject} \n message: {message}') email_message.send(fail_silently=False)
the-stack_106_24584
# Copyright 2020-2021 Efabless Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The only purpose of this file is to create a wrapper around report.py and config.py and make them usable by flow.tcl import argparse import os import re import scripts.utils.utils as utils from scripts.report.report import Report from scripts.config.config import ConfigHandler from scripts.report.get_file_name import get_name parser = argparse.ArgumentParser( description="Creates manufacturability and runtime summary reports for a given design and OpenLane run." ) parser.add_argument("--design", "-d", required=True, help="Design Path") parser.add_argument("--design_name", "-n", required=True, help="Design Name") parser.add_argument("--tag", "-t", required=True, help="Run Tag") parser.add_argument("--run_path", "-r", default=None, help="Run Path") parser.add_argument( "--output_file", "-o", required=True, help="Output Final Summary Report" ) parser.add_argument( "--man_report", "-m", required=True, help="Output Manufacturability Reports" ) parser.add_argument( "--runtime_summary", "-s", required=True, help="Output Runtime Summary Reports" ) args = parser.parse_args() design = args.design design_name = args.design_name tag = args.tag run_path = args.run_path output_file = args.output_file man_report = args.man_report runtime_summary = args.runtime_summary # Extracting Configurations params = ConfigHandler.get_config(design, tag, run_path) # Extracting Report report = Report(design, tag, design_name, params, run_path).get_report() # write into file with open(output_file, "w") as f: f.write(Report.get_header() + "," + ConfigHandler.get_header()) f.write("\n") f.write(report) # Adding Extra Attributes computed from configs and reported statistics utils.addComputedStatistics(output_file) # Tracking Magic DRC, LVS, Antenna Logs: run_path = run_path or utils.get_run_path(design, tag) magic_drc_report = get_name(str(run_path) + "/reports/magic/", "magic.drc") lvs_report = str(run_path) + "/results/lvs/" + design_name + ".lvs_parsed.lef.log" arc_antenna_report = get_name(str(run_path) + "/reports/routing/", "antenna.rpt") if not os.path.exists(lvs_report): lvs_report = str(run_path) + "/results/lvs/" + design_name + ".lvs_parsed.gds.log" magic_antenna_report = get_name( str(run_path) + "/reports/magic/", "magic.antenna_violators.rpt" ) printArr = [] printArr.append("Design Name: " + design_name) printArr.append("Run Directory: " + str(run_path)) splitLine = "----------------------------------------" # Summarizing Magic DRC drcVioDict = dict() cnt = 0 if os.path.exists(magic_drc_report): drcFileOpener = open(magic_drc_report) if drcFileOpener.mode == "r": drcContent = drcFileOpener.read() drcFileOpener.close() # design name # violation message # list of violations # Total Count: printArr.append(splitLine) printArr.append("\nMagic DRC Summary:") printArr.append("Source: " + str(magic_drc_report)) if drcContent is not None: drcSections = drcContent.split(splitLine) if len(drcSections) > 2: for i in range(1, len(drcSections) - 1, 2): drcVioDict[drcSections[i]] = len(drcSections[i + 1].split("\n")) - 2 for key in drcVioDict: val = drcVioDict[key] cnt += val printArr.append( 'Violation Message "' + str(key.strip()) + ' "found ' + str(val) + " Times." ) printArr.append("Total Magic DRC violations is " + str(cnt)) else: printArr.append("Source not found.") # Summarizing LVS printArr.append(splitLine) printArr.append("\nLVS Summary:") printArr.append("Source: " + str(lvs_report)) if os.path.exists(lvs_report): lvsFileOpener = open(lvs_report) if lvsFileOpener.mode == "r": lvsContent = lvsFileOpener.read() lvsFileOpener.close() flag = False for line in lvsContent.split("\n"): if line.find("Total errors =") != -1: flag = True printArr.append(line) elif line.find("net") != -1: printArr.append(line) if not flag: printArr.append("Design is LVS clean.") else: printArr.append("Source not found.") # Summarizing Antennas printArr.append(splitLine) printArr.append("\nAntenna Summary:") if os.path.exists(arc_antenna_report): printArr.append("Source: " + str(arc_antenna_report)) antFileOpener = open(arc_antenna_report) if antFileOpener.mode == "r": antContent = antFileOpener.read().split("\n")[-5:] antFileOpener.close() for line in antContent: if line.find("violated:") != -1: printArr.append(line) elif os.path.exists(magic_antenna_report): printArr.append("Source: " + str(magic_antenna_report)) antFileOpener = open(magic_antenna_report) if antFileOpener.mode == "r": antContent = antFileOpener.read().split("\n") antFileOpener.close() tot_cnt = 0 for ant in antContent: if len(str(ant).strip()): tot_cnt += 1 printArr.append("Number of pins violated: " + str(tot_cnt)) else: printArr.append("No antenna report found.") # write into file with open(man_report, "w") as f: f.write("\n".join(printArr)) def getListOfFiles(dirName): # create a list of file and sub directories # names in the given directory allFiles = list() listOfFile = os.listdir(dirName) # Iterate over all the entries for entry in listOfFile: # Create full path fullPath = os.path.join(dirName, entry) # If entry is a directory then get the list of files in this directory if os.path.isdir(fullPath): allFiles = allFiles + getListOfFiles(fullPath) else: allFiles.append(fullPath) return allFiles def timestamp_to_seconds(runtime): pattern = re.compile(r"\s*([\d+]+)h([\d+]+)m([\d+]+)s([\d+]+)+ms") m = pattern.match(runtime) time = ( int(m.group(1)) * 60 * 60 + int(m.group(2)) * 60 + int(m.group(3)) + int(m.group(4)) / 1000.0 ) return str(time) # Creating a runtime summary report logs_path = run_path + "/logs" neededfiles = sorted( [ (int(os.path.basename(f).split("-", 1)[0]), f) for f in getListOfFiles(logs_path) if os.path.isfile(os.path.join(logs_path, f)) and len(f.split("_")) > 1 and f.split("_")[-1] == "runtime.txt" and len(os.path.basename(f).split("-")) > 1 and os.path.basename(f).split("-")[0].isnumeric() ] ) runtimeArr = [] prasableRuntimeArr = [] for (idx, f) in neededfiles: stagename = os.path.basename(f).split("_runtime.txt")[0] runtimeFileOpener = open(f, "r") if runtimeFileOpener.mode == "r": runtimeContent = runtimeFileOpener.read().strip() runtimeFileOpener.close() runtimeArr.append(str(stagename) + " " + str(runtimeContent)) prasableRuntimeArr.append(str(stagename) + " " + timestamp_to_seconds(runtimeContent)) # write into file with open(runtime_summary, "w") as f: f.write("\n".join(runtimeArr)) with open(runtime_summary + ".parsable", "w") as f: f.write("\n".join(prasableRuntimeArr))
the-stack_106_24585
import pytest import os import tempfile from contextlib import contextmanager from warnings import catch_warnings from distutils.version import LooseVersion import datetime from datetime import timedelta import numpy as np import pandas as pd from pandas import (Series, DataFrame, Panel, MultiIndex, Int64Index, RangeIndex, Categorical, bdate_range, date_range, timedelta_range, Index, DatetimeIndex, isna, compat, concat, Timestamp) import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, set_timezone) from pandas.compat import (is_platform_windows, is_platform_little_endian, PY35, PY36, BytesIO, text_type, range, lrange, u) from pandas.io.formats.printing import pprint_thing from pandas.core.dtypes.common import is_categorical_dtype tables = pytest.importorskip('tables') from pandas.io import pytables as pytables # noqa:E402 from pandas.io.pytables import (TableIterator, # noqa:E402 HDFStore, get_store, Term, read_hdf, PossibleDataLossError, ClosedFileError) _default_compressor = ('blosc' if LooseVersion(tables.__version__) >= LooseVersion('2.2') else 'zlib') # contextmanager to ensure the file cleanup def safe_remove(path): if path is not None: try: os.remove(path) except: pass def safe_close(store): try: if store is not None: store.close() except: pass def create_tempfile(path): """ create an unopened named temporary file """ return os.path.join(tempfile.gettempdir(), path) @contextmanager def ensure_clean_store(path, mode='a', complevel=None, complib=None, fletcher32=False): try: # put in the temporary path if we don't have one already if not len(os.path.dirname(path)): path = create_tempfile(path) store = HDFStore(path, mode=mode, complevel=complevel, complib=complib, fletcher32=False) yield store finally: safe_close(store) if mode == 'w' or mode == 'a': safe_remove(path) @contextmanager def ensure_clean_path(path): """ return essentially a named temporary file that is not opened and deleted on existing; if path is a list, then create and return list of filenames """ try: if isinstance(path, list): filenames = [create_tempfile(p) for p in path] yield filenames else: filenames = [create_tempfile(path)] yield filenames[0] finally: for f in filenames: safe_remove(f) # set these parameters so we don't have file sharing tables.parameters.MAX_NUMEXPR_THREADS = 1 tables.parameters.MAX_BLOSC_THREADS = 1 tables.parameters.MAX_THREADS = 1 def _maybe_remove(store, key): """For tests using tables, try removing the table to be sure there is no content from previous tests using the same table name.""" try: store.remove(key) except: pass class Base(object): @classmethod def setup_class(cls): # Pytables 3.0.0 deprecates lots of things tm.reset_testing_mode() @classmethod def teardown_class(cls): # Pytables 3.0.0 deprecates lots of things tm.set_testing_mode() def setup_method(self, method): self.path = 'tmp.__%s__.h5' % tm.rands(10) def teardown_method(self, method): pass @pytest.mark.single class TestHDFStore(Base): def test_factory_fun(self): path = create_tempfile(self.path) try: with catch_warnings(record=True): with get_store(path) as tbl: raise ValueError('blah') except ValueError: pass finally: safe_remove(path) try: with catch_warnings(record=True): with get_store(path) as tbl: tbl['a'] = tm.makeDataFrame() with catch_warnings(record=True): with get_store(path) as tbl: assert len(tbl) == 1 assert type(tbl['a']) == DataFrame finally: safe_remove(self.path) def test_context(self): path = create_tempfile(self.path) try: with HDFStore(path) as tbl: raise ValueError('blah') except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl['a'] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl['a']) == DataFrame finally: safe_remove(path) def test_conv_read_write(self): path = create_tempfile(self.path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() assert_series_equal(o, roundtrip('series', o)) o = tm.makeStringSeries() assert_series_equal(o, roundtrip('string_series', o)) o = tm.makeDataFrame() assert_frame_equal(o, roundtrip('frame', o)) with catch_warnings(record=True): o = tm.makePanel() assert_panel_equal(o, roundtrip('panel', o)) # table df = DataFrame(dict(A=lrange(5), B=lrange(5))) df.to_hdf(path, 'table', append=True) result = read_hdf(path, 'table', where=['index>2']) assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self): # GH6166 # unconversion of long strings was being chopped in earlier # versions of numpy < 1.7.2 df = DataFrame({'a': tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10)) with ensure_clean_store(self.path) as store: store.append('df', df, data_columns=['a']) result = store.select('df') assert_frame_equal(df, result) def test_api(self): # GH4584 # API issue when to_hdf doesn't acdept append AND format args with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, 'df', append=True, format='table') df.iloc[10:].to_hdf(path, 'df', append=True, format='table') assert_frame_equal(read_hdf(path, 'df'), df) # append to False df.iloc[:10].to_hdf(path, 'df', append=False, format='table') df.iloc[10:].to_hdf(path, 'df', append=True, format='table') assert_frame_equal(read_hdf(path, 'df'), df) with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, 'df', append=True) df.iloc[10:].to_hdf(path, 'df', append=True, format='table') assert_frame_equal(read_hdf(path, 'df'), df) # append to False df.iloc[:10].to_hdf(path, 'df', append=False, format='table') df.iloc[10:].to_hdf(path, 'df', append=True) assert_frame_equal(read_hdf(path, 'df'), df) with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() df.to_hdf(path, 'df', append=False, format='fixed') assert_frame_equal(read_hdf(path, 'df'), df) df.to_hdf(path, 'df', append=False, format='f') assert_frame_equal(read_hdf(path, 'df'), df) df.to_hdf(path, 'df', append=False) assert_frame_equal(read_hdf(path, 'df'), df) df.to_hdf(path, 'df') assert_frame_equal(read_hdf(path, 'df'), df) with ensure_clean_store(self.path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, 'df') store.append('df', df.iloc[:10], append=True, format='table') store.append('df', df.iloc[10:], append=True, format='table') assert_frame_equal(store.select('df'), df) # append to False _maybe_remove(store, 'df') store.append('df', df.iloc[:10], append=False, format='table') store.append('df', df.iloc[10:], append=True, format='table') assert_frame_equal(store.select('df'), df) # formats _maybe_remove(store, 'df') store.append('df', df.iloc[:10], append=False, format='table') store.append('df', df.iloc[10:], append=True, format='table') assert_frame_equal(store.select('df'), df) _maybe_remove(store, 'df') store.append('df', df.iloc[:10], append=False, format='table') store.append('df', df.iloc[10:], append=True, format=None) assert_frame_equal(store.select('df'), df) with ensure_clean_path(self.path) as path: # invalid df = tm.makeDataFrame() pytest.raises(ValueError, df.to_hdf, path, 'df', append=True, format='f') pytest.raises(ValueError, df.to_hdf, path, 'df', append=True, format='fixed') pytest.raises(TypeError, df.to_hdf, path, 'df', append=True, format='foo') pytest.raises(TypeError, df.to_hdf, path, 'df', append=False, format='bar') # File path doesn't exist path = "" pytest.raises(compat.FileNotFoundError, read_hdf, path, 'df') def test_api_default_format(self): # default_format option with ensure_clean_store(self.path) as store: df = tm.makeDataFrame() pd.set_option('io.hdf.default_format', 'fixed') _maybe_remove(store, 'df') store.put('df', df) assert not store.get_storer('df').is_table pytest.raises(ValueError, store.append, 'df2', df) pd.set_option('io.hdf.default_format', 'table') _maybe_remove(store, 'df') store.put('df', df) assert store.get_storer('df').is_table _maybe_remove(store, 'df2') store.append('df2', df) assert store.get_storer('df').is_table pd.set_option('io.hdf.default_format', None) with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() pd.set_option('io.hdf.default_format', 'fixed') df.to_hdf(path, 'df') with HDFStore(path) as store: assert not store.get_storer('df').is_table pytest.raises(ValueError, df.to_hdf, path, 'df2', append=True) pd.set_option('io.hdf.default_format', 'table') df.to_hdf(path, 'df3') with HDFStore(path) as store: assert store.get_storer('df3').is_table df.to_hdf(path, 'df4', append=True) with HDFStore(path) as store: assert store.get_storer('df4').is_table pd.set_option('io.hdf.default_format', None) def test_keys(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() store['b'] = tm.makeStringSeries() store['c'] = tm.makeDataFrame() with catch_warnings(record=True): store['d'] = tm.makePanel() store['foo/bar'] = tm.makePanel() assert len(store) == 5 expected = set(['/a', '/b', '/c', '/d', '/foo/bar']) assert set(store.keys()) == expected assert set(store) == expected def test_iter_empty(self): with ensure_clean_store(self.path) as store: # GH 12221 assert list(store) == [] def test_repr(self): with ensure_clean_store(self.path) as store: repr(store) store.info() store['a'] = tm.makeTimeSeries() store['b'] = tm.makeStringSeries() store['c'] = tm.makeDataFrame() with catch_warnings(record=True): store['d'] = tm.makePanel() store['foo/bar'] = tm.makePanel() store.append('e', tm.makePanel()) df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 df['timestamp1'] = Timestamp('20010102') df['timestamp2'] = Timestamp('20010103') df['datetime1'] = datetime.datetime(2001, 1, 2, 0, 0) df['datetime2'] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ['obj1']] = np.nan df = df._consolidate()._convert(datetime=True) # PerformanceWarning with catch_warnings(record=True): store['df'] = df # make a random group in hdf space store._handle.create_group(store._handle.root, 'bah') assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(self.path) as store: df = tm.makeDataFrame() store.append('df', df) s = store.get_storer('df') repr(s) str(s) def test_contains(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() store['b'] = tm.makeDataFrame() store['foo/bar'] = tm.makeDataFrame() assert 'a' in store assert 'b' in store assert 'c' not in store assert 'foo/bar' in store assert '/foo/bar' in store assert '/foo/b' not in store assert 'bar' not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store['node())'] = tm.makeDataFrame() assert 'node())' in store def test_versioning(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() store['b'] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, 'df1') store.append('df1', df[:10]) store.append('df1', df[10:]) assert store.root.a._v_attrs.pandas_version == '0.15.2' assert store.root.b._v_attrs.pandas_version == '0.15.2' assert store.root.df1._v_attrs.pandas_version == '0.15.2' # write a file and wipe its versioning _maybe_remove(store, 'df2') store.append('df2', df) # this is an error because its table_type is appendable, but no # version info store.get_node('df2')._v_attrs.pandas_version = None pytest.raises(Exception, store.select, 'df2') def test_mode(self): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(self.path) as path: # constructor if mode in ['r', 'r+']: pytest.raises(IOError, HDFStore, path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(self.path) as path: # context if mode in ['r', 'r+']: def f(): with HDFStore(path, mode=mode) as store: # noqa pass pytest.raises(IOError, f) else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(self.path) as path: # conv write if mode in ['r', 'r+']: pytest.raises(IOError, df.to_hdf, path, 'df', mode=mode) df.to_hdf(path, 'df', mode='w') else: df.to_hdf(path, 'df', mode=mode) # conv read if mode in ['w']: pytest.raises(ValueError, read_hdf, path, 'df', mode=mode) else: result = read_hdf(path, 'df', mode=mode) assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='w') result = read_hdf(path, 'df') assert_frame_equal(result, df) check('r') check('r+') check('a') check('w') check_default_mode() def test_reopen_handle(self): with ensure_clean_path(self.path) as path: store = HDFStore(path, mode='a') store['a'] = tm.makeTimeSeries() # invalid mode change pytest.raises(PossibleDataLossError, store.open, 'w') store.close() assert not store.is_open # truncation ok here store.open('w') assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode='a') store['a'] = tm.makeTimeSeries() # reopen as read store.open('r') assert store.is_open assert len(store) == 1 assert store._mode == 'r' store.close() assert not store.is_open # reopen as append store.open('a') assert store.is_open assert len(store) == 1 assert store._mode == 'a' store.close() assert not store.is_open # reopen as append (again) store.open('a') assert store.is_open assert len(store) == 1 assert store._mode == 'a' store.close() assert not store.is_open def test_open_args(self): with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore(path, mode='a', driver='H5FD_CORE', driver_core_backing_store=0) store['df'] = df store.append('df2', df) tm.assert_frame_equal(store['df'], df) tm.assert_frame_equal(store['df2'], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() left = store.get('a') right = store['a'] tm.assert_series_equal(left, right) left = store.get('/a') right = store['/a'] tm.assert_series_equal(left, right) pytest.raises(KeyError, store.get, 'b') def test_getattr(self): with ensure_clean_store(self.path) as store: s = tm.makeTimeSeries() store['a'] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, 'a') tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store['df'] = df result = store.df tm.assert_frame_equal(result, df) # errors pytest.raises(AttributeError, getattr, store, 'd') for x in ['mode', 'path', 'handle', 'complib']: pytest.raises(AttributeError, getattr, store, x) # not stores for x in ['mode', 'path', 'handle', 'complib']: getattr(store, "_%s" % x) def test_put(self): with ensure_clean_store(self.path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store['a'] = ts store['b'] = df[:10] store['foo/bar/bah'] = df[:10] store['foo'] = df[:10] store['/foo'] = df[:10] store.put('c', df[:10], format='table') # not OK, not a table pytest.raises( ValueError, store.put, 'b', df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case # _maybe_remove(store, 'f') # pytest.raises(ValueError, store.put, 'f', df[10:], # append=True) # can't put to a table (use append instead) pytest.raises(ValueError, store.put, 'c', df[10:], append=True) # overwrite table store.put('c', df[:10], format='table', append=False) tm.assert_frame_equal(df[:10], store['c']) def test_put_string_index(self): with ensure_clean_store(self.path) as store: index = Index( ["I am a very long string index: %s" % i for i in range(20)]) s = Series(np.arange(20), index=index) df = DataFrame({'A': s, 'B': s}) store['a'] = s tm.assert_series_equal(store['a'], s) store['b'] = df tm.assert_frame_equal(store['b'], df) # mixed length index = Index(['abcdefghijklmnopqrstuvwxyz1234567890'] + ["I am a very long string index: %s" % i for i in range(20)]) s = Series(np.arange(21), index=index) df = DataFrame({'A': s, 'B': s}) store['a'] = s tm.assert_series_equal(store['a'], s) store['b'] = df tm.assert_frame_equal(store['b'], df) def test_put_compression(self): with ensure_clean_store(self.path) as store: df = tm.makeTimeDataFrame() store.put('c', df, format='table', complib='zlib') tm.assert_frame_equal(store['c'], df) # can't compress if format='fixed' pytest.raises(ValueError, store.put, 'b', df, format='fixed', complib='zlib') @td.skip_if_windows_python_3 def test_put_compression_blosc(self): df = tm.makeTimeDataFrame() with ensure_clean_store(self.path) as store: # can't compress if format='fixed' pytest.raises(ValueError, store.put, 'b', df, format='fixed', complib='blosc') store.put('c', df, format='table', complib='blosc') tm.assert_frame_equal(store['c'], df) def test_complibs_default_settings(self): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(self.path) as tmpfile: df.to_hdf(tmpfile, 'df', complevel=9) result = pd.read_hdf(tmpfile, 'df') tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode='r') as h5file: for node in h5file.walk_nodes(where='/df', classname='Leaf'): assert node.filters.complevel == 9 assert node.filters.complib == 'zlib' # Set complib and check to see if compression is disabled with ensure_clean_path(self.path) as tmpfile: df.to_hdf(tmpfile, 'df', complib='zlib') result = pd.read_hdf(tmpfile, 'df') tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode='r') as h5file: for node in h5file.walk_nodes(where='/df', classname='Leaf'): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(self.path) as tmpfile: df.to_hdf(tmpfile, 'df') result = pd.read_hdf(tmpfile, 'df') tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode='r') as h5file: for node in h5file.walk_nodes(where='/df', classname='Leaf'): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(self.path) as tmpfile: store = pd.HDFStore(tmpfile) store.append('dfc', df, complevel=9, complib='blosc') store.append('df', df) store.close() with tables.open_file(tmpfile, mode='r') as h5file: for node in h5file.walk_nodes(where='/df', classname='Leaf'): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where='/dfc', classname='Leaf'): assert node.filters.complevel == 9 assert node.filters.complib == 'blosc' def test_complibs(self): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version('lzo'): all_complibs.remove('lzo') # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(self.path) as tmpfile: gname = 'foo' # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode='r') for node in h5table.walk_nodes(where='/' + gname, classname='Leaf'): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal) def test_put_mixed_type(self): df = tm.makeTimeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 df['timestamp1'] = Timestamp('20010102') df['timestamp2'] = Timestamp('20010103') df['datetime1'] = datetime.datetime(2001, 1, 2, 0, 0) df['datetime2'] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ['obj1']] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df') # PerformanceWarning with catch_warnings(record=True): store.put('df', df) expected = store.get('df') tm.assert_frame_equal(expected, df) def test_append(self): with ensure_clean_store(self.path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, 'df1') store.append('df1', df[:10]) store.append('df1', df[10:]) tm.assert_frame_equal(store['df1'], df) _maybe_remove(store, 'df2') store.put('df2', df[:10], format='table') store.append('df2', df[10:]) tm.assert_frame_equal(store['df2'], df) _maybe_remove(store, 'df3') store.append('/df3', df[:10]) store.append('/df3', df[10:]) tm.assert_frame_equal(store['df3'], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, '/df3 foo') store.append('/df3 foo', df[:10]) store.append('/df3 foo', df[10:]) tm.assert_frame_equal(store['df3 foo'], df) # panel wp = tm.makePanel() _maybe_remove(store, 'wp1') store.append('wp1', wp.iloc[:, :10, :]) store.append('wp1', wp.iloc[:, 10:, :]) assert_panel_equal(store['wp1'], wp) # test using differt order of items on the non-index axes _maybe_remove(store, 'wp1') wp_append1 = wp.iloc[:, :10, :] store.append('wp1', wp_append1) wp_append2 = wp.iloc[:, 10:, :].reindex(items=wp.items[::-1]) store.append('wp1', wp_append2) assert_panel_equal(store['wp1'], wp) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df['mixed_column'] = 'testing' df.loc[2, 'mixed_column'] = np.nan _maybe_remove(store, 'df') store.append('df', df) tm.assert_frame_equal(store['df'], df) # uints - test storage of uints uint_data = DataFrame({ 'u08': Series(np.random.randint(0, high=255, size=5), dtype=np.uint8), 'u16': Series(np.random.randint(0, high=65535, size=5), dtype=np.uint16), 'u32': Series(np.random.randint(0, high=2**30, size=5), dtype=np.uint32), 'u64': Series([2**58, 2**59, 2**60, 2**61, 2**62], dtype=np.uint64)}, index=np.arange(5)) _maybe_remove(store, 'uints') store.append('uints', uint_data) tm.assert_frame_equal(store['uints'], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, 'uints') # 64-bit indices not yet supported store.append('uints', uint_data, data_columns=[ 'u08', 'u16', 'u32']) tm.assert_frame_equal(store['uints'], uint_data) def test_append_series(self): with ensure_clean_store(self.path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append('ss', ss) result = store['ss'] tm.assert_series_equal(result, ss) assert result.name is None store.append('ts', ts) result = store['ts'] tm.assert_series_equal(result, ts) assert result.name is None ns.name = 'foo' store.append('ns', ns) result = store['ns'] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select('ns', 'foo>60') tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select('ns', 'foo>70 and index<90') tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=['A']) mi['B'] = np.arange(len(mi)) mi['C'] = 'foo' mi.loc[3:5, 'C'] = 'bar' mi.set_index(['C', 'B'], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append('mi', s) tm.assert_series_equal(store['mi'], s) def test_store_index_types(self): # GH5386 # test storing various index types with ensure_clean_store(self.path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list('AB')) df.index = index(len(df)) _maybe_remove(store, 'df') store.put('df', df, format=format) assert_frame_equal(df, store['df']) for index in [tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex]: check('table', index) check('fixed', index) # period index currently broken for table # seee GH7796 FIXME check('fixed', tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex if compat.PY3: check('table', index) check('fixed', index) else: # only support for fixed types (and they have a perf warning) pytest.raises(TypeError, check, 'table', index) # PerformanceWarning with catch_warnings(record=True): check('fixed', index) @pytest.mark.skipif(not is_platform_little_endian(), reason="reason platform is not little endian") def test_encoding(self): with ensure_clean_store(self.path) as store: df = DataFrame(dict(A='foo', B='bar'), index=range(5)) df.loc[2, 'A'] = np.nan df.loc[3, 'B'] = np.nan _maybe_remove(store, 'df') store.append('df', df, encoding='ascii') tm.assert_frame_equal(store['df'], df) expected = df.reindex(columns=['A']) result = store.select('df', Term('columns=A', encoding='ascii')) tm.assert_frame_equal(result, expected) def test_latin_encoding(self): if compat.PY2: tm.assert_raises_regex( TypeError, r'\[unicode\] is not implemented as a table column') return values = [[b'E\xc9, 17', b'', b'a', b'b', b'c'], [b'E\xc9, 17', b'a', b'b', b'c'], [b'EE, 17', b'', b'a', b'b', b'c'], [b'E\xc9, 17', b'\xf8\xfc', b'a', b'b', b'c'], [b'', b'a', b'b', b'c'], [b'\xf8\xfc', b'a', b'b', b'c'], [b'A\xf8\xfc', b'', b'a', b'b', b'c'], [np.nan, b'', b'b', b'c'], [b'A\xf8\xfc', np.nan, b'', b'b', b'c']] def _try_decode(x, encoding='latin-1'): try: return x.decode(encoding) except AttributeError: return x # not sure how to remove latin-1 from code in python 2 and 3 values = [[_try_decode(x) for x in y] for y in values] examples = [] for dtype in ['category', object]: for val in values: examples.append(pd.Series(val, dtype=dtype)) def roundtrip(s, key='data', encoding='latin-1', nan_rep=''): with ensure_clean_path(self.path) as store: s.to_hdf(store, key, format='table', encoding=encoding, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = s.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) assert_series_equal(s_nan, retr, check_dtype=False, check_categorical=False) else: assert_series_equal(s_nan, retr) for s in examples: roundtrip(s) # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self): with ensure_clean_store(self.path) as store: df = DataFrame({'A': Series(np.random.randn(20)).astype('int32'), 'A1': np.random.randn(20), 'A2': np.random.randn(20), 'B': 'foo', 'C': 'bar', 'D': Timestamp("20010101"), 'E': datetime.datetime(2001, 1, 2, 0, 0)}, index=np.arange(20)) # some nans _maybe_remove(store, 'df1') df.loc[0:15, ['A1', 'B', 'D', 'E']] = np.nan store.append('df1', df[:10]) store.append('df1', df[10:]) tm.assert_frame_equal(store['df1'], df) # first column df1 = df.copy() df1.loc[:, 'A1'] = np.nan _maybe_remove(store, 'df1') store.append('df1', df1[:10]) store.append('df1', df1[10:]) tm.assert_frame_equal(store['df1'], df1) # 2nd column df2 = df.copy() df2.loc[:, 'A2'] = np.nan _maybe_remove(store, 'df2') store.append('df2', df2[:10]) store.append('df2', df2[10:]) tm.assert_frame_equal(store['df2'], df2) # datetimes df3 = df.copy() df3.loc[:, 'E'] = np.nan _maybe_remove(store, 'df3') store.append('df3', df3[:10]) store.append('df3', df3[10:]) tm.assert_frame_equal(store['df3'], df3) def test_append_all_nans(self): with ensure_clean_store(self.path) as store: df = DataFrame({'A1': np.random.randn(20), 'A2': np.random.randn(20)}, index=np.arange(20)) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, 'df') store.append('df', df[:10], dropna=True) store.append('df', df[10:], dropna=True) tm.assert_frame_equal(store['df'], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, 'df2') store.append('df2', df[:10], dropna=False) store.append('df2', df[10:], dropna=False) tm.assert_frame_equal(store['df2'], df) # tests the option io.hdf.dropna_table pd.set_option('io.hdf.dropna_table', False) _maybe_remove(store, 'df3') store.append('df3', df[:10]) store.append('df3', df[10:]) tm.assert_frame_equal(store['df3'], df) pd.set_option('io.hdf.dropna_table', True) _maybe_remove(store, 'df4') store.append('df4', df[:10]) store.append('df4', df[10:]) tm.assert_frame_equal(store['df4'], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame({'A1': np.random.randn(20), 'A2': np.random.randn(20), 'B': 'foo', 'C': 'bar'}, index=np.arange(20)) df.loc[0:15, :] = np.nan _maybe_remove(store, 'df') store.append('df', df[:10], dropna=True) store.append('df', df[10:], dropna=True) tm.assert_frame_equal(store['df'], df) _maybe_remove(store, 'df2') store.append('df2', df[:10], dropna=False) store.append('df2', df[10:], dropna=False) tm.assert_frame_equal(store['df2'], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame({'A1': np.random.randn(20), 'A2': np.random.randn(20), 'B': 'foo', 'C': 'bar', 'D': Timestamp("20010101"), 'E': datetime.datetime(2001, 1, 2, 0, 0)}, index=np.arange(20)) df.loc[0:15, :] = np.nan _maybe_remove(store, 'df') store.append('df', df[:10], dropna=True) store.append('df', df[10:], dropna=True) tm.assert_frame_equal(store['df'], df) _maybe_remove(store, 'df2') store.append('df2', df[:10], dropna=False) store.append('df2', df[10:], dropna=False) tm.assert_frame_equal(store['df2'], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {'col1': [0, np.nan, 2], 'col2': [1, np.nan, np.nan]}) with ensure_clean_path(self.path) as path: df_with_missing.to_hdf(path, 'df_with_missing', format='table') reloaded = read_hdf(path, 'df_with_missing') tm.assert_frame_equal(df_with_missing, reloaded) matrix = [[[np.nan, np.nan, np.nan], [1, np.nan, np.nan]], [[np.nan, np.nan, np.nan], [np.nan, 5, 6]], [[np.nan, np.nan, np.nan], [np.nan, 3, np.nan]]] with catch_warnings(record=True): panel_with_missing = Panel(matrix, items=['Item1', 'Item2', 'Item3'], major_axis=[1, 2], minor_axis=['A', 'B', 'C']) with ensure_clean_path(self.path) as path: panel_with_missing.to_hdf( path, 'panel_with_missing', format='table') reloaded_panel = read_hdf(path, 'panel_with_missing') tm.assert_panel_equal(panel_with_missing, reloaded_panel) def test_append_frame_column_oriented(self): with ensure_clean_store(self.path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, 'df1') store.append('df1', df.iloc[:, :2], axes=['columns']) store.append('df1', df.iloc[:, 2:]) tm.assert_frame_equal(store['df1'], df) result = store.select('df1', 'columns=A') expected = df.reindex(columns=['A']) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select( 'df1', ('columns=A', 'index=df.index[0:4]')) expected = df.reindex(columns=['A'], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select('df1', 'columns=A and index>df.index[4]') def test_append_with_different_block_ordering(self): # GH 4096; using same frames, but different block orderings with ensure_clean_store(self.path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list('AB')) df['index'] = range(10) df['index'] += i * 10 df['int64'] = Series([1] * len(df), dtype='int64') df['int16'] = Series([1] * len(df), dtype='int16') if i % 2 == 0: del df['int64'] df['int64'] = Series([1] * len(df), dtype='int64') if i % 3 == 0: a = df.pop('A') df['A'] = a df.set_index('index', inplace=True) store.append('df', df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(self.path) as store: df = DataFrame(np.random.randn(10, 2), columns=list('AB'), dtype='float64') df['int64'] = Series([1] * len(df), dtype='int64') df['int16'] = Series([1] * len(df), dtype='int16') store.append('df', df) # store additional fields in different blocks df['int16_2'] = Series([1] * len(df), dtype='int16') pytest.raises(ValueError, store.append, 'df', df) # store multile additional fields in different blocks df['float_3'] = Series([1.] * len(df), dtype='float64') pytest.raises(ValueError, store.append, 'df', df) def test_append_with_strings(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel() wp2 = wp.rename_axis( {x: "%s_extra" % x for x in wp.minor_axis}, axis=2) def check_col(key, name, size): assert getattr(store.get_storer(key) .table.description, name).itemsize == size store.append('s1', wp, min_itemsize=20) store.append('s1', wp2) expected = concat([wp, wp2], axis=2) expected = expected.reindex( minor_axis=sorted(expected.minor_axis)) assert_panel_equal(store['s1'], expected) check_col('s1', 'minor_axis', 20) # test dict format store.append('s2', wp, min_itemsize={'minor_axis': 20}) store.append('s2', wp2) expected = concat([wp, wp2], axis=2) expected = expected.reindex( minor_axis=sorted(expected.minor_axis)) assert_panel_equal(store['s2'], expected) check_col('s2', 'minor_axis', 20) # apply the wrong field (similar to #1) store.append('s3', wp, min_itemsize={'major_axis': 20}) pytest.raises(ValueError, store.append, 's3', wp2) # test truncation of bigger strings store.append('s4', wp) pytest.raises(ValueError, store.append, 's4', wp2) # avoid truncation on elements df = DataFrame([[123, 'asdqwerty'], [345, 'dggnhebbsdfbdfb']]) store.append('df_big', df) tm.assert_frame_equal(store.select('df_big'), df) check_col('df_big', 'values_block_1', 15) # appending smaller string ok df2 = DataFrame([[124, 'asdqy'], [346, 'dggnhefbdfb']]) store.append('df_big', df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select('df_big'), expected) check_col('df_big', 'values_block_1', 15) # avoid truncation on elements df = DataFrame([[123, 'asdqwerty'], [345, 'dggnhebbsdfbdfb']]) store.append('df_big2', df, min_itemsize={'values': 50}) tm.assert_frame_equal(store.select('df_big2'), df) check_col('df_big2', 'values_block_1', 50) # bigger string on next append store.append('df_new', df) df_new = DataFrame( [[124, 'abcdefqhij'], [346, 'abcdefghijklmnopqrtsuvwxyz']]) pytest.raises(ValueError, store.append, 'df_new', df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index('C') store.append('ss', df['B'], min_itemsize={'index': 4}) tm.assert_series_equal(store.select('ss'), df['B']) # same as above, with data_columns=True store.append('ss2', df['B'], data_columns=True, min_itemsize={'index': 4}) tm.assert_series_equal(store.select('ss2'), df['B']) # min_itemsize in index without appending (GH 10381) store.put('ss3', df, format='table', min_itemsize={'index': 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C='longer').set_index('C') store.append('ss3', df2) tm.assert_frame_equal(store.select('ss3'), pd.concat([df, df2])) # same as above, with a Series store.put('ss4', df['B'], format='table', min_itemsize={'index': 6}) store.append('ss4', df2['B']) tm.assert_series_equal(store.select('ss4'), pd.concat([df['B'], df2['B']])) # with nans _maybe_remove(store, 'df') df = tm.makeTimeDataFrame() df['string'] = 'foo' df.loc[1:4, 'string'] = np.nan df['string2'] = 'bar' df.loc[4:8, 'string2'] = np.nan df['string3'] = 'bah' df.loc[1:, 'string3'] = np.nan store.append('df', df) result = store.select('df') tm.assert_frame_equal(result, df) with ensure_clean_store(self.path) as store: def check_col(key, name, size): assert getattr(store.get_storer(key) .table.description, name).itemsize, size df = DataFrame(dict(A='foo', B='bar'), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, 'df') store.append('df', df, min_itemsize={'A': 200}) check_col('df', 'A', 200) assert store.get_storer('df').data_columns == ['A'] # a min_itemsize that creates a data_column2 _maybe_remove(store, 'df') store.append('df', df, data_columns=['B'], min_itemsize={'A': 200}) check_col('df', 'A', 200) assert store.get_storer('df').data_columns == ['B', 'A'] # a min_itemsize that creates a data_column2 _maybe_remove(store, 'df') store.append('df', df, data_columns=[ 'B'], min_itemsize={'values': 200}) check_col('df', 'B', 200) check_col('df', 'values_block_0', 200) assert store.get_storer('df').data_columns == ['B'] # infer the .typ on subsequent appends _maybe_remove(store, 'df') store.append('df', df[:5], min_itemsize=200) store.append('df', df[5:], min_itemsize=200) tm.assert_frame_equal(store['df'], df) # invalid min_itemsize keys df = DataFrame(['foo', 'foo', 'foo', 'barh', 'barh', 'barh'], columns=['A']) _maybe_remove(store, 'df') pytest.raises(ValueError, store.append, 'df', df, min_itemsize={'foo': 20, 'foobar': 20}) def test_to_hdf_with_min_itemsize(self): with ensure_clean_path(self.path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index('C') df.to_hdf(path, 'ss3', format='table', min_itemsize={'index': 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C='longer').set_index('C') df2.to_hdf(path, 'ss3', append=True, format='table') tm.assert_frame_equal(pd.read_hdf(path, 'ss3'), pd.concat([df, df2])) # same as above, with a Series df['B'].to_hdf(path, 'ss4', format='table', min_itemsize={'index': 6}) df2['B'].to_hdf(path, 'ss4', append=True, format='table') tm.assert_series_equal(pd.read_hdf(path, 'ss4'), pd.concat([df['B'], df2['B']])) def test_append_with_data_columns(self): with ensure_clean_store(self.path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc('B')] = 1. _maybe_remove(store, 'df') store.append('df', df[:2], data_columns=['B']) store.append('df', df[2:]) tm.assert_frame_equal(store['df'], df) # check that we have indicies created assert(store._handle.root.df.table.cols.index.is_indexed is True) assert(store._handle.root.df.table.cols.B.is_indexed is True) # data column searching result = store.select('df', 'B>0') expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select( 'df', 'B>0 and index>df.index[3]') df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new['string'] = 'foo' df_new.loc[1:4, 'string'] = np.nan df_new.loc[5:6, 'string'] = 'bar' _maybe_remove(store, 'df') store.append('df', df_new, data_columns=['string']) result = store.select('df', "string='foo'") expected = df_new[df_new.string == 'foo'] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert getattr(store.get_storer(key) .table.description, name).itemsize == size with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df') store.append('df', df_new, data_columns=['string'], min_itemsize={'string': 30}) check_col('df', 'string', 30) _maybe_remove(store, 'df') store.append( 'df', df_new, data_columns=['string'], min_itemsize=30) check_col('df', 'string', 30) _maybe_remove(store, 'df') store.append('df', df_new, data_columns=['string'], min_itemsize={'values': 30}) check_col('df', 'string', 30) with ensure_clean_store(self.path) as store: df_new['string2'] = 'foobarbah' df_new['string_block1'] = 'foobarbah1' df_new['string_block2'] = 'foobarbah2' _maybe_remove(store, 'df') store.append('df', df_new, data_columns=['string', 'string2'], min_itemsize={'string': 30, 'string2': 40, 'values': 50}) check_col('df', 'string', 30) check_col('df', 'string2', 40) check_col('df', 'values_block_1', 50) with ensure_clean_store(self.path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc('A')] = 1. df_new.iloc[0, df_new.columns.get_loc('B')] = -1. df_new['string'] = 'foo' sl = df_new.columns.get_loc('string') df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = 'bar' df_new['string2'] = 'foo' sl = df_new.columns.get_loc('string2') df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = 'bar' _maybe_remove(store, 'df') store.append( 'df', df_new, data_columns=['A', 'B', 'string', 'string2']) result = store.select('df', "string='foo' and string2='foo'" " and A>0 and B<0") expected = df_new[(df_new.string == 'foo') & ( df_new.string2 == 'foo') & (df_new.A > 0) & (df_new.B < 0)] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select('df', "string='foo' and string2='cool'") expected = df_new[(df_new.string == 'foo') & ( df_new.string2 == 'cool')] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(self.path) as store: # doc example df_dc = df.copy() df_dc['string'] = 'foo' df_dc.loc[4:6, 'string'] = np.nan df_dc.loc[7:9, 'string'] = 'bar' df_dc['string2'] = 'cool' df_dc['datetime'] = Timestamp('20010102') df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ['A', 'B', 'datetime']] = np.nan _maybe_remove(store, 'df_dc') store.append('df_dc', df_dc, data_columns=['B', 'C', 'string', 'string2', 'datetime']) result = store.select('df_dc', 'B>0') expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select( 'df_dc', ['B > 0', 'C > 0', 'string == foo']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & ( df_dc.string == 'foo')] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(self.path) as store: # doc example part 2 np.random.seed(1234) index = date_range('1/1/2000', periods=8) df_dc = DataFrame(np.random.randn(8, 3), index=index, columns=['A', 'B', 'C']) df_dc['string'] = 'foo' df_dc.loc[4:6, 'string'] = np.nan df_dc.loc[7:9, 'string'] = 'bar' df_dc.loc[:, ['B', 'C']] = df_dc.loc[:, ['B', 'C']].abs() df_dc['string2'] = 'cool' # on-disk operations store.append('df_dc', df_dc, data_columns=[ 'B', 'C', 'string', 'string2']) result = store.select('df_dc', 'B>0') expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select( 'df_dc', ['B > 0', 'C > 0', 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')] tm.assert_frame_equal(result, expected) with ensure_clean_store(self.path) as store: with catch_warnings(record=True): # panel # GH5717 not handling data_columns np.random.seed(1234) p = tm.makePanel() store.append('p1', p) tm.assert_panel_equal(store.select('p1'), p) store.append('p2', p, data_columns=True) tm.assert_panel_equal(store.select('p2'), p) result = store.select('p2', where='ItemA>0') expected = p.to_frame() expected = expected[expected['ItemA'] > 0] tm.assert_frame_equal(result.to_frame(), expected) result = store.select( 'p2', where='ItemA>0 & minor_axis=["A","B"]') expected = p.to_frame() expected = expected[expected['ItemA'] > 0] expected = expected[expected.reset_index( level=['major']).index.isin(['A', 'B'])] tm.assert_frame_equal(result.to_frame(), expected) def test_create_table_index(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # index=False wp = tm.makePanel() store.append('p5', wp, index=False) store.create_table_index('p5', columns=['major_axis']) assert(col('p5', 'major_axis').is_indexed is True) assert(col('p5', 'minor_axis').is_indexed is False) # index=True store.append('p5i', wp, index=True) assert(col('p5i', 'major_axis').is_indexed is True) assert(col('p5i', 'minor_axis').is_indexed is True) # default optlevels store.get_storer('p5').create_index() assert(col('p5', 'major_axis').index.optlevel == 6) assert(col('p5', 'minor_axis').index.kind == 'medium') # let's change the indexing scheme store.create_table_index('p5') assert(col('p5', 'major_axis').index.optlevel == 6) assert(col('p5', 'minor_axis').index.kind == 'medium') store.create_table_index('p5', optlevel=9) assert(col('p5', 'major_axis').index.optlevel == 9) assert(col('p5', 'minor_axis').index.kind == 'medium') store.create_table_index('p5', kind='full') assert(col('p5', 'major_axis').index.optlevel == 9) assert(col('p5', 'minor_axis').index.kind == 'full') store.create_table_index('p5', optlevel=1, kind='light') assert(col('p5', 'major_axis').index.optlevel == 1) assert(col('p5', 'minor_axis').index.kind == 'light') # data columns df = tm.makeTimeDataFrame() df['string'] = 'foo' df['string2'] = 'bar' store.append('f', df, data_columns=['string', 'string2']) assert(col('f', 'index').is_indexed is True) assert(col('f', 'string').is_indexed is True) assert(col('f', 'string2').is_indexed is True) # specify index=columns store.append( 'f2', df, index=['string'], data_columns=['string', 'string2']) assert(col('f2', 'index').is_indexed is False) assert(col('f2', 'string').is_indexed is True) assert(col('f2', 'string2').is_indexed is False) # try to index a non-table _maybe_remove(store, 'f2') store.put('f2', df) pytest.raises(TypeError, store.create_table_index, 'f2') def test_append_diff_item_order(self): with catch_warnings(record=True): wp = tm.makePanel() wp1 = wp.iloc[:, :10, :] wp2 = wp.iloc[wp.items.get_indexer(['ItemC', 'ItemB', 'ItemA']), 10:, :] with ensure_clean_store(self.path) as store: store.put('panel', wp1, format='table') pytest.raises(ValueError, store.put, 'panel', wp2, append=True) def test_append_hierarchical(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['foo', 'bar']) df = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) with ensure_clean_store(self.path) as store: store.append('mi', df) result = store.select('mi') tm.assert_frame_equal(result, df) # GH 3748 result = store.select('mi', columns=['A', 'B']) expected = df.reindex(columns=['A', 'B']) tm.assert_frame_equal(result, expected) with ensure_clean_path('test.hdf') as path: df.to_hdf(path, 'df', format='table') result = read_hdf(path, 'df', columns=['A', 'B']) expected = df.reindex(columns=['A', 'B']) tm.assert_frame_equal(result, expected) def test_column_multiindex(self): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')], names=['first', 'second']) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(self.path) as store: store.put('df', df) tm.assert_frame_equal(store['df'], expected, check_index_type=True, check_column_type=True) store.put('df1', df, format='table') tm.assert_frame_equal(store['df1'], expected, check_index_type=True, check_column_type=True) pytest.raises(ValueError, store.put, 'df2', df, format='table', data_columns=['A']) pytest.raises(ValueError, store.put, 'df3', df, format='table', data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(self.path) as store: store.append('df2', df) store.append('df2', df) tm.assert_frame_equal(store['df2'], concat((df, df))) # non_index_axes name df = DataFrame(np.arange(12).reshape(3, 4), columns=Index(list('ABCD'), name='foo')) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(self.path) as store: store.put('df1', df, format='table') tm.assert_frame_equal(store['df1'], expected, check_index_type=True, check_column_type=True) def test_store_multiindex(self): # validate multi-index names # GH 5527 with ensure_clean_store(self.path) as store: def make_index(names=None): return MultiIndex.from_tuples([(datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3)], names=names) # no names _maybe_remove(store, 'df') df = DataFrame(np.zeros((12, 2)), columns=[ 'a', 'b'], index=make_index()) store.append('df', df) tm.assert_frame_equal(store.select('df'), df) # partial names _maybe_remove(store, 'df') df = DataFrame(np.zeros((12, 2)), columns=[ 'a', 'b'], index=make_index(['date', None, None])) store.append('df', df) tm.assert_frame_equal(store.select('df'), df) # series _maybe_remove(store, 's') s = Series(np.zeros(12), index=make_index(['date', None, None])) store.append('s', s) xp = Series(np.zeros(12), index=make_index( ['date', 'level_1', 'level_2'])) tm.assert_series_equal(store.select('s'), xp) # dup with column _maybe_remove(store, 'df') df = DataFrame(np.zeros((12, 2)), columns=[ 'a', 'b'], index=make_index(['date', 'a', 't'])) pytest.raises(ValueError, store.append, 'df', df) # fully names _maybe_remove(store, 'df') df = DataFrame(np.zeros((12, 2)), columns=[ 'a', 'b'], index=make_index(['date', 's', 't'])) store.append('df', df) tm.assert_frame_equal(store.select('df'), df) def test_select_columns_in_where(self): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['foo_name', 'bar_name']) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) with ensure_clean_store(self.path) as store: store.put('df', df, format='table') expected = df[['A']] tm.assert_frame_equal(store.select('df', columns=['A']), expected) tm.assert_frame_equal(store.select( 'df', where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name='A') with ensure_clean_store(self.path) as store: store.put('s', s, format='table') tm.assert_series_equal(store.select('s', where="columns=['A']"), s) def test_mi_data_columns(self): # GH 14435 idx = pd.MultiIndex.from_arrays([date_range('2000-01-01', periods=5), range(5)], names=['date', 'id']) df = pd.DataFrame({'a': [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(self.path) as store: store.append('df', df, data_columns=True) actual = store.select('df', where='id == 1') expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self): df = tm.makeDataFrame() with ensure_clean_store(self.path) as store: store.put('df', df) pytest.raises(TypeError, store.select, 'df', columns=['A']) pytest.raises(TypeError, store.select, 'df', where=[('columns=A')]) def test_append_misc(self): with ensure_clean_store(self.path) as store: df = tm.makeDataFrame() store.append('df', df, chunksize=1) result = store.select('df') tm.assert_frame_equal(result, df) store.append('df1', df, expectedrows=10) result = store.select('df1') tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(self.path, mode='w') as store: store.append('obj', obj, chunksize=c) result = store.select('obj') comparator(result, obj) df = tm.makeDataFrame() df['string'] = 'foo' df['float322'] = 1. df['float322'] = df['float322'].astype('float32') df['bool'] = df['float322'] > 0 df['time1'] = Timestamp('20130101') df['time2'] = Timestamp('20130102') check(df, tm.assert_frame_equal) with catch_warnings(record=True): p = tm.makePanel() check(p, assert_panel_equal) # empty frame, GH4273 with ensure_clean_store(self.path) as store: # 0 len df_empty = DataFrame(columns=list('ABC')) store.append('df', df_empty) pytest.raises(KeyError, store.select, 'df') # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list('ABC')) store.append('df', df) assert_frame_equal(store.select('df'), df) store.append('df', df_empty) assert_frame_equal(store.select('df'), df) # store df = DataFrame(columns=list('ABC')) store.put('df2', df) assert_frame_equal(store.select('df2'), df) with catch_warnings(record=True): # 0 len p_empty = Panel(items=list('ABC')) store.append('p', p_empty) pytest.raises(KeyError, store.select, 'p') # repeated append of 0/non-zero frames p = Panel(np.random.randn(3, 4, 5), items=list('ABC')) store.append('p', p) assert_panel_equal(store.select('p'), p) store.append('p', p_empty) assert_panel_equal(store.select('p'), p) # store store.put('p2', p_empty) assert_panel_equal(store.select('p2'), p_empty) def test_append_raise(self): with ensure_clean_store(self.path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df['invalid'] = [['a']] * len(df) assert df.dtypes['invalid'] == np.object_ pytest.raises(TypeError, store.append, 'df', df) # multiple invalid columns df['invalid2'] = [['a']] * len(df) df['invalid3'] = [['a']] * len(df) pytest.raises(TypeError, store.append, 'df', df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df['invalid'] = s assert df.dtypes['invalid'] == np.object_ pytest.raises(TypeError, store.append, 'df', df) # directly ndarray pytest.raises(TypeError, store.append, 'df', np.arange(10)) # series directly pytest.raises(TypeError, store.append, 'df', Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append('df', df) df['foo'] = 'foo' pytest.raises(ValueError, store.append, 'df', df) def test_table_index_incompatible_dtypes(self): df1 = DataFrame({'a': [1, 2, 3]}) df2 = DataFrame({'a': [4, 5, 6]}, index=date_range('1/1/2000', periods=3)) with ensure_clean_store(self.path) as store: store.put('frame', df1, format='table') pytest.raises(TypeError, store.put, 'frame', df2, format='table', append=True) def test_table_values_dtypes_roundtrip(self): with ensure_clean_store(self.path) as store: df1 = DataFrame({'a': [1, 2, 3]}, dtype='f8') store.append('df_f8', df1) assert_series_equal(df1.dtypes, store['df_f8'].dtypes) df2 = DataFrame({'a': [1, 2, 3]}, dtype='i8') store.append('df_i8', df2) assert_series_equal(df2.dtypes, store['df_i8'].dtypes) # incompatible dtype pytest.raises(ValueError, store.append, 'df_i8', df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame( np.array([[1], [2], [3]], dtype='f4'), columns=['A']) store.append('df_f4', df1) assert_series_equal(df1.dtypes, store['df_f4'].dtypes) assert df1.dtypes[0] == 'float32' # check with mixed dtypes df1 = DataFrame(dict((c, Series(np.random.randn(5), dtype=c)) for c in ['float32', 'float64', 'int32', 'int64', 'int16', 'int8'])) df1['string'] = 'foo' df1['float322'] = 1. df1['float322'] = df1['float322'].astype('float32') df1['bool'] = df1['float32'] > 0 df1['time1'] = Timestamp('20130101') df1['time2'] = Timestamp('20130102') store.append('df_mixed_dtypes1', df1) result = store.select('df_mixed_dtypes1').get_dtype_counts() expected = Series({'float32': 2, 'float64': 1, 'int32': 1, 'bool': 1, 'int16': 1, 'int8': 1, 'int64': 1, 'object': 1, 'datetime64[ns]': 2}) result = result.sort_index() result = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self): # frame df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 df['timestamp1'] = Timestamp('20010102') df['timestamp2'] = Timestamp('20010103') df['datetime1'] = datetime.datetime(2001, 1, 2, 0, 0) df['datetime2'] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ['obj1']] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(self.path) as store: store.append('df1_mixed', df) tm.assert_frame_equal(store.select('df1_mixed'), df) with catch_warnings(record=True): # panel wp = tm.makePanel() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['ItemA'] > 0 wp['bool2'] = wp['ItemB'] > 0 wp['int1'] = 1 wp['int2'] = 2 wp = wp._consolidate() with catch_warnings(record=True): with ensure_clean_store(self.path) as store: store.append('p1_mixed', wp) assert_panel_equal(store.select('p1_mixed'), wp) def test_unimplemented_dtypes_table_columns(self): with ensure_clean_store(self.path) as store: l = [('date', datetime.date(2001, 1, 2))] # py3 ok for unicode if not compat.PY3: l.append(('unicode', u('\\u03c3'))) # currently not supported dtypes #### for n, f in l: df = tm.makeDataFrame() df[n] = f pytest.raises( TypeError, store.append, 'df1_%s' % n, df) # frame df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['datetime1'] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(self.path) as store: # this fails because we have a date in the object block...... pytest.raises(TypeError, store.append, 'df_unimplemented', df) def test_calendar_roundtrip_issue(self): # 8591 # doc example from tseries holiday section weekmask_egypt = 'Sun Mon Tue Wed Thu' holidays = ['2012-05-01', datetime.datetime(2013, 5, 1), np.datetime64('2014-05-01')] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = (Series(dts.weekday, dts).map( Series('Mon Tue Wed Thu Fri Sat Sun'.split()))) with ensure_clean_store(self.path) as store: store.put('fixed', s) result = store.select('fixed') assert_series_equal(result, s) store.append('table', s) result = store.select('table') assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self): # GH 17618 time = pd.Timestamp('2000-01-01 01:00:00', tz='US/Eastern') df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(self.path) as store: store.put('frame', df, format='fixed') recons = store['frame'] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self): # GH 3577 # append timedelta df = DataFrame(dict(A=Timestamp('20130101'), B=[Timestamp( '20130101') + timedelta(days=i, seconds=10) for i in range(10)])) df['C'] = df['A'] - df['B'] df.loc[3:5, 'C'] = np.nan with ensure_clean_store(self.path) as store: # table _maybe_remove(store, 'df') store.append('df', df, data_columns=True) result = store.select('df') assert_frame_equal(result, df) result = store.select('df', where="C<100000") assert_frame_equal(result, df) result = store.select('df', where="C<pd.Timedelta('-3D')") assert_frame_equal(result, df.iloc[3:]) result = store.select('df', "C<'-3D'") assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select('df', "C<'-500000s'") result = result.dropna(subset=['C']) assert_frame_equal(result, df.iloc[6:]) result = store.select('df', "C<'-3.5D'") result = result.iloc[1:] assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, 'df2') store.put('df2', df) result = store.select('df2') assert_frame_equal(result, df) def test_remove(self): with ensure_clean_store(self.path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store['a'] = ts store['b'] = df _maybe_remove(store, 'a') assert len(store) == 1 tm.assert_frame_equal(df, store['b']) _maybe_remove(store, 'b') assert len(store) == 0 # nonexistence pytest.raises(KeyError, store.remove, 'a_nonexistent_store') # pathing store['a'] = ts store['b/foo'] = df _maybe_remove(store, 'foo') _maybe_remove(store, 'b/foo') assert len(store) == 1 store['a'] = ts store['b/foo'] = df _maybe_remove(store, 'b') assert len(store) == 1 # __delitem__ store['a'] = ts store['b'] = df del store['a'] del store['b'] assert len(store) == 0 def test_remove_where(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): # non-existance crit1 = 'index>foo' pytest.raises(KeyError, store.remove, 'a', [crit1]) # try to remove non-table (with crit) # non-table ok (where = None) wp = tm.makePanel(30) store.put('wp', wp, format='table') store.remove('wp', ["minor_axis=['A', 'D']"]) rs = store.select('wp') expected = wp.reindex(minor_axis=['B', 'C']) assert_panel_equal(rs, expected) # empty where _maybe_remove(store, 'wp') store.put('wp', wp, format='table') # deleted number (entire table) n = store.remove('wp', []) assert n == 120 # non - empty where _maybe_remove(store, 'wp') store.put('wp', wp, format='table') pytest.raises(ValueError, store.remove, 'wp', ['foo']) def test_remove_startstop(self): # GH #4835 and #6177 with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel(30) # start _maybe_remove(store, 'wp1') store.put('wp1', wp, format='t') n = store.remove('wp1', start=32) assert n == 120 - 32 result = store.select('wp1') expected = wp.reindex(major_axis=wp.major_axis[:32 // 4]) assert_panel_equal(result, expected) _maybe_remove(store, 'wp2') store.put('wp2', wp, format='t') n = store.remove('wp2', start=-32) assert n == 32 result = store.select('wp2') expected = wp.reindex(major_axis=wp.major_axis[:-32 // 4]) assert_panel_equal(result, expected) # stop _maybe_remove(store, 'wp3') store.put('wp3', wp, format='t') n = store.remove('wp3', stop=32) assert n == 32 result = store.select('wp3') expected = wp.reindex(major_axis=wp.major_axis[32 // 4:]) assert_panel_equal(result, expected) _maybe_remove(store, 'wp4') store.put('wp4', wp, format='t') n = store.remove('wp4', stop=-32) assert n == 120 - 32 result = store.select('wp4') expected = wp.reindex(major_axis=wp.major_axis[-32 // 4:]) assert_panel_equal(result, expected) # start n stop _maybe_remove(store, 'wp5') store.put('wp5', wp, format='t') n = store.remove('wp5', start=16, stop=-16) assert n == 120 - 32 result = store.select('wp5') expected = wp.reindex( major_axis=(wp.major_axis[:16 // 4] .union(wp.major_axis[-16 // 4:]))) assert_panel_equal(result, expected) _maybe_remove(store, 'wp6') store.put('wp6', wp, format='t') n = store.remove('wp6', start=16, stop=16) assert n == 0 result = store.select('wp6') expected = wp.reindex(major_axis=wp.major_axis) assert_panel_equal(result, expected) # with where _maybe_remove(store, 'wp7') # TODO: unused? date = wp.major_axis.take(np.arange(0, 30, 3)) # noqa crit = 'major_axis=date' store.put('wp7', wp, format='t') n = store.remove('wp7', where=[crit], stop=80) assert n == 28 result = store.select('wp7') expected = wp.reindex(major_axis=wp.major_axis.difference( wp.major_axis[np.arange(0, 20, 3)])) assert_panel_equal(result, expected) def test_remove_crit(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel(30) # group row removal _maybe_remove(store, 'wp3') date4 = wp.major_axis.take([0, 1, 2, 4, 5, 6, 8, 9, 10]) crit4 = 'major_axis=date4' store.put('wp3', wp, format='t') n = store.remove('wp3', where=[crit4]) assert n == 36 result = store.select('wp3') expected = wp.reindex( major_axis=wp.major_axis.difference(date4)) assert_panel_equal(result, expected) # upper half _maybe_remove(store, 'wp') store.put('wp', wp, format='table') date = wp.major_axis[len(wp.major_axis) // 2] crit1 = 'major_axis>date' crit2 = "minor_axis=['A', 'D']" n = store.remove('wp', where=[crit1]) assert n == 56 n = store.remove('wp', where=[crit2]) assert n == 32 result = store['wp'] expected = wp.truncate(after=date).reindex(minor=['B', 'C']) assert_panel_equal(result, expected) # individual row elements _maybe_remove(store, 'wp2') store.put('wp2', wp, format='table') date1 = wp.major_axis[1:3] crit1 = 'major_axis=date1' store.remove('wp2', where=[crit1]) result = store.select('wp2') expected = wp.reindex( major_axis=wp.major_axis.difference(date1)) assert_panel_equal(result, expected) date2 = wp.major_axis[5] crit2 = 'major_axis=date2' store.remove('wp2', where=[crit2]) result = store['wp2'] expected = wp.reindex( major_axis=(wp.major_axis .difference(date1) .difference(Index([date2])) )) assert_panel_equal(result, expected) date3 = [wp.major_axis[7], wp.major_axis[9]] crit3 = 'major_axis=date3' store.remove('wp2', where=[crit3]) result = store['wp2'] expected = wp.reindex(major_axis=wp.major_axis .difference(date1) .difference(Index([date2])) .difference(Index(date3))) assert_panel_equal(result, expected) # corners _maybe_remove(store, 'wp4') store.put('wp4', wp, format='table') n = store.remove( 'wp4', where="major_axis>wp.major_axis[-1]") result = store.select('wp4') assert_panel_equal(result, wp) def test_invalid_terms(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df['string'] = 'foo' df.loc[0:4, 'string'] = 'bar' wp = tm.makePanel() store.put('df', df, format='table') store.put('wp', wp, format='table') # some invalid terms pytest.raises(ValueError, store.select, 'wp', "minor=['A', 'B']") pytest.raises(ValueError, store.select, 'wp', ["index=['20121114']"]) pytest.raises(ValueError, store.select, 'wp', [ "index=['20121114', '20121114']"]) pytest.raises(TypeError, Term) # more invalid pytest.raises( ValueError, store.select, 'df', 'df.index[3]') pytest.raises(SyntaxError, store.select, 'df', 'index>') pytest.raises( ValueError, store.select, 'wp', "major_axis<'20000108' & minor_axis['A', 'B']") # from the docs with ensure_clean_path(self.path) as path: dfq = DataFrame(np.random.randn(10, 4), columns=list( 'ABCD'), index=date_range('20130101', periods=10)) dfq.to_hdf(path, 'dfq', format='table', data_columns=True) # check ok read_hdf(path, 'dfq', where="index>Timestamp('20130104') & columns=['A', 'B']") read_hdf(path, 'dfq', where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(self.path) as path: dfq = DataFrame(np.random.randn(10, 4), columns=list( 'ABCD'), index=date_range('20130101', periods=10)) dfq.to_hdf(path, 'dfq', format='table') pytest.raises(ValueError, read_hdf, path, 'dfq', where="A>0 or C>0") def test_terms(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel() wpneg = Panel.fromDict({-1: tm.makeDataFrame(), 0: tm.makeDataFrame(), 1: tm.makeDataFrame()}) store.put('wp', wp, format='table') store.put('wpneg', wpneg, format='table') # panel result = store.select( 'wp', "major_axis<'20000108' and minor_axis=['A', 'B']") expected = wp.truncate( after='20000108').reindex(minor=['A', 'B']) assert_panel_equal(result, expected) # with deprecation result = store.select( 'wp', where=("major_axis<'20000108' " "and minor_axis=['A', 'B']")) expected = wp.truncate( after='20000108').reindex(minor=['A', 'B']) tm.assert_panel_equal(result, expected) with catch_warnings(record=True): # valid terms terms = [('major_axis=20121114'), ('major_axis>20121114'), (("major_axis=['20121114', '20121114']"),), ('major_axis=datetime.datetime(2012, 11, 14)'), 'major_axis> 20121114', 'major_axis >20121114', 'major_axis > 20121114', (("minor_axis=['A', 'B']"),), (("minor_axis=['A', 'B']"),), ((("minor_axis==['A', 'B']"),),), (("items=['ItemA', 'ItemB']"),), ('items=ItemA'), ] for t in terms: store.select('wp', t) with tm.assert_raises_regex( TypeError, 'Only named functions are supported'): store.select( 'wp', 'major_axis == (lambda x: x)("20130101")') with catch_warnings(record=True): # check USub node parsing res = store.select('wpneg', 'items == -1') expected = Panel({-1: wpneg[-1]}) tm.assert_panel_equal(res, expected) with tm.assert_raises_regex(NotImplementedError, 'Unary addition ' 'not supported'): store.select('wpneg', 'items == +1') def test_term_compat(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'], major_axis=date_range('1/1/2000', periods=5), minor_axis=['A', 'B', 'C', 'D']) store.append('wp', wp) result = store.select( 'wp', where=("major_axis>20000102 " "and minor_axis=['A', 'B']")) expected = wp.loc[:, wp.major_axis > Timestamp('20000102'), ['A', 'B']] assert_panel_equal(result, expected) store.remove('wp', 'major_axis>20000103') result = store.select('wp') expected = wp.loc[:, wp.major_axis <= Timestamp('20000103'), :] assert_panel_equal(result, expected) with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'], major_axis=date_range('1/1/2000', periods=5), minor_axis=['A', 'B', 'C', 'D']) store.append('wp', wp) # stringified datetimes result = store.select( 'wp', 'major_axis>datetime.datetime(2000, 1, 2)') expected = wp.loc[:, wp.major_axis > Timestamp('20000102')] assert_panel_equal(result, expected) result = store.select( 'wp', 'major_axis>datetime.datetime(2000, 1, 2)') expected = wp.loc[:, wp.major_axis > Timestamp('20000102')] assert_panel_equal(result, expected) result = store.select( 'wp', "major_axis=[datetime.datetime(2000, 1, 2, 0, 0), " "datetime.datetime(2000, 1, 3, 0, 0)]") expected = wp.loc[:, [Timestamp('20000102'), Timestamp('20000103')]] assert_panel_equal(result, expected) result = store.select( 'wp', "minor_axis=['A', 'B']") expected = wp.loc[:, :, ['A', 'B']] assert_panel_equal(result, expected) def test_same_name_scoping(self): with ensure_clean_store(self.path) as store: import pandas as pd df = DataFrame(np.random.randn(20, 2), index=pd.date_range('20130101', periods=20)) store.put('df', df, format='table') expected = df[df.index > pd.Timestamp('20130105')] import datetime # noqa result = store.select('df', 'index>datetime.datetime(2013,1,5)') assert_frame_equal(result, expected) from datetime import datetime # noqa # technically an error, but allow it result = store.select('df', 'index>datetime.datetime(2013,1,5)') assert_frame_equal(result, expected) result = store.select('df', 'index>datetime(2013,1,5)') assert_frame_equal(result, expected) def test_series(self): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip(ts3, tm.assert_series_equal, check_index_type=False) def test_sparse_series(self): s = tm.makeStringSeries() s.iloc[3:5] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True) def test_sparse_frame(self): s = tm.makeDataFrame() s.iloc[3:5, 1:3] = np.nan s.iloc[8:10, -2] = np.nan ss = s.to_sparse() self._check_double_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True) ss2 = s.to_sparse(kind='integer') self._check_double_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True) ss3 = s.to_sparse(fill_value=0) self._check_double_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True) def test_float_index(self): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal) def test_tuple_index(self): # GH #492 col = np.arange(10) idx = [(0., 1.), (2., 3.), (4., 5.)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) with catch_warnings(record=True): self._check_roundtrip(DF, tm.assert_frame_equal) def test_index_types(self): with catch_warnings(record=True): values = np.random.randn(2) func = lambda l, r: tm.assert_series_equal(l, r, check_dtype=True, check_index_type=True, check_series_type=True) with catch_warnings(record=True): ser = Series(values, [0, 'y']) self._check_roundtrip(ser, func) with catch_warnings(record=True): ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func) with catch_warnings(record=True): ser = Series(values, ['y', 0]) self._check_roundtrip(ser, func) with catch_warnings(record=True): ser = Series(values, [datetime.date.today(), 'a']) self._check_roundtrip(ser, func) with catch_warnings(record=True): ser = Series(values, [0, 'y']) self._check_roundtrip(ser, func) ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func) ser = Series(values, ['y', 0]) self._check_roundtrip(ser, func) ser = Series(values, [datetime.date.today(), 'a']) self._check_roundtrip(ser, func) ser = Series(values, [1.23, 'b']) self._check_roundtrip(ser, func) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func) ser = Series(values, [datetime.datetime( 2012, 1, 1), datetime.datetime(2012, 1, 2)]) self._check_roundtrip(ser, func) def test_timeseries_preepoch(self): dr = bdate_range('1/1/1940', '1/1/1960') ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal) except OverflowError: pytest.skip('known failer on some windows platforms') @pytest.mark.parametrize("compression", [ False, pytest.param(True, marks=td.skip_if_windows_python_3) ]) def test_frame(self, compression): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table(df, tm.assert_frame_equal, compression=compression) self._check_roundtrip(df, tm.assert_frame_equal, compression=compression) tdf = tm.makeTimeDataFrame() self._check_roundtrip(tdf, tm.assert_frame_equal, compression=compression) with ensure_clean_store(self.path) as store: # not consolidated df['foo'] = np.random.randn(len(df)) store['df'] = df recons = store['df'] assert recons._data.is_consolidated() # empty self._check_roundtrip(df[:0], tm.assert_frame_equal) def test_empty_series_frame(self): s0 = Series() s1 = Series(name='myseries') df0 = DataFrame() df1 = DataFrame(index=['a', 'b', 'c']) df2 = DataFrame(columns=['d', 'e', 'f']) self._check_roundtrip(s0, tm.assert_series_equal) self._check_roundtrip(s1, tm.assert_series_equal) self._check_roundtrip(df0, tm.assert_frame_equal) self._check_roundtrip(df1, tm.assert_frame_equal) self._check_roundtrip(df2, tm.assert_frame_equal) def test_empty_series(self): for dtype in [np.int64, np.float64, np.object, 'm8[ns]', 'M8[ns]']: s = Series(dtype=dtype) self._check_roundtrip(s, tm.assert_series_equal) def test_can_serialize_dates(self): rng = [x.date() for x in bdate_range('1/1/2000', '1/30/2000')] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal) def test_store_hierarchical(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['foo', 'bar']) frame = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) self._check_roundtrip(frame, tm.assert_frame_equal) self._check_roundtrip(frame.T, tm.assert_frame_equal) self._check_roundtrip(frame['A'], tm.assert_series_equal) # check that the names are stored with ensure_clean_store(self.path) as store: store['frame'] = frame recons = store['frame'] tm.assert_frame_equal(recons, frame) def test_store_index_name(self): df = tm.makeDataFrame() df.index.name = 'foo' with ensure_clean_store(self.path) as store: store['frame'] = df recons = store['frame'] tm.assert_frame_equal(recons, df) def test_store_index_name_with_tz(self): # GH 13884 df = pd.DataFrame({'A': [1, 2]}) df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788]) df.index = df.index.tz_localize('UTC') df.index.name = 'foo' with ensure_clean_store(self.path) as store: store.put('frame', df, format='table') recons = store['frame'] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize('table_format', ['table', 'fixed']) def test_store_index_name_numpy_str(self, table_format): # GH #13492 idx = pd.Index(pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name=u('cols\u05d2')) idx1 = pd.Index(pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name=u('rows\u05d0')) df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format=table_format) df2 = read_hdf(path, 'df') assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == text_type assert type(df2.columns.name) == text_type def test_store_series_name(self): df = tm.makeDataFrame() series = df['A'] with ensure_clean_store(self.path) as store: store['series'] = series recons = store['series'] tm.assert_series_equal(recons, series) @pytest.mark.parametrize("compression", [ False, pytest.param(True, marks=td.skip_if_windows_python_3) ]) def test_store_mixed(self, compression): def _make_one(): df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['int1'] = 1 df['int2'] = 2 return df._consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal) self._check_roundtrip(df2, tm.assert_frame_equal) with ensure_clean_store(self.path) as store: store['obj'] = df1 tm.assert_frame_equal(store['obj'], df1) store['obj'] = df2 tm.assert_frame_equal(store['obj'], df2) # check that can store Series of all of these types self._check_roundtrip(df1['obj1'], tm.assert_series_equal, compression=compression) self._check_roundtrip(df1['bool1'], tm.assert_series_equal, compression=compression) self._check_roundtrip(df1['int1'], tm.assert_series_equal, compression=compression) def test_wide(self): with catch_warnings(record=True): wp = tm.makePanel() self._check_roundtrip(wp, assert_panel_equal) def test_select_with_dups(self): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df.index = date_range('20130101 9:30', periods=10, freq='T') with ensure_clean_store(self.path) as store: store.append('df', df) result = store.select('df') expected = df assert_frame_equal(result, expected, by_blocks=True) result = store.select('df', columns=df.columns) expected = df assert_frame_equal(result, expected, by_blocks=True) result = store.select('df', columns=['A']) expected = df.loc[:, ['A']] assert_frame_equal(result, expected) # dups across dtypes df = concat([DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']), DataFrame(np.random.randint(0, 10, size=20) .reshape(10, 2), columns=['A', 'C'])], axis=1) df.index = date_range('20130101 9:30', periods=10, freq='T') with ensure_clean_store(self.path) as store: store.append('df', df) result = store.select('df') expected = df assert_frame_equal(result, expected, by_blocks=True) result = store.select('df', columns=df.columns) expected = df assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ['A']] result = store.select('df', columns=['A']) assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ['B', 'A']] result = store.select('df', columns=['B', 'A']) assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(self.path) as store: store.append('df', df) store.append('df', df) expected = df.loc[:, ['B', 'A']] expected = concat([expected, expected]) result = store.select('df', columns=['B', 'A']) assert_frame_equal(result, expected, by_blocks=True) def test_wide_table_dups(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel() store.put('panel', wp, format='table') store.put('panel', wp, format='table', append=True) recons = store['panel'] assert_panel_equal(recons, wp) def test_long(self): def _check(left, right): assert_panel_equal(left.to_panel(), right.to_panel()) with catch_warnings(record=True): wp = tm.makePanel() self._check_roundtrip(wp.to_frame(), _check) def test_longpanel(self): pass def test_overwrite_node(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store['a'] = ts tm.assert_series_equal(store['a'], ts) def test_sparse_with_compression(self): # GH 2931 # make sparse dataframe arr = np.random.binomial(n=1, p=.01, size=(1000, 10)) df = DataFrame(arr).to_sparse(fill_value=0) # case 1: store uncompressed self._check_double_roundtrip(df, tm.assert_frame_equal, compression=False, check_frame_type=True) # case 2: store compressed (works) self._check_double_roundtrip(df, tm.assert_frame_equal, compression='zlib', check_frame_type=True) # set one series to be completely sparse df[0] = np.zeros(1000) # case 3: store df with completely sparse series uncompressed self._check_double_roundtrip(df, tm.assert_frame_equal, compression=False, check_frame_type=True) # case 4: try storing df with completely sparse series compressed # (fails) self._check_double_roundtrip(df, tm.assert_frame_equal, compression='zlib', check_frame_type=True) def test_select(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel() # put/select ok _maybe_remove(store, 'wp') store.put('wp', wp, format='table') store.select('wp') # non-table ok (where = None) _maybe_remove(store, 'wp') store.put('wp2', wp) store.select('wp2') # selection on the non-indexable with a large number of columns wp = Panel(np.random.randn(100, 100, 100), items=['Item%03d' % i for i in range(100)], major_axis=date_range('1/1/2000', periods=100), minor_axis=['E%03d' % i for i in range(100)]) _maybe_remove(store, 'wp') store.append('wp', wp) items = ['Item%03d' % i for i in range(80)] result = store.select('wp', 'items=items') expected = wp.reindex(items=items) assert_panel_equal(expected, result) # selectin non-table with a where # pytest.raises(ValueError, store.select, # 'wp2', ('column', ['A', 'D'])) # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, 'df') store.append('df', df) result = store.select('df', columns=['A', 'B']) expected = df.reindex(columns=['A', 'B']) tm.assert_frame_equal(expected, result) # equivalentsly result = store.select('df', [("columns=['A', 'B']")]) expected = df.reindex(columns=['A', 'B']) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, 'df') store.append('df', df, data_columns=['A']) result = store.select('df', ['A > 0'], columns=['A', 'B']) expected = df[df.A > 0].reindex(columns=['A', 'B']) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, 'df') store.append('df', df, data_columns=True) result = store.select('df', ['A > 0'], columns=['A', 'B']) expected = df[df.A > 0].reindex(columns=['A', 'B']) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, 'df') store.append('df', df, data_columns=['A']) result = store.select('df', ['A > 0'], columns=['C', 'D']) expected = df[df.A > 0].reindex(columns=['C', 'D']) tm.assert_frame_equal(expected, result) def test_select_dtypes(self): with ensure_clean_store(self.path) as store: # with a Timestamp data column (GH #2637) df = DataFrame(dict( ts=bdate_range('2012-01-01', periods=300), A=np.random.randn(300))) _maybe_remove(store, 'df') store.append('df', df, data_columns=['ts', 'A']) result = store.select('df', "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp('2012-02-01')] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=['A', 'B']) df['object'] = 'foo' df.loc[4:5, 'object'] = 'bar' df['boolv'] = df['A'] > 0 _maybe_remove(store, 'df') store.append('df', df, data_columns=True) expected = (df[df.boolv == True] # noqa .reindex(columns=['A', 'boolv'])) for v in [True, 'true', 1]: result = store.select('df', 'boolv == %s' % str(v), columns=['A', 'boolv']) tm.assert_frame_equal(expected, result) expected = (df[df.boolv == False] # noqa .reindex(columns=['A', 'boolv'])) for v in [False, 'false', 0]: result = store.select( 'df', 'boolv == %s' % str(v), columns=['A', 'boolv']) tm.assert_frame_equal(expected, result) # integer index df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) _maybe_remove(store, 'df_int') store.append('df_int', df) result = store.select( 'df_int', "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=['A']) tm.assert_frame_equal(expected, result) # float index df = DataFrame(dict(A=np.random.rand( 20), B=np.random.rand(20), index=np.arange(20, dtype='f8'))) _maybe_remove(store, 'df_float') store.append('df_float', df) result = store.select( 'df_float', "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=['A']) tm.assert_frame_equal(expected, result) with ensure_clean_store(self.path) as store: # floats w/o NaN df = DataFrame( dict(cols=range(11), values=range(11)), dtype='float64') df['cols'] = (df['cols'] + 10).apply(str) store.append('df1', df, data_columns=True) result = store.select( 'df1', where='values>2.0') expected = df[df['values'] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df['values'] > 2.0] store.append('df2', df, data_columns=True, index=False) result = store.select( 'df2', where='values>2.0') tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame( dict(cols=range(11), values=range(11)), dtype='float64') df['cols'] = (df['cols'] + 10).apply(str) df.iloc[1] = np.nan expected = df[df['values'] > 2.0] store.append('df4', df, data_columns=True) result = store.select( 'df4', where='values>2.0') tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(self.path) as store: df = tm.makeDataFrame() expected = df[df['A'] > 0] store.append('df', df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select('df', where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(self): with ensure_clean_store(self.path) as store: df = DataFrame(dict(ts=bdate_range('2012-01-01', periods=300), A=np.random.randn(300), B=range(300), users=['a'] * 50 + ['b'] * 50 + ['c'] * 100 + ['a%03d' % i for i in range(100)])) _maybe_remove(store, 'df') store.append('df', df, data_columns=['ts', 'A', 'B', 'users']) # regular select result = store.select('df', "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp('2012-02-01')] tm.assert_frame_equal(expected, result) # small selector result = store.select( 'df', "ts>=Timestamp('2012-02-01') & users=['a','b','c']") expected = df[(df.ts >= Timestamp('2012-02-01')) & df.users.isin(['a', 'b', 'c'])] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ['a', 'b', 'c'] + ['a%03d' % i for i in range(60)] result = store.select( 'df', "ts>=Timestamp('2012-02-01') and users=selector") expected = df[(df.ts >= Timestamp('2012-02-01')) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select('df', 'B=selector') expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select('df', 'ts=selector') expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(self): # single table with ensure_clean_store(self.path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, 'df') store.append('df', df) expected = store.select('df') results = [s for s in store.select('df', iterator=True)] result = concat(results) tm.assert_frame_equal(expected, result) results = [s for s in store.select('df', chunksize=100)] assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = [s for s in store.select('df', chunksize=150)] result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(self.path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, 'df_non_table') pytest.raises(TypeError, read_hdf, path, 'df_non_table', chunksize=100) pytest.raises(TypeError, read_hdf, path, 'df_non_table', iterator=True) with ensure_clean_path(self.path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, 'df', format='table') results = [s for s in read_hdf(path, 'df', chunksize=100)] result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, 'df')) # multiple with ensure_clean_store(self.path) as store: df1 = tm.makeTimeDataFrame(500) store.append('df1', df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename( columns=lambda x: "%s_2" % x) df2['foo'] = 'bar' store.append('df2', df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple( ['df1', 'df2'], selector='df1') results = [s for s in store.select_as_multiple( ['df1', 'df2'], selector='df1', chunksize=150)] result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(self): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(self.path) as store: expected = tm.makeTimeDataFrame(100064, 'S') _maybe_remove(store, 'df') store.append('df', expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/o iteration and no where clause works result = store.select('df') tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, begin # of range, works where = "index >= '%s'" % beg_dt result = store.select('df', where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, end # of range, works where = "index <= '%s'" % end_dt result = store.select('df', where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, inclusive range, # works where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt) result = store.select('df', where=where) tm.assert_frame_equal(expected, result) # with iterator, full range with ensure_clean_store(self.path) as store: expected = tm.makeTimeDataFrame(100064, 'S') _maybe_remove(store, 'df') store.append('df', expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/iterator and no where clause works results = [s for s in store.select('df', chunksize=chunksize)] result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, begin of range where = "index >= '%s'" % beg_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, end of range where = "index <= '%s'" % end_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, inclusive range where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt) results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_non_complete_8014(self): # GH 8014 # using iterator and where clause chunksize = 1e4 # with iterator, non complete range with ensure_clean_store(self.path) as store: expected = tm.makeTimeDataFrame(100064, 'S') _maybe_remove(store, 'df') store.append('df', expected) beg_dt = expected.index[1] end_dt = expected.index[-2] # select w/iterator and where clause, single term, begin of range where = "index >= '%s'" % beg_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '%s'" % end_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt) results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) rexpected = expected[(expected.index >= beg_dt) & (expected.index <= end_dt)] tm.assert_frame_equal(rexpected, result) # with iterator, empty where with ensure_clean_store(self.path) as store: expected = tm.makeTimeDataFrame(100064, 'S') _maybe_remove(store, 'df') store.append('df', expected) end_dt = expected.index[-1] # select w/iterator and where clause, single term, begin of range where = "index > '%s'" % end_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] assert 0 == len(results) def test_select_iterator_many_empty_frames(self): # GH 8014 # using iterator and where clause can return many empty # frames. chunksize = int(1e4) # with iterator, range limited to the first chunk with ensure_clean_store(self.path) as store: expected = tm.makeTimeDataFrame(100000, 'S') _maybe_remove(store, 'df') store.append('df', expected) beg_dt = expected.index[0] end_dt = expected.index[chunksize - 1] # select w/iterator and where clause, single term, begin of range where = "index >= '%s'" % beg_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '%s'" % end_dt results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] assert len(results) == 1 result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt) results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] # should be 1, is 10 assert len(results) == 1 result = concat(results) rexpected = expected[(expected.index >= beg_dt) & (expected.index <= end_dt)] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause which selects # *nothing*. # # To be consistent with Python idiom I suggest this should # return [] e.g. `for e in []: print True` never prints # True. where = "index <= '%s' & index >= '%s'" % (beg_dt, end_dt) results = [s for s in store.select( 'df', where=where, chunksize=chunksize)] # should be [] assert len(results) == 0 def test_retain_index_attributes(self): # GH 3499, losing frequency info on index recreation df = DataFrame(dict( A=Series(lrange(3), index=date_range('2000-1-1', periods=3, freq='H')))) with ensure_clean_store(self.path) as store: _maybe_remove(store, 'data') store.put('data', df, format='table') result = store.get('data') tm.assert_frame_equal(df, result) for attr in ['freq', 'tz', 'name']: for idx in ['index', 'columns']: assert (getattr(getattr(df, idx), attr, None) == getattr(getattr(result, idx), attr, None)) # try to append a table with a different frequency with catch_warnings(record=True): df2 = DataFrame(dict( A=Series(lrange(3), index=date_range('2002-1-1', periods=3, freq='D')))) store.append('data', df2) assert store.get_storer('data').info['index']['freq'] is None # this is ok _maybe_remove(store, 'df2') df2 = DataFrame(dict( A=Series(lrange(3), index=[Timestamp('20010101'), Timestamp('20010102'), Timestamp('20020101')]))) store.append('df2', df2) df3 = DataFrame(dict( A=Series(lrange(3), index=date_range('2002-1-1', periods=3, freq='D')))) store.append('df2', df3) def test_retain_index_attributes2(self): with ensure_clean_path(self.path) as path: with catch_warnings(record=True): df = DataFrame(dict( A=Series(lrange(3), index=date_range('2000-1-1', periods=3, freq='H')))) df.to_hdf(path, 'data', mode='w', append=True) df2 = DataFrame(dict( A=Series(lrange(3), index=date_range('2002-1-1', periods=3, freq='D')))) df2.to_hdf(path, 'data', append=True) idx = date_range('2000-1-1', periods=3, freq='H') idx.name = 'foo' df = DataFrame(dict(A=Series(lrange(3), index=idx))) df.to_hdf(path, 'data', mode='w', append=True) assert read_hdf(path, 'data').index.name == 'foo' with catch_warnings(record=True): idx2 = date_range('2001-1-1', periods=3, freq='H') idx2.name = 'bar' df2 = DataFrame(dict(A=Series(lrange(3), index=idx2))) df2.to_hdf(path, 'data', append=True) assert read_hdf(path, 'data').index.name is None def test_panel_select(self): with ensure_clean_store(self.path) as store: with catch_warnings(record=True): wp = tm.makePanel() store.put('wp', wp, format='table') date = wp.major_axis[len(wp.major_axis) // 2] crit1 = ('major_axis>=date') crit2 = ("minor_axis=['A', 'D']") result = store.select('wp', [crit1, crit2]) expected = wp.truncate(before=date).reindex(minor=['A', 'D']) assert_panel_equal(result, expected) result = store.select( 'wp', ['major_axis>="20000124"', ("minor_axis=['A', 'B']")]) expected = wp.truncate( before='20000124').reindex(minor=['A', 'B']) assert_panel_equal(result, expected) def test_frame_select(self): df = tm.makeTimeDataFrame() with ensure_clean_store(self.path) as store: store.put('frame', df, format='table') date = df.index[len(df) // 2] crit1 = Term('index>=date') assert crit1.env.scope['date'] == date crit2 = ("columns=['A', 'D']") crit3 = ('columns=A') result = store.select('frame', [crit1, crit2]) expected = df.loc[date:, ['A', 'D']] tm.assert_frame_equal(result, expected) result = store.select('frame', [crit3]) expected = df.loc[:, ['A']] tm.assert_frame_equal(result, expected) # invalid terms df = tm.makeTimeDataFrame() store.append('df_time', df) pytest.raises( ValueError, store.select, 'df_time', "index>0") # can't select if not written as table # store['frame'] = df # pytest.raises(ValueError, store.select, # 'frame', [crit1, crit2]) def test_frame_select_complex(self): # select via complex criteria df = tm.makeTimeDataFrame() df['string'] = 'foo' df.loc[df.index[0:4], 'string'] = 'bar' with ensure_clean_store(self.path) as store: store.put('df', df, format='table', data_columns=['string']) # empty result = store.select('df', 'index>df.index[3] & string="bar"') expected = df.loc[(df.index > df.index[3]) & (df.string == 'bar')] tm.assert_frame_equal(result, expected) result = store.select('df', 'index>df.index[3] & string="foo"') expected = df.loc[(df.index > df.index[3]) & (df.string == 'foo')] tm.assert_frame_equal(result, expected) # or result = store.select('df', 'index>df.index[3] | string="bar"') expected = df.loc[(df.index > df.index[3]) | (df.string == 'bar')] tm.assert_frame_equal(result, expected) result = store.select('df', '(index>df.index[3] & ' 'index<=df.index[6]) | string="bar"') expected = df.loc[((df.index > df.index[3]) & ( df.index <= df.index[6])) | (df.string == 'bar')] tm.assert_frame_equal(result, expected) # invert result = store.select('df', 'string!="bar"') expected = df.loc[df.string != 'bar'] tm.assert_frame_equal(result, expected) # invert not implemented in numexpr :( pytest.raises(NotImplementedError, store.select, 'df', '~(string="bar")') # invert ok for filters result = store.select('df', "~(columns=['A','B'])") expected = df.loc[:, df.columns.difference(['A', 'B'])] tm.assert_frame_equal(result, expected) # in result = store.select( 'df', "index>df.index[3] & columns in ['A','B']") expected = df.loc[df.index > df.index[3]].reindex(columns=[ 'A', 'B']) tm.assert_frame_equal(result, expected) def test_frame_select_complex2(self): with ensure_clean_path(['parms.hdf', 'hist.hdf']) as paths: pp, hh = paths # use non-trivial selection criteria parms = DataFrame({'A': [1, 1, 2, 2, 3]}) parms.to_hdf(pp, 'df', mode='w', format='table', data_columns=['A']) selection = read_hdf(pp, 'df', where='A=[2,3]') hist = DataFrame(np.random.randn(25, 1), columns=['data'], index=MultiIndex.from_tuples( [(i, j) for i in range(5) for j in range(5)], names=['l1', 'l2'])) hist.to_hdf(hh, 'df', mode='w', format='table') expected = read_hdf(hh, 'df', where='l1=[2, 3, 4]') # sccope with list like l = selection.index.tolist() # noqa store = HDFStore(hh) result = store.select('df', where='l1=l') assert_frame_equal(result, expected) store.close() result = read_hdf(hh, 'df', where='l1=l') assert_frame_equal(result, expected) # index index = selection.index # noqa result = read_hdf(hh, 'df', where='l1=index') assert_frame_equal(result, expected) result = read_hdf(hh, 'df', where='l1=selection.index') assert_frame_equal(result, expected) result = read_hdf(hh, 'df', where='l1=selection.index.tolist()') assert_frame_equal(result, expected) result = read_hdf(hh, 'df', where='l1=list(selection.index)') assert_frame_equal(result, expected) # sccope with index store = HDFStore(hh) result = store.select('df', where='l1=index') assert_frame_equal(result, expected) result = store.select('df', where='l1=selection.index') assert_frame_equal(result, expected) result = store.select('df', where='l1=selection.index.tolist()') assert_frame_equal(result, expected) result = store.select('df', where='l1=list(selection.index)') assert_frame_equal(result, expected) store.close() def test_invalid_filtering(self): # can't use more than one filter (atm) df = tm.makeTimeDataFrame() with ensure_clean_store(self.path) as store: store.put('df', df, format='table') # not implemented pytest.raises(NotImplementedError, store.select, 'df', "columns=['A'] | columns=['B']") # in theory we could deal with this pytest.raises(NotImplementedError, store.select, 'df', "columns=['A','B'] & columns=['C']") def test_string_select(self): # GH 2973 with ensure_clean_store(self.path) as store: df = tm.makeTimeDataFrame() # test string ==/!= df['x'] = 'none' df.loc[2:7, 'x'] = '' store.append('df', df, data_columns=['x']) result = store.select('df', 'x=none') expected = df[df.x == 'none'] assert_frame_equal(result, expected) try: result = store.select('df', 'x!=none') expected = df[df.x != 'none'] assert_frame_equal(result, expected) except Exception as detail: pprint_thing("[{0}]".format(detail)) pprint_thing(store) pprint_thing(expected) df2 = df.copy() df2.loc[df2.x == '', 'x'] = np.nan store.append('df2', df2, data_columns=['x']) result = store.select('df2', 'x!=none') expected = df2[isna(df2.x)] assert_frame_equal(result, expected) # int ==/!= df['int'] = 1 df.loc[2:7, 'int'] = 2 store.append('df3', df, data_columns=['int']) result = store.select('df3', 'int=2') expected = df[df.int == 2] assert_frame_equal(result, expected) result = store.select('df3', 'int!=2') expected = df[df.int != 2] assert_frame_equal(result, expected) def test_read_column(self): df = tm.makeTimeDataFrame() with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df') store.append('df', df) # error pytest.raises(KeyError, store.select_column, 'df', 'foo') def f(): store.select_column('df', 'index', where=['index>5']) pytest.raises(Exception, f) # valid result = store.select_column('df', 'index') tm.assert_almost_equal(result.values, Series(df.index).values) assert isinstance(result, Series) # not a data indexable column pytest.raises( ValueError, store.select_column, 'df', 'values_block_0') # a data column df2 = df.copy() df2['string'] = 'foo' store.append('df2', df2, data_columns=['string']) result = store.select_column('df2', 'string') tm.assert_almost_equal(result.values, df2['string'].values) # a data column with NaNs, result excludes the NaNs df3 = df.copy() df3['string'] = 'foo' df3.loc[4:6, 'string'] = np.nan store.append('df3', df3, data_columns=['string']) result = store.select_column('df3', 'string') tm.assert_almost_equal(result.values, df3['string'].values) # start/stop result = store.select_column('df3', 'string', start=2) tm.assert_almost_equal(result.values, df3['string'].values[2:]) result = store.select_column('df3', 'string', start=-2) tm.assert_almost_equal(result.values, df3['string'].values[-2:]) result = store.select_column('df3', 'string', stop=2) tm.assert_almost_equal(result.values, df3['string'].values[:2]) result = store.select_column('df3', 'string', stop=-2) tm.assert_almost_equal(result.values, df3['string'].values[:-2]) result = store.select_column('df3', 'string', start=2, stop=-2) tm.assert_almost_equal(result.values, df3['string'].values[2:-2]) result = store.select_column('df3', 'string', start=-2, stop=2) tm.assert_almost_equal(result.values, df3['string'].values[-2:2]) # GH 10392 - make sure column name is preserved df4 = DataFrame({'A': np.random.randn(10), 'B': 'foo'}) store.append('df4', df4, data_columns=True) expected = df4['B'] result = store.select_column('df4', 'B') tm.assert_series_equal(result, expected) def test_coordinates(self): df = tm.makeTimeDataFrame() with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df') store.append('df', df) # all c = store.select_as_coordinates('df') assert((c.values == np.arange(len(df.index))).all()) # get coordinates back & test vs frame _maybe_remove(store, 'df') df = DataFrame(dict(A=lrange(5), B=lrange(5))) store.append('df', df) c = store.select_as_coordinates('df', ['index<3']) assert((c.values == np.arange(3)).all()) result = store.select('df', where=c) expected = df.loc[0:2, :] tm.assert_frame_equal(result, expected) c = store.select_as_coordinates('df', ['index>=3', 'index<=4']) assert((c.values == np.arange(2) + 3).all()) result = store.select('df', where=c) expected = df.loc[3:4, :] tm.assert_frame_equal(result, expected) assert isinstance(c, Index) # multiple tables _maybe_remove(store, 'df1') _maybe_remove(store, 'df2') df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x) store.append('df1', df1, data_columns=['A', 'B']) store.append('df2', df2) c = store.select_as_coordinates('df1', ['A>0', 'B>0']) df1_result = store.select('df1', c) df2_result = store.select('df2', c) result = concat([df1_result, df2_result], axis=1) expected = concat([df1, df2], axis=1) expected = expected[(expected.A > 0) & (expected.B > 0)] tm.assert_frame_equal(result, expected) # pass array/mask as the coordinates with ensure_clean_store(self.path) as store: df = DataFrame(np.random.randn(1000, 2), index=date_range('20000101', periods=1000)) store.append('df', df) c = store.select_column('df', 'index') where = c[DatetimeIndex(c).month == 5].index expected = df.iloc[where] # locations result = store.select('df', where=where) tm.assert_frame_equal(result, expected) # boolean result = store.select('df', where=where) tm.assert_frame_equal(result, expected) # invalid pytest.raises(ValueError, store.select, 'df', where=np.arange(len(df), dtype='float64')) pytest.raises(ValueError, store.select, 'df', where=np.arange(len(df) + 1)) pytest.raises(ValueError, store.select, 'df', where=np.arange(len(df)), start=5) pytest.raises(ValueError, store.select, 'df', where=np.arange(len(df)), start=5, stop=10) # selection with filter selection = date_range('20000101', periods=500) result = store.select('df', where='index in selection') expected = df[df.index.isin(selection)] tm.assert_frame_equal(result, expected) # list df = DataFrame(np.random.randn(10, 2)) store.append('df2', df) result = store.select('df2', where=[0, 3, 5]) expected = df.iloc[[0, 3, 5]] tm.assert_frame_equal(result, expected) # boolean where = [True] * 10 where[-2] = False result = store.select('df2', where=where) expected = df.loc[where] tm.assert_frame_equal(result, expected) # start/stop result = store.select('df2', start=5, stop=10) expected = df[5:10] tm.assert_frame_equal(result, expected) def test_append_to_multiple(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x) df2['foo'] = 'bar' df = concat([df1, df2], axis=1) with ensure_clean_store(self.path) as store: # exceptions pytest.raises(ValueError, store.append_to_multiple, {'df1': ['A', 'B'], 'df2': None}, df, selector='df3') pytest.raises(ValueError, store.append_to_multiple, {'df1': None, 'df2': None}, df, selector='df3') pytest.raises( ValueError, store.append_to_multiple, 'df1', df, 'df1') # regular operation store.append_to_multiple( {'df1': ['A', 'B'], 'df2': None}, df, selector='df1') result = store.select_as_multiple( ['df1', 'df2'], where=['A>0', 'B>0'], selector='df1') expected = df[(df.A > 0) & (df.B > 0)] tm.assert_frame_equal(result, expected) def test_append_to_multiple_dropna(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x) df1.iloc[1, df1.columns.get_indexer(['A', 'B'])] = np.nan df = concat([df1, df2], axis=1) with ensure_clean_store(self.path) as store: # dropna=True should guarantee rows are synchronized store.append_to_multiple( {'df1': ['A', 'B'], 'df2': None}, df, selector='df1', dropna=True) result = store.select_as_multiple(['df1', 'df2']) expected = df.dropna() tm.assert_frame_equal(result, expected) tm.assert_index_equal(store.select('df1').index, store.select('df2').index) @pytest.mark.xfail(run=False, reason="append_to_multiple_dropna_false " "is not raising as failed") def test_append_to_multiple_dropna_false(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x) df1.iloc[1, df1.columns.get_indexer(['A', 'B'])] = np.nan df = concat([df1, df2], axis=1) with ensure_clean_store(self.path) as store: # dropna=False shouldn't synchronize row indexes store.append_to_multiple( {'df1a': ['A', 'B'], 'df2a': None}, df, selector='df1a', dropna=False) with pytest.raises(ValueError): store.select_as_multiple(['df1a', 'df2a']) assert not store.select('df1a').index.equals( store.select('df2a').index) def test_select_as_multiple(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x) df2['foo'] = 'bar' with ensure_clean_store(self.path) as store: # no tables stored pytest.raises(Exception, store.select_as_multiple, None, where=['A>0', 'B>0'], selector='df1') store.append('df1', df1, data_columns=['A', 'B']) store.append('df2', df2) # exceptions pytest.raises(Exception, store.select_as_multiple, None, where=['A>0', 'B>0'], selector='df1') pytest.raises(Exception, store.select_as_multiple, [None], where=['A>0', 'B>0'], selector='df1') pytest.raises(KeyError, store.select_as_multiple, ['df1', 'df3'], where=['A>0', 'B>0'], selector='df1') pytest.raises(KeyError, store.select_as_multiple, ['df3'], where=['A>0', 'B>0'], selector='df1') pytest.raises(KeyError, store.select_as_multiple, ['df1', 'df2'], where=['A>0', 'B>0'], selector='df4') # default select result = store.select('df1', ['A>0', 'B>0']) expected = store.select_as_multiple( ['df1'], where=['A>0', 'B>0'], selector='df1') tm.assert_frame_equal(result, expected) expected = store.select_as_multiple( 'df1', where=['A>0', 'B>0'], selector='df1') tm.assert_frame_equal(result, expected) # multiple result = store.select_as_multiple( ['df1', 'df2'], where=['A>0', 'B>0'], selector='df1') expected = concat([df1, df2], axis=1) expected = expected[(expected.A > 0) & (expected.B > 0)] tm.assert_frame_equal(result, expected) # multiple (diff selector) result = store.select_as_multiple( ['df1', 'df2'], where='index>df2.index[4]', selector='df2') expected = concat([df1, df2], axis=1) expected = expected[5:] tm.assert_frame_equal(result, expected) # test excpection for diff rows store.append('df3', tm.makeTimeDataFrame(nper=50)) pytest.raises(ValueError, store.select_as_multiple, ['df1', 'df3'], where=['A>0', 'B>0'], selector='df1') @pytest.mark.skipif( LooseVersion(tables.__version__) < LooseVersion('3.1.0'), reason=("tables version does not support fix for nan selection " "bug: GH 4858")) def test_nan_selection_bug_4858(self): with ensure_clean_store(self.path) as store: df = DataFrame(dict(cols=range(6), values=range(6)), dtype='float64') df['cols'] = (df['cols'] + 10).apply(str) df.iloc[0] = np.nan expected = DataFrame(dict(cols=['13.0', '14.0', '15.0'], values=[ 3., 4., 5.]), index=[3, 4, 5]) # write w/o the index on that particular column store.append('df', df, data_columns=True, index=['cols']) result = store.select('df', where='values>2.0') assert_frame_equal(result, expected) def test_start_stop_table(self): with ensure_clean_store(self.path) as store: # table df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) store.append('df', df) result = store.select( 'df', "columns=['A']", start=0, stop=5) expected = df.loc[0:4, ['A']] tm.assert_frame_equal(result, expected) # out of range result = store.select( 'df', "columns=['A']", start=30, stop=40) assert len(result) == 0 expected = df.loc[30:40, ['A']] tm.assert_frame_equal(result, expected) def test_start_stop_multiple(self): # GH 16209 with ensure_clean_store(self.path) as store: df = DataFrame({"foo": [1, 2], "bar": [1, 2]}) store.append_to_multiple({'selector': ['foo'], 'data': None}, df, selector='selector') result = store.select_as_multiple(['selector', 'data'], selector='selector', start=0, stop=1) expected = df.loc[[0], ['foo', 'bar']] tm.assert_frame_equal(result, expected) def test_start_stop_fixed(self): with ensure_clean_store(self.path) as store: # fixed, GH 8287 df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20)), index=pd.date_range('20130101', periods=20)) store.put('df', df) result = store.select( 'df', start=0, stop=5) expected = df.iloc[0:5, :] tm.assert_frame_equal(result, expected) result = store.select( 'df', start=5, stop=10) expected = df.iloc[5:10, :] tm.assert_frame_equal(result, expected) # out of range result = store.select( 'df', start=30, stop=40) expected = df.iloc[30:40, :] tm.assert_frame_equal(result, expected) # series s = df.A store.put('s', s) result = store.select('s', start=0, stop=5) expected = s.iloc[0:5] tm.assert_series_equal(result, expected) result = store.select('s', start=5, stop=10) expected = s.iloc[5:10] tm.assert_series_equal(result, expected) # sparse; not implemented df = tm.makeDataFrame() df.iloc[3:5, 1:3] = np.nan df.iloc[8:10, -2] = np.nan dfs = df.to_sparse() store.put('dfs', dfs) with pytest.raises(NotImplementedError): store.select('dfs', start=0, stop=5) def test_select_filter_corner(self): df = DataFrame(np.random.randn(50, 100)) df.index = ['%.3d' % c for c in df.index] df.columns = ['%.3d' % c for c in df.columns] with ensure_clean_store(self.path) as store: store.put('frame', df, format='table') crit = 'columns=df.columns[:75]' result = store.select('frame', [crit]) tm.assert_frame_equal(result, df.loc[:, df.columns[:75]]) crit = 'columns=df.columns[:75:2]' result = store.select('frame', [crit]) tm.assert_frame_equal(result, df.loc[:, df.columns[:75:2]]) def test_path_pathlib(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib( lambda p: df.to_hdf(p, 'df'), lambda p: pd.read_hdf(p, 'df')) tm.assert_frame_equal(df, result) @pytest.mark.parametrize('start, stop', [(0, 2), (1, 2), (None, None)]) def test_contiguous_mixed_data_table(self, start, stop): # GH 17021 # ValueError when reading a contiguous mixed-data table ft. VLArray df = DataFrame({'a': Series([20111010, 20111011, 20111012]), 'b': Series(['ab', 'cd', 'ab'])}) with ensure_clean_store(self.path) as store: store.append('test_dataset', df) result = store.select('test_dataset', start=start, stop=stop) assert_frame_equal(df[start:stop], result) def test_path_pathlib_hdfstore(self): df = tm.makeDataFrame() def writer(path): with pd.HDFStore(path) as store: df.to_hdf(store, 'df') def reader(path): with pd.HDFStore(path) as store: return pd.read_hdf(store, 'df') result = tm.round_trip_pathlib(writer, reader) tm.assert_frame_equal(df, result) def test_pickle_path_localpath(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib( lambda p: df.to_hdf(p, 'df'), lambda p: pd.read_hdf(p, 'df')) tm.assert_frame_equal(df, result) def test_path_localpath_hdfstore(self): df = tm.makeDataFrame() def writer(path): with pd.HDFStore(path) as store: df.to_hdf(store, 'df') def reader(path): with pd.HDFStore(path) as store: return pd.read_hdf(store, 'df') result = tm.round_trip_localpath(writer, reader) tm.assert_frame_equal(df, result) def _check_roundtrip(self, obj, comparator, compression=False, **kwargs): options = {} if compression: options['complib'] = _default_compressor with ensure_clean_store(self.path, 'w', **options) as store: store['obj'] = obj retrieved = store['obj'] comparator(retrieved, obj, **kwargs) def _check_double_roundtrip(self, obj, comparator, compression=False, **kwargs): options = {} if compression: options['complib'] = compression or _default_compressor with ensure_clean_store(self.path, 'w', **options) as store: store['obj'] = obj retrieved = store['obj'] comparator(retrieved, obj, **kwargs) store['obj'] = retrieved again = store['obj'] comparator(again, obj, **kwargs) def _check_roundtrip_table(self, obj, comparator, compression=False): options = {} if compression: options['complib'] = _default_compressor with ensure_clean_store(self.path, 'w', **options) as store: store.put('obj', obj, format='table') retrieved = store['obj'] comparator(retrieved, obj) def test_multiple_open_close(self): # gh-4409: open & close multiple times with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() df.to_hdf(path, 'df', mode='w', format='table') # single store = HDFStore(path) assert 'CLOSED' not in store.info() assert store.is_open store.close() assert 'CLOSED' in store.info() assert not store.is_open with ensure_clean_path(self.path) as path: if pytables._table_file_open_policy_is_strict: # multiples store1 = HDFStore(path) def f(): HDFStore(path) pytest.raises(ValueError, f) store1.close() else: # multiples store1 = HDFStore(path) store2 = HDFStore(path) assert 'CLOSED' not in store1.info() assert 'CLOSED' not in store2.info() assert store1.is_open assert store2.is_open store1.close() assert 'CLOSED' in store1.info() assert not store1.is_open assert 'CLOSED' not in store2.info() assert store2.is_open store2.close() assert 'CLOSED' in store1.info() assert 'CLOSED' in store2.info() assert not store1.is_open assert not store2.is_open # nested close store = HDFStore(path, mode='w') store.append('df', df) store2 = HDFStore(path) store2.append('df2', df) store2.close() assert 'CLOSED' in store2.info() assert not store2.is_open store.close() assert 'CLOSED' in store.info() assert not store.is_open # double closing store = HDFStore(path, mode='w') store.append('df', df) store2 = HDFStore(path) store.close() assert 'CLOSED' in store.info() assert not store.is_open store2.close() assert 'CLOSED' in store2.info() assert not store2.is_open # ops on a closed store with ensure_clean_path(self.path) as path: df = tm.makeDataFrame() df.to_hdf(path, 'df', mode='w', format='table') store = HDFStore(path) store.close() pytest.raises(ClosedFileError, store.keys) pytest.raises(ClosedFileError, lambda: 'df' in store) pytest.raises(ClosedFileError, lambda: len(store)) pytest.raises(ClosedFileError, lambda: store['df']) pytest.raises(AttributeError, lambda: store.df) pytest.raises(ClosedFileError, store.select, 'df') pytest.raises(ClosedFileError, store.get, 'df') pytest.raises(ClosedFileError, store.append, 'df2', df) pytest.raises(ClosedFileError, store.put, 'df3', df) pytest.raises(ClosedFileError, store.get_storer, 'df2') pytest.raises(ClosedFileError, store.remove, 'df2') def f(): store.select('df') tm.assert_raises_regex(ClosedFileError, 'file is not open', f) def test_pytables_native_read(self): with ensure_clean_store( tm.get_data_path('legacy_hdf/pytables_native.h5'), mode='r') as store: d2 = store['detector/readout'] assert isinstance(d2, DataFrame) @pytest.mark.skipif(PY35 and is_platform_windows(), reason="native2 read fails oddly on windows / 3.5") def test_pytables_native2_read(self): with ensure_clean_store( tm.get_data_path('legacy_hdf/pytables_native2.h5'), mode='r') as store: str(store) d1 = store['detector'] assert isinstance(d1, DataFrame) def test_legacy_table_read(self): # legacy table types with ensure_clean_store( tm.get_data_path('legacy_hdf/legacy_table.h5'), mode='r') as store: with catch_warnings(record=True): store.select('df1') store.select('df2') store.select('wp1') # force the frame store.select('df2', typ='legacy_frame') # old version warning pytest.raises( Exception, store.select, 'wp1', 'minor_axis=B') df2 = store.select('df2') result = store.select('df2', 'index>df2.index[2]') expected = df2[df2.index > df2.index[2]] assert_frame_equal(expected, result) def test_copy(self): with catch_warnings(record=True): def do_copy(f, new_f=None, keys=None, propindexes=True, **kwargs): try: store = HDFStore(f, 'r') if new_f is None: import tempfile fd, new_f = tempfile.mkstemp() tstore = store.copy( new_f, keys=keys, propindexes=propindexes, **kwargs) # check keys if keys is None: keys = store.keys() assert set(keys) == set(tstore.keys()) # check indicies & nrows for k in tstore.keys(): if tstore.get_storer(k).is_table: new_t = tstore.get_storer(k) orig_t = store.get_storer(k) assert orig_t.nrows == new_t.nrows # check propindixes if propindexes: for a in orig_t.axes: if a.is_indexed: assert new_t[a.name].is_indexed finally: safe_close(store) safe_close(tstore) try: os.close(fd) except: pass safe_remove(new_f) # new table df = tm.makeDataFrame() try: path = create_tempfile(self.path) st = HDFStore(path) st.append('df', df, data_columns=['A']) st.close() do_copy(f=path) do_copy(f=path, propindexes=False) finally: safe_remove(path) def test_store_datetime_fractional_secs(self): with ensure_clean_store(self.path) as store: dt = datetime.datetime(2012, 1, 2, 3, 4, 5, 123456) series = Series([0], [dt]) store['a'] = series assert store['a'].index[0] == dt def test_tseries_indices_series(self): with ensure_clean_store(self.path) as store: idx = tm.makeDateIndex(10) ser = Series(np.random.randn(len(idx)), idx) store['a'] = ser result = store['a'] tm.assert_series_equal(result, ser) assert result.index.freq == ser.index.freq tm.assert_class_equal(result.index, ser.index, obj="series index") idx = tm.makePeriodIndex(10) ser = Series(np.random.randn(len(idx)), idx) store['a'] = ser result = store['a'] tm.assert_series_equal(result, ser) assert result.index.freq == ser.index.freq tm.assert_class_equal(result.index, ser.index, obj="series index") def test_tseries_indices_frame(self): with ensure_clean_store(self.path) as store: idx = tm.makeDateIndex(10) df = DataFrame(np.random.randn(len(idx), 3), index=idx) store['a'] = df result = store['a'] assert_frame_equal(result, df) assert result.index.freq == df.index.freq tm.assert_class_equal(result.index, df.index, obj="dataframe index") idx = tm.makePeriodIndex(10) df = DataFrame(np.random.randn(len(idx), 3), idx) store['a'] = df result = store['a'] assert_frame_equal(result, df) assert result.index.freq == df.index.freq tm.assert_class_equal(result.index, df.index, obj="dataframe index") def test_unicode_index(self): unicode_values = [u('\u03c3'), u('\u03c3\u03c3')] # PerformanceWarning with catch_warnings(record=True): s = Series(np.random.randn(len(unicode_values)), unicode_values) self._check_roundtrip(s, tm.assert_series_equal) def test_unicode_longer_encoded(self): # GH 11234 char = '\u0394' df = pd.DataFrame({'A': [char]}) with ensure_clean_store(self.path) as store: store.put('df', df, format='table', encoding='utf-8') result = store.get('df') tm.assert_frame_equal(result, df) df = pd.DataFrame({'A': ['a', char], 'B': ['b', 'b']}) with ensure_clean_store(self.path) as store: store.put('df', df, format='table', encoding='utf-8') result = store.get('df') tm.assert_frame_equal(result, df) def test_store_datetime_mixed(self): df = DataFrame( {'a': [1, 2, 3], 'b': [1., 2., 3.], 'c': ['a', 'b', 'c']}) ts = tm.makeTimeSeries() df['d'] = ts.index[:3] self._check_roundtrip(df, tm.assert_frame_equal) # def test_cant_write_multiindex_table(self): # # for now, #1848 # df = DataFrame(np.random.randn(10, 4), # index=[np.arange(5).repeat(2), # np.tile(np.arange(2), 5)]) # pytest.raises(Exception, store.put, 'foo', df, format='table') def test_append_with_diff_col_name_types_raises_value_error(self): df = DataFrame(np.random.randn(10, 1)) df2 = DataFrame({'a': np.random.randn(10)}) df3 = DataFrame({(1, 2): np.random.randn(10)}) df4 = DataFrame({('1', 2): np.random.randn(10)}) df5 = DataFrame({('1', 2, object): np.random.randn(10)}) with ensure_clean_store(self.path) as store: name = 'df_%s' % tm.rands(10) store.append(name, df) for d in (df2, df3, df4, df5): with pytest.raises(ValueError): store.append(name, d) def test_query_with_nested_special_character(self): df = DataFrame({'a': ['a', 'a', 'c', 'b', 'test & test', 'c', 'b', 'e'], 'b': [1, 2, 3, 4, 5, 6, 7, 8]}) expected = df[df.a == 'test & test'] with ensure_clean_store(self.path) as store: store.append('test', df, format='table', data_columns=True) result = store.select('test', 'a = "test & test"') tm.assert_frame_equal(expected, result) def test_categorical(self): with ensure_clean_store(self.path) as store: # Basic _maybe_remove(store, 's') s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'c'], categories=[ 'a', 'b', 'c', 'd'], ordered=False)) store.append('s', s, format='table') result = store.select('s') tm.assert_series_equal(s, result) _maybe_remove(store, 's_ordered') s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'c'], categories=[ 'a', 'b', 'c', 'd'], ordered=True)) store.append('s_ordered', s, format='table') result = store.select('s_ordered') tm.assert_series_equal(s, result) _maybe_remove(store, 'df') df = DataFrame({"s": s, "vals": [1, 2, 3, 4, 5, 6]}) store.append('df', df, format='table') result = store.select('df') tm.assert_frame_equal(result, df) # Dtypes s = Series([1, 1, 2, 2, 3, 4, 5]).astype('category') store.append('si', s) result = store.select('si') tm.assert_series_equal(result, s) s = Series([1, 1, np.nan, 2, 3, 4, 5]).astype('category') store.append('si2', s) result = store.select('si2') tm.assert_series_equal(result, s) # Multiple df2 = df.copy() df2['s2'] = Series(list('abcdefg')).astype('category') store.append('df2', df2) result = store.select('df2') tm.assert_frame_equal(result, df2) # Make sure the metadata is OK info = store.info() assert '/df2 ' in info # assert '/df2/meta/values_block_0/meta' in info assert '/df2/meta/values_block_1/meta' in info # unordered s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'c'], categories=[ 'a', 'b', 'c', 'd'], ordered=False)) store.append('s2', s, format='table') result = store.select('s2') tm.assert_series_equal(result, s) # Query store.append('df3', df, data_columns=['s']) expected = df[df.s.isin(['b', 'c'])] result = store.select('df3', where=['s in ["b","c"]']) tm.assert_frame_equal(result, expected) expected = df[df.s.isin(['b', 'c'])] result = store.select('df3', where=['s = ["b","c"]']) tm.assert_frame_equal(result, expected) expected = df[df.s.isin(['d'])] result = store.select('df3', where=['s in ["d"]']) tm.assert_frame_equal(result, expected) expected = df[df.s.isin(['f'])] result = store.select('df3', where=['s in ["f"]']) tm.assert_frame_equal(result, expected) # Appending with same categories is ok store.append('df3', df) df = concat([df, df]) expected = df[df.s.isin(['b', 'c'])] result = store.select('df3', where=['s in ["b","c"]']) tm.assert_frame_equal(result, expected) # Appending must have the same categories df3 = df.copy() df3['s'].cat.remove_unused_categories(inplace=True) with pytest.raises(ValueError): store.append('df3', df3) # Remove, and make sure meta data is removed (its a recursive # removal so should be). result = store.select('df3/meta/s/meta') assert result is not None store.remove('df3') with pytest.raises(KeyError): store.select('df3/meta/s/meta') def test_categorical_conversion(self): # GH13322 # Check that read_hdf with categorical columns doesn't return rows if # where criteria isn't met. obsids = ['ESP_012345_6789', 'ESP_987654_3210'] imgids = ['APF00006np', 'APF0001imm'] data = [4.3, 9.8] # Test without categories df = DataFrame(dict(obsids=obsids, imgids=imgids, data=data)) # We are expecting an empty DataFrame matching types of df expected = df.iloc[[], :] with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table', data_columns=True) result = read_hdf(path, 'df', where='obsids=B') tm.assert_frame_equal(result, expected) # Test with categories df.obsids = df.obsids.astype('category') df.imgids = df.imgids.astype('category') # We are expecting an empty DataFrame matching types of df expected = df.iloc[[], :] with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table', data_columns=True) result = read_hdf(path, 'df', where='obsids=B') tm.assert_frame_equal(result, expected) def test_categorical_nan_only_columns(self): # GH18413 # Check that read_hdf with categorical columns with NaN-only values can # be read back. df = pd.DataFrame({ 'a': ['a', 'b', 'c', np.nan], 'b': [np.nan, np.nan, np.nan, np.nan], 'c': [1, 2, 3, 4], 'd': pd.Series([None] * 4, dtype=object) }) df['a'] = df.a.astype('category') df['b'] = df.b.astype('category') df['d'] = df.b.astype('category') expected = df with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table', data_columns=True) result = read_hdf(path, 'df') tm.assert_frame_equal(result, expected) def test_duplicate_column_name(self): df = DataFrame(columns=["a", "a"], data=[[0, 0]]) with ensure_clean_path(self.path) as path: pytest.raises(ValueError, df.to_hdf, path, 'df', format='fixed') df.to_hdf(path, 'df', format='table') other = read_hdf(path, 'df') tm.assert_frame_equal(df, other) assert df.equals(other) assert other.equals(df) def test_round_trip_equals(self): # GH 9330 df = DataFrame({"B": [1, 2], "A": ["x", "y"]}) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table') other = read_hdf(path, 'df') tm.assert_frame_equal(df, other) assert df.equals(other) assert other.equals(df) def test_preserve_timedeltaindex_type(self): # GH9635 # Storing TimedeltaIndexed DataFrames in fixed stores did not preserve # the type of the index. df = DataFrame(np.random.normal(size=(10, 5))) df.index = timedelta_range( start='0s', periods=10, freq='1s', name='example') with ensure_clean_store(self.path) as store: store['df'] = df assert_frame_equal(store['df'], df) def test_columns_multiindex_modified(self): # BUG: 7212 # read_hdf store.select modified the passed columns parameters # when multi-indexed. df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) df.index.name = 'letters' df = df.set_index(keys='E', append=True) data_columns = df.index.names + df.columns.tolist() with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='a', append=True, data_columns=data_columns, index=False) cols2load = list('BCD') cols2load_original = list(cols2load) df_loaded = read_hdf(path, 'df', columns=cols2load) # noqa assert cols2load_original == cols2load def test_to_hdf_with_object_column_names(self): # GH9057 # Writing HDF5 table format should only work for string-like # column types types_should_fail = [tm.makeIntIndex, tm.makeFloatIndex, tm.makeDateIndex, tm.makeTimedeltaIndex, tm.makePeriodIndex] types_should_run = [tm.makeStringIndex, tm.makeCategoricalIndex] if compat.PY3: types_should_run.append(tm.makeUnicodeIndex) else: types_should_fail.append(tm.makeUnicodeIndex) for index in types_should_fail: df = DataFrame(np.random.randn(10, 2), columns=index(2)) with ensure_clean_path(self.path) as path: with catch_warnings(record=True): with pytest.raises( ValueError, msg=("cannot have non-object label " "DataIndexableCol")): df.to_hdf(path, 'df', format='table', data_columns=True) for index in types_should_run: df = DataFrame(np.random.randn(10, 2), columns=index(2)) with ensure_clean_path(self.path) as path: with catch_warnings(record=True): df.to_hdf(path, 'df', format='table', data_columns=True) result = pd.read_hdf( path, 'df', where="index = [{0}]".format(df.index[0])) assert(len(result)) def test_read_hdf_open_store(self): # GH10330 # No check for non-string path_or-buf, and no test of open store df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) df.index.name = 'letters' df = df.set_index(keys='E', append=True) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='w') direct = read_hdf(path, 'df') store = HDFStore(path, mode='r') indirect = read_hdf(store, 'df') tm.assert_frame_equal(direct, indirect) assert store.is_open store.close() def test_read_hdf_iterator(self): df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) df.index.name = 'letters' df = df.set_index(keys='E', append=True) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='w', format='t') direct = read_hdf(path, 'df') iterator = read_hdf(path, 'df', iterator=True) assert isinstance(iterator, TableIterator) indirect = next(iterator.__iter__()) tm.assert_frame_equal(direct, indirect) iterator.store.close() def test_read_hdf_errors(self): df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: pytest.raises(IOError, read_hdf, path, 'key') df.to_hdf(path, 'df') store = HDFStore(path, mode='r') store.close() pytest.raises(IOError, read_hdf, store, 'df') def test_read_hdf_generic_buffer_errors(self): pytest.raises(NotImplementedError, read_hdf, BytesIO(b''), 'df') def test_invalid_complib(self): df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: with pytest.raises(ValueError): df.to_hdf(path, 'df', complib='foolib') # GH10443 def test_read_nokey(self): df = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) # Categorical dtype not supported for "fixed" format. So no need # to test with that dtype in the dataframe here. with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='a') reread = read_hdf(path) assert_frame_equal(df, reread) df.to_hdf(path, 'df2', mode='a') pytest.raises(ValueError, read_hdf, path) def test_read_nokey_table(self): # GH13231 df = DataFrame({'i': range(5), 'c': Series(list('abacd'), dtype='category')}) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', mode='a', format='table') reread = read_hdf(path) assert_frame_equal(df, reread) df.to_hdf(path, 'df2', mode='a', format='table') pytest.raises(ValueError, read_hdf, path) def test_read_nokey_empty(self): with ensure_clean_path(self.path) as path: store = HDFStore(path) store.close() pytest.raises(ValueError, read_hdf, path) @td.skip_if_no('pathlib') def test_read_from_pathlib_path(self): # GH11773 from pathlib import Path expected = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as filename: path_obj = Path(filename) expected.to_hdf(path_obj, 'df', mode='a') actual = read_hdf(path_obj, 'df') tm.assert_frame_equal(expected, actual) @td.skip_if_no('py.path') def test_read_from_py_localpath(self): # GH11773 from py.path import local as LocalPath expected = DataFrame(np.random.rand(4, 5), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as filename: path_obj = LocalPath(filename) expected.to_hdf(path_obj, 'df', mode='a') actual = read_hdf(path_obj, 'df') tm.assert_frame_equal(expected, actual) def test_query_long_float_literal(self): # GH 14241 df = pd.DataFrame({'A': [1000000000.0009, 1000000000.0011, 1000000000.0015]}) with ensure_clean_store(self.path) as store: store.append('test', df, format='table', data_columns=True) cutoff = 1000000000.0006 result = store.select('test', "A < %.4f" % cutoff) assert result.empty cutoff = 1000000000.0010 result = store.select('test', "A > %.4f" % cutoff) expected = df.loc[[1, 2], :] tm.assert_frame_equal(expected, result) exact = 1000000000.0011 result = store.select('test', 'A == %.4f' % exact) expected = df.loc[[1], :] tm.assert_frame_equal(expected, result) def test_query_compare_column_type(self): # GH 15492 df = pd.DataFrame({'date': ['2014-01-01', '2014-01-02'], 'real_date': date_range('2014-01-01', periods=2), 'float': [1.1, 1.2], 'int': [1, 2]}, columns=['date', 'real_date', 'float', 'int']) with ensure_clean_store(self.path) as store: store.append('test', df, format='table', data_columns=True) ts = pd.Timestamp('2014-01-01') # noqa result = store.select('test', where='real_date > ts') expected = df.loc[[1], :] tm.assert_frame_equal(expected, result) for op in ['<', '>', '==']: # non strings to string column always fail for v in [2.1, True, pd.Timestamp('2014-01-01'), pd.Timedelta(1, 's')]: query = 'date {op} v'.format(op=op) with pytest.raises(TypeError): result = store.select('test', where=query) # strings to other columns must be convertible to type v = 'a' for col in ['int', 'float', 'real_date']: query = '{col} {op} v'.format(op=op, col=col) with pytest.raises(ValueError): result = store.select('test', where=query) for v, col in zip(['1', '1.1', '2014-01-01'], ['int', 'float', 'real_date']): query = '{col} {op} v'.format(op=op, col=col) result = store.select('test', where=query) if op == '==': expected = df.loc[[0], :] elif op == '>': expected = df.loc[[1], :] else: expected = df.loc[[], :] tm.assert_frame_equal(expected, result) @pytest.mark.parametrize('format', ['fixed', 'table']) def test_read_hdf_series_mode_r(self, format): # GH 16583 # Tests that reading a Series saved to an HDF file # still works if a mode='r' argument is supplied series = tm.makeFloatSeries() with ensure_clean_path(self.path) as path: series.to_hdf(path, key='data', format=format) result = pd.read_hdf(path, key='data', mode='r') tm.assert_series_equal(result, series) @pytest.mark.skipif(not PY36, reason="Need python 3.6") def test_fspath(self): with tm.ensure_clean('foo.h5') as path: with pd.HDFStore(path) as store: assert os.fspath(store) == str(path) def test_read_py2_hdf_file_in_py3(self): # GH 16781 # tests reading a PeriodIndex DataFrame written in Python2 in Python3 # the file was generated in Python 2.7 like so: # # df = pd.DataFrame([1.,2,3], index=pd.PeriodIndex( # ['2015-01-01', '2015-01-02', '2015-01-05'], freq='B')) # df.to_hdf('periodindex_0.20.1_x86_64_darwin_2.7.13.h5', 'p') expected = pd.DataFrame([1., 2, 3], index=pd.PeriodIndex( ['2015-01-01', '2015-01-02', '2015-01-05'], freq='B')) with ensure_clean_store( tm.get_data_path( 'legacy_hdf/periodindex_0.20.1_x86_64_darwin_2.7.13.h5'), mode='r') as store: result = store['p'] assert_frame_equal(result, expected) class TestHDFComplexValues(Base): # GH10447 def test_complex_fixed(self): df = DataFrame(np.random.rand(4, 5).astype(np.complex64), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) df = DataFrame(np.random.rand(4, 5).astype(np.complex128), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) def test_complex_table(self): df = DataFrame(np.random.rand(4, 5).astype(np.complex64), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) df = DataFrame(np.random.rand(4, 5).astype(np.complex128), index=list('abcd'), columns=list('ABCDE')) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table', mode='w') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) def test_complex_mixed_fixed(self): complex64 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64) complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128) df = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'd'], 'C': complex64, 'D': complex128, 'E': [1.0, 2.0, 3.0, 4.0]}, index=list('abcd')) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) def test_complex_mixed_table(self): complex64 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64) complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128) df = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'd'], 'C': complex64, 'D': complex128, 'E': [1.0, 2.0, 3.0, 4.0]}, index=list('abcd')) with ensure_clean_store(self.path) as store: store.append('df', df, data_columns=['A', 'B']) result = store.select('df', where='A>2') assert_frame_equal(df.loc[df.A > 2], result) with ensure_clean_path(self.path) as path: df.to_hdf(path, 'df', format='table') reread = read_hdf(path, 'df') assert_frame_equal(df, reread) def test_complex_across_dimensions_fixed(self): with catch_warnings(record=True): complex128 = np.array( [1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j]) s = Series(complex128, index=list('abcd')) df = DataFrame({'A': s, 'B': s}) p = Panel({'One': df, 'Two': df}) objs = [s, df, p] comps = [tm.assert_series_equal, tm.assert_frame_equal, tm.assert_panel_equal] for obj, comp in zip(objs, comps): with ensure_clean_path(self.path) as path: obj.to_hdf(path, 'obj', format='fixed') reread = read_hdf(path, 'obj') comp(obj, reread) def test_complex_across_dimensions(self): complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j]) s = Series(complex128, index=list('abcd')) df = DataFrame({'A': s, 'B': s}) with catch_warnings(record=True): p = Panel({'One': df, 'Two': df}) objs = [df, p] comps = [tm.assert_frame_equal, tm.assert_panel_equal] for obj, comp in zip(objs, comps): with ensure_clean_path(self.path) as path: obj.to_hdf(path, 'obj', format='table') reread = read_hdf(path, 'obj') comp(obj, reread) def test_complex_indexing_error(self): complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128) df = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'd'], 'C': complex128}, index=list('abcd')) with ensure_clean_store(self.path) as store: pytest.raises(TypeError, store.append, 'df', df, data_columns=['C']) def test_complex_series_error(self): complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j]) s = Series(complex128, index=list('abcd')) with ensure_clean_path(self.path) as path: pytest.raises(TypeError, s.to_hdf, path, 'obj', format='t') with ensure_clean_path(self.path) as path: s.to_hdf(path, 'obj', format='t', index=False) reread = read_hdf(path, 'obj') tm.assert_series_equal(s, reread) def test_complex_append(self): df = DataFrame({'a': np.random.randn(100).astype(np.complex128), 'b': np.random.randn(100)}) with ensure_clean_store(self.path) as store: store.append('df', df, data_columns=['b']) store.append('df', df) result = store.select('df') assert_frame_equal(pd.concat([df, df], 0), result) class TestTimezones(Base): def _compare_with_tz(self, a, b): tm.assert_frame_equal(a, b) # compare the zones on each element for c in a.columns: for i in a.index: a_e = a.loc[i, c] b_e = b.loc[i, c] if not (a_e == b_e and a_e.tz == b_e.tz): raise AssertionError( "invalid tz comparison [%s] [%s]" % (a_e, b_e)) def test_append_with_timezones_dateutil(self): from datetime import timedelta # use maybe_get_tz instead of dateutil.tz.gettz to handle the windows # filename issues. from pandas._libs.tslibs.timezones import maybe_get_tz gettz = lambda x: maybe_get_tz('dateutil/' + x) # as columns with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df_tz') df = DataFrame(dict(A=[Timestamp('20130102 2:00:00', tz=gettz( 'US/Eastern')) + timedelta(hours=1) * i for i in range(5)])) store.append('df_tz', df, data_columns=['A']) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) # select with tz aware expected = df[df.A >= df.A[3]] result = store.select('df_tz', where='A>=df.A[3]') self._compare_with_tz(result, expected) # ensure we include dates in DST and STD time here. _maybe_remove(store, 'df_tz') df = DataFrame(dict(A=Timestamp('20130102', tz=gettz('US/Eastern')), B=Timestamp('20130603', tz=gettz('US/Eastern'))), index=range(5)) store.append('df_tz', df) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) df = DataFrame(dict(A=Timestamp('20130102', tz=gettz('US/Eastern')), B=Timestamp('20130102', tz=gettz('EET'))), index=range(5)) pytest.raises(ValueError, store.append, 'df_tz', df) # this is ok _maybe_remove(store, 'df_tz') store.append('df_tz', df, data_columns=['A', 'B']) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) # can't append with diff timezone df = DataFrame(dict(A=Timestamp('20130102', tz=gettz('US/Eastern')), B=Timestamp('20130102', tz=gettz('CET'))), index=range(5)) pytest.raises(ValueError, store.append, 'df_tz', df) # as index with ensure_clean_store(self.path) as store: # GH 4098 example df = DataFrame(dict(A=Series(lrange(3), index=date_range( '2000-1-1', periods=3, freq='H', tz=gettz('US/Eastern'))))) _maybe_remove(store, 'df') store.put('df', df) result = store.select('df') assert_frame_equal(result, df) _maybe_remove(store, 'df') store.append('df', df) result = store.select('df') assert_frame_equal(result, df) def test_append_with_timezones_pytz(self): from datetime import timedelta # as columns with ensure_clean_store(self.path) as store: _maybe_remove(store, 'df_tz') df = DataFrame(dict(A=[Timestamp('20130102 2:00:00', tz='US/Eastern') + timedelta(hours=1) * i for i in range(5)])) store.append('df_tz', df, data_columns=['A']) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) # select with tz aware self._compare_with_tz(store.select( 'df_tz', where='A>=df.A[3]'), df[df.A >= df.A[3]]) _maybe_remove(store, 'df_tz') # ensure we include dates in DST and STD time here. df = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'), B=Timestamp('20130603', tz='US/Eastern')), index=range(5)) store.append('df_tz', df) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) df = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'), B=Timestamp('20130102', tz='EET')), index=range(5)) pytest.raises(ValueError, store.append, 'df_tz', df) # this is ok _maybe_remove(store, 'df_tz') store.append('df_tz', df, data_columns=['A', 'B']) result = store['df_tz'] self._compare_with_tz(result, df) assert_frame_equal(result, df) # can't append with diff timezone df = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'), B=Timestamp('20130102', tz='CET')), index=range(5)) pytest.raises(ValueError, store.append, 'df_tz', df) # as index with ensure_clean_store(self.path) as store: # GH 4098 example df = DataFrame(dict(A=Series(lrange(3), index=date_range( '2000-1-1', periods=3, freq='H', tz='US/Eastern')))) _maybe_remove(store, 'df') store.put('df', df) result = store.select('df') assert_frame_equal(result, df) _maybe_remove(store, 'df') store.append('df', df) result = store.select('df') assert_frame_equal(result, df) def test_tseries_select_index_column(self): # GH7777 # selecting a UTC datetimeindex column did # not preserve UTC tzinfo set before storing # check that no tz still works rng = date_range('1/1/2000', '1/30/2000') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(self.path) as store: store.append('frame', frame) result = store.select_column('frame', 'index') assert rng.tz == DatetimeIndex(result.values).tz # check utc rng = date_range('1/1/2000', '1/30/2000', tz='UTC') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(self.path) as store: store.append('frame', frame) result = store.select_column('frame', 'index') assert rng.tz == result.dt.tz # double check non-utc rng = date_range('1/1/2000', '1/30/2000', tz='US/Eastern') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(self.path) as store: store.append('frame', frame) result = store.select_column('frame', 'index') assert rng.tz == result.dt.tz def test_timezones_fixed(self): with ensure_clean_store(self.path) as store: # index rng = date_range('1/1/2000', '1/30/2000', tz='US/Eastern') df = DataFrame(np.random.randn(len(rng), 4), index=rng) store['df'] = df result = store['df'] assert_frame_equal(result, df) # as data # GH11411 _maybe_remove(store, 'df') df = DataFrame({'A': rng, 'B': rng.tz_convert('UTC').tz_localize(None), 'C': rng.tz_convert('CET'), 'D': range(len(rng))}, index=rng) store['df'] = df result = store['df'] assert_frame_equal(result, df) def test_fixed_offset_tz(self): rng = date_range('1/1/2000 00:00:00-07:00', '1/30/2000 00:00:00-07:00') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(self.path) as store: store['frame'] = frame recons = store['frame'] tm.assert_index_equal(recons.index, rng) assert rng.tz == recons.index.tz @td.skip_if_windows def test_store_timezone(self): # GH2852 # issue storing datetime.date with a timezone as it resets when read # back in a new timezone # original method with ensure_clean_store(self.path) as store: today = datetime.date(2013, 9, 10) df = DataFrame([1, 2, 3], index=[today, today, today]) store['obj1'] = df result = store['obj1'] assert_frame_equal(result, df) # with tz setting with ensure_clean_store(self.path) as store: with set_timezone('EST5EDT'): today = datetime.date(2013, 9, 10) df = DataFrame([1, 2, 3], index=[today, today, today]) store['obj1'] = df with set_timezone('CST6CDT'): result = store['obj1'] assert_frame_equal(result, df) def test_legacy_datetimetz_object(self): # legacy from < 0.17.0 # 8260 expected = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'), B=Timestamp('20130603', tz='CET')), index=range(5)) with ensure_clean_store( tm.get_data_path('legacy_hdf/datetimetz_object.h5'), mode='r') as store: result = store['df'] assert_frame_equal(result, expected) def test_dst_transitions(self): # make sure we are not failing on transaitions with ensure_clean_store(self.path) as store: times = pd.date_range("2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="H", ambiguous='infer') for i in [times, times + pd.Timedelta('10min')]: _maybe_remove(store, 'df') df = DataFrame({'A': range(len(i)), 'B': i}, index=i) store.append('df', df) result = store.select('df') assert_frame_equal(result, df)
the-stack_106_24587
from __future__ import with_statement import re import os import subprocess from django.utils.datastructures import SortedDict from django.utils.encoding import smart_str from sorl.thumbnail.base import EXTENSIONS from sorl.thumbnail.conf import settings from sorl.thumbnail.engines.base import EngineBase from tempfile import NamedTemporaryFile size_re = re.compile(r'^(?:.+) (?:[A-Z]+) (?P<x>\d+)x(?P<y>\d+)') class Engine(EngineBase): """ Image object is a dict with source path, options and size """ def write(self, image, options, thumbnail): """ Writes the thumbnail image """ if (options['format'] == 'JPEG' and options.get('progressive', settings.THUMBNAIL_PROGRESSIVE)): image['options']['interlace'] = 'line' image['options']['quality'] = options['quality'] args = settings.THUMBNAIL_CONVERT.split(' ') args.append(image['source'] + '[0]') for k in image['options']: v = image['options'][k] args.append('-%s' % k) if v is not None: args.append('%s' % v) flatten = "on" if 'flatten' in options: flatten = options['flatten'] if settings.THUMBNAIL_FLATTEN and not flatten == "off": args.append('-flatten') suffix = '.%s' % EXTENSIONS[options['format']] with NamedTemporaryFile(suffix=suffix, mode='rb') as fp: args.append(fp.name) args = map(smart_str, args) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) p.wait() out, err = p.communicate() if err: raise Exception(err) thumbnail.write(fp.read()) def cleanup(self, image): os.remove(image['source']) # we should not need this now def get_image(self, source): """ Returns the backend image objects from a ImageFile instance """ with NamedTemporaryFile(mode='wb', delete=False) as fp: fp.write(source.read()) return {'source': fp.name, 'options': SortedDict(), 'size': None} def get_image_size(self, image): """ Returns the image width and height as a tuple """ if image['size'] is None: args = settings.THUMBNAIL_IDENTIFY.split(' ') args.append(image['source']) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) p.wait() m = size_re.match(str(p.stdout.read())) image['size'] = int(m.group('x')), int(m.group('y')) return image['size'] def is_valid_image(self, raw_data): """ This is not very good for imagemagick because it will say anything is valid that it can use as input. """ with NamedTemporaryFile(mode='wb') as fp: fp.write(raw_data) fp.flush() args = settings.THUMBNAIL_IDENTIFY.split(' ') args.append(fp.name) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) retcode = p.wait() return retcode == 0 def _orientation(self, image): #return image # XXX need to get the dimensions right after a transpose. if settings.THUMBNAIL_CONVERT.endswith('gm convert'): args = settings.THUMBNAIL_IDENTIFY.split() args.extend(['-format', '%[exif:orientation]', image['source']]) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) p.wait() result = p.stdout.read().strip() if result and result != 'unknown': result = int(result) options = image['options'] if result == 2: options['flop'] = None elif result == 3: options['rotate'] = '180' elif result == 4: options['flip'] = None elif result == 5: options['rotate'] = '90' options['flop'] = None elif result == 6: options['rotate'] = '90' elif result == 7: options['rotate'] = '-90' options['flop'] = None elif result == 8: options['rotate'] = '-90' else: # ImageMagick also corrects the orientation exif data for # destination image['options']['auto-orient'] = None return image def _colorspace(self, image, colorspace): """ `Valid colorspaces <http://www.graphicsmagick.org/GraphicsMagick.html#details-colorspace>`_. Backends need to implement the following:: RGB, GRAY """ image['options']['colorspace'] = colorspace return image def _crop(self, image, width, height, x_offset, y_offset): """ Crops the image """ image['options']['crop'] = '%sx%s+%s+%s' % ( width, height, x_offset, y_offset ) image['size'] = (width, height) # update image size return image def _scale(self, image, width, height): """ Does the resizing of the image """ image['options']['scale'] = '%sx%s!' % (width, height) image['size'] = (width, height) # update image size return image def _padding(self, image, geometry, options): """ Pads the image """ # The order is important. The gravity option should come before extent. image['options']['background'] = options.get('padding_color') image['options']['gravity'] = 'center' image['options']['extent'] = '%sx%s' % (geometry[0], geometry[1]) return image
the-stack_106_24588
from math import pi, sqrt import itertools from typing import List from raytracer.tuple import ( tuple, point, vector, magnitude, normalize, dot, cross, Color, ) from raytracer.util import equal from raytracer.matrices import Matrix, I from raytracer.transformations import ( translation, scaling, rotation_x, rotation_y, rotation_z, shearing, ) from raytracer.rays import Ray from raytracer.materials import Material from raytracer.shapes import Shape from raytracer.intersections import Intersection, intersections class Sphere(Shape): def local_intersect(self, ray: Ray) -> List[Intersection]: # The vector from the sphere's center to the ray origin # Remember: the sphere is centered at the world origin # r2 = ray.transform(self.transform.inverse()) sphere_to_ray = ray.origin - point(0, 0, 0) a = dot(ray.direction, ray.direction) b = 2 * dot(ray.direction, sphere_to_ray) c = dot(sphere_to_ray, sphere_to_ray) - 1 discriminant = b*b - 4*a*c if discriminant < 0: return [] else: t1 = (-b - sqrt(discriminant)) / (2*a) t2 = (-b + sqrt(discriminant)) / (2*a) return intersections(Intersection(t1, self), Intersection(t2, self)) def local_normal_at(self, local_point): # object_point = self.transform.inverse() * world_point # world_normal = self.transform.inverse().transpose() * object_normal # world_normal.w = 0 # return normalize(world_normal) local_normal = local_point - point(0, 0, 0) return local_normal
the-stack_106_24590
# -*- coding: utf-8 -*- USERS = [ {"id": 0, "first_name": "Palmira", "last_name": "Haig", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 1, "first_name": "Arlette", "last_name": "Lowell", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 2, "first_name": "Neta", "last_name": "Wojcik", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 3, "first_name": "Norberto", "last_name": "Blankenship", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 4, "first_name": "Chi", "last_name": "Channel", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 5, "first_name": "Tamisha", "last_name": "Guy", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 6, "first_name": "Carley", "last_name": "Duffel", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 7, "first_name": "Kai", "last_name": "Robinette", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 8, "first_name": "Hui", "last_name": "Makuch", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 9, "first_name": "Yahaira", "last_name": "Raymer", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 10, "first_name": "Kacy", "last_name": "Mires", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 11, "first_name": "Bertie", "last_name": "Dennard", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 12, "first_name": "Adriane", "last_name": "Cho", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 13, "first_name": "Leena", "last_name": "Minard", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 14, "first_name": "Brynn", "last_name": "Rheaume", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 15, "first_name": "Michelle", "last_name": "Pompey", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 16, "first_name": "Marvis", "last_name": "Mccarron", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 17, "first_name": "Randee", "last_name": "Phenix", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 18, "first_name": "Krystle", "last_name": "Corkery", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 19, "first_name": "Brianna", "last_name": "Crump", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 20, "first_name": "Matthew", "last_name": "Keo", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 21, "first_name": "Debbra", "last_name": "Grinstead", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 22, "first_name": "Dorathy", "last_name": "Deluna", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 23, "first_name": "Kay", "last_name": "Jeans", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 24, "first_name": "Star", "last_name": "Kantz", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 25, "first_name": "Latina", "last_name": "Pursel", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 26, "first_name": "Haywood", "last_name": "So", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 27, "first_name": "Ester", "last_name": "Greenawalt", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 28, "first_name": "Alicia", "last_name": "Nez", "email": "[email protected]", "is_active": 1, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 29, "first_name": "Wallace", "last_name": "Schacht", "email": "[email protected]", "is_active": 1, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 30, "first_name": "Verda", "last_name": "Phifer", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 31, "first_name": "Keiko", "last_name": "Peay", "email": "[email protected]", "is_active": 0, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 32, "first_name": "Lucas", "last_name": "Zoller", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 33, "first_name": "Treasa", "last_name": "Mcduffie", "email": "[email protected]", "is_active": 0, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 34, "first_name": "Demetrice", "last_name": "Arcuri", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 35, "first_name": "Eboni", "last_name": "Thielen", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 36, "first_name": "Corinne", "last_name": "Foy", "email": "[email protected]", "is_active": 0, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 37, "first_name": "Juana", "last_name": "Laney", "email": "[email protected]", "is_active": 0, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 38, "first_name": "Gerald", "last_name": "Egan", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 39, "first_name": "Nickolas", "last_name": "Beeler", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 40, "first_name": "Scarlet", "last_name": "Tannehill", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 41, "first_name": "Luvenia", "last_name": "Shunk", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 42, "first_name": "Marisela", "last_name": "Gormley", "email": "[email protected]", "is_active": 0, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 43, "first_name": "Adena", "last_name": "Trivett", "email": "[email protected]", "is_active": 0, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 44, "first_name": "Ginny", "last_name": "Cuomo", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 45, "first_name": "Dominique", "last_name": "Runion", "email": "[email protected]", "is_active": 0, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 46, "first_name": "Karisa", "last_name": "Flurry", "email": "[email protected]", "is_active": 0, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 47, "first_name": "Brittany", "last_name": "Montandon", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, {"id": 48, "first_name": "Marylynn", "last_name": "Corrie", "email": "[email protected]", "is_active": 0, "is_vip": 0, "site": "https://raccoon.ninja"}, {"id": 49, "first_name": "Kathlyn", "last_name": "Littell", "email": "[email protected]", "is_active": 0, "is_vip": 1, "site": "https://raccoon.ninja"}, ] CATALOG = { "json": [ { "product": { "@description": "Cardigan Sweater", "@product_image": "cardigan.jpg", "catalog_item": [ { "@gender": "Men's", "item_number": "QWZ5671", "price": "39.95", "size": [ { "@description": "Medium", "color_swatch": [ { "@image": "red_cardigan.jpg", "#text": "Red" }, { "@image": "burgundy_cardigan.jpg", "#text": "Burgundy" } ] }, { "@description": "Large", "color_swatch": [ { "@image": "red_cardigan.jpg", "#text": "Red" }, { "@image": "burgundy_cardigan.jpg", "#text": "Burgundy" } ] } ] }, { "@gender": "Women's", "item_number": "RRX9856", "price": "42.50", "size": [ { "@description": "Small", "color_swatch": [ { "@image": "red_cardigan.jpg", "#text": "Red" }, { "@image": "navy_cardigan.jpg", "#text": "Navy" }, { "@image": "burgundy_cardigan.jpg", "#text": "Burgundy" } ] }, { "@description": "Medium", "color_swatch": [ { "@image": "red_cardigan.jpg", "#text": "Red" }, { "@image": "navy_cardigan.jpg", "#text": "Navy" }, { "@image": "burgundy_cardigan.jpg", "#text": "Burgundy" }, { "@image": "black_cardigan_medium.jpg", "#text": "Black" } ] }, { "@description": "Large", "color_swatch": [ { "@image": "navy_cardigan.jpg", "#text": "Navy" }, { "@image": "black_cardigan_large.jpg", "#text": "Black" } ] }, { "@description": "Extra Large", "color_swatch": [ { "@image": "burgundy_cardigan.jpg", "#text": "Burgundy" }, { "@image": "black_cardigan_xlarge.jpg", "#text": "Black" } ] } ] } ] } } ], "xml": '<?xml version="1.0"?><catalog><product description="Cardigan Sweater" product_image="cardigan.jpg">' '<catalog_item gender="Men\'s"><item_number>QWZ5671</item_number><price>39.95</price>' '<size description="Medium"><color_swatch image="red_cardigan.jpg">Red</color_swatch>' '<color_swatch image="burgundy_cardigan.jpg">Burgundy</color_swatch></size><size description="Large">' '<color_swatch image="red_cardigan.jpg">Red</color_swatch>' '<color_swatch image="burgundy_cardigan.jpg">Burgundy</color_swatch></size></catalog_item>' '<catalog_item gender="Women\'s"><item_number>RRX9856</item_number><price>42.50</price>' '<size description="Small"><color_swatch image="red_cardigan.jpg">Red</color_swatch>' '<color_swatch image="navy_cardigan.jpg">Navy</color_swatch>' '<color_swatch image="burgundy_cardigan.jpg">Burgundy</color_swatch></size><size description="Medium">' '<color_swatch image="red_cardigan.jpg">Red</color_swatch>' '<color_swatch image="navy_cardigan.jpg">Navy</color_swatch>' '<color_swatch image="burgundy_cardigan.jpg">Burgundy</color_swatch>' '<color_swatch image="black_cardigan_medium.jpg">Black</color_swatch></size>' '<size description="Large"><color_swatch image="navy_cardigan.jpg">Navy</color_swatch>' '<color_swatch image="black_cardigan_large.jpg">Black</color_swatch></size>' '<size description="Extra Large"><color_swatch image="burgundy_cardigan.jpg">Burgundy</color_swatch>' '<color_swatch image="black_cardigan_xlarge.jpg">Black</color_swatch></size>' '</catalog_item></product></catalog>' } CD_CATALOG = { "json": [ { "TITLE": "Empire Burlesque", "ARTIST": "Bob Dylan", "COUNTRY": "USA", "COMPANY": "Columbia", "PRICE": "10.90", "YEAR": "1985" }, { "TITLE": "Hide your heart", "ARTIST": "Bonnie Tyler", "COUNTRY": "UK", "COMPANY": "CBS Records", "PRICE": "9.90", "YEAR": "1988" }, { "TITLE": "Greatest Hits", "ARTIST": "Dolly Parton", "COUNTRY": "USA", "COMPANY": "RCA", "PRICE": "9.90", "YEAR": "1982" }, { "TITLE": "Still got the blues", "ARTIST": "Gary Moore", "COUNTRY": "UK", "COMPANY": "Virgin records", "PRICE": "10.20", "YEAR": "1990" }, { "TITLE": "Eros", "ARTIST": "Eros Ramazzotti", "COUNTRY": "EU", "COMPANY": "BMG", "PRICE": "9.90", "YEAR": "1997" }, { "TITLE": "One night only", "ARTIST": "Bee Gees", "COUNTRY": "UK", "COMPANY": "Polydor", "PRICE": "10.90", "YEAR": "1998" }, { "TITLE": "Sylvias Mother", "ARTIST": "Dr.Hook", "COUNTRY": "UK", "COMPANY": "CBS", "PRICE": "8.10", "YEAR": "1973" }, { "TITLE": "Maggie May", "ARTIST": "Rod Stewart", "COUNTRY": "UK", "COMPANY": "Pickwick", "PRICE": "8.50", "YEAR": "1990" }, { "TITLE": "Romanza", "ARTIST": "Andrea Bocelli", "COUNTRY": "EU", "COMPANY": "Polydor", "PRICE": "10.80", "YEAR": "1996" }, { "TITLE": "When a man loves a woman", "ARTIST": "Percy Sledge", "COUNTRY": "USA", "COMPANY": "Atlantic", "PRICE": "8.70", "YEAR": "1987" }, { "TITLE": "Black angel", "ARTIST": "Savage Rose", "COUNTRY": "EU", "COMPANY": "Mega", "PRICE": "10.90", "YEAR": "1995" }, { "TITLE": "1999 Grammy Nominees", "ARTIST": "Many", "COUNTRY": "USA", "COMPANY": "Grammy", "PRICE": "10.20", "YEAR": "1999" }, { "TITLE": "For the good times", "ARTIST": "Kenny Rogers", "COUNTRY": "UK", "COMPANY": "Mucik Master", "PRICE": "8.70", "YEAR": "1995" }, { "TITLE": "Big Willie style", "ARTIST": "Will Smith", "COUNTRY": "USA", "COMPANY": "Columbia", "PRICE": "9.90", "YEAR": "1997" }, { "TITLE": "Tupelo Honey", "ARTIST": "Van Morrison", "COUNTRY": "UK", "COMPANY": "Polydor", "PRICE": "8.20", "YEAR": "1971" }, { "TITLE": "Soulsville", "ARTIST": "Jorn Hoel", "COUNTRY": "Norway", "COMPANY": "WEA", "PRICE": "7.90", "YEAR": "1996" }, { "TITLE": "The very best of", "ARTIST": "Cat Stevens", "COUNTRY": "UK", "COMPANY": "Island", "PRICE": "8.90", "YEAR": "1990" }, { "TITLE": "Stop", "ARTIST": "Sam Brown", "COUNTRY": "UK", "COMPANY": "A and M", "PRICE": "8.90", "YEAR": "1988" }, { "TITLE": "Bridge of Spies", "ARTIST": "T'Pau", "COUNTRY": "UK", "COMPANY": "Siren", "PRICE": "7.90", "YEAR": "1987" }, { "TITLE": "Private Dancer", "ARTIST": "Tina Turner", "COUNTRY": "UK", "COMPANY": "Capitol", "PRICE": "8.90", "YEAR": "1983" }, { "TITLE": "Midt om natten", "ARTIST": "Kim Larsen", "COUNTRY": "EU", "COMPANY": "Medley", "PRICE": "7.80", "YEAR": "1983" }, { "TITLE": "Pavarotti Gala Concert", "ARTIST": "Luciano Pavarotti", "COUNTRY": "UK", "COMPANY": "DECCA", "PRICE": "9.90", "YEAR": "1991" }, { "TITLE": "The dock of the bay", "ARTIST": "Otis Redding", "COUNTRY": "USA", "COMPANY": "Stax Records", "PRICE": "7.90", "YEAR": "1968" }, { "TITLE": "Picture book", "ARTIST": "Simply Red", "COUNTRY": "EU", "COMPANY": "Elektra", "PRICE": "7.20", "YEAR": "1985" }, { "TITLE": "Red", "ARTIST": "The Communards", "COUNTRY": "UK", "COMPANY": "London", "PRICE": "7.80", "YEAR": "1987" }, { "TITLE": "Unchain my heart", "ARTIST": "Joe Cocker", "COUNTRY": "USA", "COMPANY": "EMI", "PRICE": "8.20", "YEAR": "1987" } ], "xml": '<?xml version="1.0" encoding="UTF-8"?><CATALOG><CD><TITLE>Empire Burlesque</TITLE>' '<ARTIST>Bob Dylan</ARTIST><COUNTRY>USA</COUNTRY><COMPANY>Columbia</COMPANY><PRICE>10.90</PRICE>' '<YEAR>1985</YEAR></CD><CD><TITLE>Hide your heart</TITLE><ARTIST>Bonnie Tyler</ARTIST><COUNTRY>UK</COUNTRY>' '<COMPANY>CBS Records</COMPANY><PRICE>9.90</PRICE><YEAR>1988</YEAR></CD><CD><TITLE>Greatest Hits</TITLE>' '<ARTIST>Dolly Parton</ARTIST><COUNTRY>USA</COUNTRY><COMPANY>RCA</COMPANY><PRICE>9.90</PRICE>' '<YEAR>1982</YEAR></CD><CD><TITLE>Still got the blues</TITLE><ARTIST>Gary Moore</ARTIST>' '<COUNTRY>UK</COUNTRY><COMPANY>Virgin records</COMPANY><PRICE>10.20</PRICE><YEAR>1990</YEAR></CD>' '<CD><TITLE>Eros</TITLE><ARTIST>Eros Ramazzotti</ARTIST><COUNTRY>EU</COUNTRY><COMPANY>BMG</COMPANY>' '<PRICE>9.90</PRICE><YEAR>1997</YEAR></CD><CD><TITLE>One night only</TITLE><ARTIST>Bee Gees</ARTIST>' '<COUNTRY>UK</COUNTRY><COMPANY>Polydor</COMPANY><PRICE>10.90</PRICE><YEAR>1998</YEAR></CD>' '<CD><TITLE>Sylvias Mother</TITLE><ARTIST>Dr.Hook</ARTIST><COUNTRY>UK</COUNTRY><COMPANY>CBS</COMPANY>' '<PRICE>8.10</PRICE><YEAR>1973</YEAR></CD><CD><TITLE>Maggie May</TITLE><ARTIST>Rod Stewart</ARTIST>' '<COUNTRY>UK</COUNTRY><COMPANY>Pickwick</COMPANY><PRICE>8.50</PRICE><YEAR>1990</YEAR></CD>' '<CD><TITLE>Romanza</TITLE><ARTIST>Andrea Bocelli</ARTIST><COUNTRY>EU</COUNTRY><COMPANY>Polydor</COMPANY>' '<PRICE>10.80</PRICE><YEAR>1996</YEAR></CD><CD><TITLE>When a man loves a woman</TITLE>' '<ARTIST>Percy Sledge</ARTIST><COUNTRY>USA</COUNTRY><COMPANY>Atlantic</COMPANY><PRICE>8.70</PRICE>' '<YEAR>1987</YEAR></CD><CD><TITLE>Black angel</TITLE><ARTIST>Savage Rose</ARTIST><COUNTRY>EU</COUNTRY>' '<COMPANY>Mega</COMPANY><PRICE>10.90</PRICE><YEAR>1995</YEAR></CD><CD><TITLE>1999 Grammy Nominees</TITLE>' '<ARTIST>Many</ARTIST><COUNTRY>USA</COUNTRY><COMPANY>Grammy</COMPANY><PRICE>10.20</PRICE><YEAR>1999</YEAR>' '</CD><CD><TITLE>For the good times</TITLE><ARTIST>Kenny Rogers</ARTIST><COUNTRY>UK</COUNTRY>' '<COMPANY>Mucik Master</COMPANY><PRICE>8.70</PRICE><YEAR>1995</YEAR></CD><CD><TITLE>Big Willie style</TITLE>' '<ARTIST>Will Smith</ARTIST><COUNTRY>USA</COUNTRY><COMPANY>Columbia</COMPANY><PRICE>9.90</PRICE>' '<YEAR>1997</YEAR></CD><CD><TITLE>Tupelo Honey</TITLE><ARTIST>Van Morrison</ARTIST><COUNTRY>UK</COUNTRY>' '<COMPANY>Polydor</COMPANY><PRICE>8.20</PRICE><YEAR>1971</YEAR></CD><CD><TITLE>Soulsville</TITLE>' '<ARTIST>Jorn Hoel</ARTIST><COUNTRY>Norway</COUNTRY><COMPANY>WEA</COMPANY><PRICE>7.90</PRICE>' '<YEAR>1996</YEAR></CD><CD><TITLE>The very best of</TITLE><ARTIST>Cat Stevens</ARTIST><COUNTRY>UK</COUNTRY>' '<COMPANY>Island</COMPANY><PRICE>8.90</PRICE><YEAR>1990</YEAR></CD><CD><TITLE>Stop</TITLE>' '<ARTIST>Sam Brown</ARTIST><COUNTRY>UK</COUNTRY><COMPANY>A and M</COMPANY><PRICE>8.90</PRICE>' '<YEAR>1988</YEAR></CD><CD><TITLE>Bridge of Spies</TITLE><ARTIST>T\'Pau</ARTIST><COUNTRY>UK</COUNTRY>' '<COMPANY>Siren</COMPANY><PRICE>7.90</PRICE><YEAR>1987</YEAR></CD><CD><TITLE>Private Dancer</TITLE>' '<ARTIST>Tina Turner</ARTIST><COUNTRY>UK</COUNTRY><COMPANY>Capitol</COMPANY><PRICE>8.90</PRICE>' '<YEAR>1983</YEAR></CD><CD><TITLE>Midt om natten</TITLE><ARTIST>Kim Larsen</ARTIST><COUNTRY>EU</COUNTRY>' '<COMPANY>Medley</COMPANY><PRICE>7.80</PRICE><YEAR>1983</YEAR></CD><CD><TITLE>Pavarotti Gala Concert</TITLE>' '<ARTIST>Luciano Pavarotti</ARTIST><COUNTRY>UK</COUNTRY><COMPANY>DECCA</COMPANY><PRICE>9.90</PRICE>' '<YEAR>1991</YEAR></CD><CD><TITLE>The dock of the bay</TITLE><ARTIST>Otis Redding</ARTIST>' '<COUNTRY>USA</COUNTRY><COMPANY>Stax Records</COMPANY><PRICE>7.90</PRICE><YEAR>1968</YEAR></CD><CD>' '<TITLE>Picture book</TITLE><ARTIST>Simply Red</ARTIST><COUNTRY>EU</COUNTRY><COMPANY>Elektra</COMPANY>' '<PRICE>7.20</PRICE><YEAR>1985</YEAR></CD><CD><TITLE>Red</TITLE><ARTIST>The Communards</ARTIST>' '<COUNTRY>UK</COUNTRY><COMPANY>London</COMPANY><PRICE>7.80</PRICE><YEAR>1987</YEAR></CD><CD>' '<TITLE>Unchain my heart</TITLE><ARTIST>Joe Cocker</ARTIST><COUNTRY>USA</COUNTRY><COMPANY>EMI</COMPANY>' '<PRICE>8.20</PRICE><YEAR>1987</YEAR></CD></CATALOG>' } def convert_user_to_xml(users): """ Convert a user (or a list of users) to a XML string. Why a function to do this, since this is a dummy database with hard-coded values? Well, it must be fun for me too. :param users: user or list of users. :return: xml string """ base = '<user><id is_active="{is_active}" is_vip="{is_vip}">{id}</id><first_name>{first_name}</first_name>' \ '<last_name>{first_name}</last_name><email>{email}</email><is_active>{is_active}</is_active>' \ '<is_vip>{is_vip}</is_vip><site>https://raccoon.ninja</site></user>' if not isinstance(users, (list, tuple)): users = [users,] user_list = list() for user in users: user_list.append(base.format( id=user.get("id"), first_name=user.get("first_name"), last_name=user.get("last_name"), email=user.get("email"), is_active=user.get("is_active"), is_vip=user.get("is_vip") )) return """<?xml version="1.0" encoding="UTF-8"?><users>{}</users>""".format("".join(user_list))
the-stack_106_24591
# Copyright (c) 2012-2018, Mark Peek <[email protected]> # All rights reserved. # # See LICENSE file for full license. from . import AWSObject, AWSProperty, Tags from .validators import boolean, integer, json_checker, double try: from awacs.aws import Policy policytypes = (dict, Policy) except ImportError: policytypes = dict, class RetentionPeriod(AWSProperty): props = { 'NumberOfDays': (integer, False), 'Unlimited': (boolean, False), } class Channel(AWSObject): resource_type = "AWS::IoTAnalytics::Channel" props = { 'ChannelName': (basestring, False), 'RetentionPeriod': (RetentionPeriod, False), 'Tags': ((Tags, list), False), } class AddAttributes(AWSProperty): props = { 'Attributes': (json_checker, False), 'Name': (basestring, False), 'Next': (basestring, False), } class ActivityChannel(AWSProperty): props = { 'ChannelName': (basestring, False), 'Name': (basestring, False), 'Next': (basestring, False), } class Datastore(AWSProperty): props = { 'DatastoreName': (basestring, False), 'Name': (basestring, False), } class DeviceRegistryEnrich(AWSProperty): props = { 'Attribute': (basestring, False), 'Name': (basestring, False), 'Next': (basestring, False), 'RoleArn': (basestring, False), 'ThingName': (basestring, False), } class DeviceShadowEnrich(AWSProperty): props = { 'Attribute': (basestring, False), 'Name': (basestring, False), 'Next': (basestring, False), 'RoleArn': (basestring, False), 'ThingName': (basestring, False), } class Filter(AWSProperty): props = { 'Filter': (basestring, False), 'Name': (basestring, False), 'Next': (basestring, False), } class Lambda(AWSProperty): props = { 'BatchSize': (integer, False), 'LambdaName': (basestring, False), 'Name': (basestring, False), 'Next': (basestring, False), } class Math(AWSProperty): props = { 'Attribute': (basestring, False), 'Math': (basestring, False), 'Name': (basestring, False), 'Next': (basestring, False), } class RemoveAttributes(AWSProperty): props = { 'Attributes': ([basestring], False), 'Name': (basestring, False), 'Next': (basestring, False), } class SelectAttributes(AWSProperty): props = { 'Attributes': ([basestring], False), 'Name': (basestring, False), 'Next': (basestring, False), } class Activity(AWSProperty): props = { 'AddAttributes': (AddAttributes, False), 'Channel': (ActivityChannel, False), 'Datastore': (Datastore, False), 'DeviceRegistryEnrich': (DeviceRegistryEnrich, False), 'DeviceShadowEnrich': (DeviceShadowEnrich, False), 'Filter': (Filter, False), 'Lambda': (Lambda, False), 'Math': (Math, False), 'RemoveAttributes': (RemoveAttributes, False), 'SelectAttributes': (SelectAttributes, False), } class Pipeline(AWSObject): resource_type = "AWS::IoTAnalytics::Pipeline" props = { 'PipelineActivities': ([Activity], True), 'PipelineName': (basestring, False), 'Tags': ((Tags, list), False), } class RetentionPeriod(AWSProperty): props = { 'NumberOfDays': (integer, False), 'Unlimited': (boolean, False), } class Datastore(AWSObject): resource_type = "AWS::IoTAnalytics::Datastore" props = { 'DatastoreName': (basestring, False), 'RetentionPeriod': (RetentionPeriod, False), 'Tags': ((Tags, list), False), } class ResourceConfiguration(AWSProperty): props = { 'ComputeType': (basestring, True), 'VolumeSizeInGB': (integer, True), } class DatasetContentVersionValue(AWSProperty): props = { 'DatasetName': (basestring, False), } class OutputFileUriValue(AWSProperty): props = { 'FileName': (basestring, False), } class Variable(AWSProperty): props = { 'DatasetContentVersionValue': (DatasetContentVersionValue, False), 'DoubleValue': (double, False), 'OutputFileUriValue': (OutputFileUriValue, False), 'StringValue': (basestring, False), 'VariableName': (basestring, False) } class ContainerAction(AWSProperty): props = { 'ExecutionRoleArn': (basestring, True), 'Image': (basestring, True), 'ResourceConfiguration': (ResourceConfiguration, False), 'Variables': ([Variable], False), } class DeltaTime(AWSProperty): props = { 'TimeExpression': (basestring, True), 'OffsetSeconds': (integer, True), } class QueryActionFilter(AWSProperty): props = { 'DeltaTime': (DeltaTime, False), } class QueryAction(AWSProperty): props = { 'Filters': ([QueryActionFilter], False), 'SqlQuery': (basestring, False), } class Action(AWSProperty): props = { 'ActionName': (basestring, True), 'ContainerAction': (ContainerAction, False), 'QueryAction': (QueryAction, False) } class IotEventsDestinationConfiguration(AWSProperty): props = { 'InputName': (basestring, True), 'RoleArn': (basestring, True), } class GlueConfiguration(AWSProperty): props = { 'DatabaseName': (basestring, True), 'TableName': (basestring, True), } class S3DestinationConfiguration(AWSProperty): props = { 'Bucket': (basestring, True), 'GlueConfiguration': (GlueConfiguration, False), 'Key': (basestring, True), 'RoleArn': (basestring, True), } class DatasetContentDeliveryRuleDestination(AWSProperty): props = { 'IotEventsDestinationConfiguration': (IotEventsDestinationConfiguration, False), 'S3DestinationConfiguration': (S3DestinationConfiguration, False), } class DatasetContentDeliveryRule(AWSProperty): props = { 'Destination': (DatasetContentDeliveryRuleDestination, True), 'EntryName': (basestring, False), } class Schedule(AWSProperty): props = { 'ScheduleExpression': (basestring, True), } class TriggeringDataset(AWSProperty): props = { 'DatasetName': (basestring, True), } class Trigger(AWSProperty): props = { 'Schedule': (Schedule, False), 'TriggeringDataset': (TriggeringDataset, False), } class VersioningConfiguration(AWSProperty): props = { 'MaxVersions': (integer, False), 'Unlimited': (boolean, False), } class Dataset(AWSObject): resource_type = "AWS::IoTAnalytics::Dataset" props = { 'Actions': ([Action], True), 'ContentDeliveryRules': ([DatasetContentDeliveryRule], False), 'DatasetName': (basestring, False), 'RetentionPeriod': (RetentionPeriod, False), 'Tags': (Tags, False), 'Triggers': ([Trigger], False), 'VersioningConfiguration': (VersioningConfiguration, False), }
the-stack_106_24592
"""Master server for lab-nanny Collects data from the different nodes and makes it available to the clients using websockets. The functionality of the master server is to join the data from the different nodes and make it available in two forms: -- clients using websockets -- store it in a database To do this, the master uses the Masterserver.tick method, which -- submits updates to the clients -- sends requests for data to the nodes (in this order) By centralizing the communications (that is, nodes send updates to MasterServer, which then sends them to the clients), we reduce the amount of connections required from (#clients * #nodes) to (#clients + #nodes) The master server handles the connections both with the inside (nodes) and the outside (clients) using two classes: NodeHandler and ClientHandler, which are classes derived from the tornado.websocket.WebSocketHandler class. The server uses an auxilitary communications handler class (CommsHandler) which keeps a list of nodes and clients, and the last data from the nodes. """ # Master server for lab-nanny # # Collects data from the different nodes and makes it available to the clients through websockets. #!/usr/bin/python #TODO: have a way to "disconnect" the nodes when they do disconnect. import tornado.httpserver import tornado.websocket import tornado.ioloop as ioloop import tornado.web import tornado from tornado.websocket import WebSocketClosedError import signal import argparse import time from database.DBHandler import DBHandler as DBHandler from servers.header import MST_HEADER import uuid import socket import json from json2html import json2html SOCKETPORT = 8001 SLAVE_SOCKETNAME = r'/nodes_ws' CLIENT_SOCKETNAME = r'/client_ws' STATUS_ADDR = r'/status' DEFAULTMESSAGE = 'X,50,0' DEFAULTDBNAME = 'example.db' PERIODICITY = 100 DB_PERIODICITY = 30000 #Save data to db every... TFORMAT = '%y/%m/%d %H:%M:%S' METAKEYWORD = 'meta' CONNCLOSEDSTR = 'Connection closed' condition_trap = {'name':'Trap unlock', 'obs_lab':'lab7', 'obs_ch':'ch4', 'obs_range':(1,1.5), 'target_lab':'lab7', 'target_ch':13, 'target_val':1, 'message':'Trap unlocked'} condition_temp = {'name':'Temperature changes', 'obs_lab':'lab7', 'obs_ch':'ch2', 'obs_range':(19,23), 'target_lab':'lab7', 'target_ch':13, 'target_val':1, 'message':'Temperature outside of bounds'} class MasterServer(object): """ Class that runs the Master Server for lab-nanny. It keeps a NodeHandler and a ClientHandler object to communicate with the slave nodes and the clients, which in turn use an instance of the CommsHandler class to do internal communications. Periodically (every fraction of a second), the Master server polls the nodes for data, and sends the results to the clients. Additionally, with a different periodicity (~10s) the Master server saves a copy of the data to a database. """ def __init__(self, slave_socketname = SLAVE_SOCKETNAME, socketport=SOCKETPORT, client_socketname=CLIENT_SOCKETNAME, periodicity=PERIODICITY, db_periodicity = DB_PERIODICITY, status_addr = STATUS_ADDR, verbose = True): #Init parameters self.socketport = socketport self.slave_socketname = slave_socketname self.client_socketname = client_socketname self.status_addr = status_addr self.callback_periodicity = periodicity self.db_callback_periodicity = db_periodicity self.verbose = verbose self.callback = [] self.dbcallback = [] self.HTTPserver = [] self._conditions = [] # list of dictionaries # Create instance of the CommsHandler to mediate communications between # node and client handlers self.comms_handler = CommsHandler() # Add callback db_metadata_append upon change to the metadata in nodes self.comms_handler.bind_to_metadata_change(self.db_metadata_append) # Also, start communication with the database self.db_handler = DBHandler(db_name=DEFAULTDBNAME) # Init program self._conditions.append(condition_trap) self._conditions.append(condition_temp) self.run() def run(self): """ Main function of the MasterServer class. It creates a tornado web application with two websocket handlers and one web RequestHandler: the two websockets are one for the nodes, and one for the clients, listening on the same port (self.socket_port), but using different names (the defauls are '/nodes_ws' and '/clients_ws' respectively); the web request handler shows information about the status of the master server using the same socket and a different address ('/status'). Afterwards, this method initialises two periodic callbacks: - One that manages the node/client communications, typically with a sub-second periodicity - Another one to store long-term traces of the data to a database (every ~10s) """ self.application = tornado.web.Application([(self.slave_socketname, NodeHandler, {'comms_handler':self.comms_handler, 'verbose':self.verbose}), (self.client_socketname, ClientHandler, {'comms_handler':self.comms_handler, 'verbose':self.verbose}), (self.status_addr, StatusHandler, {'comms_handler':self.comms_handler})]) try: self.HTTPserver = self.application.listen(self.socketport) fqdn = socket.getfqdn() alias = socket.gethostbyname(socket.gethostname()) print('Setting up connections:\n-----------------------------------') print('Status page: @ {}:{}{}, ({})'.format(fqdn, self.socketport, self.status_addr, alias)) print('Websockets opened:') print('-Client WS EST @ {}:{}{}, ({})'.format(fqdn, self.socketport, self.client_socketname, alias)) print('-Nodes WS EST @ {}:{}{}, ({})'.format(fqdn, self.socketport, self.slave_socketname, alias)) print('-----------------------------------') except socket.error as error: #Catch the error if the connections are already present: if error.errno == 10048: pass else: raise self.callback= ioloop.PeriodicCallback(self.tick, self.callback_periodicity) self.callback.start() print('\nStarting ioloop') # To save to DB: self.dbcallback= ioloop.PeriodicCallback(self.db_tick, self.db_callback_periodicity) self.dbcallback.start() try: ioloop.IOLoop.instance().start() except KeyboardInterrupt: ioloop.IOLoop.instance().stop() print('(MST {}) Exiting gracefully... '.format(time.strftime(TFORMAT))) finally: self.on_close() def tick(self): """ Function called periodically to manage node/client communication - First, the function sends the last data (obtained from the nodes) to the clients - Then, it requests more data to the nodes. By first sending the data, and then asking for more, we make sure the nodes have time to send the data back to the MasterServer before sending that data to the clients; this comes at the expense of sending "old data" (with a repetition period), which has no impact unless the application is time-critical. """ # TODO: should only send data to the right client connection?, instead of relying on the nodes to check whether the message is for them? try: # If the NodeHandler decides to write messages to the clients upon # reception of each message, comment this line ClientHandler.broadcast(self.comms_handler.last_data) # Write a command with no side consequences. The 'X' ensures that # all nodes reply msg = DEFAULTMESSAGE broadcast(self.comms_handler.nodes,msg) self.check_conditions() except WebSocketClosedError: print('Websocket closed') #In case we want to exit, we send a KeyboardInterrupt except KeyboardInterrupt: raise def db_tick(self): """ Function called periodically to save data to the database This function generates an entry in the database for each node ID held in the CommsHandler.last_data instance. The details of writing to the database are found in the database.DBHandler module. """ # Write values to db (called every N seconds, probably 30-60) # if self.verbose: ## CHECK HERE IF THE METADATA HAS BEEN ADDED num_connected_devices = len(self.comms_handler.last_data) if num_connected_devices>0: print('(MST {}) Adding {} entries to DB '\ .format(time.strftime(TFORMAT),num_connected_devices)) for id in self.comms_handler.last_data: datadict = self.comms_handler.last_data[id] # Add data to observations table # Check if table with name "id" exists # Add data to specific table for ID self.db_handler.add_database_entry(datadict) self.db_handler.commit() def db_metadata_append(self,idx): """ Function called when a new node transmits its metadata This function generates an entry in the database for each new node The entry in the database is composed of a timestamp, a username, and the JSON string. """ print('(MST {}) Updating metadata'.format(time.strftime(TFORMAT))) # Metadata can be updated upon (re)connection, or when the connection # is closing. When (re)connecting, the metadata is a dictionary # which contains, amongst others, a 'user' key. This is not the # case upon closing the connection, thus we need the user from # somewhere else. if isinstance(self.comms_handler.metadata[idx],dict): user = self.comms_handler.metadata[idx]['user'] else: user = self.comms_handler.last_data[idx]['user'] self.db_handler.register_new_metadata(user,self.comms_handler.metadata[idx]) def on_close(self): self.db_handler.close() def check_conditions(self): for condition in self._conditions: # if obs_lab/obs_ch outside obs_range: # send target_lab/target_ch the target_val lab = condition['obs_lab'] observ_channel = condition['obs_ch'] range_boundary = condition['obs_range'] target_lab = condition['target_lab'] target_channel = condition['target_ch'] target_value = condition['target_val'] node_id = self.comms_handler.get_nodeID_by_user(lab) if len(node_id)>0: current_observed_val = self.comms_handler.last_data[node_id[0]][observ_channel] if not range_boundary[0]<= current_observed_val <= range_boundary[1]: # Add here entry to database when condition is not met target_id = self.comms_handler.get_nodeID_by_user(target_lab) msg = target_lab+','+str(target_channel)+','+str(target_value) broadcast(self.comms_handler.nodes,msg) print(condition['message']) print('{} <= {} <= {}'.format(range_boundary[0],current_observed_val,range_boundary[1])) else: pass class NodeHandler(tornado.websocket.WebSocketHandler): """ Class that handles the communication via websockets with the slave nodes. """ node_dict = {} def initialize(self, comms_handler,verbose=True): """Initialisation of an object of the NodeHandler class. We provide a communications handler object which keeps a list of the nodes and clients, and a list of the last messages from the nodes. :param comms_handler: :type comms_handler: CommsHandler :param verbose: True for verbose output :return: """ self.__comms_handler = comms_handler self.verbose = verbose def open(self): """ Callback executed upon opening a new slave node connection. This function adds the new connection to the class "nodes" list and provides a unique id to the connection using the uuid.uuid4().hex function. :return: """ # We could do here the configuration of the node, like a dictionary with the channels exposed #self.write_message('Init') self.id = uuid.uuid4().hex NodeHandler.node_dict[self.id] = self ip = self.request.remote_ip print('(NDH {}) New NODE {} ({}). (out of {}) ' \ .format(time.strftime(TFORMAT), socket.getfqdn(ip), ip, len(NodeHandler.node_dict))) print('(NDH) UUID: {}'.format(self.id)) def on_message(self, message): """ Callback executed upon message reception from the master server. The message is a JSON string, which is converted to a dictionary. :param message: :return: """ ## TODO: maybe we can code here a case in which we configure ## For example, we can write a "configure" key in the dictionary message_dict = json.loads(message) if METAKEYWORD not in message_dict: if self.verbose: if not message_dict['error']: print('(NDH) time: {0:.3f}, user: {1}, error: {2}, ch0: {3}'\ .format(message_dict["x"], message_dict["user"], message_dict["error"], message_dict["ch0"])) else: print('(NDH) time: {0:.3f}, user: {1}, error: {2}'\ .format(message_dict["x"], message_dict["user"], message_dict["error"])) #There are two ways in which we can pass the data to the clients: # - Store the data in the self.__comms_handler.last_data dictionary # - Send the data to the clients everytime a message is received # The first one helps with synchronizing sending the data to the clients. # The second one is more immediate, but it might impact the performance of the network, # since we communicate with each of the clients on every message received. # To use the first method, uncomment this line, and make sure that the "tick()" function # in the master server uses : self.__comms_handler.last_data[self.id] = message_dict else: self.user = message_dict['user'] self.__comms_handler.add_metadata(self.id,message_dict) # To use the second method, uncomment this other line #for client in self.__comms_handler.clients: # client.write_message(message) def on_close(self): # Add log to metadata table in database self.__comms_handler.add_metadata(self.id,CONNCLOSEDSTR) # Remove nodehandler from the comms_handler instance and the class' # node_list. self.__comms_handler.remove_key(self.id) NodeHandler.node_dict.pop(self.id, None) ip = self.request.remote_ip user = self.user print('(NDH {}) Connection with {} ({}) closed '\ .format(time.strftime(TFORMAT), ip, user)) def check_origin(self, origin): #TODO: change this to actually check the origin return True @classmethod def broadcast_to_nodes(cls,msg=DEFAULTMESSAGE): """ Function to send a message to all the nodes held in the self.__comms_handler nodes list. :param msg: message to broadcast :return: """ #In case we want to exit, we send a KeyboardInterrupt try: broadcast(cls.node_dict, msg) except KeyboardInterrupt: raise class ClientHandler(tornado.websocket.WebSocketHandler): """ Class that handles the communication via websockets with the slave nodes. """ client_list = [] def initialize(self, comms_handler,verbose=False): """ Initialisation of an object of the ClientHandler class. We provide a communications handler object which keeps a list of the nodes and clients, and a list of the last messages from the nodes. :param comms_handler: :type comms_handler: CommsHandler :param verbose: True for verbose output :return: """ self.__comms_handler = comms_handler self.verbose = verbose def open(self): """ Callback executed upon opening a new client connection. This function adds the new connection to the class "client" list. :return: """ # We could do here the configuration of the node, like a dictionary with the channels exposed ClientHandler.client_list.append(self) print('(CLH {}) New connection from {}. Total of clients: {}'\ .format(time.strftime(TFORMAT), self.request.remote_ip, len(ClientHandler.client_list))) def on_message(self, message): """ Callback executed upon message reception from the client. The message is a JSON string, which is then broadcasted to all the nodes sequentially. :param message: :return: """ if self.verbose: print('(CLH {}) Message received from client: {}'\ .format(time.strftime(TFORMAT), message)) for node in self.__comms_handler.nodes: self.__comms_handler.nodes[node].write_message(message) def on_close(self): print('(CLH {}) Connection closed'\ .format(time.strftime(TFORMAT))) ClientHandler.client_list.remove(self) print(ClientHandler.client_list) def check_origin(self, origin): #TODO: should actually check the origin return True @classmethod def broadcast(cls, msg): for client in cls.client_list: client.write_message(msg) class StatusHandler(tornado.web.RequestHandler): def initialize(self, comms_handler): """Initialisation of an object of the NodeHandler class. We provide a communications handler object which keeps a list of the nodes and clients, and a list of the last messages from the nodes. :param comms_handler: :type comms_handler: CommsHandler :param verbose: True for verbose output :return: """ self.__comms_handler = comms_handler def get(self): # Time fetch_time = time.strftime(TFORMAT) self.write('<meta http-equiv="refresh" content="10">') self.write(' <style> .wrapper {display:flex}</style>') self.write('<p> TIME: {}</p>'.format(fetch_time)) # Nodes num_nodes = len(self.__comms_handler.nodes) self.write("<h3>Number of connected nodes: {}</h3><ul>".format(num_nodes)) for node_key in self.__comms_handler.nodes: node = self.__comms_handler.nodes[node_key] if 'user' in node.__dict__: user = node.user else: user ='no ID' self.write('<li>{} ({})</li>'.format(socket.getfqdn(node.request.remote_ip), user)) # Clients num_clients = len(self.__comms_handler.clients) self.write("</ul><h3>Number of connected clients: {}</h3><ul style>".format(num_clients)) for client in self.__comms_handler.clients: self.write('<li>{}</li>'.format(socket.getfqdn(client.request.remote_ip))) self.write("</ul><h3>Last data: </h3>") self.write("<div class=wrapper>") for node_id in self.__comms_handler.last_data: last_data = self.__comms_handler.last_data[node_id] self.write('<p>{} {}</p>'.format(last_data['user'], json2html.convert(json=last_data))) self.write("</div>") class CommsHandler(object): """ Class that keeps references of the nodes and the clients for communication purposes It also keeps a dictionary with a reference to the last data sent (self.last_data) with the keys being the ids of the NodeHandler instances, and another one (self.metadata) which stores the metadata (that is, the "contents" of each channel in the self.last_data dictionaries). Whenever the connection between the master and the node is (re) established, the metadata corresponding to that id needs to be recorded by an external class. To do this, we use an observer pattern in which the external class observes changes to a property (in this case, self.last_metadata_id) from the outside using the self.bind_to function and perform some callback whenever this value changes. """ def __init__(self): self.nodes = NodeHandler.node_dict #list self.clients = ClientHandler.client_list #list #Data dictionary self.last_data = {} #dictionary #Metadata dictionary self.metadata = {} #dictionary self._last_metadata_id = [] self._metadata_observers= [] def get_last_metadata_id(self): return self._last_metadata_id def set_last_metadata_id(self, value): #print('setting new metadata id') self._last_metadata_id = value for callback in self._metadata_observers: callback(value) last_metadata_id = property(get_last_metadata_id,set_last_metadata_id) def bind_to_metadata_change(self, callback): ''' Binds callbacks to changes in the values of self._last_metadata_id This function is used to add metadata to the database upon (re)connection of the server/client link. :param callback: :return: ''' self._metadata_observers.append(callback) def add_metadata(self, id, contents): print(contents) self.metadata[id] = contents self.last_metadata_id = id # This triggers the callback def remove_key(self,id): """ Removes the node with a given id from the comms_handler. We need to make sure that both the last_data and the metadata entries are removed :param id: the UUID given by the MasterServer to the node :type id: str :return: """ self.last_data.pop(id,None) self.metadata.pop(id,None) def get_nodeID_by_user(self,user): """ Returns the node.id of the node with a given user name Since the user is first obtained after getting data, we infer it from the information in the self.last_data dictionary. :param user: The laboratory name :type user: str :return: Returns the UUID given by the master server to the node with a given username """ return [key for key in self.last_data if self.last_data[key]['user'] == user] ######################################## def broadcast(dictionary_of_endpoints, msg): """ Broadcasts a message to a list of endpoints using the "write_message" method. :param dictionary_of_endpoints: :param msg: :return: """ for endpoint in dictionary_of_endpoints: dictionary_of_endpoints[endpoint].write_message(msg) def main1(periodicity=100, verbose=0): my_master_server = MasterServer(periodicity=periodicity, verbose=verbose) return my_master_server def signal_handler(signum,frame): tornado.ioloop.IOLoop.instance().stop() if __name__ == "__main__": print(MST_HEADER) print parser = argparse.ArgumentParser() parser.add_argument("-pr","--periodicity", help="periodicity to poll nodes", type=int,default=PERIODICITY) parser.add_argument("-dbpr","--database_periodicity", help="periodicity of saving data to database", type=int,default=DB_PERIODICITY) parser.add_argument("-v","--verbose",help="Activate verbose", type=int,default=0) args = parser.parse_args() signal.signal(signal.SIGINT,signal_handler) main1(periodicity=args.periodicity, verbose=args.verbose)
the-stack_106_24593
"""Tests for hermite module. """ from __future__ import division, absolute_import, print_function import numpy as np import numpy.polynomial.hermite as herm from numpy.polynomial.polynomial import polyval from numpy.testing import ( TestCase, assert_almost_equal, assert_raises, assert_equal, assert_, run_module_suite) H0 = np.array([1]) H1 = np.array([0, 2]) H2 = np.array([-2, 0, 4]) H3 = np.array([0, -12, 0, 8]) H4 = np.array([12, 0, -48, 0, 16]) H5 = np.array([0, 120, 0, -160, 0, 32]) H6 = np.array([-120, 0, 720, 0, -480, 0, 64]) H7 = np.array([0, -1680, 0, 3360, 0, -1344, 0, 128]) H8 = np.array([1680, 0, -13440, 0, 13440, 0, -3584, 0, 256]) H9 = np.array([0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512]) Hlist = [H0, H1, H2, H3, H4, H5, H6, H7, H8, H9] def trim(x): return herm.hermtrim(x, tol=1e-6) class TestConstants(TestCase): def test_hermdomain(self): assert_equal(herm.hermdomain, [-1, 1]) def test_hermzero(self): assert_equal(herm.hermzero, [0]) def test_hermone(self): assert_equal(herm.hermone, [1]) def test_hermx(self): assert_equal(herm.hermx, [0, .5]) class TestArithmetic(TestCase): x = np.linspace(-3, 3, 100) def test_hermadd(self): for i in range(5): for j in range(5): msg = "At i=%d, j=%d" % (i, j) tgt = np.zeros(max(i, j) + 1) tgt[i] += 1 tgt[j] += 1 res = herm.hermadd([0]*i + [1], [0]*j + [1]) assert_equal(trim(res), trim(tgt), err_msg=msg) def test_hermsub(self): for i in range(5): for j in range(5): msg = "At i=%d, j=%d" % (i, j) tgt = np.zeros(max(i, j) + 1) tgt[i] += 1 tgt[j] -= 1 res = herm.hermsub([0]*i + [1], [0]*j + [1]) assert_equal(trim(res), trim(tgt), err_msg=msg) def test_hermmulx(self): assert_equal(herm.hermmulx([0]), [0]) assert_equal(herm.hermmulx([1]), [0, .5]) for i in range(1, 5): ser = [0]*i + [1] tgt = [0]*(i - 1) + [i, 0, .5] assert_equal(herm.hermmulx(ser), tgt) def test_hermmul(self): # check values of result for i in range(5): pol1 = [0]*i + [1] val1 = herm.hermval(self.x, pol1) for j in range(5): msg = "At i=%d, j=%d" % (i, j) pol2 = [0]*j + [1] val2 = herm.hermval(self.x, pol2) pol3 = herm.hermmul(pol1, pol2) val3 = herm.hermval(self.x, pol3) assert_(len(pol3) == i + j + 1, msg) assert_almost_equal(val3, val1*val2, err_msg=msg) def test_hermdiv(self): for i in range(5): for j in range(5): msg = "At i=%d, j=%d" % (i, j) ci = [0]*i + [1] cj = [0]*j + [1] tgt = herm.hermadd(ci, cj) quo, rem = herm.hermdiv(tgt, ci) res = herm.hermadd(herm.hermmul(quo, ci), rem) assert_equal(trim(res), trim(tgt), err_msg=msg) class TestEvaluation(TestCase): # coefficients of 1 + 2*x + 3*x**2 c1d = np.array([2.5, 1., .75]) c2d = np.einsum('i,j->ij', c1d, c1d) c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) # some random values in [-1, 1) x = np.random.random((3, 5))*2 - 1 y = polyval(x, [1., 2., 3.]) def test_hermval(self): #check empty input assert_equal(herm.hermval([], [1]).size, 0) #check normal input) x = np.linspace(-1, 1) y = [polyval(x, c) for c in Hlist] for i in range(10): msg = "At i=%d" % i tgt = y[i] res = herm.hermval(x, [0]*i + [1]) assert_almost_equal(res, tgt, err_msg=msg) #check that shape is preserved for i in range(3): dims = [2]*i x = np.zeros(dims) assert_equal(herm.hermval(x, [1]).shape, dims) assert_equal(herm.hermval(x, [1, 0]).shape, dims) assert_equal(herm.hermval(x, [1, 0, 0]).shape, dims) def test_hermval2d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test exceptions assert_raises(ValueError, herm.hermval2d, x1, x2[:2], self.c2d) #test values tgt = y1*y2 res = herm.hermval2d(x1, x2, self.c2d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = herm.hermval2d(z, z, self.c2d) assert_(res.shape == (2, 3)) def test_hermval3d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test exceptions assert_raises(ValueError, herm.hermval3d, x1, x2, x3[:2], self.c3d) #test values tgt = y1*y2*y3 res = herm.hermval3d(x1, x2, x3, self.c3d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = herm.hermval3d(z, z, z, self.c3d) assert_(res.shape == (2, 3)) def test_hermgrid2d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test values tgt = np.einsum('i,j->ij', y1, y2) res = herm.hermgrid2d(x1, x2, self.c2d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = herm.hermgrid2d(z, z, self.c2d) assert_(res.shape == (2, 3)*2) def test_hermgrid3d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test values tgt = np.einsum('i,j,k->ijk', y1, y2, y3) res = herm.hermgrid3d(x1, x2, x3, self.c3d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = herm.hermgrid3d(z, z, z, self.c3d) assert_(res.shape == (2, 3)*3) class TestIntegral(TestCase): def test_hermint(self): # check exceptions assert_raises(ValueError, herm.hermint, [0], .5) assert_raises(ValueError, herm.hermint, [0], -1) assert_raises(ValueError, herm.hermint, [0], 1, [0, 0]) # test integration of zero polynomial for i in range(2, 5): k = [0]*(i - 2) + [1] res = herm.hermint([0], m=i, k=k) assert_almost_equal(res, [0, .5]) # check single integration with integration constant for i in range(5): scl = i + 1 pol = [0]*i + [1] tgt = [i] + [0]*i + [1/scl] hermpol = herm.poly2herm(pol) hermint = herm.hermint(hermpol, m=1, k=[i]) res = herm.herm2poly(hermint) assert_almost_equal(trim(res), trim(tgt)) # check single integration with integration constant and lbnd for i in range(5): scl = i + 1 pol = [0]*i + [1] hermpol = herm.poly2herm(pol) hermint = herm.hermint(hermpol, m=1, k=[i], lbnd=-1) assert_almost_equal(herm.hermval(-1, hermint), i) # check single integration with integration constant and scaling for i in range(5): scl = i + 1 pol = [0]*i + [1] tgt = [i] + [0]*i + [2/scl] hermpol = herm.poly2herm(pol) hermint = herm.hermint(hermpol, m=1, k=[i], scl=2) res = herm.herm2poly(hermint) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with default k for i in range(5): for j in range(2, 5): pol = [0]*i + [1] tgt = pol[:] for k in range(j): tgt = herm.hermint(tgt, m=1) res = herm.hermint(pol, m=j) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with defined k for i in range(5): for j in range(2, 5): pol = [0]*i + [1] tgt = pol[:] for k in range(j): tgt = herm.hermint(tgt, m=1, k=[k]) res = herm.hermint(pol, m=j, k=list(range(j))) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with lbnd for i in range(5): for j in range(2, 5): pol = [0]*i + [1] tgt = pol[:] for k in range(j): tgt = herm.hermint(tgt, m=1, k=[k], lbnd=-1) res = herm.hermint(pol, m=j, k=list(range(j)), lbnd=-1) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with scaling for i in range(5): for j in range(2, 5): pol = [0]*i + [1] tgt = pol[:] for k in range(j): tgt = herm.hermint(tgt, m=1, k=[k], scl=2) res = herm.hermint(pol, m=j, k=list(range(j)), scl=2) assert_almost_equal(trim(res), trim(tgt)) def test_hermint_axis(self): # check that axis keyword works c2d = np.random.random((3, 4)) tgt = np.vstack([herm.hermint(c) for c in c2d.T]).T res = herm.hermint(c2d, axis=0) assert_almost_equal(res, tgt) tgt = np.vstack([herm.hermint(c) for c in c2d]) res = herm.hermint(c2d, axis=1) assert_almost_equal(res, tgt) tgt = np.vstack([herm.hermint(c, k=3) for c in c2d]) res = herm.hermint(c2d, k=3, axis=1) assert_almost_equal(res, tgt) class TestDerivative(TestCase): def test_hermder(self): # check exceptions assert_raises(ValueError, herm.hermder, [0], .5) assert_raises(ValueError, herm.hermder, [0], -1) # check that zeroth deriviative does nothing for i in range(5): tgt = [0]*i + [1] res = herm.hermder(tgt, m=0) assert_equal(trim(res), trim(tgt)) # check that derivation is the inverse of integration for i in range(5): for j in range(2, 5): tgt = [0]*i + [1] res = herm.hermder(herm.hermint(tgt, m=j), m=j) assert_almost_equal(trim(res), trim(tgt)) # check derivation with scaling for i in range(5): for j in range(2, 5): tgt = [0]*i + [1] res = herm.hermder(herm.hermint(tgt, m=j, scl=2), m=j, scl=.5) assert_almost_equal(trim(res), trim(tgt)) def test_hermder_axis(self): # check that axis keyword works c2d = np.random.random((3, 4)) tgt = np.vstack([herm.hermder(c) for c in c2d.T]).T res = herm.hermder(c2d, axis=0) assert_almost_equal(res, tgt) tgt = np.vstack([herm.hermder(c) for c in c2d]) res = herm.hermder(c2d, axis=1) assert_almost_equal(res, tgt) class TestVander(TestCase): # some random values in [-1, 1) x = np.random.random((3, 5))*2 - 1 def test_hermvander(self): # check for 1d x x = np.arange(3) v = herm.hermvander(x, 3) assert_(v.shape == (3, 4)) for i in range(4): coef = [0]*i + [1] assert_almost_equal(v[..., i], herm.hermval(x, coef)) # check for 2d x x = np.array([[1, 2], [3, 4], [5, 6]]) v = herm.hermvander(x, 3) assert_(v.shape == (3, 2, 4)) for i in range(4): coef = [0]*i + [1] assert_almost_equal(v[..., i], herm.hermval(x, coef)) def test_hermvander2d(self): # also tests hermval2d for non-square coefficient array x1, x2, x3 = self.x c = np.random.random((2, 3)) van = herm.hermvander2d(x1, x2, [1, 2]) tgt = herm.hermval2d(x1, x2, c) res = np.dot(van, c.flat) assert_almost_equal(res, tgt) # check shape van = herm.hermvander2d([x1], [x2], [1, 2]) assert_(van.shape == (1, 5, 6)) def test_hermvander3d(self): # also tests hermval3d for non-square coefficient array x1, x2, x3 = self.x c = np.random.random((2, 3, 4)) van = herm.hermvander3d(x1, x2, x3, [1, 2, 3]) tgt = herm.hermval3d(x1, x2, x3, c) res = np.dot(van, c.flat) assert_almost_equal(res, tgt) # check shape van = herm.hermvander3d([x1], [x2], [x3], [1, 2, 3]) assert_(van.shape == (1, 5, 24)) class TestFitting(TestCase): def test_hermfit(self): def f(x): return x*(x - 1)*(x - 2) def f2(x): return x**4 + x**2 + 1 # Test exceptions assert_raises(ValueError, herm.hermfit, [1], [1], -1) assert_raises(TypeError, herm.hermfit, [[1]], [1], 0) assert_raises(TypeError, herm.hermfit, [], [1], 0) assert_raises(TypeError, herm.hermfit, [1], [[[1]]], 0) assert_raises(TypeError, herm.hermfit, [1, 2], [1], 0) assert_raises(TypeError, herm.hermfit, [1], [1, 2], 0) assert_raises(TypeError, herm.hermfit, [1], [1], 0, w=[[1]]) assert_raises(TypeError, herm.hermfit, [1], [1], 0, w=[1, 1]) assert_raises(ValueError, herm.hermfit, [1], [1], [-1,]) assert_raises(ValueError, herm.hermfit, [1], [1], [2, -1, 6]) assert_raises(TypeError, herm.hermfit, [1], [1], []) # Test fit x = np.linspace(0, 2) y = f(x) # coef3 = herm.hermfit(x, y, 3) assert_equal(len(coef3), 4) assert_almost_equal(herm.hermval(x, coef3), y) coef3 = herm.hermfit(x, y, [0, 1, 2, 3]) assert_equal(len(coef3), 4) assert_almost_equal(herm.hermval(x, coef3), y) # coef4 = herm.hermfit(x, y, 4) assert_equal(len(coef4), 5) assert_almost_equal(herm.hermval(x, coef4), y) coef4 = herm.hermfit(x, y, [0, 1, 2, 3, 4]) assert_equal(len(coef4), 5) assert_almost_equal(herm.hermval(x, coef4), y) # check things still work if deg is not in strict increasing coef4 = herm.hermfit(x, y, [2, 3, 4, 1, 0]) assert_equal(len(coef4), 5) assert_almost_equal(herm.hermval(x, coef4), y) # coef2d = herm.hermfit(x, np.array([y, y]).T, 3) assert_almost_equal(coef2d, np.array([coef3, coef3]).T) coef2d = herm.hermfit(x, np.array([y, y]).T, [0, 1, 2, 3]) assert_almost_equal(coef2d, np.array([coef3, coef3]).T) # test weighting w = np.zeros_like(x) yw = y.copy() w[1::2] = 1 y[0::2] = 0 wcoef3 = herm.hermfit(x, yw, 3, w=w) assert_almost_equal(wcoef3, coef3) wcoef3 = herm.hermfit(x, yw, [0, 1, 2, 3], w=w) assert_almost_equal(wcoef3, coef3) # wcoef2d = herm.hermfit(x, np.array([yw, yw]).T, 3, w=w) assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) wcoef2d = herm.hermfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w) assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) # test scaling with complex values x points whose square # is zero when summed. x = [1, 1j, -1, -1j] assert_almost_equal(herm.hermfit(x, x, 1), [0, .5]) assert_almost_equal(herm.hermfit(x, x, [0, 1]), [0, .5]) # test fitting only even Legendre polynomials x = np.linspace(-1, 1) y = f2(x) coef1 = herm.hermfit(x, y, 4) assert_almost_equal(herm.hermval(x, coef1), y) coef2 = herm.hermfit(x, y, [0, 2, 4]) assert_almost_equal(herm.hermval(x, coef2), y) assert_almost_equal(coef1, coef2) class TestCompanion(TestCase): def test_raises(self): assert_raises(ValueError, herm.hermcompanion, []) assert_raises(ValueError, herm.hermcompanion, [1]) def test_dimensions(self): for i in range(1, 5): coef = [0]*i + [1] assert_(herm.hermcompanion(coef).shape == (i, i)) def test_linear_root(self): assert_(herm.hermcompanion([1, 2])[0, 0] == -.25) class TestGauss(TestCase): def test_100(self): x, w = herm.hermgauss(100) # test orthogonality. Note that the results need to be normalized, # otherwise the huge values that can arise from fast growing # functions like Laguerre can be very confusing. v = herm.hermvander(x, 99) vv = np.dot(v.T * w, v) vd = 1/np.sqrt(vv.diagonal()) vv = vd[:, None] * vv * vd assert_almost_equal(vv, np.eye(100)) # check that the integral of 1 is correct tgt = np.sqrt(np.pi) assert_almost_equal(w.sum(), tgt) class TestMisc(TestCase): def test_hermfromroots(self): res = herm.hermfromroots([]) assert_almost_equal(trim(res), [1]) for i in range(1, 5): roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2]) pol = herm.hermfromroots(roots) res = herm.hermval(roots, pol) tgt = 0 assert_(len(pol) == i + 1) assert_almost_equal(herm.herm2poly(pol)[-1], 1) assert_almost_equal(res, tgt) def test_hermroots(self): assert_almost_equal(herm.hermroots([1]), []) assert_almost_equal(herm.hermroots([1, 1]), [-.5]) for i in range(2, 5): tgt = np.linspace(-1, 1, i) res = herm.hermroots(herm.hermfromroots(tgt)) assert_almost_equal(trim(res), trim(tgt)) def test_hermtrim(self): coef = [2, -1, 1, 0] # Test exceptions assert_raises(ValueError, herm.hermtrim, coef, -1) # Test results assert_equal(herm.hermtrim(coef), coef[:-1]) assert_equal(herm.hermtrim(coef, 1), coef[:-3]) assert_equal(herm.hermtrim(coef, 2), [0]) def test_hermline(self): assert_equal(herm.hermline(3, 4), [3, 2]) def test_herm2poly(self): for i in range(10): assert_almost_equal(herm.herm2poly([0]*i + [1]), Hlist[i]) def test_poly2herm(self): for i in range(10): assert_almost_equal(herm.poly2herm(Hlist[i]), [0]*i + [1]) def test_weight(self): x = np.linspace(-5, 5, 11) tgt = np.exp(-x**2) res = herm.hermweight(x) assert_almost_equal(res, tgt) if __name__ == "__main__": run_module_suite()