filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_21324
import os.path import sys from libs.pascalVocIO import PascalVocWriter from base64 import b64encode, b64decode class LabelFileError(Exception): pass class LabelFile(object): # It might be changed as window creates suffix = '.lif' def __init__(self, filename=None): self.shapes = () self.imagePath = None self.imageData = None if filename is not None: self.load(filename) def savePascalVocFormat( self, savefilename, image_size, shapes, imagePath=None, databaseSrc=None, shape_type_='RECT'): imgFolderPath = os.path.dirname(imagePath) # ่ฟ”ๅ›žๆ–‡ไปถ่ทฏๅพ„็š„็›ฎๅฝ• imgFolderName = os.path.split(imgFolderPath)[-1] # imgFileName = os.path.basename(imagePath) # ่Žทๅพ—ๆ–‡ไปถๅ๏ผŒๅŒ…ๆ‹ฌๅŽ็ผ€ imgFileNameWithoutExt = os.path.splitext(imgFileName)[0] # ่Žทๅ–ๆ–‡ไปถๅ๏ผˆๅŒ…ๆ‹ฌๅŽ็ผ€๏ผ‰ๆ–‡ไปถๅ print('imgaeFolderPath:', imgFolderPath) print('imgaeFolderName:', imgFolderName) print('imgFileName:', imgFileName) print(' imgFileNameWithoutExt:', imgFileNameWithoutExt) # img = cv2.imread(imagePath) writer = PascalVocWriter( imgFolderName, imgFileNameWithoutExt, image_size, localImgPath=imagePath, shape_type=shape_type_) bSave = False for shape in shapes: points = shape['points'] label = shape['label'] if shape['shape_type'] == 0: # ๆฃ€ๆต‹ๆจกๅผ # ๆ นๆฎ็‚นๆฅๅˆ›ๅปบไธ€ไธชbndbox bndbox = LabelFile.convertPoints2BndBox(points) writer.addBndBox(bndbox[0], bndbox[1], bndbox[2], bndbox[3], label, shape['difficult']) if shape['shape_type'] == 1: # ๅˆ†ๅ‰ฒๆจกๅผ # ๆทปๅŠ ๅˆ†ๅ‰ฒ็‚น writer.addPolygon(points, label, instance_id=shape['instance_id'], ignore=shape['difficult']) bSave = True print('label savefilename:', savefilename) if bSave: writer.save(targetFile=savefilename) # ่ฟ™้‡Œๅญ˜ๅ‚จ return @staticmethod def isLabelFile(filename): fileSuffix = os.path.splitext(filename)[1].lower() return fileSuffix == LabelFile.suffix @staticmethod def convertPoints2BndBox(points): xmin = sys.maxsize ymin = sys.maxsize xmax = -sys.maxsize ymax = -sys.maxsize for p in points: x = p[0] y = p[1] xmin = min(x, xmin) ymin = min(y, ymin) xmax = max(x, xmax) ymax = max(y, ymax) # Martin Kersner, 2015/11/12 # 0-valued coordinates of BB caused an error while # training faster-rcnn object detector. if (xmin < 1): xmin = 1 if (ymin < 1): ymin = 1 return (int(xmin), int(ymin), int(xmax), int(ymax))
the-stack_106_21325
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the experimental input pipeline ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import threading import time import numpy as np from tensorflow.python.client import session from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import functional_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import script_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import string_ops from tensorflow.python.ops import variable_scope from tensorflow.python.platform import test class MapDatasetTest(test.TestCase): def _buildMapDataset(self, components, count): def _map_fn(x, y, z): return math_ops.square(x), math_ops.square(y), math_ops.square(z) return (dataset_ops.Dataset.from_tensor_slices(components).map(_map_fn) .repeat(count)) def testMapDataset(self): """Test an dataset that maps a TF function across its input elements.""" # The pipeline is TensorSliceDataset -> MapDataset(square_3) -> # RepeatDataset(count). components = (np.arange(7), np.array([[1, 2, 3]]) * np.arange(7)[:, np.newaxis], np.array(37.0) * np.arange(7)) count = array_ops.placeholder(dtypes.int64, shape=[]) dataset = self._buildMapDataset(components, count) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() self.assertEqual([c.shape[1:] for c in components], [t.shape for t in get_next]) with self.test_session() as sess: # Test single-threaded access to the iterator. sess.run(init_op, feed_dict={count: 14}) for _ in range(14): for i in range(7): result = sess.run(get_next) for component, result_component in zip(components, result): self.assertAllEqual(component[i]**2, result_component) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test multi-threaded access to the same iterator. sess.run(init_op, feed_dict={count: 18}) results = [] def iterator_thread(): while True: try: results.append(sess.run(get_next)) except errors.OutOfRangeError: return threads = [self.checkedThread(target=iterator_thread) for _ in range(8)] for t in threads: t.start() for t in threads: t.join() # `results` will contain the same elements components**2 # repeated 18 times, but in a non-deterministic order. Sort the # results, and assert that each element of components**2 is # produced 18 times. results.sort(key=lambda x: x[0]) for i in range(7): for j in range(18): for component, result_component in zip(components, results[i * 18 + j]): self.assertAllEqual(component[i]**2, result_component) def _buildParallelMapDataset(self, components, count, num_parallel_calls, output_buffer_size): def _map_fn(x, y, z): return math_ops.square(x), math_ops.square(y), math_ops.square(z) return (dataset_ops.Dataset.from_tensor_slices(components) .map(_map_fn, num_parallel_calls=num_parallel_calls) .prefetch(output_buffer_size) .repeat(count)) def testParallelMapDataset(self): """Test an dataset that maps a TF function across its input elements.""" # The pipeline is TensorSliceDataset -> ParallelMapDataset(square_3) -> # RepeatDataset(count). components = (np.arange(7), np.array([[1, 2, 3]]) * np.arange(7)[:, np.newaxis], np.array(37.0) * np.arange(7)) count = array_ops.placeholder(dtypes.int64, shape=[]) num_parallel_calls = array_ops.placeholder(dtypes.int32, shape=[]) output_buffer_size = array_ops.placeholder(dtypes.int64, shape=[]) dataset = self._buildParallelMapDataset( components, count, num_parallel_calls, output_buffer_size) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() self.assertEqual([c.shape[1:] for c in components], [t.shape for t in get_next]) with self.test_session() as sess: def do_test(num_parallel_calls_val, output_buffer_size_val): # Test single-threaded access to the iterator. sess.run(init_op, feed_dict={ count: 14, num_parallel_calls: num_parallel_calls_val, output_buffer_size: output_buffer_size_val}) for _ in range(14): for i in range(7): result = sess.run(get_next) for component, result_component in zip(components, result): self.assertAllEqual(component[i]**2, result_component) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test multi-threaded access to the same iterator. sess.run(init_op, feed_dict={ count: 18, num_parallel_calls: num_parallel_calls_val, output_buffer_size: output_buffer_size_val}) results = [] def iterator_thread(): while True: try: results.append(sess.run(get_next)) except errors.OutOfRangeError: return threads = [self.checkedThread(target=iterator_thread) for _ in range(64)] for t in threads: t.start() for t in threads: t.join() # `results` will contain the same elements components**2 # repeated 18 times, but in a non-deterministic order. Sort the # results, and assert that each element of components**2 is # produced 18 times. results.sort(key=lambda x: x[0]) for i in range(7): for j in range(18): for component, result_component in zip(components, results[i * 18 + j]): self.assertAllEqual(component[i]**2, result_component) for num_parallel_calls_val, output_buffer_size_val in [ (1, 1), (1, 2), (2, 2), (2, 4), (8, 8), (8, 16)]: do_test(num_parallel_calls_val, output_buffer_size_val) def testImplicitDisposeParallelMapDataset(self): # Tests whether a parallel map dataset will be cleaned up correctly when # the pipeline does not run it until exhaustion. # The pipeline is TensorSliceDataset -> MapDataset(square_3) -> # RepeatDataset(1000). components = (np.arange(1000), np.array([[1, 2, 3]]) * np.arange(1000)[:, np.newaxis], np.array(37.0) * np.arange(1000)) dataset = self._buildParallelMapDataset(components, 1000, 100, 100) # NOTE(mrry): Also test that the prefetching thread is cancelled correctly. dataset = dataset.prefetch(100) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for _ in range(3): sess.run(get_next) def testParallelMapUnspecifiedOutputSize(self): components = np.array([1., 2., 3., np.nan, 5.]).astype(np.float32) dataset = (dataset_ops.Dataset.from_tensor_slices(components) .map(lambda x: array_ops.check_numerics(x, "message"), num_parallel_calls=2)) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for _ in range(3): sess.run(get_next) def testParallelMapError(self): components = np.array([1., 2., 3., np.nan, 5.]).astype(np.float32) dataset = (dataset_ops.Dataset.from_tensor_slices(components) .map(lambda x: array_ops.check_numerics(x, "message"), num_parallel_calls=2)) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for _ in range(3): sess.run(get_next) # The 4th element is NaN, so `array_ops.check_numerics()` should fail. with self.assertRaises(errors.InvalidArgumentError): sess.run(get_next) sess.run(get_next) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testPrefetchError(self): components = np.array([1., 2., 3., np.nan, 5.]).astype(np.float32) dataset = (dataset_ops.Dataset.from_tensor_slices(components) .map(lambda x: array_ops.check_numerics(x, "message")) .prefetch(2)) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for _ in range(3): sess.run(get_next) # The 4th element is NaN, so `array_ops.check_numerics()` should fail. with self.assertRaises(errors.InvalidArgumentError): sess.run(get_next) sess.run(get_next) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testCaptureHashTable(self): # NOTE(mrry): We must use the V2 variants of `HashTable` # etc. because these produce a `tf.resource`-typed output that is # compatible with the in-graph function implementation. default_val = -1 keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2], dtypes.int64) table = lookup_ops.HashTable( lookup_ops.KeyValueTensorInitializer(keys, values), default_val) input_sentences = dataset_ops.Dataset.from_tensor_slices( ["brain brain tank salad surgery", "surgery brain"]) iterator = (input_sentences .map(lambda x: string_ops.string_split([x]).values) .map(table.lookup) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(table.init) sess.run(init_op) sess.run(get_next) sess.run(get_next) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testCaptureQueue(self): elements = np.random.randint(100, size=[200]) queue = data_flow_ops.FIFOQueue(200, dtypes.int64, shapes=[]) enqueue_op = queue.enqueue_many(elements) close_op = queue.close() iterator = (dataset_ops.Dataset.from_tensors(0).repeat(-1) .map(lambda _: queue.dequeue()).make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(enqueue_op) sess.run(close_op) sess.run(init_op) for element in elements: self.assertEqual(element, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testCaptureSameResourceMultipleTimes(self): elements = np.random.randint(100, size=[200]) queue = data_flow_ops.FIFOQueue( 200, dtypes.int64, shapes=[], shared_name="shared_queue") queue_2 = data_flow_ops.FIFOQueue( 200, dtypes.int64, shapes=[], shared_name="shared_queue") enqueue_op = queue.enqueue_many(elements) close_op = queue.close() iterator = (dataset_ops.Dataset.from_tensors(0).repeat(-1) .map(lambda _: (queue.dequeue(), queue_2.dequeue())) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(enqueue_op) sess.run(close_op) sess.run(init_op) for i in range(100): self.assertEqual(sorted([elements[i * 2], elements[i * 2 + 1]]), sorted(sess.run(get_next))) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testCaptureVariable(self): counter_var = variable_scope.get_variable( "counter", (), dtypes.int32, use_resource=True) iterator = (dataset_ops.Dataset.from_tensors(0).repeat(10) .map(lambda _: counter_var.assign_add(1)) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(counter_var.initializer) sess.run(init_op) for i in range(10): self.assertEqual(i, sess.run(counter_var)) self.assertEqual(i + 1, sess.run(get_next)) self.assertEqual(10, sess.run(counter_var)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) self.assertEqual(10, sess.run(counter_var)) def testCaptureUninitializedVariableError(self): counter_var = variable_scope.get_variable( "counter", (), dtypes.int32, use_resource=True) iterator = (dataset_ops.Dataset.from_tensors(0).repeat(10) .map(lambda _: counter_var.assign_add(1)) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) with self.assertRaises(errors.NotFoundError): sess.run(get_next) def testSeededStatefulOperatorIsProperlyStateful(self): iterator = (dataset_ops.Dataset.from_tensors(0).repeat(10) .map(lambda _: random_ops.random_uniform((), seed=11)).batch(2) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) random_values = [] with self.assertRaises(errors.OutOfRangeError): while True: random_values.extend(sess.run(get_next)) self.assertEqual(10, len(random_values)) self.assertGreater(np.abs(np.diff(random_values)).max(), 1e-6) sess.run(init_op) random_values_2 = [] with self.assertRaises(errors.OutOfRangeError): while True: random_values_2.extend(sess.run(get_next)) # Randomness is repeatable given same seed self.assertAllClose(random_values, random_values_2) def testMapDict(self): iterator = (dataset_ops.Dataset.range(10) .map(lambda x: {"foo": x * 2, "bar": x ** 2}) .map(lambda d: d["foo"] + d["bar"]) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): self.assertEqual(i * 2 + i ** 2, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testMapNamedtuple(self, count=10): # construct dataset of tuples labels = dataset_ops.Dataset.range(count) images = labels.map(lambda l: -l) dataset_tuple = dataset_ops.Dataset.zip((labels, images)) # convert dataset of tuples to dataset of namedtuples example = namedtuple("Example", ["label", "image"]) dataset_namedtuple = dataset_tuple.map(example) def preprocess_tuple(label, image): image = 2 * image return label, image def preprocess_namedtuple(example): return example._replace(image=2 * example.image) # preprocess both datasets dataset_tuple = dataset_tuple.map(preprocess_tuple) dataset_namedtuple = dataset_namedtuple.map(preprocess_namedtuple) next_tuple = dataset_tuple.make_one_shot_iterator().get_next() next_namedtuple = dataset_namedtuple.make_one_shot_iterator().get_next() # make sure both datasets contain the same data with self.test_session() as sess: for i in range(count): tuple_, namedtuple_ = sess.run([next_tuple, next_namedtuple]) self.assertEqual(tuple_, namedtuple_) self.assertEqual(tuple_, (i, -2 * i)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_namedtuple) def testUseStepContainerInMap(self): row = np.arange(6) iterator = ( dataset_ops.Dataset.from_tensors(row) .map(lambda elems: functional_ops.map_fn(lambda x: x * x, elems)) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) self.assertAllEqual(row ** 2, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testPrefetch(self): # We will use this event to test that `_map_py_func()` has been # invoked a certain number of times (6 times, to be exact) after # consuming fewer elements from the iterator. ev = threading.Event() set_event_during_invocation = 5 def _map_py_func(x): if x == set_event_during_invocation: ev.set() return x * x def _map_fn(x): return script_ops.py_func(_map_py_func, [x], x.dtype) buffer_size_placeholder = array_ops.placeholder(dtypes.int64, shape=[]) iterator = ( dataset_ops.Dataset.range(100) .map(_map_fn) .prefetch(buffer_size_placeholder) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: # Simple test that prefetch yields the expected values in the # expected order. for buffer_size in [1, 10, 100, 1000]: sess.run(init_op, feed_dict={buffer_size_placeholder: buffer_size}) for i in range(100): self.assertEqual(i * i, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # We can indirectly observe that varying the buffer size has the # intended effect by observing when `ev` is set (on the 6th # invocation of `_map_py_func()`). # NOTE(mrry): We do not test with `buffer_size == # set_event_during_invocation`, because we must consume at least # one element to start the prefetching. for buffer_size in range(1, set_event_during_invocation): event_will_be_set_after_consuming = ( set_event_during_invocation - buffer_size + 1) ev.clear() sess.run(init_op, feed_dict={buffer_size_placeholder: buffer_size}) for i in range(event_will_be_set_after_consuming): self.assertFalse(ev.is_set()) self.assertEqual(i * i, sess.run(get_next)) ev.wait() for i in range(event_will_be_set_after_consuming, 100): self.assertEqual(i * i, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testReturnList(self): iterator = (dataset_ops.Dataset.range(10) .map(lambda x: [x, constant_op.constant(37.0)]) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): self.assertEqual((i, 37.0), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testMultiOutputPyFunc(self): # The `tf.py_func()` op returns a list of tensors for its outputs. def _map_fn(x_tensor): def _map_py_func(x): return x, np.array(37.0, dtype=np.float64) return script_ops.py_func( _map_py_func, [x_tensor], [dtypes.int64, dtypes.float64]) iterator = (dataset_ops.Dataset.range(10) .map(_map_fn) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): self.assertEqual((i, 37.0), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def assertSparseValuesEqual(self, a, b): self.assertAllEqual(a.indices, b.indices) self.assertAllEqual(a.values, b.values) self.assertAllEqual(a.dense_shape, b.dense_shape) def testSparse(self): def _sparse(i): return sparse_tensor.SparseTensorValue( indices=np.array([[0, 0]]), values=(i * np.array([1])), dense_shape=np.array([1, 1])) iterator = (dataset_ops.Dataset.range(10) .map(_sparse) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): actual = sess.run(get_next) self.assertTrue(isinstance(actual, sparse_tensor.SparseTensorValue)) self.assertSparseValuesEqual(actual, _sparse(i)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testSparseChain(self): def _sparse(i): return sparse_tensor.SparseTensorValue( indices=np.array([[0, 0]]), values=(i * np.array([1])), dense_shape=np.array([1, 1])) def _check(i): self.assertTrue(sparse_tensor.is_sparse(i)) return sparse_ops.sparse_concat(0, [i, i]) iterator = ( dataset_ops.Dataset.range(10).map(_sparse).map(_check) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): actual = sess.run(get_next) self.assertTrue(isinstance(actual, sparse_tensor.SparseTensorValue)) self.assertSparseValuesEqual(actual, _check(_sparse(i)).eval()) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) class MapDatasetBenchmark(test.Benchmark): def benchmarkChainOfMaps(self): chain_lengths = [0, 1, 2, 5, 10, 20, 50] for chain_length in chain_lengths: with ops.Graph().as_default(): dataset = dataset_ops.Dataset.from_tensors(0).repeat(None) for _ in range(chain_length): dataset = dataset.map(lambda x: x) iterator = dataset.make_one_shot_iterator() next_element = iterator.get_next() with session.Session() as sess: for _ in range(5): sess.run(next_element.op) deltas = [] for _ in range(100): start = time.time() for _ in range(100): sess.run(next_element.op) end = time.time() deltas.append(end - start) median_wall_time = np.median(deltas) / 100 print("Map dataset chain length: %d Median wall time: %f" % (chain_length, median_wall_time)) self.report_benchmark( iters=1000, wall_time=median_wall_time, name="benchmark_map_dataset_chain_latency_%d" % chain_length) def benchmarkMapFanOut(self): fan_outs = [1, 2, 5, 10, 20, 50, 100] for fan_out in fan_outs: with ops.Graph().as_default(): dataset = dataset_ops.Dataset.from_tensors( tuple(0 for _ in range(fan_out))).repeat(None).map(lambda *xs: xs) iterator = dataset.make_one_shot_iterator() next_element = iterator.get_next() with session.Session() as sess: for _ in range(5): sess.run(next_element[0].op) deltas = [] for _ in range(100): start = time.time() for _ in range(100): sess.run(next_element[0].op) end = time.time() deltas.append(end - start) median_wall_time = np.median(deltas) / 100 print("Map dataset fan out: %d Median wall time: %f" % (fan_out, median_wall_time)) self.report_benchmark( iters=1000, wall_time=median_wall_time, name="benchmark_map_dataset_fan_out_%d" % fan_out) if __name__ == "__main__": test.main()
the-stack_106_21328
# โ€˜โ€™โ€™ TASKS โ€˜โ€™โ€™ # For Sharon: # make sure all msgs you want are included (15 min intro for example) # For Tami: # make sure messages early in the day are sent in the morning (send one by one) # send msgs with url as attachments with preview international = { # ''' DAY -5 ''' 5 dayื“ before the challenge -5:{ "12:00:00": "image/C18/pre5.png" , "12:00:05": ''' Hello everyone, I am surprised and happy with the number of participants and hope that this process will contribute to your growth and peace of mind in such a challenging period ๐Ÿ‹๐ŸŒธ๐Ÿ™๐Ÿ™๐Ÿ™โค๏ธ๐ŸŒปโ˜€๏ธ๐ŸŒŽ๐Ÿ’›๐Ÿ’š๐Ÿ’– ''' , }, # ''' DAY -4 ''' 4 dayื“ before the challenge -4:{ "12:00:00": "image/C18/pre4.png" , "12:00:05": ''' It excites me that more change agents continue to join us โค๏ธ We will start in 4 days - at 20:00 GMT3. The 18 Days of Sustainability and Leadership Challenge is a social group process inspired by the SDGโ€™s โ€“ Sustainable Development Goals, aimed at evolving and changing the reality in which we live. This is a 10-20 minute short daily task, opening us up to a magical process of growth and new awareness, which will disconnect you from the immediate comfort zone and open up global awareness in you. You are giving yourself an amazing gift and you will be happy about it. Remember this is not only for you but for the community that you serve. I most appreciate your participation, good will and patience, May we all have a magical day full of sustainability and leadership ๐ŸŒป๐ŸŒผ๐ŸŒธ๐ŸŒบ๐ŸŒน๐ŸŒท๐Ÿ’๐ŸŒพ I am here for any question / help you need in private To your success, With playful regards, Sharon Gal-Or ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, # ''' DAY -3 ''' 3 dayื“ before the challenge -3:{ "12:00:00": "image/C18/pre3.png" , "12:00:05": ''' Hello everyone, I am surprised and happy with the number of participants and hope that this process will contribute to your growth and peace of mind in such a challenging period ๐Ÿ‹๐ŸŒธ๐Ÿ™๐Ÿ™๐Ÿ™โค๏ธ๐ŸŒปโ˜€๏ธ๐ŸŒŽ๐Ÿ’›๐Ÿ’š๐Ÿ’– ''' , }, # ''' DAY -2 ''' 2 dayื“ before the challenge -2:{ "12:00:00": "image/C18/pre2.png" , "12:00:05": ''' As to assure that people stay in the group and go through the process, and so you do not have to bother and look for the task for a long time, I ask you to respond only about completing the tasks ... Those who need explanations - I would be very happy to answer in detail. You are giving yourself an amazing gift and you will be happy about it, May we all have a magical day full of Sustainability & Leadership ๐ŸŒป๐ŸŒผ๐ŸŒธ๐ŸŒบ๐ŸŒน๐ŸŒท๐Ÿ’๐ŸŒพ For those of you who are interested, you are welcome to join another group where we will share the personal experiences at the following group: Challenge18 Think Tank-1 group for sharing ideas and asking questions ๐Ÿ‹๐ŸŒธ๐Ÿ™ https://chat.whatsapp.com/LLGHvVQ7Z5oAKJR329CeDt ''' , }, # ''' DAY -1 ''' one day before the challenge -1:{ "12:00:00": "image/C18/pre1.png" , "12:00:05": ''' I know for some of you this is not the first time , but it is still very important to do the exercises. I am sure that in light of the changing situation in the world, the awareness of performing the exercises will be different. This is a time when inner fears often float, so I guess on some days some of you will experience less pleasant moments. I have no doubt that maintaining a high level of awareness through performing the exercises will allow us to cope more easily๐ŸŒธ Starting tonight, and every day, I will send the tasks to be completed the next day: 1. Personal exercise for writing in a notebook (have a colorful notebook that will smile at you). 2. Background on the Global Goals with addition of extra flavor. The process requires loyalty to yourself and the group so commit to yourself and the group. *At the end of the practice, mark the number of the task/s (1-3 if you chose to do more than one task) and a flower or a heart emoji ๐ŸŒป๐ŸŒผ๐ŸŒธ๐ŸŒบ๐ŸŒน๐ŸŒท๐Ÿ’๐ŸŒพ โค๏ธโค๏ธโค๏ธโค๏ธโค๏ธ and for the next 18 days I will ask that this is all you will respond in the group*. As always, anyone who needs support or explanations is welcome to send messages in private May we all have an amazing and growing process of Sustainability & Leadership โ€“ Sharon Gal-Or ''' , "12:00:11": ''' I am surprised and happy with the number of participants and I hope that this process will contribute to your growth and peace of mind in such challenging times โค๏ธ ''' , }, # ''' DAY 0 ''' the challenge starting day 0:{ "12:00:00": "image/C18/pre0.png" , "12:00:05": ''' Dear and sustaining friends For those unfamiliar with this amazing journey named Challenge 18 - I will give you some information: *This is an 18-day process, in which you are sent 1-3 short daily tasks inspired by the SDG's โ€“ sustainable development goals, and alongside them, a basic background on the goals. Each evening I will send the task of the next day, and you will have 24 hours to perform and confirm in the group you did. Your confirmation is the day/goal number and next to it one or more emojis, according to the task/s you have chosen to perform.* For example: a heart in any color you choose or a 'green' environmental emoji of your choice. The score is according to the task number, so the maximum number accumulates from day to day. For example: Task 1 = one point and the mark is โค๏ธ Task 2 = two points and the mark is โค๏ธโค๏ธ or an emoji chosen to represent the task Task 3 = three points and the mark is โค๏ธโค๏ธโค๏ธ or an emoji chosen to represent the task. For example, per the 1st day the maximum score is 6 hearts/flowers โค๏ธโค๏ธโค๏ธโค๏ธโค๏ธโค๏ธ - this is to the extent that you have chosen to perform all three tasks. *The score is cumulative throughout the challenge, both in your individual journey and for the whole group, so the commitment of each and every one of you is to yourself and the whole group. good luck.* Since we are a large group, it may be a bit challenging, but I am sure you will be able to contain it, because you are amazing and sustainable and that you really care about our planet and future generations ๐ŸŒป๐ŸŒผ๐ŸŒธ๐ŸŒบ๐ŸŒน๐ŸŒท๐Ÿ’๐ŸŒพ I encourage you to be committed to the process. Since I do not believe in top-down management here, I would be happy for those who do not connect to leave the group so that the overall energy remains of doing and growing Thank you all for the opportunity to give you from the heart โค๏ธ Anyone who needs my help with something, please contact me in private ''' , "12:00:10": ''' Morning everybody, Feel free to invite more change agents you think they would benefit from joining us. Further clarification friends, Every day at 20:00, the daily task will be sent to you, according to 1-3 commitment and difficulty levels. Choose one of them, with which you feel comfortable and you feel committed and connected to the process - you have 24 hours to do it and mark in the group you did it... *there is no need to be especially available every day at 20:00* ๐ŸŒโšฝ๐Ÿ’š๐Ÿ‹๐Ÿ“ฑ๐Ÿ’ธ ''' , "12:00:15": ''' Hello everyone, it excites me that people continue to join us โค๏ธ I remind you that today at 20:00 we will begin the amazing process of Sustainability & Leadership for each and every one of you ... I encourage you to be committed to the process. Whoever is not committed in his heart to this process is welcome to leave the group with great joy ๐ŸŒป๐ŸŒผ๐ŸŒธ๐ŸŒบ๐ŸŒน๐ŸŒท๐Ÿ’๐ŸŒพ A stunning day for everyone ''' , "12:00:20": ''' I know for some of you this is not the first time, but it is still very important to do the exercises. I am sure that in light of the changing situation in the world, the awareness of performing the exercises will be different. This is a time when inner fears often float, so I guess on some days some of you will experience less pleasant moments. I have no doubt that maintaining a high level of awareness through performing the exercises will allow us to cope more easily๐ŸŒธ Starting tonight, and every day, I will send the tasks to be completed the next day: 1. Personal exercise for writing in a notebook (have a colorful notebook that will smile at you). 2. Background on the Global Goals with addition of extra flavor. The process requires loyalty to yourself and the group so commit to yourself and the group. *At the end of the practice, mark the number of the task/s (1-3 if you chose to do more than one task) and a flower or a heart emoji ๐ŸŒป๐ŸŒผ๐ŸŒธ๐ŸŒบ๐ŸŒน๐ŸŒท๐Ÿ’๐ŸŒพ โค๏ธโค๏ธโค๏ธโค๏ธโค๏ธ and for the next 18 days I will ask that this is all you will respond in the group*. As always, anyone who needs support or explanations is welcome to send messages in private May we all have an amazing and growing process of Sustainability & Leadership โ€“ Sharon Gal-Or ''' , "12:00:25": ''' Our change journey, of all humanity, depends on our ability to communicate in large numbers quickly and accurately in favor of 'fixing the world' and maintaining harmony. I sincerely hope that Challenge 18 will help you expand your knowledge and imagination, assimilate the values โ€‹โ€‹of sustainability, and encourage you to become 'change agentsโ€™. So congratulations, I give you my blessings, today you are starting the Ting Global 18 Days of Sustainability & Leadership challenge that can change the reality in which we live and save humanity, if only we choose to change our habits. How? We will start with daily practice ... towards a new reality that awaits you, your family, your community and future generations. ''' , }, # ''' DAY 1 ''' 1:{ "19:59:50": "image/C18/1.png" , "19:59:57": ''' Hello everyone, We start ..... I wish you all good luck ๐ŸŒป and that you will get the most out of this magical process. *Lesson 1 - "Good begets Good" - On Spiritual Wealth and Human Wealth* Today's task according to 1-3 levels of commitment โ€“ choose at least one of them, no matter what, the main thing is that you will feel comfortable and feel committed and connected to the process. Day 1 Tasks: 1. *Watch the TED talk* - Poverty isn't a lack of character; it's a lack of cash | Rutger Bregman & reflect on what you saw. https://youtu.be/ydKcaIE6O1k 2. *I have it - I have it* - a list of 18 things you already have in life. 3. *48 people* who have added value to your life - In the notebook you have chosen for the process, create a list of people who have added value to your life. Write down everyone who is positive and who in your perception made you grow in some way. The list must be complete according to the level of commitment you have chosen. It is important to remember that even people who seemingly did you "bad" made you grow. (While doing this, you will understand with yourself what the reason is for choosing them on the list). Proceed calmly, remembering the good things in each person, and what he / she has brought into your life. Enjoy this activity! ''', "20:00:07": ''' *Welcome to the first day of the 18 days of Sustainability & Leadership challenge - NO POVERTY.* Did you know that almost half of the world's population lives in poverty worldwide โ€“ and that there are over a billion people - who still live on $ 1.25 a day or less, and the number has risen since the corona. Should we blame those poor children who are born into such a reality? & how those children will grow up knowing they will never be able to escape their poverty? *What does this mean at all? What does this tell about our future? And what can be done?* According to the SDGโ€™s, the Sustainable Development Goals set by the UN member states, goal number 1 is to reduce by half by 2030, the relative percentage of the poor in the world. And in your country? What goal did you commit to? What goal did we commit to? What employment opportunities are available to those of us living in poverty? What services and products exist for those of us living in poverty? Since the outbreak of the corona plague, the economic situation of many citizens around the world has been so difficult that they are sometimes forced to give up one of the most basic human needs - food. Eliminating poverty is not a task of charity, but an act of justice. *What can you do now to fight poverty?* *And now for spiritual wealth.* We have compiled a list of people who have added value to our lives and focused on what we have in life. *What is spiritual wealth and what does it have to do with real wealth?* We can understand this when we think of our family, a family that supports each other when needed. When your brother or sister achieves success, the whole family celebrates. At the deepest spiritual level, we are connected not only to our parents and siblings but to the whole world, as we grow in this awareness, we live in oneness, celebrating the success of all. The human family. Spend some time practicing unity, be present and be frequently interested in the lives of others when you talk to them. In your conversations, give your full attention and if you see someone in need, offer help. Sharpening your observation of your surroundings and doing these things will help you develop a deeper understanding of true relationships. The main thought for today: *"Who is a rich man? He who is happy with his share".* ''' , "20:00:17": "image/C18/1.opus" , # ''' DAY 2 ''' "09:31:00": ''' Gooooooood morning ladies and gentlemen! I remind you the marking of the task (s) is until tonight, 20:00 The score depends on the number of task (s) you have selected And it accumulates both in the individual journey and in the group ๐Ÿ™Œ๐Ÿป๐ŸŽถ๐ŸŽต I encourage you all who has performed to mark: 1โค๏ธ and raise the morale of the group and of yourselves as life is meaningful and powerful journey, never give up ๐Ÿ‹๐ŸŒธ๐Ÿ™Œ ''' , "09:31:10": ''' ๐ŸŒป๐ŸŒผ๐ŸŒธ๐ŸŒบ๐ŸŒน๐ŸŒท๐Ÿ’๐ŸŒพ you are all welcome to join the community group where we share the personal experiences and talk whatever in out heart about making the world a better place : Challenge18 Think Tank-1 group for sharing ideas and asking questions ๐Ÿ‹๐ŸŒธ๐Ÿ™ https://chat.whatsapp.com/LLGHvVQ7Z5oAKJR329CeDt ''' , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, # ''' DAY 2 ''' 2:{ "20:00:00": "image/C18/2.png" , "20:00:05": ''' Task for the second day - ZERO HUNGER ๐Ÿ’– ๐ŸŒ ๐Ÿ’– Choose one of three tasks, no matter which one, the main thing is that you feel comfortable, committed and connected to the process. Challenge yourself to eat differently. 1. Watch the TED talk - What we're getting wrong in the fight to end hunger | Jasmine Crowe |& reflect on what you saw. Then, enter the telephone list of the group members and send to another group member of your thoughts from the video and in general in the context of poverty and hunger in your city/country and things to be done. https://youtu.be/VasJyDmMafA 2. Avoid sweets - Choose not to eat sweets (Cakes, candies, soft drinks etc.) - from today until the end of the challenge, (at the end of the practice, mark the day number and ๐Ÿ’ 2 every day from now until the end of the challenge). 3. VegaNation Challenge yourself to eat vegan or vegetarian from today until the end of the challenge (at the end of the practice, mark the day number and ๐ŸŒ 2 each day from now until the end of the challenge). The main thing is that you maintain a better diet than you are used to. What do you say, can you? After successfully completing the task until tomorrow at 20:00, type ๐ŸŒ or ๐Ÿ’ 2 in the group and each day from now until the end of the challenge. Remember: the more you allow yourself in these processes, the more you will get for your personal growth. Continue an evening full of Sustainability & Leadership ๐Ÿ’ซ ๐ŸŒ ๐Ÿ’ซ ''', "20:00:08": ''' *Welcome to the second day of the challenge - ZERO HUNGER* We want more, consume more and throw away more, and not just food. What does this tell about us at all? If we promote sustainable agriculture with modern technologies and fair distribution systems, we will be able to sustain the entire population of the world and make sure that no one will ever suffer from hunger. According to the SDGโ€™s, goal number 2 is - by 2030, to end hunger and ensure access for all human beings - especially the poor, children and people in vulnerable situations - to safe, nutritious and satisfying food throughout the world. What is being done to stop the huge waste of food and make sure it reaches those who need it? Our planet has provided us with tremendous resources, but unequal access and ineffective care leave millions of people suffering from malnutrition. *What can you change now in your food consumption habits? * *One small change for you in your food consumption habits, one giant change for humanity.* It is important to know that it is possible otherwise, that we can imagine and act for a better future - for a spiritual abundance that will replace the material and the extra waste. The main thought for today: *"Who is a rich man? He who shares".* ''' , "20:00:13": "image/C18/2.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 3 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 3 ''' 3:{ "20:00:00": "image/C18/3.png" , "20:00:05": ''' Good evening and welcome to the 3rd day of sustainability and leadership practice ๐ŸŒธ๐ŸŒธ๐ŸŒธ๐ŸŒธ People are leaving and it's natural so praise yourself for being still here ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ I am personally proud of each and every one of you ๐Ÿ’– ๐Ÿ’– ๐Ÿ’– Regarding today's mission Task for the third day ๐Ÿ’– โšฝ ๐Ÿ’– - Good Health & Well Being - Choose one of the three tasks, the main thing is that you feel comfortable with it, committed and connected to the process. 1. Watch the TED talk - Nurse Innovation: Saving the Future of Healthcare | Rebecca Love | TEDxBeaconStreet | & reflect on what you saw. https://youtu.be/IPBcRW8NQPY 2. Happy life - Make a list, (this time it does not matter the number) of the people who, to your opinion, are considered prosperous and healthy, in your family or in your social environment. People who have achieved their life goals (all or part of them) and are happy. 3. Planck It - From today until the end of the challenge, practice Plancking for at least a minute every day (at the end of the exercise, mark the day number and โšฝ 3 every day from now until the end The challenge) After successfully completing the task by tomorrow at 20:00, type ๐Ÿ’– 3 in the group and each day from now until the end of the challenge. Remember: The more you allow yourself within these processes, the more you will get for your personal growth๐Ÿ’– โšฝ ๐Ÿ’– Continue an evening full of Sustainability & Leadership ''', "20:00:08": ''' An important clarification regarding emojis and numbers. The number represents the day in the challenge The emoji represents a task type โค๏ธ / ๐ŸŒป Represents a one-time daily task Repetitive tasks: To eat vegan ๐ŸŒ Avoid sweets ๐Ÿ’ Plank-it โšฝ Example: The person who chose the challenge to avoid sweets from the second day until the end of the challenge marks in the group ๐Ÿ’ every day. If you also chose the plank-it challenge on the third day, then in addition, mark it every day. ''' , "20:00:10": ''' Welcome to the third day of the challenge - GOOD HEALTH & WELL BEING "Health is a basic human right" (International Health Organization), and a key indicator of sustainable development. Women all over the world still lack access to medical care related to sex and fertility; Billions of people are left without access to essential medicines, millions of adults and children will suffer from malnutrition this year, and some estimate that the amount of waste will triple this year. This will have serious health effects. In addition, thousands of new cases of the corona plague continue to happen every day, leading to political and economic instability, threatening the livelihoods of many of the worldโ€™s inhabitants. True, the Corona vaccine has not yet been found, development is under way, but think - who do you think will be the first to benefit from it? What can you do now to become healthier, body, mind and spirit? The main thought for today: a healthy mind in a healthy body in a healthy world ''' , "20:00:13": "image/C18/3.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 4 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 4 ''' 4:{ "20:00:00": "image/C18/4.png" , "20:00:05": ''' Good evening everyone ๐ŸŒ™ *Welcome to the fourth day of the challenge - quality education* Choose one of three tasks, the main thing is that you feel comfortable, committed and connected to the process. 1. *Watch the TED talk* - Linda Cliatt-Wayman: How to fix a broken school? Lead fearlessly, love hard | & reflect on what you saw. https://youtu.be/Xe2nlti47kA 2. *Traveling books* - Write two ideas you read in a book on sustainability and send them to a friend in the challenge group. โค๏ธโค๏ธ My recommendation to you is to read the fantasy book: 'The Journey to the Kingdom of Ludoland'. 3. *Thank you letter* - Write a letter to the teacher (teacher for life) that influenced you, in which you will express all your feelings, the feelings you have. Write everything you want. You are of course welcome to share with the group what you have written. Feel free to send the letter to the same teacher and watch the magic take place. Feel free to share here. May you all have a day full of Sustainability & Leadership ๐ŸŒˆ๐ŸŒˆ๐ŸŒˆ โค๏ธ๐Ÿ’œ๐Ÿ’›๐Ÿ’™๐Ÿ’š๐Ÿ’›๐Ÿ’œ๐Ÿ’šโค๏ธ ''', "20:00:08": ''' *Welcome to the fourth day of the challenge - QUALITY EDUCATION* What if we teach our children how to think and not what to think? What if we teach our children to question life, to question all? What if we teach our children to realize their dreams? Education is a basic human right, and is essential for achieving sustainable development. We can empower women, fight climate change, fight inequality, eradicate extreme poverty and more - only if we, the citizens, including the education system itself, commit to advancing education-related goals. Goal #4 in the Global Goals states that by 2030, all boys and girls will complete primary and secondary education provided free of charge. *What can you do now to assure quality education in your community?* Everyone wants to be heard and no one is listening. The corona crisis has helped us understand that without the dominant involvement of society, which will influence decision-making politicians, there is no chance for humanity to survive on Earth. We can learn from crises, and especially from listening to others. Thus, the main thought for today is: *I listen to the other, I listen as I care.* ''' , "20:00:13": "image/C18/4.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 5 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 5 ''' 5:{ "20:00:00": "image/C18/5.png" , "20:00:05": ''' This task has arrived today for us to enjoy the weekend so you have time and peace of mind to concentrate properly .... I already feel that this group is special ๐Ÿ’œ A magical weekend to all and please continue to celebrate *Sustainability & Leadership* ๐ŸŒธ๐ŸŒธ๐ŸŒธ๐ŸŒธ ๐ŸŒธ For any question feel free to contact me in private and I am very happy to see that you take the process seriously and ask questions that help you grow and maintain new habits โค๏ธ May we all have a calm weekend full of Sustainability & Leadership ๐Ÿ™๐Ÿป ''', "20:00:08": ''' *Good afternoon and welcome to the 5th day of practicing Sustainability & Leadership* ๐ŸŒธ๐ŸŒธ๐ŸŒธ๐ŸŒธ ๐ŸŒธ People are leaving and it's natural, we praised yourself for still being here ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ I am personally proud of each and every one of you โค๏ธ โค๏ธ โค๏ธ โค๏ธ โค๏ธ We continue the practice of appreciation ๐Ÿค—๐ŸŒฑ๐ŸŒธ๐ŸŒท๐ŸŒน Day 5 - *Gender Equality* - Choose one of three, no matter what the main thing you will feel comfortable and feel committed and connected to the process. Regarding today's task - *appreciation and not discrimination* 1. *Watch the TED talk* - Why Gender Equality Is Good for Everyone โ€” Men Included | Michael Kimmel | TED Talks | & reflect on what you saw. https://youtu.be/7n9IOH0NvyY 2. *Observation* - Think of a case where you yourself felt gendered, or a case of gender discrimination that you encountered in your life. What did you do then and what would you do differently today? Feel free to share with the group what you wrote. 3. *A Thank you` Letter* - Write a letter of thanks, a letter of appreciation, to a person of the opposite sex close to your heart that you think has hurt you at some point in your life.โœณ Before writing a thank you letter, clear all the negative feelings about that person. If you still feel resentment, you can also write down all the negative feelings on a piece of paper and then burn or tear it. The important thing is that when you write a letter of thanks / appreciation, you no longer feel resentment against that person. Stop thinking who this person is. More than one person is conceivable, but we should only do the work with one. The letter must be handwritten. Good luck ๐Ÿ™ ''' , "20:00:10": ''' *Welcome to the fifth day of the challenge - GENDER EQUALITY* For many years there was a clear division between the roles of the man and the roles of the woman. The man was the provider, and the woman was in charge of the household. Each gender had fairly clear dress and behavior rules. The male was considered more than the female. In recent decades, the situation has been balancing. The law safeguards the rights of women and prohibits discrimination on the grounds of gender, and many women reach senior positions in the economy. Yet the situation is far from optimal: women still earn less, are judged more on the basis of their appearance and suffer from harassment. Gender equality is a basic human right that must not be violated, and the empowerment of women and girls is essential for strengthening economic growth, promoting social development and empowering the state as a whole. *What do you do to fight gender inequality?* Today we will focus on opportunities instead of obstacles. Today, we will focus on generosity instead of indifference, light instead of darkness, love instead of hatred, sustainability instead of chaos, abundance instead of lack, today we will focus on our choice to respect ourselves and others. The main thought for today: *"We do not discriminate between people. We do not ask what a person's religion is, and what race he belongs to. He must be a human and for that we say enough"*. - Benjamin Zeev Herzl {From the book "Altneuland"} ''' , "20:00:13": "image/C18/5.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 6 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 6 ''' 6:{ "20:00:00": "image/C18/6.png" , "20:00:05": ''' *Welcome to the 6th day of the challenge - CLEAN WATER* Attach the exercise to day 6 - *clean water* - choose at least one of three tasks, feel comfortable, feel committed and connected to the process. I wish all of you to open your eyes to a new day full of abundance like a flowing stream โ˜€โ˜€โ˜€โ˜€โ˜€ 1. *Watch the TED talk* - A young scientist's quest for clean water | Deepika Kurup | & reflect on what you saw, then try to find water technologies developed in your country and share in the sharing group. ๐Ÿ’Ÿ https://youtu.be/AkUcaludrcI 2. *Write down your 5 flaws*, which you believe - stop or slow down your life flow, restrict or block you that do not allow you to get what you really want, whether it is material or not. ๐Ÿ’Ÿ๐Ÿ’Ÿ Disadvantages you will want to improve / fix - and in their absence - everything will flow better. Try to concentrate and go as deep as possible. Look for the features and patterns that hold back the realization of your authentic and original potential. ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ 3. Practice the *"Law of Giving and the Flow of Life"* by giving a small gift to everyone you meet, it should not be an expensive or monetary gift, the gift can be a smile, a flower, a compliment from the heart, a helping hand or a blessing in the heart and .. Stay open to accept any gift offered to you. ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ A good night full of Sustainability & Leadership ๐Ÿ’Œ๐Ÿ’Œ๐Ÿ’Œ Sharon Gal-Or Ting Global ''', "20:00:08": ''' *Welcome to the 6th day of the challenge - CLEAN WATER* The water problem is a growing global problem. It is intertwined with global warming, desertification processes, population growth, and its result is a series of wars around water, mass migration, and political change. Access to water and sanitation are basic human rights. Global Goal #6 speaks to the fact that by year 2030, everyone will have equal global access to safe and affordable drinking water. The easiest way to get what you want is to *create cycles in the flow of abundance* and help others get what they want and need. The more you give, the more you will receive and grow. The thought for today: *"Today and every day - I give what I want to attract into my life."* ''' , "20:00:13": "image/C18/6.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 7 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 7 ''' 7:{ "20:00:00": "image/C18/7.png" , "20:00:05": ''' This task has arrived today for us to enjoy the weekend so you have time and peace of mind to concentrate properly .... May we all have a calm weekend full of Sustainability & Leadership ๐Ÿ™๐Ÿป I already feel that this group is special ๐Ÿ’œ A magical weekend to all and please continue to celebrate *Sustainability & Leadership* For any question feel free to contact me in private and I am very happy to see that you take the process seriously and ask questions that help you grow and maintain new habits โค๏ธ ''', "20:00:08": ''' A stunning evening for everyone โค๏ธ Choose at least one of three, no matter what the main thing you will feel comfortable and committed and connected to the process. First of all, I am proud of you for persevering and reaching the 7th day ... Be proud of yourself, wrap yourself in an abundance of love for perseverance and the desire for a life of Sustainability & Leadership *Energy without giving and receiving, does not flow.* ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ๐Ÿ’Ÿ 1. *Watch the TED talk* - Why renewables canโ€™t save the planet | Michael Shellenberger | TEDxDanubia | & reflect on what you saw. โค๏ธ https://youtu.be/N-yALPEpV4w 2. *Save energy* - Write in a notebook, ways you can save energy in your life, and commit to them until the end of the challenge. E.g. not getting angry until the end ah โค๏ธ โค๏ธ 3. *Get rid of the barriers* - From the five inhibiting properties that you wrote down in the previous task, choose two that you feel draw the most energy from you, and that you would like to work on. Define your plan of action, by writing down at least two actions (daily concrete actions, or wide-ranging actions) that will help you get rid of the barriers. Implement them! โค๏ธ โค๏ธ โค๏ธ ๏ธ ''' , "20:00:10": ''' *Welcome to the seventh day of the challenge - CLEAN ENERGY* Energy is life. In recent years there has been a huge increase in our energy consumption. Almost all of the energy we use comes from the earth โ€“ coal, gas and oil. Today we have new and clean technologies at our disposal and they can divert development towards a green and sustainable energy production path. In general, implementing new energy solutions, as quickly as possible, is essential to reducing our excessive footprint and tackling climate change, one of the biggest threats to our survival. *And now for energy in the spiritual dimension* - MC2 equals L love because energy in the highest dimension is love, and sustainability - means filling your life with love - not at the expense of future generations. *Remember*: Before each choice you make, ask yourself, โ€œHow will this choice make me and those affected by my choices feel?โ€œ Listen to your heart, hear the answer and give trust in the right choice - because energy in its highest dimension is pure love. The main thought for today: *"Today I make great choices because they are made with pure love"* ''' , "20:00:13": "image/C18/7.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 8 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 8 ''' 8:{ "20:00:00": "image/C18/8.png" , "20:00:05": ''' *ECONOMIC GROWTH - Consciousness Abundance & Future Oriented Thinking* Good evening to all โค๏ธ The 8th day is a founding and essential day when it comes to economic abundance ๐Ÿ˜‡๐Ÿ’ธ๐Ÿ’ธ๐Ÿ’ธ Take advantage of the challenge to create in your life everything that is accurate and true in the field of abundance that you seek to magnetize to you โค๏ธ Choose at least one of the three tasks, the main thing is that you feel comfortable, committed and connected to the process. Note that Task 1 is from today until the end of the challenge. 1. *Watch the TED talk* - How the future of work is not โ€œJobsโ€ | Rudy Karsan | TEDxCalgary | & reflect on what you saw. https://youtu.be/sQNtu4kpd64 2. *Ting Ikigai* Want to find your Ikigai? Connect between different components of the three parts of the table to create a new value activity that you can work on. - Challenge yourself to ask 3 more friends the same question. 3. *Role play*: "Choose a character that connects to the kind of abundance you desire." From there, as dedicated actors you must begin to step into the shoes of the character and conduct your life as if you were the same character. How would you respond to conversations that come your way? What level of energy would you invest? What choices would she make? Notice how we perceive ourselves as we conduct ourselves from this new perception and how those around us perceive us. How does it feel? Do things look different? The goal of the game is to teach us the extent to which our perception of reality has on the reality we experience. From today until the end of the challenge you must practice the same character. *At the end of the practice, mark the day number and ๐Ÿ’ธ 8 each day from now until the end of the challenge.* ''', "20:00:08": ''' *Welcome to the 8th day of 18 days of Sustainability & Leadership challenge* *Goal 8: Decent Work & Economic Growth* About half the world's population still lives on the equivalent of $2 a day. And in too many places, the fact that a person has a job does not guarantee his ability to escape poverty. And in your country? With the outbreak of the corona crisis, the unemployment rate quickly climbed up dramatically - most are workers who have been expelled from their daily jobs. What solutions are offered by government ministries? What are the changes in work patterns that we are going to see? On such days it is obligatory upon each and everyone of us to show creativity, unity and leadership, and to set a personal example and role model for our children and friends, to rebuild trust and to create a sense of security and abundance. And now for *future-oriented thinking* - one of the most striking differences between successful people and those who are less successful, is not the amount of money they have, but future-oriented thinking, and their ability to act on time. When we, as one, imagine abundance and economic security - we can create anything we want. *What if the solution to the economic crisis is - Universal Basic Income?* *Imagine for a second* that the country provides you with Universal Basic Income (UBI), that will allow you economic security. An income that will alleviate the fear of existential worries and enable entrepreneurship and growth. Sounds imaginary? Once civil rights, the right to vote for women, the abolition of slavery and the establishment of the Jewish state - sounded utopian. Just like them, the idea of basic income sounds utopian on first reading and realistic and fair on second reading. Every citizen will receive a Universal Basic Income that allows for a dignified life, without having to worry about a shortage of food or shelter. Sounds like Mission Impossible? Hard times require decisive action. We must join forces and find solutions. And finally, an important note, especially in a time like this: Give what you want to receive. You must transmit to the conscious mind that you already have abundance in order to receive abundance. That is why donating and giving is extremely important. It's fascinating and it works miraculously. Maybe because in practice we are one. The main thought for today: *"If you will it, it is no dream; and if you don't, a dream it is and a dream it will stay."* - Theodor Herzl. In other words, โ€œwhen there is a will - there's a wayโ€. ''' , "20:00:13": "image/C18/8.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 9 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 9 ''' 9:{ "20:00:00": "image/C18/9.png" , "20:00:05": ''' Good week to all and welcome to Day 9 ๐Ÿ–๐Ÿ–๐Ÿ–Industry, Innovation and Infrastructure - Choose at least one of three tasks, the main thing is that you feel comfortable with it and feel committed and connected to the process. 1. *Watch the video* - Modern times and write in a notebook what is your production line? https://www.youtube.com/watch?v=6n9ESFJTnHs ''', "20:00:08": ''' In addition watch this *TED talk* โ€“ The next manufacturing revolution is here | Olivier Scalabre| & reflect on what you saw. https://youtu.be/AyWtIwwEgS0 2. *Aliens visiting Earth* - Imagine that aliens from a planet named Ting ๐Ÿ’ก๐Ÿ’ก๐Ÿ’ก have landed at your house and they offer you three wishes to renew things in your life and three more wishes to renew things in your country - what would you renew ?? โค๏ธโค๏ธ 3. *Digital pacifier* 1 hour mobile diet task - you must close/shut down your mobile phone for a continuous period of only 1 hour, during the day -each day, from today until the end of the challenge. If you selected this task, mark group ๐Ÿ“ฑ9 daily. 4. *Section 4* In the challenge of 3 tasks daily - this is an innovation J From today until the end of the challenge, write down 3 new ideas in your notebook every day, mark ๐Ÿ’ก9 A magical evening full of Sustainability, Leadership & Innovation ๐Ÿ’• ''' , "20:00:10": ''' *Welcome to the ninth day of the challenge - Goal 9: Industry, Innovation and Infrastructure* Every industry must innovate, and properly functioning immune infrastructures are the building blocks for any thriving community. *Innovation and infrastructure are also on the spiritual level* - on the personal level, it is to break free from the shackles of the past, from those prejudices, customs and habits that limit your growth. Innovation is re-inventing yourself, recognizing opportunities in a time of crisis, connecting with yourself, spirit and soul. *It's time to make life-changing decisions!* - How? Focus your intention about what you want and need. *Remember* - what we notice and focus on, expands in our lives, and our intention will help the universe to support the desired outcome. Yes, with focus and intention, you can change your life and reflect your desires more accurately. The main thought for today: *"Focus is a key & Imagination is your wings"* ''' , "20:00:13": "image/C18/9.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 10 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 10 ''' 10:{ "20:00:00": "image/C18/10.png" , "20:00:05": ''' *Welcome to the 10th day of the challenge - REDUCED INEQUALITIES* *Today we will practice listening* A stunning evening for everyone ๐Ÿ’œ๐Ÿ’œ๐Ÿ’œ We are on the 10th day, which means that you have been in this process for 10 days and I am proud of each and every one of you. ๐Ÿ™๐Ÿ™๐Ÿ™๐Ÿ™๐Ÿ™๐Ÿ™๐Ÿ™๐Ÿ™๐Ÿ™๐Ÿ™๐Ÿ™ We have always been educated to think in dual format. Us versus them. Right and left, rich and poor and even worse, such as national/local and global. So, in the coming day we will practice listening ๐Ÿ‘‚๐Ÿผ๐Ÿ‘๏ธ๐Ÿ’œ. Ting - Ting - Ting - One of the most difficult tasks nowadays is how to channel our way through all the voices that demand our attention - the voices of the state, security, economy, family, media (Internet, TV, radio, newspapers, advertisements, etc.), - and find the important for us and find ourselves among these. To become a better person/leader, learn to listen first -โ€TINGโ€. The ancient Chinese word for listening, "TING", captures the spirit of listening: Ears - to be attentive while the other speaks and not to think about what to have to say next. Eyes - to be able to put ourselves in the place of the other and see things through his/her point of view. Mind - the ability to understand the words of the other. Heart - Only when we really care then we are really attentive. Last word, if you need to remember one thing from this message, I want you to remember this: If you are experiencing difficulty, whatever it is, the solution is in dialogue, so immediately stop sending text messages, emailing and googling, and instead, internalize the principles of listening - TING่ฝ The next few days will be special and full of gifts from the universe. Learn to listen and look around and notice them ๐ŸŒพ๐ŸŒฟ๐ŸŒบ๐ŸŒˆ๐Ÿ‘‚๐Ÿผ๐Ÿ‘๏ธ๐Ÿ’œ๐ŸŒฒ๐ŸŒณ๐Ÿ’๐ŸŒผ *Task for the tenth day of the challenge* Today's lesson is to enjoy the day by listening genuinely. Write in a notebook at least three ways you noticed things you had not noticed before (even small things). Today's thought: *True listening is from the ears, the eyes and the heart.* An amazing evening full of Sustainability, Leadership and true listening! ๐Ÿ‘‚๐Ÿผ๐Ÿ‘๏ธ๐Ÿ’œ๐Ÿฆ‹๐Ÿฆ„ ''', "20:00:08": ''' *Goal 10 - REDUCED INEQUALITY* Welcome to the tenth day of the 18 Days of Sustainability & Leadership of Ting Global. Income and wealth inequality are severe and are becoming widespread throughout the world. 1% of the richest people in the world population currently control about 40% of the total global assets, while the poorest half hold only 1%. Simply put - most of the world's wealth is held by a very small group of people. What is the real meaning of these differences? For countries to prosper, equality and growth must be the domain of the entire population. Regardless of gender, race, religion, belief or economic status. When we reach a reality in which each person is self-dependent and independent, then the whole world will be able to thrive - period. In order to fight inequality between and within countries, we must promote inclusive business models that empower groups, which are on the margins of our communities. Ask yourself "How can I help? How can I serve?" To serve others with your 'gifts' is the highest expression of your destiny, when your creative expression matches the needs of those around you, abundance flows easily into your life, in exemplary divine order. You can practice today, just constantly recognize your unique talents. Listen to your inner voice and ask yourself how you can use these 'gifts' to serve the world in the best way. The main thought for today: *"I listen to my inner voice. The answers are inside me"* ๐Ÿ‘‚๐Ÿผ๐Ÿ‘๏ธ๐Ÿ’œ ''' , "20:00:13": "image/C18/10.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 11 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 11 ''' 11:{ "20:00:00": "image/C18/11.png" , "20:00:05": ''' *Goal 11 - SUSTAINABLE CITIES AND COMMUNITIES* Choose at least one of three tasks, no matter which one, the main thing is that you feel comfortable, committed and connected to the process. 1. *Watch the TED talk* - 7 principles for building better cities | Peter Calthorpe| & reflect on what you saw. https://youtu.be/IFjD3NMv6Kw 2. *Invent new environmental symbols* - Can you produce future environmental symbols / logos? and what about a personal symbol that is all you ?? Show the symbol you created to friends and try to see if they can understand what you meant. Were they able to understand? Wonderful. Did not succeed? Modify the icons so that they are more understandable, and show them again. 3. *Letter to the mayor* - Write a letter to your mayor, stating everything you want to change in the city. You are of course welcome to share with the group what you have written and even send it to your city mayor. May you all have a day full of Sustainability & Leadership โค๐Ÿ’œ๐Ÿ’›๐Ÿ’™๐Ÿ’š๐Ÿ’›๐Ÿ’œ๐Ÿ’šโค ''', "20:00:08": ''' *Welcome to the eleventh day of the challenge - Cities and Sustainable Communities* According to SDG 11 by 2050, 70% of the worldโ€™s population will live in cities, thus making cities vital in achieving a sustainable future for the world. I have a dream to live in a sustainable city that allows for a life of happiness and living with dignity for all, inside and outside it. I have a dream to live in a city that wisely and fairly uses the infrastructure, material, natural, human and social resources at its disposal. I have a dream to live in a city that takes responsibility for its role in managing global ecosystems, and responsibility for its physical and cultural heritage and future generations. And you, in what city do you dream to live in? The main thought for today: *"I have a dream as I care about my city, my country and the whole world."* ''' , "20:00:13": "image/C18/11.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 12 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 12 ''' 12:{ "20:00:00": "image/C18/12.png" , "20:00:05": ''' This task has arrived today for us to enjoy the weekend so you have time and peace of mind to concentrate properly .... May we all have a calm weekend full of Sustainability & Leadership ๐Ÿ™๐Ÿป *Task for the twelfth day ๐Ÿ’–๐Ÿ’–- RESPONSIBLE CONSUMPTION & PRODUCTION* Challenge yourself to new habits without one-time and without bags. Choose at least one of the three tasks, the main thing is that you feel comfortable and committed and connected to the process. 1. *Watch the TED talk* - a video about how the garbage of Lauren, a young New York woman and graduate of environmental studies, amounts to only one jar | & reflect on what you saw. https://www.youtube.com/watch?v=pF72px2R3Hg 2. *Environmental cleanliness* - cleaning of waste in the environment near me. Just take a bag and clean, do not ask anyone to clean, the others will see and see how they will imitate you. Taking a โ€˜before and afterโ€™ photo will be great. 3. *I say โ€œnoโ€ to disposable* - from today until the end of the challenge, do not use disposable - no drinking bottles, no disposable cups etc. *At the end of the practice, mark the day number and ๐Ÿฅฅ 12 each day from now until the end of the challenge.* ''', "20:00:08": ''' *Welcome to the Twelfth Day of the Challenge - RESPONSIBLE CONSUMPTION & PRODUCTION* Mother Earth has provided us with an abundance of natural resources. Today we consume resources at a pace far beyond what the earth is capable of providing us. We must learn how to use and produce sustainable alternatives and repair the damage we have done to the environment and if not THIS IS THE END. *Tell me please?* Isn't it disgusting for you to go to the beach and sit on a mixture of sand and plastic garbage? It's time to really change our habits and demand from the manufacturing companies to take responsibility, it's time to march in the streets and raise a โ€shoutโ€ and sign petitions because we deserve more. Our world is being abused. We must start recycling, reducing, and producing as little garbage as possible. Because the garbage does not just disappear. It is just being swept under the world carpet or spills into the sea. It is obligatory upon each of us to take a decision and begin to reduce *our personal ecological footprint* in order to enable the renewal of natural resources on which our lives, the future of our children and biodiversity depend. The main thought for today: *I stop to think (3) three times before I consume* ''' , "20:00:13": "image/C18/12.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 13 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 13 ''' 13:{ "20:00:00": "image/C18/13.png" , "20:00:05": ''' *The task for the thirteenth day ๐Ÿ’–๐Ÿ’– Climate Action* Choose at least one of the three, no matter what the main thing is that you will feel comfortable and committed and connected to the process. 1. *Watch the TED talk* - School strike for climate - save the world by changing the rules | Greta Thunberg | TEDxStockholm | & reflect on what you saw. https://youtu.be/EAmmUIEsN9A A magical evening full of sustainability, leadership and passing on the good ๐Ÿ’• ''', "20:00:08": ''' 2. *So what's your ecological footprint?* - Feel free to play and test yourself. https://www.footprintcalculator.org/ 3. *Sharing is caring* - Today's task and until the end of the challenge is to share the challenge with friends, even 3 people each day are enough, although the more you share with more people the more powerful the energy in my eyes. Remember to share, experiences, impressions, what you learned new and so on. The mark for sharing is emoji ๐Ÿœ ๐Ÿœ ๐Ÿœ ๐Ÿœ ๐Ÿœ ๐Ÿœ ''' , "20:00:10": ''' *Welcome to the thirteenth day of the challenge - Climate Action* When I was a young student they talked about global warming. I remember coming out of the class scared and terrified that the end of the world was near. Yes, for over 30 years the scientific community has been warning of an increase in carbon dioxide levels in the atmosphere, while the global world population has nearly doubled. The growth rate of our emissions is rising fast, and it is rising even faster than we thought it was the worst case scenario just a few years ago, so yes it is right for me to be scared and terrified, and do something about it. Greta Thunberg, at the age of 15, realized the lapse in what several climate experts were saying and in the actions that were being taken in society. The difference was so drastic in her opinion that she decided to take matters into her own hands. *My goal and the goal of us all must be:* 1. Stimulate a dialogue on progress & technology - good? Bad? How can we tell? 2. Communicate the climate crisis to the younger generation 3. Involve today's generation in tomorrow's decision-making process *Danger!* - Climate change is a real and inevitable danger to all of humanity. The effects of climate change are already evident and could be tragic, if we do not act now! Through education, innovation and adherence to our responsibilities, the citizens, both adults and young people, we may be able to make the necessary changes to protect the continued existence of the human race. The main thought for today: *"The climate crisis is also my challenge"* ''' , "20:00:13": "image/C18/13.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 14 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 14 ''' 14:{ "20:00:00": "image/C18/14.png" , "20:00:05": ''' This task has arrived today for us to enjoy the weekend so you have time and peace of mind to concentrate properly .... I already feel that this group is special ๐Ÿ’œ A magical weekend to all and please continue to celebrate *Sustainability & Leadership* ''', "20:00:08": ''' *Task for the Fourteenth Day* ๐Ÿ‹14 - *LIFE UNDERWATER* Choose at least one of the three, the main thing is that you will feel comfortable and committed and connected to the process. 1. *Watch the TED talk* - Paul Snelgrove: A census of the ocean | & reflect on what you saw. https://youtu.be/PcDftBVDSlc 2. *The sea within us* - Find at home some item related to the sea (oyster you collected, toy or game with pictures of fish, doll, etc.), take a picture with it and share with 5 friends on WhatsApp or social media post and explain why you think it is beautiful and important. ORโ€ฆ *The Other Whale* - Find a picture of whales you particularly liked on the Internet. Share with 5 friends on WhatsApp or a post on social media and explain why you think it's beautiful and important. By the way, did you find the other whale? ๐Ÿ‹14 3. *Change Angels* - Today's mission and before the end of this challenge is to open your own * Challenge 18 Sustainability & Leadership group*. ๐Ÿ’This group does not require many members, even 3 people are enough, although the more people there are the more powerful the energy in my eyes. Every day, you will have the task of passing the instructions from the day to the end of the 18 days, just as you received them and will continue to receive them from me. You can use the previous messages I sent. Mark it with ๐Ÿคน๐Ÿปโ€โ™‚โ€๐Ÿฅ‡โŒ› Remember that you will need to send the message and exercises of the notebook every day, and follow the people in your group who did the tasks (or take out of the group) - practice giving. ''' , "20:00:10": ''' *Welcome to the fourteenth day of the challenge - LIFE UNDERWATER* Goal number 14 deals with the conservation of the oceans, seas and underwater life. Today, more than half of the world's coral reefs are in danger of extinction. Oceans face the threat of marine and nutritional pollution, resource depletion and climate change, all of which are a result primarily of human actions and the consequences are coming to us as well. These create global socio-economic problems, including health, safety and economic risks. Is it our responsibility to make sure that world leaders do their job faithfully to protect marine animals? Is it our responsibility to support people who depend on the oceans, whether the dependence is on employment, resources or pleasure? The main thought for today is, *โ€œLife is a beautiful, magnificent thing, even to a jellyfish.โ€* ''' , "20:00:13": "image/C18/14.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 15 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 15 ''' 15:{ "20:00:00": "image/C18/15.png" , "20:00:05": ''' *Task for the fifteenth day ๐Ÿ’–๐Ÿ’– Life on land* Allow yourself a quiet and calm time, take a deep breath ... if possible do the task in nature, it will be great ๐ŸŒธ๐Ÿ›๐Ÿฆ„๐ŸŒผ๐ŸŒป๐ŸŒน๐ŸŒท๐Ÿ’๐ŸŒบ๐Ÿ„โ˜˜๐Ÿ€๐ŸŒฑ๐ŸŒด๐ŸŒฒ Choose at least one of the three, no matter what the main thing is that you will feel comfortable and committed and connected to the process. 1. *Watch the TED talk* - How trees talk to each other | Suzanne Simard | & reflect on what you saw. https://youtu.be/Un2yBgIAxYs 2. *Plant a tree* or donate to a body that promotes tree planting in your area. Take a picture or film yourself and capture the magic. 3. *TSL Capsule Time-Sustainability-Leadership*: Write a letter requesting the universe, decorate it, write your name and date, and bury it in the ground in the capsule (small box, glass bottle and even in a flower pot). Remember: you plant hopes, expectations Dreams and the universe will grow them, define exactly what you want and when. Note: It is also possible to forward the letter to a close person, such as a teacher or friend, who will keep a letter and return it to you a year later. A magical evening full of *Sustainability & Leadership* ๐ŸŒˆโค๏ธ๐Ÿ’™ ''', "20:00:08": ''' *Welcome to the fifteenth day of the challenge - life on land* *Goal 15 - Protecting land ecosystems, restoring and promoting their sustainable use, sustainable forest management, fight against desertification, stopping and reversing land degradation, stopping the loss of biodiversity.* We live in the midst of an age of species extinction, mostly man-made. If the current trends continue, about half of the species living today are expected to become extinct by the end of the century. Most extinct species are not known and therefore we do not know how their extinction will affect us. Renowned ecologist Paul Ehrlich likens this situation to passengers on a plane who disassemble screws in different parts of the plane while flying. The screw may attach the backrest to the seat, but it is also possible that disassembling the screw will impair engine operation. Just as there are many screws in the plane, so there are many species of living things on Earth and we have no way of predicting what the consequences of their extinction will be. What we do know is that we are destroying parts of the life-supporting systems on Earth, since life itself is what creates the life-supporting conditions of our planet. Should we preserve a rainforest just because of the economic value of the drugs, and the potential food species hiding among its branches? Should we preserve the forest because it is part of the Earth's life support systems? And maybe the answer lies in our cultural values? How easily do we allow ourselves to ignore all the beauty and grandeur of nature? Do we really want to live in a world that is all artificial? What are the implications of such a situation for the mental well-being of human beings? The main thought for today: *โ€œMan is as the tree in the field - as the tree he strives up"* ''' , "20:00:13": "image/C18/15.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 16 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 16 ''' 16:{ "20:00:00": "image/C18/16.png" , "20:00:05": ''' *Welcome to the sixteenth day of the challenge ๐Ÿ’–๐Ÿ’– - Peace, Justice and Strong Institutions* Goal 16 reminds us that compassion and a strong moral compass are essential to any human democratic society. Persecution of the weak, corruption, injustice and abuse are still rampant and tearing apart the fabric of civilization. As hard as it is to admit, no country on earth exists in a true democracy. People have the illusion of choice and are actually managed and unrepresented. As long as it is a system run by humans there will always be corruption and injustice, it is time to advance legislation to integrate advanced technologies as part of the system of government. We must ensure that we have strong institutions, global standards of justice and a commitment to peace everywhere. Choose one of three, no matter what the main thing is that you will feel comfortable and committed and connected to the process. 1. *Watch the TED talk* - Jody Williams: A realistic vision for world peace | & reflect on what you saw. I invite you to contact members of the challenge group whose phone number ends with the same number as yours and discuss with them the issue of social justice - cool? https://youtu.be/FD6CqD1kV8s 2. *Looking Back* - Look back at your task notebook and read all the tasks you have performed. Check to see if you have any gaps in the challenges or anything to add. ''', "20:00:08": ''' 3. *Sophie's song* - see the following text message Read the story you will find below at least two or three times and then write down your personal reflections and thoughts in a notebook. And even better - share the group if you want๐ŸŒน๐ŸŒน๐ŸŒน everything that comes to your mind to write that fits the spirit of things. *Sophie's Song* Sophie was ๐Ÿ˜จ. She woke up ๐Ÿ˜ญ from her dream. So she packed her ๐Ÿ‘œand set out on a journey to see the๐ŸŒ , She first met a puppy ๐Ÿ•; He asked for ๐Ÿ’ง so she shared her ๐Ÿ’ง, She met a boy ๐Ÿ‘ฆ who was hungry, so she shared her ๐Ÿงฅ, She met a ๐Ÿค that had fallen from the ๐ŸŒณ. So she took off her ๐Ÿ‘Ÿ and made a ๐Ÿ  for the ๐Ÿค, She met an old man who was cold so she gave him her ๐Ÿงฅ, She met a lost ๐Ÿ‘ who was ๐Ÿ˜ข so she sang her a happy ๐Ÿ˜๐ŸŽถ๐ŸŽต๐ŸŽถ song, When it started to ๐ŸŒง, she was sitting under a ๐ŸŒณ, she was thirsty, hungry, she was cold and she only had one ๐Ÿ‘Ÿ, but she was no longer ๐Ÿ˜จ. Sophie fell asleep ๐Ÿ˜ด. She woke up with a ๐Ÿ˜€. Sophie was ๐Ÿ˜. ''' , "20:00:10": ''' Sophie's emotional journey consists of three stages: Fear -> Empathy -> Happiness. Symbolic release of the human spirit from darkness to light. Task: Choose a person you think is unhappy / unwell, who has been complaining about life for some time and share Sophie's story with that person. Then, write in a notebook: How was the sharing experience and what did it evoke in you? Did he / she answer you? Did you talk and how? Did the person thank you? How did sharing make you feel? The main thought for today: *Justice-Justice will pursue* A magical evening full of sustainability, leadership, peace, justice, strong institutions and passing on the good ๐Ÿ’• *Ludoland never dies- it is reborn* Sharon Gal-Or Global Cultural Ambassador Ting Global ''' , "20:00:13": "image/C18/16.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 17 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 17 ''' 17:{ "20:00:00": "image/C18/17.png" , "20:00:05": ''' I am proud of you for persevering and reaching the 17th day of the challenge, another day ... Be proud of yourself, wrap yourself in an abundance of love for perseverance and the desire for a life of sustainability and leadership. By the way, this is your chance to complete the missions you did not complete, Have a lovely day, Sharon *Task for the Seventeenth Day ๐Ÿ’–๐Ÿ’– - Partnerships for Achieving the Goals* Choose at least one of the three tasks, no matter what the main thing is that you will feel comfortable and committed and connected to the process. 1. *Watch the video* - 3 steps to achieving the SDGs | Linda Midgley | TEDxAlkmaar | & reflect on what you saw. https://youtu.be/-pryCzwDbXY ''', "20:00:08": ''' AND this video: Fly on life, then write your thoughts and insights in a notebook. https://youtu.be/rlwfd1ZaDJ4 ''' , "20:00:10": ''' 2. Read about a story *โ€œNoah and the Flood"* - about how while they were in the arch it was time to rest, Noahโ€™s family and the animals had time to chat about what the new world would look like when they descend the arch to land. Try to reply the questions at the end of the article. https://blogs.timesofisrael.com/noahs-ark-the-global-goals/ ''' , "20:00:13": ''' Today's task: *Ting method for interdisciplinary thinking combined with coding symbols* Contact group member/s - yes, do not be ashamed, even such friends that you do not know because we are climbing the same mountain, right here and right now, in our personal journey, and do the exercise together. Feel free to share with us here ideas created during the process. ๐Ÿ‹๐ŸŒธ๐Ÿ™ 3. *Ting - Creative thinking of ideas for new ventures* 1. Choose three areas of interest / occupation 2. Break down each area into 3 associations that come to mind 3. Connect the areas of activity to inspire you to create an idea for a new venture. ORโ€ฆ *Ting - Creative Thinking Finding Solutions to Problems* Steps in creating the idea: 1. Define your personal problem or any general problem/challenge. 2. To which of the goals in the table of the goals of the existence of the universe, is the problem related? 3. Find three areas of activity related to the problem you have defined. 4. Break down each area into 3 associations that come to mind 5. Connect between the areas of activity, to find a solution to the problem you have defined. 6. Draw a symbolic representation of the solution. You are of course also welcome to share with the group what you have written. A magical evening full of *sustainability, leadership* and passing on the good ๐Ÿ’• Sharon Gal-Or Global Cultural Ambassador Ting Global ''' , "20:00:15": ''' *Welcome to the seventeenth day of the challenge โ€“ Partnership for the Goals* *So what does collaboration mean?* The true meaning of collaboration is the joint performance of actions that connect us to a new significant abundance in places where it was not previously visible and could not be revealed when each party acted alone. *This is a real crisis* and should be addressed accordingly and we must work to reduce the use of consumable energy sources and do one hand in resolving the climate crisis. If we want to survive on Earth we have about a decade, until 2030, to completely change what and how we teach in schools, consume energy, sustain agriculture, run water, talk to our neighbors and more. This is not a passing trend, but a global change in the way we teach, in the way we do business, in social and corporate responsibility, and long-term thinking. *"We have ten years to repair the damage we have caused and prevent a climate crisis"*, the UN warns. The main thought for today: *"If you want to go fast - go alone* *If you want to get far - go together"* ''' , "20:00:17": "image/C18/17.opus" , "18:00:00": ''' *Two hours left to complete today's tasks* _Rasing humanity on a new path - it all starts with you_ ๐Ÿ‹๐ŸŒธ๐Ÿ™ ''' , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 18 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 18 ''' 18:{ "20:00:00": "image/C18/18.png" , "20:00:05": ''' *Welcome to the 18th Day of the Challenge โ€“ For the FUTURE OF HUMANITY* A lovely week to all of you all and thank you for persevering and succeeding on this amazing journey. I sincerely hope that you will continue to challenge yourself and that you will also lead many others to sustainability and leadership. True, as you understand, it was just a quick and sweet tasting, a trailer for a movie called Life, in which we are not only the viewers but also the actors, who are looking for meaning, growth for achievements and a better world for all of us. This is your year. Ask, declare, listen, smile more, start living, and see how you manage to grow each day with the choices and decisions you make, the way you spend your time, the people you hang out with and how you feel at any given moment. For me, sustainability is first and foremost listening to the inner self, heart and mind, for me sustainability is living in the beings I have chosen for myself, joy, giving and listening, it all comes down to that. I want to thank you again for participating in the challenge, We are almost done ... another step and we reached the depths of this small and big journey. In fact let's walk 18 festive steps, a reminder of our joint journey together. Imagine what kind of world you would like to live in? I would love to hear that in the group or in private, You may say I'm dreamer But I'm not the only one I hope one day you will join me And the world will be as one ''', "20:00:08": ''' How fun it is to be here. You are amazing! I'm happy and I congratulate you. *The task for today* - Send this group a video or written message, preferably a video. Introduce yourself, most of you do not know each other and it will be exciting to know who was part of the energy that supported us all. Describe your experience from these 18 days of sustainability and leadership: emotions, observations, signs, surprises, what has changed inside and outside of you and so on. If you want to resonate something in the universe this is the time! If you have interesting ideas and projects share them here, this is important because this group may have people who are interested in what you do, the services you offer or your ideas. Be creative and real when you describe yourself, do not be ashamed, the stage is all yours. So I hope you enjoyed, I definitely feel privileged to go this way with you and I really enjoyed and grew, and I would love to see as many videos of you as possible or hear from you in writing about your experience, and even more, to hear that you have opened your own Challenge 18 group. Continue a magical week full of sustainability, leadership and passing on the good ๐Ÿ’•๐ŸŒธ๐Ÿ‹๐Ÿ™๐ŸŒŽ๐ŸŒป Sharon Gal-Or Global Cultural Ambassador Ting Global For more information contact me: +972 55-9721123 | [email protected] ''' , "20:00:13": "image/C18/18.opus" , }, ################################################################# ################################################################# ################################################################# # # ENTER CORRECT DAY MESSAGES FOR DAY 19 # ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# # ''' DAY 19 ''' 19:{ "10:00:00": "image/C18/19.png" , "10:00:05": ''' THANK YOU FOR SUCCESSFULLY FINISHING THE CHALLENGE ๐Ÿ’– ๐Ÿ’– ๐Ÿ’– ''' }, } #https://docs.google.com/document/d/1DH2D7TbobiQDnjnoJM_TQ7tFBn4GIiftSz1Awz_UHVg/edit #XXX
the-stack_106_21330
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : ็ณป็ปŸๅ†…้ƒจไฝฟ็”จๅทฅๅ…ท Case Name : ไฝฟ็”จgs_probackup add-instanceๅ‘ฝไปคๆทปๅŠ --remote-proto=noneๅ‚ๆ•ฐ Description : 1.ๅˆ›ๅปบๅค‡ไปฝ็›ฎๅฝ• 2.่ฟ›่กŒๅˆๅง‹ๅŒ– 3.ๅœจๅค‡ไปฝ่ทฏๅพ„ๅ†…ๅˆๅง‹ๅŒ–ไธ€ไธชๆ–ฐ็š„ๅค‡ไปฝๅฎžไพ‹ 4.ๆŸฅ็œ‹ๆ˜ฏๅฆ็”Ÿๆˆpg_probackup.conf้…็ฝฎๆ–‡ไปถ 5.ๆธ…็†็Žฏๅขƒ Expect : 1.ๅˆ›ๅปบๆˆๅŠŸ 2.ๅˆๅง‹ๅŒ–ๆˆๅŠŸ 3.ๅˆๅง‹ๅŒ–ๆ–ฐ็š„ๅค‡ไปฝๅฎžไพ‹ๆˆๅŠŸ 4.็”Ÿๆˆpg_probackup.conf้…็ฝฎๆ–‡ไปถ๏ผŒ่ฏฅๆ–‡ไปถไฟๅญ˜ไบ†ๆŒ‡ๅฎšๆ•ฐๆฎ็›ฎๅฝ•pgdata-path็š„ gs_probackup่ฎพ็ฝฎ 5.ๆธ…็†็ŽฏๅขƒๅฎŒๆˆ History : """ import os import unittest from testcase.utils.Constant import Constant from testcase.utils.Logger import Logger from yat.test import Node from yat.test import macro class SystemInternalTools(unittest.TestCase): def setUp(self): self.log = Logger() self.log.info('--Opengauss_Function_Tools_Gs_Probackup_Case0142start-') self.constant = Constant() self.Primary_Node = Node('PrimaryDbUser') self.gs_probackup_path = os.path.join(macro.DB_INSTANCE_PATH, 'gs_probackup_testdir0142') def test_system_internal_tools(self): text = '--step1:ๅˆ›ๅปบๅค‡ไปฝ็›ฎๅฝ•;expect:ๅˆ›ๅปบๆˆๅŠŸ----' self.log.info(text) mkdir_cmd = f'''if [ ! -d "{self.gs_probackup_path}" ] then mkdir -p {self.gs_probackup_path} fi''' primary_result = self.Primary_Node.sh(mkdir_cmd).result() self.log.info(primary_result) self.assertEqual(primary_result, '', 'ๆ‰ง่กŒๅคฑ่ดฅ:' + text) text = '--step2:่ฟ›่กŒๅˆๅง‹ๅŒ–;expect:ๅˆๅง‹ๅŒ–ๆˆๅŠŸ---' self.log.info(text) init_cmd = f"source {macro.DB_ENV_PATH};" \ f"gs_probackup init -B {self.gs_probackup_path};" self.log.info(init_cmd) init_msg = self.Primary_Node.sh(init_cmd).result() self.log.info(init_msg) self.assertIn(self.constant.init_success, init_msg, 'ๆ‰ง่กŒๅคฑ่ดฅ:' + text) text = '-step3:ๅœจๅค‡ไปฝ่ทฏๅพ„ๅ†…ๅˆๅง‹ๅŒ–ไธ€ไธชๆ–ฐ็š„ๅค‡ไปฝๅฎžไพ‹;' \ 'expect:ๅˆๅง‹ๅŒ–ๆ–ฐ็š„ๅค‡ไปฝๅฎžไพ‹ๆˆๅŠŸ-' self.log.info(text) init_cmd = f"source {macro.DB_ENV_PATH};" \ f"gs_probackup add-instance " \ f"-B {self.gs_probackup_path} " \ f"-D {macro.DB_INSTANCE_PATH} " \ f"--instance=test_0142 " \ f"--remote-proto=none;" self.log.info(init_cmd) init_msg = self.Primary_Node.sh(init_cmd).result() self.log.info(init_msg) self.assertIn("'test_0142' " + self.constant.init_success, init_msg, 'ๆ‰ง่กŒๅคฑ่ดฅ:' + text) text = '---step4:ๆŸฅ็œ‹pg_probackup.conf้…็ฝฎๆ–‡ไปถ;' \ 'expect:้…็ฝฎๆ–‡ไปถๆทปๅŠ ๆ•ฐๆฎ็›ฎๅฝ•ๆˆๅŠŸ---' self.log.info(text) cat_cmd = f"cat {self.gs_probackup_path}/backups/" \ f"test_0142/pg_probackup.conf" self.log.info(cat_cmd) cat_msg = self.Primary_Node.sh(cat_cmd).result() self.log.info(cat_msg) self.assertIn(f'pgdata = {macro.DB_INSTANCE_PATH}', cat_msg, 'ๆ‰ง่กŒๅคฑ่ดฅ:' + text) def tearDown(self): text = '---step5:ๆธ…็†็Žฏๅขƒ;expect:ๆธ…็†็ŽฏๅขƒๅฎŒๆˆ---' self.log.info(text) clear_cmd = f'rm -rf {self.gs_probackup_path}' self.log.info(clear_cmd) clear_msg = self.Primary_Node.sh(clear_cmd).result() self.log.info(clear_msg) self.log.info('-Opengauss_Function_Tools_Gs_Probackup_Case0142finish-')
the-stack_106_21331
'''As an open source project, we collect usage statistics to inform development priorities. For more information, check out the docs at https://docs.dagster.io/install/telemetry/' To see the logs we send, inspect $DAGSTER_HOME/logs/ if $DAGSTER_HOME is set or ~/.dagster/logs/ See class TelemetryEntry for logged fields. For local development: Spin up local telemetry server and set DAGSTER_TELEMETRY_URL = 'http://localhost:3000/actions' To test RotatingFileHandler, can set MAX_BYTES = 500 ''' import datetime import hashlib import json import logging import os import sys import uuid import zlib from collections import namedtuple from functools import wraps from logging.handlers import RotatingFileHandler import click import requests import six import yaml from dagster import check from dagster.core.definitions.executable import ExecutablePipeline from dagster.core.definitions.reconstructable import ( EPHEMERAL_NAME, ReconstructablePipeline, ReconstructableRepository, ) from dagster.core.errors import DagsterInvariantViolationError from dagster.core.instance import DagsterInstance TELEMETRY_STR = '.telemetry' INSTANCE_ID_STR = 'instance_id' ENABLED_STR = 'enabled' DAGSTER_HOME_FALLBACK = '~/.dagster' DAGSTER_TELEMETRY_URL = 'http://telemetry.dagster.io/actions' MAX_BYTES = 10485760 # 10 MB = 10 * 1024 * 1024 bytes UPDATE_REPO_STATS = 'update_repo_stats' START_DAGIT_WEBSERVER = 'start_dagit_webserver' TELEMETRY_VERSION = '0.2' # When adding to TELEMETRY_WHITELISTED_FUNCTIONS, please also update the literalinclude in # docs/next/src/pages/install/telemetry.mdx TELEMETRY_WHITELISTED_FUNCTIONS = { 'pipeline_execute_command', 'pipeline_launch_command', 'execute_pipeline', } def telemetry_wrapper(f): ''' Wrapper around functions that are logged. Will log the function_name, client_time, and elapsed_time, and success. ''' if f.__name__ not in TELEMETRY_WHITELISTED_FUNCTIONS: raise DagsterInvariantViolationError( 'Attempted to log telemetry for function {name} that is not in telemetry whitelisted ' 'functions list: {whitelist}.'.format( name=f.__name__, whitelist=TELEMETRY_WHITELISTED_FUNCTIONS ) ) @wraps(f) def wrap(*args, **kwargs): start_time = datetime.datetime.now() log_action(action=f.__name__ + '_started', client_time=start_time) result = f(*args, **kwargs) end_time = datetime.datetime.now() log_action( action=f.__name__ + '_ended', client_time=end_time, elapsed_time=end_time - start_time, metadata={'success': getattr(result, 'success', None)}, ) return result return wrap def get_python_version(): version = sys.version_info return "{}.{}.{}".format(version.major, version.minor, version.micro) class TelemetryEntry( namedtuple( 'TelemetryEntry', 'action client_time elapsed_time event_id instance_id pipeline_name_hash ' 'num_pipelines_in_repo repo_hash python_version metadata version', ) ): ''' Schema for telemetry logs. Currently, log entries are coerced to the same schema to enable storing all entries in one DB table with unified schema. action - Name of function called i.e. `execute_pipeline_started` (see: fn telemetry_wrapper) client_time - Client time elapsed_time - Time elapsed between start of function and end of function call event_id - Unique id for the event instance_id - Unique id for dagster instance pipeline_name_hash - Hash of pipeline name, if any python_version - Python version repo_hash - Hash of repo name, if any num_pipelines_in_repo - Number of pipelines in repo, if any metadata - More information i.e. pipeline success (boolean) version - Schema version If $DAGSTER_HOME is set, then use $DAGSTER_HOME/logs/ Otherwise, use ~/.dagster/logs/ ''' def __new__( cls, action, client_time, event_id, instance_id, elapsed_time=None, pipeline_name_hash=None, num_pipelines_in_repo=None, repo_hash=None, metadata=None, ): action = check.str_param(action, 'action') client_time = check.str_param(client_time, 'action') elapsed_time = check.opt_str_param(elapsed_time, 'elapsed_time', '') event_id = check.str_param(event_id, 'event_id') instance_id = check.str_param(instance_id, 'instance_id') metadata = check.opt_dict_param(metadata, 'metadata') if action == UPDATE_REPO_STATS: pipeline_name_hash = check.str_param(pipeline_name_hash, 'pipeline_name_hash') num_pipelines_in_repo = check.str_param(num_pipelines_in_repo, 'num_pipelines_in_repo') repo_hash = check.str_param(repo_hash, 'repo_hash') else: pipeline_name_hash = '' num_pipelines_in_repo = '' repo_hash = '' return super(TelemetryEntry, cls).__new__( cls, action=action, client_time=client_time, elapsed_time=elapsed_time, event_id=event_id, instance_id=instance_id, pipeline_name_hash=pipeline_name_hash, num_pipelines_in_repo=num_pipelines_in_repo, repo_hash=repo_hash, python_version=get_python_version(), metadata=metadata, version=TELEMETRY_VERSION, ) def _dagster_home_if_set(): dagster_home_path = os.getenv('DAGSTER_HOME') if not dagster_home_path: return None return os.path.expanduser(dagster_home_path) def get_dir_from_dagster_home(target_dir): ''' If $DAGSTER_HOME is set, return $DAGSTER_HOME/<target_dir>/ Otherwise, return ~/.dagster/<target_dir>/ The 'logs' directory is used to cache logs before upload The '.logs_queue' directory is used to temporarily store logs during upload. This is to prevent dropping events or double-sending events that occur during the upload process. The '.telemetry' directory is used to store the instance id. ''' dagster_home_path = _dagster_home_if_set() if dagster_home_path is None: dagster_home_path = os.path.expanduser(DAGSTER_HOME_FALLBACK) dagster_home_logs_path = os.path.join(dagster_home_path, target_dir) if not os.path.exists(dagster_home_logs_path): os.makedirs(dagster_home_logs_path) return dagster_home_logs_path def get_log_queue_dir(): ''' Get the directory where we store log queue files, creating the directory if needed. The log queue directory is used to temporarily store logs during upload. This is to prevent dropping events or double-sending events that occur during the upload process. If $DAGSTER_HOME is set, return $DAGSTER_HOME/.logs_queue/ Otherwise, return ~/.dagster/.logs_queue/ ''' dagster_home_path = _dagster_home_if_set() if dagster_home_path is None: dagster_home_path = os.path.expanduser(DAGSTER_HOME_FALLBACK) dagster_home_logs_queue_path = dagster_home_path + '/.logs_queue/' if not os.path.exists(dagster_home_logs_queue_path): os.makedirs(dagster_home_logs_queue_path) return dagster_home_logs_queue_path def _get_telemetry_logger(): logger = logging.getLogger('dagster_telemetry_logger') if len(logger.handlers) == 0: handler = RotatingFileHandler( os.path.join(get_dir_from_dagster_home('logs'), 'event.log'), maxBytes=MAX_BYTES, backupCount=10, ) logger.setLevel(logging.INFO) logger.addHandler(handler) return logger def write_telemetry_log_line(log_line): logger = _get_telemetry_logger() logger.info(json.dumps(log_line)) def _get_instance_telemetry_info(): dagster_telemetry_enabled = _get_instance_telemetry_enabled(DagsterInstance.get()) instance_id = None if dagster_telemetry_enabled: instance_id = _get_or_set_instance_id() return (dagster_telemetry_enabled, instance_id) def _get_instance_telemetry_enabled(instance): return instance.telemetry_enabled def _get_or_set_instance_id(): instance_id = _get_telemetry_instance_id() if instance_id == None: instance_id = _set_telemetry_instance_id() return instance_id # Gets the instance_id at $DAGSTER_HOME/.telemetry/id.yaml def _get_telemetry_instance_id(): telemetry_id_path = os.path.join(get_dir_from_dagster_home(TELEMETRY_STR), 'id.yaml') if not os.path.exists(telemetry_id_path): return with open(telemetry_id_path, 'r') as telemetry_id_file: telemetry_id_yaml = yaml.safe_load(telemetry_id_file) if INSTANCE_ID_STR in telemetry_id_yaml and isinstance( telemetry_id_yaml[INSTANCE_ID_STR], six.string_types ): return telemetry_id_yaml[INSTANCE_ID_STR] return None # Sets the instance_id at $DAGSTER_HOME/.telemetry/id.yaml def _set_telemetry_instance_id(): click.secho(TELEMETRY_TEXT) click.secho(SLACK_PROMPT) telemetry_id_path = os.path.join(get_dir_from_dagster_home(TELEMETRY_STR), 'id.yaml') instance_id = str(uuid.uuid4()) try: # In case we encounter an error while writing to user's file system with open(telemetry_id_path, 'w') as telemetry_id_file: yaml.dump({INSTANCE_ID_STR: instance_id}, telemetry_id_file, default_flow_style=False) return instance_id except Exception: # pylint: disable=broad-except return '<<unable_to_write_instance_id>>' def hash_name(name): return hashlib.sha256(name.encode('utf-8')).hexdigest() def log_repo_stats(instance, source, pipeline=None, repo=None): check.inst_param(instance, 'instance', DagsterInstance) check.str_param(source, 'source') check.opt_inst_param(pipeline, 'pipeline', ExecutablePipeline) check.opt_inst_param(repo, 'repo', ReconstructableRepository) if _get_instance_telemetry_enabled(instance): instance_id = _get_or_set_instance_id() if isinstance(pipeline, ReconstructablePipeline): pipeline_name_hash = hash_name(pipeline.get_definition().name) repository = pipeline.get_reconstructable_repository().get_definition() repo_hash = hash_name(repository.name) num_pipelines_in_repo = len(repository.pipeline_names) elif isinstance(repo, ReconstructableRepository): pipeline_name_hash = '' repository = repo.get_definition() repo_hash = hash_name(repository.name) num_pipelines_in_repo = len(repository.pipeline_names) else: pipeline_name_hash = hash_name(pipeline.get_definition().name) repo_hash = hash_name(EPHEMERAL_NAME) num_pipelines_in_repo = 1 write_telemetry_log_line( TelemetryEntry( action=UPDATE_REPO_STATS, client_time=str(datetime.datetime.now()), event_id=str(uuid.uuid4()), instance_id=instance_id, pipeline_name_hash=pipeline_name_hash, num_pipelines_in_repo=str(num_pipelines_in_repo), repo_hash=repo_hash, metadata={'source': source}, )._asdict() ) def log_action(action, client_time=datetime.datetime.now(), elapsed_time=None, metadata=None): (dagster_telemetry_enabled, instance_id) = _get_instance_telemetry_info() if dagster_telemetry_enabled: # Log general statistics write_telemetry_log_line( TelemetryEntry( action=action, client_time=str(client_time), elapsed_time=str(elapsed_time), event_id=str(uuid.uuid4()), instance_id=instance_id, metadata=metadata, )._asdict() ) TELEMETRY_TEXT = ''' %(telemetry)s As an open source project, we collect usage statistics to inform development priorities. For more information, read https://docs.dagster.io/install/telemetry. We will not see or store solid definitions, pipeline definitions, modes, resources, context, or any data that is processed within solids and pipelines. To opt-out, add the following to $DAGSTER_HOME/dagster.yaml, creating that file if necessary: telemetry: enabled: false ''' % { 'telemetry': click.style('Telemetry:', fg='blue', bold=True) } SLACK_PROMPT = ''' %(welcome)s If you have any questions or would like to engage with the Dagster team, please join us on Slack (https://bit.ly/39dvSsF). ''' % { 'welcome': click.style('Welcome to Dagster!', bold=True) } def upload_logs(stop_event): '''Upload logs to telemetry server every hour, or when log directory size is > 10MB''' try: last_run = datetime.datetime.now() - datetime.timedelta(minutes=120) dagster_log_dir = get_dir_from_dagster_home('logs') dagster_log_queue_dir = get_dir_from_dagster_home('.logs_queue') in_progress = False while not stop_event.is_set(): log_size = 0 if os.path.isdir(dagster_log_dir): log_size = sum( os.path.getsize(os.path.join(dagster_log_dir, f)) for f in os.listdir(dagster_log_dir) if os.path.isfile(os.path.join(dagster_log_dir, f)) ) log_queue_size = 0 if os.path.isdir(dagster_log_queue_dir): log_queue_size = sum( os.path.getsize(os.path.join(dagster_log_queue_dir, f)) for f in os.listdir(dagster_log_queue_dir) if os.path.isfile(os.path.join(dagster_log_queue_dir, f)) ) if log_size == 0 and log_queue_size == 0: return if not in_progress and ( datetime.datetime.now() - last_run > datetime.timedelta(minutes=60) or log_size >= MAX_BYTES or log_queue_size >= MAX_BYTES ): in_progress = True # Prevent concurrent _upload_logs invocations last_run = datetime.datetime.now() dagster_log_dir = get_dir_from_dagster_home('logs') dagster_log_queue_dir = get_dir_from_dagster_home('.logs_queue') _upload_logs(dagster_log_dir, log_size, dagster_log_queue_dir) in_progress = False stop_event.wait(600) # Sleep for 10 minutes except Exception: # pylint: disable=broad-except pass def _upload_logs(dagster_log_dir, log_size, dagster_log_queue_dir): '''Send POST request to telemetry server with the contents of $DAGSTER_HOME/logs/ directory ''' try: if log_size > 0: # Delete contents of dagster_log_queue_dir so that new logs can be copied over for f in os.listdir(dagster_log_queue_dir): # Todo: there is probably a way to try to upload these logs without introducing # too much complexity... os.remove(os.path.join(dagster_log_queue_dir, f)) os.rename(dagster_log_dir, dagster_log_queue_dir) for curr_path in os.listdir(dagster_log_queue_dir): curr_full_path = os.path.join(dagster_log_queue_dir, curr_path) retry_num = 0 max_retries = 3 success = False while not success and retry_num <= max_retries: with open(curr_full_path, 'rb') as curr_file: byte = curr_file.read() data = zlib.compress(byte, zlib.Z_BEST_COMPRESSION) headers = {'content-encoding': 'gzip'} r = requests.post(DAGSTER_TELEMETRY_URL, data=data, headers=headers) if r.status_code == 200: success = True retry_num += 1 if success: os.remove(curr_full_path) except Exception: # pylint: disable=broad-except pass
the-stack_106_21332
from unittest import mock from django.contrib.auth.models import User from django.test import TestCase from django.test.utils import override_settings from django.utils.translation import ugettext_lazy as _ from django_dynamic_fixture import get from textclassifier.validators import ClassifierValidator from readthedocs.builds.constants import LATEST, STABLE, EXTERNAL from readthedocs.builds.models import Version from readthedocs.projects.constants import ( PRIVATE, PRIVACY_CHOICES, PROTECTED, PUBLIC, REPO_TYPE_GIT, REPO_TYPE_HG, ) from readthedocs.projects.exceptions import ProjectSpamError from readthedocs.projects.forms import ( EmailHookForm, EnvironmentVariableForm, ProjectAdvancedForm, ProjectBasicsForm, ProjectExtraForm, TranslationForm, UpdateProjectForm, WebHookForm, ) from readthedocs.projects.models import EnvironmentVariable, Project class TestProjectForms(TestCase): @mock.patch.object(ClassifierValidator, '__call__') def test_form_spam(self, mocked_validator): """Form description field fails spam validation.""" mocked_validator.side_effect = ProjectSpamError data = { 'description': 'foo', 'documentation_type': 'sphinx', 'language': 'en', } form = ProjectExtraForm(data) with self.assertRaises(ProjectSpamError): form.is_valid() def test_import_repo_url(self): """Validate different type of repository URLs on importing a Project.""" common_urls = [ # Invalid ('./path/to/relative/folder', False), ('../../path/to/relative/folder', False), ('../../path/to/@/folder', False), ('/path/to/local/folder', False), ('/path/to/@/folder', False), ('file:///path/to/local/folder', False), ('file:///path/to/@/folder', False), ('github.com/humitos/foo', False), ('https://github.com/|/foo', False), ('git://github.com/&&/foo', False), # Valid ('git://github.com/humitos/foo', True), ('http://github.com/humitos/foo', True), ('https://github.com/humitos/foo', True), ('http://gitlab.com/humitos/foo', True), ('http://bitbucket.com/humitos/foo', True), ('ftp://ftpserver.com/humitos/foo', True), ('ftps://ftpserver.com/humitos/foo', True), ('lp:zaraza', True), ] public_urls = [ ('[email protected]:humitos/foo', False), ('ssh://[email protected]/humitos/foo', False), ('ssh+git://github.com/humitos/foo', False), ('[email protected]:strangeuser/readthedocs.git', False), ('[email protected]:22/_ssh/docs', False), ] + common_urls private_urls = [ ('[email protected]:humitos/foo', True), ('ssh://[email protected]/humitos/foo', True), ('ssh+git://github.com/humitos/foo', True), ('[email protected]:strangeuser/readthedocs.git', True), ('[email protected]:22/_ssh/docs', True), ] + common_urls with override_settings(ALLOW_PRIVATE_REPOS=False): for url, valid in public_urls: initial = { 'name': 'foo', 'repo_type': 'git', 'repo': url, } form = ProjectBasicsForm(initial) self.assertEqual(form.is_valid(), valid, msg=url) with override_settings(ALLOW_PRIVATE_REPOS=True): for url, valid in private_urls: initial = { 'name': 'foo', 'repo_type': 'git', 'repo': url, } form = ProjectBasicsForm(initial) self.assertEqual(form.is_valid(), valid, msg=url) def test_empty_slug(self): initial = { 'name': "''", 'repo_type': 'git', 'repo': 'https://github.com/user/repository', } form = ProjectBasicsForm(initial) self.assertFalse(form.is_valid()) self.assertIn('name', form.errors) def test_changing_vcs_should_change_latest(self): """When changing the project's VCS, latest should be changed too.""" project = get(Project, repo_type=REPO_TYPE_HG, default_branch=None) latest = project.versions.get(slug=LATEST) self.assertEqual(latest.identifier, 'default') form = ProjectBasicsForm( { 'repo': 'http://github.com/test/test', 'name': 'name', 'repo_type': REPO_TYPE_GIT, }, instance=project, ) self.assertTrue(form.is_valid()) form.save() latest.refresh_from_db() self.assertEqual(latest.identifier, 'master') def test_changing_vcs_should_not_change_latest_is_not_none(self): """ When changing the project's VCS, we should respect the custom default branch. """ project = get(Project, repo_type=REPO_TYPE_HG, default_branch='custom') latest = project.versions.get(slug=LATEST) self.assertEqual(latest.identifier, 'custom') form = ProjectBasicsForm( { 'repo': 'http://github.com/test/test', 'name': 'name', 'repo_type': REPO_TYPE_GIT, }, instance=project, ) self.assertTrue(form.is_valid()) form.save() latest.refresh_from_db() self.assertEqual(latest.identifier, 'custom') def test_length_of_tags(self): data = { 'documentation_type': 'sphinx', 'language': 'en', } data['tags'] = '{},{}'.format('a'*50, 'b'*99) form = ProjectExtraForm(data) self.assertTrue(form.is_valid()) data['tags'] = '{},{}'.format('a'*90, 'b'*100) form = ProjectExtraForm(data) self.assertTrue(form.is_valid()) data['tags'] = '{},{}'.format('a'*99, 'b'*101) form = ProjectExtraForm(data) self.assertFalse(form.is_valid()) self.assertTrue(form.has_error('tags')) error_msg = 'Length of each tag must be less than or equal to 100 characters.' self.assertDictEqual(form.errors, {'tags': [error_msg]}) def test_strip_repo_url(self): form = ProjectBasicsForm({ 'name': 'foo', 'repo_type': 'git', 'repo': 'https://github.com/rtfd/readthedocs.org/' }) self.assertTrue(form.is_valid()) self.assertEqual( form.cleaned_data['repo'], 'https://github.com/rtfd/readthedocs.org' ) class TestProjectAdvancedForm(TestCase): def setUp(self): self.project = get(Project) get( Version, project=self.project, slug='public-1', active=True, privacy_level=PUBLIC, identifier='public-1', verbose_name='public-1', ) get( Version, project=self.project, slug='public-2', active=True, privacy_level=PUBLIC, identifier='public-2', verbose_name='public-2', ) get( Version, project=self.project, slug='public-3', active=False, privacy_level=PROTECTED, identifier='public-3', verbose_name='public-3', ) get( Version, project=self.project, slug='public-4', active=False, privacy_level=PUBLIC, identifier='public/4', verbose_name='public/4', ) get( Version, project=self.project, slug='private', active=True, privacy_level=PRIVATE, identifier='private', verbose_name='private', ) get( Version, project=self.project, slug='protected', active=True, privacy_level=PROTECTED, identifier='protected', verbose_name='protected', ) def test_list_only_active_versions_on_default_version(self): form = ProjectAdvancedForm(instance=self.project) # This version is created automatically by the project on save self.assertTrue(self.project.versions.filter(slug=LATEST).exists()) self.assertEqual( { slug for slug, _ in form.fields['default_version'].widget.choices }, {'latest', 'public-1', 'public-2', 'private', 'protected'}, ) def test_default_version_field_if_no_active_version(self): project_1 = get(Project) project_1.versions.filter(active=True).update(active=False) # No active versions of project exists self.assertFalse(project_1.versions.filter(active=True).exists()) form = ProjectAdvancedForm(instance=project_1) self.assertTrue(form.fields['default_version'].widget.attrs['readonly']) self.assertEqual(form.fields['default_version'].initial, 'latest') def test_hide_protected_privacy_level_new_objects(self): """ Test PROTECTED is only allowed in old objects. New projects are not allowed to set the privacy level as protected. """ # New default object project = get(Project) form = ProjectAdvancedForm(instance=project) privacy_choices = list(PRIVACY_CHOICES) privacy_choices.remove((PROTECTED, _('Protected'))) self.assertEqual(form.fields['privacy_level'].choices, privacy_choices) # "Old" object with privacy_level previously set as protected project = get( Project, privacy_level=PROTECTED, ) form = ProjectAdvancedForm(instance=project) self.assertEqual(form.fields['privacy_level'].choices, list(PRIVACY_CHOICES)) class TestProjectAdvancedFormDefaultBranch(TestCase): def setUp(self): self.project = get(Project) user_created_stable_version = get( Version, project=self.project, slug='stable', active=True, privacy_level=PUBLIC, identifier='ab96cbff71a8f40a4340aaf9d12e6c10', verbose_name='stable', ) get( Version, project=self.project, slug='public-1', active=True, privacy_level=PUBLIC, identifier='public-1', verbose_name='public-1', ) get( Version, project=self.project, slug='private', active=True, privacy_level=PRIVATE, identifier='private', verbose_name='private', ) get( Version, project=self.project, slug='protected', active=True, privacy_level=PROTECTED, identifier='protected', verbose_name='protected', ) def test_list_only_non_auto_generated_versions_in_default_branch_choices(self): form = ProjectAdvancedForm(instance=self.project) # This version is created automatically by the project on save latest = self.project.versions.filter(slug=LATEST) self.assertTrue(latest.exists()) # show only the versions that are not auto generated as choices self.assertEqual( { identifier for identifier, _ in form.fields['default_branch'].widget.choices }, { None, 'stable', 'public-1', 'protected', 'private', }, ) # Auto generated version `latest` should not be among the choices self.assertNotIn( latest.first().verbose_name, [identifier for identifier, _ in form.fields[ 'default_branch'].widget.choices], ) def test_list_user_created_latest_and_stable_versions_in_default_branch_choices(self): self.project.versions.filter(slug=LATEST).first().delete() user_created_latest_version = get( Version, project=self.project, slug='latest', active=True, privacy_level=PUBLIC, identifier='ab96cbff71a8f40a4240aaf9d12e6c10', verbose_name='latest', ) form = ProjectAdvancedForm(instance=self.project) # This version is created by the user latest = self.project.versions.filter(slug=LATEST) # This version is created by the user stable = self.project.versions.filter(slug=STABLE) self.assertIn( latest.first().verbose_name, [identifier for identifier, _ in form.fields[ 'default_branch'].widget.choices], ) self.assertIn( stable.first().verbose_name, [identifier for identifier, _ in form.fields[ 'default_branch'].widget.choices], ) def test_commit_name_not_in_default_branch_choices(self): form = ProjectAdvancedForm(instance=self.project) # This version is created by the user latest = self.project.versions.filter(slug=LATEST) # This version is created by the user stable = self.project.versions.filter(slug=STABLE) # `commit_name` can not be used as the value for the choices self.assertNotIn( latest.first().commit_name, [identifier for identifier, _ in form.fields[ 'default_branch'].widget.choices], ) self.assertNotIn( stable.first().commit_name, [identifier for identifier, _ in form.fields[ 'default_branch'].widget.choices], ) def test_external_version_not_in_default_branch_choices(self): external_version = get( Version, identifier='pr-version', verbose_name='pr-version', slug='pr-9999', project=self.project, active=True, type=EXTERNAL, privacy_level=PUBLIC, ) form = ProjectAdvancedForm(instance=self.project) self.assertNotIn( external_version.verbose_name, [identifier for identifier, _ in form.fields[ 'default_branch'].widget.choices], ) class TestTranslationForms(TestCase): def setUp(self): self.user_a = get(User) self.project_a_es = self.get_project(lang='es', users=[self.user_a]) self.project_b_en = self.get_project(lang='en', users=[self.user_a]) self.project_c_br = self.get_project(lang='br', users=[self.user_a]) self.project_d_ar = self.get_project(lang='ar', users=[self.user_a]) self.project_e_en = self.get_project(lang='en', users=[self.user_a]) self.user_b = get(User) self.project_f_ar = self.get_project(lang='ar', users=[self.user_b]) self.project_g_ga = self.get_project(lang='ga', users=[self.user_b]) self.project_s_fr = self.get_project( lang='fr', users=[self.user_b, self.user_a], ) def get_project(self, lang, users, **kwargs): return get( Project, language=lang, users=users, main_language_project=None, **kwargs ) def test_list_only_owner_projects(self): form = TranslationForm( {'project': self.project_b_en.slug}, parent=self.project_a_es, user=self.user_a, ) self.assertTrue(form.is_valid()) expected_projects = [ self.project_b_en, self.project_c_br, self.project_d_ar, self.project_e_en, self.project_s_fr, ] self.assertEqual( {proj_slug for proj_slug, _ in form.fields['project'].choices}, {project.slug for project in expected_projects}, ) form = TranslationForm( {'project': self.project_g_ga.slug}, parent=self.project_f_ar, user=self.user_b, ) self.assertTrue(form.is_valid()) expected_projects = [ self.project_g_ga, self.project_s_fr, ] self.assertEqual( {proj_slug for proj_slug, _ in form.fields['project'].choices}, {project.slug for project in expected_projects}, ) def test_excludes_existing_translations(self): self.project_a_es.translations.add(self.project_b_en) self.project_a_es.translations.add(self.project_c_br) self.project_a_es.save() form = TranslationForm( {'project': self.project_d_ar.slug}, parent=self.project_a_es, user=self.user_a, ) self.assertTrue(form.is_valid()) expected_projects = [ self.project_d_ar, self.project_e_en, self.project_s_fr, ] self.assertEqual( {proj_slug for proj_slug, _ in form.fields['project'].choices}, {project.slug for project in expected_projects}, ) def test_user_cant_add_other_user_project(self): form = TranslationForm( {'project': self.project_f_ar.slug}, parent=self.project_b_en, user=self.user_a, ) self.assertFalse(form.is_valid()) self.assertIn( 'Select a valid choice', ''.join(form.errors['project']), ) self.assertNotIn( self.project_f_ar, [proj_slug for proj_slug, _ in form.fields['project'].choices], ) def test_user_cant_add_project_with_same_lang(self): form = TranslationForm( {'project': self.project_b_en.slug}, parent=self.project_e_en, user=self.user_a, ) self.assertFalse(form.is_valid()) self.assertIn( 'Both projects can not have the same language (English).', ''.join(form.errors['project']), ) def test_user_cant_add_project_with_same_lang_of_other_translation(self): self.project_a_es.translations.add(self.project_b_en) self.project_a_es.save() form = TranslationForm( {'project': self.project_e_en.slug}, parent=self.project_a_es, user=self.user_a, ) self.assertFalse(form.is_valid()) self.assertIn( 'This project already has a translation for English.', ''.join(form.errors['project']), ) def test_no_nesting_translation(self): self.project_a_es.translations.add(self.project_b_en) self.project_a_es.save() form = TranslationForm( {'project': self.project_b_en.slug}, parent=self.project_c_br, user=self.user_a, ) self.assertFalse(form.is_valid()) self.assertIn( 'Select a valid choice', ''.join(form.errors['project']), ) def test_no_nesting_translation_case_2(self): self.project_a_es.translations.add(self.project_b_en) self.project_a_es.save() form = TranslationForm( {'project': self.project_a_es.slug}, parent=self.project_c_br, user=self.user_a, ) self.assertFalse(form.is_valid()) self.assertIn( 'A project with existing translations can not', ''.join(form.errors['project']), ) def test_not_already_translation(self): self.project_a_es.translations.add(self.project_b_en) self.project_a_es.save() form = TranslationForm( {'project': self.project_c_br.slug}, parent=self.project_b_en, user=self.user_a, ) self.assertFalse(form.is_valid()) self.assertIn( 'is already a translation', ''.join(form.errors['project']), ) def test_cant_change_language_to_translation_lang(self): self.project_a_es.translations.add(self.project_b_en) self.project_a_es.translations.add(self.project_c_br) self.project_a_es.save() # Parent project tries to change lang form = UpdateProjectForm( { 'documentation_type': 'sphinx', 'language': 'en', }, instance=self.project_a_es, ) self.assertFalse(form.is_valid()) self.assertIn( 'There is already a "en" translation', ''.join(form.errors['language']), ) # Translation tries to change lang form = UpdateProjectForm( { 'documentation_type': 'sphinx', 'language': 'es', }, instance=self.project_b_en, ) self.assertFalse(form.is_valid()) self.assertIn( 'There is already a "es" translation', ''.join(form.errors['language']), ) # Translation tries to change lang # to the same as its sibling form = UpdateProjectForm( { 'documentation_type': 'sphinx', 'language': 'br', }, instance=self.project_b_en, ) self.assertFalse(form.is_valid()) self.assertIn( 'There is already a "br" translation', ''.join(form.errors['language']), ) def test_can_change_language_to_self_lang(self): self.project_a_es.translations.add(self.project_b_en) self.project_a_es.translations.add(self.project_c_br) self.project_a_es.save() # Parent project tries to change lang form = UpdateProjectForm( { 'repo': 'https://github.com/test/test', 'repo_type': self.project_a_es.repo_type, 'name': self.project_a_es.name, 'documentation_type': 'sphinx', 'language': 'es', }, instance=self.project_a_es, ) self.assertTrue(form.is_valid()) # Translation tries to change lang form = UpdateProjectForm( { 'repo': 'https://github.com/test/test', 'repo_type': self.project_b_en.repo_type, 'name': self.project_b_en.name, 'documentation_type': 'sphinx', 'language': 'en', }, instance=self.project_b_en, ) self.assertTrue(form.is_valid()) class TestNotificationForm(TestCase): def setUp(self): self.project = get(Project) def test_webhookform(self): self.assertEqual(self.project.webhook_notifications.all().count(), 0) data = { 'url': 'http://www.example.com/' } form = WebHookForm(data=data, project=self.project) self.assertTrue(form.is_valid()) form.save() self.assertEqual(self.project.webhook_notifications.all().count(), 1) data = { 'url': 'https://www.example.com/' } form = WebHookForm(data=data, project=self.project) self.assertTrue(form.is_valid()) form.save() self.assertEqual(self.project.webhook_notifications.all().count(), 2) def test_wrong_inputs_in_webhookform(self): self.assertEqual(self.project.webhook_notifications.all().count(), 0) data = { 'url': '' } form = WebHookForm(data=data, project=self.project) self.assertFalse(form.is_valid()) self.assertDictEqual(form.errors, {'url': ['This field is required.']}) self.assertEqual(self.project.webhook_notifications.all().count(), 0) data = { 'url': 'wrong-url' } form = WebHookForm(data=data, project=self.project) self.assertFalse(form.is_valid()) self.assertDictEqual(form.errors, {'url': ['Enter a valid URL.']}) self.assertEqual(self.project.webhook_notifications.all().count(), 0) def test_emailhookform(self): self.assertEqual(self.project.emailhook_notifications.all().count(), 0) data = { 'email': '[email protected]' } form = EmailHookForm(data=data, project=self.project) self.assertTrue(form.is_valid()) form.save() self.assertEqual(self.project.emailhook_notifications.all().count(), 1) def test_wrong_inputs_in_emailhookform(self): self.assertEqual(self.project.emailhook_notifications.all().count(), 0) data = { 'email': 'wrong_email@' } form = EmailHookForm(data=data, project=self.project) self.assertFalse(form.is_valid()) self.assertDictEqual(form.errors, {'email': ['Enter a valid email address.']}) self.assertEqual(self.project.emailhook_notifications.all().count(), 0) data = { 'email': '' } form = EmailHookForm(data=data, project=self.project) self.assertFalse(form.is_valid()) self.assertDictEqual(form.errors, {'email': ['This field is required.']}) self.assertEqual(self.project.emailhook_notifications.all().count(), 0) class TestProjectEnvironmentVariablesForm(TestCase): def setUp(self): self.project = get(Project) def test_use_invalid_names(self): data = { 'name': 'VARIABLE WITH SPACES', 'value': 'string here', } form = EnvironmentVariableForm(data, project=self.project) self.assertFalse(form.is_valid()) self.assertIn( "Variable name can't contain spaces", form.errors['name'], ) data = { 'name': 'READTHEDOCS__INVALID', 'value': 'string here', } form = EnvironmentVariableForm(data, project=self.project) self.assertFalse(form.is_valid()) self.assertIn( "Variable name can't start with READTHEDOCS", form.errors['name'], ) data = { 'name': 'INVALID_CHAR*', 'value': 'string here', } form = EnvironmentVariableForm(data, project=self.project) self.assertFalse(form.is_valid()) self.assertIn( 'Only letters, numbers and underscore are allowed', form.errors['name'], ) data = { 'name': '__INVALID', 'value': 'string here', } form = EnvironmentVariableForm(data, project=self.project) self.assertFalse(form.is_valid()) self.assertIn( "Variable name can't start with __ (double underscore)", form.errors['name'], ) get(EnvironmentVariable, name='EXISTENT_VAR', project=self.project) data = { 'name': 'EXISTENT_VAR', 'value': 'string here', } form = EnvironmentVariableForm(data, project=self.project) self.assertFalse(form.is_valid()) self.assertIn( 'There is already a variable with this name for this project', form.errors['name'], ) def test_create(self): data = { 'name': 'MYTOKEN', 'value': 'string here', } form = EnvironmentVariableForm(data, project=self.project) form.save() self.assertEqual(EnvironmentVariable.objects.count(), 1) self.assertEqual(EnvironmentVariable.objects.first().name, 'MYTOKEN') self.assertEqual(EnvironmentVariable.objects.first().value, "'string here'") data = { 'name': 'ESCAPED', 'value': r'string escaped here: #$\1[]{}\|', } form = EnvironmentVariableForm(data, project=self.project) form.save() self.assertEqual(EnvironmentVariable.objects.count(), 2) self.assertEqual(EnvironmentVariable.objects.first().name, 'ESCAPED') self.assertEqual(EnvironmentVariable.objects.first().value, r"'string escaped here: #$\1[]{}\|'")
the-stack_106_21333
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'reconchess' copyright = '2018, Corey Lowman, Casey Richardson' author = 'Corey Lowman, Casey Richardson' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinxcontrib.httpdomain', ] autodoc_member_order = 'bysource' intersphinx_mapping = { 'chess': ('https://python-chess.readthedocs.io/en/latest/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = [] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'reconchessdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'reconchess.tex', 'reconchess Documentation', 'Corey Lowman, Casey Richardson', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'reconchess', 'reconchess Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'reconchess', 'reconchess Documentation', author, 'reconchess', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration -------------------------------------------------
the-stack_106_21334
# Homework Assignment 06 # from Aishwarya Shirbhate 20005242 # Pseudocode # # Define input_check function with check, answer, number of wins and history input # In the function # { # Initialise variables maximum attempts and user inputs. # Define symbol list which needs to be excluded from the user input. # While maximum attempts < 6, # ask for user input. # if length of user input = 0 # print "You have now ended the game\n Thank you for playing Wordle\n " # call gameStats function # for i in history[i] = 0 # update check as exit # break # if length of user input is 5, # if symbols not in user input # if user input is uniquer than previous responses, # call wordGuesser function # else print prompt "Provided word is used previously. Please enter a new word" # else print prompt "Input word contains symbols/characters. Please input words with alphabets only" # else print prompt "Input word length needs to be 5 alphabets long" # # if all alphabets are in correct order, # game is over. print "Woah! You guessed it right in attempt" with maximum attempts used to the user # if maximum_guesses in number_of_wins: # number_of_wins[maximum_guesses] += 1 # else: # number_of_wins[maximum_guesses] = 1 # # update history[won] by 1 # print "Guess Distribution is:" and number_of_wins # if length of user input = 0 # then print "you have now ended the game. Thank you for playing Wordle " # print "Guess Distribution is:" and number_of_wins # if input word is not same as given word # then continue function till maximum attempts are <= 6 # else game is over. print "You have used up your guesses" and the correct word to the user. # update history["loss"] by 1 # print "Guess Distribution is:" and number_of_wins # call game_stats(history) function # log user input, no of wins and answer # return check, number_of_wins, history # end # } # define gameStats function with history as input # let lost_games = history["loss"] # let won_games = history["won"] # let total_games = won_games + lost_games # let win_prec = (won_games/total_games) * 100 # print "total no of games won are:" and won_games # print "total no of games lost are:" and lost_games # print "winning percentage are:" and win_prec # log total games and win perc # define main wordle function # in the main function { # initialise check = "play" # let number_of_wins = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0} # let history = {"won": 0, "loss": 0} # define valid words list # while check = "play" # call dictionary module and assign englishword to answer # if type(answer) == 'NoneType' # raise Exception # if answer is not in valid_words # valid_words.append(answer) # call input_check function # print('*' * 100) # if len(valid_words) == 1379 then # valid_words = [] # end } # call wordle function import HW06_Aishwarya_Shirbhate_dictionary_final as Module_dictionary import HW06_Aishwarya_Shirbhate_wordle_final as Module_wordle import json import sys import logging print("*** WORDLE GAME ***") logging.basicConfig(filename='gameplay.log', filemode='a', format='%(name)s - %(levelname)s - %(message)s', level=logging.INFO) def input_check(check, answer, number_of_wins, history): """ Checks user input is in proper format and implement word_guesser function. :param history: :param number_of_wins: :param check: :param answer: :return check: :return number_of_wins :return history """ try: symbol_list = {'~', ':', "'", '+', '[', '\\', '@', '^', '{', '%', '(', '-', '"', '*', '|', ',', '&', '<', '`', '}', '.', '_', '=', ']', '!', '>', ';', '?', '#', '$', ')', '/', ' ', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0'} # symbol list that needs to be excluded # array for user input user_inputs = [] maximum_guesses = 0 correct_guess = False # while loop for maximum guesses while maximum_guesses < 6 and not correct_guess: guess = input("Please enter a 5 letter word and press Enter:") if len(guess) == 0: print("You have now ended the game\n Thank you for playing Wordle\n ") game_stats(history) for i in history: history[i] = 0 check = "exit" break symbol_check = [ele for ele in symbol_list if (ele in guess)] bool_symbolcheck = bool(symbol_check) if len(guess) == 5: if bool_symbolcheck is False: if guess not in user_inputs: if guess in Module_dictionary.func_dict(): user_inputs.append(guess) maximum_guesses += 1 lower_guess = guess.lower() correct_guess = Module_wordle.wordGuesser(answer, lower_guess)[0] # calling above function else: print("please provide a valid dictionary word") else: print("Provided word is used previously. Please enter a new word") else: print("Input word contains symbols/characters. Please input words with alphabets only") else: print("Input word length needs to be 5 alphabets long") if correct_guess: print("Woah! You guessed it right in attempt", maximum_guesses) if maximum_guesses in number_of_wins: number_of_wins[maximum_guesses] += 1 else: number_of_wins[maximum_guesses] = 1 history["won"] += 1 print("Guess Distribution is:", number_of_wins) # displays guess distribution of the game game_stats(history) elif len(guess) == 0: print("Guess Distribution is:", number_of_wins) # displays guess distribution of the game print("You have now ended the game\nThank you for playing Wordle\n ") else: print("You have used up your guesses") print("The correct answer is", answer) history["loss"] += 1 print("Guess Distribution is:", number_of_wins) # displays guess distribution of the game game_stats(history) logging.info("Input words: "+str(user_inputs)) logging.info("\nactual answer:\n" + str(answer)) logging.info("\nnumber of games won is: \n") logging.info(str(number_of_wins)) return [check, number_of_wins, history] except: print("Error:", sys.exc_info(), " in input check function") def game_stats(history): """ displays statistics for current session of the game :param history: """ try: lost_games = history["loss"] won_games = history["won"] total_games = won_games + lost_games print("total no of games played are:", total_games) # displays total number of games played if total_games != 0: win_prec = (won_games / total_games) * 100 print("winning percentage are:", win_prec) # displays winning percentage logging.info("\n****************************************************************\n") logging.info("Total games played: " + str(total_games)) logging.info("\nwin percentage: " + str(win_prec)) return total_games, win_prec else: win_prec = 0 print("winning percentage are:", 0) # displays winning percentage textfile = open("gameplaylog.txt", "a") logging.info("\n****************************************************************\n") logging.info("Total games played: " + str(total_games)) logging.info("\nwin percentage: " + str(win_prec)) return total_games, win_prec except: print("Error:", sys.exc_info(), " in game stats function") def wordle(): """ Checks for check value and executes wordle game by calling input_check function. """ try: check = "play" number_of_wins = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0} history = {"won": 0, "loss": 0} valid_words = [] while check == "play": answer = Module_dictionary.func_englishword() # assign english word to answer if type(answer) == 'NoneType': raise Exception("not valid word") # raise exception if file is not present if answer not in valid_words: valid_words.append(answer) check, number_of_wins, history = input_check(check, answer, number_of_wins, history) print('*' * 100) if len(valid_words) == 1379: # if all words are used reset the word list valid_words = [] except: print("Error:", sys.exc_info(), " in wordle function") if __name__ == '__main__': wordle()
the-stack_106_21335
from typing import Dict, Any, NamedTuple, Type, Iterable, Tuple from ..models import ( GraphTaskModel, NodeMulticlassTask, GraphRegressionTask, GraphBinaryClassificationTask, QM9RegressionTask, ) from ..data import GraphDataset, JsonLGraphPropertyDataset, QM9Dataset, PPIDataset class TaskInfo(NamedTuple): """A named tuple to hold information about a task.""" name: str dataset_class: Type[GraphDataset] dataset_default_hypers: Dict[str, Any] model_class: Type[GraphTaskModel] model_default_hypers: Dict[str, Any] TASK_NAME_TO_DATASET_AND_MODEL_INFO: Dict[str, TaskInfo] = {} def register_task( task_name, dataset_class, dataset_default_hypers, model_class, model_default_hypers ): TASK_NAME_TO_DATASET_AND_MODEL_INFO[task_name.lower()] = TaskInfo( name=task_name, dataset_class=dataset_class, dataset_default_hypers=dataset_default_hypers, model_class=model_class, model_default_hypers=model_default_hypers, ) def clear_known_tasks() -> None: TASK_NAME_TO_DATASET_AND_MODEL_INFO.clear() def get_known_tasks() -> Iterable[str]: for task_info in TASK_NAME_TO_DATASET_AND_MODEL_INFO.values(): yield task_info.name def task_name_to_dataset_class(name: str) -> Tuple[Type[GraphDataset], Dict[str, Any]]: """ Map task name to a dataset class and default hyperparameters for that class. """ task_info = TASK_NAME_TO_DATASET_AND_MODEL_INFO.get(name.lower()) if task_info is None: raise ValueError("Unknown task type '%s'" % name) return task_info.dataset_class, task_info.dataset_default_hypers def task_name_to_model_class(name: str) -> Tuple[Type[GraphTaskModel], Dict[str, Any]]: """ Map task name to a model class and default hyperparameters for that class. """ task_info = TASK_NAME_TO_DATASET_AND_MODEL_INFO.get(name.lower()) if task_info is None: raise ValueError("Unknown task type '%s'" % name) return task_info.model_class, task_info.model_default_hypers # Register some default tasks: register_task( task_name="PPI", dataset_class=PPIDataset, dataset_default_hypers={}, model_class=NodeMulticlassTask, model_default_hypers={}, ) register_task( task_name="QM9", dataset_class=QM9Dataset, dataset_default_hypers={}, model_class=QM9RegressionTask, model_default_hypers={}, ) register_task( task_name="GraphRegression", dataset_class=JsonLGraphPropertyDataset, dataset_default_hypers={"threshold_for_classification": None}, model_class=GraphRegressionTask, model_default_hypers={}, ) register_task( task_name="GraphBinaryClassification", dataset_class=JsonLGraphPropertyDataset, dataset_default_hypers={"threshold_for_classification": 23.0}, model_class=GraphBinaryClassificationTask, model_default_hypers={}, )
the-stack_106_21336
import os from setuptools import find_packages, setup with open(os.path.join(os.path.dirname(__file__), 'README.md')) as readme: README = readme.read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='ReVal', version='v0.7.0', packages=find_packages(), include_package_data=True, license='CC0-1.0', description='Django app to upload, validate, review, and accept data files', long_description=README, url='https://github.com/18F/ReVAL', author='18F', author_email='[email protected]', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Framework :: Django :: 2.2', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', # example license 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'License :: Public Domain', 'License :: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication' ], install_requires=[ 'django>=2.0,<3.0', 'djangorestframework', 'dj-database-url', 'goodtables', 'json_logic_qubit', 'psycopg2-binary', 'pyyaml', 'requests', ], )
the-stack_106_21337
import unittest from healthvaultlib.tests import settings from healthvaultlib.helpers.connection import Connection from healthvaultlib.exceptions.healthserviceexception import HealthServiceException from healthvaultlib.methods.newapplicationcreationinfo import NewApplicationCreationInfo class TestNewApplicationCreationInfo(unittest.TestCase): def setUp(self): self.connection = Connection(settings.SODA_MASTER_APPID, settings.HV_SERVICE_SERVER) def test_newapplicationcreationinfo(self): method = NewApplicationCreationInfo() method.execute(self.connection) response = method.response self.assertIsNotNone(response.app_id) self.assertIsNotNone(response.app_token) self.assertIsNotNone(response.shared_secret) def test_newapplicationcreationinfo_nonmaster(self): method = NewApplicationCreationInfo() self.connection.applicationid = settings.HV_APPID with self.assertRaises(HealthServiceException): method.execute(self.connection)
the-stack_106_21338
#!/usr/bin/env python # pypreprocessor.py __author__ = 'Evan Plaice' __coauthor__ = 'Hendi O L, Epikem, num0005, tcumby' __version__ = '0.7.9' import sys import os import traceback import imp import io class preprocessor: def __init__(self, inFile=sys.argv[0], outFile='', defines=[], \ removeMeta=False, escapeChar=None, mode=None, escape='#', \ run=True, resume=False, save=True): # public variables self.defines = defines self.input = inFile self.output = outFile self.removeMeta = removeMeta self.escapeChar = escapeChar self.mode = mode self.escape = escape self.run = run self.resume = resume self.save = save self.readEncoding = sys.stdin.encoding if sys.stdin else None self.writeEncoding = sys.stdout.encoding if sys.stdin else None # private variables self.__linenum = 0 self.__excludeblock = False self.__ifblocks = [] self.__ifconditions = [] self.__evalsquelch = True self.__outputBuffer = '' def check_deprecation(self): def deprecation(message): import warnings warnings.simplefilter('always', DeprecationWarning) warnings.warn(message, DeprecationWarning) warnings.simplefilter('default', DeprecationWarning) if self.escapeChar != None: deprecation("'pypreprocessor.escapeChar' is deprecated. Use 'escape' instead.") if self.escape == '#': self.escape = self.escapeChar if self.mode != None: msg = "'pypreprocessor.mode' is deprecated. Use 'run/resume/save' options instead." if self.run != True or self.resume != False or self.save != True: msg += " Ignoring 'pypreprocessor.mode'." else: if self.mode.lower() == 'run': self.run = True self.resume = False self.save = False elif self.mode.lower() == 'pp': self.run = False self.resume = False self.save = True elif self.mode.lower() == 'ppcont': self.run = False self.resume = True self.save = True elif self.mode is not None: print('Unknown mode : ' + str(self.mode)) deprecation(msg) # reseting internal things to parse a second file def __reset_internal(self): self.__linenum = 0 self.__excludeblock = False self.__ifblocks = [] self.__ifconditions = [] self.__evalsquelch = True self.__outputBuffer = '' # the #define directive def define(self, define): self.defines.append(define) # the #undef directive def undefine(self, define): # re-map the defines list excluding the define specified in the args self.defines[:] = [x for x in self.defines if x != define] # search: if define is defined def search_defines(self, define): if define in self.defines: return True else: return False #returning: validness of #ifdef #else block def __if(self): value = bool(self.__ifblocks) for ib in self.__ifblocks: value *= ib #* represents and: value = value and ib return not value #not: because True means removing # evaluate def lexer(self, line): # strip any and all leading whitespace characters line = line.lstrip() # return values are (squelch, metadata) if not (self.__ifblocks or self.__excludeblock): if 'pypreprocessor.parse()' in line: return True, True #this block only for faster processing (not necessary) elif line[:len(self.escape)] != self.escape: return False, False # handle #define directives if line[:len(self.escape) + 6] == self.escape + 'define': if len(line.split()) != 2: self.exit_error(self.escape + 'define') else: self.define(line.split()[1]) return False, True # handle #undef directives elif line[:len(self.escape) + 5] == self.escape + 'undef': if len(line.split()) != 2: self.exit_error(self.escape + 'undef') else: self.undefine(line.split()[1]) return False, True # handle #exclude directives elif line[:len(self.escape) + 7] == self.escape + 'exclude': if len(line.split()) != 1: self.exit_error(self.escape + 'exclude') else: self.__excludeblock = True return False, True # handle #endexclude directives elif line[:len(self.escape) + 10] == self.escape + 'endexclude': if len(line.split()) != 1: self.exit_error(self.escape + 'endexclude') else: self.__excludeblock = False return False, True # handle #ifnotdef directives (is the same as: #ifdef X #else) elif line[:len(self.escape) + 8] == self.escape + 'ifdefnot': if len(line.split()) != 2: self.exit_error(self.escape + 'ifdefnot') else: self.__ifblocks.append(not self.search_defines(line.split()[1])) self.__ifconditions.append(line.split()[1]) return False, True # handle #ifdef directives elif line[:len(self.escape) + 5] == self.escape + 'ifdef': if len(line.split()) != 2: self.exit_error(self.escape + 'ifdef') else: self.__ifblocks.append(self.search_defines(line.split()[1])) self.__ifconditions.append(line.split()[1]) return False, True # handle #else... # handle #elseif directives elif line[:len(self.escape) + 6] == self.escape + 'elseif': if len(line.split()) != 2: self.exit_error(self.escape + 'elseif') else: self.__ifblocks[-1] = not self.__ifblocks[-1] #self.search_defines(self.__ifconditions[-1])) self.__ifblocks.append(self.search_defines(line.split()[1])) self.__ifconditions.append(line.split()[1]) return False, True # handle #else directives elif line[:len(self.escape) + 4] == self.escape + 'else': if len(line.split()) != 1: self.exit_error(self.escape + 'else') else: self.__ifblocks[-1] = not self.__ifblocks[-1] #self.search_defines(self.__ifconditions[-1])) return False, True # handle #endif.. # handle #endififdef elif line[:len(self.escape) + 10] == self.escape + 'endififdef': if len(line.split()) != 2: self.exit_error(self.escape + 'endififdef') else: if len(self.__ifconditions) >= 1: self.__ifblocks.pop(-1) self.__ifcondition = self.__ifconditions.pop(-1) else: self.__ifblocks = [] self.__ifconditions = [] self.__ifblocks.append(self.search_defines(line.split()[1])) self.__ifconditions.append(line.split()[1]) return False, True # handle #endifall directives elif line[:len(self.escape) + 8] == self.escape + 'endifall': if len(line.split()) != 1: self.exit_error(self.escape + 'endifall') else: self.__ifblocks = [] self.__ifconditions = [] return False, True # handle #endif and #endif numb directives elif line[:len(self.escape) + 5] == self.escape + 'endif': if len(line.split()) != 1: self.exit_error(self.escape + 'endif number') else: try: number = int(line[6:]) except ValueError as VE: #print('ValueError',VE) #self.exit_error(self.escape + 'endif number') number = 1 if len(self.__ifconditions) > number: for i in range(0, number): self.__ifblocks.pop(-1) self.__ifcondition = self.__ifconditions.pop(-1) elif len(self.__ifconditions) == number: self.__ifblocks = [] self.__ifconditions = [] else: print('Warning try to remove more blocks than present', \ self.input, self.__linenum) self.__ifblocks = [] self.__ifconditions = [] return False, True else: #No directive --> execute # process the excludeblock if self.__excludeblock is True: return True, False # process the ifblock elif self.__ifblocks: # is True: return self.__if(), False #here can add other stuff for deleting comnments eg else: return False, False # error handling def exit_error(self, directive): print('File: "' + self.input + '", line ' + str(self.__linenum)) print('SyntaxError: Invalid ' + directive + ' directive') sys.exit(1) def rewrite_traceback(self): trace = traceback.format_exc().splitlines() index = 0 for line in trace: if index == (len(trace) - 2): print(line.replace("<string>", self.input)) else: print(line) index += 1 # parsing/processing def __parse(self): self.__reset_internal() self.check_deprecation() # open the input file input_file = io.open(os.path.join(self.input), 'r', encoding=self.readEncoding) try: # process the input file for line in input_file: self.__linenum += 1 # to squelch or not to squelch squelch, metaData = self.lexer(line) # process and output if self.removeMeta is True: if metaData is True or squelch is True: continue if squelch is True: if metaData: self.__outputBuffer += self.escape + line else: self.__outputBuffer += self.escape[0] + line continue if squelch is False: self.__outputBuffer += line continue finally: input_file.close() #Warnings for unclosed #ifdef blocks if self.__ifblocks: print('Warning: Number of unclosed Ifdefblocks: ', len(self.__ifblocks)) print('Can cause unwished behaviour in the preprocessed code, preprocessor is safe') try: select = input('Do you want more Information? ') except SyntaxError: select = 'no' select = select.lower() if select in ('yes', 'true', 'y', '1'): print('Name of input and output file: ', self.input, ' ', self.output) for i, item in enumerate(self.__ifconditions): if (item in self.defines) != self.__ifblocks[i]: cond = ' else ' else: cond = ' if ' print('Block:', item, ' is in condition: ', cond) def parse(self): self.__parse() self.post_process() def parse_to_string(self): self.__parse() return self.__outputBuffer # post-processor def post_process(self): try: # set file name if self.output == '': self.output = self.input[0:-len(self.input.split('.')[-1])-1]+'_out.'+self.input.split('.')[-1] # open file for output output_file = io.open(self.output, 'w', encoding=self.writeEncoding) # write post-processed code to file output_file.write(self.__outputBuffer) finally: output_file.close() if self.run: # if this module is loaded as a library override the import if imp.lock_held() is True: self.override_import() else: self.on_the_fly() if not self.save: # remove tmp file if os.path.exists(self.output): os.remove(self.output) if not self.resume: # break execution so python doesn't # run the rest of the pre-processed code sys.exit(0) # postprocessor - override an import def override_import(self): try: moduleName = self.input.split('.')[0] tmpModuleName = self.output.split('.')[0] del sys.modules[moduleName] sys.modules[tmpModuleName] = __import__(tmpModuleName) sys.modules[moduleName] = __import__(tmpModuleName) except: self.rewrite_traceback() finally: # remove tmp (.py & .pyc) files os.remove(self.output) os.remove(self.output + 'c') # postprocessor - on-the-fly execution def on_the_fly(self): try: f = io.open(self.output, "r", encoding=self.readEncoding) exec(f.read()) f.close() except: self.rewrite_traceback() pypreprocessor = preprocessor()
the-stack_106_21341
# coding: utf-8 # http://www.matrix67.com/data/InvSqrt.pdf import math import struct def change_format(ifmt, ofmt, a): a = struct.pack(ifmt, a) a = struct.unpack(ofmt, a) return a[0] def q_rsqrt(number): threehalfs = 1.5 x2 = number * 0.5 y = number i = change_format('f', 'l', y) # evil floating point bit level hacking i = 0x5f3759df - (i >> 1) # what the fuck? y = change_format('l', 'f', i) y = y * (threehalfs - x2 * y * y) # 1st iteration y = y * (threehalfs - x2 * y * y) # 2nd iteration, this can be removed return y if __name__ == '__main__': a = 2 print(q_rsqrt(a)) print(1 / math.sqrt(a))
the-stack_106_21343
"""Config flow for Ambiclimate.""" import logging from aiohttp import web import ambiclimate from homeassistant import config_entries from homeassistant.components.http import HomeAssistantView from homeassistant.const import CONF_CLIENT_ID, CONF_CLIENT_SECRET from homeassistant.core import callback from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.network import get_url from .const import ( AUTH_CALLBACK_NAME, AUTH_CALLBACK_PATH, DOMAIN, STORAGE_KEY, STORAGE_VERSION, ) DATA_AMBICLIMATE_IMPL = "ambiclimate_flow_implementation" _LOGGER = logging.getLogger(__name__) @callback def register_flow_implementation(hass, client_id, client_secret): """Register a ambiclimate implementation. client_id: Client id. client_secret: Client secret. """ hass.data.setdefault(DATA_AMBICLIMATE_IMPL, {}) hass.data[DATA_AMBICLIMATE_IMPL] = { CONF_CLIENT_ID: client_id, CONF_CLIENT_SECRET: client_secret, } class AmbiclimateFlowHandler(config_entries.ConfigFlow, domain=DOMAIN): """Handle a config flow.""" VERSION = 1 def __init__(self): """Initialize flow.""" self._registered_view = False self._oauth = None async def async_step_user(self, user_input=None): """Handle external yaml configuration.""" self._async_abort_entries_match() config = self.hass.data.get(DATA_AMBICLIMATE_IMPL, {}) if not config: _LOGGER.debug("No config") return self.async_abort(reason="missing_configuration") return await self.async_step_auth() async def async_step_auth(self, user_input=None): """Handle a flow start.""" self._async_abort_entries_match() errors = {} if user_input is not None: errors["base"] = "follow_link" if not self._registered_view: self._generate_view() return self.async_show_form( step_id="auth", description_placeholders={ "authorization_url": await self._get_authorize_url(), "cb_url": self._cb_url(), }, errors=errors, ) async def async_step_code(self, code=None): """Received code for authentication.""" self._async_abort_entries_match() token_info = await self._get_token_info(code) if token_info is None: return self.async_abort(reason="access_token") config = self.hass.data[DATA_AMBICLIMATE_IMPL].copy() config["callback_url"] = self._cb_url() return self.async_create_entry(title="Ambiclimate", data=config) async def _get_token_info(self, code): oauth = self._generate_oauth() try: token_info = await oauth.get_access_token(code) except ambiclimate.AmbiclimateOauthError: _LOGGER.error("Failed to get access token", exc_info=True) return None store = self.hass.helpers.storage.Store(STORAGE_VERSION, STORAGE_KEY) await store.async_save(token_info) return token_info def _generate_view(self): self.hass.http.register_view(AmbiclimateAuthCallbackView()) self._registered_view = True def _generate_oauth(self): config = self.hass.data[DATA_AMBICLIMATE_IMPL] clientsession = async_get_clientsession(self.hass) callback_url = self._cb_url() return ambiclimate.AmbiclimateOAuth( config.get(CONF_CLIENT_ID), config.get(CONF_CLIENT_SECRET), callback_url, clientsession, ) def _cb_url(self): return f"{get_url(self.hass)}{AUTH_CALLBACK_PATH}" async def _get_authorize_url(self): oauth = self._generate_oauth() return oauth.get_authorize_url() class AmbiclimateAuthCallbackView(HomeAssistantView): """Ambiclimate Authorization Callback View.""" requires_auth = False url = AUTH_CALLBACK_PATH name = AUTH_CALLBACK_NAME async def get(self, request: web.Request) -> str: """Receive authorization token.""" # pylint: disable=no-self-use code = request.query.get("code") if code is None: return "No code" hass = request.app["hass"] hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": "code"}, data=code ) ) return "OK!"
the-stack_106_21347
from __future__ import annotations import re from io import BytesIO from typing import Any, Dict, List, Optional, Tuple import structlog from attr import attrs from devtools import debug from flask_sqlalchemy import SQLAlchemy from ldif import LDIFParser from tqdm import tqdm from labster.di import injector from labster.domain2.model.profile import Profile, ProfileRepository from labster.domain2.model.structure import Structure, StructureRepository from labster.ldap.constants import ADMINS_DN, PRESIDENCE_DN, SU_DN, \ get_parent_dn logger = structlog.get_logger() profile_repo = injector.get(ProfileRepository) structure_repo = injector.get(StructureRepository) db = injector.get(SQLAlchemy) def parse_ldif_file(ldif_file: str) -> List[Tuple[str, Dict[str, Any]]]: logger.info(f"### Parsing LDIF file {ldif_file}") orig_ldif_fd = open(ldif_file, "rb") ldif_fd = BytesIO() for line in orig_ldif_fd.readlines(): if line.startswith(b"# search result"): break ldif_fd.write(line) ldif_fd.seek(0) parser = LDIFParser(ldif_fd) return list(parser.parse()) @attrs(auto_attribs=True) class LdifRecord: raw: Dict[str, List[str]] def __getattr__(self, name): return self.raw.get(name, [""])[0] @property def uid(self) -> Optional[str]: if "uid" not in self.raw: return None return self.raw["uid"][0] @property def affectation(self) -> Optional[str]: structure_affectaction = self._get_structure_d_affectation() if not structure_affectaction: return None affectation = structure_affectaction.dn if affectation in ADMINS_DN: affectation = get_parent_dn(affectation) if affectation == PRESIDENCE_DN: affectation = SU_DN return affectation def _get_structure_d_affectation(self) -> Optional[Structure]: structure_d_affectation = None affectation_principale = self.supannEntiteAffectationPrincipale if affectation_principale: structure_d_affectation = ( db.session.query(Structure) .filter(Structure.supann_code_entite == affectation_principale) .first() ) if structure_d_affectation: return structure_d_affectation # Old LDIF format affectation = self.sorbonneUniversiteEmpAffectation if affectation: structure_d_affectation = ( db.session.query(Structure).filter(Structure.dn == affectation).first() ) if structure_d_affectation: return structure_d_affectation return None @property def fonctions(self): return self.raw.get("eduPersonAffiliation", []) @property def address(self): adresse = self.raw.get("postalAddress", [""])[0] adresse = adresse.replace("$", "\n") adresse = re.sub("\n\n+", "\n\n", adresse) adresse = adresse.strip() return adresse def update_users_from_records(records: List[Tuple[str, Dict[str, List[str]]]]): profiles = profile_repo.get_all() old_profile_uids = { profile.uid for profile in profiles if profile.uid and profile.active } count0 = len(old_profile_uids) print(f"old total: {count0:d}") logger.info(f"old total: {count0:d}") new_profile_uids = set() for _dn, r in records: if "uid" not in r: continue uid = r["uid"][0] new_profile_uids.add(uid) deleted_uids = old_profile_uids.difference(new_profile_uids) deactivate_users(deleted_uids) uids_to_profiles = {p.uid: p for p in profiles} print("Updating profiles from LDIF dump") for _dn, r in tqdm(records, disable=None): record = LdifRecord(r) if not record.uid: continue uid = record.uid if not uid: continue if uid in uids_to_profiles: profile = uids_to_profiles[uid] else: profile = Profile(uid=uid) profile_repo.put(profile) update_profile_from_record(profile, record) def deactivate_users(deleted_uids): logger.info("To be deactivated:", deleted_uids=deleted_uids) for uid in tqdm(deleted_uids, disable=None): user = profile_repo.get_by_uid(uid) user.deactivate() def update_profile_from_record(profile: Profile, record: LdifRecord): assert profile profile.nom = record.sn profile.prenom = record.givenName profile.uid = record.uid profile.email = record.mail profile.telephone = record.telephoneNumber profile.adresse = record.address profile.login = record.supannAliasLogin profile.adresse = record.adresse affectation = record.affectation if not affectation: if profile.active: profile.affectation = "" profile.deactivate() return if not profile.active: profile.activate() if profile.affectation != affectation: profile.affectation = affectation fonctions = list(record.fonctions) if set(profile.fonctions) != set(fonctions): profile.fonctions = fonctions
the-stack_106_21349
#!/usr/bin/env python # XDSIndexerSum.py # Copyright (C) 2013 Diamond Light Source, Graeme Winter & Richard Gildea # # This code is distributed under the BSD license, a copy of which is # included in the root directory of this package. # # 20th June 2013 # # An reimplementation of the XDS indexer to work by first summing images before # the spot finding for indexing. May or may not help... from __future__ import absolute_import, division, print_function import os from xia2.Handlers.Phil import PhilIndex from xia2.Handlers.Streams import Debug from xia2.Modules.Indexer.XDSIndexer import XDSIndexer from xia2.Wrappers.XDS.Merge2cbf import Merge2cbf # the class that we are extending # odds and sods that are needed # FIXME need to put in access here to Phil parameters to know how wide to make # the summed images class XDSIndexerSum(XDSIndexer): """An extension of XDSIndexer using all available images.""" def __init__(self): super(XDSIndexerSum, self).__init__() # XDSIndexer.__init__ modfies this! self._index_select_images = _index_select_images # helper functions def _index_select_images(self): """Select correct images based on image headers.""" # FIXME in here (i) sum the images defined from the existing class # contents then (ii) change the template stored, the directory and # the header contents to correspond to those new images. Finally make # a note of these changes so we can correct XPARM file at the end. assert min(self.get_matching_images()) == 1 # make a note so we can fix the XPARM.XDS file at the end self._true_phi_width = self.get_header_item("phi_width") params = PhilIndex.params.xds.merge2cbf if params.data_range is None: params.data_range = 1, len(self.get_matching_images()) m2c = Merge2cbf(params=params) m2c.setup_from_image(self.get_image_name(1)) m2c.set_working_directory( os.path.join(self.get_working_directory(), "summed_images") ) os.mkdir(m2c.get_working_directory()) m2c.run() # Is this safe to do? self._setup_from_image( os.path.join(m2c.get_working_directory(), "merge2cbf_averaged_0001.cbf") ) phi_width = self.get_header_item("phi_width") if phi_width == 0.0: raise RuntimeError("cannot use still images") # use five degrees for the background calculation five_deg = int(round(5.0 / phi_width)) - 1 if five_deg < 5: five_deg = 5 images = self.get_matching_images() # characterise the images - are there just two (e.g. dna-style # reference images) or is there a full block? if it is the # former then we have a problem, as we want *all* the images in the # sweep... wedges = [] min_images = params.xia2.settings.input.min_images if len(images) < 3 and len(images) < min_images: raise RuntimeError( "This INDEXER cannot be used for only %d images" % len(images) ) Debug.write("Adding images for indexer: %d -> %d" % (min(images), max(images))) wedges.append((min(images), max(images))) # FIXME this should have a wrapper function! if min(images) + five_deg in images: self._background_images = (min(images), min(images) + five_deg) else: self._background_images = (min(images), max(images)) return wedges # FIXME here override _index_finish by calling original _index_finish # then correcting the XPARM file as mentioned above. def _index_finish(self): self._modify_xparm_xds() XDSIndexer._index_finish(self) def _modify_xparm_xds(self): import fileinput xparm_filename = os.path.join(self.get_working_directory(), "XPARM.XDS") assert os.path.isfile(xparm_filename) f = fileinput.input(xparm_filename, mode="rb", inplace=1) updated_oscillation_range = False for line in f: if not updated_oscillation_range: # Starting image number (STARTING_FRAME=), # spindle angle at start (STARTING_ANGLE=), # oscillation range, # and laboratory coordinates of the rotation axis. tokens = line.split() if len(tokens) == 6: summed_oscillation_range = float(tokens[2]) # sanity check - is this actually necessary? assert ( summed_oscillation_range - self.get_header_item("phi_width") ) < 1e-6 tokens[2] = "%.4f" % self._true_phi_width print(" ".join(tokens)) continue print(line, end=" ") f.close() # copy across file contents internally self._data_files["XPARM.XDS"] = open(xparm_filename, mode="rb").read()
the-stack_106_21351
# -*- coding: utf-8 -*- import numpy as np import welltestpy as wtp import seaborn as sns import pandas as pd from anaflow import thiem from ogs5py import specialrange from matplotlib import pyplot as plt #from gstools import SRF, Gaussian from project import get_srf, ogs_2d, priors from scipy.optimize import curve_fit from pathlib import Path # discretization and parameters time = specialrange(0, 7200, 50, typ="cub") rad = specialrange(0, 1000, 100, typ="cub") angles = 32 #storage = 1e-3 T_const = 1e-5 rate = -1e-3 well_pos = rad[[0, 6, 11, 16, 21, 31, 41, 51, 61, 71, 81]] pwell_pos = np.array([well_pos[0], 0.0]) owell_pos = well_pos[1:] def run_ogs_project(model): model.write_input() success = model.run_model() return success def import_ogs_results(model, owell_name = "owell"): point = model.readtec_point(pcs="GROUNDWATER_FLOW") time = point[owell_name]["TIME"] head = point[owell_name]["HEAD"] return head, time if __name__ == '__main__': owell_pos = [[1, 0], [3, 2], [5, 2], [0, -10], [-30, 0], [0, 50], [100, 0], [0, -250], [-500, 0]] owell_pos = np.array(owell_pos) field = wtp.FieldSite(name="Pump test data worth", coordinates=[51.353839, 12.431385]) campaign = wtp.Campaign(name="Transient-multi", fieldsite=field) campaign.add_well(name="pwell", radius=0.1, coordinates=(0.0, 0.0)) campaign.add_well(name="owell_0", radius=0.1, coordinates=(1.0, 0.0)) campaign.add_well(name="owell_1", radius=0.1, coordinates=(3.0, 2.0)) campaign.add_well(name="owell_2", radius=0.1, coordinates=(5.0, 2.0)) campaign.add_well(name="owell_3", radius=0.1, coordinates=(0, -10.0)) campaign.add_well(name="owell_4", radius=0.1, coordinates=(-30, 0.0)) campaign.add_well(name="owell_5", radius=0.1, coordinates=(0, 50.0)) campaign.add_well(name="owell_6", radius=0.1, coordinates=(100, 0.0)) campaign.add_well(name="owell_7", radius=0.1, coordinates=(0, -250)) campaign.add_well(name="owell_8", radius=0.1, coordinates=(-500, 0)) # campaign.plot_wells() model = ogs_2d.init_ogs_project(rad, task_root="pump_2d_trans") T_field = get_srf.get_srf_2d(model, mean = -5, var = 1.1, len_scale = 100, seed = 1) model = ogs_2d.write_ogs_project(model, owell_pos, T_field, time=time) succes = run_ogs_project(model) head_0, time_0 = import_ogs_results(model, owell_name = "owell_0") head_1, time_1 = import_ogs_results(model, owell_name = "owell_1") head_2, time_2 = import_ogs_results(model, owell_name = "owell_2") head_3, time_3 = import_ogs_results(model, owell_name = "owell_3") head_4, time_4 = import_ogs_results(model, owell_name = "owell_4") head_5, time_5 = import_ogs_results(model, owell_name = "owell_5") head_6, time_6 = import_ogs_results(model, owell_name = "owell_6") head_7, time_7 = import_ogs_results(model, owell_name = "owell_7") head_8, time_8 = import_ogs_results(model, owell_name = "owell_8") pumptest = wtp.PumpingTest( name="pwell", pumpingwell="pwell", pumpingrate=rate, description="Virtual transient 2d pumping test", ) pumptest.add_transient_obs("owell_0", time_0, head_0) pumptest.add_transient_obs("owell_1", time_1, head_1) pumptest.add_transient_obs("owell_2", time_2, head_2) pumptest.add_transient_obs("owell_3", time_3, head_3) pumptest.add_transient_obs("owell_4", time_4, head_4) pumptest.add_transient_obs("owell_5", time_5, head_5) pumptest.add_transient_obs("owell_6", time_6, head_6) pumptest.add_transient_obs("owell_7", time_7, head_7) pumptest.add_transient_obs("owell_8", time_8, head_8) campaign.addtests(pumptest) campaign.save(path = "../data/") plt.plot(time_0, head_0) plt.plot(time_1, head_1) plt.plot(time_2, head_2) plt.plot(time_3, head_3) plt.plot(time_4, head_4) plt.plot(time_5, head_5) plt.plot(time_6, head_6) plt.plot(time_7, head_7) plt.plot(time_8, head_8) plt.show() # print(head_0)
the-stack_106_21357
""" Work with references in the database Schema: - _id (str) the instance-unique reference ID - cloned_from (Object) describes the reference this one was cloned from (can be null) - id (str) the ID of the source reference - name (str) the name of the source reference at the time of cloning - created_at (datetime) when the reference was created - data_type (Enum["genome", "barcode"]) the type of data stored in the reference - description (str) a user-defined description for the the reference - groups (List[Object]) describes groups assigned to the reference and their rights - id (str) the group ID - build (bool) the group can create new builds of the reference - modify (bool) the group can modify the non-OTU reference data - modify_otu (bool) the group can modify OTUs - remove (bool) the group can remove the reference - groups (List[Object]) describes users assigned to the reference and their rights - id (str) the user ID - build (bool) the user can create new builds of the reference - modify (bool) the user can modify the non-OTU reference data - modify_otu (bool) the user can modify OTUs - remove (bool) the user can remove the reference - internal_control (str) the ID for an OTU that is used as an internal control in the lab - name (str) the reference name - organism (str) the organism represented in the reference (eg. virus, bacteria, fungus) - task (Object) a task associated with a current reference operation - id (str) the task ID - release (Object) describes the latest remote reference release - body (str) the Markdown-formatted release body from GitHub - content_type (str) release content type - should always be application/gzip - download_url (str) the GitHUB URL at which the reference release can be downloaded - etag (str) the release ETag - allows caching of the release check result - filename (str) the name of the release file - html_url (str) the URL to the web page for the release on GitHub - id (str) the unique ID for the release from GitHub - name (str) the name of the release (eg. v1.4.0) - newer (bool) true if there is a newer release available - published_at (datetime) when the release was published on GitHub - retrieved_at (datetime) when teh release was retrieved from GitHub - size (int) size of the release file in bytes - remotes_from (Object) describes where the reference remotes from (can be null) - errors (Array) errors related to the remote reference - slug (str) the GitHub repository slug for the reference - restrict_source_types (bool) restricts the source types users may use when creating isolates - source_types (Array[str]) a set of allowable source types - updates (Array[Object]) a history of updates applied to the remote reference - SHARES FIELDS WITH release - user (Object) describes the user that applied the update - id (str) the user ID - updating (bool) the remote reference is being updated - user (Object) describes the creating user - id (str) the user ID """ import asyncio import datetime import logging from pathlib import Path from typing import Any, Dict, List, Optional, Union import pymongo import virtool.db.utils import virtool.errors import virtool.github import virtool.history.db import virtool.tasks.pg import virtool.utils from aiohttp import ClientConnectorError from aiohttp.web import Request from semver import VersionInfo from sqlalchemy.ext.asyncio.engine import AsyncEngine from virtool.http.utils import download_file from virtool.otus.db import join from virtool.otus.utils import verify from virtool.pg.utils import get_row from virtool.references.utils import ( RIGHTS, check_will_change, clean_export_list, get_owner_user, load_reference_file, ) from virtool.settings.db import Settings from virtool.types import App from virtool.uploads.models import Upload from virtool.users.db import attach_user, extend_user PROJECTION = [ "_id", "remotes_from", "cloned_from", "created_at", "data_type", "imported_from", "installed", "internal_control", "latest_build", "name", "organism", "release", "remotes_from", "task", "unbuilt_count", "updates", "updating", "user", "users", "groups", ] async def processor(db, document: dict) -> dict: """ Process a reference document to a form that can be dispatched or returned in a list. Used `attach_computed` for complete representations of the reference. :param db: the application database client :param document: the document to process :return: the processed document """ try: ref_id = document.pop("_id") except KeyError: ref_id = document["id"] latest_build, otu_count, unbuilt_count = await asyncio.gather( get_latest_build(db, ref_id), get_otu_count(db, ref_id), get_unbuilt_count(db, ref_id), ) document.update( { "latest_build": latest_build, "otu_count": otu_count, "unbuilt_change_count": unbuilt_count, } ) try: document["installed"] = document.pop("updates")[-1] except (KeyError, IndexError): pass document["id"] = ref_id return await attach_user(db, document) async def attach_computed(db, document: dict) -> dict: """ Get all computed data for the specified reference and attach it to the passed `document`. :param db: the application database client :param document: the document to attached computed data to :return: the updated document """ ref_id = document["_id"] try: internal_control_id = document["internal_control"]["id"] except (KeyError, TypeError): internal_control_id = None ( contributors, internal_control, latest_build, otu_count, users, unbuilt_count, ) = await asyncio.gather( get_contributors(db, ref_id), get_internal_control(db, internal_control_id, ref_id), get_latest_build(db, ref_id), get_otu_count(db, ref_id), get_reference_users(db, document), get_unbuilt_count(db, ref_id), ) processed = virtool.utils.base_processor( { **document, "contributors": contributors, "internal_control": internal_control or None, "latest_build": latest_build, "otu_count": otu_count, "unbuilt_change_count": unbuilt_count, "users": users, } ) return await attach_user(db, processed) async def get_reference_users(db, document: Dict[str, Any]) -> List[Dict[str, Any]]: """ Get a detailed list of users that have access to the specified reference. :param db: the application database client :param document: the reference document :return: a list of user data dictionaries """ if not document.get("users"): return [] return await asyncio.gather(*[extend_user(db, user) for user in document["users"]]) async def add_group_or_user(db, ref_id: str, field: str, data: dict) -> Optional[dict]: document = await db.references.find_one({"_id": ref_id}, [field]) if not document: return None subdocument_id = data.get("group_id") or data["user_id"] if ( field == "groups" and await db.groups.count_documents({"_id": subdocument_id}) == 0 ): raise virtool.errors.DatabaseError("group does not exist") if ( field == "users" and await db.users.count_documents({"_id": subdocument_id}) == 0 ): raise virtool.errors.DatabaseError("user does not exist") if subdocument_id in [s["id"] for s in document[field]]: raise virtool.errors.DatabaseError(field[:-1] + " already exists") rights = {key: data.get(key, False) for key in RIGHTS} subdocument = { "id": subdocument_id, "created_at": virtool.utils.timestamp(), **rights, } await db.references.update_one({"_id": ref_id}, {"$push": {field: subdocument}}) return subdocument async def check_right(req: Request, reference: dict, right: str) -> bool: if req["client"].administrator: return True user_id = req["client"].user_id try: groups = reference["groups"] users = reference["users"] except (KeyError, TypeError): reference = await req.app["db"].references.find_one( reference, ["groups", "users"] ) groups = reference["groups"] users = reference["users"] for user in users: if user["id"] == user_id: if user[right]: return True break for group in groups: if group[right] and group["id"] in req["client"].groups: return True return False async def check_source_type(db, ref_id: str, source_type: str) -> bool: """ Check if the provided `source_type` is valid based on the current reference source type configuration. :param db: the application database client :param ref_id: the reference context :param source_type: the source type to check :return: source type is valid """ document = await db.references.find_one( ref_id, ["restrict_source_types", "source_types"] ) restrict_source_types = document.get("restrict_source_types", False) source_types = document.get("source_types", list()) if source_type == "unknown": return True # Return `False` when source_types are restricted and source_type is not allowed. if source_type and restrict_source_types: return source_type in source_types # Return `True` when: # - source_type is empty string (unknown) # - source_types are not restricted # - source_type is an allowed source_type return True def compose_base_find_query(user_id: str, administrator: bool, groups: list) -> dict: """ Compose a query for filtering reference search results based on user read rights. :param user_id: the id of the user requesting the search :param administrator: the administrator flag of the user requesting the search :param groups: the id group membership of the user requesting the search :return: a valid MongoDB query """ if administrator: return dict() is_user_member = {"users.id": user_id} is_group_member = {"groups.id": {"$in": groups}} is_owner = {"user.id": user_id} return {"$or": [is_group_member, is_user_member, is_owner]} async def delete_group_or_user( db, ref_id: str, subdocument_id: str, field: str ) -> Optional[str]: """ Delete an existing group or user as decided by the `field` argument. :param db: the application database client :param ref_id: the id of the reference to modify :param subdocument_id: the id of the group or user to delete :param field: the field to modify: 'group' or 'user' :return: the id of the removed subdocument """ document = await db.references.find_one( {"_id": ref_id, field + ".id": subdocument_id}, [field] ) if document is None: return None # Retain only the subdocuments that don't match the passed `subdocument_id`. filtered = [s for s in document[field] if s["id"] != subdocument_id] await db.references.update_one({"_id": ref_id}, {"$set": {field: filtered}}) return subdocument_id async def edit_group_or_user( db, ref_id: str, subdocument_id: str, field: str, data: dict ) -> Optional[dict]: """ Edit an existing group or user as decided by the `field` argument. Returns `None` if the reference, group, or user does not exist. :param db: the application database client :param ref_id: the id of the reference to modify :param subdocument_id: the id of the group or user to modify :param field: the field to modify: 'group' or 'user' :param data: the data to update the group or user with :return: the modified subdocument """ document = await db.references.find_one( {"_id": ref_id, field + ".id": subdocument_id}, [field] ) if document is None: return None for subdocument in document[field]: if subdocument["id"] == subdocument_id: rights = {key: data.get(key, subdocument[key]) for key in RIGHTS} subdocument.update(rights) await db.references.update_one( {"_id": ref_id}, {"$set": {field: document[field]}} ) return subdocument async def fetch_and_update_release( app, ref_id: str, ignore_errors: bool = False ) -> dict: """ Get the latest release for the GitHub repository identified by the passed `slug`. If a release is found, update the reference identified by the passed `ref_id` and return the release. Exceptions can be ignored during the GitHub request. Error information will still be written to the reference document. :param app: the application object :param ref_id: the id of the reference to update :param ignore_errors: ignore exceptions raised during GitHub request :return: the latest release """ db = app["db"] retrieved_at = virtool.utils.timestamp() document = await db.references.find_one( ref_id, ["installed", "release", "remotes_from"] ) release = document.get("release") etag = virtool.github.get_etag(release) # Variables that will be used when trying to fetch release from GitHub. errors = list() updated = None try: updated = await virtool.github.get_release( app["config"], app["client"], document["remotes_from"]["slug"], etag ) if updated: updated = virtool.github.format_release(updated) except (ClientConnectorError, virtool.errors.GitHubError) as err: if "ClientConnectorError" in str(err): errors = ["Could not reach GitHub"] if "404" in str(err): errors = ["GitHub repository or release does not exist"] if errors and not ignore_errors: raise if updated: release = updated if release: installed = document["installed"] release["newer"] = bool( installed and VersionInfo.parse(release["name"].lstrip("v")) > VersionInfo.parse(installed["name"].lstrip("v")) ) release["retrieved_at"] = retrieved_at await db.references.update_one( {"_id": ref_id}, {"$set": {"errors": errors, "release": release}} ) return release async def get_contributors(db, ref_id: str) -> Optional[List[dict]]: """ Return an list of contributors and their contribution count for a specific ref. :param db: the application database client :param ref_id: the id of the ref to get contributors for :return: a list of contributors to the ref """ return await virtool.history.db.get_contributors(db, {"reference.id": ref_id}) async def get_internal_control( db, internal_control_id: Optional[str], ref_id: str ) -> Optional[dict]: """ Return a minimal dict describing the ref internal control given a `otu_id`. :param db: the application database client :param internal_control_id: the id of the otu to create a minimal dict for :param ref_id: the id of the reference to look for the control OTU in :return: a minimal dict describing the ref internal control """ if internal_control_id is None: return None name = await virtool.db.utils.get_one_field( db.otus, "name", {"_id": internal_control_id, "reference.id": ref_id} ) if name is None: return None return {"id": internal_control_id, "name": name} async def get_latest_build(db, ref_id: str) -> Optional[dict]: """ Return the latest index build for the ref. :param db: the application database client :param ref_id: the id of the ref to get the latest build for :return: a subset of fields for the latest build """ latest_build = await db.indexes.find_one( {"reference.id": ref_id, "ready": True}, projection=["created_at", "version", "user", "has_json"], sort=[("version", pymongo.DESCENDING)], ) if latest_build is None: return None return virtool.utils.base_processor(latest_build) async def get_official_installed(db) -> bool: """ Return a boolean indicating whether the official plant virus reference is installed. :param db: :return: official reference install status """ return ( await db.references.count_documents( {"remotes_from.slug": "virtool/ref-plant-viruses"} ) > 0 ) async def get_manifest(db, ref_id: str) -> dict: """ Generate a dict of otu document version numbers keyed by the document id. This is used to make sure only changes made at the time the index rebuild was started are included in the build. :param db: the application database client :param ref_id: the id of the reference to get the current index for :return: a manifest of otu ids and versions """ manifest = dict() async for document in db.otus.find({"reference.id": ref_id}, ["version"]): manifest[document["_id"]] = document["version"] return manifest async def get_otu_count(db, ref_id: str) -> int: """ Get the number of OTUs associated with the given `ref_id`. :param db: the application database client :param ref_id: the id of the reference to get the current index for :return: the OTU count """ return await db.otus.count_documents({"reference.id": ref_id}) async def get_unbuilt_count(db, ref_id: str) -> int: """ Return a count of unbuilt history changes associated with a given `ref_id`. :param db: the application database client :param ref_id: the id of the ref to count unbuilt changes for :return: the number of unbuilt changes """ return await db.history.count_documents( {"reference.id": ref_id, "index.id": "unbuilt"} ) async def create_clone( db, settings: Settings, name: str, clone_from: str, description: str, user_id: str ) -> dict: source = await db.references.find_one(clone_from) name = name or "Clone of " + source["name"] document = await create_document( db, settings, name, source["organism"], description, source["data_type"], created_at=virtool.utils.timestamp(), user_id=user_id, ) document["cloned_from"] = {"id": clone_from, "name": source["name"]} return document async def create_document( db, settings: Settings, name: str, organism: Optional[str], description: str, data_type: Optional[str], created_at=None, ref_id: Optional[str] = None, user_id: Optional[str] = None, users=None, ): if ref_id and await db.references.count_documents({"_id": ref_id}): raise virtool.errors.DatabaseError("ref_id already exists") ref_id = ref_id or await virtool.db.utils.get_new_id(db.otus) user = None if user_id: user = {"id": user_id} if not users: users = [get_owner_user(user_id)] document = { "_id": ref_id, "created_at": created_at or virtool.utils.timestamp(), "data_type": data_type, "description": description, "name": name, "organism": organism, "internal_control": None, "restrict_source_types": False, "source_types": settings.default_source_types, "groups": list(), "users": users, "user": user, } if data_type == "barcode": document["targets"] = list() return document async def create_import( db, pg: AsyncEngine, settings: Settings, name: str, description: str, import_from: str, user_id: str, ) -> dict: """ Import a previously exported Virtool reference. :param db: the application database client :param pg: PostgreSQL database object :param settings: the application settings object :param name: the name for the new reference :param description: a description for the new reference :param import_from: the uploaded file to import from :param user_id: the id of the creating user :return: a reference document """ created_at = virtool.utils.timestamp() document = await create_document( pg, settings, name or "Unnamed Import", None, description, None, created_at=created_at, user_id=user_id, ) upload = await get_row(pg, Upload, ("name_on_disk", import_from)) document["imported_from"] = upload.to_dict() return document async def create_remote( db, settings: Settings, release: dict, remote_from: str, user_id: str ) -> dict: """ Create a remote reference document in the database. :param db: the application database object :param settings: the application settings :param release: the latest release for the remote reference :param remote_from: information about the remote (errors, GitHub slug) :param user_id: the id of the requesting user :return: the new reference document """ created_at = virtool.utils.timestamp() document = await create_document( db, settings, "Plant Viruses", None, "The official plant virus reference from the Virtool developers", None, created_at=created_at, user_id=user_id, ) return { **document, # Connection information for the GitHub remote repo. "remotes_from": {"errors": [], "slug": remote_from}, # The latest available release on GitHub. "release": dict(release, retrieved_at=created_at), # The update history for the reference. We put the release being installed as the first history item. "updates": [ virtool.github.create_update_subdocument( release, False, user_id, created_at ) ], "installed": None, } async def download_and_parse_release( app, url: str, task_id: int, progress_handler: callable ): pg = app["pg"] with virtool.utils.get_temp_dir() as tempdir: download_path = Path(tempdir) / "reference.tar.gz" await download_file(app, url, download_path, progress_handler) await virtool.tasks.pg.update(pg, task_id, step="unpack") return await app["run_in_thread"](load_reference_file, download_path) async def edit(db, ref_id: str, data: dict) -> dict: """ Edit and existing reference using the passed update `data`. :param db: the application database object :param ref_id: the id of the reference to update :param data: update data from the HTTP request :return: the updated reference document """ document = await db.references.find_one(ref_id) if document["data_type"] != "barcode": data.pop("targets", None) document = await db.references.find_one_and_update({"_id": ref_id}, {"$set": data}) document = await attach_computed(db, document) if "name" in data: await db.analyses.update_many( {"reference.id": ref_id}, {"$set": {"reference.name": document["name"]}} ) return document async def export(app: App, ref_id: str) -> list: db = app["db"] otu_list = list() query = {"reference.id": ref_id, "last_indexed_version": {"$ne": None}} async for document in db.otus.find(query): _, joined, _ = await virtool.history.db.patch_to_version( app, document["_id"], document["last_indexed_version"] ) otu_list.append(joined) return clean_export_list(otu_list) async def insert_change( app, otu_id: str, verb: str, user_id: str, old: Optional[dict] = None ): """ Insert a history document for the OTU identified by `otu_id` and the passed `verb`. :param app: the application object :param otu_id: the ID of the OTU the change is for :param verb: the change verb (eg. remove, insert) :param user_id: the ID of the requesting user :param old: the old joined OTU document """ db = app["db"] # Join the otu document into a complete otu record. This will be used for recording history. joined = await join(db, otu_id) name = joined["name"] e = "" if verb[-1] == "e" else "e" # Build a ``description`` field for the otu creation change document. description = f"{verb.capitalize()}{e}d {name}" abbreviation = joined.get("abbreviation") # Add the abbreviation to the description if there is one. if abbreviation: description = f"{description} ({abbreviation})" await virtool.history.db.add( app, verb, old, joined, description, user_id, silent=True ) async def insert_joined_otu( db, otu: dict, created_at: datetime.datetime, ref_id: str, user_id: str, remote: bool = False, ) -> str: all_sequences = list() issues = verify(otu) otu.update( { "created_at": created_at, "lower_name": otu["name"].lower(), "last_indexed_version": None, "issues": issues, "verified": issues is None, "imported": True, "version": 0, "reference": {"id": ref_id}, "user": {"id": user_id}, } ) if "schema" not in otu: otu["schema"] = list() remote_id = otu.pop("_id") if remote: otu["remote"] = {"id": remote_id} for isolate in otu["isolates"]: for sequence in isolate.pop("sequences"): try: remote_sequence_id = sequence["remote"]["id"] sequence.pop("_id") except KeyError: remote_sequence_id = sequence.pop("_id") all_sequences.append( { **sequence, "accession": sequence["accession"], "isolate_id": isolate["id"], "segment": sequence.get("segment", ""), "reference": {"id": ref_id}, "remote": {"id": remote_sequence_id}, } ) document = await db.otus.insert_one(otu, silent=True) for sequence in all_sequences: await db.sequences.insert_one( dict(sequence, otu_id=document["_id"]), silent=True ) return document["_id"] async def refresh_remotes(app: App): db = app["db"] try: logging.debug("Started reference refresher") while True: for ref_id in await db.references.distinct( "_id", {"remotes_from": {"$exists": True}} ): await fetch_and_update_release(app, ref_id, ignore_errors=True) await asyncio.sleep(600) except asyncio.CancelledError: pass logging.debug("Stopped reference refresher") async def update( req: Request, created_at: datetime.datetime, task_id: int, ref_id: str, release: dict, user_id: str, ) -> tuple: db = req.app["db"] update_subdocument = virtool.github.create_update_subdocument( release, False, user_id, created_at ) await db.references.update_one( {"_id": ref_id}, { "$push": {"updates": update_subdocument}, "$set": {"task": {"id": task_id}, "updating": True}, }, ) return release, update_subdocument async def update_joined_otu( db, otu: dict, created_at: datetime.datetime, ref_id: str, user_id: str ) -> Union[dict, str, None]: remote_id = otu["_id"] old = await join(db, {"reference.id": ref_id, "remote.id": remote_id}) if old: if not check_will_change(old, otu): return None sequence_updates = list() for isolate in otu["isolates"]: for sequence in isolate.pop("sequences"): sequence_updates.append( { "accession": sequence["accession"], "definition": sequence["definition"], "host": sequence["host"], "segment": sequence.get("segment", ""), "sequence": sequence["sequence"], "otu_id": old["_id"], "isolate_id": isolate["id"], "reference": {"id": ref_id}, "remote": {"id": sequence["_id"]}, } ) await db.otus.update_one( {"_id": old["_id"]}, { "$inc": {"version": 1}, "$set": { "abbreviation": otu["abbreviation"], "name": otu["name"], "lower_name": otu["name"].lower(), "isolates": otu["isolates"], "schema": otu.get("schema", list()), }, }, ) for sequence_update in sequence_updates: remote_sequence_id = sequence_update["remote"]["id"] update_result = await db.sequences.update_one( {"reference.id": ref_id, "remote.id": remote_sequence_id}, {"$set": sequence_update}, ) if not update_result.matched_count: await db.sequences.insert_one(sequence_update) return old return await insert_joined_otu(db, otu, created_at, ref_id, user_id, remote=True)
the-stack_106_21360
""" License: MIT <http://brianmhunt.mit-license.org/> """ import sys #sys.path.append('/home/tobias/data/git/wodore-gae/main/') #sys.path.append('./') sys.path.append('./model') import logging import unittest from google.appengine.ext import ndb#, testbed from counter import CountableLazy class TestCountLazyModel(CountableLazy, ndb.Model): """This is a test class for trying out counters """ name = ndb.StringProperty() class TestCountLazyModelExtended(CountableLazy, ndb.Model): """This is a test class for trying out counters """ name = ndb.StringProperty() toplevel = ndb.KeyProperty() collection = ndb.StringProperty(required=True, indexed=True, default='global', validator=lambda p, v: v.lower()) class TestTags(unittest.TestCase): # enable the datastore stub nosegae_datastore_v3 = True nosegae_memcache = True def setUp(self): pass def tearDown(self): pass def test_init(self): tclm = TestCountLazyModel(name="X") tclm.put() assert tclm is not None self.assertEqual(tclm.count, 0) def test_counter_incr(self): tclm = TestCountLazyModel(name="X") tclm.incr() self.assertEqual(tclm.count, 1) tclm.incr(2) self.assertEqual(tclm.count, 3) tclm.put() self.assertEqual(tclm.count, 3) def test_counter_decr(self): tclm = TestCountLazyModel(name="X") tclm.decr() self.assertEqual(tclm.count, -1) tclm.decr(2) self.assertEqual(tclm.count, -3) tclm.put() def test_counter_saved(self): tclm = TestCountLazyModel(name="X") tclm.incr() key = tclm.put() self.assertEqual(str(key),"Key('TestCountLazyModel', 1)") tclm2 = key.get() self.assertEqual(tclm2.count, 1) def test_counter_incr_with_toplevel(self): top = TestCountLazyModelExtended(name="top") top_key = top.put() mid = TestCountLazyModelExtended(name="mid", toplevel = top_key, collection = 'mid') mid_key = mid.put() bot = TestCountLazyModelExtended(name="bot", toplevel = mid_key, collection = 'bot') bot_key = bot.put() self.assertEqual(top.count, 0) self.assertEqual(mid.count, 0) self.assertEqual(bot.count, 0) bot.incr() bot.put() self.assertEqual(top.count, 1) self.assertEqual(mid.count, 1) self.assertEqual(bot.count, 1) mid.incr() mid.put() self.assertEqual(top.count, 2) self.assertEqual(mid.count, 2) self.assertEqual(bot.count, 1) top.incr() top.put() self.assertEqual(top.count, 3) self.assertEqual(mid.count, 2) self.assertEqual(bot.count, 1) if __name__ == "__main__": unittest.main()
the-stack_106_21362
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import numpy as np import datetime from collections import deque def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be set before # `import paddle`. Otherwise, it would not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) from paddle import fluid from ppdet.experimental import mixed_precision_context from ppdet.core.workspace import load_config, merge_config, create from ppdet.data.data_feed import create_reader from ppdet.utils.cli import print_total_cfg from ppdet.utils import dist_utils from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results from ppdet.utils.stats import TrainingStats from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_gpu, check_version import ppdet.utils.checkpoint as checkpoint from ppdet.modeling.model_input import create_feed import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def main(): env = os.environ FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env if FLAGS.dist: trainer_id = int(env['PADDLE_TRAINER_ID']) import random local_seed = (99 + trainer_id) random.seed(local_seed) np.random.seed(local_seed) cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) if 'log_iter' not in cfg: cfg.log_iter = 20 # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() if not FLAGS.dist or trainer_id == 0: print_total_cfg(cfg) if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', 1)) if 'train_feed' not in cfg: train_feed = create(main_arch + 'TrainFeed') else: train_feed = create(cfg.train_feed) if FLAGS.eval: if 'eval_feed' not in cfg: eval_feed = create(main_arch + 'EvalFeed') else: eval_feed = create(cfg.eval_feed) if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') # build program startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) train_loader, feed_vars = create_feed(train_feed) if FLAGS.fp16: assert (getattr(model.backbone, 'norm_type', None) != 'affine_channel'), \ '--fp16 currently does not support affine channel, ' \ ' please modify backbone settings to use batch norm' with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx: train_fetches = model.train(feed_vars) loss = train_fetches['loss'] if FLAGS.fp16: loss *= ctx.get_loss_scale_var() lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) if FLAGS.fp16: loss /= ctx.get_loss_scale_var() # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) eval_loader, feed_vars = create_feed(eval_feed) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir) eval_loader.set_sample_list_generator(eval_reader, place) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_box', 'gt_label', 'is_difficult'] if cfg.metric == 'WIDERFACE': extra_keys = ['im_id', 'im_shape', 'gt_box'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) # compile program for multi-devices build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_optimizer_ops = False build_strategy.fuse_elewise_add_act_ops = True # only enable sync_bn in multi GPU devices sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu exec_strategy = fluid.ExecutionStrategy() # iteration number when CompiledProgram tries to drop local execution scopes. # Set it to be 1 to save memory usages, so that unused variables in # local execution scopes can be deleted after each iteration. exec_strategy.num_iteration_per_drop_scope = 1 if FLAGS.dist: dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog, train_prog) exec_strategy.num_threads = 1 exe.run(startup_prog) compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) if FLAGS.eval: compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog) fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' ignore_params = cfg.finetune_exclude_pretrained_params \ if 'finetune_exclude_pretrained_params' in cfg else [] start_iter = 0 if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() elif cfg.pretrain_weights and fuse_bn and not ignore_params: checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights) elif cfg.pretrain_weights: checkpoint.load_params( exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params) train_reader = create_reader(train_feed, (cfg.max_iters - start_iter) * devices_num, FLAGS.dataset_dir) train_loader.set_sample_list_generator(train_reader, place) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() # if map_type not set, use default 11point, only use in VOC eval map_type = cfg.map_type if 'map_type' in cfg else '11point' train_stats = TrainingStats(cfg.log_smooth_window, train_keys) train_loader.start() start_time = time.time() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) time_stat = deque(maxlen=cfg.log_smooth_window) best_box_ap_list = [0.0, 0] #[map, iter] # use tb-paddle to log data if FLAGS.use_tb: from tb_paddle import SummaryWriter tb_writer = SummaryWriter(FLAGS.tb_log_dir) tb_loss_step = 0 tb_mAP_step = 0 for it in range(start_iter, cfg.max_iters): start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) outs = exe.run(compiled_train_prog, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} # use tb-paddle to log loss if FLAGS.use_tb: if it % cfg.log_iter == 0: for loss_name, loss_value in stats.items(): tb_writer.add_scalar(loss_name, loss_value, tb_loss_step) tb_loss_step += 1 train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0): strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \ and (not FLAGS.dist or trainer_id == 0): save_name = str(it) if it != cfg.max_iters - 1 else "model_final" checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name)) if FLAGS.eval: # evaluation results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls) resolution = None if 'mask' in results[0]: resolution = model.mask_head.resolution box_ap_stats = eval_results( results, eval_feed, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type) # use tb_paddle to log mAP if FLAGS.use_tb: tb_writer.add_scalar("mAP", box_ap_stats[0], tb_mAP_step) tb_mAP_step += 1 if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = it checkpoint.save(exe, train_prog, os.path.join(save_dir, "best_model")) logger.info("Best test box ap: {}, in iter: {}".format( best_box_ap_list[0], best_box_ap_list[1])) train_loader.reset() if __name__ == '__main__': parser = ArgsParser() parser.add_argument( "-r", "--resume_checkpoint", default=None, type=str, help="Checkpoint path for resuming training.") parser.add_argument( "--fp16", action='store_true', default=False, help="Enable mixed precision training.") parser.add_argument( "--loss_scale", default=8., type=float, help="Mixed precision training loss scale.") parser.add_argument( "--eval", action='store_true', default=False, help="Whether to perform evaluation in train") parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") parser.add_argument( "-d", "--dataset_dir", default=None, type=str, help="Dataset path, same as DataFeed.dataset.dataset_dir") parser.add_argument( "--use_tb", type=bool, default=False, help="whether to record the data to Tensorboard.") parser.add_argument( '--tb_log_dir', type=str, default="tb_log_dir/scalar", help='Tensorboard logging directory for scalar.') FLAGS = parser.parse_args() main()
the-stack_106_21363
# -*- coding: utf-8 -*- # @copyright: MIT License # Copyright (c) 2018 syntactic (Pastรจque Ho) # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # @summary: This file parses a JSGF Grammar and prints it out. # @since: 2014/06/02 """ This file parses a JSGF grammar file and returns a JSGFGrammar object. \ It uses the pyparsing module and defines a grammar for JSGF grammars. \ Upon finding a string or JSGF expression, it builds a grammar object from \ the bottom up, composing JSGF expressions with strings and lists. When the \ entire right hand side of a rule has been parsed and a JSGF expression \ object has been created of it, it gets added to the main JSGFGrammar \ object as one of its rules. To run the parser independently and print the resulting JSGFGrammar object, \ run it as: ``python JSGFParser.py Ideas.gram`` Generally, this module should be imported and the getGrammarObject should be called \ with a ``file`` object as its argument. This function returns a grammar \ object that can be used by the Generator scripts ``DeterministicGenerator.py`` \ and ``ProbabilisticGenerator.py``. The features of JSGF that this parser can handle include: - rulenames - tokens - comments - rule definitions - rule expansions - sequences - alternatives - weights - grouping - optional grouping Notable features of JSGF that are **not** handled by this parser are: - grammar names - import statements - unary operators - tags """ import sys import JSGFGrammar as gram from pyparsing import * sys.setrecursionlimit(100000) usePackrat = True def foundWeight(s, loc, toks): """ PyParsing action to run when a weight is found. :returns: Weight as a floating point number """ # print 'found weight', toks.dump() # print 'returning the weight', float(toks.weightAmount) return float(toks.weightAmount) def foundToken(s, loc, toks): """ PyParsing action to run when a token is found. :returns: Token as a string """ # print 'found token', toks.dump() # print 'returning the token', toks.token return toks.token def foundNonterminal(s, loc, toks): """ PyParsing action to run when a nonterminal reference is found. :returns: NonTerminal object representing the NT reference found """ return gram.NonTerminal(list(toks)[0]) def foundWeightedExpression(s, loc, toks): """ PyParsing action to run when a weighted expression is found. :returns: Ordered pair of the expression and its weight """ toks.weightedExpression = (toks.expr, toks.weight) # print 'found weighted expression', toks.dump() expr = list(toks.expr) if len(expr) == 1: expr = expr[0] pair = (expr, toks.weight) # print 'returning', pair return pair def foundPair(s, loc, toks): """ PyParsing action to run when a pair of alternatives are found. :returns: Disjunction object containing all disjuncts that have been accumulated so far """ # print 'found pair', toks.dump() # print 'disj1 is', list(toks.disj1), 'disj2 is', list(toks.disj2) firstAlternative = list(toks.disj1) secondAlternative = list(toks.disj2) if len(firstAlternative) > 1: disj = [firstAlternative] else: disj = firstAlternative if len(secondAlternative) == 1: if isinstance(secondAlternative[0], gram.Disjunction): # print 'found disjuncts in second alt', secondAlternative[0].disjuncts disj.extend(secondAlternative[0].disjuncts) else: disj.append(secondAlternative[0]) else: disj.append(secondAlternative) disj = gram.Disjunction(disj) # print 'returing the pair', disj return disj def foundOptionalGroup(s, loc, toks): """ PyParsing action to run when an optional group is found. :returns: Optional object containing all elements in the group """ # print 'optional item is', toks.optionalItem if len(list(toks[0])) > 1: return gram.Optional(list(toks[0])) else: return gram.Optional(toks.optionalItem[0]) def foundSeq(s, loc, toks): """ PyParsing action to run when a sequence of concatenated elements is found. :returns: List of JSGFGrammar objects, strings, or more lists """ # print 'seq is', toks.dump() # print 'length of seq is', len(list(toks[0])), list(toks[0]) if len(list(toks[0])) > 1: # print 'seq retringin', list(toks[0]), type(list(toks[0])) return list(toks[0]) else: # print 'seq returning', list(toks[0])[0], type(list(toks[0])[0]) return list(toks[0])[0] # PyParsing rule for a weight weight = (Literal('/').suppress() + (Word(nums + '.')).setResultsName('weightAmount') + Literal('/').suppress()).setParseAction(foundWeight).setResultsName("weight") # PyParsing rule for a token token = Word(pyparsing_unicode.LatinA.alphas+alphanums + pyparsing_unicode.Latin1.alphas + pyparsing_unicode.LatinB.alphas + "ฤ™รณล‚ล›ฤ…ลผลบฤ‡ล„'_-,.?@").setResultsName('token').setParseAction(foundToken) # PyParsing rule for a nonterminal reference nonterminal = Combine(Literal('<') + Word(alphanums+'$_:;,=|/\\()[]@#%!^&~') + Literal('>')).setParseAction(foundNonterminal).setResultsName('NonTerminal') Sequence = Forward() weightedExpression = (weight + Group(Sequence).setResultsName("expr")). \ setResultsName('weightedExpression').setParseAction(foundWeightedExpression) weightAlternatives = Forward() weightedPrime = Literal('|').suppress() + weightAlternatives weightAlternatives << MatchFirst([(Group(weightedExpression).setResultsName("disj1") + Group(weightedPrime).setResultsName("disj2")). setParseAction(foundPair).setResultsName("pair"), Group(weightedExpression).setParseAction(foundSeq)]) disj = Forward() disjPrime = Literal('|').suppress() + disj disj << MatchFirst([(Group(Sequence).setResultsName("disj1") + Group(disjPrime). setResultsName("disj2")).setParseAction(foundPair). setResultsName("pair"), Group(Sequence).setParseAction(foundSeq)]) topLevel = MatchFirst([disj, weightAlternatives]) StartSymbol = Optional(Literal('public')).setResultsName('public') + \ nonterminal.setResultsName('identifier') + \ Literal('=').suppress() + \ Group(topLevel).setResultsName('ruleDef') + Literal(';').suppress() + stringEnd Expression = MatchFirst([nonterminal, token]) Grouping = Literal('(').suppress() + topLevel + Literal(')').suppress() OptionalGrouping = (Literal('[').suppress() + Group(topLevel).setResultsName("optionalItem") + Literal(']').suppress()).setParseAction(foundOptionalGroup) Sequence << Group(OneOrMore(MatchFirst([Grouping, OptionalGrouping, Expression]))). \ setResultsName("seq").setParseAction(foundSeq) def nocomment(oldline): """ Removes a comment from a line :param oldline: String representing the original line :returns: String with the same semantic content, with the comments stripped """ if '//' in oldline: return oldline.replace(oldline, oldline[0:oldline.index('//')]) elif '*' in oldline: return oldline.replace(oldline, '') else: return oldline def getGrammarObject(fileStream): """ Produces a JSGFGrammar object from a stream of text, the grammar object has a set of public rules and regular rules :param fileStream: file object containing the contents of the grammar file :type fileStream: file object :returns: JSGFGrammar object """ linegenerator = fileStream lines = linegenerator.readlines() for i in range(len(lines)): lines[i] = nocomment(lines[i]) # buffer will accumulate lines until a fully parseable piece is found buffer = "" grammar = gram.Grammar() for line in lines: buffer += line match = next(StartSymbol.scanString(buffer), None) while match: tokens, start, end = match if 'public' in tokens.keys(): grammar.addPublicRule(gram.Rule(tokens.identifier, list(tokens.ruleDef))) grammar.addRule(gram.Rule(tokens.identifier, list(tokens.ruleDef))) buffer = buffer[end:] match = next(StartSymbol.scanString(buffer), None) return grammar if __name__ == '__main__': fileStream = open(sys.argv[1]) grammar = getGrammarObject(fileStream) print(grammar)
the-stack_106_21366
#!/usr/bin/env python3 # vim: set fileencoding=utf-8 : """Functions that should be in scipy.""" import numpy as np from scipy.sparse import issparse def dot(a, b): """A dot product that also works on sparse matrices.""" if issparse(a): return a.dot(b) elif issparse(b): return b.T.dot(a.T).T else: return np.dot(a, b) def toarray(matrix, squeeze=True): """ This is a shame, this should be in scipy. Converts any matrix to ndarray. """ if issparse(matrix): A = matrix.toarray() elif isinstance(matrix, np.matrix): A = matrix.A else: A = np.asanyarray(matrix) return np.squeeze(A) if squeeze else A
the-stack_106_21367
''' Return the number of times that the string "hi" appears anywhere in the given string. ''' def count_hi(str): count = 0 for i in range(len(str)-1): if str[i] == "h" and str[i+1] == "i": count += 1 return count # count_hi('abc hi ho') โ†’ 1 # count_hi('ABChi hi') โ†’ 2 # count_hi('hihi') โ†’ 2
the-stack_106_21368
import logging import zmq import os import json from taboo.util import * logger = logging.getLogger(__name__) class TabooAttacker: def __init__(self, host="127.0.0.1", port=10086, name="Attacker"): self.name = name self.context = zmq.Context() self.connection = self.context.socket(zmq.REP) self.connection.bind("tcp://%s:%d" % (host, port)) data = self.connection.recv_json() if data["code"] == INIT: logger.info("Connection to server established.") self.task_setting = data["data"] self.connection.send_json({ "code": ATTACKER_FEEDBACK, "data": self.name }) else: logger.error("Unknown codes from server, raise error") raise NotImplementedError data = self.connection.recv_json() if data["code"] == WORD_SELECT: logger.info("Receive word list from judger: %s" % (json.dumps(data["data"]))) self.word_list = data["data"] else: logger.error("Unknown codes from server, raise error") raise NotImplementedError def get_task_setting(self): return self.task_setting def select_word(self, idx): logger.info("Selects the word: %s" % self.word_list[idx]) self.connection.send_json({ "code": WORD_SELECT, "data": idx }) self.connection.recv_json() def attack(self, sent): self.connection.send_json({ "code": ATTACK, "data": sent }) data = self.connection.recv_json() if data["code"] == DEFENDER_CORRUPT: logger.info("Defender corrupts") logging.info("Defender says: %s" % data["data"]) if data["code"] in END_CODE_SET: if data["code"] == ATTACKER_WIN: logger.info("Attacker wins") elif data["code"] == DEFENDER_WIN: logger.info("Defender wins") elif data["code"] == DRAW: logger.info("Draw") return data if __name__ == "__main__": os.system("clear") logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) attacker = TabooAttacker(port=23333) attacker.select_word(0) while True: print("Type your sentence: ", end='') sent = input().strip() data = attacker.attack(sent) if data["code"] in END_CODE_SET: break
the-stack_106_21369
#!/usr/bin/env python """Simple tools to query github.com and gather repo information. Taken from ipython """ # ---------------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------------- from packaging.version import parse import json import re import sys import os import argparse import operator from datetime import datetime, timedelta from subprocess import check_output from urllib.request import urlopen, Request # ---------------------------------------------------------------------------- # Globals # ---------------------------------------------------------------------------- ISO8601 = "%Y-%m-%dT%H:%M:%SZ" PER_PAGE = 100 element_pat = re.compile(r'<(.+?)>') rel_pat = re.compile(r'rel=[\'"](\w+)[\'"]') LAST_RELEASE = datetime(2015, 3, 18) CONTRIBUTORS_FILE = "contributors.json" GH_TOKEN = os.environ.get('GH_TOKEN', '') # ---------------------------------------------------------------------------- # Functions # ---------------------------------------------------------------------------- def fetch_url(url): """ Notes ----- This was pointed out as a Security issue in bandit. please look at issue #355, we fixed it, but the bandit warning might remain, need to suppress it manually (just ignore it) """ req = Request(url) if GH_TOKEN: req.add_header('Authorization', 'token {0}'.format(GH_TOKEN)) try: print("fetching %s" % url, file=sys.stderr) # url = Request(url, # headers={'Accept': 'application/vnd.github.v3+json', # 'User-agent': 'Defined'}) if not url.lower().startswith('http'): msg = "Please make sure you use http/https connection" raise ValueError(msg) f = urlopen(req) except Exception as e: print(e) print("return Empty data", file=sys.stderr) return {} return f def parse_link_header(headers): link_s = headers.get('link', '') urls = element_pat.findall(link_s) rels = rel_pat.findall(link_s) d = {} for rel, url in zip(rels, urls): d[rel] = url return d def get_json_from_url(url): """Fetch and read url.""" f = fetch_url(url) return json.load(f) if f else {} def get_paged_request(url): """Get a full list, handling APIv3's paging.""" results = [] while url: f = fetch_url(url) if not f: continue results.extend(json.load(f)) links = parse_link_header(f.headers) url = links.get('next') return results def get_issues(project="fury-gl/fury", state="closed", pulls=False): """Get a list of the issues from the Github API.""" which = 'pulls' if pulls else 'issues' url = "https://api.github.com/repos/%s/%s?state=%s&per_page=%i" % \ (project, which, state, PER_PAGE) return get_paged_request(url) def get_tags(project="fury-gl/fury"): """Get a list of the tags from the Github API.""" url = "https://api.github.com/repos/{0}/tags".format(project) return get_paged_request(url) def fetch_basic_stats(project="fury-gl/fury"): """Fetch the basic stats. Returns ------- basic_stats : dict A dictionary containing basic statistics. For example: { 'subscribers': 41, 'forks': 142, 'forks_url': 'https://github.com/fury-gl/fury/network' 'watchers': 94, 'open_issues': 154, 'stars': 94, 'stars_url': 'https://github.com/fury-gl/fury/stargazers' } """ desired_keys = ["stargazers_count", "stargazers_url", "watchers_count", "watchers_url", "forks_count", "forks_url", "open_issues", "issues_url", "subscribers_count", "subscribers_url"] url = "https://api.github.com/repos/{0}".format(project) r_json = get_json_from_url(url) basic_stats = dict((k, r_json[k]) for k in desired_keys if k in r_json) return basic_stats def fetch_contributor_stats(project="fury-gl/fury"): """Fetch stats of contributors. Returns ------- contributor_stats : dict A dictionary containing contributor statistics. For example: {'total_contributors': 50, 'total_commits': 6031, 'contributors': [ { "user_name": "Garyfallidis" "avatar_url":"https://avatars.githubusercontent.com/u/134276?v=3", "html_url": "https://github.com/Garyfallidis", "total_commits": 1389, "total_additions": 116712, "total_deletions": 70340, "weekly_commits": [ { "w": "1367712000", "a": 6898, "d": 77, "c": 10 }, ] }, ] } """ url = "https://api.github.com/repos/{0}/stats/contributors".format(project) r_json = get_json_from_url(url) contributor_stats = {} contributor_stats["total_contributors"] = len(r_json) contributor_stats["contributors"] = [] cumulative_commits = 0 desired_keys = ["login", "avatar_url", "html_url"] with open(os.path.join(os.path.dirname(__file__), "..", CONTRIBUTORS_FILE)) as f: extra_info = json.load(f) extra_info = extra_info["team"] + extra_info["core_team"] for contributor in r_json: contributor_dict = dict((k, contributor["author"][k]) for k in desired_keys if k in contributor["author"]) # check if "author" is null if not contributor_dict["login"]: continue # Replace key name contributor_dict["username"] = usrname = contributor_dict.pop("login") contributor_dict["nb_commits"] = contributor["total"] # Add extra information like fullname and affiliation l_extra_info = [e for e in extra_info if e["username"].lower() == usrname.lower()] l_extra_info = l_extra_info[0] if l_extra_info else {} contributor_dict.update(l_extra_info) # Update total commits cumulative_commits += contributor_dict["nb_commits"] total_additions = 0 total_deletions = 0 for week in contributor["weeks"]: total_additions += week['a'] total_deletions += week['d'] contributor_dict["total_additions"] = total_additions contributor_dict["total_deletions"] = total_deletions # contributor_dict["weekly_commits"] = contributor["weeks"] contributor_stats["contributors"].insert(0, contributor_dict) contributor_stats["contributors"] = sorted( contributor_stats["contributors"], key=lambda x: x.get('nb_commits'), reverse=True) contributor_stats["total_commits"] = cumulative_commits return contributor_stats def cumulative_contributors(project="fury-gl/fury", show=True): """Calculate total contributors as new contributors join with time. Parameters ---------- contributors_list : list List of contributors with weeks of contributions. Example: [ { 'weeks': [ {'w': 1254009600, 'a': 5, 'c': 2, 'd': 9}, ], ..... }, ] """ url = "https://api.github.com/repos/{0}/stats/contributors".format(project) r_json = get_json_from_url(url) contributors_join_date = {} for contributor in r_json: for week in contributor["weeks"]: if(week["c"] > 0): join_date = week['w'] if join_date not in contributors_join_date: contributors_join_date[join_date] = 0 contributors_join_date[join_date] += 1 cumulative_join_date = {} cumulative = 0 for time in sorted(contributors_join_date): cumulative += contributors_join_date[time] cumulative_join_date[time] = cumulative cumulative_list = list(cumulative_join_date.items()) cumulative_list.sort() if show: from datetime import datetime import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np years, c_cum = zip(*cumulative_list) years_ticks = np.linspace(min(years), max(years), 15) years_labels = [] for y in years_ticks: date = datetime.utcfromtimestamp(int(y)) date_str = "Q{} - ".format((date.month - 1) // 3 + 1) date_str += date.strftime('%Y') years_labels.append(date_str) plt.fill_between(years, c_cum, color="skyblue", alpha=0.4) plt.plot(years, c_cum, color="Slateblue", alpha=0.6, linewidth=2) plt.tick_params(labelsize=12) plt.xticks(years_ticks, years_labels, rotation=45, fontsize=8) plt.yticks(fontsize=8) plt.xlabel('Date', size=12) plt.ylabel('Contributors', size=12) plt.ylim(bottom=0) plt.grid(True) plt.legend([mpatches.Patch(color='skyblue'), ], ['Contributors', ], bbox_to_anchor=(0.5, 1.1), loc='upper center') plt.savefig('fury_cumulative_contributors.png', dpi=150) plt.show() return cumulative_list def _parse_datetime(s): """Parse dates in the format returned by the Github API.""" if s: return datetime.strptime(s, ISO8601) else: return datetime.fromtimestamp(0) def issues2dict(issues): """Convert a list of issues to a dict, keyed by issue number.""" idict = {} for i in issues: idict[i['number']] = i return idict def is_pull_request(issue): """Return True if the given issue is a pull request.""" return 'pull_request_url' in issue def issues_closed_since(period=LAST_RELEASE, project="fury-gl/fury", pulls=False): """Get all issues closed since a particular point in time. period can either be a datetime object, or a timedelta object. In the latter case, it is used as a time before the present. """ which = 'pulls' if pulls else 'issues' if isinstance(period, timedelta): period = datetime.now() - period url = ("https://api.github.com/repos/%s/%s?state=closed&sort=updated&" "since=%s&per_page=%i") % (project, which, period.strftime(ISO8601), PER_PAGE) allclosed = get_paged_request(url) # allclosed = get_issues(project=project, state='closed', pulls=pulls, # since=period) filtered = [i for i in allclosed if _parse_datetime(i['closed_at']) > period] # exclude rejected PRs if pulls: filtered = [pr for pr in filtered if pr['merged_at']] return filtered def sorted_by_field(issues, field='closed_at', reverse=False): """Return a list of issues sorted by closing date date.""" return sorted(issues, key=lambda i: i[field], reverse=reverse) def report(issues, show_urls=False): """Summary report about a list of issues, printing number and title.""" # titles may have unicode in them, so we must encode everything below if show_urls: for i in issues: role = 'ghpull' if 'merged_at' in i else 'ghissue' print('* :%s:`%d`: %s' % (role, i['number'], i['title'])) else: for i in issues: print('* %d: %s' % (i['number'], i['title'])) def get_all_versions(ignore='', project="fury-gl/fury"): """Return all releases version. Parameters ---------- ignore: str skip a version number between (default: '') you can skip minor, or micro version number, it will be replace by x project: str repo path Returns ------- l_version: list of str versions number list """ tags = get_tags(project=project) l_version = [t['name'] for t in tags] if ignore.lower() in ['micro', 'minor']: l_version = list(set([re.sub(r'(\d+)$', 'x', v) for v in l_version])) if ignore.lower() == 'minor': l_version = list(set([re.sub(r'\.(\d+)\.', '.x.', v) for v in l_version])) return l_version def version_compare(current_version, version_number, op='eq', all_versions=None): """Compare doc version. This is afilter for sphinx template.""" p = re.compile(r'(\d+)\.(\d+)') d_operator = {'<': operator.lt, 'lt': operator.lt, '<=': operator.le, 'le': operator.le, '>': operator.gt, 'gt': operator.gt, '>=': operator.ge, 'ge': operator.ge, '==': operator.eq, '=': operator.eq, 'eq': operator.eq, '!=': operator.ne, } # Setup default value to op if op not in d_operator.keys(): op = 'eq' # check dev page if current_version.lower() == 'dev': return 'post' in version_number # major and minor extraction current = p.search(current_version) ref = p.search(version_number) if current_version.lower() == 'latest': # Check if it is the latest release all_versions = all_versions or get_all_versions() if not all_versions: return False last_version = sorted(all_versions)[0] last_version = p.search(last_version) if parse(last_version.group()) == \ parse(ref.group()) and \ 'post' not in version_number: return True return False if 'post' in version_number: return False return d_operator[op](parse(current.group()), parse(ref.group())) def username_to_fullname(all_authors): with open(os.path.join(os.path.dirname(__file__), "..", CONTRIBUTORS_FILE)) as f: extra_info = json.load(f) extra_info = extra_info["team"] + extra_info["core_team"] extra_info = {i["username"]: i['fullname'] for i in extra_info} curent_authors = all_authors for i, author in enumerate(all_authors): if author[2:] in extra_info.keys(): curent_authors[i] = '* ' + extra_info[author[2:]] return curent_authors def github_stats(**kwargs): """Get release github stats.""" # Whether to add reST urls for all issues in printout. show_urls = True save = kwargs.get('save', None) if save: version = kwargs.get('version', 'vx.x.x') fname = "releasev" + version + '.rst' fpath = os.path.join(os.path.dirname(__file__), '..', 'release_notes', fname) f = open(fpath, 'w') orig_stdout = sys.stdout sys.stdout = f print(".. _{}".format(fname.replace('.rst', ':'))) print() print(("==============================\n" " Release notes v{}\n ()" "==============================").format(version)) # By default, search one month back tag = kwargs.get('tag', None) if tag is None: if len(sys.argv) > 1: try: days = int(sys.argv[1]) except Exception: tag = sys.argv[1] else: tag = check_output(['git', 'describe', '--abbrev=0'], universal_newlines=True).strip() if tag: cmd = ['git', 'log', '-1', '--format=%ai', tag] tagday, _ = check_output(cmd, universal_newlines=True).strip().rsplit(' ', 1) since = datetime.strptime(tagday, "%Y-%m-%d %H:%M:%S") else: since = datetime.now() - timedelta(days=days) print("fetching GitHub stats since %s (tag: %s)" % (since, tag), file=sys.stderr) # turn off to play interactively without redownloading, use %run -i if 1: issues = issues_closed_since(since, pulls=False) pulls = issues_closed_since(since, pulls=True) # For regular reports, it's nice to show them in reverse chronological # order issues = sorted_by_field(issues, reverse=True) pulls = sorted_by_field(pulls, reverse=True) n_issues, n_pulls = map(len, (issues, pulls)) n_total = n_issues + n_pulls # Print summary report we can directly include into release notes. print() since_day = since.strftime("%Y/%m/%d") today = datetime.today().strftime("%Y/%m/%d") print("GitHub stats for %s - %s (tag: %s)" % (since_day, today, tag)) print() print("These lists are automatically generated, and may be incomplete or" " contain duplicates.") print() if tag: # print git info, in addition to GitHub info: since_tag = tag+'..' cmd = ['git', 'log', '--oneline', since_tag] ncommits = check_output(cmd, universal_newlines=True).splitlines() ncommits = len(ncommits) author_cmd = ['git', 'log', '--format=* %aN', since_tag] all_authors = check_output(author_cmd, universal_newlines=True) \ .splitlines() # Replace username by author name all_authors = username_to_fullname(all_authors) unique_authors = sorted(set(all_authors)) if len(unique_authors) == 0: print("No commits during this period.") else: print("The following %i authors contributed %i commits." % (len(unique_authors), ncommits)) print() print('\n'.join(unique_authors)) print() print() print("We closed a total of %d issues, %d pull requests and %d" " regular issues;\nthis is the full list (generated with" " the script \n:file:`tools/github_stats.py`):" % (n_total, n_pulls, n_issues)) print() print('Pull Requests (%d):\n' % n_pulls) report(pulls, show_urls) print() print('Issues (%d):\n' % n_issues) report(issues, show_urls) if save: sys.stdout = orig_stdout f.close() # ---------------------------------------------------------------------------- # Sphinx connection # ---------------------------------------------------------------------------- def add_jinja_filters(app): app.builder.templates.environment.filters['version_compare'] = \ version_compare def setup(app): """ - Create releases information - Collect and clean authors - Adds extra jinja filters. """ app.connect("builder-inited", add_jinja_filters) app.add_css_file("css/custom_github.css") # ---------------------------------------------------------------------------- # Main script # ---------------------------------------------------------------------------- if __name__ == "__main__": # e.g github_tools.py --tag=v0.1.3 --save --version=0.1.4 parser = argparse.ArgumentParser() parser.add_argument("--tag", type=str, default=None, help='from which tag version to get information') parser.add_argument("--version", type=str, default='', help='current release version') parser.add_argument("--save", dest='save', action='store_true', default=False, help=("Save in the release folder" "and add rst header") ) args = parser.parse_args() github_stats(**vars(args))
the-stack_106_21370
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2014, Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. # ----------------------------------------------------------------------------- # Author: Luke Campagnola # ----------------------------------------------------------------------------- import struct import zlib import numpy as np def make_png(data, level=6): """Convert numpy array to PNG byte array. Parameters ---------- data : numpy.ndarray Data must be (H, W, 3 | 4) with dtype = np.ubyte (np.uint8) level : int https://docs.python.org/2/library/zlib.html#zlib.compress An integer from 0 to 9 controlling the level of compression: 1 is fastest and produces the least compression, 9 is slowest and produces the most. 0 is no compression. The default value is 6. Returns ------- png : array PNG formatted array """ # Eventually we might want to use ext/png.py for this, but this # routine *should* be faster b/c it's speacialized for our use case def mkchunk(data, name): if isinstance(data, np.ndarray): size = data.nbytes else: size = len(data) chunk = np.empty(size + 12, dtype=np.ubyte) chunk.data[0:4] = np.array(size, '>u4').tostring() chunk.data[4:8] = name.encode('ASCII') chunk.data[8:8 + size] = data # and-ing may not be necessary, but is done for safety: # https://docs.python.org/3/library/zlib.html#zlib.crc32 chunk.data[-4:] = np.array(zlib.crc32(chunk[4:-4]) & 0xffffffff, '>i4').tostring() return chunk if data.dtype != np.ubyte: raise TypeError('data.dtype must be np.ubyte (np.uint8)') dim = data.shape[2] # Dimension if dim not in (3, 4): raise TypeError('data.shape[2] must be in (3, 4)') # www.libpng.org/pub/png/spec/1.2/PNG-Chunks.html#C.IHDR if dim == 4: ctyp = 0b0110 # RGBA else: ctyp = 0b0010 # RGB # www.libpng.org/pub/png/spec/1.2/PNG-Structure.html header = b'\x89PNG\x0d\x0a\x1a\x0a' # header h, w = data.shape[:2] depth = data.itemsize * 8 ihdr = struct.pack('!IIBBBBB', w, h, depth, ctyp, 0, 0, 0) c1 = mkchunk(ihdr, 'IHDR') # www.libpng.org/pub/png/spec/1.2/PNG-Chunks.html#C.IDAT # insert filter byte at each scanline idat = np.empty((h, w * dim + 1), dtype=np.ubyte) idat[:, 1:] = data.reshape(h, w * dim) idat[:, 0] = 0 comp_data = zlib.compress(idat, level) c2 = mkchunk(comp_data, 'IDAT') c3 = mkchunk(np.empty((0,), dtype=np.ubyte), 'IEND') # concatenate lh = len(header) png = np.empty(lh + c1.nbytes + c2.nbytes + c3.nbytes, dtype=np.ubyte) png.data[:lh] = header p = lh for chunk in (c1, c2, c3): png[p:p + len(chunk)] = chunk p += chunk.nbytes return png
the-stack_106_21371
"""NodeCHUP. Usage: nodechup install --base-directory-path=<base-directory-path> --version=<version> [--update-default-version] Options: -h --help Show this screen. --base-directory-path=<base-directory-path> Path to base directory --version=<version> Version of Node.js installation. Exits with RC 78 if Node.js version is already installed. --update-default-version Update default point release for major/minor version. """ import sys from docopt import docopt from schema import Schema from nodechup.nodejs import BaseDirectory, Installation, NodeJSAlreadyInstalled """Program to manage Node.js installations.""" def main() -> None: """Spawn relevant class for CLI function.""" # Validate input args = docopt(__doc__) schema = Schema( { "install": bool, "--base-directory-path": str, "--version": str, "--update-default-version": bool, } ) args = schema.validate(args) # Run classes if args["install"]: base_directory = BaseDirectory(path=args["--base-directory-path"]) installation = Installation( base_directory=base_directory, version=args["--version"] ) try: installation.download( update_default_version=args["--update-default-version"] ) except NodeJSAlreadyInstalled: print( "Node.js installation with the specified version already exists in the base directory" ) sys.exit(78)
the-stack_106_21374
# -*- coding: utf-8 -*- import app_automatico import sys from layout import * from PyQt4 import * from layout_2 import * class resultadoValidacao(QtGui.QMainWindow): def __init__(self, parent=None): QtGui.QWidget.__init__(self, parent) self.ui = Ui_resultadoValidacao() self.ui.setupUi(self) def nomeFazenda(self): self.nome = "Fazenda TESTE Tracajรกs"; def areaCar(self): self.area = "33517020"; def numeroCar(self): self.numero = "997B3"; if __name__ == "__main__": app = QtGui.QApplication(sys.argv) meuApp = resultadoValidacao() meuApp.show() sys.exit(app.exec_())
the-stack_106_21375
# Copyright 2019-2020 The Lux Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class Message: def __init__(self): self.messages = [] def add_unique(self, item, priority=-1): msg = {"text": item, "priority": priority} if msg not in self.messages: self.messages.append(msg) def add(self, item, priority=-1): self.messages.append({"text": item, "priority": priority}) def to_html(self): if len(self.messages) == 0: return "" else: sorted_msgs = sorted(self.messages, key=lambda i: i["priority"], reverse=True) html = "<ul>" for msg in sorted_msgs: msgTxt = msg["text"] html += f"<li>{msgTxt}</li>" html += "</ul>" return html
the-stack_106_21376
# import xml.etree.ElementTree as ET from lxml import etree as ET import Helper inertiaKey = ['ixx', 'ixy', 'ixz', 'iyy', 'iyz', 'izz'] # add a material def addMaterial(parent, name, rgba): material = ET.SubElement(parent, 'material') material.set('name', name) color = ET.SubElement(material, 'color') color.set('rbga', f'{rgba[0]} {rgba[1]} {rgba[2]} {rgba[3]}') def addLink(name, root, massValue, inertiaValue, size=None, materialName=None): # add link link = ET.SubElement(robot, 'link') link.set('name', name) # add inertia inertial = ET.SubElement(link, 'inertial') mass = ET.SubElement(inertial, 'mass') mass.set('value', f'{massValue}') inertia = ET.SubElement(inertial, 'inertia') for i in range(6): inertia.set(inertiaKey[i], f'{inertiaValue[i]}') # add visual and collision if size is not None: visual = ET.SubElement(link, 'visual') ET.SubElement(visual, 'matertial', attrib={'name': materialName}) geometry = ET.SubElement(visual, 'geometry') ET.SubElement(geometry, 'box', attrib={'size': f'{size[0]} {size[1]} {size[2]}'}) collision = ET.SubElement(link, 'collision') geometry = ET.SubElement(collision, 'geometry') ET.SubElement(geometry, 'box', attrib={'size': f'{size[0]} {size[1]} {size[2]}'}) return link # add joint def addFixedJoint(root, parent, child, xyz, rpy): joint = ET.SubElement(root, 'joint', attrib={'name': f'{parent}_to_{child}', 'type': 'fixed'}) ET.SubElement(joint, 'origin', attrib={'xyz': f'{xyz[0]} {xyz[1]} {xyz[2]}', 'rpy': f'{rpy[0]} {rpy[1]} {rpy[2]}'}) ET.SubElement(joint, 'parent', attrib={'link': parent}) ET.SubElement(joint, 'child', attrib={'link': child}) def addObstacle(name, size, root, parent, pos, rot, materialName='grey'): addLink(name, root, massValue=1.0, inertiaValue=[1.0, 0.0, 0.0, 1.0, 0.0, 1.0], size=size, materialName=materialName) addFixedJoint(root, parent, name, pos, rot) if __name__ == "__main__": robot = ET.Element('robot') robot.set('name', 'forest') materialName = 'gray' rgba = [0.3, 0.3, 0.3, 1.0] addMaterial(robot, materialName, rgba) materialName = 'gold' rgba = [0.0, 0.8, 0.0, 1.0] addMaterial(robot, materialName, rgba) materialName = 'deep' rgba = [0.0, 0.9, 0.9, 1.0] addMaterial(robot, materialName, rgba) # add a base name = 'base' massValue = 0.0 inertiaValue = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] base = addLink(name, robot, massValue, inertiaValue) pos_ = [] size_ = [] rot_ = [] material_ = [] pos_.append([-11, 0.9, -7]) size_.append([2, 2, 2]) pos_.append([-11, 0.9, 3]) size_.append([2, 2, 10]) pos_.append([-5, 0.9, -4]) size_.append([2, 2, 8]) pos_.append([-5, 0.9, 5]) size_.append([2, 2, 6]) pos_.append([-1, 0.9, 6]) size_.append([2, 2, 4]) pos_.append([1, 0.9, -3]) size_.append([2, 2, 6]) pos_.append([7, 0.9, -2]) size_.append([2, 2, 12]) pos_.append([7, 0.9, 7]) size_.append([2, 2, 2]) pos_.append([11, 0.9, 6]) size_.append([2, 2, 4]) pos_.append([11, 0.9, -1.25]) size_.append([2, 2, 9.5]) for i in range(len(size_)): rot_.append([0, 0, 0]) material_.append('gray') # golden box gap = 0.6 length = 1.5*2**0.5 - gap/2 size_.append([length, 2, length]) size_.append([length, 2, length]) rot_.append([0, 1.57/2, 0]) rot_.append([0, 1.57/2, 0]) material_.append('gold') material_.append('gold') pos_.append([-1, 0.9, 4-length/2**0.5]) pos_.append([1, 0.9, 0+length/2**0.5]) # upper and lower boundary size_.append([40, 2, 2]) size_.append([40, 2, 2]) rot_.append([0, 0, 0]) rot_.append([0, 0, 0]) material_.append('deep') material_.append('deep') pos_.append([0, 0.9, -9]) pos_.append([0, 0.9, 9]) for i in range(len(size_)): addObstacle(f'obstacle_{i}', size_[i], robot, parent='base', pos=pos_[i], rot=rot_[i], materialName=material_[i]) tree = ET.ElementTree(robot) tree.write(Helper.findURDF('forest.urdf'), pretty_print=True, encoding='utf-8')
the-stack_106_21379
# This file is part of Indico. # Copyright (C) 2002 - 2020 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from __future__ import unicode_literals from itertools import count from flask import flash, jsonify, request, session from werkzeug.exceptions import BadRequest, Forbidden, NotFound from indico.core.db import db from indico.core.db.sqlalchemy.util.models import get_default_values from indico.modules.events.controllers.base import RHDisplayEventBase from indico.modules.events.layout import layout_settings, logger from indico.modules.events.layout.forms import MenuBuiltinEntryForm, MenuLinkForm, MenuPageForm from indico.modules.events.layout.models.menu import EventPage, MenuEntry, MenuEntryType from indico.modules.events.layout.util import menu_entries_for_event from indico.modules.events.layout.views import WPMenuEdit, WPPage from indico.modules.events.management.controllers import RHManageEventBase from indico.modules.events.models.events import EventType from indico.util.i18n import _ from indico.web.flask.templating import get_template_module from indico.web.forms.base import FormDefaults from indico.web.util import jsonify_data, jsonify_form def _render_menu_entry(entry): tpl = get_template_module('events/layout/_menu.html') return tpl.menu_entry(entry=entry) def _render_menu_entries(event, connect_menu=False): tpl = get_template_module('events/layout/_menu.html') return tpl.menu_entries(menu_entries_for_event(event), connect_menu=connect_menu) class RHMenuBase(RHManageEventBase): def _check_access(self): RHManageEventBase._check_access(self) if self.event.type_ != EventType.conference: raise NotFound('Only conferences have a menu') def _require_custom_menu(self): if not layout_settings.get(self.event, 'use_custom_menu'): raise Forbidden('The menu cannot be changed unless menu customization is enabled') class RHMenuEdit(RHMenuBase): def _process(self): custom_menu_enabled = layout_settings.get(self.event, 'use_custom_menu') menu = menu_entries_for_event(self.event) if custom_menu_enabled else None return WPMenuEdit.render_template('menu_edit.html', self.event, menu=menu, custom_menu_enabled=custom_menu_enabled) class RHMenuToggleCustom(RHMenuBase): def _process(self): enabled = request.form['enabled'] == '1' if enabled: # nothing else to do here. menu items are added to the DB when retrieving the menu flash(_('Menu customization has been enabled.'), 'success') else: for entry in MenuEntry.query.with_parent(self.event): db.session.delete(entry) flash(_('Menu customization has been disabled.'), 'success') layout_settings.set(self.event, 'use_custom_menu', enabled) logger.info('Menu customization for %s %s by %s', self.event, 'enabled' if enabled else 'disabled', session.user) return jsonify(enabled=enabled) class RHMenuEntryEditBase(RHMenuBase): normalize_url_spec = { 'locators': { lambda self: self.entry } } def _check_access(self): RHMenuBase._check_access(self) self._require_custom_menu() def _process_args(self): RHMenuBase._process_args(self) self.entry = MenuEntry.get_or_404(request.view_args['menu_entry_id']) class RHMenuEntryEdit(RHMenuEntryEditBase): def _process(self): defaults = FormDefaults(self.entry) if self.entry.is_user_link: form_cls = MenuLinkForm elif self.entry.is_page: form_cls = MenuPageForm defaults['html'] = self.entry.page.html else: form_cls = MenuBuiltinEntryForm defaults = FormDefaults(self.entry, skip_attrs={'title'}, title=self.entry.title or self.entry.default_data.title, custom_title=self.entry.title is not None) form = form_cls(entry=self.entry, obj=defaults) if form.validate_on_submit(): form.populate_obj(self.entry, skip={'html', 'custom_title'}) if self.entry.is_page: self.entry.page.html = form.html.data return jsonify_data(entry=_render_menu_entry(self.entry)) return jsonify_form(form) class RHMenuEntryPosition(RHMenuEntryEditBase): def _process(self): position = request.form.get('position') try: position = int(position) except (TypeError, ValueError): position = None parent_id = request.form.get('parent_id') try: parent_id = int(parent_id) except (TypeError, ValueError): parent_id = None if parent_id != self.entry.parent_id: if self.entry.type not in {MenuEntryType.user_link, MenuEntryType.page}: raise BadRequest('Menu entry "{0}" cannot be moved to another menu: Invalid type "{0.type.name}".' .format(self.entry)) if self.entry.is_root and self.entry.children: raise BadRequest('Menu entry "{0}" cannot be moved to another menu: Entry has nested entries.' .format(self.entry)) parent_entry = None if parent_id is not None: parent_entry = (MenuEntry.query.with_parent(self.event) .filter(MenuEntry.type.in_({MenuEntryType.user_link, MenuEntryType.page}), MenuEntry.id == parent_id, MenuEntry.parent_id.is_(None)) .first()) if not parent_entry: raise BadRequest('New parent entry not found for Menu entry "{0}".'.format(self.entry)) self.entry.insert(parent_entry, position) else: self.entry.move(position) return jsonify_data(flash=False) class RHMenuEntryToggleEnabled(RHMenuEntryEditBase): def _process(self): self.entry.is_enabled = not self.entry.is_enabled return jsonify(is_enabled=self.entry.is_enabled) class RHMenuEntryToggleDefault(RHMenuEntryEditBase): def _process(self): if self.entry.type != MenuEntryType.page: raise BadRequest if self.event.default_page == self.entry.page: is_default = False self.event.default_page = None else: is_default = True self.event.default_page = self.entry.page return jsonify(is_default=is_default) class RHMenuAddEntry(RHMenuBase): def _check_access(self): RHMenuBase._check_access(self) self._require_custom_menu() def _process(self): defaults = FormDefaults(get_default_values(MenuEntry)) entry_type = request.args['type'] if entry_type == MenuEntryType.separator.name: entry = MenuEntry(event=self.event, type=MenuEntryType.separator) db.session.add(entry) db.session.flush() return jsonify_data(flash=False, entry=_render_menu_entry(entry)) elif entry_type == MenuEntryType.user_link.name: form_cls = MenuLinkForm elif entry_type == MenuEntryType.page.name: form_cls = MenuPageForm else: raise BadRequest form = form_cls(obj=defaults) if form.validate_on_submit(): entry = MenuEntry(event=self.event, type=MenuEntryType[entry_type]) form.populate_obj(entry, skip={'html'}) if entry.is_page: page = EventPage(html=form.html.data) self.event.custom_pages.append(page) entry.page = page db.session.add(entry) db.session.flush() return jsonify_data(entry=_render_menu_entry(entry)) return jsonify_form(form) class RHMenuDeleteEntry(RHMenuEntryEditBase): def _process(self): if self.entry.type not in (MenuEntryType.user_link, MenuEntryType.page, MenuEntryType.separator): raise BadRequest('Menu entry of type {} cannot be deleted'.format(self.entry.type.name)) position_gen = count(self.entry.position) if self.entry.children: for child in self.entry.children: child.parent_id = self.entry.parent_id child.position = next(position_gen) with db.session.no_autoflush: entries = (MenuEntry.query.with_parent(self.event) .filter(MenuEntry.parent_id == self.entry.parent_id, MenuEntry.position >= self.entry.position, MenuEntry.id != self.entry.id) .order_by(MenuEntry.position) .all()) for entry in entries: entry.position = next(position_gen) db.session.delete(self.entry) db.session.flush() return jsonify_data(flash=False, menu=_render_menu_entries(self.event, connect_menu=True)) class RHPageDisplay(RHDisplayEventBase): normalize_url_spec = { 'locators': { lambda self: self.page } } def _process_args(self): RHDisplayEventBase._process_args(self) self.page = EventPage.get_or_404(request.view_args['page_id']) def _process(self): return WPPage.render_template('page.html', self.event, page=self.page)
the-stack_106_21381
#!/usr/bin/env python ################################################################################ # MIT License # # Copyright (c) 2021 Yoshifumi Asakura # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ################################################################################ ### to define functions to run on the ode ################ ### imports ################ import numpy as np import time import sys import os import shutil import pyper import math import pandas as pd ################ ### 2D comarinson ################ class Compare2D: def __init__(self, R_lag, R_part): self.r = pyper.R() comg = [ "library(tidyverse)", "library(gganimate)", "load('%s')" % R_lag, "load('%s')" % R_part, "df_p2$model <- 'particle'", "df_l2$model <- 'continuum'", "df <- rbind(df_l2, df_p2)", #"len_anim <- length(unique(df$time)) * 0.1" "numframes <- as.integer(length(unique(df$time)) / 2)" ] self.r("\n".join(comg)) print("2D comparison initialized") # # def draw(self, moviefile, lastframe = None): renderer = "ffmpeg_renderer()" comg = [ #"print(ls())", "g000 <- ggplot(df, aes(x, y)) + geom_path(", " aes(group = cell)", ") + theme_classic(", ") + coord_fixed(", " ratio = 1.0", ") + transition_manual(", " time_f", ") + labs(", " title = 'time: {current_frame}'", ")", "anim_save(", " filename = '%s'," % moviefile, " animation = g000,", " renderer = %s," % renderer, #" duration = len_anim,", " nframes = numframes,", " fps = 20,", " width = 160, height = 160, unit = 'mm', res = 360", ")" ] print("start rendering...") # #print(self.r("\n".join(comg))) self.r("\n".join(comg)) # if os.path.exists(moviefile): print("saved %s" % moviefile) else: print("failed %s" % moviefile) # if not lastframe is None: comg = [ "g000 <- ggplot(subset(df, time == max(df$time)), aes(x, y)) + geom_path(", " aes(group = cell)", ") + theme_classic(", ") + coord_fixed(", " ratio = 1.0", ") + labs(", " title = 'difference between two models'", ")", "ggsave(plot = g000, file = '%s', width = 160, height = 160, unit = 'mm')" % lastframe ] self.r("\n".join(comg)) # ################ ### ################ ################ ### ################ ################ ### ################ ###
the-stack_106_21383
# -*- coding: utf-8 -*- # Copyright 2014 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Unittests for the process_util.py module.""" from __future__ import print_function import os import signal from chromite.lib import cros_test_lib from chromite.lib import process_util def _SpawnChild(exit_code=None, kill_signal=None): """Create a child, have it exit/killed, and return its status.""" assert exit_code is not None or kill_signal is not None pid = os.fork() if pid == 0: # Make sure this child never returns. while True: if exit_code is not None: # pylint: disable=W0212 os._exit(exit_code) else: os.kill(os.getpid(), kill_signal) return os.waitpid(pid, 0)[1] class GetExitStatusTests(cros_test_lib.TestCase): """Tests for GetExitStatus()""" def testExitNormal(self): """Verify normal exits get decoded.""" status = _SpawnChild(exit_code=0) ret = process_util.GetExitStatus(status) self.assertEqual(ret, 0) def testExitError(self): """Verify error exits (>0 && <128) get decoded.""" status = _SpawnChild(exit_code=10) ret = process_util.GetExitStatus(status) self.assertEqual(ret, 10) def testExitWeird(self): """Verify weird exits (>=128) get decoded.""" status = _SpawnChild(exit_code=150) ret = process_util.GetExitStatus(status) self.assertEqual(ret, 150) def testSIGUSR1(self): """Verify normal kill signals get decoded.""" status = _SpawnChild(kill_signal=signal.SIGUSR1) ret = process_util.GetExitStatus(status) self.assertEqual(ret, 128 + signal.SIGUSR1) def testSIGKILL(self): """Verify harsh signals get decoded.""" status = _SpawnChild(kill_signal=signal.SIGKILL) ret = process_util.GetExitStatus(status) self.assertEqual(ret, 128 + signal.SIGKILL) class ExitAsStatusTests(cros_test_lib.TestCase): """Tests for ExitAsStatus()""" def _Tester(self, exit_code=None, kill_signal=None): """Helper func for testing ExitAsStatus() Create a child to mimic the grandchild. Create a grandchild and have it exit/killed. Assert behavior based on exit/signal behavior. """ pid = os.fork() if pid == 0: # Let the grandchild exit/kill itself. # The child should mimic the grandchild. status = _SpawnChild(exit_code=exit_code, kill_signal=kill_signal) try: process_util.ExitAsStatus(status) except SystemExit as e: # pylint: disable=W0212 os._exit(e.code) raise AssertionError('ERROR: should have exited!') # The parent returns the child's status. status = os.waitpid(pid, 0)[1] if exit_code is not None: self.assertFalse(os.WIFSIGNALED(status)) self.assertTrue(os.WIFEXITED(status)) self.assertEqual(os.WEXITSTATUS(status), exit_code) else: self.assertFalse(os.WIFEXITED(status)) self.assertTrue(os.WIFSIGNALED(status)) self.assertEqual(os.WTERMSIG(status), kill_signal) def testExitNormal(self): """Verify normal exits get decoded.""" self._Tester(exit_code=0) def testExitError(self): """Verify error exits (>0 && <128) get decoded.""" self._Tester(exit_code=10) def testExitWeird(self): """Verify weird exits (>=128) get decoded.""" self._Tester(exit_code=150) def testSIGUSR1(self): """Verify normal kill signals get decoded.""" self._Tester(kill_signal=signal.SIGUSR1) def testSIGKILL(self): """Verify harsh signals get decoded.""" self._Tester(kill_signal=signal.SIGKILL)
the-stack_106_21385
from pathlib import Path import os import sys import click from ploomber.spec import DAGSpec from ploomber import __version__ from ploomber import cli as cli_module from ploomber import scaffold as _scaffold from ploomber_scaffold import scaffold as scaffold_project from ploomber.telemetry import telemetry @click.group() @click.version_option(version=__version__) def cli(): """Ploomber command line interface. """ pass # pragma: no cover @cli.command() @click.option( '--conda', is_flag=True, help='Use conda (environemnt.yml)', ) @click.option( '--package', is_flag=True, help='Use package template (setup.py)', ) @click.option( '--empty', is_flag=True, help='Create a sample pipeline.yaml with no tasks', ) @click.option( '--entry-point', '-e', default=None, help='Entry point to add tasks. Invalid if other flags present', ) def scaffold(conda, package, entry_point, empty): """Create new projects (if no pipeline.yaml exists) or add missings tasks """ template = '-e/--entry-point is not compatible with the {flag} flag' if entry_point and conda: err = template.format(flag='--conda') telemetry.log_api("scaffold_error", metadata={ 'type': 'entry_and_conda_flag', 'exception': err, 'argv': sys.argv }) raise click.ClickException(err) if entry_point and package: err = template.format(flag='--package') telemetry.log_api("scaffold_error", metadata={ 'type': 'entry_and_package_flag', 'exception': err, 'argv': sys.argv }) raise click.ClickException(err) if entry_point and empty: err = template.format(flag='--empty') telemetry.log_api("scaffold_error", metadata={ 'type': 'entry_and_empty_flag', 'exception': err, 'argv': sys.argv }) raise click.ClickException(err) # try to load a dag by looking in default places if entry_point is None: loaded = _scaffold.load_dag() else: try: loaded = ( DAGSpec(entry_point, lazy_import='skip'), Path(entry_point).parent, Path(entry_point), ) except Exception as e: telemetry.log_api("scaffold_error", metadata={ 'type': 'dag_load_failed', 'exception': e, 'argv': sys.argv }) raise click.ClickException(e) from e if loaded: # existing pipeline, add tasks spec, _, path_to_spec = loaded _scaffold.add(spec, path_to_spec) telemetry.log_api("ploomber_scaffold", dag=loaded, metadata={ 'type': 'add_task', 'argv': sys.argv }) else: # no pipeline, create base project telemetry.log_api("ploomber_scaffold", metadata={ 'type': 'base_project', 'argv': sys.argv }) scaffold_project.cli(project_path=None, conda=conda, package=package, empty=empty) @cli.command() @click.option('-l', '--use-lock', help='Use lock files', default=False, is_flag=True) def install(use_lock): """Install dependencies and package """ cli_module.install.main(use_lock=use_lock) @cli.command() @click.option('-n', '--name', help='Example to download', default=None) @click.option('-f', '--force', help='Force examples download', is_flag=True) @click.option('-o', '--output', help='Target directory', default=None) @click.option('-b', '--branch', help='Git branch to use.', default=None) def examples(name, force, branch, output): """Get sample projects. Run "ploomber examples" to list them """ try: cli_module.examples.main(name=name, force=force, branch=branch, output=output) except click.ClickException: raise except Exception as e: telemetry.log_api("examples_error", metadata={ 'type': 'runtime_error', 'exception': e, 'argv': sys.argv }) raise RuntimeError( 'An error happened when executing the examples command. Check out ' 'the full error message for details. Downloading the examples ' 'again or upgrading Ploomber may fix the ' 'issue.\nDownload: ploomber examples -f\n' 'Update: pip install ploomber -U\n' 'Update [conda]: conda update ploomber -c conda-forge') from e def _exit_with_error_message(msg): click.echo(msg, err=True) sys.exit(2) def cmd_router(): cmd_name = None if len(sys.argv) < 2 else sys.argv[1] custom = { 'build': cli_module.build.main, 'plot': cli_module.plot.main, 'task': cli_module.task.main, 'report': cli_module.report.main, 'interact': cli_module.interact.main, 'status': cli_module.status.main, 'nb': cli_module.nb.main, } # users may attempt to run execute/run, suggest to use build instead # users may make typos when running one of the commands # suggest correct spelling on obvious typos alias = { 'execute': 'build', 'run': 'build', 'bulid': 'build', 'buld': 'build', 'bild': 'build', 'uild': 'build', 'buil': 'build', 'example': 'examples', 'exemples': 'examples', 'exmples': 'examples', 'exampes': 'examples', 'tsk': 'task', 'tas': 'task', 'rport': 'report', 'reprt': 'report', 'repor': 'report', 'stat': 'status', 'stats': 'status', 'satus': 'status', 'inteact': 'interact', 'interat': 'interact' } if cmd_name in custom: # NOTE: we don't use the argument here, it is parsed by _main # pop the second element ('entry') to make the CLI behave as expected sys.argv.pop(1) # Add the current working directory, this is done automatically when # calling "python -m ploomber.build" but not here ("ploomber build") sys.path.insert(0, os.path.abspath('.')) fn = custom[cmd_name] fn() elif cmd_name in alias: suggestion = alias[cmd_name] telemetry.log_api("unsupported_build_cmd", metadata={ 'cmd_name': cmd_name, 'suggestion': suggestion, 'argv': sys.argv }) _exit_with_error_message("Try 'ploomber --help' for help.\n\n" f"Error: {cmd_name!r} is not a valid command." f" Did you mean {suggestion!r}?") else: if cmd_name not in ['examples', 'scaffold', 'install']: telemetry.log_api("unsupported-api-call", metadata={'argv': sys.argv}) cli() # the commands below are handled by the router, # those are a place holder to show up in ploomber --help @cli.command() def build(): """Build pipeline """ pass # pragma: no cover @cli.command() def status(): """Show pipeline status """ pass # pragma: no cover @cli.command() def plot(): """Plot pipeline """ pass # pragma: no cover @cli.command() def task(): """Interact with specific tasks """ pass # pragma: no cover @cli.command() def report(): """Make a pipeline report """ pass # pragma: no cover @cli.command() def interact(): """Start an interactive session (use the "dag" variable) """ pass # pragma: no cover @cli.command() def nb(): """Manage scripts and notebooks """ pass # pragma: no cover
the-stack_106_21386
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import logging import socket import time import traceback from telemetry import decorators from telemetry.internal.backends.chrome_inspector import inspector_websocket from telemetry.internal.backends.chrome_inspector import websocket from tracing.trace_data import trace_data as trace_data_module class TracingUnsupportedException(Exception): pass class TracingTimeoutException(Exception): pass class TracingUnrecoverableException(Exception): pass class TracingHasNotRunException(Exception): pass class TracingUnexpectedResponseException(Exception): pass class ClockSyncResponseException(Exception): pass class _DevToolsStreamReader(object): def __init__(self, inspector_socket, stream_handle): self._inspector_websocket = inspector_socket self._handle = stream_handle self._trace_file_handle = None self._callback = None def Read(self, callback): # Do not allow the instance of this class to be reused, as # we only read data sequentially at the moment, so a stream # can only be read once. assert not self._callback self._trace_file_handle = trace_data_module.TraceFileHandle() self._trace_file_handle.Open() self._callback = callback self._ReadChunkFromStream() # The below is not a typo -- queue one extra read ahead to avoid latency. self._ReadChunkFromStream() def _ReadChunkFromStream(self): # Limit max block size to avoid fragmenting memory in sock.recv(), # (see https://github.com/liris/websocket-client/issues/163 for details) req = {'method': 'IO.read', 'params': { 'handle': self._handle, 'size': 32768}} self._inspector_websocket.AsyncRequest(req, self._GotChunkFromStream) def _GotChunkFromStream(self, response): # Quietly discard responses from reads queued ahead after EOF. if self._trace_file_handle is None: return if 'error' in response: raise TracingUnrecoverableException( 'Reading trace failed: %s' % response['error']['message']) result = response['result'] # Convert the trace data that's receive as UTF32 to its native encoding of # UTF8 in order to reduce its size. self._trace_file_handle.AppendTraceData(result['data'].encode('utf8')) if not result.get('eof', False): self._ReadChunkFromStream() return req = {'method': 'IO.close', 'params': {'handle': self._handle}} self._inspector_websocket.SendAndIgnoreResponse(req) self._trace_file_handle.Close() self._callback(self._trace_file_handle) self._trace_file_handle = None class TracingBackend(object): _TRACING_DOMAIN = 'Tracing' def __init__(self, inspector_socket, is_tracing_running=False, support_modern_devtools_tracing_start_api=False): self._inspector_websocket = inspector_socket self._inspector_websocket.RegisterDomain( self._TRACING_DOMAIN, self._NotificationHandler) self._is_tracing_running = is_tracing_running self._start_issued = False self._can_collect_data = False self._has_received_all_tracing_data = False # pylint: disable=invalid-name self._support_modern_devtools_tracing_start_api = ( support_modern_devtools_tracing_start_api) self._trace_data_builder = None @property def is_tracing_running(self): return self._is_tracing_running def StartTracing(self, chrome_trace_config, timeout=10): """When first called, starts tracing, and returns True. If called during tracing, tracing is unchanged, and it returns False. """ if self.is_tracing_running: return False assert not self._can_collect_data, 'Data not collected from last trace.' # Reset collected tracing data from previous tracing calls. if not self.IsTracingSupported(): raise TracingUnsupportedException( 'Chrome tracing not supported for this app.') params = {'transferMode': 'ReturnAsStream'} if self._support_modern_devtools_tracing_start_api: params['traceConfig'] = ( chrome_trace_config.GetChromeTraceConfigForDevTools()) else: if chrome_trace_config.requires_modern_devtools_tracing_start_api: raise TracingUnsupportedException( 'Trace options require modern Tracing.start DevTools API, ' 'which is NOT supported by the browser') params['categories'], params['options'] = ( chrome_trace_config.GetChromeTraceCategoriesAndOptionsForDevTools()) req = {'method': 'Tracing.start', 'params': params} logging.info('Start Tracing Request: %r', req) response = self._inspector_websocket.SyncRequest(req, timeout) if 'error' in response: raise TracingUnexpectedResponseException( 'Inspector returned unexpected response for ' 'Tracing.start:\n' + json.dumps(response, indent=2)) self._is_tracing_running = True self._start_issued = True return True def RecordClockSyncMarker(self, sync_id): assert self.is_tracing_running, 'Tracing must be running to clock sync.' req = { 'method': 'Tracing.recordClockSyncMarker', 'params': { 'syncId': sync_id } } rc = self._inspector_websocket.SyncRequest(req, timeout=2) if 'error' in rc: raise ClockSyncResponseException(rc['error']['message']) def StopTracing(self): """Stops tracing and pushes results to the supplied TraceDataBuilder. If this is called after tracing has been stopped, trace data from the last tracing run is pushed. """ if not self.is_tracing_running: raise TracingHasNotRunException() else: if not self._start_issued: # Tracing is running but start was not issued so, startup tracing must # be in effect. Issue another Tracing.start to update the transfer mode. # TODO(caseq): get rid of it when streaming is the default. params = {'transferMode': 'ReturnAsStream', 'traceConfig': {}} req = {'method': 'Tracing.start', 'params': params} self._inspector_websocket.SendAndIgnoreResponse(req) req = {'method': 'Tracing.end'} self._inspector_websocket.SendAndIgnoreResponse(req) self._is_tracing_running = False self._start_issued = False self._can_collect_data = True def DumpMemory(self, timeout=None): """Dumps memory. Args: timeout: If not specified defaults to 20 minutes. Returns: GUID of the generated dump if successful, None otherwise. Raises: TracingTimeoutException: If more than |timeout| seconds has passed since the last time any data is received. TracingUnrecoverableException: If there is a websocket error. TracingUnexpectedResponseException: If the response contains an error or does not contain the expected result. """ request = {'method': 'Tracing.requestMemoryDump'} if timeout is None: timeout = 1200 # 20 minutes. try: response = self._inspector_websocket.SyncRequest(request, timeout) except inspector_websocket.WebSocketException as err: if issubclass( err.websocket_error_type, websocket.WebSocketTimeoutException): raise TracingTimeoutException( 'Exception raised while sending a Tracing.requestMemoryDump ' 'request:\n' + traceback.format_exc()) else: raise TracingUnrecoverableException( 'Exception raised while sending a Tracing.requestMemoryDump ' 'request:\n' + traceback.format_exc()) except (socket.error, inspector_websocket.WebSocketDisconnected): raise TracingUnrecoverableException( 'Exception raised while sending a Tracing.requestMemoryDump ' 'request:\n' + traceback.format_exc()) if ('error' in response or 'result' not in response or 'success' not in response['result'] or 'dumpGuid' not in response['result']): raise TracingUnexpectedResponseException( 'Inspector returned unexpected response for ' 'Tracing.requestMemoryDump:\n' + json.dumps(response, indent=2)) result = response['result'] return result['dumpGuid'] if result['success'] else None def CollectTraceData(self, trace_data_builder, timeout=60): if not self._can_collect_data: raise Exception('Cannot collect before tracing is finished.') self._CollectTracingData(trace_data_builder, timeout) self._can_collect_data = False def _CollectTracingData(self, trace_data_builder, timeout): """Collects tracing data. Assumes that Tracing.end has already been sent. Args: trace_data_builder: An instance of TraceDataBuilder to put results into. timeout: The timeout in seconds. Raises: TracingTimeoutException: If more than |timeout| seconds has passed since the last time any data is received. TracingUnrecoverableException: If there is a websocket error. """ self._has_received_all_tracing_data = False start_time = time.time() self._trace_data_builder = trace_data_builder try: while True: try: self._inspector_websocket.DispatchNotifications(timeout) start_time = time.time() except inspector_websocket.WebSocketException as err: if not issubclass( err.websocket_error_type, websocket.WebSocketTimeoutException): raise TracingUnrecoverableException( 'Exception raised while collecting tracing data:\n' + traceback.format_exc()) except socket.error: raise TracingUnrecoverableException( 'Exception raised while collecting tracing data:\n' + traceback.format_exc()) if self._has_received_all_tracing_data: break elapsed_time = time.time() - start_time if elapsed_time > timeout: raise TracingTimeoutException( 'Only received partial trace data due to timeout after %s ' 'seconds. If the trace data is big, you may want to increase ' 'the timeout amount.' % elapsed_time) finally: self._trace_data_builder = None def _NotificationHandler(self, res): if res.get('method') == 'Tracing.dataCollected': value = res.get('params', {}).get('value') self._trace_data_builder.AddTraceFor(trace_data_module.CHROME_TRACE_PART, value) elif res.get('method') == 'Tracing.tracingComplete': stream_handle = res.get('params', {}).get('stream') if not stream_handle: self._has_received_all_tracing_data = True return reader = _DevToolsStreamReader(self._inspector_websocket, stream_handle) reader.Read(self._ReceivedAllTraceDataFromStream) def _ReceivedAllTraceDataFromStream(self, trace_handle): self._trace_data_builder.AddTraceFor( trace_data_module.CHROME_TRACE_PART, trace_handle) self._has_received_all_tracing_data = True def Close(self): self._inspector_websocket.UnregisterDomain(self._TRACING_DOMAIN) self._inspector_websocket = None @decorators.Cache def IsTracingSupported(self): req = {'method': 'Tracing.hasCompleted'} res = self._inspector_websocket.SyncRequest(req, timeout=10) return not res.get('response')
the-stack_106_21387
#!/usr/bin/env python # coding: utf-8 # # [Memanggil Library Pandas](https://academy.dqlab.id/main/livecode/178/346/1682) # In[1]: import pandas as pd import numpy as np # # [DataFrame & Series](https://academy.dqlab.id/main/livecode/178/346/1683) # In[2]: import pandas as pd # Series number_list = pd.Series([1, 2, 3, 4, 5, 6]) print("Series:") print(number_list) # DataFrame matrix = [[1, 2, 3], ['a','b','c'], [3, 4, 5], ['d',4,6]] matrix_list = pd.DataFrame(matrix) print("DataFrame:") print(matrix_list) # # [Atribut DataFrame & Series - Part 1](https://academy.dqlab.id/main/livecode/178/346/1684) # In[3]: import pandas as pd # Series number_list = pd.Series([1,2,3,4,5,6]) # DataFrame matrix_list = pd.DataFrame([[1,2,3], ['a','b','c'], [3,4,5], ['d',4,6]]) # [1] attribute .info() print("[1] attribute .info()") print(matrix_list.info()) # [2] attribute .shape print("\n[2] attribute .shape") print(" Shape dari number_list:", number_list.shape) print(" Shape dari matrix_list:", matrix_list.shape) # [3] attribute .dtypes print("\n[3] attribute .dtypes") print(" Tipe data number_list:", number_list.dtypes) print(" Tipe data matrix_list:", matrix_list.dtypes) # [4] attribute .astype() print("\n[4] attribute .astype()") print(" Konversi number_list ke str:", number_list.astype("str")) print(" Konversi matrix_list ke str:", matrix_list.astype("str")) # # [Atribut DataFrame & Series - Part 2](https://academy.dqlab.id/main/livecode/178/346/1685) # In[4]: import pandas as pd # Series number_list = pd.Series([1,2,3,4,5,6]) # DataFrame matrix_list = pd.DataFrame([[1,2,3], ['a','b','c'], [3,4,5], ['d',4,6]]) # [5] attribute .copy() print("[5] attribute .copy()") num_list = number_list.copy() print(" Copy number_list ke num_list:", num_list) mtr_list = matrix_list.copy() print(" Copy matrix_list ke mtr_list:", mtr_list) # [6] attribute .to_list() print("[6] attribute .to_list()") print(number_list.to_list()) # [7] attribute .unique() print("[7] attribute .unique()") print(number_list.unique()) # # [Atribut DataFrame & Series - Part 3](https://academy.dqlab.id/main/livecode/178/346/1686) # In[5]: import pandas as pd # Series number_list = pd.Series([1,2,3,4,5,6]) # DataFrame matrix_list = pd.DataFrame([[1,2,3], ['a','b','c'], [3,4,5], ['d',4,6]]) # [8] attribute .index print("[8] attribute .index") print(" Index number_list:", number_list.index) print(" Index matrix_list:", matrix_list.index) # [9] attribute .columns print("[9] attribute .columns") print(" Column matrix_list:", matrix_list.columns) # [10] attribute .loc print("[10] attribute .loc") print(" .loc[0:1] pada number_list:", number_list.loc[0:1]) print(" .loc[0:1] pada matrix_list:", matrix_list.loc[0:1]) # [11] attribute .iloc print("[11] attribute .iloc") print(" iloc[0:1] pada number_list:", number_list.iloc[0:1]) print(" iloc[0:1] pada matrix_list:", matrix_list.iloc[0:1]) # # [Creating Series & Dataframe from List](https://academy.dqlab.id/main/livecode/178/346/1688) # In[6]: import pandas as pd # Creating series from list ex_list = ['a',1,3,5,'c','d'] ex_series = pd.Series(ex_list) print(ex_series) # Creating dataframe from list of list ex_list_of_list = [[1, 'a', 'b', 'c'], [2.5, 'd', 'e', 'f'], [5, 'g', 'h', 'i'], [7.5, 'j', 10.5, 'l']] index = ['dq', 'lab', 'kar', 'lan'] cols = ['float', 'char', 'obj', 'char'] ex_df = pd.DataFrame(ex_list_of_list, index=index, columns=cols) print(ex_df) # # [Creating Series & Dataframe from Dictionary](https://academy.dqlab.id/main/livecode/178/346/1689) # In[7]: import pandas as pd # Creating series from dictionary dict_series = {'1':'a', '2':'b', '3':'c'} ex_series = pd.Series(dict_series) print(ex_series) # Creating dataframe from dictionary df_series = {'1':['a','b','c'], '2':['b','c','d'], '4':[2,3,'z']} ex_df = pd.DataFrame(df_series) print(ex_df) # # [Creating Series & Dataframe from Numpy Array](https://academy.dqlab.id/main/livecode/178/346/1690) # In[9]: # import pandas as pd import numpy as np # Creating series from numpy array (1D) arr_series = np.array([1,2,3,4,5,6,6,7]) ex_series = pd.Series(arr_series) print(ex_series) # Creating dataframe from numpy array (2D) arr_df = np.array([[1, 2, 3, 5], [5, 6, 7, 8], ['a','b','c',10]]) ex_df = pd.DataFrame(arr_df) print(ex_df) # # [Read Dataset - CSV dan TSV](https://academy.dqlab.id/main/livecode/178/347/1694) # In[10]: import pandas as pd # File CSV df_csv = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_csv.csv") print(df_csv.head(3)) # Menampilkan 3 data teratas # File TSV df_tsv = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_tsv.tsv", sep='\t') print(df_tsv.head(3)) # Menampilkan 3 data teratas # # [Read Dataset - Excel](https://academy.dqlab.id/main/livecode/178/347/1695) # In[11]: import pandas as pd # File xlsx dengan data di sheet "test" df_excel = pd.read_excel("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_excel.xlsx", sheet_name="test") print(df_excel.head(4)) # Menampilkan 4 data teratas # # [Read Dataset - JSON](https://academy.dqlab.id/main/livecode/178/347/1698) # In[13]: import pandas as pd # File JSON url = "https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/covid2019-api-herokuapp-v2.json" df_json = pd.read_json(url) print(df_json.head(10)) # Menampilkan 10 data teratas # # [Head & Tail](https://academy.dqlab.id/main/livecode/178/347/2143) # In[14]: import pandas as pd # Baca file sample_csv.csv df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_csv.csv") # Tampilkan 3 data teratas print("Tiga data teratas:\n", df.head(3)) # Tampilkan 3 data terbawah print("Tiga data terbawah:\n", df.tail(3)) # # [Indexing - Part 2](https://academy.dqlab.id/main/livecode/178/429/2133) # In[15]: import pandas as pd # Baca file TSV sample_tsv.tsv df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_tsv.tsv", sep="\t") # Index dari df print("Index:", df.index) # Column dari df print("Columns:", df.columns) # # [Indexing - Part 3](https://academy.dqlab.id/main/livecode/178/429/2134) # In[16]: import pandas as pd # Baca file TSV sample_tsv.tsv df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_tsv.tsv", sep="\t") # Set multi index df df_x = df.set_index(['order_date', 'city', 'customer_id']) # Print nama dan level dari multi index for name, level in zip(df_x.index.names, df_x.index.levels): print(name,':',level) # # [Indexing - Part 4](https://academy.dqlab.id/main/livecode/178/429/2135) # In[17]: import pandas as pd # Baca file sample_tsv.tsv untuk 10 baris pertama saja df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_tsv.tsv", sep="\t", nrows=10) # Cetak data frame awal print("Dataframe awal:\n", df) # Set index baru df.index = ["Pesanan ke-" + str(i) for i in range(1, 11)] # Cetak data frame dengan index baru print("Dataframe dengan index baru:\n", df) # # [Indexing - Part 5](https://academy.dqlab.id/main/livecode/178/429/2138) # In[18]: import pandas as pd # Baca file sample_tsv.tsv dan set lah index_col sesuai instruksi df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_tsv.tsv", sep="\t", index_col=["order_date","order_id"]) # Cetak data frame untuk 8 data teratas print("Dataframe:\n", df.head(8)) # # [Slicing - Part 1](https://academy.dqlab.id/main/livecode/178/429/2136) # In[19]: import pandas as pd # Baca file sample_csv.csv df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_csv.csv") # Slice langsung berdasarkan kolom df_slice = df.loc[(df["customer_id"] == "18055") & (df["product_id"].isin(["P0029","P0040","P0041","P0116","P0117"]))] print("Slice langsung berdasarkan kolom:\n", df_slice) # # [Slicing - Part 2](https://academy.dqlab.id/main/livecode/178/429/2139) # In[20]: import pandas as pd # Baca file sample_csv.csv df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_csv.csv") # Set index dari df sesuai instruksi df = df.set_index(["order_date","order_id","product_id"]) # Slice sesuai intruksi df_slice = df.loc[("2019-01-01",1612339,["P2154","P2159"]),:] print("Slice df:\n", df_slice) # # [Transforming - Part 1](https://academy.dqlab.id/main/livecode/178/429/2142) # In[21]: import pandas as pd # Baca file sample_csv.csv df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_csv.csv") # Tampilkan tipe data print("Tipe data df:\n", df.dtypes) # Ubah tipe data kolom order_date menjadi datetime df["order_date"] = pd.to_datetime(df["order_date"]) # Tampilkan tipe data df setelah transformasi print("\nTipe data df setelah transformasi:\n", df.dtypes) # # [Transforming - Part 2](https://academy.dqlab.id/main/livecode/178/429/2144) # In[22]: import pandas as pd # Baca file sample_csv.csv df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_csv.csv") # Tampilkan tipe data print("Tipe data df:\n", df.dtypes) # Ubah tipe data kolom quantity menjadi tipe data numerik float df["quantity"] = pd.to_numeric(df["quantity"], downcast="float") # Ubah tipe data kolom city menjadi tipe data category df["city"] = df["city"].astype("category") # Tampilkan tipe data df setelah transformasi print("\nTipe data df setelah transformasi:\n", df.dtypes) # # [Transforming - Part 3](https://academy.dqlab.id/main/livecode/178/429/2145) # In[23]: import pandas as pd # Baca file sample_csv.csv df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/sample_csv.csv") # Cetak 5 baris teratas kolom brand print("Kolom brand awal:\n", df["brand"].head()) # Gunakan method apply untuk merubah isi kolom menjadi lower case df["brand"] = df["brand"].apply(lambda x: x.lower()) # Cetak 5 baris teratas kolom brand print("Kolom brand setelah apply:\n", df["brand"].head()) # Gunakan method map untuk mengambil kode brand yaitu karakter terakhirnya df["brand"] = df["brand"].map(lambda x: x[-1]) # Cetak 5 baris teratas kolom brand print("Kolom brand setelah map:\n", df["brand"].head()) # # [Transforming - Part 4](https://academy.dqlab.id/main/livecode/178/429/2146) # In[24]: import numpy as np import pandas as pd # number generator, set angka seed menjadi suatu angka, bisa semua angka, supaya hasil random nya selalu sama ketika kita run np.random.seed(1234) # create dataframe 3 baris dan 4 kolom dengan angka random df_tr = pd.DataFrame(np.random.rand(3,4)) # Cetak dataframe print("Dataframe:\n", df_tr) # Cara 1 dengan tanpa define function awalnya, langsung pake fungsi anonymous lambda x df_tr1 = df_tr.applymap(lambda x: x**2 + 3*x + 2) print("\nDataframe - cara 1:\n", df_tr1) # Cara 2 dengan define function def qudratic_fun(x): return x**2 + 3*x + 2 df_tr2 = df_tr.applymap(qudratic_fun) print("\nDataframe - cara 2:\n", df_tr2) # # [Inspeksi Missing Value](https://academy.dqlab.id/main/livecode/178/430/2148) # In[25]: import pandas as pd # Baca file "public data covid19 jhu csse eu.csv" df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/CHAPTER+4+-+missing+value+-+public+data+covid19+.csv") # Cetak info dari df print(df.info()) # Cetak jumlah missing value di setiap kolom mv = df.isna().sum() print("\nJumlah missing value per kolom:\n", mv) # # [Treatment untuk Missing Value - Part 2](https://academy.dqlab.id/main/livecode/178/430/2150) # In[26]: import pandas as pd # Baca file "public data covid19 jhu csse eu.csv" df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/CHAPTER+4+-+missing+value+-+public+data+covid19+.csv") # Cetak ukuran awal dataframe print("Ukuran awal df: %d baris, %d kolom." % df.shape) # Drop kolom yang seluruhnya missing value dan cetak ukurannya df = df.dropna(axis=1, how="all") print("Ukuran df setelah buang kolom dengan seluruh data missing: %d baris, %d kolom." % df.shape) # Drop baris jika ada satu saja data yang missing dan cetak ukurannya df = df.dropna(axis=0, how="any") print("Ukuran df setelah dibuang baris yang memiliki sekurangnya 1 missing value: %d baris, %d kolom." % df.shape) # # [Treatment untuk Missing Value - Part 3](https://academy.dqlab.id/main/livecode/178/430/2152) # In[27]: import pandas as pd # Baca file "public data covid19 jhu csse eu.csv" df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/CHAPTER+4+-+missing+value+-+public+data+covid19+.csv") # Cetak unique value pada kolom province_state print("Unique value awal:\n", df["province_state"].unique()) # Ganti missing value dengan string "unknown_province_state" df["province_state"] = df["province_state"].fillna("unknown_province_state") # Cetak kembali unique value pada kolom province_state print("Unique value setelah fillna:\n", df["province_state"].unique()) # # [Treatment untuk Missing Value - Part 4](https://academy.dqlab.id/main/livecode/178/430/2151) # In[28]: import pandas as pd # Baca file "https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/CHAPTER+4+-+missing+value+-+public+data+covid19+.csv" df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/CHAPTER+4+-+missing+value+-+public+data+covid19+.csv") # Cetak nilai mean dan median awal print("Awal: mean = %f, median = %f." % (df["active"].mean(), df["active"].median())) # Isi missing value kolom active dengan median df_median = df["active"].fillna(df["active"].median()) # Cetak nilai mean dan median awal setelah diisi dengan median print("Fillna median: mean = %f, median = %f." % (df_median.mean(), df_median.median())) # Isi missing value kolom active dengan mean df_mean = df["active"].fillna(df["active"].mean()) # Cetak nilai mean dan median awal setelah diisi dengan mean print("Fillna mean: mean = %f, median = %f." % (df_mean.mean(), df_mean.median())) # # [Treatment untuk Missing Value - Part 5](https://academy.dqlab.id/main/livecode/178/430/2155) # In[29]: import numpy as np import pandas as pd # Data ts = pd.Series({ "2020-01-01":9, "2020-01-02":np.nan, "2020-01-05":np.nan, "2020-01-07":24, "2020-01-10":np.nan, "2020-01-12":np.nan, "2020-01-15":33, "2020-01-17":np.nan, "2020-01-16":40, "2020-01-20":45, "2020-01-22":52, "2020-01-25":75, "2020-01-28":np.nan, "2020-01-30":np.nan }) # Isi missing value menggunakan interpolasi linier ts = ts.interpolate() # Cetak time series setelah interpolasi linier print("Setelah diisi missing valuenya:\n", ts) # # [Project dari Andra](https://academy.dqlab.id/main/livecode/178/431/2156) # In[30]: import pandas as pd # 1. Baca dataset print("[1] BACA DATASET") df = pd.read_csv("https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/retail_raw_test.csv", low_memory=False) print(" Dataset:\n", df.head()) print(" Info:\n", df.info()) # 2. Ubah tipe data print("\n[2] UBAH TIPE DATA") df["customer_id"] = df["customer_id"].apply(lambda x: x.split("'")[1]).astype("int64") df["quantity"] = df["quantity"].apply(lambda x: x.split("'")[1]).astype("int64") df["item_price"] = df["item_price"].apply(lambda x: x.split("'")[1]).astype("int64") print(" Tipe data:\n", df.dtypes) # 3. Transform "product_value" supaya bentuknya seragam dengan format "PXXXX", assign ke kolom baru "product_id", dan drop kolom "product_value", jika terdapat nan gantilah dengan "unknown" print("\n[3] TRANSFORM product_value MENJADI product_id") # Buat fungsi import math def impute_product_value(val): if math.isnan(val): return "unknown" else: return 'P' + '{:0>4}'.format(str(val).split('.')[0]) # Buat kolom "product_id" df["product_id"] = df["product_value"].apply(lambda x: impute_product_value(x)) # Hapus kolom "product_value" df.drop(["product_value"], axis=1, inplace=True) # Cetak 5 data teratas print(df.head()) # 4. Tranform order_date menjadi value dengan format "YYYY-mm-dd" print("\n[4] TRANSFORM order_date MENJADI FORMAT YYYY-mm-dd") months_dict = { "Jan":"01", "Feb":"02", "Mar":"03", "Apr":"04", "May":"05", "Jun":"06", "Jul":"07", "Aug":"08", "Sep":"09", "Oct":"10", "Nov":"11", "Dec":"12" } df["order_date"] = pd.to_datetime(df["order_date"].apply(lambda x: str(x)[-4:] + "-" + months_dict[str(x)[:3]] + "-" + str(x)[4:7])) print(" Tipe data:\n", df.dtypes) # 5. Mengatasi data yang hilang di beberapa kolom print("\n[5] HANDLING MISSING VALUE") # Kolom "city" dan "province" masih memiliki missing value, nilai yang hilang di kedua kolom ini diisi saja dengan "unknown" df[["city","province"]] = df[["city","province"]].fillna("unknown") # Kolom brand juga masih memiliki missing value, Ganti value NaN menjadi "no_brand" df["brand"] = df["brand"].fillna("no_brand") # Cek apakah masih terdapat missing value di seluruh kolom print(" Info:\n", df.info()) # 6. Membuat kolom baru "city/province" dengan menggabungkan kolom "city" dan kolom "province" dan delete kolom asalnya print("\n[6] MEMBUAT KOLOM BARU city/province") df["city/province"] = df["city"] + "/" + df["province"] # drop kolom "city" dan "province" karena telah digabungkan df.drop(["city","province"], axis=1, inplace=True) # Cetak 5 data teratas print(df.head()) # 7. Membuat hierarchical index yang terdiri dari kolom "city/province", "order_date", "customer_id", "order_id", "product_id" print("\n[7] MEMBUAT HIERACHICAL INDEX") df = df.set_index(["city/province","order_date","customer_id","order_id","product_id"]) # urutkanlah berdasarkan index yang baru df = df.sort_index() # Cetak 5 data teratas print(df.head()) # 8. Membuat kolom "total_price" yang formula nya perkalian antara kolom "quantity" dan kolom "item_price" print("\n[8] MEMBUAT KOLOM total_price") df["total_price"] = df["quantity"] * df["item_price"] # Cetak 5 data teratas print(df.head()) # 9. Slice dataset agar hanya terdapat data bulan Januari 2019 print("\n[9] SLICE DATASET UNTUK BULAN JANUARI 2019 SAJA") idx = pd.IndexSlice df_jan2019 = df.loc[idx[:, "2019-01-01":"2019-01-31"],:] print("Dataset akhir:\n", df_jan2019) # END OF PROJECT
the-stack_106_21388
n=int(input('Enter the no of fibonacci series : ')) l1=[0,1] a=0 b=1 for x in range(n-1): c=a+b a=b b=c l1.append(c) print(l1)
the-stack_106_21392
from __future__ import absolute_import from collections import OrderedDict from .layers import * from .roi import * def profiling(net, input=None): # input is either a Blob with the shape of (batch,h,w,c) or a dict of them layers=[] if isinstance(input,dict): blob_dict = OrderedDict(input) not_ref = [input[k] for k in input] else: input_name='data' if hasattr(net.net,'input'): input_name=net.net.input[0] blob_dict = OrderedDict({input_name: input}) not_ref=[input] for i, layer in enumerate(net.net.layer): out = None if len(layer.top) == 1 and len(layer.bottom) == 1: if layer.type == 'Convolution': param = layer.convolution_param out = Conv(blob_dict[layer.bottom[0]], param.kernel_size, param.num_output, param.stride, param.pad, None, layer.name, group_size=param.group) if layer.type == 'InnerProduct': param=layer.inner_product_param out= fc(blob_dict[layer.bottom[0]],param.num_output,None,layer.name) if layer.type == 'ReLU': out = Activation(blob_dict[layer.bottom[0]], 'relu', layer.name) if layer.type == 'PReLU': out = Activation(blob_dict[layer.bottom[0]], 'prelu', layer.name) if layer.type == 'Pooling': param = layer.pooling_param out = Pool(blob_dict[layer.bottom[0]], param.kernel_size, param.stride, param.pad, layer.name,param.pool,ceil=True) if layer.type == 'Normalize': out = Norm(blob_dict[layer.bottom[0]], 'norm', layer.name) if layer.type == 'BatchNorm': out= Norm(blob_dict[layer.bottom[0]],'batch_norm',layer.name) if layer.type== 'LRN': out= Norm(blob_dict[layer.bottom[0]],'lrn',layer.name) if layer.type == 'Permute': shape=[blob_dict[layer.bottom[0]][dim-1] for dim in layer.permute_param.order[1:]] out = Permute(blob_dict[layer.bottom[0]],shape,layer.name) if layer.type == 'Flatten': out = Flatten(blob_dict[layer.bottom[0]], layer.name) if layer.type == 'Scale': out =Scale (blob_dict[layer.bottom[0]], name = layer.name) if layer.type == 'Softmax': out =Softmax (blob_dict[layer.bottom[0]], name = layer.name) if layer.type == 'Dropout': out =Dropout (blob_dict[layer.bottom[0]], name = layer.name) if layer.type == 'Reshape': out =Reshape (blob_dict[layer.bottom[0]],shape=layer.reshape_param.shape.dim, name = layer.name) if out: try: not_ref.remove(blob_dict[layer.bottom[0]]) except: pass blob_dict[layer.top[0]] = out() not_ref.append(blob_dict[layer.top[0]]) layers.append(out) else: assert 'layer type: %s cannot be P' % (layer.type) elif len(layer.bottom)>1: # for multi input layer if layer.type=='Eltwise': param=layer.eltwise_param out = Eltwise([blob_dict[bottom] for bottom in layer.bottom], type=param.EltwiseOp.Name(param.operation),name=layer.name) if layer.type=='PSROIPooling': param=layer.psroi_pooling_param out = PSROIPool(blob_dict[layer.bottom[0]],blob_dict[layer.bottom[1]], param.output_dim,param.group_size) if layer.type=='ROIPooling': param=layer.roi_pooling_param out = ROIPool(blob_dict[layer.bottom[0]],blob_dict[layer.bottom[1]], param.pooled_w,param.pooled_h,layer.name) if layer.type == "Concat": param = layer.concat_param out = Concat([blob_dict[bottom] for bottom in layer.bottom],param.axis,layer.name) if out: for bottom in layer.bottom: try: not_ref.remove(blob_dict[bottom]) except: pass blob_dict[layer.top[0]] = out() not_ref.append(blob_dict[layer.top[0]]) layers.append(out) else: assert 'layer type: %s cannot be P' % (layer.type) elif len(layer.top)>1: if layer.type == 'Slice': param=layer.slice_param out =Slice (blob_dict[layer.bottom[0]], name = layer.name,slice_point=param.slice_point,axis=param.axis) if out: try: not_ref.remove(blob_dict[layer.bottom[0]]) except: pass for o,top in zip(out(),layer.top): blob_dict[top] = o not_ref.append(blob_dict[top]) layers.append(out) return blob_dict,layers
the-stack_106_21394
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2017 Johns Hopkins University (Shinji Watanabe) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple, Union import torch from nemo.collections.asr.modules import rnnt_abstract from nemo.collections.asr.parts.utils import rnnt_utils from nemo.collections.common.parts import rnn from nemo.core.classes import typecheck from nemo.core.classes.exportable import Exportable from nemo.core.neural_types import ( AcousticEncodedRepresentation, ElementType, EmbeddedTextType, LabelsType, LengthsType, LogprobsType, LossType, NeuralType, ) from nemo.utils import logging class RNNTDecoder(rnnt_abstract.AbstractRNNTDecoder, Exportable): """A Recurrent Neural Network Transducer Decoder / Prediction Network (RNN-T Prediction Network). An RNN-T Decoder/Prediction network, comprised of a stateful LSTM model. Args: prednet: A dict-like object which contains the following key-value pairs. pred_hidden: int specifying the hidden dimension of the prediction net. pred_rnn_layers: int specifying the number of rnn layers. Optionally, it may also contain the following: forget_gate_bias: float, set by default to 1.0, which constructs a forget gate initialized to 1.0. Reference: [An Empirical Exploration of Recurrent Network Architectures](http://proceedings.mlr.press/v37/jozefowicz15.pdf) t_max: int value, set to None by default. If an int is specified, performs Chrono Initialization of the LSTM network, based on the maximum number of timesteps `t_max` expected during the course of training. Reference: [Can recurrent neural networks warp time?](https://openreview.net/forum?id=SJcKhk-Ab) weights_init_scale: Float scale of the weights after initialization. Setting to lower than one sometimes helps reduce variance between runs. hidden_hidden_bias_scale: Float scale for the hidden-to-hidden bias scale. Set to 0.0 for the default behaviour. dropout: float, set to 0.0 by default. Optional dropout applied at the end of the final LSTM RNN layer. vocab_size: int, specifying the vocabulary size of the embedding layer of the Prediction network, excluding the RNNT blank token. normalization_mode: Can be either None, 'batch' or 'layer'. By default, is set to None. Defines the type of normalization applied to the RNN layer. random_state_sampling: bool, set to False by default. When set, provides normal-distribution sampled state tensors instead of zero tensors during training. Reference: [Recognizing long-form speech using streaming end-to-end models](https://arxiv.org/abs/1910.11455) blank_as_pad: bool, set to True by default. When set, will add a token to the Embedding layer of this prediction network, and will treat this token as a pad token. In essence, the RNNT pad token will be treated as a pad token, and the embedding layer will return a zero tensor for this token. It is set by default as it enables various batch optimizations required for batched beam search. Therefore, it is not recommended to disable this flag. """ @property def input_types(self): """Returns definitions of module input ports. """ return { "targets": NeuralType(('B', 'T'), LabelsType()), "target_length": NeuralType(tuple('B'), LengthsType()), "states": [NeuralType(('D', 'B', 'D'), ElementType(), optional=True)], # must always be last } @property def output_types(self): """Returns definitions of module output ports. """ return { "outputs": NeuralType(('B', 'D', 'T'), EmbeddedTextType()), "prednet_lengths": NeuralType(tuple('B'), LengthsType()), "states": [NeuralType((('D', 'B', 'D')), ElementType(), optional=True)], # must always be last } def _prepare_for_export(self, **kwargs): self.freeze() def input_example(self): """ Generates input examples for tracing etc. Returns: A tuple of input examples. """ length = 1 targets = torch.full(fill_value=self.blank_idx, size=(1, length), dtype=torch.int32).to( next(self.parameters()).device ) target_length = torch.randint(0, length, size=(1,), dtype=torch.int32).to(next(self.parameters()).device) states = tuple(self.initialize_state(targets.float())) return (targets, target_length, states) @property def disabled_deployment_input_names(self): """Implement this method to return a set of input names disabled for export""" return set([]) @property def disabled_deployment_output_names(self): """Implement this method to return a set of output names disabled for export""" return set([]) def __init__( self, prednet: Dict[str, Any], vocab_size: int, normalization_mode: Optional[str] = None, random_state_sampling: bool = False, blank_as_pad: bool = True, ): # Required arguments self.pred_hidden = prednet['pred_hidden'] self.pred_rnn_layers = prednet["pred_rnn_layers"] self.blank_idx = vocab_size # Initialize the model (blank token increases vocab size by 1) super().__init__(vocab_size=vocab_size, blank_idx=self.blank_idx, blank_as_pad=blank_as_pad) # Optional arguments forget_gate_bias = prednet.get('forget_gate_bias', 1.0) t_max = prednet.get('t_max', None) weights_init_scale = prednet.get('weights_init_scale', 1.0) hidden_hidden_bias_scale = prednet.get('hidden_hidden_bias_scale', 0.0) dropout = prednet.get('dropout', 0.0) self.random_state_sampling = random_state_sampling self.prediction = self._predict_modules( vocab_size=vocab_size, # add 1 for blank symbol pred_n_hidden=self.pred_hidden, pred_rnn_layers=self.pred_rnn_layers, forget_gate_bias=forget_gate_bias, t_max=t_max, norm=normalization_mode, weights_init_scale=weights_init_scale, hidden_hidden_bias_scale=hidden_hidden_bias_scale, dropout=dropout, ) # Flag needed for RNNT export support self._rnnt_export = False @typecheck() def forward(self, targets, target_length, states=None): # y: (B, U) y = rnn.label_collate(targets) # state maintenance is unnecessary during training forward call # to get state, use .predict() method. if self._rnnt_export: add_sos = False else: add_sos = True g, states = self.predict(y, state=states, add_sos=add_sos) # (B, U, D) g = g.transpose(1, 2) # (B, D, U) return g, target_length, states def predict( self, y: Optional[torch.Tensor] = None, state: Optional[List[torch.Tensor]] = None, add_sos: bool = True, batch_size: Optional[int] = None, ) -> (torch.Tensor, List[torch.Tensor]): """ Stateful prediction of scores and state for a (possibly null) tokenset. This method takes various cases into consideration : - No token, no state - used for priming the RNN - No token, state provided - used for blank token scoring - Given token, states - used for scores + new states Here: B - batch size U - label length H - Hidden dimension size of RNN L - Number of RNN layers Args: y: Optional torch tensor of shape [B, U] of dtype long which will be passed to the Embedding. If None, creates a zero tensor of shape [B, 1, H] which mimics output of pad-token on Embedding. state: An optional list of states for the RNN. Eg: For LSTM, it is the state list length is 2. Each state must be a tensor of shape [L, B, H]. If None, and during training mode and `random_state_sampling` is set, will sample a normal distribution tensor of the above shape. Otherwise, None will be passed to the RNN. add_sos: bool flag, whether a zero vector describing a "start of signal" token should be prepended to the above "y" tensor. When set, output size is (B, U + 1, H). batch_size: An optional int, specifying the batch size of the `y` tensor. Can be infered if `y` and `state` is None. But if both are None, then batch_size cannot be None. Returns: A tuple (g, hid) such that - If add_sos is False: g: (B, U, H) hid: (h, c) where h is the final sequence hidden state and c is the final cell state: h (tensor), shape (L, B, H) c (tensor), shape (L, B, H) If add_sos is True: g: (B, U + 1, H) hid: (h, c) where h is the final sequence hidden state and c is the final cell state: h (tensor), shape (L, B, H) c (tensor), shape (L, B, H) """ # Get device and dtype of current module _p = next(self.parameters()) device = _p.device dtype = _p.dtype # If y is not None, it is of shape [B, U] with dtype long. if y is not None: if y.device != device: y = y.to(device) # (B, U) -> (B, U, H) y = self.prediction["embed"](y) else: # Y is not provided, assume zero tensor with shape [B, 1, H] is required # Emulates output of embedding of pad token. if batch_size is None: B = 1 if state is None else state[0].size(1) else: B = batch_size y = torch.zeros((B, 1, self.pred_hidden), device=device, dtype=dtype) # Prepend blank "start of sequence" symbol (zero tensor) if add_sos: B, U, H = y.shape start = torch.zeros((B, 1, H), device=y.device, dtype=y.dtype) y = torch.cat([start, y], dim=1).contiguous() # (B, U + 1, H) else: start = None # makes del call later easier # If in training mode, and random_state_sampling is set, # initialize state to random normal distribution tensor. if state is None: if self.random_state_sampling and self.training: state = self.initialize_state(y) # Forward step through RNN y = y.transpose(0, 1) # (U + 1, B, H) g, hid = self.prediction["dec_rnn"](y, state) g = g.transpose(0, 1) # (B, U + 1, H) del y, start, state return g, hid def _predict_modules( self, vocab_size, pred_n_hidden, pred_rnn_layers, forget_gate_bias, t_max, norm, weights_init_scale, hidden_hidden_bias_scale, dropout, ): """ Prepare the trainable parameters of the Prediction Network. Args: vocab_size: Vocab size (excluding the blank token). pred_n_hidden: Hidden size of the RNNs. pred_rnn_layers: Number of RNN layers. forget_gate_bias: Whether to perform unit forget gate bias. t_max: Whether to perform Chrono LSTM init. norm: Type of normalization to perform in RNN. weights_init_scale: Float scale of the weights after initialization. Setting to lower than one sometimes helps reduce variance between runs. hidden_hidden_bias_scale: Float scale for the hidden-to-hidden bias scale. Set to 0.0 for the default behaviour. dropout: Whether to apply dropout to RNN. """ if self.blank_as_pad: embed = torch.nn.Embedding(vocab_size + 1, pred_n_hidden, padding_idx=self.blank_idx) else: embed = torch.nn.Embedding(vocab_size, pred_n_hidden) layers = torch.nn.ModuleDict( { "embed": embed, "dec_rnn": rnn.rnn( input_size=pred_n_hidden, hidden_size=pred_n_hidden, num_layers=pred_rnn_layers, norm=norm, forget_gate_bias=forget_gate_bias, t_max=t_max, dropout=dropout, weights_init_scale=weights_init_scale, hidden_hidden_bias_scale=hidden_hidden_bias_scale, ), } ) return layers def initialize_state(self, y: torch.Tensor) -> List[torch.Tensor]: """ Initialize the state of the RNN layers, with same dtype and device as input `y`. Args: y: A torch.Tensor whose device the generated states will be placed on. Returns: List of torch.Tensor, each of shape [L, B, H], where L = Number of RNN layers B = Batch size H = Hidden size of RNN. """ batch = y.size(0) if self.random_state_sampling and self.training: state = [ torch.randn(self.pred_rnn_layers, batch, self.pred_hidden, dtype=y.dtype, device=y.device), torch.randn(self.pred_rnn_layers, batch, self.pred_hidden, dtype=y.dtype, device=y.device), ] else: state = [ torch.zeros(self.pred_rnn_layers, batch, self.pred_hidden, dtype=y.dtype, device=y.device), torch.zeros(self.pred_rnn_layers, batch, self.pred_hidden, dtype=y.dtype, device=y.device), ] return state def score_hypothesis( self, hypothesis: rnnt_utils.Hypothesis, cache: Dict[Tuple[int], Any] ) -> (torch.Tensor, List[torch.Tensor], torch.Tensor): """ Similar to the predict() method, instead this method scores a Hypothesis during beam search. Hypothesis is a dataclass representing one hypothesis in a Beam Search. Args: hypothesis: Refer to rnnt_utils.Hypothesis. cache: Dict which contains a cache to avoid duplicate computations. Returns: Returns a tuple (y, states, lm_token) such that: y is a torch.Tensor of shape [1, 1, H] representing the score of the last token in the Hypothesis. state is a list of RNN states, each of shape [L, 1, H]. lm_token is the final integer token of the hypothesis. """ if hypothesis.dec_state is not None: device = hypothesis.dec_state[0].device else: _p = next(self.parameters()) device = _p.device # parse "blank" tokens in hypothesis if len(hypothesis.y_sequence) > 0 and hypothesis.y_sequence[-1] == self.blank_idx: blank_state = True else: blank_state = False # Convert last token of hypothesis to torch.Tensor target = torch.full([1, 1], fill_value=hypothesis.y_sequence[-1], device=device, dtype=torch.long) lm_token = target[:, -1] # [1] # Convert current hypothesis into a tuple to preserve in cache sequence = tuple(hypothesis.y_sequence) if sequence in cache: y, new_state = cache[sequence] else: # Obtain score for target token and new states if blank_state: y, new_state = self.predict(None, state=None, add_sos=False, batch_size=1) # [1, 1, H] else: y, new_state = self.predict( target, state=hypothesis.dec_state, add_sos=False, batch_size=1 ) # [1, 1, H] y = y[:, -1:, :] # Extract just last state : [1, 1, H] cache[sequence] = (y, new_state) return y, new_state, lm_token def batch_score_hypothesis( self, hypotheses: List[rnnt_utils.Hypothesis], cache: Dict[Tuple[int], Any], batch_states: List[torch.Tensor] ) -> (torch.Tensor, List[torch.Tensor], torch.Tensor): """ Used for batched beam search algorithms. Similar to score_hypothesis method. Args: hypothesis: List of Hypotheses. Refer to rnnt_utils.Hypothesis. cache: Dict which contains a cache to avoid duplicate computations. batch_states: List of torch.Tensor which represent the states of the RNN for this batch. Each state is of shape [L, B, H] Returns: Returns a tuple (b_y, b_states, lm_tokens) such that: b_y is a torch.Tensor of shape [B, 1, H] representing the scores of the last tokens in the Hypotheses. b_state is a list of list of RNN states, each of shape [L, B, H]. Represented as B x List[states]. lm_token is a list of the final integer tokens of the hypotheses in the batch. """ final_batch = len(hypotheses) if final_batch == 0: raise ValueError("No hypotheses was provided for the batch!") _p = next(self.parameters()) device = _p.device dtype = _p.dtype tokens = [] process = [] done = [None for _ in range(final_batch)] # For each hypothesis, cache the last token of the sequence and the current states for i, hyp in enumerate(hypotheses): sequence = tuple(hyp.y_sequence) if sequence in cache: done[i] = cache[sequence] else: tokens.append(hyp.y_sequence[-1]) process.append((sequence, hyp.dec_state)) if process: batch = len(process) # convert list of tokens to torch.Tensor, then reshape. tokens = torch.tensor(tokens, device=device, dtype=torch.long).view(batch, -1) dec_states = self.initialize_state(tokens.to(dtype=dtype)) # [L, B, H] dec_states = self.batch_initialize_states(dec_states, [d_state for seq, d_state in process]) y, dec_states = self.predict( tokens, state=dec_states, add_sos=False, batch_size=batch ) # [B, 1, H], List([L, 1, H]) dec_states = tuple(state.to(dtype=dtype) for state in dec_states) # Update done states and cache shared by entire batch. j = 0 for i in range(final_batch): if done[i] is None: # Select sample's state from the batch state list new_state = self.batch_select_state(dec_states, j) # Cache [1, H] scores of the current y_j, and its corresponding state done[i] = (y[j], new_state) cache[process[j][0]] = (y[j], new_state) j += 1 # Set the incoming batch states with the new states obtained from `done`. batch_states = self.batch_initialize_states(batch_states, [d_state for y_j, d_state in done]) # Create batch of all output scores # List[1, 1, H] -> [B, 1, H] batch_y = torch.stack([y_j for y_j, d_state in done]) # Extract the last tokens from all hypotheses and convert to a tensor lm_tokens = torch.tensor([h.y_sequence[-1] for h in hypotheses], device=device, dtype=torch.long).view( final_batch ) return batch_y, batch_states, lm_tokens def batch_initialize_states(self, batch_states: List[torch.Tensor], decoder_states: List[List[torch.Tensor]]): """ Create batch of decoder states. Args: batch_states (list): batch of decoder states ([L x (B, H)], [L x (B, H)]) decoder_states (list of list): list of decoder states [B x ([L x (1, H)], [L x (1, H)])] Returns: batch_states (tuple): batch of decoder states ([L x (B, H)], [L x (B, H)]) """ # LSTM has 2 states new_states = [[] for _ in range(len(decoder_states[0]))] for layer in range(self.pred_rnn_layers): for state_id in range(len(decoder_states[0])): # batch_states[state_id][layer] = torch.stack([s[state_id][layer] for s in decoder_states]) new_state_for_layer = torch.stack([s[state_id][layer] for s in decoder_states]) new_states[state_id].append(new_state_for_layer) for state_id in range(len(decoder_states[0])): new_states[state_id] = torch.stack([state for state in new_states[state_id]]) return new_states def batch_select_state(self, batch_states: List[torch.Tensor], idx: int) -> List[List[torch.Tensor]]: """Get decoder state from batch of states, for given id. Args: batch_states (list): batch of decoder states ([L x (B, H)], [L x (B, H)]) idx (int): index to extract state from batch of states Returns: (tuple): decoder states for given id ([L x (1, H)], [L x (1, H)]) """ state_list = [] for state_id in range(len(batch_states)): states = [batch_states[state_id][layer][idx] for layer in range(self.pred_rnn_layers)] state_list.append(states) return state_list class RNNTJoint(rnnt_abstract.AbstractRNNTJoint, Exportable): """A Recurrent Neural Network Transducer Joint Network (RNN-T Joint Network). An RNN-T Joint network, comprised of a feedforward model. Args: jointnet: A dict-like object which contains the following key-value pairs. encoder_hidden: int specifying the hidden dimension of the encoder net. pred_hidden: int specifying the hidden dimension of the prediction net. joint_hidden: int specifying the hidden dimension of the joint net activation: Activation function used in the joint step. Can be one of ['relu', 'tanh', 'sigmoid']. Optionally, it may also contain the following: dropout: float, set to 0.0 by default. Optional dropout applied at the end of the joint net. num_classes: int, specifying the vocabulary size that the joint network must predict, excluding the RNNT blank token. vocabulary: Optional list of strings/tokens that comprise the vocabulary of the joint network. Unused and kept only for easy access for character based encoding RNNT models. log_softmax: Optional bool, set to None by default. If set as None, will compute the log_softmax() based on the value provided. preserve_memory: Optional bool, set to False by default. If the model crashes due to the memory intensive joint step, one might try this flag to empty the tensor cache in pytorch. Warning: This will make the forward-backward pass much slower than normal. It also might not fix the OOM if the GPU simply does not have enough memory to compute the joint. fuse_loss_wer: Optional bool, set to False by default. Fuses the joint forward, loss forward and wer forward steps. In doing so, it trades of speed for memory conservation by creating sub-batches of the provided batch of inputs, and performs Joint forward, loss forward and wer forward (optional), all on sub-batches, then collates results to be exactly equal to results from the entire batch. When this flag is set, prior to calling forward, the fields `loss` and `wer` (either one) *must* be set using the `RNNTJoint.set_loss()` or `RNNTJoint.set_wer()` methods. Further, when this flag is set, the following argument `fused_batch_size` *must* be provided as a non negative integer. This value refers to the size of the sub-batch. When the flag is set, the input and output signature of `forward()` of this method changes. Input - in addition to `encoder_outputs` (mandatory argument), the following arguments can be provided. - decoder_outputs (optional). Required if loss computation is required. - encoder_lengths (required) - transcripts (optional). Required for wer calculation. - transcript_lengths (optional). Required for wer calculation. - compute_wer (bool, default false). Whether to compute WER or not for the fused batch. Output - instead of the usual `joint` log prob tensor, the following results can be returned. - loss (optional). Returned if decoder_outputs, transcripts and transript_lengths are not None. - wer_numerator + wer_denominator (optional). Returned if transcripts, transcripts_lengths are provided and compute_wer is set. fused_batch_size: Optional int, required if `fuse_loss_wer` flag is set. Determines the size of the sub-batches. Should be any value below the actual batch size per GPU. """ @property def input_types(self): """Returns definitions of module input ports. """ return { "encoder_outputs": NeuralType(('B', 'D', 'T'), AcousticEncodedRepresentation()), "decoder_outputs": NeuralType(('B', 'D', 'T'), EmbeddedTextType()), "encoder_lengths": NeuralType(tuple('B'), LengthsType(), optional=True), "transcripts": NeuralType(('B', 'T'), LabelsType(), optional=True), "transcript_lengths": NeuralType(tuple('B'), LengthsType(), optional=True), "compute_wer": NeuralType(optional=True), } @property def output_types(self): """Returns definitions of module output ports. """ if not self._fuse_loss_wer: return { "outputs": NeuralType(('B', 'T', 'T', 'D'), LogprobsType()), } else: return { "loss": NeuralType(elements_type=LossType(), optional=True), "wer": NeuralType(elements_type=ElementType(), optional=True), "wer_numer": NeuralType(elements_type=ElementType(), optional=True), "wer_denom": NeuralType(elements_type=ElementType(), optional=True), } def _prepare_for_export(self, **kwargs): self.freeze() self._fuse_loss_wer = False self.log_softmax = False def input_example(self): """ Generates input examples for tracing etc. Returns: A tuple of input examples. """ B, T, U = 1, 8192, 1 encoder_outputs = torch.randn(B, self.encoder_hidden, T).to(next(self.parameters()).device) decoder_outputs = torch.randn(B, self.pred_hidden, U).to(next(self.parameters()).device) return (encoder_outputs, decoder_outputs) @property def disabled_deployment_input_names(self): """Implement this method to return a set of input names disabled for export""" return set(["encoder_lengths", "transcripts", "transcript_lengths", "compute_wer"]) @property def disabled_deployment_output_names(self): """Implement this method to return a set of output names disabled for export""" return set() def __init__( self, jointnet: Dict[str, Any], num_classes: int, vocabulary: Optional[List] = None, log_softmax: Optional[bool] = None, preserve_memory: bool = False, fuse_loss_wer: bool = False, fused_batch_size: Optional[int] = None, experimental_fuse_loss_wer: Any = None, ): super().__init__() self.vocabulary = vocabulary self._vocab_size = num_classes self._num_classes = num_classes + 1 # add 1 for blank symbol if experimental_fuse_loss_wer is not None: # TODO: Deprecate in 1.6 logging.warning( "`experimental_fuse_loss_wer` will be deprecated in NeMo 1.6. Please use `fuse_loss_wer` instead." ) # Override fuse_loss_wer from deprecated argument fuse_loss_wer = experimental_fuse_loss_wer self._fuse_loss_wer = fuse_loss_wer self._fused_batch_size = fused_batch_size if fuse_loss_wer and (fused_batch_size is None): raise ValueError("If `fuse_loss_wer` is set, then `fused_batch_size` cannot be None!") self._loss = None self._wer = None # Log softmax should be applied explicitly only for CPU self.log_softmax = log_softmax self.preserve_memory = preserve_memory if preserve_memory: logging.warning( "`preserve_memory` was set for the Joint Model. Please be aware this will severely impact " "the forward-backward step time. It also might not solve OOM issues if the GPU simply " "does not have enough memory to compute the joint." ) # Required arguments self.encoder_hidden = jointnet['encoder_hidden'] self.pred_hidden = jointnet['pred_hidden'] self.joint_hidden = jointnet['joint_hidden'] self.activation = jointnet['activation'] # Optional arguments dropout = jointnet.get('dropout', 0.0) self.pred, self.enc, self.joint_net = self._joint_net_modules( num_classes=self._num_classes, # add 1 for blank symbol pred_n_hidden=self.pred_hidden, enc_n_hidden=self.encoder_hidden, joint_n_hidden=self.joint_hidden, activation=self.activation, dropout=dropout, ) # Flag needed for RNNT export support self._rnnt_export = False @typecheck() def forward( self, encoder_outputs: torch.Tensor, decoder_outputs: Optional[torch.Tensor], encoder_lengths: Optional[torch.Tensor] = None, transcripts: Optional[torch.Tensor] = None, transcript_lengths: Optional[torch.Tensor] = None, compute_wer: bool = False, ) -> Union[torch.Tensor, List[Optional[torch.Tensor]]]: # encoder = (B, D, T) # decoder = (B, D, U) if passed, else None encoder_outputs = encoder_outputs.transpose(1, 2) # (B, T, D) if decoder_outputs is not None: decoder_outputs = decoder_outputs.transpose(1, 2) # (B, U, D) if not self._fuse_loss_wer: if decoder_outputs is None: raise ValueError( "decoder_outputs passed is None, and `fuse_loss_wer` is not set. " "decoder_outputs can only be None for fused step!" ) out = self.joint(encoder_outputs, decoder_outputs) # [B, T, U, V + 1] return out else: # At least the loss module must be supplied during fused joint if self._loss is None or self._wer is None: raise ValueError("`fuse_loss_wer` flag is set, but `loss` and `wer` modules were not provided! ") # If fused joint step is required, fused batch size is required as well if self._fused_batch_size is None: raise ValueError("If `fuse_loss_wer` is set, then `fused_batch_size` cannot be None!") # When using fused joint step, both encoder and transcript lengths must be provided if (encoder_lengths is None) or (transcript_lengths is None): raise ValueError( "`fuse_loss_wer` is set, therefore encoder and target lengths " "must be provided as well!" ) losses = [] wer_numer_list = [] wer_denom_list = [] batch_size = int(encoder_outputs.size(0)) # actual batch size # Iterate over batch using fused_batch_size steps for batch_idx in range(0, batch_size, self._fused_batch_size): begin = batch_idx end = min(begin + self._fused_batch_size, batch_size) # Extract the sub batch inputs # sub_enc = encoder_outputs[begin:end, ...] # sub_transcripts = transcripts[begin:end, ...] sub_enc = encoder_outputs.narrow(dim=0, start=begin, length=end - begin) sub_transcripts = transcripts.narrow(dim=0, start=begin, length=end - begin) sub_enc_lens = encoder_lengths[begin:end] sub_transcript_lens = transcript_lengths[begin:end] # Sub transcripts does not need the full padding of the entire batch # Therefore reduce the decoder time steps to match max_sub_enc_length = sub_enc_lens.max() max_sub_transcript_length = sub_transcript_lens.max() if decoder_outputs is not None: # Reduce encoder length to preserve computation # Encoder: [sub-batch, T, D] -> [sub-batch, T', D]; T' < T if sub_enc.shape[1] != max_sub_enc_length: sub_enc = sub_enc.narrow(dim=1, start=0, length=max_sub_enc_length) # sub_dec = decoder_outputs[begin:end, ...] # [sub-batch, U, D] sub_dec = decoder_outputs.narrow(dim=0, start=begin, length=end - begin) # [sub-batch, U, D] # Reduce decoder length to preserve computation # Decoder: [sub-batch, U, D] -> [sub-batch, U', D]; U' < U if sub_dec.shape[1] != max_sub_transcript_length + 1: sub_dec = sub_dec.narrow(dim=1, start=0, length=max_sub_transcript_length + 1) # Perform joint => [sub-batch, T', U', V + 1] sub_joint = self.joint(sub_enc, sub_dec) del sub_dec # Reduce transcript length to correct alignment # Transcript: [sub-batch, L] -> [sub-batch, L']; L' <= L if sub_transcripts.shape[1] != max_sub_transcript_length: sub_transcripts = sub_transcripts.narrow(dim=1, start=0, length=max_sub_transcript_length) # Compute sub batch loss # preserve loss reduction type loss_reduction = self.loss.reduction # override loss reduction to sum self.loss.reduction = None # compute and preserve loss loss_batch = self.loss( log_probs=sub_joint, targets=sub_transcripts, input_lengths=sub_enc_lens, target_lengths=sub_transcript_lens, ) losses.append(loss_batch) # reset loss reduction type self.loss.reduction = loss_reduction else: losses = None # Compute WER for sub batch if compute_wer: sub_enc = sub_enc.transpose(1, 2) # [B, T, D] -> [B, D, T] sub_enc = sub_enc.detach() sub_transcripts = sub_transcripts.detach() original_log_prediction = self.wer.log_prediction if batch_idx == 0: self.wer.log_prediction = True else: self.wer.log_prediction = False # Compute the wer (with logging for just 1st sub-batch) self.wer.update(sub_enc, sub_enc_lens, sub_transcripts, sub_transcript_lens) wer, wer_num, wer_denom = self.wer.compute() self.wer.reset() wer_numer_list.append(wer_num) wer_denom_list.append(wer_denom) # Reset logging default self.wer.log_prediction = original_log_prediction else: wer = None del sub_enc, sub_transcripts, sub_enc_lens, sub_transcript_lens # Collect sub batch loss results if losses is not None: losses = torch.cat(losses, 0) losses = losses.mean() # global batch size average else: losses = None # Collect sub batch wer results if compute_wer: wer_num = torch.tensor(wer_numer_list, dtype=torch.long) wer_denom = torch.tensor(wer_denom_list, dtype=torch.long) wer_num = wer_num.sum() # global sum of correct words/chars wer_denom = wer_denom.sum() # global sum of all words/chars else: wer_num = None wer_denom = None return losses, wer, wer_num, wer_denom def joint(self, f: torch.Tensor, g: torch.Tensor) -> torch.Tensor: """ Compute the joint step of the network. Here, B = Batch size T = Acoustic model timesteps U = Target sequence length H1, H2 = Hidden dimensions of the Encoder / Decoder respectively H = Hidden dimension of the Joint hidden step. V = Vocabulary size of the Decoder (excluding the RNNT blank token). NOTE: The implementation of this model is slightly modified from the original paper. The original paper proposes the following steps : (enc, dec) -> Expand + Concat + Sum [B, T, U, H1+H2] -> Forward through joint hidden [B, T, U, H] -- *1 *1 -> Forward through joint final [B, T, U, V + 1]. We instead split the joint hidden into joint_hidden_enc and joint_hidden_dec and act as follows: enc -> Forward through joint_hidden_enc -> Expand [B, T, 1, H] -- *1 dec -> Forward through joint_hidden_dec -> Expand [B, 1, U, H] -- *2 (*1, *2) -> Sum [B, T, U, H] -> Forward through joint final [B, T, U, V + 1]. Args: f: Output of the Encoder model. A torch.Tensor of shape [B, T, H1] g: Output of the Decoder model. A torch.Tensor of shape [B, U, H2] Returns: Logits / log softmaxed tensor of shape (B, T, U, V + 1). """ # f = [B, T, H1] f = self.enc(f) f.unsqueeze_(dim=2) # (B, T, 1, H) # g = [B, U, H2] g = self.pred(g) g.unsqueeze_(dim=1) # (B, 1, U, H) inp = f + g # [B, T, U, H] del f, g res = self.joint_net(inp) # [B, T, U, V + 1] del inp if self.preserve_memory: torch.cuda.empty_cache() # If log_softmax is automatic if self.log_softmax is None: if not res.is_cuda: # Use log softmax only if on CPU res = res.log_softmax(dim=-1) else: if self.log_softmax: res = res.log_softmax(dim=-1) return res def _joint_net_modules(self, num_classes, pred_n_hidden, enc_n_hidden, joint_n_hidden, activation, dropout): """ Prepare the trainable modules of the Joint Network Args: num_classes: Number of output classes (vocab size) excluding the RNNT blank token. pred_n_hidden: Hidden size of the prediction network. enc_n_hidden: Hidden size of the encoder network. joint_n_hidden: Hidden size of the joint network. activation: Activation of the joint. Can be one of [relu, tanh, sigmoid] dropout: Dropout value to apply to joint. """ pred = torch.nn.Linear(pred_n_hidden, joint_n_hidden) enc = torch.nn.Linear(enc_n_hidden, joint_n_hidden) if activation not in ['relu', 'sigmoid', 'tanh']: raise ValueError("Unsupported activation for joint step - please pass one of " "[relu, sigmoid, tanh]") activation = activation.lower() if activation == 'relu': activation = torch.nn.ReLU(inplace=True) elif activation == 'sigmoid': activation = torch.nn.Sigmoid() elif activation == 'tanh': activation = torch.nn.Tanh() layers = ( [activation] + ([torch.nn.Dropout(p=dropout)] if dropout else []) + [torch.nn.Linear(joint_n_hidden, num_classes)] ) return pred, enc, torch.nn.Sequential(*layers) @property def num_classes_with_blank(self): return self._num_classes @property def loss(self): return self._loss def set_loss(self, loss): if not self._fuse_loss_wer: raise ValueError("Attempting to set loss module even though `fuse_loss_wer` is not set!") self._loss = loss @property def wer(self): return self._wer def set_wer(self, wer): if not self._fuse_loss_wer: raise ValueError("Attempting to set WER module even though `fuse_loss_wer` is not set!") self._wer = wer @property def fuse_loss_wer(self): return self._fuse_loss_wer def set_fuse_loss_wer(self, fuse_loss_wer): self._fuse_loss_wer = fuse_loss_wer if self._fuse_loss_wer is False: self._loss = None self._wer = None @property def fused_batch_size(self): return self._fuse_loss_wer def set_fused_batch_size(self, fused_batch_size): self._fused_batch_size = fused_batch_size
the-stack_106_21396
from django.db import models from django.utils import timezone from django.contrib.auth.models import User class PublishedManager(models.Manager): def get_queryset(self): return super(PublishedManager, self).get_queryset().filter(status='published') class Customer(models.Model): STATUS_CHOICES = ( ('draft', 'Draft'), ('published', 'Published') ) GENDER_CHOICES = ( ('M', 'Male'), ('F','Female'), ('I', 'Intersex') ) title = models.CharField(max_length=250, null=False) name = models.CharField( max_length=250) last_name = models.CharField(max_length=250) gender = models.CharField(max_length=10, choices=GENDER_CHOICES) created_by = models.ForeignKey( User, related_name='created_by', editable=False, on_delete=models.PROTECT, default=1) created = models.DateTimeField(default=timezone.now) status = models.CharField( max_length=10, choices=STATUS_CHOICES, default='draft') objects = models.Manager() published = PublishedManager() class Meta: verbose_name = "Customer" verbose_name_plural = "Customers" def __str__(self): return "{} {}".format(self.name,self.last_name)
the-stack_106_21397
# -*- coding: utf-8 -*- """ Created on Fri Dec 25 12:16:36 2020 @author: 11627 """ from torch import nn import torch def initialize_weights(*models): for model in models: for module in model.modules(): if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear): nn.init.kaiming_normal_(module.weight) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.BatchNorm2d): module.weight.data.fill_(1) module.bias.data.zero_() class conv_block(nn.Module): """ Convolution Block """ def __init__(self, in_ch, out_ch): super(conv_block, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True)) def forward(self, x): x = self.conv(x) return x class up_conv(nn.Module): """ Up Convolution Block """ def __init__(self, in_ch, out_ch): super(up_conv, self).__init__() self.up = nn.Sequential( nn.Upsample(scale_factor=2), nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): x = self.up(x) return x class Attention_block(nn.Module): """ Attention Block """ def __init__(self, F_g, F_l, F_int): super(Attention_block, self).__init__() self.W_g = nn.Sequential( nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.W_x = nn.Sequential( nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.psi = nn.Sequential( nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(1), nn.Sigmoid() ) self.relu = nn.ReLU(inplace=True) def forward(self, g, x): g1 = self.W_g(g) x1 = self.W_x(x) psi = self.relu(g1 + x1) psi = self.psi(psi) out = x * psi return out class AttS_Net(nn.Module): """ Attention Unet implementation Paper: https://arxiv.org/abs/1804.03999 """ def __init__(self, img_ch=1, num_classes=1): super(AttS_Net, self).__init__() n1 = 64 filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] self.Maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.Maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.Maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.Maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.Conv1 = conv_block(img_ch, filters[0]) self.Conv2 = conv_block(filters[0], filters[1]) self.Conv3 = conv_block(filters[1], filters[2]) self.Conv4 = conv_block(filters[2], filters[3]) self.Conv5 = conv_block(filters[3], filters[4]) self.Up5 = up_conv(filters[4], filters[3]) self.Att5 = Attention_block(F_g=filters[3], F_l=filters[3], F_int=filters[2]) self.Up_conv5 = conv_block(filters[4], filters[3]) self.Up4 = up_conv(filters[3], filters[2]) self.Att4 = Attention_block(F_g=filters[2], F_l=filters[2], F_int=filters[1]) self.Up_conv4 = conv_block(filters[3], filters[2]) self.Up3 = up_conv(filters[2], filters[1]) self.Att3 = Attention_block(F_g=filters[1], F_l=filters[1], F_int=filters[0]) self.Up_conv3 = conv_block(filters[2], filters[1]) self.Up2 = up_conv(filters[1], filters[0]) self.Att2 = Attention_block(F_g=filters[0], F_l=filters[0], F_int=32) self.Up_conv2 = conv_block(filters[1], filters[0]) self.Conv = nn.Conv2d(filters[0], num_classes, kernel_size=1, stride=1, padding=0) initialize_weights(self) #self.active = torch.nn.Sigmoid() def forward(self, x): e1 = self.Conv1(x) e2 = self.Maxpool1(e1) e2 = self.Conv2(e2) e3 = self.Maxpool2(e2) e3 = self.Conv3(e3) e4 = self.Maxpool3(e3) e4 = self.Conv4(e4) e5 = self.Maxpool4(e4) e5 = self.Conv5(e5) #print(x5.shape) d5 = self.Up5(e5) #print(d5.shape) x4 = self.Att5(g=d5, x=e4) d5 = torch.cat((x4, d5), dim=1) d5 = self.Up_conv5(d5) d4 = self.Up4(d5) x3 = self.Att4(g=d4, x=e3) d4 = torch.cat((x3, d4), dim=1) d4 = self.Up_conv4(d4) d3 = self.Up3(d4) x2 = self.Att3(g=d3, x=e2) d3 = torch.cat((x2, d3), dim=1) d3 = self.Up_conv3(d3) d2 = self.Up2(d3) x1 = self.Att2(g=d2, x=e1) d2 = torch.cat((x1, d2), dim=1) d2 = self.Up_conv2(d2) out = self.Conv(d2) # out = self.active(out) return e1,e2,d2,out
the-stack_106_21402
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import torch import torch.nn.functional as F from ml.rl import types as rlt from ml.rl.models.base import ModelBase from ml.rl.models.fully_connected_network import FullyConnectedNetwork class CategoricalDQN(ModelBase): def __init__( self, state_dim, action_dim, num_atoms, qmin, qmax, sizes, activations, use_batch_norm=False, dropout_ratio=0.0, use_gpu=False, ): super().__init__() assert state_dim > 0, "state_dim must be > 0, got {}".format(state_dim) assert action_dim > 0, "action_dim must be > 0, got {}".format(action_dim) self.state_dim = state_dim self.action_dim = action_dim assert len(sizes) == len( activations ), "The numbers of sizes and activations must match; got {} vs {}".format( len(sizes), len(activations) ) self.fc = FullyConnectedNetwork( [state_dim] + sizes + [action_dim * num_atoms], activations + ["linear"], use_batch_norm=use_batch_norm, dropout_ratio=dropout_ratio, ) self.num_atoms = num_atoms self.action_dim = action_dim self.support = torch.linspace(qmin, qmax, num_atoms) if use_gpu and torch.cuda.is_available(): self.support = self.support.cuda() def input_prototype(self): return rlt.PreprocessedState.from_tensor(torch.randn(1, self.state_dim)) def forward(self, input: rlt.PreprocessedState): dist = self.log_dist(input).exp() q_values = (dist * self.support).sum(2) return rlt.AllActionQValues(q_values=q_values) def log_dist(self, input: rlt.PreprocessedState): log_dist = self.fc(input.state.float_features).reshape( -1, self.action_dim, self.num_atoms ) return F.log_softmax(log_dist, -1) def serving_model(self): return self.cpu_model()
the-stack_106_21403
import sys import os sys.path.append(os.path.abspath("../")) from unittest import TestCase from komand_sentinelone.connection.connection import Connection from komand_sentinelone.actions.apps_by_agent_ids import AppsByAgentIds import json import logging class TestAppsByAgentIds(TestCase): def test_integration_apps_by_agent_ids(self): """ This is an integration test that will connect to the services your plugin uses. It should be used as the basis for tests below that can run independent of a "live" connection. This test assumes a normal plugin structure with a /tests directory. In that /tests directory should be json samples that contain all the data needed to run this test. To generate samples run: icon-plugin generate samples """ log = logging.getLogger("Test") test_conn = Connection() test_action = AppsByAgentIds() test_conn.logger = log test_action.logger = log try: with open("../tests/apps_by_agent_ids.json") as file: test_json = json.loads(file.read()).get("body") connection_params = test_json.get("connection") action_params = test_json.get("input") except Exception as e: message = """ Could not find or read sample tests from /tests directory An exception here likely means you didn't fill out your samples correctly in the /tests directory Please use 'icon-plugin generate samples', and fill out the resulting test files in the /tests directory """ self.fail(message) test_conn.connect(connection_params) test_action.connection = test_conn results = test_action.run(action_params) self.assertTrue(len(results.get("data")) >= 0)
the-stack_106_21404
import socket class TcpServer(): def __init__(self): pass def start(self, port): # initialzie main socket main_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) main_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) main_addr = ("", port) main_socket.bind(main_addr) main_socket.listen(5) self.listen_loop(main_socket) def listen_loop(self, main_socket): try: while True: print("---main process: wait for the next client...---") new_socket, client_addr = main_socket.accept() print("---main process: client connected: {0}---".format(client_addr)) self.tcp_worker(new_socket, client_addr) finally: print("---main process: server shutdown---") main_socket.close() def tcp_worker(self, new_socket, client_addr): try: while True: recv_data = new_socket.recv(1024) if len(recv_data) > 0: print("{0}: {1}".format(client_addr, recv_data)) else: print("---main process: client disconnected: {}---".format(client_addr)) break finally: new_socket.close() def main(): new_server = TcpServer() new_server.start(7788) if __name__ == "__main__": main()
the-stack_106_21407
from typing import TYPE_CHECKING, Hashable, List, Tuple, Union import numpy as np from pandas._config.config import option_context from pandas._libs.indexing import _NDFrameIndexerBase from pandas._libs.lib import item_from_zerodim from pandas.errors import AbstractMethodError, InvalidIndexError from pandas.util._decorators import doc from pandas.core.dtypes.common import ( is_array_like, is_hashable, is_integer, is_iterator, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, is_sequence, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ABCDataFrame, ABCMultiIndex, ABCSeries from pandas.core.dtypes.missing import _infer_fill_value, isna import pandas.core.common as com from pandas.core.construction import array as pd_array from pandas.core.indexers import ( check_array_indexer, is_list_like_indexer, length_of_indexer, ) from pandas.core.indexes.api import Index if TYPE_CHECKING: from pandas import DataFrame # noqa:F401 # "null slice" _NS = slice(None, None) # the public IndexSlicerMaker class _IndexSlice: """ Create an object to more easily perform multi-index slicing. See Also -------- MultiIndex.remove_unused_levels : New MultiIndex with no unused levels. Notes ----- See :ref:`Defined Levels <advanced.shown_levels>` for further info on slicing a MultiIndex. Examples -------- >>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']]) >>> columns = ['foo', 'bar'] >>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))), index=midx, columns=columns) Using the default slice command: >>> dfmi.loc[(slice(None), slice('B0', 'B1')), :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 Using the IndexSlice class for a more intuitive command: >>> idx = pd.IndexSlice >>> dfmi.loc[idx[:, 'B0':'B1'], :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 """ def __getitem__(self, arg): return arg IndexSlice = _IndexSlice() class IndexingError(Exception): pass class IndexingMixin: """ Mixin for adding .loc/.iloc/.at/.iat to Dataframes and Series. """ @property def iloc(self) -> "_iLocIndexer": """ Purely integer-location based indexing for selection by position. ``.iloc[]`` is primarily integer position based (from ``0`` to ``length-1`` of the axis), but may also be used with a boolean array. Allowed inputs are: - An integer, e.g. ``5``. - A list or array of integers, e.g. ``[4, 3, 0]``. - A slice object with ints, e.g. ``1:7``. - A boolean array. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value. ``.iloc`` will raise ``IndexError`` if a requested indexer is out-of-bounds, except *slice* indexers which allow out-of-bounds indexing (this conforms with python/numpy *slice* semantics). See more at :ref:`Selection by Position <indexing.integer>`. See Also -------- DataFrame.iat : Fast integer location scalar accessor. DataFrame.loc : Purely label-location based indexer for selection by label. Series.iloc : Purely integer-location based indexing for selection by position. Examples -------- >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 **Indexing just the rows** With a scalar integer. >>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64 With a list of integers. >>> df.iloc[[0]] a b c d 0 1 2 3 4 >>> type(df.iloc[[0]]) <class 'pandas.core.frame.DataFrame'> >>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 With a `slice` object. >>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 With a boolean mask the same length as the index. >>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 With a callable, useful in method chains. The `x` passed to the ``lambda`` is the DataFrame being sliced. This selects the rows whose index label even. >>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 **Indexing both axes** You can mix the indexer types for the index and columns. Use ``:`` to select the entire axis. With scalar integers. >>> df.iloc[0, 1] 2 With lists of integers. >>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000 With `slice` objects. >>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000 With a boolean array whose length matches the columns. >>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000 With a callable function that expects the Series or DataFrame. >>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000 """ return _iLocIndexer("iloc", self) @property def loc(self) -> "_LocIndexer": """ Access a group of rows and columns by label(s) or a boolean array. ``.loc[]`` is primarily label based, but may also be used with a boolean array. Allowed inputs are: - A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is interpreted as a *label* of the index, and **never** as an integer position along the index). - A list or array of labels, e.g. ``['a', 'b', 'c']``. - A slice object with labels, e.g. ``'a':'f'``. .. warning:: Note that contrary to usual python slices, **both** the start and the stop are included - A boolean array of the same length as the axis being sliced, e.g. ``[True, False, True]``. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above) See more at :ref:`Selection by Label <indexing.label>` Raises ------ KeyError If any items are not found. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.iloc : Access group of rows and columns by integer position(s). DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Series.loc : Access group of values using labels. Examples -------- **Getting values** >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 Single label. Note this returns the row as a Series. >>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64 List of labels. Note using ``[[]]`` returns a DataFrame. >>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 Single label for row and column >>> df.loc['cobra', 'shield'] 2 Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64 Boolean list with the same length as the row axis >>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series >>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series with column labels specified >>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7 Callable that returns a boolean Series >>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8 **Setting values** Set value for all items matching the list of labels >>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50 Set value for an entire row >>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50 Set value for an entire column >>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50 Set value for rows matching callable condition >>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0 **Getting values on a DataFrame with an index that has integer labels** Another example using integers for the index >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8 Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8 **Getting values with a MultiIndex** A number of examples using a DataFrame with a MultiIndex >>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Single label. Note this returns a DataFrame with a single index. >>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4 Single index tuple. Note this returns a Series. >>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64 Single label for row and column. Similar to passing in a tuple, this returns a Series. >>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64 Single tuple. Note using ``[[]]`` returns a DataFrame. >>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4 Single tuple for the index with a single label for the column >>> df.loc[('cobra', 'mark i'), 'shield'] 2 Slice from index tuple to single label >>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Slice from index tuple to index tuple >>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 """ return _LocIndexer("loc", self) @property def at(self) -> "_AtIndexer": """ Access a single value for a row/column label pair. Similar to ``loc``, in that both provide label-based lookups. Use ``at`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ KeyError If 'label' does not exist in DataFrame. See Also -------- DataFrame.iat : Access a single value for a row/column pair by integer position. DataFrame.loc : Access a group of rows and columns by label(s). Series.at : Access a single value using a label. Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30 Get value at specified row/column pair >>> df.at[4, 'B'] 2 Set value at specified row/column pair >>> df.at[4, 'B'] = 10 >>> df.at[4, 'B'] 10 Get value within a Series >>> df.loc[5].at['B'] 4 """ return _AtIndexer("at", self) @property def iat(self) -> "_iAtIndexer": """ Access a single value for a row/column pair by integer position. Similar to ``iloc``, in that both provide integer-based lookups. Use ``iat`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ IndexError When integer position is out of bounds. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.loc : Access a group of rows and columns by label(s). DataFrame.iloc : Access a group of rows and columns by integer position(s). Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30 Get value at specified row/column pair >>> df.iat[1, 2] 1 Set value at specified row/column pair >>> df.iat[1, 2] = 10 >>> df.iat[1, 2] 10 Get value within a series >>> df.loc[0].iat[1] 2 """ return _iAtIndexer("iat", self) class _LocationIndexer(_NDFrameIndexerBase): _valid_types: str axis = None def __call__(self, axis=None): # we need to return a copy of ourselves new_self = type(self)(self.name, self.obj) if axis is not None: axis = self.obj._get_axis_number(axis) new_self.axis = axis return new_self def _get_setitem_indexer(self, key): """ Convert a potentially-label-based key into a positional indexer. """ if self.name == "loc": self._ensure_listlike_indexer(key) if self.axis is not None: return self._convert_tuple(key, is_setter=True) ax = self.obj._get_axis(0) if isinstance(ax, ABCMultiIndex) and self.name != "iloc": try: return ax.get_loc(key) except (TypeError, KeyError, InvalidIndexError): # TypeError e.g. passed a bool pass if isinstance(key, tuple): try: return self._convert_tuple(key, is_setter=True) except IndexingError: pass if isinstance(key, range): return list(key) try: return self._convert_to_indexer(key, axis=0, is_setter=True) except TypeError as e: # invalid indexer type vs 'other' indexing errors if "cannot do" in str(e): raise elif "unhashable type" in str(e): raise raise IndexingError(key) from e def _ensure_listlike_indexer(self, key, axis=None): """ Ensure that a list-like of column labels are all present by adding them if they do not already exist. Parameters ---------- key : list-like of column labels Target labels. axis : key axis if known """ column_axis = 1 # column only exists in 2-dimensional DataFrame if self.ndim != 2: return if isinstance(key, tuple): # key may be a tuple if we are .loc # in that case, set key to the column part of key key = key[column_axis] axis = column_axis if ( axis == column_axis and not isinstance(self.obj.columns, ABCMultiIndex) and is_list_like_indexer(key) and not com.is_bool_indexer(key) and all(is_hashable(k) for k in key) ): for k in key: if k not in self.obj: self.obj[k] = np.nan def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: key = com.apply_if_callable(key, self.obj) indexer = self._get_setitem_indexer(key) self._has_valid_setitem_indexer(key) iloc = self if self.name == "iloc" else self.obj.iloc iloc._setitem_with_indexer(indexer, value) def _validate_key(self, key, axis: int): """ Ensure that key is valid for current indexer. Parameters ---------- key : scalar, slice or list-like Key requested. axis : int Dimension on which the indexing is being made. Raises ------ TypeError If the key (or some element of it) has wrong type. IndexError If the key (or some element of it) is out of bounds. KeyError If the key was not found. """ raise AbstractMethodError(self) def _has_valid_tuple(self, key: Tuple): """ Check the key for valid keys across my indexer. """ for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") try: self._validate_key(k, i) except ValueError as err: raise ValueError( "Location based indexing can only have " f"[{self._valid_types}] types" ) from err def _is_nested_tuple_indexer(self, tup: Tuple) -> bool: """ Returns ------- bool """ if any(isinstance(ax, ABCMultiIndex) for ax in self.obj.axes): return any(is_nested_tuple(tup, ax) for ax in self.obj.axes) return False def _convert_tuple(self, key, is_setter: bool = False): keyidx = [] if self.axis is not None: axis = self.obj._get_axis_number(self.axis) for i in range(self.ndim): if i == axis: keyidx.append( self._convert_to_indexer(key, axis=axis, is_setter=is_setter) ) else: keyidx.append(slice(None)) else: for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") idx = self._convert_to_indexer(k, axis=i, is_setter=is_setter) keyidx.append(idx) return tuple(keyidx) def _getitem_tuple_same_dim(self, tup: Tuple): """ Index with indexers that should return an object of the same dimension as self.obj. This is only called after a failed call to _getitem_lowerdim. """ retval = self.obj for i, key in enumerate(tup): if com.is_null_slice(key): continue retval = getattr(retval, self.name)._getitem_axis(key, axis=i) # We should never have retval.ndim < self.ndim, as that should # be handled by the _getitem_lowerdim call above. assert retval.ndim == self.ndim return retval def _getitem_lowerdim(self, tup: Tuple): # we can directly get the axis result since the axis is specified if self.axis is not None: axis = self.obj._get_axis_number(self.axis) return self._getitem_axis(tup, axis=axis) # we may have a nested tuples indexer here if self._is_nested_tuple_indexer(tup): return self._getitem_nested_tuple(tup) # we maybe be using a tuple to represent multiple dimensions here ax0 = self.obj._get_axis(0) # ...but iloc should handle the tuple as simple integer-location # instead of checking it as multiindex representation (GH 13797) if isinstance(ax0, ABCMultiIndex) and self.name != "iloc": try: result = self._handle_lowerdim_multi_index_axis0(tup) return result except IndexingError: pass if len(tup) > self.ndim: raise IndexingError("Too many indexers. handle elsewhere") for i, key in enumerate(tup): if is_label_like(key): # We don't need to check for tuples here because those are # caught by the _is_nested_tuple_indexer check above. section = self._getitem_axis(key, axis=i) # We should never have a scalar section here, because # _getitem_lowerdim is only called after a check for # is_scalar_access, which that would be. if section.ndim == self.ndim: # we're in the middle of slicing through a MultiIndex # revise the key wrt to `section` by inserting an _NS new_key = tup[:i] + (_NS,) + tup[i + 1 :] else: # Note: the section.ndim == self.ndim check above # rules out having DataFrame here, so we dont need to worry # about transposing. new_key = tup[:i] + tup[i + 1 :] if len(new_key) == 1: new_key = new_key[0] # Slices should return views, but calling iloc/loc with a null # slice returns a new object. if com.is_null_slice(new_key): return section # This is an elided recursive call to iloc/loc return getattr(section, self.name)[new_key] raise IndexingError("not applicable") def _getitem_nested_tuple(self, tup: Tuple): # we have a nested tuple so have at least 1 multi-index level # we should be able to match up the dimensionality here # we have too many indexers for our dim, but have at least 1 # multi-index dimension, try to see if we have something like # a tuple passed to a series with a multi-index if len(tup) > self.ndim: if self.name != "loc": # This should never be reached, but lets be explicit about it raise ValueError("Too many indices") try: result = self._handle_lowerdim_multi_index_axis0(tup) return result except IndexingError: pass # this is a series with a multi-index specified a tuple of # selectors axis = self.axis or 0 return self._getitem_axis(tup, axis=axis) # handle the multi-axis by taking sections and reducing # this is iterative obj = self.obj axis = 0 for key in tup: if com.is_null_slice(key): axis += 1 continue current_ndim = obj.ndim obj = getattr(obj, self.name)._getitem_axis(key, axis=axis) axis += 1 # if we have a scalar, we are done if is_scalar(obj) or not hasattr(obj, "ndim"): break # has the dim of the obj changed? # GH 7199 if obj.ndim < current_ndim: axis -= 1 return obj def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if type(key) is tuple: key = tuple(com.apply_if_callable(x, self.obj) for x in key) if self._is_scalar_access(key): try: return self.obj._get_value(*key, takeable=self._takeable) except (KeyError, IndexError, AttributeError): # AttributeError for IntervalTree get_value pass return self._getitem_tuple(key) else: # we by definition only have the 0th axis axis = self.axis or 0 maybe_callable = com.apply_if_callable(key, self.obj) return self._getitem_axis(maybe_callable, axis=axis) def _is_scalar_access(self, key: Tuple): raise NotImplementedError() def _getitem_tuple(self, tup: Tuple): raise AbstractMethodError(self) def _getitem_axis(self, key, axis: int): raise NotImplementedError() def _has_valid_setitem_indexer(self, indexer) -> bool: raise AbstractMethodError(self) def _getbool_axis(self, key, axis: int): # caller is responsible for ensuring non-None axis labels = self.obj._get_axis(axis) key = check_bool_indexer(labels, key) inds = key.nonzero()[0] return self.obj._take_with_is_copy(inds, axis=axis) @doc(IndexingMixin.loc) class _LocIndexer(_LocationIndexer): _takeable: bool = False _valid_types = ( "labels (MUST BE IN THE INDEX), slices of labels (BOTH " "endpoints included! Can be slices of integers if the " "index is integers), listlike of labels, boolean" ) # ------------------------------------------------------------------- # Key Checks @doc(_LocationIndexer._validate_key) def _validate_key(self, key, axis: int): # valid for a collection of labels (we check their presence later) # slice of labels (where start-end in labels) # slice of integers (only if in the labels) # boolean pass def _has_valid_setitem_indexer(self, indexer) -> bool: return True def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_scalar(k): return False ax = self.obj.axes[i] if isinstance(ax, ABCMultiIndex): return False if isinstance(k, str) and ax._supports_partial_string_indexing: # partial string indexing, df.loc['2000', 'A'] # should not be considered scalar return False if not ax.is_unique: return False return True # ------------------------------------------------------------------- # MultiIndex Handling def _multi_take_opportunity(self, tup: Tuple) -> bool: """ Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed, must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- bool Whether the current indexing, can be passed through `_multi_take`. """ if not all(is_list_like_indexer(x) for x in tup): return False # just too complicated if any(com.is_bool_indexer(x) for x in tup): return False return True def _multi_take(self, tup: Tuple): """ Create the indexers for the passed tuple of keys, and executes the take operation. This allows the take operation to be executed all at once, rather than once for each dimension. Improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- values: same type as the object being indexed """ # GH 836 d = { axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, self.obj._AXIS_ORDERS) } return self.obj._reindex_with_indexers(d, copy=True, allow_dups=True) # ------------------------------------------------------------------- def _getitem_iterable(self, key, axis: int): """ Index current object with an an iterable collection of keys. Parameters ---------- key : iterable Targeted labels. axis: int Dimension on which the indexing is being made. Raises ------ KeyError If no key was found. Will change in the future to raise if not all keys were found. Returns ------- scalar, DataFrame, or Series: indexed value(s). """ # we assume that not com.is_bool_indexer(key), as that is # handled before we get here. self._validate_key(key, axis) # A collection of keys keyarr, indexer = self._get_listlike_indexer(key, axis, raise_missing=False) return self.obj._reindex_with_indexers( {axis: [keyarr, indexer]}, copy=True, allow_dups=True ) def _getitem_tuple(self, tup: Tuple): try: return self._getitem_lowerdim(tup) except IndexingError: pass # no multi-index, so validate all of the indexers self._has_valid_tuple(tup) # ugly hack for GH #836 if self._multi_take_opportunity(tup): return self._multi_take(tup) return self._getitem_tuple_same_dim(tup) def _get_label(self, label, axis: int): # GH#5667 this will fail if the label is not present in the axis. return self.obj.xs(label, axis=axis) def _handle_lowerdim_multi_index_axis0(self, tup: Tuple): # we have an axis0 multi-index, handle or raise axis = self.axis or 0 try: # fast path for series or for tup devoid of slices return self._get_label(tup, axis=axis) except TypeError: # slices are unhashable pass except KeyError as ek: # raise KeyError if number of indexers match # else IndexingError will be raised if len(tup) <= self.obj.index.nlevels and len(tup) > self.ndim: raise ek raise IndexingError("No label returned") def _getitem_axis(self, key, axis: int): key = item_from_zerodim(key) if is_iterator(key): key = list(key) labels = self.obj._get_axis(axis) key = labels._get_partial_string_timestamp_match_key(key) if isinstance(key, slice): self._validate_key(key, axis) return self._get_slice_axis(key, axis=axis) elif com.is_bool_indexer(key): return self._getbool_axis(key, axis=axis) elif is_list_like_indexer(key): # an iterable multi-selection if not (isinstance(key, tuple) and isinstance(labels, ABCMultiIndex)): if hasattr(key, "ndim") and key.ndim > 1: raise ValueError("Cannot index with multidimensional key") return self._getitem_iterable(key, axis=axis) # nested tuple slicing if is_nested_tuple(key, labels): locs = labels.get_locs(key) indexer = [slice(None)] * self.ndim indexer[axis] = locs return self.obj.iloc[tuple(indexer)] # fall thru to straight lookup self._validate_key(key, axis) return self._get_label(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): """ This is pretty simple as we just have to deal with labels. """ # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels.slice_indexer( slice_obj.start, slice_obj.stop, slice_obj.step, kind="loc" ) if isinstance(indexer, slice): return self.obj._slice(indexer, axis=axis) else: # DatetimeIndex overrides Index.slice_indexer and may # return a DatetimeIndex instead of a slice object. return self.obj.take(indexer, axis=axis) def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): """ Convert indexing key into something we can use to do actual fancy indexing on a ndarray. Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing """ labels = self.obj._get_axis(axis) if isinstance(key, slice): return labels._convert_slice_indexer(key, kind="loc") # see if we are positional in nature is_int_index = labels.is_integer() is_int_positional = is_integer(key) and not is_int_index if is_scalar(key) or isinstance(labels, ABCMultiIndex): # Otherwise get_loc will raise InvalidIndexError # if we are a label return me try: return labels.get_loc(key) except LookupError: if isinstance(key, tuple) and isinstance(labels, ABCMultiIndex): if len(key) == labels.nlevels: return {"key": key} raise except InvalidIndexError: # GH35015, using datetime as column indices raises exception if not isinstance(labels, ABCMultiIndex): raise except TypeError: pass except ValueError: if not is_int_positional: raise # a positional if is_int_positional: # if we are setting and its not a valid location # its an insert which fails by definition # always valid return {"key": key} if is_nested_tuple(key, labels): return labels.get_locs(key) elif is_list_like_indexer(key): if com.is_bool_indexer(key): key = check_bool_indexer(labels, key) (inds,) = key.nonzero() return inds else: # When setting, missing keys are not allowed, even with .loc: return self._get_listlike_indexer(key, axis, raise_missing=True)[1] else: try: return labels.get_loc(key) except LookupError: # allow a not found key only if we are a setter if not is_list_like_indexer(key): return {"key": key} raise def _get_listlike_indexer(self, key, axis: int, raise_missing: bool = False): """ Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Targeted labels. axis: int Dimension on which the indexing is being made. raise_missing: bool, default False Whether to raise a KeyError if some labels were not found. Will be removed in the future, and then this method will always behave as if ``raise_missing=True``. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique). values : array-like Indexer for the return object, -1 denotes keys not found. """ ax = self.obj._get_axis(axis) # Have the index compute an indexer or return None # if it cannot handle: indexer, keyarr = ax._convert_listlike_indexer(key) # We only act on all found values: if indexer is not None and (indexer != -1).all(): self._validate_read_indexer( keyarr, indexer, axis, raise_missing=raise_missing ) return ax[indexer], indexer if ax.is_unique and not getattr(ax, "is_overlapping", False): indexer = ax.get_indexer_for(keyarr) keyarr = ax.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) self._validate_read_indexer(keyarr, indexer, axis, raise_missing=raise_missing) return keyarr, indexer def _validate_read_indexer( self, key, indexer, axis: int, raise_missing: bool = False ): """ Check that indexer can be used to return a result. e.g. at least one element was found, unless the list of keys was actually empty. Parameters ---------- key : list-like Targeted labels (only used to show correct error message). indexer: array-like of booleans Indices corresponding to the key, (with -1 indicating not found). axis: int Dimension on which the indexing is being made. raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. """ ax = self.obj._get_axis(axis) if len(key) == 0: return # Count missing values: missing_mask = indexer < 0 missing = (missing_mask).sum() if missing: if missing == len(indexer): axis_name = self.obj._get_axis_name(axis) raise KeyError(f"None of [{key}] are in the [{axis_name}]") # We (temporarily) allow for some missing keys with .loc, except in # some cases (e.g. setting) in which "raise_missing" will be False if raise_missing: not_found = list(set(key) - set(ax)) raise KeyError(f"{not_found} not in index") # we skip the warning on Categorical # as this check is actually done (check for # non-missing values), but a bit later in the # code, so we want to avoid warning & then # just raising if not ax.is_categorical(): not_found = key[missing_mask] with option_context("display.max_seq_items", 10, "display.width", 80): raise KeyError( "Passing list-likes to .loc or [] with any missing labels " "is no longer supported. " f"The following labels were missing: {not_found}. " "See https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike" # noqa:E501 ) @doc(IndexingMixin.iloc) class _iLocIndexer(_LocationIndexer): _valid_types = ( "integer, integer slice (START point is INCLUDED, END " "point is EXCLUDED), listlike of integers, boolean array" ) _takeable = True # ------------------------------------------------------------------- # Key Checks def _validate_key(self, key, axis: int): if com.is_bool_indexer(key): if hasattr(key, "index") and isinstance(key.index, Index): if key.index.inferred_type == "integer": raise NotImplementedError( "iLocation based boolean " "indexing on an integer type " "is not available" ) raise ValueError( "iLocation based boolean indexing cannot use " "an indexable as a mask" ) return if isinstance(key, slice): return elif is_integer(key): self._validate_integer(key, axis) elif isinstance(key, tuple): # a tuple should already have been caught by this point # so don't treat a tuple as a valid indexer raise IndexingError("Too many indexers") elif is_list_like_indexer(key): arr = np.array(key) len_axis = len(self.obj._get_axis(axis)) # check that the key has a numeric dtype if not is_numeric_dtype(arr.dtype): raise IndexError(f".iloc requires numeric indexers, got {arr}") # check that the key does not exceed the maximum size of the index if len(arr) and (arr.max() >= len_axis or arr.min() < -len_axis): raise IndexError("positional indexers are out-of-bounds") else: raise ValueError(f"Can only index by location with a [{self._valid_types}]") def _has_valid_setitem_indexer(self, indexer) -> bool: """ Validate that a positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally. Returns ------- bool """ if isinstance(indexer, dict): raise IndexError("iloc cannot enlarge its target object") else: if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) for ax, i in zip(self.obj.axes, indexer): if isinstance(i, slice): # should check the stop slice? pass elif is_list_like_indexer(i): # should check the elements? pass elif is_integer(i): if i >= len(ax): raise IndexError("iloc cannot enlarge its target object") elif isinstance(i, dict): raise IndexError("iloc cannot enlarge its target object") return True def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for k in key: if not is_integer(k): return False return True def _validate_integer(self, key: int, axis: int) -> None: """ Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position. axis : int Desired axis. Raises ------ IndexError If 'key' is not a valid position in axis 'axis'. """ len_axis = len(self.obj._get_axis(axis)) if key >= len_axis or key < -len_axis: raise IndexError("single positional indexer is out-of-bounds") # ------------------------------------------------------------------- def _getitem_tuple(self, tup: Tuple): self._has_valid_tuple(tup) try: return self._getitem_lowerdim(tup) except IndexingError: pass return self._getitem_tuple_same_dim(tup) def _get_list_axis(self, key, axis: int): """ Return Series values by list or array of integers. Parameters ---------- key : list-like positional indexer axis : int Returns ------- Series object Notes ----- `axis` can only be zero. """ try: return self.obj._take_with_is_copy(key, axis=axis) except IndexError as err: # re-raise with different error message raise IndexError("positional indexers are out-of-bounds") from err def _getitem_axis(self, key, axis: int): if isinstance(key, slice): return self._get_slice_axis(key, axis=axis) if isinstance(key, list): key = np.asarray(key) if com.is_bool_indexer(key): self._validate_key(key, axis) return self._getbool_axis(key, axis=axis) # a list of integers elif is_list_like_indexer(key): return self._get_list_axis(key, axis=axis) # a single integer else: key = item_from_zerodim(key) if not is_integer(key): raise TypeError("Cannot index by location index with a non-integer key") # validate the location self._validate_integer(key, axis) return self.obj._ixs(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) labels._validate_positional_slice(slice_obj) return self.obj._slice(slice_obj, axis=axis) def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): """ Much simpler as we only have to deal with our valid types. """ return key def _get_setitem_indexer(self, key): # GH#32257 Fall through to let numpy do validation return key # ------------------------------------------------------------------- def _setitem_with_indexer(self, indexer, value): """ _setitem_with_indexer is for setting values on a Series/DataFrame using positional indexers. If the relevant keys are not present, the Series/DataFrame may be expanded. This method is currently broken when dealing with non-unique Indexes, since it goes from positional indexers back to labels when calling BlockManager methods, see GH#12991, GH#22046, GH#15686. """ # also has the side effect of consolidating in-place from pandas import Series info_axis = self.obj._info_axis_number # maybe partial set take_split_path = self.obj._is_mixed_type # if there is only one block/type, still have to take split path # unless the block is one-dimensional or it can hold the value if not take_split_path and self.obj._mgr.blocks: (blk,) = self.obj._mgr.blocks if 1 < blk.ndim: # in case of dict, keys are indices val = list(value.values()) if isinstance(value, dict) else value take_split_path = not blk._can_hold_element(val) # if we have any multi-indexes that have non-trivial slices # (not null slices) then we must take the split path, xref # GH 10360, GH 27841 if isinstance(indexer, tuple) and len(indexer) == len(self.obj.axes): for i, ax in zip(indexer, self.obj.axes): if isinstance(ax, ABCMultiIndex) and not ( is_integer(i) or com.is_null_slice(i) ): take_split_path = True break if isinstance(indexer, tuple): nindexer = [] for i, idx in enumerate(indexer): if isinstance(idx, dict): # reindex the axis to the new value # and set inplace key, _ = convert_missing_indexer(idx) # if this is the items axes, then take the main missing # path first # this correctly sets the dtype and avoids cache issues # essentially this separates out the block that is needed # to possibly be modified if self.ndim > 1 and i == info_axis: # add the new item, and set the value # must have all defined axes if we have a scalar # or a list-like on the non-info axes if we have a # list-like len_non_info_axes = ( len(_ax) for _i, _ax in enumerate(self.obj.axes) if _i != i ) if any(not l for l in len_non_info_axes): if not is_list_like_indexer(value): raise ValueError( "cannot set a frame with no " "defined index and a scalar" ) self.obj[key] = value return # add a new item with the dtype setup self.obj[key] = _infer_fill_value(value) new_indexer = convert_from_missing_indexer_tuple( indexer, self.obj.axes ) self._setitem_with_indexer(new_indexer, value) return # reindex the axis # make sure to clear the cache because we are # just replacing the block manager here # so the object is the same index = self.obj._get_axis(i) labels = index.insert(len(index), key) self.obj._mgr = self.obj.reindex(labels, axis=i)._mgr self.obj._maybe_update_cacher(clear=True) self.obj._is_copy = None nindexer.append(labels.get_loc(key)) else: nindexer.append(idx) indexer = tuple(nindexer) else: indexer, missing = convert_missing_indexer(indexer) if missing: self._setitem_with_indexer_missing(indexer, value) return # set item_labels = self.obj._get_axis(info_axis) # align and set the values if take_split_path: # Above we only set take_split_path to True for 2D cases assert self.ndim == 2 assert info_axis == 1 if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) if isinstance(value, ABCSeries): value = self._align_series(indexer, value) info_idx = indexer[info_axis] if is_integer(info_idx): info_idx = [info_idx] labels = item_labels[info_idx] # Ensure we have something we can iterate over ilocs = info_idx if isinstance(info_idx, slice): ri = Index(range(len(self.obj.columns))) ilocs = ri[info_idx] plane_indexer = indexer[:1] lplane_indexer = length_of_indexer(plane_indexer[0], self.obj.index) # lplane_indexer gives the expected length of obj[indexer[0]] if len(labels) == 1: # We can operate on a single column # require that we are setting the right number of values that # we are indexing if is_list_like_indexer(value) and 0 != lplane_indexer != len(value): # Exclude zero-len for e.g. boolean masking that is all-false raise ValueError( "cannot set using a multi-index " "selection indexer with a different " "length than the value" ) pi = plane_indexer[0] if lplane_indexer == 1 else plane_indexer def isetter(loc, v): # positional setting on column loc ser = self.obj._ixs(loc, axis=1) # perform the equivalent of a setitem on the info axis # as we have a null slice or a slice with full bounds # which means essentially reassign to the columns of a # multi-dim object # GH6149 (null slice), GH10408 (full bounds) if isinstance(pi, tuple) and all( com.is_null_slice(idx) or com.is_full_slice(idx, len(self.obj)) for idx in pi ): ser = v else: # set the item, possibly having a dtype change ser = ser.copy() ser._mgr = ser._mgr.setitem(indexer=pi, value=v) ser._maybe_update_cacher(clear=True) # reset the sliced object if unique self.obj._iset_item(loc, ser) # we need an iterable, with a ndim of at least 1 # eg. don't pass through np.array(0) if is_list_like_indexer(value) and getattr(value, "ndim", 1) > 0: # we have an equal len Frame if isinstance(value, ABCDataFrame): sub_indexer = list(indexer) multiindex_indexer = isinstance(labels, ABCMultiIndex) # TODO: we are implicitly assuming value.columns is unique for loc in ilocs: item = item_labels[loc] if item in value: sub_indexer[info_axis] = item v = self._align_series( tuple(sub_indexer), value[item], multiindex_indexer ) else: v = np.nan isetter(loc, v) # we have an equal len ndarray/convertible to our labels # hasattr first, to avoid coercing to ndarray without reason. # But we may be relying on the ndarray coercion to check ndim. # Why not just convert to an ndarray earlier on if needed? elif np.ndim(value) == 2: # note that this coerces the dtype if we are mixed # GH 7551 value = np.array(value, dtype=object) if len(ilocs) != value.shape[1]: raise ValueError( "Must have equal len keys and value " "when setting with an ndarray" ) for i, loc in enumerate(ilocs): # setting with a list, re-coerces isetter(loc, value[:, i].tolist()) elif ( len(labels) == 1 and lplane_indexer == len(value) and not is_scalar(plane_indexer[0]) ): # we have an equal len list/ndarray # We only get here with len(labels) == len(ilocs) == 1 isetter(ilocs[0], value) elif lplane_indexer == 0 and len(value) == len(self.obj.index): # We get here in one case via .loc with a all-False mask pass else: # per-label values if len(ilocs) != len(value): raise ValueError( "Must have equal len keys and value " "when setting with an iterable" ) for loc, v in zip(ilocs, value): isetter(loc, v) else: # scalar value for loc in ilocs: isetter(loc, value) else: if isinstance(indexer, tuple): # if we are setting on the info axis ONLY # set using those methods to avoid block-splitting # logic here if ( len(indexer) > info_axis and is_integer(indexer[info_axis]) and all( com.is_null_slice(idx) for i, idx in enumerate(indexer) if i != info_axis ) and item_labels.is_unique ): self.obj[item_labels[indexer[info_axis]]] = value return indexer = maybe_convert_ix(*indexer) if isinstance(value, (ABCSeries, dict)): # TODO(EA): ExtensionBlock.setitem this causes issues with # setting for extensionarrays that store dicts. Need to decide # if it's worth supporting that. value = self._align_series(indexer, Series(value)) elif isinstance(value, ABCDataFrame): value = self._align_frame(indexer, value) # check for chained assignment self.obj._check_is_chained_assignment_possible() # actually do the set self.obj._consolidate_inplace() self.obj._mgr = self.obj._mgr.setitem(indexer=indexer, value=value) self.obj._maybe_update_cacher(clear=True) def _setitem_with_indexer_missing(self, indexer, value): """ Insert new row(s) or column(s) into the Series or DataFrame. """ from pandas import Series # reindex the axis to the new value # and set inplace if self.ndim == 1: index = self.obj.index new_index = index.insert(len(index), indexer) # we have a coerced indexer, e.g. a float # that matches in an Int64Index, so # we will not create a duplicate index, rather # index to that element # e.g. 0.0 -> 0 # GH#12246 if index.is_unique: new_indexer = index.get_indexer([new_index[-1]]) if (new_indexer != -1).any(): return self._setitem_with_indexer(new_indexer, value) # this preserves dtype of the value new_values = Series([value])._values if len(self.obj._values): # GH#22717 handle casting compatibility that np.concatenate # does incorrectly new_values = concat_compat([self.obj._values, new_values]) self.obj._mgr = self.obj._constructor( new_values, index=new_index, name=self.obj.name )._mgr self.obj._maybe_update_cacher(clear=True) elif self.ndim == 2: if not len(self.obj.columns): # no columns and scalar raise ValueError("cannot set a frame with no defined columns") if isinstance(value, ABCSeries): # append a Series value = value.reindex(index=self.obj.columns, copy=True) value.name = indexer elif isinstance(value, dict): value = Series( value, index=self.obj.columns, name=indexer, dtype=object ) else: # a list-list if is_list_like_indexer(value): # must have conforming columns if len(value) != len(self.obj.columns): raise ValueError("cannot set a row with mismatched columns") value = Series(value, index=self.obj.columns, name=indexer) self.obj._mgr = self.obj.append(value)._mgr self.obj._maybe_update_cacher(clear=True) def _align_series(self, indexer, ser: ABCSeries, multiindex_indexer: bool = False): """ Parameters ---------- indexer : tuple, slice, scalar Indexer used to get the locations that will be set to `ser`. ser : pd.Series Values to assign to the locations specified by `indexer`. multiindex_indexer : boolean, optional Defaults to False. Should be set to True if `indexer` was from a `pd.MultiIndex`, to avoid unnecessary broadcasting. Returns ------- `np.array` of `ser` broadcast to the appropriate shape for assignment to the locations selected by `indexer` """ if isinstance(indexer, (slice, np.ndarray, list, Index)): indexer = tuple([indexer]) if isinstance(indexer, tuple): # flatten np.ndarray indexers def ravel(i): return i.ravel() if isinstance(i, np.ndarray) else i indexer = tuple(map(ravel, indexer)) aligners = [not com.is_null_slice(idx) for idx in indexer] sum_aligners = sum(aligners) single_aligner = sum_aligners == 1 is_frame = self.ndim == 2 obj = self.obj # are we a single alignable value on a non-primary # dim (e.g. panel: 1,2, or frame: 0) ? # hence need to align to a single axis dimension # rather that find all valid dims # frame if is_frame: single_aligner = single_aligner and aligners[0] # we have a frame, with multiple indexers on both axes; and a # series, so need to broadcast (see GH5206) if sum_aligners == self.ndim and all(is_sequence(_) for _ in indexer): ser = ser.reindex(obj.axes[0][indexer[0]], copy=True)._values # single indexer if len(indexer) > 1 and not multiindex_indexer: len_indexer = len(indexer[1]) ser = np.tile(ser, len_indexer).reshape(len_indexer, -1).T return ser for i, idx in enumerate(indexer): ax = obj.axes[i] # multiple aligners (or null slices) if is_sequence(idx) or isinstance(idx, slice): if single_aligner and com.is_null_slice(idx): continue new_ix = ax[idx] if not is_list_like_indexer(new_ix): new_ix = Index([new_ix]) else: new_ix = Index(new_ix) if ser.index.equals(new_ix) or not len(new_ix): return ser._values.copy() return ser.reindex(new_ix)._values # 2 dims elif single_aligner: # reindex along index ax = self.obj.axes[1] if ser.index.equals(ax) or not len(ax): return ser._values.copy() return ser.reindex(ax)._values elif is_scalar(indexer): ax = self.obj._get_axis(1) if ser.index.equals(ax): return ser._values.copy() return ser.reindex(ax)._values raise ValueError("Incompatible indexer with Series") def _align_frame(self, indexer, df: ABCDataFrame): is_frame = self.ndim == 2 if isinstance(indexer, tuple): idx, cols = None, None sindexers = [] for i, ix in enumerate(indexer): ax = self.obj.axes[i] if is_sequence(ix) or isinstance(ix, slice): if isinstance(ix, np.ndarray): ix = ix.ravel() if idx is None: idx = ax[ix] elif cols is None: cols = ax[ix] else: break else: sindexers.append(i) if idx is not None and cols is not None: if df.index.equals(idx) and df.columns.equals(cols): val = df.copy()._values else: val = df.reindex(idx, columns=cols)._values return val elif (isinstance(indexer, slice) or is_list_like_indexer(indexer)) and is_frame: ax = self.obj.index[indexer] if df.index.equals(ax): val = df.copy()._values else: # we have a multi-index and are trying to align # with a particular, level GH3738 if ( isinstance(ax, ABCMultiIndex) and isinstance(df.index, ABCMultiIndex) and ax.nlevels != df.index.nlevels ): raise TypeError( "cannot align on a multi-index with out " "specifying the join levels" ) val = df.reindex(index=ax)._values return val raise ValueError("Incompatible indexer with DataFrame") class _ScalarAccessIndexer(_NDFrameIndexerBase): """ Access scalars quickly. """ def _convert_key(self, key, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if not isinstance(key, tuple): # we could have a convertible item here (e.g. Timestamp) if not is_list_like_indexer(key): key = tuple([key]) else: raise ValueError("Invalid call for scalar access (getting)!") key = self._convert_key(key) return self.obj._get_value(*key, takeable=self._takeable) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: # scalar callable may return tuple key = com.apply_if_callable(key, self.obj) if not isinstance(key, tuple): key = _tuplify(self.ndim, key) key = list(self._convert_key(key, is_setter=True)) if len(key) != self.ndim: raise ValueError("Not enough indexers for scalar access (setting)!") self.obj._set_value(*key, value=value, takeable=self._takeable) @doc(IndexingMixin.at) class _AtIndexer(_ScalarAccessIndexer): _takeable = False def _convert_key(self, key, is_setter: bool = False): """ Require they keys to be the same type as the index. (so we don't fallback) """ # GH 26989 # For series, unpacking key needs to result in the label. # This is already the case for len(key) == 1; e.g. (1,) if self.ndim == 1 and len(key) > 1: key = (key,) # allow arbitrary setting if is_setter: return list(key) return key @property def _axes_are_unique(self) -> bool: # Only relevant for self.ndim == 2 assert self.ndim == 2 return self.obj.index.is_unique and self.obj.columns.is_unique def __getitem__(self, key): if self.ndim == 2 and not self._axes_are_unique: # GH#33041 fall back to .loc if not isinstance(key, tuple) or not all(is_scalar(x) for x in key): raise ValueError("Invalid call for scalar access (getting)!") return self.obj.loc[key] return super().__getitem__(key) def __setitem__(self, key, value): if self.ndim == 2 and not self._axes_are_unique: # GH#33041 fall back to .loc if not isinstance(key, tuple) or not all(is_scalar(x) for x in key): raise ValueError("Invalid call for scalar access (setting)!") self.obj.loc[key] = value return return super().__setitem__(key, value) @doc(IndexingMixin.iat) class _iAtIndexer(_ScalarAccessIndexer): _takeable = True def _convert_key(self, key, is_setter: bool = False): """ Require integer args. (and convert to label arguments) """ for a, i in zip(self.obj.axes, key): if not is_integer(i): raise ValueError("iAt based indexing can only have integer indexers") return key def _tuplify(ndim: int, loc: Hashable) -> Tuple[Union[Hashable, slice], ...]: """ Given an indexer for the first dimension, create an equivalent tuple for indexing over all dimensions. Parameters ---------- ndim : int loc : object Returns ------- tuple """ _tup: List[Union[Hashable, slice]] _tup = [slice(None, None) for _ in range(ndim)] _tup[0] = loc return tuple(_tup) def convert_to_index_sliceable(obj: "DataFrame", key): """ If we are index sliceable, then return my slicer, otherwise return None. """ idx = obj.index if isinstance(key, slice): return idx._convert_slice_indexer(key, kind="getitem") elif isinstance(key, str): # we are an actual column if key in obj.columns: return None # We might have a datetimelike string that we can translate to a # slice here via partial string indexing if idx._supports_partial_string_indexing: try: return idx._get_string_slice(key) except (KeyError, ValueError, NotImplementedError): return None return None def check_bool_indexer(index: Index, key) -> np.ndarray: """ Check if key is a valid boolean indexer for an object with such index and perform reindexing or conversion if needed. This function assumes that is_bool_indexer(key) == True. Parameters ---------- index : Index Index of the object on which the indexing is done. key : list-like Boolean indexer to check. Returns ------- np.array Resulting key. Raises ------ IndexError If the key does not have the same length as index. IndexingError If the index of the key is unalignable to index. """ result = key if isinstance(key, ABCSeries) and not key.index.equals(index): result = result.reindex(index) mask = isna(result._values) if mask.any(): raise IndexingError( "Unalignable boolean Series provided as " "indexer (index of the boolean Series and of " "the indexed object do not match)." ) return result.astype(bool)._values if is_object_dtype(key): # key might be object-dtype bool, check_array_indexer needs bool array result = np.asarray(result, dtype=bool) elif not is_array_like(result): # GH 33924 # key may contain nan elements, check_array_indexer needs bool array result = pd_array(result, dtype=bool) return check_array_indexer(index, result) def convert_missing_indexer(indexer): """ Reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted """ if isinstance(indexer, dict): # a missing key (but not a tuple indexer) indexer = indexer["key"] if isinstance(indexer, bool): raise KeyError("cannot use a single bool to index into setitem") return indexer, True return indexer, False def convert_from_missing_indexer_tuple(indexer, axes): """ Create a filtered indexer that doesn't have any missing indexers. """ def get_indexer(_i, _idx): return axes[_i].get_loc(_idx["key"]) if isinstance(_idx, dict) else _idx return tuple(get_indexer(_i, _idx) for _i, _idx in enumerate(indexer)) def maybe_convert_ix(*args): """ We likely want to take the cross-product. """ ixify = True for arg in args: if not isinstance(arg, (np.ndarray, list, ABCSeries, Index)): ixify = False if ixify: return np.ix_(*args) else: return args def is_nested_tuple(tup, labels) -> bool: """ Returns ------- bool """ # check for a compatible nested tuple and multiindexes among the axes if not isinstance(tup, tuple): return False for k in tup: if is_list_like(k) or isinstance(k, slice): return isinstance(labels, ABCMultiIndex) return False def is_label_like(key) -> bool: """ Returns ------- bool """ # select a label or row return not isinstance(key, slice) and not is_list_like_indexer(key) def need_slice(obj) -> bool: """ Returns ------- bool """ return ( obj.start is not None or obj.stop is not None or (obj.step is not None and obj.step != 1) ) def _non_reducing_slice(slice_): """ Ensure that a slice doesn't reduce to a Series or Scalar. Any user-passed `subset` should have this called on it to make sure we're always working with DataFrames. """ # default to column slice, like DataFrame # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] kinds = (ABCSeries, np.ndarray, Index, list, str) if isinstance(slice_, kinds): slice_ = IndexSlice[:, slice_] def pred(part) -> bool: """ Returns ------- bool True if slice does *not* reduce, False if `part` is a tuple. """ # true when slice does *not* reduce, False when part is a tuple, # i.e. MultiIndex slice return (isinstance(part, slice) or is_list_like(part)) and not isinstance( part, tuple ) if not is_list_like(slice_): if not isinstance(slice_, slice): # a 1-d slice, like df.loc[1] slice_ = [[slice_]] else: # slice(a, b, c) slice_ = [slice_] # to tuplize later else: slice_ = [part if pred(part) else [part] for part in slice_] return tuple(slice_) def _maybe_numeric_slice(df, slice_, include_bool=False): """ Want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that. """ if slice_ is None: dtypes = [np.number] if include_bool: dtypes.append(bool) slice_ = IndexSlice[:, df.select_dtypes(include=dtypes).columns] return slice_
the-stack_106_21409
""" Custom TFX component for Firebase upload. Author: Chansung Park """ from tfx import types from tfx.dsl.component.experimental.decorators import component from tfx.dsl.component.experimental.annotations import Parameter from tfx import v1 as tfx from absl import logging import firebase_admin from firebase_admin import ml from firebase_admin import storage from firebase_admin import credentials from google.cloud import storage as gcs_storage @component def FirebasePublisher( pushed_model: tfx.dsl.components.InputArtifact[ tfx.types.standard_artifacts.PushedModel ], credential_uri: Parameter[str], firebase_dest_gcs_bucket: Parameter[str], model_display_name: Parameter[str], model_tag: Parameter[str], ) -> tfx.dsl.components.OutputDict(result=str): """ publish trained tflite model to Firebase ML, this component assumes that trained model and Firebase credential files are stored in GCS locations. Args: pushed_model: The URI of pushed model obtained from previous component (i.e. Pusher) credential_uri: The URI of Firebase credential. In order to get one, go to Firebase dashboard and on the Settings page, create a service account and download the service account key file. Keep this file safe, since it grants administrator access to your project. firebase_dest_gcs_bucket: GCS bucket where the model is going to be temporarily stored. In order to create one, go to Firebase dashboard and on the Storage page, enable Cloud Storage. Take note of your bucket name. model_display_name: The name to be appeared on Firebase ML dashboard model_tag: The tage name to be appeared on Firebase ML dashboard """ model_uri = f"{pushed_model.uri}/model.tflite" assert model_uri.split("://")[0] == "gs" assert credential_uri.split("://")[0] == "gs" # create gcs client instance gcs_client = gcs_storage.Client() # get credential for firebase credential_gcs_bucket = credential_uri.split("//")[1].split("/")[0] credential_blob_path = "/".join(credential_uri.split("//")[1].split("/")[1:]) bucket = gcs_client.bucket(credential_gcs_bucket) blob = bucket.blob(credential_blob_path) blob.download_to_filename("credential.json") logging.info(f"download credential.json from {credential_uri} is completed") # get tflite model file tflite_gcs_bucket = model_uri.split("//")[1].split("/")[0] tflite_blob_path = "/".join(model_uri.split("//")[1].split("/")[1:]) bucket = gcs_client.bucket(tflite_gcs_bucket) blob = bucket.blob(tflite_blob_path) blob.download_to_filename("model.tflite") logging.info(f"download model.tflite from {model_uri} is completed") firebase_admin.initialize_app( credentials.Certificate("credential.json"), options={"storageBucket": firebase_dest_gcs_bucket}, ) logging.info("firebase_admin initialize app is completed") model_list = ml.list_models(list_filter=f"display_name={model_display_name}") # update if len(model_list.models) > 0: # get the first match model model = model_list.models[0] source = ml.TFLiteGCSModelSource.from_tflite_model_file("model.tflite") model.model_format = ml.TFLiteFormat(model_source=source) updated_model = ml.update_model(model) ml.publish_model(updated_model.model_id) logging.info("model exists, so update it in FireBase ML") return {"result": "model updated"} # create else: # load a tflite file and upload it to Cloud Storage source = ml.TFLiteGCSModelSource.from_tflite_model_file("model.tflite") # create the model object tflite_format = ml.TFLiteFormat(model_source=source) model = ml.Model( display_name=model_display_name, tags=[model_tag], model_format=tflite_format, ) # Add the model to your Firebase project and publish it new_model = ml.create_model(model) ml.publish_model(new_model.model_id) logging.info("model doesn exists, so create one in FireBase ML") return {"result": "model created"}
the-stack_106_21410
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Class for bitcoind node under test""" import decimal import errno from enum import Enum import http.client import json import logging import os import re import subprocess import tempfile import time from .authproxy import JSONRPCException from .util import ( append_config, assert_equal, delete_cookie_file, get_rpc_proxy, rpc_url, wait_until, p2p_port, ) # For Python 3.4 compatibility JSONDecodeError = getattr(json, "JSONDecodeError", ValueError) BITCOIND_PROC_WAIT_TIMEOUT = 60 class FailedToStartError(Exception): """Raised when a node fails to start correctly.""" class ErrorMatch(Enum): FULL_TEXT = 1 FULL_REGEX = 2 PARTIAL_REGEX = 3 class TestNode(): """A class for representing a bitcoind node under test. This class contains: - state about the node (whether it's running, etc) - a Python subprocess.Popen object representing the running process - an RPC connection to the node - one or more P2P connections to the node To make things easier for the test writer, any unrecognised messages will be dispatched to the RPC connection.""" def __init__(self, i, datadir, rpchost, timewait, binary, stderr, mocktime, coverage_dir, extra_conf=None, extra_args=None, use_cli=False): self.index = i self.datadir = datadir self.rpchost = rpchost if timewait: self.rpc_timeout = timewait else: # Wait for up to 60 seconds for the RPC server to respond self.rpc_timeout = 60 if binary is None: self.binary = os.getenv("BITCOIND", "bitcoind") else: self.binary = binary self.stderr = stderr self.coverage_dir = coverage_dir if extra_conf != None: append_config(datadir, extra_conf) # Most callers will just need to add extra args to the standard list below. # For those callers that need more flexibility, they can just set the args property directly. # Note that common args are set in the config file (see initialize_datadir) self.extra_args = extra_args self.args = [ self.binary, "-datadir=" + self.datadir, "-logtimemicros", "-debug", "-debugexclude=libevent", "-debugexclude=leveldb", "-mocktime=" + str(mocktime), "-uacomment=testnode%d" % i, "-noprinttoconsole" ] self.cli = TestNodeCLI(os.getenv("BITCOINCLI", "bitcoin-cli"), self.datadir) self.use_cli = use_cli self.running = False self.process = None self.rpc_connected = False self.rpc = None self.url = None self.log = logging.getLogger('TestFramework.node%d' % i) self.cleanup_on_exit = True # Whether to kill the node when this object goes away self.p2ps = [] def __del__(self): # Ensure that we don't leave any bitcoind processes lying around after # the test ends if self.process and self.cleanup_on_exit: # Should only happen on test failure # Avoid using logger, as that may have already been shutdown when # this destructor is called. print("Cleaning up leftover process") self.process.kill() def __getattr__(self, name): """Dispatches any unrecognised messages to the RPC connection or a CLI instance.""" if self.use_cli: return getattr(self.cli, name) else: assert self.rpc_connected and self.rpc is not None, "Error: no RPC connection" return getattr(self.rpc, name) def start(self, extra_args=None, stderr=None, *args, **kwargs): """Start the node.""" if extra_args is None: extra_args = self.extra_args if stderr is None: stderr = self.stderr # Delete any existing cookie file -- if such a file exists (eg due to # unclean shutdown), it will get overwritten anyway by bitcoind, and # potentially interfere with our attempt to authenticate delete_cookie_file(self.datadir) self.process = subprocess.Popen(self.args + extra_args, stderr=stderr, *args, **kwargs) self.running = True self.log.debug("bitcoind started, waiting for RPC to come up") def wait_for_rpc_connection(self): """Sets up an RPC connection to the bitcoind process. Returns False if unable to connect.""" # Poll at a rate of four times per second poll_per_s = 4 for _ in range(poll_per_s * self.rpc_timeout): if self.process.poll() is not None: raise FailedToStartError('bitcoind exited with status {} during initialization'.format(self.process.returncode)) try: self.rpc = get_rpc_proxy(rpc_url(self.datadir, self.index, self.rpchost), self.index, timeout=self.rpc_timeout, coveragedir=self.coverage_dir) self.rpc.getblockcount() # If the call to getblockcount() succeeds then the RPC connection is up self.rpc_connected = True self.url = self.rpc.url self.log.debug("RPC successfully started") return except IOError as e: if e.errno != errno.ECONNREFUSED: # Port not yet open? raise # unknown IO error except JSONRPCException as e: # Initialization phase if e.error['code'] != -28: # RPC in warmup? raise # unknown JSON RPC exception except ValueError as e: # cookie file not found and no rpcuser or rpcassword. bitcoind still starting if "No RPC credentials" not in str(e): raise time.sleep(1.0 / poll_per_s) raise AssertionError("Unable to connect to bitcoind") def get_wallet_rpc(self, wallet_name): if self.use_cli: return self.cli("-rpcwallet={}".format(wallet_name)) else: assert self.rpc_connected assert self.rpc wallet_path = "wallet/%s" % wallet_name return self.rpc / wallet_path def stop_node(self): """Stop the node.""" if not self.running: return self.log.debug("Stopping node") try: self.stop() except http.client.CannotSendRequest: self.log.exception("Unable to stop node.") del self.p2ps[:] def is_node_stopped(self): """Checks whether the node has stopped. Returns True if the node has stopped. False otherwise. This method is responsible for freeing resources (self.process).""" if not self.running: return True return_code = self.process.poll() if return_code is None: return False # process has stopped. Assert that it didn't return an error code. assert_equal(return_code, 0) self.running = False self.process = None self.rpc_connected = False self.rpc = None self.log.debug("Node stopped") return True def wait_until_stopped(self, timeout=BITCOIND_PROC_WAIT_TIMEOUT): wait_until(self.is_node_stopped, timeout=timeout) def assert_start_raises_init_error(self, extra_args=None, expected_msg=None, match=ErrorMatch.FULL_TEXT, *args, **kwargs): """Attempt to start the node and expect it to raise an error. extra_args: extra arguments to pass through to bitcoind expected_msg: regex that stderr should match when bitcoind fails Will throw if bitcoind starts without an error. Will throw if an expected_msg is provided and it does not match bitcoind's stdout.""" with tempfile.SpooledTemporaryFile(max_size=2**16) as log_stderr: try: self.start(extra_args, stderr=log_stderr, *args, **kwargs) self.wait_for_rpc_connection() self.stop_node() self.wait_until_stopped() except FailedToStartError as e: self.log.debug('bitcoind failed to start: %s', e) self.running = False self.process = None # Check stderr for expected message if expected_msg is not None: log_stderr.seek(0) stderr = log_stderr.read().decode('utf-8').strip() if match == ErrorMatch.PARTIAL_REGEX: if re.search(expected_msg, stderr, flags=re.MULTILINE) is None: raise AssertionError('Expected message "{}" does not partially match stderr:\n"{}"'.format(expected_msg, stderr)) elif match == ErrorMatch.FULL_REGEX: if re.fullmatch(expected_msg, stderr) is None: raise AssertionError('Expected message "{}" does not fully match stderr:\n"{}"'.format(expected_msg, stderr)) elif match == ErrorMatch.FULL_TEXT: if expected_msg != stderr: raise AssertionError('Expected message "{}" does not fully match stderr:\n"{}"'.format(expected_msg, stderr)) else: if expected_msg is None: assert_msg = "bitcoind should have exited with an error" else: assert_msg = "bitcoind should have exited with expected error " + expected_msg raise AssertionError(assert_msg) def node_encrypt_wallet(self, passphrase): """"Encrypts the wallet. This causes bitcoind to shutdown, so this method takes care of cleaning up resources.""" self.encryptwallet(passphrase) self.wait_until_stopped() def add_p2p_connection(self, p2p_conn, *args, **kwargs): """Add a p2p connection to the node. This method adds the p2p connection to the self.p2ps list and also returns the connection to the caller.""" if 'dstport' not in kwargs: kwargs['dstport'] = p2p_port(self.index) if 'dstaddr' not in kwargs: kwargs['dstaddr'] = '127.0.0.1' p2p_conn.peer_connect(*args, **kwargs) self.p2ps.append(p2p_conn) return p2p_conn @property def p2p(self): """Return the first p2p connection Convenience property - most tests only use a single p2p connection to each node, so this saves having to write node.p2ps[0] many times.""" assert self.p2ps, "No p2p connection" return self.p2ps[0] def disconnect_p2ps(self): """Close all p2p connections to the node.""" for p in self.p2ps: p.peer_disconnect() del self.p2ps[:] class TestNodeCLIAttr: def __init__(self, cli, command): self.cli = cli self.command = command def __call__(self, *args, **kwargs): return self.cli.send_cli(self.command, *args, **kwargs) def get_request(self, *args, **kwargs): return lambda: self(*args, **kwargs) class TestNodeCLI(): """Interface to bitcoin-cli for an individual node""" def __init__(self, binary, datadir): self.options = [] self.binary = binary self.datadir = datadir self.input = None self.log = logging.getLogger('TestFramework.bitcoincli') def __call__(self, *options, input=None): # TestNodeCLI is callable with bitcoin-cli command-line options cli = TestNodeCLI(self.binary, self.datadir) cli.options = [str(o) for o in options] cli.input = input return cli def __getattr__(self, command): return TestNodeCLIAttr(self, command) def batch(self, requests): results = [] for request in requests: try: results.append(dict(result=request())) except JSONRPCException as e: results.append(dict(error=e)) return results def send_cli(self, command=None, *args, **kwargs): """Run bitcoin-cli command. Deserializes returned string as python object.""" pos_args = [str(arg) for arg in args] named_args = [str(key) + "=" + str(value) for (key, value) in kwargs.items()] assert not (pos_args and named_args), "Cannot use positional arguments and named arguments in the same bitcoin-cli call" p_args = [self.binary, "-datadir=" + self.datadir] + self.options if named_args: p_args += ["-named"] if command is not None: p_args += [command] p_args += pos_args + named_args self.log.debug("Running bitcoin-cli command: %s" % command) process = subprocess.Popen(p_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) cli_stdout, cli_stderr = process.communicate(input=self.input) returncode = process.poll() if returncode: match = re.match(r'error code: ([-0-9]+)\nerror message:\n(.*)', cli_stderr) if match: code, message = match.groups() raise JSONRPCException(dict(code=int(code), message=message)) # Ignore cli_stdout, raise with cli_stderr raise subprocess.CalledProcessError(returncode, self.binary, output=cli_stderr) try: return json.loads(cli_stdout, parse_float=decimal.Decimal) except JSONDecodeError: return cli_stdout.rstrip("\n")
the-stack_106_21412
import os import logging import unittest from unittest import mock from unittest.mock import patch from unittest.mock import mock_open from myredditdl.config_handler import ConfigHandler from tests.mock_utils import get_new_client from tests.mock_utils import get_dir_path from tests.mock_utils import get_valid_options class TestConfigHandler(unittest.TestCase): MOCK_FILE = get_dir_path() VALID_OPTIONS = get_valid_options() def setUp(self): self.cfg = ConfigHandler() logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_available_reddit_clients(self): sections = ['DEFAULTS', 'USERS', 'EMPTY_CLIENT', 'FIRST', 'SECOND'] with patch.object(ConfigHandler, 'get_config_sections', return_value=sections): self.assertEqual( self.cfg.get_available_reddit_clients(), [ 'FIRST', 'SECOND']) @mock.patch('builtins.open', new_callable=mock_open()) @mock.patch('myredditdl.config_handler.ConfigHandler.get_config_path') @mock.patch('myredditdl.config_handler.ConfigHandler.get_client_active_section') def test_add_client(self, client, cfg_path, mock_open): client.return_value = 'EMPTY_CLIENT' cfg_path.return_value = self.MOCK_FILE self.assertFalse(self.cfg.add_client(get_new_client('EMPTY_CLIENT'))) self.assertTrue(self.cfg.add_client(get_new_client('NEW_USER'))) @mock.patch('builtins.open', new_callable=mock_open()) @mock.patch('myredditdl.config_handler.ConfigHandler.get_config_path') @mock.patch('myredditdl.config_handler.ConfigHandler.get_client_active_section') def test_set_new_current_user(self, client, cfg_path, mock_open): client.return_value = 'EMPTY_CLIENT' cfg_path.return_value = self.MOCK_FILE self.assertFalse(self.cfg.set_new_current_user('EMPTY_CLIENT')) self.assertFalse(self.cfg.set_new_current_user('EMPTY_CLIENT')) self.assertTrue(self.cfg.set_new_current_user('new_user')) @mock.patch('myredditdl.config_handler.ConfigHandler.get_valid_prefix_options') @mock.patch('myredditdl.config_handler.ConfigHandler.get_prefix') def test_set_prefix_option(self, mock_prefix, mock_options): mock_prefix.return_value = 'subreddit_name' mock_options.return_value = self.VALID_OPTIONS self.assertFalse(self.cfg.set_prefix_option('subreddit_name')) self.assertTrue(self.cfg.set_prefix_option('username')) self.assertTrue(self.cfg.set_prefix_option('username_subreddit')) self.assertFalse(self.cfg.set_prefix_option('sub_name')) def test_default_media_path(self): home = os.path.expanduser('~/Pictures/') with patch.object(ConfigHandler, 'get_client_active_section', return_value='SATORU'): self.assertEqual( self.cfg.get_default_media_path(), home + 'SATORU_reddit' + os.sep) if __name__ == '__main__': unittest.main()
the-stack_106_21413
import torch as t import torch.nn as nn import torch.nn.functional as F ################################# # ## TOY NETWORK FOR 2D DATA ## # ################################# class ToyNet(nn.Module): def __init__(self, dim=2, n_f=32, leak=0.05): super(ToyNet, self).__init__() self.f = nn.Sequential( nn.Conv2d(dim, n_f, 1, 1, 0), nn.LeakyReLU(leak), nn.Conv2d(n_f, n_f * 2, 1, 1, 0), nn.LeakyReLU(leak), nn.Conv2d(n_f * 2, n_f * 2, 1, 1, 0), nn.LeakyReLU(leak), nn.Conv2d(n_f * 2, n_f * 2, 1, 1, 0), nn.LeakyReLU(leak), nn.Conv2d(n_f * 2, 1, 1, 1, 0)) def forward(self, x): return self.f(x).squeeze() ######################### # ## VANILLA CONVNET ## # ######################### class VanillaNet(nn.Module): def __init__(self, n_c=3, n_f=32, leak=0.05): super(VanillaNet, self).__init__() self.f = nn.Sequential( nn.Conv2d(n_c, n_f, 3, 1, 1), nn.LeakyReLU(leak), nn.Conv2d(n_f, n_f * 2, 4, 2, 1), nn.LeakyReLU(leak), nn.Conv2d(n_f*2, n_f*4, 4, 2, 1), nn.LeakyReLU(leak), nn.Conv2d(n_f*4, n_f*8, 4, 2, 1), nn.LeakyReLU(leak), nn.Conv2d(n_f*8, 1, 4, 1, 0)) def forward(self, x): return self.f(x).squeeze() ###################### # ## NONLOCAL NET ## # ###################### # implementation with minor changes from https://github.com/AlexHex7/Non-local_pytorch # Original Version: Copyright (c) 2018 AlexHex7 class NonlocalNet(nn.Module): def __init__(self, n_c=3, n_f=32, leak=0.05): super(NonlocalNet, self).__init__() self.convs = nn.Sequential( nn.Conv2d(in_channels=n_c, out_channels=n_f, kernel_size=3, stride=1, padding=1), nn.LeakyReLU(negative_slope=leak), nn.MaxPool2d(2), NonLocalBlock(in_channels=n_f), nn.Conv2d(in_channels=n_f, out_channels=n_f * 2, kernel_size=3, stride=1, padding=1), nn.LeakyReLU(negative_slope=leak), nn.MaxPool2d(2), NonLocalBlock(in_channels=n_f * 2), nn.Conv2d(in_channels=n_f * 2, out_channels=n_f * 4, kernel_size=3, stride=1, padding=1), nn.LeakyReLU(negative_slope=leak), nn.MaxPool2d(2) ) self.fc = nn.Sequential( nn.Linear(in_features=(n_f * 4) * 4 * 4, out_features=n_f * 8), nn.LeakyReLU(negative_slope=leak), nn.Linear(in_features=n_f * 8, out_features=1) ) def forward(self, x): conv_out = self.convs(x).view(x.shape[0], -1) return self.fc(conv_out).squeeze() # structure of non-local block (from Non-Local Neural Networks https://arxiv.org/abs/1711.07971) class NonLocalBlock(nn.Module): def __init__(self, in_channels, sub_sample=True): super(NonLocalBlock, self).__init__() self.in_channels = in_channels self.inter_channels = max(1, in_channels // 2) self.g = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0) self.W = nn.Conv2d(in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1, stride=1, padding=0) nn.init.constant_(self.W.weight, 0) nn.init.constant_(self.W.bias, 0) self.theta = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0) self.phi = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0) if sub_sample: self.g = nn.Sequential(self.g, nn.MaxPool2d(kernel_size=(2, 2))) self.phi = nn.Sequential(self.phi, nn.MaxPool2d(kernel_size=(2, 2))) def forward(self, x): batch_size = x.size(0) g_x = self.g(x).view(batch_size, self.inter_channels, -1) g_x = g_x.permute(0, 2, 1) theta_x = self.theta(x).view(batch_size, self.inter_channels, -1) theta_x = theta_x.permute(0, 2, 1) phi_x = self.phi(x).view(batch_size, self.inter_channels, -1) f = t.matmul(theta_x, phi_x) f_div_c = F.softmax(f, dim=-1) y = t.matmul(f_div_c, g_x) y = y.permute(0, 2, 1).contiguous() y = y.view(batch_size, self.inter_channels, *x.size()[2:]) w_y = self.W(y) z = w_y + x return z
the-stack_106_21417
from __future__ import print_function, division import os import time import pwd import datetime import collections import pprint import math import array import json import copy import argparse import uuid import pdb import numpy as np import ROOT ROOT.PyConfig.IgnoreCommandLineOptions = True ROOT.gROOT.SetBatch(True) def main(analysisDirectory, era, variable, verbose=False): categoriesOfInterest = ['HT500_nMediumDeepJetB2_nJet4', 'HT500_nMediumDeepJetB2_nJet5', 'HT500_nMediumDeepJetB2_nJet6', 'HT500_nMediumDeepJetB2_nJet7', 'HT500_nMediumDeepJetB2_nJet8+', 'HT500_nMediumDeepJetB3_nJet4', 'HT500_nMediumDeepJetB3_nJet5', 'HT500_nMediumDeepJetB3_nJet6', 'HT500_nMediumDeepJetB3_nJet7', 'HT500_nMediumDeepJetB3_nJet8+', 'HT500_nMediumDeepJetB4+_nJet4', 'HT500_nMediumDeepJetB4+_nJet5', 'HT500_nMediumDeepJetB4+_nJet6', 'HT500_nMediumDeepJetB4+_nJet7', 'HT500_nMediumDeepJetB4+_nJet8+', ] histogramFile = "$ADIR/Combine/All/$ERA___Combined.root".replace("$ADIR", analysisDir).replace("$ERA", era).replace("//", "/") f = ROOT.TFile.Open(histogramFile, "read") keys = [k.GetName() for k in f.GetListOfKeys()] if len(keys[0].split("___")) == 7: #format post-fill-(histograms/combine) eras = sorted(list(set([k.split("___")[0] for k in keys]))) samples = sorted(list(set([k.split("___")[1] for k in keys]))) channels = sorted(list(set([k.split("___")[2] for k in keys]))) channelWindows = list(set(["___".join(k.split("___")[2:4]) for k in keys])) categories = sorted(sorted(list(set([k.split("___")[4] for k in keys])), key=lambda j : j.split("nJet")[-1]), key=lambda j: j.split("nMediumDeep")[-1]) variables = list(set([k.split("___")[5] for k in keys])) systematics = list(set([k.split("___")[6] for k in keys])) else: raise RuntimeError("Unhandled histogram key format: length: {} key: {}".format(len(keys[0].split("___")), keys[0])) supportedTypes = (ROOT.TH1, ROOT.TH2, ROOT.TH3) if verbose: print("Eras: {}".format(eras)) print("Samples: {}".format(samples)) print("Channels: {}".format(channels)) print("Channel + Z Windows: {}".format(channelWindows)) print("Categories: {}".format(categories)) print("Variables: {}".format(variables)) print("Systematics: {}".format(systematics)) merge = dict() for mera in eras: merge[mera] = dict() for msample in samples: merge[mera][msample] = dict() for mvariable in variables: if mvariable not in [variable, variable + "Unweighted"]: continue merge[mera][msample][mvariable] = dict() for msyst in systematics: merge[mera][msample][mvariable][msyst] = dict() for mcategory in ["nMediumDeepJetB2", "nMediumDeepJetB3", "nMediumDeepJetB4+"]: merge[mera][msample][mvariable][msyst][mcategory] = [] for key in keys: mera, msample, mchannel, mwindow, mcategory, mvariable, msyst = key.split("___") if mvariable not in [variable, variable + "Unweighted"] or mera != era: continue mcat = mcategory.split("_")[-2].replace("BLIND", "") merge[mera][msample][mvariable][msyst][mcat].append(key) outputHistogramFile = histogramFile.replace("Combined", "").replace(".root", "MergedChannelsJets_" + variable + ".root") print("Opening {}".format(outputHistogramFile)) of = ROOT.TFile.Open(outputHistogramFile, "recreate") of.cd() for mera, submerge in merge.items(): for msample, subsubmerge in submerge.items(): print("Writing results for {}".format(msample)) for mvariable, subsubsubmerge in subsubmerge.items(): for msyst, subsubsubsubmerge in subsubsubmerge.items(): print("*", end="") for mcat, subsubsubsubsubmerge in subsubsubsubmerge.items(): mergeName = "___".join([mera, msample, "All", "ZWindow", "MergedChannelsJets_" + mcat, mvariable, msyst]) hist = None blind = len([hk for hk in subsubsubsubsubmerge if "blind" in hk.lower()]) > 0 for histKey in subsubsubsubsubmerge: rootobj = f.Get(histKey) if isinstance(rootobj, supportedTypes): if hist is None: hist = rootobj.Clone(mergeName) else: hist.Add(rootobj) if blind: for bin in range(hist.GetNbinsX() + 2): hist.SetBinContent(bin, 0) hist.SetBinError(bin, 0) if hist is not None: pass # hist.Write() print("") f.Close() of.Close() print("Done") if __name__ == '__main__': parser = argparse.ArgumentParser(description='Merge Jet categories and decay channels for the purpose of btag-dependent systematic studies') parser.add_argument('--analysisDirectory', dest='analysisDirectory', action='store', type=str, default="/eos/user/$U/$USER/analysis/$DATE", required=True, help='output directory path defaulting to "."') parser.add_argument('--era', dest='era', type=str, default="2017", required=True, help='era for plotting, which deduces the lumi only for now') parser.add_argument('--variable', dest='variable', type=str, default="HT", required=True, help='Variable to be merged across channels and BTag categories') parser.add_argument('--verbose', dest='verbose', action='store_true', help='Enable more verbose output during actions') #Parse the arguments args = parser.parse_args() uname = pwd.getpwuid(os.getuid()).pw_name uinitial = uname[0] dateToday = datetime.date.today().strftime("%b-%d-%Y") analysisDir = args.analysisDirectory.replace("$USER", uname).replace("$U", uinitial).replace("$DATE", dateToday) verbose = args.verbose main(analysisDir, era=args.era, variable=args.variable, verbose=verbose)
the-stack_106_21420
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Yahoo! Finance market data downloader (+fix for Pandas Datareader) # https://github.com/ranaroussi/yfinance # # Copyright 2017-2019 Ran Aroussi # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import time as _time import datetime as _datetime import requests as _requests import pandas as _pd import numpy as _np try: from urllib.parse import quote as urlencode except ImportError: from urllib import quote as urlencode from . import utils # import json as _json # import re as _re # import sys as _sys from . import shared class TickerBase(): def __init__(self, ticker): self.ticker = ticker.upper() self._history = None self._base_url = 'https://query1.finance.yahoo.com' self._scrape_url = 'https://finance.yahoo.com/quote' self._fundamentals = False self._info = None self._sustainability = None self._recommendations = None self._major_holders = None self._institutional_holders = None self._mutualfund_holders = None self._isin = None self._calendar = None self._expirations = {} self._earnings = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} self._financials = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} self._balancesheet = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} self._cashflow = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} def history(self, period="1mo", interval="1d", start=None, end=None, prepost=False, actions=True, auto_adjust=True, back_adjust=False, proxy=None, rounding=False, tz=None, **kwargs): """ :Parameters: period : str Valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max Either Use period parameter or use start and end interval : str Valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo Intraday data cannot extend last 60 days start: str Download start date string (YYYY-MM-DD) or _datetime. Default is 1900-01-01 end: str Download end date string (YYYY-MM-DD) or _datetime. Default is now prepost : bool Include Pre and Post market data in results? Default is False auto_adjust: bool Adjust all OHLC automatically? Default is True back_adjust: bool Back-adjusted data to mimic true historical prices proxy: str Optional. Proxy server URL scheme. Default is None rounding: bool Round values to 2 decimal places? Optional. Default is False = precision suggested by Yahoo! tz: str Optional timezone locale for dates. (default data is returned as non-localized dates) **kwargs: dict debug: bool Optional. If passed as False, will suppress error message printing to console. """ if start or period is None or period.lower() == "max": if start is None: start = -2208988800 elif isinstance(start, _datetime.datetime): start = int(_time.mktime(start.timetuple())) else: start = int(_time.mktime( _time.strptime(str(start), '%Y-%m-%d'))) if end is None: end = int(_time.time()) elif isinstance(end, _datetime.datetime): end = int(_time.mktime(end.timetuple())) else: end = int(_time.mktime(_time.strptime(str(end), '%Y-%m-%d'))) params = {"period1": start, "period2": end} else: period = period.lower() params = {"range": period} params["interval"] = interval.lower() params["includePrePost"] = prepost params["events"] = "div,splits" # 1) fix weired bug with Yahoo! - returning 60m for 30m bars if params["interval"] == "30m": params["interval"] = "15m" # setup proxy in requests format if proxy is not None: if isinstance(proxy, dict) and "https" in proxy: proxy = proxy["https"] proxy = {"https": proxy} # Getting data from json url = "{}/v8/finance/chart/{}".format(self._base_url, self.ticker) data = _requests.get(url=url, params=params, proxies=proxy) if "Will be right back" in data.text: raise RuntimeError("*** YAHOO! FINANCE IS CURRENTLY DOWN! ***\n" "Our engineers are working quickly to resolve " "the issue. Thank you for your patience.") data = data.json() # Work with errors debug_mode = True if "debug" in kwargs and isinstance(kwargs["debug"], bool): debug_mode = kwargs["debug"] err_msg = "No data found for this date range, symbol may be delisted" if "chart" in data and data["chart"]["error"]: err_msg = data["chart"]["error"]["description"] shared._DFS[self.ticker] = utils.empty_df() shared._ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared._DFS[self.ticker] elif "chart" not in data or data["chart"]["result"] is None or \ not data["chart"]["result"]: shared._DFS[self.ticker] = utils.empty_df() shared._ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared._DFS[self.ticker] # parse quotes try: quotes = utils.parse_quotes(data["chart"]["result"][0], tz) except Exception: shared._DFS[self.ticker] = utils.empty_df() shared._ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared._DFS[self.ticker] # 2) fix weired bug with Yahoo! - returning 60m for 30m bars if interval.lower() == "30m": quotes2 = quotes.resample('30T') quotes = _pd.DataFrame(index=quotes2.last().index, data={ 'Open': quotes2['Open'].first(), 'High': quotes2['High'].max(), 'Low': quotes2['Low'].min(), 'Close': quotes2['Close'].last(), 'Adj Close': quotes2['Adj Close'].last(), 'Volume': quotes2['Volume'].sum() }) try: quotes['Dividends'] = quotes2['Dividends'].max() except Exception: pass try: quotes['Stock Splits'] = quotes2['Dividends'].max() except Exception: pass if auto_adjust: quotes = utils.auto_adjust(quotes) elif back_adjust: quotes = utils.back_adjust(quotes) if rounding: quotes = _np.round(quotes, data[ "chart"]["result"][0]["meta"]["priceHint"]) quotes['Volume'] = quotes['Volume'].fillna(0).astype(_np.int64) quotes.dropna(inplace=True) # actions dividends, splits = utils.parse_actions(data["chart"]["result"][0], tz) # combine df = _pd.concat([quotes, dividends, splits], axis=1, sort=True) df["Dividends"].fillna(0, inplace=True) df["Stock Splits"].fillna(0, inplace=True) # index eod/intraday df.index = df.index.tz_localize("UTC").tz_convert( data["chart"]["result"][0]["meta"]["exchangeTimezoneName"]) if params["interval"][-1] == "m": df.index.name = "Datetime" else: df.index = _pd.to_datetime(df.index.date) if tz is not None: df.index = df.index.tz_localize(tz) df.index.name = "Date" self._history = df.copy() if not actions: df.drop(columns=["Dividends", "Stock Splits"], inplace=True) return df # ------------------------ def _get_fundamentals(self, kind=None, proxy=None): def cleanup(data): df = _pd.DataFrame(data) if 'maxAge' in df: df = df.drop(columns=['maxAge']) for col in df.columns: df[col] = _np.where( df[col].astype(str) == '-', _np.nan, df[col]) if 'endDate' in df: df.set_index('endDate', inplace=True) try: df.index = _pd.to_datetime(df.index, unit='s') except ValueError: df.index = _pd.to_datetime(df.index) df = df.T df.columns.name = '' df.index.name = 'Breakdown' df.index = utils.camel2title(df.index) return df # setup proxy in requests format if proxy is not None: if isinstance(proxy, dict) and "https" in proxy: proxy = proxy["https"] proxy = {"https": proxy} if self._fundamentals: return # get info and sustainability url = '%s/%s' % (self._scrape_url, self.ticker) data = utils.get_json(url, proxy) # holders url = "{}/{}".format(self._scrape_url, self.ticker) holders = _pd.read_html(url+'/holders') if len(holders)>=3: self._major_holders = holders[0] self._institutional_holders = holders[1] self._mutualfund_holders = holders[2] elif len(holders)>=2: self._major_holders = holders[0] self._institutional_holders = holders[1] else: self._major_holders = holders[0] #self._major_holders = holders[0] #self._institutional_holders = holders[1] if self._institutional_holders is not None: if 'Date Reported' in self._institutional_holders: self._institutional_holders['Date Reported'] = _pd.to_datetime( self._institutional_holders['Date Reported']) if '% Out' in self._institutional_holders: self._institutional_holders['% Out'] = self._institutional_holders[ '% Out'].str.replace('%', '').astype(float)/100 if self._mutualfund_holders is not None: if 'Date Reported' in self._mutualfund_holders: self._mutualfund_holders['Date Reported'] = _pd.to_datetime( self._mutualfund_holders['Date Reported']) if '% Out' in self._mutualfund_holders: self._mutualfund_holders['% Out'] = self._mutualfund_holders[ '% Out'].str.replace('%', '').astype(float)/100 # sustainability d = {} if isinstance(data.get('esgScores'), dict): for item in data['esgScores']: if not isinstance(data['esgScores'][item], (dict, list)): d[item] = data['esgScores'][item] s = _pd.DataFrame(index=[0], data=d)[-1:].T s.columns = ['Value'] if(len(s[s.index == 'ratingYear']['Value'].values) > 0 and len(s[s.index == 'ratingMonth']['Value'].values) > 0 ): s.index.name = '%.f-%.f' % (s[s.index == 'ratingYear']['Value'].values[0], s[s.index == 'ratingMonth']['Value'].values[0]) else: s.index.name = '%.f-%.f' % (0, 0) self._sustainability = s[~s.index.isin( ['maxAge', 'ratingYear', 'ratingMonth'])] # info (be nice to python 2) self._info = {} items = ['summaryProfile', 'summaryDetail', 'quoteType', 'defaultKeyStatistics', 'assetProfile', 'summaryDetail'] for item in items: if isinstance(data.get(item), dict): self._info.update(data[item]) if 'regularMarketOpen' in self._info: self._info['regularMarketPrice'] = self._info['regularMarketOpen'] else: self._info['regularMarketPrice'] = '' self._info['logo_url'] = "" try: domain = self._info['website'].split( '://')[1].split('/')[0].replace('www.', '') self._info['logo_url'] = 'https://logo.clearbit.com/%s' % domain except Exception: pass # events try: cal = _pd.DataFrame( data['calendarEvents']['earnings']) cal['earningsDate'] = _pd.to_datetime( cal['earningsDate'], unit='s') self._calendar = cal.T self._calendar.index = utils.camel2title(self._calendar.index) self._calendar.columns = ['Value'] except Exception: pass # analyst recommendations try: rec = _pd.DataFrame( data['upgradeDowngradeHistory']['history']) rec['earningsDate'] = _pd.to_datetime( rec['epochGradeDate'], unit='s') rec.set_index('earningsDate', inplace=True) rec.index.name = 'Date' rec.columns = utils.camel2title(rec.columns) self._recommendations = rec[[ 'Firm', 'To Grade', 'From Grade', 'Action']].sort_index() except Exception: pass # get fundamentals data = utils.get_json(url+'/financials', proxy) # generic patterns for key in ( (self._cashflow, 'cashflowStatement', 'cashflowStatements'), (self._balancesheet, 'balanceSheet', 'balanceSheetStatements'), (self._financials, 'incomeStatement', 'incomeStatementHistory') ): item = key[1] + 'History' if isinstance(data.get(item), dict): key[0]['yearly'] = cleanup(data[item][key[2]]) item = key[1]+'HistoryQuarterly' if isinstance(data.get(item), dict): key[0]['quarterly'] = cleanup(data[item][key[2]]) # earnings if isinstance(data.get('earnings'), dict): earnings = data['earnings']['financialsChart'] df = _pd.DataFrame(earnings['yearly']).set_index('date') df.columns = utils.camel2title(df.columns) df.index.name = 'Year' self._earnings['yearly'] = df df = _pd.DataFrame(earnings['quarterly']).set_index('date') df.columns = utils.camel2title(df.columns) df.index.name = 'Quarter' self._earnings['quarterly'] = df self._fundamentals = True def get_recommendations(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._recommendations if as_dict: return data.to_dict() return data def get_calendar(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._calendar if as_dict: return data.to_dict() return data def get_major_holders(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._major_holders if as_dict: return data.to_dict() return data def get_institutional_holders(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._institutional_holders if data is not None: if as_dict: return data.to_dict() return data def get_mutualfund_holders(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._mutualfund_holders if data is not None: if as_dict: return data.to_dict() return data def get_info(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._info if as_dict: return data.to_dict() return data def get_sustainability(self, proxy=None, as_dict=False, *args, **kwargs): self._get_fundamentals(proxy) data = self._sustainability if as_dict: return data.to_dict() return data def get_earnings(self, proxy=None, as_dict=False, freq="yearly"): self._get_fundamentals(proxy) data = self._earnings[freq] if as_dict: return data.to_dict() return data def get_financials(self, proxy=None, as_dict=False, freq="yearly"): self._get_fundamentals(proxy) data = self._financials[freq] if as_dict: return data.to_dict() return data def get_balancesheet(self, proxy=None, as_dict=False, freq="yearly"): self._get_fundamentals(proxy) data = self._balancesheet[freq] if as_dict: return data.to_dict() return data def get_balance_sheet(self, proxy=None, as_dict=False, freq="yearly"): return self.get_balancesheet(proxy, as_dict, freq) def get_cashflow(self, proxy=None, as_dict=False, freq="yearly"): self._get_fundamentals(proxy) data = self._cashflow[freq] if as_dict: return data.to_dict() return data def get_dividends(self, proxy=None): if self._history is None: self.history(period="max", proxy=proxy) dividends = self._history["Dividends"] return dividends[dividends != 0] def get_splits(self, proxy=None): if self._history is None: self.history(period="max", proxy=proxy) splits = self._history["Stock Splits"] return splits[splits != 0] def get_actions(self, proxy=None): if self._history is None: self.history(period="max", proxy=proxy) actions = self._history[["Dividends", "Stock Splits"]] return actions[actions != 0].dropna(how='all').fillna(0) def get_isin(self, proxy=None): # *** experimental *** if self._isin is not None: return self._isin ticker = self.ticker.upper() if "-" in ticker or "^" in ticker: self._isin = '-' return self._isin # setup proxy in requests format if proxy is not None: if isinstance(proxy, dict) and "https" in proxy: proxy = proxy["https"] proxy = {"https": proxy} q = ticker self.get_info(proxy=proxy) if "shortName" in self._info: q = self._info['shortName'] url = 'https://markets.businessinsider.com/ajax/' \ 'SearchController_Suggest?max_results=25&query=%s' \ % urlencode(q) data = _requests.get(url=url, proxies=proxy).text search_str = '"{}|'.format(ticker) if search_str not in data: if q.lower() in data.lower(): search_str = '"|'.format(ticker) if search_str not in data: self._isin = '-' return self._isin else: self._isin = '-' return self._isin self._isin = data.split(search_str)[1].split('"')[0].split('|')[0] return self._isin
the-stack_106_21423
""" functions to be imported into the presidents Flask app """ import csv def raiseError(e): error_text = "<p>The error:<br>" + str(e) + "</p>" hed = '<h1>Something is broken.</h1>' return hed + error_text def convert_to_dict(filename): """ Convert a CSV file to a list of Python dictionaries """ # open a CSV file - note - must have column headings in top row datafile = open(filename, newline='') # create DictReader object my_reader = csv.DictReader(datafile) # create a regular Python list containing dicts list_of_dicts = list(my_reader) # close original csv file datafile.close() # return the list return list_of_dicts def make_ordinal(num): """ Create an ordinal (1st, 2nd, etc.) from a number. """ base = num % 10 if base in [0,4,5,6,7,8,9] or num in [11,12,13]: ext = "th" elif base == 1: ext = "st" elif base == 2: ext = "nd" else: ext = "rd" return str(num) + ext # tryouts def test_make_ordinal(): for i in range(1,46): print(make_ordinal(i)) def search_the_list(list): for item in list: if "Whig" in item['Party']: print(item['President'] + " was a Whig.") for k in list[0].keys(): print(k) # retrieve all the names from the dataset and put them into a list def get_names(source): names = [] for row in source: # lowercase all the names for better searching name = row["Title"].lower() names.append(name) return sorted(names) # find the row that matches the id in the URL, retrieve name and photo def get_recipe(source, id): for row in source: if id == str( row["id"] ): name = row["name"] photo = row["photo"] # change number to string id = str(id) # return these if id is valid return id, name, photo # return these if id is not valid - not a great solution, but simple return "Unknown", "Unknown", "" # find the row that matches the name in the form and retrieve matching id def get_id(source, name): for row in source: # lower() makes the string all lowercase if name.lower() in row["Title"].lower(): id = row["id"] # change number to string id = str(id) # return id if name is valid return id # return these if id is not valid - not a great solution, but simple return "Unknown" # find the row that matches the name in the form and retrieve matching id def get_ids_list(source, name): output_list=[] for row in source: # lower() makes the string all lowercase if name.lower() in row["Title"].lower(): id = row["id"] # change number to string id = str(id) # return id if name is valid output_list.append(id) # return these if id is not valid - not a great solution, but simple return(output_list) def get_recipe_titles_from_ids(source, ids_list): titles_list=[] for id_val in ids_list: recipe=list(filter(lambda recipe: recipe['id'] == id_val, source))[0]['Title'] titles_list.append(recipe) return titles_list
the-stack_106_21424
import numpy as np from pycompss.api.api import compss_wait_on from pycompss.api.parameter import COLLECTION_IN, COLLECTION_OUT, \ Type, Depth from pycompss.api.task import task from scipy.sparse import issparse from scipy.sparse import vstack as vstack_sparse from sklearn.base import BaseEstimator from sklearn.utils import validation from dislib.cluster.dbscan.classes import Region from dislib.data.array import Array class DBSCAN(BaseEstimator): """ Perform DBSCAN clustering. This algorithm requires data to be arranged in a multidimensional grid. The fit method re-arranges input data before running the clustering algorithm. See ``fit()`` for more details. Parameters ---------- eps : float, optional (default=0.5) The maximum distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional (default=5) The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. n_regions : int, optional (default=1) Number of regions per dimension in which to divide the feature space. The total number of regions generated is equal to ``n_regions`` ^ ``len(dimensions)``. dimensions : iterable, optional (default=None) Integer indices of the dimensions of the feature space that should be divided. If None, all dimensions are divided. max_samples : int, optional (default=None) Setting max_samples to an integer results in the paralellization of the computation of distances inside each region of the grid. That is, each region is processed using various parallel tasks, where each task finds the neighbours of max_samples samples. This can be used to balance the load in scenarios where samples are not evenly distributed in the feature space. Attributes ---------- n_clusters : int Number of clusters found. Accessing this member performs a synchronization. Examples -------- >>> from dislib.cluster import DBSCAN >>> import dislib as ds >>> import numpy as np >>> arr = np.array([[1, 2], [2, 2], [2, 3], [8, 7], [8, 8], [25, 80]]) >>> x = ds.array(arr, block_size=(2, 2)) >>> dbscan = DBSCAN(eps=3, min_samples=2) >>> y = dbscan.fit_predict(x) >>> print(y.collect()) """ def __init__(self, eps=0.5, min_samples=5, n_regions=1, dimensions=None, max_samples=None): assert n_regions >= 1, \ "Number of regions must be greater or equal to 1." self.eps = eps self.min_samples = min_samples self.n_regions = n_regions self.dimensions = dimensions self.max_samples = max_samples def fit(self, x, y=None): """ Perform DBSCAN clustering on x. Samples are initially rearranged in a multidimensional grid with ``n_regions`` regions per dimension in ``dimensions``. All regions in a specific dimension have the same size. Parameters ---------- x : ds-array Input data. y : ignored Not used, present here for API consistency by convention. Returns ------- self : DBSCAN """ assert self.n_regions >= 1, \ "Number of regions must be greater or equal to 1." self._subset_sizes = [] self._sorting = [] self._components = None self._labels = None n_features = x.shape[1] sparse = x._sparse self._dimensions = self.dimensions if self.dimensions is None: self._dimensions = range(n_features) n_dims = len(self._dimensions) arranged_data, indices, sizes = _arrange_samples(x, self.n_regions, self._dimensions) grid = np.empty((self.n_regions,) * n_dims, dtype=object) region_widths = self._compute_region_widths(x)[self._dimensions] sizes = compss_wait_on(sizes) # Create regions for subset_idx, region_id in enumerate(np.ndindex(grid.shape)): subset = arranged_data[subset_idx] subset_size = sizes[subset_idx] grid[region_id] = Region(region_id, subset, subset_size, self.eps, sparse) # Set region neighbours distances = np.ceil(self.eps / region_widths) for region_id in np.ndindex(grid.shape): self._add_neighbours(grid[region_id], grid, distances) # Run dbscan on each region for region_id in np.ndindex(grid.shape): region = grid[region_id] region.partial_dbscan(self.min_samples, self.max_samples) # Compute label equivalences between different regions equiv_list = [] for region_id in np.ndindex(grid.shape): equiv_list.append(grid[region_id].get_equivalences()) equivalences = _merge_dicts(*equiv_list) # Compute connected components self._components = _get_connected_components(equivalences) # Update region labels according to equivalences final_labels = [] for subset_idx, region_id in enumerate(np.ndindex(grid.shape)): region = grid[region_id] region.update_labels(self._components) final_labels.append(region.labels) label_blocks = _rearrange_labels(final_labels, indices, x._n_blocks[0]) self._labels = Array(blocks=label_blocks, top_left_shape=(x._top_left_shape[0], 1), reg_shape=(x._reg_shape[0], 1), shape=(x._shape[0], 1), sparse=False) return self def fit_predict(self, x): """ Perform DBSCAN clustering on dataset and return cluster labels for x. Parameters ---------- x : ds-array Input data. Returns ------- y : ds-array, shape=(n_samples , 1) Cluster labels. """ self.fit(x) return self._labels @staticmethod def _add_neighbours(region, grid, distances): for ind in np.ndindex(grid.shape): if ind == region.id: continue d = np.abs(np.array(region.id) - np.array(ind)) if (d <= distances).all(): region.add_neighbour(grid[ind]) @property def n_clusters(self): validation.check_is_fitted(self, '_components') self._components = compss_wait_on(self._components) return len(self._components) def _compute_region_widths(self, x): mn = x.min().collect() mx = x.max().collect() if issparse(mn): mn = mn.toarray() mx = mx.toarray() return ((mx - mn) / self.n_regions).reshape(-1, ) def _arrange_samples(x, n_regions, dimensions=None): """ Arranges samples in an n-dimensional grid. The feature space is divided in ``n_regions`` equally sized regions on each dimension based on the maximum and minimum values of each feature in x. Parameters ---------- x : ds-array Input data. n_regions : int Number of regions per dimension in which to split the feature space. dimensions : iterable, optional (default=None) Integer indices of the dimensions to split. If None, all dimensions are split. Returns ------- grid_data : list A list of nd-arrays (futures) containing the samples on each region. That is, grid_data[i][j] contains the samples in row block i of x that lie in region j. sorting : list of lists sorting[i][j] contains the sample indices of the samples from row block i that lie in region j. The indices are relative to row block i. sizes : list Sizes (futures) of the arrays in grid_data. """ n_features = x.shape[1] if dimensions is None: dimensions = range(n_features) grid_shape = (n_regions,) * len(dimensions) # min() and max() calls have synchronization points mn = x.min() mx = x.max() bins = _generate_bins(mn._blocks, mx._blocks, dimensions, n_regions) total_regions = n_regions ** len(dimensions) return _arrange_data(x, grid_shape, bins, dimensions, total_regions) def _arrange_data(x, g_shape, bins, dims, total_regions): reg_lists = list() ind_lists = list() for row in x._iterator(axis=0): reg_list = [object() for _ in range(total_regions)] ind_list = [object() for _ in range(total_regions)] # after calling arrange_block, reg_list contains one nd-array per # region with the corresponding samples, and ind_list contains # the indices of the samples that go to each region _arrange_block(row._blocks, bins, dims, g_shape, reg_list, ind_list) reg_lists.append(reg_list) ind_lists.append(ind_list) # the ith element of each element in lol contains the samples of # the ith region. reg_arr = np.asarray(reg_lists) arranged_samples = list() sizes = list() for i in range(reg_arr.shape[1]): # we merge together the ith element of each element in reg_arr and # sort_arr to obtain a single nd-array per region (convert to list # again because collections do not support np.arrays) samples, size = _merge_samples(reg_arr[:, i].tolist(), x._sparse) arranged_samples.append(samples) sizes.append(size) # arranged_samples is a list of nd-arrays (one per region) containing the # samples in each region. return arranged_samples, ind_lists, sizes def _rearrange_labels(labels, indices, n_blocks): """ This method rearranges computed labels back to their original position. """ blocks_list = list() for i, arr in enumerate(labels): blocks = [object() for _ in range(n_blocks)] # blocks_list[i][j] contains the labels of region i that belong to # row block j in the original arrangement of the data _rearrange_region(arr, np.asarray(indices)[:, i].tolist(), blocks) blocks_list.append(blocks) blocks_arr = np.asarray(blocks_list) sorted_blocks = list() # merge and sort the rearranged labels to build the final array of labels for i in range(blocks_arr.shape[1]): label_block = _merge_labels(blocks_arr[:, i].tolist(), indices[i]) sorted_blocks.append([label_block]) return sorted_blocks @task(mn={Type: COLLECTION_IN, Depth: 2}, mx={Type: COLLECTION_IN, Depth: 2}, returns=1) def _generate_bins(mn, mx, dimensions, n_regions): bins = [] mn_arr = Array._merge_blocks(mn)[0] mx_arr = Array._merge_blocks(mx)[0] if issparse(mn_arr): mn_arr = mn_arr.toarray()[0] mx_arr = mx_arr.toarray()[0] # create bins for the different regions in the grid in every dimension for dim in dimensions: bin_ = np.linspace(mn_arr[dim], mx_arr[dim], n_regions + 1) bins.append(bin_) return bins @task(blocks={Type: COLLECTION_IN, Depth: 2}, samples_list={Type: COLLECTION_OUT}, indices={Type: COLLECTION_OUT}) def _arrange_block(blocks, bins, dimensions, shape, samples_list, indices): x = Array._merge_blocks(blocks) n_bins = shape[0] region_indices = list() # find the samples that belong to each region iterating over each dimension for dim_bins, dim in zip(bins, dimensions): col = x[:, dim] if issparse(col): col = col.toarray().flatten() # digitize a dimension of all the samples into the corresponding bins # region_idx represents the region index at dimension dim of each # sample region_idx = np.digitize(col, dim_bins) - 1 region_idx[region_idx >= n_bins] = n_bins - 1 region_indices.append(region_idx) # idx_arr is an nd-array of shape (n_dimensions, n_samples), where each # column represents the region indices of each sample (i.e., the region # where the sample should go) idx_arr = np.asarray(region_indices) # apply np.ravel_multi_index to each column of idx_arr to get a 1-D index # that represents each region in the output list out_idx = np.apply_along_axis(np.ravel_multi_index, 0, idx_arr, dims=shape) for i in range(len(samples_list)): # insert all the samples that belong to a region to the corresponding # place in the output list. sample_indices = np.where(out_idx == i) samples_list[i] = x[sample_indices] # sorting contains which samples go to which region indices[i] = sample_indices @task(indices=COLLECTION_IN, blocks=COLLECTION_OUT) def _rearrange_region(labels, indices, blocks): """ indices[i] contains the label/sample indices of row block i (in the original data) that lie in this region. This method redistributes the labels into a list representing the row blocks in the original data """ start, end = 0, 0 for i, ind in enumerate(indices): end += len(ind[0]) blocks[i] = labels[start:end].reshape(-1, 1) start = end @task(samples_list={Type: COLLECTION_IN}, returns=2) def _merge_samples(samples_list, sparse): if sparse: samples = vstack_sparse(samples_list) else: samples = np.vstack(samples_list) return samples, samples.shape[0] @task(labels_list=COLLECTION_IN, indices=COLLECTION_IN, returns=1) def _merge_labels(labels_list, indices): labels = np.vstack(labels_list) # idx contains the original position of each label in labels idx = np.hstack(np.asarray(indices).flatten()) return np.take(labels, idx).reshape(-1, 1) @task(returns=1) def _merge_dicts(*dicts): merged_dict = {} for dct in dicts: merged_dict.update(dct) return merged_dict @task(returns=1) def _get_connected_components(equiv): # Add inverse equivalences for node, neighs in equiv.items(): for neigh in neighs: equiv[neigh].add(node) visited = set() connected = [] for node, neighbours in equiv.items(): if node in visited: continue connected.append([node]) _visit_neighbours(equiv, neighbours, visited, connected) return connected def _visit_neighbours(equiv, neighbours, visited, connected): to_visit = list(neighbours) while len(to_visit) > 0: neighbour = to_visit.pop() if neighbour in visited: continue visited.add(neighbour) connected[-1].append(neighbour) if neighbour in equiv: to_visit.extend(equiv[neighbour])
the-stack_106_21425
#!/usr/bin/env python3 # Copyright (c) 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os import sys def main(argv): logging.basicConfig(level=logging.INFO) if len(argv) == 0: bootstrap_dir = os.path.dirname(os.path.abspath(__file__)) infra_dir = os.path.dirname(bootstrap_dir) argv = [infra_dir] for root in argv: # This could take an argument, except gclient DEPS has no good way to pass # us an argument, and gclient getcwd() is ../ from our .gclient file. :( logging.debug("Cleaning orphaned *.pyc files from: %s" % root) for (dirpath, _, filenames) in os.walk(root): fnset = set(filenames) for filename in filenames: if filename.endswith(".pyc") and filename[:-1] not in fnset: path = os.path.join(dirpath, filename) logging.info("Deleting orphan *.pyc file: %s" % path) os.remove(path) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
the-stack_106_21426
# -*- coding: utf-8 -*- # Copyright (2017-2018) Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # Python libs import json from unittest import mock # 3rd party libs from flask_api import status from hpOneView.exceptions import HPOneViewException # Module libs from oneview_redfish_toolkit.blueprints import service_root from oneview_redfish_toolkit.tests.base_flask_test import BaseFlaskTest from oneview_redfish_toolkit import util class TestServiceRoot(BaseFlaskTest): """Tests from ServiceRoot blueprint""" @classmethod def setUpClass(self): super(TestServiceRoot, self).setUpClass() self.app.register_blueprint( service_root.service_root, url_prefix='/redfish/v1/') @mock.patch.object(service_root, 'g') def test_service_root_oneview_exception(self, g): """Tests ServiceROOT with an exception""" e = HPOneViewException({ 'errorCode': 'ANOTHER_ERROR', 'message': 'appliance error', }) g.oneview_client.appliance_node_information.get_version.side_effect = e response = self.client.get("/redfish/v1/") self.assertEqual( status.HTTP_500_INTERNAL_SERVER_ERROR, response.status_code ) self.assertEqual("application/json", response.mimetype) @mock.patch.object(service_root, 'g') def test_service_root_exception(self, g): """Tests ServiceROOT with an exception""" e = HPOneViewException({ 'errorCode': 'ANOTHER_ERROR', 'message': 'appliance error', }) g.oneview_client.appliance_node_information.get_version.side_effect = e response = self.client.get("/redfish/v1/") self.assertEqual( status.HTTP_500_INTERNAL_SERVER_ERROR, response.status_code ) self.assertEqual("application/json", response.mimetype) @mock.patch.object(util, 'config') @mock.patch.object(service_root, 'g') def test_get_service_root(self, g, config_mock): """Tests ServiceRoot blueprint result against know value """ def side_effect(section, option): if section == "redfish" and option == "authentication_mode": return "conf" else: return util.config.get(section, option) g.oneview_client.appliance_node_information.get_version.return_value = \ {'uuid': '00000000-0000-0000-0000-000000000000'} config_mock.get.side_effect = side_effect result = self.client.get("/redfish/v1/") result = json.loads(result.data.decode("utf-8")) with open( 'oneview_redfish_toolkit/mockups/redfish/ServiceRoot.json' ) as f: service_root_mockup = json.load(f) self.assertEqual(service_root_mockup, result)
the-stack_106_21427
import demistomock as demisto from CommonServerPython import * from CommonServerUserPython import * import re import xlrd import csv import tldextract import traceback def csv_file_to_indicator_list(file_path, col_num, starting_row, auto_detect, default_type, type_col, limit, offset): indicator_list = [] # TODO: add run on all columns functionality line_index = 0 with open(file_path, 'rU') as csv_file: # csv reader can fail when encountering a NULL byte (\0) - so we go through the file and take out the NUL bytes. file_reader = csv.reader(line.replace('\0', '') for line in csv_file) for row in file_reader: if line_index >= starting_row + offset and len(row) != 0: indicator = row[col_num] indicator_type = get_indicator_type(indicator, auto_detect, default_type, file_type='csv', type_col=type_col, csv_row=row) if indicator_type is None: continue indicator_list.append({ "type": indicator_type, "value": indicator }) line_index = line_index + 1 if limit and len(indicator_list) == int(str(limit)): break return indicator_list def xls_file_to_indicator_list(file_path, sheet_name, col_num, starting_row, auto_detect, default_type, type_col, limit, offset): indicator_list = [] # TODO: add run on all columns functionality xl_woorkbook = xlrd.open_workbook(file_path) if sheet_name and sheet_name != 'None': xl_sheet = xl_woorkbook.sheet_by_name(sheet_name) else: xl_sheet = xl_woorkbook.sheet_by_index(0) for row_index in range(starting_row + offset, xl_sheet.nrows): indicator = xl_sheet.cell(row_index, col_num).value indicator_type = get_indicator_type(indicator, auto_detect, default_type, file_type='xls', type_col=type_col, xl_sheet=xl_sheet, xl_row_index=row_index) if indicator_type is None: continue indicator_list.append({ 'type': indicator_type, 'value': indicator }) if limit and len(indicator_list) == int(str(limit)): break return indicator_list def txt_file_to_indicator_list(file_path, auto_detect, default_type, limit, offset): with open(file_path, "r") as fp: file_data = fp.read() indicator_list = [] raw_splitted_data = re.split(r"\s|\n|\t|\"|\'|\,|\0", file_data) indicator_index = 0 for indicator in raw_splitted_data: # drop punctuation if len(indicator) > 1: while indicator[-1] in ".,?:;\\)}]/!\n\t\0\"" and len(indicator) > 1: indicator = indicator[:-1] while indicator[0] in ".,({[\n\t\"" and len(indicator) > 1: indicator = indicator[1:] indicator_type = get_indicator_type(indicator, auto_detect, default_type, file_type='text') # indicator not recognized skip the word if indicator_type is None: continue if indicator_type is not None and indicator_index < offset: indicator_index = indicator_index + 1 continue indicator_list.append({ 'type': indicator_type, 'value': indicator }) if limit and len(indicator_list) == int(str(limit)): break return indicator_list def get_indicator_type(indicator_value, auto_detect, default_type, file_type, type_col=None, xl_sheet=None, xl_row_index=0, csv_row=None): """Returns the indicator type for the given file type. Args: indicator_value (str): the indicator value auto_detect (bool): whether or not to auto_detect the type default_type (Any): the default type of the indicator (could be None or str) file_type (str): 'text', 'xls' or 'csv' type_col (Any): the column from which to fetch the indicator type in xls or csv files (could be None or int) xl_sheet (Any): the xls sheet from which to fetch the indicator type (could be None or ~xlrd.sheet.Sheet) xl_row_index (Any): the row number in the xls sheet from which to fetch the indicator type (could be None or int) csv_row (Any): the csv row from which to fetch the indicator type (could be None or list) Returns: Any. returns None if indicator is not recognized in text file or the indicator is not recognized and no default type given. Otherwise will return a string indicating the indicator type """ indicator_type = detect_type(indicator_value) # indicator not recognized skip the word in text file if indicator_type is None and file_type == 'text': return None if not auto_detect: indicator_type = default_type if file_type != 'text': if type_col is not None and file_type == 'xls': indicator_type = xl_sheet.cell(xl_row_index, int(type_col) - 1).value elif type_col is not None and file_type == 'csv': indicator_type = csv_row[int(type_col) - 1] # indicator not recognized in non text file if indicator_type is None: # no default value given if default_type is None: return None else: # default value given indicator_type = default_type return indicator_type def detect_type(indicator): """Infer the type of the indicator. Args: indicator(str): The indicator whose type we want to check. Returns: str. The type of the indicator. """ if re.match(sha256Regex, indicator) or re.match(md5Regex, indicator) or re.match(sha1Regex, indicator): return FeedIndicatorType.File if re.match(ipv4cidrRegex, indicator): return FeedIndicatorType.CIDR if re.match(ipv6cidrRegex, indicator): return FeedIndicatorType.IPv6CIDR if re.match(ipv4Regex, indicator): return FeedIndicatorType.IP if re.match(ipv6Regex, indicator): return FeedIndicatorType.IPv6 if re.match(urlRegex, indicator): return FeedIndicatorType.URL if re.match(emailRegex, indicator): return FeedIndicatorType.Email try: # we use TLDExtract class to fetch all existing domain suffixes from the bellow mentioned file: # https://raw.githubusercontent.com/publicsuffix/list/master/public_suffix_list.dat # the suffix_list_urls=None is used to not make http calls using the extraction - avoiding SSL errors if tldextract.TLDExtract(cache_file='https://raw.githubusercontent.com/publicsuffix' '/list/master/public_suffix_list.dat', suffix_list_urls=None).__call__(indicator).suffix: if '*' in indicator: return FeedIndicatorType.DomainGlob return FeedIndicatorType.Domain except Exception: pass return None def fetch_indicators_from_file(args): file = demisto.getFilePath(args.get('entry_id')) file_path = file['path'] file_name = file['name'] auto_detect = True if args.get('auto_detect') == 'True' else False default_type = args.get('default_type') limit = args.get("limit") # offset - refers to the indicator list itself - # lets say you have a list of 500 and you put a limit of 100 on your output - # you can get the next 100 by putting an offset of 100. offset = int(str(args.get("offset"))) if args.get('offset') else 0 # the below params are for Excel type files only. sheet_name = args.get('sheet_name') indicator_col_num = args.get('indicator_column_number') indicator_type_col_num = args.get('indicator_type_column_number') # starting_row is for excel files - # from which row should I start reading the indicators, it is used to avoid table headers. starting_row = args.get('starting_row') if file_name.endswith('xls') or file_name.endswith('xlsx'): indicator_list = xls_file_to_indicator_list(file_path, sheet_name, int(indicator_col_num) - 1, int(starting_row) - 1, auto_detect, default_type, indicator_type_col_num, limit, offset) elif file_name.endswith('csv'): indicator_list = csv_file_to_indicator_list(file_path, int(indicator_col_num) - 1, int(starting_row) - 1, auto_detect, default_type, indicator_type_col_num, limit, offset) else: indicator_list = txt_file_to_indicator_list(file_path, auto_detect, default_type, limit, offset) human_readable = tableToMarkdown(f"Indicators from {file_name}:", indicator_list, headers=['value', 'type'], removeNull=True) # Create indicators in demisto errors = [] for indicator in indicator_list: res = demisto.executeCommand("createNewIndicator", indicator) if is_error(res[0]): errors.append("Error creating indicator - {}".format(res[0]["Contents"])) if errors: return_error(json.dumps(errors, indent=4)) return human_readable, None, indicator_list def main(): try: return_outputs(*fetch_indicators_from_file(demisto.args())) except Exception as ex: return_error('Failed to execute Fetch Indicators From File. Error: {}'.format(str(ex)), error=traceback.format_exc()) if __name__ in ('__main__', '__builtin__', 'builtins'): main()
the-stack_106_21428
from __future__ import annotations import asyncio import email.utils import functools import http import inspect import logging import socket import warnings from types import TracebackType from typing import ( Any, Awaitable, Callable, Generator, Iterable, List, Optional, Sequence, Set, Tuple, Type, Union, cast, ) from ..connection import State from ..datastructures import Headers, HeadersLike, MultipleValuesError from ..exceptions import ( AbortHandshake, InvalidHandshake, InvalidHeader, InvalidMessage, InvalidOrigin, InvalidUpgrade, NegotiationError, ) from ..extensions import Extension, ServerExtensionFactory from ..extensions.permessage_deflate import enable_server_permessage_deflate from ..headers import ( build_extension, parse_extension, parse_subprotocol, validate_subprotocols, ) from ..http import USER_AGENT from ..typing import ExtensionHeader, LoggerLike, Origin, Subprotocol from .compatibility import loop_if_py_lt_38 from .handshake import build_response, check_request from .http import read_request from .protocol import WebSocketCommonProtocol __all__ = ["serve", "unix_serve", "WebSocketServerProtocol", "WebSocketServer"] HeadersLikeOrCallable = Union[HeadersLike, Callable[[str, Headers], HeadersLike]] HTTPResponse = Tuple[http.HTTPStatus, HeadersLike, bytes] class WebSocketServerProtocol(WebSocketCommonProtocol): """ WebSocket server connection. :class:`WebSocketServerProtocol` provides :meth:`recv` and :meth:`send` coroutines for receiving and sending messages. It supports asynchronous iteration to receive messages:: async for message in websocket: await process(message) The iterator exits normally when the connection is closed with close code 1000 (OK) or 1001 (going away). It raises a :exc:`~websockets.exceptions.ConnectionClosedError` when the connection is closed with any other code. You may customize the opening handshake in a subclass by overriding :meth:`process_request` or :meth:`select_subprotocol`. Args: ws_server: WebSocket server that created this connection. See :func:`serve` for the documentation of ``ws_handler``, ``logger``, ``origins``, ``extensions``, ``subprotocols``, and ``extra_headers``. See :class:`~websockets.legacy.protocol.WebSocketCommonProtocol` for the documentation of ``ping_interval``, ``ping_timeout``, ``close_timeout``, ``max_size``, ``max_queue``, ``read_limit``, and ``write_limit``. """ is_client = False side = "server" def __init__( self, ws_handler: Union[ Callable[[WebSocketServerProtocol], Awaitable[Any]], Callable[[WebSocketServerProtocol, str], Awaitable[Any]], # deprecated ], ws_server: WebSocketServer, *, logger: Optional[LoggerLike] = None, origins: Optional[Sequence[Optional[Origin]]] = None, extensions: Optional[Sequence[ServerExtensionFactory]] = None, subprotocols: Optional[Sequence[Subprotocol]] = None, extra_headers: Optional[HeadersLikeOrCallable] = None, process_request: Optional[ Callable[[str, Headers], Awaitable[Optional[HTTPResponse]]] ] = None, select_subprotocol: Optional[ Callable[[Sequence[Subprotocol], Sequence[Subprotocol]], Subprotocol] ] = None, **kwargs: Any, ) -> None: if logger is None: logger = logging.getLogger("websockets.server") super().__init__(logger=logger, **kwargs) # For backwards compatibility with 6.0 or earlier. if origins is not None and "" in origins: warnings.warn("use None instead of '' in origins", DeprecationWarning) origins = [None if origin == "" else origin for origin in origins] # For backwards compatibility with 10.0 or earlier. Done here in # addition to serve to trigger the deprecation warning on direct # use of WebSocketServerProtocol. self.ws_handler = remove_path_argument(ws_handler) self.ws_server = ws_server self.origins = origins self.available_extensions = extensions self.available_subprotocols = subprotocols self.extra_headers = extra_headers self._process_request = process_request self._select_subprotocol = select_subprotocol def connection_made(self, transport: asyncio.BaseTransport) -> None: """ Register connection and initialize a task to handle it. """ super().connection_made(transport) # Register the connection with the server before creating the handler # task. Registering at the beginning of the handler coroutine would # create a race condition between the creation of the task, which # schedules its execution, and the moment the handler starts running. self.ws_server.register(self) self.handler_task = self.loop.create_task(self.handler()) async def handler(self) -> None: """ Handle the lifecycle of a WebSocket connection. Since this method doesn't have a caller able to handle exceptions, it attemps to log relevant ones and guarantees that the TCP connection is closed before exiting. """ try: try: await self.handshake( origins=self.origins, available_extensions=self.available_extensions, available_subprotocols=self.available_subprotocols, extra_headers=self.extra_headers, ) # Remove this branch when dropping support for Python < 3.8 # because CancelledError no longer inherits Exception. except asyncio.CancelledError: # pragma: no cover raise except ConnectionError: raise except Exception as exc: if isinstance(exc, AbortHandshake): status, headers, body = exc.status, exc.headers, exc.body elif isinstance(exc, InvalidOrigin): if self.debug: self.logger.debug("! invalid origin", exc_info=True) status, headers, body = ( http.HTTPStatus.FORBIDDEN, Headers(), f"Failed to open a WebSocket connection: {exc}.\n".encode(), ) elif isinstance(exc, InvalidUpgrade): if self.debug: self.logger.debug("! invalid upgrade", exc_info=True) status, headers, body = ( http.HTTPStatus.UPGRADE_REQUIRED, Headers([("Upgrade", "websocket")]), ( f"Failed to open a WebSocket connection: {exc}.\n" f"\n" f"You cannot access a WebSocket server directly " f"with a browser. You need a WebSocket client.\n" ).encode(), ) elif isinstance(exc, InvalidHandshake): if self.debug: self.logger.debug("! invalid handshake", exc_info=True) status, headers, body = ( http.HTTPStatus.BAD_REQUEST, Headers(), f"Failed to open a WebSocket connection: {exc}.\n".encode(), ) else: self.logger.error("opening handshake failed", exc_info=True) status, headers, body = ( http.HTTPStatus.INTERNAL_SERVER_ERROR, Headers(), ( b"Failed to open a WebSocket connection.\n" b"See server log for more information.\n" ), ) headers.setdefault("Date", email.utils.formatdate(usegmt=True)) headers.setdefault("Server", USER_AGENT) headers.setdefault("Content-Length", str(len(body))) headers.setdefault("Content-Type", "text/plain") headers.setdefault("Connection", "close") self.write_http_response(status, headers, body) self.logger.info( "connection failed (%d %s)", status.value, status.phrase ) await self.close_transport() return try: await self.ws_handler(self) except Exception: self.logger.error("connection handler failed", exc_info=True) if not self.closed: self.fail_connection(1011) raise try: await self.close() except ConnectionError: raise except Exception: self.logger.error("closing handshake failed", exc_info=True) raise except Exception: # Last-ditch attempt to avoid leaking connections on errors. try: self.transport.close() except Exception: # pragma: no cover pass finally: # Unregister the connection with the server when the handler task # terminates. Registration is tied to the lifecycle of the handler # task because the server waits for tasks attached to registered # connections before terminating. self.ws_server.unregister(self) self.logger.info("connection closed") async def read_http_request(self) -> Tuple[str, Headers]: """ Read request line and headers from the HTTP request. If the request contains a body, it may be read from ``self.reader`` after this coroutine returns. Raises: InvalidMessage: if the HTTP message is malformed or isn't an HTTP/1.1 GET request. """ try: path, headers = await read_request(self.reader) except asyncio.CancelledError: # pragma: no cover raise except Exception as exc: raise InvalidMessage("did not receive a valid HTTP request") from exc if self.debug: self.logger.debug("< GET %s HTTP/1.1", path) for key, value in headers.raw_items(): self.logger.debug("< %s: %s", key, value) self.path = path self.request_headers = headers return path, headers def write_http_response( self, status: http.HTTPStatus, headers: Headers, body: Optional[bytes] = None ) -> None: """ Write status line and headers to the HTTP response. This coroutine is also able to write a response body. """ self.response_headers = headers if self.debug: self.logger.debug("> HTTP/1.1 %d %s", status.value, status.phrase) for key, value in headers.raw_items(): self.logger.debug("> %s: %s", key, value) if body is not None: self.logger.debug("> [body] (%d bytes)", len(body)) # Since the status line and headers only contain ASCII characters, # we can keep this simple. response = f"HTTP/1.1 {status.value} {status.phrase}\r\n" response += str(headers) self.transport.write(response.encode()) if body is not None: self.transport.write(body) async def process_request( self, path: str, request_headers: Headers ) -> Optional[HTTPResponse]: """ Intercept the HTTP request and return an HTTP response if appropriate. You may override this method in a :class:`WebSocketServerProtocol` subclass, for example: * to return a HTTP 200 OK response on a given path; then a load balancer can use this path for a health check; * to authenticate the request and return a HTTP 401 Unauthorized or a HTTP 403 Forbidden when authentication fails. You may also override this method with the ``process_request`` argument of :func:`serve` and :class:`WebSocketServerProtocol`. This is equivalent, except ``process_request`` won't have access to the protocol instance, so it can't store information for later use. :meth:`process_request` is expected to complete quickly. If it may run for a long time, then it should await :meth:`wait_closed` and exit if :meth:`wait_closed` completes, or else it could prevent the server from shutting down. Args: path: request path, including optional query string. request_headers: request headers. Returns: Optional[Tuple[http.HTTPStatus, HeadersLike, bytes]]: :obj:`None` to continue the WebSocket handshake normally. An HTTP response, represented by a 3-uple of the response status, headers, and body, to abort the WebSocket handshake and return that HTTP response instead. """ if self._process_request is not None: response = self._process_request(path, request_headers) if isinstance(response, Awaitable): return await response else: # For backwards compatibility with 7.0. warnings.warn( "declare process_request as a coroutine", DeprecationWarning ) return response return None @staticmethod def process_origin( headers: Headers, origins: Optional[Sequence[Optional[Origin]]] = None ) -> Optional[Origin]: """ Handle the Origin HTTP request header. Args: headers: request headers. origins: optional list of acceptable origins. Raises: InvalidOrigin: if the origin isn't acceptable. """ # "The user agent MUST NOT include more than one Origin header field" # per https://www.rfc-editor.org/rfc/rfc6454.html#section-7.3. try: origin = cast(Optional[Origin], headers.get("Origin")) except MultipleValuesError as exc: raise InvalidHeader("Origin", "more than one Origin header found") from exc if origins is not None: if origin not in origins: raise InvalidOrigin(origin) return origin @staticmethod def process_extensions( headers: Headers, available_extensions: Optional[Sequence[ServerExtensionFactory]], ) -> Tuple[Optional[str], List[Extension]]: """ Handle the Sec-WebSocket-Extensions HTTP request header. Accept or reject each extension proposed in the client request. Negotiate parameters for accepted extensions. Return the Sec-WebSocket-Extensions HTTP response header and the list of accepted extensions. :rfc:`6455` leaves the rules up to the specification of each :extension. To provide this level of flexibility, for each extension proposed by the client, we check for a match with each extension available in the server configuration. If no match is found, the extension is ignored. If several variants of the same extension are proposed by the client, it may be accepted several times, which won't make sense in general. Extensions must implement their own requirements. For this purpose, the list of previously accepted extensions is provided. This process doesn't allow the server to reorder extensions. It can only select a subset of the extensions proposed by the client. Other requirements, for example related to mandatory extensions or the order of extensions, may be implemented by overriding this method. Args: headers: request headers. extensions: optional list of supported extensions. Raises: InvalidHandshake: to abort the handshake with an HTTP 400 error. """ response_header_value: Optional[str] = None extension_headers: List[ExtensionHeader] = [] accepted_extensions: List[Extension] = [] header_values = headers.get_all("Sec-WebSocket-Extensions") if header_values and available_extensions: parsed_header_values: List[ExtensionHeader] = sum( [parse_extension(header_value) for header_value in header_values], [] ) for name, request_params in parsed_header_values: for ext_factory in available_extensions: # Skip non-matching extensions based on their name. if ext_factory.name != name: continue # Skip non-matching extensions based on their params. try: response_params, extension = ext_factory.process_request_params( request_params, accepted_extensions ) except NegotiationError: continue # Add matching extension to the final list. extension_headers.append((name, response_params)) accepted_extensions.append(extension) # Break out of the loop once we have a match. break # If we didn't break from the loop, no extension in our list # matched what the client sent. The extension is declined. # Serialize extension header. if extension_headers: response_header_value = build_extension(extension_headers) return response_header_value, accepted_extensions # Not @staticmethod because it calls self.select_subprotocol() def process_subprotocol( self, headers: Headers, available_subprotocols: Optional[Sequence[Subprotocol]] ) -> Optional[Subprotocol]: """ Handle the Sec-WebSocket-Protocol HTTP request header. Return Sec-WebSocket-Protocol HTTP response header, which is the same as the selected subprotocol. Args: headers: request headers. available_subprotocols: optional list of supported subprotocols. Raises: InvalidHandshake: to abort the handshake with an HTTP 400 error. """ subprotocol: Optional[Subprotocol] = None header_values = headers.get_all("Sec-WebSocket-Protocol") if header_values and available_subprotocols: parsed_header_values: List[Subprotocol] = sum( [parse_subprotocol(header_value) for header_value in header_values], [] ) subprotocol = self.select_subprotocol( parsed_header_values, available_subprotocols ) return subprotocol def select_subprotocol( self, client_subprotocols: Sequence[Subprotocol], server_subprotocols: Sequence[Subprotocol], ) -> Optional[Subprotocol]: """ Pick a subprotocol among those offered by the client. If several subprotocols are supported by the client and the server, the default implementation selects the preferred subprotocol by giving equal value to the priorities of the client and the server. If no subprotocol is supported by the client and the server, it proceeds without a subprotocol. This is unlikely to be the most useful implementation in practice. Many servers providing a subprotocol will require that the client uses that subprotocol. Such rules can be implemented in a subclass. You may also override this method with the ``select_subprotocol`` argument of :func:`serve` and :class:`WebSocketServerProtocol`. Args: client_subprotocols: list of subprotocols offered by the client. server_subprotocols: list of subprotocols available on the server. Returns: Optional[Subprotocol]: Selected subprotocol. :obj:`None` to continue without a subprotocol. """ if self._select_subprotocol is not None: return self._select_subprotocol(client_subprotocols, server_subprotocols) subprotocols = set(client_subprotocols) & set(server_subprotocols) if not subprotocols: return None priority = lambda p: ( client_subprotocols.index(p) + server_subprotocols.index(p) ) return sorted(subprotocols, key=priority)[0] async def handshake( self, origins: Optional[Sequence[Optional[Origin]]] = None, available_extensions: Optional[Sequence[ServerExtensionFactory]] = None, available_subprotocols: Optional[Sequence[Subprotocol]] = None, extra_headers: Optional[HeadersLikeOrCallable] = None, ) -> str: """ Perform the server side of the opening handshake. Args: origins: list of acceptable values of the Origin HTTP header; include :obj:`None` if the lack of an origin is acceptable. extensions: list of supported extensions, in order in which they should be tried. subprotocols: list of supported subprotocols, in order of decreasing preference. extra_headers: arbitrary HTTP headers to add to the response when the handshake succeeds. Returns: str: path of the URI of the request. Raises: InvalidHandshake: if the handshake fails. """ path, request_headers = await self.read_http_request() # Hook for customizing request handling, for example checking # authentication or treating some paths as plain HTTP endpoints. early_response_awaitable = self.process_request(path, request_headers) if isinstance(early_response_awaitable, Awaitable): early_response = await early_response_awaitable else: # For backwards compatibility with 7.0. warnings.warn("declare process_request as a coroutine", DeprecationWarning) early_response = early_response_awaitable # The connection may drop while process_request is running. if self.state is State.CLOSED: raise self.connection_closed_exc() # pragma: no cover # Change the response to a 503 error if the server is shutting down. if not self.ws_server.is_serving(): early_response = ( http.HTTPStatus.SERVICE_UNAVAILABLE, [], b"Server is shutting down.\n", ) if early_response is not None: raise AbortHandshake(*early_response) key = check_request(request_headers) self.origin = self.process_origin(request_headers, origins) extensions_header, self.extensions = self.process_extensions( request_headers, available_extensions ) protocol_header = self.subprotocol = self.process_subprotocol( request_headers, available_subprotocols ) response_headers = Headers() build_response(response_headers, key) if extensions_header is not None: response_headers["Sec-WebSocket-Extensions"] = extensions_header if protocol_header is not None: response_headers["Sec-WebSocket-Protocol"] = protocol_header if callable(extra_headers): extra_headers = extra_headers(path, self.request_headers) if extra_headers is not None: response_headers.update(extra_headers) response_headers.setdefault("Date", email.utils.formatdate(usegmt=True)) response_headers.setdefault("Server", USER_AGENT) self.write_http_response(http.HTTPStatus.SWITCHING_PROTOCOLS, response_headers) self.logger.info("connection open") self.connection_open() return path class WebSocketServer: """ WebSocket server returned by :func:`serve`. This class provides the same interface as :class:`~asyncio.Server`, notably the :meth:`~asyncio.Server.close` and :meth:`~asyncio.Server.wait_closed` methods. It keeps track of WebSocket connections in order to close them properly when shutting down. Args: logger: logger for this server; defaults to ``logging.getLogger("websockets.server")``; see the :doc:`logging guide <../topics/logging>` for details. """ def __init__(self, logger: Optional[LoggerLike] = None): if logger is None: logger = logging.getLogger("websockets.server") self.logger = logger # Keep track of active connections. self.websockets: Set[WebSocketServerProtocol] = set() # Task responsible for closing the server and terminating connections. self.close_task: Optional[asyncio.Task[None]] = None # Completed when the server is closed and connections are terminated. self.closed_waiter: asyncio.Future[None] def wrap(self, server: asyncio.base_events.Server) -> None: """ Attach to a given :class:`~asyncio.Server`. Since :meth:`~asyncio.loop.create_server` doesn't support injecting a custom ``Server`` class, the easiest solution that doesn't rely on private :mod:`asyncio` APIs is to: - instantiate a :class:`WebSocketServer` - give the protocol factory a reference to that instance - call :meth:`~asyncio.loop.create_server` with the factory - attach the resulting :class:`~asyncio.Server` with this method """ self.server = server for sock in server.sockets: if sock.family == socket.AF_INET: name = "%s:%d" % sock.getsockname() elif sock.family == socket.AF_INET6: name = "[%s]:%d" % sock.getsockname()[:2] elif sock.family == socket.AF_UNIX: name = sock.getsockname() # In the unlikely event that someone runs websockets over a # protocol other than IP or Unix sockets, avoid crashing. else: # pragma: no cover name = str(sock.getsockname()) self.logger.info("server listening on %s", name) # Initialized here because we need a reference to the event loop. # This should be moved back to __init__ in Python 3.10. self.closed_waiter = server.get_loop().create_future() def register(self, protocol: WebSocketServerProtocol) -> None: """ Register a connection with this server. """ self.websockets.add(protocol) def unregister(self, protocol: WebSocketServerProtocol) -> None: """ Unregister a connection with this server. """ self.websockets.remove(protocol) def close(self) -> None: """ Close the server. This method: * closes the underlying :class:`~asyncio.Server`; * rejects new WebSocket connections with an HTTP 503 (service unavailable) error; this happens when the server accepted the TCP connection but didn't complete the WebSocket opening handshake prior to closing; * closes open WebSocket connections with close code 1001 (going away). :meth:`close` is idempotent. """ if self.close_task is None: self.close_task = self.get_loop().create_task(self._close()) async def _close(self) -> None: """ Implementation of :meth:`close`. This calls :meth:`~asyncio.Server.close` on the underlying :class:`~asyncio.Server` object to stop accepting new connections and then closes open connections with close code 1001. """ self.logger.info("server closing") # Stop accepting new connections. self.server.close() # Wait until self.server.close() completes. await self.server.wait_closed() # Wait until all accepted connections reach connection_made() and call # register(). See https://bugs.python.org/issue34852 for details. await asyncio.sleep(0, **loop_if_py_lt_38(self.get_loop())) # Close OPEN connections with status code 1001. Since the server was # closed, handshake() closes OPENING connections with a HTTP 503 # error. Wait until all connections are closed. # asyncio.wait doesn't accept an empty first argument if self.websockets: await asyncio.wait( [ asyncio.create_task(websocket.close(1001)) for websocket in self.websockets ], **loop_if_py_lt_38(self.get_loop()), ) # Wait until all connection handlers are complete. # asyncio.wait doesn't accept an empty first argument. if self.websockets: await asyncio.wait( [websocket.handler_task for websocket in self.websockets], **loop_if_py_lt_38(self.get_loop()), ) # Tell wait_closed() to return. self.closed_waiter.set_result(None) self.logger.info("server closed") async def wait_closed(self) -> None: """ Wait until the server is closed. When :meth:`wait_closed` returns, all TCP connections are closed and all connection handlers have returned. To ensure a fast shutdown, a connection handler should always be awaiting at least one of: * :meth:`~WebSocketServerProtocol.recv`: when the connection is closed, it raises :exc:`~websockets.exceptions.ConnectionClosedOK`; * :meth:`~WebSocketServerProtocol.wait_closed`: when the connection is closed, it returns. Then the connection handler is immediately notified of the shutdown; it can clean up and exit. """ await asyncio.shield(self.closed_waiter) def get_loop(self) -> asyncio.AbstractEventLoop: """ See :meth:`asyncio.Server.get_loop`. """ return self.server.get_loop() def is_serving(self) -> bool: """ See :meth:`asyncio.Server.is_serving`. """ return self.server.is_serving() async def start_serving(self) -> None: """ See :meth:`asyncio.Server.start_serving`. """ await self.server.start_serving() # pragma: no cover async def serve_forever(self) -> None: """ See :meth:`asyncio.Server.serve_forever`. """ await self.server.serve_forever() # pragma: no cover @property def sockets(self) -> Iterable[socket.socket]: """ See :attr:`asyncio.Server.sockets`. """ return self.server.sockets async def __aenter__(self) -> WebSocketServer: return self # pragma: no cover async def __aexit__( self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: self.close() # pragma: no cover await self.wait_closed() # pragma: no cover class Serve: """ Start a WebSocket server listening on ``host`` and ``port``. Whenever a client connects, the server creates a :class:`WebSocketServerProtocol`, performs the opening handshake, and delegates to the connection handler, ``ws_handler``. The handler receives the :class:`WebSocketServerProtocol` and uses it to send and receive messages. Once the handler completes, either normally or with an exception, the server performs the closing handshake and closes the connection. Awaiting :func:`serve` yields a :class:`WebSocketServer`. This object provides :meth:`~WebSocketServer.close` and :meth:`~WebSocketServer.wait_closed` methods for shutting down the server. :func:`serve` can be used as an asynchronous context manager:: stop = asyncio.Future() # set this future to exit the server async with serve(...): await stop The server is shut down automatically when exiting the context. Args: ws_handler: connection handler. It receives the WebSocket connection, which is a :class:`WebSocketServerProtocol`, in argument. host: network interfaces the server is bound to; see :meth:`~asyncio.loop.create_server` for details. port: TCP port the server listens on; see :meth:`~asyncio.loop.create_server` for details. create_protocol: factory for the :class:`asyncio.Protocol` managing the connection; defaults to :class:`WebSocketServerProtocol`; may be set to a wrapper or a subclass to customize connection handling. logger: logger for this server; defaults to ``logging.getLogger("websockets.server")``; see the :doc:`logging guide <../topics/logging>` for details. compression: shortcut that enables the "permessage-deflate" extension by default; may be set to :obj:`None` to disable compression; see the :doc:`compression guide <../topics/compression>` for details. origins: acceptable values of the ``Origin`` header; include :obj:`None` in the list if the lack of an origin is acceptable. This is useful for defending against Cross-Site WebSocket Hijacking attacks. extensions: list of supported extensions, in order in which they should be tried. subprotocols: list of supported subprotocols, in order of decreasing preference. extra_headers (Union[HeadersLike, Callable[[str, Headers], HeadersLike]]): arbitrary HTTP headers to add to the request; this can be a :data:`~websockets.datastructures.HeadersLike` or a callable taking the request path and headers in arguments and returning a :data:`~websockets.datastructures.HeadersLike`. process_request (Optional[Callable[[str, Headers], \ Awaitable[Optional[Tuple[http.HTTPStatus, HeadersLike, bytes]]]]]): intercept HTTP request before the opening handshake; see :meth:`~WebSocketServerProtocol.process_request` for details. select_subprotocol: select a subprotocol supported by the client; see :meth:`~WebSocketServerProtocol.select_subprotocol` for details. See :class:`~websockets.legacy.protocol.WebSocketCommonProtocol` for the documentation of ``ping_interval``, ``ping_timeout``, ``close_timeout``, ``max_size``, ``max_queue``, ``read_limit``, and ``write_limit``. Any other keyword arguments are passed the event loop's :meth:`~asyncio.loop.create_server` method. For example: * You can set ``ssl`` to a :class:`~ssl.SSLContext` to enable TLS. * You can set ``sock`` to a :obj:`~socket.socket` that you created outside of websockets. Returns: WebSocketServer: WebSocket server. """ def __init__( self, ws_handler: Union[ Callable[[WebSocketServerProtocol], Awaitable[Any]], Callable[[WebSocketServerProtocol, str], Awaitable[Any]], # deprecated ], host: Optional[Union[str, Sequence[str]]] = None, port: Optional[int] = None, *, create_protocol: Optional[Callable[[Any], WebSocketServerProtocol]] = None, logger: Optional[LoggerLike] = None, compression: Optional[str] = "deflate", origins: Optional[Sequence[Optional[Origin]]] = None, extensions: Optional[Sequence[ServerExtensionFactory]] = None, subprotocols: Optional[Sequence[Subprotocol]] = None, extra_headers: Optional[HeadersLikeOrCallable] = None, process_request: Optional[ Callable[[str, Headers], Awaitable[Optional[HTTPResponse]]] ] = None, select_subprotocol: Optional[ Callable[[Sequence[Subprotocol], Sequence[Subprotocol]], Subprotocol] ] = None, ping_interval: Optional[float] = 20, ping_timeout: Optional[float] = 20, close_timeout: Optional[float] = None, max_size: Optional[int] = 2**20, max_queue: Optional[int] = 2**5, read_limit: int = 2**16, write_limit: int = 2**16, **kwargs: Any, ) -> None: # Backwards compatibility: close_timeout used to be called timeout. timeout: Optional[float] = kwargs.pop("timeout", None) if timeout is None: timeout = 10 else: warnings.warn("rename timeout to close_timeout", DeprecationWarning) # If both are specified, timeout is ignored. if close_timeout is None: close_timeout = timeout # Backwards compatibility: create_protocol used to be called klass. klass: Optional[Type[WebSocketServerProtocol]] = kwargs.pop("klass", None) if klass is None: klass = WebSocketServerProtocol else: warnings.warn("rename klass to create_protocol", DeprecationWarning) # If both are specified, klass is ignored. if create_protocol is None: create_protocol = klass # Backwards compatibility: recv() used to return None on closed connections legacy_recv: bool = kwargs.pop("legacy_recv", False) # Backwards compatibility: the loop parameter used to be supported. _loop: Optional[asyncio.AbstractEventLoop] = kwargs.pop("loop", None) if _loop is None: loop = asyncio.get_event_loop() else: loop = _loop warnings.warn("remove loop argument", DeprecationWarning) ws_server = WebSocketServer(logger=logger) secure = kwargs.get("ssl") is not None if compression == "deflate": extensions = enable_server_permessage_deflate(extensions) elif compression is not None: raise ValueError(f"unsupported compression: {compression}") if subprotocols is not None: validate_subprotocols(subprotocols) factory = functools.partial( create_protocol, # For backwards compatibility with 10.0 or earlier. Done here in # addition to WebSocketServerProtocol to trigger the deprecation # warning once per serve() call rather than once per connection. remove_path_argument(ws_handler), ws_server, host=host, port=port, secure=secure, ping_interval=ping_interval, ping_timeout=ping_timeout, close_timeout=close_timeout, max_size=max_size, max_queue=max_queue, read_limit=read_limit, write_limit=write_limit, loop=_loop, legacy_recv=legacy_recv, origins=origins, extensions=extensions, subprotocols=subprotocols, extra_headers=extra_headers, process_request=process_request, select_subprotocol=select_subprotocol, logger=logger, ) if kwargs.pop("unix", False): path: Optional[str] = kwargs.pop("path", None) # unix_serve(path) must not specify host and port parameters. assert host is None and port is None create_server = functools.partial( loop.create_unix_server, factory, path, **kwargs ) else: create_server = functools.partial( loop.create_server, factory, host, port, **kwargs ) # This is a coroutine function. self._create_server = create_server self.ws_server = ws_server # async with serve(...) async def __aenter__(self) -> WebSocketServer: return await self async def __aexit__( self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: self.ws_server.close() await self.ws_server.wait_closed() # await serve(...) def __await__(self) -> Generator[Any, None, WebSocketServer]: # Create a suitable iterator by calling __await__ on a coroutine. return self.__await_impl__().__await__() async def __await_impl__(self) -> WebSocketServer: server = await self._create_server() self.ws_server.wrap(server) return self.ws_server # yield from serve(...) - remove when dropping Python < 3.10 __iter__ = __await__ serve = Serve def unix_serve( ws_handler: Union[ Callable[[WebSocketServerProtocol], Awaitable[Any]], Callable[[WebSocketServerProtocol, str], Awaitable[Any]], # deprecated ], path: Optional[str] = None, **kwargs: Any, ) -> Serve: """ Similar to :func:`serve`, but for listening on Unix sockets. This function builds upon the event loop's :meth:`~asyncio.loop.create_unix_server` method. It is only available on Unix. It's useful for deploying a server behind a reverse proxy such as nginx. Args: path: file system path to the Unix socket. """ return serve(ws_handler, path=path, unix=True, **kwargs) def remove_path_argument( ws_handler: Union[ Callable[[WebSocketServerProtocol], Awaitable[Any]], Callable[[WebSocketServerProtocol, str], Awaitable[Any]], ] ) -> Callable[[WebSocketServerProtocol], Awaitable[Any]]: try: inspect.signature(ws_handler).bind(None) except TypeError: try: inspect.signature(ws_handler).bind(None, "") except TypeError: # pragma: no cover # ws_handler accepts neither one nor two arguments; leave it alone. pass else: # ws_handler accepts two arguments; activate backwards compatibility. # Enable deprecation warning and announce deprecation in 11.0. # warnings.warn("remove second argument of ws_handler", DeprecationWarning) async def _ws_handler(websocket: WebSocketServerProtocol) -> Any: return await cast( Callable[[WebSocketServerProtocol, str], Awaitable[Any]], ws_handler, )(websocket, websocket.path) return _ws_handler return cast( Callable[[WebSocketServerProtocol], Awaitable[Any]], ws_handler, )
the-stack_106_21430
class Solution: def restoreString(self, s: str, indices: List[int]) -> str: pair_list = [] output = "" for x in range(0, len(s)): pair_list.append([s[x], indices[x]]) for x in sorted(pair_list, key=lambda x: x[1]): output += x[0] return output
the-stack_106_21432
"""Common framework for loading yaml files.""" import yaml import os import os.path from typing import Optional from jinja2.sandbox import SandboxedEnvironment class YamlFileObject: """Common class for a yaml file object.""" default_file_name = "default.yaml" templated = True @classmethod def from_dict(cls, config, **kwargs): """Load a schedule from a dict.""" return NotImplementedError( "from_dict method not overriden for {0}".format(cls.__name__) ) @staticmethod def env_var(var: str, default: Optional[str] = None) -> str: """The env_var() function. Return the environment variable named 'var'. If there is no such environment variable set, return the default. If the default is None, raise an exception for an undefined variable. This is modified directly from: https://github.com/fishtown-analytics/dbt/blob/cee0bfbfa2596520032b766fd1027fe748777c75/core/dbt/context/base.py#L275 """ if var in os.environ: return os.environ[var] elif default is not None: return default else: raise ValueError(f"Env var required but not provided: '{var}'") @classmethod def _template_string(cls, raw_string: str) -> str: """Render a jinja templated string. Reference for macros: https://github.com/fishtown-analytics/dbt/blob/cee0bfbfa2596520032b766fd1027fe748777c75/core/dbt/context/base.py#L275 """ jinja_context: dict = {"env_var": cls.env_var} jinja_env = SandboxedEnvironment( # The do extension allows the "do" directive autoescape=False, extensions=["jinja2.ext.do"], ) template = jinja_env.from_string(raw_string, globals=jinja_context) return template.render() @classmethod def from_string(cls, raw_string, **kwargs): """Load a object from a string. This applies jinja templating. """ if cls.templated: rendered_string = cls._template_string(raw_string) else: rendered_string = raw_string config_dict = yaml.safe_load(rendered_string) return cls.from_dict(config_dict, **kwargs) @classmethod def from_file(cls, fname, **kwargs): """Load a object from a file.""" with open(fname) as raw_file: raw_string = raw_file.read() return cls.from_string(raw_string, **kwargs) @classmethod def from_path(cls, path, fname=None, **kwargs): """Load a file from a path.""" # Expand user if relevant. path = os.path.expanduser(path) return cls.from_file( fname=os.path.join(path, fname or cls.default_file_name), **kwargs )
the-stack_106_21433
#!/usr/bin/env python # coding: utf-8 #loading modules/libraries import numpy import matplotlib import decimal #loading .csv from GIS numpy.loadtxt(fname= "simplecoast.csv", delimiter = ",") #importing the csv that I created from a GIS shapefile trace & transforming into a re-useable variable coastline = (numpy.loadtxt(fname = "simplecoast.csv",delimiter = ",")) #examining the data print(coastline) print (type(coastline)) print(coastline.dtype) print(coastline.shape) # need to separate the data by x and y so that I can plot it. # x-data x = coastline[:,0] #y-data y = coastline[:,1] #print(x) #print(y) matplotlib.pyplot.plot(x,y) # the simple coastline is created for the MD,VA and NC coastal borders.
the-stack_106_21434
import argparse import os import sys from sem_seg.model import * import sem_seg.indoor3d_util as indoor3d_util parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during training [default: 1]') parser.add_argument('--num_point', type=int, default=4096, help='Point number [default: 4096]') parser.add_argument('--model_path', required=True, help='model checkpoint file path') parser.add_argument('--dump_dir', required=True, help='dump folder path') parser.add_argument('--output_filelist', required=True, help='TXT filename, filelist, each line is an output for a room') parser.add_argument('--room_data_filelist', required=True, help='TXT filename, filelist, each line is a test room data label file.') parser.add_argument('--no_clutter', action='store_true', help='If true, donot count the clutter class') parser.add_argument('--visu', action='store_true', help='Whether to output OBJ file for prediction visualization.') FLAGS = parser.parse_args() BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point MODEL_PATH = FLAGS.model_path GPU_INDEX = FLAGS.gpu DUMP_DIR = FLAGS.dump_dir if not os.path.exists(DUMP_DIR): os.mkdir(DUMP_DIR) LOG_FOUT = open(os.path.join(DUMP_DIR, 'log_evaluate.txt'), 'w') LOG_FOUT.write(str(FLAGS)+'\n') ROOM_PATH_LIST = [os.path.join(ROOT_DIR,line.rstrip()) for line in open(FLAGS.room_data_filelist)] NUM_CLASSES = 13 def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) def evaluate(): is_training = False with tf.device('/gpu:'+str(GPU_INDEX)): pointclouds_pl, labels_pl = placeholder_inputs(BATCH_SIZE, NUM_POINT) is_training_pl = tf.placeholder(tf.bool, shape=()) # simple model pred = get_model(pointclouds_pl, is_training_pl) loss = get_loss(pred, labels_pl) pred_softmax = tf.nn.softmax(pred) # Add ops to save and restore all the variables. saver = tf.train.Saver() # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = True sess = tf.Session(config=config) # Restore variables from disk. saver.restore(sess, MODEL_PATH) log_string("Model restored.") ops = {'pointclouds_pl': pointclouds_pl, 'labels_pl': labels_pl, 'is_training_pl': is_training_pl, 'pred': pred, 'pred_softmax': pred_softmax, 'loss': loss} total_correct = 0 total_seen = 0 fout_out_filelist = open(FLAGS.output_filelist, 'w') for room_path in ROOM_PATH_LIST: out_data_label_filename = os.path.basename(room_path)[:-4] + '_pred.txt' out_data_label_filename = os.path.join(DUMP_DIR, out_data_label_filename) out_gt_label_filename = os.path.basename(room_path)[:-4] + '_gt.txt' out_gt_label_filename = os.path.join(DUMP_DIR, out_gt_label_filename) print(room_path, out_data_label_filename) a, b = eval_one_epoch(sess, ops, room_path, out_data_label_filename, out_gt_label_filename) total_correct += a total_seen += b fout_out_filelist.write(out_data_label_filename+'\n') fout_out_filelist.close() log_string('all room eval accuracy: %f'% (total_correct / float(total_seen))) def eval_one_epoch(sess, ops, room_path, out_data_label_filename, out_gt_label_filename): error_cnt = 0 is_training = False total_correct = 0 total_seen = 0 loss_sum = 0 total_seen_class = [0 for _ in range(NUM_CLASSES)] total_correct_class = [0 for _ in range(NUM_CLASSES)] if FLAGS.visu: fout = open(os.path.join(DUMP_DIR, os.path.basename(room_path)[:-4]+'_pred.obj'), 'w') fout_gt = open(os.path.join(DUMP_DIR, os.path.basename(room_path)[:-4]+'_gt.obj'), 'w') fout_data_label = open(out_data_label_filename, 'w') fout_gt_label = open(out_gt_label_filename, 'w') current_data, current_label = indoor3d_util.room2blocks_wrapper_normalized(room_path, NUM_POINT) current_data = current_data[:,0:NUM_POINT,:] current_label = np.squeeze(current_label) # Get room dimension.. data_label = np.load(room_path) data = data_label[:,0:6] max_room_x = max(data[:,0]) max_room_y = max(data[:,1]) max_room_z = max(data[:,2]) file_size = current_data.shape[0] num_batches = file_size // BATCH_SIZE print(file_size) for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx+1) * BATCH_SIZE cur_batch_size = end_idx - start_idx feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :], ops['labels_pl']: current_label[start_idx:end_idx], ops['is_training_pl']: is_training} loss_val, pred_val = sess.run([ops['loss'], ops['pred_softmax']], feed_dict=feed_dict) if FLAGS.no_clutter: pred_label = np.argmax(pred_val[:,:,0:12], 2) # BxN else: pred_label = np.argmax(pred_val, 2) # BxN # Save prediction labels to OBJ file for b in range(BATCH_SIZE): pts = current_data[start_idx+b, :, :] l = current_label[start_idx+b,:] pts[:,6] *= max_room_x pts[:,7] *= max_room_y pts[:,8] *= max_room_z pts[:,3:6] *= 255.0 pred = pred_label[b, :] for i in range(NUM_POINT): color = indoor3d_util.g_label2color[pred[i]] color_gt = indoor3d_util.g_label2color[current_label[start_idx+b, i]] if FLAGS.visu: fout.write('v %f %f %f %d %d %d\n' % (pts[i,6], pts[i,7], pts[i,8], color[0], color[1], color[2])) fout_gt.write('v %f %f %f %d %d %d\n' % (pts[i,6], pts[i,7], pts[i,8], color_gt[0], color_gt[1], color_gt[2])) fout_data_label.write('%f %f %f %d %d %d %f %d\n' % (pts[i,6], pts[i,7], pts[i,8], pts[i,3], pts[i,4], pts[i,5], pred_val[b,i,pred[i]], pred[i])) fout_gt_label.write('%d\n' % (l[i])) correct = np.sum(pred_label == current_label[start_idx:end_idx,:]) total_correct += correct total_seen += (cur_batch_size*NUM_POINT) loss_sum += (loss_val*BATCH_SIZE) for i in range(start_idx, end_idx): for j in range(NUM_POINT): l = current_label[i, j] total_seen_class[l] += 1 total_correct_class[l] += (pred_label[i-start_idx, j] == l) log_string('eval mean loss: %f' % (loss_sum / float(total_seen/NUM_POINT))) log_string('eval accuracy: %f'% (total_correct / float(total_seen))) fout_data_label.close() fout_gt_label.close() if FLAGS.visu: fout.close() fout_gt.close() return total_correct, total_seen if __name__=='__main__': with tf.Graph().as_default(): evaluate() LOG_FOUT.close()
the-stack_106_21437
from django.shortcuts import render from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.contrib.auth import logout, login, authenticate from django.contrib.auth.forms import UserCreationForm # Create your views here. def logout_view(request): """Log the user out""" logout(request) return HttpResponseRedirect(reverse('address_books:index')) def register(request): """Register new user.""" if request.method != 'POST': # Display blank registration forms form = UserCreationForm() else: # Process completed form form = UserCreationForm(data=request.POST) if form.is_valid(): new_user = form.save() # Log the user in and redirect to home page authenticated_user = authenticate(username=new_user.username, password=request.POST['password1']) login(request, authenticated_user) return HttpResponseRedirect(reverse('address_books:index')) context = {'form': form} return render(request, 'users/register.html', context)
the-stack_106_21438
"""Imports unittest as a replacement for testing.pybase.googletest.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import inspect import itertools import os import tempfile # pylint: disable=wildcard-import from unittest import * unittest_main = main # pylint: disable=invalid-name # pylint: disable=undefined-variable def main(*args, **kwargs): """Delegate to unittest.main after redefining testLoader.""" if 'TEST_SHARD_STATUS_FILE' in os.environ: try: f = None try: f = open(os.environ['TEST_SHARD_STATUS_FILE'], 'w') f.write('') except IOError: sys.stderr.write('Error opening TEST_SHARD_STATUS_FILE (%s). Exiting.' % os.environ['TEST_SHARD_STATUS_FILE']) sys.exit(1) finally: if f is not None: f.close() if ('TEST_TOTAL_SHARDS' not in os.environ or 'TEST_SHARD_INDEX' not in os.environ): return unittest_main(*args, **kwargs) total_shards = int(os.environ['TEST_TOTAL_SHARDS']) shard_index = int(os.environ['TEST_SHARD_INDEX']) base_loader = TestLoader() delegate_get_names = base_loader.getTestCaseNames bucket_iterator = itertools.cycle(range(total_shards)) def getShardedTestCaseNames(testCaseClass): filtered_names = [] for testcase in sorted(delegate_get_names(testCaseClass)): bucket = next(bucket_iterator) if bucket == shard_index: filtered_names.append(testcase) return filtered_names # Override getTestCaseNames base_loader.getTestCaseNames = getShardedTestCaseNames kwargs['testLoader'] = base_loader unittest_main(*args, **kwargs) def GetTempDir(): first_frame = inspect.stack()[-1][0] temp_dir = os.path.join( tempfile.gettempdir(), os.path.basename(inspect.getfile(first_frame))) temp_dir = temp_dir.rstrip('.py') if not os.path.isdir(temp_dir): os.mkdir(temp_dir, 0o755) return temp_dir def StatefulSessionAvailable(): return False
the-stack_106_21439
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- from .debug_options import DebugOptions, LogLevel from . import (_utils, _io, _logger, _onnx_models, _are_deterministic_algorithms_enabled) from .torch_cpp_extensions.cpu.aten_op_executor import load_aten_op_executor_cpp_extension_if_needed from ._custom_autograd_function import custom_autograd_function_enabler from ._custom_autograd_function_exporter import _post_process_after_export from ._graph_execution_interface import GraphExecutionInterface from ._fallback import (_FallbackManager, ORTModuleDeviceException, ORTModuleONNXModelException, ORTModuleTorchModelException, wrap_exception) from ._gradient_accumulation_manager import GradientAccumulationManager from onnxruntime.training.ortmodule import ONNX_OPSET_VERSION from onnxruntime.capi import _pybind_state as C from onnxruntime.tools.symbolic_shape_infer import SymbolicShapeInference from abc import ABC, abstractmethod import copy from functools import reduce import io import inspect import os import onnx import onnxruntime import torch import warnings from enum import IntFlag from torch.utils.cpp_extension import ROCM_HOME class _RunStateInfo(object): def __init__(self, state, output_info): """ :param state: State of partial run that contains intermediate tensors needed to resume the run later. :param output_info: Output info. """ self.state = state self.output_info = output_info class _SkipCheck(IntFlag): """Enumeration to specify which checks should be skipped, allowing faster execution""" SKIP_CHECK_DISABLED = 1 SKIP_CHECK_DEVICE = 2 SKIP_CHECK_BUILD_GRADIENT = 4 SKIP_CHECK_EXECUTION_AGENT = 8 def is_set(self, check): """Check whether `check` is set on the `_SkipCheck instance SKIP_CHECK_DISABLED implies the check will return False """ return not _SkipCheck.is_disabled(self) and check in self def is_disabled(self): """Check whether `_SkipCheck.SKIP_CHECK_DISABLED is set on the `_SkipCheck instance""" return _SkipCheck.SKIP_CHECK_DISABLED in self class GraphExecutionManager(GraphExecutionInterface): def __init__(self, module, debug_options: DebugOptions, fallback_manager: _FallbackManager): """Manages construction and execution of ONNX graphs""" super(GraphExecutionManager, self).__init__(module._original_module) # IMPORTANT: Debug and Fallback must the configured first self._debug_options = debug_options self._fallback_manager = fallback_manager # Original and flattened (tranformed) output module self._flattened_module = module # onnx models self._onnx_models = _onnx_models.ONNXModels() # Model after inference optimization or gradient building. self._optimized_onnx_model = None self._graph_builder = None self._graph_info = None self._graph_initializer_names = None self._graph_initializer_names_to_train = None self._graph_initializers = None # TrainingAgent or InferenceAgent self._execution_agent = None # indicators of some logic have been executed previously thus could be skipped for faster training self._skip_check = reduce(lambda x, y: x | y, [_SkipCheck[name] for name in _utils.parse_os_env_skip_check_flags('ORTMODULE_SKIPCHECK_POLICY', _SkipCheck.SKIP_CHECK_DISABLED.name)]) self._first_skip_check_warning = True # Graph transformer config # Specify cast propagation strategy. Currently three strategies are available, NONE, INSERT-AND-REDUCE and FLOOD-FILL # The default is NONE, which implies the transformer does no cast-propagation transformation. self._propagate_cast_ops_strategy = C.PropagateCastOpsStrategy.NONE # Optimize by moving Cast operations if propagate_cast_ops_level is non-negative. # - If the _propagate_cast_ops_level is set to zero, then the transformation considers only the opcodes specified by _propagate_cast_ops_allow # as "FP16 safe", in order to insert/(re)move cast operations before/after to perform such operations in reduced (16-bit) precision. # - If propagate_cast_ops_level is positive, 1 or 2, then in addition to opcode codes specified by propagate_cast_ops_allow use onnxruntime # predetermined list of opcodes considered safe to move before/after cast operation. # - Onnxruntime Level 1 predetermind "FP16 safe" opcodes include only opcode that do not perform any computation such as Transpose, Split, Reshape, etc. # whereas Level 2 perdetermined "FP16 safe" opcodes include opcodes that perform computation using contrib ops, GeLU, Dropout, LayerNormalization, etc. self._propagate_cast_ops_level = 1 # List of opcodes to be considered safe to move before/after cast operation if propagate_cast_ops_level is zero. self._propagate_cast_ops_allow = [] # Whether allow fusion of layer norm subgraph if doing so will cause modified precision. self._allow_layer_norm_mod_precision = False # Value can be either torch.onnx.TrainingMode.TRAINING or torch.onnx.TrainingMode.EVAL # To be instantiated in the concrete implementation of GraphExecutionManager self._export_mode = None # Exporter can take extra arguments for ORTModule extensions # It cannot overlap with required/immutable arguments (validated in runtime) self._export_extra_kwargs = {} # Related to training graph shape inference self._current_input_shape = None # default execution order is priority-based for both dynamic/static shape input for now # if we observe benefit of static shape, we can expose this flag to user self._use_static_shape = False # flag to enable symbolic shape inference for dynamic shape inputs to improve performance self._run_symbolic_shape_infer = True # PyTorch custom Autograd function support self._enable_custom_autograd_function = custom_autograd_function_enabler.state self._input_info = None self._module_output_schema = None self._device = _utils.get_device_from_module(module) self._module_parameters = inspect.signature( self._original_module.forward).parameters.values() # TODO: remove after PyTorch ONNX exporter supports VAR_KEYWORD parameters. for input_parameter in self._module_parameters: if input_parameter.kind == inspect.Parameter.VAR_KEYWORD: if self._debug_options.logging.log_level <= LogLevel.WARNING: warnings.warn("The model's forward method has **kwargs parameter which has EXPERIMENTAL support!", UserWarning) self.is_rocm_pytorch = (True if ( (torch.version.hip is not None) and (ROCM_HOME is not None)) else False) self._use_external_gpu_allocator = True # assign self._torch_alloc and self._torch_free if self._use_external_gpu_allocator is True self._get_torch_gpu_allocator_function_addresses() # WIP feature to enable caching in Gradient accumulation scenario. self._enable_grad_acc_optimization = False self._gradient_accumulation_manager = GradientAccumulationManager() # Memory aware gradient builder. self._use_memory_efficient_gradient = False # Flag to re-export the model due to attribute change on original module. # Re-export will be avoided if _skip_check is enabled. self._original_model_has_changed = False def _get_torch_gpu_allocator_function_addresses(self): if self._use_external_gpu_allocator and torch.cuda.is_available(): # CPP extension to get torch GPU allocator's alloc and free function addresses from onnxruntime.training.ortmodule.torch_cpp_extensions import torch_gpu_allocator self._torch_alloc = torch_gpu_allocator.gpu_caching_allocator_raw_alloc_address() self._torch_free = torch_gpu_allocator.gpu_caching_allocator_raw_delete_address() self._torch_empty_cache = torch_gpu_allocator.gpu_caching_allocator_empty_cache_address() def _validate_module_type(self, module): """Raises ORTModuleTorchModelException if the module is not a torch.nn.Module""" if not isinstance(module, torch.nn.Module): raise wrap_exception(ORTModuleTorchModelException, TypeError(f"ORTModule only supports torch.nn.Module as input. {type(module)} is not supported.")) # Hard-coded list of unsupported torch.nn.Module goes here for fallback if isinstance(module, torch.nn.DataParallel): raise wrap_exception(ORTModuleTorchModelException, TypeError("ORTModule is not compatible with torch.nn.DataParallel. " "Please use torch.nn.parallel.DistributedDataParallel instead.")) @staticmethod def execution_session_run_forward(execution_session, onnx_model, device, *inputs): """Runs the forward pass on `execution_session` with given `onnx_model`, `device` and `inputs` This is a helper that can be called by the actual `GraphExecutionManager.forward` method Args: execution_session (InferenceAgent or InferenceAgent): Agent which runs either inference or train onnx_model (onnx.ModelProto): ONNX model device (torch.device): PyTorch device inputs: (torch.Tensor or a container of): User input Returns: Returns a tuple (user_outputs, run_info): user_outputs: The model output (either torch.Tensor or a container of torch.Tensor) run_info: A _RunStateInfo which contains extra information about the execution of the graph """ raise NotImplemented @abstractmethod def forward(self): """Executes the forward method for ORTModule This is an abstract method and must be overridden by a concrete implementation. This is the only method that the user should call on a concrete instance of the ExecutionManager All other methods are internal""" pass def _build_graph(self): if self._use_static_shape: self._graph_builder.build(self._input_info.shape) else: self._graph_builder.build() self._onnx_models.optimized_model = onnx.load_model_from_string( self._graph_builder.get_model()) self._onnx_models.optimized_pre_grad_model = onnx.load_model_from_string( self._graph_builder.get_inference_optimized_model()) self._graph_info = self._graph_builder.get_graph_info() def _get_session_config(self): """Creates and returns the session configuration to be used for the ExecutionAgent""" if _are_deterministic_algorithms_enabled(): if self._debug_options.logging.log_level <= _logger.LogLevel.INFO: warnings.warn("ORTModule's determinism will be enabled because PyTorch's determinism is enabled.", UserWarning) providers = None provider_options = None if self._device.type == 'cuda': # Configure the InferenceSessions to use the specific GPU on which the model is placed. providers = (["ROCMExecutionProvider"] if self.is_rocm_pytorch else [ "CUDAExecutionProvider"]) providers.append("CPUExecutionProvider") provider_option_map = {"device_id": str(self._device.index)} if not self.is_rocm_pytorch: # Set Conv algo search mode to HEURISTIC, which is same as PyTorch's default setting. provider_option_map["cudnn_conv_algo_search"] = "HEURISTIC" provider_option_map["cudnn_conv_use_max_workspace"] = "1" if self._use_external_gpu_allocator: provider_option_map["gpu_external_alloc"] = str(self._torch_alloc) provider_option_map["gpu_external_free"] = str(self._torch_free) provider_option_map["gpu_external_empty_cache"] = str(self._torch_empty_cache) provider_options = [provider_option_map, {}] elif self._device.type == 'cpu': providers = ["CPUExecutionProvider"] provider_options = [{}] session_options = onnxruntime.SessionOptions() session_options.enable_mem_pattern = False session_options.enable_mem_reuse = False session_options.use_deterministic_compute = _are_deterministic_algorithms_enabled() # default to PRIORITY_BASED execution order session_options.execution_order = onnxruntime.ExecutionOrder.PRIORITY_BASED # 0:Verbose, 1:Info, 2:Warning. 3:Error, 4:Fatal. Default is 2. session_options.log_severity_level = int( self._debug_options.logging.log_level) if self._debug_options.save_onnx_models.save: session_options.optimized_model_filepath = \ os.path.join(self._debug_options.save_onnx_models.path, _onnx_models._get_onnx_file_name( self._debug_options.save_onnx_models.name_prefix, 'execution_model', self._export_mode)) return session_options, providers, provider_options def _export_model(self, *inputs, **kwargs): # 1. Set the self._device from the user module # 2. Verify input schema matches schema used on previous model export # 3. Export the user model under self._export_training_flag mode # Return True if the model needed to be exported, False if no export was required. # Note: Model is only exported when: # 1. Model has never been exported before. # 2. Model input schema has changed (changes in inputs requiring gradient, shape, boolean inputs values change, etc) # Model is not re-exported when the model parameters change. This can happen when the model is a stateful model, # or the user explicitly changed model parameters after the onnx export. schema = _io._extract_schema( {'args': copy.copy(inputs), 'kwargs': copy.copy(kwargs)}) if self._onnx_models.exported_model and schema == self._input_info.schema and not self._original_model_has_changed: # All required models have already been exported previously return False self._set_device_from_module(inputs, kwargs) self._onnx_models.exported_model = self._get_exported_model( schema, *inputs, **kwargs) load_aten_op_executor_cpp_extension_if_needed(self._onnx_models.exported_model) if self._debug_options.save_onnx_models.save: self._onnx_models.save_exported_model(self._debug_options.save_onnx_models.path, self._debug_options.save_onnx_models.name_prefix, self._export_mode) if self._run_symbolic_shape_infer: self._onnx_models.exported_model = SymbolicShapeInference.infer_shapes(self._onnx_models.exported_model, auto_merge=True, guess_output_rank=True) return True def _get_exported_model(self, input_schema, *inputs, **kwargs): '''Exports PyTorch `self._flattened_module` to ONNX for inferencing or training, using `*inputs` and `**kwargs` as input TODO: How to support dynamic axes? Dimensions are determined by samples ''' # Setup dynamic axes for onnx model self._input_info = _io.parse_inputs_for_onnx_export(self._module_parameters, None, input_schema, inputs, kwargs) output_names, output_dynamic_axes, self._module_output_schema = \ _io.parse_outputs_for_onnx_export_and_extract_schema( self._original_module, inputs, kwargs) self._input_info.dynamic_axes.update(output_dynamic_axes) # FlattenedModule needs _InputInfo to expand user input from *args to *args + **kwargs self._flattened_module._input_info = self._input_info # Export torch.nn.Module to ONNX f = io.BytesIO() # Deepcopy inputs, since input values may change after model run. # NOTE: Inputs may contain tensors that have attributes preventing their deepcopy (example grad_fn). # Therefore, deepcopy only the data component of the input tensors for export. sample_inputs_copy, sample_kwargs_copy = _io.deepcopy_model_input( *inputs, **kwargs) # NOTE: Flattening the input will change the 'input schema', resulting in a re-export sample_inputs_as_tuple = tuple(self._input_info.flatten( sample_inputs_copy, sample_kwargs_copy, self._device)) # Ops behaving differently under train/eval mode need to exported with the # correct training flag to reflect the expected behavior. # For example, the Dropout node in a model is dropped under eval mode. assert self._export_mode is not None, "Please use a concrete instance of ExecutionManager" try: with torch.set_grad_enabled(self._enable_custom_autograd_function), \ _logger.suppress_os_stream_output(log_level=self._debug_options.logging.log_level): required_export_kwargs = {'input_names': self._input_info.names, 'output_names': output_names, 'opset_version': ONNX_OPSET_VERSION, 'do_constant_folding': False, 'training': self._export_mode, 'dynamic_axes': self._input_info.dynamic_axes, 'verbose': self._debug_options.logging.log_level < LogLevel.WARNING, 'export_params': False, 'keep_initializers_as_inputs': True} invalid_args = self._export_extra_kwargs.keys() & required_export_kwargs.keys() assert len(invalid_args) == 0,\ f"The following PyTorch exporter arguments cannot be specified: '{invalid_args}'." torch.onnx.export(self._flattened_module, sample_inputs_as_tuple, f, **required_export_kwargs, **self._export_extra_kwargs) except Exception as e: raise wrap_exception(ORTModuleONNXModelException, RuntimeError(f'There was an error while exporting the PyTorch model to ONNX: ' f'\n\n{_utils.get_exception_as_string(e)}')) exported_model = onnx.load_model_from_string(f.getvalue()) exported_model = _post_process_after_export(exported_model, self._enable_custom_autograd_function, self._debug_options.logging.log_level) return exported_model def _set_device_from_module(self, inputs, kwargs): """Get the device from the module and save it to self._device""" device = _utils.get_device_from_module(self._original_module) or \ _utils.get_device_from_inputs(inputs, kwargs) if not self._device or self._device != device: self._device = device if not self._device: raise wrap_exception(ORTModuleDeviceException, RuntimeError('A device must be specified in the model or inputs!')) def _get_graph_transformer_config(self): graph_transformer_config = C.TrainingGraphTransformerConfiguration() graph_transformer_config.propagate_cast_ops_config = C.PropagateCastOpsConfiguration() graph_transformer_config.propagate_cast_ops_config.level = self._propagate_cast_ops_level graph_transformer_config.propagate_cast_ops_config.allow = self._propagate_cast_ops_allow graph_transformer_config.propagate_cast_ops_config.strategy = self._propagate_cast_ops_strategy graph_transformer_config.allow_layer_norm_mod_precision = self._allow_layer_norm_mod_precision return graph_transformer_config def _initialize_graph_builder(self, training): """Creates a new OrtModuleGraphBuilder, initializes it and saves it to self._graph_builder""" # All initializer names along with user inputs are a part of the onnx graph inputs # since the onnx model was exported with the flag keep_initializers_as_inputs=True onnx_initializer_names = { p.name for p in self._onnx_models.exported_model.graph.input} # TODO: PyTorch exporter bug: changes the initializer order in ONNX model initializer_names = [name for name, _ in self._flattened_module.named_parameters() if name in onnx_initializer_names] initializer_names_to_train = [name for name, param in self._flattened_module.named_parameters() if param.requires_grad and name in onnx_initializer_names] # Build and optimize the full graph grad_builder_config = C.OrtModuleGraphBuilderConfiguration() grad_builder_config.initializer_names = initializer_names grad_builder_config.initializer_names_to_train = initializer_names_to_train grad_builder_config.input_names_require_grad = self._input_info.require_grad_names grad_builder_config.build_gradient_graph = training grad_builder_config.graph_transformer_config = self._get_graph_transformer_config() grad_builder_config.enable_caching = self._enable_grad_acc_optimization grad_builder_config.loglevel = _logger.ortmodule_loglevel_to_onnxruntime_c_loglevel(self._debug_options.logging.log_level) grad_builder_config.use_memory_efficient_gradient = self._use_memory_efficient_gradient self._graph_builder = C.OrtModuleGraphBuilder() # It is assumed here that the order and names of the inputs and outputs are not modified by the backend in any way # and are kept as they appear in the exported onnx model. self._graph_builder.initialize( self._onnx_models.exported_model.SerializeToString(), grad_builder_config) # TODO: Explore ways to make self._graph_info.initializer_names and self._graph_info.initializer_names_to_train # a set (unordered_set in the backend) that does not require a copy on each reference. self._graph_initializer_names = set(initializer_names) self._graph_initializer_names_to_train = set( initializer_names_to_train) # Initializers can be cached and used since they are expected not to be re-instantiated # between forward calls. self._graph_initializers = [param for name, param in self._flattened_module.named_parameters() if name in self._graph_initializer_names] def signal_model_changed(self): """Signals the execution manager to re-export the model on the next forward call""" self._original_model_has_changed = True
the-stack_106_21441
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converter for logical expressions. e.g. `a and b -> tf.logical_and(a, b)`. This is not done automatically in TF. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import gast from tensorflow.python.autograph.core import converter from tensorflow.python.autograph.pyct import anno from tensorflow.python.autograph.pyct import parser from tensorflow.python.autograph.pyct import templates # TODO(mdan): Properly extrack boolean ops according to lazy eval rules. # Note that this isn't completely safe either, because tensors may have control # dependencies. # Note that for loops that should be done after the loop was converted to # tf.while_loop so that the expanded conditionals are properly scoped. # Used to signal that an operand is safe for non-lazy evaluation. SAFE_BOOLEAN_OPERAND = 'SAFE_BOOLEAN_OPERAND' class LogicalExpressionTransformer(converter.Base): """Converts logical expressions to corresponding TF calls.""" def __init__(self, ctx): super(LogicalExpressionTransformer, self).__init__(ctx) # TODO(mdan): Look into replacing with bitwise operators instead. # TODO(mdan): Skip replacing if the function is trivial. self.op_mapping = { gast.And: 'tf.logical_and', gast.Eq: 'tf.equal', gast.Gt: 'tf.greater', gast.GtE: 'tf.greater_equal', gast.Lt: 'tf.less', gast.LtE: 'tf.less_equal', gast.Not: 'tf.logical_not', gast.NotEq: 'tf.not_equal', gast.Or: 'tf.logical_or', gast.USub: 'tf.negative', } def _expect_simple_symbol(self, operand): if isinstance(operand, gast.Name): return if anno.hasanno(operand, SAFE_BOOLEAN_OPERAND): return raise NotImplementedError( 'only simple local variables are supported in logical and compound ' 'comparison expressions; for example, we support "a or b" but not ' '"a.x or b"; for a workaround, assign the expression to a local ' 'variable and use that instead, for example "tmp = a.x", "tmp or b"') def _has_matching_func(self, operator): op_type = type(operator) return op_type in self.op_mapping def _matching_func(self, operator): op_type = type(operator) return self.op_mapping[op_type] def _as_function(self, func_name, args): template = """ func_name(args) """ replacement = templates.replace_as_expression( template, func_name=parser.parse_expression(func_name), args=args) anno.setanno(replacement, SAFE_BOOLEAN_OPERAND, True) return replacement def visit_Compare(self, node): node = self.generic_visit(node) if not all(self._has_matching_func(op) for op in node.ops): if len(node.ops) == 1: # Basic expressions are safe to leave as they are. return node else: raise NotImplementedError( 'compound expression with at least one unsupported ' 'operator: {}'.format(node.ops)) ops_and_comps = list(zip(node.ops, node.comparators)) left = node.left op_tree = None # Repeated comparisons are converted to conjunctions: # a < b < c -> a < b and b < c while ops_and_comps: op, right = ops_and_comps.pop(0) binary_comparison = self._as_function( self._matching_func(op), (left, right)) if isinstance(left, gast.Name) and isinstance(right, gast.Name): anno.setanno(binary_comparison, SAFE_BOOLEAN_OPERAND, True) if op_tree: self._expect_simple_symbol(right) op_tree = self._as_function('tf.logical_and', (binary_comparison, op_tree)) else: op_tree = binary_comparison left = right assert op_tree is not None return op_tree def visit_UnaryOp(self, node): node = self.generic_visit(node) return self._as_function(self._matching_func(node.op), node.operand) def visit_BoolOp(self, node): node = self.generic_visit(node) node_values = node.values right = node.values.pop() self._expect_simple_symbol(right) while node_values: left = node_values.pop() self._expect_simple_symbol(left) right = self._as_function(self._matching_func(node.op), (left, right)) return right def transform(node, ctx): return LogicalExpressionTransformer(ctx).visit(node)
the-stack_106_21444
import hashlib import logging import os import shutil from django.apps import apps from django.db import models, transaction from django.urls import reverse from django.utils.encoding import force_text from django.utils.functional import cached_property from django.utils.translation import ugettext_lazy as _ from mayan.apps.common.classes import ModelQueryFields from mayan.apps.common.signals import signal_mayan_pre_save from mayan.apps.converter.classes import ConverterBase from mayan.apps.converter.exceptions import InvalidOfficeFormat, PageCountError from mayan.apps.converter.layers import layer_saved_transformations from mayan.apps.converter.transformations import TransformationRotate from mayan.apps.mimetype.api import get_mimetype from mayan.apps.storage.classes import DefinedStorageLazy from mayan.apps.templating.classes import Template from ..events import event_document_version_new, event_document_version_revert from ..literals import ( STORAGE_NAME_DOCUMENT_IMAGE, STORAGE_NAME_DOCUMENT_VERSION ) from ..managers import DocumentVersionManager, ValidDocumentVersionManager from ..settings import setting_fix_orientation, setting_hash_block_size from ..signals import signal_post_document_created, signal_post_version_upload from .document_models import Document __all__ = ('DocumentVersion',) logger = logging.getLogger(name=__name__) # document image cache name hash function def hash_function(): return hashlib.sha256() def upload_to(instance, filename): return instance.document.document_type.get_upload_filename( instance=instance, filename=filename ) class DocumentVersion(models.Model): """ Model that describes a document version and its properties Fields: * mimetype - File mimetype. MIME types are a standard way to describe the format of a file, in this case the file format of the document. Some examples: "text/plain" or "image/jpeg". Mayan uses this to determine how to render a document's file. More information: http://www.freeformatter.com/mime-types-list.html * encoding - File Encoding. The filesystem encoding of the document's file: binary 7-bit, binary 8-bit, text, base64, etc. * checksum - A hash/checkdigit/fingerprint generated from the document's binary data. Only identical documents will have the same checksum. If a document is modified after upload it's checksum will not match, used for detecting file tampering among other things. """ _hooks_pre_create = [] _pre_open_hooks = [] _pre_save_hooks = [] _post_save_hooks = [] document = models.ForeignKey( on_delete=models.CASCADE, related_name='versions', to=Document, verbose_name=_('Document') ) timestamp = models.DateTimeField( auto_now_add=True, db_index=True, help_text=_( 'The server date and time when the document version was processed.' ), verbose_name=_('Timestamp') ) comment = models.TextField( blank=True, default='', help_text=_( 'An optional short text describing the document version.' ), verbose_name=_('Comment') ) # File related fields file = models.FileField( storage=DefinedStorageLazy(name=STORAGE_NAME_DOCUMENT_VERSION), upload_to=upload_to, verbose_name=_('File') ) mimetype = models.CharField( blank=True, editable=False, help_text=_( 'The document version\'s file mimetype. MIME types are a ' 'standard way to describe the format of a file, in this case ' 'the file format of the document. Some examples: "text/plain" ' 'or "image/jpeg". ' ), max_length=255, null=True, verbose_name=_('MIME type') ) encoding = models.CharField( blank=True, editable=False, help_text=_( 'The document version file encoding. binary 7-bit, binary 8-bit, ' 'text, base64, etc.' ), max_length=64, null=True, verbose_name=_('Encoding') ) checksum = models.CharField( blank=True, db_index=True, editable=False, help_text=( 'A hash/checkdigit/fingerprint generated from the document\'s ' 'binary data. Only identical documents will have the same ' 'checksum.' ), max_length=64, null=True, verbose_name=_('Checksum') ) class Meta: ordering = ('timestamp',) verbose_name = _('Document version') verbose_name_plural = _('Document version') objects = DocumentVersionManager() valid = ValidDocumentVersionManager() @classmethod def _execute_hooks(cls, hook_list, instance, **kwargs): result = None for hook in hook_list: result = hook(document_version=instance, **kwargs) if result: kwargs.update(result) return result @classmethod def _insert_hook_entry(cls, hook_list, func, order=None): order = order or len(hook_list) hook_list.insert(order, func) @classmethod def execute_pre_create_hooks(cls, kwargs=None): """ Helper method to allow checking if it is possible to create a new document version. """ cls._execute_hooks( hook_list=cls._hooks_pre_create, instance=None, kwargs=kwargs ) @classmethod def register_post_save_hook(cls, func, order=None): cls._insert_hook_entry( hook_list=cls._post_save_hooks, func=func, order=order ) @classmethod def register_pre_create_hook(cls, func, order=None): cls._insert_hook_entry( hook_list=cls._hooks_pre_create, func=func, order=order ) @classmethod def register_pre_open_hook(cls, func, order=None): cls._insert_hook_entry( hook_list=cls._pre_open_hooks, func=func, order=order ) @classmethod def register_pre_save_hook(cls, func, order=None): cls._insert_hook_entry( hook_list=cls._pre_save_hooks, func=func, order=order ) def __str__(self): return self.get_rendered_string() @cached_property def cache(self): Cache = apps.get_model(app_label='file_caching', model_name='Cache') return Cache.objects.get( defined_storage_name=STORAGE_NAME_DOCUMENT_IMAGE ) @cached_property def cache_partition(self): partition, created = self.cache.partitions.get_or_create( name='version-{}'.format(self.uuid) ) return partition def delete(self, *args, **kwargs): for page in self.pages.all(): page.delete() self.file.storage.delete(name=self.file.name) self.cache_partition.delete() return super(DocumentVersion, self).delete(*args, **kwargs) def execute_pre_save_hooks(self): """ Helper method to allow checking if new versions are possible from outside the model. Currently used by the document version upload link condition. """ DocumentVersion._execute_hooks( hook_list=DocumentVersion._pre_save_hooks, instance=self ) def exists(self): """ Returns a boolean value that indicates if the document's file exists in storage. Returns True if the document's file is verified to be in the document storage. This is a diagnostic flag to help users detect if the storage has desynchronized (ie: Amazon's S3). """ return self.file.storage.exists(self.file.name) def fix_orientation(self): for page in self.pages.all(): degrees = page.detect_orientation() if degrees: layer_saved_transformations.add_transformation_to( obj=page, transformation_class=TransformationRotate, arguments='{{"degrees": {}}}'.format(360 - degrees) ) def get_absolute_url(self): return reverse( viewname='documents:document_version_view', kwargs={ 'document_version_id': self.pk } ) def get_api_image_url(self, *args, **kwargs): first_page = self.pages_valid.first() if first_page: return first_page.get_api_image_url(*args, **kwargs) def get_intermediate_file(self): cache_filename = 'intermediate_file' cache_file = self.cache_partition.get_file(filename=cache_filename) if cache_file: logger.debug('Intermidiate file found.') return cache_file.open() else: logger.debug('Intermidiate file not found.') try: with self.open() as version_file_object: converter = ConverterBase.get_converter_class()( file_object=version_file_object ) with converter.to_pdf() as pdf_file_object: with self.cache_partition.create_file(filename=cache_filename) as file_object: shutil.copyfileobj( fsrc=pdf_file_object, fdst=file_object ) return self.cache_partition.get_file(filename=cache_filename).open() except InvalidOfficeFormat: return self.open() except Exception as exception: logger.error( 'Error creating intermediate file "%s"; %s.', cache_filename, exception ) cache_file = self.cache_partition.get_file(filename=cache_filename) if cache_file: cache_file.delete() raise def get_rendered_string(self, preserve_extension=False): if preserve_extension: filename, extension = os.path.splitext(self.document.label) return '{} ({}){}'.format( filename, self.get_rendered_timestamp(), extension ) else: return Template( template_string='{{ instance.document }} - {{ instance.timestamp }}' ).render(context={'instance': self}) def get_rendered_timestamp(self): return Template( template_string='{{ instance.timestamp }}' ).render( context={'instance': self} ) def natural_key(self): return (self.checksum, self.document.natural_key()) natural_key.dependencies = ['documents.Document'] @property def is_in_trash(self): return self.document.is_in_trash def open(self, raw=False): """ Return a file descriptor to a document version's file irrespective of the storage backend """ if raw: return self.file.storage.open(name=self.file.name) else: file_object = self.file.storage.open(name=self.file.name) result = DocumentVersion._execute_hooks( hook_list=DocumentVersion._pre_open_hooks, instance=self, file_object=file_object ) if result: return result['file_object'] else: return file_object @property def page_count(self): """ The number of pages that the document posses. """ return self.pages.count() @property def pages(self): DocumentPage = apps.get_model( app_label='documents', model_name='DocumentPage' ) queryset = ModelQueryFields.get(model=DocumentPage).get_queryset() return queryset.filter(pk__in=self.version_pages.all()) @property def pages_valid(self): DocumentPage = apps.get_model( app_label='documents', model_name='DocumentPage' ) return self.pages.filter(pk__in=DocumentPage.valid.filter(document_version=self)) def revert(self, _user=None): """ Delete the subsequent versions after this one """ logger.info( 'Reverting to document document: %s to version: %s', self.document, self ) with transaction.atomic(): event_document_version_revert.commit( actor=_user, target=self.document ) for version in self.document.versions.filter(timestamp__gt=self.timestamp): version.delete() def save(self, *args, **kwargs): """ Overloaded save method that updates the document version's checksum, mimetype, and page count when created """ user = kwargs.pop('_user', None) new_document_version = not self.pk if new_document_version: logger.info('Creating new version for document: %s', self.document) try: with transaction.atomic(): self.execute_pre_save_hooks() signal_mayan_pre_save.send( instance=self, sender=DocumentVersion, user=user ) super(DocumentVersion, self).save(*args, **kwargs) DocumentVersion._execute_hooks( hook_list=DocumentVersion._post_save_hooks, instance=self ) if new_document_version: # Only do this for new documents self.update_checksum(save=False) self.update_mimetype(save=False) self.save() self.update_page_count(save=False) if setting_fix_orientation.value: self.fix_orientation() logger.info( 'New document version "%s" created for document: %s', self, self.document ) self.document.is_stub = False if not self.document.label: self.document.label = force_text(s=self.file) self.document.save(_commit_events=False) except Exception as exception: logger.error( 'Error creating new document version for document "%s"; %s', self.document, exception ) raise else: if new_document_version: event_document_version_new.commit( actor=user, target=self, action_object=self.document ) signal_post_version_upload.send( sender=DocumentVersion, instance=self ) if tuple(self.document.versions.all()) == (self,): signal_post_document_created.send( instance=self.document, sender=Document ) def save_to_file(self, file_object): """ Save a copy of the document from the document storage backend to the local filesystem """ with self.open() as input_file_object: shutil.copyfileobj(fsrc=input_file_object, fdst=file_object) @property def size(self): if self.exists(): return self.file.storage.size(self.file.name) else: return None def update_checksum(self, save=True): """ Open a document version's file and update the checksum field using the user provided checksum function """ block_size = setting_hash_block_size.value if block_size == 0: # If the setting value is 0 that means disable read limit. To disable # the read limit passing None won't work, we pass -1 instead as per # the Python documentation. # https://docs.python.org/2/tutorial/inputoutput.html#methods-of-file-objects block_size = -1 if self.exists(): hash_object = hash_function() with self.open() as file_object: while (True): data = file_object.read(block_size) if not data: break hash_object.update(data) self.checksum = force_text(s=hash_object.hexdigest()) if save: self.save() return self.checksum def update_mimetype(self, save=True): """ Read a document verions's file and determine the mimetype by calling the get_mimetype wrapper """ if self.exists(): try: with self.open() as file_object: self.mimetype, self.encoding = get_mimetype( file_object=file_object ) except Exception: self.mimetype = '' self.encoding = '' finally: if save: self.save() def update_page_count(self, save=True): try: with self.open() as file_object: converter = ConverterBase.get_converter_class()( file_object=file_object, mime_type=self.mimetype ) detected_pages = converter.get_page_count() except PageCountError: # If converter backend doesn't understand the format, # use 1 as the total page count pass else: DocumentPage = apps.get_model( app_label='documents', model_name='DocumentPage' ) with transaction.atomic(): self.pages.all().delete() for page_number in range(detected_pages): DocumentPage.objects.create( document_version=self, page_number=page_number + 1 ) if save: self.save() return detected_pages @property def uuid(self): # Make cache UUID a mix of document UUID, version ID return '{}-{}'.format(self.document.uuid, self.pk)
the-stack_106_21446
""" Main Window """ import cv2 import time import os import copy import locale import threading import funscript_editor.utils.logging as logging import shutil import webbrowser import platform import numpy as np from PyQt5 import QtGui, QtCore ,QtWidgets from datetime import datetime from funscript_editor.ui.funscript_editor_view import Ui_MainWindow from funscript_editor.ui.video_player import VideoPlayer from funscript_editor.ui.funscript_visualizer import FunscriptVisualizer from funscript_editor.data.funscript import Funscript from funscript_editor.utils.config import UI_CONFIG, VERSION, SETTINGS from funscript_editor.definitions import APP_DOCUMENTATION_DIR from funscript_editor.data.ffmpegstream import FFmpegStream from funscript_editor.ui.funscript_generator_window import FunscriptGeneratorWindow from funscript_editor.ui.theme import setup_theme import funscript_editor.definitions as definitions class FunscriptEditorWindow(QtWidgets.QMainWindow): """ Funscript Editor window """ def __init__(self): super(FunscriptEditorWindow, self).__init__() setup_theme() self.ui = Ui_MainWindow() self.ui.setupUi(self) self.__setup_video_player() self.__setup_funscript_visualizer() self.__setup_layout() self.__setup_ui_binding() self.__setup_modul_bindings() self.__setup_shortcut_bindings() self.__setup_variables() self.__setup_autosave_timer() self.setMouseTracking(True) if os.path.exists(definitions.ICON_PATH): self.setWindowIcon(QtGui.QIcon(definitions.ICON_PATH)) __generateFunscript = QtCore.pyqtSignal() __openVideo = QtCore.pyqtSignal() __logger = logging.getLogger(__name__) def mouseMoveEvent(self, event): """ Track the mouse in Qt Window """ # On Windows the embedded mpv player do not get the mouse events if False: if platform.system() == 'Windows': self.video_player.send_mouse_pos( event.x() - self.ui.videoPane.x(), event.y() - self.ui.videoPane.y() - self.ui.menubar.height()) def closeEvent(self, event): """ Implement for the Qt closeEvent handler """ self.__save_funscript() def keyPressEvent(self, event): """ Implement for the Qt keyPressEvent handler """ super(FunscriptEditorWindow, self).keyPressEvent(event) if event.key() == QtCore.Qt.Key_Delete: self.__delete_current_action() if event.key() == QtCore.Qt.Key_Space: self.video_player.toggle_play_pause() if event.key() == QtCore.Qt.Key_P: self.video_player.toggle_play_pause() if event.key() == QtCore.Qt.Key_Comma: self.video_player.show_prev_frame() if event.key() == QtCore.Qt.Key_Period: self.video_player.show_next_frame() if event.key() == QtCore.Qt.Key_BracketLeft: self.video_player.decrease_speed() if event.key() == QtCore.Qt.Key_BracketRight: self.video_player.increase_speed() if event.key() == QtCore.Qt.Key_W: self.video_player.move_stroke_indicator_relative(0,-1) if event.key() == QtCore.Qt.Key_S: self.video_player.move_stroke_indicator_relative(0,+1) if event.key() == QtCore.Qt.Key_A: self.video_player.move_stroke_indicator_relative(-1,0) if event.key() == QtCore.Qt.Key_D: self.video_player.move_stroke_indicator_relative(+1,0) if event.key() == QtCore.Qt.Key_End: self.video_player.seek_time(self.video_player.get_duration) if event.key() == QtCore.Qt.Key_Home: self.video_player.seek_time(0) def __setup_variables(self): self.funscript = None def __setup_autosave_timer(self): self.autosave_timer = QtCore.QTimer(self) self.autosave_timer.setInterval(UI_CONFIG['autosave_in_sec'] * 1000) self.autosave_timer.timeout.connect(self.__save_funscript) self.autosave_timer.start() def __setup_video_player(self): self.video_player = VideoPlayer(self.ui.videoPane, key_callback=self.__video_player_on_key_press) self.video_player.start() def __setup_funscript_visualizer(self): self.funscript_visualizer = FunscriptVisualizer(self.ui.animationPane) self.funscript_visualizer.start() def __setup_layout(self): self.ui.splitterHorizontal.setStretchFactor(0, UI_CONFIG['horizontal_stretch_factor'][0]) self.ui.splitterHorizontal.setStretchFactor(1, UI_CONFIG['horizontal_stretch_factor'][1]) self.ui.splitterVertical.setStretchFactor(0, UI_CONFIG['vertical_stretch_factor'][0]) self.ui.splitterVertical.setStretchFactor(1, UI_CONFIG['vertical_stretch_factor'][1]) def __setup_modul_bindings(self): self.funscript_visualizer.set_select_point_callback(self.video_player.seek_frame) self.video_player.set_frame_changed_callback(self.__frame_changed_handler) def __frame_changed_handler(self, frame_num): if not self.ui.seekBar.isSliderDown(): self.ui.seekBar.setValue(frame_num) self.funscript_visualizer.set_frame(frame_num) if self.funscript is None: return self.ui.currentStrokeLabel.setText('{} ms'.format(\ self.funscript.get_stroke_time(self.video_player.get_current_timestamp_in_millis))) self.ui.fastestStrokeLabel.setText('{} ms'.format(self.funscript.get_fastest_stroke())) self.ui.slowstStrokeLabel.setText('{} ms'.format(self.funscript.get_slowest_stroke())) self.ui.medianStrokesLabel.setText('{} ms'.format(self.funscript.get_median_stroke())) self.ui.timestamp.setText(FFmpegStream.millisec_to_timestamp(self.video_player.get_current_timestamp_in_millis)+' ') def __setup_ui_binding(self): self.ui.menuFile.addAction('Open (Ctrl+O)', self.__open_video) self.ui.menuFile.addAction('New (Ctrl+N)', self.__new_funscript) self.ui.menuFile.addAction('Save (Ctrl+S)', self.__save_funscript) self.ui.menuFile.addAction('Clear History (Ctrl+C)', self.__clear_funscript_history) self.ui.menuFile.addAction('Close Video (Ctrl+Q)', self.__close_video) helpMenu = self.ui.menubar.addMenu("Help") # TODO we schold use an http server to show the documentation helpMenu.addAction("App Documentation", self.__open_docs) # helpMenu.addAction("Code Documentation", lambda : webbrowser.open(os.path.join(CODE_DOCUMENTATION_DIR, 'index.html'))) helpMenu.addAction(str('Version '+VERSION)) self.ui.seekBar.sliderReleased.connect(lambda: self.video_player.seek_frame(self.ui.seekBar.value())) self.__openVideo.connect(self.__open_video) self.__generateFunscript.connect(self.__generate_funscript) def __open_docs(self): app_docs = os.path.join(APP_DOCUMENTATION_DIR, 'index.html') self.__logger.info("Open Application Documentation: %s", app_docs) browser = webbrowser.get() browser.open_new(app_docs) def __setup_shortcut_bindings(self): QtWidgets.QShortcut('CTRL+Left', self).activated.connect(self.__seek_prev) QtWidgets.QShortcut('CTRL+Right', self).activated.connect(self.__seek_next) QtWidgets.QShortcut('CTRL+Shift+Right', self).activated.connect(self.__seek_to_next_action) QtWidgets.QShortcut('CTRL+Shift+Left', self).activated.connect(self.__seek_to_prev_action) QtWidgets.QShortcut('CTRL++', self).activated.connect(self.video_player.inc_stroke_indicator) QtWidgets.QShortcut('CTRL+-', self).activated.connect(self.video_player.dec_stroke_indicator) QtWidgets.QShortcut('Shift+End', self).activated.connect(self.__seek_to_last_action) QtWidgets.QShortcut('Shift+Home', self).activated.connect(self.__seek_to_first_action) QtWidgets.QShortcut('0', self).activated.connect(lambda: self.__add_action(0)) QtWidgets.QShortcut('1', self).activated.connect(lambda: self.__add_action(10)) QtWidgets.QShortcut('2', self).activated.connect(lambda: self.__add_action(20)) QtWidgets.QShortcut('3', self).activated.connect(lambda: self.__add_action(30)) QtWidgets.QShortcut('4', self).activated.connect(lambda: self.__add_action(40)) QtWidgets.QShortcut('5', self).activated.connect(lambda: self.__add_action(50)) QtWidgets.QShortcut('6', self).activated.connect(lambda: self.__add_action(60)) QtWidgets.QShortcut('7', self).activated.connect(lambda: self.__add_action(70)) QtWidgets.QShortcut('8', self).activated.connect(lambda: self.__add_action(80)) QtWidgets.QShortcut('9', self).activated.connect(lambda: self.__add_action(90)) QtWidgets.QShortcut('CTRL+o', self).activated.connect(self.__open_video) QtWidgets.QShortcut('CTRL+c', self).activated.connect(self.__clear_funscript_history) QtWidgets.QShortcut('CTRL+g', self).activated.connect(lambda: self.__generateFunscript.emit()) QtWidgets.QShortcut('CTRL+i', self).activated.connect(self.video_player.toogle_stroke_indicator_inversion) QtWidgets.QShortcut('CTRL+s', self).activated.connect(self.__save_funscript) QtWidgets.QShortcut('CTRL+Shift+Delete', self).activated.connect(self.__delete_folowing) QtWidgets.QShortcut('CTRL+n', self).activated.connect(self.__new_funscript) QtWidgets.QShortcut('CTRL+q', self).activated.connect(self.__close_video) def __delete_folowing(self): reply = QtWidgets.QMessageBox.question(None, 'Delete Folowing Actions', 'Delete all folowing actions? ', QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if reply == QtWidgets.QMessageBox.Yes: self.statusBar().showMessage("Delete folowing actions ({})".format(datetime.now().strftime("%H:%M:%S"))) if self.funscript is None: return self.funscript.delete_folowing_actions(self.video_player.get_current_timestamp_in_millis) self.funscript_visualizer.update() def __clear_funscript_history(self): if self.funscript is None: return if self.video_player is None: return if self.video_player.get_video_file is None: return self.__save_funscript() funscript_path = ''.join(self.video_player.get_video_file[:-4]) + '.funscript' num = 0 while (os.path.exists(funscript_path + str(num))): os.remove(funscript_path + str(num)) num += 1 self.video_player.show_message("The funscript history was cleaned") def __seek_to_first_action(self): if self.funscript is not None: self.video_player.seek_time(self.funscript.get_first_action_time() / float(1000)) def __seek_to_last_action(self): if self.funscript is not None: self.video_player.seek_time(self.funscript.get_last_action_time() / float(1000)) def __seek_to_prev_action(self): if self.funscript is not None: self.video_player.seek_time( self.funscript.get_prev_action( self.video_player.get_current_timestamp_in_millis)['at'] / float(1000)) def __seek_to_next_action(self): if self.funscript is not None: self.video_player.seek_time( self.funscript.get_next_action( self.video_player.get_current_timestamp_in_millis)['at'] / float(1000)) def __seek_next(self): self.video_player.seek_time(\ self.video_player.get_current_timestamp_in_millis / float(1000) + UI_CONFIG['seek_next_sec']) def __seek_prev(self): self.video_player.seek_time(\ max((0.0, self.video_player.get_current_timestamp_in_millis \ / float(1000) - UI_CONFIG['seek_prev_sec']))) def __close_video(self): self.video_player.close() self.funscript_visualizer.clear() def __invert_actions(self): if self.funscript is None: return self.funscript.invert_actions() self.funscript_visualizer.update() self.funscript = None def __video_player_on_key_press(self, key): if key == 'ctrl+g': self.__generateFunscript.emit() if key == 'ctrl+s': self.__save_funscript() if key == 'ctrl+right': self.__seek_next() if key == 'ctrl+left': self.__seek_prev() if key == 'ctrl+shift+right': self.__seek_to_next_action() if key == 'ctrl+shift+left': self.__seek_to_prev_action() if key == '0': self.__add_action(0) if key == '1': self.__add_action(10) if key == '2': self.__add_action(20) if key == '3': self.__add_action(30) if key == '4': self.__add_action(40) if key == '5': self.__add_action(50) if key == '6': self.__add_action(60) if key == '7': self.__add_action(70) if key == '8': self.__add_action(80) if key == '9': self.__add_action(90) if key == 'delete': self.__delete_current_action() if key == 'shift+end': self.__seek_to_last_action() if key == 'shift+home': self.__seek_to_first_action() if key == 'ctrl+n': self.__new_funscript() if key == 'ctrl+o': self.__openVideo.emit() if key == 'ctrl+c': self.__clear_funscript_history() if key == 'ctrl+q': self.__close_video() def __show_message(self, message): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText(message+' ') msg.setWindowTitle("Funscript Editor Info") msg.exec_() def __save_funscript(self): if self.funscript is None: return if not self.funscript.changed: return self.funscript.save(''.join(self.video_player.get_video_file[:-4]) + '.funscript') self.statusBar().showMessage("Funscript Saved ({})".format(datetime.now().strftime("%H:%M:%S"))) def __add_action(self, value): if self.funscript is None: return self.funscript.add_action(value, self.video_player.get_current_timestamp_in_millis) self.funscript_visualizer.update() def __open_video(self): file_name = QtWidgets.QFileDialog.getOpenFileName( None, caption="Select Video File", options=QtWidgets.QFileDialog.DontUseNativeDialog # required to get correct path in flatpak ) if len(file_name) < 1: return if not any(file_name[0].lower().endswith(x) for x in ['.mkv', '.mp4']): return self.video_player.open(file_name[0]) funscript_file = ''.join(file_name[0][:-4]) + '.funscript' if os.path.exists(funscript_file): self.funscript, file_path = Funscript.load(file_name[0], funscript_file) self.video_player.show_message('load: ' + str(file_path.split('.')[-1])) else: self.funscript = Funscript(fps=self.video_player.get_fps) self.video_player.set_funscript(self.funscript) self.funscript_visualizer.set_funscript(self.funscript) self.ui.seekBar.setMaximum(max((0, self.video_player.get_length-2))) self.ui.seekBar.setValue(0) self.ui.timestamp.setText(FFmpegStream.millisec_to_timestamp(0)+' ') self.__logger.info("Load Video: %s (%s)" , file_name[0], "True" if os.path.exists(file_name[0]) else "False") def __new_funscript(self): self.funscript = Funscript(fps=self.video_player.get_fps) self.video_player.set_funscript(self.funscript) self.funscript_visualizer.set_funscript(self.funscript) def __generate_funscript(self): if self.funscript is None: return if self.video_player is None: return if self.video_player.get_video_file is None: return # self.video_player.set_indicate_bussy(True) # we have no event if the user abort, for now we disable the bussy indicator start_time = self.video_player.get_current_timestamp_in_millis next_action = self.funscript.get_next_action(self.video_player.get_current_timestamp_in_millis+100) end_time = next_action['at'] if next_action['at'] > self.video_player.get_current_timestamp_in_millis+100 else -1.0 self.funscript_generator_window = FunscriptGeneratorWindow( self.video_player.get_video_file, start_time, end_time, self.funscript ) self.funscript_generator_window.funscriptCompleted.connect(self.__funscript_generated) def __funscript_generated(self, funscript, status, success): self.video_player.set_funscript(self.funscript) self.funscript_visualizer.set_funscript(self.funscript) self.video_player.set_indicate_bussy(False) self.__save_funscript() self.video_player.show_message(status) if success: self.__logger.info("Completed: " + status) else: self.__logger.error("Failed: " + status) def __delete_current_action(self): if self.funscript is None: return self.funscript.delete_action(self.video_player.get_current_timestamp_in_millis) self.funscript_visualizer.update()
the-stack_106_21447
import fnmatch import os import argparse import sys import math import svgwrite #conda install svgwrite import random import cairo import cairosvg import re from datetime import date, datetime, timedelta # WIDTH = 1500 # HEIGHT = 1000 # LEGENDWIDTH = 220 # MARGIN = 60 # LABELSHIFT = 15 # FONTSIZE = 26 class Clade: def __init__(self, name, parent_name): self.name = name self.parent_name = parent_name self.cladeSnapshot_time_d = {} self.y1_d = {} self.y2_d = {} class Snapshot: def __init__(self, time, date): self.time = time self.date = date self.label = "t_" + str(time) self.cladeSnapshot_clade_d = {} self.sumAll = 0 class CladeSnapshot: def __init__(self, clade, snapshot, abundance): self.clade = clade self.snapshot = snapshot self.abundance = abundance self.sumDescendant = 0 #self.numChildren = len(self.clade.children) #self.numChildren = 0 #to be added later sumDescendant , numChildren def sumUpDescendants(self): summed = 0 for child in self.clade.children: child_tSnap = child.cladeSnapshot_time_d[self.snapshot.time] if child.children_count > 0: summed += child_tSnap.sumUpDescendants() summed += child_tSnap.abundance return summed def makeColor(): # random_number = random. randint(0,16777215) # color = "#" + str(hex(random_number))[2:] color = "#{:06x}".format(random.randint(0, 0xFFFFFF)) return color def timeToX(time, scaleTime, minTime): return(scaleTime*(int(time) - int(minTime)) + MARGIN) def textwidth(text, fontsize): #function copied from http://blog.mathieu-leplatre.info/text-extents-with-python-cairo.html try: import cairo except Exception as e: return len(str) * fontsize surface = cairo.SVGSurface('undefined.svg', 1280, 200) cr = cairo.Context(surface) cr.select_font_face('Arial', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD) cr.set_font_size(fontsize) xbearing, ybearing, width, height, xadvance, yadvance = cr.text_extents(text) return width def textheight(text, fontsize): #function based on textwidth copied from http://blog.mathieu-leplatre.info/text-extents-with-python-cairo.html try: import cairo except Exception as e: return len(str) * fontsize surface = cairo.SVGSurface('undefined.svg', 1280, 200) cr = cairo.Context(surface) cr.select_font_face('Arial', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD) cr.set_font_size(fontsize) xbearing, ybearing, width, height, xadvance, yadvance = cr.text_extents(text) return height # def makeNoScaleCord(abundances_d, childParent_d, timeToDate_d): # ''' # returns list of shape_l where shape_l is a list cord_l, which is cordinates for a clade, fomated as [(x, y), (x, y), ...] relative to top left # ''' # shape_l = [] # return shape_l def drawWrapper(outFolder, outPrefix, root_clades_l, scaleTime, times_l, maxY, minTime, labelPosition, xlabel, timeToDate_d): #Draw background outFile = os.path.join(outFolder, outPrefix + ".svg") outFilePDF = os.path.join(outFolder, outPrefix + ".pdf") img = svgwrite.Drawing(filename = outFile, size = (str(WIDTH)+"px", str(HEIGHT)+"px")) img.add(img.polyline(points = [(0,0), (0, HEIGHT), (WIDTH, HEIGHT), (WIDTH, 0)], stroke='black', fill = 'white')) #img.add(img.text(text = 'Legend', insert = (WIDTH-LEGENDWIDTH, LEGENDWIDTH), font_size=24)) #rightWidth = (WIDTH-(MARGIN + LEGENDWIDTH + 1/scaleTime)) #WIDTH - (MARGIN + LEGENDWIDTH) rightWidth = timeToX(list(times_l)[-1], scaleTime, minTime) img.add(img.polyline(points = [(MARGIN,MARGIN), (MARGIN, HEIGHT-MARGIN), (rightWidth, HEIGHT-MARGIN), (rightWidth, MARGIN), (MARGIN,MARGIN)], stroke='black', stroke_width=5, fill="white")) #draw clades img, x_labelCord_l, y_labelCord_l, label_l = extractCord_draw(root_clades_l, img, scaleTime, [], [], [], times_l, minTime, labelPosition ) tHeight = textheight("TESTLABEL", FONTSIZE) #write clade labels if labelPosition == "Right": xpos = timeToX(list(times_l)[-1], scaleTime, minTime)+LABELSHIFT zipped = zip(label_l, y_labelCord_l) sort_zip = list(sorted(zipped, key = lambda x: x[1])) tWidth = textwidth(sort_zip[0][0], FONTSIZE) fontsize = FONTSIZE while tWidth > LEGENDWIDTH: fontsize += (-1) tWidth = textwidth(sort_zip[0][0], fontsize) ypos = sort_zip[0][1] img.add(img.text(text = sort_zip[0][0], insert = (xpos, ypos), font_size=fontsize)) for i in range(1, len(sort_zip)): bottomPrevious = ypos + LABELSHIFT + tHeight ypos = sort_zip[i][1] if ypos < bottomPrevious: ypos = bottomPrevious tWidth = textwidth(sort_zip[i][0], FONTSIZE) fontsize = FONTSIZE while tWidth > (LEGENDWIDTH+MARGIN): fontsize += (-1) tWidth = textwidth(sort_zip[i][0], fontsize) img.add(img.text(text = sort_zip[i][0], insert = (xpos, ypos), font_size=fontsize)) else: #if args.labelPosition == "Start": for i in range(len(label_l)): img.add(img.text(text = label_l[i], insert = (x_labelCord_l[i], y_labelCord_l[i]), font_size=FONTSIZE)) #wirte y axis labels topPlot = MARGIN bottomPlot = HEIGHT-MARGIN totalHeight = bottomPlot-topPlot wirteEvery = int(maxY/10) maxLabel = str(int(maxY))+ " " tWidth = textwidth(maxLabel, FONTSIZE) fontsize = FONTSIZE while tWidth > (MARGIN-LABELSHIFT): fontsize = fontsize - 1 tWidth = textwidth(maxLabel, fontsize) for i in range(int(maxY)): if i % wirteEvery == 0: xpos = MARGIN - (textwidth(str(i), fontsize) + LABELSHIFT) ypos = MARGIN + (maxY - i)*totalHeight/maxY img.add(img.text(text = str(i), insert = (xpos, ypos + (textheight(str(i), FONTSIZE))/2), font_size=fontsize)) img.add(img.line(start = (MARGIN-LABELSHIFT, ypos), end = (MARGIN, ypos), stroke_width=3, stroke = "black")) #write x axis labels if xlabel == "bimonthly": for time in times_l: stepDate = date.fromisoformat(timeToDate_d[time]) for t in range(timeWindow): td = timedelta(days=t) d = stepDate + td if d.day == 15 or d.day == 1: label = datetime.strptime(d.isoformat(), "%Y-%m-%d").strftime("%d %b") img.add(img.text(text = label, insert = (timeToX(time, scaleTime, minTime), HEIGHT-MARGIN+(2*LABELSHIFT)), font_size=FONTSIZE)) img.add(img.line(start = (timeToX(time, scaleTime, minTime), HEIGHT-MARGIN+LABELSHIFT), end = (timeToX(time, scaleTime, minTime), HEIGHT-(MARGIN)), stroke_width=3, stroke = "black")) else: if xlabel == "date": tWidth = textwidth("2021-05-03", FONTSIZE) else: tWidth = textwidth("200", FONTSIZE) numLabels = rightWidth/tWidth wirteEvery = math.ceil(len(times_l)/numLabels) for time in times_l: if int(time) % wirteEvery == 0: #if int(time) % int(args.XLABFREQ) == 0: if xlabel == "time": label = str(time) else: label = timeToDate_d[time] img.add(img.text(text = label, insert = (timeToX(time, scaleTime, minTime), HEIGHT-MARGIN+(2*LABELSHIFT)), font_size=FONTSIZE)) img.add(img.line(start = (timeToX(time, scaleTime, minTime), HEIGHT-MARGIN+LABELSHIFT), end = (timeToX(time, scaleTime, minTime), HEIGHT-(MARGIN)), stroke_width=3, stroke = "black")) # write title fontsize = FONTSIZE+6 tHeight = textheight(outPrefix, fontsize) while tHeight/2 > MARGIN: fontsize = fontsize - 1 tHeight = textwidth(outPrefix, fontsize) img.add(img.text(text = outPrefix.replace("_", " "), insert = (MARGIN + LABELSHIFT, MARGIN/2), font_size=fontsize)) img.save() cairosvg.svg2pdf(file_obj=open(outFile, "rb"), write_to=outFilePDF) def extractCord_draw(clades_l, img, scaleTime, x_labelCord_l, y_labelCord_l, label_l, times_l, minTime, labelPosition ): #for snap in allTimes_l: clade_cord_d = {} #key clade name, value is list of coordinate tuples [... (x2, y2t2), (x1, y2t1), (x1, y1t1), (x2, y1t2) ...] #clade_col_d = {} #key clade name, value is color for clade in clades_l: coordinate_l = [] startAbundance_time = 'NA' lastAbundance_time = 0 maxAbundance_time = 'NA' maxAbundance_value = -1 cladeDrawn = False for time in times_l: #x = int(time)*scaleTime if time in clade.y1_d: y1 = clade.y1_d[time] y2 = clade.y2_d[time] coordinate_l = [(timeToX(time, scaleTime, minTime), y1)] + coordinate_l + [(timeToX(time, scaleTime, minTime), y2)] abundance = clade.cladeSnapshot_time_d[time].abundance/(1.0*clade.cladeSnapshot_time_d[time].snapshot.sumAll) if abundance > 0: cladeDrawn = True if startAbundance_time == 'NA': startAbundance_time = time startAbundance_y = (y2-y1)//2 + y1 lastAbundance_time = time lastAbundance_y = y1 drawAbundance = y2-y1 if maxAbundance_value < drawAbundance: #abundance: maxAbundance_value = drawAbundance maxAbundance_time = time maxAbundance_y = drawAbundance//2 + y1 clade_cord_d[clade.name] = coordinate_l if cladeDrawn: if labelPosition == "Right": x_cord = timeToX(list(times_l)[-1], scaleTime, minTime)+LABELSHIFT y1_cord = y1+LABELSHIFT elif labelPosition == "Max": x_cord = timeToX(maxAbundance_time, scaleTime, minTime) - textwidth(clade.name, FONTSIZE)//2 if x_cord < 0: x_cord = 0 y1_cord = maxAbundance_y elif labelPosition == "Start": x_cord = timeToX(startAbundance_time, scaleTime, minTime)-(textwidth(clade.name, FONTSIZE)) y1_cord = startAbundance_y if x_cord < 0: x_cord = 0 elif labelPosition == "End": x_cord = timeToX(lastAbundance_time, scaleTime, minTime)+LABELSHIFT if x_cord < 0: x_cord = 0 y1_cord = lastAbundance_y else: print("do not know where to put clade label") sys.exit(1) x_labelCord_l.append(x_cord) y_labelCord_l.append(y1_cord) label_l.append(clade.name) img.add(img.polyline(points = coordinate_l, stroke='black', stroke_width=0, fill=clade.color)) img, x_labelCord_l, y_labelCord_l, label_l = extractCord_draw(clade.children, img, scaleTime, x_labelCord_l, y_labelCord_l, label_l, times_l, minTime, labelPosition ) return(img, x_labelCord_l, y_labelCord_l, label_l) def removeSmallClades(abundances_d, heiarchy_d, minCount): ''' removes clade from abudances and heiarchiy that have sum less than minCount heiarchy_d: key:child clade; value:parent clade abundances_d: key: week; value: dict of key:clade; value: count ''' # remove clades with less than minCount avalibleClades_d = {} avalibleClades_d['anc'] = 0 avalibleClades_d['NA'] = 0 avalibleClades_s = set() removedClades_s = set() for week in abundances_d: for clade in abundances_d[week]: if clade not in avalibleClades_d: avalibleClades_d[clade] = 0 avalibleClades_d[clade] += float(abundances_d[week][clade]) old_heiarchy_d = heiarchy_d.copy() for clade in old_heiarchy_d: #old_heiarchy_d.keys(): if clade not in avalibleClades_d: heiarchy_d.pop(clade) removedClades_s.add(clade) elif avalibleClades_d[clade] < int(minCount) and clade != 'NA' and clade != 'anc': heiarchy_d.pop(clade) removedClades_s.add(clade) else: avalibleClades_s.add(clade) for child in heiarchy_d: parent = old_heiarchy_d[child] while parent not in heiarchy_d and parent != 'NA': newParent = old_heiarchy_d[parent] #heiarchy_d[parent] parent = newParent heiarchy_d[child] = parent # remove from abundances if remved from hieracrhy old_abundances_d = abundances_d.copy() for week in list(old_abundances_d): for clade in list(old_abundances_d[week]): if clade in removedClades_s: abundances_d[week].pop(clade) return(abundances_d, heiarchy_d) def defineChildBoundries(time, scaleFactor, parentCladeSnap, y1_parent, y2_parent): ''' time is the number defining the time of interest parentCladeSnap is pointer to snapshotClade object which has boundries of" y1_parent is top of clade boundries, y1_parent is bottom of clade boundries updates ''' numSections = len(parentCladeSnap.clade.children) + 1 #descendantSpace = (parentCladeSnap.sumDescendant - parentCladeSnap.abundance) #parentEdgeHeight = scaleFactor*(parentCladeSnap.abundance - descendantSpace)/numSections parentEdgeHeight = scaleFactor*(parentCladeSnap.abundance)/numSections acountedHeight = y1_parent for childClade in parentCladeSnap.clade.children: childCladeSnap = childClade.cladeSnapshot_time_d[time] y1 = acountedHeight + parentEdgeHeight y2 = y1 + (scaleFactor*childCladeSnap.sumDescendant) acountedHeight += parentEdgeHeight + (scaleFactor*childCladeSnap.sumDescendant) childClade.y1_d[time] = y1 childClade.y2_d[time] = y2 defineChildBoundries(time, scaleFactor, childCladeSnap, y1, y2) def main(): ########################## parse user arguments parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-p', '--parentHierarchy_name', required=True, type=str, help="csv output from mutationLinages_report.py with child parent col") parser.add_argument('-a', '--abundance_name', required=True, type=str, help="csv output from mutationLinages_report.py with abundances of clades") parser.add_argument('-c', '--cases_name', required=False, type=str, help="file with cases - formated with 'date' in ISO format and 'confirmed_rolling' cases, in tsv format") parser.add_argument("--avgWindow", required=False, type=str, help="width of rolling mean window in terms of --timeWindow's (recomend using with small --timeWindow) ; default: sum of counts withen timeWindow (ie no average)") parser.add_argument('-o', '--outFolder', required=True, type=str, help="csv output from mutationLinages_report.py with child parent col") parser.add_argument('-mt', '--MINTIME', required=False, type=str, default="30", help="minimum time point to start plotting") parser.add_argument('-min', '--MINTOTALCOUNT', required=False, type=str, default="50", help="minimum total count for group to be included") parser.add_argument('-l', '--xlabel', required=False, type=str, choices = ["date", "time", "bimonthly"], default="date", help="Format of x axis label: ISO date format or timepoints from start, or dd-Mon-YYYY on 1st and 15th") parser.add_argument('-lp', '--labelPosition', required=False, type=str, default="Right", choices = ["Right", "Max", "Start", "End"], help="choose position of clade labels") #parser.add_argument("--tmrca", action="store_true", help="draw point at tmrca of clade if flag is used") drawing_group_page = parser.add_argument_group('Options for page setup') drawing_group_page.add_argument('--WIDTH', required=False, type=str, default="1500", help="WIDTH of page (px)") drawing_group_page.add_argument('--HEIGHT', required=False, type=str, default="1000", help="HEIGHT of page (px)") drawing_group_page.add_argument('--LEGENDWIDTH', required=False, type=str, default="220", help="LEGENDWIDTH to the right of plotting area (px)") drawing_group_page.add_argument('--LABELSHIFT', required=False, type=str, default="15", help="nudge label over by LABELSHIFT (px)") drawing_group_page.add_argument('--MARGIN', required=False, type=str, default="60", help="MARGIN around all sides of plotting area (px)") drawing_group_page.add_argument('--FONTSIZE', required=False, type=str, default="26") args = parser.parse_args() ########################## set up global if not os.path.exists(args.outFolder): os.makedirs(args.outFolder) global WIDTH WIDTH = float(args.WIDTH) global HEIGHT HEIGHT = float(args.HEIGHT) global LEGENDWIDTH LEGENDWIDTH = float(args.LEGENDWIDTH) global MARGIN MARGIN = float(args.MARGIN) global FONTSIZE FONTSIZE = float(args.FONTSIZE) global LABELSHIFT LABELSHIFT = float(args.LABELSHIFT) if args.labelPosition != "Right": LEGENDWIDTH = 0 ########################## read in files abundances_file = open(args.abundance_name, "r") abundances_d = {} #abundance_total_d {} timeToDate_d = {} times_index = 'NA' for line in abundances_file: line_l = line.strip().split(",") if line_l[0] == "names": times_index = line_l.index("times") a_index = line_l.index("abundances") date_index = line_l.index("date") elif times_index == 'NA': print("First line of abundances_file must start with 'names' col and contain 'times', 'abundances', and 'date' cols, with no spaces between commas\n") sys.exit(1) else: time = line_l[times_index] if int(time) >= int(args.MINTIME): clade = line_l[0] abundance = line_l[a_index] if time not in abundances_d: abundances_d[time] = {} #if clade not in abundance_total_d: # abundance_total_d[clade] = 0 #abudance_total_d[clade] += abundance abundances_d[time][clade] = abundance if time not in timeToDate_d: timeToDate_d[time] = line_l[date_index] abundances_file.close() times_l = abundances_d.keys() times_l = list(times_l) times_l.sort(key=int) startDay = date.fromisoformat(timeToDate_d[times_l[0]]) endDay = date.fromisoformat(timeToDate_d[times_l[1]]) global timeWindow timeWindow = (endDay-startDay).days hierarchy_file = open(args.parentHierarchy_name, "r") childParent_d = {} cladeColor_d = {} hasHeader = False hasColor = False for line in hierarchy_file: line_l = line.strip().split(",") if line_l[0] == "names" and line_l[1] == "parents": hasHeader = True if len(line_l) > 2: if line_l[2] == "color": hasColor = True elif not hasHeader: print("First line of parentHierarchy_name must have 'names' as first col and 'parents' as second col, sperated with commas and no spaces") sys.exit(1) else: childParent_d[line_l[0]] = line_l[1] if hasColor: if line_l[2] != "": cladeColor_d[line_l[0]] = line_l[2] else: cladeColor_d[line_l[0]] = makeColor() else: cladeColor_d[line_l[0]] = makeColor() hierarchy_file.close() abundances_d, heiarchy_d = removeSmallClades(abundances_d, childParent_d, args.MINTOTALCOUNT) ########################## parse clades times_l = abundances_d.keys() times_l = list(times_l) #timeLabs_s = set() clades_l = [] root_clades_l = [] for clade in childParent_d: clade = Clade(clade, childParent_d[clade]) setattr(clade, "color", cladeColor_d[clade.name]) #TODO make this determatistic for most diverse colors and add in more color options clades_l.append(clade) if clade.parent_name == "NA": root_clades_l.append(clade) #add pointers to children clade objects for parent in clades_l: setattr(parent, "children", []) for child in clades_l: if child.parent_name == parent.name: parent.children = parent.children + [child] setattr(parent, "children_count", len(parent.children)) #add pointers to parent clade objects for child in clades_l: setattr(child, "parent", Clade("NA", "NA")) for parent in clades_l: if parent.name == child.parent_name: setattr(child, "parent", parent) #rolling average over windows if args.avgWindow is not None: avgWindow = args.avgWindow abudances_times_l = list(abundances_d.keys()) abudances_times_l.sort(key=int) lastTime_int = int(abudances_times_l[-1]) abundances_roll_d = {} for time in abudances_times_l: abundances_roll_d[time] = {} rollRange = int(avgWindow) while lastTime_int + 1 < int(time) + rollRange : rollRange -= 1 for rollTime_delta in range(rollRange): rollTime = str(int(time) + rollTime_delta) for clade_o in clades_l: clade = clade_o.name if clade in abundances_d[rollTime]: if clade not in abundances_roll_d[time]: abundances_roll_d[time][clade] = 0 abundances_roll_d[time][clade] += float(abundances_d[rollTime][clade])/rollRange abundances_d = abundances_roll_d #record abundances in objects allTimes_l = [] minTimeOfAbundance = 'NA' for time in abundances_d: if int(time) >= int(args.MINTIME): if minTimeOfAbundance == 'NA': minTimeOfAbundance = time elif int(minTimeOfAbundance) > int(time): minTimeOfAbundance = time t = Snapshot(time, timeToDate_d[time]) for clade in clades_l: if clade.name in abundances_d[time]: abundance = float(abundances_d[time][clade.name]) else: abundance = 0 clade_oneTime = CladeSnapshot(clade, t, abundance) t.cladeSnapshot_clade_d[clade.name] = clade_oneTime t.sumAll += abundance clade.cladeSnapshot_time_d[time] = clade_oneTime if t.sumAll > 0: allTimes_l.append(t) else: times_l.remove(time) print("No samples during time: ", time) #calculate Descendants and children for snap in allTimes_l: for cladeSnap in snap.cladeSnapshot_clade_d.values(): cladeSnap.sumDescendant = cladeSnap.abundance + cladeSnap.sumUpDescendants() # ################################ determain plotting values topPlot = MARGIN bottomPlot = HEIGHT-MARGIN for snap in allTimes_l: totalHeight = (bottomPlot-topPlot) scaleFactor = totalHeight/snap.sumAll descendantSpace = 0 for clade in root_clades_l: descendantSpace += clade.cladeSnapshot_time_d[snap.time].sumDescendant numSections = len(root_clades_l) + 1 parentEdgeHeight = scaleFactor*(snap.sumAll - descendantSpace)/numSections acountedHeight = topPlot for clade in root_clades_l: cladeSnap = clade.cladeSnapshot_time_d[snap.time] y1 = acountedHeight + parentEdgeHeight y2 = y1 + (scaleFactor*cladeSnap.sumDescendant) acountedHeight += (scaleFactor*cladeSnap.sumDescendant) + parentEdgeHeight clade.y1_d[snap.time] = y1 clade.y2_d[snap.time] = y2 defineChildBoundries(snap.time, scaleFactor, cladeSnap, y1, y2) scaleTime = (WIDTH-(MARGIN+LEGENDWIDTH))/len(times_l) drawWrapper(args.outFolder, "relative_abundance", root_clades_l, scaleTime, times_l, 100, minTimeOfAbundance, args.labelPosition, args.xlabel, timeToDate_d) # ########################## make fig with number of samples scaling topPlot = MARGIN bottomPlot = HEIGHT-MARGIN maxCount = 0 for snap in allTimes_l: if snap.sumAll > maxCount: maxCount = snap.sumAll for snap in allTimes_l: #adjust relative to scalling lessThanMax = maxCount - snap.sumAll lessThanMax_ratio = snap.sumAll/maxCount totalHeight = (bottomPlot-topPlot)*lessThanMax_ratio scaleFactor = totalHeight/snap.sumAll descendantSpace = 0 for clade in root_clades_l: descendantSpace += clade.cladeSnapshot_time_d[snap.time].sumDescendant numSections = len(root_clades_l) + 1 parentEdgeHeight = scaleFactor*(snap.sumAll - descendantSpace)/numSections acountedHeight = topPlot + (scaleFactor*lessThanMax)/2 #do not split in half for plot to be on bottom for clade in root_clades_l: cladeSnap = clade.cladeSnapshot_time_d[snap.time] y1 = acountedHeight + parentEdgeHeight y2 = y1 + (scaleFactor*cladeSnap.sumDescendant) acountedHeight += (scaleFactor*cladeSnap.sumDescendant) + parentEdgeHeight clade.y1_d[snap.time] = y1 clade.y2_d[snap.time] = y2 defineChildBoundries(snap.time, scaleFactor, cladeSnap, y1, y2) scaleTime = (WIDTH-(MARGIN+LEGENDWIDTH))/len(times_l) drawWrapper(args.outFolder, "sequence_scaled_lineages", root_clades_l, scaleTime, times_l, maxCount, minTimeOfAbundance, args.labelPosition, args.xlabel, timeToDate_d) ########################## make fig with cases scaling if args.cases_name is not None: if "strain" in line_l and "date" in line_l: strain_index = line_l.index("strain") date_index = line_l.index("date") date_index = "na" case_index = "na" dateToCase_raw_d = {} cases_file = open(args.cases_name, "r") for line in cases_file: line_l = re.split('\t|,', line.strip()) if date_index == "na": if "confirmed_rolling" in line_l and "date" in line_l: date_index = line_l.index("date") case_index = line_l.index("confirmed_rolling") elif "cases" in line_l and "date" in line_l: date_index = line_l.index("date") case_index = line_l.index("cases") else: print("file with cases - formated with 'date' in ISO format and 'confirmed_rolling' cases, in tsv format") sys.exit(1) else: dateToCase_raw_d[line_l[date_index].replace('"', "")] = float(line_l[case_index].replace('"', "")) dateToCase_d = {} if args.avgWindow is None: for k in dateToCase_raw_d.keys(): day = date.fromisoformat(k) d = day + timedelta(days=timeWindow) if d.isoformat() in dateToCase_raw_d: c = 0 for i in range(timeWindow): d = day + timedelta(days=i) c += dateToCase_raw_d[d.isoformat()] dateToCase_d[d.isoformat()] = c/timeWindow else: avgWindow = int(args.avgWindow) totalWindow = timeWindow*avgWindow for k in dateToCase_raw_d.keys(): day = date.fromisoformat(k) d = day + timedelta(days=totalWindow) if d.isoformat() in dateToCase_raw_d: c = 0 for i in range(totalWindow): d = day + timedelta(days=i) c += dateToCase_raw_d[d.isoformat()] dateToCase_d[d.isoformat()] = c/totalWindow topPlot = MARGIN bottomPlot = HEIGHT-MARGIN maxCount = 0 for snap in allTimes_l: rollCase = dateToCase_d[timeToDate_d[snap.time]] if rollCase > maxCount: maxCount = rollCase for snap in allTimes_l: rollCase = dateToCase_d[timeToDate_d[snap.time]] cases_lessThanMax = maxCount - rollCase psudoAbundance_lessThanMax = (cases_lessThanMax/rollCase)*snap.sumAll lessThanMax_ratio = rollCase/maxCount totalHeight = (bottomPlot-topPlot)*lessThanMax_ratio scaleFactor = totalHeight/snap.sumAll descendantSpace = 0 for clade in root_clades_l: descendantSpace += clade.cladeSnapshot_time_d[snap.time].sumDescendant numSections = len(root_clades_l) + 1 parentEdgeHeight = scaleFactor*(snap.sumAll - descendantSpace)/numSections acountedHeight = topPlot + (psudoAbundance_lessThanMax*scaleFactor)/2 for clade in root_clades_l: cladeSnap = clade.cladeSnapshot_time_d[snap.time] y1 = acountedHeight + parentEdgeHeight y2 = y1 + (scaleFactor*cladeSnap.sumDescendant) acountedHeight += (scaleFactor*cladeSnap.sumDescendant) + parentEdgeHeight clade.y1_d[snap.time] = y1 clade.y2_d[snap.time] = y2 defineChildBoundries(snap.time, scaleFactor, cladeSnap, y1, y2) scaleTime = (WIDTH-(MARGIN+LEGENDWIDTH))/len(times_l) drawWrapper(args.outFolder, "case_scaled_lineages", root_clades_l, scaleTime, times_l, maxCount, minTimeOfAbundance, args.labelPosition, args.xlabel, timeToDate_d) else: print("No case data supplied - skipping case scaled plot") if __name__ == "__main__": main()
the-stack_106_21449
class Solution: def threeSumClosest(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ nums = sorted(nums) res = 2**32-1 res_list = [] for i in range(len(nums)): new_target = target-nums[i] new_nums = nums[:i]+nums[i+1:] left = 0 right = len(new_nums)-1 while left<right: if abs(new_nums[left]+new_nums[right]-new_target)<res: res = abs(new_nums[left]+new_nums[right]-new_target) res_list = [nums[i], new_nums[left], new_nums[right]] if new_nums[left]+new_nums[right] < new_target: left += 1 elif new_nums[left]+new_nums[right] > new_target: right -= 1 else: return sum([nums[i], new_nums[left], new_nums[right]]) return sum(res_list) # Exercise 20200229 class Solution(object): def threeSumClosest(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ if len(nums) < 3: return None nums = sorted(nums) res = nums[0]+nums[1]+nums[2] for i in range(len(nums)): cur_sum = nums[i]+self.twoSumClosest(nums[:i]+nums[i+1:], target-nums[i]) if abs(cur_sum-target) < abs(res-target): res = cur_sum print(nums[i], cur_sum) return res def twoSumClosest(self, nums, target): left = 0 right = len(nums)-1 res_sum = nums[0]+nums[-1] gap = abs(res_sum-target) while left < right: if nums[left]+nums[right] == target: return target else: cur_gap = abs(nums[left]+nums[right] - target) if cur_gap < gap: res_sum = nums[left]+nums[right] gap = cur_gap if nums[left]+nums[right] < target: left += 1 else: right -= 1 return res_sum
the-stack_106_21451
import cv2 import numpy as np import pandas as pd image = 'Assets\style-4.png' face_cascade = cv2.CascadeClassifier("./Dataset/haarcascade_frontalface_alt.xml") eyecascade = cv2.CascadeClassifier("./Dataset/frontalEyes35x16.xml") nosecascade = cv2.CascadeClassifier("./Dataset/Nose18x15.xml") glasses = cv2.imread('./FilterImages/glasses.png', -1) mustache = cv2.imread('./FilterImages/mustache.png', -1) frame = cv2.imread(image) gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray_frame, 1.2, 5) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2BGRA) for face in faces: x, y, w, h = face rol_gray = gray_frame[y:y+h, x:x+h] rol_color = frame[y:y+h, x:x+h] eyes = eyecascade.detectMultiScale(rol_gray,1.3,3) for (ex,ey,ew,eh) in eyes: glasses = cv2.resize(glasses,(ew,eh)) gw, gh, gc = glasses.shape for i in range(0, gw): for j in range(0, gh): if glasses[i,j][3] != 0: rol_color[ey + i, ex + j] = glasses[i,j] nose = nosecascade.detectMultiScale(rol_gray, 1.3, 7) for (nx, ny, nw, nh) in nose: mustache = cv2.resize(mustache, (nw+10,nh)) mw, mh, mc = mustache.shape for i in range(0,mw): for j in range(0, mh): if mustache[i,j][3] != 0: rol_color[ny+int(nh/2.0)+i, nx+j+3] = mustache[i,j] frame = cv2.cvtColor(frame, cv2.COLOR_BGRA2BGR) cv2.imshow("window", frame) frame = np.resize(frame,(-1,3)) pd.DataFrame(frame, columns=['Channel 1', 'Channel 2', 'Channel 3']).to_csv('./Prediction.csv', index= False) cv2.waitKey(0)
the-stack_106_21452
""" A controller implementing a (too) simple coordinated voltage control algorithm. """ import collections import mosaik_api from itertools import count import fmipp import xml.etree.ElementTree as ETree import os.path META = { 'models': { 'TC3Controller': { 'public': True, 'params': ['vlow', 'vup'], 'attrs': ['u3', 'u4', 'tap'], }, }, } class TC3Controller(mosaik_api.Simulator): def __init__(self): super().__init__(META) self.data = collections.defaultdict(dict) self._entities = {} self.eid_counters = {} self.is_responsive = {} # controller state regarding dead time self.wakeup_time = {} # time stamp until end of dead time self.dead_time = 0 # dead time of controller self.work_dir = None # directory of FMU self.model_name = None # model name of FMU self.instance_name = None # instance name of FMU self.var_table = None # dict of FMU variables (input, output, parameters) self.translation_table = None # help dict if variable names cannot be parsed properly in Python self.logging_on = False # FMI++ parameter self.time_diff_resolution = 1e-9 # FMI++ parameter self.timeout = 0 # FMI++ parameter self.interactive = False # FMI++ parameter self.visible = False # FMI++ parameter self.start_time = 0 # FMI++ parameter self.stop_time = 0 # FMI++ parameter self.stop_time_defined = False # FMI++ parameter self.uri_to_extracted_fmu = None self.sec_per_mt = 1 # Number of seconds of internaltime per mosaiktime self.fmutimes = {} # Keeping track of each FMU's internal time self.verbose = False def init( self, sid, work_dir, model_name, instance_name, dead_time=0, start_time=0, stop_time=0, logging_on = False, time_diff_resolution=1e-9, timeout=0, interactive=False, visible=False, stop_time_defined=False, seconds_per_mosaik_timestep=1, var_table=None, translation_table=None, verbose=False ): self.dead_time = dead_time / seconds_per_mosaik_timestep self.work_dir = work_dir self.model_name = model_name self.instance_name = instance_name self.start_time = start_time self.stop_time = stop_time self.logging_on = logging_on self.time_diff_resolution = time_diff_resolution # How close should two events be to be considered equal? self.timeout = timeout self.interactive = interactive self.visible = visible self.stop_time_defined = stop_time_defined self.sec_per_mt = seconds_per_mosaik_timestep # Number of seconds of internaltime per mosaiktime (Default: 1, mosaiktime measured in seconds) self.verbose = verbose path_to_fmu = os.path.join(self.work_dir, self.model_name + '.fmu') if self.verbose: print('Attempted to extract FMU {0}, Path {1}'.format(path_to_fmu, self.work_dir)) self.uri_to_extracted_fmu = fmipp.extractFMU(path_to_fmu, self.work_dir) assert self.uri_to_extracted_fmu is not None # If no variable table is given by user, parse the modelDescription.xml for a table - # however, this will not work properly for some FMUs due to varying conventions. xmlfile = os.path.join( self.work_dir, self.model_name, 'modelDescription.xml' ) if var_table is None: self.var_table, self.translation_table = self.get_var_table( xmlfile ) else: self.var_table = var_table self.translation_table = translation_table self.adjust_var_table() return self.meta def create(self, num, model, vlow=0.95, vup=1.05): counter = self.eid_counters.get(model, count()) entities = [] for i in range(num): eid = '%s_%s' % (model, next(counter)) # entity ID if self.verbose: print('{0}, {1}, {2}, {3}'.format(self.uri_to_extracted_fmu, self.model_name, self.logging_on, self.time_diff_resolution)) fmu = fmipp.FMUCoSimulationV1( self.uri_to_extracted_fmu, self.model_name, self.logging_on, self.time_diff_resolution ) self._entities[eid] = fmu status = self._entities[eid].instantiate( self.instance_name, self.timeout, self.visible, self.interactive ) assert status == fmipp.fmiOK status = self._entities[eid].initialize( self.start_time*self.sec_per_mt, self.stop_time_defined, self.stop_time*self.sec_per_mt ) assert status == fmipp.fmiOK self.data[eid] = { 'tap': 0 } self.set_values( eid, { 'u3': 1., 'u4': 1., 'vlow': vlow, 'vup': vup }, 'input' ) self.is_responsive[eid] = True self.wakeup_time[eid] = None # Handling tracking internal fmu times self.fmutimes[eid] = self.start_time*self.sec_per_mt entities.append( { 'eid': eid, 'type': model, 'rel': [] } ) return entities def step(self, time, inputs): #print( 'CONTROLLER called at t = {}, inputs = {}'.format( time, inputs ) ) # This is the internal time. target_time = ( time + self.start_time )*self.sec_per_mt for eid, fmu in self._entities.items(): status = fmu.doStep( self.fmutimes[eid], target_time - self.fmutimes[eid], True ) assert status == fmipp.fmiOK self.fmutimes[eid] += target_time - self.fmutimes[eid] for eid, edata in self.data.items(): input_data = inputs.get(eid, {}) [ ( _, u3 ) ] = input_data['u3'].items() if 'u3' in input_data else [ ( None, None ) ] [ ( _, u4 ) ] = input_data['u4'].items() if 'u4' in input_data else [ ( None, None ) ] if True is self.is_responsive[eid]: # Controller is responsive. if u3 is not None or u4 is not None: new_tap = self.decide_on_tap(eid, u3, u4) edata['tap'] = new_tap if self.verbose: print( "Decided on tap {} at time {}".format( new_tap, time ) ) # Enter dead time. self.is_responsive[eid] = False self.wakeup_time[eid] = time + self.dead_time else: edata['tap'] = None # No inputs --> no output. else: # Controller is not responsive (dead time). if time >= self.wakeup_time[eid]: self.wakeup_time[eid] = None self.is_responsive[eid] = True return time + 1 def decide_on_tap( self, eid, u3, u4 ): fmu_inputs = {} if u3 is not None: fmu_inputs['u3'] = u3 if u4 is not None: fmu_inputs['u4'] = u4 self.set_values( eid, fmu_inputs, 'input' ) status = self._entities[eid].doStep( self.fmutimes[eid], 0, True ) assert status == fmipp.fmiOK return self.get_value( eid, 'tap' ) def get_data(self, outputs): data = {} for eid, edata in self.data.items(): requests = outputs[eid] mydata = {} for attr in requests: try: mydata[attr] = edata[attr] if self.is_responsive[eid] is True else None except KeyError: raise RuntimeError("OLTC controller has no attribute {0}".format(attr)) data[eid] = mydata return data def get_var_table( self, filename ): var_table = {} translation_table = {} base = ETree.parse(filename).getroot() mvars = base.find('ModelVariables') for var in mvars.findall('ScalarVariable'): causality = var.get('causality') name = var.get('name') if causality in ['input', 'output', 'parameter']: var_table.setdefault(causality, {}) translation_table.setdefault(causality, {}) # Variable names including '.' cannot be used in Python scripts - they get aliases with '_': if '.' in name: alt_name = name.replace('.', '_') else: alt_name = name translation_table[causality][alt_name] = name # Store variable type information: specs = var.getchildren() for spec in specs: if spec.tag in ['Real', 'Integer', 'Boolean', 'String']: var_table[causality][name] = spec.tag continue return var_table, translation_table def adjust_var_table(self): '''Helper function that adds missing keys to the var_table and its associated translation table. Avoids errors due to faulty access later on.''' self.var_table.setdefault('parameter', {}) self.var_table.setdefault('input', {}) self.var_table.setdefault('output', {}) self.translation_table.setdefault('parameter', {}) self.translation_table.setdefault('input', {}) self.translation_table.setdefault('output', {}) def set_values(self, eid, val_dict, var_type): '''Helper function to set input variable and parameter values to a FMU instance''' for alt_name, val in val_dict.items(): name = self.translation_table[var_type][alt_name] # Obtain setter function according to specified var type (Real, Integer, etc.): set_func = getattr(self._entities[eid], 'set' + self.var_table[var_type][name] + 'Value') set_stat = set_func(name, val) assert set_stat == fmipp.fmiOK def get_value(self, eid, alt_attr): '''Helper function to get output variable values from a FMU instance.''' attr = self.translation_table['output'][alt_attr] # Obtain getter function according to specified var type (Real, Integer, etc.): get_func = getattr(self._entities[eid], 'get' + self.var_table['output'][attr] + 'Value') val = get_func(attr) #if val is not 0: print( 'get_value attr = {}, val = {}'.format( attr, val ) ) return val if __name__ == '__main__': mosaik_api.start_simulation(TC3Controller())
the-stack_106_21453
#!/usr/bin/env python DESCRIPTION = ''' order_columns - Takes an ORDERED list of column names (one per line) to return from input file. Columns not in input list will not be in output. First column name in input list will be the first column, seconds column name in input list will be the second column, etc NOTE: - Ignore comment ('#') and blank lines - Assume first non-comment line has column headers. - Uses exact string matching. Can not do regex or partial matching. ''' import sys import argparse import logging VERSION=0.1 ## Pass arguments. def main(): # Pass command line arguments. parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description=DESCRIPTION) parser.add_argument('-i', '--input', metavar='data_to_filter.txt', default=sys.stdin, type=argparse.FileType('r'), required=False, help='Input file to filter (default: stdin)') parser.add_argument('-o', '--output', metavar='data_filtered.txt', default=sys.stdout, type=argparse.FileType('w'), required=False, help='Output file of ordered columns (default: stdout)') parser.add_argument('-f', '--file', metavar='ordered_col_names.txt', type=argparse.FileType('r'), required=True, help='Ordered column names to keep/reorder (required)') parser.add_argument('--delim', default='\t', type=str, required=False, help='Delimiter for --input (default: \\t)') parser.add_argument('--debug', action='store_true', required=False, help='Print DEBUG info (default: %(default)s)') args = parser.parse_args() # Set up basic debugger logFormat = "[%(levelname)s]: %(message)s" logging.basicConfig(format=logFormat, stream=sys.stderr, level=logging.INFO) if args.debug: logging.getLogger().setLevel(logging.DEBUG) logging.debug('%s', args) ## DEBUG ordered_col_names = load_id_list(args.file) # Load column names/ids # For each line in input file is_first_line = True for line in args.input: line = line.rstrip('\n') if not line or line.startswith('#'): continue if is_first_line: is_first_line = False col_names = line.split(args.delim) # For each ordered ID figure out its index/position in the avaliable columns col_output_order = [] for name in ordered_col_names: try: col_output_order.append(col_names.index(name)) except ValueError: logging.error("column name '%s' in ordered list not found in input file!", name) sys.exit(1) logging.debug('col_output_order: %s', col_output_order) ## DEBUG # Now output the column names we want in the order we want. tmp_write = [] for i in col_output_order: tmp_write.append(col_names[i]) args.output.write(args.delim.join(tmp_write) + '\n') continue # If line is not header line write columns in the order we established line_split = line.split(args.delim) tmp_write = [] for i in col_output_order: try: tmp_write.append(line_split[i]) except IndexError: logging.error("Column index '%s' does not exist for split line: '%s'", i, line_split) sys.exit(1) args.output.write(args.delim.join(tmp_write) + '\n') def load_id_list(id_file): ''' Loads a lit of IDs into a list. ''' ids = [] for line in id_file: line = line.strip() if not line or line.startswith('#'): continue ids.append(line) logging.debug('IDS: %s', ids) ## DEBUG logging.debug('Number of ids loaded: %s', len(ids)) ## DEBUG return ids if __name__ == '__main__': main()
the-stack_106_21454
# -*- coding: utf-8 -*- from typing import Union, List from zvdata import IntervalLevel from zvdata.api import get_entities, decode_entity_id, get_data from zvdata.domain import get_db_session from zvt.accounts.ccxt_account import CCXTAccount from zvt.api.common import get_kdata_schema from zvt.domain import StockCategory, IndexMoneyFlow from zvt.domain.stock_meta import Index def get_indices(provider: str = 'sina', block_category: Union[str, StockCategory] = 'concept', return_type: str = 'df') -> object: """ get indices/blocks on block_category :param provider: :type provider: :param block_category: :type block_category: :param return_type: :type return_type: :return: :rtype: """ if type(block_category) == StockCategory: block_category = block_category.value session = get_db_session(provider=provider, data_schema=Index) filters = [Index.category == block_category] blocks = get_entities(entity_type='index', provider=provider, filters=filters, session=session, return_type=return_type) return blocks get_blocks = get_indices def in_filters(col, values): filters = None if values: for value in values: if filters: filters |= (col == value) else: filters = (col == value) return filters def get_securities_in_blocks(provider: str = 'eastmoney', categories: List[Union[str, StockCategory]] = ['concept', 'industry'], names=None, codes=None, ids=None): session = get_db_session(provider=provider, data_schema=Index) categories = [StockCategory(category).value for category in categories] filters = [Index.category.in_(categories)] # add name filters if names: filters.append(Index.name.in_(names)) blocks = get_entities(entity_ids=ids, codes=codes, entity_type='index', provider=provider, filters=filters, return_type='domain', session=session) securities = [] for block in blocks: securities += [item.stock_id for item in block.stocks] return securities def get_kdata(entity_id, level=IntervalLevel.LEVEL_1DAY.value, provider='eastmoney', columns=None, return_type='df', start_timestamp=None, end_timestamp=None, filters=None, session=None, order=None, limit=None): entity_type, exchange, code = decode_entity_id(entity_id) data_schema = get_kdata_schema(entity_type, level=level) return get_data(data_schema=data_schema, entity_id=entity_id, level=level, provider=provider, columns=columns, return_type=return_type, start_timestamp=start_timestamp, end_timestamp=end_timestamp, filters=filters, session=session, order=order, limit=limit) def get_current_price(entity_ids=None, entity_type='coin'): result = {} if entity_type == 'coin': if entity_ids: for entity_id in entity_ids: a, exchange, code = decode_entity_id(entity_id) assert a == entity_type ccxt_exchange = CCXTAccount.get_ccxt_exchange(exchange_str=exchange) if not ccxt_exchange: raise Exception('{} not support'.format(exchange)) orderbook = ccxt_exchange.fetch_order_book(code) bid = orderbook['bids'][0][0] if len(orderbook['bids']) > 0 else None ask = orderbook['asks'][0][0] if len(orderbook['asks']) > 0 else None entity_id = f'coin_{exchange}_{code}' result[entity_id] = (bid, ask) return result if __name__ == '__main__': money_flow_session = get_db_session(provider='sina', data_schema=IndexMoneyFlow) entities = get_entities(entity_type='index', return_type='domain', provider='sina', # ๅชๆŠ“ๆฆ‚ๅฟตๅ’Œ่กŒไธš filters=[Index.category.in_( [StockCategory.industry.value, StockCategory.concept.value])]) for entity in entities: sql = 'UPDATE index_money_flow SET name="{}" where code="{}"'.format( entity.name, entity.code) money_flow_session.execute(sql) money_flow_session.commit()
the-stack_106_21458
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class NetworkInterfaceIPConfigurationsOperations: """NetworkInterfaceIPConfigurationsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_06_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, network_interface_name: str, **kwargs ) -> AsyncIterable["models.NetworkInterfaceIPConfigurationListResult"]: """Get all ip configurations in a network interface. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either NetworkInterfaceIPConfigurationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_06_01.models.NetworkInterfaceIPConfigurationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkInterfaceIPConfigurationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('NetworkInterfaceIPConfigurationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkInterfaces/{networkInterfaceName}/ipConfigurations'} # type: ignore async def get( self, resource_group_name: str, network_interface_name: str, ip_configuration_name: str, **kwargs ) -> "models.NetworkInterfaceIPConfiguration": """Gets the specified network interface ip configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :param ip_configuration_name: The name of the ip configuration name. :type ip_configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: NetworkInterfaceIPConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_06_01.models.NetworkInterfaceIPConfiguration :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkInterfaceIPConfiguration"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'ipConfigurationName': self._serialize.url("ip_configuration_name", ip_configuration_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('NetworkInterfaceIPConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkInterfaces/{networkInterfaceName}/ipConfigurations/{ipConfigurationName}'} # type: ignore
the-stack_106_21459
from sortedcontainers import SortedDict from .orderlist import OrderList from .order import Order class OrderTree(object): '''A red-black tree used to store OrderLists in price order The exchange will be using the OrderTree to hold bid and ask data (one OrderTree for each side). Keeping the information in a red black tree makes it easier/faster to detect a match. ''' def __init__(self): self.price_map = SortedDict() # Dictionary containing price : OrderList object self.prices = self.price_map.keys() self.order_map = {} # Dictionary containing order_id : Order object self.volume = 0 # Contains total quantity from all Orders in tree self.num_orders = 0 # Contains count of Orders in tree self.depth = 0 # Number of different prices in tree (http://en.wikipedia.org/wiki/Order_book_(trading)#Book_depth) def __len__(self): return len(self.order_map) def get_price_list(self, price): return self.price_map[price] def get_order(self, order_id): return self.order_map[order_id] def create_price(self, price): self.depth += 1 # Add a price depth level to the tree new_list = OrderList() self.price_map[price] = new_list def remove_price(self, price): self.depth -= 1 # Remove a price depth level del self.price_map[price] def price_exists(self, price): return price in self.price_map def order_exists(self, order): return order in self.order_map def insert_order(self, quote): if self.order_exists(quote['order_id']): self.remove_order_by_id(quote['order_id']) self.num_orders += 1 if quote['price'] not in self.price_map: self.create_price(quote['price']) # If price not in Price Map, create a node in RBtree order = Order(quote, self.price_map[quote['price']]) # Create an order self.price_map[order.price].append_order(order) # Add the order to the OrderList in Price Map self.order_map[order.order_id] = order self.volume += order.quantity def update_order(self, order_update): order = self.order_map[order_update['order_id']] original_quantity = order.quantity if order_update['price'] != order.price: # Price changed. Remove order and update tree. order_list = self.price_map[order.price] order_list.remove_order(order) if len(order_list) == 0: # If there is nothing else in the OrderList, remove the price from RBtree self.remove_price(order.price) self.insert_order(order_update) else: # Quantity changed. Price is the same. order.update_quantity(order_update['quantity'], order_update['timestamp']) self.volume += order.quantity - original_quantity def remove_order_by_id(self, order_id): self.num_orders -= 1 order = self.order_map[order_id] self.volume -= order.quantity order.order_list.remove_order(order) if len(order.order_list) == 0: self.remove_price(order.price) del self.order_map[order_id] def max_price(self): if self.depth > 0: return self.prices[-1] else: return None def min_price(self): if self.depth > 0: return self.prices[0] else: return None def max_price_list(self): if self.depth > 0: return self.get_price_list(self.max_price()) else: return None def min_price_list(self): if self.depth > 0: return self.get_price_list(self.min_price()) else: return None
the-stack_106_21462
from data_utils import FEATURES, label_to_classs_name, collapse_clusters import matplotlib.pyplot as plt import numpy as np import scipy import seaborn as sns import re sns.set() def to_feature_name(feature): return re.sub(r'^calls_to_(.+)$', r'\1()', feature) def plot_class_stats(call_data, labels, ordering, ax, scale='log'): unique_labels = tuple(sorted(frozenset(labels))) ordered_labels = [ unique_labels[i] for i in ordering ] fills_by_label = [ sum(d['total_fills'] for (d, dl) in zip(call_data, labels) if dl == label) for label in ordered_labels ] orders_by_label = [ sum(d['total_orders'] for (d, dl) in zip(call_data, labels) if dl == label) for label in ordered_labels ] bar_width = 1 / 3 ax.clear() ax.bar( [i - bar_width / 2 for i in range(len(unique_labels))], fills_by_label, bar_width, align='center', label='total fills', color=(0.882, 0.498, 0.819), ) ax.bar( [i + bar_width / 2 for i in range(len(unique_labels))], orders_by_label, bar_width, align='center', label='total orders', color=(0.262, 0.839, 0.8), ) ax.set_yscale(scale) ax.set_xticks(np.arange(-0.5, len(unique_labels) + 0.5, 1)) ax.tick_params(labelbottom=False, bottom=False) ax.set_xlim(-0.5, len(unique_labels) - 1 + 0.5) ax.legend() def plot_method_stats(call_data, ordering, ax, scale='log'): ordered_features = [ FEATURES[i] for i in reversed(ordering) ] method_counts = [ sum(int(d[f] * d['total_calls']) if f in d else 0 for d in call_data) if f.startswith('calls_to_') else 0 for f in ordered_features ] ax.clear() ax.barh( list(range(len(ordered_features))), method_counts, 0.5, align='center', label='total calls', color=(0.5, 0.75, 0.5), ) ax.set_xscale(scale) ax.invert_xaxis() ax.set_yticks(np.arange(-0.5, len(ordered_features) + 0.5, 1)) ax.tick_params(labelright=False, labelleft=False, right=False) ax.set_ylim(-0.5, len(ordered_features) - 1 + 0.5) ax.legend() def create_label_names(call_data, labels): unique_labels = sorted(frozenset(labels)) names = [] for label in unique_labels: label_calls = [ d for (d, cl) in zip(call_data, labels) if cl == label ] num_unique_senders = sum( d['unique_senders'] for d in label_calls ) name = label_to_classs_name(label) if num_unique_senders == 0: name = '๐Ÿ˜Š %s' % name name = '%s (%d)' % (name, len(label_calls)) names.append(name) return names def reorder(items, row_ordering=None, col_ordering=None): if row_ordering is None: return items reordered = [ None ] * len(items) for i, o in enumerate(row_ordering): y = items[o] reordered[i] = reorder(y, col_ordering) if col_ordering else y return reordered def plot_heatmap( call_data, labels, draw_dendrogram=False, linear_scale=False, attenuate=0, brighten=0, title=None, col_ordering=None, row_ordering=None, ): features = collapse_clusters( call_data, labels, attenuate=attenuate, brighten=brighten, ) unique_labels = sorted(frozenset(labels)) features = reorder(features, col_ordering, row_ordering) col_names = reorder(create_label_names(call_data, labels), col_ordering) row_names = reorder([ to_feature_name(s) for s in FEATURES ], row_ordering) cg = sns.clustermap( np.array(features).transpose(), method='ward', yticklabels=row_names, xticklabels=col_names, linecolor=(1,1,1,0.25), linewidth=0.005, cmap='magma', col_cluster=False if col_ordering else True, row_cluster=False if row_ordering else True, ) if col_ordering is None: col_ordering = cg.dendrogram_col.reordered_ind \ if cg.dendrogram_col is not None else list(range(len(unique_labels))) if row_ordering is None: row_ordering = cg.dendrogram_row.reordered_ind \ if cg.dendrogram_row is not None else list(range(len(FEATURES))) if not draw_dendrogram: plot_class_stats( call_data, labels, col_ordering, cg.ax_col_dendrogram.axes, scale='linear' if linear_scale else 'log', ) plot_method_stats( call_data, row_ordering, cg.ax_row_dendrogram.axes, scale='linear' if linear_scale else 'log', ) plt.subplots_adjust(top=0.975, bottom=0.175, left=0.025, right=0.75) if title: cg.fig.canvas.set_window_title(title) return col_ordering, row_ordering
the-stack_106_21463
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import click from c7n.mu import generate_requirements import jinja2 @click.command() @click.option('--package', required=True) @click.option('--template', type=click.Path()) @click.option('--output', type=click.Path()) def main(package, template, output): """recursive dependency pinning for package""" requirements = generate_requirements(package) pinned_packages = requirements.split('\n') if not template and output: print('\n'.join(pinned_packages)) return with open(template) as fh: t = jinja2.Template(fh.read(), trim_blocks=True, lstrip_blocks=True) with open(output, 'w') as fh: fh.write(t.render(pinned_packages=pinned_packages)) if __name__ == '__main__': main()
the-stack_106_21464
# S/E/I/R : 4 bars in each group # each group is one week; 3 weeks # age cat 1 to 5; 5 categories vertically in each bar # csv format input # each row has three keys which together identify the row uniquely (age; week; SEIR) # some hardcoded color maps # This product includes color # specifications and designs developed by Cynthia Brewer # (http://colorbrewer.org/ sequential_colors = [['#f7fcfd','#e5f5f9','#ccece6','#99d8c9','#66c2a4','#41ae76','#238b45','#006d2c','#00441b'], ['#f7fcfd','#e0ecf4','#bfd3e6','#9ebcda','#8c96c6','#8c6bb1','#88419d','#810f7c','#4d004b'], ['#fff7ec','#fee8c8','#fdd49e','#fdbb84','#fc8d59','#ef6548','#d7301f','#b30000','#7f0000'], ["#fff5f0","#fee0d2","#fcbba1","#fc9272","#fb6a4a","#ef3b2c","#cb181d","#a50f15","#67000d"], ["#ffffff","#f0f0f0","#d9d9d9","#bdbdbd","#969696","#737373","#525252","#252525","#000000"], ["#7f3b08","#b35806","#e08214","#fdb863","#fee0b6","#f7f7f7","#d8daeb","#b2abd2","#8073ac","#542788","#2d004b"], ["#67001f","#b2182b","#d6604d","#f4a582","#fddbc7","#ffffff","#e0e0e0","#bababa","#878787","#4d4d4d","#1a1a1a"], ["#a50026","#d73027","#f46d43","#fdae61","#fee090","#ffffbf","#e0f3f8","#abd9e9","#74add1","#4575b4","#313695"], ["#9e0142","#d53e4f","#f46d43","#fdae61","#fee08b","#ffffbf","#e6f598","#abdda4","#66c2a5","#3288bd","#5e4fa2"], ["#a50026","#d73027","#f46d43","#fdae61","#fee08b","#ffffbf","#d9ef8b","#a6d96a","#66bd63","#1a9850","#006837"], ["#7fc97f","#beaed4","#fdc086","#ffff99","#386cb0","#f0027f","#bf5b17","#666666"], ["#ffffe5","#fff7bc","#fee391","#fec44f","#fe9929","#ec7014","#cc4c02","#993404","#662506"], ["#f7fcf5","#e5f5e0","#c7e9c0","#a1d99b","#74c476","#41ab5d","#238b45","#006d2c","#00441b"], ] ### To-DO handle missing data: DONE, tested in the presence of missing data, ### we get or missing minor bar-lets import matplotlib.pyplot as plt import csv import random import sys import os """ Arguments: N: Number of colors in the map type: Types of colormap. Currently two values are being accepted. (1)'sequential' case-insensitive; 'S' or 's' can also be passed (2)'qualitative' case-insensitive; 'Q' or 'q' can also be passed Returns: a list of colors with N levels; seq/qual based on type """ def getColorMaps(N=10, type='sequential'): N += 1 # handling the boundary case- we will fix this later. Since we run the loops till N-1 if type in ['sequential' ,'S' ,'s' , 'Sequential']: # generating a random starting point startPoint = (random.random(), random.random(), random.random()) # choose a random axis r = int(random.random() // 0.3333) color_list = [] zeros = [0,0,0] zeros[0] = startPoint[0] zeros[1] = startPoint[1] zeros[2] = startPoint[2] zeros[r] = 0 #startPoint[r] for i in range(N-1): zeros[r] += ((1)/N) color_list.append(tuple(zeros)) return color_list elif type in ['qualitative' ,'Q' ,'q' , 'Qualitative']: # generating a random starting point color_list = [] for i in range(N-1): color_list.append(tuple([random.random(), random.random(), random.random()])) return color_list else: print ("Invalid argument for colormap passed! \n Exiting script") sys.exit() """ Arguments: filename: a csv filename with 4 headers, H1, H2, H3 and H4. Each one of H1/H2/H3/H4 are strings. the first three headers(H1/H2/H3) should identify a row uniquely the fourth header H4 contains the value (H4 must be integer or floating; cannot be a string) .csv files without headers will result in the first row being read as headers. duplicates (relevant for csv inputs): duplicate entries imply two rows with same <H1/H2/H3> identifier. In case of duplicates aggregation is performed before proceeding, both the duplicates are binned together to increase the target value BGV:a python list of three headers in order for stacking (Bars, Groups and Vertical Stacking) for example, if BGV=[H2, H1, H3], the group stack plot will be such that: maximum number of bars = number of unique values under column H2 maximum number of bars grouped together horizontally(side-by-side) = number of unique values under column H1 maximum number of vertical stacks in any bar = number of unique values under column H2 """ def plot_grouped_stacks(filename, BGV, fig_size=(10, 8), intra_group_spacing=0.1, inter_group_spacing=10, y_loc_for_group_name=-5, y_loc_for_hstack_name=5, fontcolor_hstacks='blue', fontcolor_groups='black', fontsize_hstacks=20, fontsize_groups=30, x_trim_hstack_label=0, x_trim_group_label=0, extra_space_on_top=20 ): figure_ = plt.figure(figsize=fig_size) size = figure_.get_size_inches() figure_.add_subplot(1,1,1) # sanity check for inputs; some trivial exception handlings if intra_group_spacing >= 100: print ("Percentage for than 100 for variables intra_group_spacing, Aborting! ") return else: intra_group_spacing = intra_group_spacing*size[0]/100 # converting percentanges to inches if inter_group_spacing >= 100: print ("Percentage for than 100 for variables inter_group_spacing, Aborting! ") return else: inter_group_spacing = inter_group_spacing*size[0]/100 # converting percentanges to inches if y_loc_for_group_name >= 100: print ("Percentage for than 100 for variables inter_group_spacing, Aborting! ") return else: # the multiplier 90 is set empirically to roughly align the percentage value # <this is a quick fix solution, which needs to be improved later> y_loc_for_group_name = 90*y_loc_for_group_name*size[1]/100 # converting percentanges to inches if y_loc_for_hstack_name >= 100: print ("Percentage for than 100 for variables inter_group_spacing, Aborting! ") return else: y_loc_for_hstack_name = 70*y_loc_for_hstack_name*size[1]/100 # converting percentanges to inches if x_trim_hstack_label >= 100: print ("Percentage for than 100 for variables inter_group_spacing, Aborting! ") return else: x_trim_hstack_label = x_trim_hstack_label*size[0]/100 # converting percentanges to inches if x_trim_group_label >= 100: print ("Percentage for than 100 for variables inter_group_spacing, Aborting! ") return else: x_trim_group_label = x_trim_group_label*size[0]/100 # converting percentanges to inches fileread_list = [] with open(filename) as f: for row in f: r = row.strip().split(',') if len(r) != 4: print ('4 items not found @ line ', c, ' of ', filename) return else: fileread_list.append(r) # inputs: bar_variable = BGV[0] group_variable = BGV[1] vertical_stacking_variable = BGV[2] first_line = fileread_list[0] for i in range(4): if first_line[i] == vertical_stacking_variable: header_num_Of_vertical_stacking = i break sorted_order_for_stacking = [] for listed in fileread_list[1:]: # skipping the first line sorted_order_for_stacking.append(listed[header_num_Of_vertical_stacking]) sorted_order_for_stacking = list(set(sorted_order_for_stacking)) list.sort(sorted_order_for_stacking) sorted_order_for_stacking_V = list(sorted_order_for_stacking) ##################### first_line = fileread_list[0] for i in range(4): if first_line[i] == bar_variable: header_num_Of_bar_Variable = i break sorted_order_for_stacking = [] for listed in fileread_list[1:]: # skipping the first line sorted_order_for_stacking.append(listed[header_num_Of_bar_Variable]) sorted_order_for_stacking = list(set(sorted_order_for_stacking)) list.sort(sorted_order_for_stacking) sorted_order_for_stacking_H = list(sorted_order_for_stacking) ###################### first_line = fileread_list[0] for i in range(4): if first_line[i] == group_variable: header_num_Of_bar_Variable = i break sorted_order_for_stacking = [] for listed in fileread_list[1:]: # skipping the first line sorted_order_for_stacking.append(listed[header_num_Of_bar_Variable]) sorted_order_for_stacking = list(set(sorted_order_for_stacking)) list.sort(sorted_order_for_stacking) sorted_order_for_stacking_G = list(sorted_order_for_stacking) ######################### print (" Vertical/Horizontal/Groups ") print (sorted_order_for_stacking_V, " : Vertical stacking labels") print (sorted_order_for_stacking_H, " : Horizontal stacking labels") print (sorted_order_for_stacking_G, " : Group names") # +1 because we need one space before and after as well each_group_width = (size[0] - (len(sorted_order_for_stacking_G) + 1) * inter_group_spacing)/len(sorted_order_for_stacking_G) # -1 because we need n-1 spaces between bars if there are n bars in each group each_bar_width = (each_group_width - (len(sorted_order_for_stacking_H) - 1) * intra_group_spacing)/len(sorted_order_for_stacking_H) # colormaps number_of_color_maps_needed = len(sorted_order_for_stacking_H) number_of_levels_in_each_map = len(sorted_order_for_stacking_V) c_map_vertical = {} for i in range(number_of_color_maps_needed): try: c_map_vertical[sorted_order_for_stacking_H[i]] = sequential_colors[i] except: print ("Something went wrong with hardcoded colors!\n reverting to custom colors (linear in RGB) ") c_map_vertical[sorted_order_for_stacking_H[i]] = getColorMaps(N = number_of_levels_in_each_map, type = 'S') ## state_num = -1 max_bar_height = 0 for state in sorted_order_for_stacking_H: state_num += 1 week_num = -1 for week in ['Week 1', 'Week 2','Week 3']: week_num += 1 a = [0] * len(sorted_order_for_stacking_V) for i in range(len(sorted_order_for_stacking_V)): for line_num in range(1,len(fileread_list)): # skipping the first line listed = fileread_list[line_num] if listed[1] == state and listed[0] == week and listed[2] == sorted_order_for_stacking_V[i]: a[i] = (float(listed[3])) # get cumulative values cum_val = [a[0]] for j in range(1,len(a)): cum_val.append( cum_val[j-1] + a[j] ) max_bar_height = max([max_bar_height, max(cum_val)]) plt.text(x= (week_num)*(each_group_width+inter_group_spacing) - x_trim_group_label , y=y_loc_for_group_name, s=sorted_order_for_stacking_G[week_num], fontsize=fontsize_groups, color=fontcolor_groups) # state labels need to be printed just once for each week, hence putting them outside the loop plt.text(x= week_num*(each_group_width+inter_group_spacing) + (state_num)*(each_bar_width+intra_group_spacing) - x_trim_hstack_label , y=y_loc_for_hstack_name, s=sorted_order_for_stacking_H[state_num], fontsize=fontsize_hstacks, color = fontcolor_hstacks) if week_num == 1: # label only in the first week for i in range(len(sorted_order_for_stacking_V)-1,-1,-1): # trick to make them all visible: Plot in descending order of their height!! :) plt.bar( week_num*(each_group_width+inter_group_spacing) + state_num*(each_bar_width+intra_group_spacing), height=cum_val[i] , width=each_bar_width, color=c_map_vertical[state][i], label= state + "_" + sorted_order_for_stacking_V[i] ) else: # no label after the first week, (as it is just repetition) for i in range(len(sorted_order_for_stacking_V)-1,-1,-1): plt.bar( week_num*(each_group_width+inter_group_spacing) + state_num*(each_bar_width+intra_group_spacing), height=cum_val[i] , width=each_bar_width, color=c_map_vertical[state][i]) plt.ylim(0,max_bar_height*(1+extra_space_on_top/100)) plt.tight_layout() plt.xticks([], []) plt.legend(ncol=len(sorted_order_for_stacking_H)) return figure_
the-stack_106_21466
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import cirq from cirq.contrib.paulistring import ConvertToPauliStringPhasors def test_convert(): q0, q1 = cirq.LineQubit.range(2) circuit = cirq.Circuit( cirq.X(q0), cirq.Y(q1) ** 0.25, cirq.Z(q0) ** 0.125, cirq.H(q1), ) c_orig = cirq.Circuit(circuit) ConvertToPauliStringPhasors().optimize_circuit(circuit) cirq.testing.assert_allclose_up_to_global_phase(circuit.unitary(), c_orig.unitary(), atol=1e-7) cirq.testing.assert_has_diagram( circuit, """ 0: โ”€โ”€โ”€[X]โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€[Z]^(1/8)โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1: โ”€โ”€โ”€[Y]^0.25โ”€โ”€โ”€[Y]^-0.5โ”€โ”€โ”€โ”€[Z]โ”€โ”€โ”€ """, ) def test_convert_keep_clifford(): q0, q1 = cirq.LineQubit.range(2) circuit = cirq.Circuit( cirq.X(q0), cirq.Y(q1) ** 0.25, cirq.Z(q0) ** 0.125, cirq.SingleQubitCliffordGate.H(q1), ) c_orig = cirq.Circuit(circuit) ConvertToPauliStringPhasors(keep_clifford=True).optimize_circuit(circuit) cirq.testing.assert_allclose_up_to_global_phase(circuit.unitary(), c_orig.unitary(), atol=1e-7) cirq.testing.assert_has_diagram( circuit, """ 0: โ”€โ”€โ”€Xโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€[Z]^(1/8)โ”€โ”€โ”€ 1: โ”€โ”€โ”€[Y]^0.25โ”€โ”€โ”€Hโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ """, ) def test_already_converted(): q0 = cirq.LineQubit(0) circuit = cirq.Circuit(cirq.PauliStringPhasor(cirq.X.on(q0))) c_orig = cirq.Circuit(circuit) ConvertToPauliStringPhasors().optimize_circuit(circuit) assert circuit == c_orig def test_ignore_unsupported_gate(): class UnsupportedDummy(cirq.testing.TwoQubitGate): pass q0, q1 = cirq.LineQubit.range(2) circuit = cirq.Circuit( UnsupportedDummy()(q0, q1), ) c_orig = cirq.Circuit(circuit) ConvertToPauliStringPhasors(ignore_failures=True).optimize_circuit(circuit) assert circuit == c_orig def test_fail_unsupported_gate(): class UnsupportedDummy(cirq.testing.TwoQubitGate): pass q0, q1 = cirq.LineQubit.range(2) circuit = cirq.Circuit( UnsupportedDummy()(q0, q1), ) with pytest.raises(TypeError): ConvertToPauliStringPhasors().optimize_circuit(circuit)
the-stack_106_21468
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import json import locale import platform import traceback import os import sys import subprocess import requests from PyQt5.QtCore import QObject import PyQt5.QtCore as QtCore from PyQt5.QtGui import QIcon from PyQt5.QtWidgets import * from electrum_ltc.i18n import _ from electrum_ltc import ELECTRUM_VERSION, bitcoin, constants issue_template = """<h2>Traceback</h2> <pre> {traceback} </pre> <h2>Additional information</h2> <ul> <li>Electrum version: {app_version}</li> <li>Operating system: {os}</li> <li>Wallet type: {wallet_type}</li> <li>Locale: {locale}</li> </ul> """ report_server = "https://crashhub.electrum-ltc.org/crash" class Exception_Window(QWidget): _active_window = None def __init__(self, main_window, exctype, value, tb): self.exc_args = (exctype, value, tb) self.main_window = main_window QWidget.__init__(self) self.setWindowTitle('Electrum-LTC - ' + _('An Error Occured')) self.setMinimumSize(600, 300) main_box = QVBoxLayout() heading = QLabel('<h2>' + _('Sorry!') + '</h2>') main_box.addWidget(heading) main_box.addWidget(QLabel(_('Something went wrong while executing Electrum.'))) main_box.addWidget(QLabel( _('To help us diagnose and fix the problem, you can send us a bug report that contains useful debug ' 'information:'))) collapse_info = QPushButton(_("Show report contents")) collapse_info.clicked.connect(lambda: QMessageBox.about(self, "Report contents", self.get_report_string())) main_box.addWidget(collapse_info) main_box.addWidget(QLabel(_("Please briefly describe what led to the error (optional):"))) self.description_textfield = QTextEdit() self.description_textfield.setFixedHeight(50) main_box.addWidget(self.description_textfield) main_box.addWidget(QLabel(_("Do you want to send this report?"))) buttons = QHBoxLayout() report_button = QPushButton(_('Send Bug Report')) report_button.clicked.connect(self.send_report) report_button.setIcon(QIcon(":icons/tab_send.png")) buttons.addWidget(report_button) never_button = QPushButton(_('Never')) never_button.clicked.connect(self.show_never) buttons.addWidget(never_button) close_button = QPushButton(_('Not Now')) close_button.clicked.connect(self.close) buttons.addWidget(close_button) main_box.addLayout(buttons) self.setLayout(main_box) self.show() def send_report(self): if constants.net.GENESIS[-4:] not in ["29a0", "bfe2"] and ".electrum-ltc.org" in report_server: # Gah! Some kind of altcoin wants to send us crash reports. self.main_window.show_critical(_("Please report this issue manually.")) return report = self.get_traceback_info() report.update(self.get_additional_info()) report = json.dumps(report) try: response = requests.post(report_server, data=report, timeout=20) except BaseException as e: traceback.print_exc(file=sys.stderr) self.main_window.show_critical(_('There was a problem with the automatic reporting:') + '\n' + str(e) + '\n' + _("Please report this issue manually.")) return else: QMessageBox.about(self, "Crash report", response.text) self.close() def on_close(self): Exception_Window._active_window = None sys.__excepthook__(*self.exc_args) self.close() def show_never(self): self.main_window.config.set_key("show_crash_reporter", False) self.close() def closeEvent(self, event): self.on_close() event.accept() def get_traceback_info(self): exc_string = str(self.exc_args[1]) stack = traceback.extract_tb(self.exc_args[2]) readable_trace = "".join(traceback.format_list(stack)) id = { "file": stack[-1].filename, "name": stack[-1].name, "type": self.exc_args[0].__name__ } return { "exc_string": exc_string, "stack": readable_trace, "id": id } def get_additional_info(self): args = { "app_version": ELECTRUM_VERSION, "os": platform.platform(), "wallet_type": "unknown", "locale": locale.getdefaultlocale()[0], "description": self.description_textfield.toPlainText() } try: args["wallet_type"] = self.main_window.wallet.wallet_type except: # Maybe the wallet isn't loaded yet pass try: args["app_version"] = self.get_git_version() except: # This is probably not running from source pass return args def get_report_string(self): info = self.get_additional_info() info["traceback"] = "".join(traceback.format_exception(*self.exc_args)) return issue_template.format(**info) @staticmethod def get_git_version(): dir = os.path.dirname(os.path.realpath(sys.argv[0])) version = subprocess.check_output(['git', 'describe', '--always'], cwd=dir) return str(version, "utf8").strip() def _show_window(*args): if not Exception_Window._active_window: Exception_Window._active_window = Exception_Window(*args) class Exception_Hook(QObject): _report_exception = QtCore.pyqtSignal(object, object, object, object) def __init__(self, main_window, *args, **kwargs): super(Exception_Hook, self).__init__(*args, **kwargs) if not main_window.config.get("show_crash_reporter", default=True): return self.main_window = main_window sys.excepthook = self.handler self._report_exception.connect(_show_window) def handler(self, *args): self._report_exception.emit(self.main_window, *args)
the-stack_106_21473
from PyQt5.QtWidgets import QWidget, QGridLayout, QLabel, QTreeView, QDialog, QLineEdit from PyQt5.QtCore import QSortFilterProxyModel from PyQt5.QtCore import pyqtSignal, Qt from AlertsParameters.Categories.CategoryTreeItem import CategoryTreeItem from TreeModel import TreeModel from Alerts.Alert import Alert class CategoriesFilterProxy(QSortFilterProxyModel): def __init__(self): super().__init__() self.textFilter = "" def setCategoriesFilter(self, text): self.textFilter = text def filterAcceptsRow(self, row, parent): index = self.sourceModel().index(row, 0, parent) item = index.internalPointer() def filterInChildren(self, item): ret = self.filterRegExp().indexIn(item.category.name) != -1 if ret: return True for child in item.children: ret = filterInChildren(self, child) if ret: return True return False return filterInChildren(self, item) class CategoriesWidget(QWidget): def __init__(self, categoriesTreeItems): super().__init__() self.setLayout(QGridLayout()) self.categoriesTreeItems = categoriesTreeItems self.categoriesView = QTreeView() self.categoriesView.header().hide() self.categoriesModel = TreeModel(self.categoriesTreeItems) self.categoriesProxyModel = CategoriesFilterProxy() self.categoriesProxyModel.setSourceModel(self.categoriesModel) self.categoriesView.setModel(self.categoriesProxyModel) self.filterCategoriesEdit = QLineEdit() self.filterCategoriesEdit.setPlaceholderText("Filter categories") self.categoriesProxyModel.setFilterCaseSensitivity(Qt.CaseInsensitive) self.filterCategoriesEdit.textEdited.connect(self.categoriesProxyModel.setFilterRegExp) self.layout().addWidget(self.filterCategoriesEdit, 0, 1, 1, 1) self.layout().addWidget(self.categoriesView, 1, 1, 1, 1)
the-stack_106_21474
"""Support for RFXtrx devices.""" import asyncio import binascii from collections import OrderedDict import logging import RFXtrx as rfxtrxmod import voluptuous as vol from homeassistant import config_entries from homeassistant.components.binary_sensor import DEVICE_CLASSES_SCHEMA from homeassistant.const import ( CONF_COMMAND_OFF, CONF_COMMAND_ON, CONF_DEVICE, CONF_DEVICE_CLASS, CONF_DEVICE_ID, CONF_DEVICES, CONF_HOST, CONF_PORT, EVENT_HOMEASSISTANT_STOP, POWER_WATT, TEMP_CELSIUS, UNIT_PERCENTAGE, UV_INDEX, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.restore_state import RestoreEntity from .const import ( ATTR_EVENT, DEVICE_PACKET_TYPE_LIGHTING4, EVENT_RFXTRX_EVENT, SERVICE_SEND, ) DOMAIN = "rfxtrx" DEFAULT_SIGNAL_REPETITIONS = 1 CONF_FIRE_EVENT = "fire_event" CONF_DATA_BITS = "data_bits" CONF_AUTOMATIC_ADD = "automatic_add" CONF_SIGNAL_REPETITIONS = "signal_repetitions" CONF_DEBUG = "debug" CONF_OFF_DELAY = "off_delay" SIGNAL_EVENT = f"{DOMAIN}_event" DATA_TYPES = OrderedDict( [ ("Temperature", TEMP_CELSIUS), ("Temperature2", TEMP_CELSIUS), ("Humidity", UNIT_PERCENTAGE), ("Barometer", ""), ("Wind direction", ""), ("Rain rate", ""), ("Energy usage", POWER_WATT), ("Total usage", POWER_WATT), ("Sound", ""), ("Sensor Status", ""), ("Counter value", ""), ("UV", UV_INDEX), ("Humidity status", ""), ("Forecast", ""), ("Forecast numeric", ""), ("Rain total", ""), ("Wind average speed", ""), ("Wind gust", ""), ("Chill", ""), ("Total usage", ""), ("Count", ""), ("Current Ch. 1", ""), ("Current Ch. 2", ""), ("Current Ch. 3", ""), ("Energy usage", ""), ("Voltage", ""), ("Current", ""), ("Battery numeric", UNIT_PERCENTAGE), ("Rssi numeric", "dBm"), ] ) _LOGGER = logging.getLogger(__name__) DATA_RFXOBJECT = "rfxobject" DATA_LISTENER = "ha_stop" def _bytearray_string(data): val = cv.string(data) try: return bytearray.fromhex(val) except ValueError: raise vol.Invalid("Data must be a hex string with multiple of two characters") def _ensure_device(value): if value is None: return DEVICE_DATA_SCHEMA({}) return DEVICE_DATA_SCHEMA(value) SERVICE_SEND_SCHEMA = vol.Schema({ATTR_EVENT: _bytearray_string}) DEVICE_DATA_SCHEMA = vol.Schema( { vol.Optional(CONF_DEVICE_CLASS): DEVICE_CLASSES_SCHEMA, vol.Optional(CONF_FIRE_EVENT, default=False): cv.boolean, vol.Optional(CONF_OFF_DELAY): vol.All( cv.time_period, cv.positive_timedelta, lambda value: value.total_seconds() ), vol.Optional(CONF_DATA_BITS): cv.positive_int, vol.Optional(CONF_COMMAND_ON): cv.byte, vol.Optional(CONF_COMMAND_OFF): cv.byte, vol.Optional(CONF_SIGNAL_REPETITIONS, default=1): cv.positive_int, } ) BASE_SCHEMA = vol.Schema( { vol.Optional(CONF_DEBUG, default=False): cv.boolean, vol.Optional(CONF_AUTOMATIC_ADD, default=False): cv.boolean, vol.Optional(CONF_DEVICES, default={}): {cv.string: _ensure_device}, } ) DEVICE_SCHEMA = BASE_SCHEMA.extend({vol.Required(CONF_DEVICE): cv.string}) PORT_SCHEMA = BASE_SCHEMA.extend( {vol.Required(CONF_PORT): cv.port, vol.Optional(CONF_HOST): cv.string} ) CONFIG_SCHEMA = vol.Schema( {DOMAIN: vol.Any(DEVICE_SCHEMA, PORT_SCHEMA)}, extra=vol.ALLOW_EXTRA ) DOMAINS = ["switch", "sensor", "light", "binary_sensor", "cover"] async def async_setup(hass, config): """Set up the RFXtrx component.""" if DOMAIN not in config: return True data = { CONF_HOST: config[DOMAIN].get(CONF_HOST), CONF_PORT: config[DOMAIN].get(CONF_PORT), CONF_DEVICE: config[DOMAIN].get(CONF_DEVICE), CONF_DEBUG: config[DOMAIN].get(CONF_DEBUG), CONF_AUTOMATIC_ADD: config[DOMAIN].get(CONF_AUTOMATIC_ADD), CONF_DEVICES: config[DOMAIN][CONF_DEVICES], } # Read device_id from the event code add to the data that will end up in the ConfigEntry for event_code, event_config in data[CONF_DEVICES].items(): event = get_rfx_object(event_code) device_id = get_device_id( event.device, data_bits=event_config.get(CONF_DATA_BITS) ) event_config[CONF_DEVICE_ID] = device_id hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=data, ) ) return True async def async_setup_entry(hass, entry: config_entries.ConfigEntry): """Set up the RFXtrx component.""" hass.data.setdefault(DOMAIN, {}) await async_setup_internal(hass, entry) for domain in DOMAINS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, domain) ) return True async def async_unload_entry(hass, entry: config_entries.ConfigEntry): """Unload RFXtrx component.""" if not all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, component) for component in DOMAINS ] ) ): return False hass.services.async_remove(DOMAIN, SERVICE_SEND) listener = hass.data[DOMAIN][DATA_LISTENER] listener() rfx_object = hass.data[DOMAIN][DATA_RFXOBJECT] await hass.async_add_executor_job(rfx_object.close_connection) return True def _create_rfx(config): """Construct a rfx object based on config.""" if config[CONF_PORT] is not None: # If port is set then we create a TCP connection rfx = rfxtrxmod.Connect( (config[CONF_HOST], config[CONF_PORT]), None, debug=config[CONF_DEBUG], transport_protocol=rfxtrxmod.PyNetworkTransport, ) else: rfx = rfxtrxmod.Connect(config[CONF_DEVICE], None, debug=config[CONF_DEBUG]) return rfx def _get_device_lookup(devices): """Get a lookup structure for devices.""" lookup = dict() for event_code, event_config in devices.items(): event = get_rfx_object(event_code) device_id = get_device_id( event.device, data_bits=event_config.get(CONF_DATA_BITS) ) lookup[device_id] = event_config return lookup async def async_setup_internal(hass, entry: config_entries.ConfigEntry): """Set up the RFXtrx component.""" config = entry.data # Initialize library rfx_object = await hass.async_add_executor_job(_create_rfx, config) # Setup some per device config devices = _get_device_lookup(config[CONF_DEVICES]) # Declare the Handle event @callback def async_handle_receive(event): """Handle received messages from RFXtrx gateway.""" # Log RFXCOM event if not event.device.id_string: return event_data = { "packet_type": event.device.packettype, "sub_type": event.device.subtype, "type_string": event.device.type_string, "id_string": event.device.id_string, "data": binascii.hexlify(event.data).decode("ASCII"), "values": getattr(event, "values", None), } _LOGGER.debug("Receive RFXCOM event: %s", event_data) data_bits = get_device_data_bits(event.device, devices) device_id = get_device_id(event.device, data_bits=data_bits) # Register new devices if config[CONF_AUTOMATIC_ADD] and device_id not in devices: _add_device(event, device_id) # Callback to HA registered components. hass.helpers.dispatcher.async_dispatcher_send(SIGNAL_EVENT, event, device_id) # Signal event to any other listeners fire_event = devices.get(device_id, {}).get(CONF_FIRE_EVENT) if fire_event: hass.bus.async_fire(EVENT_RFXTRX_EVENT, event_data) @callback def _add_device(event, device_id): """Add a device to config entry.""" config = DEVICE_DATA_SCHEMA({}) config[CONF_DEVICE_ID] = device_id data = entry.data.copy() event_code = binascii.hexlify(event.data).decode("ASCII") data[CONF_DEVICES][event_code] = config hass.config_entries.async_update_entry(entry=entry, data=data) devices[device_id] = config def _shutdown_rfxtrx(event): """Close connection with RFXtrx.""" rfx_object.close_connection() listener = hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, _shutdown_rfxtrx) hass.data[DOMAIN][DATA_LISTENER] = listener hass.data[DOMAIN][DATA_RFXOBJECT] = rfx_object rfx_object.event_callback = lambda event: hass.add_job(async_handle_receive, event) def send(call): event = call.data[ATTR_EVENT] rfx_object.transport.send(event) hass.services.async_register(DOMAIN, SERVICE_SEND, send, schema=SERVICE_SEND_SCHEMA) def get_rfx_object(packetid): """Return the RFXObject with the packetid.""" try: binarypacket = bytearray.fromhex(packetid) except ValueError: return None pkt = rfxtrxmod.lowlevel.parse(binarypacket) if pkt is None: return None if isinstance(pkt, rfxtrxmod.lowlevel.SensorPacket): obj = rfxtrxmod.SensorEvent(pkt) elif isinstance(pkt, rfxtrxmod.lowlevel.Status): obj = rfxtrxmod.StatusEvent(pkt) else: obj = rfxtrxmod.ControlEvent(pkt) obj.data = binarypacket return obj def get_pt2262_deviceid(device_id, nb_data_bits): """Extract and return the address bits from a Lighting4/PT2262 packet.""" if nb_data_bits is None: return try: data = bytearray.fromhex(device_id) except ValueError: return None mask = 0xFF & ~((1 << nb_data_bits) - 1) data[len(data) - 1] &= mask return binascii.hexlify(data) def get_pt2262_cmd(device_id, data_bits): """Extract and return the data bits from a Lighting4/PT2262 packet.""" try: data = bytearray.fromhex(device_id) except ValueError: return None mask = 0xFF & ((1 << data_bits) - 1) return hex(data[-1] & mask) def get_device_data_bits(device, devices): """Deduce data bits for device based on a cache of device bits.""" data_bits = None if device.packettype == DEVICE_PACKET_TYPE_LIGHTING4: for device_id, entity_config in devices.items(): bits = entity_config.get(CONF_DATA_BITS) if get_device_id(device, bits) == device_id: data_bits = bits break return data_bits def find_possible_pt2262_device(device_ids, device_id): """Look for the device which id matches the given device_id parameter.""" for dev_id in device_ids: if len(dev_id) == len(device_id): size = None for i, (char1, char2) in enumerate(zip(dev_id, device_id)): if char1 != char2: break size = i if size is not None: size = len(dev_id) - size - 1 _LOGGER.info( "rfxtrx: found possible device %s for %s " "with the following configuration:\n" "data_bits=%d\n" "command_on=0x%s\n" "command_off=0x%s\n", device_id, dev_id, size * 4, dev_id[-size:], device_id[-size:], ) return dev_id return None def get_device_id(device, data_bits=None): """Calculate a device id for device.""" id_string = device.id_string if data_bits and device.packettype == DEVICE_PACKET_TYPE_LIGHTING4: masked_id = get_pt2262_deviceid(id_string, data_bits) if masked_id: id_string = masked_id.decode("ASCII") return (f"{device.packettype:x}", f"{device.subtype:x}", id_string) class RfxtrxEntity(RestoreEntity): """Represents a Rfxtrx device. Contains the common logic for Rfxtrx lights and switches. """ def __init__(self, device, device_id, event=None): """Initialize the device.""" self._name = f"{device.type_string} {device.id_string}" self._device = device self._event = event self._device_id = device_id self._unique_id = "_".join(x for x in self._device_id) async def async_added_to_hass(self): """Restore RFXtrx device state (ON/OFF).""" if self._event: self._apply_event(self._event) self.async_on_remove( self.hass.helpers.dispatcher.async_dispatcher_connect( SIGNAL_EVENT, self._handle_event ) ) @property def should_poll(self): """No polling needed for a RFXtrx switch.""" return False @property def name(self): """Return the name of the device if any.""" return self._name @property def device_state_attributes(self): """Return the device state attributes.""" if not self._event: return None return {ATTR_EVENT: "".join(f"{x:02x}" for x in self._event.data)} @property def assumed_state(self): """Return true if unable to access real state of entity.""" return True @property def unique_id(self): """Return unique identifier of remote device.""" return self._unique_id @property def device_info(self): """Return the device info.""" return { "identifiers": {(DOMAIN, *self._device_id)}, "name": f"{self._device.type_string} {self._device.id_string}", "model": self._device.type_string, } def _apply_event(self, event): """Apply a received event.""" self._event = event @callback def _handle_event(self, event, device_id): """Handle a reception of data, overridden by other classes.""" class RfxtrxCommandEntity(RfxtrxEntity): """Represents a Rfxtrx device. Contains the common logic for Rfxtrx lights and switches. """ def __init__(self, device, device_id, signal_repetitions=1, event=None): """Initialzie a switch or light device.""" super().__init__(device, device_id, event=event) self.signal_repetitions = signal_repetitions self._state = None async def _async_send(self, fun, *args): rfx_object = self.hass.data[DOMAIN][DATA_RFXOBJECT] for _ in range(self.signal_repetitions): await self.hass.async_add_executor_job(fun, rfx_object.transport, *args)
the-stack_106_21475
def menu(): option = str(input("Choose a option, use the numbers\n1) Register a client\n2) See the client list\n3) Exit\n")) while option != "1" and option != "2" and option != "3": option = str(input("Choose a option, use ONLY this numbers\n1) Register a client\n2) See the client list\n3) Exit\n")) if option == "1": registration() elif option == "2": reg = open("customer.txt", "r") print(reg.read()) reg.close menu() def registration (reg = open("customer.txt", "a")): name = str(input("Write the client's name\n")) name = name.title() age = str(input("Write the client's age\n")) phone = str(input("Write the client's phone number\n")) txt = f"NAME = {name}, AGE = {age}, PHONE NUMBER = {phone}\n" reg.write(txt) reg.close question() def question(): option = str(input("Do you want to register another customer?\n1) Yes\n2) No\n")) while option != "1" and option != "2": option = str(input("Choose a option, use ONLY this numbers\n1) Yes\n2) No\n")) if option == "1": registration() elif option == "2": print("The program will restart to save the list")
the-stack_106_21476
#! /usr/bin/env python3 import pathlib import typing import sys """ List all of the machines available under the listed sub-layers of meta-arm. """ def list_machines(layers: typing.Sequence[str]) -> typing.Set[str]: machines = set() # We know we're in meta-arm/scripts, so find the top-level directory metaarm = pathlib.Path(__file__).resolve().parent.parent if metaarm.name != "meta-arm": raise Exception("Not running inside meta-arm") for layer in layers: machines |= set(p.stem for p in (metaarm / layer / "conf" / "machine").glob("*.conf")) return machines if __name__ == "__main__": if len(sys.argv) > 1: machines = list_machines(sys.argv[1:]) print(" ".join(sorted(machines))) sys.exit(0) else: print("Usage:\n$ %s [layer name ...] " % sys.argv[0]) sys.exit(1)
the-stack_106_21477
""" The file name should contain the representitive class/struct name. If the file contains class/struct decls or defs, the file name should be one of classes. If the class/struct name starts with "C", "C" can be ommited in the file name. == Vilolation == = a.h = <== Violation. It should contain class name 'TestClass' class TestClass() { } = a.cpp = <== Violation. It should contain class name 'Test' void Test::Method1() { } == Good == = TestClass.h = <== OK class TestClass { } = Class1.h = <== OK. class CClass1 { } = TestClass.cpp = <== OK void TestClass::Method1() { } """ from nsiqcppstyle_rulemanager import * from nsiqcppstyle_reporter import * from nsiqcppstyle_rulemanager import * try : set() except NameError: from sets import Set as set classname = None def RunFunctionNameRule(lexer, fullName, decl, contextStack, context) : names = fullName.split("::") if len(names) > 1 : if len(names[0]) != 0 : classname.add(names[0]) def RunTypeNameRule(lexer, currentType, fullName, decl, contextStack, context) : if currentType in ["CLASS", "STRUCT"] : names = fullName.split("::") if len(names[-1]) != 0 : classname.add(names[-1]) def RunFileStartRule(lexer, filename, dirname) : global classname classname = set() def RunFileEndRule(lexer, filename, dirname): goodFileName = False filename = filename.lower( ) if len(classname) == 0 : return for t in classname : if t.startswith("C") : t = t[1:] if filename.find(t.lower()) != -1 : goodFileName = True break if not goodFileName : nsiqcppstyle_reporter.Error(DummyToken(lexer.filename, "", 0, 0), __name__, "The filename does not represent the classnames (%s)" %(classname)) ruleManager.AddFileStartRule(RunFileStartRule) ruleManager.AddTypeNameRule(RunTypeNameRule) ruleManager.AddFunctionNameRule(RunFunctionNameRule) ruleManager.AddFileEndRule(RunFileEndRule) ########################################################################################### # Unit Test ########################################################################################### from nsiqunittest.nsiqcppstyle_unittestbase import * class testRule(nct): def setUpRule(self): ruleManager.AddFileStartRule(RunFileStartRule) ruleManager.AddTypeNameRule(RunTypeNameRule) ruleManager.AddFunctionNameRule(RunFunctionNameRule) ruleManager.AddFileEndRule(RunFileEndRule) def test1(self): self.Analyze("test/aa.c", """ void AA::DSD() { } """) assert not CheckErrorContent(__name__) def test2(self): self.Analyze("test/ab.c", """ void AA::DSD() { } """) assert CheckErrorContent(__name__) def test3(self): self.Analyze("test/aa.c", """ void CAA::DSD() { } """) assert not CheckErrorContent(__name__) def test4(self): self.Analyze("test/aa.c", """ void DSD() { } """) assert not CheckErrorContent(__name__) def test5(self): self.Analyze("test/aa.cpp", """ struct AA { } class BB { } """) assert not CheckErrorContent(__name__) def test6(self): self.Analyze("test/aa.cpp", """ struct AA1 { } class BB { } """) assert CheckErrorContent(__name__) def test7(self): self.Analyze("test/CamRecorderFactory.cpp", """ class __declspec(dllexport) CCamRecorderFactory { }; """) assert not CheckErrorContent(__name__) def test8(self): self.Analyze("test/CamRecorderFactory.cpp", """ class DLLEXPORT CCamRecorderFactory { }; """) assert not CheckErrorContent(__name__)
the-stack_106_21478
""" predict trades for one specific day """ import functools import logging from datetime import datetime, timedelta import pandas as pd import tensorflow as tf from absl import app from absl import logging as absl_logging from tf_agents.system import system_multiprocessing as multiprocessing from config import settings from envirement.trading_py_env import TradingPyEnv from models.model_ppo import TradeDRLAgent from preprocess_data import preprocess_data def main(_): PREDICT_DAY = "2020-06-01" days_to_subtract = 60 ticker_list = settings.DOW_30_TICKER data_columns = settings.DATA_COLUMNS # Preprocess data df_trade = preprocess_data.preprocess_data( tic_list=ticker_list, start_date=str(datetime.strptime(PREDICT_DAY, '%Y-%m-%d') - timedelta(days=days_to_subtract)), end_date=PREDICT_DAY, field_mappings=settings.CSV_FIELD_MAPPINGS, baseline_filed_mappings=settings.BASELINE_FIELD_MAPPINGS, csv_file_info=settings.CSV_FILE_SETTINGS, user_columns=settings.USER_DEFINED_FEATURES ) information_cols = [] unavailable_cols = [] for col in data_columns: if col in df_trade.columns: information_cols.append(col) else: unavailable_cols.append(col) if not information_cols: logging.error('No column to train') raise ValueError else: logging.info(f'Columns used to train:\n{information_cols} โœ…') if unavailable_cols: logging.info(f'Unavailable columns:\n{unavailable_cols} โŒ') # df_trade[information_cols].to_csv("temp.csv", index=1, encoding="utf-8") logging.info(f'TensorFlow v{tf.version.VERSION}') logging.info( f"Available [GPU] devices:\n{tf.config.list_physical_devices('GPU')}") # Predict test_py_env = TradingPyEnv( df=df_trade, daily_information_cols=information_cols, ) model = TradeDRLAgent() _, df_actions = model.test_trade(env=test_py_env) assert len(df_trade.tic.unique()) == len( df_actions.tail(1).transactions.values[0]) pred_inf_df = pd.DataFrame( {'ticker': df_trade.tic.unique()} ) pred_inf_df['trade'] = pd.Series(df_actions.tail(1).transactions.values[0]) last_day = pd.to_datetime(str(df_actions.tail(1).date.values[0])) last_day_str = last_day.strftime("%B %d, %Y") logging.info(f'\nPredicted trades for {last_day_str}:\n{pred_inf_df}') if __name__ == '__main__': # FMT = '[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s' FMT = '[%(levelname)s] %(message)s' formatter = logging.Formatter(FMT) absl_logging.get_absl_handler().setFormatter(formatter) absl_logging.set_verbosity('info') # logging.basicConfig(format='%(message)s', level=logging.INFO) multiprocessing.handle_main(functools.partial(app.run, main))
the-stack_106_21482
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.words.protocols.irc}. """ import time from twisted.trial import unittest from twisted.trial.unittest import TestCase from twisted.words.protocols import irc from twisted.words.protocols.irc import IRCClient from twisted.internet import protocol from twisted.test.proto_helpers import StringTransport, StringIOWithoutClosing class ModeParsingTests(unittest.TestCase): """ Tests for L{twisted.words.protocols.irc.parseModes}. """ paramModes = ('klb', 'b') def test_emptyModes(self): """ Parsing an empty mode string raises L{irc.IRCBadModes}. """ self.assertRaises(irc.IRCBadModes, irc.parseModes, '', []) def test_emptyModeSequence(self): """ Parsing a mode string that contains an empty sequence (either a C{+} or C{-} followed directly by another C{+} or C{-}, or not followed by anything at all) raises L{irc.IRCBadModes}. """ self.assertRaises(irc.IRCBadModes, irc.parseModes, '++k', []) self.assertRaises(irc.IRCBadModes, irc.parseModes, '-+k', []) self.assertRaises(irc.IRCBadModes, irc.parseModes, '+', []) self.assertRaises(irc.IRCBadModes, irc.parseModes, '-', []) def test_malformedModes(self): """ Parsing a mode string that does not start with C{+} or C{-} raises L{irc.IRCBadModes}. """ self.assertRaises(irc.IRCBadModes, irc.parseModes, 'foo', []) self.assertRaises(irc.IRCBadModes, irc.parseModes, '%', []) def test_nullModes(self): """ Parsing a mode string that contains no mode characters raises L{irc.IRCBadModes}. """ self.assertRaises(irc.IRCBadModes, irc.parseModes, '+', []) self.assertRaises(irc.IRCBadModes, irc.parseModes, '-', []) def test_singleMode(self): """ Parsing a single mode setting with no parameters results in that mode, with no parameters, in the "added" direction and no modes in the "removed" direction. """ added, removed = irc.parseModes('+s', []) self.assertEquals(added, [('s', None)]) self.assertEquals(removed, []) added, removed = irc.parseModes('-s', []) self.assertEquals(added, []) self.assertEquals(removed, [('s', None)]) def test_singleDirection(self): """ Parsing a single-direction mode setting with multiple modes and no parameters, results in all modes falling into the same direction group. """ added, removed = irc.parseModes('+stn', []) self.assertEquals(added, [('s', None), ('t', None), ('n', None)]) self.assertEquals(removed, []) added, removed = irc.parseModes('-nt', []) self.assertEquals(added, []) self.assertEquals(removed, [('n', None), ('t', None)]) def test_multiDirection(self): """ Parsing a multi-direction mode setting with no parameters. """ added, removed = irc.parseModes('+s-n+ti', []) self.assertEquals(added, [('s', None), ('t', None), ('i', None)]) self.assertEquals(removed, [('n', None)]) def test_consecutiveDirection(self): """ Parsing a multi-direction mode setting containing two consecutive mode sequences with the same direction results in the same result as if there were only one mode sequence in the same direction. """ added, removed = irc.parseModes('+sn+ti', []) self.assertEquals(added, [('s', None), ('n', None), ('t', None), ('i', None)]) self.assertEquals(removed, []) def test_mismatchedParams(self): """ If the number of mode parameters does not match the number of modes expecting parameters, L{irc.IRCBadModes} is raised. """ self.assertRaises(irc.IRCBadModes, irc.parseModes, '+k', [], self.paramModes) self.assertRaises(irc.IRCBadModes, irc.parseModes, '+kl', ['foo', '10', 'lulz_extra_param'], self.paramModes) def test_parameters(self): """ Modes which require parameters are parsed and paired with their relevant parameter, modes which do not require parameters do not consume any of the parameters. """ added, removed = irc.parseModes( '+klbb', ['somekey', '42', 'nick!user@host', 'other!*@*'], self.paramModes) self.assertEquals(added, [('k', 'somekey'), ('l', '42'), ('b', 'nick!user@host'), ('b', 'other!*@*')]) self.assertEquals(removed, []) added, removed = irc.parseModes( '-klbb', ['nick!user@host', 'other!*@*'], self.paramModes) self.assertEquals(added, []) self.assertEquals(removed, [('k', None), ('l', None), ('b', 'nick!user@host'), ('b', 'other!*@*')]) # Mix a no-argument mode in with argument modes. added, removed = irc.parseModes( '+knbb', ['somekey', 'nick!user@host', 'other!*@*'], self.paramModes) self.assertEquals(added, [('k', 'somekey'), ('n', None), ('b', 'nick!user@host'), ('b', 'other!*@*')]) self.assertEquals(removed, []) stringSubjects = [ "Hello, this is a nice string with no complications.", "xargs%(NUL)smight%(NUL)slike%(NUL)sthis" % {'NUL': irc.NUL }, "embedded%(CR)snewline%(CR)s%(NL)sFUN%(NL)s" % {'CR': irc.CR, 'NL': irc.NL}, "escape!%(X)s escape!%(M)s %(X)s%(X)sa %(M)s0" % {'X': irc.X_QUOTE, 'M': irc.M_QUOTE} ] class QuotingTest(unittest.TestCase): def test_lowquoteSanity(self): """Testing client-server level quote/dequote""" for s in stringSubjects: self.failUnlessEqual(s, irc.lowDequote(irc.lowQuote(s))) def test_ctcpquoteSanity(self): """Testing CTCP message level quote/dequote""" for s in stringSubjects: self.failUnlessEqual(s, irc.ctcpDequote(irc.ctcpQuote(s))) class Dispatcher(irc._CommandDispatcherMixin): """ A dispatcher that exposes one known command and handles unknown commands. """ prefix = 'disp' def disp_working(self, a, b): """ A known command that returns its input. """ return a, b def disp_unknown(self, name, a, b): """ Handle unknown commands by returning their name and inputs. """ return name, a, b class DispatcherTests(unittest.TestCase): """ Tests for L{irc._CommandDispatcherMixin}. """ def test_dispatch(self): """ Dispatching a command invokes the correct handler. """ disp = Dispatcher() args = (1, 2) res = disp.dispatch('working', *args) self.assertEquals(res, args) def test_dispatchUnknown(self): """ Dispatching an unknown command invokes the default handler. """ disp = Dispatcher() name = 'missing' args = (1, 2) res = disp.dispatch(name, *args) self.assertEquals(res, (name,) + args) def test_dispatchMissingUnknown(self): """ Dispatching an unknown command, when no default handler is present, results in an exception being raised. """ disp = Dispatcher() disp.disp_unknown = None self.assertRaises(irc.UnhandledCommand, disp.dispatch, 'bar') class ServerSupportedFeatureTests(unittest.TestCase): """ Tests for L{ServerSupportedFeatures} and related functions. """ def test_intOrDefault(self): """ L{_intOrDefault} converts values to C{int} if possible, otherwise returns a default value. """ self.assertEquals(irc._intOrDefault(None), None) self.assertEquals(irc._intOrDefault([]), None) self.assertEquals(irc._intOrDefault(''), None) self.assertEquals(irc._intOrDefault('hello', 5), 5) self.assertEquals(irc._intOrDefault('123'), 123) self.assertEquals(irc._intOrDefault(123), 123) def test_splitParam(self): """ L{ServerSupportedFeatures._splitParam} splits ISUPPORT parameters into key and values. Parameters without a separator are split into a key and a list containing only the empty string. Escaped parameters are unescaped. """ params = [('FOO', ('FOO', [''])), ('FOO=', ('FOO', [''])), ('FOO=1', ('FOO', ['1'])), ('FOO=1,2,3', ('FOO', ['1', '2', '3'])), ('FOO=A\\x20B', ('FOO', ['A B'])), ('FOO=\\x5Cx', ('FOO', ['\\x'])), ('FOO=\\', ('FOO', ['\\'])), ('FOO=\\n', ('FOO', ['\\n']))] _splitParam = irc.ServerSupportedFeatures._splitParam for param, expected in params: res = _splitParam(param) self.assertEquals(res, expected) self.assertRaises(ValueError, _splitParam, 'FOO=\\x') self.assertRaises(ValueError, _splitParam, 'FOO=\\xNN') self.assertRaises(ValueError, _splitParam, 'FOO=\\xN') self.assertRaises(ValueError, _splitParam, 'FOO=\\x20\\x') def test_splitParamArgs(self): """ L{ServerSupportedFeatures._splitParamArgs} splits ISUPPORT parameter arguments into key and value. Arguments without a separator are split into a key and an empty string. """ res = irc.ServerSupportedFeatures._splitParamArgs(['A:1', 'B:2', 'C:', 'D']) self.assertEquals(res, [('A', '1'), ('B', '2'), ('C', ''), ('D', '')]) def test_splitParamArgsProcessor(self): """ L{ServerSupportedFeatures._splitParamArgs} uses the argument processor passed to to convert ISUPPORT argument values to some more suitable form. """ res = irc.ServerSupportedFeatures._splitParamArgs(['A:1', 'B:2', 'C'], irc._intOrDefault) self.assertEquals(res, [('A', 1), ('B', 2), ('C', None)]) def test_parsePrefixParam(self): """ L{ServerSupportedFeatures._parsePrefixParam} parses the ISUPPORT PREFIX parameter into a mapping from modes to prefix symbols, returns C{None} if there is no parseable prefix parameter or raises C{ValueError} if the prefix parameter is malformed. """ _parsePrefixParam = irc.ServerSupportedFeatures._parsePrefixParam self.assertEquals(_parsePrefixParam(''), None) self.assertRaises(ValueError, _parsePrefixParam, 'hello') self.assertEquals(_parsePrefixParam('(ov)@+'), {'o': ('@', 0), 'v': ('+', 1)}) def test_parseChanModesParam(self): """ L{ServerSupportedFeatures._parseChanModesParam} parses the ISUPPORT CHANMODES parameter into a mapping from mode categories to mode characters. Passing fewer than 4 parameters results in the empty string for the relevant categories. Passing more than 4 parameters raises C{ValueError}. """ _parseChanModesParam = irc.ServerSupportedFeatures._parseChanModesParam self.assertEquals( _parseChanModesParam([]), {'addressModes': '', 'param': '', 'setParam': '', 'noParam': ''}) self.assertEquals( _parseChanModesParam(['b', 'k', 'l', 'imnpst']), {'addressModes': 'b', 'param': 'k', 'setParam': 'l', 'noParam': 'imnpst'}) self.assertEquals( _parseChanModesParam(['b', 'k', 'l']), {'addressModes': 'b', 'param': 'k', 'setParam': 'l', 'noParam': ''}) self.assertRaises( ValueError, _parseChanModesParam, ['a', 'b', 'c', 'd', 'e']) def test_parse(self): """ L{ServerSupportedFeatures.parse} changes the internal state of the instance to reflect the features indicated by the parsed ISUPPORT parameters, including unknown parameters and unsetting previously set parameters. """ supported = irc.ServerSupportedFeatures() supported.parse(['MODES=4', 'CHANLIMIT=#:20,&:10', 'INVEX', 'EXCEPTS=Z', 'UNKNOWN=A,B,C']) self.assertEquals(supported.getFeature('MODES'), 4) self.assertEquals(supported.getFeature('CHANLIMIT'), [('#', 20), ('&', 10)]) self.assertEquals(supported.getFeature('INVEX'), 'I') self.assertEquals(supported.getFeature('EXCEPTS'), 'Z') self.assertEquals(supported.getFeature('UNKNOWN'), ('A', 'B', 'C')) self.assertTrue(supported.hasFeature('INVEX')) supported.parse(['-INVEX']) self.assertFalse(supported.hasFeature('INVEX')) # Unsetting a previously unset parameter should not be a problem. supported.parse(['-INVEX']) def _parse(self, features): """ Parse all specified features according to the ISUPPORT specifications. @type features: C{list} of C{(featureName, value)} @param features: Feature names and values to parse @rtype: L{irc.ServerSupportedFeatures} """ supported = irc.ServerSupportedFeatures() features = ['%s=%s' % (name, value or '') for name, value in features] supported.parse(features) return supported def _parseFeature(self, name, value=None): """ Parse a feature, with the given name and value, according to the ISUPPORT specifications and return the parsed value. """ supported = self._parse([(name, value)]) return supported.getFeature(name) def _testIntOrDefaultFeature(self, name, default=None): """ Perform some common tests on a feature known to use L{_intOrDefault}. """ self.assertEquals( self._parseFeature(name, None), default) self.assertEquals( self._parseFeature(name, 'notanint'), default) self.assertEquals( self._parseFeature(name, '42'), 42) def _testFeatureDefault(self, name, features=None): """ Features known to have default values are reported as being present by L{irc.ServerSupportedFeatures.hasFeature}, and their value defaults correctly, when they don't appear in an ISUPPORT message. """ default = irc.ServerSupportedFeatures()._features[name] if features is None: features = [('DEFINITELY_NOT', 'a_feature')] supported = self._parse(features) self.assertTrue(supported.hasFeature(name)) self.assertEquals(supported.getFeature(name), default) def test_support_CHANMODES(self): """ The CHANMODES ISUPPORT parameter is parsed into a C{dict} giving the four mode categories, C{'addressModes'}, C{'param'}, C{'setParam'}, and C{'noParam'}. """ self._testFeatureDefault('CHANMODES') self._testFeatureDefault('CHANMODES', [('CHANMODES', 'b,,lk,')]) self._testFeatureDefault('CHANMODES', [('CHANMODES', 'b,,lk,ha,ha')]) self.assertEquals( self._parseFeature('CHANMODES', ''), {'addressModes': '', 'param': '', 'setParam': '', 'noParam': ''}) self.assertEquals( self._parseFeature('CHANMODES', ',A'), {'addressModes': '', 'param': 'A', 'setParam': '', 'noParam': ''}) self.assertEquals( self._parseFeature('CHANMODES', 'A,Bc,Def,Ghij'), {'addressModes': 'A', 'param': 'Bc', 'setParam': 'Def', 'noParam': 'Ghij'}) def test_support_IDCHAN(self): """ The IDCHAN support parameter is parsed into a sequence of two-tuples giving channel prefix and ID length pairs. """ self.assertEquals( self._parseFeature('IDCHAN', '!:5'), [('!', '5')]) def test_support_MAXLIST(self): """ The MAXLIST support parameter is parsed into a sequence of two-tuples giving modes and their limits. """ self.assertEquals( self._parseFeature('MAXLIST', 'b:25,eI:50'), [('b', 25), ('eI', 50)]) # A non-integer parameter argument results in None. self.assertEquals( self._parseFeature('MAXLIST', 'b:25,eI:50,a:3.1415'), [('b', 25), ('eI', 50), ('a', None)]) self.assertEquals( self._parseFeature('MAXLIST', 'b:25,eI:50,a:notanint'), [('b', 25), ('eI', 50), ('a', None)]) def test_support_NETWORK(self): """ The NETWORK support parameter is parsed as the network name, as specified by the server. """ self.assertEquals( self._parseFeature('NETWORK', 'IRCNet'), 'IRCNet') def test_support_SAFELIST(self): """ The SAFELIST support parameter is parsed into a boolean indicating whether the safe "list" command is supported or not. """ self.assertEquals( self._parseFeature('SAFELIST'), True) def test_support_STATUSMSG(self): """ The STATUSMSG support parameter is parsed into a string of channel status that support the exclusive channel notice method. """ self.assertEquals( self._parseFeature('STATUSMSG', '@+'), '@+') def test_support_TARGMAX(self): """ The TARGMAX support parameter is parsed into a dictionary, mapping strings to integers, of the maximum number of targets for a particular command. """ self.assertEquals( self._parseFeature('TARGMAX', 'PRIVMSG:4,NOTICE:3'), {'PRIVMSG': 4, 'NOTICE': 3}) # A non-integer parameter argument results in None. self.assertEquals( self._parseFeature('TARGMAX', 'PRIVMSG:4,NOTICE:3,KICK:3.1415'), {'PRIVMSG': 4, 'NOTICE': 3, 'KICK': None}) self.assertEquals( self._parseFeature('TARGMAX', 'PRIVMSG:4,NOTICE:3,KICK:notanint'), {'PRIVMSG': 4, 'NOTICE': 3, 'KICK': None}) def test_support_NICKLEN(self): """ The NICKLEN support parameter is parsed into an integer value indicating the maximum length of a nickname the client may use, otherwise, if the parameter is missing or invalid, the default value (as specified by RFC 1459) is used. """ default = irc.ServerSupportedFeatures()._features['NICKLEN'] self._testIntOrDefaultFeature('NICKLEN', default) def test_support_CHANNELLEN(self): """ The CHANNELLEN support parameter is parsed into an integer value indicating the maximum channel name length, otherwise, if the parameter is missing or invalid, the default value (as specified by RFC 1459) is used. """ default = irc.ServerSupportedFeatures()._features['CHANNELLEN'] self._testIntOrDefaultFeature('CHANNELLEN', default) def test_support_CHANTYPES(self): """ The CHANTYPES support parameter is parsed into a tuple of valid channel prefix characters. """ self._testFeatureDefault('CHANTYPES') self.assertEquals( self._parseFeature('CHANTYPES', '#&%'), ('#', '&', '%')) def test_support_KICKLEN(self): """ The KICKLEN support parameter is parsed into an integer value indicating the maximum length of a kick message a client may use. """ self._testIntOrDefaultFeature('KICKLEN') def test_support_PREFIX(self): """ The PREFIX support parameter is parsed into a dictionary mapping modes to two-tuples of status symbol and priority. """ self._testFeatureDefault('PREFIX') self._testFeatureDefault('PREFIX', [('PREFIX', 'hello')]) self.assertEquals( self._parseFeature('PREFIX', None), None) self.assertEquals( self._parseFeature('PREFIX', '(ohv)@%+'), {'o': ('@', 0), 'h': ('%', 1), 'v': ('+', 2)}) self.assertEquals( self._parseFeature('PREFIX', '(hov)@%+'), {'o': ('%', 1), 'h': ('@', 0), 'v': ('+', 2)}) def test_support_TOPICLEN(self): """ The TOPICLEN support parameter is parsed into an integer value indicating the maximum length of a topic a client may set. """ self._testIntOrDefaultFeature('TOPICLEN') def test_support_MODES(self): """ The MODES support parameter is parsed into an integer value indicating the maximum number of "variable" modes (defined as being modes from C{addressModes}, C{param} or C{setParam} categories for the C{CHANMODES} ISUPPORT parameter) which may by set on a channel by a single MODE command from a client. """ self._testIntOrDefaultFeature('MODES') def test_support_EXCEPTS(self): """ The EXCEPTS support parameter is parsed into the mode character to be used for "ban exception" modes. If no parameter is specified then the character C{e} is assumed. """ self.assertEquals( self._parseFeature('EXCEPTS', 'Z'), 'Z') self.assertEquals( self._parseFeature('EXCEPTS'), 'e') def test_support_INVEX(self): """ The INVEX support parameter is parsed into the mode character to be used for "invite exception" modes. If no parameter is specified then the character C{I} is assumed. """ self.assertEquals( self._parseFeature('INVEX', 'Z'), 'Z') self.assertEquals( self._parseFeature('INVEX'), 'I') class IRCClientWithoutLogin(irc.IRCClient): performLogin = 0 class CTCPTest(unittest.TestCase): def setUp(self): self.file = StringIOWithoutClosing() self.transport = protocol.FileWrapper(self.file) self.client = IRCClientWithoutLogin() self.client.makeConnection(self.transport) def test_ERRMSG(self): """Testing CTCP query ERRMSG. Not because this is this is an especially important case in the field, but it does go through the entire dispatch/decode/encode process. """ errQuery = (":[email protected] PRIVMSG #theChan :" "%(X)cERRMSG t%(X)c%(EOL)s" % {'X': irc.X_DELIM, 'EOL': irc.CR + irc.LF}) errReply = ("NOTICE nick :%(X)cERRMSG t :" "No error has occoured.%(X)c%(EOL)s" % {'X': irc.X_DELIM, 'EOL': irc.CR + irc.LF}) self.client.dataReceived(errQuery) reply = self.file.getvalue() self.failUnlessEqual(errReply, reply) def test_noNumbersVERSION(self): """ If attributes for version information on L{IRCClient} are set to C{None}, the parts of the CTCP VERSION response they correspond to are omitted. """ self.client.versionName = "FrobozzIRC" self.client.ctcpQuery_VERSION("[email protected]", "#theChan", None) versionReply = ("NOTICE nick :%(X)cVERSION %(vname)s::" "%(X)c%(EOL)s" % {'X': irc.X_DELIM, 'EOL': irc.CR + irc.LF, 'vname': self.client.versionName}) reply = self.file.getvalue() self.assertEquals(versionReply, reply) def test_fullVERSION(self): """ The response to a CTCP VERSION query includes the version number and environment information, as specified by L{IRCClient.versionNum} and L{IRCClient.versionEnv}. """ self.client.versionName = "FrobozzIRC" self.client.versionNum = "1.2g" self.client.versionEnv = "ZorkOS" self.client.ctcpQuery_VERSION("[email protected]", "#theChan", None) versionReply = ("NOTICE nick :%(X)cVERSION %(vname)s:%(vnum)s:%(venv)s" "%(X)c%(EOL)s" % {'X': irc.X_DELIM, 'EOL': irc.CR + irc.LF, 'vname': self.client.versionName, 'vnum': self.client.versionNum, 'venv': self.client.versionEnv}) reply = self.file.getvalue() self.assertEquals(versionReply, reply) def tearDown(self): self.transport.loseConnection() self.client.connectionLost() del self.client del self.transport class NoticingClient(IRCClientWithoutLogin, object): methods = { 'created': ('when',), 'yourHost': ('info',), 'myInfo': ('servername', 'version', 'umodes', 'cmodes'), 'luserClient': ('info',), 'bounce': ('info',), 'isupport': ('options',), 'luserChannels': ('channels',), 'luserOp': ('ops',), 'luserMe': ('info',), 'receivedMOTD': ('motd',), 'privmsg': ('user', 'channel', 'message'), 'joined': ('channel',), 'left': ('channel',), 'noticed': ('user', 'channel', 'message'), 'modeChanged': ('user', 'channel', 'set', 'modes', 'args'), 'pong': ('user', 'secs'), 'signedOn': (), 'kickedFrom': ('channel', 'kicker', 'message'), 'nickChanged': ('nick',), 'userJoined': ('user', 'channel'), 'userLeft': ('user', 'channel'), 'userKicked': ('user', 'channel', 'kicker', 'message'), 'action': ('user', 'channel', 'data'), 'topicUpdated': ('user', 'channel', 'newTopic'), 'userRenamed': ('oldname', 'newname')} def __init__(self, *a, **kw): # It is important that IRCClient.__init__ is not called since # traditionally it did not exist, so it is important that nothing is # initialised there that would prevent subclasses that did not (or # could not) invoke the base implementation. Any protocol # initialisation should happen in connectionMode. self.calls = [] def __getattribute__(self, name): if name.startswith('__') and name.endswith('__'): return super(NoticingClient, self).__getattribute__(name) try: args = super(NoticingClient, self).__getattribute__('methods')[name] except KeyError: return super(NoticingClient, self).__getattribute__(name) else: return self.makeMethod(name, args) def makeMethod(self, fname, args): def method(*a, **kw): if len(a) > len(args): raise TypeError("TypeError: %s() takes %d arguments " "(%d given)" % (fname, len(args), len(a))) for (name, value) in zip(args, a): if name in kw: raise TypeError("TypeError: %s() got multiple values " "for keyword argument '%s'" % (fname, name)) else: kw[name] = value if len(kw) != len(args): raise TypeError("TypeError: %s() takes %d arguments " "(%d given)" % (fname, len(args), len(a))) self.calls.append((fname, kw)) return method def pop(dict, key, default): try: value = dict[key] except KeyError: return default else: del dict[key] return value class ClientImplementationTests(unittest.TestCase): def setUp(self): self.file = StringIOWithoutClosing() self.transport = protocol.FileWrapper(self.file) self.client = NoticingClient() self.client.makeConnection(self.transport) def tearDown(self): self.transport.loseConnection() self.client.connectionLost() del self.client del self.transport def _serverTestImpl(self, code, msg, func, **kw): host = pop(kw, 'host', 'server.host') nick = pop(kw, 'nick', 'nickname') args = pop(kw, 'args', '') message = (":" + host + " " + code + " " + nick + " " + args + " :" + msg + "\r\n") self.client.dataReceived(message) self.assertEquals( self.client.calls, [(func, kw)]) def testYourHost(self): msg = "Your host is some.host[blah.blah/6667], running version server-version-3" self._serverTestImpl("002", msg, "yourHost", info=msg) def testCreated(self): msg = "This server was cobbled together Fri Aug 13 18:00:25 UTC 2004" self._serverTestImpl("003", msg, "created", when=msg) def testMyInfo(self): msg = "server.host server-version abcDEF bcdEHI" self._serverTestImpl("004", msg, "myInfo", servername="server.host", version="server-version", umodes="abcDEF", cmodes="bcdEHI") def testLuserClient(self): msg = "There are 9227 victims and 9542 hiding on 24 servers" self._serverTestImpl("251", msg, "luserClient", info=msg) def _sendISUPPORT(self): args = ("MODES=4 CHANLIMIT=#:20 NICKLEN=16 USERLEN=10 HOSTLEN=63 " "TOPICLEN=450 KICKLEN=450 CHANNELLEN=30 KEYLEN=23 CHANTYPES=# " "PREFIX=(ov)@+ CASEMAPPING=ascii CAPAB IRCD=dancer") msg = "are available on this server" self._serverTestImpl("005", msg, "isupport", args=args, options=['MODES=4', 'CHANLIMIT=#:20', 'NICKLEN=16', 'USERLEN=10', 'HOSTLEN=63', 'TOPICLEN=450', 'KICKLEN=450', 'CHANNELLEN=30', 'KEYLEN=23', 'CHANTYPES=#', 'PREFIX=(ov)@+', 'CASEMAPPING=ascii', 'CAPAB', 'IRCD=dancer']) def test_ISUPPORT(self): """ The client parses ISUPPORT messages sent by the server and calls L{IRCClient.isupport}. """ self._sendISUPPORT() def testBounce(self): msg = "Try server some.host, port 321" self._serverTestImpl("010", msg, "bounce", info=msg) def testLuserChannels(self): args = "7116" msg = "channels formed" self._serverTestImpl("254", msg, "luserChannels", args=args, channels=int(args)) def testLuserOp(self): args = "34" msg = "flagged staff members" self._serverTestImpl("252", msg, "luserOp", args=args, ops=int(args)) def testLuserMe(self): msg = "I have 1937 clients and 0 servers" self._serverTestImpl("255", msg, "luserMe", info=msg) def test_receivedMOTD(self): """ Lines received in I{RPL_MOTDSTART} and I{RPL_MOTD} are delivered to L{IRCClient.receivedMOTD} when I{RPL_ENDOFMOTD} is received. """ lines = [ ":host.name 375 nickname :- host.name Message of the Day -", ":host.name 372 nickname :- Welcome to host.name", ":host.name 376 nickname :End of /MOTD command."] for L in lines: self.assertEquals(self.client.calls, []) self.client.dataReceived(L + '\r\n') self.assertEquals( self.client.calls, [("receivedMOTD", {"motd": ["host.name Message of the Day -", "Welcome to host.name"]})]) # After the motd is delivered, the tracking variable should be # reset. self.assertIdentical(self.client.motd, None) def test_withoutMOTDSTART(self): """ If L{IRCClient} receives I{RPL_MOTD} and I{RPL_ENDOFMOTD} without receiving I{RPL_MOTDSTART}, L{IRCClient.receivedMOTD} is still called with a list of MOTD lines. """ lines = [ ":host.name 372 nickname :- Welcome to host.name", ":host.name 376 nickname :End of /MOTD command."] for L in lines: self.client.dataReceived(L + '\r\n') self.assertEquals( self.client.calls, [("receivedMOTD", {"motd": ["Welcome to host.name"]})]) def _clientTestImpl(self, sender, group, type, msg, func, **kw): ident = pop(kw, 'ident', 'ident') host = pop(kw, 'host', 'host') wholeUser = sender + '!' + ident + '@' + host message = (":" + wholeUser + " " + type + " " + group + " :" + msg + "\r\n") self.client.dataReceived(message) self.assertEquals( self.client.calls, [(func, kw)]) self.client.calls = [] def testPrivmsg(self): msg = "Tooty toot toot." self._clientTestImpl("sender", "#group", "PRIVMSG", msg, "privmsg", ident="ident", host="host", # Expected results below user="sender!ident@host", channel="#group", message=msg) self._clientTestImpl("sender", "recipient", "PRIVMSG", msg, "privmsg", ident="ident", host="host", # Expected results below user="sender!ident@host", channel="recipient", message=msg) def test_getChannelModeParams(self): """ L{IRCClient.getChannelModeParams} uses ISUPPORT information, either given by the server or defaults, to determine which channel modes require arguments when being added or removed. """ add, remove = map(sorted, self.client.getChannelModeParams()) self.assertEquals(add, ['b', 'h', 'k', 'l', 'o', 'v']) self.assertEquals(remove, ['b', 'h', 'o', 'v']) def removeFeature(name): name = '-' + name msg = "are available on this server" self._serverTestImpl( '005', msg, 'isupport', args=name, options=[name]) self.assertIdentical( self.client.supported.getFeature(name), None) self.client.calls = [] # Remove CHANMODES feature, causing getFeature('CHANMODES') to return # None. removeFeature('CHANMODES') add, remove = map(sorted, self.client.getChannelModeParams()) self.assertEquals(add, ['h', 'o', 'v']) self.assertEquals(remove, ['h', 'o', 'v']) # Remove PREFIX feature, causing getFeature('PREFIX') to return None. removeFeature('PREFIX') add, remove = map(sorted, self.client.getChannelModeParams()) self.assertEquals(add, []) self.assertEquals(remove, []) # Restore ISUPPORT features. self._sendISUPPORT() self.assertNotIdentical( self.client.supported.getFeature('PREFIX'), None) def test_getUserModeParams(self): """ L{IRCClient.getUserModeParams} returns a list of user modes (modes that the user sets on themself, outside of channel modes) that require parameters when added and removed, respectively. """ add, remove = map(sorted, self.client.getUserModeParams()) self.assertEquals(add, []) self.assertEquals(remove, []) def _sendModeChange(self, msg, args='', target=None): """ Build a MODE string and send it to the client. """ if target is None: target = '#chan' message = ":[email protected] MODE %s %s %s\r\n" % ( target, msg, args) self.client.dataReceived(message) def _parseModeChange(self, results, target=None): """ Parse the results, do some test and return the data to check. """ if target is None: target = '#chan' for n, result in enumerate(results): method, data = result self.assertEquals(method, 'modeChanged') self.assertEquals(data['user'], '[email protected]') self.assertEquals(data['channel'], target) results[n] = tuple([data[key] for key in ('set', 'modes', 'args')]) return results def _checkModeChange(self, expected, target=None): """ Compare the expected result with the one returned by the client. """ result = self._parseModeChange(self.client.calls, target) self.assertEquals(result, expected) self.client.calls = [] def test_modeMissingDirection(self): """ Mode strings that do not begin with a directional character, C{'+'} or C{'-'}, have C{'+'} automatically prepended. """ self._sendModeChange('s') self._checkModeChange([(True, 's', (None,))]) def test_noModeParameters(self): """ No parameters are passed to L{IRCClient.modeChanged} for modes that don't take any parameters. """ self._sendModeChange('-s') self._checkModeChange([(False, 's', (None,))]) self._sendModeChange('+n') self._checkModeChange([(True, 'n', (None,))]) def test_oneModeParameter(self): """ Parameters are passed to L{IRCClient.modeChanged} for modes that take parameters. """ self._sendModeChange('+o', 'a_user') self._checkModeChange([(True, 'o', ('a_user',))]) self._sendModeChange('-o', 'a_user') self._checkModeChange([(False, 'o', ('a_user',))]) def test_mixedModes(self): """ Mixing adding and removing modes that do and don't take parameters invokes L{IRCClient.modeChanged} with mode characters and parameters that match up. """ self._sendModeChange('+osv', 'a_user another_user') self._checkModeChange([(True, 'osv', ('a_user', None, 'another_user'))]) self._sendModeChange('+v-os', 'a_user another_user') self._checkModeChange([(True, 'v', ('a_user',)), (False, 'os', ('another_user', None))]) def test_tooManyModeParameters(self): """ Passing an argument to modes that take no parameters results in L{IRCClient.modeChanged} not being called and an error being logged. """ self._sendModeChange('+s', 'wrong') self._checkModeChange([]) errors = self.flushLoggedErrors(irc.IRCBadModes) self.assertEquals(len(errors), 1) self.assertSubstring( 'Too many parameters', errors[0].getErrorMessage()) def test_tooFewModeParameters(self): """ Passing no arguments to modes that do take parameters results in L{IRCClient.modeChange} not being called and an error being logged. """ self._sendModeChange('+o') self._checkModeChange([]) errors = self.flushLoggedErrors(irc.IRCBadModes) self.assertEquals(len(errors), 1) self.assertSubstring( 'Not enough parameters', errors[0].getErrorMessage()) def test_userMode(self): """ A C{MODE} message whose target is our user (the nickname of our user, to be precise), as opposed to a channel, will be parsed according to the modes specified by L{IRCClient.getUserModeParams}. """ target = self.client.nickname # Mode "o" on channels is supposed to take a parameter, but since this # is not a channel this will not cause an exception. self._sendModeChange('+o', target=target) self._checkModeChange([(True, 'o', (None,))], target=target) def getUserModeParams(): return ['Z', ''] # Introduce our own user mode that takes an argument. self.patch(self.client, 'getUserModeParams', getUserModeParams) self._sendModeChange('+Z', 'an_arg', target=target) self._checkModeChange([(True, 'Z', ('an_arg',))], target=target) class BasicServerFunctionalityTestCase(unittest.TestCase): def setUp(self): self.f = StringIOWithoutClosing() self.t = protocol.FileWrapper(self.f) self.p = irc.IRC() self.p.makeConnection(self.t) def check(self, s): self.assertEquals(self.f.getvalue(), s) def testPrivmsg(self): self.p.privmsg("this-is-sender", "this-is-recip", "this is message") self.check(":this-is-sender PRIVMSG this-is-recip :this is message\r\n") def testNotice(self): self.p.notice("this-is-sender", "this-is-recip", "this is notice") self.check(":this-is-sender NOTICE this-is-recip :this is notice\r\n") def testAction(self): self.p.action("this-is-sender", "this-is-recip", "this is action") self.check(":this-is-sender ACTION this-is-recip :this is action\r\n") def testJoin(self): self.p.join("this-person", "#this-channel") self.check(":this-person JOIN #this-channel\r\n") def testPart(self): self.p.part("this-person", "#that-channel") self.check(":this-person PART #that-channel\r\n") def testWhois(self): """ Verify that a whois by the client receives the right protocol actions from the server. """ timestamp = int(time.time()-100) hostname = self.p.hostname req = 'requesting-nick' targ = 'target-nick' self.p.whois(req, targ, 'target', 'host.com', 'Target User', 'irc.host.com', 'A fake server', False, 12, timestamp, ['#fakeusers', '#fakemisc']) expected = '\r\n'.join([ ':%(hostname)s 311 %(req)s %(targ)s target host.com * :Target User', ':%(hostname)s 312 %(req)s %(targ)s irc.host.com :A fake server', ':%(hostname)s 317 %(req)s %(targ)s 12 %(timestamp)s :seconds idle, signon time', ':%(hostname)s 319 %(req)s %(targ)s :#fakeusers #fakemisc', ':%(hostname)s 318 %(req)s %(targ)s :End of WHOIS list.', '']) % dict(hostname=hostname, timestamp=timestamp, req=req, targ=targ) self.check(expected) class DummyClient(irc.IRCClient): def __init__(self): self.lines = [] def sendLine(self, m): self.lines.append(m) class ClientInviteTests(unittest.TestCase): """ Tests for L{IRCClient.invite}. """ def setUp(self): """ Create a L{DummyClient} to call C{invite} on in test methods. """ self.client = DummyClient() def test_channelCorrection(self): """ If the channel name passed to L{IRCClient.invite} does not begin with a channel prefix character, one is prepended to it. """ self.client.invite('foo', 'bar') self.assertEquals(self.client.lines, ['INVITE foo #bar']) def test_invite(self): """ L{IRCClient.invite} sends an I{INVITE} message with the specified username and a channel. """ self.client.invite('foo', '#bar') self.assertEquals(self.client.lines, ['INVITE foo #bar']) class ClientMsgTests(unittest.TestCase): def setUp(self): self.client = DummyClient() def testSingleLine(self): self.client.msg('foo', 'bar') self.assertEquals(self.client.lines, ['PRIVMSG foo :bar']) def testDodgyMaxLength(self): self.assertRaises(ValueError, self.client.msg, 'foo', 'bar', 0) self.assertRaises(ValueError, self.client.msg, 'foo', 'bar', 3) def testMultipleLine(self): maxLen = len('PRIVMSG foo :') + 3 + 2 # 2 for line endings self.client.msg('foo', 'barbazbo', maxLen) self.assertEquals(self.client.lines, ['PRIVMSG foo :bar', 'PRIVMSG foo :baz', 'PRIVMSG foo :bo']) def testSufficientWidth(self): msg = 'barbazbo' maxLen = len('PRIVMSG foo :%s' % (msg,)) + 2 self.client.msg('foo', msg, maxLen) self.assertEquals(self.client.lines, ['PRIVMSG foo :%s' % (msg,)]) self.client.lines = [] self.client.msg('foo', msg, maxLen-1) self.assertEquals(2, len(self.client.lines)) self.client.lines = [] self.client.msg('foo', msg, maxLen+1) self.assertEquals(1, len(self.client.lines)) def test_newlinesAtStart(self): """ An LF at the beginning of the message is ignored. """ self.client.lines = [] self.client.msg('foo', '\nbar') self.assertEquals(self.client.lines, ['PRIVMSG foo :bar']) def test_newlinesAtEnd(self): """ An LF at the end of the message is ignored. """ self.client.lines = [] self.client.msg('foo', 'bar\n') self.assertEquals(self.client.lines, ['PRIVMSG foo :bar']) def test_newlinesWithinMessage(self): """ An LF within a message causes a new line. """ self.client.lines = [] self.client.msg('foo', 'bar\n\nbaz') self.assertEquals(self.client.lines, [ 'PRIVMSG foo :bar', 'PRIVMSG foo :baz' ]) def test_consecutiveNewlines(self): """ Consecutive LFs do not cause a blank line. """ self.client.lines = [] self.client.msg('foo', 'bar\n\nbaz') self.assertEquals(self.client.lines, [ 'PRIVMSG foo :bar', 'PRIVMSG foo :baz', ]) def _lengthLimitExceededTest(self, *args): # The maximum length of a line is 512 bytes, including the line prefix # and the trailing CRLF. maxLineLength = irc.MAX_COMMAND_LENGTH - 2 - len('PRIVMSG foo :') self.client.msg('foo', 'o' * (maxLineLength + 1), *args) self.assertEquals(self.client.lines, [ 'PRIVMSG foo :' + maxLineLength * 'o', 'PRIVMSG foo :o', ]) def test_longLinesCauseNewLines(self): """ Lines that would break the 512-byte barrier cause two lines to be sent. """ self._lengthLimitExceededTest() def test_lengthLimitNone(self): """ If C{None} is passed to L{IRCClient.msg} as the length limit, the default limit of C{MAX_COMMAND_LENGTH} is used. """ self._lengthLimitExceededTest(None) def test_newlinesBeforeLineBreaking(self): """ IRCClient breaks on newlines before it breaks long lines. """ # Because MAX_COMMAND_LENGTH includes framing characters, this long # line is slightly longer than half the permissible message size. longline = 'o' * (irc.MAX_COMMAND_LENGTH // 2) self.client.msg('foo', longline + '\n' + longline) self.assertEquals(self.client.lines, [ 'PRIVMSG foo :' + longline, 'PRIVMSG foo :' + longline, ]) def test_lineBreakOnWordBoundaries(self): """ IRCClient prefers to break long lines at word boundaries. """ # Because MAX_COMMAND_LENGTH includes framing characters, this long # line is slightly longer than half the permissible message size. longline = 'o' * (irc.MAX_COMMAND_LENGTH // 2) self.client.msg('foo', longline + ' ' + longline) self.assertEquals(self.client.lines, [ 'PRIVMSG foo :' + longline, 'PRIVMSG foo :' + longline, ]) def testSplitSanity(self): # Whiteboxing self.assertRaises(ValueError, irc.split, 'foo', -1) self.assertRaises(ValueError, irc.split, 'foo', 0) self.assertEquals([], irc.split('', 1)) self.assertEquals([], irc.split('')) def test_splitDelimiters(self): """ Test that split() skips any delimiter (space or newline) that it finds at the very beginning of the string segment it is operating on. Nothing should be added to the output list because of it. """ r = irc.split("xx yyz", 2) self.assertEquals(['xx', 'yy', 'z'], r) r = irc.split("xx\nyyz", 2) self.assertEquals(['xx', 'yy', 'z'], r) def test_splitValidatesLength(self): """ split() raises ValueError if given a length <= 0 """ self.assertRaises(ValueError, irc.split, "foo", 0) self.assertRaises(ValueError, irc.split, "foo", -1) def test_say(self): """ L{IRCClient.say} prepends the channel prefix C{"#"} if necessary and then sends the message to the server for delivery to that channel. """ self.client.say("thechannel", "the message") self.assertEquals(self.client.lines, ["PRIVMSG #thechannel :the message"]) class ClientTests(TestCase): """ Tests for the protocol-level behavior of IRCClient methods intended to be called by application code. """ def setUp(self): """ Create and connect a new L{IRCClient} to a new L{StringTransport}. """ self.transport = StringTransport() self.protocol = IRCClient() self.protocol.performLogin = False self.protocol.makeConnection(self.transport) # Sanity check - we don't want anything to have happened at this # point, since we're not in a test yet. self.assertEquals(self.transport.value(), "") def getLastLine(self, transport): """ Return the last IRC message in the transport buffer. """ return transport.value().split('\r\n')[-2] def test_away(self): """ L{IRCCLient.away} sends an AWAY command with the specified message. """ message = "Sorry, I'm not here." self.protocol.away(message) expected = [ 'AWAY :%s' % (message,), '', ] self.assertEquals(self.transport.value().split('\r\n'), expected) def test_back(self): """ L{IRCClient.back} sends an AWAY command with an empty message. """ self.protocol.back() expected = [ 'AWAY :', '', ] self.assertEquals(self.transport.value().split('\r\n'), expected) def test_whois(self): """ L{IRCClient.whois} sends a WHOIS message. """ self.protocol.whois('alice') self.assertEquals( self.transport.value().split('\r\n'), ['WHOIS alice', '']) def test_whoisWithServer(self): """ L{IRCClient.whois} sends a WHOIS message with a server name if a value is passed for the C{server} parameter. """ self.protocol.whois('alice', 'example.org') self.assertEquals( self.transport.value().split('\r\n'), ['WHOIS example.org alice', '']) def test_register(self): """ L{IRCClient.register} sends NICK and USER commands with the username, name, hostname, server name, and real name specified. """ username = 'testuser' hostname = 'testhost' servername = 'testserver' self.protocol.realname = 'testname' self.protocol.password = None self.protocol.register(username, hostname, servername) expected = [ 'NICK %s' % (username,), 'USER %s %s %s :%s' % ( username, hostname, servername, self.protocol.realname), ''] self.assertEquals(self.transport.value().split('\r\n'), expected) def test_registerWithPassword(self): """ If the C{password} attribute of L{IRCClient} is not C{None}, the C{register} method also sends a PASS command with it as the argument. """ username = 'testuser' hostname = 'testhost' servername = 'testserver' self.protocol.realname = 'testname' self.protocol.password = 'testpass' self.protocol.register(username, hostname, servername) expected = [ 'PASS %s' % (self.protocol.password,), 'NICK %s' % (username,), 'USER %s %s %s :%s' % ( username, hostname, servername, self.protocol.realname), ''] self.assertEquals(self.transport.value().split('\r\n'), expected) def test_registerWithTakenNick(self): """ Verify that the client repeats the L{IRCClient.setNick} method with a new value when presented with an C{ERR_NICKNAMEINUSE} while trying to register. """ username = 'testuser' hostname = 'testhost' servername = 'testserver' self.protocol.realname = 'testname' self.protocol.password = 'testpass' self.protocol.register(username, hostname, servername) self.protocol.irc_ERR_NICKNAMEINUSE('prefix', ['param']) lastLine = self.getLastLine(self.transport) self.assertNotEquals(lastLine, 'NICK %s' % (username,)) # Keep chaining underscores for each collision self.protocol.irc_ERR_NICKNAMEINUSE('prefix', ['param']) lastLine = self.getLastLine(self.transport) self.assertEquals(lastLine, 'NICK %s' % (username + '__',)) def test_overrideAlterCollidedNick(self): """ L{IRCClient.alterCollidedNick} determines how a nickname is altered upon collision while a user is trying to change to that nickname. """ nick = 'foo' self.protocol.alterCollidedNick = lambda nick: nick + '***' self.protocol.register(nick) self.protocol.irc_ERR_NICKNAMEINUSE('prefix', ['param']) lastLine = self.getLastLine(self.transport) self.assertEquals( lastLine, 'NICK %s' % (nick + '***',)) def test_nickChange(self): """ When a NICK command is sent after signon, C{IRCClient.nickname} is set to the new nickname I{after} the server sends an acknowledgement. """ oldnick = 'foo' newnick = 'bar' self.protocol.register(oldnick) self.protocol.irc_RPL_WELCOME('prefix', ['param']) self.protocol.setNick(newnick) self.assertEquals(self.protocol.nickname, oldnick) self.protocol.irc_NICK('%s!quux@qux' % (oldnick,), [newnick]) self.assertEquals(self.protocol.nickname, newnick) def test_erroneousNick(self): """ Trying to register an illegal nickname results in the default legal nickname being set, and trying to change a nickname to an illegal nickname results in the old nickname being kept. """ # Registration case: change illegal nickname to erroneousNickFallback badnick = 'foo' self.assertEquals(self.protocol._registered, False) self.protocol.register(badnick) self.protocol.irc_ERR_ERRONEUSNICKNAME('prefix', ['param']) lastLine = self.getLastLine(self.transport) self.assertEquals( lastLine, 'NICK %s' % (self.protocol.erroneousNickFallback,)) self.protocol.irc_RPL_WELCOME('prefix', ['param']) self.assertEquals(self.protocol._registered, True) self.protocol.setNick(self.protocol.erroneousNickFallback) self.assertEquals( self.protocol.nickname, self.protocol.erroneousNickFallback) # Illegal nick change attempt after registration. Fall back to the old # nickname instead of erroneousNickFallback. oldnick = self.protocol.nickname self.protocol.setNick(badnick) self.protocol.irc_ERR_ERRONEUSNICKNAME('prefix', ['param']) lastLine = self.getLastLine(self.transport) self.assertEquals( lastLine, 'NICK %s' % (badnick,)) self.assertEquals(self.protocol.nickname, oldnick) def test_describe(self): """ L{IRCClient.desrcibe} sends a CTCP ACTION message to the target specified. """ target = 'foo' channel = '#bar' action = 'waves' self.protocol.describe(target, action) self.protocol.describe(channel, action) expected = [ 'PRIVMSG %s :\01ACTION %s\01' % (target, action), 'PRIVMSG %s :\01ACTION %s\01' % (channel, action), ''] self.assertEquals(self.transport.value().split('\r\n'), expected) def test_me(self): """ L{IRCClient.me} sends a CTCP ACTION message to the target channel specified. If the target does not begin with a standard channel prefix, '#' is prepended. """ target = 'foo' channel = '#bar' action = 'waves' self.protocol.me(target, action) self.protocol.me(channel, action) expected = [ 'PRIVMSG %s :\01ACTION %s\01' % ('#' + target, action), 'PRIVMSG %s :\01ACTION %s\01' % (channel, action), ''] self.assertEquals(self.transport.value().split('\r\n'), expected) warnings = self.flushWarnings( offendingFunctions=[self.test_me]) self.assertEquals( warnings[0]['message'], "me() is deprecated since Twisted 9.0. Use IRCClient.describe().") self.assertEquals(warnings[0]['category'], DeprecationWarning) self.assertEquals(len(warnings), 2) def test_noticedDoesntPrivmsg(self): """ The default implementation of L{IRCClient.noticed} doesn't invoke C{privmsg()} """ def privmsg(user, channel, message): self.fail("privmsg() should not have been called") self.protocol.privmsg = privmsg self.protocol.irc_NOTICE('spam', "I don't want any spam!")
the-stack_106_21483
import pygame from pygame.sprite import Sprite class Bullet(Sprite): """ไธ€ไธชๅฏน้ฃž่ˆนๆ‰€ๅค„็š„ไฝ็ฝฎๅˆ›ๅปบไธ€ไธชๅญๅผนๅฏน่ฑก""" def __init__(self, ai_settings, screen, ship): """ๅœจ้ฃž่ˆนๆ‰€ๅค„็š„ไฝ็ฝฎๅˆ›ๅปบไธ€ไธชๅญๅผนๅฏน่ฑก""" super().__init__() self.screen = screen # ๅœจ๏ผˆ0๏ผŒ0๏ผ‰ๅ‡บๅˆ›ๅปบไธ€ไธช่กจ็คบๅญๅผน็š„็Ÿฉๅฝข๏ผŒๅœจ่ฎพ็ฝฎๆญฃ็กฎ็š„ไฝ็ฝฎ self.rect = pygame.Rect(0, 0, ai_settings.bullet_width, ai_settings.bullet_height) self.rect.centerx = ship.rect.centerx self.rect.top = ship.rect.top # ๅญ˜ๅ‚จ็”จๅฐๆ•ฐ่กจ็คบ็š„ๅญๅผนไฝ็ฝฎ self.y = float(self.rect.y) self.color = ai_settings.bullet_color self.speed_factor = ai_settings.bullet_speed_factor def update(self): """ๅ‘ไธŠ็งปๅŠจๅญๅผน""" # ๆ›ดๆ–ฐ่กจ็คบๅญๅผนไฝ็ฝฎ็š„ๅฐๆ•ฐๅ€ผ self.y -= self.speed_factor # ๆ›ดๆ–ฐ่กจ็คบๅญๅผน็š„rect็š„ไฝ็ฝฎ self.rect.y = self.y def draw_bullet(self): """ๅœจๅฑๅน•ไธŠ็ป˜ๅˆถๅญๅผน""" pygame.draw.rect(self.screen, self.color, self.rect)
the-stack_106_21484
# -*- coding: utf-8 -*- """ Created on Wed Mar 6 21:51:31 2019 @author: Medeea """ #Simple Linear Regression #Importing the libraries #3 libraries #mathematic tools import numpy as np #plot nice charts import matplotlib.pyplot as plt #import datasets import pandas as pd #importing the dataset dataset = pd.read_csv('Salary_Data.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 1].values #Splitting the dataset into the Training set and Test set #from sklearn.cross_validation import train_test_split from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0) #Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)""" #Fitting Simple Linear Regression to the Training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) #Predicting the Test set results y_pred = regressor.predict(X_test) #Visualising the Training set results plt.scatter(X_train, y_train, color = 'red') plt.plot(X_train, regressor.predict(X_train), color = 'blue') plt.title('Salary vs Experience (Training set)') plt.xlabel('Years of Experience') plt.ylabel('Salary') plt.show() #Visualising the Test set results
the-stack_106_21485
import threading from contextlib import contextmanager import os from os.path import abspath, join as pjoin import shutil from subprocess import check_call, check_output, STDOUT import sys from tempfile import mkdtemp from . import compat from .in_process import _in_proc_script_path __all__ = [ 'BackendUnavailable', 'BackendInvalid', 'HookMissing', 'UnsupportedOperation', 'default_subprocess_runner', 'quiet_subprocess_runner', 'Pep517HookCaller', ] @contextmanager def tempdir(): td = mkdtemp() try: yield td finally: shutil.rmtree(td) class BackendUnavailable(Exception): """Will be raised if the backend cannot be imported in the hook process.""" def __init__(self, traceback): self.traceback = traceback class BackendInvalid(Exception): """Will be raised if the backend is invalid.""" def __init__(self, backend_name, backend_path, message): self.backend_name = backend_name self.backend_path = backend_path self.message = message class HookMissing(Exception): """Will be raised on missing hooks.""" def __init__(self, hook_name): super(HookMissing, self).__init__(hook_name) self.hook_name = hook_name class UnsupportedOperation(Exception): """May be raised by build_sdist if the backend indicates that it can't.""" def __init__(self, traceback): self.traceback = traceback def default_subprocess_runner(cmd, cwd=None, extra_environ=None): """The default method of calling the wrapper subprocess.""" env = os.environ.copy() if extra_environ: env.update(extra_environ) check_call(cmd, cwd=cwd, env=env) def quiet_subprocess_runner(cmd, cwd=None, extra_environ=None): """A method of calling the wrapper subprocess while suppressing output.""" env = os.environ.copy() if extra_environ: env.update(extra_environ) check_output(cmd, cwd=cwd, env=env, stderr=STDOUT) def norm_and_check(source_tree, requested): """Normalise and check a backend path. Ensure that the requested backend path is specified as a relative path, and resolves to a location under the given source tree. Return an absolute version of the requested path. """ if os.path.isabs(requested): raise ValueError("paths must be relative") abs_source = os.path.abspath(source_tree) abs_requested = os.path.normpath(os.path.join(abs_source, requested)) # We have to use commonprefix for Python 2.7 compatibility. So we # normalise case to avoid problems because commonprefix is a character # based comparison :-( norm_source = os.path.normcase(abs_source) norm_requested = os.path.normcase(abs_requested) if os.path.commonprefix([norm_source, norm_requested]) != norm_source: raise ValueError("paths must be inside source tree") return abs_requested class Pep517HookCaller(object): """A wrapper around a source directory to be built with a PEP 517 backend. :param source_dir: The path to the source directory, containing pyproject.toml. :param build_backend: The build backend spec, as per PEP 517, from pyproject.toml. :param backend_path: The backend path, as per PEP 517, from pyproject.toml. :param runner: A callable that invokes the wrapper subprocess. :param python_executable: The Python executable used to invoke the backend The 'runner', if provided, must expect the following: - cmd: a list of strings representing the command and arguments to execute, as would be passed to e.g. 'subprocess.check_call'. - cwd: a string representing the working directory that must be used for the subprocess. Corresponds to the provided source_dir. - extra_environ: a dict mapping environment variable names to values which must be set for the subprocess execution. """ def __init__( self, source_dir, build_backend, backend_path=None, runner=None, python_executable=None, ): if runner is None: runner = default_subprocess_runner self.source_dir = abspath(source_dir) self.build_backend = build_backend if backend_path: backend_path = [ norm_and_check(self.source_dir, p) for p in backend_path ] self.backend_path = backend_path self._subprocess_runner = runner if not python_executable: python_executable = sys.executable self.python_executable = python_executable @contextmanager def subprocess_runner(self, runner): """A context manager for temporarily overriding the default subprocess runner. """ prev = self._subprocess_runner self._subprocess_runner = runner try: yield finally: self._subprocess_runner = prev def get_requires_for_build_wheel(self, config_settings=None): """Identify packages required for building a wheel Returns a list of dependency specifications, e.g.:: ["wheel >= 0.25", "setuptools"] This does not include requirements specified in pyproject.toml. It returns the result of calling the equivalently named hook in a subprocess. """ return self._call_hook('get_requires_for_build_wheel', { 'config_settings': config_settings }) def prepare_metadata_for_build_wheel( self, metadata_directory, config_settings=None, _allow_fallback=True): """Prepare a ``*.dist-info`` folder with metadata for this project. Returns the name of the newly created folder. If the build backend defines a hook with this name, it will be called in a subprocess. If not, the backend will be asked to build a wheel, and the dist-info extracted from that (unless _allow_fallback is False). """ return self._call_hook('prepare_metadata_for_build_wheel', { 'metadata_directory': abspath(metadata_directory), 'config_settings': config_settings, '_allow_fallback': _allow_fallback, }) def build_wheel( self, wheel_directory, config_settings=None, metadata_directory=None): """Build a wheel from this project. Returns the name of the newly created file. In general, this will call the 'build_wheel' hook in the backend. However, if that was previously called by 'prepare_metadata_for_build_wheel', and the same metadata_directory is used, the previously built wheel will be copied to wheel_directory. """ if metadata_directory is not None: metadata_directory = abspath(metadata_directory) return self._call_hook('build_wheel', { 'wheel_directory': abspath(wheel_directory), 'config_settings': config_settings, 'metadata_directory': metadata_directory, }) def get_requires_for_build_sdist(self, config_settings=None): """Identify packages required for building a wheel Returns a list of dependency specifications, e.g.:: ["setuptools >= 26"] This does not include requirements specified in pyproject.toml. It returns the result of calling the equivalently named hook in a subprocess. """ return self._call_hook('get_requires_for_build_sdist', { 'config_settings': config_settings }) def build_sdist(self, sdist_directory, config_settings=None): """Build an sdist from this project. Returns the name of the newly created file. This calls the 'build_sdist' backend hook in a subprocess. """ return self._call_hook('build_sdist', { 'sdist_directory': abspath(sdist_directory), 'config_settings': config_settings, }) def _call_hook(self, hook_name, kwargs): # On Python 2, pytoml returns Unicode values (which is correct) but the # environment passed to check_call needs to contain string values. We # convert here by encoding using ASCII (the backend can only contain # letters, digits and _, . and : characters, and will be used as a # Python identifier, so non-ASCII content is wrong on Python 2 in # any case). # For backend_path, we use sys.getfilesystemencoding. if sys.version_info[0] == 2: build_backend = self.build_backend.encode('ASCII') else: build_backend = self.build_backend extra_environ = {'PEP517_BUILD_BACKEND': build_backend} if self.backend_path: backend_path = os.pathsep.join(self.backend_path) if sys.version_info[0] == 2: backend_path = backend_path.encode(sys.getfilesystemencoding()) extra_environ['PEP517_BACKEND_PATH'] = backend_path with tempdir() as td: hook_input = {'kwargs': kwargs} compat.write_json(hook_input, pjoin(td, 'input.json'), indent=2) # Run the hook in a subprocess with _in_proc_script_path() as script: python = self.python_executable self._subprocess_runner( [python, abspath(str(script)), hook_name, td], cwd=self.source_dir, extra_environ=extra_environ ) data = compat.read_json(pjoin(td, 'output.json')) if data.get('unsupported'): raise UnsupportedOperation(data.get('traceback', '')) if data.get('no_backend'): raise BackendUnavailable(data.get('traceback', '')) if data.get('backend_invalid'): raise BackendInvalid( backend_name=self.build_backend, backend_path=self.backend_path, message=data.get('backend_error', '') ) if data.get('hook_missing'): raise HookMissing(hook_name) return data['return_val'] class LoggerWrapper(threading.Thread): """ Read messages from a pipe and redirect them to a logger (see python's logging module). """ def __init__(self, logger, level): threading.Thread.__init__(self) self.daemon = True self.logger = logger self.level = level # create the pipe and reader self.fd_read, self.fd_write = os.pipe() self.reader = os.fdopen(self.fd_read) self.start() def fileno(self): return self.fd_write @staticmethod def remove_newline(msg): return msg[:-1] if msg.endswith(os.linesep) else msg def run(self): for line in self.reader: self._write(self.remove_newline(line)) def _write(self, message): self.logger.log(self.level, message)
the-stack_106_21486
import os import sys import numpy as np sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import imagelib.filter as filt import imagelib.utility as util if __name__ == '__main__': LOAD_IMG_PATH = '/home/uros/Desktop/workspace/grid.jpg' MAIN_EDGES_PATH = '/home/uros/Desktop/workspace/grid_thin_edge.jpg' CANNY_PATH = '/home/uros/Desktop/workspace/grid_canny.jpg' HOUGH_PATH = '/home/uros/Desktop/workspace/grid_hough.jpg' DBG_PATH = '/home/uros/Desktop/workspace/grid_dbg.jpg' SOBEL_EDGE = '/home/uros/Desktop/workspace/grid_sobel.jpg' img = util.imopen(LOAD_IMG_PATH) rgb_img = img[:, :, :] img = util.rgb2gray(img) edge_img, edge_dir = filt.sobel_edge_det(img, (3, 3)) util.imwrite(SOBEL_EDGE, edge_img) main_edge_img = filt.non_max_supression(edge_img, edge_dir) util.imwrite(MAIN_EDGES_PATH, main_edge_img) high = 60 low = 20 canny_edges_image = filt.dual_threshold(main_edge_img, high, low) canny_edges_image = canny_edges_image[5:-5, 5:-5] util.imwrite(CANNY_PATH, canny_edges_image) hough_edges, hough_img = filt.hough_transform(canny_edges_image, 100, 100, 100) util.imwrite(DBG_PATH, hough_img) rgb_img = rgb_img[5:-5, 5:-5] for x in range(hough_img.shape[0]): for y in range(hough_img.shape[1]): if hough_img[x, y] == 1: rgb_img[x, y, 1] = 255. util.imwrite(HOUGH_PATH, rgb_img)
the-stack_106_21487
# Copyright (C) 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import logging from copy import deepcopy import numpy as np from graph.types import PoolingParameters from graph.types.pooling import MaxPoolParameters from quantization.new_qrec import QRec from quantization.qtype import QType from quantization.unified_quantization_handler import (in_qs_constraint, options, out_qs_constraint, params_type, priority) from ..mult_quantization_handler import MultQuantizionHandler LOG = logging.getLogger('nntool.' + __name__) AT_SW_KER_IN_ORDER = [['c', 'h', 'w']] AT_SW_KER_OUT_ORDER = [['c', 'h', 'w']] AT_NE16_KER_IN_ORDER = [['h', 'w', 'c']] AT_NE16_KER_OUT_ORDER = [['h', 'w', 'c']] @params_type(PoolingParameters) @in_qs_constraint({'dtype': set([np.int8])}) @out_qs_constraint({'dtype': set([np.int8])}) class PoolingMult(MultQuantizionHandler): @classmethod def _quantize(cls, params, in_qs, stats, **kwargs): # copy in_qs because we may modify it in_qs = in_qs.copy() opts = kwargs['opts'] force_out_qs, out_dtype = cls.get_mult_opts(**kwargs) force_out_q = force_out_qs and force_out_qs[0] G = kwargs['G'] in_q = in_qs[0] if (in_q.is_asymmetric and isinstance(params, PoolingParameters) and params.padding.has_padding): in_qs = cls.force_symmetric(in_qs) if in_qs is None: return None in_q = in_qs[0] cls.check_valid_ranges(params, stats, idx=0, dirs='in') min_val = stats['range_in'][0]['min'] max_val = stats['range_in'][0]['max'] if force_out_q: if force_out_q.is_asymmetric and not opts.get('allow_asymmetric'): LOG.warning('%s could be asymmetricaly quantized but allow_asymmetric option not selected', params.name) return None o_q = force_out_q in_q = deepcopy(force_out_q) if force_out_q.dtype != in_q.dtype or force_out_q.zero_point != in_q.zero_point: if in_q.forced and force_out_q.zero_point != 0: return None LOG.warning('node %s output forced to range %s/%s %s - actual range %s/%s', params.name, o_q.min, o_q.max, "asymmetric" if o_q.is_asymmetric else "symmetric", min_val, max_val) else: o_q = deepcopy(in_q) cls.check_order(params, AT_SW_KER_IN_ORDER, AT_SW_KER_OUT_ORDER) return QRec.scaled(in_qs=[in_q], out_qs=[o_q]) @classmethod def can_handle_asymmetric_input(cls, params, **kwargs): return not isinstance(params, PoolingParameters) or not params.padding.has_padding @classmethod def _get_in_qs_from_stats(cls, params, stats, in_qs, **kwargs): return [QType.from_min_max_sq(stats['range_in'][idx]['min'], stats['range_in'][idx]['max'], dtype=np.int8, asymmetric=cls.can_handle_asymmetric_input(params, **kwargs) and in_qs[idx].is_asymmetric) if dim is not None else None for idx, dim in enumerate(params.in_dims)] @options( { 'name': 'use_ne16', 'type': bool, 'help': 'enable use of NE16 kernels (if supported) on this layer', 'default': False }, { 'name': 'force_ne16', 'type': bool, 'help': 'force use of NE16 kernels on this layer - may not be supported for model generation', 'default': False } ) @params_type(PoolingParameters) @in_qs_constraint({'dtype': set([np.uint8])}) @out_qs_constraint({'dtype': set([np.uint8])}) @priority(2) class NE16PoolingMult(MultQuantizionHandler): @classmethod def _quantize(cls, params, in_qs, stats, **kwargs): # copy in_qs because we may modify it in_qs = in_qs.copy() opts = kwargs['opts'] force_out_qs, out_dtype = cls.get_mult_opts(**kwargs) force_out_q = force_out_qs and force_out_qs[0] G = kwargs['G'] in_q = in_qs[0] cls.check_valid_ranges(params, stats, idx=0, dirs='in') min_val = stats['range_in'][0]['min'] max_val = stats['range_in'][0]['max'] if force_out_q: # get rid of the force out if ne16 is not selected. if not (opts.get('use_ne16') or opts.get('force_ne16')): LOG.info( '%s ne16 max pool possible but ne16 mode not enabled', params.name) return None o_q = force_out_q if in_q.forced and in_q.zero_point != o_q.zero_point: return None in_q = deepcopy(o_q) LOG.warning('node %s output forced to range %s/%s - actual range %s/%s %s', params.name, o_q.min, o_q.max, min_val, max_val, "asymmetric" if o_q.is_asymmetric else "symmetric") else: o_q = deepcopy(in_q) o_q.attr.ne16 = True cls.check_order(params, AT_NE16_KER_IN_ORDER, AT_NE16_KER_OUT_ORDER) return QRec.scaled(in_qs=[in_q], out_qs=[o_q], ne16=True) @classmethod def _get_in_qs_from_stats(cls, params, stats, in_qs, **kwargs): return [QType.from_min_max_sq(stats['range_in'][idx]['min'], stats['range_in'][idx]['max'], dtype=np.uint8, asymmetric=cls.can_handle_asymmetric_input(params, **kwargs) and in_qs[idx].is_asymmetric) if dim is not None else None for idx, dim in enumerate(params.in_dims)] @classmethod def can_handle_asymmetric_input(cls, params, **kwargs): return not isinstance(params, PoolingParameters) or not params.padding.has_padding
the-stack_106_21488
from utils import * class Smoothing(): def __init__(self): pass # add min max to the image def scale(self,img): studyArea = img.geometry().bounds() maxs = img.reduceRegion(reducer=ee.Reducer.percentile([99.99]),geometry=studyArea,scale=300,maxPixels=1e13) mins = img.reduceRegion(reducer=ee.Reducer.percentile([0.01]),geometry=studyArea,scale=300,maxPixels=1e13) return img.set("max",ee.Number(maxs.get("Mode"))).set("min",ee.Number(mins.get("Mode"))) # scale the image def scaleImg(self,img): maxs = ee.Number(img.get("max")) mins = ee.Number(img.get("min")) result = ee.Image(img.subtract(mins)).divide(maxs.subtract(mins)).multiply(100) return result.min(100).set('time_start',img.get('system:time_start')); # Function to compute the inverse log ratio of a regression results to # transform back to percent units def inverseLogRatio(self,image): bands = image.bandNames() ilrImage = ee.Image(100).divide(ee.Image(1).add(image.exp())).rename(bands) return ilrImage def whittakerSmoothing(self,imageCollection, isCompositional = False, lamb = 5): # quick configs to set defaults def toFl(image): return image.toFloat() # procedure start ic = imageCollection.map(toFl) dimension = ic.size() identity_mat = ee.Array.identity(dimension) difference_mat = getDifferenceMatrix(identity_mat,3) difference_mat_transpose = difference_mat.transpose() lamda_difference_mat = difference_mat_transpose.multiply(lamb) res_mat = lamda_difference_mat.matrixMultiply(difference_mat) hat_matrix = res_mat.add(identity_mat) # backing up original data original = ic def getProperties(image): return ee.Image(image).toDictionary() # get original image properties properties = ic.toList(10000).map(getProperties) # if data is compositional # calculate the logratio of an image between 0 and 100. First # clamps between delta and 100-delta, where delta is a small positive value. if (isCompositional): def clampImage(image): delta = 0.001 bands = image.bandNames() image = image.clamp(delta,100-delta) image = (ee.Image.constant(100).subtract(image)).divide(image).log().rename(bands) return image ic = ic.map(clampImage) arrayImage = original.toArray() coeffimage = ee.Image(hat_matrix) smoothImage = coeffimage.matrixSolve(arrayImage) def getImageId(image): return ee.Image(image).id() idlist = ic.toList(10000).map(getImageId) bandlist = ee.Image(ic.first()).bandNames() flatImage = smoothImage.arrayFlatten([idlist,bandlist]) smoothCollection = ee.ImageCollection(unpack(flatImage, idlist, bandlist)) if (isCompositional): smoothCollection = smoothCollection.map(inverseLogRatio) def addSuffix(band): return ee.String(band).cat('_fitted') # get new band names by adding suffix fitted newBandNames = bandlist.map(addSuffix) # rename the bands in smoothened images smoothCollection = smoothCollection.select(bandlist, newBandNames) # a really dumb way to loose the google earth engine generated ID so that the two # images can be combined for the chart dumbimg = arrayImage.arrayFlatten([idlist,bandlist]) dumbcoll = ee.ImageCollection(unpack(dumbimg,idlist, bandlist)) outCollection = dumbcoll.combine(smoothCollection) outCollList = outCollection.toList(10000) def addPropBack(image): return ee.Image(image).set(properties.get(outCollList.indexOf(image))) outCollectionProp = outCollList.map(addPropBack) residue_sq = smoothImage.subtract(arrayImage).pow(ee.Image(2)).divide(dimension) rmse_array = residue_sq.arrayReduce(ee.Reducer.sum(),[0]).pow(ee.Image(1/2)) rmseImage = rmse_array.arrayFlatten([["rmse"],bandlist]) return (ee.ImageCollection(outCollectionProp), rmseImage) def setTime(self,img): return img.set("system:time_start",img.get("time_start")) def whittakerSmoothen(collection): smooth = Smoothing() collection = collection.map(smooth.scale) collection = collection.map(smooth.scaleImg) smoothingResults, rmse = smooth.whittakerSmoothing(collection); smoothingResults = smoothingResults.map(smooth.setTime) return ee.ImageCollection(smoothingResults.select(["Mode_fitted"])), ee.Image(rmse)
the-stack_106_21489
# -*- coding: utf-8 -*- """The ants module provides basic functions for interfacing with ants functions. """ from __future__ import (print_function, division, unicode_literals, absolute_import) from builtins import range, str import os from ...external.due import BibTeX from ...utils.filemanip import split_filename, copyfile, which from ..base import TraitedSpec, File, traits, InputMultiPath, OutputMultiPath, isdefined from .base import ANTSCommand, ANTSCommandInputSpec class AtroposInputSpec(ANTSCommandInputSpec): dimension = traits.Enum( 3, 2, 4, argstr='--image-dimensionality %d', usedefault=True, desc='image dimension (2, 3, or 4)') intensity_images = InputMultiPath( File(exists=True), argstr="--intensity-image %s...", mandatory=True) mask_image = File(exists=True, argstr='--mask-image %s', mandatory=True) initialization = traits.Enum( 'Random', 'Otsu', 'KMeans', 'PriorProbabilityImages', 'PriorLabelImage', argstr="%s", requires=['number_of_tissue_classes'], mandatory=True) prior_probability_images = InputMultiPath(File(exists=True)) number_of_tissue_classes = traits.Int(mandatory=True) prior_weighting = traits.Float() prior_probability_threshold = traits.Float(requires=['prior_weighting']) likelihood_model = traits.Str(argstr="--likelihood-model %s") mrf_smoothing_factor = traits.Float(argstr="%s") mrf_radius = traits.List(traits.Int(), requires=['mrf_smoothing_factor']) icm_use_synchronous_update = traits.Bool(argstr="%s") maximum_number_of_icm_terations = traits.Int( requires=['icm_use_synchronous_update']) n_iterations = traits.Int(argstr="%s") convergence_threshold = traits.Float(requires=['n_iterations']) posterior_formulation = traits.Str(argstr="%s") use_random_seed = traits.Bool( True, argstr='--use-random-seed %d', desc='use random seed value over constant', usedefault=True) use_mixture_model_proportions = traits.Bool( requires=['posterior_formulation']) out_classified_image_name = File( argstr="%s", genfile=True, hash_files=False) save_posteriors = traits.Bool() output_posteriors_name_template = traits.Str( 'POSTERIOR_%02d.nii.gz', usedefault=True) class AtroposOutputSpec(TraitedSpec): classified_image = File(exists=True) posteriors = OutputMultiPath(File(exist=True)) class Atropos(ANTSCommand): """A finite mixture modeling (FMM) segmentation approach with possibilities for specifying prior constraints. These prior constraints include the specification of a prior label image, prior probability images (one for each class), and/or an MRF prior to enforce spatial smoothing of the labels. Similar algorithms include FAST and SPM. Examples -------- >>> from nipype.interfaces.ants import Atropos >>> at = Atropos() >>> at.inputs.dimension = 3 >>> at.inputs.intensity_images = 'structural.nii' >>> at.inputs.mask_image = 'mask.nii' >>> at.inputs.initialization = 'PriorProbabilityImages' >>> at.inputs.prior_probability_images = ['rc1s1.nii', 'rc1s2.nii'] >>> at.inputs.number_of_tissue_classes = 2 >>> at.inputs.prior_weighting = 0.8 >>> at.inputs.prior_probability_threshold = 0.0000001 >>> at.inputs.likelihood_model = 'Gaussian' >>> at.inputs.mrf_smoothing_factor = 0.2 >>> at.inputs.mrf_radius = [1, 1, 1] >>> at.inputs.icm_use_synchronous_update = True >>> at.inputs.maximum_number_of_icm_terations = 1 >>> at.inputs.n_iterations = 5 >>> at.inputs.convergence_threshold = 0.000001 >>> at.inputs.posterior_formulation = 'Socrates' >>> at.inputs.use_mixture_model_proportions = True >>> at.inputs.save_posteriors = True >>> at.cmdline 'Atropos --image-dimensionality 3 --icm [1,1] \ --initialization PriorProbabilityImages[2,priors/priorProbImages%02d.nii,0.8,1e-07] --intensity-image structural.nii \ --likelihood-model Gaussian --mask-image mask.nii --mrf [0.2,1x1x1] --convergence [5,1e-06] \ --output [structural_labeled.nii,POSTERIOR_%02d.nii.gz] --posterior-formulation Socrates[1] --use-random-seed 1' """ input_spec = AtroposInputSpec output_spec = AtroposOutputSpec _cmd = 'Atropos' def _format_arg(self, opt, spec, val): if opt == 'initialization': retval = "--initialization %s[%d" % ( val, self.inputs.number_of_tissue_classes) if val == "PriorProbabilityImages": _, _, ext = split_filename( self.inputs.prior_probability_images[0]) retval += ",priors/priorProbImages%02d" + \ ext + ",%g" % self.inputs.prior_weighting if isdefined(self.inputs.prior_probability_threshold): retval += ",%g" % self.inputs.prior_probability_threshold return retval + "]" if opt == 'mrf_smoothing_factor': retval = "--mrf [%g" % val if isdefined(self.inputs.mrf_radius): retval += ",%s" % self._format_xarray( [str(s) for s in self.inputs.mrf_radius]) return retval + "]" if opt == "icm_use_synchronous_update": retval = "--icm [%d" % val if isdefined(self.inputs.maximum_number_of_icm_terations): retval += ",%g" % self.inputs.maximum_number_of_icm_terations return retval + "]" if opt == "n_iterations": retval = "--convergence [%d" % val if isdefined(self.inputs.convergence_threshold): retval += ",%g" % self.inputs.convergence_threshold return retval + "]" if opt == "posterior_formulation": retval = "--posterior-formulation %s" % val if isdefined(self.inputs.use_mixture_model_proportions): retval += "[%d]" % self.inputs.use_mixture_model_proportions return retval if opt == "out_classified_image_name": retval = "--output [%s" % val if isdefined(self.inputs.save_posteriors): retval += ",%s" % self.inputs.output_posteriors_name_template return retval + "]" return super(Atropos, self)._format_arg(opt, spec, val) def _run_interface(self, runtime, correct_return_codes=[0]): if self.inputs.initialization == "PriorProbabilityImages": priors_directory = os.path.join(os.getcwd(), "priors") if not os.path.exists(priors_directory): os.makedirs(priors_directory) _, _, ext = split_filename(self.inputs.prior_probability_images[0]) for i, f in enumerate(self.inputs.prior_probability_images): target = os.path.join(priors_directory, 'priorProbImages%02d' % (i + 1) + ext) if not (os.path.exists(target) and os.path.realpath(target) == os.path.abspath(f)): copyfile( os.path.abspath(f), os.path.join(priors_directory, 'priorProbImages%02d' % (i + 1) + ext)) runtime = super(Atropos, self)._run_interface(runtime) return runtime def _gen_filename(self, name): if name == 'out_classified_image_name': output = self.inputs.out_classified_image_name if not isdefined(output): _, name, ext = split_filename(self.inputs.intensity_images[0]) output = name + '_labeled' + ext return output return None def _list_outputs(self): outputs = self._outputs().get() outputs['classified_image'] = os.path.abspath( self._gen_filename('out_classified_image_name')) if isdefined( self.inputs.save_posteriors) and self.inputs.save_posteriors: outputs['posteriors'] = [] for i in range(self.inputs.number_of_tissue_classes): outputs['posteriors'].append( os.path.abspath( self.inputs.output_posteriors_name_template % (i + 1))) return outputs class LaplacianThicknessInputSpec(ANTSCommandInputSpec): input_wm = File( argstr='%s', mandatory=True, copyfile=True, desc='white matter segmentation image', position=1) input_gm = File( argstr='%s', mandatory=True, copyfile=True, desc='gray matter segmentation image', position=2) output_image = File( desc='name of output file', argstr='%s', position=3, name_source=['input_wm'], name_template='%s_thickness', keep_extension=True, hash_files=False) smooth_param = traits.Float(argstr='smoothparam=%d', desc='', position=4) prior_thickness = traits.Float( argstr='priorthickval=%d', desc='', position=5) dT = traits.Float(argstr='dT=%d', desc='', position=6) sulcus_prior = traits.Bool(argstr='use-sulcus-prior', desc='', position=7) opt_tolerance = traits.Float( argstr='optional-laplacian-tolerance=%d', desc='', position=8) class LaplacianThicknessOutputSpec(TraitedSpec): output_image = File(exists=True, desc='Cortical thickness') class LaplacianThickness(ANTSCommand): """Calculates the cortical thickness from an anatomical image Examples -------- >>> from nipype.interfaces.ants import LaplacianThickness >>> cort_thick = LaplacianThickness() >>> cort_thick.inputs.input_wm = 'white_matter.nii.gz' >>> cort_thick.inputs.input_gm = 'gray_matter.nii.gz' >>> cort_thick.cmdline 'LaplacianThickness white_matter.nii.gz gray_matter.nii.gz white_matter_thickness.nii.gz' >>> cort_thick.inputs.output_image = 'output_thickness.nii.gz' >>> cort_thick.cmdline 'LaplacianThickness white_matter.nii.gz gray_matter.nii.gz output_thickness.nii.gz' """ _cmd = 'LaplacianThickness' input_spec = LaplacianThicknessInputSpec output_spec = LaplacianThicknessOutputSpec class N4BiasFieldCorrectionInputSpec(ANTSCommandInputSpec): dimension = traits.Enum( 3, 2, 4, argstr='-d %d', usedefault=True, desc='image dimension (2, 3 or 4)') input_image = File( argstr='--input-image %s', mandatory=True, desc=('input for bias correction. Negative values or values close to ' 'zero should be processed prior to correction')) mask_image = File( argstr='--mask-image %s', desc=('image to specify region to perform final bias correction in')) weight_image = File( argstr='--weight-image %s', desc=('image for relative weighting (e.g. probability map of the white ' 'matter) of voxels during the B-spline fitting. ')) output_image = traits.Str( argstr='--output %s', desc='output file name', genfile=True, hash_files=False) bspline_fitting_distance = traits.Float(argstr="--bspline-fitting %s") bspline_order = traits.Int(requires=['bspline_fitting_distance']) shrink_factor = traits.Int(argstr="--shrink-factor %d") n_iterations = traits.List(traits.Int(), argstr="--convergence %s") convergence_threshold = traits.Float(requires=['n_iterations']) save_bias = traits.Bool( False, mandatory=True, usedefault=True, desc=('True if the estimated bias should be saved to file.'), xor=['bias_image']) bias_image = File( desc='Filename for the estimated bias.', hash_files=False) copy_header = traits.Bool( False, mandatory=True, usedefault=True, desc='copy headers of the original image into the ' 'output (corrected) file') class N4BiasFieldCorrectionOutputSpec(TraitedSpec): output_image = File(exists=True, desc='Warped image') bias_image = File(exists=True, desc='Estimated bias') class N4BiasFieldCorrection(ANTSCommand): """N4 is a variant of the popular N3 (nonparameteric nonuniform normalization) retrospective bias correction algorithm. Based on the assumption that the corruption of the low frequency bias field can be modeled as a convolution of the intensity histogram by a Gaussian, the basic algorithmic protocol is to iterate between deconvolving the intensity histogram by a Gaussian, remapping the intensities, and then spatially smoothing this result by a B-spline modeling of the bias field itself. The modifications from and improvements obtained over the original N3 algorithm are described in [Tustison2010]_. .. [Tustison2010] N. Tustison et al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, 29(6):1310-1320, June 2010. Examples -------- >>> import copy >>> from nipype.interfaces.ants import N4BiasFieldCorrection >>> n4 = N4BiasFieldCorrection() >>> n4.inputs.dimension = 3 >>> n4.inputs.input_image = 'structural.nii' >>> n4.inputs.bspline_fitting_distance = 300 >>> n4.inputs.shrink_factor = 3 >>> n4.inputs.n_iterations = [50,50,30,20] >>> n4.cmdline 'N4BiasFieldCorrection --bspline-fitting [ 300 ] \ -d 3 --input-image structural.nii \ --convergence [ 50x50x30x20 ] --output structural_corrected.nii \ --shrink-factor 3' >>> n4_2 = copy.deepcopy(n4) >>> n4_2.inputs.convergence_threshold = 1e-6 >>> n4_2.cmdline 'N4BiasFieldCorrection --bspline-fitting [ 300 ] \ -d 3 --input-image structural.nii \ --convergence [ 50x50x30x20, 1e-06 ] --output structural_corrected.nii \ --shrink-factor 3' >>> n4_3 = copy.deepcopy(n4_2) >>> n4_3.inputs.bspline_order = 5 >>> n4_3.cmdline 'N4BiasFieldCorrection --bspline-fitting [ 300, 5 ] \ -d 3 --input-image structural.nii \ --convergence [ 50x50x30x20, 1e-06 ] --output structural_corrected.nii \ --shrink-factor 3' >>> n4_4 = N4BiasFieldCorrection() >>> n4_4.inputs.input_image = 'structural.nii' >>> n4_4.inputs.save_bias = True >>> n4_4.inputs.dimension = 3 >>> n4_4.cmdline 'N4BiasFieldCorrection -d 3 --input-image structural.nii \ --output [ structural_corrected.nii, structural_bias.nii ]' """ _cmd = 'N4BiasFieldCorrection' input_spec = N4BiasFieldCorrectionInputSpec output_spec = N4BiasFieldCorrectionOutputSpec def _gen_filename(self, name): if name == 'output_image': output = self.inputs.output_image if not isdefined(output): _, name, ext = split_filename(self.inputs.input_image) output = name + '_corrected' + ext return output if name == 'bias_image': output = self.inputs.bias_image if not isdefined(output): _, name, ext = split_filename(self.inputs.input_image) output = name + '_bias' + ext return output return None def _format_arg(self, name, trait_spec, value): if ((name == 'output_image') and (self.inputs.save_bias or isdefined(self.inputs.bias_image))): bias_image = self._gen_filename('bias_image') output = self._gen_filename('output_image') newval = '[ %s, %s ]' % (output, bias_image) return trait_spec.argstr % newval if name == 'bspline_fitting_distance': if isdefined(self.inputs.bspline_order): newval = '[ %g, %d ]' % (value, self.inputs.bspline_order) else: newval = '[ %g ]' % value return trait_spec.argstr % newval if name == 'n_iterations': if isdefined(self.inputs.convergence_threshold): newval = '[ %s, %g ]' % ( self._format_xarray([str(elt) for elt in value]), self.inputs.convergence_threshold) else: newval = '[ %s ]' % self._format_xarray( [str(elt) for elt in value]) return trait_spec.argstr % newval return super(N4BiasFieldCorrection, self)._format_arg( name, trait_spec, value) def _parse_inputs(self, skip=None): if skip is None: skip = [] skip += ['save_bias', 'bias_image'] return super(N4BiasFieldCorrection, self)._parse_inputs(skip=skip) def _list_outputs(self): outputs = self._outputs().get() outputs['output_image'] = os.path.abspath( self._gen_filename('output_image')) if self.inputs.save_bias or isdefined(self.inputs.bias_image): outputs['bias_image'] = os.path.abspath( self._gen_filename('bias_image')) return outputs def _run_interface(self, runtime, correct_return_codes=(0, )): runtime = super(N4BiasFieldCorrection, self)._run_interface( runtime, correct_return_codes) if self.inputs.copy_header and runtime.returncode in correct_return_codes: self._copy_header(self._gen_filename('output_image')) if self.inputs.save_bias or isdefined(self.inputs.bias_image): self._copy_header(self._gen_filename('bias_image')) return runtime def _copy_header(self, fname): """Copy header from input image to an output image""" import nibabel as nb in_img = nb.load(self.inputs.input_image) out_img = nb.load(fname, mmap=False) new_img = out_img.__class__(out_img.get_data(), in_img.affine, in_img.header) new_img.set_data_dtype(out_img.get_data_dtype()) new_img.to_filename(fname) class CorticalThicknessInputSpec(ANTSCommandInputSpec): dimension = traits.Enum( 3, 2, argstr='-d %d', usedefault=True, desc='image dimension (2 or 3)') anatomical_image = File( exists=True, argstr='-a %s', desc=('Structural *intensity* image, typically T1.' ' If more than one anatomical image is specified,' ' subsequently specified images are used during the' ' segmentation process. However, only the first' ' image is used in the registration of priors.' ' Our suggestion would be to specify the T1' ' as the first image.'), mandatory=True) brain_template = File( exists=True, argstr='-e %s', desc=('Anatomical *intensity* template (possibly created using a' ' population data set with buildtemplateparallel.sh in ANTs).' ' This template is *not* skull-stripped.'), mandatory=True) brain_probability_mask = File( exists=True, argstr='-m %s', desc='brain probability mask in template space', copyfile=False, mandatory=True) segmentation_priors = InputMultiPath( File(exists=True), argstr='-p %s', mandatory=True) out_prefix = traits.Str( 'antsCT_', argstr='-o %s', usedefault=True, desc=('Prefix that is prepended to all output' ' files (default = antsCT_)')) image_suffix = traits.Str( 'nii.gz', desc=('any of standard ITK formats,' ' nii.gz is default'), argstr='-s %s', usedefault=True) t1_registration_template = File( exists=True, desc=('Anatomical *intensity* template' ' (assumed to be skull-stripped). A common' ' case would be where this would be the same' ' template as specified in the -e option which' ' is not skull stripped.'), argstr='-t %s', mandatory=True) extraction_registration_mask = File( exists=True, argstr='-f %s', desc=('Mask (defined in the template space) used during' ' registration for brain extraction.')) keep_temporary_files = traits.Int( argstr='-k %d', desc='Keep brain extraction/segmentation warps, etc (default = 0).') max_iterations = traits.Int( argstr='-i %d', desc=('ANTS registration max iterations (default = 100x100x70x20)')) prior_segmentation_weight = traits.Float( argstr='-w %f', desc=('Atropos spatial prior *probability* weight for' ' the segmentation')) segmentation_iterations = traits.Int( argstr='-n %d', desc=('N4 -> Atropos -> N4 iterations during segmentation' ' (default = 3)')) posterior_formulation = traits.Str( argstr='-b %s', desc=('Atropos posterior formulation and whether or not' ' to use mixture model proportions.' ''' e.g 'Socrates[1]' (default) or 'Aristotle[1]'.''' ' Choose the latter if you' ' want use the distance priors (see also the -l option' ' for label propagation control).')) use_floatingpoint_precision = traits.Enum( 0, 1, argstr='-j %d', desc=('Use floating point precision in registrations (default = 0)')) use_random_seeding = traits.Enum( 0, 1, argstr='-u %d', desc=('Use random number generated from system clock in Atropos' ' (default = 1)')) b_spline_smoothing = traits.Bool( argstr='-v', desc=('Use B-spline SyN for registrations and B-spline' ' exponential mapping in DiReCT.')) cortical_label_image = File( exists=True, desc='Cortical ROI labels to use as a prior for ATITH.') label_propagation = traits.Str( argstr='-l %s', desc= ('Incorporate a distance prior one the posterior formulation. Should be' ''' of the form 'label[lambda,boundaryProbability]' where label''' ' is a value of 1,2,3,... denoting label ID. The label' ' probability for anything outside the current label' ' = boundaryProbability * exp( -lambda * distanceFromBoundary )' ' Intuitively, smaller lambda values will increase the spatial capture' ' range of the distance prior. To apply to all label values, simply omit' ' specifying the label, i.e. -l [lambda,boundaryProbability].')) quick_registration = traits.Bool( argstr='-q 1', desc= ('If = 1, use antsRegistrationSyNQuick.sh as the basis for registration' ' during brain extraction, brain segmentation, and' ' (optional) normalization to a template.' ' Otherwise use antsRegistrationSyN.sh (default = 0).')) debug = traits.Bool( argstr='-z 1', desc=( 'If > 0, runs a faster version of the script.' ' Only for testing. Implies -u 0.' ' Requires single thread computation for complete reproducibility.' )) class CorticalThicknessOutputSpec(TraitedSpec): BrainExtractionMask = File(exists=True, desc='brain extraction mask') BrainSegmentation = File(exists=True, desc='brain segmentaion image') BrainSegmentationN4 = File(exists=True, desc='N4 corrected image') BrainSegmentationPosteriors = OutputMultiPath( File(exists=True), desc='Posterior probability images') CorticalThickness = File(exists=True, desc='cortical thickness file') TemplateToSubject1GenericAffine = File( exists=True, desc='Template to subject affine') TemplateToSubject0Warp = File(exists=True, desc='Template to subject warp') SubjectToTemplate1Warp = File( exists=True, desc='Template to subject inverse warp') SubjectToTemplate0GenericAffine = File( exists=True, desc='Template to subject inverse affine') SubjectToTemplateLogJacobian = File( exists=True, desc='Template to subject log jacobian') CorticalThicknessNormedToTemplate = File( exists=True, desc='Normalized cortical thickness') BrainVolumes = File(exists=True, desc='Brain volumes as text') class CorticalThickness(ANTSCommand): """ Examples -------- >>> from nipype.interfaces.ants.segmentation import CorticalThickness >>> corticalthickness = CorticalThickness() >>> corticalthickness.inputs.dimension = 3 >>> corticalthickness.inputs.anatomical_image ='T1.nii.gz' >>> corticalthickness.inputs.brain_template = 'study_template.nii.gz' >>> corticalthickness.inputs.brain_probability_mask ='ProbabilityMaskOfStudyTemplate.nii.gz' >>> corticalthickness.inputs.segmentation_priors = ['BrainSegmentationPrior01.nii.gz', ... 'BrainSegmentationPrior02.nii.gz', ... 'BrainSegmentationPrior03.nii.gz', ... 'BrainSegmentationPrior04.nii.gz'] >>> corticalthickness.inputs.t1_registration_template = 'brain_study_template.nii.gz' >>> corticalthickness.cmdline 'antsCorticalThickness.sh -a T1.nii.gz -m ProbabilityMaskOfStudyTemplate.nii.gz -e study_template.nii.gz -d 3 \ -s nii.gz -o antsCT_ -p nipype_priors/BrainSegmentationPrior%02d.nii.gz -t brain_study_template.nii.gz' """ input_spec = CorticalThicknessInputSpec output_spec = CorticalThicknessOutputSpec _cmd = 'antsCorticalThickness.sh' def _format_arg(self, opt, spec, val): if opt == 'anatomical_image': retval = '-a %s' % val return retval if opt == 'brain_template': retval = '-e %s' % val return retval if opt == 'brain_probability_mask': retval = '-m %s' % val return retval if opt == 'out_prefix': retval = '-o %s' % val return retval if opt == 't1_registration_template': retval = '-t %s' % val return retval if opt == 'segmentation_priors': _, _, ext = split_filename(self.inputs.segmentation_priors[0]) retval = "-p nipype_priors/BrainSegmentationPrior%02d" + ext return retval return super(CorticalThickness, self)._format_arg(opt, spec, val) def _run_interface(self, runtime, correct_return_codes=[0]): priors_directory = os.path.join(os.getcwd(), "nipype_priors") if not os.path.exists(priors_directory): os.makedirs(priors_directory) _, _, ext = split_filename(self.inputs.segmentation_priors[0]) for i, f in enumerate(self.inputs.segmentation_priors): target = os.path.join(priors_directory, 'BrainSegmentationPrior%02d' % (i + 1) + ext) if not (os.path.exists(target) and os.path.realpath(target) == os.path.abspath(f)): copyfile(os.path.abspath(f), target) runtime = super(CorticalThickness, self)._run_interface(runtime) return runtime def _list_outputs(self): outputs = self._outputs().get() outputs['BrainExtractionMask'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionMask.' + self.inputs.image_suffix) outputs['BrainSegmentation'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainSegmentation.' + self.inputs.image_suffix) outputs['BrainSegmentationN4'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainSegmentation0N4.' + self.inputs.image_suffix) posteriors = [] for i in range(len(self.inputs.segmentation_priors)): posteriors.append( os.path.join(os.getcwd(), self.inputs.out_prefix + 'BrainSegmentationPosteriors%02d.' % (i + 1) + self.inputs.image_suffix)) outputs['BrainSegmentationPosteriors'] = posteriors outputs['CorticalThickness'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'CorticalThickness.' + self.inputs.image_suffix) outputs['TemplateToSubject1GenericAffine'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'TemplateToSubject1GenericAffine.mat') outputs['TemplateToSubject0Warp'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'TemplateToSubject0Warp.' + self.inputs.image_suffix) outputs['SubjectToTemplate1Warp'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'SubjectToTemplate1Warp.' + self.inputs.image_suffix) outputs['SubjectToTemplate0GenericAffine'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'SubjectToTemplate0GenericAffine.mat') outputs['SubjectToTemplateLogJacobian'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'SubjectToTemplateLogJacobian.' + self.inputs.image_suffix) outputs['CorticalThicknessNormedToTemplate'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'CorticalThickness.' + self.inputs.image_suffix) outputs['BrainVolumes'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'brainvols.csv') return outputs class BrainExtractionInputSpec(ANTSCommandInputSpec): dimension = traits.Enum( 3, 2, argstr='-d %d', usedefault=True, desc='image dimension (2 or 3)') anatomical_image = File( exists=True, argstr='-a %s', desc=('Structural image, typically T1. If more than one' ' anatomical image is specified, subsequently specified' ' images are used during the segmentation process. However,' ' only the first image is used in the registration of priors.' ' Our suggestion would be to specify the T1 as the first image.' ' Anatomical template created using e.g. LPBA40 data set with' ' buildtemplateparallel.sh in ANTs.'), mandatory=True) brain_template = File( exists=True, argstr='-e %s', desc=('Anatomical template created using e.g. LPBA40 data set with' ' buildtemplateparallel.sh in ANTs.'), mandatory=True) brain_probability_mask = File( exists=True, argstr='-m %s', desc=('Brain probability mask created using e.g. LPBA40 data set which' ' have brain masks defined, and warped to anatomical template and' ' averaged resulting in a probability image.'), copyfile=False, mandatory=True) out_prefix = traits.Str( 'highres001_', argstr='-o %s', usedefault=True, desc=('Prefix that is prepended to all output' ' files (default = highress001_)')) extraction_registration_mask = File( exists=True, argstr='-f %s', desc=('Mask (defined in the template space) used during' ' registration for brain extraction.' ' To limit the metric computation to a specific region.')) image_suffix = traits.Str( 'nii.gz', desc=('any of standard ITK formats,' ' nii.gz is default'), argstr='-s %s', usedefault=True) use_random_seeding = traits.Enum( 0, 1, argstr='-u %d', desc=('Use random number generated from system clock in Atropos' ' (default = 1)')) keep_temporary_files = traits.Int( argstr='-k %d', desc='Keep brain extraction/segmentation warps, etc (default = 0).') use_floatingpoint_precision = traits.Enum( 0, 1, argstr='-q %d', desc=('Use floating point precision in registrations (default = 0)')) debug = traits.Bool( argstr='-z 1', desc=( 'If > 0, runs a faster version of the script.' ' Only for testing. Implies -u 0.' ' Requires single thread computation for complete reproducibility.' )) class BrainExtractionOutputSpec(TraitedSpec): BrainExtractionMask = File(exists=True, desc='brain extraction mask') BrainExtractionBrain = File(exists=True, desc='brain extraction image') BrainExtractionCSF = File( exists=True, desc='segmentation mask with only CSF') BrainExtractionGM = File( exists=True, desc='segmentation mask with only grey matter') BrainExtractionInitialAffine = File(exists=True, desc='') BrainExtractionInitialAffineFixed = File(exists=True, desc='') BrainExtractionInitialAffineMoving = File(exists=True, desc='') BrainExtractionLaplacian = File(exists=True, desc='') BrainExtractionPrior0GenericAffine = File(exists=True, desc='') BrainExtractionPrior1InverseWarp = File(exists=True, desc='') BrainExtractionPrior1Warp = File(exists=True, desc='') BrainExtractionPriorWarped = File(exists=True, desc='') BrainExtractionSegmentation = File( exists=True, desc='segmentation mask with CSF, GM, and WM') BrainExtractionTemplateLaplacian = File(exists=True, desc='') BrainExtractionTmp = File(exists=True, desc='') BrainExtractionWM = File( exists=True, desc='segmenration mask with only white matter') N4Corrected0 = File(exists=True, desc='N4 bias field corrected image') N4Truncated0 = File(exists=True, desc='') class BrainExtraction(ANTSCommand): """ Examples -------- >>> from nipype.interfaces.ants.segmentation import BrainExtraction >>> brainextraction = BrainExtraction() >>> brainextraction.inputs.dimension = 3 >>> brainextraction.inputs.anatomical_image ='T1.nii.gz' >>> brainextraction.inputs.brain_template = 'study_template.nii.gz' >>> brainextraction.inputs.brain_probability_mask ='ProbabilityMaskOfStudyTemplate.nii.gz' >>> brainextraction.cmdline 'antsBrainExtraction.sh -a T1.nii.gz -m ProbabilityMaskOfStudyTemplate.nii.gz -e study_template.nii.gz -d 3 \ -s nii.gz -o highres001_' """ input_spec = BrainExtractionInputSpec output_spec = BrainExtractionOutputSpec _cmd = 'antsBrainExtraction.sh' def _run_interface(self, runtime, correct_return_codes=(0, )): # antsBrainExtraction.sh requires ANTSPATH to be defined out_environ = self._get_environ() ants_path = out_environ.get('ANTSPATH', None) or os.getenv( 'ANTSPATH', None) if ants_path is None: # Check for antsRegistration, which is under bin/ (the $ANTSPATH) instead of # checking for antsBrainExtraction.sh which is under script/ cmd_path = which('antsRegistration', env=runtime.environ) if not cmd_path: raise RuntimeError( 'The environment variable $ANTSPATH is not defined in host "%s", ' 'and Nipype could not determine it automatically.' % runtime.hostname) ants_path = os.path.dirname(cmd_path) self.inputs.environ.update({'ANTSPATH': ants_path}) runtime.environ.update({'ANTSPATH': ants_path}) runtime = super(BrainExtraction, self)._run_interface(runtime) # Still, double-check if it didn't found N4 if 'we cant find' in runtime.stdout: for line in runtime.stdout.split('\n'): if line.strip().startswith('we cant find'): tool = line.strip().replace('we cant find the', '').split(' ')[0] break errmsg = ( 'antsBrainExtraction.sh requires "%s" to be found in $ANTSPATH ' '($ANTSPATH="%s").') % (tool, ants_path) if runtime.stderr is None: runtime.stderr = errmsg else: runtime.stderr += '\n' + errmsg runtime.returncode = 1 self.raise_exception(runtime) return runtime def _list_outputs(self): outputs = self._outputs().get() outputs['BrainExtractionMask'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionMask.' + self.inputs.image_suffix) outputs['BrainExtractionBrain'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionBrain.' + self.inputs.image_suffix) if isdefined(self.inputs.keep_temporary_files ) and self.inputs.keep_temporary_files != 0: outputs['BrainExtractionCSF'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionCSF.' + self.inputs.image_suffix) outputs['BrainExtractionGM'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionGM.' + self.inputs.image_suffix) outputs['BrainExtractionInitialAffine'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionInitialAffine.mat') outputs['BrainExtractionInitialAffineFixed'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionInitialAffineFixed.' + self.inputs.image_suffix) outputs['BrainExtractionInitialAffineMoving'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionInitialAffineMoving.' + self.inputs.image_suffix) outputs['BrainExtractionLaplacian'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionLaplacian.' + self.inputs.image_suffix) outputs['BrainExtractionPrior0GenericAffine'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionPrior0GenericAffine.mat') outputs['BrainExtractionPrior1InverseWarp'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionPrior1InverseWarp.' + self.inputs.image_suffix) outputs['BrainExtractionPrior1Warp'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionPrior1Warp.' + self.inputs.image_suffix) outputs['BrainExtractionPriorWarped'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionPriorWarped.' + self.inputs.image_suffix) outputs['BrainExtractionSegmentation'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionSegmentation.' + self.inputs.image_suffix) outputs['BrainExtractionTemplateLaplacian'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionTemplateLaplacian.' + self.inputs.image_suffix) outputs['BrainExtractionTmp'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionTmp.' + self.inputs.image_suffix) outputs['BrainExtractionWM'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'BrainExtractionWM.' + self.inputs.image_suffix) outputs['N4Corrected0'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'N4Corrected0.' + self.inputs.image_suffix) outputs['N4Truncated0'] = os.path.join( os.getcwd(), self.inputs.out_prefix + 'N4Truncated0.' + self.inputs.image_suffix) return outputs class JointFusionInputSpec(ANTSCommandInputSpec): dimension = traits.Enum( 3, 2, 4, argstr='%d', position=0, usedefault=True, mandatory=True, desc='image dimension (2, 3, or 4)') modalities = traits.Int( argstr='%d', position=1, mandatory=True, desc='Number of modalities or features') warped_intensity_images = InputMultiPath( File(exists=True), argstr="-g %s...", mandatory=True, desc='Warped atlas images') target_image = InputMultiPath( File(exists=True), argstr='-tg %s...', mandatory=True, desc='Target image(s)') warped_label_images = InputMultiPath( File(exists=True), argstr="-l %s...", mandatory=True, desc='Warped atlas segmentations') method = traits.Str( default='Joint', argstr='-m %s', usedefault=True, desc=('Select voting method. Options: Joint (Joint' ' Label Fusion). May be followed by optional' ' parameters in brackets, e.g., -m Joint[0.1,2]')) alpha = traits.Float( default=0.1, usedefault=True, requires=['method'], desc=('Regularization term added to matrix Mx for inverse')) beta = traits.Int( default=2, usedefault=True, requires=['method'], desc=('Exponent for mapping intensity difference to joint error')) output_label_image = File( argstr='%s', mandatory=True, position=-1, name_template='%s', output_name='output_label_image', desc='Output fusion label map image') patch_radius = traits.ListInt( minlen=3, maxlen=3, argstr='-rp %s', desc=('Patch radius for similarity measures, ' 'scalar or vector. Default: 2x2x2')) search_radius = traits.ListInt( minlen=3, maxlen=3, argstr='-rs %s', desc='Local search radius. Default: 3x3x3') exclusion_region = File( exists=True, argstr='-x %s', desc=('Specify an exclusion region for the given label.')) atlas_group_id = traits.ListInt( argstr='-gp %d...', desc='Assign a group ID for each atlas') atlas_group_weights = traits.ListInt( argstr='-gpw %d...', desc=('Assign the voting weights to each atlas group')) class JointFusionOutputSpec(TraitedSpec): output_label_image = File(exists=True) # TODO: optional outputs - output_posteriors, output_voting_weights class JointFusion(ANTSCommand): """ Examples -------- >>> from nipype.interfaces.ants import JointFusion >>> at = JointFusion() >>> at.inputs.dimension = 3 >>> at.inputs.modalities = 1 >>> at.inputs.method = 'Joint[0.1,2]' >>> at.inputs.output_label_image ='fusion_labelimage_output.nii' >>> at.inputs.warped_intensity_images = ['im1.nii', ... 'im2.nii', ... 'im3.nii'] >>> at.inputs.warped_label_images = ['segmentation0.nii.gz', ... 'segmentation1.nii.gz', ... 'segmentation1.nii.gz'] >>> at.inputs.target_image = 'T1.nii' >>> at.cmdline 'jointfusion 3 1 -m Joint[0.1,2] -tg T1.nii -g im1.nii -g im2.nii -g im3.nii -l segmentation0.nii.gz \ -l segmentation1.nii.gz -l segmentation1.nii.gz fusion_labelimage_output.nii' >>> at.inputs.method = 'Joint' >>> at.inputs.alpha = 0.5 >>> at.inputs.beta = 1 >>> at.inputs.patch_radius = [3,2,1] >>> at.inputs.search_radius = [1,2,3] >>> at.cmdline 'jointfusion 3 1 -m Joint[0.5,1] -rp 3x2x1 -rs 1x2x3 -tg T1.nii -g im1.nii -g im2.nii -g im3.nii \ -l segmentation0.nii.gz -l segmentation1.nii.gz -l segmentation1.nii.gz fusion_labelimage_output.nii' """ input_spec = JointFusionInputSpec output_spec = JointFusionOutputSpec _cmd = 'jointfusion' def _format_arg(self, opt, spec, val): if opt == 'method': if '[' in val: retval = '-m {0}'.format(val) else: retval = '-m {0}[{1},{2}]'.format( self.inputs.method, self.inputs.alpha, self.inputs.beta) elif opt == 'patch_radius': retval = '-rp {0}'.format(self._format_xarray(val)) elif opt == 'search_radius': retval = '-rs {0}'.format(self._format_xarray(val)) else: if opt == 'warped_intensity_images': assert len(val) == self.inputs.modalities * len(self.inputs.warped_label_images), \ "Number of intensity images and label maps must be the same {0}!={1}".format( len(val), len(self.inputs.warped_label_images)) return super(JointFusion, self)._format_arg(opt, spec, val) return retval def _list_outputs(self): outputs = self._outputs().get() outputs['output_label_image'] = os.path.abspath( self.inputs.output_label_image) return outputs class DenoiseImageInputSpec(ANTSCommandInputSpec): dimension = traits.Enum( 2, 3, 4, argstr='-d %d', desc='This option forces the image to be treated ' 'as a specified-dimensional image. If not ' 'specified, the program tries to infer the ' 'dimensionality from the input image.') input_image = File( exists=True, argstr="-i %s", mandatory=True, desc='A scalar image is expected as input for noise correction.') noise_model = traits.Enum( 'Gaussian', 'Rician', argstr='-n %s', usedefault=True, desc=('Employ a Rician or Gaussian noise model.')) shrink_factor = traits.Int( default_value=1, usedefault=True, argstr='-s %s', desc=('Running noise correction on large images can' ' be time consuming. To lessen computation time,' ' the input image can be resampled. The shrink' ' factor, specified as a single integer, describes' ' this resampling. Shrink factor = 1 is the default.')) output_image = File( argstr="-o %s", name_source=['input_image'], hash_files=False, keep_extension=True, name_template='%s_noise_corrected', desc='The output consists of the noise corrected' ' version of the input image.') save_noise = traits.Bool( False, mandatory=True, usedefault=True, desc=('True if the estimated noise should be saved to file.'), xor=['noise_image']) noise_image = File( name_source=['input_image'], hash_files=False, keep_extension=True, name_template='%s_noise', desc='Filename for the estimated noise.') verbose = traits.Bool(False, argstr="-v", desc=('Verbose output.')) class DenoiseImageOutputSpec(TraitedSpec): output_image = File(exists=True) noise_image = File() class DenoiseImage(ANTSCommand): """ Examples -------- >>> import copy >>> from nipype.interfaces.ants import DenoiseImage >>> denoise = DenoiseImage() >>> denoise.inputs.dimension = 3 >>> denoise.inputs.input_image = 'im1.nii' >>> denoise.cmdline 'DenoiseImage -d 3 -i im1.nii -n Gaussian -o im1_noise_corrected.nii -s 1' >>> denoise_2 = copy.deepcopy(denoise) >>> denoise_2.inputs.output_image = 'output_corrected_image.nii.gz' >>> denoise_2.inputs.noise_model = 'Rician' >>> denoise_2.inputs.shrink_factor = 2 >>> denoise_2.cmdline 'DenoiseImage -d 3 -i im1.nii -n Rician -o output_corrected_image.nii.gz -s 2' >>> denoise_3 = DenoiseImage() >>> denoise_3.inputs.input_image = 'im1.nii' >>> denoise_3.inputs.save_noise = True >>> denoise_3.cmdline 'DenoiseImage -i im1.nii -n Gaussian -o [ im1_noise_corrected.nii, im1_noise.nii ] -s 1' """ input_spec = DenoiseImageInputSpec output_spec = DenoiseImageOutputSpec _cmd = 'DenoiseImage' def _format_arg(self, name, trait_spec, value): if ((name == 'output_image') and (self.inputs.save_noise or isdefined(self.inputs.noise_image))): newval = '[ %s, %s ]' % ( self._filename_from_source('output_image'), self._filename_from_source('noise_image')) return trait_spec.argstr % newval return super(DenoiseImage, self)._format_arg(name, trait_spec, value) class AntsJointFusionInputSpec(ANTSCommandInputSpec): dimension = traits.Enum( 3, 2, 4, argstr='-d %d', desc='This option forces the image to be treated ' 'as a specified-dimensional image. If not ' 'specified, the program tries to infer the ' 'dimensionality from the input image.') target_image = traits.List( InputMultiPath(File(exists=True)), argstr='-t %s', mandatory=True, desc='The target image (or ' 'multimodal target images) assumed to be ' 'aligned to a common image domain.') atlas_image = traits.List( InputMultiPath(File(exists=True)), argstr="-g %s...", mandatory=True, desc='The atlas image (or ' 'multimodal atlas images) assumed to be ' 'aligned to a common image domain.') atlas_segmentation_image = InputMultiPath( File(exists=True), argstr="-l %s...", mandatory=True, desc='The atlas segmentation ' 'images. For performing label fusion the number ' 'of specified segmentations should be identical ' 'to the number of atlas image sets.') alpha = traits.Float( default_value=0.1, usedefault=True, argstr='-a %s', desc=( 'Regularization ' 'term added to matrix Mx for calculating the inverse. Default = 0.1' )) beta = traits.Float( default_value=2.0, usedefault=True, argstr='-b %s', desc=('Exponent for mapping ' 'intensity difference to the joint error. Default = 2.0')) retain_label_posterior_images = traits.Bool( False, argstr='-r', usedefault=True, requires=['atlas_segmentation_image'], desc=('Retain label posterior probability images. Requires ' 'atlas segmentations to be specified. Default = false')) retain_atlas_voting_images = traits.Bool( False, argstr='-f', usedefault=True, desc=('Retain atlas voting images. Default = false')) constrain_nonnegative = traits.Bool( False, argstr='-c', usedefault=True, desc=('Constrain solution to non-negative weights.')) patch_radius = traits.ListInt( minlen=3, maxlen=3, argstr='-p %s', desc=('Patch radius for similarity measures.' 'Default: 2x2x2')) patch_metric = traits.Enum( 'PC', 'MSQ', argstr='-m %s', desc=('Metric to be used in determining the most similar ' 'neighborhood patch. Options include Pearson\'s ' 'correlation (PC) and mean squares (MSQ). Default = ' 'PC (Pearson correlation).')) search_radius = traits.List( [3, 3, 3], minlen=1, maxlen=3, argstr='-s %s', usedefault=True, desc=('Search radius for similarity measures. Default = 3x3x3. ' 'One can also specify an image where the value at the ' 'voxel specifies the isotropic search radius at that voxel.')) exclusion_image_label = traits.List( traits.Str(), argstr='-e %s', requires=['exclusion_image'], desc=('Specify a label for the exclusion region.')) exclusion_image = traits.List( File(exists=True), desc=('Specify an exclusion region for the given label.')) mask_image = File( argstr='-x %s', exists=True, desc='If a mask image ' 'is specified, fusion is only performed in the mask region.') out_label_fusion = File( argstr="%s", hash_files=False, desc='The output label fusion image.') out_intensity_fusion_name_format = traits.Str( argstr="", desc='Optional intensity fusion ' 'image file name format. ' '(e.g. "antsJointFusionIntensity_%d.nii.gz")') out_label_post_prob_name_format = traits.Str( 'antsJointFusionPosterior_%d.nii.gz', requires=['out_label_fusion', 'out_intensity_fusion_name_format'], desc='Optional label posterior probability ' 'image file name format.') out_atlas_voting_weight_name_format = traits.Str( 'antsJointFusionVotingWeight_%d.nii.gz', requires=[ 'out_label_fusion', 'out_intensity_fusion_name_format', 'out_label_post_prob_name_format' ], desc='Optional atlas voting weight image ' 'file name format.') verbose = traits.Bool(False, argstr="-v", desc=('Verbose output.')) class AntsJointFusionOutputSpec(TraitedSpec): out_label_fusion = File(exists=True) out_intensity_fusion_name_format = traits.Str() out_label_post_prob_name_format = traits.Str() out_atlas_voting_weight_name_format = traits.Str() class AntsJointFusion(ANTSCommand): """ Examples -------- >>> from nipype.interfaces.ants import AntsJointFusion >>> antsjointfusion = AntsJointFusion() >>> antsjointfusion.inputs.out_label_fusion = 'ants_fusion_label_output.nii' >>> antsjointfusion.inputs.atlas_image = [ ['rc1s1.nii','rc1s2.nii'] ] >>> antsjointfusion.inputs.atlas_segmentation_image = ['segmentation0.nii.gz'] >>> antsjointfusion.inputs.target_image = ['im1.nii'] >>> antsjointfusion.cmdline "antsJointFusion -a 0.1 -g ['rc1s1.nii', 'rc1s2.nii'] -l segmentation0.nii.gz \ -b 2.0 -o ants_fusion_label_output.nii -s 3x3x3 -t ['im1.nii']" >>> antsjointfusion.inputs.target_image = [ ['im1.nii', 'im2.nii'] ] >>> antsjointfusion.cmdline "antsJointFusion -a 0.1 -g ['rc1s1.nii', 'rc1s2.nii'] -l segmentation0.nii.gz \ -b 2.0 -o ants_fusion_label_output.nii -s 3x3x3 -t ['im1.nii', 'im2.nii']" >>> antsjointfusion.inputs.atlas_image = [ ['rc1s1.nii','rc1s2.nii'], ... ['rc2s1.nii','rc2s2.nii'] ] >>> antsjointfusion.inputs.atlas_segmentation_image = ['segmentation0.nii.gz', ... 'segmentation1.nii.gz'] >>> antsjointfusion.cmdline "antsJointFusion -a 0.1 -g ['rc1s1.nii', 'rc1s2.nii'] -g ['rc2s1.nii', 'rc2s2.nii'] \ -l segmentation0.nii.gz -l segmentation1.nii.gz -b 2.0 -o ants_fusion_label_output.nii \ -s 3x3x3 -t ['im1.nii', 'im2.nii']" >>> antsjointfusion.inputs.dimension = 3 >>> antsjointfusion.inputs.alpha = 0.5 >>> antsjointfusion.inputs.beta = 1.0 >>> antsjointfusion.inputs.patch_radius = [3,2,1] >>> antsjointfusion.inputs.search_radius = [3] >>> antsjointfusion.cmdline "antsJointFusion -a 0.5 -g ['rc1s1.nii', 'rc1s2.nii'] -g ['rc2s1.nii', 'rc2s2.nii'] \ -l segmentation0.nii.gz -l segmentation1.nii.gz -b 1.0 -d 3 -o ants_fusion_label_output.nii \ -p 3x2x1 -s 3 -t ['im1.nii', 'im2.nii']" >>> antsjointfusion.inputs.search_radius = ['mask.nii'] >>> antsjointfusion.inputs.verbose = True >>> antsjointfusion.inputs.exclusion_image = ['roi01.nii', 'roi02.nii'] >>> antsjointfusion.inputs.exclusion_image_label = ['1','2'] >>> antsjointfusion.cmdline "antsJointFusion -a 0.5 -g ['rc1s1.nii', 'rc1s2.nii'] -g ['rc2s1.nii', 'rc2s2.nii'] \ -l segmentation0.nii.gz -l segmentation1.nii.gz -b 1.0 -d 3 -e 1[roi01.nii] -e 2[roi02.nii] \ -o ants_fusion_label_output.nii -p 3x2x1 -s mask.nii -t ['im1.nii', 'im2.nii'] -v" >>> antsjointfusion.inputs.out_label_fusion = 'ants_fusion_label_output.nii' >>> antsjointfusion.inputs.out_intensity_fusion_name_format = 'ants_joint_fusion_intensity_%d.nii.gz' >>> antsjointfusion.inputs.out_label_post_prob_name_format = 'ants_joint_fusion_posterior_%d.nii.gz' >>> antsjointfusion.inputs.out_atlas_voting_weight_name_format = 'ants_joint_fusion_voting_weight_%d.nii.gz' >>> antsjointfusion.cmdline "antsJointFusion -a 0.5 -g ['rc1s1.nii', 'rc1s2.nii'] -g ['rc2s1.nii', 'rc2s2.nii'] \ -l segmentation0.nii.gz -l segmentation1.nii.gz -b 1.0 -d 3 -e 1[roi01.nii] -e 2[roi02.nii] \ -o [ants_fusion_label_output.nii, ants_joint_fusion_intensity_%d.nii.gz, \ ants_joint_fusion_posterior_%d.nii.gz, ants_joint_fusion_voting_weight_%d.nii.gz] \ -p 3x2x1 -s mask.nii -t ['im1.nii', 'im2.nii'] -v" """ input_spec = AntsJointFusionInputSpec output_spec = AntsJointFusionOutputSpec _cmd = 'antsJointFusion' def _format_arg(self, opt, spec, val): if opt == 'exclusion_image_label': retval = [] for ii in range(len(self.inputs.exclusion_image_label)): retval.append( '-e {0}[{1}]'.format(self.inputs.exclusion_image_label[ii], self.inputs.exclusion_image[ii])) retval = ' '.join(retval) elif opt == 'patch_radius': retval = '-p {0}'.format(self._format_xarray(val)) elif opt == 'search_radius': retval = '-s {0}'.format(self._format_xarray(val)) elif opt == 'out_label_fusion': if isdefined(self.inputs.out_intensity_fusion_name_format): if isdefined(self.inputs.out_label_post_prob_name_format): if isdefined( self.inputs.out_atlas_voting_weight_name_format): retval = '-o [{0}, {1}, {2}, {3}]'.format( self.inputs.out_label_fusion, self.inputs.out_intensity_fusion_name_format, self.inputs.out_label_post_prob_name_format, self.inputs.out_atlas_voting_weight_name_format) else: retval = '-o [{0}, {1}, {2}]'.format( self.inputs.out_label_fusion, self.inputs.out_intensity_fusion_name_format, self.inputs.out_label_post_prob_name_format) else: retval = '-o [{0}, {1}]'.format( self.inputs.out_label_fusion, self.inputs.out_intensity_fusion_name_format) else: retval = '-o {0}'.format(self.inputs.out_label_fusion) elif opt == 'out_intensity_fusion_name_format': retval = '' if not isdefined(self.inputs.out_label_fusion): retval = '-o {0}'.format( self.inputs.out_intensity_fusion_name_format) elif opt == 'atlas_image': atlas_image_cmd = " ".join([ '-g [{0}]'.format(", ".join("'%s'" % fn for fn in ai)) for ai in self.inputs.atlas_image ]) retval = atlas_image_cmd elif opt == 'target_image': target_image_cmd = " ".join([ '-t [{0}]'.format(", ".join("'%s'" % fn for fn in ai)) for ai in self.inputs.target_image ]) retval = target_image_cmd elif opt == 'atlas_segmentation_image': assert len(val) == len(self.inputs.atlas_image), "Number of specified " \ "segmentations should be identical to the number of atlas image " \ "sets {0}!={1}".format(len(val), len(self.inputs.atlas_image)) atlas_segmentation_image_cmd = " ".join([ '-l {0}'.format(fn) for fn in self.inputs.atlas_segmentation_image ]) retval = atlas_segmentation_image_cmd else: return super(AntsJointFusion, self)._format_arg(opt, spec, val) return retval def _list_outputs(self): outputs = self._outputs().get() if isdefined(self.inputs.out_label_fusion): outputs['out_label_fusion'] = os.path.abspath( self.inputs.out_label_fusion) if isdefined(self.inputs.out_intensity_fusion_name_format): outputs['out_intensity_fusion_name_format'] = os.path.abspath( self.inputs.out_intensity_fusion_name_format) if isdefined(self.inputs.out_label_post_prob_name_format): outputs['out_label_post_prob_name_format'] = os.path.abspath( self.inputs.out_label_post_prob_name_format) if isdefined(self.inputs.out_atlas_voting_weight_name_format): outputs['out_atlas_voting_weight_name_format'] = os.path.abspath( self.inputs.out_atlas_voting_weight_name_format) return outputs class KellyKapowskiInputSpec(ANTSCommandInputSpec): dimension = traits.Enum( 3, 2, argstr='--image-dimensionality %d', usedefault=True, desc='image dimension (2 or 3)') segmentation_image = File( exists=True, argstr='--segmentation-image "%s"', mandatory=True, desc= "A segmentation image must be supplied labeling the gray and white matters." " Default values = 2 and 3, respectively.", ) gray_matter_label = traits.Int( 2, usedefault=True, desc= "The label value for the gray matter label in the segmentation_image.") white_matter_label = traits.Int( 3, usedefault=True, desc= "The label value for the white matter label in the segmentation_image." ) gray_matter_prob_image = File( exists=True, argstr='--gray-matter-probability-image "%s"', desc= "In addition to the segmentation image, a gray matter probability image can be" " used. If no such image is supplied, one is created using the segmentation image" " and a variance of 1.0 mm.") white_matter_prob_image = File( exists=True, argstr='--white-matter-probability-image "%s"', desc= "In addition to the segmentation image, a white matter probability image can be" " used. If no such image is supplied, one is created using the segmentation image" " and a variance of 1.0 mm.") convergence = traits.Str( default="[50,0.001,10]", argstr='--convergence "%s"', usedefault=True, desc= "Convergence is determined by fitting a line to the normalized energy profile of" " the last N iterations (where N is specified by the window size) and determining" " the slope which is then compared with the convergence threshold.", ) thickness_prior_estimate = traits.Float( 10, usedefault=True, argstr="--thickness-prior-estimate %f", desc= "Provides a prior constraint on the final thickness measurement in mm." ) thickness_prior_image = File( exists=True, argstr='--thickness-prior-image "%s"', desc="An image containing spatially varying prior thickness values.") gradient_step = traits.Float( 0.025, usedefault=True, argstr="--gradient-step %f", desc="Gradient step size for the optimization.") smoothing_variance = traits.Float( 1.0, usedefault=True, argstr="--smoothing-variance %f", desc="Defines the Gaussian smoothing of the hit and total images.") smoothing_velocity_field = traits.Float( 1.5, usedefault=True, argstr="--smoothing-velocity-field-parameter %f", desc= "Defines the Gaussian smoothing of the velocity field (default = 1.5)." " If the b-spline smoothing option is chosen, then this defines the" " isotropic mesh spacing for the smoothing spline (default = 15).") use_bspline_smoothing = traits.Bool( argstr="--use-bspline-smoothing 1", desc="Sets the option for B-spline smoothing of the velocity field.") number_integration_points = traits.Int( 10, usedefault=True, argstr="--number-of-integration-points %d", desc="Number of compositions of the diffeomorphism per iteration.") max_invert_displacement_field_iters = traits.Int( 20, usedefault=True, argstr="--maximum-number-of-invert-displacement-field-iterations %d", desc="Maximum number of iterations for estimating the invert" "displacement field.") cortical_thickness = File( argstr='--output "%s"', keep_extension=True, name_source=["segmentation_image"], name_template='%s_cortical_thickness', desc='Filename for the cortical thickness.', hash_files=False) warped_white_matter = File( name_source=["segmentation_image"], keep_extension=True, name_template='%s_warped_white_matter', desc='Filename for the warped white matter file.', hash_files=False) class KellyKapowskiOutputSpec(TraitedSpec): cortical_thickness = File( desc="A thickness map defined in the segmented gray matter.") warped_white_matter = File(desc="A warped white matter image.") class KellyKapowski(ANTSCommand): """ Nipype Interface to ANTs' KellyKapowski, also known as DiReCT. DiReCT is a registration based estimate of cortical thickness. It was published in S. R. Das, B. B. Avants, M. Grossman, and J. C. Gee, Registration based cortical thickness measurement, Neuroimage 2009, 45:867--879. Examples -------- >>> from nipype.interfaces.ants.segmentation import KellyKapowski >>> kk = KellyKapowski() >>> kk.inputs.dimension = 3 >>> kk.inputs.segmentation_image = "segmentation0.nii.gz" >>> kk.inputs.convergence = "[45,0.0,10]" >>> kk.inputs.thickness_prior_estimate = 10 >>> kk.cmdline 'KellyKapowski --convergence "[45,0.0,10]" \ --output "[segmentation0_cortical_thickness.nii.gz,segmentation0_warped_white_matter.nii.gz]" \ --image-dimensionality 3 --gradient-step 0.025000 \ --maximum-number-of-invert-displacement-field-iterations 20 --number-of-integration-points 10 \ --segmentation-image "[segmentation0.nii.gz,2,3]" --smoothing-variance 1.000000 \ --smoothing-velocity-field-parameter 1.500000 --thickness-prior-estimate 10.000000' """ _cmd = "KellyKapowski" input_spec = KellyKapowskiInputSpec output_spec = KellyKapowskiOutputSpec references_ = [{ 'entry': BibTeX( "@book{Das2009867," "author={Sandhitsu R. Das and Brian B. Avants and Murray Grossman and James C. Gee}," "title={Registration based cortical thickness measurement.}," "journal={NeuroImage}," "volume={45}," "number={37}," "pages={867--879}," "year={2009}," "issn={1053-8119}," "url={http://www.sciencedirect.com/science/article/pii/S1053811908012780}," "doi={http://dx.doi.org/10.1016/j.neuroimage.2008.12.016}" "}"), 'description': 'The details on the implementation of DiReCT.', 'tags': ['implementation'], }] def _parse_inputs(self, skip=None): if skip is None: skip = [] skip += [ 'warped_white_matter', 'gray_matter_label', 'white_matter_label' ] return super(KellyKapowski, self)._parse_inputs(skip=skip) def _gen_filename(self, name): if name == 'cortical_thickness': output = self.inputs.cortical_thickness if not isdefined(output): _, name, ext = split_filename(self.inputs.segmentation_image) output = name + '_cortical_thickness' + ext return output if name == 'warped_white_matter': output = self.inputs.warped_white_matter if not isdefined(output): _, name, ext = split_filename(self.inputs.segmentation_image) output = name + '_warped_white_matter' + ext return output return None def _format_arg(self, opt, spec, val): if opt == "segmentation_image": newval = '[{0},{1},{2}]'.format(self.inputs.segmentation_image, self.inputs.gray_matter_label, self.inputs.white_matter_label) return spec.argstr % newval if opt == "cortical_thickness": ct = self._gen_filename("cortical_thickness") wm = self._gen_filename("warped_white_matter") newval = '[{},{}]'.format(ct, wm) return spec.argstr % newval return super(KellyKapowski, self)._format_arg(opt, spec, val)
the-stack_106_21490
#!/usr/bin/python """ Train LogisticRegression on mnist (sample) as baseline """ import sys,os sys.path.append(os.getcwd()) import argparse from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report #from sklearn import datasets, metrics from sklearn.datasets import fetch_openml def main(): # Argument parser ap = argparse.ArgumentParser() # CLI parameters ap.add_argument("-s", "--split", required=True, help="Test split percentage") # Parse input arguments args = vars(ap.parse_args()) # Parse train-test split value split = float(args["split"]) # load data and apply min/max scaling # each image is 8x8 pixels grayscale print("[INFO] loading MNIST (sample) dataset") #digits = datasets.load_digits() data, labels = fetch_openml('mnist_784', version=1, return_X_y=True) # to data #data = digits.data.astype("float") data = data.astype("float") data = (data - data.min())/(data.max() - data.min()) print("[INFO] samples: {}, dim: {}".format(data.shape[0], data.shape[1])) # split data (trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=split) # train network print("[INFO] training classifier...") clf = LogisticRegression(penalty='none', tol=0.1, solver='saga', verbose=True, multi_class='multinomial').fit(trainX, trainY) # evaluate network print(["[INFO] evaluating network..."]) predictions = clf.predict(testX) #predictions = predictions.argmax(axis=1) cm = classification_report(testY, predictions) print(cm) if __name__=="__main__": main()
the-stack_106_21491
#!/usr/bin/env python ## Program: VMTK ## Module: $RCSfile: vmtkcenterlinesmoothing.py,v $ ## Language: Python ## Date: $Date: 2006/07/17 09:52:56 $ ## Version: $Revision: 1.1 $ ## Copyright (c) Luca Antiga, David Steinman. All rights reserved. ## See LICENCE file for details. ## This software is distributed WITHOUT ANY WARRANTY; without even ## the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ## PURPOSE. See the above copyright notices for more information. import vtk import vtkvmtk import sys import pypes vmtkcenterlinesmoothing = 'vmtkCenterlineSmoothing' class vmtkCenterlineSmoothing(pypes.pypeScript): def __init__(self): pypes.pypeScript.__init__(self) self.Centerlines = None self.NumberOfSmoothingIterations = 100 self.SmoothingFactor = 0.1 self.SetScriptName('vmtkcenterlinesmoothing') self.SetScriptDoc('smooth centerlines with a moving average filter') self.SetInputMembers([ ['Centerlines','i','vtkPolyData',1,'','the input centerlines','vmtksurfacereader'], ['NumberOfSmoothingIterations','iterations','int',1,'(0,)'], ['SmoothingFactor','factor','float',1,'(0.0,)'] ]) self.SetOutputMembers([ ['Centerlines','o','vtkPolyData',1,'','the output centerlines','vmtksurfacewriter'] ]) def Execute(self): if self.Centerlines == None: self.PrintError('Error: No input centerlines.') centerlineSmoothing = vtkvmtk.vtkvmtkCenterlineSmoothing() centerlineSmoothing.SetInputData(self.Centerlines) centerlineSmoothing.SetNumberOfSmoothingIterations(self.NumberOfSmoothingIterations) centerlineSmoothing.SetSmoothingFactor(self.SmoothingFactor) centerlineSmoothing.Update() self.Centerlines = centerlineSmoothing.GetOutput() if __name__=='__main__': main = pypes.pypeMain() main.Arguments = sys.argv main.Execute()
the-stack_106_21492
# -*- coding: utf-8 -*- """Cross-platform tools for GitHub workflows. To extract package version and run pip installations. """ import glob import inspect import os import re import sys from typing import Optional from typing import Pattern from typing import Sequence if re != sys: # need to protect the #nosec comment from being deleted by zimports import subprocess # nosec B404 # security implications are considered PATH_OF_CURRENT_FILE = os.path.dirname((inspect.stack()[0][1])) # python3 .github/workflows/extract_package_info.py package_name # python3 .github/workflows/extract_package_info.py package_version # python3 .github/workflows/extract_package_info.py install_from_dist def _extract_info(regex: Pattern[str]) -> str: with open(os.path.join(PATH_OF_CURRENT_FILE, os.pardir, os.pardir, "setup.py"), "r") as in_file: content = in_file.read() match = re.search(regex, content) if match is None: raise NotImplementedError("A match in setup.py should always be found.") output = match.group(1) print(output) # allow-print return output def _run_pip(args: Sequence[str]) -> None: print(f"About to run pip with args: {args}") # allow-print results = subprocess.run(args) # nosec B603 # shell is false, but input is secure if results.returncode != 0: sys.exit(results.returncode) def package_name() -> str: regex = re.compile(r" name=\"(.+)\"") return _extract_info(regex) def package_version() -> str: regex = re.compile(r" version=\"(.+?)\"") return _extract_info(regex) def pip_install_dist_wheel() -> None: path_to_dist = os.path.join(PATH_OF_CURRENT_FILE, os.pardir, os.pardir, "dist") all_files = glob.glob(f"{path_to_dist}{os.sep}*{package_version()}*.whl") if len(all_files) != 1: raise NotImplementedError( f"There should only be a single whl file in the dist folder matching this package version. Files found: {all_files}" ) wheel_file = os.path.abspath(all_files[0]) args = ["pip", "install", wheel_file] _run_pip(args) def pip_install(test_pypi: Optional[bool] = False) -> None: args = ["pip", "install", f"{package_name()}=={package_version()}"] if test_pypi: args.extend( [ "--index-url", "https://test.pypi.org/simple/", "--extra-index-url", "https://pypi.org/simple", ] ) _run_pip(args) if __name__ == "__main__": first_arg = sys.argv[1] if first_arg == "package_name": package_name() elif first_arg == "package_version": package_version() elif first_arg == "install_from_test_pypi": pip_install(test_pypi=True) elif first_arg == "install_from_pypi": pip_install() elif first_arg == "install_from_dist": pip_install_dist_wheel()
the-stack_106_21493
from enum import Enum from typing import Union class LanguageCode(Enum): ENGLISH = 'en' ENGLISH_US = 'en_US' ENGLISH_UK = 'en_UK' ITALIAN = 'it' SPANISH = 'es' SPANISH_SPAIN = 'es_ES' SPANISH_LATIN_AMERICA = 'es_LA' GERMAN = 'de' FRENCH = 'fr' DUTCH = 'nl' CHINESE = 'zh' CHINESE_PRC = 'zh_CN' CHINESE_HONG_KONG = 'zh_HK' LANGUAGE_CODES = [x.value for x in LanguageCode] FALLBACK_LANGUAGE = { LanguageCode.ENGLISH: [ LanguageCode.ENGLISH_UK, LanguageCode.ENGLISH_US ], LanguageCode.ENGLISH_US: [ LanguageCode.ENGLISH, LanguageCode.ENGLISH_UK ], LanguageCode.ENGLISH_UK: [ LanguageCode.ENGLISH, LanguageCode.ENGLISH_US ], LanguageCode.ITALIAN: [], LanguageCode.SPANISH: [ LanguageCode.SPANISH_LATIN_AMERICA ], LanguageCode.SPANISH_SPAIN: [ LanguageCode.SPANISH, LanguageCode.SPANISH_LATIN_AMERICA ], LanguageCode.SPANISH_LATIN_AMERICA: [ LanguageCode.SPANISH, LanguageCode.SPANISH_SPAIN ], LanguageCode.GERMAN: [], LanguageCode.FRENCH: [], LanguageCode.DUTCH: [], LanguageCode.CHINESE: [ LanguageCode.CHINESE_PRC ], LanguageCode.CHINESE_PRC: [ LanguageCode.CHINESE ], LanguageCode.CHINESE_HONG_KONG: [] } def ensure_language_code(lang: Union[LanguageCode, str]) -> LanguageCode: """ Make sure `lang` is a :class:`LanguageCode` value. If not, return `LanguageCode(lang)` (assuming it's a string). This is useful for user-facing methods, where input may be a language code or a string. Args: lang: An input language code Returns: A LanguageCode object representing `lang` """ if isinstance(lang, LanguageCode): return lang return LanguageCode(lang)
the-stack_106_21496
from __future__ import annotations __all__ = ["Board"] from endplay.types.deal import Deal from endplay.types.contract import Contract from endplay.types.vul import Vul from endplay.types.player import Player from endplay.types.bid import Bid from endplay.types.card import Card from typing import Optional, Any from collections.abc import Iterable class Board: """ Class representing a deal along with the play, auction and other table information :ivar deal: The deal at the table :vartype deal: Deal :ivar auction: The auction at the table :vartype auction: list[Bid] :ivar contract: The contract at the table :vartype contract: Contract :ivar play: The play history at the table :vartype play: list[Card] :ivar board_num: The board number of this deal :vartype board_num: int :ivar vul: The board vulnerability. If this isn't defined (i.e. set to `None`) then it is deduced from `board_num` :vartype vul: Vul :ivar dealer: The board dealer. Similarly to `vul` this can be deduced from `board_num` :vartype dealer: Player :ivar claimed: Flag indicating whether the play ended as a result of a claim :vartype claimed: bool :ivar info: A dictionary which contains arbitrary extra information about the board. The dictionary type used provided case-insensitive dot-access as a convenience (i.e. `board.info.event` and `board.info.Event` refer to the same object, but `board.info["event"]` and `board.info["Event"]` would be considered different). Tabular data can be stored here, any key ending with (but not equal to) `table` is treated as a table and its value should be a dictionary containing two keys: `headers` with a list of column names, and `rows` with a list of the rows. The column names can either be plain strings, or dictionaries with the keys * `ordering`: Either `"+"`, `"-"` or `None` depending of if the table is sorted ascending, descending or unsorted with respect to this column * `name`: A string value with the name of the column * `minwidth`: The minimum width that values in this column should be * `alignment`: `"L"` or `"R"` depending on if this column should be left or right aligned. Ignored unless `minwidth` is defined """ class Info(dict): """ Dictionary-like class which alows for case-insensitive dot-access, for example:: info["Event"] = "WBF 2017" print(info.event) # WBF 2017 """ def _find_key(self, key: str): key = key.casefold() for k in self: if k.casefold() == key: return k return None def __getattr__(self, attr: str) -> Any: key = self._find_key(attr) if key is not None: return self[key] return None def __setattr__(self, attr: str, value: Any) -> None: key = self._find_key(attr) if key is not None: self[key] = value else: self[attr] = value def __delattr__(self, attr: str) -> None: key = self._find_key(attr) if key is not None: del self[key] else: raise KeyError(attr) def __init__(self, deal: Optional[Deal] = None, auction: Optional[Iterable[Bid]] = None, play: Optional[Iterable[Card]] = None, board_num: Optional[int] = None, *, vul: Optional[Vul] = None, dealer: Optional[Player] = None, contract: Optional[Contract] = None, claimed: bool = False, **kwargs): self.deal = deal.copy() if deal is not None else Deal() self.auction = list(auction) if auction is not None else [] self.play = list(play) if play is not None else [] self.board_num = board_num self._dealer = dealer self._vul = vul self._contract = contract self.claimed = claimed self.info = Board.Info(**kwargs) @property def dealer(self) -> Player: """ Dealer of the board. If not defined, then attempts to calculate based on the value of `board_num` """ if self._dealer is not None: return self._dealer elif self.board_num is not None: return Player.from_board(self.board_num) else: return None @dealer.setter def dealer(self, value: Player) -> None: self._dealer = value @property def vul(self) -> Vul: """ Vulnerability of the board. If not defined, then attempts to calculate based on the value of `board_num` """ if self._vul is not None: return self._vul elif self.board_num is not None: return Vul.from_board(self.board_num) else: return None @vul.setter def vul(self, value: Vul) -> None: self._vul = value @property def contract(self) -> Contract: """ The contract the board was played in. If not provided, then attempts to calculate based on the auction and play history. """ if self._contract is not None: return self._contract elif self.auction: c = Contract.from_auction(self.auction) if self.play: from endplay.utils.play import total_tricks, tricks_to_result c.result = tricks_to_result( total_tricks(self.play, self.deal.trump), c.level) else: return None @contract.setter def contract(self, value: Contract) -> None: self._contract = value
the-stack_106_21498
import sys import tweepy import numpy as np from textblob import TextBlob def tweet_analysis(query): # get tweets tweets = tweepy.Cursor(api.search, q = query + " -filter:retweets").items(20) for tweet in tweets: phrase = TextBlob(tweet.text) polarities = [] subjectivities = [] if not is_english(phrase): try: phrase = TextBlob(str(phrase.translate(to = "en"))) except: phrase = phrase if phrase.sentiment.polarity != 0.0 and phrase.sentiment.subjectivity != 0.0: polarities.append(phrase.sentiment.polarity) subjectivities.append(phrase.sentiment.subjectivity) print("Tweet: " + tweet.text) print("Polarity: " + str(phrase.sentiment.polarity)) print("Subjectivity: " + str(phrase.sentiment.subjectivity)) print("***************************************") return {"polarity": polarities, "subjectivity": subjectivities} def is_english(text): if text.detect_language() == "en": return True return False def get_polarity_mean(valid_tweets): try: if len(valid_tweets["polarity"]) == 0: return 0 return np.mean(valid_tweets["polarity"]) except: return 0 def get_weighted_polarity_mean(valid_tweets): try: return np.average(valid_tweets["polarity"], weights=valid_tweets["subjectivity"]) except: return 0 def print_result(mean): if mean > 0.0: print("POSITIVE") elif mean == 0.0: print("NEUTRAL") else: print("NEGATIVE") # make sure consumer keys and access tokens are included in command line call if len(sys.argv) != 5: print("need to add consumer keys and access tokens as command line args") exit() # get consumer keys from command line consumer_key = sys.argv[1] consumer_secret = sys.argv[2] # get access tokens from command line access_token = sys.argv[3] access_token_secret = sys.argv[4] # create auth object for api auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) # create api object api = tweepy.API(auth) if __name__ == "__main__": query = input("Enter a query to find: ") analysis = tweet_analysis(query) print("WEIGHTED MEAN: " + str(get_weighted_polarity_mean(analysis))) print_result(get_weighted_polarity_mean(analysis)) print("MEAN: " + str(get_polarity_mean(analysis))) print_result(get_polarity_mean(analysis))