filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_20163
import os import openpype.api from openpype.hosts.photoshop import api as photoshop class ExtractImage(openpype.api.Extractor): """Produce a flattened image file from instance This plug-in takes into account only the layers in the group. """ label = "Extract Image" hosts = ["photoshop"] families = ["image", "background"] formats = ["png", "jpg"] def process(self, instance): staging_dir = self.staging_dir(instance) self.log.info("Outputting image to {}".format(staging_dir)) # Perform extraction stub = photoshop.stub() files = {} with photoshop.maintained_selection(): self.log.info("Extracting %s" % str(list(instance))) with photoshop.maintained_visibility(): layer = instance.data.get("layer") ids = set([layer.id]) add_ids = instance.data.pop("ids", None) if add_ids: ids.update(set(add_ids)) extract_ids = set([ll.id for ll in stub. get_layers_in_layers_ids(ids)]) stub.hide_all_others_layers_ids(extract_ids) file_basename = os.path.splitext( stub.get_active_document_name() )[0] for extension in self.formats: _filename = "{}.{}".format(file_basename, extension) files[extension] = _filename full_filename = os.path.join(staging_dir, _filename) stub.saveAs(full_filename, extension, True) self.log.info(f"Extracted: {extension}") representations = [] for extension, filename in files.items(): representations.append({ "name": extension, "ext": extension, "files": filename, "stagingDir": staging_dir }) instance.data["representations"] = representations instance.data["stagingDir"] = staging_dir self.log.info(f"Extracted {instance} to {staging_dir}")
the-stack_106_20165
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import asyncio from unittest import TestCase, main, mock from orc8r.protos.common_pb2 import Void from orc8r.protos.service303_pb2 import ServiceInfo from orc8r.protos.service303_pb2_grpc import Service303Stub from orc8r.protos.mconfig import mconfigs_pb2 from magma.common.service import MagmaService from magma.common.service_registry import ServiceRegistry class Service303Tests(TestCase): """ Tests for the MagmaService and the Service303 interface """ @mock.patch('time.time', mock.MagicMock(return_value=12345)) def setUp(self): ServiceRegistry.add_service('test', '0.0.0.0', 0) self._stub = None self._loop = asyncio.new_event_loop() # Use a new event loop to ensure isolated tests self._service = MagmaService( name='test', empty_mconfig=mconfigs_pb2.MagmaD(), loop=self._loop, ) asyncio.set_event_loop(self._service.loop) @mock.patch( 'magma.common.service_registry.ServiceRegistry.get_proxy_config') def test_service_run(self, mock_get_proxy_config): """ Test if the service starts and stops gracefully. """ self.assertEqual(self._service.state, ServiceInfo.STARTING) mock_get_proxy_config.return_value = { 'cloud_address': '127.0.0.1', 'proxy_cloud_connections': True } # Start the service and pause the loop self._service.loop.stop() self._service.run() asyncio.set_event_loop(self._service.loop) self._service.log_counter._periodic_task.cancel() self.assertEqual(self._service.state, ServiceInfo.ALIVE) # Create a rpc stub and query the Service303 interface ServiceRegistry.add_service('test', '0.0.0.0', self._service.port) channel = ServiceRegistry.get_rpc_channel('test', ServiceRegistry.LOCAL) self._stub = Service303Stub(channel) info = ServiceInfo(name='test', version='0.0.0', state=ServiceInfo.ALIVE, health=ServiceInfo.APP_HEALTHY, start_time_secs=12345) self.assertEqual(self._stub.GetServiceInfo(Void()), info) # Stop the service self._stub.StopService(Void()) self._service.loop.run_forever() self.assertEqual(self._service.state, ServiceInfo.STOPPED) if __name__ == "__main__": main()
the-stack_106_20166
""" Sample repo pull request events module. Type examples: {'CreateEvent', e.g. branch 'IssueCommentEvent', 'IssuesEvent', 'PullRequestEvent', 'PushEvent', 'WatchEvent'} """ import pprint from collections import Counter from etc import config from lib.connection import CONN def main(): for repo_name in config.REPO_PATHS: repo = CONN.get_repo(repo_name) print(repo.name) events_c = Counter() events = list(repo.get_events()) ev = [x.type for x in events] events_c.update(ev) for e in events: data = dict( username=e.actor.login, created_at=str(e.created_at.date()), type=e.type ) print(data) p = e.payload payload_data = dict( action=p.get("action"), comments=p.get("comment"), pull_request=p.get("pull_request"), issue=p.get("issue"), ) for k, v in payload_data.items(): if v: if isinstance(v, dict): new_v = list(v.keys()) payload_data[k] = new_v pprint.pprint(payload_data) print() pprint.pprint(events_c.most_common()) if __name__ == "__main__": main()
the-stack_106_20167
# !/usr/local/python/bin/python # -*- coding: utf-8 -*- # (C) Wu Dong, 2020 # All rights reserved # @Author: 'Wu Dong <[email protected]>' # @Time: '2020-03-19 10:33' """ 演示 pre-request 框架如何使用Json校验 """ import json from flask import Flask from pre_request import pre, Rule app = Flask(__name__) app.config["TESTING"] = True client = app.test_client() # json=True,此时框架会自动将params数据进行json解析 json_params = { "params": Rule(json=True) } @app.route("/json", methods=["GET", "POST"]) @pre.catch(json_params) def example_json_handler(params): return str(params) def example_json_filter(): """ 演示邮箱验证 """ resp = client.post("/json", json={ "params": json.dumps(["hello", "work", "!"]) }) print(resp.data) if __name__ == "__main__": example_json_filter()
the-stack_106_20169
#!/usr/bin/env python # # Use the raw transactions API to spend TRANSCENDENCEs received on particular addresses, # and send any change back to that same address. # # Example usage: # spendfrom.py # Lists available funds # spendfrom.py --from=ADDRESS --to=ADDRESS --amount=11.00 # # Assumes it will talk to a transcendenced or transcendence-Qt running # on localhost. # # Depends on jsonrpc # from decimal import * import getpass import math import os import os.path import platform import sys import time from jsonrpc import ServiceProxy, json BASE_FEE=Decimal("0.001") def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def determine_db_dir(): """Return the default location of the transcendence data directory""" if platform.system() == "Darwin": return os.path.expanduser("~/Library/Application Support/Transcendence/") elif platform.system() == "Windows": return os.path.join(os.environ['APPDATA'], "Transcendence") return os.path.expanduser("~/.transcendence") def read_bitcoin_config(dbdir): """Read the transcendence.conf file from dbdir, returns dictionary of settings""" from ConfigParser import SafeConfigParser class FakeSecHead(object): def __init__(self, fp): self.fp = fp self.sechead = '[all]\n' def readline(self): if self.sechead: try: return self.sechead finally: self.sechead = None else: s = self.fp.readline() if s.find('#') != -1: s = s[0:s.find('#')].strip() +"\n" return s config_parser = SafeConfigParser() config_parser.readfp(FakeSecHead(open(os.path.join(dbdir, "transcendence.conf")))) return dict(config_parser.items("all")) def connect_JSON(config): """Connect to a transcendence JSON-RPC server""" testnet = config.get('testnet', '0') testnet = (int(testnet) > 0) # 0/1 in config file, convert to True/False if not 'rpcport' in config: config['rpcport'] = 38843 if testnet else 5520 connect = "http://%s:%[email protected]:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) try: result = ServiceProxy(connect) # ServiceProxy is lazy-connect, so send an RPC command mostly to catch connection errors, # but also make sure the transcendenced we're talking to is/isn't testnet: if result.getmininginfo()['testnet'] != testnet: sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") sys.exit(1) return result except: sys.stderr.write("Error connecting to RPC server at "+connect+"\n") sys.exit(1) def unlock_wallet(transcendenced): info = transcendenced.getinfo() if 'unlocked_until' not in info: return True # wallet is not encrypted t = int(info['unlocked_until']) if t <= time.time(): try: passphrase = getpass.getpass("Wallet is locked; enter passphrase: ") transcendenced.walletpassphrase(passphrase, 5) except: sys.stderr.write("Wrong passphrase\n") info = transcendenced.getinfo() return int(info['unlocked_until']) > time.time() def list_available(transcendenced): address_summary = dict() address_to_account = dict() for info in transcendenced.listreceivedbyaddress(0): address_to_account[info["address"]] = info["account"] unspent = transcendenced.listunspent(0) for output in unspent: # listunspent doesn't give addresses, so: rawtx = transcendenced.getrawtransaction(output['txid'], 1) vout = rawtx["vout"][output['vout']] pk = vout["scriptPubKey"] # This code only deals with ordinary pay-to-transcendence-address # or pay-to-script-hash outputs right now; anything exotic is ignored. if pk["type"] != "pubkeyhash" and pk["type"] != "scripthash": continue address = pk["addresses"][0] if address in address_summary: address_summary[address]["total"] += vout["value"] address_summary[address]["outputs"].append(output) else: address_summary[address] = { "total" : vout["value"], "outputs" : [output], "account" : address_to_account.get(address, "") } return address_summary def select_coins(needed, inputs): # Feel free to improve this, this is good enough for my simple needs: outputs = [] have = Decimal("0.0") n = 0 while have < needed and n < len(inputs): outputs.append({ "txid":inputs[n]["txid"], "vout":inputs[n]["vout"]}) have += inputs[n]["amount"] n += 1 return (outputs, have-needed) def create_tx(transcendenced, fromaddresses, toaddress, amount, fee): all_coins = list_available(transcendenced) total_available = Decimal("0.0") needed = amount+fee potential_inputs = [] for addr in fromaddresses: if addr not in all_coins: continue potential_inputs.extend(all_coins[addr]["outputs"]) total_available += all_coins[addr]["total"] if total_available < needed: sys.stderr.write("Error, only %f BTC available, need %f\n"%(total_available, needed)); sys.exit(1) # # Note: # Python's json/jsonrpc modules have inconsistent support for Decimal numbers. # Instead of wrestling with getting json.dumps() (used by jsonrpc) to encode # Decimals, I'm casting amounts to float before sending them to transcendenced. # outputs = { toaddress : float(amount) } (inputs, change_amount) = select_coins(needed, potential_inputs) if change_amount > BASE_FEE: # don't bother with zero or tiny change change_address = fromaddresses[-1] if change_address in outputs: outputs[change_address] += float(change_amount) else: outputs[change_address] = float(change_amount) rawtx = transcendenced.createrawtransaction(inputs, outputs) signed_rawtx = transcendenced.signrawtransaction(rawtx) if not signed_rawtx["complete"]: sys.stderr.write("signrawtransaction failed\n") sys.exit(1) txdata = signed_rawtx["hex"] return txdata def compute_amount_in(transcendenced, txinfo): result = Decimal("0.0") for vin in txinfo['vin']: in_info = transcendenced.getrawtransaction(vin['txid'], 1) vout = in_info['vout'][vin['vout']] result = result + vout['value'] return result def compute_amount_out(txinfo): result = Decimal("0.0") for vout in txinfo['vout']: result = result + vout['value'] return result def sanity_test_fee(transcendenced, txdata_hex, max_fee): class FeeError(RuntimeError): pass try: txinfo = transcendenced.decoderawtransaction(txdata_hex) total_in = compute_amount_in(transcendenced, txinfo) total_out = compute_amount_out(txinfo) if total_in-total_out > max_fee: raise FeeError("Rejecting transaction, unreasonable fee of "+str(total_in-total_out)) tx_size = len(txdata_hex)/2 kb = tx_size/1000 # integer division rounds down if kb > 1 and fee < BASE_FEE: raise FeeError("Rejecting no-fee transaction, larger than 1000 bytes") if total_in < 0.01 and fee < BASE_FEE: raise FeeError("Rejecting no-fee, tiny-amount transaction") # Exercise for the reader: compute transaction priority, and # warn if this is a very-low-priority transaction except FeeError as err: sys.stderr.write((str(err)+"\n")) sys.exit(1) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--from", dest="fromaddresses", default=None, help="addresses to get TRANSCENDENCEs from") parser.add_option("--to", dest="to", default=None, help="address to get send TRANSCENDENCEs to") parser.add_option("--amount", dest="amount", default=None, help="amount to send") parser.add_option("--fee", dest="fee", default="0.0", help="fee to include") parser.add_option("--datadir", dest="datadir", default=determine_db_dir(), help="location of transcendence.conf file with RPC username/password (default: %default)") parser.add_option("--testnet", dest="testnet", default=False, action="store_true", help="Use the test network") parser.add_option("--dry_run", dest="dry_run", default=False, action="store_true", help="Don't broadcast the transaction, just create and print the transaction data") (options, args) = parser.parse_args() check_json_precision() config = read_bitcoin_config(options.datadir) if options.testnet: config['testnet'] = True transcendenced = connect_JSON(config) if options.amount is None: address_summary = list_available(transcendenced) for address,info in address_summary.iteritems(): n_transactions = len(info['outputs']) if n_transactions > 1: print("%s %.8f %s (%d transactions)"%(address, info['total'], info['account'], n_transactions)) else: print("%s %.8f %s"%(address, info['total'], info['account'])) else: fee = Decimal(options.fee) amount = Decimal(options.amount) while unlock_wallet(transcendenced) == False: pass # Keep asking for passphrase until they get it right txdata = create_tx(transcendenced, options.fromaddresses.split(","), options.to, amount, fee) sanity_test_fee(transcendenced, txdata, amount*Decimal("0.01")) if options.dry_run: print(txdata) else: txid = transcendenced.sendrawtransaction(txdata) print(txid) if __name__ == '__main__': main()
the-stack_106_20170
import numpy as np def kernel(M, float_n, data): mean = np.mean(data, axis=0) stddev = np.std(data, axis=0) stddev[stddev <= 0.1] = 1.0 data -= mean data /= np.sqrt(float_n) * stddev corr = np.eye(M, dtype=data.dtype) for i in range(M - 1): corr[i + 1:M, i] = corr[i, i + 1:M] = data[:, i] @ data[:, i + 1:M] return corr
the-stack_106_20172
import logging from PySide2.QtWidgets import QFrame, QLabel, QVBoxLayout, QHBoxLayout, QScrollArea, QSizePolicy, \ QTableWidget, QTableWidgetItem from PySide2.QtCore import Qt, QSize from ...ui.dialogs.new_state import SrcAddrAnnotation l = logging.getLogger('ui.widgets.qconstraint_viewer') class QConstraintViewer(QFrame): COLUMNS = [ "Constraint", "Src Address", "Cardinality", "Depth", "# Variables" ] def __init__(self, state, parent, workspace): super(QConstraintViewer, self).__init__(parent) self._state = state self.workspace = workspace self.table = None self._state.am_subscribe(self._watch_state) # # Public methods # def reload(self): self.table.setRowCount(0) for constraint in self._state.solver.constraints: count = self.table.rowCount() self.table.insertRow(count) self.table.setItem(count, 0, QTableWidgetItem(constraint.shallow_repr())) src_addr = next(a for a in constraint.annotations if type(a) == SrcAddrAnnotation).addr self.table.setItem(count, 1, QTableWidgetItem(hex(src_addr))) self.table.setItem(count, 2, QTableWidgetItem(str(constraint.cardinality))) self.table.setItem(count, 3, QTableWidgetItem(str(constraint.depth))) self.table.setItem(count, 4, QTableWidgetItem(str(len(list(constraint.recursive_leaf_asts))))) # # Private methods # def _init_widgets(self): if self._state.am_none(): return layout = QVBoxLayout() area = QScrollArea() area.setVerticalScrollBarPolicy(Qt.ScrollBarAsNeeded) area.setHorizontalScrollBarPolicy(Qt.ScrollBarAsNeeded) area.setWidgetResizable(True) table = QTableWidget(0, 0) table.setColumnCount(len(self.COLUMNS)) table.setHorizontalHeaderLabels(self.COLUMNS) self.table = table layout.addWidget(table) # common ones layout.setSpacing(0) layout.addStretch(0) layout.setContentsMargins(2, 2, 2, 2) # the container container = QFrame() container.setAutoFillBackground(True) palette = container.palette() palette.setColor(container.backgroundRole(), Qt.white) container.setPalette(palette) container.setLayout(layout) area.setWidget(container) base_layout = QVBoxLayout() base_layout.addWidget(area) self.setLayout(base_layout) def _watch_state(self, **kwargs): if self.table is None: self._init_widgets() self.reload()
the-stack_106_20175
from .taadd_com import TaaddCom class TenMangaCom(TaaddCom): _name_selector = '.read-page a[href*="/book/"]' _pages_selector = '.sl-page' _chapters_selector = '.chapter-box .choose-page a:last-child' img_selector = '.pic_box .manga_pic' main = TenMangaCom
the-stack_106_20176
############################################################################# # Import # ############################################################################# import os import random import PIL.Image as Image from tqdm import tqdm import numpy as np import scipy.io import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable from torch.autograd import Function import torch.nn.functional as F class DotDict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ ############################################################################# # Hyperparameters # ############################################################################# opt = DotDict() opt.dataset = '3Dchairs' # [ celebA | 102flowers | 3Dchairs ] opt.dataPath = './data' # Input space opt.nc = 3 # number of input channels opt.sizeX = 64 # size of the image opt.sizeZ = 128 # size of random noise vectors # Convolution settings opt.nf = 64 # base number of filter in G and D opt.nLayers = 4 # number of conv layers in G and D # Hardward settings opt.workers = 4 # workers data for preprocessing opt.cuda = True # use CUDA opt.gpu = 0 # GPU id # Optimisation scheme opt.batchSize = 128 # minibatch size opt.nIteration = 75001 # number of training iterations opt.lrG = 2e-4 # learning rate for G opt.lrD = 5e-5 # learning rate for D # Save/Load networks opt.checkpointDir = '.' # checkpoints directory opt.load = 0 # if > 0, load given checkpoint opt.checkpointFreq = 500 # frequency of checkpoints (in number of epochs) ############################################################################# # Loading Weights # ############################################################################# opt.netG = '' opt.netD = '' if opt.load > 0: opt.netG = '%s/netG_%d.pth' % (opt.checkpointDir, opt.load) opt.netD = '%s/netD_%d.pth' % (opt.checkpointDir, opt.load) ############################################################################# # RandomSeed # ############################################################################# opt.manualSeed = random.randint(1, 10000) # fix seed print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) ############################################################################# # CUDA # ############################################################################# cudnn.benchmark = True if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") if opt.cuda: torch.cuda.set_device(opt.gpu) ############################################################################# # Dataloader # ############################################################################# class PairCelebADataset(torch.utils.data.Dataset): def __init__(self, dataPath, labelFile, transform=transforms.ToTensor()): super(PairCelebADataset, self).__init__() self.dataPath = dataPath with open(labelFile, 'r') as f: lines = np.array([p.split() for p in f.readlines()]) self.files = lines[:,0] self.labels = lines[:,1].astype(int) self.transform = transform def __len__(self): return len(self.files) def __getitem__(self, idx): label = self.labels[idx] file1 = self.files[idx] file2 = np.random.choice(self.files[self.labels == label]) img1 = self.transform(Image.open(os.path.join(self.dataPath, file1))) img2 = self.transform(Image.open(os.path.join(self.dataPath, file2))) return img1, img2, torch.LongTensor(1).fill_(int(label)) class Pair3DchairsDataset(torch.utils.data.Dataset): def __init__(self, dataPath, transform=transforms.ToTensor()): super(Pair3DchairsDataset, self).__init__() self.dataPath = dataPath self.folders = np.array(os.listdir(dataPath)) self.transform = transform def __len__(self): return len(self.folders) def __getitem__(self, idx): idA, idB = np.random.choice(os.listdir(os.path.join(self.dataPath, self.folders[idx])),2) label = idx imgA = Image.open(os.path.join(self.dataPath, self.folders[idx], idA)) imgB = Image.open(os.path.join(self.dataPath, self.folders[idx], idB)) imgA = self.transform(imgA) imgB = self.transform(imgB) return imgA, imgB, torch.LongTensor(1).fill_(int(label)) class Pair102flowersDataset(torch.utils.data.Dataset): def __init__(self, dataPath, labelFile, nc, transform=transforms.ToTensor()): super(Pair102flowersDataset, self).__init__() self.dataPath = dataPath self.files = np.sort(os.listdir(dataPath)) self.labels = scipy.io.loadmat(labelFile)['labels'][0] self.transform = transform self.nc = nc def __len__(self): return len(self.files) def __getitem__(self, idx): label = self.labels[idx] fileA = self.files[idx] fileB = np.random.choice(self.files[self.labels == label]) imgA = Image.open(os.path.join(self.dataPath, fileA)) imgB = Image.open(os.path.join(self.dataPath, fileB)) imgA = self.transform(imgA) imgB = self.transform(imgB) if imgA.size(0) == 1: imgA = imgA.repeat(self.nc,1,1) if imgB.size(0) == 1: imgB = imgB.repeat(self.nc,1,1) return imgA[:self.nc], imgB[:self.nc], torch.LongTensor(1).fill_(int(label)) ############################################################################# # Datasets # ############################################################################# if opt.dataset == 'celebA': dataset = PairCelebADataset(os.path.join(opt.dataPath, "celebA/aligned"), os.path.join(opt.dataPath, "celebA/identity_celebA_train.txt"), transforms.Compose([transforms.CenterCrop(128), transforms.Resize(opt.sizeX), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) elif opt.dataset == '3Dchairs': dataset = Pair3DchairsDataset(os.path.join(opt.dataPath, "rendered_chairs/train"), transforms.Compose([transforms.CenterCrop(300), transforms.Resize(opt.sizeX), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) elif opt.dataset == '102flowers': dataset = Pair102flowersDataset(os.path.join(opt.dataPath, "102flowers/jpg"), os.path.join(opt.dataPath, "102flowers/imagelabels.mat"), opt.nc, transforms.Compose([transforms.Resize(opt.sizeX), transforms.CenterCrop(opt.sizeX), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) ############################################################################# # weights init # ############################################################################# def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: if m.weight: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) ############################################################################# # Modules # ############################################################################# class _dcEncoder(nn.Module): def __init__(self, nIn=3, nOut=1024, nf=64, nLayer=4, sizeX=64): super(_dcEncoder, self).__init__() self.mods = nn.Sequential() sizeX = sizeX //2 self.mods.add_module("Conv0_%dx%dx%d" % (nf, sizeX, sizeX), nn.Conv2d(nIn, nf, 4, 2, 1, bias=False)) self.mods.add_module("BN0", nn.BatchNorm2d(nf)) self.mods.add_module("ReLU0", nn.ReLU(True)) for i in range(1,nLayer): sizeX = sizeX //2 self.mods.add_module("Conv%d_%dx%dx%d" % (i, nf*2, sizeX, sizeX), nn.Conv2d(nf, nf*2, 4, 2, 1, bias=False)) self.mods.add_module("BN%d"% i, nn.BatchNorm2d(nf*2)) self.mods.add_module("ReLU%d" % i, nn.ReLU(True)) nf = nf * 2 self.mods.add_module("FC_%dx1x1" % nOut, nn.Conv2d(nf, nOut, sizeX, bias=False)) weights_init(self.mods) def forward(self, x): return self.mods(x) class _dcDecoder(nn.Module): def __init__(self, nIn=1024, nOut=3, nf=512, nLayer=4, sizeX=64): super(_dcDecoder, self).__init__() sizeX = sizeX // (2**nLayer) nf = nf * (2 ** (nLayer - 1)) self.mods = nn.Sequential() self.mods.add_module("FC_%dx%dx%d" % (nf,sizeX,sizeX), nn.ConvTranspose2d(nIn, nf, sizeX, bias=False)) self.mods.add_module("BN0", nn.BatchNorm2d(nf)) self.mods.add_module("ReLU0", nn.ReLU(True)) for i in range(1,nLayer): sizeX = sizeX * 2 self.mods.add_module("ConvTr%d_%dx%dx%d" % (i, nf//2, sizeX, sizeX), nn.ConvTranspose2d(nf, nf//2, 4, 2, 1, bias=False)) self.mods.add_module("BN%d"% i, nn.BatchNorm2d(nf//2)) self.mods.add_module("ReLU%d" % i, nn.ReLU(True)) nf = nf // 2 self.mods.add_module("ConvTrO_%dx%dx%d" % (nf, sizeX, sizeX), nn.ConvTranspose2d(nf, nOut, 4, 2, 1, bias=False)) weights_init(self.mods) def forward(self, x): return self.mods(x) class _dcDiscriminator(nn.Module): def __init__(self, nIn=3, nOut=1024, nf=64, nLayer=4, sizeX=64): super(_dcDiscriminator, self).__init__() self.mods = nn.Sequential() sizeX = sizeX //2 self.mods.add_module("Conv0_%dx%dx%d" % (nf, sizeX, sizeX), nn.Conv2d(nIn, nf, 4, 2, 1, bias=False)) self.mods.add_module("LReLU0", nn.LeakyReLU(0.2)) for i in range(1,nLayer): sizeX = sizeX //2 self.mods.add_module("Conv%d_%dx%dx%d" % (i, nf*2, sizeX, sizeX), nn.Conv2d(nf, nf*2, 4, 2, 1, bias=False)) self.mods.add_module("BN%d"% i, nn.BatchNorm2d(nf*2)) self.mods.add_module("LReLU%d" % i, nn.LeakyReLU(0.2)) nf = nf * 2 self.mods.add_module("FC_%dx1x1" % nOut, nn.Conv2d(nf, nOut, sizeX, bias=False)) weights_init(self.mods) def forward(self, x): return self.mods(x) netG = _dcDecoder(nIn=opt.sizeZ, nOut=opt.nc*2, nf=opt.nf, nLayer=opt.nLayers, sizeX=opt.sizeX) netD = _dcDiscriminator(nIn=opt.nc*2, nOut=1, nf=opt.nf, nLayer=opt.nLayers, sizeX=opt.sizeX) if opt.netG != '': netG.load_state_dict(torch.load(opt.netG)) if opt.netD != '': netD.load_state_dict(torch.load(opt.netD)) print(netG) print(netD) discriminationLoss = nn.BCEWithLogitsLoss() ############################################################################# # Placeholders # ############################################################################# x1_real = torch.FloatTensor(opt.batchSize, opt.nc, opt.sizeX, opt.sizeX) x2_real = torch.FloatTensor(opt.batchSize, opt.nc, opt.sizeX, opt.sizeX) z = torch.FloatTensor(opt.batchSize, opt.sizeZ, 1, 1).normal_() labelPos = torch.FloatTensor(opt.batchSize) labelNeg = torch.FloatTensor(opt.batchSize) ############################################################################# # Test data # ############################################################################# z_test = torch.FloatTensor(opt.batchSize, opt.sizeZ, 1, 1).normal_() ############################################################################# # To Cuda # ############################################################################# if opt.cuda: print("Convert to Cuda") torch.cuda.set_device(opt.gpu) netG.cuda() netD.cuda() discriminationLoss.cuda() x1_real = x1_real.cuda() x2_real = x2_real.cuda() z = z.cuda() labelPos = labelPos.cuda() labelNeg = labelNeg.cuda() z_test = z_test.cuda() ############################################################################# # Optimizer # ############################################################################# optimizerG = optim.Adam(netG.parameters(), lr=opt.lrG, betas=(0.5, 0.999)) optimizerD = optim.Adam(netD.parameters(), lr=opt.lrD, betas=(0.5, 0.999)) ############################################################################# # Train # ############################################################################# print("Start Training") iteration = opt.load * len(dataloader) epoch = opt.load while iteration <= opt.nIteration: log_dNeg = [] log_dPos = [] for x1_cpu, x2_cpu, _ in tqdm(dataloader): ####################### # Init iteration # ####################### netG.train() netD.train() x1_real.resize_(x1_cpu.size(0), x1_cpu.size(1), x1_cpu.size(2), x1_cpu.size(3)).copy_(x1_cpu) x2_real.resize_(x2_cpu.size(0), x2_cpu.size(1), x2_cpu.size(2), x2_cpu.size(3)).copy_(x2_cpu) z.resize_(x1_cpu.size(0), opt.sizeZ, 1, 1).normal_() labelPos.resize_(x1_cpu.size(0), 1, 1, 1).fill_(.9) labelNeg.resize_(x1_cpu.size(0), 1, 1, 1).fill_(.1) ####################### # Train # ####################### # Generation Objective netG.zero_grad() x_generated = F.tanh(netG(Variable(z))) generationObjective = discriminationLoss(netD(x_generated), Variable(labelPos)) generationObjective.backward() # Discrimination gradients netD.zero_grad() dPos = netD(Variable(torch.cat((x1_real,x2_real),1))) dNeg = netD(x_generated.detach()) discriminationObjective = discriminationLoss(dNeg, Variable(labelNeg)) + discriminationLoss(dPos, Variable(labelPos)) discriminationObjective.backward() # Update weights optimizerG.step() optimizerD.step() # Logs dPos = dPos.detach() dNeg = dNeg.detach() dPos.volatile = True dNeg.volatile = True log_dPos.append(F.sigmoid(dPos).data.mean()) log_dNeg.append(F.sigmoid(dNeg).data.mean()) iteration += 1 epoch = epoch+1 print(epoch, np.array(log_dPos).mean(), np.array(log_dNeg).mean(), ) with open('logs.dat', 'ab') as f: np.savetxt(f, np.vstack((np.array(log_dPos), np.array(log_dNeg), )).T) if epoch % opt.checkpointFreq == 0: netG.eval() x_test = F.tanh(netG(Variable(z_test, volatile=True))) vutils.save_image(x_test.data.view(-1, opt.nc, opt.sizeX, opt.sizeX), "%d.png" % epoch, nrow=8, normalize=True, range=(-1,1)) # torch.save(netG.state_dict(), '%s/netG_%d.pth' % (opt.checkpointDir, epoch)) # torch.save(netD.state_dict(), '%s/netD_%d.pth' % (opt.checkpointDir, epoch))
the-stack_106_20179
# -*- coding: utf-8 -*- """Definition of the QueueOnce task and AlreadyQueued exception.""" from celery import Task, states from celery.result import EagerResult from .helpers import queue_once_key, import_backend class AlreadyQueued(Exception): def __init__(self, countdown): self.message = "Expires in {} seconds".format(countdown) self.countdown = countdown try: from inspect import signature except: from funcsigs import signature class QueueOnce(Task): abstract = True once = { 'graceful': False, 'unlock_before_run': False } """ 'There can be only one'. - Highlander (1986) An abstract tasks with the ability to detect if it has already been queued. When running the task (through .delay/.apply_async) it checks if the tasks is not already queued. By default it will raise an an AlreadyQueued exception if it is, by you can silence this by including `once={'graceful': True}` in apply_async or in the task's settings. Example: >>> from celery_queue.tasks import QueueOnce >>> from celery import task >>> @task(base=QueueOnce, once={'graceful': True}) >>> def example(time): >>> from time import sleep >>> sleep(time) """ @property def config(self): app = self._get_app() return app.conf @property def once_config(self): return self.config.ONCE @property def once_backend(self): return import_backend(self.once_config) @property def default_timeout(self): return self.once_config['settings'].get('default_timeout', 60 * 60) def unlock_before_run(self): return self.once.get('unlock_before_run', False) def __init__(self, *args, **kwargs): self._signature = signature(self.run) return super(QueueOnce, self).__init__(*args, **kwargs) def __call__(self, *args, **kwargs): # Only clear the lock before the task's execution if the # "unlock_before_run" option is True if self.unlock_before_run(): key = self.get_key(args, kwargs) self.once_backend.clear_lock(key) return super(QueueOnce, self).__call__(*args, **kwargs) def apply_async(self, args=None, kwargs=None, **options): """ Attempts to queues a task. Will raises an AlreadyQueued exception if already queued. :param \*args: positional arguments passed on to the task. :param \*\*kwargs: keyword arguments passed on to the task. :keyword \*\*once: (optional) :param: graceful: (optional) If True, wouldn't raise an exception if already queued. Instead will return none. :param: timeout: (optional) An `int' number of seconds after which the lock will expire. If not set, defaults to 1 hour. :param: keys: (optional) """ once_options = options.get('once', {}) once_graceful = once_options.get( 'graceful', self.once.get('graceful', False)) once_timeout = once_options.get( 'timeout', self.once.get('timeout', self.default_timeout)) if not options.get('retries'): key = self.get_key(args, kwargs) try: self.once_backend.raise_or_lock(key, timeout=once_timeout) except AlreadyQueued as e: if once_graceful: return EagerResult(None, None, states.REJECTED) raise e return super(QueueOnce, self).apply_async(args, kwargs, **options) def _get_call_args(self, args, kwargs): call_args = self._signature.bind(*args, **kwargs).arguments # Remove the task instance from the kwargs. This only happens when the # task has the 'bind' attribute set to True. We remove it, as the task # has a memory pointer in its repr, that will change between the task # caller and the celery worker if isinstance(call_args.get('self'), Task): del call_args['self'] return call_args def get_key(self, args=None, kwargs=None): """ Generate the key from the name of the task (e.g. 'tasks.example') and args/kwargs. """ restrict_to = self.once.get('keys', None) args = args or {} kwargs = kwargs or {} call_args = self._get_call_args(args, kwargs) key = queue_once_key(self.name, call_args, restrict_to) return key def after_return(self, status, retval, task_id, args, kwargs, einfo): """ After a task has run (both successfully or with a failure) clear the lock if "unlock_before_run" is False. """ # Only clear the lock after the task's execution if the # "unlock_before_run" option is False if not self.unlock_before_run(): key = self.get_key(args, kwargs) self.once_backend.clear_lock(key)
the-stack_106_20180
""" Google Text to Speech Available Commands: .tts LanguageCode as reply to a message .tts LangaugeCode | text to speak""" import asyncio import os import subprocess from datetime import datetime from gtts import gTTS from FIREX.utils import admin_cmd, edit_or_reply, sudo_cmd from userbot.cmdhelp import CmdHelp @bot.on(admin_cmd(pattern=r"tts (.*)")) @bot.on(sudo_cmd(pattern=r"tts (.*)", allow_sudo=True)) async def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) start = datetime.now() if event.reply_to_msg_id: previous_message = await event.get_reply_message() text = previous_message.message lan = input_str elif "|" in input_str: lan, text = input_str.split("|") else: await edit_or_reply(event, "Invalid Syntax. Module stopping.") return text = text.strip() lan = lan.strip() if not os.path.isdir(Config.TMP_DOWNLOAD_DIRECTORY): os.makedirs(Config.TMP_DOWNLOAD_DIRECTORY) required_file_name = Config.TMP_DOWNLOAD_DIRECTORY + "voice.ogg" try: # https://github.com/SpEcHiDe/UniBorg/commit/17f8682d5d2df7f3921f50271b5b6722c80f4106 tts = gTTS(text, lang=lan) tts.save(required_file_name) command_to_execute = [ "ffmpeg", "-i", required_file_name, "-map", "0:a", "-codec:a", "libopus", "-b:a", "100k", "-vbr", "on", required_file_name + ".opus", ] try: t_response = subprocess.check_output( command_to_execute, stderr=subprocess.STDOUT ) except (subprocess.CalledProcessError, NameError, FileNotFoundError) as exc: await edit_or_reply(event, str(exc)) # continue sending required_file_name else: os.remove(required_file_name) required_file_name = required_file_name + ".opus" end = datetime.now() ms = (end - start).seconds await borg.send_file( event.chat_id, required_file_name, # caption="Processed {} ({}) in {} seconds!".format(text[0:97], lan, ms), reply_to=event.message.reply_to_msg_id, allow_cache=False, voice_note=True, ) os.remove(required_file_name) await edit_or_reply( event, "Processed {} ({}) in {} seconds!".format(text[0:97], lan, ms) ) await asyncio.sleep(5) await event.delete() except Exception as e: await edit_or_reply(event, str(e)) CmdHelp("tts").add_command( "tts", "<reply to text>/<text>", "Google Text To Speech Module. Alternetive for Voice module. Use .voice if this doesn't work", ).add()
the-stack_106_20181
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import annotations from enum import Enum from typing import ( Dict, ItemsView, Iterable, KeysView, List, Mapping, NamedTuple, OrderedDict, ValuesView, ) from braket.circuits.instruction import Instruction from braket.circuits.noise import Noise from braket.circuits.qubit import Qubit from braket.circuits.qubit_set import QubitSet class MomentType(str, Enum): """ The type of moments. GATE: a gate NOISE: a noise channel added directly to the circuit GATE_NOISE: a gate-based noise channel INITIALIZATION_NOISE: a initialization noise channel READOUT_NOISE: a readout noise channel """ GATE = "gate" NOISE = "noise" GATE_NOISE = "gate_noise" INITIALIZATION_NOISE = "initialization_noise" READOUT_NOISE = "readout_noise" class MomentsKey(NamedTuple): """Key of the Moments mapping. Args: time: moment qubits: qubit set moment_type: can be GATE, NOISE, or GATE_NOISE which is associated with gates; and READOUT_NOISE or INITIALIZATION_NOISE. noise_index: the number of noise channels at the same moment. For gates, this is the number of gate_noise channels associated with that gate. For all other noise types, noise_index starts from 0; but for gate noise, it starts from 1. """ time: int qubits: QubitSet moment_type: MomentType noise_index: int class Moments(Mapping[MomentsKey, Instruction]): """ An ordered mapping of `MomentsKey` or `NoiseMomentsKey` to `Instruction`. The core data structure that contains instructions, ordering they are inserted in, and time slices when they occur. `Moments` implements `Mapping` and functions the same as a read-only dictionary. It is mutable only through the `add()` method. This data structure is useful to determine a dependency of instructions, such as printing or optimizing circuit structure, before sending it to a quantum device. The original insertion order is preserved and can be retrieved via the `values()` method. Args: instructions (Iterable[Instruction], optional): Instructions to initialize self. Default = []. Examples: >>> moments = Moments() >>> moments.add([Instruction(Gate.H(), 0), Instruction(Gate.CNot(), [0, 1])]) >>> moments.add([Instruction(Gate.H(), 0), Instruction(Gate.H(), 1)]) >>> for i, item in enumerate(moments.items()): ... print(f"Item {i}") ... print(f"\\tKey: {item[0]}") ... print(f"\\tValue: {item[1]}") ... Item 0 Key: MomentsKey(time=0, qubits=QubitSet([Qubit(0)])) Value: Instruction('operator': H, 'target': QubitSet([Qubit(0)])) Item 1 Key: MomentsKey(time=1, qubits=QubitSet([Qubit(0), Qubit(1)])) Value: Instruction('operator': CNOT, 'target': QubitSet([Qubit(0), Qubit(1)])) Item 2 Key: MomentsKey(time=2, qubits=QubitSet([Qubit(0)])) Value: Instruction('operator': H, 'target': QubitSet([Qubit(0)])) Item 3 Key: MomentsKey(time=2, qubits=QubitSet([Qubit(1)])) Value: Instruction('operator': H, 'target': QubitSet([Qubit(1)])) """ def __init__(self, instructions: Iterable[Instruction] = None): self._moments: OrderedDict[MomentsKey, Instruction] = OrderedDict() self._max_times: Dict[Qubit, int] = {} self._qubits = QubitSet() self._depth = 0 self.add(instructions or []) @property def depth(self) -> int: """int: Get the depth (number of slices) of self.""" return self._depth @property def qubit_count(self) -> int: """int: Get the number of qubits used across all of the instructions.""" return len(self._qubits) @property def qubits(self) -> QubitSet: """ QubitSet: Get the qubits used across all of the instructions. The order of qubits is based on the order in which the instructions were added. Note: Don't mutate this object, any changes may impact the behavior of this class and / or consumers. If you need to mutate this, then copy it via `QubitSet(moments.qubits())`. """ return self._qubits def time_slices(self) -> Dict[int, List[Instruction]]: """ Get instructions keyed by time. Returns: Dict[int, List[Instruction]]: Key is the time and value is a list of instructions that occur at that moment in time. The order of instructions is in no particular order. Note: This is a computed result over self and can be freely mutated. This is re-computed with every call, with a computational runtime O(N) where N is the number of instructions in self. """ time_slices = {} self.sort_moments() for key, instruction in self._moments.items(): instructions = time_slices.get(key.time, []) instructions.append(instruction) time_slices[key.time] = instructions return time_slices def add(self, instructions: Iterable[Instruction], noise_index: int = 0) -> None: """ Add instructions to self. Args: instructions (Iterable[Instruction]): Instructions to add to self. The instruction is added to the max time slice in which the instruction fits. """ for instruction in instructions: self._add(instruction, noise_index) def _add(self, instruction: Instruction, noise_index: int = 0) -> None: if isinstance(instruction.operator, Noise): self.add_noise(instruction) else: qubit_range = instruction.target time = max([self._max_time_for_qubit(qubit) for qubit in qubit_range]) + 1 # Mark all qubits in qubit_range with max_time for qubit in qubit_range: self._max_times[qubit] = max(time, self._max_time_for_qubit(qubit)) self._moments[ MomentsKey(time, instruction.target, MomentType.GATE, noise_index) ] = instruction self._qubits.update(instruction.target) self._depth = max(self._depth, time + 1) def add_noise( self, instruction: Instruction, input_type: str = "noise", noise_index: int = 0 ) -> None: qubit_range = instruction.target time = max(0, *[self._max_time_for_qubit(qubit) for qubit in qubit_range]) if input_type == MomentType.INITIALIZATION_NOISE: time = 0 while MomentsKey(time, qubit_range, input_type, noise_index) in self._moments: noise_index = noise_index + 1 self._moments[MomentsKey(time, qubit_range, input_type, noise_index)] = instruction self._qubits.update(qubit_range) def sort_moments(self) -> None: """ Make the disordered moments in order. 1. Make the readout noise in the end 2. Make the initialization noise at the beginning """ # key for NOISE, GATE and GATE_NOISE key_noise = [] # key for INITIALIZATION_NOISE key_initialization_noise = [] # key for READOUT_NOISE key_readout_noise = [] moment_copy = OrderedDict() sorted_moment = OrderedDict() for key, instruction in self._moments.items(): moment_copy[key] = instruction if key.moment_type == MomentType.READOUT_NOISE: key_readout_noise.append(key) elif key.moment_type == MomentType.INITIALIZATION_NOISE: key_initialization_noise.append(key) else: key_noise.append(key) for key in key_initialization_noise: sorted_moment[key] = moment_copy[key] for key in key_noise: sorted_moment[key] = moment_copy[key] # find the max time in the circuit and make it the time for readout noise max_time = max(self._depth - 1, 0) for key in key_readout_noise: sorted_moment[ MomentsKey(max_time, key.qubits, MomentType.READOUT_NOISE, key.noise_index) ] = moment_copy[key] self._moments = sorted_moment def _max_time_for_qubit(self, qubit: Qubit) -> int: return self._max_times.get(qubit, -1) # # Implement abstract methods, default to calling selfs underlying dictionary # def keys(self) -> KeysView[MomentsKey]: """Return a view of self's keys.""" return self._moments.keys() def items(self) -> ItemsView[MomentsKey, Instruction]: """Return a view of self's (key, instruction).""" return self._moments.items() def values(self) -> ValuesView[Instruction]: """Return a view of self's instructions.""" self.sort_moments() return self._moments.values() def get(self, key: MomentsKey, default=None) -> Instruction: """ Get the instruction in self by key. Args: key (MomentsKey): Key of the instruction to fetch. default (Any, optional): Value to return if `key` is not in `moments`. Default = `None`. Returns: Instruction: `moments[key]` if `key` in `moments`, else `default` is returned. """ return self._moments.get(key, default) def __getitem__(self, key): return self._moments.__getitem__(key) def __iter__(self): return self._moments.__iter__() def __len__(self): return self._moments.__len__() def __contains__(self, item): return self._moments.__contains__(item) def __eq__(self, other): if isinstance(other, Moments): return (self._moments) == (other._moments) return NotImplemented def __ne__(self, other): result = self.__eq__(other) if result is not NotImplemented: return not result return NotImplemented def __repr__(self): return self._moments.__repr__() def __str__(self): return self._moments.__str__()
the-stack_106_20182
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2018, Anaconda, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import mock from mock import patch # External imports # Bokeh imports from bokeh.core.validation import check_integrity from bokeh.plotting import figure from bokeh.models import GlyphRenderer, Label, Plot, LinearAxis from bokeh.models.ranges import FactorRange, DataRange1d, Range1d from bokeh.models.scales import CategoricalScale, LinearScale, LogScale from bokeh.models.tools import PanTool # Module under test import bokeh.models.plots as bmp #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- _LEGEND_EMPTY_WARNING = """ You are attemptings to set `plot.legend.location` on a plot that has zero legends added, this will have no effect. Before legend properties can be set, you must add a Legend explicitly, or call a glyph method with the 'legend' parameter set. """ #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- class TestPlotLegendProperty(object): def test_basic(self): plot = figure(tools='') x = plot.legend assert isinstance(x, bmp._list_attr_splat) assert len(x) == 0 plot.circle([1,2], [3,4], legend="foo") x = plot.legend assert isinstance(x, bmp._list_attr_splat) assert len(x) == 1 def test_warnign(self): plot = figure(tools='') with pytest.warns(UserWarning) as warns: plot.legend.location = "above" assert len(warns) == 1 assert warns[0].message.args[0] == _LEGEND_EMPTY_WARNING class TestPlotSelect(object): def setup_method(self): self._plot = figure(tools='pan') self._plot.circle([1,2,3], [3,2,1], name='foo') @patch('bokeh.models.plots.find') def test_string_arg(self, mock_find): self._plot.select('foo') assert mock_find.called assert mock_find.call_args[0][1] == dict(name='foo') @patch('bokeh.models.plots.find') def test_type_arg(self, mock_find): self._plot.select(PanTool) assert mock_find.called assert mock_find.call_args[0][1] == dict(type=PanTool) @patch('bokeh.models.plots.find') def test_kwargs(self, mock_find): kw = dict(name='foo', type=GlyphRenderer) self._plot.select(**kw) assert mock_find.called assert mock_find.call_args[0][1] == kw @patch('bokeh.models.plots.find') def test_single_selector_kwarg(self, mock_find): kw = dict(name='foo', type=GlyphRenderer) self._plot.select(selector=kw) assert mock_find.called assert mock_find.call_args[0][1] == kw def test_selector_kwarg_and_extra_kwargs(self): with pytest.raises(TypeError) as exc: self._plot.select(selector=dict(foo='foo'), bar='bar') assert "when passing 'selector' keyword arg, not other keyword args may be present" == str(exc.value) def test_bad_arg_type(self): with pytest.raises(TypeError) as exc: self._plot.select(10) assert "selector must be a dictionary, string or plot object." == str(exc.value) def test_too_many_args(self): with pytest.raises(TypeError) as exc: self._plot.select('foo', 'bar') assert 'select accepts at most ONE positional argument.' == str(exc.value) def test_no_input(self): with pytest.raises(TypeError) as exc: self._plot.select() assert 'select requires EITHER a positional argument, OR keyword arguments.' == str(exc.value) def test_arg_and_kwarg(self): with pytest.raises(TypeError) as exc: self._plot.select('foo', type=PanTool) assert 'select accepts EITHER a positional argument, OR keyword arguments (not both).' == str(exc.value) class TestPlotValidation(object): def test_missing_renderers(self): p = figure() p.renderers = [] with mock.patch('bokeh.core.validation.check.log') as mock_logger: check_integrity([p]) assert mock_logger.warning.call_count == 1 assert mock_logger.warning.call_args[0][0].startswith("W-1000 (MISSING_RENDERERS): Plot has no renderers") def test_missing_scale(self): p = figure() p.x_scale = None with mock.patch('bokeh.core.validation.check.log') as mock_logger: check_integrity([p]) assert mock_logger.error.call_count == 1 assert mock_logger.error.call_args[0][0].startswith("E-1008 (REQUIRED_SCALE): A required Scale object is missing: x_scale") p.y_scale = None with mock.patch('bokeh.core.validation.check.log') as mock_logger: check_integrity([p]) assert mock_logger.error.call_count == 1 assert mock_logger.error.call_args[0][0].startswith("E-1008 (REQUIRED_SCALE): A required Scale object is missing: x_scale, y_scale") def test_missing_range(self): p = figure() p.x_range = None with mock.patch('bokeh.core.validation.check.log') as mock_logger: check_integrity([p]) assert mock_logger.error.call_count == 1 assert mock_logger.error.call_args[0][0].startswith("E-1004 (REQUIRED_RANGE): A required Range object is missing: x_range") p.y_range = None with mock.patch('bokeh.core.validation.check.log') as mock_logger: check_integrity([p]) assert mock_logger.error.call_count == 1 assert mock_logger.error.call_args[0][0].startswith("E-1004 (REQUIRED_RANGE): A required Range object is missing: x_range, y_range") def test_bad_extra_range_name(self): p = figure() p.xaxis.x_range_name="junk" with mock.patch('bokeh.core.validation.check.log') as mock_logger: check_integrity([p]) assert mock_logger.error.call_count == 1 assert mock_logger.error.call_args[0][0].startswith( "E-1020 (BAD_EXTRA_RANGE_NAME): An extra range name is configued with a name that does not correspond to any range: x_range_name='junk' [LinearAxis" ) p = figure() p.extra_x_ranges['foo'] = Range1d() p.grid.x_range_name="junk" with mock.patch('bokeh.core.validation.check.log') as mock_logger: check_integrity([p]) assert mock_logger.error.call_count == 1 assert mock_logger.error.call_args[0][0].startswith( "E-1020 (BAD_EXTRA_RANGE_NAME): An extra range name is configued with a name that does not correspond to any range: x_range_name='junk' [Grid" ) assert mock_logger.error.call_args[0][0].count("Grid") == 2 def test_plot_add_layout_raises_error_if_not_render(): plot = figure() with pytest.raises(ValueError): plot.add_layout(Range1d()) def test_plot_add_layout_raises_error_if_plot_already_on_annotation(): plot = figure() with pytest.raises(ValueError): plot.add_layout(Label(plot=plot)) def test_plot_add_layout_adds_label_to_plot_renderers(): plot = figure() label = Label() plot.add_layout(label) assert label in plot.renderers def test_plot_add_layout_adds_axis_to_renderers_and_side_renderers(): plot = figure() axis = LinearAxis() plot.add_layout(axis, 'left') assert axis in plot.renderers assert axis in plot.left def test_sizing_mode_property_is_fixed_by_default(): plot = figure() assert plot.sizing_mode == 'fixed' class BaseTwinAxis(object): """Base class for testing extra ranges""" def verify_axis(self, axis_name): plot = Plot() range_obj = getattr(plot, 'extra_{}_ranges'.format(axis_name)) range_obj['foo_range'] = self.get_range_instance() assert range_obj['foo_range'] def test_x_range(self): self.verify_axis('x') def test_y_range(self): self.verify_axis('y') @staticmethod def get_range_instance(): raise NotImplementedError class TestCategoricalTwinAxis(BaseTwinAxis, object): """Test whether extra x and y ranges can be categorical""" @staticmethod def get_range_instance(): return FactorRange('foo', 'bar') class TestLinearTwinAxis(BaseTwinAxis, object): """Test whether extra x and y ranges can be Range1d""" @staticmethod def get_range_instance(): return Range1d(0, 42) def test_plot_with_no_title_specified_creates_an_empty_title(): plot = Plot() assert plot.title.text == "" def test_plot__scale_classmethod(): assert isinstance(Plot._scale("auto"), LinearScale) assert isinstance(Plot._scale("linear"), LinearScale) assert isinstance(Plot._scale("log"), LogScale) assert isinstance(Plot._scale("categorical"), CategoricalScale) with pytest.raises(ValueError): Plot._scale("malformed_type") def test__check_required_scale_has_scales(): plot = Plot() check = plot._check_required_scale() assert check == [] def test__check_required_scale_missing_scales(): plot = Plot(x_scale=None, y_scale=None) check = plot._check_required_scale() assert check != [] def test__check_compatible_scale_and_ranges_compat_numeric(): plot = Plot(x_scale=LinearScale(), x_range=Range1d()) check = plot._check_compatible_scale_and_ranges() assert check == [] plot = Plot(y_scale=LogScale(), y_range=DataRange1d()) check = plot._check_compatible_scale_and_ranges() assert check == [] def test__check_compatible_scale_and_ranges_compat_factor(): plot = Plot(x_scale=CategoricalScale(), x_range=FactorRange()) check = plot._check_compatible_scale_and_ranges() assert check == [] def test__check_compatible_scale_and_ranges_incompat_numeric_scale_and_factor_range(): plot = Plot(x_scale=LinearScale(), x_range=FactorRange()) check = plot._check_compatible_scale_and_ranges() assert check != [] def test__check_compatible_scale_and_ranges_incompat_factor_scale_and_numeric_range(): plot = Plot(x_scale=CategoricalScale(), x_range=DataRange1d()) check = plot._check_compatible_scale_and_ranges() assert check != [] #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
the-stack_106_20184
#!/usr/bin/env python # # Copyright 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Tests for apitools.base.protorpclite.messages.""" import pickle import re import sys import types import unittest import six from apitools.base.protorpclite import descriptor from apitools.base.protorpclite import message_types from apitools.base.protorpclite import messages from apitools.base.protorpclite import test_util # This package plays lots of games with modifying global variables inside # test cases. Hence: # pylint:disable=function-redefined # pylint:disable=global-variable-not-assigned # pylint:disable=global-variable-undefined # pylint:disable=redefined-outer-name # pylint:disable=undefined-variable # pylint:disable=unused-variable # pylint:disable=too-many-lines class ModuleInterfaceTest(test_util.ModuleInterfaceTest, test_util.TestCase): MODULE = messages class ValidationErrorTest(test_util.TestCase): def testStr_NoFieldName(self): """Test string version of ValidationError when no name provided.""" self.assertEquals('Validation error', str(messages.ValidationError('Validation error'))) def testStr_FieldName(self): """Test string version of ValidationError when no name provided.""" validation_error = messages.ValidationError('Validation error') validation_error.field_name = 'a_field' self.assertEquals('Validation error', str(validation_error)) class EnumTest(test_util.TestCase): def setUp(self): """Set up tests.""" # Redefine Color class in case so that changes to it (an # error) in one test does not affect other tests. global Color # pylint:disable=global-variable-not-assigned # pylint:disable=unused-variable class Color(messages.Enum): RED = 20 ORANGE = 2 YELLOW = 40 GREEN = 4 BLUE = 50 INDIGO = 5 VIOLET = 80 def testNames(self): """Test that names iterates over enum names.""" self.assertEquals( set(['BLUE', 'GREEN', 'INDIGO', 'ORANGE', 'RED', 'VIOLET', 'YELLOW']), set(Color.names())) def testNumbers(self): """Tests that numbers iterates of enum numbers.""" self.assertEquals(set([2, 4, 5, 20, 40, 50, 80]), set(Color.numbers())) def testIterate(self): """Test that __iter__ iterates over all enum values.""" self.assertEquals(set(Color), set([Color.RED, Color.ORANGE, Color.YELLOW, Color.GREEN, Color.BLUE, Color.INDIGO, Color.VIOLET])) def testNaturalOrder(self): """Test that natural order enumeration is in numeric order.""" self.assertEquals([Color.ORANGE, Color.GREEN, Color.INDIGO, Color.RED, Color.YELLOW, Color.BLUE, Color.VIOLET], sorted(Color)) def testByName(self): """Test look-up by name.""" self.assertEquals(Color.RED, Color.lookup_by_name('RED')) self.assertRaises(KeyError, Color.lookup_by_name, 20) self.assertRaises(KeyError, Color.lookup_by_name, Color.RED) def testByNumber(self): """Test look-up by number.""" self.assertRaises(KeyError, Color.lookup_by_number, 'RED') self.assertEquals(Color.RED, Color.lookup_by_number(20)) self.assertRaises(KeyError, Color.lookup_by_number, Color.RED) def testConstructor(self): """Test that constructor look-up by name or number.""" self.assertEquals(Color.RED, Color('RED')) self.assertEquals(Color.RED, Color(u'RED')) self.assertEquals(Color.RED, Color(20)) if six.PY2: self.assertEquals(Color.RED, Color(long(20))) self.assertEquals(Color.RED, Color(Color.RED)) self.assertRaises(TypeError, Color, 'Not exists') self.assertRaises(TypeError, Color, 'Red') self.assertRaises(TypeError, Color, 100) self.assertRaises(TypeError, Color, 10.0) def testLen(self): """Test that len function works to count enums.""" self.assertEquals(7, len(Color)) def testNoSubclasses(self): """Test that it is not possible to sub-class enum classes.""" def declare_subclass(): class MoreColor(Color): pass self.assertRaises(messages.EnumDefinitionError, declare_subclass) def testClassNotMutable(self): """Test that enum classes themselves are not mutable.""" self.assertRaises(AttributeError, setattr, Color, 'something_new', 10) def testInstancesMutable(self): """Test that enum instances are not mutable.""" self.assertRaises(TypeError, setattr, Color.RED, 'something_new', 10) def testDefEnum(self): """Test def_enum works by building enum class from dict.""" WeekDay = messages.Enum.def_enum({'Monday': 1, 'Tuesday': 2, 'Wednesday': 3, 'Thursday': 4, 'Friday': 6, 'Saturday': 7, 'Sunday': 8}, 'WeekDay') self.assertEquals('Wednesday', WeekDay(3).name) self.assertEquals(6, WeekDay('Friday').number) self.assertEquals(WeekDay.Sunday, WeekDay('Sunday')) def testNonInt(self): """Test that non-integer values rejection by enum def.""" self.assertRaises(messages.EnumDefinitionError, messages.Enum.def_enum, {'Bad': '1'}, 'BadEnum') def testNegativeInt(self): """Test that negative numbers rejection by enum def.""" self.assertRaises(messages.EnumDefinitionError, messages.Enum.def_enum, {'Bad': -1}, 'BadEnum') def testLowerBound(self): """Test that zero is accepted by enum def.""" class NotImportant(messages.Enum): """Testing for value zero""" VALUE = 0 self.assertEquals(0, int(NotImportant.VALUE)) def testTooLargeInt(self): """Test that numbers too large are rejected.""" self.assertRaises(messages.EnumDefinitionError, messages.Enum.def_enum, {'Bad': (2 ** 29)}, 'BadEnum') def testRepeatedInt(self): """Test duplicated numbers are forbidden.""" self.assertRaises(messages.EnumDefinitionError, messages.Enum.def_enum, {'Ok': 1, 'Repeated': 1}, 'BadEnum') def testStr(self): """Test converting to string.""" self.assertEquals('RED', str(Color.RED)) self.assertEquals('ORANGE', str(Color.ORANGE)) def testInt(self): """Test converting to int.""" self.assertEquals(20, int(Color.RED)) self.assertEquals(2, int(Color.ORANGE)) def testRepr(self): """Test enum representation.""" self.assertEquals('Color(RED, 20)', repr(Color.RED)) self.assertEquals('Color(YELLOW, 40)', repr(Color.YELLOW)) def testDocstring(self): """Test that docstring is supported ok.""" class NotImportant(messages.Enum): """I have a docstring.""" VALUE1 = 1 self.assertEquals('I have a docstring.', NotImportant.__doc__) def testDeleteEnumValue(self): """Test that enum values cannot be deleted.""" self.assertRaises(TypeError, delattr, Color, 'RED') def testEnumName(self): """Test enum name.""" module_name = test_util.get_module_name(EnumTest) self.assertEquals('%s.Color' % module_name, Color.definition_name()) self.assertEquals(module_name, Color.outer_definition_name()) self.assertEquals(module_name, Color.definition_package()) def testDefinitionName_OverrideModule(self): """Test enum module is overriden by module package name.""" global package try: package = 'my.package' self.assertEquals('my.package.Color', Color.definition_name()) self.assertEquals('my.package', Color.outer_definition_name()) self.assertEquals('my.package', Color.definition_package()) finally: del package def testDefinitionName_NoModule(self): """Test what happens when there is no module for enum.""" class Enum1(messages.Enum): pass original_modules = sys.modules sys.modules = dict(sys.modules) try: del sys.modules[__name__] self.assertEquals('Enum1', Enum1.definition_name()) self.assertEquals(None, Enum1.outer_definition_name()) self.assertEquals(None, Enum1.definition_package()) self.assertEquals(six.text_type, type(Enum1.definition_name())) finally: sys.modules = original_modules def testDefinitionName_Nested(self): """Test nested Enum names.""" class MyMessage(messages.Message): class NestedEnum(messages.Enum): pass class NestedMessage(messages.Message): class NestedEnum(messages.Enum): pass module_name = test_util.get_module_name(EnumTest) self.assertEquals('%s.MyMessage.NestedEnum' % module_name, MyMessage.NestedEnum.definition_name()) self.assertEquals('%s.MyMessage' % module_name, MyMessage.NestedEnum.outer_definition_name()) self.assertEquals(module_name, MyMessage.NestedEnum.definition_package()) self.assertEquals( '%s.MyMessage.NestedMessage.NestedEnum' % module_name, MyMessage.NestedMessage.NestedEnum.definition_name()) self.assertEquals( '%s.MyMessage.NestedMessage' % module_name, MyMessage.NestedMessage.NestedEnum.outer_definition_name()) self.assertEquals( module_name, MyMessage.NestedMessage.NestedEnum.definition_package()) def testMessageDefinition(self): """Test that enumeration knows its enclosing message definition.""" class OuterEnum(messages.Enum): pass self.assertEquals(None, OuterEnum.message_definition()) class OuterMessage(messages.Message): class InnerEnum(messages.Enum): pass self.assertEquals( OuterMessage, OuterMessage.InnerEnum.message_definition()) def testComparison(self): """Test comparing various enums to different types.""" class Enum1(messages.Enum): VAL1 = 1 VAL2 = 2 class Enum2(messages.Enum): VAL1 = 1 self.assertEquals(Enum1.VAL1, Enum1.VAL1) self.assertNotEquals(Enum1.VAL1, Enum1.VAL2) self.assertNotEquals(Enum1.VAL1, Enum2.VAL1) self.assertNotEquals(Enum1.VAL1, 'VAL1') self.assertNotEquals(Enum1.VAL1, 1) self.assertNotEquals(Enum1.VAL1, 2) self.assertNotEquals(Enum1.VAL1, None) self.assertNotEquals(Enum1.VAL1, Enum2.VAL1) self.assertTrue(Enum1.VAL1 < Enum1.VAL2) self.assertTrue(Enum1.VAL2 > Enum1.VAL1) self.assertNotEquals(1, Enum2.VAL1) def testPickle(self): """Testing pickling and unpickling of Enum instances.""" colors = list(Color) unpickled = pickle.loads(pickle.dumps(colors)) self.assertEquals(colors, unpickled) # Unpickling shouldn't create new enum instances. for i, color in enumerate(colors): self.assertTrue(color is unpickled[i]) class FieldListTest(test_util.TestCase): def setUp(self): self.integer_field = messages.IntegerField(1, repeated=True) def testConstructor(self): self.assertEquals([1, 2, 3], messages.FieldList(self.integer_field, [1, 2, 3])) self.assertEquals([1, 2, 3], messages.FieldList(self.integer_field, (1, 2, 3))) self.assertEquals([], messages.FieldList(self.integer_field, [])) def testNone(self): self.assertRaises(TypeError, messages.FieldList, self.integer_field, None) def testDoNotAutoConvertString(self): string_field = messages.StringField(1, repeated=True) self.assertRaises(messages.ValidationError, messages.FieldList, string_field, 'abc') def testConstructorCopies(self): a_list = [1, 3, 6] field_list = messages.FieldList(self.integer_field, a_list) self.assertFalse(a_list is field_list) self.assertFalse(field_list is messages.FieldList(self.integer_field, field_list)) def testNonRepeatedField(self): self.assertRaisesWithRegexpMatch( messages.FieldDefinitionError, 'FieldList may only accept repeated fields', messages.FieldList, messages.IntegerField(1), []) def testConstructor_InvalidValues(self): self.assertRaisesWithRegexpMatch( messages.ValidationError, re.escape("Expected type %r " "for IntegerField, found 1 (type %r)" % (six.integer_types, str)), messages.FieldList, self.integer_field, ["1", "2", "3"]) def testConstructor_Scalars(self): self.assertRaisesWithRegexpMatch( messages.ValidationError, "IntegerField is repeated. Found: 3", messages.FieldList, self.integer_field, 3) self.assertRaisesWithRegexpMatch( messages.ValidationError, ("IntegerField is repeated. Found: " "<(list[_]?|sequence)iterator object"), messages.FieldList, self.integer_field, iter([1, 2, 3])) def testSetSlice(self): field_list = messages.FieldList(self.integer_field, [1, 2, 3, 4, 5]) field_list[1:3] = [10, 20] self.assertEquals([1, 10, 20, 4, 5], field_list) def testSetSlice_InvalidValues(self): field_list = messages.FieldList(self.integer_field, [1, 2, 3, 4, 5]) def setslice(): field_list[1:3] = ['10', '20'] msg_re = re.escape("Expected type %r " "for IntegerField, found 10 (type %r)" % (six.integer_types, str)) self.assertRaisesWithRegexpMatch( messages.ValidationError, msg_re, setslice) def testSetItem(self): field_list = messages.FieldList(self.integer_field, [2]) field_list[0] = 10 self.assertEquals([10], field_list) def testSetItem_InvalidValues(self): field_list = messages.FieldList(self.integer_field, [2]) def setitem(): field_list[0] = '10' self.assertRaisesWithRegexpMatch( messages.ValidationError, re.escape("Expected type %r " "for IntegerField, found 10 (type %r)" % (six.integer_types, str)), setitem) def testAppend(self): field_list = messages.FieldList(self.integer_field, [2]) field_list.append(10) self.assertEquals([2, 10], field_list) def testAppend_InvalidValues(self): field_list = messages.FieldList(self.integer_field, [2]) field_list.name = 'a_field' def append(): field_list.append('10') self.assertRaisesWithRegexpMatch( messages.ValidationError, re.escape("Expected type %r " "for IntegerField, found 10 (type %r)" % (six.integer_types, str)), append) def testExtend(self): field_list = messages.FieldList(self.integer_field, [2]) field_list.extend([10]) self.assertEquals([2, 10], field_list) def testExtend_InvalidValues(self): field_list = messages.FieldList(self.integer_field, [2]) def extend(): field_list.extend(['10']) self.assertRaisesWithRegexpMatch( messages.ValidationError, re.escape("Expected type %r " "for IntegerField, found 10 (type %r)" % (six.integer_types, str)), extend) def testInsert(self): field_list = messages.FieldList(self.integer_field, [2, 3]) field_list.insert(1, 10) self.assertEquals([2, 10, 3], field_list) def testInsert_InvalidValues(self): field_list = messages.FieldList(self.integer_field, [2, 3]) def insert(): field_list.insert(1, '10') self.assertRaisesWithRegexpMatch( messages.ValidationError, re.escape("Expected type %r " "for IntegerField, found 10 (type %r)" % (six.integer_types, str)), insert) def testPickle(self): """Testing pickling and unpickling of FieldList instances.""" field_list = messages.FieldList(self.integer_field, [1, 2, 3, 4, 5]) unpickled = pickle.loads(pickle.dumps(field_list)) self.assertEquals(field_list, unpickled) self.assertIsInstance(unpickled.field, messages.IntegerField) self.assertEquals(1, unpickled.field.number) self.assertTrue(unpickled.field.repeated) class FieldTest(test_util.TestCase): def ActionOnAllFieldClasses(self, action): """Test all field classes except Message and Enum. Message and Enum require separate tests. Args: action: Callable that takes the field class as a parameter. """ classes = (messages.IntegerField, messages.FloatField, messages.BooleanField, messages.BytesField, messages.StringField) for field_class in classes: action(field_class) def testNumberAttribute(self): """Test setting the number attribute.""" def action(field_class): # Check range. self.assertRaises(messages.InvalidNumberError, field_class, 0) self.assertRaises(messages.InvalidNumberError, field_class, -1) self.assertRaises(messages.InvalidNumberError, field_class, messages.MAX_FIELD_NUMBER + 1) # Check reserved. self.assertRaises(messages.InvalidNumberError, field_class, messages.FIRST_RESERVED_FIELD_NUMBER) self.assertRaises(messages.InvalidNumberError, field_class, messages.LAST_RESERVED_FIELD_NUMBER) self.assertRaises(messages.InvalidNumberError, field_class, '1') # This one should work. field_class(number=1) self.ActionOnAllFieldClasses(action) def testRequiredAndRepeated(self): """Test setting the required and repeated fields.""" def action(field_class): field_class(1, required=True) field_class(1, repeated=True) self.assertRaises(messages.FieldDefinitionError, field_class, 1, required=True, repeated=True) self.ActionOnAllFieldClasses(action) def testInvalidVariant(self): """Test field with invalid variants.""" def action(field_class): if field_class is not message_types.DateTimeField: self.assertRaises(messages.InvalidVariantError, field_class, 1, variant=messages.Variant.ENUM) self.ActionOnAllFieldClasses(action) def testDefaultVariant(self): """Test that default variant is used when not set.""" def action(field_class): field = field_class(1) self.assertEquals(field_class.DEFAULT_VARIANT, field.variant) self.ActionOnAllFieldClasses(action) def testAlternateVariant(self): """Test that default variant is used when not set.""" field = messages.IntegerField(1, variant=messages.Variant.UINT32) self.assertEquals(messages.Variant.UINT32, field.variant) def testDefaultFields_Single(self): """Test default field is correct type (single).""" defaults = { messages.IntegerField: 10, messages.FloatField: 1.5, messages.BooleanField: False, messages.BytesField: b'abc', messages.StringField: u'abc', } def action(field_class): field_class(1, default=defaults[field_class]) self.ActionOnAllFieldClasses(action) # Run defaults test again checking for str/unicode compatiblity. defaults[messages.StringField] = 'abc' self.ActionOnAllFieldClasses(action) def testStringField_BadUnicodeInDefault(self): """Test binary values in string field.""" self.assertRaisesWithRegexpMatch( messages.InvalidDefaultError, r"Invalid default value for StringField:.*: " r"Field encountered non-ASCII string .*: " r"'ascii' codec can't decode byte 0x89 in position 0: " r"ordinal not in range", messages.StringField, 1, default=b'\x89') def testDefaultFields_InvalidSingle(self): """Test default field is correct type (invalid single).""" def action(field_class): self.assertRaises(messages.InvalidDefaultError, field_class, 1, default=object()) self.ActionOnAllFieldClasses(action) def testDefaultFields_InvalidRepeated(self): """Test default field does not accept defaults.""" self.assertRaisesWithRegexpMatch( messages.FieldDefinitionError, 'Repeated fields may not have defaults', messages.StringField, 1, repeated=True, default=[1, 2, 3]) def testDefaultFields_None(self): """Test none is always acceptable.""" def action(field_class): field_class(1, default=None) field_class(1, required=True, default=None) field_class(1, repeated=True, default=None) self.ActionOnAllFieldClasses(action) def testDefaultFields_Enum(self): """Test the default for enum fields.""" class Symbol(messages.Enum): ALPHA = 1 BETA = 2 GAMMA = 3 field = messages.EnumField(Symbol, 1, default=Symbol.ALPHA) self.assertEquals(Symbol.ALPHA, field.default) def testDefaultFields_EnumStringDelayedResolution(self): """Test that enum fields resolve default strings.""" field = messages.EnumField( 'apitools.base.protorpclite.descriptor.FieldDescriptor.Label', 1, default='OPTIONAL') self.assertEquals( descriptor.FieldDescriptor.Label.OPTIONAL, field.default) def testDefaultFields_EnumIntDelayedResolution(self): """Test that enum fields resolve default integers.""" field = messages.EnumField( 'apitools.base.protorpclite.descriptor.FieldDescriptor.Label', 1, default=2) self.assertEquals( descriptor.FieldDescriptor.Label.REQUIRED, field.default) def testDefaultFields_EnumOkIfTypeKnown(self): """Test enum fields accept valid default values when type is known.""" field = messages.EnumField(descriptor.FieldDescriptor.Label, 1, default='REPEATED') self.assertEquals( descriptor.FieldDescriptor.Label.REPEATED, field.default) def testDefaultFields_EnumForceCheckIfTypeKnown(self): """Test that enum fields validate default values if type is known.""" self.assertRaisesWithRegexpMatch(TypeError, 'No such value for NOT_A_LABEL in ' 'Enum Label', messages.EnumField, descriptor.FieldDescriptor.Label, 1, default='NOT_A_LABEL') def testDefaultFields_EnumInvalidDelayedResolution(self): """Test that enum fields raise errors upon delayed resolution error.""" field = messages.EnumField( 'apitools.base.protorpclite.descriptor.FieldDescriptor.Label', 1, default=200) self.assertRaisesWithRegexpMatch(TypeError, 'No such value for 200 in Enum Label', getattr, field, 'default') def testValidate_Valid(self): """Test validation of valid values.""" values = { messages.IntegerField: 10, messages.FloatField: 1.5, messages.BooleanField: False, messages.BytesField: b'abc', messages.StringField: u'abc', } def action(field_class): # Optional. field = field_class(1) field.validate(values[field_class]) # Required. field = field_class(1, required=True) field.validate(values[field_class]) # Repeated. field = field_class(1, repeated=True) field.validate([]) field.validate(()) field.validate([values[field_class]]) field.validate((values[field_class],)) # Right value, but not repeated. self.assertRaises(messages.ValidationError, field.validate, values[field_class]) self.assertRaises(messages.ValidationError, field.validate, values[field_class]) self.ActionOnAllFieldClasses(action) def testValidate_Invalid(self): """Test validation of valid values.""" values = { messages.IntegerField: "10", messages.FloatField: "blah", messages.BooleanField: 0, messages.BytesField: 10.20, messages.StringField: 42, } def action(field_class): # Optional. field = field_class(1) self.assertRaises(messages.ValidationError, field.validate, values[field_class]) # Required. field = field_class(1, required=True) self.assertRaises(messages.ValidationError, field.validate, values[field_class]) # Repeated. field = field_class(1, repeated=True) self.assertRaises(messages.ValidationError, field.validate, [values[field_class]]) self.assertRaises(messages.ValidationError, field.validate, (values[field_class],)) self.ActionOnAllFieldClasses(action) def testValidate_None(self): """Test that None is valid for non-required fields.""" def action(field_class): # Optional. field = field_class(1) field.validate(None) # Required. field = field_class(1, required=True) self.assertRaisesWithRegexpMatch(messages.ValidationError, 'Required field is missing', field.validate, None) # Repeated. field = field_class(1, repeated=True) field.validate(None) self.assertRaisesWithRegexpMatch( messages.ValidationError, 'Repeated values for %s may ' 'not be None' % field_class.__name__, field.validate, [None]) self.assertRaises(messages.ValidationError, field.validate, (None,)) self.ActionOnAllFieldClasses(action) def testValidateElement(self): """Test validation of valid values.""" values = { messages.IntegerField: (10, -1, 0), messages.FloatField: (1.5, -1.5, 3), # for json it is all a number messages.BooleanField: (True, False), messages.BytesField: (b'abc',), messages.StringField: (u'abc',), } def action(field_class): # Optional. field = field_class(1) for value in values[field_class]: field.validate_element(value) # Required. field = field_class(1, required=True) for value in values[field_class]: field.validate_element(value) # Repeated. field = field_class(1, repeated=True) self.assertRaises(messages.ValidationError, field.validate_element, []) self.assertRaises(messages.ValidationError, field.validate_element, ()) for value in values[field_class]: field.validate_element(value) # Right value, but repeated. self.assertRaises(messages.ValidationError, field.validate_element, list(values[field_class])) # testing list self.assertRaises(messages.ValidationError, field.validate_element, values[field_class]) # testing tuple self.ActionOnAllFieldClasses(action) def testValidateCastingElement(self): field = messages.FloatField(1) self.assertEquals(type(field.validate_element(12)), float) self.assertEquals(type(field.validate_element(12.0)), float) # pylint: disable=redefined-variable-type field = messages.IntegerField(1) self.assertEquals(type(field.validate_element(12)), int) self.assertRaises(messages.ValidationError, field.validate_element, 12.0) # should fails from float to int def testReadOnly(self): """Test that objects are all read-only.""" def action(field_class): field = field_class(10) self.assertRaises(AttributeError, setattr, field, 'number', 20) self.assertRaises(AttributeError, setattr, field, 'anything_else', 'whatever') self.ActionOnAllFieldClasses(action) def testMessageField(self): """Test the construction of message fields.""" self.assertRaises(messages.FieldDefinitionError, messages.MessageField, str, 10) self.assertRaises(messages.FieldDefinitionError, messages.MessageField, messages.Message, 10) class MyMessage(messages.Message): pass field = messages.MessageField(MyMessage, 10) self.assertEquals(MyMessage, field.type) def testMessageField_ForwardReference(self): """Test the construction of forward reference message fields.""" global MyMessage global ForwardMessage try: class MyMessage(messages.Message): self_reference = messages.MessageField('MyMessage', 1) forward = messages.MessageField('ForwardMessage', 2) nested = messages.MessageField( 'ForwardMessage.NestedMessage', 3) inner = messages.MessageField('Inner', 4) class Inner(messages.Message): sibling = messages.MessageField('Sibling', 1) class Sibling(messages.Message): pass class ForwardMessage(messages.Message): class NestedMessage(messages.Message): pass self.assertEquals(MyMessage, MyMessage.field_by_name('self_reference').type) self.assertEquals(ForwardMessage, MyMessage.field_by_name('forward').type) self.assertEquals(ForwardMessage.NestedMessage, MyMessage.field_by_name('nested').type) self.assertEquals(MyMessage.Inner, MyMessage.field_by_name('inner').type) self.assertEquals(MyMessage.Sibling, MyMessage.Inner.field_by_name('sibling').type) finally: try: del MyMessage del ForwardMessage except: # pylint:disable=bare-except pass def testMessageField_WrongType(self): """Test that forward referencing the wrong type raises an error.""" global AnEnum try: class AnEnum(messages.Enum): pass class AnotherMessage(messages.Message): a_field = messages.MessageField('AnEnum', 1) self.assertRaises(messages.FieldDefinitionError, getattr, AnotherMessage.field_by_name('a_field'), 'type') finally: del AnEnum def testMessageFieldValidate(self): """Test validation on message field.""" class MyMessage(messages.Message): pass class AnotherMessage(messages.Message): pass field = messages.MessageField(MyMessage, 10) field.validate(MyMessage()) self.assertRaises(messages.ValidationError, field.validate, AnotherMessage()) def testMessageFieldMessageType(self): """Test message_type property.""" class MyMessage(messages.Message): pass class HasMessage(messages.Message): field = messages.MessageField(MyMessage, 1) self.assertEqual(HasMessage.field.type, HasMessage.field.message_type) def testMessageFieldValueFromMessage(self): class MyMessage(messages.Message): pass class HasMessage(messages.Message): field = messages.MessageField(MyMessage, 1) instance = MyMessage() self.assertTrue( instance is HasMessage.field.value_from_message(instance)) def testMessageFieldValueFromMessageWrongType(self): class MyMessage(messages.Message): pass class HasMessage(messages.Message): field = messages.MessageField(MyMessage, 1) self.assertRaisesWithRegexpMatch( messages.DecodeError, 'Expected type MyMessage, got int: 10', HasMessage.field.value_from_message, 10) def testMessageFieldValueToMessage(self): class MyMessage(messages.Message): pass class HasMessage(messages.Message): field = messages.MessageField(MyMessage, 1) instance = MyMessage() self.assertTrue( instance is HasMessage.field.value_to_message(instance)) def testMessageFieldValueToMessageWrongType(self): class MyMessage(messages.Message): pass class MyOtherMessage(messages.Message): pass class HasMessage(messages.Message): field = messages.MessageField(MyMessage, 1) instance = MyOtherMessage() self.assertRaisesWithRegexpMatch( messages.EncodeError, 'Expected type MyMessage, got MyOtherMessage: <MyOtherMessage>', HasMessage.field.value_to_message, instance) def testIntegerField_AllowLong(self): """Test that the integer field allows for longs.""" if six.PY2: messages.IntegerField(10, default=long(10)) def testMessageFieldValidate_Initialized(self): """Test validation on message field.""" class MyMessage(messages.Message): field1 = messages.IntegerField(1, required=True) field = messages.MessageField(MyMessage, 10) # Will validate messages where is_initialized() is False. message = MyMessage() field.validate(message) message.field1 = 20 field.validate(message) def testEnumField(self): """Test the construction of enum fields.""" self.assertRaises(messages.FieldDefinitionError, messages.EnumField, str, 10) self.assertRaises(messages.FieldDefinitionError, messages.EnumField, messages.Enum, 10) class Color(messages.Enum): RED = 1 GREEN = 2 BLUE = 3 field = messages.EnumField(Color, 10) self.assertEquals(Color, field.type) class Another(messages.Enum): VALUE = 1 self.assertRaises(messages.InvalidDefaultError, messages.EnumField, Color, 10, default=Another.VALUE) def testEnumField_ForwardReference(self): """Test the construction of forward reference enum fields.""" global MyMessage global ForwardEnum global ForwardMessage try: class MyMessage(messages.Message): forward = messages.EnumField('ForwardEnum', 1) nested = messages.EnumField('ForwardMessage.NestedEnum', 2) inner = messages.EnumField('Inner', 3) class Inner(messages.Enum): pass class ForwardEnum(messages.Enum): pass class ForwardMessage(messages.Message): class NestedEnum(messages.Enum): pass self.assertEquals(ForwardEnum, MyMessage.field_by_name('forward').type) self.assertEquals(ForwardMessage.NestedEnum, MyMessage.field_by_name('nested').type) self.assertEquals(MyMessage.Inner, MyMessage.field_by_name('inner').type) finally: try: del MyMessage del ForwardEnum del ForwardMessage except: # pylint:disable=bare-except pass def testEnumField_WrongType(self): """Test that forward referencing the wrong type raises an error.""" global AMessage try: class AMessage(messages.Message): pass class AnotherMessage(messages.Message): a_field = messages.EnumField('AMessage', 1) self.assertRaises(messages.FieldDefinitionError, getattr, AnotherMessage.field_by_name('a_field'), 'type') finally: del AMessage def testMessageDefinition(self): """Test that message definition is set on fields.""" class MyMessage(messages.Message): my_field = messages.StringField(1) self.assertEquals( MyMessage, MyMessage.field_by_name('my_field').message_definition()) def testNoneAssignment(self): """Test that assigning None does not change comparison.""" class MyMessage(messages.Message): my_field = messages.StringField(1) m1 = MyMessage() m2 = MyMessage() m2.my_field = None self.assertEquals(m1, m2) def testNonAsciiStr(self): """Test validation fails for non-ascii StringField values.""" class Thing(messages.Message): string_field = messages.StringField(2) thing = Thing() self.assertRaisesWithRegexpMatch( messages.ValidationError, 'Field string_field encountered non-ASCII string', setattr, thing, 'string_field', test_util.BINARY) class MessageTest(test_util.TestCase): """Tests for message class.""" def CreateMessageClass(self): """Creates a simple message class with 3 fields. Fields are defined in alphabetical order but with conflicting numeric order. """ class ComplexMessage(messages.Message): a3 = messages.IntegerField(3) b1 = messages.StringField(1) c2 = messages.StringField(2) return ComplexMessage def testSameNumbers(self): """Test that cannot assign two fields with same numbers.""" def action(): class BadMessage(messages.Message): f1 = messages.IntegerField(1) f2 = messages.IntegerField(1) self.assertRaises(messages.DuplicateNumberError, action) def testStrictAssignment(self): """Tests that cannot assign to unknown or non-reserved attributes.""" class SimpleMessage(messages.Message): field = messages.IntegerField(1) simple_message = SimpleMessage() self.assertRaises(AttributeError, setattr, simple_message, 'does_not_exist', 10) def testListAssignmentDoesNotCopy(self): class SimpleMessage(messages.Message): repeated = messages.IntegerField(1, repeated=True) message = SimpleMessage() original = message.repeated message.repeated = [] self.assertFalse(original is message.repeated) def testValidate_Optional(self): """Tests validation of optional fields.""" class SimpleMessage(messages.Message): non_required = messages.IntegerField(1) simple_message = SimpleMessage() simple_message.check_initialized() simple_message.non_required = 10 simple_message.check_initialized() def testValidate_Required(self): """Tests validation of required fields.""" class SimpleMessage(messages.Message): required = messages.IntegerField(1, required=True) simple_message = SimpleMessage() self.assertRaises(messages.ValidationError, simple_message.check_initialized) simple_message.required = 10 simple_message.check_initialized() def testValidate_Repeated(self): """Tests validation of repeated fields.""" class SimpleMessage(messages.Message): repeated = messages.IntegerField(1, repeated=True) simple_message = SimpleMessage() # Check valid values. for valid_value in [], [10], [10, 20], (), (10,), (10, 20): simple_message.repeated = valid_value simple_message.check_initialized() # Check cleared. simple_message.repeated = [] simple_message.check_initialized() # Check invalid values. for invalid_value in 10, ['10', '20'], [None], (None,): self.assertRaises( messages.ValidationError, setattr, simple_message, 'repeated', invalid_value) def testIsInitialized(self): """Tests is_initialized.""" class SimpleMessage(messages.Message): required = messages.IntegerField(1, required=True) simple_message = SimpleMessage() self.assertFalse(simple_message.is_initialized()) simple_message.required = 10 self.assertTrue(simple_message.is_initialized()) def testIsInitializedNestedField(self): """Tests is_initialized for nested fields.""" class SimpleMessage(messages.Message): required = messages.IntegerField(1, required=True) class NestedMessage(messages.Message): simple = messages.MessageField(SimpleMessage, 1) simple_message = SimpleMessage() self.assertFalse(simple_message.is_initialized()) nested_message = NestedMessage(simple=simple_message) self.assertFalse(nested_message.is_initialized()) simple_message.required = 10 self.assertTrue(simple_message.is_initialized()) self.assertTrue(nested_message.is_initialized()) def testInitializeNestedFieldFromDict(self): """Tests initializing nested fields from dict.""" class SimpleMessage(messages.Message): required = messages.IntegerField(1, required=True) class NestedMessage(messages.Message): simple = messages.MessageField(SimpleMessage, 1) class RepeatedMessage(messages.Message): simple = messages.MessageField(SimpleMessage, 1, repeated=True) nested_message1 = NestedMessage(simple={'required': 10}) self.assertTrue(nested_message1.is_initialized()) self.assertTrue(nested_message1.simple.is_initialized()) nested_message2 = NestedMessage() nested_message2.simple = {'required': 10} self.assertTrue(nested_message2.is_initialized()) self.assertTrue(nested_message2.simple.is_initialized()) repeated_values = [{}, {'required': 10}, SimpleMessage(required=20)] repeated_message1 = RepeatedMessage(simple=repeated_values) self.assertEquals(3, len(repeated_message1.simple)) self.assertFalse(repeated_message1.is_initialized()) repeated_message1.simple[0].required = 0 self.assertTrue(repeated_message1.is_initialized()) repeated_message2 = RepeatedMessage() repeated_message2.simple = repeated_values self.assertEquals(3, len(repeated_message2.simple)) self.assertFalse(repeated_message2.is_initialized()) repeated_message2.simple[0].required = 0 self.assertTrue(repeated_message2.is_initialized()) def testNestedMethodsNotAllowed(self): """Test that method definitions on Message classes are not allowed.""" def action(): class WithMethods(messages.Message): def not_allowed(self): pass self.assertRaises(messages.MessageDefinitionError, action) def testNestedAttributesNotAllowed(self): """Test attribute assignment on Message classes is not allowed.""" def int_attribute(): class WithMethods(messages.Message): not_allowed = 1 def string_attribute(): class WithMethods(messages.Message): not_allowed = 'not allowed' def enum_attribute(): class WithMethods(messages.Message): not_allowed = Color.RED for action in (int_attribute, string_attribute, enum_attribute): self.assertRaises(messages.MessageDefinitionError, action) def testNameIsSetOnFields(self): """Make sure name is set on fields after Message class init.""" class HasNamedFields(messages.Message): field = messages.StringField(1) self.assertEquals('field', HasNamedFields.field_by_number(1).name) def testSubclassingMessageDisallowed(self): """Not permitted to create sub-classes of message classes.""" class SuperClass(messages.Message): pass def action(): class SubClass(SuperClass): pass self.assertRaises(messages.MessageDefinitionError, action) def testAllFields(self): """Test all_fields method.""" ComplexMessage = self.CreateMessageClass() fields = list(ComplexMessage.all_fields()) # Order does not matter, so sort now. fields = sorted(fields, key=lambda f: f.name) self.assertEquals(3, len(fields)) self.assertEquals('a3', fields[0].name) self.assertEquals('b1', fields[1].name) self.assertEquals('c2', fields[2].name) def testFieldByName(self): """Test getting field by name.""" ComplexMessage = self.CreateMessageClass() self.assertEquals(3, ComplexMessage.field_by_name('a3').number) self.assertEquals(1, ComplexMessage.field_by_name('b1').number) self.assertEquals(2, ComplexMessage.field_by_name('c2').number) self.assertRaises(KeyError, ComplexMessage.field_by_name, 'unknown') def testFieldByNumber(self): """Test getting field by number.""" ComplexMessage = self.CreateMessageClass() self.assertEquals('a3', ComplexMessage.field_by_number(3).name) self.assertEquals('b1', ComplexMessage.field_by_number(1).name) self.assertEquals('c2', ComplexMessage.field_by_number(2).name) self.assertRaises(KeyError, ComplexMessage.field_by_number, 4) def testGetAssignedValue(self): """Test getting the assigned value of a field.""" class SomeMessage(messages.Message): a_value = messages.StringField(1, default=u'a default') message = SomeMessage() self.assertEquals(None, message.get_assigned_value('a_value')) message.a_value = u'a string' self.assertEquals(u'a string', message.get_assigned_value('a_value')) message.a_value = u'a default' self.assertEquals(u'a default', message.get_assigned_value('a_value')) self.assertRaisesWithRegexpMatch( AttributeError, 'Message SomeMessage has no field no_such_field', message.get_assigned_value, 'no_such_field') def testReset(self): """Test resetting a field value.""" class SomeMessage(messages.Message): a_value = messages.StringField(1, default=u'a default') repeated = messages.IntegerField(2, repeated=True) message = SomeMessage() self.assertRaises(AttributeError, message.reset, 'unknown') self.assertEquals(u'a default', message.a_value) message.reset('a_value') self.assertEquals(u'a default', message.a_value) message.a_value = u'a new value' self.assertEquals(u'a new value', message.a_value) message.reset('a_value') self.assertEquals(u'a default', message.a_value) message.repeated = [1, 2, 3] self.assertEquals([1, 2, 3], message.repeated) saved = message.repeated message.reset('repeated') self.assertEquals([], message.repeated) self.assertIsInstance(message.repeated, messages.FieldList) self.assertEquals([1, 2, 3], saved) def testAllowNestedEnums(self): """Test allowing nested enums in a message definition.""" class Trade(messages.Message): class Duration(messages.Enum): GTC = 1 DAY = 2 class Currency(messages.Enum): USD = 1 GBP = 2 INR = 3 # Sorted by name order seems to be the only feasible option. self.assertEquals(['Currency', 'Duration'], Trade.__enums__) # Message definition will now be set on Enumerated objects. self.assertEquals(Trade, Trade.Duration.message_definition()) def testAllowNestedMessages(self): """Test allowing nested messages in a message definition.""" class Trade(messages.Message): class Lot(messages.Message): pass class Agent(messages.Message): pass # Sorted by name order seems to be the only feasible option. self.assertEquals(['Agent', 'Lot'], Trade.__messages__) self.assertEquals(Trade, Trade.Agent.message_definition()) self.assertEquals(Trade, Trade.Lot.message_definition()) # But not Message itself. def action(): class Trade(messages.Message): NiceTry = messages.Message self.assertRaises(messages.MessageDefinitionError, action) def testDisallowClassAssignments(self): """Test setting class attributes may not happen.""" class MyMessage(messages.Message): pass self.assertRaises(AttributeError, setattr, MyMessage, 'x', 'do not assign') def testEquality(self): """Test message class equality.""" # Comparison against enums must work. class MyEnum(messages.Enum): val1 = 1 val2 = 2 # Comparisons against nested messages must work. class AnotherMessage(messages.Message): string = messages.StringField(1) class MyMessage(messages.Message): field1 = messages.IntegerField(1) field2 = messages.EnumField(MyEnum, 2) field3 = messages.MessageField(AnotherMessage, 3) message1 = MyMessage() self.assertNotEquals('hi', message1) self.assertNotEquals(AnotherMessage(), message1) self.assertEquals(message1, message1) message2 = MyMessage() self.assertEquals(message1, message2) message1.field1 = 10 self.assertNotEquals(message1, message2) message2.field1 = 20 self.assertNotEquals(message1, message2) message2.field1 = 10 self.assertEquals(message1, message2) message1.field2 = MyEnum.val1 self.assertNotEquals(message1, message2) message2.field2 = MyEnum.val2 self.assertNotEquals(message1, message2) message2.field2 = MyEnum.val1 self.assertEquals(message1, message2) message1.field3 = AnotherMessage() message1.field3.string = 'value1' self.assertNotEquals(message1, message2) message2.field3 = AnotherMessage() message2.field3.string = 'value2' self.assertNotEquals(message1, message2) message2.field3.string = 'value1' self.assertEquals(message1, message2) def testEqualityWithUnknowns(self): """Test message class equality with unknown fields.""" class MyMessage(messages.Message): field1 = messages.IntegerField(1) message1 = MyMessage() message2 = MyMessage() self.assertEquals(message1, message2) message1.set_unrecognized_field('unknown1', 'value1', messages.Variant.STRING) self.assertEquals(message1, message2) message1.set_unrecognized_field('unknown2', ['asdf', 3], messages.Variant.STRING) message1.set_unrecognized_field('unknown3', 4.7, messages.Variant.DOUBLE) self.assertEquals(message1, message2) def testUnrecognizedFieldInvalidVariant(self): class MyMessage(messages.Message): field1 = messages.IntegerField(1) message1 = MyMessage() self.assertRaises( TypeError, message1.set_unrecognized_field, 'unknown4', {'unhandled': 'type'}, None) self.assertRaises( TypeError, message1.set_unrecognized_field, 'unknown4', {'unhandled': 'type'}, 123) def testRepr(self): """Test represtation of Message object.""" class MyMessage(messages.Message): integer_value = messages.IntegerField(1) string_value = messages.StringField(2) unassigned = messages.StringField(3) unassigned_with_default = messages.StringField( 4, default=u'a default') my_message = MyMessage() my_message.integer_value = 42 my_message.string_value = u'A string' pat = re.compile(r"<MyMessage\n integer_value: 42\n" " string_value: [u]?'A string'>") self.assertTrue(pat.match(repr(my_message)) is not None) def testValidation(self): """Test validation of message values.""" # Test optional. class SubMessage(messages.Message): pass class Message(messages.Message): val = messages.MessageField(SubMessage, 1) message = Message() message_field = messages.MessageField(Message, 1) message_field.validate(message) message.val = SubMessage() message_field.validate(message) self.assertRaises(messages.ValidationError, setattr, message, 'val', [SubMessage()]) # Test required. class Message(messages.Message): val = messages.MessageField(SubMessage, 1, required=True) message = Message() message_field = messages.MessageField(Message, 1) message_field.validate(message) message.val = SubMessage() message_field.validate(message) self.assertRaises(messages.ValidationError, setattr, message, 'val', [SubMessage()]) # Test repeated. class Message(messages.Message): val = messages.MessageField(SubMessage, 1, repeated=True) message = Message() message_field = messages.MessageField(Message, 1) message_field.validate(message) self.assertRaisesWithRegexpMatch( messages.ValidationError, "Field val is repeated. Found: <SubMessage>", setattr, message, 'val', SubMessage()) # pylint: disable=redefined-variable-type message.val = [SubMessage()] message_field.validate(message) def testDefinitionName(self): """Test message name.""" class MyMessage(messages.Message): pass module_name = test_util.get_module_name(FieldTest) self.assertEquals('%s.MyMessage' % module_name, MyMessage.definition_name()) self.assertEquals(module_name, MyMessage.outer_definition_name()) self.assertEquals(module_name, MyMessage.definition_package()) self.assertEquals(six.text_type, type(MyMessage.definition_name())) self.assertEquals(six.text_type, type( MyMessage.outer_definition_name())) self.assertEquals(six.text_type, type(MyMessage.definition_package())) def testDefinitionName_OverrideModule(self): """Test message module is overriden by module package name.""" class MyMessage(messages.Message): pass global package package = 'my.package' try: self.assertEquals('my.package.MyMessage', MyMessage.definition_name()) self.assertEquals('my.package', MyMessage.outer_definition_name()) self.assertEquals('my.package', MyMessage.definition_package()) self.assertEquals(six.text_type, type(MyMessage.definition_name())) self.assertEquals(six.text_type, type( MyMessage.outer_definition_name())) self.assertEquals(six.text_type, type( MyMessage.definition_package())) finally: del package def testDefinitionName_NoModule(self): """Test what happens when there is no module for message.""" class MyMessage(messages.Message): pass original_modules = sys.modules sys.modules = dict(sys.modules) try: del sys.modules[__name__] self.assertEquals('MyMessage', MyMessage.definition_name()) self.assertEquals(None, MyMessage.outer_definition_name()) self.assertEquals(None, MyMessage.definition_package()) self.assertEquals(six.text_type, type(MyMessage.definition_name())) finally: sys.modules = original_modules def testDefinitionName_Nested(self): """Test nested message names.""" class MyMessage(messages.Message): class NestedMessage(messages.Message): class NestedMessage(messages.Message): pass module_name = test_util.get_module_name(MessageTest) self.assertEquals('%s.MyMessage.NestedMessage' % module_name, MyMessage.NestedMessage.definition_name()) self.assertEquals('%s.MyMessage' % module_name, MyMessage.NestedMessage.outer_definition_name()) self.assertEquals(module_name, MyMessage.NestedMessage.definition_package()) self.assertEquals( '%s.MyMessage.NestedMessage.NestedMessage' % module_name, MyMessage.NestedMessage.NestedMessage.definition_name()) self.assertEquals( '%s.MyMessage.NestedMessage' % module_name, MyMessage.NestedMessage.NestedMessage.outer_definition_name()) self.assertEquals( module_name, MyMessage.NestedMessage.NestedMessage.definition_package()) def testMessageDefinition(self): """Test that enumeration knows its enclosing message definition.""" class OuterMessage(messages.Message): class InnerMessage(messages.Message): pass self.assertEquals(None, OuterMessage.message_definition()) self.assertEquals(OuterMessage, OuterMessage.InnerMessage.message_definition()) def testConstructorKwargs(self): """Test kwargs via constructor.""" class SomeMessage(messages.Message): name = messages.StringField(1) number = messages.IntegerField(2) expected = SomeMessage() expected.name = 'my name' expected.number = 200 self.assertEquals(expected, SomeMessage(name='my name', number=200)) def testConstructorNotAField(self): """Test kwargs via constructor with wrong names.""" class SomeMessage(messages.Message): pass self.assertRaisesWithRegexpMatch( AttributeError, ('May not assign arbitrary value does_not_exist to message ' 'SomeMessage'), SomeMessage, does_not_exist=10) def testGetUnsetRepeatedValue(self): class SomeMessage(messages.Message): repeated = messages.IntegerField(1, repeated=True) instance = SomeMessage() self.assertEquals([], instance.repeated) self.assertTrue(isinstance(instance.repeated, messages.FieldList)) def testCompareAutoInitializedRepeatedFields(self): class SomeMessage(messages.Message): repeated = messages.IntegerField(1, repeated=True) message1 = SomeMessage(repeated=[]) message2 = SomeMessage() self.assertEquals(message1, message2) def testUnknownValues(self): """Test message class equality with unknown fields.""" class MyMessage(messages.Message): field1 = messages.IntegerField(1) message = MyMessage() self.assertEquals([], message.all_unrecognized_fields()) self.assertEquals((None, None), message.get_unrecognized_field_info('doesntexist')) self.assertEquals((None, None), message.get_unrecognized_field_info( 'doesntexist', None, None)) self.assertEquals(('defaultvalue', 'defaultwire'), message.get_unrecognized_field_info( 'doesntexist', 'defaultvalue', 'defaultwire')) self.assertEquals((3, None), message.get_unrecognized_field_info( 'doesntexist', value_default=3)) message.set_unrecognized_field('exists', 9.5, messages.Variant.DOUBLE) self.assertEquals(1, len(message.all_unrecognized_fields())) self.assertTrue('exists' in message.all_unrecognized_fields()) self.assertEquals((9.5, messages.Variant.DOUBLE), message.get_unrecognized_field_info('exists')) self.assertEquals((9.5, messages.Variant.DOUBLE), message.get_unrecognized_field_info('exists', 'type', 1234)) self.assertEquals( (1234, None), message.get_unrecognized_field_info('doesntexist', 1234)) message.set_unrecognized_field( 'another', 'value', messages.Variant.STRING) self.assertEquals(2, len(message.all_unrecognized_fields())) self.assertTrue('exists' in message.all_unrecognized_fields()) self.assertTrue('another' in message.all_unrecognized_fields()) self.assertEquals((9.5, messages.Variant.DOUBLE), message.get_unrecognized_field_info('exists')) self.assertEquals(('value', messages.Variant.STRING), message.get_unrecognized_field_info('another')) message.set_unrecognized_field('typetest1', ['list', 0, ('test',)], messages.Variant.STRING) self.assertEquals((['list', 0, ('test',)], messages.Variant.STRING), message.get_unrecognized_field_info('typetest1')) message.set_unrecognized_field( 'typetest2', '', messages.Variant.STRING) self.assertEquals(('', messages.Variant.STRING), message.get_unrecognized_field_info('typetest2')) def testPickle(self): """Testing pickling and unpickling of Message instances.""" global MyEnum global AnotherMessage global MyMessage class MyEnum(messages.Enum): val1 = 1 val2 = 2 class AnotherMessage(messages.Message): string = messages.StringField(1, repeated=True) class MyMessage(messages.Message): field1 = messages.IntegerField(1) field2 = messages.EnumField(MyEnum, 2) field3 = messages.MessageField(AnotherMessage, 3) message = MyMessage(field1=1, field2=MyEnum.val2, field3=AnotherMessage(string=['a', 'b', 'c'])) message.set_unrecognized_field( 'exists', 'value', messages.Variant.STRING) message.set_unrecognized_field('repeated', ['list', 0, ('test',)], messages.Variant.STRING) unpickled = pickle.loads(pickle.dumps(message)) self.assertEquals(message, unpickled) self.assertTrue(AnotherMessage.string is unpickled.field3.string.field) self.assertTrue('exists' in message.all_unrecognized_fields()) self.assertEquals(('value', messages.Variant.STRING), message.get_unrecognized_field_info('exists')) self.assertEquals((['list', 0, ('test',)], messages.Variant.STRING), message.get_unrecognized_field_info('repeated')) class FindDefinitionTest(test_util.TestCase): """Test finding definitions relative to various definitions and modules.""" def setUp(self): """Set up module-space. Starts off empty.""" self.modules = {} def DefineModule(self, name): """Define a module and its parents in module space. Modules that are already defined in self.modules are not re-created. Args: name: Fully qualified name of modules to create. Returns: Deepest nested module. For example: DefineModule('a.b.c') # Returns c. """ name_path = name.split('.') full_path = [] for node in name_path: full_path.append(node) full_name = '.'.join(full_path) self.modules.setdefault(full_name, types.ModuleType(full_name)) return self.modules[name] def DefineMessage(self, module, name, children=None, add_to_module=True): """Define a new Message class in the context of a module. Used for easily describing complex Message hierarchy. Message is defined including all child definitions. Args: module: Fully qualified name of module to place Message class in. name: Name of Message to define within module. children: Define any level of nesting of children definitions. To define a message, map the name to another dictionary. The dictionary can itself contain additional definitions, and so on. To map to an Enum, define the Enum class separately and map it by name. add_to_module: If True, new Message class is added to module. If False, new Message is not added. """ children = children or {} # Make sure module exists. module_instance = self.DefineModule(module) # Recursively define all child messages. for attribute, value in children.items(): if isinstance(value, dict): children[attribute] = self.DefineMessage( module, attribute, value, False) # Override default __module__ variable. children['__module__'] = module # Instantiate and possibly add to module. message_class = type(name, (messages.Message,), dict(children)) if add_to_module: setattr(module_instance, name, message_class) return message_class # pylint:disable=unused-argument # pylint:disable=redefined-builtin def Importer(self, module, globals='', locals='', fromlist=None): """Importer function. Acts like __import__. Only loads modules from self.modules. Does not try to load real modules defined elsewhere. Does not try to handle relative imports. Args: module: Fully qualified name of module to load from self.modules. """ if fromlist is None: module = module.split('.')[0] try: return self.modules[module] except KeyError: raise ImportError() # pylint:disable=unused-argument def testNoSuchModule(self): """Test searching for definitions that do no exist.""" self.assertRaises(messages.DefinitionNotFoundError, messages.find_definition, 'does.not.exist', importer=self.Importer) def testRefersToModule(self): """Test that referring to a module does not return that module.""" self.DefineModule('i.am.a.module') self.assertRaises(messages.DefinitionNotFoundError, messages.find_definition, 'i.am.a.module', importer=self.Importer) def testNoDefinition(self): """Test not finding a definition in an existing module.""" self.DefineModule('i.am.a.module') self.assertRaises(messages.DefinitionNotFoundError, messages.find_definition, 'i.am.a.module.MyMessage', importer=self.Importer) def testNotADefinition(self): """Test trying to fetch something that is not a definition.""" module = self.DefineModule('i.am.a.module') setattr(module, 'A', 'a string') self.assertRaises(messages.DefinitionNotFoundError, messages.find_definition, 'i.am.a.module.A', importer=self.Importer) def testGlobalFind(self): """Test finding definitions from fully qualified module names.""" A = self.DefineMessage('a.b.c', 'A', {}) self.assertEquals(A, messages.find_definition('a.b.c.A', importer=self.Importer)) B = self.DefineMessage('a.b.c', 'B', {'C': {}}) self.assertEquals( B.C, messages.find_definition('a.b.c.B.C', importer=self.Importer)) def testRelativeToModule(self): """Test finding definitions relative to modules.""" # Define modules. a = self.DefineModule('a') b = self.DefineModule('a.b') c = self.DefineModule('a.b.c') # Define messages. A = self.DefineMessage('a', 'A') B = self.DefineMessage('a.b', 'B') C = self.DefineMessage('a.b.c', 'C') D = self.DefineMessage('a.b.d', 'D') # Find A, B, C and D relative to a. self.assertEquals(A, messages.find_definition( 'A', a, importer=self.Importer)) self.assertEquals(B, messages.find_definition( 'b.B', a, importer=self.Importer)) self.assertEquals(C, messages.find_definition( 'b.c.C', a, importer=self.Importer)) self.assertEquals(D, messages.find_definition( 'b.d.D', a, importer=self.Importer)) # Find A, B, C and D relative to b. self.assertEquals(A, messages.find_definition( 'A', b, importer=self.Importer)) self.assertEquals(B, messages.find_definition( 'B', b, importer=self.Importer)) self.assertEquals(C, messages.find_definition( 'c.C', b, importer=self.Importer)) self.assertEquals(D, messages.find_definition( 'd.D', b, importer=self.Importer)) # Find A, B, C and D relative to c. Module d is the same case as c. self.assertEquals(A, messages.find_definition( 'A', c, importer=self.Importer)) self.assertEquals(B, messages.find_definition( 'B', c, importer=self.Importer)) self.assertEquals(C, messages.find_definition( 'C', c, importer=self.Importer)) self.assertEquals(D, messages.find_definition( 'd.D', c, importer=self.Importer)) def testRelativeToMessages(self): """Test finding definitions relative to Message definitions.""" A = self.DefineMessage('a.b', 'A', {'B': {'C': {}, 'D': {}}}) B = A.B C = A.B.C D = A.B.D # Find relative to A. self.assertEquals(A, messages.find_definition( 'A', A, importer=self.Importer)) self.assertEquals(B, messages.find_definition( 'B', A, importer=self.Importer)) self.assertEquals(C, messages.find_definition( 'B.C', A, importer=self.Importer)) self.assertEquals(D, messages.find_definition( 'B.D', A, importer=self.Importer)) # Find relative to B. self.assertEquals(A, messages.find_definition( 'A', B, importer=self.Importer)) self.assertEquals(B, messages.find_definition( 'B', B, importer=self.Importer)) self.assertEquals(C, messages.find_definition( 'C', B, importer=self.Importer)) self.assertEquals(D, messages.find_definition( 'D', B, importer=self.Importer)) # Find relative to C. self.assertEquals(A, messages.find_definition( 'A', C, importer=self.Importer)) self.assertEquals(B, messages.find_definition( 'B', C, importer=self.Importer)) self.assertEquals(C, messages.find_definition( 'C', C, importer=self.Importer)) self.assertEquals(D, messages.find_definition( 'D', C, importer=self.Importer)) # Find relative to C searching from c. self.assertEquals(A, messages.find_definition( 'b.A', C, importer=self.Importer)) self.assertEquals(B, messages.find_definition( 'b.A.B', C, importer=self.Importer)) self.assertEquals(C, messages.find_definition( 'b.A.B.C', C, importer=self.Importer)) self.assertEquals(D, messages.find_definition( 'b.A.B.D', C, importer=self.Importer)) def testAbsoluteReference(self): """Test finding absolute definition names.""" # Define modules. a = self.DefineModule('a') b = self.DefineModule('a.a') # Define messages. aA = self.DefineMessage('a', 'A') aaA = self.DefineMessage('a.a', 'A') # Always find a.A. self.assertEquals(aA, messages.find_definition('.a.A', None, importer=self.Importer)) self.assertEquals(aA, messages.find_definition('.a.A', a, importer=self.Importer)) self.assertEquals(aA, messages.find_definition('.a.A', aA, importer=self.Importer)) self.assertEquals(aA, messages.find_definition('.a.A', aaA, importer=self.Importer)) def testFindEnum(self): """Test that Enums are found.""" class Color(messages.Enum): pass A = self.DefineMessage('a', 'A', {'Color': Color}) self.assertEquals( Color, messages.find_definition('Color', A, importer=self.Importer)) def testFalseScope(self): """Test Message definitions nested in strange objects are hidden.""" global X class X(object): class A(messages.Message): pass self.assertRaises(TypeError, messages.find_definition, 'A', X) self.assertRaises(messages.DefinitionNotFoundError, messages.find_definition, 'X.A', sys.modules[__name__]) def testSearchAttributeFirst(self): """Make sure not faked out by module, but continues searching.""" A = self.DefineMessage('a', 'A') module_A = self.DefineModule('a.A') self.assertEquals(A, messages.find_definition( 'a.A', None, importer=self.Importer)) def main(): unittest.main() if __name__ == '__main__': main()
the-stack_106_20186
'''RL agent implementing hierarchical spatial attention (HSA).''' # python import os import pickle # scipy from numpy.random import rand, randint from numpy import array, delete, log2, meshgrid, ravel_multi_index, reshape, unravel_index, zeros # drawing from matplotlib import pyplot from mpl_toolkits.mplot3d import Axes3D # self # AGENT ============================================================================================ class RlAgentHsa: def __init__(self, params): '''Initializes the agent with an optimistic policy. - Input params: System parameters data structure. ''' # parameters self.n = params["nObjects"] self.m = params["worldSize"] self.tMax = params["tMax"] self.initQ = params["initQ"] self.alpha = params["alpha"] self.gamma = params["gamma"] self.plotImages = params["plotImages"] # determine parameters self.worldSize = (self.m, self.m, self.m) self.endEffectorIdx = self.m**3 self.observationSize = (2, 2, 2) self.L = int(log2(self.m)) # some input checking if self.m < 2: raise Exception("Because the observation is 2x2x2, the smallest supported world size is 2.") if log2(self.m) != self.L: raise Exception("The current implementation only supports grid sizes that are powers of 2.") # initialize q-function # Q = (G1_0, ..., G1_8, G2_0, ..., G2_8, h, l, t, a) self.Q = {None:0.0} def GetQTableSize(self): '''Returns the number of Q-values stored in the lookup table.''' return len(self.Q) def GetAction(self, a, l, i): '''Gets the next underlying action coordinate (x, y, z) given the current underlying action a, level l and abstract action i. - Input a: Underlying action coordinate (x, y, z). - Input l: The current level in 0, ..., L - 1. - Input i: The abstract action index. - Returns aa: The next underlying action. ''' d = self.m / 2 ** (l+1) iCoord = unravel_index(i, self.observationSize) return (a[0] + d * iCoord[0], a[1] + d * iCoord[1], a[2] + d * iCoord[2]) def GetActionsAndObservations(self, s, epsilon): '''Gets a list of actions, abstract actions, and observations for each level in the sense sequence. - Input s: The current state = (pegs, holes, time). - Input epsilon: Takes a random action with probability epsilon. - Returns a: The underlying action (world coordinates flattened index). - Returns i: The abstract actions, one for each sense level, each of which is an index indicating which cell in the observation was selected. - Returns o: The observations, one for each sense level l, each of which is the tuple from GetObservation. ''' # reached terminal state if s is None: return None, None, None # decompose state information pegs = s[0:self.n]; disks = s[self.n:2*self.n]; t = s[-1] # ignore peg-disks ignorePegs = []; ignoreDisks = []; i = 0; j = 0 while i < self.n and j < self.n: if pegs[i] == disks[j]: ignorePegs.append(i) ignoreDisks.append(j) i += 1; j += 1 elif pegs[i] < disks[j]: i += 1 else: j += 1 unplacedPegs = delete(pegs, ignorePegs) unoccupiedDisks = delete(disks, ignoreDisks) # compute coordinates for pegs and disks pegCoords = []; diskCoords = []; h = False for i in xrange(len(unplacedPegs)): if unplacedPegs[i] == self.endEffectorIdx: h = True else: pegCoords.append(unravel_index(unplacedPegs[i], self.worldSize)) diskCoords.append(unravel_index(unoccupiedDisks[i], self.worldSize)) # initialize outputs a = (0, 0, 0); aPrev = None; i = []; o = [] # take best action, breaking ties randomly for l in xrange(self.L): observation = self.GetObservation(pegCoords, diskCoords, h, l, t, a) if rand() < epsilon: abstractAction = randint(8) idx = observation + (abstractAction,) if idx not in self.Q: self.Q[idx] = self.initQ[t] else: bestValue = -float('inf'); abstractActions = None for abstractAction in xrange(8): idx = observation + (abstractAction,) if idx not in self.Q: self.Q[idx] = self.initQ[t] if self.Q[idx] > bestValue: bestValue = self.Q[idx] abstractActions = [abstractAction] elif self.Q[idx] == bestValue: abstractActions.append(abstractAction) # break ties randomly abstractAction = abstractActions[randint(len(abstractActions))] # compute new sensor location and append observation and abstract action to list aPrev = a a = self.GetAction(a, l, abstractAction) o.append(observation); i.append(abstractAction) # visualization if self.plotImages: print("Best value: {}".format(bestValue)) self.PlotImages(pegs, disks, t, l, h, a, aPrev) return ravel_multi_index(a, self.worldSize), i, o def GetObservation(self, pegs, disks, h, l, t, a): '''Gets an HVS observation given the underlying state and current underlying point of focus/action. - Input pegs: List of unplaced pegs in global coordinates (x, y, z), excluding any held peg. - Input disks: List of unplaced disks in global coordinates (x, y, z). - Input h: True if a peg is in the end effector and False otherwise. - Input l: The current level. - Input t: The current overt time step. - Input a: The current point of focus/action (x, y, z). - Returns o: The current observation (g1_0, ..., g1_8, g2_0, ..., g2_8, h, l, t). ''' # cell size for this level d = self.m / 2 ** (l+1) # initialize grids to empty G1 = zeros(self.observationSize, dtype='bool') G2 = zeros(self.observationSize, dtype='bool') # check each partition for a peg/disk for i in xrange(2): for j in xrange(2): for k in xrange(2): x0 = a[0] + i * d; x1 = x0 + d y0 = a[1] + j * d; y1 = y0 + d z0 = a[2] + k * d; z1 = z0 + d for peg in pegs: if peg[0] >= x0 and peg[0] < x1 and \ peg[1] >= y0 and peg[1] < y1 and \ peg[2] >= z0 and peg[2] < z1: G1[i, j, k] = True break for disk in disks: if disk[0] >= x0 and disk[0] < x1 and \ disk[1] >= y0 and disk[1] < y1 and \ disk[2] >= z0 and disk[2] < z1: G2[i, j, k] = True break return tuple(G1.flatten()) + tuple(G2.flatten()) + (h, l, t) def LoadQFunction(self): '''Loads a previously saved dictionary of Q-values.''' path = os.getcwd() + "/" + "model-hvs.pkl" self.Q = pickle.load(open(path, "rb")) print("Loaded {}.".format(path)) def PlotCube(self, ax, xMinMax, yMinMax, zMinMax, color, alpha): '''https://codereview.stackexchange.com/questions/155585/plotting-a-rectangular-prism''' xx, yy = meshgrid(xMinMax, yMinMax) ax.plot_wireframe(xx, yy, reshape(zMinMax[0], (1, 1)), color=color) ax.plot_surface(xx, yy, reshape(zMinMax[0], (1, 1)), color=color, alpha=alpha) ax.plot_wireframe(xx, yy, reshape(zMinMax[1], (1, 1)), color=color) ax.plot_surface(xx, yy, reshape(zMinMax[1], (1, 1)), color=color, alpha=alpha) yy, zz = meshgrid(yMinMax, zMinMax) ax.plot_wireframe(xMinMax[0], yy, zz, color=color) ax.plot_surface(xMinMax[0], yy, zz, color=color, alpha=alpha) ax.plot_wireframe(xMinMax[1], yy, zz, color=color) ax.plot_surface(xMinMax[1], yy, zz, color=color, alpha=alpha) xx, zz = meshgrid(xMinMax, zMinMax) ax.plot_wireframe(xx, yMinMax[0], zz, color=color) ax.plot_surface(xx, yMinMax[0], zz, color=color, alpha=alpha) ax.plot_wireframe(xx, yMinMax[1], zz, color=color) ax.plot_surface(xx, yMinMax[1], zz, color=color, alpha=alpha) def PlotImages(self, pegs, disks, t, l, h, a, aPrev): '''Visualizes a current situation. - Input pegs: List of all pegs as a flat coordinate. - Input disks: List of all disks as a flat coordinate. - Input t: The overt time step. - Input l: The current level. - Input h: The holding bit. - Input a: The underlying action coordinate. - Input aPrev: The previous action coordinate. - Returns None. An image is shown and the thread is blocked until it is closed. ''' # setup plot fig = pyplot.figure() ax = fig.add_subplot(111, projection='3d') # draw grid linse dxyz = 1.0 / self.m for i in xrange(self.m + 1): for j in xrange(self.m + 1): for k in xrange(3): x = [i * dxyz]*2 y = [j * dxyz]*2 z = [0, 1] if k == 0: ax.plot(x, y, z, 'k', alpha=0.25) elif k == 1: ax.plot(z, x, y, 'k', alpha=0.25) else: ax.plot(y, z, x, 'k', alpha=0.25) # draw objects for disk in disks: coord = array(unravel_index(disk, self.worldSize)) / float(self.m) + dxyz / 2.0 ax.scatter(coord[0], coord[1], coord[2], c='b', s=100, marker='o') for peg in pegs: if peg == self.endEffectorIdx: continue coord = array(unravel_index(peg, self.worldSize)) / float(self.m) + dxyz / 2.0 ax.scatter(coord[0], coord[1], coord[2], c='r', s=100, marker='^') # draw observation area corner = array(aPrev) / float(self.m) size = 1.0 / 2.0**l self.PlotCube(ax, [corner[0], corner[0] + size], [corner[1], corner[1] + size], [corner[2], corner[2] + size], 'y', 0.2) # draw area selected by robot corner = array(a) / float(self.m) size = 1.0 / 2.0**(l+1) self.PlotCube(ax, [corner[0], corner[0] + size], [corner[1], corner[1] + size], [corner[2], corner[2] + size], 'g', 0.2) # plot properties ax.set_xlim3d(0.12, 0.88) ax.set_ylim3d(0.12, 0.88) ax.set_zlim3d(0.12, 0.88) ax.view_init(elev=15, azim=-10) ax._axis3don = False ax.set_aspect('equal') fig.suptitle("t={}. l={}. h={}.".format(t, l, h)) pyplot.show(block=True) def SaveQFunction(self): '''Saves the current Q-value dictionary to a Python pickle file, model-hvs.pkl.''' path = os.getcwd() + "/" + "model-hvs.pkl" pickle.dump(self.Q, open(path, "wb")) print("Saved {}.".format(path)) def UpdateQFunction(self, o, i, r, oo, ii): '''Updates the current q-estimates, according to the Sarsa update rule, given an (overt) time step of experience. - Input o: A list of observations, [o_0, ..., o_L-1]. - Input i: A list of abstract actions, [i_0, ..., i_L-1]. - Input r: The (scalar) reward received after taking this action from this state. - Input oo: List of observations in the next (overt) time step, [oo_0, ..., oo_L-1]. - Input ii: List of abstract actions taken in the next (overt) time step, [oo_0, ..., oo_L-1]. - Returns None. ''' for l in xrange(self.L): idx = o[l] + (i[l],) if l != self.L - 1: ll = l + 1 jdx = o[ll] + (i[ll],) rr = 0 else: ll = 0 jdx = None if oo is None else oo[ll] + (ii[ll],) rr = r # update Q self.Q[idx] = (1.0 - self.alpha) * self.Q[idx] + self.alpha * (rr + self.gamma * self.Q[jdx])
the-stack_106_20187
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for sonnet.python.modules.base.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import inspect import pickle # Dependency imports from absl.testing import parameterized import numpy as np import six from sonnet.python.modules import base from sonnet.python.modules.base_errors import NotSupportedError import tensorflow as tf tfe = tf.contrib.eager logging = tf.logging class ModuleWithClassKeys(base.AbstractModule): """Dummy module that defines some keys as class attributes.""" POSSIBLE_INITIALIZER_KEYS = {"foo", "bar"} class ModuleWithNoInitializerKeys(base.AbstractModule): """Dummy module without any intiailizer keys.""" pass class ModuleWithCustomInitializerKeys(base.AbstractModule): """Dummy module that overrides get_possible_initializer_keys.""" @classmethod def get_possible_initializer_keys(cls, custom_key): return {"foo"} if custom_key else {"bar"} class IdentityModule(base.AbstractModule): """Sonnet module that builds a single `tf.identity` op.""" def _build(self, inputs): return tf.identity(inputs) class NoInitIdentityModule(base.AbstractModule): """Sonnet module that inherits `base.AbstractModule.__init__`.""" def _build(self, inputs): return tf.identity(inputs) class NoSuperInitIdentityModule(base.AbstractModule): """Sonnet module that doesn't call `base.AbstractModule.__init__`.""" def __init__(self): pass # Don't call superclass initializer. def _build(self, inputs): return tf.identity(inputs) class SimpleModule(base.AbstractModule): """Simple module with variables created in constructor and build.""" def __init__(self, custom_getter=None, name="simple_module"): super(SimpleModule, self).__init__(custom_getter=custom_getter, name=name) with self._enter_variable_scope(): self._b = tf.get_variable("b", dtype=tf.float32, shape=[10, 10]) def _build(self, inputs): """Connect a simple module to the graph.""" self._w = tf.get_variable("w", dtype=tf.float32, shape=[10, 10]) return self._w * inputs + self._b class ComplexModule(base.AbstractModule): """Complex module consisting of two sub modules.""" def __init__(self, custom_getter=None, name="complex_module"): super(ComplexModule, self).__init__(custom_getter=custom_getter, name=name) with self._enter_variable_scope(): self._a = SimpleModule(name="linear_1") def _build(self, inputs): self._b = SimpleModule(name="linear_2") return self._b(self._a(inputs)) # pylint: disable=not-callable class ModuleWithSubmodules(base.AbstractModule): def __init__(self, submodule_a, submodule_b, custom_getter=None, name="module_with_submodules"): super(ModuleWithSubmodules, self).__init__( custom_getter=custom_getter, name=name) self._submodule_a = submodule_a self._submodule_b = submodule_b def _build(self, inputs): c = SimpleModule(name="simple_build") d = ComplexModule(name="complex_build") return d(self._submodule_a(inputs)) + self._submodule_b(c(inputs)) # pylint: disable=not-callable # @tf.contrib.eager.run_all_tests_in_graph_and_eager_modes class AbstractModuleTest(parameterized.TestCase, tf.test.TestCase): def testInitializerKeys(self): keys = ModuleWithClassKeys.get_possible_initializer_keys() self.assertEqual(keys, {"foo", "bar"}) keys = ModuleWithNoInitializerKeys.get_possible_initializer_keys() self.assertEqual(keys, set()) if six.PY2: msg = "takes exactly 2 arguments" else: msg = "missing 1 required positional argument" self.assertRaisesRegexp( TypeError, msg, ModuleWithCustomInitializerKeys.get_possible_initializer_keys) keys = ModuleWithCustomInitializerKeys.get_possible_initializer_keys(True) self.assertEqual(keys, {"foo"}) keys = ModuleWithCustomInitializerKeys.get_possible_initializer_keys(False) self.assertEqual(keys, {"bar"}) def testMultipleGraphs(self): id_mod = IdentityModule(name="identity") # gpylint incorrectly thinks IdentityModule is not callable, so disable. # pylint: disable=not-callable with tf.Graph().as_default() as graph: id_mod(tf.ones(dtype=tf.float32, shape=[42])) self.assertEqual(id_mod._graph, graph) with tf.Graph().as_default(): with self.assertRaisesRegexp(base.DifferentGraphError, "Cannot connect module"): id_mod(tf.ones(dtype=tf.float32, shape=[42])) # pylint: enable=not-callable def testNameScopeRecording(self): if tf.executing_eagerly(): self.skipTest("Name scopes are not recorded in eager mode.") id_mod = IdentityModule(name="foo") # Connect inside different name scope contexts, check that each is recorded. # pylint: disable=not-callable id_mod(tf.ones(dtype=tf.float32, shape=[22])) self.assertIn(id_mod.name_scopes, (("foo",), ("foo_1",))) with tf.name_scope("blah"): id_mod(tf.ones(dtype=tf.float32, shape=[23])) self.assertIn(id_mod.name_scopes, (("foo", "blah/foo"), ("foo_1", "blah/foo"))) with tf.name_scope("baz"): id_mod(tf.ones(dtype=tf.float32, shape=[24])) # pylint: enable=not-callable self.assertIn(id_mod.name_scopes, (("foo", "blah/foo", "baz/foo"), ("foo_1", "blah/foo", "baz/foo"))) def testNameScopeRecordingNotSupportedEager(self): if not tf.executing_eagerly(): self.skipTest("Name scopes are recorded in graph mode.") id_mod = IdentityModule(name="foo") id_mod(tf.ones(dtype=tf.float32, shape=[22])) with self.assertRaisesRegexp(base.NotSupportedError, "not supported in eager"): id_mod.name_scopes # pylint: disable=pointless-statement def testSubgraphsRecording(self): if tf.executing_eagerly(): self.skipTest("Subgraphs are not recorded in eager mode.") id_mod = IdentityModule(name="foo") with self.assertRaisesRegexp(base.NotConnectedError, "not instantiated yet"): id_mod.last_connected_subgraph() # pylint: disable=not-callable inputs = tf.ones(dtype=tf.float32, shape=[21]) outputs = id_mod(inputs) with tf.name_scope("blah"): blah_inputs = tf.ones(dtype=tf.float32, shape=[22]) blah_outputs = id_mod(blah_inputs) with tf.name_scope("baz"): baz_inputs = tf.ones(dtype=tf.float32, shape=[23]) baz_outputs = id_mod(baz_inputs) # pylint: enable=not-callable subgraphs = id_mod.connected_subgraphs self.assertEqual(id_mod.last_connected_subgraph.name_scope, "baz/foo") self.assertIs(id_mod.last_connected_subgraph, subgraphs[2]) self.assertIs(subgraphs[0].module, id_mod) self.assertIn(subgraphs[0].name_scope, ("foo", "foo_1")) self.assertEqual(subgraphs[1].name_scope, "blah/foo") self.assertEqual(subgraphs[2].name_scope, "baz/foo") self.assertIs(subgraphs[0].inputs["inputs"], inputs) self.assertIs(subgraphs[1].inputs["inputs"], blah_inputs) self.assertIs(subgraphs[2].inputs["inputs"], baz_inputs) self.assertIs(subgraphs[0].outputs, outputs) self.assertIs(subgraphs[1].outputs, blah_outputs) self.assertIs(subgraphs[2].outputs, baz_outputs) def testSubgraphsNotRecordedEager(self): if not tf.executing_eagerly(): self.skipTest("Subgraphs are recorded in graph mode") id_mod = IdentityModule(name="foo") with self.assertRaisesRegexp(base.NotSupportedError, "not tracked in eager mode"): id_mod.last_connected_subgraph() # pylint: disable=not-callable inputs = tf.ones(dtype=tf.float32, shape=[21]) id_mod(inputs) with tf.name_scope("blah"): blah_inputs = tf.ones(dtype=tf.float32, shape=[22]) id_mod(blah_inputs) with tf.name_scope("baz"): baz_inputs = tf.ones(dtype=tf.float32, shape=[23]) id_mod(baz_inputs) # pylint: enable=not-callable with self.assertRaisesRegexp(base.NotSupportedError, "not tracked in eager mode"): id_mod.connected_subgraphs # pylint: disable=pointless-statement def testInitNoNamedArgs(self): """Tests if calling __init__ without named args raises a ValueError.""" with self.assertRaises(ValueError): NoInitIdentityModule("foobar") def testInitInvalidTypeArgs(self): """Tests if calling __init__ without a string name raises a TypeError.""" with self.assertRaises(TypeError): NoInitIdentityModule(name=123) def testInitNoArgs(self): """Tests if calling __init__ with no args uses correct defaults.""" module = NoInitIdentityModule() self.assertEqual(module.module_name, "no_init_identity_module") def testInitNoSuper(self): """Tests if a __call__ with no __init__ raises an error.""" module = NoSuperInitIdentityModule() with self.assertRaises(base.NotInitializedError): module(tf.constant([1])) # pylint: disable=not-callable def testPicklingNotSupported(self): module = IdentityModule() with self.assertRaisesRegexp(base.NotSupportedError, "cannot be serialized"): # Writing the object to a string will fail. pickle.dumps(module) def testCustomGetter(self): connection_count = {"x": 0} def custom_getter(getter, name, *args, **kwargs): connection_count["x"] += 1 return getter(name, *args, **kwargs) inputs = tf.ones(dtype=tf.float32, shape=[10, 10]) with tf.variable_scope("scope"): module = SimpleModule(name="mod1") module(inputs) # pylint: disable=not-callable self.assertEqual(0, connection_count["x"]) module = SimpleModule(custom_getter=custom_getter, name="mod2") module(inputs) # pylint: disable=not-callable self.assertEqual(2, connection_count["x"]) # w & b module = SimpleModule(custom_getter={"w": custom_getter}, name="mod3") module(inputs) # pylint: disable=not-callable self.assertEqual(3, connection_count["x"]) # w module = SimpleModule(custom_getter={"w.*": custom_getter}, name="mod3") module(inputs) # pylint: disable=not-callable self.assertEqual(4, connection_count["x"]) # w module = SimpleModule(custom_getter={".*": custom_getter}, name="mod4") module(inputs) # pylint: disable=not-callable self.assertEqual(6, connection_count["x"]) # w & b err = r"More than one custom_getter matched scope/mod5/w \(w\):.*" with self.assertRaisesRegexp(KeyError, err): module = SimpleModule( custom_getter={".*": custom_getter, "w.*": custom_getter}, name="mod5") module(inputs) # pylint: disable=not-callable err = "Given custom_getter is not callable." with self.assertRaisesRegexp(TypeError, err): module = SimpleModule(custom_getter=0, name="mod6") with self.assertRaisesRegexp(TypeError, err): module = SimpleModule(custom_getter={"w": 0}, name="mod7") def testCustomGetterNested(self): def custom_getter(getter, name, *args, **kwargs): kwargs["trainable"] = False return getter(name, *args, **kwargs) inputs = tf.ones(dtype=tf.float32, shape=[10, 10]) with tf.variable_scope("scope"): module = ComplexModule(name="mod1") module(inputs) # pylint: disable=not-callable self.assertLen(tf.trainable_variables(), 4) module = ComplexModule(custom_getter=custom_getter, name="mod2") module(inputs) # pylint: disable=not-callable self.assertLen(tf.trainable_variables(), 4) # All variables. module = ComplexModule(custom_getter={".*/w": custom_getter}, name="mod3") module(inputs) # pylint: disable=not-callable trainable_names = [v.name for v in tf.trainable_variables()] self.assertLen(trainable_names, 6) # linear_1/w and linear_2/w. self.assertIn("scope/mod3/linear_1/b:0", trainable_names) self.assertIn("scope/mod3/linear_2/b:0", trainable_names) module = ComplexModule(custom_getter={".*/b": custom_getter}, name="mod4") module(inputs) # pylint: disable=not-callable trainable_names = [v.name for v in tf.trainable_variables()] self.assertLen(trainable_names, 8) # linear_1/b and linear_2/b. self.assertIn("scope/mod4/linear_1/w:0", trainable_names) self.assertIn("scope/mod4/linear_2/w:0", trainable_names) module = ComplexModule(custom_getter={".*": custom_getter}, name="mod5") module(inputs) # pylint: disable=not-callable self.assertLen(tf.trainable_variables(), 8) # All variables. module = ComplexModule(custom_getter={"w": custom_getter}, name="mod6") module(inputs) # pylint: disable=not-callable self.assertLen(tf.trainable_variables(), 12) # No variables. @parameterized.parameters( [lambda m: m.get_all_variables(), lambda m: m.variables, lambda m: m.trainable_variables] ) def testGetAllTrainableVariables(self, all_trainable_variables): inputs = tf.ones(dtype=tf.float32, shape=[10, 10]) submodule_a = SimpleModule(name="simple_submodule") submodule_b = ComplexModule(name="complex_submodule") module = ModuleWithSubmodules( submodule_a=submodule_a, submodule_b=submodule_b) with self.assertRaisesRegexp(base.NotConnectedError, "not instantiated yet"): all_trainable_variables(module) module(inputs) # pylint: disable=not-callable # Check correct for SimpleModule. submodule_a_variables = submodule_a.get_variables() submodule_a_variable_names = sorted( [str(v.name) for v in submodule_a_variables]) submodule_a_all_variables = all_trainable_variables(submodule_a) submodule_a_all_variable_names = sorted( [str(v.name) for v in submodule_a_all_variables]) self.assertEqual(submodule_a_variable_names, submodule_a_all_variable_names) self.assertEqual([ "simple_submodule/b:0", "simple_submodule/w:0", ], submodule_a_variable_names) # Check correct for ComplexModule submodule_b_variables = all_trainable_variables(submodule_b) submodule_b_variable_names = sorted( [str(v.name) for v in submodule_b_variables]) self.assertEqual([ "complex_submodule/linear_1/b:0", "complex_submodule/linear_1/w:0", "complex_submodule/linear_2/b:0", "complex_submodule/linear_2/w:0", ], submodule_b_variable_names) all_variables = all_trainable_variables(module) all_variable_names = sorted([str(v.name) for v in all_variables]) self.assertEqual([ "complex_submodule/linear_1/b:0", "complex_submodule/linear_1/w:0", "complex_submodule/linear_2/b:0", "complex_submodule/linear_2/w:0", "module_with_submodules/complex_build/linear_1/b:0", "module_with_submodules/complex_build/linear_1/w:0", "module_with_submodules/complex_build/linear_2/b:0", "module_with_submodules/complex_build/linear_2/w:0", "module_with_submodules/simple_build/b:0", "module_with_submodules/simple_build/w:0", "simple_submodule/b:0", "simple_submodule/w:0", ], all_variable_names) self.assertEmpty( module.get_all_variables(collection=tf.GraphKeys.LOCAL_VARIABLES)) # Create another ModuleWithSubmodules with the same submodules module = ModuleWithSubmodules( submodule_a=submodule_a, submodule_b=submodule_b) module(inputs) # pylint: disable=not-callable all_variables = all_trainable_variables(module) all_variable_names = sorted([str(v.name) for v in all_variables]) self.assertEqual([ "complex_submodule/linear_1/b:0", "complex_submodule/linear_1/w:0", "complex_submodule/linear_2/b:0", "complex_submodule/linear_2/w:0", "module_with_submodules_1/complex_build/linear_1/b:0", "module_with_submodules_1/complex_build/linear_1/w:0", "module_with_submodules_1/complex_build/linear_2/b:0", "module_with_submodules_1/complex_build/linear_2/w:0", "module_with_submodules_1/simple_build/b:0", "module_with_submodules_1/simple_build/w:0", "simple_submodule/b:0", "simple_submodule/w:0", ], all_variable_names) @parameterized.parameters( [lambda m: m.get_all_variables(tf.GraphKeys.LOCAL_VARIABLES), lambda m: m.non_trainable_variables]) def testGetAllLocalVariables(self, get_non_trainable_variables): def local_custom_getter(getter, *args, **kwargs): kwargs["trainable"] = False if "collections" in kwargs and kwargs["collections"] is not None: kwargs["collections"] += [tf.GraphKeys.LOCAL_VARIABLES] else: kwargs["collections"] = [tf.GraphKeys.LOCAL_VARIABLES] return getter(*args, **kwargs) inputs = tf.ones(dtype=tf.float32, shape=[10, 10]) # Create a new ModuleWithSubmodules that uses all local variables with tf.variable_scope("", custom_getter=local_custom_getter): submodule_a = SimpleModule(name="simple_submodule") submodule_b = ComplexModule(name="complex_submodule") local_module = ModuleWithSubmodules( submodule_a=submodule_a, submodule_b=submodule_b) local_module(inputs) # pylint: disable=not-callable self.assertEmpty(local_module.get_all_variables()) self.assertEmpty(tf.all_variables()) self.assertLen(tf.local_variables(), 12) all_variables = get_non_trainable_variables(local_module) all_variable_names = sorted([str(v.name) for v in all_variables]) self.assertEqual([ "complex_submodule/linear_1/b:0", "complex_submodule/linear_1/w:0", "complex_submodule/linear_2/b:0", "complex_submodule/linear_2/w:0", "module_with_submodules/complex_build/linear_1/b:0", "module_with_submodules/complex_build/linear_1/w:0", "module_with_submodules/complex_build/linear_2/b:0", "module_with_submodules/complex_build/linear_2/w:0", "module_with_submodules/simple_build/b:0", "module_with_submodules/simple_build/w:0", "simple_submodule/b:0", "simple_submodule/w:0", ], all_variable_names) def testGetAllVariablesWithConditionalConstruction(self): inputs = tf.ones(dtype=tf.float32, shape=[10, 10]) cond = tf.constant(0.) module_a = SimpleModule(name="module_a") module_b = SimpleModule(name="module_b") _ = tf.cond(cond > 0, lambda: module_a(inputs), lambda: module_b(inputs)) # pylint: disable=not-callable if tf.executing_eagerly(): # In eager mode only the true branch is taken. msg = "module_a not instantiated yet" with self.assertRaisesRegexp(base.NotConnectedError, msg): module_a.get_all_variables() else: # check module_a all_variables = module_a.get_all_variables() all_variable_names = sorted([str(v.name) for v in all_variables]) self.assertEqual(["module_a/b:0", "module_a/w:0"], all_variable_names) # check module_b all_variables = module_b.get_all_variables() all_variable_names = sorted([str(v.name) for v in all_variables]) self.assertEqual(["module_b/b:0", "module_b/w:0"], all_variable_names) @parameterized.parameters(None, "", "complex_module") def testVariablesFromNestedModule(self, name): outer = ComplexModule(name=name) outer(tf.zeros([10, 10])) inner1 = outer._b outer(tf.zeros([10, 10])) inner2 = outer._b # Calling the outer module triggers the inner module to re-constructed. The # new inner module should have literally the same variables as the old one. self.assertIsNot(inner1, inner2) self.assertNotEmpty(inner1.variables) self.assertLen(inner2.variables, len(inner1.variables)) for v1, v2 in zip(inner1.variables, inner2.variables): self.assertIs(v1, v2) def testCallSignatureAndDocstring(self): my_module = SimpleModule() self.assertEqual( inspect.getargspec(my_module.__call__), inspect.getargspec(my_module._build)) self.assertEqual(my_module.__call__.__doc__, my_module._build.__doc__) def _make_model_with_params(inputs, output_size): weight_shape = [inputs.get_shape().as_list()[-1], output_size] weight = tf.get_variable("w", shape=weight_shape, dtype=inputs.dtype) return tf.matmul(inputs, weight) # @tf.contrib.eager.run_all_tests_in_graph_and_eager_modes class ModuleTest(tf.test.TestCase): def testFunctionType(self): with self.assertRaises(TypeError) as cm: base.Module(build="not_a_function") self.assertEqual(str(cm.exception), "Input 'build' must be callable.") def testSharing(self): batch_size = 3 in_size = 4 input_data = np.random.rand(batch_size, in_size) inputs1 = tf.constant(input_data) inputs2 = tf.constant(input_data) build = functools.partial(_make_model_with_params, output_size=10) model = base.Module(build) self.assertEqual(model.scope_name, "make_model_with_params") outputs1 = model(inputs1) outputs2 = model(inputs2) self.evaluate(tf.global_variables_initializer()) outputs1, outputs2 = self.evaluate([outputs1, outputs2]) self.assertAllClose(outputs1, outputs2) def testCustomGetter(self): def simple_module_build(inputs): w = tf.get_variable("w", dtype=tf.float32, shape=[10, 10]) b = tf.get_variable("b", dtype=tf.float32, shape=[10, 10]) return w * inputs + b connection_count = {"x": 0} def custom_getter(getter, name, *args, **kwargs): connection_count["x"] += 1 return getter(name, *args, **kwargs) create_module = functools.partial(base.Module, build=simple_module_build) inputs = tf.ones(dtype=tf.float32, shape=[10, 10]) with tf.variable_scope("scope"): module = create_module(name="mod1") module(inputs) # pylint: disable=not-callable self.assertEqual(0, connection_count["x"]) module = create_module(custom_getter=custom_getter, name="mod2") module(inputs) # pylint: disable=not-callable self.assertEqual(2, connection_count["x"]) # w & b module = create_module(custom_getter={"w": custom_getter}, name="mod3") module(inputs) # pylint: disable=not-callable self.assertEqual(3, connection_count["x"]) # w module = create_module(custom_getter={"w.*": custom_getter}, name="mod3") module(inputs) # pylint: disable=not-callable self.assertEqual(4, connection_count["x"]) # w module = create_module(custom_getter={".*": custom_getter}, name="mod4") module(inputs) # pylint: disable=not-callable self.assertEqual(6, connection_count["x"]) # w & b err = r"More than one custom_getter matched scope/mod5/w \(w\):.*" with self.assertRaisesRegexp(KeyError, err): module = create_module( custom_getter={".*": custom_getter, "w.*": custom_getter}, name="mod5") module(inputs) # pylint: disable=not-callable err = "Given custom_getter is not callable." with self.assertRaisesRegexp(TypeError, err): module = create_module(custom_getter=0, name="mod6") with self.assertRaisesRegexp(TypeError, err): module = create_module(custom_getter={"w": 0}, name="mod7") def testGetVariablesDifferentGraphScope(self): with tf.Graph().as_default(): inputs = tf.constant(np.random.rand(10, 10), dtype=tf.float32) simple_module = SimpleModule() simple_module(inputs) # pylint: disable=not-callable # Should have 2 variables whether queried in or out of the Graph scope. self.assertEqual(len(simple_module.get_variables()), 2) self.assertEqual(len(simple_module.get_variables()), 2) def testGraphProperty(self): with tf.Graph().as_default() as graph_1: id_a = IdentityModule() id_a(tf.constant(np.zeros(10))) # pylint: disable=not-callable id_b = IdentityModule() id_b(tf.constant(np.ones(5))) # pylint: disable=not-callable with tf.Graph().as_default() as graph_2: id_c = IdentityModule() id_c(tf.constant(np.eye(3))) # pylint: disable=not-callable self.assertEqual(id_a.graph, id_b.graph) self.assertEqual(id_a.graph, graph_1) self.assertNotEqual(id_a.graph, id_c.graph) self.assertEqual(id_c.graph, graph_2) class ConnectionObserverTest(tf.test.TestCase): def _connection_observer(self, subgraph): self._connected_subgraphs.append(subgraph) def setUp(self): self._inputs = tf.zeros(shape=(10, 10), dtype=tf.float32) self._connected_subgraphs = [] def testObservesWrappedFunction(self): activation_module = base.Module(tf.nn.relu) with base.observe_connections(self._connection_observer): outputs = activation_module(self._inputs) self.assertEqual(1, len(self._connected_subgraphs)) self.assertIs(activation_module, self._connected_subgraphs[0].module) self.assertIs(self._inputs, self._connected_subgraphs[0].inputs["args"][0]) self.assertIs(self._connected_subgraphs[0].outputs, outputs) def testObservesSimpleModule(self): simple_module = SimpleModule() with base.observe_connections(self._connection_observer): outputs = simple_module(self._inputs) self.assertEqual(1, len(self._connected_subgraphs)) self.assertIs(simple_module, self._connected_subgraphs[0].module) self.assertIs(self._inputs, self._connected_subgraphs[0].inputs["inputs"]) self.assertIs(self._connected_subgraphs[0].outputs, outputs) def testObservesComplexModule(self): complex_module = ComplexModule() with base.observe_connections(self._connection_observer): outputs = complex_module(self._inputs) self.assertEqual(3, len(self._connected_subgraphs)) self.assertIsInstance(self._connected_subgraphs[0].module, SimpleModule) self.assertIs(self._inputs, self._connected_subgraphs[0].inputs["inputs"]) self.assertIsInstance(self._connected_subgraphs[1].module, SimpleModule) self.assertIs(self._connected_subgraphs[0].outputs, self._connected_subgraphs[1].inputs["inputs"]) self.assertIs(self._connected_subgraphs[1].outputs, outputs) self.assertIs(complex_module, self._connected_subgraphs[2].module) self.assertIs(self._connected_subgraphs[2].outputs, outputs) class MatMulModule(base.AbstractModule): call_count = 0 def _build(self, x): self.call_count += 1 self.w = tf.get_variable("w", [x.shape[1], 32]) return x * self.w # @tf.contrib.eager.run_all_tests_in_graph_and_eager_modes class DefunTest(tf.test.TestCase): def testDefunWrappedProperty(self): module = MatMulModule() self.assertFalse(module.defun_wrapped) for _ in range(2): module.defun() self.assertTrue(module.defun_wrapped) def testCallWithDefun(self): module = MatMulModule() module.defun() batch_size = 10 output = module(tf.zeros([batch_size, 1])) self.assertListEqual(output.shape.as_list(), [batch_size, 32]) def testCallWithDefunTracingTwice(self): module = MatMulModule() module.defun() batch_size = 10 for _ in range(2): output = module(tf.zeros([batch_size, 1])) self.assertListEqual(output.shape.as_list(), [batch_size, 32]) self.assertEqual(module.call_count, 1) # Calling with a different batch_size causes `defun` to re-trace our module. batch_size *= 2 for _ in range(2): output = module(tf.zeros([batch_size, 1])) self.assertListEqual(output.shape.as_list(), [batch_size, 32]) self.assertEqual(module.call_count, 2) def testGetVariablesDisabledWhenUsingDefun(self): module = MatMulModule() module.defun() module(tf.zeros([1, 1])) if tf.executing_eagerly(): msg = ".*get_variables.*not supported .* wrapped with defun" with self.assertRaisesRegexp(NotSupportedError, msg): module.get_variables() else: self.assertEqual(module.get_variables(), (module.w,)) if __name__ == "__main__": tf.test.main()
the-stack_106_20188
from __future__ import unicode_literals from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.core.urlresolvers import reverse from django.db import models from django.db.models.signals import pre_save from django.utils import timezone from django.utils.safestring import mark_safe from django.utils.text import slugify from markdown_deux import markdown from comments.models import Comment from .utils import get_read_time # Create your models here. # MVC MODEL VIEW CONTROLLER #Post.objects.all() #Post.objects.create(user=user, title="Some time") class PostManager(models.Manager): def active(self, *args, **kwargs): # Post.objects.all() = super(PostManager, self).all() return super(PostManager, self).filter(draft=False).filter(publish__lte=timezone.now()) def upload_location(instance, filename): #filebase, extension = filename.split(".") #return "%s/%s.%s" %(instance.id, instance.id, extension) PostModel = instance.__class__ new_id = PostModel.objects.order_by("id").last().id + 1 """ instance.__class__ gets the model Post. We must use this method because the model is defined below. Then create a queryset ordered by the "id"s of each object, Then we get the last object in the queryset with `.last()` Which will give us the most recently created Model instance We add 1 to it, so we get what should be the same id as the the post we are creating. """ return "%s/%s" %(new_id, filename) class Post(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL, default=1) title = models.CharField(max_length=120) slug = models.SlugField(unique=True) image = models.ImageField(upload_to=upload_location, null=True, blank=True, width_field="width_field", height_field="height_field") height_field = models.IntegerField(default=0) width_field = models.IntegerField(default=0) content = models.TextField() draft = models.BooleanField(default=False) publish = models.DateField(auto_now=False, auto_now_add=False) read_time = models.IntegerField(default=0) # models.TimeField(null=True, blank=True) #assume minutes updated = models.DateTimeField(auto_now=True, auto_now_add=False) timestamp = models.DateTimeField(auto_now=False, auto_now_add=True) objects = PostManager() def __unicode__(self): return self.title def __str__(self): return self.title def get_absolute_url(self): return reverse("posts:detail", kwargs={"slug": self.slug}) class Meta: ordering = ["-timestamp", "-updated"] def get_markdown(self): content = self.content markdown_text = markdown(content) return mark_safe(markdown_text) @property def comments(self): instance = self qs = Comment.objects.filter_by_instance(instance) return qs @property def get_content_type(self): instance = self content_type = ContentType.objects.get_for_model(instance.__class__) return content_type def create_slug(instance, new_slug=None): slug = slugify(instance.title) if new_slug is not None: slug = new_slug qs = Post.objects.filter(slug=slug).order_by("-id") exists = qs.exists() if exists: new_slug = "%s-%s" %(slug, qs.first().id) return create_slug(instance, new_slug=new_slug) return slug def pre_save_post_receiver(sender, instance, *args, **kwargs): if not instance.slug: instance.slug = create_slug(instance) if instance.content: html_string = instance.get_markdown() read_time_var = get_read_time(html_string) instance.read_time = read_time_var pre_save.connect(pre_save_post_receiver, sender=Post)
the-stack_106_20192
""" Discogs API Query Tool: Connect to Discogs API and pull merchant listing data """ import sys import json import csv import argparse import logging import requests class MissingAPIKeyOrSecret(Exception): """Error logging for no input value""" def __init__(self, error_field): super(MissingAPIKeyOrSecret, self).__init__() self.msg = f'Missing API {error_field}. Aborting script.' class InvalidAPIKeyOrSecret(Exception): """Error logging for no input value""" def __init__(self): super(InvalidAPIKeyOrSecret, self).__init__() self.msg = f'Invalid API key/secret. Aborting script.' class SellerDoesNotExistError(Exception): """Error logging when Discogs seller does not exist""" def __init__(self, seller): super(SellerDoesNotExistError, self).__init__() self.seller = seller self.msg = f'Could not find seller "{seller}". Aborting script.' class APICaller: """Class to make API calls""" def __init__(self, seller, key, secret): """Initialize API call config Args: seller (str): Username of the seller key (str): API key to access API secret (str): API secret to access API """ self.seller = seller self.key = key self.secret = secret self.api_query = None self.response_status_code = None self.response = None self.top_listing = None def create_api_query(self): """Create API request URL""" status, sort, sort_order = 'for sale', 'price', 'desc' api_query = f'https://api.discogs.com/users/{self.seller}' \ + f'/inventory?status={status}&sort={sort}' \ + f'&sort_order={sort_order}&page=1&per_page=100' \ + f'&key={self.key}&secret={self.secret}' self.api_query = api_query def validate_request(self): """Check if provided API key and secret are valid""" if self.key is None: raise MissingAPIKeyOrSecret('key') if self.secret is None: raise MissingAPIKeyOrSecret('secret') if self.response_status_code == 401: raise InvalidAPIKeyOrSecret() if self.response_status_code == 404: raise SellerDoesNotExistError(self.seller) def get_seller_listings(self): """Makes an API call to Discogs, validates API key/secret and seller, and then sets the seller's listing data and top listing record as class attributes. """ try: req = requests.get(self.api_query) self.response_status_code = req.status_code self.response = json.loads(req.text) self.validate_request() except requests.exceptions.RequestException as error: logging.error(error) sys.exit() except MissingAPIKeyOrSecret as err: logging.error(err.msg, exc_info=True) sys.exit() except InvalidAPIKeyOrSecret as err: logging.error(err.msg, exc_info=True) sys.exit() except SellerDoesNotExistError as err: logging.error(err.msg, exc_info=True) sys.exit() def get_top_listing(self): """Get most expensive listing from API response""" self.top_listing = self.response['listings'][0] def dump_top_listing(self): """Dump most expensive record in seller's inventory into JSON file Args: seller: Username of the seller seller_data: Dictionary of seller's listings """ output_path = f'./output/{self.seller}_top_listing.json' self.get_top_listing() with open(output_path, 'w') as output: json.dump(self.top_listing, output, indent=4, ensure_ascii=False) print(f'Top listing exported to {output_path}') def dump_listings_to_csv(self): """Dump seller's inventory into CSV file Args: seller: Username of the seller seller_data: Dictionary of seller's listings """ output_path = f'./output/{self.seller}_listings.csv' with open(output_path, 'w') as output: writer = csv.writer(output) self.write_header(writer) for item in self.response['listings']: artist = item['release']['artist'] title = item['release']['title'] price = item['price']['value'] currency = item['price']['currency'] url = item['uri'] writer.writerow([artist, title, price, currency, url]) print(f'Listings exported to {output_path}') @staticmethod def write_header(csv_writer): """Write the header for the CSV output for the seller's listings Args: csv_writer: csv.writer() object """ csv_headers = ['listings', 'title', 'price', 'currency', 'url'] csv_writer.writerow(csv_headers) def parse_args(): """Parse arguments from the CLI""" parser = argparse.ArgumentParser(description='Look up Discogs seller\'s \ most expensive records') parser.add_argument('--seller', help='Discogs seller username to query', default='black_snake_moan') parser.add_argument('--key', help='Discogs API key (required)') parser.add_argument('--secret', help='Discogs API secret (required)') return parser.parse_args() def main(): """Run the module""" args = parse_args() api = APICaller(args.seller, args.key, args.secret) api.create_api_query() api.get_seller_listings() api.dump_top_listing() api.dump_listings_to_csv() if __name__ == '__main__': main()
the-stack_106_20193
#!/usr/bin/env python # encoding: utf-8 # Thomas Nagy, 2005-2016 (ita) """ Utilities and platform-specific fixes The portability fixes try to provide a consistent behavior of the Waf API through Python versions 2.5 to 3.X and across different platforms (win32, linux, etc) """ import os, sys, errno, traceback, inspect, re, datetime, platform, base64 try: import cPickle except ImportError: import pickle as cPickle # leave this if os.name == 'posix' and sys.version_info[0] < 3: try: import subprocess32 as subprocess except ImportError: import subprocess else: import subprocess from collections import deque, defaultdict try: import _winreg as winreg except ImportError: try: import winreg except ImportError: winreg = None from waflib import Errors try: from hashlib import md5 except ImportError: try: from md5 import md5 except ImportError: # never fail to enable fixes from another module pass try: import threading except ImportError: if not 'JOBS' in os.environ: # no threading :-( os.environ['JOBS'] = '1' class threading(object): """ A fake threading class for platforms lacking the threading module. Use ``waf -j1`` on those platforms """ pass class Lock(object): """Fake Lock class""" def acquire(self): pass def release(self): pass threading.Lock = threading.Thread = Lock SIG_NIL = 'SIG_NIL_SIG_NIL_'.encode() """Arbitrary null value for hashes. Modify this value according to the hash function in use""" O644 = 420 """Constant representing the permissions for regular files (0644 raises a syntax error on python 3)""" O755 = 493 """Constant representing the permissions for executable files (0755 raises a syntax error on python 3)""" rot_chr = ['\\', '|', '/', '-'] "List of characters to use when displaying the throbber (progress bar)" rot_idx = 0 "Index of the current throbber character (progress bar)" class ordered_iter_dict(dict): """Ordered dictionary that provides iteration from the most recently inserted keys first""" def __init__(self, *k, **kw): self.lst = deque() dict.__init__(self, *k, **kw) def clear(self): dict.clear(self) self.lst = deque() def __setitem__(self, key, value): if key in dict.keys(self): self.lst.remove(key) dict.__setitem__(self, key, value) self.lst.append(key) def __delitem__(self, key): dict.__delitem__(self, key) try: self.lst.remove(key) except ValueError: pass def __iter__(self): return reversed(self.lst) def keys(self): return reversed(self.lst) class lru_node(object): """ Used by :py:class:`waflib.Utils.lru_cache` """ __slots__ = ('next', 'prev', 'key', 'val') def __init__(self): self.next = self self.prev = self self.key = None self.val = None class lru_cache(object): """A simple least-recently used cache that suits our purposes""" __slots__ = ('maxlen', 'table', 'head') def __init__(self, maxlen=100): self.maxlen = maxlen """ Maximum amount of elements in the cache """ self.table = {} """ Mapping key-value """ self.head = lru_node() for x in range(maxlen - 1): node = lru_node() node.prev = self.head.prev node.next = self.head node.prev.next = node node.next.prev = node def __getitem__(self, key): node = self.table[key] # assert(key==node.key) if node is self.head: return node.val # detach the node found node.prev.next = node.next node.next.prev = node.prev # replace the head node.next = self.head.next node.prev = self.head node.next.prev = node node.prev.next = node self.head = node return node.val def __setitem__(self, key, val): # go past the head node = self.head = self.head.next try: # remove existing keys if present del self.table[node.key] except KeyError: pass node.key = key node.val = val self.table[key] = node is_win32 = os.sep == '\\' or sys.platform == 'win32' # msys2 """ Whether this system is a Windows series """ def readf(fname, m='r', encoding='ISO8859-1'): """ Reads an entire file into a string. See also :py:meth:`waflib.Node.Node.readf`:: def build(ctx): from waflib import Utils txt = Utils.readf(self.path.find_node('wscript').abspath()) txt = ctx.path.find_node('wscript').read() :type fname: string :param fname: Path to file :type m: string :param m: Open mode :type encoding: string :param encoding: encoding value, only used for python 3 :rtype: string :return: Content of the file """ if sys.hexversion > 0x3000000 and not 'b' in m: m += 'b' f = open(fname, m) try: txt = f.read() finally: f.close() if encoding: txt = txt.decode(encoding) else: txt = txt.decode() else: f = open(fname, m) try: txt = f.read() finally: f.close() return txt def writef(fname, data, m='w', encoding='ISO8859-1'): """ Writes an entire file from a string. See also :py:meth:`waflib.Node.Node.writef`:: def build(ctx): from waflib import Utils txt = Utils.writef(self.path.make_node('i_like_kittens').abspath(), 'some data') self.path.make_node('i_like_kittens').write('some data') :type fname: string :param fname: Path to file :type data: string :param data: The contents to write to the file :type m: string :param m: Open mode :type encoding: string :param encoding: encoding value, only used for python 3 """ if sys.hexversion > 0x3000000 and not 'b' in m: data = data.encode(encoding) m += 'b' f = open(fname, m) try: f.write(data) finally: f.close() def h_file(fname): """ Computes a hash value for a file by using md5. Use the md5_tstamp extension to get faster build hashes if necessary. :type fname: string :param fname: path to the file to hash :return: hash of the file contents :rtype: string or bytes """ f = open(fname, 'rb') m = md5() try: while fname: fname = f.read(200000) m.update(fname) finally: f.close() return m.digest() def readf_win32(f, m='r', encoding='ISO8859-1'): flags = os.O_NOINHERIT | os.O_RDONLY if 'b' in m: flags |= os.O_BINARY if '+' in m: flags |= os.O_RDWR try: fd = os.open(f, flags) except OSError: raise IOError('Cannot read from %r' % f) if sys.hexversion > 0x3000000 and not 'b' in m: m += 'b' f = os.fdopen(fd, m) try: txt = f.read() finally: f.close() if encoding: txt = txt.decode(encoding) else: txt = txt.decode() else: f = os.fdopen(fd, m) try: txt = f.read() finally: f.close() return txt def writef_win32(f, data, m='w', encoding='ISO8859-1'): if sys.hexversion > 0x3000000 and not 'b' in m: data = data.encode(encoding) m += 'b' flags = os.O_CREAT | os.O_TRUNC | os.O_WRONLY | os.O_NOINHERIT if 'b' in m: flags |= os.O_BINARY if '+' in m: flags |= os.O_RDWR try: fd = os.open(f, flags) except OSError: raise OSError('Cannot write to %r' % f) f = os.fdopen(fd, m) try: f.write(data) finally: f.close() def h_file_win32(fname): try: fd = os.open(fname, os.O_BINARY | os.O_RDONLY | os.O_NOINHERIT) except OSError: raise OSError('Cannot read from %r' % fname) f = os.fdopen(fd, 'rb') m = md5() try: while fname: fname = f.read(200000) m.update(fname) finally: f.close() return m.digest() # always save these readf_unix = readf writef_unix = writef h_file_unix = h_file if hasattr(os, 'O_NOINHERIT') and sys.hexversion < 0x3040000: # replace the default functions readf = readf_win32 writef = writef_win32 h_file = h_file_win32 try: x = ''.encode('hex') except LookupError: import binascii def to_hex(s): ret = binascii.hexlify(s) if not isinstance(ret, str): ret = ret.decode('utf-8') return ret else: def to_hex(s): return s.encode('hex') to_hex.__doc__ = """ Return the hexadecimal representation of a string :param s: string to convert :type s: string """ def listdir_win32(s): """ Lists the contents of a folder in a portable manner. On Win32, returns the list of drive letters: ['C:', 'X:', 'Z:'] when an empty string is given. :type s: string :param s: a string, which can be empty on Windows """ if not s: try: import ctypes except ImportError: # there is nothing much we can do return [x + ':\\' for x in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'] else: dlen = 4 # length of "?:\\x00" maxdrives = 26 buf = ctypes.create_string_buffer(maxdrives * dlen) ndrives = ctypes.windll.kernel32.GetLogicalDriveStringsA(maxdrives*dlen, ctypes.byref(buf)) return [ str(buf.raw[4*i:4*i+2].decode('ascii')) for i in range(int(ndrives/dlen)) ] if len(s) == 2 and s[1] == ":": s += os.sep if not os.path.isdir(s): e = OSError('%s is not a directory' % s) e.errno = errno.ENOENT raise e return os.listdir(s) listdir = os.listdir if is_win32: listdir = listdir_win32 def num2ver(ver): """ Converts a string, tuple or version number into an integer. The number is supposed to have at most 4 digits:: from waflib.Utils import num2ver num2ver('1.3.2') == num2ver((1,3,2)) == num2ver((1,3,2,0)) :type ver: string or tuple of numbers :param ver: a version number """ if isinstance(ver, str): ver = tuple(ver.split('.')) if isinstance(ver, tuple): ret = 0 for i in range(4): if i < len(ver): ret += 256**(3 - i) * int(ver[i]) return ret return ver def ex_stack(): """ Extracts the stack to display exceptions. Deprecated: use traceback.format_exc() :return: a string represening the last exception """ # TODO remove in waf 2.0 return traceback.format_exc() def to_list(val): """ Converts a string argument to a list by splitting it by spaces. Returns the object if not a string:: from waflib.Utils import to_list lst = to_list('a b c d') :param val: list of string or space-separated string :rtype: list :return: Argument converted to list """ if isinstance(val, str): return val.split() else: return val def split_path_unix(path): return path.split('/') def split_path_cygwin(path): if path.startswith('//'): ret = path.split('/')[2:] ret[0] = '/' + ret[0] return ret return path.split('/') re_sp = re.compile('[/\\\\]+') def split_path_win32(path): if path.startswith('\\\\'): ret = re_sp.split(path)[2:] ret[0] = '\\' + ret[0] return ret return re_sp.split(path) msysroot = None def split_path_msys(path): if path.startswith(('/', '\\')) and not path.startswith(('\\', '\\\\')): # msys paths can be in the form /usr/bin global msysroot if not msysroot: # msys has python 2.7 or 3, so we can use this msysroot = subprocess.check_output(['cygpath', '-w', '/']).decode(sys.stdout.encoding or 'iso8859-1') msysroot = msysroot.strip() path = os.path.normpath(msysroot + os.sep + path) return split_path_win32(path) if sys.platform == 'cygwin': split_path = split_path_cygwin elif is_win32: if os.environ.get('MSYSTEM'): split_path = split_path_msys else: split_path = split_path_win32 else: split_path = split_path_unix split_path.__doc__ = """ Splits a path by / or \\; do not confuse this function with with ``os.path.split`` :type path: string :param path: path to split :return: list of string """ def check_dir(path): """ Ensures that a directory exists (similar to ``mkdir -p``). :type path: string :param path: Path to directory :raises: :py:class:`waflib.Errors.WafError` if the folder cannot be added. """ if not os.path.isdir(path): try: os.makedirs(path) except OSError as e: if not os.path.isdir(path): raise Errors.WafError('Cannot create the folder %r' % path, ex=e) def check_exe(name, env=None): """ Ensures that a program exists :type name: string :param name: path to the program :param env: configuration object :type env: :py:class:`waflib.ConfigSet.ConfigSet` :return: path of the program or None :raises: :py:class:`waflib.Errors.WafError` if the folder cannot be added. """ if not name: raise ValueError('Cannot execute an empty string!') def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(name) if fpath and is_exe(name): return os.path.abspath(name) else: env = env or os.environ for path in env['PATH'].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, name) if is_exe(exe_file): return os.path.abspath(exe_file) return None def def_attrs(cls, **kw): """ Sets default attributes on a class instance :type cls: class :param cls: the class to update the given attributes in. :type kw: dict :param kw: dictionary of attributes names and values. """ for k, v in kw.items(): if not hasattr(cls, k): setattr(cls, k, v) def quote_define_name(s): """ Converts a string into an identifier suitable for C defines. :type s: string :param s: String to convert :rtype: string :return: Identifier suitable for C defines """ fu = re.sub('[^a-zA-Z0-9]', '_', s) fu = re.sub('_+', '_', fu) fu = fu.upper() return fu def h_list(lst): """ Hash lists. We would prefer to use hash(tup) for tuples because it is much more efficient, but Python now enforces hash randomization by assuming everybody is running a web application. :param lst: list to hash :type lst: list of strings :return: hash of the list """ return md5(repr(lst).encode()).digest() def h_fun(fun): """ Hash functions :param fun: function to hash :type fun: function :return: hash of the function :rtype: string or bytes """ try: return fun.code except AttributeError: try: h = inspect.getsource(fun) except EnvironmentError: h = 'nocode' try: fun.code = h except AttributeError: pass return h def h_cmd(ins): """ Hashes objects recursively :param ins: input object :type ins: string or list or tuple or function :rtype: string or bytes """ # this function is not meant to be particularly fast if isinstance(ins, str): # a command is either a string ret = ins elif isinstance(ins, list) or isinstance(ins, tuple): # or a list of functions/strings ret = str([h_cmd(x) for x in ins]) else: # or just a python function ret = str(h_fun(ins)) if sys.hexversion > 0x3000000: ret = ret.encode('iso8859-1', 'xmlcharrefreplace') return ret reg_subst = re.compile(r"(\\\\)|(\$\$)|\$\{([^}]+)\}") def subst_vars(expr, params): """ Replaces ${VAR} with the value of VAR taken from a dict or a config set:: from waflib import Utils s = Utils.subst_vars('${PREFIX}/bin', env) :type expr: string :param expr: String to perform substitution on :param params: Dictionary or config set to look up variable values. """ def repl_var(m): if m.group(1): return '\\' if m.group(2): return '$' try: # ConfigSet instances may contain lists return params.get_flat(m.group(3)) except AttributeError: return params[m.group(3)] # if you get a TypeError, it means that 'expr' is not a string... # Utils.subst_vars(None, env) will not work return reg_subst.sub(repl_var, expr) def destos_to_binfmt(key): """ Returns the binary format based on the unversioned platform name, and defaults to ``elf`` if nothing is found. :param key: platform name :type key: string :return: string representing the binary format """ if key == 'darwin': return 'mac-o' elif key in ('win32', 'cygwin', 'uwin', 'msys'): return 'pe' return 'elf' def unversioned_sys_platform(): """ Returns the unversioned platform name. Some Python platform names contain versions, that depend on the build environment, e.g. linux2, freebsd6, etc. This returns the name without the version number. Exceptions are os2 and win32, which are returned verbatim. :rtype: string :return: Unversioned platform name """ s = sys.platform if s.startswith('java'): # The real OS is hidden under the JVM. from java.lang import System s = System.getProperty('os.name') # see http://lopica.sourceforge.net/os.html for a list of possible values if s == 'Mac OS X': return 'darwin' elif s.startswith('Windows '): return 'win32' elif s == 'OS/2': return 'os2' elif s == 'HP-UX': return 'hp-ux' elif s in ('SunOS', 'Solaris'): return 'sunos' else: s = s.lower() # powerpc == darwin for our purposes if s == 'powerpc': return 'darwin' if s == 'win32' or s == 'os2': return s if s == 'cli' and os.name == 'nt': # ironpython is only on windows as far as we know return 'win32' return re.split('\d+$', s)[0] def nada(*k, **kw): """ Does nothing :return: None """ pass class Timer(object): """ Simple object for timing the execution of commands. Its string representation is the current time:: from waflib.Utils import Timer timer = Timer() a_few_operations() s = str(timer) """ def __init__(self): self.start_time = datetime.datetime.utcnow() def __str__(self): delta = datetime.datetime.utcnow() - self.start_time days = delta.days hours, rem = divmod(delta.seconds, 3600) minutes, seconds = divmod(rem, 60) seconds += delta.microseconds * 1e-6 result = '' if days: result += '%dd' % days if days or hours: result += '%dh' % hours if days or hours or minutes: result += '%dm' % minutes return '%s%.3fs' % (result, seconds) def read_la_file(path): """ Reads property files, used by msvc.py :param path: file to read :type path: string """ sp = re.compile(r'^([^=]+)=\'(.*)\'$') dc = {} for line in readf(path).splitlines(): try: _, left, right, _ = sp.split(line.strip()) dc[left] = right except ValueError: pass return dc def run_once(fun): """ Decorator: let a function cache its results, use like this:: @run_once def foo(k): return 345*2343 .. note:: in practice this can cause memory leaks, prefer a :py:class:`waflib.Utils.lru_cache` :param fun: function to execute :type fun: function :return: the return value of the function executed """ cache = {} def wrap(*k): try: return cache[k] except KeyError: ret = fun(*k) cache[k] = ret return ret wrap.__cache__ = cache wrap.__name__ = fun.__name__ return wrap def get_registry_app_path(key, filename): """ Returns the value of a registry key for an executable :type key: string :type filename: list of string """ if not winreg: return None try: result = winreg.QueryValue(key, "Software\\Microsoft\\Windows\\CurrentVersion\\App Paths\\%s.exe" % filename[0]) except WindowsError: pass else: if os.path.isfile(result): return result def lib64(): """ Guess the default ``/usr/lib`` extension for 64-bit applications :return: '64' or '' :rtype: string """ # default settings for /usr/lib if os.sep == '/': if platform.architecture()[0] == '64bit': if os.path.exists('/usr/lib64') and not os.path.exists('/usr/lib32'): return '64' return '' def sane_path(p): # private function for the time being! return os.path.abspath(os.path.expanduser(p)) process_pool = [] """ List of processes started to execute sub-process commands """ def get_process(): """ Returns a process object that can execute commands as sub-processes :rtype: subprocess.Popen """ try: return process_pool.pop() except IndexError: filepath = os.path.dirname(os.path.abspath(__file__)) + os.sep + 'processor.py' cmd = [sys.executable, '-c', readf(filepath)] return subprocess.Popen(cmd, stdout=subprocess.PIPE, stdin=subprocess.PIPE, bufsize=0) def run_prefork_process(cmd, kwargs, cargs): """ Delegates process execution to a pre-forked process instance. """ if not 'env' in kwargs: kwargs['env'] = dict(os.environ) try: obj = base64.b64encode(cPickle.dumps([cmd, kwargs, cargs])) except TypeError: return run_regular_process(cmd, kwargs, cargs) proc = get_process() if not proc: return run_regular_process(cmd, kwargs, cargs) proc.stdin.write(obj) proc.stdin.write('\n'.encode()) proc.stdin.flush() obj = proc.stdout.readline() if not obj: raise OSError('Preforked sub-process %r died' % proc.pid) process_pool.append(proc) ret, out, err, ex, trace = cPickle.loads(base64.b64decode(obj)) if ex: if ex == 'OSError': raise OSError(trace) elif ex == 'ValueError': raise ValueError(trace) else: raise Exception(trace) return ret, out, err def run_regular_process(cmd, kwargs, cargs={}): """ Executes a subprocess command by using subprocess.Popen """ proc = subprocess.Popen(cmd, **kwargs) if kwargs.get('stdout') or kwargs.get('stderr'): out, err = proc.communicate(**cargs) status = proc.returncode else: out, err = (None, None) status = proc.wait(**cargs) return status, out, err def run_process(cmd, kwargs, cargs={}): """ Executes a subprocess by using a pre-forked process when possible or falling back to subprocess.Popen. See :py:func:`waflib.Utils.run_prefork_process` and :py:func:`waflib.Utils.run_regular_process` """ if kwargs.get('stdout') and kwargs.get('stderr'): return run_prefork_process(cmd, kwargs, cargs) else: return run_regular_process(cmd, kwargs, cargs) def alloc_process_pool(n, force=False): """ Allocates an amount of processes to the default pool so its size is at least *n*. It is useful to call this function early so that the pre-forked processes use as little memory as possible. :param n: pool size :type n: integer :param force: if True then *n* more processes are added to the existing pool :type force: bool """ # mandatory on python2, unnecessary on python >= 3.2 global run_process, get_process, alloc_process_pool if not force: n = max(n - len(process_pool), 0) try: lst = [get_process() for x in range(n)] except OSError: run_process = run_regular_process get_process = alloc_process_pool = nada else: for x in lst: process_pool.append(x) if sys.platform == 'cli' or not sys.executable: run_process = run_regular_process get_process = alloc_process_pool = nada
the-stack_106_20194
""" Synth modules in Torch. """ import copy from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch import tensor from torch import Tensor as T import torchsynth.util as util from torchsynth.config import BASE_REPRODUCIBLE_BATCH_SIZE, SynthConfig from torchsynth.parameter import ModuleParameter, ModuleParameterRange from torchsynth.signal import Signal class SynthModule(nn.Module): """ A base class for synthesis modules. A :class:`~.SynthModule` optionally takes input from other :class:`~.SynthModule` instances. The :class:`~.SynthModule` uses its (optional) input and its set of :class:`~torchsynth.parameter.ModuleParameter` to generate output. All :class:`~torchsynth.parameter.ModuleParameter` of the :class:`~.SynthModule` are assumed to be :attr:`~torchsynth.config.SynthConfig.batch_size`-length 1-D tensors. All :class:`~.SynthModule` objects should be atomic, i.e., they should not contain other :class:`~.SynthModule` objects. This design choice is in the spirit of modular synthesis. Args: synthconfig: An object containing synthesis settings that are shared across all modules, typically specified by :class:`~torchsynth.synth.Voice`, or some other, possibly custom :class:`~torchsynth.synth.AbstractSynth` subclass. device: An object representing the device on which the `torch` tensors are to be allocated (as per PyTorch, broadly). """ # This outlines all the parameters available in this module # TODO: Make this non-optional default_parameter_ranges: Optional[List[ModuleParameterRange]] = None def __init__( self, synthconfig: SynthConfig, device: Optional[torch.device] = None, **kwargs: Dict[str, T], ): nn.Module.__init__(self) self.synthconfig = synthconfig self.device = device self.synthconfig.to(device) self.torchparameters: nn.ParameterDict = nn.ParameterDict() self.parameter_ranges = [] # If this module needs a random seed, here it is self.seed: Optional[int] = None if self.default_parameter_ranges is not None: # We want to create copies of the parameter ranges otherwise each # instance of the same module type (ex. ADSR) will reference the # same param range. assert isinstance(self.default_parameter_ranges, list) self.parameter_ranges = copy.deepcopy(self.default_parameter_ranges) self._parameter_ranges_dict: Dict[str, ModuleParameterRange] = { p.name: p for p in self.parameter_ranges } assert len(self._parameter_ranges_dict) == len(self.parameter_ranges) self.add_parameters( [ ModuleParameter( value=None, parameter_name=parameter_range.name, data=torch.rand((self.synthconfig.batch_size,), device=device), parameter_range=parameter_range, ) for parameter_range in self.parameter_ranges ] ) if kwargs: # Parameter values can also be passed in as keyword args. for name, data in kwargs.items(): if data.device != self.device: data = data.to(self.device) self.set_parameter(name, data) @property def batch_size(self) -> T: """Size of the batch to be generated.""" assert self.synthconfig.batch_size.ndim == 0 return self.synthconfig.batch_size @property def sample_rate(self) -> T: """Sample rate frequency in Hz.""" assert self.synthconfig.sample_rate.ndim == 0 return self.synthconfig.sample_rate @property def nyquist(self): """Convenience property for the highest frequency that can be represented at :attr:`~.sample_rate` (as per Shannon-Nyquist).""" return self.sample_rate / 2.0 @property def eps(self) -> float: """A very small value used to avoid computational errors.""" return self.synthconfig.eps @property def buffer_size(self) -> T: """Size of the module output in samples.""" assert self.synthconfig.buffer_size.ndim == 0 return self.synthconfig.buffer_size def to_buffer_size(self, signal: Signal) -> Signal: """ Fixes the length of a signal to the default buffer size of this module, as specified by :attr:`~.SynthModule.buffer_size`. Longer signals are truncated to length; shorter signals are zero-padded. Args: signal: A signal to pad or truncate. """ return util.fix_length(signal, self.buffer_size) def seconds_to_samples(self, seconds: T) -> T: """ Convenience function to calculate the number of samples corresponding to given a time value and :attr:`~.sample_rate`. Returns a possibly fractional value. Args: seconds: Time value in seconds. """ return seconds * self.sample_rate def output(self, *args: Any, **kwargs: Any) -> Signal: # pragma: no cover """ Performs the main action of :class:`~.SynthModule`. Each child class should override this method. """ raise NotImplementedError("Derived classes must override this method") def forward(self, *args: Any, **kwargs: Any) -> Signal: # pragma: no cover """ Wrapper for output that ensures a :attr:`~.SynthModule.buffer_size` length output. """ signal = self.output(*args, **kwargs) buffered = self.to_buffer_size(signal) return buffered def add_parameters(self, parameters: List[ModuleParameter]): """ Adds parameters to the :class:`~.SynthModule` parameter dictionary. Used by the class constructor. Args: parameters: List of parameters to register with this module. """ for parameter in parameters: assert parameter.parameter_name not in self.torchparameters assert parameter.shape == (self.batch_size,) self.torchparameters[parameter.parameter_name] = parameter def get_parameter(self, parameter_id: str) -> ModuleParameter: """ Retrieves a single :class:`~torchsynth.parameter.ModuleParameter`, as specified by its parameter Id. Args: parameter_id: Id of the parameter to retrieve. """ value = self.torchparameters[parameter_id] assert value.shape == (self.batch_size,) return value def get_parameter_0to1(self, parameter_id: str) -> T: """ Retrieves a specified parameter value in the normalized range [0,1]. Args: parameter_id: Id of the parameter to retrieve. """ value = self.torchparameters[parameter_id] assert value.shape == (self.batch_size,) return value def set_parameter(self, parameter_id: str, value: T): """ Updates a parameter value in a parameter-specific non-normalized range. Args: parameter_id: Id of the parameter to update. value: Value to assign to the parameter. """ value = value.to(self.device) self.torchparameters[parameter_id].to_0to1(value) value = self.torchparameters[parameter_id].data assert torch.all(0.0 <= value) and torch.all(value <= 1.0) assert value.shape == (self.batch_size,) def set_parameter_0to1(self, parameter_id: str, value: T): """ Update a parameter value in a normalized range [0,1]. Args: parameter_id: Id of the parameter to update. value: Value to assign to the parameter. """ value = value.to(self.device) assert torch.all(0.0 <= value) and torch.all(value <= 1.0) assert value.shape == (self.batch_size,) self.torchparameters[parameter_id].data = value def p(self, parameter_id: str) -> T: """ Convenience method for retrieving a parameter value. Returns the value in parameter-specific, non-normalized range. Args: parameter_id: Id of the parameter to retrieve. """ value = self.torchparameters[parameter_id].from_0to1() assert value.shape == (self.batch_size,) return value def to(self, device: Optional[torch.device] = None, **kwargs): """ This function overrides the :func:`~torch.nn.Module.to` call in :class:`torch.nn.Module`. It ensures that the related values :class:`~torchsynth.parameter.ModuleParameterRange` and :class:`~torchsynth.parameter.ModuleParameter`, as well as :attr:`~.SynthModule.synthconfig` are also transferred to the correct device. Args: device: device to send this module to """ self._update_device(device) return super().to(device=device, **kwargs) def _update_device(self, device: Optional[torch.device] = None): """ This method handles the device transfer tasks that are not managed by PyTorch. Args: device: Device to assign to this module. """ self.synthconfig.to(device) self.device = device class ControlRateModule(SynthModule): """ An abstract base class for non-audio modules that adapts the functions of :class:`.~SynthModule` to run at :attr:`~.ControlRateModule.control_rate`. """ @property def sample_rate(self) -> T: raise NotImplementedError("This module operates at control rate") @property def buffer_size(self) -> T: raise NotImplementedError("This module uses control buffer size") @property def control_rate(self) -> T: """Control rate frequency in Hz.""" assert self.synthconfig.control_rate.ndim == 0 return self.synthconfig.control_rate @property def control_buffer_size(self) -> T: """Size of the module output in samples.""" assert self.synthconfig.control_buffer_size.ndim == 0 return self.synthconfig.control_buffer_size def to_buffer_size(self, signal: Signal) -> Signal: """ Fixes the length of a signal to the control buffer size of this module, as specified by :attr:`~.ControlRateModule.control_buffer_size`. Longer signals are truncated to length; shorter signals are zero-padded. Args: signal: A signal to pad or truncate. """ return util.fix_length(signal, self.control_buffer_size) def seconds_to_samples(self, seconds: T) -> T: """ Convenience function to calculate the number of samples corresponding to given a time value and :attr:`~.control_rate`. Returns a possibly fractional value. Args: seconds: Time value in seconds. """ return seconds * self.control_rate def output(self, *args: Any, **kwargs: Any) -> Signal: # pragma: no cover """ Performs the main action of :class:`~.ControlRateModule`. Each child class should override this method. """ raise NotImplementedError("Derived classes must override this method") class ADSR(ControlRateModule): """ Envelope class for building a control-rate ADSR signal. Args: synthconfig: An object containing synthesis settings that are shared across all modules, typically specified by :class:`~torchsynth.synth.Voice`, or some other, possibly custom :class:`~torchsynth.synth.AbstractSynth` subclass. device: An object representing the device on which the `torch` tensors are allocated (as per PyTorch, broadly). """ #: ADSR Parameters default_parameter_ranges: List[ModuleParameterRange] = [ ModuleParameterRange( 0.0, 2.0, curve=0.5, name="attack", description="attack time (sec)" ), ModuleParameterRange( 0.0, 2.0, curve=0.5, name="decay", description="decay time (sec)" ), ModuleParameterRange( 0.0, 1.0, name="sustain", description="sustain amplitude 0-1. The only part of ADSR that " + "(confusingly, by convention) is not a time value.", ), ModuleParameterRange( 0.0, 5.0, curve=0.5, name="release", description="release time (sec)" ), ModuleParameterRange( 0.1, 6.0, name="alpha", description="envelope curve. 1 is linear, >1 is exponential.", ), ] def __init__( self, synthconfig: SynthConfig, device: Optional[torch.device] = None, **kwargs: Dict[str, T], ): super().__init__(synthconfig, device=device, **kwargs) # Create some values that will be automatically loaded on device self.register_buffer("zero", tensor(0.0, device=self.device)) self.register_buffer("one", tensor(1.0, device=self.device)) self.register_buffer( "range", torch.arange(self.control_buffer_size, device=self.device) ) def output(self, note_on_duration: T) -> Signal: """Generate an ADSR envelope. By default, this envelope reacts as if it was triggered with midi, for example playing a keyboard. Each midi event has a beginning and end: note-on, when you press the key down; and note-off, when you release the key. `note_on_duration` is the amount of time that the key is depressed. During the note-on, the envelope moves through the attack and decay sections of the envelope. This leads to musically-intuitive, but programatically-counterintuitive behaviour: Example: Assume attack is .5 seconds, and decay is .5 seconds. If a note is held for .75 seconds, the envelope won't pass through the entire attack-and-decay (specifically, it will execute the entire attack, and only .25 seconds of the decay). If this is confusing, don't worry about it. ADSR's do a lot of work behind the scenes to make the playing experience feel natural. Args: note_on_duration: Duration of note on event in seconds. """ if self.synthconfig.debug: assert note_on_duration.ndim == 1 assert torch.all(note_on_duration > 0.0) # Calculations to accommodate attack/decay phase cut by note duration. attack = self.p("attack") decay = self.p("decay") self.alpha = self.p("alpha").unsqueeze(1) new_attack = torch.minimum(attack, note_on_duration) new_decay = torch.maximum(note_on_duration - attack, self.zero) new_decay = torch.minimum(new_decay, decay) attack_signal = self.make_attack(new_attack) decay_signal = self.make_decay(new_attack, new_decay) release_signal = self.make_release(note_on_duration) return (attack_signal * decay_signal * release_signal).as_subclass(Signal) def ramp( self, duration: T, start: Optional[T] = None, inverse: Optional[bool] = False ) -> Signal: """ Makes a ramp of a given duration in seconds. The construction of this matrix is rather cryptic. Essentially, this method works by tilting and clipping ramps between 0 and 1, then applying a scaling factor :attr:`~alpha`. Args: duration: Length of the ramp in seconds. start: Initial delay of ramp in seconds. inverse: Toggle to flip the ramp from ascending to descending. """ assert duration.ndim == 1 duration = self.seconds_to_samples(duration).unsqueeze(1) # Convert to number of samples. if start is not None: start = self.seconds_to_samples(start).unsqueeze(1) else: start = 0.0 # Build ramps template. ramp = self.range.expand((self.batch_size, self.range.shape[0])) # Shape ramps. ramp = ramp - start ramp = torch.maximum(ramp, self.zero) ramp = (ramp + self.eps) / duration + self.eps ramp = torch.minimum(ramp, self.one) # The following is a workaround. In inverse mode, a ramp with 0 duration # (that is all 1's) becomes all 0's, which is a problem for the # ultimate calculation of the ADSR signal (a * d * r => 0's). So this # replaces only rows who sum to 0 (i.e., all components are zero). if inverse: ramp = torch.where(duration > 0.0, 1.0 - ramp, ramp) # Apply scaling factor. ramp = torch.pow(ramp, self.alpha) return ramp.as_subclass(Signal) def make_attack(self, attack_time) -> Signal: """ Builds the attack portion of the envelope. Args: attack_time: Length of the attack in seconds. """ return self.ramp(attack_time) def make_decay(self, attack_time, decay_time) -> Signal: """ Creates the decay portion of the envelope. Args: attack_time: Length of the attack in seconds. decay_time: Length of the decay time in seconds. """ sustain = self.p("sustain").unsqueeze(1) a = 1.0 - sustain b = self.ramp(decay_time, start=attack_time, inverse=True) return torch.squeeze(a * b + sustain) def make_release(self, note_on_duration) -> Signal: """ Creates the release portion of the envelope. Args: note_on_duration: Duration of midi note in seconds (release starts when the midi note is released). """ return self.ramp(self.p("release"), start=note_on_duration, inverse=True) def __str__(self): # pragma: no cover return ( f"""ADSR(a={self.torchparameters['attack']}, """ f"""d={self.torchparameters['decay']}, """ f"""s={self.torchparameters['sustain']}, """ f"""r={self.torchparameters['release']}, """ f"""alpha={self.torchparameters['alpha']}""" ) class VCO(SynthModule): """ Base class for voltage controlled oscillators. Think of this as a VCO on a modular synthesizer. It has a base pitch (specified here as a midi value), and a pitch modulation depth. Its call accepts a modulation signal between [-1, 1]. An array of 0's returns a stationary audio signal at its base pitch. Args: synthconfig: An object containing synthesis settings that are shared across all modules, typically specified by :class:`~torchsynth.synth.Voice`, or some other, possibly custom :class:`~torchsynth.synth.AbstractSynth` subclass. phase: Initial oscillator phase. """ default_parameter_ranges: List[ModuleParameterRange] = [ ModuleParameterRange( -24.0, 24.0, name="tuning", description="tuning adjustment for VCO in midi", ), ModuleParameterRange( -96.0, 96.0, curve=0.2, symmetric=True, name="mod_depth", description="depth of the pitch modulation in semitones", ), ModuleParameterRange( -torch.pi, torch.pi, name="initial_phase", description="Initial phase for this oscillator", ), ] def output(self, midi_f0: T, mod_signal: Optional[Signal] = None) -> Signal: """ Generates audio signal from modulation signal. Args: midi_f0: Fundamental of note in midi note value (0-127). mod_signal: Modulation signal to apply to the pitch. """ assert midi_f0.shape == (self.batch_size,) if mod_signal is not None and mod_signal.shape != ( self.batch_size, self.buffer_size, ): raise ValueError( "mod_signal has incorrect shape. Expected " f"{torch.Size([self.batch_size, self.buffer_size])}, " f"and received {mod_signal.shape}. Make sure the mod_signal " "being passed in is at full audio sampling rate." ) control_as_frequency = self.make_control_as_frequency(midi_f0, mod_signal) if self.synthconfig.debug: assert (control_as_frequency >= 0).all() and ( control_as_frequency <= self.nyquist ).all() cosine_argument = self.make_argument(control_as_frequency) cosine_argument += self.p("initial_phase").unsqueeze(1) output = self.oscillator(cosine_argument, midi_f0) return output.as_subclass(Signal) def make_control_as_frequency( self, midi_f0: T, mod_signal: Optional[Signal] = None ) -> Signal: """ Generates a time-varying control signal in frequency (Hz) from a midi fundamental pitch and pitch-modulation signal. Args: midi_f0: Fundamental pitch value in midi. mod_signal: Pitch modulation signal in midi. """ midi_f0 = (midi_f0 + self.p("tuning")).unsqueeze(1) # If there is no modulation, then convert the midi_f0 values to # frequency and return an expanded view that contains buffer size # number of values if mod_signal is None: control_hz = util.midi_to_hz(midi_f0) return control_hz.expand(-1, self.buffer_size) # If there is modulation, then add that to the fundamental, # clamp to a range [0.0, 127.0], then return in frequency Hz. modulation = self.p("mod_depth").unsqueeze(1) * mod_signal control = torch.clamp(midi_f0 + modulation, 0.0, 127.0) return util.midi_to_hz(control) def make_argument(self, freq: Signal) -> Signal: """ Generates the phase argument to feed an oscillating function to generate an audio signal. Args: freq: Time-varying instantaneous frequency in Hz. """ return torch.cumsum(2 * torch.pi * freq / self.sample_rate, dim=1) def oscillator(self, argument: Signal, midi_f0: T) -> Signal: """ This function accepts a phase argument and generates output audio. It is implemented by the child class. Args: argument: The phase of the oscillator at each time sample. midi_f0: Fundamental frequency in midi. """ raise NotImplementedError("Derived classes must override this method") class SineVCO(VCO): """ Simple VCO that generates a pitched sinusoid. """ def oscillator(self, argument: Signal, midi_f0: T) -> Signal: """ A cosine oscillator. ...Good ol' cosine. Args: argument: The phase of the oscillator at each time sample. midi_f0: Fundamental frequency in midi (ignored in this VCO). """ return torch.cos(argument) class FmVCO(VCO): """ Frequency modulation VCO. Takes a modulation signal as instantaneous frequency (in Hz) rather than as a midi value. Typical modulation is calculated in pitch-space (midi). For FM to work, we have to change the order of calculations. Here the modulation depth is re-interpreted as the "modulation index" which is tied to the fundamental of the oscillator being modulated: :math:`I = \\Delta f / f_m` where :math:`I` is the modulation index, :math:`\\Delta f` is the frequency deviation imparted by the modulation, and :math:`f_m` is the modulation frequency, both in Hz. """ # We include this override to output to make mod_signal non-optional def output(self, midi_f0: T, mod_signal: Signal) -> Signal: """ Args: midi_f0: note value in midi mod_signal: audio rate frequency modulation signal """ return super().output(midi_f0, mod_signal) def make_control_as_frequency(self, midi_f0: T, mod_signal) -> Signal: """ Creates a time-varying control signal in instantaneous frequency (Hz). Args: midi_f0: Fundamental frequency in midi. mod_signal: FM modulation signal (interpreted as modulation index). """ # Compute modulation in Hz space (rather than midi-space). f0_hz = util.midi_to_hz(midi_f0 + self.p("tuning")).unsqueeze(1) fm_depth = self.p("mod_depth").unsqueeze(1) * f0_hz modulation_hz = fm_depth * mod_signal return torch.clamp(f0_hz + modulation_hz, 0.0, self.nyquist) def oscillator(self, argument: Signal, midi_f0: T) -> Signal: """ A cosine oscillator. ...Good ol' cosine. Args: argument: The phase of the oscillator at each time sample. midi_f0: Fundamental frequency in midi (ignored in this VCO). """ return torch.cos(argument) class SquareSawVCO(VCO): """ An oscillator that can take on either a square or a sawtooth waveshape, and can sweep continuously between them, as determined by the :attr:`~torchsynth.module.SquareSawVCO.shape` parameter. A shape value of 0 makes a square wave; a shape of 1 makes a saw wave. With apologies to Lazzarini and Timoney (2010). `"New perspectives on distortion synthesis for virtual analog oscillators." <https://doi.org/10.1162/comj.2010.34.1.28>`_ Computer Music Journal 34, no. 1: 28-40. """ default_parameter_ranges: List[ ModuleParameterRange ] = VCO.default_parameter_ranges + [ ModuleParameterRange( 0.0, 1.0, name="shape", description="Waveshape - square to saw [0,1]" ) ] def oscillator(self, argument: Signal, midi_f0: T) -> Signal: """ Generates output square/saw audio given a phase argument. Args: argument: The phase of the oscillator at each time sample. midi_f0: Fundamental frequency in midi. """ partials = self.partials_constant(midi_f0).unsqueeze(1) square = torch.tanh(torch.pi * partials * torch.sin(argument) / 2) shape = self.p("shape").unsqueeze(1) return (1 - shape / 2) * square * (1 + shape * torch.cos(argument)) def partials_constant(self, midi_f0): """ Calculates a value to determine the number of overtones in the resulting square / saw wave, in order to keep aliasing at an acceptable level. Higher fundamental frequencies require fewer partials for a rich sound; lower-frequency sounds can safely have more partials without causing audible aliasing. Args: midi_f0: Fundamental frequency in midi. """ max_pitch = ( midi_f0 + self.p("tuning") + torch.maximum(self.p("mod_depth"), tensor(0)) ) max_f0 = util.midi_to_hz(max_pitch) return 12000 / (max_f0 * torch.log10(max_f0)) class VCA(SynthModule): """ Voltage controlled amplifier. The VCA shapes the amplitude of an audio input signal over time, as determined by a control signal. To shape control-rate signals, use :class:`torchsynth.module.ControlRateVCA`. """ def output(self, audio_in: Signal, control_in: Signal) -> Signal: """ Args: audio: Audio input to shape with the VCA. amp_control: Time-varying amplitude modulation signal. """ return audio_in * control_in class ControlRateVCA(ControlRateModule): """ Voltage controlled amplifier. The VCA shapes the amplitude of a control input signal over time, as determined by another control signal. To shape audio-rate signals, use :class:`torchsynth.module.VCA`. """ def output(self, audio_in: Signal, control_in: Signal) -> Signal: """ Args: control: Control signal input to shape with the VCA. amp_control: Time-varying amplitude modulation signal. """ return audio_in * control_in class Noise(SynthModule): """ Generates white noise that is the same length as the buffer. For performance noise is pre-computed. In order to maintain reproducibility noise must be computed on the CPU and then transferred to the GPU, if a GPU is being used. We pre-compute :attr:`~torchsynth.config.BASE_REPRODUCIBLE_BATCH_SIZE` samples of noise and then repeat those for larger batch sizes. To keep things fast we only support multiples of :attr:`~torchsynth.config.BASE_REPRODUCIBLE_BATCH_SIZE` when reproducibility mode is enabled. For example, if you batch size is 4 times :attr:`~torchsynth.config.BASE_REPRODUCIBLE_BATCH_SIZE`, then you get the same noise signals repeated 4 times. `Note`: If you have multiple `Noise` modules in the same :class:`~torchsynth.synth.AbstractSynth`, make sure you instantiate each `Noise` with a unique seed. Args: synthconfig: See :class:`~torchsynth.module.SynthModule` seed: random number generator seed for white noise """ __noise_batch_size: int = BASE_REPRODUCIBLE_BATCH_SIZE # Unfortunately, Final is not supported until Python 3.8 # noise_batch_size: Final[int] = BATCH_SIZE_FOR_REPRODUCIBILITY def __init__(self, synthconfig: SynthConfig, seed: int, **kwargs): super().__init__(synthconfig, **kwargs) # Pre-compute default batch size number of noise samples generator = torch.Generator(device="cpu").manual_seed(seed) # In reproducible mode, we support batch sizes that are multiples # of the BASE_REPRODUCIBLE_BATCH_SIZE if self.synthconfig.reproducible: if self.batch_size % self.__noise_batch_size != 0: raise ValueError( f"Batch size must be a multiple of {self.__noise_batch_size} " "when using reproducible mode. Either change your batch size," "or set reproducible=False in the SynthConfig for this module." ) noise = torch.empty( (self.__noise_batch_size, self.buffer_size), device="cpu" ) noise.data.uniform_(-1.0, 1.0, generator=generator) if self.batch_size > self.__noise_batch_size: noise = noise.repeat(self.batch_size // self.__noise_batch_size, 1) else: # Non-reproducible mode, just render noise of batch size noise = torch.empty((self.batch_size, self.buffer_size), device="cpu") noise.data.uniform_(-1.0, 1.0, generator=generator) self.register_buffer("noise", noise.to(self.device)) def output(self) -> Signal: return self.noise.as_subclass(Signal) class LFO(ControlRateModule): """ Low Frequency Oscillator. The LFO shape can be any mixture of sine, triangle, saw, reverse saw, and square waves. Contributions of each base-shape are determined by the :attr:`~torchsynth.module.LFO.lfo_types` values, which are between 0 and 1. Args: synthconfig: See :class:`~torchsynth.module.SynthConfig`. exponent: A non-negative value that determines the discrimination of the soft-max selector for LFO shapes. Higher values will tend to favour one LFO shape over all others. Lower values will result in a more even blend of LFO shapes. """ default_ranges: List[ModuleParameterRange] = [ ModuleParameterRange( 0.0, 20.0, curve=0.25, name="frequency", description="Frequency in Hz of oscillation", ), ModuleParameterRange( -10.0, 20.0, curve=0.5, symmetric=True, name="mod_depth", description="LFO rate modulation in Hz", ), ModuleParameterRange( -torch.pi, torch.pi, name="initial_phase", description="Initial phase of LFO", ), ] def __init__( self, synthconfig: SynthConfig, exponent: T = tensor(2.718281828), # e **kwargs: Dict[str, T], ): self.lfo_types = ["sin", "tri", "saw", "rsaw", "sqr"] self.default_parameter_ranges = self.default_ranges.copy() for lfo in self.lfo_types: self.default_parameter_ranges.append( ModuleParameterRange( 0.0, 1.0, name=f"{lfo}", description=f"Selection parameter for {lfo} LFO", ) ) super().__init__(synthconfig, **kwargs) self.exponent = exponent def output(self, mod_signal: Optional[Signal] = None) -> Signal: """ Generates low frequency oscillator control signal. Args: mod_signal: LFO rate modulation signal in Hz. To modulate the depth of the LFO, use :class:`torchsynth.module.ControlRateVCA`. """ # This module accepts signals at control rate! if mod_signal is not None: assert mod_signal.shape == (self.batch_size, self.control_buffer_size) # Create frequency signal frequency = self.make_control(mod_signal) argument = torch.cumsum(2 * torch.pi * frequency / self.control_rate, dim=1) argument = argument + self.p("initial_phase").unsqueeze(1) # Get LFO shapes shapes = torch.stack(self.make_lfo_shapes(argument), dim=1).as_subclass(Signal) # Apply mode selection to the LFO shapes mode = torch.stack([self.p(lfo) for lfo in self.lfo_types], dim=1) mode = torch.pow(mode, self.exponent) mode = mode / torch.sum(mode, dim=1, keepdim=True) return torch.matmul(mode.unsqueeze(1), shapes).squeeze(1).as_subclass(Signal) def make_control(self, mod_signal: Optional[Signal] = None) -> Signal: """ Applies the LFO-rate modulation signal to the LFO base frequency. Args: mod_signal: Modulation signal in Hz. Positive values increase the LFO base rate; negative values decrease it. """ frequency = self.p("frequency").unsqueeze(1) # If no modulation, then return a view of the frequency of this # LFO expanded to the control buffer size if mod_signal is None: return frequency.expand(-1, self.control_buffer_size) modulation = self.p("mod_depth").unsqueeze(1) * mod_signal return torch.maximum(frequency + modulation, tensor(0.0)) def make_lfo_shapes(self, argument: Signal) -> Tuple[T, T, T, T, T]: """ Generates five separate signals for each LFO shape and returns them as a tuple, to be mixed by :func:`torchsynth.module.LFO.output`. Args: argument: Time-varying phase to generate LFO signals. """ cos = torch.cos(argument + torch.pi) square = torch.sign(cos) cos = (cos + 1.0) / 2.0 square = (square + 1.0) / 2.0 saw = torch.remainder(argument, 2 * torch.pi) / (2 * torch.pi) rev_saw = 1.0 - saw triangle = 2 * saw triangle = torch.where(triangle > 1.0, 2.0 - triangle, triangle) return cos, triangle, saw, rev_saw, square class ModulationMixer(SynthModule): """ A modulation matrix that combines :math:`N` input modulation signals to make :math:`M` output modulation signals. Each output is a linear combination of all in input signals, as determined by an :math:`N \times M` mixing matrix. Args: synthconfig: See :class:`~torchsynth.module.SynthConfig`. n_input: Number of input signals to module mix. n_output: Number of output signals to generate. curves: A positive value that determines the contribution of each input signal to the other signals. A low value discourages over-mixing. """ def __init__( self, synthconfig: SynthConfig, n_input: int, n_output: int, curves: Optional[List[float]] = None, input_names: Optional[List[str]] = None, output_names: Optional[List[str]] = None, **kwargs: Dict[str, T], ): # Parameter curves can be used to modify the parameter mapping # for each input modulation source to the outputs if curves is not None: assert len(curves) == n_input else: curves = [0.5] * n_input custom_names = False if input_names is not None: assert len(input_names) == n_input assert output_names is not None assert len(output_names) == n_output custom_names = True # Need to create the parameter ranges before calling super().__init self.default_parameter_ranges = [] for i in range(n_input): for j in range(n_output): # Apply custom param name if it was passed in if custom_names: name = f"{input_names[i]}->{output_names[j]}" description = f"Modulation {input_names[i]} to {output_names[j]}" else: name = f"{i}->{j}" description = f"Modulation {i} to {j}" self.default_parameter_ranges.append( ModuleParameterRange( 0.0, 1.0, curve=curves[i], name=name, description=description, ) ) super().__init__(synthconfig, **kwargs) self.n_input = n_input self.n_output = n_output def forward(self, *signals: Signal) -> Tuple[Signal]: """ Performs mixture of modulation signals. """ # Get params into batch_size x n_output x n_input matrix params = torch.stack([self.p(p) for p in self.torchparameters], dim=1) params = params.view(self.batch_size, self.n_input, self.n_output) params = torch.swapaxes(params, 1, 2) # Make sure there is the same number of input signals as mix params assert len(signals) == params.shape[2] signals = torch.stack(signals, dim=1) modulation = torch.chunk(torch.matmul(params, signals), self.n_output, dim=1) return tuple(m.squeeze(1).as_subclass(Signal) for m in modulation) class AudioMixer(SynthModule): """ Sums together N audio signals and applies range-normalization if the resulting signal is outside of [-1, 1]. """ def __init__( self, synthconfig: SynthConfig, n_input: int, curves: Optional[List[float]] = None, names: Optional[List[str]] = None, **kwargs: Dict[str, T], ): # Parameter curves can be used to modify the parameter mapping # for each input modulation source to the outputs if curves is not None: assert len(curves) == n_input else: curves = [1.0] * n_input # If param names were passed in, make sure we got the right number if names is not None: assert len(names) == n_input # Need to create the parameter ranges before calling super().__init self.default_parameter_ranges = [] for i in range(n_input): name = f"level{i}" if names is None else names[i] self.default_parameter_ranges.append( ModuleParameterRange( 0.0, 1.0, curve=curves[i], name=name, description=f"{name} mix level", ) ) super().__init__(synthconfig, **kwargs) self.n_input = n_input def output(self, *signals: Signal) -> Signal: """ Returns a mixed signal from an array of input signals. """ # Turn params into matrix params = torch.stack([self.p(p) for p in self.torchparameters], dim=1) # Make sure we received the correct number of input signals signals = torch.stack(signals, dim=1) assert signals.shape[1] == params.shape[1] # Mix signals and normalize output if required output = torch.matmul(params.unsqueeze(1), signals).squeeze(1) return util.normalize_if_clipping(output) class ControlRateUpsample(SynthModule): """ Upsample control signals to the global sampling rate Uses linear interpolation to resample an input control signal to the audio buffer size set in synthconfig. """ def __init__( self, synthconfig: SynthConfig, device: Optional[torch.device] = None, **kwargs: Dict[str, T], ): super().__init__(synthconfig, device, **kwargs) self.upsample = torch.nn.Upsample( self.synthconfig.buffer_size, mode="linear", align_corners=True ) def output(self, signal: Signal) -> Signal: return self.upsample(signal.unsqueeze(1)).squeeze(1) class CrossfadeKnob(SynthModule): """ Crossfade knob parameter with no signal generation """ default_parameter_ranges: List[ModuleParameterRange] = [ ModuleParameterRange( 0.0, 1.0, name="ratio", description="crossfade knob", ), ] class MonophonicKeyboard(SynthModule): """ A keyboard controller module. Mimics a mono-synth keyboard and contains parameters that output a midi_f0 and note duration. """ default_parameter_ranges: List[ModuleParameterRange] = [ ModuleParameterRange( 0.0, 127.0, curve=1.0, name="midi_f0", description="pitch value in 'midi' (69 = 440Hz)", ), ModuleParameterRange( 0.01, 4.0, curve=0.5, name="duration", description="note-on button, in seconds", ), ] def forward(self) -> Tuple[T, T]: return self.p("midi_f0"), self.p("duration") class SoftModeSelector(SynthModule): """ A soft mode selector. If there are n different modes, return a probability distribution over them. TODO: Would be nice to sample in a way that maximizes KL-divergence from uniform: https://github.com/torchsynth/torchsynth/issues/165 """ def __init__( self, synthconfig: SynthConfig, n_modes: int, exponent: T = tensor(2.718281828), # e **kwargs: Dict[str, T], ): """ exponent determines how strongly to scale each [0,1] value prior to normalization. We should probably tune this: https://github.com/torchsynth/torchsynth/issues/165 """ # Need to create the parameter ranges before calling super().__init self.default_parameter_ranges = [ ModuleParameterRange( 0.0, 1.0, name=f"mode{i}weight", description=f"mode{i} weight, before normalization", ) for i in range(n_modes) ] super().__init__(synthconfig=synthconfig, **kwargs) self.exponent = exponent def forward(self) -> Tuple[T, T]: """ Normalize all mode weights so they sum to 1.0 """ # Is this tensor creation slow? # But usually parameter stuff is not the bottleneck params = torch.stack([p.data for p in self.torchparameters.values()]) params = torch.pow(params, exponent=self.exponent) return params / torch.sum(params, dim=0) class HardModeSelector(SynthModule): """ A hard mode selector. NOTE: This is non-differentiable. """ def __init__( self, synthconfig: SynthConfig, n_modes: int, **kwargs: Dict[str, T], ): # Need to create the parameter ranges before calling super().__init self.default_parameter_ranges = [ ModuleParameterRange( 0.0, 1.0, name=f"mode{i}weight", description=f"mode{i} weight, before argmax", ) for i in range(n_modes) ] super().__init__(synthconfig=synthconfig, **kwargs) def forward(self) -> Tuple[T, T]: # Is this tensor creation slow? # But usually parameter stuff is not the bottleneck origparams = torch.stack([p.data for p in self.torchparameters.values()]) idx = torch.argmax(origparams, dim=0) return F.one_hot(idx, num_classes=origparams.shape[0]).T
the-stack_106_20195
import asyncio import dataclasses import time import traceback from secrets import token_bytes from typing import Callable, Dict, List, Optional, Tuple, Set from blspy import AugSchemeMPL, G2Element from chiabip158 import PyBIP158 import staicoin.server.ws_connection as ws from staicoin.consensus.block_creation import create_unfinished_block from staicoin.consensus.block_record import BlockRecord from staicoin.consensus.pot_iterations import calculate_ip_iters, calculate_iterations_quality, calculate_sp_iters from staicoin.full_node.bundle_tools import best_solution_generator_from_template, simple_solution_generator from staicoin.full_node.full_node import FullNode from staicoin.full_node.mempool_check_conditions import get_puzzle_and_solution_for_coin from staicoin.full_node.signage_point import SignagePoint from staicoin.protocols import farmer_protocol, full_node_protocol, introducer_protocol, timelord_protocol, wallet_protocol from staicoin.protocols.full_node_protocol import RejectBlock, RejectBlocks from staicoin.protocols.protocol_message_types import ProtocolMessageTypes from staicoin.protocols.wallet_protocol import PuzzleSolutionResponse, RejectHeaderBlocks, RejectHeaderRequest from staicoin.server.outbound_message import Message, make_msg from staicoin.types.blockchain_format.coin import Coin, hash_coin_list from staicoin.types.blockchain_format.pool_target import PoolTarget from staicoin.types.blockchain_format.program import Program from staicoin.types.blockchain_format.sized_bytes import bytes32 from staicoin.types.coin_record import CoinRecord from staicoin.types.end_of_slot_bundle import EndOfSubSlotBundle from staicoin.types.full_block import FullBlock from staicoin.types.generator_types import BlockGenerator from staicoin.types.mempool_inclusion_status import MempoolInclusionStatus from staicoin.types.mempool_item import MempoolItem from staicoin.types.peer_info import PeerInfo from staicoin.types.unfinished_block import UnfinishedBlock from staicoin.util.api_decorators import api_request, peer_required, bytes_required, execute_task from staicoin.util.generator_tools import get_block_header from staicoin.util.hash import std_hash from staicoin.util.ints import uint8, uint32, uint64, uint128 from staicoin.util.merkle_set import MerkleSet class FullNodeAPI: full_node: FullNode def __init__(self, full_node) -> None: self.full_node = full_node def _set_state_changed_callback(self, callback: Callable): self.full_node.state_changed_callback = callback @property def server(self): return self.full_node.server @property def log(self): return self.full_node.log @property def api_ready(self): return self.full_node.initialized @peer_required @api_request async def request_peers(self, _request: full_node_protocol.RequestPeers, peer: ws.WSstaicoinConnection): if peer.peer_server_port is None: return None peer_info = PeerInfo(peer.peer_host, peer.peer_server_port) if self.full_node.full_node_peers is not None: msg = await self.full_node.full_node_peers.request_peers(peer_info) return msg @peer_required @api_request async def respond_peers( self, request: full_node_protocol.RespondPeers, peer: ws.WSstaicoinConnection ) -> Optional[Message]: self.log.debug(f"Received {len(request.peer_list)} peers") if self.full_node.full_node_peers is not None: await self.full_node.full_node_peers.respond_peers(request, peer.get_peer_info(), True) return None @peer_required @api_request async def respond_peers_introducer( self, request: introducer_protocol.RespondPeersIntroducer, peer: ws.WSstaicoinConnection ) -> Optional[Message]: self.log.debug(f"Received {len(request.peer_list)} peers from introducer") if self.full_node.full_node_peers is not None: await self.full_node.full_node_peers.respond_peers(request, peer.get_peer_info(), False) await peer.close() return None @execute_task @peer_required @api_request async def new_peak(self, request: full_node_protocol.NewPeak, peer: ws.WSstaicoinConnection) -> Optional[Message]: """ A peer notifies us that they have added a new peak to their blockchain. If we don't have it, we can ask for it. """ # this semaphore limits the number of tasks that can call new_peak() at # the same time, since it can be expensive async with self.full_node.new_peak_sem: return await self.full_node.new_peak(request, peer) @peer_required @api_request async def new_transaction( self, transaction: full_node_protocol.NewTransaction, peer: ws.WSstaicoinConnection ) -> Optional[Message]: """ A peer notifies us of a new transaction. Requests a full transaction if we haven't seen it previously, and if the fees are enough. """ # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None if not (await self.full_node.synced()): return None # Ignore if already seen if self.full_node.mempool_manager.seen(transaction.transaction_id): return None if self.full_node.mempool_manager.is_fee_enough(transaction.fees, transaction.cost): # If there's current pending request just add this peer to the set of peers that have this tx if transaction.transaction_id in self.full_node.full_node_store.pending_tx_request: if transaction.transaction_id in self.full_node.full_node_store.peers_with_tx: current_set = self.full_node.full_node_store.peers_with_tx[transaction.transaction_id] if peer.peer_node_id in current_set: return None current_set.add(peer.peer_node_id) return None else: new_set = set() new_set.add(peer.peer_node_id) self.full_node.full_node_store.peers_with_tx[transaction.transaction_id] = new_set return None self.full_node.full_node_store.pending_tx_request[transaction.transaction_id] = peer.peer_node_id new_set = set() new_set.add(peer.peer_node_id) self.full_node.full_node_store.peers_with_tx[transaction.transaction_id] = new_set async def tx_request_and_timeout(full_node: FullNode, transaction_id, task_id): counter = 0 try: while True: # Limit to asking 10 peers, it's possible that this tx got included on chain already # Highly unlikely 10 peers that advertised a tx don't respond to a request if counter == 10: break if transaction_id not in full_node.full_node_store.peers_with_tx: break peers_with_tx: Set = full_node.full_node_store.peers_with_tx[transaction_id] if len(peers_with_tx) == 0: break peer_id = peers_with_tx.pop() assert full_node.server is not None if peer_id not in full_node.server.all_connections: continue peer = full_node.server.all_connections[peer_id] request_tx = full_node_protocol.RequestTransaction(transaction.transaction_id) msg = make_msg(ProtocolMessageTypes.request_transaction, request_tx) await peer.send_message(msg) await asyncio.sleep(5) counter += 1 if full_node.mempool_manager.seen(transaction_id): break except asyncio.CancelledError: pass finally: # Always Cleanup if transaction_id in full_node.full_node_store.peers_with_tx: full_node.full_node_store.peers_with_tx.pop(transaction_id) if transaction_id in full_node.full_node_store.pending_tx_request: full_node.full_node_store.pending_tx_request.pop(transaction_id) if task_id in full_node.full_node_store.tx_fetch_tasks: full_node.full_node_store.tx_fetch_tasks.pop(task_id) task_id = token_bytes() fetch_task = asyncio.create_task( tx_request_and_timeout(self.full_node, transaction.transaction_id, task_id) ) self.full_node.full_node_store.tx_fetch_tasks[task_id] = fetch_task return None return None @api_request async def request_transaction(self, request: full_node_protocol.RequestTransaction) -> Optional[Message]: """Peer has requested a full transaction from us.""" # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None spend_bundle = self.full_node.mempool_manager.get_spendbundle(request.transaction_id) if spend_bundle is None: return None transaction = full_node_protocol.RespondTransaction(spend_bundle) msg = make_msg(ProtocolMessageTypes.respond_transaction, transaction) return msg @peer_required @api_request @bytes_required async def respond_transaction( self, tx: full_node_protocol.RespondTransaction, peer: ws.WSstaicoinConnection, tx_bytes: bytes = b"", test: bool = False, ) -> Optional[Message]: """ Receives a full transaction from peer. If tx is added to mempool, send tx_id to others. (new_transaction) """ assert tx_bytes != b"" spend_name = std_hash(tx_bytes) if spend_name in self.full_node.full_node_store.pending_tx_request: self.full_node.full_node_store.pending_tx_request.pop(spend_name) if spend_name in self.full_node.full_node_store.peers_with_tx: self.full_node.full_node_store.peers_with_tx.pop(spend_name) await self.full_node.respond_transaction(tx.transaction, spend_name, peer, test) return None @api_request async def request_proof_of_weight(self, request: full_node_protocol.RequestProofOfWeight) -> Optional[Message]: if self.full_node.weight_proof_handler is None: return None if not self.full_node.blockchain.contains_block(request.tip): self.log.error(f"got weight proof request for unknown peak {request.tip}") return None if request.tip in self.full_node.pow_creation: event = self.full_node.pow_creation[request.tip] await event.wait() wp = await self.full_node.weight_proof_handler.get_proof_of_weight(request.tip) else: event = asyncio.Event() self.full_node.pow_creation[request.tip] = event wp = await self.full_node.weight_proof_handler.get_proof_of_weight(request.tip) event.set() tips = list(self.full_node.pow_creation.keys()) if len(tips) > 4: # Remove old from cache for i in range(0, 4): self.full_node.pow_creation.pop(tips[i]) if wp is None: self.log.error(f"failed creating weight proof for peak {request.tip}") return None # Serialization of wp is slow if ( self.full_node.full_node_store.serialized_wp_message_tip is not None and self.full_node.full_node_store.serialized_wp_message_tip == request.tip ): return self.full_node.full_node_store.serialized_wp_message message = make_msg( ProtocolMessageTypes.respond_proof_of_weight, full_node_protocol.RespondProofOfWeight(wp, request.tip) ) self.full_node.full_node_store.serialized_wp_message_tip = request.tip self.full_node.full_node_store.serialized_wp_message = message return message @api_request async def respond_proof_of_weight(self, request: full_node_protocol.RespondProofOfWeight) -> Optional[Message]: self.log.warning("Received proof of weight too late.") return None @api_request async def request_block(self, request: full_node_protocol.RequestBlock) -> Optional[Message]: if not self.full_node.blockchain.contains_height(request.height): reject = RejectBlock(request.height) msg = make_msg(ProtocolMessageTypes.reject_block, reject) return msg header_hash = self.full_node.blockchain.height_to_hash(request.height) block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(header_hash) if block is not None: if not request.include_transaction_block and block.transactions_generator is not None: block = dataclasses.replace(block, transactions_generator=None) return make_msg(ProtocolMessageTypes.respond_block, full_node_protocol.RespondBlock(block)) reject = RejectBlock(request.height) msg = make_msg(ProtocolMessageTypes.reject_block, reject) return msg @api_request async def request_blocks(self, request: full_node_protocol.RequestBlocks) -> Optional[Message]: if request.end_height < request.start_height or request.end_height - request.start_height > 32: reject = RejectBlocks(request.start_height, request.end_height) msg: Message = make_msg(ProtocolMessageTypes.reject_blocks, reject) return msg for i in range(request.start_height, request.end_height + 1): if not self.full_node.blockchain.contains_height(uint32(i)): reject = RejectBlocks(request.start_height, request.end_height) msg = make_msg(ProtocolMessageTypes.reject_blocks, reject) return msg if not request.include_transaction_block: blocks: List[FullBlock] = [] for i in range(request.start_height, request.end_height + 1): block: Optional[FullBlock] = await self.full_node.block_store.get_full_block( self.full_node.blockchain.height_to_hash(uint32(i)) ) if block is None: reject = RejectBlocks(request.start_height, request.end_height) msg = make_msg(ProtocolMessageTypes.reject_blocks, reject) return msg block = dataclasses.replace(block, transactions_generator=None) blocks.append(block) msg = make_msg( ProtocolMessageTypes.respond_blocks, full_node_protocol.RespondBlocks(request.start_height, request.end_height, blocks), ) else: blocks_bytes: List[bytes] = [] for i in range(request.start_height, request.end_height + 1): block_bytes: Optional[bytes] = await self.full_node.block_store.get_full_block_bytes( self.full_node.blockchain.height_to_hash(uint32(i)) ) if block_bytes is None: reject = RejectBlocks(request.start_height, request.end_height) msg = make_msg(ProtocolMessageTypes.reject_blocks, reject) return msg blocks_bytes.append(block_bytes) respond_blocks_manually_streamed: bytes = ( bytes(uint32(request.start_height)) + bytes(uint32(request.end_height)) + len(blocks_bytes).to_bytes(4, "big", signed=False) ) for block_bytes in blocks_bytes: respond_blocks_manually_streamed += block_bytes msg = make_msg(ProtocolMessageTypes.respond_blocks, respond_blocks_manually_streamed) return msg @api_request async def reject_block(self, request: full_node_protocol.RejectBlock): self.log.debug(f"reject_block {request.height}") @api_request async def reject_blocks(self, request: full_node_protocol.RejectBlocks): self.log.debug(f"reject_blocks {request.start_height} {request.end_height}") @api_request async def respond_blocks(self, request: full_node_protocol.RespondBlocks) -> None: self.log.warning("Received unsolicited/late blocks") return None @api_request @peer_required async def respond_block( self, respond_block: full_node_protocol.RespondBlock, peer: ws.WSstaicoinConnection, ) -> Optional[Message]: """ Receive a full block from a peer full node (or ourselves). """ self.log.warning(f"Received unsolicited/late block from peer {peer.get_peer_info()}") return None @api_request async def new_unfinished_block( self, new_unfinished_block: full_node_protocol.NewUnfinishedBlock ) -> Optional[Message]: # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None block_hash = new_unfinished_block.unfinished_reward_hash if self.full_node.full_node_store.get_unfinished_block(block_hash) is not None: return None # This prevents us from downloading the same block from many peers if block_hash in self.full_node.full_node_store.requesting_unfinished_blocks: return None msg = make_msg( ProtocolMessageTypes.request_unfinished_block, full_node_protocol.RequestUnfinishedBlock(block_hash), ) self.full_node.full_node_store.requesting_unfinished_blocks.add(block_hash) # However, we want to eventually download from other peers, if this peer does not respond # Todo: keep track of who it was async def eventually_clear(): await asyncio.sleep(5) if block_hash in self.full_node.full_node_store.requesting_unfinished_blocks: self.full_node.full_node_store.requesting_unfinished_blocks.remove(block_hash) asyncio.create_task(eventually_clear()) return msg @api_request async def request_unfinished_block( self, request_unfinished_block: full_node_protocol.RequestUnfinishedBlock ) -> Optional[Message]: unfinished_block: Optional[UnfinishedBlock] = self.full_node.full_node_store.get_unfinished_block( request_unfinished_block.unfinished_reward_hash ) if unfinished_block is not None: msg = make_msg( ProtocolMessageTypes.respond_unfinished_block, full_node_protocol.RespondUnfinishedBlock(unfinished_block), ) return msg return None @peer_required @api_request async def respond_unfinished_block( self, respond_unfinished_block: full_node_protocol.RespondUnfinishedBlock, peer: ws.WSstaicoinConnection, ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None await self.full_node.respond_unfinished_block(respond_unfinished_block, peer) return None @api_request @peer_required async def new_signage_point_or_end_of_sub_slot( self, new_sp: full_node_protocol.NewSignagePointOrEndOfSubSlot, peer: ws.WSstaicoinConnection ) -> Optional[Message]: # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None if ( self.full_node.full_node_store.get_signage_point_by_index( new_sp.challenge_hash, new_sp.index_from_challenge, new_sp.last_rc_infusion, ) is not None ): return None if self.full_node.full_node_store.have_newer_signage_point( new_sp.challenge_hash, new_sp.index_from_challenge, new_sp.last_rc_infusion ): return None if new_sp.index_from_challenge == 0 and new_sp.prev_challenge_hash is not None: if self.full_node.full_node_store.get_sub_slot(new_sp.prev_challenge_hash) is None: collected_eos = [] challenge_hash_to_request = new_sp.challenge_hash last_rc = new_sp.last_rc_infusion num_non_empty_sub_slots_seen = 0 for _ in range(30): if num_non_empty_sub_slots_seen >= 3: self.log.debug("Diverged from peer. Don't have the same blocks") return None # If this is an end of sub slot, and we don't have the prev, request the prev instead # We want to catch up to the latest slot so we can receive signage points full_node_request = full_node_protocol.RequestSignagePointOrEndOfSubSlot( challenge_hash_to_request, uint8(0), last_rc ) response = await peer.request_signage_point_or_end_of_sub_slot(full_node_request, timeout=10) if not isinstance(response, full_node_protocol.RespondEndOfSubSlot): self.full_node.log.debug(f"Invalid response for slot {response}") return None collected_eos.append(response) if ( self.full_node.full_node_store.get_sub_slot( response.end_of_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.challenge ) is not None or response.end_of_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.challenge == self.full_node.constants.GENESIS_CHALLENGE ): for eos in reversed(collected_eos): await self.respond_end_of_sub_slot(eos, peer) return None if ( response.end_of_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.number_of_iterations != response.end_of_slot_bundle.reward_chain.end_of_slot_vdf.number_of_iterations ): num_non_empty_sub_slots_seen += 1 challenge_hash_to_request = ( response.end_of_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.challenge ) last_rc = response.end_of_slot_bundle.reward_chain.end_of_slot_vdf.challenge self.full_node.log.warning("Failed to catch up in sub-slots") return None if new_sp.index_from_challenge > 0: if ( new_sp.challenge_hash != self.full_node.constants.GENESIS_CHALLENGE and self.full_node.full_node_store.get_sub_slot(new_sp.challenge_hash) is None ): # If this is a normal signage point,, and we don't have the end of sub slot, request the end of sub slot full_node_request = full_node_protocol.RequestSignagePointOrEndOfSubSlot( new_sp.challenge_hash, uint8(0), new_sp.last_rc_infusion ) return make_msg(ProtocolMessageTypes.request_signage_point_or_end_of_sub_slot, full_node_request) # Otherwise (we have the prev or the end of sub slot), request it normally full_node_request = full_node_protocol.RequestSignagePointOrEndOfSubSlot( new_sp.challenge_hash, new_sp.index_from_challenge, new_sp.last_rc_infusion ) return make_msg(ProtocolMessageTypes.request_signage_point_or_end_of_sub_slot, full_node_request) @api_request async def request_signage_point_or_end_of_sub_slot( self, request: full_node_protocol.RequestSignagePointOrEndOfSubSlot ) -> Optional[Message]: if request.index_from_challenge == 0: sub_slot: Optional[Tuple[EndOfSubSlotBundle, int, uint128]] = self.full_node.full_node_store.get_sub_slot( request.challenge_hash ) if sub_slot is not None: return make_msg( ProtocolMessageTypes.respond_end_of_sub_slot, full_node_protocol.RespondEndOfSubSlot(sub_slot[0]), ) else: if self.full_node.full_node_store.get_sub_slot(request.challenge_hash) is None: if request.challenge_hash != self.full_node.constants.GENESIS_CHALLENGE: self.log.info(f"Don't have challenge hash {request.challenge_hash}") sp: Optional[SignagePoint] = self.full_node.full_node_store.get_signage_point_by_index( request.challenge_hash, request.index_from_challenge, request.last_rc_infusion, ) if sp is not None: assert ( sp.cc_vdf is not None and sp.cc_proof is not None and sp.rc_vdf is not None and sp.rc_proof is not None ) full_node_response = full_node_protocol.RespondSignagePoint( request.index_from_challenge, sp.cc_vdf, sp.cc_proof, sp.rc_vdf, sp.rc_proof, ) return make_msg(ProtocolMessageTypes.respond_signage_point, full_node_response) else: self.log.info(f"Don't have signage point {request}") return None @peer_required @api_request async def respond_signage_point( self, request: full_node_protocol.RespondSignagePoint, peer: ws.WSstaicoinConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None async with self.full_node.timelord_lock: # Already have signage point if self.full_node.full_node_store.have_newer_signage_point( request.challenge_chain_vdf.challenge, request.index_from_challenge, request.reward_chain_vdf.challenge, ): return None existing_sp = self.full_node.full_node_store.get_signage_point( request.challenge_chain_vdf.output.get_hash() ) if existing_sp is not None and existing_sp.rc_vdf == request.reward_chain_vdf: return None peak = self.full_node.blockchain.get_peak() if peak is not None and peak.height > self.full_node.constants.MAX_SUB_SLOT_BLOCKS: next_sub_slot_iters = self.full_node.blockchain.get_next_slot_iters(peak.header_hash, True) sub_slots_for_peak = await self.full_node.blockchain.get_sp_and_ip_sub_slots(peak.header_hash) assert sub_slots_for_peak is not None ip_sub_slot: Optional[EndOfSubSlotBundle] = sub_slots_for_peak[1] else: sub_slot_iters = self.full_node.constants.SUB_SLOT_ITERS_STARTING next_sub_slot_iters = sub_slot_iters ip_sub_slot = None added = self.full_node.full_node_store.new_signage_point( request.index_from_challenge, self.full_node.blockchain, self.full_node.blockchain.get_peak(), next_sub_slot_iters, SignagePoint( request.challenge_chain_vdf, request.challenge_chain_proof, request.reward_chain_vdf, request.reward_chain_proof, ), ) if added: await self.full_node.signage_point_post_processing(request, peer, ip_sub_slot) else: self.log.debug( f"Signage point {request.index_from_challenge} not added, CC challenge: " f"{request.challenge_chain_vdf.challenge}, RC challenge: {request.reward_chain_vdf.challenge}" ) return None @peer_required @api_request async def respond_end_of_sub_slot( self, request: full_node_protocol.RespondEndOfSubSlot, peer: ws.WSstaicoinConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None msg, _ = await self.full_node.respond_end_of_sub_slot(request, peer) return msg @peer_required @api_request async def request_mempool_transactions( self, request: full_node_protocol.RequestMempoolTransactions, peer: ws.WSstaicoinConnection, ) -> Optional[Message]: received_filter = PyBIP158(bytearray(request.filter)) items: List[MempoolItem] = await self.full_node.mempool_manager.get_items_not_in_filter(received_filter) for item in items: transaction = full_node_protocol.RespondTransaction(item.spend_bundle) msg = make_msg(ProtocolMessageTypes.respond_transaction, transaction) await peer.send_message(msg) return None # FARMER PROTOCOL @api_request @peer_required async def declare_proof_of_space( self, request: farmer_protocol.DeclareProofOfSpace, peer: ws.WSstaicoinConnection ) -> Optional[Message]: """ Creates a block body and header, with the proof of space, coinbase, and fee targets provided by the farmer, and sends the hash of the header data back to the farmer. """ if self.full_node.sync_store.get_sync_mode(): return None async with self.full_node.timelord_lock: sp_vdfs: Optional[SignagePoint] = self.full_node.full_node_store.get_signage_point( request.challenge_chain_sp ) if sp_vdfs is None: self.log.warning(f"Received proof of space for an unknown signage point {request.challenge_chain_sp}") return None if request.signage_point_index > 0: assert sp_vdfs.rc_vdf is not None if sp_vdfs.rc_vdf.output.get_hash() != request.reward_chain_sp: self.log.debug( f"Received proof of space for a potentially old signage point {request.challenge_chain_sp}. " f"Current sp: {sp_vdfs.rc_vdf.output.get_hash()}" ) return None if request.signage_point_index == 0: cc_challenge_hash: bytes32 = request.challenge_chain_sp else: assert sp_vdfs.cc_vdf is not None cc_challenge_hash = sp_vdfs.cc_vdf.challenge pos_sub_slot: Optional[Tuple[EndOfSubSlotBundle, int, uint128]] = None if request.challenge_hash != self.full_node.constants.GENESIS_CHALLENGE: # Checks that the proof of space is a response to a recent challenge and valid SP pos_sub_slot = self.full_node.full_node_store.get_sub_slot(cc_challenge_hash) if pos_sub_slot is None: self.log.warning(f"Received proof of space for an unknown sub slot: {request}") return None total_iters_pos_slot: uint128 = pos_sub_slot[2] else: total_iters_pos_slot = uint128(0) assert cc_challenge_hash == request.challenge_hash # Now we know that the proof of space has a signage point either: # 1. In the previous sub-slot of the peak (overflow) # 2. In the same sub-slot as the peak # 3. In a future sub-slot that we already know of # Checks that the proof of space is valid quality_string: Optional[bytes32] = request.proof_of_space.verify_and_get_quality_string( self.full_node.constants, cc_challenge_hash, request.challenge_chain_sp ) assert quality_string is not None and len(quality_string) == 32 # Grab best transactions from Mempool for given tip target aggregate_signature: G2Element = G2Element() block_generator: Optional[BlockGenerator] = None additions: Optional[List[Coin]] = [] removals: Optional[List[Coin]] = [] async with self.full_node.blockchain.lock: peak: Optional[BlockRecord] = self.full_node.blockchain.get_peak() if peak is not None: # Finds the last transaction block before this one curr_l_tb: BlockRecord = peak while not curr_l_tb.is_transaction_block: curr_l_tb = self.full_node.blockchain.block_record(curr_l_tb.prev_hash) try: mempool_bundle = await self.full_node.mempool_manager.create_bundle_from_mempool( curr_l_tb.header_hash ) except Exception as e: self.log.error(f"Traceback: {traceback.format_exc()}") self.full_node.log.error(f"Error making spend bundle {e} peak: {peak}") mempool_bundle = None if mempool_bundle is not None: spend_bundle = mempool_bundle[0] additions = mempool_bundle[1] removals = mempool_bundle[2] self.full_node.log.info(f"Add rem: {len(additions)} {len(removals)}") aggregate_signature = spend_bundle.aggregated_signature if self.full_node.full_node_store.previous_generator is not None: self.log.info( f"Using previous generator for height " f"{self.full_node.full_node_store.previous_generator}" ) block_generator = best_solution_generator_from_template( self.full_node.full_node_store.previous_generator, spend_bundle ) else: block_generator = simple_solution_generator(spend_bundle) def get_plot_sig(to_sign, _) -> G2Element: if to_sign == request.challenge_chain_sp: return request.challenge_chain_sp_signature elif to_sign == request.reward_chain_sp: return request.reward_chain_sp_signature return G2Element() def get_pool_sig(_1, _2) -> Optional[G2Element]: return request.pool_signature prev_b: Optional[BlockRecord] = self.full_node.blockchain.get_peak() # Finds the previous block from the signage point, ensuring that the reward chain VDF is correct if prev_b is not None: if request.signage_point_index == 0: if pos_sub_slot is None: self.log.warning("Pos sub slot is None") return None rc_challenge = pos_sub_slot[0].reward_chain.end_of_slot_vdf.challenge else: assert sp_vdfs.rc_vdf is not None rc_challenge = sp_vdfs.rc_vdf.challenge # Backtrack through empty sub-slots for eos, _, _ in reversed(self.full_node.full_node_store.finished_sub_slots): if eos is not None and eos.reward_chain.get_hash() == rc_challenge: rc_challenge = eos.reward_chain.end_of_slot_vdf.challenge found = False attempts = 0 while prev_b is not None and attempts < 10: if prev_b.reward_infusion_new_challenge == rc_challenge: found = True break if prev_b.finished_reward_slot_hashes is not None and len(prev_b.finished_reward_slot_hashes) > 0: if prev_b.finished_reward_slot_hashes[-1] == rc_challenge: # This block includes a sub-slot which is where our SP vdf starts. Go back one more # to find the prev block prev_b = self.full_node.blockchain.try_block_record(prev_b.prev_hash) found = True break prev_b = self.full_node.blockchain.try_block_record(prev_b.prev_hash) attempts += 1 if not found: self.log.warning("Did not find a previous block with the correct reward chain hash") return None try: finished_sub_slots: Optional[ List[EndOfSubSlotBundle] ] = self.full_node.full_node_store.get_finished_sub_slots( self.full_node.blockchain, prev_b, cc_challenge_hash ) if finished_sub_slots is None: return None if ( len(finished_sub_slots) > 0 and pos_sub_slot is not None and finished_sub_slots[-1] != pos_sub_slot[0] ): self.log.error("Have different sub-slots than is required to farm this block") return None except ValueError as e: self.log.warning(f"Value Error: {e}") return None if prev_b is None: pool_target = PoolTarget( self.full_node.constants.GENESIS_PRE_FARM_POOL_PUZZLE_HASH, uint32(0), ) farmer_ph = self.full_node.constants.GENESIS_PRE_FARM_FARMER_PUZZLE_HASH officialwallets_ph = self.full_node.constants.GENESIS_PRE_FARM_OFFICIALWALLETS_PUZZLE_HASH else: farmer_ph = request.farmer_puzzle_hash officialwallets_ph = self.full_node.constants.GENESIS_PRE_FARM_OFFICIALWALLETS_PUZZLE_HASH if request.proof_of_space.pool_contract_puzzle_hash is not None: pool_target = PoolTarget(request.proof_of_space.pool_contract_puzzle_hash, uint32(0)) else: assert request.pool_target is not None pool_target = request.pool_target if peak is None or peak.height <= self.full_node.constants.MAX_SUB_SLOT_BLOCKS: difficulty = self.full_node.constants.DIFFICULTY_STARTING sub_slot_iters = self.full_node.constants.SUB_SLOT_ITERS_STARTING else: difficulty = uint64(peak.weight - self.full_node.blockchain.block_record(peak.prev_hash).weight) sub_slot_iters = peak.sub_slot_iters for sub_slot in finished_sub_slots: if sub_slot.challenge_chain.new_difficulty is not None: difficulty = sub_slot.challenge_chain.new_difficulty if sub_slot.challenge_chain.new_sub_slot_iters is not None: sub_slot_iters = sub_slot.challenge_chain.new_sub_slot_iters required_iters: uint64 = calculate_iterations_quality( self.full_node.constants.DIFFICULTY_CONSTANT_FACTOR, quality_string, request.proof_of_space.size, difficulty, request.challenge_chain_sp, ) sp_iters: uint64 = calculate_sp_iters(self.full_node.constants, sub_slot_iters, request.signage_point_index) ip_iters: uint64 = calculate_ip_iters( self.full_node.constants, sub_slot_iters, request.signage_point_index, required_iters, ) # The block's timestamp must be greater than the previous transaction block's timestamp timestamp = uint64(int(time.time())) curr: Optional[BlockRecord] = prev_b while curr is not None and not curr.is_transaction_block and curr.height != 0: curr = self.full_node.blockchain.try_block_record(curr.prev_hash) if curr is not None: assert curr.timestamp is not None if timestamp <= curr.timestamp: timestamp = uint64(int(curr.timestamp + 1)) self.log.info("Starting to make the unfinished block") unfinished_block: UnfinishedBlock = create_unfinished_block( self.full_node.constants, total_iters_pos_slot, sub_slot_iters, request.signage_point_index, sp_iters, ip_iters, request.proof_of_space, cc_challenge_hash, farmer_ph, officialwallets_ph, pool_target, get_plot_sig, get_pool_sig, sp_vdfs, timestamp, self.full_node.blockchain, b"", block_generator, aggregate_signature, additions, removals, prev_b, finished_sub_slots, ) self.log.info("Made the unfinished block") if prev_b is not None: height: uint32 = uint32(prev_b.height + 1) else: height = uint32(0) self.full_node.full_node_store.add_candidate_block(quality_string, height, unfinished_block) foliage_sb_data_hash = unfinished_block.foliage.foliage_block_data.get_hash() if unfinished_block.is_transaction_block(): foliage_transaction_block_hash = unfinished_block.foliage.foliage_transaction_block_hash else: foliage_transaction_block_hash = bytes([0] * 32) message = farmer_protocol.RequestSignedValues( quality_string, foliage_sb_data_hash, foliage_transaction_block_hash, ) await peer.send_message(make_msg(ProtocolMessageTypes.request_signed_values, message)) # Adds backup in case the first one fails if unfinished_block.is_transaction_block() and unfinished_block.transactions_generator is not None: unfinished_block_backup = create_unfinished_block( self.full_node.constants, total_iters_pos_slot, sub_slot_iters, request.signage_point_index, sp_iters, ip_iters, request.proof_of_space, cc_challenge_hash, farmer_ph, officialwallets_ph, pool_target, get_plot_sig, get_pool_sig, sp_vdfs, timestamp, self.full_node.blockchain, b"", None, G2Element(), None, None, prev_b, finished_sub_slots, ) self.full_node.full_node_store.add_candidate_block( quality_string, height, unfinished_block_backup, backup=True ) return None @api_request @peer_required async def signed_values( self, farmer_request: farmer_protocol.SignedValues, peer: ws.WSstaicoinConnection ) -> Optional[Message]: """ Signature of header hash, by the harvester. This is enough to create an unfinished block, which only needs a Proof of Time to be finished. If the signature is valid, we call the unfinished_block routine. """ candidate_tuple: Optional[Tuple[uint32, UnfinishedBlock]] = self.full_node.full_node_store.get_candidate_block( farmer_request.quality_string ) if candidate_tuple is None: self.log.warning(f"Quality string {farmer_request.quality_string} not found in database") return None height, candidate = candidate_tuple if not AugSchemeMPL.verify( candidate.reward_chain_block.proof_of_space.plot_public_key, candidate.foliage.foliage_block_data.get_hash(), farmer_request.foliage_block_data_signature, ): self.log.warning("Signature not valid. There might be a collision in plots. Ignore this during tests.") return None fsb2 = dataclasses.replace( candidate.foliage, foliage_block_data_signature=farmer_request.foliage_block_data_signature, ) if candidate.is_transaction_block(): fsb2 = dataclasses.replace( fsb2, foliage_transaction_block_signature=farmer_request.foliage_transaction_block_signature ) new_candidate = dataclasses.replace(candidate, foliage=fsb2) if not self.full_node.has_valid_pool_sig(new_candidate): self.log.warning("Trying to make a pre-farm block but height is not 0") return None # Propagate to ourselves (which validates and does further propagations) request = full_node_protocol.RespondUnfinishedBlock(new_candidate) try: await self.full_node.respond_unfinished_block(request, None, True) except Exception as e: # If we have an error with this block, try making an empty block self.full_node.log.error(f"Error farming block {e} {request}") candidate_tuple = self.full_node.full_node_store.get_candidate_block( farmer_request.quality_string, backup=True ) if candidate_tuple is not None: height, unfinished_block = candidate_tuple self.full_node.full_node_store.add_candidate_block( farmer_request.quality_string, height, unfinished_block, False ) message = farmer_protocol.RequestSignedValues( farmer_request.quality_string, unfinished_block.foliage.foliage_block_data.get_hash(), unfinished_block.foliage.foliage_transaction_block_hash, ) await peer.send_message(make_msg(ProtocolMessageTypes.request_signed_values, message)) return None # TIMELORD PROTOCOL @peer_required @api_request async def new_infusion_point_vdf( self, request: timelord_protocol.NewInfusionPointVDF, peer: ws.WSstaicoinConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None # Lookup unfinished blocks async with self.full_node.timelord_lock: return await self.full_node.new_infusion_point_vdf(request, peer) @peer_required @api_request async def new_signage_point_vdf( self, request: timelord_protocol.NewSignagePointVDF, peer: ws.WSstaicoinConnection ) -> None: if self.full_node.sync_store.get_sync_mode(): return None full_node_message = full_node_protocol.RespondSignagePoint( request.index_from_challenge, request.challenge_chain_sp_vdf, request.challenge_chain_sp_proof, request.reward_chain_sp_vdf, request.reward_chain_sp_proof, ) await self.respond_signage_point(full_node_message, peer) @peer_required @api_request async def new_end_of_sub_slot_vdf( self, request: timelord_protocol.NewEndOfSubSlotVDF, peer: ws.WSstaicoinConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None if ( self.full_node.full_node_store.get_sub_slot(request.end_of_sub_slot_bundle.challenge_chain.get_hash()) is not None ): return None # Calls our own internal message to handle the end of sub slot, and potentially broadcasts to other peers. full_node_message = full_node_protocol.RespondEndOfSubSlot(request.end_of_sub_slot_bundle) msg, added = await self.full_node.respond_end_of_sub_slot(full_node_message, peer) if not added: self.log.error( f"Was not able to add end of sub-slot: " f"{request.end_of_sub_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.challenge}. " f"Re-sending new-peak to timelord" ) await self.full_node.send_peak_to_timelords(peer=peer) return None else: return msg @api_request async def request_block_header(self, request: wallet_protocol.RequestBlockHeader) -> Optional[Message]: header_hash = self.full_node.blockchain.height_to_hash(request.height) if header_hash is None: msg = make_msg(ProtocolMessageTypes.reject_header_request, RejectHeaderRequest(request.height)) return msg block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(header_hash) if block is not None: tx_removals, tx_additions = await self.full_node.blockchain.get_tx_removals_and_additions(block) header_block = get_block_header(block, tx_additions, tx_removals) msg = make_msg( ProtocolMessageTypes.respond_block_header, wallet_protocol.RespondBlockHeader(header_block), ) return msg return None @api_request async def request_additions(self, request: wallet_protocol.RequestAdditions) -> Optional[Message]: block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(request.header_hash) # We lock so that the coin store does not get modified if ( block is None or block.is_transaction_block() is False or self.full_node.blockchain.height_to_hash(block.height) != request.header_hash ): reject = wallet_protocol.RejectAdditionsRequest(request.height, request.header_hash) msg = make_msg(ProtocolMessageTypes.reject_additions_request, reject) return msg assert block is not None and block.foliage_transaction_block is not None # Note: this might return bad data if there is a reorg in this time additions = await self.full_node.coin_store.get_coins_added_at_height(block.height) if self.full_node.blockchain.height_to_hash(block.height) != request.header_hash: raise ValueError(f"Block {block.header_hash} no longer in chain") puzzlehash_coins_map: Dict[bytes32, List[Coin]] = {} for coin_record in additions: if coin_record.coin.puzzle_hash in puzzlehash_coins_map: puzzlehash_coins_map[coin_record.coin.puzzle_hash].append(coin_record.coin) else: puzzlehash_coins_map[coin_record.coin.puzzle_hash] = [coin_record.coin] coins_map: List[Tuple[bytes32, List[Coin]]] = [] proofs_map: List[Tuple[bytes32, bytes, Optional[bytes]]] = [] if request.puzzle_hashes is None: for puzzle_hash, coins in puzzlehash_coins_map.items(): coins_map.append((puzzle_hash, coins)) response = wallet_protocol.RespondAdditions(block.height, block.header_hash, coins_map, None) else: # Create addition Merkle set addition_merkle_set = MerkleSet() # Addition Merkle set contains puzzlehash and hash of all coins with that puzzlehash for puzzle, coins in puzzlehash_coins_map.items(): addition_merkle_set.add_already_hashed(puzzle) addition_merkle_set.add_already_hashed(hash_coin_list(coins)) assert addition_merkle_set.get_root() == block.foliage_transaction_block.additions_root for puzzle_hash in request.puzzle_hashes: result, proof = addition_merkle_set.is_included_already_hashed(puzzle_hash) if puzzle_hash in puzzlehash_coins_map: coins_map.append((puzzle_hash, puzzlehash_coins_map[puzzle_hash])) hash_coin_str = hash_coin_list(puzzlehash_coins_map[puzzle_hash]) result_2, proof_2 = addition_merkle_set.is_included_already_hashed(hash_coin_str) assert result assert result_2 proofs_map.append((puzzle_hash, proof, proof_2)) else: coins_map.append((puzzle_hash, [])) assert not result proofs_map.append((puzzle_hash, proof, None)) response = wallet_protocol.RespondAdditions(block.height, block.header_hash, coins_map, proofs_map) msg = make_msg(ProtocolMessageTypes.respond_additions, response) return msg @api_request async def request_removals(self, request: wallet_protocol.RequestRemovals) -> Optional[Message]: block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(request.header_hash) # We lock so that the coin store does not get modified if ( block is None or block.is_transaction_block() is False or block.height != request.height or block.height > self.full_node.blockchain.get_peak_height() or self.full_node.blockchain.height_to_hash(block.height) != request.header_hash ): reject = wallet_protocol.RejectRemovalsRequest(request.height, request.header_hash) msg = make_msg(ProtocolMessageTypes.reject_removals_request, reject) return msg assert block is not None and block.foliage_transaction_block is not None # Note: this might return bad data if there is a reorg in this time all_removals: List[CoinRecord] = await self.full_node.coin_store.get_coins_removed_at_height(block.height) if self.full_node.blockchain.height_to_hash(block.height) != request.header_hash: raise ValueError(f"Block {block.header_hash} no longer in chain") all_removals_dict: Dict[bytes32, Coin] = {} for coin_record in all_removals: all_removals_dict[coin_record.coin.name()] = coin_record.coin coins_map: List[Tuple[bytes32, Optional[Coin]]] = [] proofs_map: List[Tuple[bytes32, bytes]] = [] # If there are no transactions, respond with empty lists if block.transactions_generator is None: proofs: Optional[List] if request.coin_names is None: proofs = None else: proofs = [] response = wallet_protocol.RespondRemovals(block.height, block.header_hash, [], proofs) elif request.coin_names is None or len(request.coin_names) == 0: for removed_name, removed_coin in all_removals_dict.items(): coins_map.append((removed_name, removed_coin)) response = wallet_protocol.RespondRemovals(block.height, block.header_hash, coins_map, None) else: assert block.transactions_generator removal_merkle_set = MerkleSet() for removed_name, removed_coin in all_removals_dict.items(): removal_merkle_set.add_already_hashed(removed_name) assert removal_merkle_set.get_root() == block.foliage_transaction_block.removals_root for coin_name in request.coin_names: result, proof = removal_merkle_set.is_included_already_hashed(coin_name) proofs_map.append((coin_name, proof)) if coin_name in all_removals_dict: removed_coin = all_removals_dict[coin_name] coins_map.append((coin_name, removed_coin)) assert result else: coins_map.append((coin_name, None)) assert not result response = wallet_protocol.RespondRemovals(block.height, block.header_hash, coins_map, proofs_map) msg = make_msg(ProtocolMessageTypes.respond_removals, response) return msg @api_request async def send_transaction(self, request: wallet_protocol.SendTransaction) -> Optional[Message]: spend_name = request.transaction.name() status, error = await self.full_node.respond_transaction(request.transaction, spend_name) error_name = error.name if error is not None else None if status == MempoolInclusionStatus.SUCCESS: response = wallet_protocol.TransactionAck(spend_name, uint8(status.value), error_name) else: # If if failed/pending, but it previously succeeded (in mempool), this is idempotence, return SUCCESS if self.full_node.mempool_manager.get_spendbundle(spend_name) is not None: response = wallet_protocol.TransactionAck(spend_name, uint8(MempoolInclusionStatus.SUCCESS.value), None) else: response = wallet_protocol.TransactionAck(spend_name, uint8(status.value), error_name) msg = make_msg(ProtocolMessageTypes.transaction_ack, response) return msg @api_request async def request_puzzle_solution(self, request: wallet_protocol.RequestPuzzleSolution) -> Optional[Message]: coin_name = request.coin_name height = request.height coin_record = await self.full_node.coin_store.get_coin_record(coin_name) reject = wallet_protocol.RejectPuzzleSolution(coin_name, height) reject_msg = make_msg(ProtocolMessageTypes.reject_puzzle_solution, reject) if coin_record is None or coin_record.spent_block_index != height: return reject_msg header_hash = self.full_node.blockchain.height_to_hash(height) block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(header_hash) if block is None or block.transactions_generator is None: return reject_msg block_generator: Optional[BlockGenerator] = await self.full_node.blockchain.get_block_generator(block) assert block_generator is not None error, puzzle, solution = get_puzzle_and_solution_for_coin( block_generator, coin_name, self.full_node.constants.MAX_BLOCK_COST_CLVM ) if error is not None: return reject_msg pz = Program.to(puzzle) sol = Program.to(solution) wrapper = PuzzleSolutionResponse(coin_name, height, pz, sol) response = wallet_protocol.RespondPuzzleSolution(wrapper) response_msg = make_msg(ProtocolMessageTypes.respond_puzzle_solution, response) return response_msg @api_request async def request_header_blocks(self, request: wallet_protocol.RequestHeaderBlocks) -> Optional[Message]: if request.end_height < request.start_height or request.end_height - request.start_height > 32: return None header_hashes = [] for i in range(request.start_height, request.end_height + 1): if not self.full_node.blockchain.contains_height(uint32(i)): reject = RejectHeaderBlocks(request.start_height, request.end_height) msg = make_msg(ProtocolMessageTypes.reject_header_blocks, reject) return msg header_hashes.append(self.full_node.blockchain.height_to_hash(uint32(i))) blocks: List[FullBlock] = await self.full_node.block_store.get_blocks_by_hash(header_hashes) header_blocks = [] for block in blocks: added_coins_records = await self.full_node.coin_store.get_coins_added_at_height(block.height) removed_coins_records = await self.full_node.coin_store.get_coins_removed_at_height(block.height) added_coins = [record.coin for record in added_coins_records if not record.coinbase] removal_names = [record.coin.name() for record in removed_coins_records] header_block = get_block_header(block, added_coins, removal_names) header_blocks.append(header_block) msg = make_msg( ProtocolMessageTypes.respond_header_blocks, wallet_protocol.RespondHeaderBlocks(request.start_height, request.end_height, header_blocks), ) return msg @api_request async def respond_compact_proof_of_time(self, request: timelord_protocol.RespondCompactProofOfTime): if self.full_node.sync_store.get_sync_mode(): return None await self.full_node.respond_compact_proof_of_time(request) @execute_task @peer_required @api_request async def new_compact_vdf(self, request: full_node_protocol.NewCompactVDF, peer: ws.WSstaicoinConnection): if self.full_node.sync_store.get_sync_mode(): return None # this semaphore will only allow a limited number of tasks call # new_compact_vdf() at a time, since it can be expensive async with self.full_node.compact_vdf_sem: await self.full_node.new_compact_vdf(request, peer) @peer_required @api_request async def request_compact_vdf(self, request: full_node_protocol.RequestCompactVDF, peer: ws.WSstaicoinConnection): if self.full_node.sync_store.get_sync_mode(): return None await self.full_node.request_compact_vdf(request, peer) @peer_required @api_request async def respond_compact_vdf(self, request: full_node_protocol.RespondCompactVDF, peer: ws.WSstaicoinConnection): if self.full_node.sync_store.get_sync_mode(): return None await self.full_node.respond_compact_vdf(request, peer)
the-stack_106_20197
from __future__ import division import numpy as np from menpo.base import doc_inherit, name_of_callable from menpo.math import pca, pcacov, ipca, as_matrix from .linear import MeanLinearVectorModel from .vectorizable import VectorizableBackedModel class PCAVectorModel(MeanLinearVectorModel): r""" A :map:`MeanLinearModel` where components are Principal Components. Principal Component Analysis (PCA) by eigenvalue decomposition of the data's scatter matrix. For details of the implementation of PCA, see :map:`pca`. Parameters ---------- samples : `ndarray` or `list` or `iterable` of `ndarray` List or iterable of numpy arrays to build the model from, or an existing data matrix. centre : `bool`, optional When ``True`` (default) PCA is performed after mean centering the data. If ``False`` the data is assumed to be centred, and the mean will be ``0``. n_samples : `int`, optional If provided then ``samples`` must be an iterator that yields ``n_samples``. If not provided then samples has to be a `list` (so we know how large the data matrix needs to be). max_n_components : `int`, optional The maximum number of components to keep in the model. Any components above and beyond this one are discarded. inplace : `bool`, optional If ``True`` the data matrix is modified in place. Otherwise, the data matrix is copied. """ def __init__(self, samples, centre=True, n_samples=None, max_n_components=None, inplace=True): # Generate data matrix data, self.n_samples = self._data_to_matrix(samples, n_samples) # Compute pca e_vectors, e_values, mean = pca(data, centre=centre, inplace=inplace) # The call to __init__ of MeanLinearModel is done in here self._constructor_helper( eigenvalues=e_values, eigenvectors=e_vectors, mean=mean, centred=centre, max_n_components=max_n_components) @classmethod def init_from_covariance_matrix(cls, C, mean, n_samples, centred=True, is_inverse=False, max_n_components=None): r""" Build the Principal Component Analysis (PCA) by eigenvalue decomposition of the provided covariance/scatter matrix. For details of the implementation of PCA, see :map:`pcacov`. Parameters ---------- C : ``(n_features, n_features)`` `ndarray` or `scipy.sparse` The Covariance/Scatter matrix. If it is a precision matrix (inverse covariance), then set `is_inverse=True`. mean : ``(n_features, )`` `ndarray` The mean vector. n_samples : `int` The number of samples used to generate the covariance matrix. centred : `bool`, optional When ``True`` we assume that the data were centered before computing the covariance matrix. is_inverse : `bool`, optional It ``True``, then it is assumed that `C` is a precision matrix ( inverse covariance). Thus, the eigenvalues will be inverted. If ``False``, then it is assumed that `C` is a covariance matrix. max_n_components : `int`, optional The maximum number of components to keep in the model. Any components above and beyond this one are discarded. """ # Compute pca on covariance e_vectors, e_values = pcacov(C, is_inverse=is_inverse) # Create new pca instance model = cls.__new__(cls) model.n_samples = n_samples # The call to __init__ of MeanLinearModel is done in here model._constructor_helper( eigenvalues=e_values, eigenvectors=e_vectors, mean=mean, centred=centred, max_n_components=max_n_components) return model @classmethod def init_from_components(cls, components, eigenvalues, mean, n_samples, centred, max_n_components=None): r""" Build the Principal Component Analysis (PCA) using the provided components (eigenvectors) and eigenvalues. Parameters ---------- components : ``(n_components, n_features)`` `ndarray` The eigenvectors to be used. eigenvalues : ``(n_components, )`` `ndarray` The corresponding eigenvalues. mean : ``(n_features, )`` `ndarray` The mean vector. n_samples : `int` The number of samples used to generate the eigenvectors. centred : `bool` When ``True`` we assume that the data were centered before computing the eigenvectors. max_n_components : `int`, optional The maximum number of components to keep in the model. Any components above and beyond this one are discarded. """ # This is a bit of a filthy trick that by rights should not be done, # but we want to have these nice static constructors so we are living # with the shame (create an empty object instance which we fill in). model = cls.__new__(cls) model.n_samples = n_samples # The call to __init__ of MeanLinearModel is done in here model._constructor_helper( eigenvalues=eigenvalues, eigenvectors=components, mean=mean, centred=centred, max_n_components=max_n_components) return model def _constructor_helper(self, eigenvalues, eigenvectors, mean, centred, max_n_components): # if covariance is not centred, mean must be zeros. if centred: MeanLinearVectorModel.__init__(self, eigenvectors, mean) else: MeanLinearVectorModel.__init__(self, eigenvectors, np.zeros(mean.shape, dtype=mean.dtype)) self.centred = centred self._eigenvalues = eigenvalues # start the active components as all the components self._n_active_components = int(self.n_components) self._trimmed_eigenvalues = np.array([]) if max_n_components is not None: self.trim_components(max_n_components) def _data_to_matrix(self, data, n_samples): # build a data matrix from all the samples if n_samples is None: n_samples = len(data) # Assumed data is ndarray of (n_samples, n_features) or list of samples if not isinstance(data, np.ndarray): # Make sure we have an array, slice of the number of requested # samples data = np.array(data)[:n_samples] return data, n_samples def __setstate__(self, state): if 'mean_vector' in state: state['_mean'] = state['mean_vector'] del state['mean_vector'] self.__dict__ = state @property def n_active_components(self): r""" The number of components currently in use on this model. :type: `int` """ return self._n_active_components @n_active_components.setter def n_active_components(self, value): r""" Sets an updated number of active components on this model. The number of active components represents the number of principal components that will be used for generative purposes. Note that this therefore makes the model stateful. Also note that setting the number of components will not affect memory unless :meth:`trim_components` is called. Parameters ---------- value : `int` The new number of active components. Raises ------ ValueError Tried setting n_active_components to {value} - value needs to be a float 0.0 < n_components < self._total_kept_variance_ratio ({}) or an integer 1 < n_components < self.n_components ({}) """ err_str = ("Tried setting n_active_components to {} - " "value needs to be a float " "0.0 < n_components < self._total_kept_variance_ratio " "({}) or an integer 1 < n_components < " "self.n_components ({})".format( value, self._total_variance_ratio(), self.n_components)) # check value if isinstance(value, float): if 0.0 < value <= self._total_variance_ratio(): # value needed to capture desired variance value = np.sum( [r < value for r in self._total_eigenvalues_cumulative_ratio()]) + 1 else: # variance must be bigger than 0.0 raise ValueError(err_str) if isinstance(value, int): if value < 1: # at least 1 value must be kept raise ValueError(err_str) elif value >= self.n_components: if self.n_active_components < self.n_components: # if the number of available components is smaller than # the total number of components set value to the later value = self.n_components else: # if the previous is false and value bigger than the # total number of components, do nothing return if 0 < value <= self.n_components: self._n_active_components = int(value) else: raise ValueError(err_str) @MeanLinearVectorModel.components.getter def components(self): r""" Returns the active components of the model. :type: ``(n_active_components, n_features)`` `ndarray` """ return self._components[:self.n_active_components, :] @property def eigenvalues(self): r""" Returns the eigenvalues associated with the active components of the model, i.e. the amount of variance captured by each active component, sorted form largest to smallest. :type: ``(n_active_components,)`` `ndarray` """ return self._eigenvalues[:self.n_active_components] def whitened_components(self): r""" Returns the active components of the model, whitened. Returns ------- whitened_components : ``(n_active_components, n_features)`` `ndarray` The whitened components. """ return self.components / ( np.sqrt(self.eigenvalues * self.n_samples + self.noise_variance())[:, None]) def original_variance(self): r""" Returns the total amount of variance captured by the original model, i.e. the amount of variance present on the original samples. Returns ------- optional_variance : `float` The variance captured by the model. """ return self._eigenvalues.sum() + self._trimmed_eigenvalues.sum() def variance(self): r""" Returns the total amount of variance retained by the active components. Returns ------- variance : `float` Total variance captured by the active components. """ return self.eigenvalues.sum() def _total_variance(self): r""" Returns the total amount of variance retained by all components (active and inactive). Useful when the model has been trimmed. Returns ------- total_variance : `float` Total variance captured by all components. """ return self._eigenvalues.sum() def variance_ratio(self): r""" Returns the ratio between the amount of variance retained by the active components and the total amount of variance present on the original samples. Returns ------- variance_ratio : `float` Ratio of active components variance and total variance present in original samples. """ return self.variance() / self.original_variance() def _total_variance_ratio(self): r""" Returns the ratio between the total amount of variance retained by all components (active and inactive) and the total amount of variance present on the original samples. Returns ------- total_variance_ratio : `float` Ratio of total variance over the original variance. """ return self._total_variance() / self.original_variance() def eigenvalues_ratio(self): r""" Returns the ratio between the variance captured by each active component and the total amount of variance present on the original samples. Returns ------- eigenvalues_ratio : ``(n_active_components,)`` `ndarray` The active eigenvalues array scaled by the original variance. """ return self.eigenvalues / self.original_variance() def _total_eigenvalues_ratio(self): r""" Returns the ratio between the variance captured by each active component and the total amount of variance present on the original samples. Returns ------- total_eigenvalues_ratio : ``(n_components,)`` `ndarray` Array of eigenvalues scaled by the original variance. """ return self._eigenvalues / self.original_variance() def eigenvalues_cumulative_ratio(self): r""" Returns the cumulative ratio between the variance captured by the active components and the total amount of variance present on the original samples. Returns ------- eigenvalues_cumulative_ratio : ``(n_active_components,)`` `ndarray` Array of cumulative eigenvalues. """ return np.cumsum(self.eigenvalues_ratio()) def _total_eigenvalues_cumulative_ratio(self): r""" Returns the cumulative ratio between the variance captured by the active components and the total amount of variance present on the original samples. Returns ------- total_eigenvalues_cumulative_ratio : ``(n_active_components,)`` `ndarray` Array of total cumulative eigenvalues. """ return np.cumsum(self._total_eigenvalues_ratio()) def noise_variance(self): r""" Returns the average variance captured by the inactive components, i.e. the sample noise assumed in a Probabilistic PCA formulation. If all components are active, then ``noise_variance == 0.0``. Returns ------- noise_variance : `float` The mean variance of the inactive components. """ if self.n_active_components == self.n_components: if self._trimmed_eigenvalues.size != 0: noise_variance = self._trimmed_eigenvalues.mean() else: noise_variance = 0.0 else: noise_variance = np.hstack( (self._eigenvalues[self.n_active_components:], self._trimmed_eigenvalues)).mean() return noise_variance def noise_variance_ratio(self): r""" Returns the ratio between the noise variance and the total amount of variance present on the original samples. Returns ------- noise_variance_ratio : `float` The ratio between the noise variance and the variance present in the original samples. """ return self.noise_variance() / self.original_variance() def inverse_noise_variance(self): r""" Returns the inverse of the noise variance. Returns ------- inverse_noise_variance : `float` Inverse of the noise variance. Raises ------ ValueError If ``noise_variance() == 0`` """ noise_variance = self.noise_variance() if np.allclose(noise_variance, 0): raise ValueError("noise variance is effectively 0 - " "cannot take the inverse") return 1.0 / noise_variance def component(self, index, with_mean=True, scale=1.0): r""" A particular component of the model, in vectorized form. Parameters ---------- index : `int` The component that is to be returned with_mean: `bool`, optional If ``True``, the component will be blended with the mean vector before being returned. If not, the component is returned on it's own. scale : `float`, optional A scale factor that should be applied to the component. Only valid in the case where with_mean is ``True``. The scale is applied in units of standard deviations (so a scale of ``1.0`` `with_mean` visualizes the mean plus ``1`` std. dev of the component in question). Returns ------- component_vector : ``(n_features,)`` `ndarray` The component vector of the given index. """ if with_mean: # on PCA, scale is in units of std. deviations... scaled_eigval = scale * np.sqrt(self.eigenvalues[index]) return (scaled_eigval * self.components[index]) + self._mean else: return self.components[index] def instance_vectors(self, weights, normalized_weights=False): """ Creates new vectorized instances of the model using the first components in a particular weighting. Parameters ---------- weights : ``(n_vectors, n_weights)`` `ndarray` or `list` of `lists` The weightings for the first `n_weights` components that should be used per instance that is to be produced ``weights[i, j]`` is the linear contribution of the j'th principal component to the i'th instance vector produced. Note that if ``n_weights < n_components``, only the first ``n_weight`` components are used in the reconstruction (i.e. unspecified weights are implicitly ``0``). normalized_weights : `bool`, optional If ``True``, the weights are assumed to be normalized w.r.t the eigenvalues. This can be easier to create unique instances by making the weights more interpretable. Returns ------- vectors : ``(n_vectors, n_features)`` `ndarray` The instance vectors for the weighting provided. Raises ------ ValueError If n_weights > n_components """ weights = np.asarray(weights) # if eg a list is provided n_instances, n_weights = weights.shape if n_weights > self.n_active_components: raise ValueError( "Number of weightings cannot be greater than {}".format( self.n_active_components)) else: full_weights = np.zeros((n_instances, self.n_active_components), dtype=self._components.dtype) full_weights[..., :n_weights] = weights weights = full_weights if normalized_weights: # If the weights were normalized, then they are all relative to # to the scale of the eigenvalues and thus must be multiplied by # the sqrt of the eigenvalues. weights *= self.eigenvalues ** 0.5 return self._instance_vectors_for_full_weights(weights) def instance(self, weights, normalized_weights=False): r""" Creates a new vector instance of the model by weighting together the components. Parameters ---------- weights : ``(n_weights,)`` `ndarray` or `list` The weightings for the first `n_weights` components that should be used. ``weights[j]`` is the linear contribution of the j'th principal component to the instance vector. normalized_weights : `bool`, optional If ``True``, the weights are assumed to be normalized w.r.t the eigenvalues. This can be easier to create unique instances by making the weights more interpretable. Returns ------- vector : ``(n_features,)`` `ndarray` The instance vector for the weighting provided. """ weights = np.asarray(weights) return self.instance_vectors( weights[None, :], normalized_weights=normalized_weights).flatten() def trim_components(self, n_components=None): r""" Permanently trims the components down to a certain amount. The number of active components will be automatically reset to this particular value. This will reduce `self.n_components` down to `n_components` (if ``None``, `self.n_active_components` will be used), freeing up memory in the process. Once the model is trimmed, the trimmed components cannot be recovered. Parameters ---------- n_components: `int` >= ``1`` or `float` > ``0.0`` or ``None``, optional The number of components that are kept or else the amount (ratio) of variance that is kept. If ``None``, `self.n_active_components` is used. Notes ----- In case `n_components` is greater than the total number of components or greater than the amount of variance currently kept, this method does not perform any action. """ if n_components is None: # by default trim using the current n_active_components n_components = self.n_active_components # set self.n_active_components to n_components self.n_active_components = n_components if self.n_active_components < self.n_components: # Just stored so that we can fit < 80 chars nac = self.n_active_components # set self.n_components to n_components. We have to copy to ensure # that the data is actually removed, otherwise a view is returned self._components = self._components[:nac].copy() # store the eigenvalues associated to the discarded components self._trimmed_eigenvalues = np.hstack(( self._trimmed_eigenvalues, self._eigenvalues[self.n_active_components:])) # make sure that the eigenvalues are trimmed too self._eigenvalues = self._eigenvalues[:nac].copy() def project_whitened(self, vector_instance): """ Projects the `vector_instance` onto the whitened components, retrieving the whitened linear weightings. Parameters ---------- vector_instance : ``(n_features,)`` `ndarray` A novel vector. Returns ------- projected : ``(n_features,)`` `ndarray` A vector of whitened linear weightings """ whitened_components = self.whitened_components() return np.dot(vector_instance, whitened_components.T) def orthonormalize_against_inplace(self, linear_model): r""" Enforces that the union of this model's components and another are both mutually orthonormal. Note that the model passed in is guaranteed to not have it's number of available components changed. This model, however, may loose some dimensionality due to reaching a degenerate state. The removed components will always be trimmed from the end of components (i.e. the components which capture the least variance). If trimming is performed, `n_components` and `n_available_components` would be altered - see :meth:`trim_components` for details. Parameters ---------- linear_model : :map:`LinearModel` A second linear model to orthonormalize this against. """ # take the QR decomposition of the model components Q = (np.linalg.qr(np.hstack((linear_model._components.T, self._components.T)))[0]).T # the model passed to us went first, so all it's components will # survive. Pull them off, and update the other model. linear_model.components = Q[:linear_model.n_components, :] # it's possible that all of our components didn't survive due to # degeneracy. We need to trim our components down before replacing # them to ensure the number of components is consistent (otherwise # the components setter will complain at us) n_available_components = Q.shape[0] - linear_model.n_components if n_available_components < self.n_components: # oh dear, we've lost some components from the end of our model. if self.n_active_components < n_available_components: # save the current number of active components n_active_components = self.n_active_components else: # save the current number of available components n_active_components = n_available_components # call trim_components to update our state. self.trim_components(n_components=n_available_components) if n_active_components < n_available_components: # reset the number of active components self.n_active_components = n_active_components # now we can set our own components with the updated orthogonal ones self.components = Q[linear_model.n_components:, :] def increment(self, data, n_samples=None, forgetting_factor=1.0, verbose=False): r""" Update the eigenvectors, eigenvalues and mean vector of this model by performing incremental PCA on the given samples. Parameters ---------- samples : `list` of :map:`Vectorizable` List of new samples to update the model from. n_samples : `int`, optional If provided then ``samples`` must be an iterator that yields ``n_samples``. If not provided then samples has to be a list (so we know how large the data matrix needs to be). forgetting_factor : ``[0.0, 1.0]`` `float`, optional Forgetting factor that weights the relative contribution of new samples vs old samples. If 1.0, all samples are weighted equally and, hence, the results is the exact same as performing batch PCA on the concatenated list of old and new simples. If <1.0, more emphasis is put on the new samples. See [1] for details. References ---------- .. [1] David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang. "Incremental Learning for Robust Visual Tracking". IJCV, 2007. """ data, n_new_samples = self._data_to_matrix(data, n_samples) # compute incremental pca e_vectors, e_values, m_vector = ipca( data, self._components, self._eigenvalues, self.n_samples, m_a=self._mean, f=forgetting_factor) # if the number of active components is the same as the total number # of components so it will be after this method is executed reset = (self.n_active_components == self.n_components) # update mean, components, eigenvalues and number of samples self._mean = m_vector self._components = e_vectors self._eigenvalues = e_values self.n_samples += n_new_samples # reset the number of active components to the total number of # components if reset: self.n_active_components = self.n_components def plot_eigenvalues(self, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1., render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5): r""" Plot of the eigenvalues. Parameters ---------- figure_id : `object`, optional The id of the figure to be used. new_figure : `bool`, optional If ``True``, a new figure is created. render_lines : `bool`, optional If ``True``, the line will be rendered. line_colour : See Below, optional The colour of the lines. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of length ``3`` line_style : {``-``, ``--``, ``-.``, ``:``}, optional The style of the lines. line_width : `float`, optional The width of the lines. render_markers : `bool`, optional If ``True``, the markers will be rendered. marker_style : See Below, optional The style of the markers. Example options :: {``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``, ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``, ``1``, ``2``, ``3``, ``4``, ``8``} marker_size : `int`, optional The size of the markers in points. marker_face_colour : See Below, optional The face (filling) colour of the markers. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of length ``3`` marker_edge_colour : See Below, optional The edge colour of the markers. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of length ``3`` marker_edge_width : `float`, optional The width of the markers' edge. render_axes : `bool`, optional If ``True``, the axes will be rendered. axes_font_name : See Below, optional The font of the axes. Example options :: {``serif``, ``sans-serif``, ``cursive``, ``fantasy``, ``monospace``} axes_font_size : `int`, optional The font size of the axes. axes_font_style : {``normal``, ``italic``, ``oblique``}, optional The font style of the axes. axes_font_weight : See Below, optional The font weight of the axes. Example options :: {``ultralight``, ``light``, ``normal``, ``regular``, ``book``, ``medium``, ``roman``, ``semibold``, ``demibold``, ``demi``, ``bold``, ``heavy``, ``extra bold``, ``black``} figure_size : (`float`, `float`) or ``None``, optional The size of the figure in inches. render_grid : `bool`, optional If ``True``, the grid will be rendered. grid_line_style : {``-``, ``--``, ``-.``, ``:``}, optional The style of the grid lines. grid_line_width : `float`, optional The width of the grid lines. Returns ------- viewer : :map:`MatplotlibRenderer` The viewer object. """ from menpo.visualize import plot_curve return plot_curve( range(self.n_active_components), [self.eigenvalues], figure_id=figure_id, new_figure=new_figure, legend_entries=None, title='Eigenvalues', x_label='Component Number', y_label='Eigenvalue', axes_x_limits=[0, self.n_active_components - 1], axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, render_lines=render_lines, line_colour=line_colour, line_style=line_style, line_width=line_width, render_markers=render_markers, marker_style=marker_style, marker_size=marker_size, marker_face_colour=marker_face_colour, marker_edge_colour=marker_edge_colour, marker_edge_width=marker_edge_width, render_legend=False, render_axes=render_axes, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, figure_size=figure_size, render_grid=render_grid, grid_line_style=grid_line_style, grid_line_width=grid_line_width) def plot_eigenvalues_widget(self, figure_size=(10, 6), style='coloured'): r""" Plot of the eigenvalues using an interactive widget. Parameters ---------- figure_size : (`float`, `float`) or ``None``, optional The size of the figure in inches. style : {``'coloured'``, ``'minimal'``}, optional If ``'coloured'``, then the style of the widget will be coloured. If ``minimal``, then the style is simple using black and white colours. """ try: from menpowidgets import plot_graph except ImportError as e: from menpo.visualize.base import MenpowidgetsMissingError raise MenpowidgetsMissingError(e) plot_graph(x_axis=range(self.n_active_components), y_axis=[self.eigenvalues], legend_entries=['Eigenvalues'], figure_size=figure_size, style=style) def plot_eigenvalues_ratio(self, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1., render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5): r""" Plot of the variance ratio captured by the eigenvalues. Parameters ---------- figure_id : `object`, optional The id of the figure to be used. new_figure : `bool`, optional If ``True``, a new figure is created. render_lines : `bool`, optional If ``True``, the line will be rendered. line_colour : See Below, optional The colour of the lines. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of length ``3`` line_style : {``-``, ``--``, ``-.``, ``:``}, optional The style of the lines. line_width : `float`, optional The width of the lines. render_markers : `bool`, optional If ``True``, the markers will be rendered. marker_style : See Below, optional The style of the markers. Example options :: {``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``, ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``, ``1``, ``2``, ``3``, ``4``, ``8``} marker_size : `int`, optional The size of the markers in points. marker_face_colour : See Below, optional The face (filling) colour of the markers. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of length ``3`` marker_edge_colour : See Below, optional The edge colour of the markers. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of length ``3`` marker_edge_width : `float`, optional The width of the markers' edge. render_axes : `bool`, optional If ``True``, the axes will be rendered. axes_font_name : See Below, optional The font of the axes. Example options :: {``serif``, ``sans-serif``, ``cursive``, ``fantasy``, ``monospace``} axes_font_size : `int`, optional The font size of the axes. axes_font_style : {``normal``, ``italic``, ``oblique``}, optional The font style of the axes. axes_font_weight : See Below, optional The font weight of the axes. Example options :: {``ultralight``, ``light``, ``normal``, ``regular``, ``book``, ``medium``, ``roman``, ``semibold``, ``demibold``, ``demi``, ``bold``, ``heavy``, ``extra bold``, ``black``} figure_size : (`float`, `float`) or `None`, optional The size of the figure in inches. render_grid : `bool`, optional If ``True``, the grid will be rendered. grid_line_style : {``-``, ``--``, ``-.``, ``:``}, optional The style of the grid lines. grid_line_width : `float`, optional The width of the grid lines. Returns ------- viewer : :map:`MatplotlibRenderer` The viewer object. """ from menpo.visualize import plot_curve return plot_curve( range(self.n_active_components), [self.eigenvalues_ratio()], figure_id=figure_id, new_figure=new_figure, legend_entries=None, title='Variance Ratio of Eigenvalues', x_label='Component Number', y_label='Variance Ratio', axes_x_limits=[0, self.n_active_components - 1], axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, render_lines=render_lines, line_colour=line_colour, line_style=line_style, line_width=line_width, render_markers=render_markers, marker_style=marker_style, marker_size=marker_size, marker_face_colour=marker_face_colour, marker_edge_colour=marker_edge_colour, marker_edge_width=marker_edge_width, render_legend=False, render_axes=render_axes, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, figure_size=figure_size, render_grid=render_grid, grid_line_style=grid_line_style, grid_line_width=grid_line_width) def plot_eigenvalues_ratio_widget(self, figure_size=(10, 6), style='coloured'): r""" Plot of the variance ratio captured by the eigenvalues using an interactive widget. Parameters ---------- figure_size : (`float`, `float`) or ``None``, optional The size of the figure in inches. style : {``'coloured'``, ``'minimal'``}, optional If ``'coloured'``, then the style of the widget will be coloured. If ``minimal``, then the style is simple using black and white colours. """ try: from menpowidgets import plot_graph except ImportError as e: from menpo.visualize.base import MenpowidgetsMissingError raise MenpowidgetsMissingError(e) plot_graph(x_axis=range(self.n_active_components), y_axis=[self.eigenvalues_ratio()], legend_entries=['Eigenvalues ratio'], figure_size=figure_size, style=style) def plot_eigenvalues_cumulative_ratio(self, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1., render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5): r""" Plot of the cumulative variance ratio captured by the eigenvalues. Parameters ---------- figure_id : `object`, optional The id of the figure to be used. new_figure : `bool`, optional If ``True``, a new figure is created. render_lines : `bool`, optional If ``True``, the line will be rendered. line_colour : See Below, optional The colour of the lines. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of length ``3`` line_style : {``-``, ``--``, ``-.``, ``:``}, optional The style of the lines. line_width : `float`, optional The width of the lines. render_markers : `bool`, optional If ``True``, the markers will be rendered. marker_style : See Below, optional The style of the markers. Example options :: {``.``, ``,``, ``o``, ``v``, ``^``, ``<``, ``>``, ``+``, ``x``, ``D``, ``d``, ``s``, ``p``, ``*``, ``h``, ``H``, ``1``, ``2``, ``3``, ``4``, ``8``} marker_size : `int`, optional The size of the markers in points. marker_face_colour : See Below, optional The face (filling) colour of the markers. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of length ``3`` marker_edge_colour : See Below, optional The edge colour of the markers. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of length ``3`` marker_edge_width : `float`, optional The width of the markers' edge. render_axes : `bool`, optional If ``True``, the axes will be rendered. axes_font_name : See Below, optional The font of the axes. Example options :: {``serif``, ``sans-serif``, ``cursive``, ``fantasy``, ``monospace``} axes_font_size : `int`, optional The font size of the axes. axes_font_style : {``normal``, ``italic``, ``oblique``}, optional The font style of the axes. axes_font_weight : See Below, optional The font weight of the axes. Example options :: {``ultralight``, ``light``, ``normal``, ``regular``, ``book``, ``medium``, ``roman``, ``semibold``, ``demibold``, ``demi``, ``bold``, ``heavy``, ``extra bold``, ``black``} figure_size : (`float`, `float`) or `None`, optional The size of the figure in inches. render_grid : `bool`, optional If ``True``, the grid will be rendered. grid_line_style : {``-``, ``--``, ``-.``, ``:``}, optional The style of the grid lines. grid_line_width : `float`, optional The width of the grid lines. Returns ------- viewer : :map:`MatplotlibRenderer` The viewer object. """ from menpo.visualize import plot_curve return plot_curve( range(self.n_active_components), [self.eigenvalues_cumulative_ratio()], figure_id=figure_id, new_figure=new_figure, legend_entries=None, title='Cumulative Variance Ratio of Eigenvalues', x_label='Component Number', y_label='Cumulative Variance Ratio', axes_x_limits=[0, self.n_active_components - 1], axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, render_lines=render_lines, line_colour=line_colour, line_style=line_style, line_width=line_width, render_markers=render_markers, marker_style=marker_style, marker_size=marker_size, marker_face_colour=marker_face_colour, marker_edge_colour=marker_edge_colour, marker_edge_width=marker_edge_width, render_legend=False, render_axes=render_axes, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, figure_size=figure_size, render_grid=render_grid, grid_line_style=grid_line_style, grid_line_width=grid_line_width) def plot_eigenvalues_cumulative_ratio_widget(self, figure_size=(10, 6), style='coloured'): r""" Plot of the cumulative variance ratio captured by the eigenvalues using an interactive widget. Parameters ---------- figure_size : (`float`, `float`) or ``None``, optional The size of the figure in inches. style : {``'coloured'``, ``'minimal'``}, optional If ``'coloured'``, then the style of the widget will be coloured. If ``minimal``, then the style is simple using black and white colours. """ try: from menpowidgets import plot_graph except ImportError as e: from menpo.visualize.base import MenpowidgetsMissingError raise MenpowidgetsMissingError(e) plot_graph(x_axis=range(self.n_active_components), y_axis=[self.eigenvalues_cumulative_ratio()], legend_entries=['Eigenvalues cumulative ratio'], figure_size=figure_size, style=style) def __str__(self): str_out = 'PCA Vector Model \n' \ ' - centred: {}\n' \ ' - # features: {}\n' \ ' - # active components: {}\n' \ ' - kept variance: {:.2} {:.1%}\n' \ ' - noise variance: {:.2} {:.1%}\n' \ ' - total # components: {}\n' \ ' - components shape: {}\n'.format( self.centred, self.n_features, self.n_active_components, self.variance(), self.variance_ratio(), self.noise_variance(), self.noise_variance_ratio(), self.n_components, self.components.shape) return str_out class PCAModel(VectorizableBackedModel, PCAVectorModel): r""" A :map:`MeanLinearModel` where components are Principal Components and the components are vectorized instances. Principal Component Analysis (PCA) by eigenvalue decomposition of the data's scatter matrix. For details of the implementation of PCA, see :map:`pca`. Parameters ---------- samples : `list` or `iterable` of :map:`Vectorizable` List or iterable of samples to build the model from. centre : `bool`, optional When ``True`` (default) PCA is performed after mean centering the data. If ``False`` the data is assumed to be centred, and the mean will be ``0``. n_samples : `int`, optional If provided then ``samples`` must be an iterator that yields ``n_samples``. If not provided then samples has to be a `list` (so we know how large the data matrix needs to be). max_n_components : `int`, optional The maximum number of components to keep in the model. Any components above and beyond this one are discarded. inplace : `bool`, optional If ``True`` the data matrix is modified in place. Otherwise, the data matrix is copied. verbose : `bool`, optional Whether to print building information or not. """ def __init__(self, samples, centre=True, n_samples=None, max_n_components=None, inplace=True, verbose=False): # build a data matrix from all the samples data, template = as_matrix(samples, length=n_samples, return_template=True, verbose=verbose) n_samples = data.shape[0] PCAVectorModel.__init__(self, data, centre=centre, max_n_components=max_n_components, n_samples=n_samples, inplace=inplace) VectorizableBackedModel.__init__(self, template) @classmethod def init_from_covariance_matrix(cls, C, mean, n_samples, centred=True, is_inverse=False, max_n_components=None): r""" Build the Principal Component Analysis (PCA) by eigenvalue decomposition of the provided covariance/scatter matrix. For details of the implementation of PCA, see :map:`pcacov`. Parameters ---------- C : ``(n_features, n_features)`` `ndarray` or `scipy.sparse` The Covariance/Scatter matrix. If it is a precision matrix (inverse covariance), then set `is_inverse=True`. mean : :map:`Vectorizable` The mean instance. It must be a :map:`Vectorizable` and *not* an `ndarray`. n_samples : `int` The number of samples used to generate the covariance matrix. centred : `bool`, optional When ``True`` we assume that the data were centered before computing the covariance matrix. is_inverse : `bool`, optional It ``True``, then it is assumed that `C` is a precision matrix ( inverse covariance). Thus, the eigenvalues will be inverted. If ``False``, then it is assumed that `C` is a covariance matrix. max_n_components : `int`, optional The maximum number of components to keep in the model. Any components above and beyond this one are discarded. """ # Create new pca instance self_model = PCAVectorModel.__new__(cls) self_model.n_samples = n_samples # Compute pca on covariance e_vectors, e_values = pcacov(C, is_inverse=is_inverse) # The call to __init__ of MeanLinearModel is done in here self_model._constructor_helper(eigenvalues=e_values, eigenvectors=e_vectors, mean=mean.as_vector(), centred=centred, max_n_components=max_n_components) VectorizableBackedModel.__init__(self_model, mean) return self_model @classmethod def init_from_components(cls, components, eigenvalues, mean, n_samples, centred, max_n_components=None): r""" Build the Principal Component Analysis (PCA) using the provided components (eigenvectors) and eigenvalues. Parameters ---------- components : ``(n_components, n_features)`` `ndarray` The eigenvectors to be used. eigenvalues : ``(n_components, )`` `ndarray` The corresponding eigenvalues. mean : :map:`Vectorizable` The mean instance. It must be a :map:`Vectorizable` and *not* an `ndarray`. n_samples : `int` The number of samples used to generate the eigenvectors. centred : `bool`, optional When ``True`` we assume that the data were centered before computing the eigenvectors. max_n_components : `int`, optional The maximum number of components to keep in the model. Any components above and beyond this one are discarded. """ # Create new pca instance self_model = PCAVectorModel.__new__(cls) self_model.n_samples = n_samples # The call to __init__ of MeanLinearModel is done in here self_model._constructor_helper( eigenvalues=eigenvalues, eigenvectors=components, mean=mean.as_vector(), centred=centred, max_n_components=max_n_components) VectorizableBackedModel.__init__(self_model, mean) return self_model def mean(self): r""" Return the mean of the model. :type: :map:`Vectorizable` """ return self.template_instance.from_vector(self._mean) @property def mean_vector(self): r""" Return the mean of the model as a 1D vector. :type: `ndarray` """ return self._mean @doc_inherit(name='project_out') def project_out_vector(self, instance_vector): return PCAVectorModel.project_out(self, instance_vector) @doc_inherit(name='reconstruct') def reconstruct_vector(self, instance_vector): return PCAVectorModel.reconstruct(self, instance_vector) @doc_inherit(name='project') def project_vector(self, instance_vector): return PCAVectorModel.project(self, instance_vector) @doc_inherit(name='instance') def instance_vector(self, weights, normalized_weights=False): return PCAVectorModel.instance(self, weights, normalized_weights=normalized_weights) @doc_inherit(name='component') def component_vector(self, index, with_mean=True, scale=1.0): return PCAVectorModel.component(self, index, with_mean=with_mean, scale=scale) @doc_inherit(name='project_whitened') def project_whitened_vector(self, vector_instance): return PCAVectorModel.project_whitened(self, vector_instance) def component(self, index, with_mean=True, scale=1.0): r""" Return a particular component of the linear model. Parameters ---------- index : `int` The component that is to be returned with_mean: `bool`, optional If ``True``, the component will be blended with the mean vector before being returned. If not, the component is returned on it's own. scale : `float`, optional A scale factor that should be applied to the component. Only valid in the case where ``with_mean == True``. See :meth:`component_vector` for how this scale factor is interpreted. Returns ------- component : `type(self.template_instance)` The requested component instance. """ return self.template_instance.from_vector(self.component_vector( index, with_mean=with_mean, scale=scale)) def instance(self, weights, normalized_weights=False): """ Creates a new instance of the model using the first ``len(weights)`` components. Parameters ---------- weights : ``(n_weights,)`` `ndarray` or `list` ``weights[i]`` is the linear contribution of the i'th component to the instance vector. normalized_weights : `bool`, optional If ``True``, the weights are assumed to be normalized w.r.t the eigenvalues. This can be easier to create unique instances by making the weights more interpretable. Raises ------ ValueError If n_weights > n_components Returns ------- instance : `type(self.template_instance)` An instance of the model. """ v = self.instance_vector(weights, normalized_weights=normalized_weights) return self.template_instance.from_vector(v) def project_whitened(self, instance): """ Projects the `instance` onto the whitened components, retrieving the whitened linear weightings. Parameters ---------- instance : :map:`Vectorizable` A novel instance. Returns ------- projected : (n_components,) A vector of whitened linear weightings """ return self.project_whitened_vector(instance.as_vector()) def increment(self, samples, n_samples=None, forgetting_factor=1.0, verbose=False): r""" Update the eigenvectors, eigenvalues and mean vector of this model by performing incremental PCA on the given samples. Parameters ---------- samples : `list` of :map:`Vectorizable` List of new samples to update the model from. n_samples : `int`, optional If provided then ``samples`` must be an iterator that yields ``n_samples``. If not provided then samples has to be a list (so we know how large the data matrix needs to be). forgetting_factor : ``[0.0, 1.0]`` `float`, optional Forgetting factor that weights the relative contribution of new samples vs old samples. If 1.0, all samples are weighted equally and, hence, the results is the exact same as performing batch PCA on the concatenated list of old and new simples. If <1.0, more emphasis is put on the new samples. See [1] for details. References ---------- .. [1] David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang. "Incremental Learning for Robust Visual Tracking". IJCV, 2007. """ # build a data matrix from the new samples data = as_matrix(samples, length=n_samples, verbose=verbose) n_new_samples = data.shape[0] PCAVectorModel.increment(self, data, n_samples=n_new_samples, forgetting_factor=forgetting_factor, verbose=verbose) def view_widget(self, figure_size=(7, 7)): r""" Visualizes the model using an interactive widget. It only works if it is a 2D/3D shape or appearance model. Parameters ---------- figure_size : (`int`, `int`), optional The initial size of the rendered figure. """ try: from menpowidgets import view_widget view_widget(self, figure_size=figure_size) except ImportError as e: from menpo.visualize.base import MenpowidgetsMissingError raise MenpowidgetsMissingError(e) def __str__(self): str_out = 'PCA Model \n' \ ' - instance class: {}\n' \ ' - centred: {}\n' \ ' - # features: {}\n' \ ' - # active components: {}\n' \ ' - kept variance: {:.2} {:.1%}\n' \ ' - noise variance: {:.2} {:.1%}\n' \ ' - total # components: {}\n' \ ' - components shape: {}\n'.format( name_of_callable(self.template_instance), self.centred, self.n_features, self.n_active_components, self.variance(), self.variance_ratio(), self.noise_variance(), self.noise_variance_ratio(), self.n_components, self.components.shape) return str_out
the-stack_106_20200
# ------------------------------------------------------------------------------ # CodeHawk Binary Analyzer # Author: Henny Sipma # ------------------------------------------------------------------------------ # The MIT License (MIT) # # Copyright (c) 2021 Aarno Labs, LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ------------------------------------------------------------------------------ """Compares two binaries.""" from typing import Dict, List, Mapping, Sequence, Tuple, TYPE_CHECKING from chb.relational.CallgraphMatcher import CallgraphMatcher from chb.relational.FunctionRelationalAnalysis import FunctionRelationalAnalysis import chb.util.fileutil as UF if TYPE_CHECKING: from chb.app.AppAccess import AppAccess class RelationalAnalysis: """Establishes relationships between functions in two related binaries. A function mapping is established as follows: 1. If the number of functions is the same in both binaries, it is assumed (for now) that their order in both binaries is the same (we are dealing with micropatches, and so we don't expect large changes between the two binaries). In this case functions are mapped directly by their relative position in the binary. 2. If the number of functions is different in the two binaries, a combination of criteria is used to map functions. They get mapped directly - if they are at the same address, or - if they have identical md5 hash For the remaining functions the callgraph is used to determine relationships between the functions in each binary, and a function mapping is obtained from matching the two call graphs. """ def __init__( self, app1: "AppAccess", app2: "AppAccess", faddrs1: List[str] = [], faddrs2: List[str] = []) -> None: self._app1 = app1 self._app2 = app2 if faddrs1: self._faddrs1 = sorted(faddrs1) else: self._faddrs1 = sorted(app1.appfunction_addrs) if faddrs2: self._faddrs2 = sorted(faddrs2) else: self._faddrs2 = sorted(app2.appfunction_addrs) self._functionmapping: Dict[str, str] = {} # potentially partial map self._functionanalyses: Dict[str, FunctionRelationalAnalysis] = {} self._fnmd5s: Dict[str, Tuple[List[str], List[str]]] = {} @property def app1(self) -> "AppAccess": return self._app1 @property def app2(self) -> "AppAccess": return self._app2 @property def faddrs1(self) -> Sequence[str]: return self._faddrs1 @property def faddrs2(self) -> Sequence[str]: return self._faddrs2 @property def fncount1(self) -> int: return len(self._faddrs1) @property def fncount2(self) -> int: return len(self._faddrs2) @property def function_analyses(self) -> Mapping[str, FunctionRelationalAnalysis]: if len(self._functionanalyses) == 0: for faddr1 in self.faddrs1: if faddr1 in self.function_mapping: faddr2 = self.function_mapping[faddr1] fn1 = self.app1.function(faddr1) fn2 = self.app2.function(faddr2) self._functionanalyses[faddr1] = FunctionRelationalAnalysis( self.app1, fn1, self.app2, fn2) return self._functionanalyses def function_analysis(self, faddr: str) -> FunctionRelationalAnalysis: if faddr in self.function_analyses: return self.function_analyses[faddr] else: raise UF.CHBError("Address not found in function relational analyses") @property def function_mapping(self) -> Mapping[str, str]: if len(self._functionmapping) > 0: return self._functionmapping elif self.fncount1 == self.fncount2: result: Dict[str, str] = {} diff1 = sorted(set(self.faddrs1) - set(self.faddrs2)) diff2 = sorted(set(self.faddrs2) - set(self.faddrs1)) for (faddr1, faddr2) in zip(diff1, diff2): result[faddr1] = faddr2 for faddr1 in self.faddrs1: if faddr1 not in result: result[faddr1] = faddr1 self._functionmapping = result return self._functionmapping else: callgraphmatcher = CallgraphMatcher( self.app1, self.faddrs1, self.app1.callgraph(), self.app2, self.faddrs2, self.app2.callgraph()) self._functionmapping = callgraphmatcher.function_mapping return self._functionmapping def functions_changed(self) -> List[str]: """Return a list of functions that moved or are not md5-equivalent.""" result: List[str] = [] for (faddr, fra) in self.function_analyses.items(): if fra.moved or not fra.is_md5_equal: result.append(faddr) for faddr in self.faddrs1: if faddr not in self.function_mapping: result.append(faddr) return result def blocks_changed(self, faddr: str) -> List[str]: if faddr in self.function_analyses: fra = self.function_analyses[faddr] if fra.is_structurally_equivalent: return fra.blocks_changed() return [] def report(self, showfunctions: bool, showinstructions: bool) -> str: lines: List[str] = [] lines.append("Summary Report") lines.append("=" * 80) lines.append("") fnames: Dict[str, str] = {} for faddr in self.functions_changed(): if self.app1.has_function_name(faddr): fnames[faddr] = self.app1.function_name(faddr) + " (" + faddr + ")" else: fnames[faddr] = faddr maxnamelen = max(len(n) for n in fnames.values()) + 3 lines.append( "function".ljust(maxnamelen) + "moved to".ljust(12) + "md5-equal".ljust(12) + "cfg-isomorphic".ljust(18) + "blocks-changed".ljust(12)) lines.append("-" * 88) fnotfound: List[str] = [] # not found in patched version fnotmapped: List[str] = [] # not found in original version totalinstrs: int = 0 totalblocks: int = 0 for faddr in self.functions_changed(): if faddr in self.function_mapping: fra = self.function_analyses[faddr] if faddr != self.function_mapping[faddr]: moved = self.function_mapping[faddr] else: moved = "not moved" else: moved = "not found" if faddr in self.function_analyses: md5eq = "yes" if fra.is_md5_equal else "no" if fra.is_cfg_isomorphic: streq = "yes" blockschanged = len(fra.blocks_changed()) totalinstrs += fra.instructions_changed() allblocks = len(fra.basic_blocks1) totalblocks += blockschanged blchg = str(blockschanged) + "/" + str(allblocks) else: streq = "no" blchg = str(len(fra.cfg_blocks1)) + " -> " + str(len(fra.cfg_blocks2)) lines.append( fnames[faddr].ljust(maxnamelen) + moved.ljust(16) + md5eq.ljust(12) + streq.ljust(18) + blchg.ljust(12)) else: fnotfound.append(faddr) lines.append("\nTotal blocks changed: " + str(totalblocks)) lines.append("Total instructions changed: " + str(totalinstrs)) lines.append("") if len(self.function_mapping) < len(self.faddrs2): for faddr2 in sorted(self.faddrs2): if faddr2 not in self.function_mapping.values(): fnotmapped.append(faddr2) lines.append( "\nFunctions mapped from original to patched: " + str(len(self.function_mapping))) lines.append( "Functions not found in patched version: " + str(len(fnotfound))) lines.append( "Functions in patched version not mapped: " + str(len(fnotmapped))) if showfunctions or showinstructions: lines.append("") lines.append("=" * 80) lines.append("Functions changed") lines.append("=" * 80) for faddr in self.functions_changed(): if faddr in self.function_analyses: fra = self.function_analyses[faddr] lines.append("\nFunction " + fnames[faddr]) lines.append(fra.report(showinstructions)) else: lines.append( "\nFunction " + fnames[faddr] + " not mapped to patched version") return "\n".join(lines)
the-stack_106_20202
from gql import gql, Client from gql.transport.aiohttp import AIOHTTPTransport def getLastExchanges(network, exchange, contract: str, limit, pairAddress): transport = AIOHTTPTransport(url="https://graphql.bitquery.io") client = Client(transport=transport, fetch_schema_from_transport=True) query = gql( """ query getLastExchanges ($network: EthereumNetwork, $contract: String!, $exchange: String!, $limit: Int, $pairAddress: String!){ ethereum(network: $network) { dexTrades( options: {limit: $limit, desc: "timeInterval.second"} exchangeName: {is: $exchange} baseCurrency: {is: $contract} smartContractAddress: {is: $pairAddress} ) { transaction { hash } date { date } block { height } buyAmount buyAmountInUsd: buyAmount(in: USD) buyCurrency { symbol address } sellAmount sellAmountInUsd: sellAmount(in: USD) sellCurrency { symbol address } sellAmountInUsd: sellAmount(in: USD) tradeAmount(in: USD) transaction { gasValue gasPrice gas } timeInterval { second } } } } """ ) params = { "network": network, "contract": contract, "exchange": exchange, "limit": limit, "pairAddress": pairAddress } result = client.execute(query, variable_values=params) return(result["ethereum"]["dexTrades"]) def getPairs(network, exchange, contract: str): transport = AIOHTTPTransport(url="https://graphql.bitquery.io") client = Client(transport=transport, fetch_schema_from_transport=True) query = gql( """ query getPairs ($network: EthereumNetwork, $contract: String!, $exchange: String!){ ethereum(network: $network) { dexTrades( exchangeName: {is: $exchange} baseCurrency: {is: $contract} options: {desc: "trades"} ) { quoteCurrency: quoteCurrency { symbol address } baseCurrency { symbol address } poolToken: smartContract { address { address } } trades: count } } } """ ) params = { "network": network, "contract": contract, "exchange": exchange } result = client.execute(query, variable_values=params) dex_trades = (result["ethereum"]["dexTrades"]) pool_addresses = [] quote_currencies = [] for x in dex_trades: pool_addresses.append(x["poolToken"]["address"]["address"]) for x in dex_trades: quote_currencies.append(x["quoteCurrency"]["address"]) transport = AIOHTTPTransport(url="https://graphql.bitquery.io") client = Client(transport=transport, fetch_schema_from_transport=True) query = gql( """ query getPairLiquidity ($network: EthereumNetwork, $pool_addresses: [String!]){ ethereum(network: $network) { address(address: {in: $pool_addresses}) { balances { currency { address name } value } address } } } """ ) params = { "network": network, "pool_addresses": pool_addresses } result = client.execute(query, variable_values=params) balances = (result["ethereum"]["address"]) pools=[] final_pools=[] for x in balances: for y in x["balances"]: if(y["currency"]["address"] in quote_currencies or y["currency"]["address"] == contract): pools.append([x["address"], y["currency"]["name"], y["value"], y["currency"]["address"]]) for v, w in zip(pools[::2],pools[1::2]): final_pools.append([v,w]) return final_pools def getPrice(network, exchange, contract: str, pairAddress): transport = AIOHTTPTransport(url="https://graphql.bitquery.io") client = Client(transport=transport, fetch_schema_from_transport=True) query = gql( """ query getLastExchanges ($network: EthereumNetwork, $contract: String!, $exchange: String!, $pairAddress: String!){ ethereum(network: $network) { dexTrades( options: {limit: 1, desc: "timeInterval.second"} exchangeName: {is: $exchange} baseCurrency: {is: $contract} smartContractAddress: {is: $pairAddress} ) { transaction { hash } date { date } block { height } buyAmount buyAmountInUsd: buyAmount(in: USD) buyCurrency { symbol address } sellAmount sellAmountInUsd: sellAmount(in: USD) sellCurrency { symbol address } sellAmountInUsd: sellAmount(in: USD) tradeAmount(in: USD) transaction { gasValue gasPrice gas } timeInterval { second } } } } """ ) params = { "network": network, "contract": contract, "exchange": exchange, "pairAddress": pairAddress } result = client.execute(query, variable_values=params) if(result["ethereum"]["dexTrades"][0]["buyAmountInUsd"] / result["ethereum"]["dexTrades"][0]["sellAmount"] != 0.0): return(result["ethereum"]["dexTrades"][0]["buyAmountInUsd"] / result["ethereum"]["dexTrades"][0]["sellAmount"]) else: return result["ethereum"]["dexTrades"][0]["sellAmountInUsd"] / result["ethereum"]["dexTrades"][0]["buyAmount"] def getOHLC(network, exchange, baseCurrency: str, quoteCurrency: str, limit): transport = AIOHTTPTransport(url="https://graphql.bitquery.io") client = Client(transport=transport, fetch_schema_from_transport=True) query = gql( """ query getOHLC ($network: EthereumNetwork, $baseCurrency: String!, $exchange: String!, $quoteCurrency: String!, $limit: Int){ ethereum(network: $network) { dexTrades( options: {limit: $limit, desc: "timeInterval.minute"} exchangeName: {is: $exchange} baseCurrency: {is: $baseCurrency} quoteCurrency: {is: $quoteCurrency} ) { timeInterval { minute(count: 5) } high: quotePrice(calculate: maximum) low: quotePrice(calculate: minimum) open: minimum(of: block, get: quote_price) close: maximum(of: block, get: quote_price) baseCurrency { name } quoteCurrency { name } } } } """ ) params = { "network": network, "baseCurrency": baseCurrency, "exchange": exchange, "quoteCurrency": quoteCurrency, "limit": limit } result = client.execute(query, variable_values=params) return(result["ethereum"]["dexTrades"])
the-stack_106_20204
import nengo import numpy as np from numpy import random import matplotlib.pyplot as plt import matplotlib.cm as cm # import tensorflow as tf import os from nengo.dists import Choice from datetime import datetime # from nengo_extras.data import load_mnist import pickle from nengo.utils.matplotlib import rasterplot import time from InputData import PresentInputWithPause # from nengo_extras.graphviz import net_diagram from nengo.neurons import LIFRate from nengo.params import Parameter, NumberParam, FrozenObject from nengo.dists import Choice, Distribution, get_samples, Uniform from nengo.utils.numpy import clip, is_array_like from utilis import * # import keras from args_mnist import args as my_args import itertools import random import logging # import nni def evaluate_mnist_multiple_var_v2(args): ############################# # load the data ############################# input_nbr = args.input_nbr # (image_train, label_train), (image_test, label_test) = (keras.datasets.mnist.load_data()) probe_sample_rate = (input_nbr/10)/1000 #Probe sample rate. Proportional to input_nbr to scale down sampling rate of simulations # # probe_sample_rate = 1000 # image_train_filtered = [] # label_train_filtered = [] x = args.digit # for i in range(0,input_nbr): # image_train_filtered.append(image_train[i]) # label_train_filtered.append(label_train[i]) # image_train_filtered = np.array(image_train_filtered) # label_train_filtered = np.array(label_train_filtered) # np.save( # 'mnist.npz', # image_train_filtered=image_train_filtered, # label_train_filtered=label_train_filtered, # image_test_filtered=image_test_filtered, # label_test_filtered=label_test_filtered, # ) data = np.load('mnist.npz', allow_pickle=True) image_train_filtered = data['image_train_filtered'] label_train_filtered = data['label_train_filtered'] image_test_filtered = data['image_test_filtered'] label_test_filtered = data['label_test_filtered'] #Simulation Parameters #Presentation time presentation_time = args.presentation_time #0.20 #Pause time pause_time = args.pause_time #Iterations iterations=args.iterations #Input layer parameters n_in = args.n_in # g_max = 1/784 #Maximum output contribution g_max = args.g_max n_neurons = args.n_neurons # Layer 1 neurons # inhib_factor = args.inhib_factor #Multiplication factor for lateral inhibition input_neurons_args = { "n_neurons":n_in, "dimensions":1, "label":"Input layer", "encoders":nengo.dists.Uniform(1,1), # "max_rates":nengo.dists.Uniform(22,22), # "intercepts":nengo.dists.Uniform(0,0), "gain":nengo.dists.Uniform(args.gain_in,args.gain_in), "bias":nengo.dists.Uniform(args.bias_in,args.bias_in), "neuron_type":MyLIF_in(tau_rc=args.tau_in,min_voltage=-1, amplitude=args.g_max) # "neuron_type":nengo.neurons.SpikingRectifiedLinear()#SpikingRelu neuron. } #Layer 1 parameters layer_1_neurons_args = { "n_neurons":n_neurons, "dimensions":1, "label":"Layer 1", "encoders":nengo.dists.Uniform(1,1), "gain":nengo.dists.Uniform(args.gain_out,args.gain_out), "bias":nengo.dists.Uniform(args.bias_out,args.bias_out), # "intercepts":nengo.dists.Choice([0]), # "max_rates":nengo.dists.Choice([args.rate_out,args.rate_out]), # "noise":nengo.processes.WhiteNoise(dist=nengo.dists.Gaussian(0, 0.5), seed=1), # "neuron_type":nengo.neurons.LIF(tau_rc=args.tau_out, min_voltage=0) # "neuron_type":MyLIF_out(tau_rc=args.tau_out, min_voltage=-1) "neuron_type":STDPLIF(tau_rc=args.tau_out, min_voltage=-1, spiking_threshold=args.thr_out, inhibition_time=args.inhibition_time) } # "noise":nengo.processes.WhiteNoise(dist=nengo.dists.Gaussian(0, 20), seed=1), #Lateral Inhibition parameters # lateral_inhib_args = { # "transform": inhib_factor* (np.full((n_neurons, n_neurons), 1) - np.eye(n_neurons)), # "synapse":args.inhib_synapse, # "label":"Lateral Inhibition" # } #Learning rule parameters vthp=0.25 vthn=0.25 # np.random.seed(0) # vth_var = (2 * np.random.rand(n_neurons,n_in)) -1 #between -1 to 1 of shape W # var_ratio=args.var_ratio # vthp = vthp + (vthp*var_ratio*vth_var) # vthn = vthn + (vthn*var_ratio*vth_var) learning_args = { "lr": args.lr, "winit_min":0, "winit_max":1, "vprog":args.vprog, "vthp":vthp, "vthn":vthn, "weight_quant":args.weight_quant, # "var_ratio":args.var_ratio, # "tpw":50, # "prev_flag":True, "sample_distance": int((presentation_time+pause_time)*200*10), #Store weight after 10 images } # argument_string = "presentation_time: "+ str(presentation_time)+ "\n pause_time: "+ str(pause_time)+ "\n input_neurons_args: " + str(input_neurons_args)+ " \n layer_1_neuron_args: " + str(layer_1_neurons_args)+"\n Lateral Inhibition parameters: " + str(lateral_inhib_args) + "\n learning parameters: " + str(learning_args)+ "\n g_max: "+ str(g_max) images = image_train_filtered labels = label_train_filtered model = nengo.Network("My network") ############################# # Model construction ############################# with model: # picture = nengo.Node(PresentInputWithPause(images, presentation_time, pause_time,0)) picture = nengo.Node(nengo.processes.PresentInput(images, presentation_time=presentation_time)) true_label = nengo.Node(nengo.processes.PresentInput(labels, presentation_time=presentation_time)) # true_label = nengo.Node(PresentInputWithPause(labels, presentation_time, pause_time,-1)) # input layer input_layer = nengo.Ensemble(**input_neurons_args) input_conn = nengo.Connection(picture,input_layer.neurons,synapse=None) #first layer layer1 = nengo.Ensemble(**layer_1_neurons_args) #Weights between input layer and layer 1 w = nengo.Node(CustomRule_post_v3(**learning_args), size_in=n_in, size_out=n_neurons) nengo.Connection(input_layer.neurons, w, synapse=None) nengo.Connection(w, layer1.neurons, synapse=None) # nengo.Connection(w, layer1.neurons,transform=g_max, synapse=None) # init_weights = np.random.uniform(0, 1, (n_neurons, n_in)) # conn1 = nengo.Connection(input_layer.neurons,layer1.neurons,learning_rule_type=VLR(learning_rate=args.lr,vprog=-0.6, var_ratio = args.var_ratio),transform=init_weights) #Lateral inhibition # inhib = nengo.Connection(layer1.neurons,layer1.neurons,**lateral_inhib_args) #Probes p_true_label = nengo.Probe(true_label, sample_every=probe_sample_rate) p_input_layer = nengo.Probe(input_layer.neurons, sample_every=probe_sample_rate) p_layer_1 = nengo.Probe(layer1.neurons, sample_every=probe_sample_rate) # weights_probe = nengo.Probe(conn1,"weights",sample_every=probe_sample_rate) weights = w.output.history # with nengo_ocl.Simulator(model) as sim : with nengo.Simulator(model, dt=0.005) as sim: w.output.set_signal_vmem(sim.signals[sim.model.sig[input_layer.neurons]["voltage"]]) w.output.set_signal_out(sim.signals[sim.model.sig[layer1.neurons]["out"]]) sim.run((presentation_time+pause_time) * labels.shape[0]*iterations) #save the model # now = time.strftime("%Y%m%d-%H%M%S") # folder = os.getcwd()+"/MNIST_VDSP"+now # os.mkdir(folder) # print(weights) # weights = sim.data[weights_probe] last_weight = weights[-1] # pickle.dump(weights, open( folder+"/trained_weights", "wb" )) # pickle.dump(argument_string, open( folder+"/arguments", "wb" )) t_data = sim.trange(sample_every=probe_sample_rate) labels = sim.data[p_true_label][:,0] output_spikes = sim.data[p_layer_1] neuron_class = np.zeros((n_neurons, 1)) n_classes = 10 for j in range(n_neurons): spike_times_neuron_j = t_data[np.where(output_spikes[:,j] > 0)] max_spike_times = 0 for i in range(n_classes): class_presentation_times_i = t_data[np.where(labels == i)] #Normalized number of spikes wrt class presentation time num_spikes = len(np.intersect1d(spike_times_neuron_j,class_presentation_times_i))/(len(class_presentation_times_i)+1) if(num_spikes>max_spike_times): neuron_class[j] = i max_spike_times = num_spikes # print("Neuron class: \n", neuron_class) sim.close() ''' Testing ''' # img_rows, img_cols = 28, 28 input_nbr = 10000 # input_nbr = int(args.input_nbr/6) # Dataset = "Mnist" # # (image_train, label_train), (image_test, label_test) = load_mnist() # (image_train, label_train), (image_test, label_test) = (tf.keras.datasets.mnist.load_data()) # #select the 0s and 1s as the two classes from MNIST data # image_test_filtered = [] # label_test_filtered = [] # for i in range(0,input_nbr): # # if (label_train[i] == 1 or label_train[i] == 0): # image_test_filtered.append(image_test[i]) # label_test_filtered.append(label_test[i]) # print("actual input",len(label_test_filtered)) # print(np.bincount(label_test_filtered)) # image_test_filtered = np.array(image_test_filtered) # label_test_filtered = np.array(label_test_filtered) ############################# model = nengo.Network(label="My network",) # Learning params with model: # input layer # picture = nengo.Node(PresentInputWithPause(images, presentation_time, pause_time,0)) picture = nengo.Node(nengo.processes.PresentInput(image_test_filtered, presentation_time=presentation_time)) true_label = nengo.Node(nengo.processes.PresentInput(label_test_filtered, presentation_time=presentation_time)) # true_label = nengo.Node(PresentInputWithPause(labels, presentation_time, pause_time,-1)) input_layer = nengo.Ensemble(**input_neurons_args) input_conn = nengo.Connection(picture,input_layer.neurons,synapse=None) #first layer layer1 = nengo.Ensemble(**layer_1_neurons_args) # w = nengo.Node(CustomRule_post_v2(**learning_args), size_in=784, size_out=n_neurons) nengo.Connection(input_layer.neurons, layer1.neurons,transform=last_weight) p_true_label = nengo.Probe(true_label) p_layer_1 = nengo.Probe(layer1.neurons) p_input_layer = nengo.Probe(input_layer.neurons) #if(not full_log): # nengo.Node(log) ############################# step_time = (presentation_time + pause_time) with nengo.Simulator(model,dt=0.005) as sim: sim.run(step_time * label_test_filtered.shape[0]) labels = sim.data[p_true_label][:,0] output_spikes = sim.data[p_layer_1] n_classes = 10 # rate_data = nengo.synapses.Lowpass(0.1).filtfilt(sim.data[p_layer_1]) predicted_labels = [] true_labels = [] correct_classified = 0 wrong_classified = 0 class_spikes = np.ones((10,1)) for num in range(input_nbr): #np.sum(sim.data[my_spike_probe] > 0, axis=0) output_spikes_num = output_spikes[num*int(presentation_time/0.005):(num+1)*int(presentation_time/0.005),:] # 0.350/0.005 num_spikes = np.sum(output_spikes_num > 0, axis=0) for i in range(n_classes): sum_temp = 0 count_temp = 0 for j in range(n_neurons): if((neuron_class[j]) == i) : sum_temp += num_spikes[j] count_temp +=1 if(count_temp==0): class_spikes[i] = 0 else: class_spikes[i] = sum_temp/count_temp # print(class_spikes) k = np.argmax(num_spikes) # predicted_labels.append(neuron_class[k]) class_pred = np.argmax(class_spikes) predicted_labels.append(class_pred) true_class = labels[(num*int(presentation_time/0.005))] # print(true_class) # print(class_pred) # if(neuron_class[k] == true_class): # correct_classified+=1 # else: # wrong_classified+=1 if(class_pred == true_class): correct_classified+=1 else: wrong_classified+=1 accuracy = correct_classified/ (correct_classified+wrong_classified)*100 print("Accuracy: ", accuracy) sim.close() # nni.report_final_result(accuracy) del weights, sim.data, labels, output_spikes, class_pred, t_data return accuracy, last_weight # for tstep in np.arange(0, len(weights), 1): # tstep = int(tstep) # print(tstep) # fig, axes = plt.subplots(1,1, figsize=(3,3)) # for i in range(0,(n_neurons)): # fig = plt.figure() # ax1 = fig.add_subplot() # cax = ax1.matshow(np.reshape(weights[tstep][i],(28,28)),interpolation='nearest', vmax=1, vmin=0) # fig.colorbar(cax) # plt.tight_layout() # fig.savefig(folder+'/weights'+str(tstep)+'.png') # plt.close('all') # gen_video(folder, "weights") # for tstep in np.arange(0, len(weights), 1): # tstep = int(tstep) # print(tstep) # fig, axes = plt.subplots(1,1, figsize=(3,3)) # for i in range(0,(n_neurons)): # fig = plt.figure() # ax1 = fig.add_subplot() # cax = ax1.hist(weights[tstep][i]) # ax1.set_xlim(0,1) # ax1.set_ylim(0,350) # plt.tight_layout() # fig.savefig(folder+'/histogram'+str(tstep)+'.png') # plt.close('all') # gen_video(folder, "histogram") if __name__ == '__main__': logger = logging.getLogger(__name__) args = my_args() print(args.__dict__) logging.basicConfig(level=logging.DEBUG) # Fix the seed of all random number generator seed = 500 random.seed(seed) np.random.seed(seed) params = nni.get_next_parameter() args.g_max = params['g_max'] args.tau_in = params['tau_in'] args.tau_out = params['tau_out'] args.lr = params['lr'] # args.presentation_time = params['presentation_time'] # args.rate_out = params['rate_out'] accuracy, weights = evaluate_mnist_multiple_var(args) print('accuracy:', accuracy) # now = time.strftime("%Y%m%d-%H%M%S") # folder = os.getcwd()+"/MNIST_VDSP"+now # os.mkdir(folder) # plt.figure(figsize=(12,10)) # plt.subplot(2, 1, 1) # plt.title('Input neurons') # rasterplot(time_points, p_input_layer) # plt.xlabel("Time [s]") # plt.ylabel("Neuron index") # plt.subplot(2, 1, 2) # plt.title('Output neurons') # rasterplot(time_points, p_layer_1) # plt.xlabel("Time [s]") # plt.ylabel("Neuron index") # plt.tight_layout() # plt.savefig(folder+'/raster'+'.png') # for tstep in np.arange(0, len(weights), 1): # tstep = int(tstep) # # tstep = len(weightds) - tstep -1 # print(tstep) # columns = int(args.n_neurons/5) # fig, axes = plt.subplots(int(args.n_neurons/columns), int(columns), figsize=(20,25)) # for i in range(0,(args.n_neurons)): # axes[int(i/columns)][int(i%columns)].matshow(np.reshape(weights[tstep][i],(28,28)),interpolation='nearest', vmax=1, vmin=0) # plt.tight_layout() # fig.savefig(folder+'/weights'+str(tstep)+'.png') # plt.close('all') # gen_video(folder, "weights") logger.info('All done.')
the-stack_106_20205
from ifcopenshell.geom.app import application from PyQt4 import QtCore, QtGui class my_app(application): def __init__(self): application.__init__(self) # self.window = my_app.window() self.window.setWindowTitle("TU Eindhoven IfcOpenShell scripting tool") self.label = QtGui.QLabel(self.window) self.label.setGeometry(QtCore.QRect(40, 140, 361, 511)) self.label.setSizePolicy(QtGui.QSizePolicy.Preferred,QtGui.QSizePolicy.Preferred) self.label.setObjectName("label") self.label.setText("logo") myPixmap = QtGui.QPixmap('./tu_logo.png') self.label.resize(myPixmap.width(),myPixmap.height()) myScaledPixmap = myPixmap.scaled(self.label.size(), QtCore.Qt.KeepAspectRatio) self.label.setPixmap(myScaledPixmap) # tb.insertWidget(self.label) self.window.statusBar().addWidget(self.label) self.ios_label = QtGui.QLabel(self.window) self.ios_label.setGeometry(QtCore.QRect(40, 140, 361, 511)) self.ios_label.setSizePolicy(QtGui.QSizePolicy.Preferred,QtGui.QSizePolicy.Preferred) self.ios_label.setObjectName("label") self.ios_label.setText("logo") myPixmap = QtGui.QPixmap('./ifcopenshell.png') self.ios_label.resize(myPixmap.width(),myPixmap.height()) myScaledPixmap = myPixmap.scaled(self.ios_label.size(), QtCore.Qt.KeepAspectRatio) self.ios_label.setPixmap(myScaledPixmap) self.window.statusBar().addWidget(self.ios_label) my_app().start()
the-stack_106_20207
""" #Trains a ResNet on the CIFAR10 dataset. """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau, TensorBoard from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras.datasets import cifar10 from keras.applications.resnet import ResNet50, ResNet101, ResNet152 from keras import models, layers, optimizers from datetime import datetime import tensorflow as tf import numpy as np import os import pdb import sys import argparse import time import signal import glob import json import send_signal import pathlib from scipy.stats import variation import math parser = argparse.ArgumentParser(description='Tensorflow Cifar10 Training') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='specific testcase name') parser.add_argument('--resume', dest='resume', action='store_true', help='if True, resume training from a checkpoint') parser.add_argument('--gpu_num', metavar='GPU_NUMBER', type=str, help='select which gpu to use') parser.add_argument('--node', metavar='HOST_NODE', type=str, help='node of the host (scheduler)') parser.set_defaults(resume=False) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_num # Training parameters batch_size = 64 args_lr = 0.0006 args_model = 'resnet50' epoch_begin_time = 0 job_name = sys.argv[0].split('.')[0] save_files = '/scratch/li.baol/dl_checkpoints/' + args.tc + '/' + job_name + '_*' total_epochs = 50 starting_epoch = 0 # first step is to update the PID pid = os.getpid() message = job_name + ' pid ' + str(pid) # 'job50 pid 3333' send_signal.send(args.node, 10002, message) if args.resume: save_file = glob.glob(save_files)[0] # epochs = int(save_file.split('/')[4].split('_')[1].split('.')[0]) starting_epoch = int(save_file.split('/')[5].split('.')[0].split('_')[-1]) data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True n = 3 # Model name, depth and version model_type = args.tc #'P100_resnet50_he_256_1' # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) if args.resume: print('resume from checkpoint') message = job_name + ' b_end' send_signal.send(args.node, 10002, message) model = keras.models.load_model(save_file) message = job_name + ' c_end' send_signal.send(args.node, 10002, message) else: print('train from start') model = models.Sequential() if '50' in args_model: base_model = ResNet50(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '101' in args_model: base_model = ResNet101(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '152' in args_model: base_model = ResNet152(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) #base_model.summary() #pdb.set_trace() #model.add(layers.UpSampling2D((2,2))) #model.add(layers.UpSampling2D((2,2))) #model.add(layers.UpSampling2D((2,2))) model.add(base_model) model.add(layers.Flatten()) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(128, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(64, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) model.add(layers.Dense(10, activation='softmax'))#, kernel_initializer='he_uniform')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=args_lr), metrics=['accuracy']) #model.summary() print(model_type) #pdb.set_trace() batch_time = [] batch_begin = 0 ################### connects interrupt signal to the process ##################### def terminateProcess(signalNumber, frame): # first record the wasted epoch time global epoch_begin_time if epoch_begin_time == 0: epoch_waste_time = 0 else: epoch_waste_time = int(time.time() - epoch_begin_time) message = job_name + ' waste ' + str(epoch_waste_time) # 'job50 waste 100' if epoch_waste_time > 0: send_signal.send(args.node, 10002, message) print('checkpointing the model triggered by kill -15 signal') # delete whatever checkpoint that already exists for f in glob.glob(save_files): os.remove(f) pathlib.Path('/scratch/li.baol/dl_checkpoints/'+args.tc+'/').mkdir(parents=True, exist_ok=True) model.save('/scratch/li.baol/dl_checkpoints/'+args.tc+'/' + job_name + '_' + str(current_epoch) + '.h5') print ('(SIGTERM) terminating the process') message = job_name + ' checkpoint' send_signal.send(args.node, 10002, message) sys.exit() signal.signal(signal.SIGTERM, terminateProcess) ################################################################################# logdir = '/scratch/li.baol/tsrbrd_log/job_runs/' + model_type + '/' + job_name tensorboard_callback = TensorBoard(log_dir=logdir)#, update_freq='batch') first_epoch_start = 0 batches_per_epoch = math.ceil(y_train.shape[0] / batch_size) stable_batch = 0 class PrintEpoch(keras.callbacks.Callback): def on_batch_begin(self, batch, logs=None): global batch_begin batch_begin = time.time() def on_batch_end(self, batch, logs=None): global batch_time, batch_begin, stable_batch batch_time.append(float(time.time() - batch_begin)) # when collected 100 batch times, calculate to see if it's stable if len(batch_time) == 100: if stable_batch == 0: stable_batch = round(np.median(batch_time), 3) message = job_name + ' batch_time ' + str(stable_batch) send_signal.send(args.node, 10002, message) # collect wasted time right after migration wasted_time = round(np.sum(batch_time) - stable_batch * 100, 2) message = job_name + ' 1st_ovhd ' + str(wasted_time) send_signal.send(args.node, 10002, message) batch_time = [] self.remaining_batches -= 100 message = job_name + ' remain_batch ' + str(self.remaining_batches) send_signal.send(args.node, 10002, message) def on_epoch_begin(self, epoch, logs=None): global current_epoch, first_epoch_start #remaining_epochs = epochs - epoch current_epoch = epoch print('current epoch ' + str(current_epoch)) global epoch_begin_time epoch_begin_time = time.time() if epoch == starting_epoch and args.resume: first_epoch_start = time.time() message = job_name + ' d_end' send_signal.send(args.node, 10002, message) elif epoch == starting_epoch: first_epoch_start = time.time() if epoch == starting_epoch: # send signal to indicate checkpoint is qualified message = job_name + ' ckpt_qual' send_signal.send(args.node, 10002, message) self.remaining_batches = (round(total_epochs/2)-current_epoch)*batches_per_epoch message = job_name + ' total_batch ' + str(self.remaining_batches) send_signal.send(args.node, 10002, message) message = job_name + ' epoch_begin ' + str(current_epoch) send_signal.send(args.node, 10002, message) def on_epoch_end(self, epoch, logs=None): if epoch == starting_epoch: first_epoch_time = int(time.time() - first_epoch_start) message = job_name + ' 1st_epoch ' + str(first_epoch_time) send_signal.send(args.node, 10002, message) progress = round((epoch+1) / round(total_epochs/2), 2) message = job_name + ' completion ' + str(progress) send_signal.send(args.node, 10002, message) my_callback = PrintEpoch() callbacks = [tensorboard_callback, my_callback] #[checkpoint, lr_reducer, lr_scheduler, tensorboard_callback] # Run training model.fit(x_train, y_train, batch_size=batch_size, epochs=round(total_epochs/2), validation_data=(x_test, y_test), shuffle=True, callbacks=callbacks, initial_epoch=starting_epoch, verbose=1 ) # Score trained model. scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # send signal to indicate job has finished message = job_name + ' finish' send_signal.send(args.node, 10002, message)
the-stack_106_20209
#!/usr/bin/python2 # -*- coding: utf-8 -*- """ CHOOSING LETTER-COLOR ASSOCIATIONS TASK O.Colizoli & M.Blasco Oliver, 2019 Outputs a TSV file for sub-101 and sub-201 (Group2 gets Group1's preferences) """ ### Import Libraries ### import os, time # for paths and data from psychopy import core, visual, event, gui, monitors import random import numpy as np import pandas as pd from IPython import embed as shell import general_parameters as gp # letter conditions, counterbalancing debug_mode = False ######################################### ################# TEXTS ################# ######################################### welcome_txt = "Imagine that each letter of the alphabet would be associated with a color.\ \n\nYour task is to pair each letter (left hand side) to the colors presented (right hand side).\ \nThere are NO right or wrong answers, just go with your 'gut' feeling, your preferences or (dis)likes.\ \nYou may change your answers before your final decision.\ \nHowever, you may not choose the same color for more than one letter (each letter should have a unique color).\ \n\nTo make your choice, first press the letter via the keyboard, followed by ENTER.\ \nThereafter, press the number on the keyboard corresponding to the desired color, followed by ENTER.\ \nPress ENTER again, to go to the next letter.\ \n\n[Press the SPACEBAR to begin]" ###################################################### ##################### FUNCTIONS ##################### ###################################################### def show_input(win,response_input,type_input,options): keys = [] user_txt = None all_options= options + ["return","backspace","space"] while True: tmp_key = event.getKeys(all_options) # keyList = [a,b,c] if len(tmp_key)>0: if tmp_key[0] == "return": if keys == []: # pressed forst by accident continue else: break elif tmp_key[0] == "backspace": # fix backspace try: keys.pop() user_txt = ''.join(keys) response_input.setText(user_txt) response_input.draw() win.flip() except: continue user_txt = ''.join(keys) elif tmp_key[0] == "space": keys.append('') else: keys.append(tmp_key[0]) user_txt = ''.join(keys) response_input.setText(user_txt) response_input.draw() win.flip() return user_txt ###################################################### ##################### PARAMETERS ##################### ###################################################### #Get subject number g = gui.Dlg() g.addField('Subject Number:') g.show() subject_ID = int(g.data[0]) session = 1 # in case GUI doesn't work # subject_ID = 1 if subject_ID: # trials trials = 8 # Stimuli ## LETTER SET DEPENDENT ON SUBJECT NUMBER letters = gp.letter_sets_lower[np.mod(subject_ID,2)] # lower case, TRAINED set!! colors = gp.trained_colors colorcodes = ['1.','2.','3.','4.','5.','6.','7.','8.','9.','10.','11.','12.','13.'] colorcode_input = [1,2,3,4,5,6,7,8,9,10,11,12,13] colorcode_input_str = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13'] random.shuffle(colors) # shuffle order of colors, not letters # Build dictionary of colors" color_dict = {k: 0 for k in colorcode_input} for k in range(len(color_dict)): color_dict[k+1] = colors[k] # Text sizes cc_size = 24 l_size = 40 cp_size = 22 # radius, so size is 32 choice_size = 46 choice_col_size = 16 ### Positions X on screen # Letters let_x1 = -500 #-500 let_x2 = let_x1+100 #-400 # Colors number (coln) and color patches (colp) coln_x1 = -100 #-100 colp_x1 = coln_x1+40 #-60 coln_x2 = coln_x1+150 #50 colp_x2 = coln_x2+40 #90 # Choices (letcol) and number color (letcoln) letcol_x1 = 350 #350 letcoln_x1 = letcol_x1+25 #375 letcol_x2 = letcol_x1+70 #420 letcoln_x2 = letcol_x2+25 #445 letcol_xnone = np.mean([letcol_x1,letcol_x2]) ### Positions Y on screen # Letters & Colors options let_col_y1 = np.linspace(220,-140,7).astype(int) distance_y = np.abs(let_col_y1[0]-let_col_y1[1]) start_let_col_y2 = let_col_y1[0]-(distance_y/2) end_let_col_y2 = let_col_y1[-1]+(distance_y/2) let_col_y2 = np.linspace(start_let_col_y2,end_let_col_y2,6).astype(int) print('Position in y letters and colors:') print(let_col_y1) print(let_col_y2) # Choices (letcol) and number color (letcoln) choice_y1 = np.linspace(180,-120,7).astype(int) dist_y_choice = np.abs(choice_y1[0]-choice_y1[1]) start_choice_y2 = choice_y1[0]-(dist_y_choice/2) end_choice_y2 = choice_y1[-1]+(dist_y_choice/2) choice_y2 = np.linspace(start_choice_y2,end_choice_y2,6).astype(int) choice_ynone = choice_y1[-1]-(dist_y_choice/2) print('Position in y choices:') print(choice_y1) print(choice_y2) print(choice_ynone) ### SIGN POSITIONS sign_y = let_col_y1[0]+60 ask_y = let_col_y1[-1]-60 input_y = ask_y-40 sign_x_let = np.mean([let_x1,let_x2]) sign_x_col = np.mean([coln_x1,colp_x2]) sign_x_choice = np.mean([letcol_x1,letcol_x2]) # Choosen pairs dictionary - to be filled during the task pairs_dict = {k: '' for k in letters} ## Create LogFile folder cwd/LogFiles cwd = os.getcwd() ## output file name with time stamp prevents any overwriting of data timestr = time.strftime("%Y%m%d-%H%M%S") # G1 if subject_ID < 200: # make G1 & G2's folders subject_yoked = subject_ID+100 logfile_dir = os.path.join(cwd,'colors','sub-{}'.format(subject_ID)) # system independent logfile_dir_g2 = os.path.join(cwd,'colors','sub-{}'.format(subject_ID+100)) # system independent if not os.path.isdir(logfile_dir): os.makedirs(logfile_dir) if not os.path.isdir(logfile_dir_g2): os.makedirs(logfile_dir_g2) # no time stamp because extra something to delete when scanning... output_filename = os.path.join(logfile_dir,'sub-{}_colors.tsv'.format(subject_ID )) output_filename_g2 = os.path.join(logfile_dir_g2,'sub-{}_colors.tsv'.format(subject_ID+100 )) # G2 gets G1's colors # G2 else: # save elsewhere in 'prefs' folder subject_yoked = subject_ID-100 pref_dir = os.path.join(cwd,'LogFiles','sub-{}'.format(subject_ID),'sess-{}'.format(session),'behav') # system independent if not os.path.isdir(pref_dir): os.makedirs(pref_dir) output_filename = os.path.join(pref_dir,'sub-{}_prefs_{}.tsv'.format(subject_ID,timestr )) header = ['subject','subject_yoked','letter','colorcode','r','g','b'] data_pairs = pd.DataFrame(columns=header) #called DF in other script # Set-up window: mon = monitors.Monitor('myMac15', width=gp.screen_width, distance=gp.screen_dist) mon.setSizePix((gp.scnWidth, gp.scnHeight)) win = visual.Window((gp.scnWidth, gp.scnHeight),color=gp.white,colorSpace='rgb255',monitor=mon,fullscr=not debug_mode,units='pix',allowStencil=True,autoLog=False) win.setMouseVisible(True) # Set-up stimuli and timing instr = visual.TextStim(win, color='black', pos=(0.0, 0.0), wrapWidth=gp.ww ) letter_sign = visual.TextStim(win, text = 'LETTERS:', color='black', pos=(sign_x_let,sign_y), height = 24) color_sign = visual.TextStim(win, text = 'COLORS:', color='black', pos=(sign_x_col,sign_y), height = 24) choices_sign = visual.TextStim(win, text = 'YOUR CHOICES:', color='black', pos=(sign_x_choice,sign_y), height = 24) letter_ask = visual.TextStim(win, text = 'Letter?', color='black', pos=(sign_x_let,ask_y),height=20) color_ask = visual.TextStim(win, text = 'Color (number)?', color='black', pos=(sign_x_col,ask_y),height=20) letter_input = visual.TextStim(win, color= 'black', pos=(sign_x_let,input_y),height=30) color_input = visual.TextStim(win, color= 'black', pos=(sign_x_col,input_y),height=30) final_choice_ask = visual.TextStim(win, text = 'Continue choosing [ENTER]\nor Final choice [y]', color='black', pos=(sign_x_choice,ask_y), height = 20) keep_choosing = visual.TextStim(win, text = 'Letters with no color or repeated colors. \nPlease, continue choosing. ', color='black', pos=(sign_x_choice,ask_y-40), height = 20) # Letters to be trained letter_01 = visual.TextStim(win, text = letters[0], color='black', font = gp.font_trained, pos=(let_x1,let_col_y1[0]), height = l_size) letter_02 = visual.TextStim(win, text = letters[1], color='black', font = gp.font_trained, pos=(let_x1,let_col_y1[1]), height = l_size) letter_03 = visual.TextStim(win, text = letters[2], color='black', font = gp.font_trained, pos=(let_x1,let_col_y1[2]), height = l_size) letter_04 = visual.TextStim(win, text = letters[3], color='black', font = gp.font_trained, pos=(let_x1,let_col_y1[3]), height = l_size) letter_05 = visual.TextStim(win, text = letters[4], color='black', font = gp.font_trained, pos=(let_x1,let_col_y1[4]), height = l_size) letter_06 = visual.TextStim(win, text = letters[5], color='black', font = gp.font_trained, pos=(let_x1,let_col_y1[5]), height = l_size) letter_07 = visual.TextStim(win, text = letters[6], color='black', font = gp.font_trained, pos=(let_x1,let_col_y1[6]), height = l_size) letter_08 = visual.TextStim(win, text = letters[7], color='black', font = gp.font_trained, pos=(let_x2,let_col_y2[0]), height = l_size) letter_09 = visual.TextStim(win, text = letters[8], color='black', font = gp.font_trained, pos=(let_x2,let_col_y2[1]), height = l_size) letter_10 = visual.TextStim(win, text = letters[9], color='black', font = gp.font_trained, pos=(let_x2,let_col_y2[2]), height = l_size) letter_11 = visual.TextStim(win, text = letters[10], color='black', font = gp.font_trained, pos=(let_x2,let_col_y2[3]), height = l_size) letter_12 = visual.TextStim(win, text = letters[11], color='black', font = gp.font_trained, pos=(let_x2,let_col_y2[4]), height = l_size) letter_13 = visual.TextStim(win, text = letters[12], color='black', font = gp.font_trained, pos=(let_x2,let_col_y2[5]), height = l_size) letter_holder = [letter_01,letter_02,letter_03,letter_04,letter_05,letter_06,letter_07, letter_08,letter_09,letter_10,letter_11,letter_12,letter_13] # Color codes 01-13 colorcode_01 = visual.TextStim(win, text = colorcodes[0], color='black', pos=(coln_x1,let_col_y1[0]), height = cc_size) colorcode_02 = visual.TextStim(win, text = colorcodes[1], color='black', pos=(coln_x1,let_col_y1[1]), height = cc_size) colorcode_03 = visual.TextStim(win, text = colorcodes[2], color='black', pos=(coln_x1,let_col_y1[2]), height = cc_size) colorcode_04 = visual.TextStim(win, text = colorcodes[3], color='black', pos=(coln_x1,let_col_y1[3]), height = cc_size) colorcode_05 = visual.TextStim(win, text = colorcodes[4], color='black', pos=(coln_x1,let_col_y1[4]), height = cc_size) colorcode_06 = visual.TextStim(win, text = colorcodes[5], color='black', pos=(coln_x1,let_col_y1[5]), height = cc_size) colorcode_07 = visual.TextStim(win, text = colorcodes[6], color='black', pos=(coln_x1,let_col_y1[6]), height = cc_size) colorcode_08 = visual.TextStim(win, text = colorcodes[7], color='black', pos=(coln_x2,let_col_y2[0]), height = cc_size) colorcode_09 = visual.TextStim(win, text = colorcodes[8], color='black', pos=(coln_x2,let_col_y2[1]), height = cc_size) colorcode_10 = visual.TextStim(win, text = colorcodes[9], color='black', pos=(coln_x2,let_col_y2[2]), height = cc_size) colorcode_11 = visual.TextStim(win, text = colorcodes[10], color='black', pos=(coln_x2,let_col_y2[3]), height = cc_size) colorcode_12 = visual.TextStim(win, text = colorcodes[11], color='black', pos=(coln_x2,let_col_y2[4]), height = cc_size) colorcode_13 = visual.TextStim(win, text = colorcodes[12], color='black', pos=(coln_x2,let_col_y2[5]), height = cc_size) colorcode_holder = [colorcode_01,colorcode_02,colorcode_03,colorcode_04,colorcode_05,colorcode_06,colorcode_07, colorcode_08,colorcode_09,colorcode_10,colorcode_11,colorcode_12,colorcode_13] # Color circles RGB tones colorpatch_01 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[1],fillColorSpace = 'rgb255', pos =(colp_x1,let_col_y1[0]), opacity = 1.0) colorpatch_02 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[2],fillColorSpace = 'rgb255', pos =(colp_x1,let_col_y1[1]), opacity = 1.0) colorpatch_03 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[3],fillColorSpace = 'rgb255', pos =(colp_x1,let_col_y1[2]), opacity = 1.0) colorpatch_04 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[4],fillColorSpace = 'rgb255', pos =(colp_x1,let_col_y1[3]), opacity = 1.0) colorpatch_05 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[5],fillColorSpace = 'rgb255', pos =(colp_x1,let_col_y1[4]), opacity = 1.0) colorpatch_06 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[6],fillColorSpace = 'rgb255', pos =(colp_x1,let_col_y1[5]), opacity = 1.0) colorpatch_07 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[7],fillColorSpace = 'rgb255', pos =(colp_x1,let_col_y1[6]), opacity = 1.0) colorpatch_08 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[8],fillColorSpace = 'rgb255', pos =(colp_x2,let_col_y2[0]), opacity = 1.0) colorpatch_09 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[9],fillColorSpace = 'rgb255', pos =(colp_x2,let_col_y2[1]), opacity = 1.0) colorpatch_10 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[10],fillColorSpace = 'rgb255', pos =(colp_x2,let_col_y2[2]), opacity = 1.0) colorpatch_11 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[11],fillColorSpace = 'rgb255', pos =(colp_x2,let_col_y2[3]), opacity = 1.0) colorpatch_12 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[12],fillColorSpace = 'rgb255', pos =(colp_x2,let_col_y2[4]), opacity = 1.0) colorpatch_13 = visual.Circle(win=win,radius=cp_size,fillColor=color_dict[13],fillColorSpace = 'rgb255', pos =(colp_x2,let_col_y2[5]), opacity = 1.0) colorpatch_holder = [colorpatch_01,colorpatch_02,colorpatch_03,colorpatch_04,colorpatch_05,colorpatch_06,colorpatch_07, colorpatch_08,colorpatch_09,colorpatch_10,colorpatch_11,colorpatch_12,colorpatch_13] # Choices holders: colored letter # pos_choice = [(200,150),(200,100),(200,50),(200,0),(200,-50),(200,-100),(200,-150), # (250,125),(250,75),(250,25),(250,-25),(250,-75),(250,-125)] globals() ['choice_{}'.format(letters[0])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x1,choice_y1[0]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[1])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x1,choice_y1[1]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[2])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x1,choice_y1[2]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[3])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x1,choice_y1[3]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[4])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x1,choice_y1[4]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[5])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x1,choice_y1[5]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[6])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x1,choice_y1[6]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[7])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x2,choice_y2[0]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[8])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x2,choice_y2[1]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[9])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x2,choice_y2[2]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[10])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x2,choice_y2[3]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[11])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x2,choice_y2[4]),height=choice_size,colorSpace='rgb255') globals() ['choice_{}'.format(letters[12])] = visual.TextStim(win,font = gp.font_trained, pos=(letcol_x2,choice_y2[5]),height=choice_size,colorSpace='rgb255') choice_None = visual.TextStim(win,text='None',color='black',pos=(letcol_xnone,choice_ynone),height=24) # Choosen color number per letter globals() ['choicecode_{}'.format(letters[0])] = visual.TextStim(win,color='black',pos=(letcoln_x1,choice_y1[0]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[1])] = visual.TextStim(win,color='black',pos=(letcoln_x1,choice_y1[1]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[2])] = visual.TextStim(win,color='black',pos=(letcoln_x1,choice_y1[2]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[3])] = visual.TextStim(win,color='black',pos=(letcoln_x1,choice_y1[3]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[4])] = visual.TextStim(win,color='black',pos=(letcoln_x1,choice_y1[4]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[5])] = visual.TextStim(win,color='black',pos=(letcoln_x1,choice_y1[5]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[6])] = visual.TextStim(win,color='black',pos=(letcoln_x1,choice_y1[6]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[7])] = visual.TextStim(win,color='black',pos=(letcoln_x2,choice_y2[0]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[8])] = visual.TextStim(win,color='black',pos=(letcoln_x2,choice_y2[1]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[9])] = visual.TextStim(win,color='black',pos=(letcoln_x2,choice_y2[2]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[10])] = visual.TextStim(win,color='black',pos=(letcoln_x2,choice_y2[3]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[11])] = visual.TextStim(win,color='black',pos=(letcoln_x2,choice_y2[4]),height=choice_col_size) globals() ['choicecode_{}'.format(letters[12])] = visual.TextStim(win,color='black',pos=(letcoln_x2,choice_y2[5]),height=choice_col_size) # INSTRUCTIONS instr.setText(welcome_txt) instr.draw() win.flip() event.waitKeys() # Show signs letter_sign.setAutoDraw(True) color_sign.setAutoDraw(True) choices_sign.setAutoDraw(True) # Start choosing until they are done no_final_choice = True trial=0 while no_final_choice: #for t in range(trials): trial += 1 print('##### Trial {} #####'.format(trial)) # Show list of stimuli: for l in letter_holder: l.setAutoDraw(True) for cc in colorcode_holder: cc.setAutoDraw(True) for cp in colorpatch_holder: cp.setAutoDraw(True) # Ask letter letter_ask.setAutoDraw(True) win.flip() ## Record keypresses for letter display letter_resp = show_input(win,response_input=letter_input,type_input='letter',options=letters) # fix backspace letter_input.setAutoDraw(True) print('Letter response: ', letter_resp) # Ask color: color_ask.setAutoDraw(True) win.flip() ## Record keypresses for letter display color_resp = show_input(win,response_input=color_input,type_input='color',options=colorcode_input_str) print('Color response: ', color_resp) color_input.setAutoDraw(True) # Assign color to letter: pairs_dict[letter_resp] = color_resp # Show all choices choice at the right side (mix letter-color) for let in pairs_dict: if pairs_dict[let] is not '': col = int(pairs_dict[let]) # SHow colored letter if (let in letters) and (col in colorcode_input): #Colored letter globals() ['choice_{}'.format(let)].setText(let) globals() ['choice_{}'.format(let)].setColor(color_dict[col]) globals() ['choice_{}'.format(let)].setAutoDraw(True) # Color number globals() ['choicecode_{}'.format(let)].setText(col) globals() ['choicecode_{}'.format(let)].setAutoDraw(True) else: choice_None.setAutoDraw(True) win.flip() # Remove 'None' from dictionary no_let = [] no_col = [] for let, col in pairs_dict.items(): if let not in letters: print('- {} is not a letter of interest.'.format(let)) no_let.append(let) if (col not in colorcode_input_str) and (col is not ''): print('- {} is not a color of interest.'.format(col)) pairs_dict[let] = '' print('- Now key {} that had non-color {} is empty again.'.format(let,col)) for nl in range(len(no_let)): pairs_dict.pop(no_let[nl]) print('- Non-letter {} removed from dictionary'.format(no_let[nl])) # Remove answers letter_ask.setAutoDraw(False) color_ask.setAutoDraw(False) color_input.setAutoDraw(False) letter_input.setAutoDraw(False) final_choice_ask.draw() win.flip() choice_None.setAutoDraw(False) keys=[] final_choice = event.waitKeys(keyList=['y','return']) print('- final choice:', final_choice[0]) if final_choice[0] == 'y': #Select choosen colors and check empty ones: chosen_colors = [] empty = 0 for col in pairs_dict.values(): chosen_colors.append(col) if col == '': empty +=1 #Check repeated colors: seen = set() uniq = [] duplic = [] for c in chosen_colors: if c not in seen: uniq.append(c) seen.add(c) else: duplic.append(c) # Finish only if there is no empty or repeated colors if len(duplic)>0 or empty>0: keep_choosing.draw() win.flip() core.wait(2) else: no_final_choice = False # Save data writer_count = 0 for letter in pairs_dict: if pairs_dict[letter] is not '': colornum = int(pairs_dict[letter]) colorRGB = color_dict[colornum] data_pairs.loc[writer_count] = [ subject_ID, # subject subject_yoked, # subject yoked to letter, # letter colornum, # Color code on the screen int(colorRGB[0]), #R in 255 int(colorRGB[1]), #G in 255 int(colorRGB[2]), #B in 255 ] data_pairs.to_csv(output_filename,sep='\t') if subject_ID < 200: data_pairs.to_csv(output_filename_g2,sep='\t') # G2 gets G1's colors writer_count += 1 # Close-up win.close() core.quit()
the-stack_106_20212
# -*- encoding: utf-8 -*- """ keri.kli.commands.multisig module """ import argparse from hio import help from hio.base import doing from keri.app import directing, grouping, indirecting from keri.app.cli.common import rotating, existing, displaying logger = help.ogler.getLogger() parser = argparse.ArgumentParser(description='Begin or join a rotation of a group identifier') parser.set_defaults(handler=lambda args: rotateGroupIdentifier(args), transferable=True) parser.add_argument('--name', '-n', help='Human readable reference', required=True) parser.add_argument('--group', '-g', help="Human readable environment reference for group identifier", required=True) rotating.addRotationArgs(parser) def rotateGroupIdentifier(args): """ Performs a rotation on the group identifier specified as an argument. The identifier prefix of the environment represented by the name parameter must be a member of the group identifier. This command will perform a rotation of the local identifier if the sequence number of the local identifier is the same as the group identifier sequence number. It will wait for all other members of the group to acheive the same sequence number (group + 1) and then publish the signed rotation event for the group identifier to all witnesses and wait for receipts. Parameters: args (parseargs): command line parameters """ kwa = args.__dict__ rotDoer = GroupMultisigRotate(**kwa) doers = [rotDoer] directing.runController(doers=doers, expire=0.0) class GroupMultisigRotate(doing.DoDoer): """ Command line DoDoer to launch the needed coroutines to run launch Multisig rotation. This DoDoer will remove the multisig coroutine and exit when it recieves a message that the multisig coroutine has successfully completed a cooperative rotation. """ def __init__(self, name, **kwa): self.hab, doers = existing.setupHabitat(name=name) self.rotr = grouping.MultiSigGroupDoer(hab=self.hab) self.msg = kwa mbd = indirecting.MailboxDirector(hab=self.hab, topics=['/receipt', '/multisig']) doers.extend([self.rotr, mbd]) self.toRemove = list(doers) doers.extend([doing.doify(self.rotateDo)]) super(GroupMultisigRotate, self).__init__(doers=doers) def rotateDo(self, tymth, tock=0.0, **opts): # enter context yield self.tock msg = dict(op=grouping.Ops.rot, reason="Standard Rotation") msg["group"] = self.msg["group"] msg["sith"] = self.msg["sith"] msg["toad"] = self.msg["toad"] msg["data"] = self.msg["data"] msg["wits"] = self.msg["witnesses"] if "witnesses" in msg else [] msg["cuts"] = self.msg["witness_cut"] if "witnesse_cut" in msg else [] msg["adds"] = self.msg["witness_add"] if "witnesse_add" in msg else [] self.rotr.msgs.append(msg) while not self.rotr.cues: yield self.tock rep = self.rotr.cues.popleft() print() print("Group Identifier Rotation Complete:") displaying.printIdentifier(self.hab, rep["pre"]) self.remove(self.toRemove)
the-stack_106_20213
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =================================================================== """TPU system metadata and associated tooling.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import re from tensorflow.contrib.tpu.python.tpu import tpu from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session as session_lib from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.platform import tf_logging as logging _PINGING_MASTER_TIMEOUT_IN_MS = 60 * 1000 # 1 min _RETRY_TIMES = 120 _INITIAL_TPU_SYSTEM_TIMEOUT_IN_MS = 300 * 1000 # 5 mins _TPU_DEVICE_REG = re.compile(r'.*task:(\d+)/.*device:TPU:(\d+)$') # _TPUSystemMetadata is used by TPUEstimator to hold TPU configuration, # including num_cores and num_hosts. _TPUSystemMetadata = collections.namedtuple('_TPUSystemMetadata', [ 'num_cores', 'num_hosts', 'num_of_cores_per_host', 'topology', 'devices', ]) def _query_tpu_system_metadata(master_address, cluster_def=None, query_topology=False): """Automatically detects the TPU system metadata in the system.""" tpu_core_count = 0 devices = [] device_dict = collections.defaultdict(list) retry_count = 1 while True: logging.info('Querying Tensorflow master (%s) for TPU system metadata.', master_address) try: with ops.Graph().as_default(): with session_lib.Session( master_address, config=get_session_config_with_timeout( _PINGING_MASTER_TIMEOUT_IN_MS, cluster_def)) as sess: devices = sess.list_devices() for device in devices: match = _TPU_DEVICE_REG.match(device.name) if match: host_id = match.group(1) core_id = match.group(2) device_dict[host_id].append(core_id) tpu_core_count += 1 break except errors.DeadlineExceededError: msg = ('Failed to connect to the Tensorflow master. The TPU worker may ' 'not be ready (still scheduling) or the Tensorflow master address ' 'is incorrect: got (%s).' % (master_address)) # TODO(xiejw): For local or grpc master we might not need retry logic # here. if retry_count <= _RETRY_TIMES: logging.warning('%s', msg) logging.warning('Retrying (%d/%d).', retry_count, _RETRY_TIMES) retry_count += 1 else: raise ValueError(msg) num_of_cores_per_host = 0 if tpu_core_count: num_cores_per_host_set = set( [len(core_ids) for core_ids in device_dict.values()]) if len(num_cores_per_host_set) != 1: raise RuntimeError( 'TPU cores on each host is not same. This should not happen!. ' 'devices: {}'.format(devices)) num_of_cores_per_host = num_cores_per_host_set.pop() topology = None if query_topology: if not tpu_core_count: raise RuntimeError( 'Cannot find any TPU cores in the system (master address {}). ' 'This usually means the master address is incorrect or the ' 'TPU worker has some problems. Available devices: {}'.format( master_address, devices)) topology = _obtain_topology(master_address, cluster_def) metadata = _TPUSystemMetadata( num_cores=tpu_core_count, num_hosts=len(device_dict), num_of_cores_per_host=num_of_cores_per_host, topology=topology, devices=devices) if tpu_core_count: logging.info('Found TPU system:') logging.info('*** Num TPU Cores: %d', metadata.num_cores) logging.info('*** Num TPU Workers: %d', metadata.num_hosts) logging.info('*** Num TPU Cores Per Worker: %d', metadata.num_of_cores_per_host) for device in metadata.devices: logging.info('*** Available Device: %s', device) else: logging.info('Failed to find TPU: %s', metadata) return metadata def _obtain_topology(master_address, cluster_def): """Obtains TPU fabric topology.""" try: logging.info('Initializing TPU system (master: %s) to fetch topology ' 'for model parallelism. This might take a while.', master_address) with ops.Graph().as_default(): session_config = get_session_config_with_timeout( _INITIAL_TPU_SYSTEM_TIMEOUT_IN_MS, cluster_def) with session_lib.Session( master_address, config=session_config) as sess: topology = sess.run(tpu.initialize_system()) return topology except errors.DeadlineExceededError: raise ValueError( 'Fail to initialize TPU system with master (%s). ' 'Please double check the TPU system is functional.' % ( master_address)) def get_session_config_with_timeout(timeout_in_secs, cluster_def): """Returns a session given a timeout and a cluster configuration.""" config = config_pb2.ConfigProto( operation_timeout_in_ms=timeout_in_secs, cluster_def=cluster_def) return config
the-stack_106_20219
title = 'Addition of CH3 across a double bond in CH2O' description = \ """ This example illustrates how more complex explorer jobs work. In this case the source channel involves two reactants and since CH3 can add across the double bond two ways this results in two pressure dependent networks. """ database( thermoLibraries = ['primaryThermoLibrary'], reactionLibraries = [], kineticsDepositories = ['training'], kineticsFamilies = 'default', kineticsEstimator = 'rate rules', ) species( label='CH3', structure=SMILES('[CH3]'), ) species( label='CH2O', structure=SMILES('O=C'), ) species( label = 'N2', structure = SMILES('N#N'), molecularWeight = (28.04,"g/mol"), collisionModel = TransportData(sigma=(3.70,'angstrom'), epsilon=(94.9,'K')), reactive = False ) pressureDependence( label = 'CH2O+CH3', Tmin = (300.0,'K'), Tmax = (1200,'K'), Tcount = 7, Pmin = (1.0,'atm'), Pmax = (10,'atm'), Pcount = 7, maximumGrainSize = (0.5,'kcal/mol'), minimumGrainCount = 500, method = 'modified strong collision', interpolationModel = ('pdeparrhenius'), activeKRotor = True, rmgmode = False, ) explorer( source=['CH3','CH2O'], explore_tol=1.0e-1, bathGas={'N2':1.0}, maximumRadicalElectrons=1, )
the-stack_106_20220
from path import path_code_dir import sys sys.path.insert(0, path_code_dir) import numpy as np from scipy import sparse import cv2 from pymatreader import read_mat # from extract_graph import dic_to_sparse from amftrack.pipeline.functions.image_processing.extract_graph import ( generate_skeleton, ) from amftrack.pipeline.functions.image_processing.extract_graph import ( from_sparse_to_graph, generate_nx_graph, prune_graph, clean_degree_4, ) from amftrack.util import get_dates_datetime, get_dirname import scipy.sparse import scipy.io as sio from amftrack.pipeline.paths.directory import directory_scratch import pandas as pd i = int(sys.argv[-1]) op_id = int(sys.argv[-2]) threshold = float(sys.argv[1]) directory = str(sys.argv[2]) run_info = pd.read_json(f'{directory_scratch}temp/{op_id}.json') folder_list = list(run_info['folder']) folder_list.sort() directory_name = folder_list[i] path_snap = directory + directory_name skel = read_mat(path_snap + "/Analysis/skeleton_masked.mat")["skeleton"] skeleton = scipy.sparse.dok_matrix(skel) # nx_graph_poss=[generate_nx_graph(from_sparse_to_graph(skeleton)) for skeleton in skels_aligned] # nx_graphs_aligned=[nx_graph_pos[0] for nx_graph_pos in nx_graph_poss] # poss_aligned=[nx_graph_pos[1] for nx_graph_pos in nx_graph_poss] # nx_graph_pruned=[clean_degree_4(prune_graph(nx_graph),poss_aligned[i])[0] for i,nx_graph in enumerate(nx_graphs_aligned)] nx_graph, pos = generate_nx_graph(from_sparse_to_graph(skeleton)) nx_graph_pruned = clean_degree_4(prune_graph(nx_graph, threshold), pos)[0] skeleton = generate_skeleton(nx_graph_pruned, (30000, 60000)) skel = scipy.sparse.csc_matrix(skeleton, dtype=np.uint8) sio.savemat(path_snap + "/Analysis/skeleton_pruned.mat", {"skeleton": skel}) dim = skel.shape kernel = np.ones((5, 5), np.uint8) itera = 1 sio.savemat( path_snap + "/Analysis/skeleton_pruned_compressed.mat", { "skeleton": cv2.resize( cv2.dilate(skel.todense(), kernel, iterations=itera), (dim[1] // 5, dim[0] // 5), ) }, )
the-stack_106_20221
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://bitbucket.org/ned/coveragepy/src/default/NOTICE.txt """File wrangling.""" import fnmatch import ntpath import os import os.path import posixpath import re import sys from coverage import env from coverage.backward import unicode_class from coverage.misc import contract, CoverageException, join_regex, isolate_module os = isolate_module(os) def set_relative_directory(): """Set the directory that `relative_filename` will be relative to.""" global RELATIVE_DIR, CANONICAL_FILENAME_CACHE # The absolute path to our current directory. RELATIVE_DIR = os.path.normcase(abs_file(os.curdir) + os.sep) # Cache of results of calling the canonical_filename() method, to # avoid duplicating work. CANONICAL_FILENAME_CACHE = {} def relative_directory(): """Return the directory that `relative_filename` is relative to.""" return RELATIVE_DIR @contract(returns='unicode') def relative_filename(filename): """Return the relative form of `filename`. The file name will be relative to the current directory when the `set_relative_directory` was called. """ fnorm = os.path.normcase(filename) if fnorm.startswith(RELATIVE_DIR): filename = filename[len(RELATIVE_DIR):] return unicode_filename(filename) @contract(returns='unicode') def canonical_filename(filename): """Return a canonical file name for `filename`. An absolute path with no redundant components and normalized case. """ if filename not in CANONICAL_FILENAME_CACHE: if not os.path.isabs(filename): for path in [os.curdir] + sys.path: if path is None: continue f = os.path.join(path, filename) try: exists = os.path.exists(f) except UnicodeError: exists = False if exists: filename = f break cf = abs_file(filename) CANONICAL_FILENAME_CACHE[filename] = cf return CANONICAL_FILENAME_CACHE[filename] def flat_rootname(filename): """A base for a flat file name to correspond to this file. Useful for writing files about the code where you want all the files in the same directory, but need to differentiate same-named files from different directories. For example, the file a/b/c.py will return 'a_b_c_py' """ name = ntpath.splitdrive(filename)[1] return re.sub(r"[\\/.:]", "_", name) if env.WINDOWS: _ACTUAL_PATH_CACHE = {} _ACTUAL_PATH_LIST_CACHE = {} def actual_path(path): """Get the actual path of `path`, including the correct case.""" if env.PY2 and isinstance(path, unicode_class): path = path.encode(sys.getfilesystemencoding()) if path in _ACTUAL_PATH_CACHE: return _ACTUAL_PATH_CACHE[path] head, tail = os.path.split(path) if not tail: # This means head is the drive spec: normalize it. actpath = head.upper() elif not head: actpath = tail else: head = actual_path(head) if head in _ACTUAL_PATH_LIST_CACHE: files = _ACTUAL_PATH_LIST_CACHE[head] else: try: files = os.listdir(head) except OSError: files = [] _ACTUAL_PATH_LIST_CACHE[head] = files normtail = os.path.normcase(tail) for f in files: if os.path.normcase(f) == normtail: tail = f break actpath = os.path.join(head, tail) _ACTUAL_PATH_CACHE[path] = actpath return actpath else: def actual_path(filename): """The actual path for non-Windows platforms.""" return filename if env.PY2: @contract(returns='unicode') def unicode_filename(filename): """Return a Unicode version of `filename`.""" if isinstance(filename, str): encoding = sys.getfilesystemencoding() or sys.getdefaultencoding() filename = filename.decode(encoding, "replace") return filename else: @contract(filename='unicode', returns='unicode') def unicode_filename(filename): """Return a Unicode version of `filename`.""" return filename @contract(returns='unicode') def abs_file(filename): """Return the absolute normalized form of `filename`.""" path = os.path.expandvars(os.path.expanduser(filename)) try: path = os.path.realpath(path) except UnicodeError: pass path = os.path.abspath(path) path = actual_path(path) path = unicode_filename(path) return path RELATIVE_DIR = None CANONICAL_FILENAME_CACHE = None set_relative_directory() def isabs_anywhere(filename): """Is `filename` an absolute path on any OS?""" return ntpath.isabs(filename) or posixpath.isabs(filename) def prep_patterns(patterns): """Prepare the file patterns for use in a `FnmatchMatcher`. If a pattern starts with a wildcard, it is used as a pattern as-is. If it does not start with a wildcard, then it is made absolute with the current directory. If `patterns` is None, an empty list is returned. """ prepped = [] for p in patterns or []: if p.startswith(("*", "?")): prepped.append(p) else: prepped.append(abs_file(p)) return prepped class TreeMatcher(object): """A matcher for files in a tree. Construct with a list of paths, either files or directories. Paths match with the `match` method if they are one of the files, or if they are somewhere in a subtree rooted at one of the directories. """ def __init__(self, paths): self.paths = list(paths) def __repr__(self): return "<TreeMatcher %r>" % self.paths def info(self): """A list of strings for displaying when dumping state.""" return self.paths def match(self, fpath): """Does `fpath` indicate a file in one of our trees?""" for p in self.paths: if fpath.startswith(p): if fpath == p: # This is the same file! return True if fpath[len(p)] == os.sep: # This is a file in the directory return True return False class ModuleMatcher(object): """A matcher for modules in a tree.""" def __init__(self, module_names): self.modules = list(module_names) def __repr__(self): return "<ModuleMatcher %r>" % (self.modules) def info(self): """A list of strings for displaying when dumping state.""" return self.modules def match(self, module_name): """Does `module_name` indicate a module in one of our packages?""" if not module_name: return False for m in self.modules: if module_name.startswith(m): if module_name == m: return True if module_name[len(m)] == '.': # This is a module in the package return True return False class FnmatchMatcher(object): """A matcher for files by file name pattern.""" def __init__(self, pats): self.pats = pats[:] # fnmatch is platform-specific. On Windows, it does the Windows thing # of treating / and \ as equivalent. But on other platforms, we need to # take care of that ourselves. fnpats = (fnmatch.translate(p) for p in pats) # Python3.7 fnmatch translates "/" as "/", before that, it translates as "\/", # so we have to deal with maybe a backslash. fnpats = (re.sub(r"\\?/", r"[\\\\/]", p) for p in fnpats) flags = 0 if env.WINDOWS: # Windows is also case-insensitive, so make the regex case-insensitive. flags |= re.IGNORECASE self.re = re.compile(join_regex(fnpats), flags=flags) def __repr__(self): return "<FnmatchMatcher %r>" % self.pats def info(self): """A list of strings for displaying when dumping state.""" return self.pats def match(self, fpath): """Does `fpath` match one of our file name patterns?""" return self.re.match(fpath) is not None def sep(s): """Find the path separator used in this string, or os.sep if none.""" sep_match = re.search(r"[\\/]", s) if sep_match: the_sep = sep_match.group(0) else: the_sep = os.sep return the_sep class PathAliases(object): """A collection of aliases for paths. When combining data files from remote machines, often the paths to source code are different, for example, due to OS differences, or because of serialized checkouts on continuous integration machines. A `PathAliases` object tracks a list of pattern/result pairs, and can map a path through those aliases to produce a unified path. """ def __init__(self): self.aliases = [] def pprint(self): # pragma: debugging """Dump the important parts of the PathAliases, for debugging.""" for regex, result, _, _ in self.aliases: print("{0!r} --> {1!r}".format(regex.pattern, result)) def add(self, pattern, result): """Add the `pattern`/`result` pair to the list of aliases. `pattern` is an `fnmatch`-style pattern. `result` is a simple string. When mapping paths, if a path starts with a match against `pattern`, then that match is replaced with `result`. This models isomorphic source trees being rooted at different places on two different machines. `pattern` can't end with a wildcard component, since that would match an entire tree, and not just its root. """ if len(pattern) > 1: pattern = pattern.rstrip(r"\/") # The pattern can't end with a wildcard component. if pattern.endswith("*"): raise CoverageException("Pattern must not end with wildcards.") pattern_sep = sep(pattern) # The pattern is meant to match a filepath. Let's make it absolute # unless it already is, or is meant to match any prefix. if not pattern.startswith('*') and not isabs_anywhere(pattern): pattern = abs_file(pattern) if not pattern.endswith(pattern_sep): pattern += pattern_sep # Make a regex from the pattern. fnmatch always adds a \Z to # match the whole string, which we don't want, so we remove the \Z. # While removing it, we only replace \Z if followed by paren, or at # end, to keep from destroying a literal \Z in the pattern. regex_pat = fnmatch.translate(pattern) regex_pat = re.sub(r'\\Z(\(|$)', r'\1', regex_pat) # We want */a/b.py to match on Windows too, so change slash to match # either separator. regex_pat = regex_pat.replace(r"\/", r"[\\/]") # We want case-insensitive matching, so add that flag. regex = re.compile(r"(?i)" + regex_pat) # Normalize the result: it must end with a path separator. result_sep = sep(result) result = result.rstrip(r"\/") + result_sep self.aliases.append((regex, result, pattern_sep, result_sep)) def map(self, path): """Map `path` through the aliases. `path` is checked against all of the patterns. The first pattern to match is used to replace the root of the path with the result root. Only one pattern is ever used. If no patterns match, `path` is returned unchanged. The separator style in the result is made to match that of the result in the alias. Returns the mapped path. If a mapping has happened, this is a canonical path. If no mapping has happened, it is the original value of `path` unchanged. """ for regex, result, pattern_sep, result_sep in self.aliases: m = regex.match(path) if m: new = path.replace(m.group(0), result) if pattern_sep != result_sep: new = new.replace(pattern_sep, result_sep) new = canonical_filename(new) return new return path def find_python_files(dirname): """Yield all of the importable Python files in `dirname`, recursively. To be importable, the files have to be in a directory with a __init__.py, except for `dirname` itself, which isn't required to have one. The assumption is that `dirname` was specified directly, so the user knows best, but sub-directories are checked for a __init__.py to be sure we only find the importable files. """ for i, (dirpath, dirnames, filenames) in enumerate(os.walk(dirname)): if i > 0 and '__init__.py' not in filenames: # If a directory doesn't have __init__.py, then it isn't # importable and neither are its files del dirnames[:] continue for filename in filenames: # We're only interested in files that look like reasonable Python # files: Must end with .py or .pyw, and must not have certain funny # characters that probably mean they are editor junk. if re.match(r"^[^.#~!$@%^&*()+=,]+\.pyw?$", filename): yield os.path.join(dirpath, filename)
the-stack_106_20222
from contextlib import closing import argparse import json import urllib2 import requests import cStringIO from PIL import Image from PIL import ImageDraw def highlight_faces(image_url, faces, output_filename): """Draws a polygon around the faces, then saves to output_filename. Args: image_url: a URL containing an image faces: a list of faces found in the file. This should be in the format returned by the Vision API. output_filename: the name of the image file to be created, where the faces have polygons drawn around them. """ # Context manager for urllib2.urlopen requires `contextlib` library # Source: http://stackoverflow.com/a/14849166/234233 with closing(urllib2.urlopen(image_url)) as img: if img.headers.maintype != "image": raise TypeError("Invalid filetype given") # Source: http://stackoverflow.com/a/7391991/234233 img_file = cStringIO.StringIO(img.read()) im = Image.open(img_file) draw = ImageDraw.Draw(im) for face in faces["responses"][0]["faceAnnotations"]: box = [(v.get("x", 0.0), v.get("y", 0.0)) for v in face["boundingPoly"]["vertices"]] draw.line(box + [box[0]], width=5, fill="#00ff00") del draw im.save(output_filename) if __name__ == '__main__': parser = argparse.ArgumentParser( description="Detects faces in the given image." ) parser.add_argument( "-i", "--image_url", help="The image URL to send to Google Cloud Vision API ", required=True ) parser.add_argument( "-m", "--max_results", help="the max number of entities to detect. Default: %(default)s", default=4, type=int ) parser.add_argument( "-e", "--endpoint", help="The API Gateway endpoint to use", required=True ) parser.add_argument( "-o", "--output", help="The filename of the output image. Default: %(default)s", default="images/highlighted-faces.jpg" ) args = parser.parse_args() post_params = { "image_url": args.image_url, "detect_type": "FACE_DETECTION", "max_results": args.max_results } # Lazy and used requests in addition to urllib2 r = requests.post(args.endpoint, data=json.dumps(post_params), headers={'content-type': 'application/json'}) detection_results = r.json() highlight_faces(args.image_url, detection_results, args.output)
the-stack_106_20223
import psycopg2 from psycopg2.extras import execute_values import fastkml as fk import shapely.wkt from shapely.geometry.point import Point import sys if len(sys.argv) < 3: print("Usage: python load_takeout.py <userid> <Location History.json>") sys.exit(1) userid, location_file = sys.argv[1], sys.argv[2] print(f"Loading {location_file} data for userid {userid}") conn = psycopg2.connect("dbname=covid19 user=covid19 port=5434\ password=covid19databasepassword host=localhost") k = fk.KML() k.from_string(open(location_file).read()) doc = list(k.features())[0] values = [] cur = conn.cursor() for point in doc.features(): if type(point.geometry) != shapely.geometry.point.Point: continue start = point.begin.strftime('%Y-%m-%dT%H:%M:%S') end = point.end.strftime('%Y-%m-%dT%H:%M:%S') print(point.address, '|', point.name, '|', point.begin.strftime('%Y-%m-%dT%H:%M:%S'), point.end.strftime('%Y-%m-%dT%H:%M:%S'), point.geometry) geopoint = Point(point.geometry.x, point.geometry.y) geo = shapely.wkt.dumps(geopoint) geopoint = f"SRID=4326;{geo}" #values.append( value = (userid, start, end, geopoint, point.name, point.address) #) cur.execute("INSERT INTO\ location_history(userid, start_time, end_time, \ geographic_location, semantic_location, address) \ VALUES %s", [value]) conn.commit()
the-stack_106_20224
import unittest from unittest import mock from betfairlightweight.resources.baseresource import BaseResource from betfairlightweight.streaming.cache import ( OrderBookCache, OrderBookRunner, UnmatchedOrder, MarketBookCache, RunnerBook, Available, ) from betfairlightweight.exceptions import CacheError from tests.unit.tools import create_mock_json class TestAvailable(unittest.TestCase): def setUp(self): self.prices = [[1, 1.02, 34.45], [0, 1.01, 12]] self.available = Available(self.prices, 2) def test_init(self): assert self.available.prices == self.prices assert self.available.deletion_select == 2 assert self.available.reverse is False def test_sort(self): self.available.sort() assert self.available.prices == self.prices assert self.available.serialise == [ {"price": 1.01, "size": 12}, {"price": 1.02, "size": 34.45}, ] def test_sort_short(self): current = [[27, 0.95], [13, 28.01], [1.02, 1157.21]] available = Available(current, 1) assert available.serialise == [ {"price": 1.02, "size": 1157.21}, {"price": 13, "size": 28.01}, {"price": 27, "size": 0.95}, ] def test_clear(self): self.available.clear() assert self.available.prices == [] def test_update_available_new_update(self): # [price, size] book_update = [[30, 6.9]] current = [[27, 0.95], [13, 28.01], [1.02, 1157.21]] expected = [[1.02, 1157.21], [13, 28.01], [27, 0.95], [30, 6.9]] available = Available(current, 1) available.update(book_update) assert current == expected book_update = [[30, 6.9], [1.01, 12]] current = [[27, 0.95], [13, 28.01], [1.02, 1157.21]] expected = [[1.01, 12], [1.02, 1157.21], [13, 28.01], [27, 0.95], [30, 6.9]] available = Available(current, 1) available.update(book_update) assert current == expected # [position, price, size] book_update = [[0, 36, 0.57]] current = [] expected = [[0, 36, 0.57]] available = Available(current, 2) available.update(book_update) assert available.prices == expected def test_update_available_new_replace(self): # [price, size] book_update = [[27, 6.9]] current = [[27, 0.95], [13, 28.01], [1.02, 1157.21]] expected = [[1.02, 1157.21], [13, 28.01], [27, 6.9]] available = Available(current, 1) available.update(book_update) assert current == expected # [position, price, size] book_update = [[0, 36, 0.57]] current = [[0, 36, 10.57], [1, 38, 3.57]] expected = [[0, 36, 0.57], [1, 38, 3.57]] available = Available(current, 2) available.update(book_update) assert current == expected # tests handling of betfair bug, http://forum.bdp.betfair.com/showthread.php?t=3351 book_update = [[2, 0, 0], [1, 1.01, 9835.74], [0, 1.02, 1126.22]] current = [[1, 1.01, 9835.74], [0, 1.02, 1126.22]] expected = [[0, 1.02, 1126.22], [1, 1.01, 9835.74]] available = Available(current, 2) available.update(book_update) assert current == expected def test_update_available_new_remove(self): book_update = [[27, 0]] current = [[27, 0.95], [13, 28.01], [1.02, 1157.21]] expected = [[1.02, 1157.21], [13, 28.01]] available = Available(current, 1) available.update(book_update) assert current == expected # [position, price, size] book_update = [[0, 36, 0], [1, 38, 0], [0, 38, 3.57]] current = [[0, 36, 10.57], [1, 38, 3.57]] expected = [[0, 38, 3.57]] available = Available(current, 2) available.update(book_update) assert current == expected class TestMarketBookCache(unittest.TestCase): def setUp(self): self.market_book_cache = MarketBookCache( **{"marketDefinition": {"runners": {}}} ) def test_error(self): with self.assertRaises(CacheError): self.market_book_cache = MarketBookCache() @mock.patch("betfairlightweight.streaming.cache.MarketBookCache.strip_datetime") def test_update_cache_md(self, mock_strip_datetime): publish_time = mock.Mock() market_change = create_mock_json("tests/resources/streaming_mcm_UPDATE_md.json") book_data = market_change.json().get("mc") for book in book_data: self.market_book_cache.update_cache(book, publish_time) mock_strip_datetime.assert_called_with(publish_time) assert self.market_book_cache.market_definition == book.get( "marketDefinition" ) self.assertEqual(self.market_book_cache.streaming_update, book) @mock.patch("betfairlightweight.streaming.cache.MarketBookCache.strip_datetime") def test_update_cache_tv(self, mock_strip_datetime): publish_time = mock.Mock() market_change = create_mock_json("tests/resources/streaming_mcm_UPDATE_tv.json") book_data = market_change.json().get("mc") for book in book_data: self.market_book_cache.update_cache(book, publish_time) mock_strip_datetime.assert_called_with(publish_time) assert self.market_book_cache.total_matched == book.get("tv") self.assertEqual(self.market_book_cache.streaming_update, book) # @mock.patch('betfairlightweight.resources.streamingresources.MarketBookCache.strip_datetime') # def test_update_cache_rc(self, mock_strip_datetime): # publish_time = mock.Mock() # market_change = create_mock_json('tests/resources/streaming_mcm_UPDATE.json') # book_data = market_change.json().get('mc') # # for book in book_data: # self.market_book_cache.update_cache(book, publish_time) # mock_strip_datetime.assert_called_with(publish_time) # # assert self.market_book_cache.total_matched == book.get('tv') @mock.patch( "betfairlightweight.streaming.cache.MarketBookCache.serialise", new_callable=mock.PropertyMock, return_value={}, ) @mock.patch("betfairlightweight.streaming.cache.MarketDefinition") @mock.patch("betfairlightweight.streaming.cache.MarketBook") def test_create_resource( self, mock_market_book, mock_market_definition, mock_serialise ): # lightweight market_book = self.market_book_cache.create_resource(1234, True) assert market_book == { "streaming_update": self.market_book_cache.streaming_update, "streaming_unique_id": 1234, "streaming_snap": False, } assert market_book == mock_serialise() # not lightweight market_book = self.market_book_cache.create_resource(1234, False) assert market_book == mock_market_book() @mock.patch( "betfairlightweight.streaming.cache.MarketBookCache.serialise", new_callable=mock.PropertyMock, return_value={}, ) @mock.patch("betfairlightweight.streaming.cache.MarketDefinition") @mock.patch("betfairlightweight.streaming.cache.MarketBook") def test_create_resource_snap(self, *_): market_book = self.market_book_cache.create_resource(1234, True, True) assert market_book == { "streaming_update": self.market_book_cache.streaming_update, "streaming_unique_id": 1234, "streaming_snap": True, } def test_update_runner_dict(self): assert self.market_book_cache.runner_dict == {} class Runner: def __init__(self, selection_id, name, handicap): self.selection_id = selection_id self.name = name self.handicap = handicap (a, b) = (Runner(123, "a", 1.25), Runner(456, "b", -0.25)) self.market_book_cache.runners = [a, b] self.market_book_cache._update_runner_dict() assert self.market_book_cache.runner_dict == {(123, 1.25): a, (456, -0.25): b} def test_init_multiple_rc(self): # Initialize data with multiple rc entries for the same selection data = {"marketDefinition": {"runners": {}}} data["rc"] = [ {"atb": [[1.01, 200]], "id": 13536143}, {"atl": [[1000.0, 200]], "id": 13536143}, ] market_book_cache = MarketBookCache(**data) assert len(market_book_cache.runners) == len(market_book_cache.runner_dict) def test_closed(self): self.assertFalse(self.market_book_cache.closed) self.market_book_cache.market_definition = {"status": "CLOSED"} self.assertTrue(self.market_book_cache.closed) class TestRunnerBook(unittest.TestCase): def setUp(self): self.runner_book = RunnerBook(**{"id": 123}) def test_update_traded(self): self.mock_traded = mock.Mock() self.runner_book.traded = self.mock_traded self.runner_book.update_traded([]) self.mock_traded.clear.assert_called_with() self.runner_book.update_traded([1, 2]) self.mock_traded.update.assert_called_with([1, 2]) def test_serialise_back(self): mock_available_to_back = mock.Mock() mock_available_to_back.prices = True mock_best_available_to_back = mock.Mock() mock_best_available_to_back.prices = True mock_best_display_available_to_back = mock.Mock() mock_best_display_available_to_back.prices = True self.runner_book.available_to_back = mock_available_to_back assert ( self.runner_book.serialise_available_to_back() == mock_available_to_back.serialise ) mock_available_to_back.prices = False self.runner_book.best_available_to_back = mock_best_available_to_back assert ( self.runner_book.serialise_available_to_back() == mock_best_available_to_back.serialise ) mock_best_available_to_back.prices = False self.runner_book.best_display_available_to_back = ( mock_best_display_available_to_back ) assert ( self.runner_book.serialise_available_to_back() == mock_best_display_available_to_back.serialise ) def test_serialise_lay(self): mock_available_to_lay = mock.Mock() mock_available_to_lay.prices = True mock_best_available_to_lay = mock.Mock() mock_best_available_to_lay.prices = True mock_best_display_available_to_lay = mock.Mock() mock_best_display_available_to_lay.prices = True self.runner_book.available_to_lay = mock_available_to_lay assert ( self.runner_book.serialise_available_to_lay() == mock_available_to_lay.serialise ) mock_available_to_lay.prices = False self.runner_book.best_available_to_lay = mock_best_available_to_lay assert ( self.runner_book.serialise_available_to_lay() == mock_best_available_to_lay.serialise ) mock_best_available_to_lay.prices = False self.runner_book.best_display_available_to_lay = ( mock_best_display_available_to_lay ) assert ( self.runner_book.serialise_available_to_lay() == mock_best_display_available_to_lay.serialise ) def test_empty_serialise(self): runner_definition = {"bdp": None} serialise_d = self.runner_book.serialise(runner_definition) ex = serialise_d["ex"] # all empty lists assert all(not ex[a] for a in ex.keys()) sp = serialise_d["sp"] # all 'None' or empty lists assert all(not sp[a] for a in sp.keys()) class TestOrderBookCache(unittest.TestCase): def setUp(self): self.order_book_cache = OrderBookCache(**{}) self.runner = mock.Mock() self.runner.selection_id = 10895629 self.runner.handicap = 0 self.runner.serialise_orders = mock.Mock(return_value=[]) self.runner.unmatched_orders = [1] self.order_book_cache.runners = {(10895629, 0): self.runner} def test_full_image(self): self.order_book_cache.runners = {} mock_response = create_mock_json( "tests/resources/streaming_ocm_FULL_IMAGE.json" ) for order_book in mock_response.json().get("oc"): self.order_book_cache.update_cache(order_book, 1234) self.assertEqual(self.order_book_cache.streaming_update, order_book) self.assertEqual(len(self.order_book_cache.runners), 5) for k, v in self.order_book_cache.runners.items(): self.assertEqual(len(v.unmatched_orders), 1) def test_update_cache(self): mock_response = create_mock_json("tests/resources/streaming_ocm_UPDATE.json") for order_book in mock_response.json().get("oc"): self.order_book_cache.update_cache(order_book, 1234) self.assertEqual(self.order_book_cache.streaming_update, order_book) for order_changes in order_book.get("orc"): # self.runner.matched_lays.update.assert_called_with(order_changes.get('ml', [])) # self.runner.matched_backs.update.assert_called_with(order_book.get('mb', [])) self.runner.update_unmatched.assert_called_with( order_changes.get("uo", []) ) @mock.patch("betfairlightweight.streaming.cache.OrderBookRunner") def test_update_cache_new(self, mock_order_book_runner): self.order_book_cache.runners = {(108956, 0): self.runner} mock_response = create_mock_json("tests/resources/streaming_ocm_UPDATE.json") for order_book in mock_response.json().get("oc"): self.order_book_cache.update_cache(order_book, 1234) self.assertEqual(self.order_book_cache.streaming_update, order_book) for order_changes in order_book.get("orc"): mock_order_book_runner.assert_called_with(**order_changes) def test_update_cache_closed(self): mock_response = create_mock_json("tests/resources/streaming_ocm_SUB_IMAGE.json") for order_book in mock_response.json().get("oc"): self.order_book_cache.update_cache(order_book, 1234) self.assertEqual(self.order_book_cache.streaming_update, order_book) self.assertTrue(self.order_book_cache.closed) @mock.patch( "betfairlightweight.streaming.cache.OrderBookCache.serialise", new_callable=mock.PropertyMock, return_value={}, ) @mock.patch("betfairlightweight.streaming.cache.CurrentOrders") def test_create_resource(self, mock_current_orders, mock_serialise): # lightweight current_orders = self.order_book_cache.create_resource(123, True) assert current_orders == mock_serialise() assert current_orders == { "streaming_update": self.order_book_cache.streaming_update, "streaming_unique_id": 123, "streaming_snap": False, } # not lightweight current_orders = self.order_book_cache.create_resource(123, False) assert current_orders == mock_current_orders() def test_serialise(self): mock_runner_one = mock.Mock() mock_runner_one.serialise_orders.return_value = [1] mock_runner_two = mock.Mock() mock_runner_two.serialise_orders.return_value = [2, 3] self.order_book_cache.runners = { (123, 0): mock_runner_one, (123, 1): mock_runner_two, } serialised = self.order_book_cache.serialise assert serialised == {"currentOrders": [1, 2, 3], "moreAvailable": False} class TestOrderBookRunner(unittest.TestCase): def setUp(self): uo = [ { "id": 1, "p": "a", "s": "a", "side": "a", "ot": "a", "pd": "a", "sm": "a", "sr": "a", "sl": "a", "sc": "a", "sv": "a", "rfo": "a", "rfs": "a", "status": "a", }, { "id": 2, "p": "b", "s": "a", "side": "a", "ot": "a", "pd": "a", "sm": "a", "sr": "a", "sl": "a", "sc": "a", "sv": "a", "rfo": "a", "rfs": "a", "status": "b", }, ] self.order_book_runner = OrderBookRunner( **{"id": 1, "ml": [], "mb": [], "uo": uo} ) def test_update_unmatched(self): unmatched_orders = [ { "id": 2, "p": "b", "s": "a", "side": "a", "ot": "a", "pd": "a", "sm": "a", "sr": "a", "sl": "a", "sc": "a", "sv": "a", "rfo": "a", "rfs": "a", "status": "c", } ] self.order_book_runner.update_unmatched(unmatched_orders) self.assertEqual(self.order_book_runner.unmatched_orders[1].status, "a") self.assertEqual(self.order_book_runner.unmatched_orders[2].status, "c") def test_serialise_orders(self): mock_order = mock.Mock() mock_order.id = 123 mock_order_two = mock.Mock() mock_order_two.id = 456 unmatched_orders = { mock_order.id: mock_order, mock_order_two.id: mock_order_two, } self.order_book_runner.unmatched_orders = unmatched_orders def mock_serialise(*args, **kwargs): unmatched_orders[789] = "SYM" return mock_order_two.serialise = mock_serialise assert len(self.order_book_runner.serialise_orders("1.1")), 2 class TestUnmatchedOrder(unittest.TestCase): def setUp(self): order = { "id": 1, "p": 2, "s": 3, "side": "L", "status": "E", "pt": "L", "ot": "L", "pd": 8, "sm": 9, "sr": 10, "sl": 11, "sc": 12, "sv": 13, "rfo": 14, "rfs": 15, "ld": 16, "lsrc": 17, "error": "test", "md": 4, } self.unmatched_order = UnmatchedOrder(**order) def test_init(self): assert self.unmatched_order.bet_id == 1 assert self.unmatched_order.price == 2 assert self.unmatched_order.size == 3 assert self.unmatched_order.side == "L" assert self.unmatched_order.status == "E" assert self.unmatched_order.persistence_type == "L" assert self.unmatched_order.order_type == "L" assert self.unmatched_order.placed_date == BaseResource.strip_datetime(8) assert self.unmatched_order.size_matched == 9 assert self.unmatched_order.size_remaining == 10 assert self.unmatched_order.size_lapsed == 11 assert self.unmatched_order.size_cancelled == 12 assert self.unmatched_order.size_voided == 13 assert self.unmatched_order.reference_order == 14 assert self.unmatched_order.reference_strategy == 15 assert self.unmatched_order.lapsed_date == BaseResource.strip_datetime(16) assert self.unmatched_order.lapse_status_reason_code == 17 def test_placed_date_string(self): now = BaseResource.strip_datetime(8) assert self.unmatched_order.placed_date_string == now.strftime( "%Y-%m-%dT%H:%M:%S.%fZ" ) def test_matched_date_string(self): now = BaseResource.strip_datetime(4) assert self.unmatched_order.matched_date_string == now.strftime( "%Y-%m-%dT%H:%M:%S.%fZ" ) def test_serialise(self): assert self.unmatched_order.serialise("1.23", 12345, 0.0) == { "sizeLapsed": 11, "persistenceType": "LAPSE", "sizeRemaining": 10, "placedDate": "1970-01-01T00:00:00.008000Z", "sizeVoided": 13, "sizeCancelled": 12, "betId": 1, "customerOrderRef": 14, "orderType": "LIMIT", "marketId": "1.23", "side": "LAY", "selectionId": 12345, "bspLiability": None, "sizeMatched": 9, "handicap": 0.0, "averagePriceMatched": 0.0, "status": "EXECUTABLE", "customerStrategyRef": 15, "regulatorCode": None, "priceSize": {"price": 2, "size": 3}, "matchedDate": "1970-01-01T00:00:00.004000Z", }
the-stack_106_20226
# -*- coding: UTF-8 -*- import logging import traceback import simplejson as json from django.contrib.auth.models import Group from django.db.models import F from django.http import HttpResponse from common.utils.extend_json_encoder import ExtendJSONEncoder from common.utils.permission import superuser_required from sql.models import ResourceGroup, ResourceGroupRelations, Users, Instance from sql.utils.workflow_audit import Audit logger = logging.getLogger('default') # 获取资源组列表 @superuser_required def group(request): limit = int(request.POST.get('limit')) offset = int(request.POST.get('offset')) limit = offset + limit search = request.POST.get('search', '') # 全部工单里面包含搜索条件 group_obj = ResourceGroup.objects.filter(group_name__contains=search) group_count = group_obj.count() group_list = group_obj[offset:limit].values("group_id", "group_name", "ding_webhook") # QuerySet 序列化 rows = [row for row in group_list] result = {"total": group_count, "rows": rows} # 返回查询结果 return HttpResponse(json.dumps(result, cls=ExtendJSONEncoder, bigint_as_string=True), content_type='application/json') # 获取资源组已关联对象信息 def associated_objects(request): """ type:(0, '用户'), (1, '实例') """ group_id = int(request.POST.get('group_id')) object_type = request.POST.get('type') limit = int(request.POST.get('limit')) offset = int(request.POST.get('offset')) limit = offset + limit search = request.POST.get('search', '') if object_type: rows_obj = ResourceGroupRelations.objects.filter(group_id=group_id, object_type=object_type, object_name__contains=search) else: rows_obj = ResourceGroupRelations.objects.filter(group_id=group_id, object_name__contains=search) count = rows_obj.count() rows = rows_obj[offset:limit].values('id', 'object_id', 'object_name', 'group_id', 'group_name', 'object_type', 'create_time') rows = [row for row in rows] result = {'status': 0, 'msg': 'ok', "total": count, "rows": rows} return HttpResponse(json.dumps(result, cls=ExtendJSONEncoder), content_type='application/json') # 获取资源组未关联对象信息 def unassociated_objects(request): """ type:(0, '用户'), (1, '实例') """ group_id = int(request.POST.get('group_id')) object_type = int(request.POST.get('object_type')) associated_object_ids = [object_id['object_id'] for object_id in ResourceGroupRelations.objects.filter(group_id=group_id, object_type=object_type).values('object_id')] if object_type == 0: rows = Users.objects.exclude(pk__in=associated_object_ids).annotate(object_id=F('pk'), object_name=F('display') ).values('object_id', 'object_name') elif object_type == 1: rows = Instance.objects.exclude(pk__in=associated_object_ids).annotate(object_id=F('pk'), object_name=F('instance_name') ).values('object_id', 'object_name') else: rows = [] rows = [row for row in rows] result = {'status': 0, 'msg': 'ok', "rows": rows, "total": len(rows)} return HttpResponse(json.dumps(result), content_type='application/json') # 获取资源组关联实例列表 def instances(request): group_name = request.POST.get('group_name') group_id = ResourceGroup.objects.get(group_name=group_name).group_id type = request.POST.get('type') # 先获取资源组关联所有实例列表 instance_ids = [group['object_id'] for group in ResourceGroupRelations.objects.filter(group_id=group_id, object_type=1).values('object_id')] # 获取实例信息 instances_ob = Instance.objects.filter(pk__in=instance_ids, type=type).values('id', 'instance_name') rows = [row for row in instances_ob] result = {'status': 0, 'msg': 'ok', "data": rows} return HttpResponse(json.dumps(result), content_type='application/json') # 添加资源组关联对象 @superuser_required def addrelation(request): """ type:(0, '用户'), (1, '实例') """ group_id = int(request.POST.get('group_id')) object_type = request.POST.get('object_type') object_list = json.loads(request.POST.get('object_info')) group_name = ResourceGroup.objects.get(group_id=group_id).group_name try: ResourceGroupRelations.objects.bulk_create( [ResourceGroupRelations(object_id=int(object.split(',')[0]), object_type=object_type, object_name=object.split(',')[1], group_id=group_id, group_name=group_name) for object in object_list]) result = {'status': 0, 'msg': 'ok'} except Exception as e: logger.error(traceback.format_exc()) result = {'status': 1, 'msg': str(e)} return HttpResponse(json.dumps(result), content_type='application/json') # 获取资源组的审批流程 def auditors(request): group_name = request.POST.get('group_name') workflow_type = request.POST['workflow_type'] result = {'status': 0, 'msg': 'ok', 'data': {'auditors': '', 'auditors_display': ''}} if group_name: group_id = ResourceGroup.objects.get(group_name=group_name).group_id audit_auth_groups = Audit.settings(group_id=group_id, workflow_type=workflow_type) else: result['status'] = 1 result['msg'] = '参数错误' return HttpResponse(json.dumps(result), content_type='application/json') # 获取权限组名称 if audit_auth_groups: # 校验配置 for auth_group_id in audit_auth_groups.split(','): try: Group.objects.get(id=auth_group_id) except Exception: result['status'] = 1 result['msg'] = '审批流程权限组不存在,请重新配置!' return HttpResponse(json.dumps(result), content_type='application/json') audit_auth_groups_name = '->'.join( [Group.objects.get(id=auth_group_id).name for auth_group_id in audit_auth_groups.split(',')]) result['data']['auditors'] = audit_auth_groups result['data']['auditors_display'] = audit_auth_groups_name return HttpResponse(json.dumps(result), content_type='application/json') # 资源组审批流程配置 @superuser_required def changeauditors(request): auth_groups = request.POST.get('audit_auth_groups') group_name = request.POST.get('group_name') workflow_type = request.POST.get('workflow_type') result = {'status': 0, 'msg': 'ok', 'data': []} # 调用工作流修改审核配置 group_id = ResourceGroup.objects.get(group_name=group_name).group_id audit_auth_groups = [str(Group.objects.get(name=auth_group).id) for auth_group in auth_groups.split(',')] try: Audit.change_settings(group_id, workflow_type, ','.join(audit_auth_groups)) except Exception as msg: logger.error(traceback.format_exc()) result['msg'] = str(msg) result['status'] = 1 # 返回结果 return HttpResponse(json.dumps(result), content_type='application/json')
the-stack_106_20228
# -*- coding: utf-8 -*- # Copyright: (c) 2021, Frank Dornheim <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type import pytest import os from ansible.errors import AnsibleError from ansible.inventory.data import InventoryData from ansible_collections.community.general.plugins.inventory.lxd import InventoryModule HOST_COMPARATIVE_DATA = { 'ansible_connection': 'ssh', 'ansible_host': '10.98.143.199', 'ansible_lxd_os': 'ubuntu', 'ansible_lxd_release': 'focal', 'ansible_lxd_profile': ['default'], 'ansible_lxd_state': 'running', 'ansible_lxd_location': 'Berlin', 'ansible_lxd_vlan_ids': {'my-macvlan': 666}, 'inventory_hostname': 'vlantest', 'inventory_hostname_short': 'vlantest'} GROUP_COMPARATIVE_DATA = { 'all': [], 'ungrouped': [], 'testpattern': ['vlantest'], 'vlan666': ['vlantest'], 'locationBerlin': ['vlantest'], 'osUbuntu': ['vlantest'], 'releaseFocal': ['vlantest'], 'releaseBionic': [], 'profileDefault': ['vlantest'], 'profileX11': [], 'netRangeIPv4': ['vlantest'], 'netRangeIPv6': ['vlantest']} GROUP_Config = { 'testpattern': {'type': 'pattern', 'attribute': 'test'}, 'vlan666': {'type': 'vlanid', 'attribute': 666}, 'locationBerlin': {'type': 'location', 'attribute': 'Berlin'}, 'osUbuntu': {'type': 'os', 'attribute': 'ubuntu'}, 'releaseFocal': {'type': 'release', 'attribute': 'focal'}, 'releaseBionic': {'type': 'release', 'attribute': 'bionic'}, 'profileDefault': {'type': 'profile', 'attribute': 'default'}, 'profileX11': {'type': 'profile', 'attribute': 'x11'}, 'netRangeIPv4': {'type': 'network_range', 'attribute': '10.98.143.0/24'}, 'netRangeIPv6': {'type': 'network_range', 'attribute': 'fd42:bd00:7b11:2167:216:3eff::/96'}} @pytest.fixture def inventory(): inv = InventoryModule() inv.inventory = InventoryData() # Test Values inv.data = inv.load_json_data('tests/unit/plugins/inventory/fixtures/lxd_inventory.atd') # Load Test Data inv.groupby = GROUP_Config inv.prefered_container_network_interface = 'eth' inv.prefered_container_network_family = 'inet' inv.filter = 'running' inv.dump_data = False return inv def test_verify_file(tmp_path, inventory): file = tmp_path / "foobar.lxd.yml" file.touch() assert inventory.verify_file(str(file)) is True def test_verify_file_bad_config(inventory): assert inventory.verify_file('foobar.lxd.yml') is False def test_build_inventory_hosts(inventory): """Load example data and start the inventoryto test the host generation. After the inventory plugin has run with the test data, the result of the host is checked.""" inventory._populate() generated_data = inventory.inventory.get_host('vlantest').get_vars() eq = True for key, value in HOST_COMPARATIVE_DATA.items(): if generated_data[key] != value: eq = False assert eq def test_build_inventory_groups(inventory): """Load example data and start the inventory to test the group generation. After the inventory plugin has run with the test data, the result of the host is checked.""" inventory._populate() generated_data = inventory.inventory.get_groups_dict() eq = True for key, value in GROUP_COMPARATIVE_DATA.items(): if generated_data[key] != value: eq = False assert eq def test_build_inventory_groups_with_no_groupselection(inventory): """Load example data and start the inventory to test the group generation with groupby is none. After the inventory plugin has run with the test data, the result of the host is checked.""" inventory.groupby = None inventory._populate() generated_data = inventory.inventory.get_groups_dict() group_comparative_data = {'all': [], 'ungrouped': []} eq = True print("data: {0}".format(generated_data)) for key, value in group_comparative_data.items(): if generated_data[key] != value: eq = False assert eq
the-stack_106_20229
import os import random import time from copy import deepcopy # 打印出全部tensor,不要省略号 import numpy as np import torch import yaml from tensorboardX import SummaryWriter from tqdm import tqdm from src.data.data_iterator import DataIterator from src.data.dataset import TextLineDataset, ZipDataset from src.data.vocabulary import Vocabulary, BOS, EOS, PAD from src.decoding.beam_search_middle import beam_search from src.metric.bleu_scorer import SacreBLEUScorer from src.models import build_model from src.modules.criterions import NMTCriterion from src.optim import Optimizer from src.optim.lr_scheduler import ReduceOnPlateauScheduler, NoamScheduler from src.utils.common_utils import * from src.utils.configs import default_configs, pretty_configs from src.utils.logging import * from src.utils.moving_average import MovingAverage np.set_printoptions(threshold=np.inf) def set_seed(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True def load_model_parameters(path, map_location="cpu"): state_dict = torch.load(path, map_location=map_location) if "model" in state_dict: return state_dict["model"] return state_dict def split_shard(*inputs, split_size=1): if split_size <= 1: yield inputs else: lengths = [len(s) for s in inputs[-1]] # sorted_indices = np.argsort(lengths) # sorting inputs inputs = [ [inp[ii] for ii in sorted_indices] for inp in inputs ] # split shards total_batch = sorted_indices.shape[0] # total number of batches if split_size >= total_batch: yield inputs else: shard_size = total_batch // split_size _indices = list(range(total_batch))[::shard_size] + [total_batch] for beg, end in zip(_indices[:-1], _indices[1:]): yield (inp[beg:end] for inp in inputs) def prepare_data(seqs_x, seqs_y=None, cuda=False, batch_first=True): """ Args: eval ('bool'): indicator for eval/infer. Returns: """ def _np_pad_batch_2D(samples, pad, batch_first=True, cuda=True): batch_size = len(samples) sizes = [len(s) for s in samples] max_size = max(sizes) # 起初是构造了一个全部为0的数据 x_np = np.full((batch_size, max_size), fill_value=pad, dtype='int64') for ii in range(batch_size): x_np[ii, :sizes[ii]] = samples[ii] if batch_first is False: x_np = np.transpose(x_np, [1, 0]) x = torch.tensor(x_np) if cuda is True: x = x.cuda() return x seqs_x = list(map(lambda s: [BOS] + s + [EOS], seqs_x)) x = _np_pad_batch_2D(samples=seqs_x, pad=PAD, cuda=cuda, batch_first=batch_first) if seqs_y is None: return x seqs_y = list(map(lambda s: [EOS] + s + [EOS], seqs_y)) y = _np_pad_batch_2D(seqs_y, pad=PAD, cuda=cuda, batch_first=batch_first) return x, y def compute_forward(model, critic, seqs_x, seqs_y, eval=False, normalization=1.0, norm_by_words=False ): """ :type model: nn.Module :type critic: NMTCriterion """ if not eval: model.train() critic.train() # For training with torch.enable_grad(): outputs, sorted_trg = model(seqs_x, seqs_y) loss = critic(inputs=outputs, labels=sorted_trg, reduce=False, normalization=normalization) if norm_by_words: # 计算每个词语的loss还是每个句子的loss words_norm = sorted_trg.ne(PAD).float().sum(1) loss = loss.div(words_norm).sum() else: loss = loss.sum() torch.autograd.backward(loss) return loss.item() else: model.eval() critic.eval() # For compute loss with torch.no_grad(): log_probs, sorted_trg = model(seqs_x, seqs_y) loss = critic(inputs=log_probs, labels=sorted_trg, normalization=normalization, reduce=True) return loss.item() def loss_validation(model, critic, valid_iterator): """ :type model: Transformer :type critic: NMTCriterion :type valid_iterator: DataIterator """ n_sents = 0 n_tokens = 0.0 sum_loss = 0.0 valid_iter = valid_iterator.build_generator() for batch in valid_iter: _, seqs_x, seqs_y = batch n_sents += len(seqs_x) n_tokens += sum(len(s) for s in seqs_y) x, y = prepare_data(seqs_x, seqs_y, cuda=GlobalNames.USE_GPU) loss = compute_forward(model=model, critic=critic, seqs_x=x, seqs_y=y, eval=True) if np.isnan(loss): WARN("NaN detected!") sum_loss += float(loss) return float(sum_loss / n_sents) def bleu_validation(uidx, valid_iterator, model, bleu_scorer, vocab_tgt, batch_size, valid_dir="./valid", max_steps=10, beam_size=5, alpha=-1.0 ): model.eval() numbers = [] trans = [] infer_progress_bar = tqdm(total=len(valid_iterator), desc=' - (Infer) ', unit="sents") valid_iter = valid_iterator.build_generator(batch_size=batch_size) for batch in valid_iter: seq_nums = batch[0] numbers += seq_nums seqs_x = batch[1] seqs_y = batch[2] infer_progress_bar.update(len(seqs_x)) x, y = prepare_data(seqs_x, seqs_y, cuda=GlobalNames.USE_GPU) with torch.no_grad(): word_ids = beam_search(nmt_model=model, beam_size=beam_size, max_steps=max_steps, src_seqs=x, alpha=alpha, trg_seqs=y) word_ids = word_ids.cpu().numpy().tolist() # Append result for sent_t in word_ids: sent_t = [[wid for wid in line if wid != PAD] for line in sent_t] x_tokens = [] for wid in sent_t[0]: if wid == EOS: break x_tokens.append(vocab_tgt.id2token(wid)) if len(x_tokens) > 0: trans.append(vocab_tgt.tokenizer.detokenize(x_tokens)) else: trans.append('%s' % vocab_tgt.id2token(EOS)) origin_order = np.argsort(numbers).tolist() trans = [trans[ii] for ii in origin_order] infer_progress_bar.close() if not os.path.exists(valid_dir): os.mkdir(valid_dir) hyp_path = os.path.join(valid_dir, 'trans.iter{0}.txt'.format(uidx)) with open(hyp_path, 'w') as f: for line in trans: f.write('%s\n' % line) with open(hyp_path) as f: bleu_v = bleu_scorer.corpus_bleu(f) return bleu_v def load_pretrained_model(nmt_model, pretrain_path, device, exclude_prefix=None): """ Args: nmt_model: model. pretrain_path ('str'): path to pretrained model. map_dict ('dict'): mapping specific parameter names to those names in current model. exclude_prefix ('dict'): excluding parameters with specific names for pretraining. Raises: ValueError: Size not match, parameter name not match or others. """ if exclude_prefix is None: exclude_prefix = [] if pretrain_path != "": INFO("Loading pretrained model from {}".format(pretrain_path)) pretrain_params = torch.load(pretrain_path, map_location=device) for name, params in pretrain_params.items(): flag = False for pp in exclude_prefix: if name.startswith(pp): flag = True break if flag: continue INFO("Loading param: {}...".format(name)) try: nmt_model.load_state_dict({name: params}, strict=False) except Exception as e: WARN("{}: {}".format(str(Exception), e)) INFO("Pretrained model loaded.") def train(FLAGS): """ FLAGS: saveto: str reload: store_true config_path: str pretrain_path: str, default="" model_name: str log_path: str """ # write log of training to file. write_log_to_file(os.path.join(FLAGS.log_path, "%s.log" % time.strftime("%Y%m%d-%H%M%S"))) GlobalNames.USE_GPU = FLAGS.use_gpu if not GlobalNames.USE_GPU: CURRENT_DEVICE = "cpu" else: CURRENT_DEVICE = "cuda" config_path = os.path.abspath(FLAGS.config_path) with open(config_path.strip()) as f: configs = yaml.load(f) INFO(pretty_configs(configs)) # Add default configs configs = default_configs(configs) data_configs = configs['data_configs'] model_configs = configs['model_configs'] optimizer_configs = configs['optimizer_configs'] training_configs = configs['training_configs'] GlobalNames.SEED = training_configs['seed'] set_seed(GlobalNames.SEED) best_model_prefix = os.path.join(FLAGS.saveto, FLAGS.model_name + GlobalNames.MY_BEST_MODEL_SUFFIX) timer = Timer() # ================================================================================== # # Load Data INFO('Loading data...') timer.tic() # Generate target dictionary vocab_src = Vocabulary(**data_configs["vocabularies"][0]) vocab_tgt = Vocabulary(**data_configs["vocabularies"][1]) train_batch_size = training_configs["batch_size"] * max(1, training_configs["update_cycle"]) train_buffer_size = training_configs["buffer_size"] * max(1, training_configs["update_cycle"]) train_bitext_dataset = ZipDataset( TextLineDataset(data_path=data_configs['train_data'][0], vocabulary=vocab_src, max_len=data_configs['max_len'][0], ), TextLineDataset(data_path=data_configs['train_data'][1], vocabulary=vocab_tgt, max_len=data_configs['max_len'][1], ), shuffle=training_configs['shuffle'] ) valid_bitext_dataset = ZipDataset( TextLineDataset(data_path=data_configs['valid_data'][0], vocabulary=vocab_src, ), TextLineDataset(data_path=data_configs['valid_data'][1], vocabulary=vocab_tgt, ) ) training_iterator = DataIterator(dataset=train_bitext_dataset, batch_size=train_batch_size, use_bucket=training_configs['use_bucket'], buffer_size=train_buffer_size, batching_func=training_configs['batching_key']) # 用于bleu计算 valid_iterator = DataIterator(dataset=valid_bitext_dataset, batch_size=training_configs['valid_batch_size'], use_bucket=True, buffer_size=100000, numbering=True) bleu_scorer = SacreBLEUScorer(reference_path=data_configs["bleu_valid_reference"], num_refs=data_configs["num_refs"], lang_pair=data_configs["lang_pair"], sacrebleu_args=training_configs["bleu_valid_configs"]['sacrebleu_args'], postprocess=training_configs["bleu_valid_configs"]['postprocess'] ) INFO('Done. Elapsed time {0}'.format(timer.toc())) lrate = optimizer_configs['learning_rate'] is_early_stop = False # ================================ Begin ======================================== # # Build Model & Optimizer # We would do steps below on after another # 1. build models & criterion # 2. move models & criterion to gpu if needed # 3. load pre-trained model if needed # 4. build optimizer # 5. build learning rate scheduler if needed # 6. load checkpoints if needed # 0. Initial model_collections = Collections() checkpoint_saver = Saver(save_prefix="{0}.ckpt".format(os.path.join(FLAGS.saveto, FLAGS.model_name)), num_max_keeping=training_configs['num_kept_checkpoints'] ) best_model_saver = Saver(save_prefix=best_model_prefix, num_max_keeping=training_configs['num_kept_best_model']) # 1. Build Model & Criterion INFO('Building model...') timer.tic() nmt_model = build_model(n_src_vocab=vocab_src.max_n_words, n_tgt_vocab=vocab_tgt.max_n_words, **model_configs) INFO(nmt_model) params_total = sum([p.numel() for n, p in nmt_model.named_parameters()]) params_with_embedding = sum([p.numel() for n, p in nmt_model.named_parameters() if n.find('embedding') == -1]) INFO('Total parameters: {}'.format(params_total)) INFO('Total parameters (excluding word embeddings): {}'.format(params_with_embedding)) critic = NMTCriterion(label_smoothing=model_configs['label_smoothing']) INFO(critic) INFO('Done. Elapsed time {0}'.format(timer.toc())) # 2. Move to GPU if GlobalNames.USE_GPU: nmt_model = nmt_model.cuda() critic = critic.cuda() # 3. Load pretrained model if needed load_pretrained_model(nmt_model, FLAGS.pretrain_path, exclude_prefix=None, device=CURRENT_DEVICE) # 4. Build optimizer INFO('Building Optimizer...') optim = Optimizer(name=optimizer_configs['optimizer'], model=nmt_model, lr=lrate, grad_clip=optimizer_configs['grad_clip'], optim_args=optimizer_configs['optimizer_params'] ) # 5. Build scheduler for optimizer if needed if optimizer_configs['schedule_method'] is not None: if optimizer_configs['schedule_method'] == "loss": scheduler = ReduceOnPlateauScheduler(optimizer=optim, **optimizer_configs["scheduler_configs"] ) elif optimizer_configs['schedule_method'] == "noam": scheduler = NoamScheduler(optimizer=optim, **optimizer_configs['scheduler_configs']) else: WARN("Unknown scheduler name {0}. Do not use lr_scheduling.".format(optimizer_configs['schedule_method'])) scheduler = None else: scheduler = None # 6. build moving average if training_configs['moving_average_method'] is not None: ma = MovingAverage(moving_average_method=training_configs['moving_average_method'], named_params=nmt_model.named_parameters(), alpha=training_configs['moving_average_alpha']) else: ma = None INFO('Done. Elapsed time {0}'.format(timer.toc())) # Reload from latest checkpoint if FLAGS.reload: checkpoint_saver.load_latest(model=nmt_model, optim=optim, lr_scheduler=scheduler, collections=model_collections, ma=ma) # ================================================================================== # # Prepare training eidx = model_collections.get_collection("eidx", [0])[-1] uidx = model_collections.get_collection("uidx", [0])[-1] bad_count = model_collections.get_collection("bad_count", [0])[-1] oom_count = model_collections.get_collection("oom_count", [0])[-1] summary_writer = SummaryWriter(log_dir=FLAGS.log_path) cum_samples = 0 cum_words = 0 valid_loss = best_valid_loss = float('inf') # Max Float # Timer for computing speed timer_for_speed = Timer() timer_for_speed.tic() INFO('Begin training...') while True: summary_writer.add_scalar("Epoch", (eidx + 1), uidx) # Build iterator and progress bar training_iter = training_iterator.build_generator() training_progress_bar = tqdm(desc=' - (Epc {}, Upd {}) '.format(eidx, uidx), total=len(training_iterator), unit="sents" ) for batch in training_iter: # batch_size uidx += 1 if optimizer_configs["schedule_method"] is not None and optimizer_configs["schedule_method"] != "loss": scheduler.step(global_step=uidx) seqs_x, seqs_y = batch n_samples_t = len(seqs_x) n_words_t = sum(len(s) for s in seqs_y) cum_samples += n_samples_t cum_words += n_words_t train_loss = 0. optim.zero_grad() # 在每一次运行模型之前使用 try: # Prepare data for update_cycle for seqs_x_t, seqs_y_t in split_shard(seqs_x, seqs_y, split_size=training_configs['update_cycle']): x, y = prepare_data(seqs_x_t, seqs_y_t, cuda=GlobalNames.USE_GPU) loss = compute_forward(model=nmt_model, critic=critic, seqs_x=x, seqs_y=y, eval=False, normalization=n_samples_t, norm_by_words=training_configs["norm_by_words"]) train_loss += loss / y.size(1) optim.step() # 在这一步进行后向传播 except RuntimeError as e: if 'out of memory' in str(e): print('| WARNING: ran out of memory, skipping batch') oom_count += 1 optim.zero_grad() else: raise e if ma is not None and eidx >= training_configs['moving_average_start_epoch']: ma.step() training_progress_bar.update(n_samples_t) training_progress_bar.set_description(' - (Epc {}, Upd {}) '.format(eidx, uidx)) training_progress_bar.set_postfix_str( 'TrainLoss: {:.2f}, ValidLoss(best): {:.2f} ({:.2f})'.format(train_loss, valid_loss, best_valid_loss)) summary_writer.add_scalar("train_loss", scalar_value=train_loss, global_step=uidx) # ================================================================================== # # Display some information if should_trigger_by_steps(uidx, eidx, every_n_step=training_configs['disp_freq']): # words per second and sents per second words_per_sec = cum_words / (timer.toc(return_seconds=True)) sents_per_sec = cum_samples / (timer.toc(return_seconds=True)) lrate = list(optim.get_lrate())[0] summary_writer.add_scalar("Speed(words/sec)", scalar_value=words_per_sec, global_step=uidx) summary_writer.add_scalar("Speed(sents/sen)", scalar_value=sents_per_sec, global_step=uidx) summary_writer.add_scalar("lrate", scalar_value=lrate, global_step=uidx) summary_writer.add_scalar("oom_count", scalar_value=oom_count, global_step=uidx) # Reset timer timer.tic() cum_words = 0 cum_samples = 0 # ================================================================================== # # Saving checkpoints if should_trigger_by_steps(uidx, eidx, every_n_step=training_configs['save_freq'], debug=FLAGS.debug): model_collections.add_to_collection("uidx", uidx) model_collections.add_to_collection("eidx", eidx) model_collections.add_to_collection("bad_count", bad_count) if not is_early_stop: checkpoint_saver.save(global_step=uidx, model=nmt_model, optim=optim, lr_scheduler=scheduler, collections=model_collections, ma=ma) # ================================================================================== # # Loss Validation & Learning rate annealing if should_trigger_by_steps(global_step=uidx, n_epoch=eidx, every_n_step=training_configs['loss_valid_freq'], debug=FLAGS.debug): if ma is not None: origin_state_dict = deepcopy(nmt_model.state_dict()) nmt_model.load_state_dict(ma.export_ma_params(), strict=False) valid_loss = loss_validation(model=nmt_model, critic=critic, valid_iterator=valid_iterator, ) model_collections.add_to_collection("history_losses", valid_loss) min_history_loss = np.array(model_collections.get_collection("history_losses")).min() summary_writer.add_scalar("loss", valid_loss, global_step=uidx) summary_writer.add_scalar("best_loss", min_history_loss, global_step=uidx) best_valid_loss = min_history_loss if ma is not None: nmt_model.load_state_dict(origin_state_dict) del origin_state_dict if optimizer_configs["schedule_method"] == "loss": scheduler.step(metric=best_valid_loss) # ================================================================================== # # BLEU Validation & Early Stop if True or should_trigger_by_steps(global_step=uidx, n_epoch=eidx, every_n_step=training_configs['bleu_valid_freq'], min_step=training_configs['bleu_valid_warmup'], debug=FLAGS.debug): if ma is not None: origin_state_dict = deepcopy(nmt_model.state_dict()) nmt_model.load_state_dict(ma.export_ma_params(), strict=False) valid_bleu = bleu_validation(uidx=uidx, valid_iterator=valid_iterator, batch_size=training_configs["bleu_valid_batch_size"], model=nmt_model, bleu_scorer=bleu_scorer, vocab_tgt=vocab_tgt, valid_dir=FLAGS.valid_path, max_steps=training_configs["bleu_valid_configs"]["max_steps"], beam_size=training_configs["bleu_valid_configs"]["beam_size"], alpha=training_configs["bleu_valid_configs"]["alpha"] ) model_collections.add_to_collection(key="history_bleus", value=valid_bleu) best_valid_bleu = float(np.array(model_collections.get_collection("history_bleus")).max()) summary_writer.add_scalar("bleu", valid_bleu, uidx) summary_writer.add_scalar("best_bleu", best_valid_bleu, uidx) # If model get new best valid bleu score if valid_bleu >= best_valid_bleu: bad_count = 0 if is_early_stop is False: # 1. save the best model torch.save(nmt_model.state_dict(), best_model_prefix + ".final") # 2. record all several best models best_model_saver.save(global_step=uidx, model=nmt_model) else: bad_count += 1 # At least one epoch should be traversed if bad_count >= training_configs['early_stop_patience'] and eidx > 0: is_early_stop = True WARN("Early Stop!") exit(0) summary_writer.add_scalar("bad_count", bad_count, uidx) if ma is not None: nmt_model.load_state_dict(origin_state_dict) del origin_state_dict INFO("{0} Loss: {1:.2f} BLEU: {2:.2f} lrate: {3:6f} patience: {4}".format( uidx, valid_loss, valid_bleu, lrate, bad_count )) training_progress_bar.close() eidx += 1 if eidx > training_configs["max_epochs"]: break
the-stack_106_20233
# -*- coding: utf-8 -*- # base16-prompt-toolkit (https://github.com/memeplex/base16-prompt-toolkit) # Base16 Prompt Toolkit template by Carlos Pita ([email protected] # Paraiso scheme by Jan T. Sott from prompt_toolkit.output.vt100 import _256_colors from pygments.style import Style from pygments.token import (Keyword, Name, Comment, String, Error, Text, Number, Operator, Literal, Token) # See http://chriskempson.com/projects/base16/ for a description of the role # of the different colors in the base16 palette. base00 = '#2f1e2e' base01 = '#41323f' base02 = '#4f424c' base03 = '#776e71' base04 = '#8d8687' base05 = '#a39e9b' base06 = '#b9b6b0' base07 = '#e7e9db' base08 = '#ef6155' base09 = '#f99b15' base0A = '#fec418' base0B = '#48b685' base0C = '#5bc4bf' base0D = '#06b6ef' base0E = '#815ba4' base0F = '#e96ba8' # See https://github.com/jonathanslenders/python-prompt-toolkit/issues/355 colors = (globals()['base0' + d] for d in '08BADEC5379F1246') for i, color in enumerate(colors): r, g, b = int(color[1:3], 16), int(color[3:5], 16), int(color[5:], 16) _256_colors[r, g, b] = i + 6 if i > 8 else i # See http://pygments.org/docs/tokens/ for a description of the different # pygments tokens. class Base16Style(Style): background_color = base00 highlight_color = base02 default_style = base05 styles = { Text: base05, Error: '%s bold' % base08, Comment: base03, Keyword: base0E, Keyword.Constant: base09, Keyword.Namespace: base0D, Name.Builtin: base0D, Name.Function: base0D, Name.Class: base0D, Name.Decorator: base0E, Name.Exception: base08, Number: base09, Operator: base0E, Literal: base0B, String: base0B } # See https://github.com/jonathanslenders/python-prompt-toolkit/blob/master/prompt_toolkit/styles/defaults.py # for a description of prompt_toolkit related pseudo-tokens. overrides = { Token.Prompt: base0B, Token.PromptNum: '%s bold' % base0B, Token.OutPrompt: base08, Token.OutPromptNum: '%s bold' % base08, Token.Menu.Completions.Completion: 'bg:%s %s' % (base01, base04), Token.Menu.Completions.Completion.Current: 'bg:%s %s' % (base04, base01), Token.MatchingBracket.Other: 'bg:%s %s' % (base03, base00) }
the-stack_106_20237
import torch import json from torch import nn from .mlp import MLP from ..constants import CATEGORICAL, LABEL, LOGITS, FEATURES from typing import Optional, List from .utils import init_weights class CategoricalMLP(nn.Module): """ MLP for categorical input. The input dimension is automatically computed based on the number of categories in each categorical column. """ def __init__( self, prefix: str, num_categories: List[int], out_features: Optional[int] = None, num_layers: Optional[int] = 1, activation: Optional[str] = "gelu", dropout_prob: Optional[float] = 0.5, normalization: Optional[str] = "layer_norm", num_classes: Optional[int] = 0, ): """ Parameters ---------- prefix The model prefix. num_categories A list of integers. Each one is the number of categories in one categorical column. out_features Dimension of output features. num_layers Number of MLP layers. activation Name of activation function. dropout_prob Dropout probability. normalization Name of normalization function. num_classes Number of classes. 1 for a regression task. """ super().__init__() self.out_features = out_features max_embedding_dim = 100 embed_exponent = 0.56 size_factor = 1.0 self.column_embeddings = nn.ModuleList() self.column_mlps = nn.ModuleList() assert isinstance(num_categories, list) for num_categories_per_col in num_categories: embedding_dim_per_col = int( size_factor * max(2, min( max_embedding_dim, 1.6 * num_categories_per_col ** embed_exponent )) ) self.column_embeddings.append( nn.Embedding( num_embeddings=num_categories_per_col, embedding_dim=embedding_dim_per_col, ) ) self.column_mlps.append( MLP( in_features=embedding_dim_per_col, hidden_features=out_features, out_features=out_features, num_layers=num_layers, activation=activation, dropout_prob=dropout_prob, normalization=normalization, ) ) self.aggregator_mlp = MLP( in_features=out_features * len(num_categories), hidden_features=out_features * len(num_categories), out_features=out_features, num_layers=num_layers, activation=activation, dropout_prob=dropout_prob, normalization=normalization, ) self.head = nn.Linear(out_features, num_classes) if num_classes > 0 else nn.Identity() # init weights self.apply(init_weights) self.prefix = prefix self.name_to_id = self.get_layer_ids() self.head_layer_names = [n for n, layer_id in self.name_to_id.items() if layer_id == 0] @property def categorical_key(self): return f"{self.prefix}_{CATEGORICAL}" @property def label_key(self): return f"{self.prefix}_{LABEL}" def forward( self, batch: dict, ): """ Parameters ---------- batch A dictionary containing the input mini-batch data. We need to use the keys with the model prefix to index required data. Returns ------- A dictionary with logits and features. """ assert len(batch[self.categorical_key]) == len(self.column_embeddings) features = [] for categorical_id, embed, mlp in zip(batch[self.categorical_key], self.column_embeddings, self.column_mlps): features.append(mlp(embed(categorical_id))) cat_features = torch.cat(features, dim=1) features = self.aggregator_mlp(cat_features) logits = self.head(features) return { self.prefix: { LOGITS: logits, FEATURES: features, } } def get_layer_ids(self,): """ All layers have the same id 0 since there is no pre-trained models used here. Returns ------- A dictionary mapping the layer names (keys) to their ids (values). """ name_to_id = {} for n, _ in self.named_parameters(): name_to_id[n] = 0 return name_to_id
the-stack_106_20238
# # Copyright 2017 Netflix, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import requests import json import sys import socket import warnings hostname = socket.gethostname() class BaseClient(object): printUrl = False headers = {'Content-Type': 'application/json', 'Accept': 'application/json'} def __init__(self, baseURL, baseResource): self.baseURL = baseURL self.baseResource = baseResource def get(self, resPath, queryParams=None): theUrl = "{}/{}".format(self.baseURL, resPath) resp = requests.get(theUrl, params=queryParams) self.__checkForSuccess(resp) if(resp.content == b''): return None else: return resp.json() def post(self, resPath, queryParams, body, headers=None): theUrl = "{}/{}".format(self.baseURL, resPath) theHeader = self.headers if headers is not None: theHeader = self.mergeTwoDicts(self.headers, headers) if body is not None: jsonBody = json.dumps(body, ensure_ascii=False) resp = requests.post(theUrl, params=queryParams, data=jsonBody, headers=theHeader) else: resp = requests.post(theUrl, params=queryParams, headers=theHeader) self.__checkForSuccess(resp) return self.__return(resp, theHeader) def put(self, resPath, queryParams=None, body=None, headers=None): theUrl = "{}/{}".format(self.baseURL, resPath) theHeader = self.headers if headers is not None: theHeader = self.mergeTwoDicts(self.headers, headers) if body is not None: jsonBody = json.dumps(body, ensure_ascii=False) resp = requests.put(theUrl, params=queryParams, data=jsonBody, headers=theHeader) else: resp = requests.put(theUrl, params=queryParams, headers=theHeader) self.__print(resp) self.__checkForSuccess(resp) def delete(self, resPath, queryParams): theUrl = "{}/{}".format(self.baseURL, resPath) resp = requests.delete(theUrl, params=queryParams) self.__print(resp) self.__checkForSuccess(resp) def makeUrl(self, urlformat=None, *argv): url = self.baseResource + '/' if urlformat: url += urlformat.format(*argv) return url def makeParams(self, **kwargs): return dict((k, v) for k, v in kwargs.items() if v is not None) or None def mergeTwoDicts(self, x, y): z = x.copy() z.update(y) return z def __print(self, resp): if self.printUrl: print(resp.url) def __return(self, resp, header): retval = '' if len(resp.text) > 0: if header['Accept'] == 'text/plain': retval = resp.text elif header['Accept'] == 'application/json': retval = resp.json() else: retval = resp.text return retval def __checkForSuccess(self, resp): try: resp.raise_for_status() except requests.HTTPError: print("ERROR: " + resp.text) raise class MetadataClient(BaseClient): BASE_RESOURCE = 'metadata' def __init__(self, baseURL): BaseClient.__init__(self, baseURL, self.BASE_RESOURCE) def getWorkflowDef(self, wfname, version=None): url = self.makeUrl('workflow/{}', wfname) return self.get(url, self.makeParams(version=version)) def createWorkflowDef(self, wfdObj): url = self.makeUrl('workflow') return self.post(url, None, wfdObj) def updateWorkflowDefs(self, listOfWfdObj): url = self.makeUrl('workflow') self.put(url, None, listOfWfdObj) def getAllWorkflowDefs(self): url = self.makeUrl('workflow') return self.get(url) def unRegisterWorkflowDef(self, wfname, version): url = self.makeUrl("workflow/{name}/{version}".format(name=wfname, version=version)) self.delete(url, None) def getTaskDef(self, tdName): url = self.makeUrl('taskdefs/{}', tdName) return self.get(url) def registerTaskDefs(self, listOfTaskDefObj): url = self.makeUrl('taskdefs') return self.post(url, None, listOfTaskDefObj) def registerTaskDef(self, taskDefObj): """registerTaskDef is deprecated since PUT /metadata/taskdefs does not register but updates a task definition. Use updateTaskDef function instead. """ warnings.warn(self.registerTaskDef.__doc__, DeprecationWarning) url = self.makeUrl('taskdefs') self.put(url, None, taskDefObj) def updateTaskDef(self, taskDefObj): url = self.makeUrl('taskdefs') self.put(url, None, taskDefObj) def unRegisterTaskDef(self, tdName, reason=None): url = self.makeUrl('taskdefs/{}', tdName) self.delete(url, self.makeParams(reason=reason)) def getAllTaskDefs(self): url = self.makeUrl('taskdefs') return self.get(url) class TaskClient(BaseClient): BASE_RESOURCE = 'tasks' def __init__(self, baseURL): BaseClient.__init__(self, baseURL, self.BASE_RESOURCE) def getTask(self, taskId): url = self.makeUrl('{}', taskId) return self.get(url) def updateTask(self, taskObj): url = self.makeUrl('') headers = {'Accept': 'text/plain'} self.post(url, None, taskObj, headers) def pollForTask(self, taskType, workerid, domain=None): url = self.makeUrl('poll/{}', taskType) params = {} params['workerid'] = workerid if domain is not None: params['domain'] = domain try: return self.get(url, params) except Exception as err: print('Error while polling ' + str(err)) return None def pollForBatch(self, taskType, count, timeout, workerid, domain=None): url = self.makeUrl('poll/batch/{}', taskType) params = {} params['workerid'] = workerid params['count'] = count params['timeout'] = timeout if domain is not None: params['domain'] = domain try: return self.get(url, params) except Exception as err: print('Error while polling ' + str(err)) return None def ackTask(self, taskId, workerid): url = self.makeUrl('{}/ack', taskId) params = {} params['workerid'] = workerid headers = {'Accept': 'application/json'} value = self.post(url, params, None, headers) return value in ['true', True] def getTasksInQueue(self, taskName): url = self.makeUrl('queue/{}', taskName) return self.get(url) def removeTaskFromQueue(self, taskId, reason=None): url = self.makeUrl('queue/{}', taskId) params = {} params['reason'] = reason self.delete(url, params) def getTaskQueueSizes(self, listOfTaskName): url = self.makeUrl('queue/sizes') return self.post(url, None, listOfTaskName) class WorkflowClient(BaseClient): BASE_RESOURCE = 'workflow' def __init__(self, baseURL): BaseClient.__init__(self, baseURL, self.BASE_RESOURCE) def getWorkflow(self, wfId, includeTasks=True): url = self.makeUrl('{}', wfId) params = {} params['includeTasks'] = includeTasks return self.get(url, params) def getRunningWorkflows(self, wfName, version=None, startTime=None, endTime=None): url = self.makeUrl('running/{}', wfName) params = {} params['version'] = version params['startTime'] = startTime params['endTime'] = endTime return self.get(url, params) def startWorkflow(self, wfName, inputjson, version=None, correlationId=None): url = self.makeUrl('{}', wfName) params = {} params['version'] = version params['correlationId'] = correlationId headers = {'Accept': 'text/plain'} return self.post(url, params, inputjson, headers) def terminateWorkflow(self, wfId, reason=None): url = self.makeUrl('{}', wfId) params = {} params['reason'] = reason self.delete(url, params) def removeWorkflow(self, wfId, archiveWorkflow, reason=None): url = self.makeUrl('{}/remove', wfId) self.delete(url, self.makeParams(archiveWorkflow=archiveWorkflow, reason=reason)) def pauseWorkflow(self, wfId): url = self.makeUrl('{}/pause', wfId) self.put(url) def resumeWorkflow(self, wfId): url = self.makeUrl('{}/resume', wfId) self.put(url) def skipTaskFromWorkflow(self, wfId, taskRefName, skipTaskRequest): url = self.makeUrl('{}/skiptask/{}', wfId, taskRefName) self.post(url, None, skipTaskRequest) def rerunWorkflow(self, wfId, taskRefName, rerunWorkflowRequest): url = self.makeUrl('{}/rerun', wfId) return self.post(url, None, rerunWorkflowRequest) def restartWorkflow(self, wfId, taskRefName, fromTaskRef): url = self.makeUrl('{}/restart', wfId) params = {} params['from'] = fromTaskRef self.post(url, params, None) class EventServicesClient(BaseClient): BASE_RESOURCE = 'event' def __init__(self, baseURL): BaseClient.__init__(self, baseURL, self.BASE_RESOURCE) def getEventHandlerDef(self, event, activeOnly=True): url = self.makeUrl('{}', event) params = {} params['activeOnly'] = activeOnly return self.get(url, params) def getEventHandlerDefs(self): url = self.makeUrl() return self.get(url) def createEventHandlerDef(self, ehObj): url = self.makeUrl() return self.post(url, None, ehObj) def updateEventHandlerDef(self, ehObj): url = self.makeUrl() return self.put(url, None, ehObj) def removeEventHandler(self, ehName): url = self.makeUrl('{}', ehName) self.delete(url, {}) def getEventHandlerQueues(self): url = self.makeUrl('queues') return self.get(url) def getEventHandlerQueuesProviders(self): url = self.makeUrl('queues/providers') return self.get(url) class WFClientMgr: def __init__(self, server_url='http://localhost:8080/api/'): self.workflowClient = WorkflowClient(server_url) self.taskClient = TaskClient(server_url) self.metadataClient = MetadataClient(server_url) def main(): if len(sys.argv) < 3: print("Usage - python conductor server_url command parameters...") return None server_url = sys.argv[1] command = sys.argv[2] wfcMgr = WFClientMgr(server_url) wfc = wfcMgr.workflowClient if command == 'start': if len(sys.argv) < 7: print('python conductor server_url start workflow_name input_json [version] [correlationId]') return None wfName = sys.argv[3] input = json.loads(sys.argv[5]) correlationId = sys.argv[6] workflowId = wfc.startWorkflow(wfName, input, 1, correlationId) print(workflowId) return workflowId elif command == 'get': if len(sys.argv) < 4: print('python conductor server_url get workflow_id') return None wfId = sys.argv[3] wfjson = wfc.getWorkflow(wfId) print(json.dumps(wfjson, indent=True, separators=(',', ': '))) return wfjson elif command == 'terminate': if len(sys.argv) < 4: print('python conductor server_url terminate workflow_id') return None wfId = sys.argv[3] wfc.terminateWorkflow(wfId) print('OK') return wfId if __name__ == '__main__': main()
the-stack_106_20240
""" matrix multiplication is a binary operation that produces a product matrix from two matrices . To multiply two matrices, the number of columns of first matrix should be equal to the number of rows to second matrix. This program finds the product of two given matrices """ Row_1 = int(input("Enter the number of rows for first matrix : ")) Col_1 = int(input("Enter the number of columns for first matrix : ")) matrix_1 = [] print("Enter the entries rowwise:") for i in range(Row_1): matrix_1.append([int(x) for x in input().split(" ")]) Row_2 = int(input("Enter the number of rows for second matrix : ")) Col_2 = int(input("Enter the number of columns for second matrix : ")) matrix_2 = [] print("Enter the entries rowwise:") for i in range(Row_2): matrix_2.append([int(x) for x in input().split(" ")]) result = [[0 for i in range(Col_2)] for j in range(Row_1)] # Multiplying both matrices and storing in result for i in range(Row_1): for j in range(Col_2): for k in range(Col_1): result[i][j] += matrix_1[i][k] * matrix_2[k][j] print("The result of the matrix multiplication is") for i in range(Row_1): for j in range(Col_2): print(result[i][j], end=" ") print() """ Sample I/O : Enter the number of rows for first matrix : 3 Enter the number of columns for first matrix : 3 Enter the entries rowwise: 1 2 3 4 5 6 7 8 9 Enter the number of rows for second matrix : 3 Enter the number of columns for second matrix : 4 Enter the entries rowwise: 1 2 3 4 5 6 7 8 9 10 11 12 The result of the matrix multiplication is 38 44 50 56 83 98 113 128 128 152 176 200 Time complexity : O(n^3) Space complexity : O(n^2) """
the-stack_106_20242
"""Primitive dict ops.""" from mypyc.ir.ops import ERR_FALSE, ERR_MAGIC, ERR_NEVER, ERR_NEG_INT from mypyc.ir.rtypes import ( dict_rprimitive, object_rprimitive, bool_rprimitive, int_rprimitive, list_rprimitive, dict_next_rtuple_single, dict_next_rtuple_pair, c_pyssize_t_rprimitive, c_int_rprimitive ) from mypyc.primitives.registry import ( name_ref_op, method_op, simple_emit, name_emit, c_custom_op, c_method_op, c_function_op, c_binary_op ) # Get the 'dict' type object. name_ref_op('builtins.dict', result_type=object_rprimitive, error_kind=ERR_NEVER, emit=name_emit('&PyDict_Type', target_type="PyObject *"), is_borrowed=True) # dict[key] dict_get_item_op = c_method_op( name='__getitem__', arg_types=[dict_rprimitive, object_rprimitive], return_type=object_rprimitive, c_function_name='CPyDict_GetItem', error_kind=ERR_MAGIC) # dict[key] = value dict_set_item_op = c_method_op( name='__setitem__', arg_types=[dict_rprimitive, object_rprimitive, object_rprimitive], return_type=c_int_rprimitive, c_function_name='CPyDict_SetItem', error_kind=ERR_NEG_INT) # key in dict c_binary_op( name='in', arg_types=[object_rprimitive, dict_rprimitive], return_type=c_int_rprimitive, c_function_name='PyDict_Contains', error_kind=ERR_NEG_INT, truncated_type=bool_rprimitive, ordering=[1, 0]) # dict1.update(dict2) dict_update_op = c_method_op( name='update', arg_types=[dict_rprimitive, dict_rprimitive], return_type=c_int_rprimitive, c_function_name='CPyDict_Update', error_kind=ERR_NEG_INT, priority=2) # Operation used for **value in dict displays. # This is mostly like dict.update(obj), but has customized error handling. dict_update_in_display_op = c_custom_op( arg_types=[dict_rprimitive, dict_rprimitive], return_type=c_int_rprimitive, c_function_name='CPyDict_UpdateInDisplay', error_kind=ERR_NEG_INT) # dict.update(obj) c_method_op( name='update', arg_types=[dict_rprimitive, object_rprimitive], return_type=c_int_rprimitive, c_function_name='CPyDict_UpdateFromAny', error_kind=ERR_NEG_INT) # dict.get(key, default) c_method_op( name='get', arg_types=[dict_rprimitive, object_rprimitive, object_rprimitive], return_type=object_rprimitive, c_function_name='CPyDict_Get', error_kind=ERR_MAGIC) # dict.get(key) method_op( name='get', arg_types=[dict_rprimitive, object_rprimitive], result_type=object_rprimitive, error_kind=ERR_MAGIC, emit=simple_emit('{dest} = CPyDict_Get({args[0]}, {args[1]}, Py_None);')) # Construct an empty dictionary. dict_new_op = c_custom_op( arg_types=[], return_type=dict_rprimitive, c_function_name='PyDict_New', error_kind=ERR_MAGIC) # Construct a dictionary from keys and values. # Positional argument is the number of key-value pairs # Variable arguments are (key1, value1, ..., keyN, valueN). dict_build_op = c_custom_op( arg_types=[c_pyssize_t_rprimitive], return_type=dict_rprimitive, c_function_name='CPyDict_Build', error_kind=ERR_MAGIC, var_arg_type=object_rprimitive) # Construct a dictionary from another dictionary. c_function_op( name='builtins.dict', arg_types=[dict_rprimitive], return_type=dict_rprimitive, c_function_name='PyDict_Copy', error_kind=ERR_MAGIC, priority=2) # Generic one-argument dict constructor: dict(obj) c_function_op( name='builtins.dict', arg_types=[object_rprimitive], return_type=dict_rprimitive, c_function_name='CPyDict_FromAny', error_kind=ERR_MAGIC) # dict.keys() c_method_op( name='keys', arg_types=[dict_rprimitive], return_type=object_rprimitive, c_function_name='CPyDict_KeysView', error_kind=ERR_MAGIC) # dict.values() c_method_op( name='values', arg_types=[dict_rprimitive], return_type=object_rprimitive, c_function_name='CPyDict_ValuesView', error_kind=ERR_MAGIC) # dict.items() c_method_op( name='items', arg_types=[dict_rprimitive], return_type=object_rprimitive, c_function_name='CPyDict_ItemsView', error_kind=ERR_MAGIC) # list(dict.keys()) dict_keys_op = c_custom_op( arg_types=[dict_rprimitive], return_type=list_rprimitive, c_function_name='CPyDict_Keys', error_kind=ERR_MAGIC) # list(dict.values()) dict_values_op = c_custom_op( arg_types=[dict_rprimitive], return_type=list_rprimitive, c_function_name='CPyDict_Values', error_kind=ERR_MAGIC) # list(dict.items()) dict_items_op = c_custom_op( arg_types=[dict_rprimitive], return_type=list_rprimitive, c_function_name='CPyDict_Items', error_kind=ERR_MAGIC) # PyDict_Next() fast iteration dict_key_iter_op = c_custom_op( arg_types=[dict_rprimitive], return_type=object_rprimitive, c_function_name='CPyDict_GetKeysIter', error_kind=ERR_MAGIC) dict_value_iter_op = c_custom_op( arg_types=[dict_rprimitive], return_type=object_rprimitive, c_function_name='CPyDict_GetValuesIter', error_kind=ERR_MAGIC) dict_item_iter_op = c_custom_op( arg_types=[dict_rprimitive], return_type=object_rprimitive, c_function_name='CPyDict_GetItemsIter', error_kind=ERR_MAGIC) dict_next_key_op = c_custom_op( arg_types=[object_rprimitive, int_rprimitive], return_type=dict_next_rtuple_single, c_function_name='CPyDict_NextKey', error_kind=ERR_NEVER) dict_next_value_op = c_custom_op( arg_types=[object_rprimitive, int_rprimitive], return_type=dict_next_rtuple_single, c_function_name='CPyDict_NextValue', error_kind=ERR_NEVER) dict_next_item_op = c_custom_op( arg_types=[object_rprimitive, int_rprimitive], return_type=dict_next_rtuple_pair, c_function_name='CPyDict_NextItem', error_kind=ERR_NEVER) # check that len(dict) == const during iteration dict_check_size_op = c_custom_op( arg_types=[dict_rprimitive, int_rprimitive], return_type=bool_rprimitive, c_function_name='CPyDict_CheckSize', error_kind=ERR_FALSE) dict_size_op = c_custom_op( arg_types=[dict_rprimitive], return_type=c_pyssize_t_rprimitive, c_function_name='PyDict_Size', error_kind=ERR_NEVER)
the-stack_106_20244
# -*- coding: utf-8 -*- ''' データの読み込みと確認 ''' # ライブラリのインポート import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # ランダムシードの設定 import random np.random.seed(1234) random.seed(1234) # データの読み込み train = pd.read_csv('./data/train.tsv', sep='\t') test = pd.read_csv('./data/test.tsv', sep='\t') submission = pd.read_csv('./data/sample_submit.csv') # データの確認 print(train.head()) print(train.dtypes) ''' 特徴量エンジニアリング ''' # ライブラリのインポート from sklearn.preprocessing import LabelEncoder # object型の変数の取得 categories = train.columns[train.dtypes == 'object'] print(categories) # 'class'のダミー変数化 le = LabelEncoder() le = le.fit(train['class']) train['class'] = le.transform(train['class']) ''' モデルの構築と評価 ''' # ライブラリのインポート import lightgbm as lgb from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from statistics import mean # 5分割する folds = 5 kf = KFold(n_splits=folds) # ハイパーパラメータの設定 params = { # 多値分類問題 'objective': 'multiclass', # クラス数は 3 'num_class': 3 } # 説明変数と目的変数を指定 X_train = train.drop(['class', 'id'], axis=1) Y_train = train['class'] # 各foldごとに作成したモデルごとの予測値を保存 models = [] scores = [] oof = np.zeros(len(X_train)) for train_index, val_index in kf.split(X_train): x_train = X_train.iloc[train_index] x_valid = X_train.iloc[val_index] y_train = Y_train.iloc[train_index] y_valid = Y_train.iloc[val_index] lgb_train = lgb.Dataset(x_train, y_train) lgb_eval = lgb.Dataset(x_valid, y_valid, reference=lgb_train) model = lgb.train(params, lgb_train, valid_sets=lgb_eval, num_boost_round=100, # 学習回数の実行回数 early_stopping_rounds=20, # early_stoppingの判定基準 verbose_eval=10) y_pred = model.predict(x_valid, num_iteration=model.best_iteration) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする score = accuracy_score(y_valid, y_pred_max) print(score) models.append(model) scores.append(score) oof[val_index] = y_pred_max # 混同行列の作成 cm = confusion_matrix(y_valid, y_pred_max) # heatmapによる混同行列の可視化 sns.heatmap(cm, annot=True, cmap='Blues') plt.show() # 平均accuracy scoreを計算する print(mean(scores)) """ 予測精度: 0.9466666666666667 """
the-stack_106_20246
import pickle import matplotlib.pyplot as plt from binomial_model import * from scipy.special import loggamma from invasion_threshold import * def poisson(xvec, xmean): return np.exp(xvec*np.log(xmean)-xmean-loggamma(xvec+1)) #parameter mu = 0.05 f = lambda m: 1 K = 1 tmin = 1 T = np.inf mmax = 40 kmax = 20 mmean = 10 kmean = 5 mvec = np.arange(mmax+1) kvec = np.arange(kmax+1) pm = poisson(mvec,mmean) pk = poisson(kvec,kmean) alpha_list = [0.5,1.,1.5] integrand = exponential_integrand beta_list = np.linspace(0.15,0.00001,500) result = dict() for alpha in alpha_list: result[alpha] = dict() result[alpha]['beta'] = [] result[alpha]['I'] = [] beta_c = invasion_threshold(pm, pk, mu, f, K=K,alpha=alpha,tmin=tmin,T=T, integrand=integrand) result[alpha]['beta_c'] = beta_c print(alpha, beta_c) for alpha in alpha_list: Ik = 0.9*np.ones(kvec.shape) print(f"----------------") print(f"alpha {alpha}") print(f"----------------") for beta in beta_list: thetami = get_thetami_mat(mmax,beta,K=K,alpha=alpha,tmin=tmin,T=T) Ilast = None Inow = np.sum(Ik*pk) while Ilast is None or (np.abs(Inow - Ilast)/Inow > 10**(-8) and Inow > 10**(-4)): Ik = evolution(Ik, pk, kvec, pm, mvec, thetami, mu) Ilast = Inow Inow = np.sum(Ik*pk) print(f"beta {beta}, I : {Inow}") if Inow <= 10**(-4): break result[alpha]['I'].append(Inow) result[alpha]['beta'].append(beta) plt.plot(result[alpha]['beta'],result[alpha]['I'],label=f'alpha = {alpha}') plt.legend() plt.show() with open('./dat/figure2_bifurcation.pk','wb') as filename: pickle.dump(result,filename)
the-stack_106_20249
''' Tree View ========= .. image:: images/treeview.png :align: right .. versionadded:: 1.0.4 :class:`TreeView` is a widget used to represent a tree structure. It is currently very basic, supporting a minimal feature set. Introduction ------------ A :class:`TreeView` is populated with :class:`TreeViewNode` instances, but you cannot use a :class:`TreeViewNode` directly. You must combine it with another widget, such as :class:`~kivy.uix.label.Label`, :class:`~kivy.uix.button.Button` or even your own widget. The TreeView always creates a default root node, based on :class:`TreeViewLabel`. :class:`TreeViewNode` is a class object containing needed properties for serving as a tree node. Extend :class:`TreeViewNode` to create custom node types for use with a :class:`TreeView`. For constructing your own subclass, follow the pattern of TreeViewLabel which combines a Label and a TreeViewNode, producing a :class:`TreeViewLabel` for direct use in a TreeView instance. To use the TreeViewLabel class, you could create two nodes directly attached to root:: tv = TreeView() tv.add_node(TreeViewLabel(text='My first item')) tv.add_node(TreeViewLabel(text='My second item')) Or, create two nodes attached to a first:: tv = TreeView() n1 = tv.add_node(TreeViewLabel(text='Item 1')) tv.add_node(TreeViewLabel(text='SubItem 1'), n1) tv.add_node(TreeViewLabel(text='SubItem 2'), n1) If you have a large tree structure, perhaps you would need a utility function to populate the tree view:: def populate_tree_view(tree_view, parent, node): if parent is None: tree_node = tree_view.add_node(TreeViewLabel(text=node['node_id'], is_open=True)) else: tree_node = tree_view.add_node(TreeViewLabel(text=node['node_id'], is_open=True), parent) for child_node in node['children']: populate_tree_view(tree_view, tree_node, child_node) tree = {'node_id': '1', 'children': [{'node_id': '1.1', 'children': [{'node_id': '1.1.1', 'children': [{'node_id': '1.1.1.1', 'children': []}]}, {'node_id': '1.1.2', 'children': []}, {'node_id': '1.1.3', 'children': []}]}, {'node_id': '1.2', 'children': []}]} class TreeWidget(FloatLayout): def __init__(self, **kwargs): super(TreeWidget, self).__init__(**kwargs) tv = TreeView(root_options=dict(text='Tree One'), hide_root=False, indent_level=4) populate_tree_view(tv, None, tree) self.add_widget(tv) The root widget in the tree view is opened by default and has text set as 'Root'. If you want to change that, you can use the :attr:`TreeView.root_options` property. This will pass options to the root widget:: tv = TreeView(root_options=dict(text='My root label')) Creating Your Own Node Widget ----------------------------- For a button node type, combine a :class:`~kivy.uix.button.Button` and a :class:`TreeViewNode` as follows:: class TreeViewButton(Button, TreeViewNode): pass You must know that, for a given node, only the :attr:`~kivy.uix.widget.Widget.size_hint_x` will be honored. The allocated width for the node will depend of the current width of the TreeView and the level of the node. For example, if a node is at level 4, the width allocated will be: treeview.width - treeview.indent_start - treeview.indent_level * node.level You might have some trouble with that. It is the developer's responsibility to correctly handle adapting the graphical representation nodes, if needed. ''' from kivy.clock import Clock from kivy.uix.label import Label from kivy.uix.widget import Widget from kivy.properties import BooleanProperty, ListProperty, ObjectProperty, \ AliasProperty, NumericProperty, ReferenceListProperty class TreeViewException(Exception): '''Exception for errors in the :class:`TreeView`. ''' pass class TreeViewNode(object): '''TreeViewNode class, used to build a node class for a TreeView object. ''' def __init__(self, **kwargs): if self.__class__ is TreeViewNode: raise TreeViewException('You cannot use directly TreeViewNode.') super(TreeViewNode, self).__init__(**kwargs) is_leaf = BooleanProperty(True) '''Boolean to indicate whether this node is a leaf or not. Used to adjust the graphical representation. :attr:`is_leaf` is a :class:`~kivy.properties.BooleanProperty` and defaults to True. It is automatically set to False when child is added. ''' is_open = BooleanProperty(False) '''Boolean to indicate whether this node is opened or not, in case there are child nodes. This is used to adjust the graphical representation. .. warning:: This property is automatically set by the :class:`TreeView`. You can read but not write it. :attr:`is_open` is a :class:`~kivy.properties.BooleanProperty` and defaults to False. ''' is_loaded = BooleanProperty(False) '''Boolean to indicate whether this node is already loaded or not. This property is used only if the :class:`TreeView` uses asynchronous loading. :attr:`is_loaded` is a :class:`~kivy.properties.BooleanProperty` and defaults to False. ''' is_selected = BooleanProperty(False) '''Boolean to indicate whether this node is selected or not. This is used adjust the graphical representation. .. warning:: This property is automatically set by the :class:`TreeView`. You can read but not write it. :attr:`is_selected` is a :class:`~kivy.properties.BooleanProperty` and defaults to False. ''' no_selection = BooleanProperty(False) '''Boolean used to indicate whether selection of the node is allowed or not. :attr:`no_selection` is a :class:`~kivy.properties.BooleanProperty` and defaults to False. ''' nodes = ListProperty([]) '''List of nodes. The nodes list is different than the children list. A node in the nodes list represents a node on the tree. An item in the children list represents the widget associated with the node. .. warning:: This property is automatically set by the :class:`TreeView`. You can read but not write it. :attr:`nodes` is a :class:`~kivy.properties.ListProperty` and defaults to []. ''' parent_node = ObjectProperty(None, allownone=True) '''Parent node. This attribute is needed because the :attr:`parent` can be None when the node is not displayed. .. versionadded:: 1.0.7 :attr:`parent_node` is an :class:`~kivy.properties.ObjectProperty` and defaults to None. ''' level = NumericProperty(-1) '''Level of the node. :attr:`level` is a :class:`~kivy.properties.NumericProperty` and defaults to -1. ''' color_selected = ListProperty([.3, .3, .3, 1.]) '''Background color of the node when the node is selected. :attr:`color_selected` is a :class:`~kivy.properties.ListProperty` and defaults to [.1, .1, .1, 1]. ''' odd = BooleanProperty(False) ''' This property is set by the TreeView widget automatically and is read-only. :attr:`odd` is a :class:`~kivy.properties.BooleanProperty` and defaults to False. ''' odd_color = ListProperty([1., 1., 1., .0]) '''Background color of odd nodes when the node is not selected. :attr:`odd_color` is a :class:`~kivy.properties.ListProperty` and defaults to [1., 1., 1., 0.]. ''' even_color = ListProperty([0.5, 0.5, 0.5, 0.1]) '''Background color of even nodes when the node is not selected. :attr:`bg_color` is a :class:`~kivy.properties.ListProperty` ans defaults to [.5, .5, .5, .1]. ''' class TreeViewLabel(Label, TreeViewNode): '''Combines a :class:`~kivy.uix.label.Label` and a :class:`TreeViewNode` to create a :class:`TreeViewLabel` that can be used as a text node in the tree. See module documentation for more information. ''' class TreeView(Widget): '''TreeView class. See module documentation for more information. :Events: `on_node_expand`: (node, ) Fired when a node is being expanded `on_node_collapse`: (node, ) Fired when a node is being collapsed ''' __events__ = ('on_node_expand', 'on_node_collapse') def __init__(self, **kwargs): self._trigger_layout = Clock.create_trigger(self._do_layout, -1) super(TreeView, self).__init__(**kwargs) tvlabel = TreeViewLabel(text='Root', is_open=True, level=0) for key, value in self.root_options.items(): setattr(tvlabel, key, value) self._root = self.add_node(tvlabel, None) trigger = self._trigger_layout fbind = self.fbind fbind('pos', trigger) fbind('size', trigger) fbind('indent_level', trigger) fbind('indent_start', trigger) trigger() def add_node(self, node, parent=None): '''Add a new node to the tree. :Parameters: `node`: instance of a :class:`TreeViewNode` Node to add into the tree `parent`: instance of a :class:`TreeViewNode`, defaults to None Parent node to attach the new node. If `None`, it is added to the :attr:`root` node. :returns: the node `node`. ''' # check if the widget is "ok" for a node if not isinstance(node, TreeViewNode): raise TreeViewException( 'The node must be a subclass of TreeViewNode') # create node if parent is None and self._root: parent = self._root if parent: parent.is_leaf = False parent.nodes.append(node) node.parent_node = parent node.level = parent.level + 1 node.fbind('size', self._trigger_layout) self._trigger_layout() return node def remove_node(self, node): '''Removes a node from the tree. .. versionadded:: 1.0.7 :Parameters: `node`: instance of a :class:`TreeViewNode` Node to remove from the tree. If `node` is :attr:`root`, it is not removed. ''' # check if the widget is "ok" for a node if not isinstance(node, TreeViewNode): raise TreeViewException( 'The node must be a subclass of TreeViewNode') parent = node.parent_node if parent is not None: if node == self._selected_node: node.is_selected = False self._selected_node = None nodes = parent.nodes if node in nodes: nodes.remove(node) parent.is_leaf = not bool(len(nodes)) node.parent_node = None node.funbind('size', self._trigger_layout) self._trigger_layout() def on_node_expand(self, node): pass def on_node_collapse(self, node): pass def select_node(self, node): '''Select a node in the tree. ''' if node.no_selection: return if self._selected_node: self._selected_node.is_selected = False node.is_selected = True self._selected_node = node def toggle_node(self, node): '''Toggle the state of the node (open/collapsed). ''' node.is_open = not node.is_open if node.is_open: if self.load_func and not node.is_loaded: self._do_node_load(node) self.dispatch('on_node_expand', node) else: self.dispatch('on_node_collapse', node) self._trigger_layout() def get_node_at_pos(self, pos): '''Get the node at the position (x, y). ''' x, y = pos for node in self.iterate_open_nodes(self.root): if self.x <= x <= self.right and \ node.y <= y <= node.top: return node def iterate_open_nodes(self, node=None): '''Generator to iterate over all the expended nodes starting from `node` and down. If `node` is `None`, the generator start with :attr:`root`. To get all the open nodes:: treeview = TreeView() # ... add nodes ... for node in treeview.iterate_open_nodes(): print(node) ''' if not node: node = self.root if self.hide_root and node is self.root: pass else: yield node if not node.is_open: return f = self.iterate_open_nodes for cnode in node.nodes: for ynode in f(cnode): yield ynode def iterate_all_nodes(self, node=None): '''Generator to iterate over all nodes from `node` and down whether expanded or not. If `node` is `None`, the generator start with :attr:`root`. ''' if not node: node = self.root yield node f = self.iterate_all_nodes for cnode in node.nodes: for ynode in f(cnode): yield ynode # # Private # def on_load_func(self, instance, value): if value: Clock.schedule_once(self._do_initial_load) def _do_initial_load(self, *largs): if not self.load_func: return self._do_node_load(None) def _do_node_load(self, node): gen = self.load_func(self, node) if node: node.is_loaded = True if not gen: return for cnode in gen: self.add_node(cnode, node) def on_root_options(self, instance, value): if not self.root: return for key, value in value.items(): setattr(self.root, key, value) def _do_layout(self, *largs): self.clear_widgets() # display only the one who are is_open self._do_open_node(self.root) # now do layout self._do_layout_node(self.root, 0, self.top) # now iterate for calculating minimum size min_width = min_height = 0 count = 0 for node in self.iterate_open_nodes(self.root): node.odd = False if count % 2 else True count += 1 min_width = max(min_width, node.right - self.x) min_height += node.height self.minimum_size = (min_width, min_height) def _do_open_node(self, node): if self.hide_root and node is self.root: height = 0 else: self.add_widget(node) height = node.height if not node.is_open: return height for cnode in node.nodes: height += self._do_open_node(cnode) return height def _do_layout_node(self, node, level, y): if self.hide_root and node is self.root: level -= 1 else: node.x = self.x + self.indent_start + level * self.indent_level node.top = y if node.size_hint_x: node.width = (self.width - (node.x - self.x)) \ * node.size_hint_x y -= node.height if not node.is_open: return y for cnode in node.nodes: y = self._do_layout_node(cnode, level + 1, y) return y def on_touch_down(self, touch): node = self.get_node_at_pos(touch.pos) if not node: return if node.disabled: return # toggle node or selection ? if node.x - self.indent_start <= touch.x < node.x: self.toggle_node(node) elif node.x <= touch.x: self.select_node(node) node.dispatch('on_touch_down', touch) return True # # Private properties # _root = ObjectProperty(None) _selected_node = ObjectProperty(None, allownone=True) # # Properties # minimum_width = NumericProperty(0) '''Minimum width needed to contain all children. .. versionadded:: 1.0.9 :attr:`minimum_width` is a :class:`kivy.properties.NumericProperty` and defaults to 0. ''' minimum_height = NumericProperty(0) '''Minimum height needed to contain all children. .. versionadded:: 1.0.9 :attr:`minimum_height` is a :class:`kivy.properties.NumericProperty` and defaults to 0. ''' minimum_size = ReferenceListProperty(minimum_width, minimum_height) '''Minimum size needed to contain all children. .. versionadded:: 1.0.9 :attr:`minimum_size` is a :class:`~kivy.properties.ReferenceListProperty` of (:attr:`minimum_width`, :attr:`minimum_height`) properties. ''' indent_level = NumericProperty('16dp') '''Width used for the indentation of each level except the first level. Computation of indent for each level of the tree is:: indent = indent_start + level * indent_level :attr:`indent_level` is a :class:`~kivy.properties.NumericProperty` and defaults to 16. ''' indent_start = NumericProperty('24dp') '''Indentation width of the level 0 / root node. This is mostly the initial size to accommodate a tree icon (collapsed / expanded). See :attr:`indent_level` for more information about the computation of level indentation. :attr:`indent_start` is a :class:`~kivy.properties.NumericProperty` and defaults to 24. ''' hide_root = BooleanProperty(False) '''Use this property to show/hide the initial root node. If True, the root node will be appear as a closed node. :attr:`hide_root` is a :class:`~kivy.properties.BooleanProperty` and defaults to False. ''' def get_selected_node(self): return self._selected_node selected_node = AliasProperty(get_selected_node, None, bind=('_selected_node', )) '''Node selected by :meth:`TreeView.select_node` or by touch. :attr:`selected_node` is a :class:`~kivy.properties.AliasProperty` and defaults to None. It is read-only. ''' def get_root(self): return self._root root = AliasProperty(get_root, None, bind=('_root', )) '''Root node. By default, the root node widget is a :class:`TreeViewLabel` with text 'Root'. If you want to change the default options passed to the widget creation, use the :attr:`root_options` property:: treeview = TreeView(root_options={ 'text': 'Root directory', 'font_size': 15}) :attr:`root_options` will change the properties of the :class:`TreeViewLabel` instance. However, you cannot change the class used for root node yet. :attr:`root` is an :class:`~kivy.properties.AliasProperty` and defaults to None. It is read-only. However, the content of the widget can be changed. ''' root_options = ObjectProperty({}) '''Default root options to pass for root widget. See :attr:`root` property for more information about the usage of root_options. :attr:`root_options` is an :class:`~kivy.properties.ObjectProperty` and defaults to {}. ''' load_func = ObjectProperty(None) '''Callback to use for asynchronous loading. If set, asynchronous loading will be automatically done. The callback must act as a Python generator function, using yield to send data back to the treeview. The callback should be in the format:: def callback(treeview, node): for name in ('Item 1', 'Item 2'): yield TreeViewLabel(text=name) :attr:`load_func` is a :class:`~kivy.properties.ObjectProperty` and defaults to None. ''' if __name__ == '__main__': from kivy.app import App class TestApp(App): def build(self): tv = TreeView(hide_root=True) add = tv.add_node root = add(TreeViewLabel(text='Level 1, entry 1', is_open=True)) for x in range(5): add(TreeViewLabel(text='Element %d' % x), root) root2 = add(TreeViewLabel(text='Level 1, entry 2', is_open=False)) for x in range(24): add(TreeViewLabel(text='Element %d' % x), root2) for x in range(5): add(TreeViewLabel(text='Element %d' % x), root) root2 = add(TreeViewLabel(text='Element childs 2', is_open=False), root) for x in range(24): add(TreeViewLabel(text='Element %d' % x), root2) return tv TestApp().run()
the-stack_106_20250
# -*- coding: utf-8 -*- from django.conf import settings from sys import version_info from yats.api import * def update_permissions_after_migration(app,**kwargs): """ Update app permission just after every migration. This is based on app django_extensions update_permissions management command. """ from django.db.models import get_app, get_models from django.contrib.auth.management import create_permissions create_permissions(get_app(app), get_models(), 2 if settings.DEBUG else 0) version = '@version@' if 'version' in version: VERSION = ('a', 'b', 'c', '', 0) else: VERSION = version.split('.') VERSION.append('') VERSION.append(0) def get_version(): version = '%s.%s' % (VERSION[0], VERSION[1]) if VERSION[2]: version = '%s.%s' % (version, VERSION[2]) if VERSION[3:] == ('alpha', 0): version = '%s pre-alpha' % version else: if VERSION[3] != 'final': version = '%s %s %s' % (version, VERSION[3], VERSION[4]) return version def get_python_version(): version = '%s.%s' % (version_info[0], version_info[1]) if version_info[2]: version = '%s.%s' % (version, version_info[2]) if version_info[3:] == ('alpha', 0): version = '%s pre-alpha' % version else: if version_info[3] != 'final': version = '%s %s %s' % (version, version_info[3], version_info[4]) return version def access_to_settings(request): return {'SETTINGS': settings}
the-stack_106_20251
""" Demo of HMR. Note that HMR requires the bounding box of the person in the image. The best performance is obtained when max length of the person in the image is roughly 150px. When only the image path is supplied, it assumes that the image is centered on a person whose length is roughly 150px. Alternatively, you can supply output of the openpose to figure out the bbox and the right scale factor. Sample usage: # On images on a tightly cropped image around the person python -m demo --img_path data/im1963.jpg python -m demo --img_path data/coco1.png # On images, with openpose output python -m demo --img_path data/random.jpg --json_path data/random_keypoints.json """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from absl import flags import numpy as np import skimage.io as io import tensorflow as tf from src.util import renderer as vis_util from src.util import image as img_util from src.util import openpose as op_util import src.config from src.RunModel import RunModel flags.DEFINE_string('img_path', 'data/im1963.jpg', 'Image to run') flags.DEFINE_string( 'json_path', None, 'If specified, uses the openpose output to crop the image.') def visualize(img, proc_param, joints, verts, cam): """ Renders the result in original image coordinate frame. """ cam_for_render, vert_shifted, joints_orig = vis_util.get_original( proc_param, verts, cam, joints, img_size=img.shape[:2]) # Render results skel_img = vis_util.draw_skeleton(img, joints_orig) rend_img_overlay = renderer( vert_shifted, cam=cam_for_render, img=img, do_alpha=True) rend_img = renderer( vert_shifted, cam=cam_for_render, img_size=img.shape[:2]) rend_img_vp1 = renderer.rotated( vert_shifted, 60, cam=cam_for_render, img_size=img.shape[:2]) rend_img_vp2 = renderer.rotated( vert_shifted, -60, cam=cam_for_render, img_size=img.shape[:2]) import matplotlib.pyplot as plt # plt.ion() plt.figure(1) plt.clf() plt.subplot(231) plt.imshow(img) plt.title('input') plt.axis('off') plt.subplot(232) plt.imshow(skel_img) plt.title('joint projection') plt.axis('off') plt.subplot(233) plt.imshow(rend_img_overlay) plt.title('3D Mesh overlay') plt.axis('off') plt.subplot(234) plt.imshow(rend_img) plt.title('3D mesh') plt.axis('off') plt.subplot(235) plt.imshow(rend_img_vp1) plt.title('diff vp') plt.axis('off') plt.subplot(236) plt.imshow(rend_img_vp2) plt.title('diff vp') plt.axis('off') plt.draw() plt.show() def visualize_all(num_persons, img, proc_params, joints, verts, cam): """ Renders the result in original image coordinate frame. """ skel_img = np.copy(img) rend_img_overlay = np.copy(img) rend_img = np.zeros(shape=img.shape) # rend_img_vp1 = np.zeros(shape=img.shape) # rend_img_vp2 = np.zeros(shape=img.shape) for idx in range(num_persons): cam_for_render, vert_shifted, joints_orig = vis_util.get_original( proc_params[idx], verts[idx], cam[idx], joints[idx], img_size=img.shape[:2]) # Render results skel_img = vis_util.draw_skeleton(skel_img, joints_orig) rend_img_overlay = renderer( vert_shifted, cam=cam_for_render, img=rend_img_overlay, do_alpha=True, color_id=idx) rend_img_overlay = rend_img_overlay[:, :, :3] rend_img = renderer( vert_shifted, cam=cam_for_render, img=rend_img, img_size=img.shape[:2], color_id=idx) # rend_img_vp1 = renderer.rotated( # vert_shifted, 60, cam=cam_for_render, img=rend_img_vp1, img_size=img.shape[:2]) # rend_img_vp2 = renderer.rotated( # vert_shifted, -60, cam=cam_for_render, img=rend_img_vp2, img_size=img.shape[:2]) import matplotlib.pyplot as plt # plt.ion() plt.figure(1) plt.clf() plt.subplot(221) plt.imshow(img) plt.title('Image') plt.axis('off') plt.subplot(222) plt.imshow(skel_img) plt.title('Joints 2D Projection') plt.axis('off') plt.subplot(223) plt.imshow(rend_img_overlay) plt.title('3D Mesh Overlay') plt.axis('off') plt.subplot(224) plt.imshow(rend_img) plt.title('3D Mesh') plt.axis('off') # plt.subplot(235) # plt.imshow(rend_img_vp1) # plt.title('diff vp') # plt.axis('off') # plt.subplot(236) # plt.imshow(rend_img_vp2) # plt.title('diff vp') # plt.axis('off') plt.draw() plt.show() def preprocess_image(img_path, person_bbox=None): img = io.imread(img_path) if img.shape[2] == 4: img = img[:, :, :3] if person_bbox is None: if np.max(img.shape[:2]) != config.img_size: print('Resizing so the max image size is %d..' % config.img_size) scale = (float(config.img_size) / np.max(img.shape[:2])) else: scale = 1. center = np.round(np.array(img.shape[:2]) / 2).astype(int) # image center in (x,y) center = center[::-1] else: x1, y1, x2, y2 = person_bbox center = np.array([(x1 + x2) // 2, (y1 + y2) // 2]) person_height = np.linalg.norm(y2 - y1) scale = 150. / person_height crop, proc_param = img_util.scale_and_crop(img, scale, center, config.img_size) # Normalize image to [-1, 1] crop = 2 * ((crop / 255.) - 0.5) return crop, proc_param, img def main(img_path): sess = tf.compat.v1.Session() # meva_sample_1: person_bboxes = [[171, 102, 225, 244], [63, 71, 104, 199]] # meva sample 2: person_bboxes = [[95, 132, 429, 551], [0, 2, 245, 485], [319, 43, 539, 427]] # meva_sample 3: person_bboxes = [[155, 224, 381, 508], [19, 112, 238, 499], [305, 158, 508, 404]] person_bboxes = [[319, 43, 539, 427], [0, 2, 245, 485], [95, 132, 429, 551]] num_persons = len(person_bboxes) # Demo only processes one image at a time config.batch_size = num_persons model = RunModel(config, sess=sess) input_array = np.zeros(shape=[num_persons, config.img_size, config.img_size, 3]) proc_params = [] for person_idx, person_bbox in enumerate(person_bboxes): input_img, proc_param, img = preprocess_image(img_path, person_bbox) proc_params.append(proc_param) # Add batch dimension: 1 x D x D x 3 input_array[person_idx] = input_img #input_img = np.expand_dims(input_img, 0) # Theta is the 85D vector holding [camera, pose, shape] # where camera is 3D [s, tx, ty] # pose is 72D vector holding the rotation of 24 joints of SMPL in axis angle format # shape is 10D shape coefficients of SMPL joints, verts, cams, joints3d, theta = model.predict( input_array, get_theta=True) visualize_all(num_persons, img, proc_params, joints, verts, cams) if __name__ == '__main__': config = flags.FLAGS config(sys.argv) # Using pre-trained model, change this to use your own. config.load_path = src.config.PRETRAINED_MODEL # Global renderer needs to be declared renderer = vis_util.SMPLRenderer(face_path=config.smpl_face_path) main(config.img_path)
the-stack_106_20252
import re import dns.resolver import tldextract from app.plugin.data.dns_provider import DNS_PROVIDER __plugin__ = "DNS Scanner" SEQUENCE = 1 RESOLVER_NAMESERVERS = ["223.5.5.5", "1.1.1.1", "114.114.114.114"] RESOLVER_TIMEOUT = 2 RESOLVER_LIFETIME = 8 def run(url): scan_result = {"name": __plugin__, "sequence": SEQUENCE, "result": []} error_result = {"name": __plugin__, "sequence": SEQUENCE, "result": []} error_result["result"] = [ {"name": "Error", "result": [{"name": f"{__plugin__} can't scan this website"}]} ] result_map = { "providers": {"name": "DNS providers", "sequence": 0, "result": []}, "ns_server": {"name": "NS servers", "sequence": 1, "result": []}, } providers = [] try: registered_domain = tldextract.extract(url.netloc).registered_domain resolver = dns.resolver.Resolver(configure=False) resolver.nameservers = RESOLVER_NAMESERVERS resolver.timeout = RESOLVER_TIMEOUT resolver.lifetime = RESOLVER_LIFETIME answers = resolver.query(registered_domain, rdtype=dns.rdatatype.NS) for answer in answers: result_map["ns_server"]["result"].append(answer.to_text()) except dns.resolver.Timeout: error_result["result"][0]["result"] = f"{__plugin__} scan timeout" return error_result except: return error_result for ns_server in result_map["ns_server"]["result"]: for dns_provider in DNS_PROVIDER: if re.search(f"\\.{dns_provider}", ns_server): providers.append(DNS_PROVIDER[dns_provider]) result_map["providers"]["result"] = list(set(providers)) if providers else ["Unknown"] for result in result_map.values(): result["result"] = [{"name": item} for item in result["result"]] scan_result["result"] = sorted( [item for item in result_map.values()], key=lambda x: x.get("sequence", 0) ) return scan_result
the-stack_106_20254
import sys import time import rospy from sensor_msgs.msg import Image as msg_Image from sensor_msgs.msg import PointCloud2 as msg_PointCloud2 import sensor_msgs.point_cloud2 as pc2 from sensor_msgs.msg import Imu as msg_Imu import numpy as np from cv_bridge import CvBridge, CvBridgeError import inspect import ctypes import struct import tf try: from theora_image_transport.msg import Packet as msg_theora except Exception: pass def pc2_to_xyzrgb(point): # Thanks to Panos for his code used in this function. x, y, z = point[:3] rgb = point[3] # cast float32 to int so that bitwise operations are possible s = struct.pack('>f', rgb) i = struct.unpack('>l', s)[0] # you can get back the float value by the inverse operations pack = ctypes.c_uint32(i).value r = (pack & 0x00FF0000) >> 16 g = (pack & 0x0000FF00) >> 8 b = (pack & 0x000000FF) return x, y, z, r, g, b class CWaitForMessage: def __init__(self, params={}): self.result = None self.break_timeout = False self.timeout = params.get('timeout_secs', -1) * 1e-3 self.seq = params.get('seq', -1) self.time = params.get('time', None) self.node_name = params.get('node_name', 'rs2_listener') self.bridge = CvBridge() self.listener = None self.prev_msg_time = 0 self.fout = None self.themes = {'depthStream': {'topic': '/camera/depth/image_rect_raw', 'callback': self.imageColorCallback, 'msg_type': msg_Image}, 'colorStream': {'topic': '/camera/color/image_raw', 'callback': self.imageColorCallback, 'msg_type': msg_Image}, 'pointscloud': {'topic': '/camera/depth/color/points', 'callback': self.pointscloudCallback, 'msg_type': msg_PointCloud2}, 'alignedDepthInfra1': {'topic': '/camera/aligned_depth_to_infra1/image_raw', 'callback': self.imageColorCallback, 'msg_type': msg_Image}, 'alignedDepthColor': {'topic': '/camera/aligned_depth_to_color/image_raw', 'callback': self.imageColorCallback, 'msg_type': msg_Image}, 'static_tf': {'topic': '/camera/color/image_raw', 'callback': self.imageColorCallback, 'msg_type': msg_Image}, 'accelStream': {'topic': '/camera/accel/sample', 'callback': self.imuCallback, 'msg_type': msg_Imu}, } self.func_data = dict() def imuCallback(self, theme_name): def _imuCallback(data): if self.listener is None: self.listener = tf.TransformListener() self.prev_time = time.time() self.func_data[theme_name].setdefault('value', []) self.func_data[theme_name].setdefault('ros_value', []) try: frame_id = data.header.frame_id value = data.linear_acceleration (trans,rot) = self.listener.lookupTransform('/camera_link', frame_id, rospy.Time(0)) quat = tf.transformations.quaternion_matrix(rot) point = np.matrix([value.x, value.y, value.z, 1], dtype='float32') point.resize((4, 1)) rotated = quat*point rotated.resize(1,4) rotated = np.array(rotated)[0][:3] except Exception as e: print(e) return self.func_data[theme_name]['value'].append(value) self.func_data[theme_name]['ros_value'].append(rotated) return _imuCallback def imageColorCallback(self, theme_name): def _imageColorCallback(data): self.prev_time = time.time() self.func_data[theme_name].setdefault('avg', []) self.func_data[theme_name].setdefault('ok_percent', []) self.func_data[theme_name].setdefault('num_channels', []) self.func_data[theme_name].setdefault('shape', []) self.func_data[theme_name].setdefault('reported_size', []) try: cv_image = self.bridge.imgmsg_to_cv2(data, data.encoding) except CvBridgeError as e: print(e) return channels = cv_image.shape[2] if len(cv_image.shape) > 2 else 1 pyimg = np.asarray(cv_image) ok_number = (pyimg != 0).sum() self.func_data[theme_name]['avg'].append(pyimg.sum() / ok_number) self.func_data[theme_name]['ok_percent'].append(float(ok_number) / (pyimg.shape[0] * pyimg.shape[1]) / channels) self.func_data[theme_name]['num_channels'].append(channels) self.func_data[theme_name]['shape'].append(cv_image.shape) self.func_data[theme_name]['reported_size'].append((data.width, data.height, data.step)) return _imageColorCallback def imageDepthCallback(self, data): pass def pointscloudCallback(self, theme_name): def _pointscloudCallback(data): self.prev_time = time.time() print ('Got pointcloud: %d, %d' % (data.width, data.height)) self.func_data[theme_name].setdefault('frame_counter', 0) self.func_data[theme_name].setdefault('avg', []) self.func_data[theme_name].setdefault('size', []) self.func_data[theme_name].setdefault('width', []) self.func_data[theme_name].setdefault('height', []) # until parsing pointcloud is done in real time, I'll use only the first frame. self.func_data[theme_name]['frame_counter'] += 1 if self.func_data[theme_name]['frame_counter'] == 1: # Known issue - 1st pointcloud published has invalid texture. Skip 1st frame. return try: points = np.array([pc2_to_xyzrgb(pp) for pp in pc2.read_points(data, skip_nans=True, field_names=("x", "y", "z", "rgb")) if pp[0] > 0]) except Exception as e: print(e) return self.func_data[theme_name]['avg'].append(points.mean(0)) self.func_data[theme_name]['size'].append(len(points)) self.func_data[theme_name]['width'].append(data.width) self.func_data[theme_name]['height'].append(data.height) return _pointscloudCallback def wait_for_message(self, params, msg_type=msg_Image): topic = params['topic'] print ('connect to ROS with name: %s' % self.node_name) rospy.init_node(self.node_name, anonymous=True) out_filename = params.get('filename', None) if (out_filename): self.fout = open(out_filename, 'w') if msg_type is msg_Imu: col_w = 20 print ('Writing to file: %s' % out_filename) columns = ['frame_number', 'frame_time(sec)', 'accel.x', 'accel.y', 'accel.z', 'gyro.x', 'gyro.y', 'gyro.z'] line = ('{:<%d}'*len(columns) % (col_w, col_w, col_w, col_w, col_w, col_w, col_w, col_w)).format(*columns) + '\n' sys.stdout.write(line) self.fout.write(line) rospy.loginfo('Subscribing on topic: %s' % topic) self.sub = rospy.Subscriber(topic, msg_type, self.callback) self.prev_time = time.time() break_timeout = False while not any([rospy.core.is_shutdown(), break_timeout, self.result]): rospy.rostime.wallsleep(0.5) if self.timeout > 0 and time.time() - self.prev_time > self.timeout: break_timeout = True self.sub.unregister() return self.result @staticmethod def unregister_all(registers): for test_name in registers: rospy.loginfo('Un-Subscribing test %s' % test_name) registers[test_name]['sub'].unregister() def wait_for_messages(self, themes): # tests_params = {<name>: {'callback', 'topic', 'msg_type', 'internal_params'}} self.func_data = dict([[theme_name, {}] for theme_name in themes]) print ('connect to ROS with name: %s' % self.node_name) rospy.init_node(self.node_name, anonymous=True) for theme_name in themes: theme = self.themes[theme_name] rospy.loginfo('Subscribing %s on topic: %s' % (theme_name, theme['topic'])) self.func_data[theme_name]['sub'] = rospy.Subscriber(theme['topic'], theme['msg_type'], theme['callback'](theme_name)) self.prev_time = time.time() break_timeout = False while not any([rospy.core.is_shutdown(), break_timeout]): rospy.rostime.wallsleep(0.5) if self.timeout > 0 and time.time() - self.prev_time > self.timeout: break_timeout = True self.unregister_all(self.func_data) return self.func_data def callback(self, data): msg_time = data.header.stamp.secs + 1e-9 * data.header.stamp.nsecs if (self.prev_msg_time > msg_time): rospy.loginfo('Out of order: %.9f > %.9f' % (self.prev_msg_time, msg_time)) if type(data) == msg_Imu: col_w = 20 frame_number = data.header.seq accel = data.linear_acceleration gyro = data.angular_velocity line = ('\n{:<%d}{:<%d.6f}{:<%d.4f}{:<%d.4f}{:<%d.4f}{:<%d.4f}{:<%d.4f}{:<%d.4f}' % (col_w, col_w, col_w, col_w, col_w, col_w, col_w, col_w)).format(frame_number, msg_time, accel.x, accel.y, accel.z, gyro.x, gyro.y, gyro.z) sys.stdout.write(line) if self.fout: self.fout.write(line) self.prev_msg_time = msg_time self.prev_msg_data = data self.prev_time = time.time() if any([self.seq < 0 and self.time is None, self.seq > 0 and data.header.seq >= self.seq, self.time and data.header.stamp.secs == self.time['secs'] and data.header.stamp.nsecs == self.time['nsecs']]): self.result = data self.sub.unregister() def main(): if len(sys.argv) < 2 or '--help' in sys.argv or '/?' in sys.argv: print ('USAGE:') print ('------') print ('rs2_listener.py <topic | theme> [Options]') print ('example: rs2_listener.py /camera/color/image_raw --time 1532423022.044515610 --timeout 3') print ('example: rs2_listener.py pointscloud') print ('') print ('Application subscribes on <topic>, wait for the first message matching [Options].') print ('When found, prints the timestamp.') print print ('[Options:]') print ('-s <sequential number>') print ('--time <secs.nsecs>') print ('--timeout <secs>') print ('--filename <filename> : write output to file') exit(-1) # wanted_topic = '/device_0/sensor_0/Depth_0/image/data' # wanted_seq = 58250 wanted_topic = sys.argv[1] msg_params = {} if 'points' in wanted_topic: msg_type = msg_PointCloud2 elif ('imu' in wanted_topic) or ('gyro' in wanted_topic) or ('accel' in wanted_topic): msg_type = msg_Imu elif 'theora' in wanted_topic: try: msg_type = msg_theora except NameError as e: print ('theora_image_transport is not installed. \nType "sudo apt-get install ros-kinetic-theora-image-transport" to enable registering on messages of type theora.') raise else: msg_type = msg_Image for idx in range(2, len(sys.argv)): if sys.argv[idx] == '-s': msg_params['seq'] = int(sys.argv[idx + 1]) if sys.argv[idx] == '--time': msg_params['time'] = dict(zip(['secs', 'nsecs'], [int(part) for part in sys.argv[idx + 1].split('.')])) if sys.argv[idx] == '--timeout': msg_params['timeout_secs'] = int(sys.argv[idx + 1]) if sys.argv[idx] == '--filename': msg_params['filename'] = sys.argv[idx+1] msg_retriever = CWaitForMessage(msg_params) if '/' in wanted_topic: msg_params.setdefault('topic', wanted_topic) res = msg_retriever.wait_for_message(msg_params, msg_type) rospy.loginfo('Got message: %s' % res.header) else: themes = [wanted_topic] res = msg_retriever.wait_for_messages(themes) print (res) if __name__ == '__main__': main()
the-stack_106_20258
""" Extending the Button Context Menu +++++++++++++++++++++++++++++++++ This example enables you to insert your own menu entry into the common right click menu that you get while hovering over a value field, color, string, etc. To make the example work, you have to first select an object then right click on an user interface element (maybe a color in the material properties) and choose *Execute Custom Action*. Executing the operator will then print all values. """ import bpy from bpy.types import Menu def dump(obj, text): for attr in dir(obj): print("%r.%s = %s" % (obj, attr, getattr(obj, attr))) class WM_OT_button_context_test(bpy.types.Operator): """Right click entry test""" bl_idname = "wm.button_context_test" bl_label = "Run Context Test" @classmethod def poll(cls, context): return context.active_object is not None def execute(self, context): value = getattr(context, "button_pointer", None) if value is not None: dump(value, "button_pointer") value = getattr(context, "button_prop", None) if value is not None: dump(value, "button_prop") value = getattr(context, "button_operator", None) if value is not None: dump(value, "button_operator") return {'FINISHED'} # This class has to be exactly named like that to insert an entry in the right click menu class WM_MT_button_context(Menu): bl_label = "Unused" def draw(self, context): pass def menu_func(self, context): layout = self.layout layout.separator() layout.operator(WM_OT_button_context_test.bl_idname) classes = ( WM_OT_button_context_test, WM_MT_button_context, ) def register(): for cls in classes: bpy.utils.register_class(cls) bpy.types.WM_MT_button_context.append(menu_func) def unregister(): for cls in classes: bpy.utils.unregister_class(cls) bpy.types.WM_MT_button_context.remove(menu_func) if __name__ == "__main__": register()
the-stack_106_20260
import json STATUSES = { 200: "OK", 400: "Bad requests", 409: "Nick already exists", 410: "Wrong nick", 403: "Forbidden", 418: "Unclassified error" } class ProtocolException(Exception): def __init__(self, message): super().__init__(message, None) def form_service(attr={}): service_message = {"type": "service"} service_message.update(attr) return service_message def update_service(service, attr): service.update(attr) return service # form status. ext_inf must be str with error info. # message_id must be id of delievered message. # if message id not passed to function, result will not # contain "messageId" field def new_status(code=200, ext_inf=None, message_id=None): status = form_service({"status": code}) if code != 200: status["error_code"] = code if ext_inf != None: status["error_info"] = ext_inf else: status["error_info"] = STATUSES[code] if message_id != None: status["messageId"] = message_id return status # form message dict from string def form_message(attr={}): message = {"type": "message"} message.update(attr) return message # the "message" arg must be dict (e.g. {"type":"message", "message": "bla-bla"}) # of string that contains text of message (e.g. "bla-bla") def new_message(message): if type(message) == str: message = {"message": message} return form_message(message) def dump(message): return json.dumps(message) def load(json_protocol): try: parsed_protocol = json.loads(json_protocol) _type = parsed_protocol["type"] return _type == "message", parsed_protocol except json.JSONDecodeError: raise ProtocolException("Non-JSON message detected") except KeyError: raise ProtocolException('Missing "type" field') def check_error(parsed_protocol): if parsed_protocol["status"] // 100 == 2: return None return parsed_protocol["error_info"]
the-stack_106_20261
import onmt import torch import argparse import math parser = argparse.ArgumentParser(description='translate.py') parser.add_argument('-model', required=True, help='Path to model .pt file') parser.add_argument('-src', required=True, help='Source sequence to decode (one line per sequence)') parser.add_argument('-tgt', help='True target sequence (optional)') parser.add_argument('-output', default='pred.txt', help="""Path to output the predictions (each line will be the decoded sequence""") parser.add_argument('-beam_size', type=int, default=5, help='Beam size') parser.add_argument('-batch_size', type=int, default=30, help='Batch size') parser.add_argument('-max_sent_length', default=100, help='Maximum sentence length.') parser.add_argument('-replace_unk', action="store_true", help="""Replace the generated UNK tokens with the source token that had the highest attention weight. If phrase_table is provided, it will lookup the identified source token and give the corresponding target token. If it is not provided (or the identified source token does not exist in the table) then it will copy the source token""") # parser.add_argument('-phrase_table', # help="""Path to source-target dictionary to replace UNK # tokens. See README.md for the format of this file.""") parser.add_argument('-verbose', action="store_true", help='Print scores and predictions for each sentence') parser.add_argument('-n_best', type=int, default=1, help="""If verbose is set, will output the n_best decoded sentences""") parser.add_argument('-gpu', type=int, default=-1, help="Device to run on") def reportScore(name, scoreTotal, wordsTotal): print("%s AVG SCORE: %.4f, %s PPL: %.4f" % ( name, scoreTotal / wordsTotal, name, math.exp(-scoreTotal/wordsTotal))) def addone(f): for line in f: yield line yield None def main(): opt = parser.parse_args() opt.cuda = opt.gpu > -1 if opt.cuda: torch.cuda.set_device(opt.gpu) translator = onmt.Translator(opt) outF = open(opt.output, 'w') predScoreTotal, predWordsTotal, goldScoreTotal, goldWordsTotal = 0, 0, 0, 0 srcBatch, tgtBatch = [], [] count = 0 tgtF = open(opt.tgt) if opt.tgt else None for line in addone(open(opt.src)): if line is not None: srcTokens = line.split() srcBatch += [srcTokens] if tgtF: tgtTokens = tgtF.readline().split() if tgtF else None tgtBatch += [tgtTokens] if len(srcBatch) < opt.batch_size: continue else: # at the end of file, check last batch if len(srcBatch) == 0: break predBatch, predScore, goldScore = translator.translate(srcBatch, tgtBatch) predScoreTotal += sum(score[0] for score in predScore) predWordsTotal += sum(len(x[0]) for x in predBatch) if tgtF is not None: goldScoreTotal += sum(goldScore) goldWordsTotal += sum(len(x) for x in tgtBatch) for b in range(len(predBatch)): count += 1 outF.write(" ".join(predBatch[b][0]) + '\n') outF.flush() if opt.verbose: srcSent = ' '.join(srcBatch[b]) if translator.tgt_dict.lower: srcSent = srcSent.lower() print('SENT %d: %s' % (count, srcSent)) print('PRED %d: %s' % (count, " ".join(predBatch[b][0]))) print("PRED SCORE: %.4f" % predScore[b][0]) if tgtF is not None: tgtSent = ' '.join(tgtBatch[b]) if translator.tgt_dict.lower: tgtSent = tgtSent.lower() print('GOLD %d: %s ' % (count, tgtSent)) print("GOLD SCORE: %.4f" % goldScore[b]) if opt.n_best > 1: print('\nBEST HYP:') for n in range(opt.n_best): print("[%.4f] %s" % (predScore[b][n], " ".join(predBatch[b][n]))) print('') srcBatch, tgtBatch = [], [] reportScore('PRED', predScoreTotal, predWordsTotal) if tgtF: reportScore('GOLD', goldScoreTotal, goldWordsTotal) if tgtF: tgtF.close() if __name__ == "__main__": main()
the-stack_106_20262
# Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # Marijn van Vliet <[email protected]> # Jona Sassenhagen <[email protected]> # Teon Brooks <[email protected]> # # License: Simplified BSD import logging from collections import defaultdict from itertools import combinations import os.path as op import numpy as np from ..transforms import _polar_to_cartesian, _cartesian_to_sphere from ..bem import fit_sphere_to_headshape from ..io.pick import pick_types from ..io.constants import FIFF from ..io.meas_info import Info from ..utils import _clean_names, warn from ..externals.six.moves import map class Layout(object): """Sensor layouts Layouts are typically loaded from a file using read_layout. Only use this class directly if you're constructing a new layout. Parameters ---------- box : tuple of length 4 The box dimension (x_min, x_max, y_min, y_max). pos : array, shape=(n_channels, 4) The positions of the channels in 2d (x, y, width, height). names : list The channel names. ids : list The channel ids. kind : str The type of Layout (e.g. 'Vectorview-all'). """ def __init__(self, box, pos, names, ids, kind): self.box = box self.pos = pos self.names = names self.ids = ids self.kind = kind def save(self, fname): """Save Layout to disk Parameters ---------- fname : str The file name (e.g. 'my_layout.lout'). See Also -------- read_layout """ x = self.pos[:, 0] y = self.pos[:, 1] width = self.pos[:, 2] height = self.pos[:, 3] if fname.endswith('.lout'): out_str = '%8.2f %8.2f %8.2f %8.2f\n' % self.box elif fname.endswith('.lay'): out_str = '' else: raise ValueError('Unknown layout type. Should be of type ' '.lout or .lay.') for ii in range(x.shape[0]): out_str += ('%03d %8.2f %8.2f %8.2f %8.2f %s\n' % (self.ids[ii], x[ii], y[ii], width[ii], height[ii], self.names[ii])) f = open(fname, 'w') f.write(out_str) f.close() def __repr__(self): return '<Layout | %s - Channels: %s ...>' % (self.kind, ', '.join(self.names[:3])) def plot(self, show=True): """Plot the sensor positions. Parameters ---------- show : bool Show figure if True. Defaults to True. Returns ------- fig : instance of matplotlib figure Figure containing the sensor topography. Notes ----- .. versionadded:: 0.12.0 """ from ..viz.topomap import plot_layout return plot_layout(self, show=show) def _read_lout(fname): """Aux function""" with open(fname) as f: box_line = f.readline() # first line contains box dimension box = tuple(map(float, box_line.split())) names, pos, ids = [], [], [] for line in f: splits = line.split() if len(splits) == 7: cid, x, y, dx, dy, chkind, nb = splits name = chkind + ' ' + nb else: cid, x, y, dx, dy, name = splits pos.append(np.array([x, y, dx, dy], dtype=np.float)) names.append(name) ids.append(int(cid)) pos = np.array(pos) return box, pos, names, ids def _read_lay(fname): """Aux function""" with open(fname) as f: box = None names, pos, ids = [], [], [] for line in f: splits = line.split() if len(splits) == 7: cid, x, y, dx, dy, chkind, nb = splits name = chkind + ' ' + nb else: cid, x, y, dx, dy, name = splits pos.append(np.array([x, y, dx, dy], dtype=np.float)) names.append(name) ids.append(int(cid)) pos = np.array(pos) return box, pos, names, ids def read_layout(kind, path=None, scale=True): """Read layout from a file Parameters ---------- kind : str The name of the .lout file (e.g. kind='Vectorview-all' for 'Vectorview-all.lout'). path : str | None The path of the folder containing the Layout file. Defaults to the mne/channels/data/layouts folder inside your mne-python installation. scale : bool Apply useful scaling for out the box plotting using layout.pos. Defaults to True. Returns ------- layout : instance of Layout The layout. See Also -------- Layout.save """ if path is None: path = op.join(op.dirname(__file__), 'data', 'layouts') if not kind.endswith('.lout') and op.exists(op.join(path, kind + '.lout')): kind += '.lout' elif not kind.endswith('.lay') and op.exists(op.join(path, kind + '.lay')): kind += '.lay' if kind.endswith('.lout'): fname = op.join(path, kind) kind = kind[:-5] box, pos, names, ids = _read_lout(fname) elif kind.endswith('.lay'): fname = op.join(path, kind) kind = kind[:-4] box, pos, names, ids = _read_lay(fname) kind.endswith('.lay') else: raise ValueError('Unknown layout type. Should be of type ' '.lout or .lay.') if scale: pos[:, 0] -= np.min(pos[:, 0]) pos[:, 1] -= np.min(pos[:, 1]) scaling = max(np.max(pos[:, 0]), np.max(pos[:, 1])) + pos[0, 2] pos /= scaling pos[:, :2] += 0.03 pos[:, :2] *= 0.97 / 1.03 pos[:, 2:] *= 0.94 return Layout(box=box, pos=pos, names=names, kind=kind, ids=ids) def make_eeg_layout(info, radius=0.5, width=None, height=None, exclude='bads'): """Create .lout file from EEG electrode digitization Parameters ---------- info : instance of Info Measurement info (e.g., raw.info). radius : float Viewport radius as a fraction of main figure height. Defaults to 0.5. width : float | None Width of sensor axes as a fraction of main figure height. By default, this will be the maximum width possible without axes overlapping. height : float | None Height of sensor axes as a fraction of main figure height. By default, this will be the maximum height possible withough axes overlapping. exclude : list of string | str List of channels to exclude. If empty do not exclude any. If 'bads', exclude channels in info['bads'] (default). Returns ------- layout : Layout The generated Layout. See Also -------- make_grid_layout, generate_2d_layout """ if not (0 <= radius <= 0.5): raise ValueError('The radius parameter should be between 0 and 0.5.') if width is not None and not (0 <= width <= 1.0): raise ValueError('The width parameter should be between 0 and 1.') if height is not None and not (0 <= height <= 1.0): raise ValueError('The height parameter should be between 0 and 1.') picks = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude=exclude) loc2d = _auto_topomap_coords(info, picks) names = [info['chs'][i]['ch_name'] for i in picks] # Scale [x, y] to [-0.5, 0.5] loc2d_min = np.min(loc2d, axis=0) loc2d_max = np.max(loc2d, axis=0) loc2d = (loc2d - (loc2d_max + loc2d_min) / 2.) / (loc2d_max - loc2d_min) # If no width or height specified, calculate the maximum value possible # without axes overlapping. if width is None or height is None: width, height = _box_size(loc2d, width, height, padding=0.1) # Scale to viewport radius loc2d *= 2 * radius # Some subplot centers will be at the figure edge. Shrink everything so it # fits in the figure. scaling = min(1 / (1. + width), 1 / (1. + height)) loc2d *= scaling width *= scaling height *= scaling # Shift to center loc2d += 0.5 n_channels = loc2d.shape[0] pos = np.c_[loc2d[:, 0] - 0.5 * width, loc2d[:, 1] - 0.5 * height, width * np.ones(n_channels), height * np.ones(n_channels)] box = (0, 1, 0, 1) ids = 1 + np.arange(n_channels) layout = Layout(box=box, pos=pos, names=names, kind='EEG', ids=ids) return layout def make_grid_layout(info, picks=None, n_col=None): """ Generate .lout file for custom data, i.e., ICA sources Parameters ---------- info : instance of Info | None Measurement info (e.g., raw.info). If None, default names will be employed. picks : array-like of int | None The indices of the channels to be included. If None, al misc channels will be included. n_col : int | None Number of columns to generate. If None, a square grid will be produced. Returns ------- layout : Layout The generated layout. See Also -------- make_eeg_layout, generate_2d_layout """ if picks is None: picks = pick_types(info, misc=True, ref_meg=False, exclude='bads') names = [info['chs'][k]['ch_name'] for k in picks] if not names: raise ValueError('No misc data channels found.') ids = list(range(len(picks))) size = len(picks) if n_col is None: # prepare square-like layout n_row = n_col = np.sqrt(size) # try square if n_col % 1: # try n * (n-1) rectangle n_col, n_row = int(n_col + 1), int(n_row) if n_col * n_row < size: # jump to the next full square n_row += 1 else: n_row = int(np.ceil(size / float(n_col))) # setup position grid x, y = np.meshgrid(np.linspace(-0.5, 0.5, n_col), np.linspace(-0.5, 0.5, n_row)) x, y = x.ravel()[:size], y.ravel()[:size] width, height = _box_size(np.c_[x, y], padding=0.1) # Some axes will be at the figure edge. Shrink everything so it fits in the # figure. Add 0.01 border around everything border_x, border_y = (0.01, 0.01) x_scaling = 1 / (1. + width + border_x) y_scaling = 1 / (1. + height + border_y) x = x * x_scaling y = y * y_scaling width *= x_scaling height *= y_scaling # Shift to center x += 0.5 y += 0.5 # calculate pos pos = np.c_[x - 0.5 * width, y - 0.5 * height, width * np.ones(size), height * np.ones(size)] box = (0, 1, 0, 1) layout = Layout(box=box, pos=pos, names=names, kind='grid-misc', ids=ids) return layout def find_layout(info, ch_type=None, exclude='bads'): """Choose a layout based on the channels in the info 'chs' field Parameters ---------- info : instance of Info The measurement info. ch_type : {'mag', 'grad', 'meg', 'eeg'} | None The channel type for selecting single channel layouts. Defaults to None. Note, this argument will only be considered for VectorView type layout. Use `meg` to force using the full layout in situations where the info does only contain one sensor type. exclude : list of string | str List of channels to exclude. If empty do not exclude any. If 'bads', exclude channels in info['bads'] (default). Returns ------- layout : Layout instance | None None if layout not found. """ our_types = ' or '.join(['`None`', '`mag`', '`grad`', '`meg`']) if ch_type not in (None, 'meg', 'mag', 'grad', 'eeg'): raise ValueError('Invalid channel type (%s) requested ' '`ch_type` must be %s' % (ch_type, our_types)) chs = info['chs'] coil_types = set([ch['coil_type'] for ch in chs]) channel_types = set([ch['kind'] for ch in chs]) has_vv_mag = any(k in coil_types for k in [FIFF.FIFFV_COIL_VV_MAG_T1, FIFF.FIFFV_COIL_VV_MAG_T2, FIFF.FIFFV_COIL_VV_MAG_T3]) has_vv_grad = any(k in coil_types for k in [FIFF.FIFFV_COIL_VV_PLANAR_T1, FIFF.FIFFV_COIL_VV_PLANAR_T2, FIFF.FIFFV_COIL_VV_PLANAR_T3]) has_vv_meg = has_vv_mag and has_vv_grad has_vv_only_mag = has_vv_mag and not has_vv_grad has_vv_only_grad = has_vv_grad and not has_vv_mag is_old_vv = ' ' in chs[0]['ch_name'] has_4D_mag = FIFF.FIFFV_COIL_MAGNES_MAG in coil_types ctf_other_types = (FIFF.FIFFV_COIL_CTF_REF_MAG, FIFF.FIFFV_COIL_CTF_REF_GRAD, FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD) has_CTF_grad = (FIFF.FIFFV_COIL_CTF_GRAD in coil_types or (FIFF.FIFFV_MEG_CH in channel_types and any(k in ctf_other_types for k in coil_types))) # hack due to MNE-C bug in IO of CTF n_kit_grads = sum(ch['coil_type'] == FIFF.FIFFV_COIL_KIT_GRAD for ch in chs) has_any_meg = any([has_vv_mag, has_vv_grad, has_4D_mag, has_CTF_grad, n_kit_grads]) has_eeg_coils = (FIFF.FIFFV_COIL_EEG in coil_types and FIFF.FIFFV_EEG_CH in channel_types) has_eeg_coils_and_meg = has_eeg_coils and has_any_meg has_eeg_coils_only = has_eeg_coils and not has_any_meg if ch_type == "meg" and not has_any_meg: raise RuntimeError('No MEG channels present. Cannot find MEG layout.') if ch_type == "eeg" and not has_eeg_coils: raise RuntimeError('No EEG channels present. Cannot find EEG layout.') if ((has_vv_meg and ch_type is None) or (any([has_vv_mag, has_vv_grad]) and ch_type == 'meg')): layout_name = 'Vectorview-all' elif has_vv_only_mag or (has_vv_meg and ch_type == 'mag'): layout_name = 'Vectorview-mag' elif has_vv_only_grad or (has_vv_meg and ch_type == 'grad'): if info['ch_names'][0].endswith('X'): layout_name = 'Vectorview-grad_norm' else: layout_name = 'Vectorview-grad' elif ((has_eeg_coils_only and ch_type in [None, 'eeg']) or (has_eeg_coils_and_meg and ch_type == 'eeg')): if not isinstance(info, (dict, Info)): raise RuntimeError('Cannot make EEG layout, no measurement info ' 'was passed to `find_layout`') return make_eeg_layout(info, exclude=exclude) elif has_4D_mag: layout_name = 'magnesWH3600' elif has_CTF_grad: layout_name = 'CTF-275' elif n_kit_grads > 0: layout_name = _find_kit_layout(info, n_kit_grads) else: return None layout = read_layout(layout_name) if not is_old_vv: layout.names = _clean_names(layout.names, remove_whitespace=True) if has_CTF_grad: layout.names = _clean_names(layout.names, before_dash=True) return layout def _find_kit_layout(info, n_grads): """Determine the KIT layout Parameters ---------- info : Info Info object. n_grads : int Number of KIT-gradiometers in the info. Returns ------- kit_layout : str One of 'KIT-AD', 'KIT-157' or 'KIT-UMD'. """ if info['kit_system_id'] is not None: # avoid circular import from ..io.kit.constants import KIT_LAYOUT if info['kit_system_id'] in KIT_LAYOUT: kit_layout = KIT_LAYOUT[info['kit_system_id']] if kit_layout is not None: return kit_layout raise NotImplementedError("The layout for the KIT system with ID %i " "is missing. Please contact the developers " "about adding it." % info['kit_system_id']) elif n_grads > 157: return 'KIT-AD' # channels which are on the left hemisphere for NY and right for UMD test_chs = ('MEG 13', 'MEG 14', 'MEG 15', 'MEG 16', 'MEG 25', 'MEG 26', 'MEG 27', 'MEG 28', 'MEG 29', 'MEG 30', 'MEG 31', 'MEG 32', 'MEG 57', 'MEG 60', 'MEG 61', 'MEG 62', 'MEG 63', 'MEG 64', 'MEG 73', 'MEG 90', 'MEG 93', 'MEG 95', 'MEG 96', 'MEG 105', 'MEG 112', 'MEG 120', 'MEG 121', 'MEG 122', 'MEG 123', 'MEG 124', 'MEG 125', 'MEG 126', 'MEG 142', 'MEG 144', 'MEG 153', 'MEG 154', 'MEG 155', 'MEG 156') x = [ch['loc'][0] < 0 for ch in info['chs'] if ch['ch_name'] in test_chs] if np.all(x): return 'KIT-157' # KIT-NY elif np.all(np.invert(x)): raise NotImplementedError("Guessing sensor layout for legacy UMD " "files is not implemented. Please convert " "your files using MNE-Python 0.13 or " "higher.") else: raise RuntimeError("KIT system could not be determined for data") def _box_size(points, width=None, height=None, padding=0.0): """ Given a series of points, calculate an appropriate box size. Parameters ---------- points : array, shape (n_points, 2) The centers of the axes as a list of (x, y) coordinate pairs. Normally these are points in the range [0, 1] centered at 0.5. width : float | None An optional box width to enforce. When set, only the box height will be calculated by the function. height : float | None An optional box height to enforce. When set, only the box width will be calculated by the function. padding : float Portion of the box to reserve for padding. The value can range between 0.0 (boxes will touch, default) to 1.0 (boxes consist of only padding). Returns ------- width : float Width of the box height : float Height of the box """ from scipy.spatial.distance import pdist def xdiff(a, b): return np.abs(a[0] - b[0]) def ydiff(a, b): return np.abs(a[1] - b[1]) points = np.asarray(points) all_combinations = list(combinations(points, 2)) if width is None and height is None: if len(points) <= 1: # Trivial case first width = 1.0 height = 1.0 else: # Find the closest two points A and B. a, b = all_combinations[np.argmin(pdist(points))] # The closest points define either the max width or max height. w, h = xdiff(a, b), ydiff(a, b) if w > h: width = w else: height = h # At this point, either width or height is known, or both are known. if height is None: # Find all axes that could potentially overlap horizontally. hdist = pdist(points, xdiff) candidates = [all_combinations[i] for i, d in enumerate(hdist) if d < width] if len(candidates) == 0: # No axes overlap, take all the height you want. height = 1.0 else: # Find an appropriate height so all none of the found axes will # overlap. height = np.min([ydiff(*c) for c in candidates]) elif width is None: # Find all axes that could potentially overlap vertically. vdist = pdist(points, ydiff) candidates = [all_combinations[i] for i, d in enumerate(vdist) if d < height] if len(candidates) == 0: # No axes overlap, take all the width you want. width = 1.0 else: # Find an appropriate width so all none of the found axes will # overlap. width = np.min([xdiff(*c) for c in candidates]) # Add a bit of padding between boxes width *= 1 - padding height *= 1 - padding return width, height def _find_topomap_coords(info, picks, layout=None): """Try to guess the E/MEG layout and return appropriate topomap coordinates Parameters ---------- info : instance of Info Measurement info. picks : list of int Channel indices to generate topomap coords for. layout : None | instance of Layout Enforce using a specific layout. With None, a new map is generated. With None, a layout is chosen based on the channels in the chs parameter. Returns ------- coords : array, shape = (n_chs, 2) 2 dimensional coordinates for each sensor for a topomap plot. """ if len(picks) == 0: raise ValueError("Need more than 0 channels.") if layout is not None: chs = [info['chs'][i] for i in picks] pos = [layout.pos[layout.names.index(ch['ch_name'])] for ch in chs] pos = np.asarray(pos) else: pos = _auto_topomap_coords(info, picks) return pos def _auto_topomap_coords(info, picks, ignore_overlap=False): """Make a 2 dimensional sensor map from sensor positions in an info dict. The default is to use the electrode locations. The fallback option is to attempt using digitization points of kind FIFFV_POINT_EEG. This only works with EEG and requires an equal number of digitization points and sensors. Parameters ---------- info : instance of Info The measurement info. picks : list of int The channel indices to generate topomap coords for. Returns ------- locs : array, shape = (n_sensors, 2) An array of positions of the 2 dimensional map. """ from scipy.spatial.distance import pdist, squareform chs = [info['chs'][i] for i in picks] # Use channel locations if available locs3d = np.array([ch['loc'][:3] for ch in chs]) # If electrode locations are not available, use digization points if len(locs3d) == 0 or np.allclose(locs3d, 0): logging.warning('Did not find any electrode locations the info, ' 'will attempt to use digitization points instead. ' 'However, if digitization points do not correspond to ' 'the EEG electrodes, this will lead to bad results. ' 'Please verify that the sensor locations in the plot ' 'are accurate.') # MEG/EOG/ECG sensors don't have digitization points; all requested # channels must be EEG for ch in chs: if ch['kind'] != FIFF.FIFFV_EEG_CH: raise ValueError("Cannot determine location of MEG/EOG/ECG " "channels using digitization points.") eeg_ch_names = [ch['ch_name'] for ch in info['chs'] if ch['kind'] == FIFF.FIFFV_EEG_CH] # Get EEG digitization points if info['dig'] is None or len(info['dig']) == 0: raise RuntimeError('No digitization points found.') locs3d = np.array([point['r'] for point in info['dig'] if point['kind'] == FIFF.FIFFV_POINT_EEG]) if len(locs3d) == 0: raise RuntimeError('Did not find any digitization points of ' 'kind FIFFV_POINT_EEG (%d) in the info.' % FIFF.FIFFV_POINT_EEG) if len(locs3d) != len(eeg_ch_names): raise ValueError("Number of EEG digitization points (%d) " "doesn't match the number of EEG channels " "(%d)" % (len(locs3d), len(eeg_ch_names))) # Center digitization points on head origin dig_kinds = (FIFF.FIFFV_POINT_CARDINAL, FIFF.FIFFV_POINT_EEG, FIFF.FIFFV_POINT_EXTRA) _, origin_head, _ = fit_sphere_to_headshape(info, dig_kinds, units='m') locs3d -= origin_head # Match the digitization points with the requested # channels. eeg_ch_locs = dict(zip(eeg_ch_names, locs3d)) locs3d = np.array([eeg_ch_locs[ch['ch_name']] for ch in chs]) # Duplicate points cause all kinds of trouble during visualization dist = pdist(locs3d) if np.min(dist) < 1e-10 and not ignore_overlap: problematic_electrodes = [ chs[elec_i]['ch_name'] for elec_i in squareform(dist < 1e-10).any(axis=0).nonzero()[0] ] raise ValueError('The following electrodes have overlapping positions:' '\n ' + str(problematic_electrodes) + '\nThis ' 'causes problems during visualization.') x, y, z = locs3d.T az, el, r = _cartesian_to_sphere(x, y, z) locs2d = np.c_[_polar_to_cartesian(az, np.pi / 2 - el)] return locs2d def _topo_to_sphere(pos, eegs): """Helper function for transforming xy-coordinates to sphere. Parameters ---------- pos : array-like, shape (n_channels, 2) xy-oordinates to transform. eegs : list of int Indices of eeg channels that are included when calculating the sphere. Returns ------- coords : array, shape (n_channels, 3) xyz-coordinates. """ xs, ys = np.array(pos).T sqs = np.max(np.sqrt((xs[eegs] ** 2) + (ys[eegs] ** 2))) xs /= sqs # Shape to a sphere and normalize ys /= sqs xs += 0.5 - np.mean(xs[eegs]) # Center the points ys += 0.5 - np.mean(ys[eegs]) xs = xs * 2. - 1. # Values ranging from -1 to 1 ys = ys * 2. - 1. rs = np.clip(np.sqrt(xs ** 2 + ys ** 2), 0., 1.) alphas = np.arccos(rs) zs = np.sin(alphas) return np.column_stack([xs, ys, zs]) def _pair_grad_sensors(info, layout=None, topomap_coords=True, exclude='bads', raise_error=True): """Find the picks for pairing grad channels Parameters ---------- info : instance of Info An info dictionary containing channel information. layout : Layout | None The layout if available. Defaults to None. topomap_coords : bool Return the coordinates for a topomap plot along with the picks. If False, only picks are returned. Defaults to True. exclude : list of str | str List of channels to exclude. If empty do not exclude any (default). If 'bads', exclude channels in info['bads']. Defaults to 'bads'. raise_error : bool Whether to raise an error when no pairs are found. If False, raises a warning. Returns ------- picks : array of int Picks for the grad channels, ordered in pairs. coords : array, shape = (n_grad_channels, 3) Coordinates for a topomap plot (optional, only returned if topomap_coords == True). """ # find all complete pairs of grad channels pairs = defaultdict(list) grad_picks = pick_types(info, meg='grad', ref_meg=False, exclude=exclude) for i in grad_picks: ch = info['chs'][i] name = ch['ch_name'] if name.startswith('MEG'): if name.endswith(('2', '3')): key = name[-4:-1] pairs[key].append(ch) pairs = [p for p in pairs.values() if len(p) == 2] if len(pairs) == 0: if raise_error: raise ValueError("No 'grad' channel pairs found.") else: warn("No 'grad' channel pairs found.") return list() # find the picks corresponding to the grad channels grad_chs = sum(pairs, []) ch_names = info['ch_names'] picks = [ch_names.index(c['ch_name']) for c in grad_chs] if topomap_coords: shape = (len(pairs), 2, -1) coords = (_find_topomap_coords(info, picks, layout) .reshape(shape).mean(axis=1)) return picks, coords else: return picks # this function is used to pair grad when info is not present # it is the case of Projection that don't have the info. def _pair_grad_sensors_from_ch_names(ch_names): """Find the indexes for pairing grad channels Parameters ---------- ch_names : list of str A list of channel names. Returns ------- indexes : list of int Indexes of the grad channels, ordered in pairs. """ pairs = defaultdict(list) for i, name in enumerate(ch_names): if name.startswith('MEG'): if name.endswith(('2', '3')): key = name[-4:-1] pairs[key].append(i) pairs = [p for p in pairs.values() if len(p) == 2] grad_chs = sum(pairs, []) return grad_chs def _merge_grad_data(data): """Merge data from channel pairs using the RMS Parameters ---------- data : array, shape = (n_channels, n_times) Data for channels, ordered in pairs. Returns ------- data : array, shape = (n_channels / 2, n_times) The root mean square for each pair. """ data = data.reshape((len(data) // 2, 2, -1)) data = np.sqrt(np.sum(data ** 2, axis=1) / 2) return data def generate_2d_layout(xy, w=.07, h=.05, pad=.02, ch_names=None, ch_indices=None, name='ecog', bg_image=None): """Generate a custom 2D layout from xy points. Generates a 2-D layout for plotting with plot_topo methods and functions. XY points will be normalized between 0 and 1, where normalization extremes will be either the min/max of xy, or the width/height of bg_image. Parameters ---------- xy : ndarray (N x 2) The xy coordinates of sensor locations. w : float The width of each sensor's axis (between 0 and 1) h : float The height of each sensor's axis (between 0 and 1) pad : float Portion of the box to reserve for padding. The value can range between 0.0 (boxes will touch, default) to 1.0 (boxes consist of only padding). ch_names : list The names of each channel. Must be a list of strings, with one string per channel. ch_indices : list Index of each channel - must be a collection of unique integers, one index per channel. name : string The name of this layout type. bg_image : str | ndarray The image over which sensor axes will be plotted. Either a path to an image file, or an array that can be plotted with plt.imshow. If provided, xy points will be normalized by the width/height of this image. If not, xy points will be normalized by their own min/max. Returns ------- layout : Layout A Layout object that can be plotted with plot_topo functions and methods. See Also -------- make_eeg_layout, make_grid_layout Notes ----- .. versionadded:: 0.9.0 """ from scipy.ndimage import imread if ch_indices is None: ch_indices = np.arange(xy.shape[0]) if ch_names is None: ch_names = ['{0}'.format(i) for i in ch_indices] if len(ch_names) != len(ch_indices): raise ValueError('# ch names and indices must be equal') if len(ch_names) != len(xy): raise ValueError('# ch names and xy vals must be equal') x, y = xy.copy().astype(float).T # Normalize xy to 0-1 if bg_image is not None: # Normalize by image dimensions if isinstance(bg_image, str): img = imread(bg_image) else: img = bg_image x /= img.shape[1] y /= img.shape[0] else: # Normalize x and y by their maxes for i_dim in [x, y]: i_dim -= i_dim.min(0) i_dim /= (i_dim.max(0) - i_dim.min(0)) # Create box and pos variable box = _box_size(np.vstack([x, y]).T, padding=pad) box = (0, 0, box[0], box[1]) w, h = [np.array([i] * x.shape[0]) for i in [w, h]] loc_params = np.vstack([x, y, w, h]).T layout = Layout(box, loc_params, ch_names, ch_indices, name) return layout
the-stack_106_20265
#!/usr/bin/env python3 """A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject Extra supported commands are: * gen, to generate the classes required for Telethon to run or docs * pypi, to generate sdist, bdist_wheel, and push to PyPi """ import itertools import json import os import re import shutil import sys from pathlib import Path from subprocess import run from setuptools import find_packages, setup # Needed since we're importing local files sys.path.insert(0, os.path.dirname(__file__)) class TempWorkDir: """Switches the working directory to be the one on which this file lives, while within the 'with' block. """ def __init__(self, new=None): self.original = None self.new = new or str(Path(__file__).parent.resolve()) def __enter__(self): # os.chdir does not work with Path in Python 3.5.x self.original = str(Path(".").resolve()) os.makedirs(self.new, exist_ok=True) os.chdir(self.new) return self def __exit__(self, *args): os.chdir(self.original) GENERATOR_DIR = Path("telethon_generator") LIBRARY_DIR = Path("telethon") ERRORS_IN = GENERATOR_DIR / "data/errors.csv" ERRORS_OUT = LIBRARY_DIR / "errors/_generated.py" METHODS_IN = GENERATOR_DIR / "data/methods.csv" # Which raw API methods are covered by *friendly* methods in the client? FRIENDLY_IN = GENERATOR_DIR / "data/friendly.csv" TLOBJECT_IN_TLS = [Path(x) for x in sorted(GENERATOR_DIR.glob("data/*.tl"))] TLOBJECT_OUT = LIBRARY_DIR / "_tl" TLOBJECT_MOD = "telethon._tl" DOCS_IN_RES = GENERATOR_DIR / "data/html" DOCS_OUT = Path("docs") def generate(which, action="gen"): from telethon_generator.generators import ( clean_tlobjects, generate_docs, generate_errors, generate_tlobjects, ) from telethon_generator.parsers import ( find_layer, parse_errors, parse_methods, parse_tl, ) layer = next(filter(None, map(find_layer, TLOBJECT_IN_TLS))) errors = list(parse_errors(ERRORS_IN)) methods = list( parse_methods(METHODS_IN, FRIENDLY_IN, {e.str_code: e for e in errors}) ) tlobjects = list( itertools.chain(*(parse_tl(file, layer, methods) for file in TLOBJECT_IN_TLS)) ) if not which: which.extend(("tl", "errors")) clean = action == "clean" action = "Cleaning" if clean else "Generating" if "all" in which: which.remove("all") for x in ("tl", "errors", "docs"): if x not in which: which.append(x) if "tl" in which: which.remove("tl") print(action, "TLObjects...") if clean: clean_tlobjects(TLOBJECT_OUT) else: generate_tlobjects(tlobjects, layer, TLOBJECT_MOD, TLOBJECT_OUT) if "errors" in which: which.remove("errors") print(action, "RPCErrors...") if clean: if ERRORS_OUT.is_file(): ERRORS_OUT.unlink() else: with ERRORS_OUT.open("w") as file: generate_errors(errors, file) if "docs" in which: which.remove("docs") print(action, "documentation...") if clean: if DOCS_OUT.is_dir(): shutil.rmtree(str(DOCS_OUT)) else: in_path = DOCS_IN_RES.resolve() with TempWorkDir(DOCS_OUT): generate_docs(tlobjects, methods, layer, in_path) if "json" in which: which.remove("json") print(action, "JSON schema...") json_files = [x.with_suffix(".json") for x in TLOBJECT_IN_TLS] if clean: for file in json_files: if file.is_file(): file.unlink() else: def gen_json(fin, fout): meths = [] constructors = [] for tl in parse_tl(fin, layer): if tl.is_function: meths.append(tl.to_dict()) else: constructors.append(tl.to_dict()) what = {"constructors": constructors, "methods": meths} with open(fout, "w") as f: json.dump(what, f, indent=2) for fs in zip(TLOBJECT_IN_TLS, json_files): gen_json(*fs) if which: print( "The following items were not understood:", which, '\n Consider using only "tl", "errors" and/or "docs".' '\n Using only "clean" will clean them. "all" to act on all.' '\n For instance "gen tl errors".', ) def main(argv): if len(argv) >= 2 and argv[1] in ("gen", "clean"): generate(argv[2:], argv[1]) elif len(argv) >= 2 and argv[1] == "pypi": # (Re)generate the code to make sure we don't push without it generate(["tl", "errors"]) # Try importing the telethon module to assert it has no errors try: pass except BaseException: print("Packaging for PyPi aborted, importing the module failed.") return remove_dirs = ["__pycache__", "build", "dist", "Telethon.egg-info"] for root, _dirs, _files in os.walk(LIBRARY_DIR, topdown=False): # setuptools is including __pycache__ for some reason (#1605) if root.endswith("/__pycache__"): remove_dirs.append(root) for x in remove_dirs: shutil.rmtree(x, ignore_errors=True) run("python3 setup.py sdist", shell=True) run("python3 setup.py bdist_wheel", shell=True) run("twine upload dist/*", shell=True) for x in ("build", "dist", "Telethon.egg-info"): shutil.rmtree(x, ignore_errors=True) else: # e.g. install from GitHub if GENERATOR_DIR.is_dir(): generate(["tl", "errors"]) # Get the long description from the README file with open("README.rst", "r", encoding="utf-8") as f: long_description = f.read() with open("telethon/version.py", "r", encoding="utf-8") as f: version = re.search( r"^__version__\s*=\s*'(.*)'.*$", f.read(), flags=re.MULTILINE ).group(1) setup( name="Telethon", version=version, description="Full-featured Telegram client library for Python 3", long_description=long_description, url="https://github.com/LonamiWebs/Telethon", download_url="https://github.com/LonamiWebs/Telethon/releases", author="Lonami Exo", author_email="[email protected]", license="MIT", # See https://stackoverflow.com/a/40300957/4759433 # -> https://www.python.org/dev/peps/pep-0345/#requires-python # -> http://setuptools.readthedocs.io/en/latest/setuptools.html python_requires=">=3.7", # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # 3 - Alpha # 4 - Beta # 5 - Production/Stable "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Topic :: Communications :: Chat", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", ], keywords="telegram api chat client library messaging mtproto", packages=find_packages(exclude=["telethon_*", "tests*"]), install_requires=["pyaes", "rsa"], extras_require={"cryptg": ["cryptg"]}, ) if __name__ == "__main__": with TempWorkDir(): main(sys.argv)
the-stack_106_20268
"""HTML sanitizer for Gruyere, a web application with holes. Copyright 2010 Google Inc. All rights reserved. This code is licensed under the http://creativecommons.org/licenses/by-nd/3.0/us Creative Commons Attribution-No Derivative Works 3.0 United States license. DO NOT COPY THIS CODE! This application is a small self-contained web application with numerous security holes. It is provided for use with the Web Application Exploits and Defenses codelab. You may modify the code for your own use while doing the codelab but you may not distribute the modified code. Brief excerpts of this code may be used for educational or instructional purposes provided this notice is kept intact. By using Gruyere you agree to the Terms of Service http://code.google.com/terms.html """ __author__ = 'Bruce Leban' # system modules import re def SanitizeHtml(s): """Makes html safe for embedding in a document. Filters the html to exclude all but a small subset of html by removing script tags/attributes. Args: s: some html to sanitize. Returns: The html with all unsafe html removed. """ processed = '' while s: start = s.find('<') if start >= 0: end = s.find('>', start) if end >= 0: before = s[:start] tag = s[start:end+1] after = s[end+1:] else: before = s[:start] tag = s[start:] after = '' else: before = s tag = '' after = '' processed += before + _SanitizeTag(tag) s = after return processed TAG_RE = re.compile(r'<(.*?)(\s|>)') # matches the start of an html tag def _SanitizeTag(t): """Sanitizes a single html tag. This does both a 'whitelist' for the allowed tags and a 'blacklist' for the disallowed attributes. Args: t: a tag to sanitize. Returns: a safe tag. """ allowed_tags = [ 'a', 'b', 'big', 'br', 'center', 'code', 'em', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'hr', 'i', 'img', 'li', 'ol', 'p', 's', 'small', 'span', 'strong', 'table', 'td', 'tr', 'u', 'ul', ] disallowed_attributes = [ 'onblur', 'onchange', 'onclick', 'ondblclick', 'onfocus', 'onkeydown', 'onkeypress', 'onkeyup', 'onload', 'onmousedown', 'onmousemove', 'onmouseout', 'onmouseup', 'onreset', 'onselect', 'onsubmit', 'onunload' ] # Extract the tag name and make sure it's allowed. if t.startswith('</'): return t m = TAG_RE.match(t) if m is None: return t tag_name = m.group(1) if tag_name not in allowed_tags: t = t[:m.start(1)] + 'blocked' + t[m.end(1):] # This is a bit heavy handed but we want to be sure we don't # allow any to get through. for a in disallowed_attributes: t = t.replace(a, 'blocked') return t
the-stack_106_20269
import subprocess import os import sys import subprocess import numpy as np import pycnal import pycnal_toolbox from remap_bdry import remap_bdry from remap_bdry_uv import remap_bdry_uv year = int(sys.argv[1]) lst_year = [year] data_dir = '/Volumes/R1/Data/SODA_2.1.6/' dst_dir='./' lst_file = [] for year in lst_year: year = np.str(year) lst = subprocess.getoutput('ls ' + data_dir + 'SODA_2.1.6_' + year + '*') lst = lst.split() lst_file = lst_file + lst print('Build OBC file from the following file list:') print(lst_file) print(' ') src_grd_file = data_dir + 'SODA_grid.cdf' src_grd = pycnal_toolbox.BGrid_SODA.get_nc_BGrid_SODA('/Volumes/R1/DATA/SODA_2.1.6/SODA_grid.cdf', name='SODA_2.1.6_YELLOW', xrange=(225, 275), yrange=(190, 240)) dst_grd = pycnal.grid.get_ROMS_grid('YELLOW') for file in lst_file: zeta = remap_bdry(file, 'ssh', src_grd, dst_grd, dst_dir=dst_dir) dst_grd = pycnal.grid.get_ROMS_grid('YELLOW', zeta=zeta) remap_bdry(file, 'temp', src_grd, dst_grd, dst_dir=dst_dir) remap_bdry(file, 'salt', src_grd, dst_grd, dst_dir=dst_dir) remap_bdry_uv(file, src_grd, dst_grd, dst_dir=dst_dir) # merge file bdry_file = dst_dir + file.rsplit('/')[-1][:-4] + '_bdry_' + dst_grd.name + '.nc' out_file = dst_dir + file.rsplit('/')[-1][:-4] + '_ssh_bdry_' + dst_grd.name + '.nc' command = ('ncks', '-a', '-O', out_file, bdry_file) subprocess.check_call(command) os.remove(out_file) out_file = dst_dir + file.rsplit('/')[-1][:-4] + '_temp_bdry_' + dst_grd.name + '.nc' command = ('ncks', '-a', '-A', out_file, bdry_file) subprocess.check_call(command) os.remove(out_file) out_file = dst_dir + file.rsplit('/')[-1][:-4] + '_salt_bdry_' + dst_grd.name + '.nc' command = ('ncks', '-a', '-A', out_file, bdry_file) subprocess.check_call(command) os.remove(out_file) out_file = dst_dir + file.rsplit('/')[-1][:-4] + '_u_bdry_' + dst_grd.name + '.nc' command = ('ncks', '-a', '-A', out_file, bdry_file) subprocess.check_call(command) os.remove(out_file) out_file = dst_dir + file.rsplit('/')[-1][:-4] + '_v_bdry_' + dst_grd.name + '.nc' command = ('ncks', '-a', '-A', out_file, bdry_file) subprocess.check_call(command) os.remove(out_file)
the-stack_106_20270
"""Support for the Fibaro devices.""" from __future__ import annotations from collections import defaultdict import logging from fiblary3.client.v4.client import Client as FibaroClient, StateHandler import voluptuous as vol from homeassistant.const import ( ATTR_ARMED, ATTR_BATTERY_LEVEL, CONF_DEVICE_CLASS, CONF_EXCLUDE, CONF_ICON, CONF_PASSWORD, CONF_URL, CONF_USERNAME, CONF_WHITE_VALUE, EVENT_HOMEASSISTANT_STOP, ) from homeassistant.helpers import discovery import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.util import convert, slugify _LOGGER = logging.getLogger(__name__) ATTR_CURRENT_ENERGY_KWH = "current_energy_kwh" ATTR_CURRENT_POWER_W = "current_power_w" CONF_COLOR = "color" CONF_DEVICE_CONFIG = "device_config" CONF_DIMMING = "dimming" CONF_GATEWAYS = "gateways" CONF_PLUGINS = "plugins" CONF_RESET_COLOR = "reset_color" DOMAIN = "fibaro" FIBARO_CONTROLLERS = "fibaro_controllers" FIBARO_DEVICES = "fibaro_devices" PLATFORMS = [ "binary_sensor", "climate", "cover", "light", "scene", "sensor", "lock", "switch", ] FIBARO_TYPEMAP = { "com.fibaro.multilevelSensor": "sensor", "com.fibaro.binarySwitch": "switch", "com.fibaro.multilevelSwitch": "switch", "com.fibaro.FGD212": "light", "com.fibaro.FGR": "cover", "com.fibaro.doorSensor": "binary_sensor", "com.fibaro.doorWindowSensor": "binary_sensor", "com.fibaro.FGMS001": "binary_sensor", "com.fibaro.heatDetector": "binary_sensor", "com.fibaro.lifeDangerSensor": "binary_sensor", "com.fibaro.smokeSensor": "binary_sensor", "com.fibaro.remoteSwitch": "switch", "com.fibaro.sensor": "sensor", "com.fibaro.colorController": "light", "com.fibaro.securitySensor": "binary_sensor", "com.fibaro.hvac": "climate", "com.fibaro.setpoint": "climate", "com.fibaro.FGT001": "climate", "com.fibaro.thermostatDanfoss": "climate", "com.fibaro.doorLock": "lock", } DEVICE_CONFIG_SCHEMA_ENTRY = vol.Schema( { vol.Optional(CONF_DIMMING): cv.boolean, vol.Optional(CONF_COLOR): cv.boolean, vol.Optional(CONF_WHITE_VALUE): cv.boolean, vol.Optional(CONF_RESET_COLOR): cv.boolean, vol.Optional(CONF_DEVICE_CLASS): cv.string, vol.Optional(CONF_ICON): cv.string, } ) FIBARO_ID_LIST_SCHEMA = vol.Schema([cv.string]) GATEWAY_CONFIG = vol.Schema( { vol.Required(CONF_PASSWORD): cv.string, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_URL): cv.url, vol.Optional(CONF_PLUGINS, default=False): cv.boolean, vol.Optional(CONF_EXCLUDE, default=[]): FIBARO_ID_LIST_SCHEMA, vol.Optional(CONF_DEVICE_CONFIG, default={}): vol.Schema( {cv.string: DEVICE_CONFIG_SCHEMA_ENTRY} ), }, extra=vol.ALLOW_EXTRA, ) CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( {vol.Required(CONF_GATEWAYS): vol.All(cv.ensure_list, [GATEWAY_CONFIG])} ) }, extra=vol.ALLOW_EXTRA, ) class FibaroController: """Initiate Fibaro Controller Class.""" def __init__(self, config): """Initialize the Fibaro controller.""" self._client = FibaroClient( config[CONF_URL], config[CONF_USERNAME], config[CONF_PASSWORD] ) self._scene_map = None # Whether to import devices from plugins self._import_plugins = config[CONF_PLUGINS] self._device_config = config[CONF_DEVICE_CONFIG] self._room_map = None # Mapping roomId to room object self._device_map = None # Mapping deviceId to device object self.fibaro_devices = None # List of devices by type self._callbacks = {} # Update value callbacks by deviceId self._state_handler = None # Fiblary's StateHandler object self._excluded_devices = config[CONF_EXCLUDE] self.hub_serial = None # Unique serial number of the hub def connect(self): """Start the communication with the Fibaro controller.""" try: login = self._client.login.get() info = self._client.info.get() self.hub_serial = slugify(info.serialNumber) except AssertionError: _LOGGER.error("Can't connect to Fibaro HC. Please check URL") return False if login is None or login.status is False: _LOGGER.error( "Invalid login for Fibaro HC. Please check username and password" ) return False self._room_map = {room.id: room for room in self._client.rooms.list()} self._read_devices() self._read_scenes() return True def enable_state_handler(self): """Start StateHandler thread for monitoring updates.""" self._state_handler = StateHandler(self._client, self._on_state_change) def disable_state_handler(self): """Stop StateHandler thread used for monitoring updates.""" self._state_handler.stop() self._state_handler = None def _on_state_change(self, state): """Handle change report received from the HomeCenter.""" callback_set = set() for change in state.get("changes", []): try: dev_id = change.pop("id") if dev_id not in self._device_map: continue device = self._device_map[dev_id] for property_name, value in change.items(): if property_name == "log": if value and value != "transfer OK": _LOGGER.debug("LOG %s: %s", device.friendly_name, value) continue if property_name == "logTemp": continue if property_name in device.properties: device.properties[property_name] = value _LOGGER.debug( "<- %s.%s = %s", device.ha_id, property_name, str(value) ) else: _LOGGER.warning("%s.%s not found", device.ha_id, property_name) if dev_id in self._callbacks: callback_set.add(dev_id) except (ValueError, KeyError): pass for item in callback_set: self._callbacks[item]() def register(self, device_id, callback): """Register device with a callback for updates.""" self._callbacks[device_id] = callback def get_children(self, device_id): """Get a list of child devices.""" return [ device for device in self._device_map.values() if device.parentId == device_id ] def get_children2(self, device_id, endpoint_id): """Get a list of child devices for the same endpoint.""" return [ device for device in self._device_map.values() if device.parentId == device_id and ( "endPointId" not in device.properties or device.properties.endPointId == endpoint_id ) ] def get_siblings(self, device): """Get the siblings of a device.""" if "endPointId" in device.properties: return self.get_children2( self._device_map[device.id].parentId, self._device_map[device.id].properties.endPointId, ) return self.get_children(self._device_map[device.id].parentId) @staticmethod def _map_device_to_type(device): """Map device to HA device type.""" # Use our lookup table to identify device type device_type = None if "type" in device: device_type = FIBARO_TYPEMAP.get(device.type) if device_type is None and "baseType" in device: device_type = FIBARO_TYPEMAP.get(device.baseType) # We can also identify device type by its capabilities if device_type is None: if "setBrightness" in device.actions: device_type = "light" elif "turnOn" in device.actions: device_type = "switch" elif "open" in device.actions: device_type = "cover" elif "secure" in device.actions: device_type = "lock" elif "value" in device.properties: if device.properties.value in ("true", "false"): device_type = "binary_sensor" else: device_type = "sensor" # Switches that control lights should show up as lights if device_type == "switch" and device.properties.get("isLight", False): device_type = "light" return device_type def _read_scenes(self): scenes = self._client.scenes.list() self._scene_map = {} for device in scenes: if "name" not in device or "id" not in device: continue device.fibaro_controller = self if "roomID" not in device or device.roomID == 0: room_name = "Unknown" else: room_name = self._room_map[device.roomID].name device.room_name = room_name device.friendly_name = f"{room_name} {device.name}" device.ha_id = ( f"scene_{slugify(room_name)}_{slugify(device.name)}_{device.id}" ) device.unique_id_str = f"{self.hub_serial}.scene.{device.id}" self._scene_map[device.id] = device self.fibaro_devices["scene"].append(device) _LOGGER.debug("%s scene -> %s", device.ha_id, device) def _read_devices(self): """Read and process the device list.""" devices = self._client.devices.list() self._device_map = {} self.fibaro_devices = defaultdict(list) last_climate_parent = None last_endpoint = None for device in devices: try: if "name" not in device or "id" not in device: continue device.fibaro_controller = self if "roomID" not in device or device.roomID == 0: room_name = "Unknown" else: room_name = self._room_map[device.roomID].name device.room_name = room_name device.friendly_name = f"{room_name} {device.name}" device.ha_id = ( f"{slugify(room_name)}_{slugify(device.name)}_{device.id}" ) if ( device.enabled and ( "isPlugin" not in device or (not device.isPlugin or self._import_plugins) ) and device.ha_id not in self._excluded_devices ): device.mapped_type = self._map_device_to_type(device) device.device_config = self._device_config.get(device.ha_id, {}) else: device.mapped_type = None if (dtype := device.mapped_type) is None: continue device.unique_id_str = f"{self.hub_serial}.{device.id}" self._device_map[device.id] = device _LOGGER.debug( "%s (%s, %s) -> %s %s", device.ha_id, device.type, device.baseType, dtype, str(device), ) if dtype != "climate": self.fibaro_devices[dtype].append(device) continue # We group climate devices into groups with the same # endPointID belonging to the same parent device. if "endPointId" in device.properties: _LOGGER.debug( "climate device: %s, endPointId: %s", device.ha_id, device.properties.endPointId, ) else: _LOGGER.debug("climate device: %s, no endPointId", device.ha_id) # If a sibling of this device has been added, skip this one # otherwise add the first visible device in the group # which is a hack, but solves a problem with FGT having # hidden compatibility devices before the real device if last_climate_parent != device.parentId or ( "endPointId" in device.properties and last_endpoint != device.properties.endPointId ): _LOGGER.debug("Handle separately") self.fibaro_devices[dtype].append(device) last_climate_parent = device.parentId if "endPointId" in device.properties: last_endpoint = device.properties.endPointId else: last_endpoint = 0 else: _LOGGER.debug("not handling separately") except (KeyError, ValueError): pass def setup(hass, base_config): """Set up the Fibaro Component.""" if DOMAIN not in base_config: # AIS new config_flow way hass.data[DOMAIN] = {} hass.data[DOMAIN][CONF_GATEWAYS] = {} hass.data[FIBARO_CONTROLLERS] = {} return True # old configuration.yaml way gateways = base_config[DOMAIN][CONF_GATEWAYS] hass.data[FIBARO_CONTROLLERS] = {} def stop_fibaro(event): """Stop Fibaro Thread.""" _LOGGER.info("Shutting down Fibaro connection") for controller in hass.data[FIBARO_CONTROLLERS].values(): controller.disable_state_handler() hass.data[FIBARO_DEVICES] = {} for platform in PLATFORMS: hass.data[FIBARO_DEVICES][platform] = [] for gateway in gateways: controller = FibaroController(gateway) if controller.connect(): hass.data[FIBARO_CONTROLLERS][controller.hub_serial] = controller for platform in PLATFORMS: hass.data[FIBARO_DEVICES][platform].extend( controller.fibaro_devices[platform] ) if hass.data[FIBARO_CONTROLLERS]: for platform in PLATFORMS: discovery.load_platform(hass, platform, DOMAIN, {}, base_config) for controller in hass.data[FIBARO_CONTROLLERS].values(): controller.enable_state_handler() hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, stop_fibaro) return True return False class FibaroDevice(Entity): """Representation of a Fibaro device entity.""" def __init__(self, fibaro_device): """Initialize the device.""" self.fibaro_device = fibaro_device self.controller = fibaro_device.fibaro_controller self._name = fibaro_device.friendly_name self.ha_id = fibaro_device.ha_id async def async_added_to_hass(self): """Call when entity is added to hass.""" self.controller.register(self.fibaro_device.id, self._update_callback) def _update_callback(self): """Update the state.""" self.schedule_update_ha_state(True) @property def device_info(self): sw_version = 1 manufacturer = "Fibaro" if "properties" in self.fibaro_device: if "zwaveVersion" in self.fibaro_device.properties: sw_version = self.fibaro_device.properties.zwaveVersion if "zwaveCompany" in self.fibaro_device.properties: manufacturer = self.fibaro_device.properties.zwaveCompany return { "identifiers": {(DOMAIN, self.ha_id)}, "name": self._name, "manufacturer": manufacturer, "model": self.fibaro_device.type, "sw_version": sw_version, "via_device": None, } @property def level(self): """Get the level of Fibaro device.""" if "value" in self.fibaro_device.properties: return self.fibaro_device.properties.value return None @property def level2(self): """Get the tilt level of Fibaro device.""" if "value2" in self.fibaro_device.properties: return self.fibaro_device.properties.value2 return None def dont_know_message(self, action): """Make a warning in case we don't know how to perform an action.""" _LOGGER.warning( "Not sure how to setValue: %s (available actions: %s)", str(self.ha_id), str(self.fibaro_device.actions), ) def set_level(self, level): """Set the level of Fibaro device.""" self.action("setValue", level) if "value" in self.fibaro_device.properties: self.fibaro_device.properties.value = level if "brightness" in self.fibaro_device.properties: self.fibaro_device.properties.brightness = level def set_level2(self, level): """Set the level2 of Fibaro device.""" self.action("setValue2", level) if "value2" in self.fibaro_device.properties: self.fibaro_device.properties.value2 = level def call_turn_on(self): """Turn on the Fibaro device.""" self.action("turnOn") def call_turn_off(self): """Turn off the Fibaro device.""" self.action("turnOff") def call_set_color(self, red, green, blue, white): """Set the color of Fibaro device.""" red = int(max(0, min(255, red))) green = int(max(0, min(255, green))) blue = int(max(0, min(255, blue))) white = int(max(0, min(255, white))) color_str = f"{red},{green},{blue},{white}" self.fibaro_device.properties.color = color_str self.action("setColor", str(red), str(green), str(blue), str(white)) def action(self, cmd, *args): """Perform an action on the Fibaro HC.""" if cmd in self.fibaro_device.actions: getattr(self.fibaro_device, cmd)(*args) _LOGGER.debug("-> %s.%s%s called", str(self.ha_id), str(cmd), str(args)) else: self.dont_know_message(cmd) @property def current_power_w(self): """Return the current power usage in W.""" if "power" in self.fibaro_device.properties and ( power := self.fibaro_device.properties.power ): return convert(power, float, 0.0) return None @property def current_binary_state(self): """Return the current binary state.""" if self.fibaro_device.properties.value == "false": return False if ( self.fibaro_device.properties.value == "true" or int(self.fibaro_device.properties.value) > 0 ): return True return False @property def unique_id(self) -> str: """Return a unique ID.""" return self.fibaro_device.unique_id_str @property def name(self) -> str | None: """Return the name of the device.""" return self._name @property def should_poll(self): """Get polling requirement from fibaro device.""" return False @property def extra_state_attributes(self): """Return the state attributes of the device.""" attr = {"fibaro_id": self.fibaro_device.id} try: if "battery" in self.fibaro_device.interfaces: attr[ATTR_BATTERY_LEVEL] = int( self.fibaro_device.properties.batteryLevel ) if "fibaroAlarmArm" in self.fibaro_device.interfaces: attr[ATTR_ARMED] = bool(self.fibaro_device.properties.armed) if "power" in self.fibaro_device.interfaces: attr[ATTR_CURRENT_POWER_W] = convert( self.fibaro_device.properties.power, float, 0.0 ) if "energy" in self.fibaro_device.interfaces: attr[ATTR_CURRENT_ENERGY_KWH] = convert( self.fibaro_device.properties.energy, float, 0.0 ) except (ValueError, KeyError): pass return attr # AIS async def async_setup_entry(hass, config_entry): """Set up config entry.""" import threading # discover_devices is a sync function. t = threading.Thread(target=discover_devices, args=(hass, config_entry)) t.start() return True async def async_unload_entry(hass, config_entry): """Unload a config entry.""" # TODO await hass.config_entries.async_forward_entry_unload(config_entry, "xxx") return True def discover_devices(hass, config_entry): """ Run periodically to discover new devices. Currently it's only run at startup. """ # ------------ gateway = { CONF_URL: config_entry.data[CONF_URL], CONF_USERNAME: config_entry.data[CONF_USERNAME], CONF_PASSWORD: config_entry.data[CONF_PASSWORD], CONF_PLUGINS: False, CONF_DEVICE_CONFIG: {}, CONF_EXCLUDE: [], } def stop_fibaro(event): """Stop Fibaro Thread.""" _LOGGER.info("Shutting down Fibaro connection") for controller in hass.data[FIBARO_CONTROLLERS].values(): controller.disable_state_handler() hass.data[FIBARO_DEVICES] = {} for component in FIBARO_COMPONENTS: hass.data[FIBARO_DEVICES][component] = [] controller = FibaroController(gateway) if controller.connect(): hass.data[FIBARO_CONTROLLERS][controller.hub_serial] = controller for component in FIBARO_COMPONENTS: hass.data[FIBARO_DEVICES][component].extend( controller.fibaro_devices[component] ) if hass.data[FIBARO_CONTROLLERS]: for component in FIBARO_COMPONENTS: # discovery.load_platform(hass, component, DOMAIN, {}, config_entry) hass.async_create_task( hass.config_entries.async_forward_entry_setup(config_entry, component) ) for controller in hass.data[FIBARO_CONTROLLERS].values(): controller.enable_state_handler() hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, stop_fibaro) return True return False
the-stack_106_20271
""" Reimplementation of the particle energy histogram for the electron species, directly on top of h5py. The resulting speedup compared to the openPMD-viewer-based `particle_energy_histogram` is a factor ~4. To view all groups datasets and corresponding attributes in an .h5 file, use `h5ls -rv filename.h5`. """ import pathlib from dataclasses import dataclass, field from typing import Any, Dict import h5py import numexpr as ne import numpy as np import pint import signac from fast_histogram import histogram1d import job_util import util ureg = pint.UnitRegistry() m_e = ureg.electron_mass e = ureg.elementary_charge c = ureg.speed_of_light e_pC = (1 * e).to("pC").magnitude mc2 = (1 * m_e * c ** 2).to("MeV").magnitude mc = (1 * m_e * c).to("kilogram * meter / second").magnitude @dataclass class LastH5File: job: Any = field(repr=False) iteration: int = field(init=False, repr=False) fpath: pathlib.Path = field(init=False) h5_path: pathlib.Path = field(init=False, repr=False) fname: str = field(init=False, repr=False) electrons: str = field(init=False, repr=False) mom: Dict[str, str] = field(init=False, repr=False) w: str = field(init=False, repr=False) def __post_init__(self): self.h5_path = job_util.is_h5_path(self.job) self.fname = self.last_fname() self.iteration = job_util.extract_iteration_number(self.fname) self.fpath = self.h5_path / self.fname self.file_obj = h5py.File(self.fpath, "r") self.electrons = f"/data/{self.iteration}/particles/electrons" self.w = f"{self.electrons}/weighting" self.mom = dict() for xyz in "x", "y", "z": self.mom[xyz] = f"{self.electrons}/momentum/{xyz}" def __enter__(self): return self.file_obj def __exit__(self, type, value, traceback): self.file_obj.close() def last_fname(self): fnames = job_util.get_diags_fnames(self.job) return tuple(fnames)[-1] def energy_histogram( normalized_particle_momenta, weights, *, bins=499, erange=(1, 500), normalized=False, cone_aperture=None, ): ux = normalized_particle_momenta["x"] uy = normalized_particle_momenta["y"] uz = normalized_particle_momenta["z"] if cone_aperture is not None: # angle in radians theta = cone_aperture / 2 particle_in_cone = (ux ** 2 + uy ** 2) * np.cos(theta) ** 2 - uz ** 2 * np.sin( theta ) ** 2 <= 0.0 ux = ux[particle_in_cone] uy = uy[particle_in_cone] uz = uz[particle_in_cone] weights = weights[particle_in_cone] expr = ne.evaluate("sqrt(1+ux**2+uy**2+uz**2)") hist = histogram1d(mc2 * expr, bins=bins, range=erange, weights=e_pC * weights) if normalized: hist = util.normalize_to_interval(0, 1, hist) return hist def job_energy_histogram( job, *, bins=499, erange=(1, 500), normalized=False, cone_aperture=None, ): uxyz = dict() h5f = LastH5File(job) with h5f as f: w = np.array(f[h5f.w]) for xyz in "x", "y", "z": # normalize momenta by mc uxyz[xyz] = np.array(f[h5f.mom[xyz]]) / mc hist = energy_histogram( normalized_particle_momenta=uxyz, weights=w, bins=bins, erange=erange, normalized=normalized, cone_aperture=cone_aperture, ) return hist def main(): """Main entry point.""" proj = signac.get_project(search=False) for job in proj: # ~14s hist = job_energy_histogram(job) if __name__ == "__main__": main()
the-stack_106_20272
""" @author: David Lei @since: 28/08/2016 @modified: Worst: O(n^2) Best: O(n) to find 3rd smallest element in array, a = [5, 4, 1, 2, 9, 8, 6] split array into 2 around a pivot, eg: make pivot 6 less than 6 = [5, 4, 1, 2] greater than 6 = [6, 8] len(less than) = 4 2 < 4 so do again pivot = 2 less than = [1] greater than = [4, 5] len(less than) = 1, len(greater than) = 2 # given unsorted array, find kth smallest element # same as sorting and finding item at index k # but can do without complete sorting the entire array """ import random def randomized_partition(array, start, end): random_index = random.randint(start, end) array[random_index], array[end] = array[end], array[random_index] # picked pivot 'randomly', put it at the end index # now partition pivot = array[end] # randomly chosen pivot wall = start - 1 for i in range(start, end): if array[i] <= pivot: wall += 1 # wall is <= pivot array[i], array[wall] = array[wall], array[i] # swap elements array[wall + 1], array[end] = array[end], array[wall + 1] # put pivot in right place return wall + 1 # index of pivot def randomized_quick_select(array, start, end, i): """ returns ith smallest element in an array[start...end] :param array: array of distinct elements :param start: start index to look at :param end: end index to look at :param i: something th smallest index we want """ if start == end: # base case return array[start] pivot_index = randomized_partition(array, start, end) k = pivot_index - start + 1 if i == k: return array[pivot_index] elif i < k: return randomized_quick_select(array, start, pivot_index-1, i) # recurse on lower half else: return randomized_quick_select(array, pivot_index+1, end, i-k) # recurse on upper half # Another implementation for practice ------ def quick_select_partition_2(array, start, end, pivot_index): # Inplace. array[end], array[pivot_index] = array[pivot_index], array[end] pivot_element = array[end] wall = start # Things left to the wall are smaller, right are bigger. for i in range(start, end): # Exclusive of end as the pivot is now there. if array[i] < pivot_element: array[i], array[wall] = array[wall], array[i] wall += 1 array[end], array[wall] = array[wall], array[end] return wall # Will no return 0 but will return the value starting at start. def quick_select_2(array, start, end, k): if start == end: # Only 1 element, return it. return array[start] pivot_index = (start + end) // 2 pivot_index = quick_select_partition_2(array, start, end, pivot_index) # Returns true position of pivot. k_smallest_element_index = k -1 if k_smallest_element_index == pivot_index: # We look for the kth smallest so the kth smallest is at index k. return array[k_smallest_element_index] elif k_smallest_element_index < pivot_index: # kth smallest element is in the bottom half. return quick_select_2(array, start, pivot_index - 1, k) else: # kth smallest element is in the top half. return quick_select_2(array, pivot_index + 1, end, k) if __name__ == "__main__": # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | th smallest element. a = [1, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 20] # ith smallest element is in range [1, len(a)]. ith_smallest_element = 9 # len(a) - 1 print(randomized_quick_select(a[::-1], 0, len(a) - 1, ith_smallest_element)) print(quick_select_2(a[::-1], 0, len(a) - 1, ith_smallest_element))
the-stack_106_20274
# Copyright 2019,2020,2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from nnabla.utils.nnp_graph import NnpNetworkPass from .base import ImageNetBase class VGG(ImageNetBase): """ VGG architectures for 11, 13, 16 layers. Args: num_layers (int): Number of layers chosen from 11, 13, 16. The following is a list of string that can be specified to ``use_up_to`` option in ``__call__`` method; * ``'classifier'`` (default): The output of the final affine layer for classification. * ``'pool'``: The output of the final global average pooling. * ``'lastconv'``: The input of the final global average pooling without ReLU activation. * ``'lastconv+relu'``: Network up to ``'lastconv'`` followed by ReLU activation. * ``'lastfeature'``: Network up to one layer before ``'classifier'``, but without activation. References: * `Simonyan and Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. <https://arxiv.org/pdf/1409.1556>`_ """ def __init__(self, num_layers=11): # Check validity of num_layers set_num_layers = set((11, 13, 16)) assert num_layers in set_num_layers, "num_layers must be chosen from {}".format( set_num_layers) self.num_layers = num_layers # Load nnp self._load_nnp('VGG-{}.nnp'.format(num_layers), 'VGG-{0}/VGG-{0}.nnp'.format(num_layers)) self._KEY_VARIABLE = { 'classifier': 'VGG{}/Affine_3'.format(num_layers), 'pool': 'VGG{}/MaxPooling_5'.format(num_layers), 'lastconv': 'VGG16/Convolution_13' if num_layers == 16 else 'VGG{}/Convolution_12'.format(num_layers), 'lastconv+relu': 'VGG16/ReLU_13' if num_layers == 16 else 'VGG{}/ReLU_12'.format(num_layers), 'lastfeature': 'VGG{}/Affine_2'.format(num_layers), } def _input_shape(self): return (3, 224, 224) def __call__(self, input_var=None, use_from=None, use_up_to='classifier', training=False, force_global_pooling=False, check_global_pooling=True, returns_net=False, verbose=0): assert use_from is None, 'This should not be set because it is for forward compatibility.' input_var = self.get_input_var(input_var) callback = NnpNetworkPass(verbose) callback.remove_and_rewire('ImageAugmentationX') callback.set_variable('TrainingInput', input_var) callback.set_batch_normalization_batch_stat_all(training) self.use_up_to(use_up_to, callback) if not training: callback.remove_and_rewire( 'VGG{}/Dropout_1'.format(self.num_layers)) callback.remove_and_rewire( 'VGG{}/Dropout_2'.format(self.num_layers)) callback.fix_parameters() batch_size = input_var.shape[0] net = self.nnp.get_network( 'Training', batch_size=batch_size, callback=callback) if returns_net: return net return list(net.outputs.values())[0] class VGG11(VGG): """VGG11 An alias of :obj:`VGG` `(11)`. """ def __init__(self): super(VGG11, self).__init__(11) class VGG13(VGG): """VGG13 An alias of :obj:`VGG` `(13)`. """ def __init__(self): super(VGG13, self).__init__(13) class VGG16(VGG): """VGG16 An alias of :obj:`VGG` `(16)`. """ def __init__(self): super(VGG16, self).__init__(16)
the-stack_106_20275
import utime import ustruct def color565(r, g, b): return (r & 0xf8) << 8 | (g & 0xfc) << 3 | b >> 3 class DummyPin: """A fake gpio pin for when you want to skip pins.""" OUT = 0 IN = 0 PULL_UP = 0 PULL_DOWN = 0 OPEN_DRAIN = 0 ALT = 0 ALT_OPEN_DRAIN = 0 LOW_POWER = 0 MED_POWER = 0 HIGH_PWER = 0 IRQ_FALLING = 0 IRQ_RISING = 0 IRQ_LOW_LEVEL = 0 IRQ_HIGH_LEVEL = 0 def __call__(self, *args, **kwargs): return False init = __call__ value = __call__ out_value = __call__ toggle = __call__ high = __call__ low = __call__ on = __call__ off = __call__ mode = __call__ pull = __call__ drive = __call__ irq = __call__ class Display: _PAGE_SET = None _COLUMN_SET = None _RAM_WRITE = None _RAM_READ = None _INIT = () _ENCODE_PIXEL = ">H" _ENCODE_POS = ">HH" _DECODE_PIXEL = ">BBB" def __init__(self, width, height): self.width = width self.height = height self.init() def init(self): """Run the initialization commands.""" for command, data in self._INIT: self._write(command, data) def _block(self, x0, y0, x1, y1, data=None): """Read or write a block of data.""" self._write(self._COLUMN_SET, self._encode_pos(x0, x1)) self._write(self._PAGE_SET, self._encode_pos(y0, y1)) if data is None: size = ustruct.calcsize(self._DECODE_PIXEL) return self._read(self._RAM_READ, (x1 - x0 + 1) * (y1 - y0 + 1) * size) self._write(self._RAM_WRITE, data) def _encode_pos(self, a, b): """Encode a postion into bytes.""" return ustruct.pack(self._ENCODE_POS, a, b) def _encode_pixel(self, color): """Encode a pixel color into bytes.""" return ustruct.pack(self._ENCODE_PIXEL, color) def _decode_pixel(self, data): """Decode bytes into a pixel color.""" return color565(*ustruct.unpack(self._DECODE_PIXEL, data)) def pixel(self, x, y, color=None): """Read or write a pixel.""" if color is None: return self._decode_pixel(self._block(x, y, x, y)) if not 0 <= x < self.width or not 0 <= y < self.height: return self._block(x, y, x, y, self._encode_pixel(color)) def fill_rectangle(self, x, y, width, height, color): """Draw a filled rectangle.""" x = min(self.width - 1, max(0, x)) y = min(self.height - 1, max(0, y)) w = min(self.width - x, max(1, width)) h = min(self.height - y, max(1, height)) self._block(x, y, x + w - 1, y + h - 1, b'') chunks, rest = divmod(w * h, 512) pixel = self._encode_pixel(color) if chunks: data = pixel * 512 for count in range(chunks): self._write(None, data) if rest: self._write(None, pixel * rest) def fill(self, color=0): """Fill whole screen.""" self.fill_rectangle(0, 0, self.width, self.height, color) def hline(self, x, y, width, color): """Draw a horizontal line.""" self.fill_rectangle(x, y, width, 1, color) def vline(self, x, y, height, color): """Draw a vertical line.""" self.fill_rectangle(x, y, 1, height, color) def blit_buffer(self, buffer, x, y, width, height): """Copy pixels from a buffer.""" if (not 0 <= x < self.width or not 0 <= y < self.height or not 0 < x + width <= self.width or not 0 < y + height <= self.height): raise ValueError("out of bounds") self._block(x, y, x + width - 1, y + height - 1, buffer) class DisplaySPI(Display): def __init__(self, spi, dc, cs=None, rst=None, width=1, height=1): self.spi = spi self.cs = cs self.dc = dc self.rst = rst if self.rst is None: self.rst = DummyPin() if self.cs is None: self.cs = DummyPin() self.cs.init(self.cs.OUT, value=1) self.dc.init(self.dc.OUT, value=0) self.rst.init(self.rst.OUT, value=1) self.reset() super().__init__(width, height) def reset(self): self.rst(0) utime.sleep_ms(50) self.rst(1) utime.sleep_ms(50) def _write(self, command=None, data=None): if command is not None: self.dc(0) self.cs(0) self.spi.write(bytearray([command])) self.cs(1) if data is not None: self.dc(1) self.cs(0) self.spi.write(data) self.cs(1) def _read(self, command=None, count=0): self.dc(0) self.cs(0) if command is not None: self.spi.write(bytearray([command])) if count: data = self.spi.read(count) self.cs(1) return data
the-stack_106_20277
import datetime import dateutil.parser from django.core.cache import cache from django.test import TestCase from apps.physicaldevice.models import Device from apps.stream.models import StreamId, StreamVariable from apps.streamdata.helpers import StreamDataBuilderHelper from apps.streamdata.models import StreamData from apps.utils.test_util import TestMixin from ..actions.action import * from ..cache_utils import cached_serialized_filter_for_slug, get_current_cached_filter_state_for_slug from ..models import * from ..process import FilterHelper from ..processing.trigger import evaluate_cached_transition from ..serializers import * class StreamFilterHelperTestCase(TestMixin, TestCase): """ Fixure includes: """ def setUp(self): self.usersTestSetup() self.orgTestSetup() self.deviceTemplateTestSetup() self.v1 = StreamVariable.objects.create_variable( name='Var A', project=self.p1, created_by=self.u2, lid=1, ) self.v2 = StreamVariable.objects.create_variable( name='Var B', project=self.p2, created_by=self.u3, lid=2, ) self.pd1 = Device.objects.create_device(project=self.p1, label='d1', template=self.dt1, created_by=self.u2) self.pd2 = Device.objects.create_device(project=self.p2, label='d2', template=self.dt1, created_by=self.u3) self.s1 = StreamId.objects.create_stream( project=self.p1, variable=self.v1, device=self.pd1, created_by=self.u2 ) self.s2 = StreamId.objects.create_stream( project=self.p2, variable=self.v2, device=self.pd1, created_by=self.u3 ) if cache: cache.clear() def tearDown(self): StreamFilterAction.objects.all().delete() StreamFilterTrigger.objects.all().delete() StateTransition.objects.all().delete() StreamFilter.objects.all().delete() State.objects.all().defer() StreamId.objects.all().delete() StreamVariable.objects.all().delete() StreamData.objects.all().delete() Device.objects.all().delete() self.deviceTemplateTestTearDown() self.orgTestTearDown() self.userTestTearDown() if cache: cache.clear() def _dummy_basic_filter(self, with_actions=False): """ Filter with two states: state1 -> state2 if value >= 10 state2 -> state1 if value < 10 """ f = StreamFilter.objects.create_filter_from_streamid( name='Filter 1', input_stream=self.s1, created_by=self.u2 ) a1 = a2 = None state1 = State.objects.create(label="state1", filter=f, created_by=self.u2) state2 = State.objects.create(label="state2", filter=f, created_by=self.u2) if with_actions: extra_payload = { "notification_recipient": "admin", "notification_level": "warn", "custom_note": "dummy" } a1 = StreamFilterAction.objects.create( type='eml', created_by=self.u2, extra_payload=extra_payload, on='exit', state=state1 ) a2 = StreamFilterAction.objects.create( type='eml', created_by=self.u2, extra_payload=extra_payload, on='exit', state=state2 ) transition1 = StateTransition.objects.create( src=state1, dst=state2, filter=f, created_by=self.u2 ) t1 = StreamFilterTrigger.objects.create( operator='ge', created_by=self.u2, filter=f, threshold=10, transition=transition1 ) transition2 = StateTransition.objects.create( src=state2, dst=state1, filter=f, created_by=self.u2 ) t2 = StreamFilterTrigger.objects.create( operator='lt', created_by=self.u2, filter=f, threshold=10, transition=transition2 ) return { 'filter': f, 'states': [state1, state2], 'transitions': [transition1, transition2] } def _dummy_data(self, stream_slug, data): count = 1 data_entries = [] data_helper = StreamDataBuilderHelper() for item in data: stream_data = data_helper.build_data_obj( stream_slug=stream_slug, streamer_local_id=count, timestamp=item[0], int_value=item[1] ) data_entries.append(stream_data) return data_entries def testTransitionShouldExecute(self): filter_info = self._dummy_basic_filter() t0 = dateutil.parser.parse('2016-09-28T10:00:00Z') data_helper = StreamDataBuilderHelper() stream_data = data_helper.build_data_obj( stream_slug=self.s1.slug, streamer_local_id=1, timestamp=t0, int_value=11 ) filter_helper = FilterHelper(False) serializer = StateTransitionReadOnlySerializer(filter_info['transitions'][0]) transition1_data = serializer.data serializer = StateReadOnlySerializer(filter_info['transitions'][0].src) src = serializer.data serializer = StateReadOnlySerializer(filter_info['transitions'][0].dst) dst = serializer.data # No current state, but condition not met stream_data.value = 9 res = filter_helper._transition_should_execute( src, dst, None, transition1_data, stream_data ) self.assertFalse(res) # No current state, and condition met stream_data.value = 11 res = filter_helper._transition_should_execute( src, dst, None, transition1_data, stream_data ) self.assertTrue(res) # Different src state. Never transition res = filter_helper._transition_should_execute( src, dst, 'state2', transition1_data, stream_data ) self.assertFalse(res) # Correct src state, does not meet condition stream_data.value = 9 res = filter_helper._transition_should_execute( src, dst, 'state1', transition1_data, stream_data ) self.assertFalse(res) # Correct src state, meet condition stream_data.value = 11 res = filter_helper._transition_should_execute( src, dst, 'state1', transition1_data, stream_data ) self.assertTrue(res) # No src, but condition not met stream_data.value = 9 res = filter_helper._transition_should_execute( None, dst, 'state1', transition1_data, stream_data ) self.assertFalse(res) # No src, and from another state. Condition met stream_data.value = 11 res = filter_helper._transition_should_execute( None, dst, 'state1', transition1_data, stream_data ) self.assertTrue(res) # No src, condition met from existing state stream_data.value = 11 res = filter_helper._transition_should_execute( None, dst, 'state2', transition1_data, stream_data ) self.assertFalse(res) # No src, condition met from existing state stream_data.value = 11 res = filter_helper._transition_should_execute( None, dst, '', transition1_data, stream_data ) self.assertTrue(res) def testBasic1Flow(self): filter_info = self._dummy_basic_filter() serializer = StateTransitionReadOnlySerializer(filter_info['transitions'][0]) transition1_data = serializer.data serializer = StateTransitionReadOnlySerializer(filter_info['transitions'][1]) transition2_data = serializer.data self.assertFalse(evaluate_cached_transition(transition1_data, 9)) self.assertTrue(evaluate_cached_transition(transition2_data, 9)) self.assertTrue(evaluate_cached_transition(transition1_data, 11)) self.assertFalse(evaluate_cached_transition(transition2_data, 11)) # 10 <= value < 20 t3 = StreamFilterTrigger.objects.create( operator='lt', created_by=self.u2, filter=filter_info['filter'], threshold=20, transition=filter_info['transitions'][0] ) serializer = StateTransitionReadOnlySerializer(filter_info['transitions'][0]) transition1_data = serializer.data self.assertFalse(evaluate_cached_transition(transition1_data, 9)) self.assertTrue(evaluate_cached_transition(transition1_data, 10)) self.assertTrue(evaluate_cached_transition(transition1_data, 12)) self.assertFalse(evaluate_cached_transition(transition1_data, 20)) def testBasic2Flow(self): f = StreamFilter.objects.create_filter_from_streamid( name='Filter 1', input_stream=self.s1, created_by=self.u2 ) extra_payload = { "notification_recipient": "[org:admin]", "custom_note": "dummy" } state1 = State.objects.create(label="state1", filter=f, created_by=self.u2) state2 = State.objects.create(label="state2", filter=f, created_by=self.u2) a1 = StreamFilterAction.objects.create( type='eml', created_by=self.u2, extra_payload=extra_payload, on='exit', state=state1 ) a2 = StreamFilterAction.objects.create( type='eml', created_by=self.u2, extra_payload=extra_payload, on='entry', state=state1 ) transition1 = StateTransition.objects.create( src=state1, dst=state2, filter=f, created_by=self.u2 ) t1 = StreamFilterTrigger.objects.create( operator='ge', created_by=self.u2, filter=f, threshold=10, transition=transition1 ) transition2 = StateTransition.objects.create( src=state2, dst=state1, filter=f, created_by=self.u2 ) t2 = StreamFilterTrigger.objects.create( operator='lt', created_by=self.u2, filter=f, threshold=10, transition=transition2 ) cached_filter = cached_serialized_filter_for_slug(self.s1.slug) t0 = dateutil.parser.parse('2016-09-28T10:00:00Z') data = [ (t0, 1), (t0 + datetime.timedelta(seconds=50), 5), (t0 + datetime.timedelta(seconds=100), 8), (t0 + datetime.timedelta(seconds=150), 11), (t0 + datetime.timedelta(seconds=200), 15), (t0 + datetime.timedelta(seconds=250), 9), (t0 + datetime.timedelta(seconds=300), 8), (t0 + datetime.timedelta(seconds=350), 12), (t0 + datetime.timedelta(seconds=400), 9), ] data_entries = self._dummy_data(self.s1.slug, data) filter_helper = FilterHelper(False) cached_filter = filter_helper.process_filter(data_entries[2], cached_filter) self.assertEqual(get_current_cached_filter_state_for_slug(self.s1.slug), 'state1') cached_filter = filter_helper.process_filter(data_entries[3], cached_filter) self.assertEqual(get_current_cached_filter_state_for_slug(self.s1.slug), 'state2') cached_filter = filter_helper.process_filter(data_entries[4], cached_filter) self.assertEqual(get_current_cached_filter_state_for_slug(self.s1.slug), 'state2') cached_filter = filter_helper.process_filter(data_entries[5], cached_filter) self.assertEqual(get_current_cached_filter_state_for_slug(self.s1.slug), 'state1')
the-stack_106_20279
#!/usr/bin/env python """ Tool for packaging Python apps for Android ========================================== This module defines the entry point for command line and programmatic use. """ from __future__ import print_function from os import environ from pythonforandroid import __version__ from pythonforandroid.pythonpackage import get_dep_names_of_package from pythonforandroid.recommendations import ( RECOMMENDED_NDK_API, RECOMMENDED_TARGET_API) from pythonforandroid.util import BuildInterruptingException from pythonforandroid.entrypoints import main def check_python_dependencies(): # Check if the Python requirements are installed. This appears # before the imports because otherwise they're imported elsewhere. # Using the ok check instead of failing immediately so that all # errors are printed at once from distutils.version import LooseVersion from importlib import import_module import sys ok = True modules = [('colorama', '0.3.3'), 'appdirs', ('sh', '1.10'), 'jinja2', 'six'] for module in modules: if isinstance(module, tuple): module, version = module else: version = None try: import_module(module) except ImportError: if version is None: print('ERROR: The {} Python module could not be found, please ' 'install it.'.format(module)) ok = False else: print('ERROR: The {} Python module could not be found, ' 'please install version {} or higher'.format( module, version)) ok = False else: if version is None: continue try: cur_ver = sys.modules[module].__version__ except AttributeError: # this is sometimes not available continue if LooseVersion(cur_ver) < LooseVersion(version): print('ERROR: {} version is {}, but python-for-android needs ' 'at least {}.'.format(module, cur_ver, version)) ok = False if not ok: print('python-for-android is exiting due to the errors logged above') exit(1) check_python_dependencies() import sys from sys import platform from os.path import (join, dirname, realpath, exists, expanduser, basename) import os import glob import shutil import re import shlex from functools import wraps import argparse import sh import imp from appdirs import user_data_dir import logging from distutils.version import LooseVersion from pythonforandroid.recipe import Recipe from pythonforandroid.logger import (logger, info, warning, setup_color, Out_Style, Out_Fore, info_notify, info_main, shprint) from pythonforandroid.util import current_directory from pythonforandroid.bootstrap import Bootstrap from pythonforandroid.distribution import Distribution, pretty_log_dists from pythonforandroid.graph import get_recipe_order_and_bootstrap from pythonforandroid.build import Context, build_recipes user_dir = dirname(realpath(os.path.curdir)) toolchain_dir = dirname(__file__) sys.path.insert(0, join(toolchain_dir, "tools", "external")) APK_SUFFIX = '.apk' def add_boolean_option(parser, names, no_names=None, default=True, dest=None, description=None): group = parser.add_argument_group(description=description) if not isinstance(names, (list, tuple)): names = [names] if dest is None: dest = names[0].strip("-").replace("-", "_") def add_dashes(x): return x if x.startswith("-") else "--"+x opts = [add_dashes(x) for x in names] group.add_argument( *opts, help=("(this is the default)" if default else None), dest=dest, action='store_true') if no_names is None: def add_no(x): x = x.lstrip("-") return ("no_"+x) if "_" in x else ("no-"+x) no_names = [add_no(x) for x in names] opts = [add_dashes(x) for x in no_names] group.add_argument( *opts, help=(None if default else "(this is the default)"), dest=dest, action='store_false') parser.set_defaults(**{dest: default}) def require_prebuilt_dist(func): """Decorator for ToolchainCL methods. If present, the method will automatically make sure a dist has been built before continuing or, if no dists are present or can be obtained, will raise an error. """ @wraps(func) def wrapper_func(self, args): ctx = self.ctx ctx.set_archs(self._archs) ctx.prepare_build_environment(user_sdk_dir=self.sdk_dir, user_ndk_dir=self.ndk_dir, user_android_api=self.android_api, user_ndk_api=self.ndk_api) dist = self._dist if dist.needs_build: if dist.folder_exists(): # possible if the dist is being replaced dist.delete() info_notify('No dist exists that meets your requirements, ' 'so one will be built.') build_dist_from_args(ctx, dist, args) func(self, args) return wrapper_func def dist_from_args(ctx, args): """Parses out any distribution-related arguments, and uses them to obtain a Distribution class instance for the build. """ return Distribution.get_distribution( ctx, name=args.dist_name, recipes=split_argument_list(args.requirements), arch_name=args.arch, ndk_api=args.ndk_api, force_build=args.force_build, require_perfect_match=args.require_perfect_match, allow_replace_dist=args.allow_replace_dist) def build_dist_from_args(ctx, dist, args): """Parses out any bootstrap related arguments, and uses them to build a dist.""" bs = Bootstrap.get_bootstrap(args.bootstrap, ctx) blacklist = getattr(args, "blacklist_requirements", "").split(",") if len(blacklist) == 1 and blacklist[0] == "": blacklist = [] build_order, python_modules, bs = ( get_recipe_order_and_bootstrap( ctx, dist.recipes, bs, blacklist=blacklist )) assert set(build_order).intersection(set(python_modules)) == set() ctx.recipe_build_order = build_order ctx.python_modules = python_modules info('The selected bootstrap is {}'.format(bs.name)) info_main('# Creating dist with {} bootstrap'.format(bs.name)) bs.distribution = dist info_notify('Dist will have name {} and requirements ({})'.format( dist.name, ', '.join(dist.recipes))) info('Dist contains the following requirements as recipes: {}'.format( ctx.recipe_build_order)) info('Dist will also contain modules ({}) installed from pip'.format( ', '.join(ctx.python_modules))) ctx.distribution = dist ctx.prepare_bootstrap(bs) if dist.needs_build: ctx.prepare_dist() build_recipes(build_order, python_modules, ctx, getattr(args, "private", None), ignore_project_setup_py=getattr( args, "ignore_setup_py", False ), ) ctx.bootstrap.run_distribute() info_main('# Your distribution was created successfully, exiting.') info('Dist can be found at (for now) {}' .format(join(ctx.dist_dir, ctx.distribution.dist_dir))) def split_argument_list(l): if not len(l): return [] return re.split(r'[ ,]+', l) class NoAbbrevParser(argparse.ArgumentParser): """We want to disable argument abbreviation so as not to interfere with passing through arguments to build.py, but in python2 argparse doesn't have this option. This subclass alternative is follows the suggestion at https://bugs.python.org/issue14910. """ def _get_option_tuples(self, option_string): return [] class ToolchainCL(object): def __init__(self): argv = sys.argv self.warn_on_carriage_return_args(argv) # Buildozer used to pass these arguments in a now-invalid order # If that happens, apply this fix # This fix will be removed once a fixed buildozer is released if (len(argv) > 2 and argv[1].startswith('--color') and argv[2].startswith('--storage-dir')): argv.append(argv.pop(1)) # the --color arg argv.append(argv.pop(1)) # the --storage-dir arg parser = NoAbbrevParser( description='A packaging tool for turning Python scripts and apps ' 'into Android APKs') generic_parser = argparse.ArgumentParser( add_help=False, description='Generic arguments applied to all commands') argparse.ArgumentParser( add_help=False, description='Arguments for dist building') generic_parser.add_argument( '--debug', dest='debug', action='store_true', default=False, help='Display debug output and all build info') generic_parser.add_argument( '--color', dest='color', choices=['always', 'never', 'auto'], help='Enable or disable color output (default enabled on tty)') generic_parser.add_argument( '--sdk-dir', '--sdk_dir', dest='sdk_dir', default='', help='The filepath where the Android SDK is installed') generic_parser.add_argument( '--ndk-dir', '--ndk_dir', dest='ndk_dir', default='', help='The filepath where the Android NDK is installed') generic_parser.add_argument( '--android-api', '--android_api', dest='android_api', default=0, type=int, help=('The Android API level to build against defaults to {} if ' 'not specified.').format(RECOMMENDED_TARGET_API)) generic_parser.add_argument( '--ndk-version', '--ndk_version', dest='ndk_version', default=None, help=('DEPRECATED: the NDK version is now found automatically or ' 'not at all.')) generic_parser.add_argument( '--ndk-api', type=int, default=None, help=('The Android API level to compile against. This should be your ' '*minimal supported* API, not normally the same as your --android-api. ' 'Defaults to min(ANDROID_API, {}) if not specified.').format(RECOMMENDED_NDK_API)) generic_parser.add_argument( '--symlink-java-src', '--symlink_java_src', action='store_true', dest='symlink_java_src', default=False, help=('If True, symlinks the java src folder during build and dist ' 'creation. This is useful for development only, it could also' ' cause weird problems.')) default_storage_dir = user_data_dir('python-for-android') if ' ' in default_storage_dir: default_storage_dir = '~/.python-for-android' generic_parser.add_argument( '--storage-dir', dest='storage_dir', default=default_storage_dir, help=('Primary storage directory for downloads and builds ' '(default: {})'.format(default_storage_dir))) generic_parser.add_argument( '--arch', help='The arch to build for.', default='armeabi-v7a') # Options for specifying the Distribution generic_parser.add_argument( '--dist-name', '--dist_name', help='The name of the distribution to use or create', default='') generic_parser.add_argument( '--requirements', help=('Dependencies of your app, should be recipe names or ' 'Python modules. NOT NECESSARY if you are using ' 'Python 3 with --use-setup-py'), default='') generic_parser.add_argument( '--recipe-blacklist', help=('Blacklist an internal recipe from use. Allows ' 'disabling Python 3 core modules to save size'), dest="recipe_blacklist", default='') generic_parser.add_argument( '--blacklist-requirements', help=('Blacklist an internal recipe from use. Allows ' 'disabling Python 3 core modules to save size'), dest="blacklist_requirements", default='') generic_parser.add_argument( '--bootstrap', help='The bootstrap to build with. Leave unset to choose ' 'automatically.', default=None) generic_parser.add_argument( '--hook', help='Filename to a module that contains python-for-android hooks', default=None) add_boolean_option( generic_parser, ["force-build"], default=False, description='Whether to force compilation of a new distribution') add_boolean_option( generic_parser, ["require-perfect-match"], default=False, description=('Whether the dist recipes must perfectly match ' 'those requested')) add_boolean_option( generic_parser, ["allow-replace-dist"], default=True, description='Whether existing dist names can be automatically replaced' ) generic_parser.add_argument( '--local-recipes', '--local_recipes', dest='local_recipes', default='./p4a-recipes', help='Directory to look for local recipes') generic_parser.add_argument( '--java-build-tool', dest='java_build_tool', default='auto', choices=['auto', 'ant', 'gradle'], help=('The java build tool to use when packaging the APK, defaults ' 'to automatically selecting an appropriate tool.')) add_boolean_option( generic_parser, ['copy-libs'], default=False, description='Copy libraries instead of using biglink (Android 4.3+)' ) self._read_configuration() subparsers = parser.add_subparsers(dest='subparser_name', help='The command to run') def add_parser(subparsers, *args, **kwargs): """ argparse in python2 doesn't support the aliases option, so we just don't provide the aliases there. """ if 'aliases' in kwargs and sys.version_info.major < 3: kwargs.pop('aliases') return subparsers.add_parser(*args, **kwargs) add_parser( subparsers, 'recommendations', parents=[generic_parser], help='List recommended p4a dependencies') parser_recipes = add_parser( subparsers, 'recipes', parents=[generic_parser], help='List the available recipes') parser_recipes.add_argument( "--compact", action="store_true", default=False, help="Produce a compact list suitable for scripting") add_parser( subparsers, 'bootstraps', help='List the available bootstraps', parents=[generic_parser]) add_parser( subparsers, 'clean_all', aliases=['clean-all'], help='Delete all builds, dists and caches', parents=[generic_parser]) add_parser( subparsers, 'clean_dists', aliases=['clean-dists'], help='Delete all dists', parents=[generic_parser]) add_parser( subparsers, 'clean_bootstrap_builds', aliases=['clean-bootstrap-builds'], help='Delete all bootstrap builds', parents=[generic_parser]) add_parser( subparsers, 'clean_builds', aliases=['clean-builds'], help='Delete all builds', parents=[generic_parser]) parser_clean = add_parser( subparsers, 'clean', help='Delete build components.', parents=[generic_parser]) parser_clean.add_argument( 'component', nargs='+', help=('The build component(s) to delete. You can pass any ' 'number of arguments from "all", "builds", "dists", ' '"distributions", "bootstrap_builds", "downloads".')) parser_clean_recipe_build = add_parser( subparsers, 'clean_recipe_build', aliases=['clean-recipe-build'], help=('Delete the build components of the given recipe. ' 'By default this will also delete built dists'), parents=[generic_parser]) parser_clean_recipe_build.add_argument( 'recipe', help='The recipe name') parser_clean_recipe_build.add_argument( '--no-clean-dists', default=False, dest='no_clean_dists', action='store_true', help='If passed, do not delete existing dists') parser_clean_download_cache = add_parser( subparsers, 'clean_download_cache', aliases=['clean-download-cache'], help='Delete cached downloads for requirement builds', parents=[generic_parser]) parser_clean_download_cache.add_argument( 'recipes', nargs='*', help='The recipes to clean (space-separated). If no recipe name is' ' provided, the entire cache is cleared.') parser_export_dist = add_parser( subparsers, 'export_dist', aliases=['export-dist'], help='Copy the named dist to the given path', parents=[generic_parser]) parser_export_dist.add_argument('output_dir', help='The output dir to copy to') parser_export_dist.add_argument( '--symlink', action='store_true', help='Symlink the dist instead of copying') parser_apk = add_parser( subparsers, 'apk', help='Build an APK', parents=[generic_parser]) # This is actually an internal argument of the build.py # (see pythonforandroid/bootstraps/common/build/build.py). # However, it is also needed before the distribution is finally # assembled for locating the setup.py / other build systems, which # is why we also add it here: parser_apk.add_argument( '--private', dest='private', help='the directory with the app source code files' + ' (containing your main.py entrypoint)', required=False, default=None) parser_apk.add_argument( '--release', dest='build_mode', action='store_const', const='release', default='debug', help='Build the PARSER_APK. in Release mode') parser_apk.add_argument( '--use-setup-py', dest="use_setup_py", action='store_true', default=False, help="Process the setup.py of a project if present. " + "(Experimental!") parser_apk.add_argument( '--ignore-setup-py', dest="ignore_setup_py", action='store_true', default=False, help="Don't run the setup.py of a project if present. " + "This may be required if the setup.py is not " + "designed to work inside p4a (e.g. by installing " + "dependencies that won't work or aren't desired " + "on Android") parser_apk.add_argument( '--keystore', dest='keystore', action='store', default=None, help=('Keystore for JAR signing key, will use jarsigner ' 'default if not specified (release build only)')) parser_apk.add_argument( '--signkey', dest='signkey', action='store', default=None, help='Key alias to sign PARSER_APK. with (release build only)') parser_apk.add_argument( '--keystorepw', dest='keystorepw', action='store', default=None, help='Password for keystore') parser_apk.add_argument( '--signkeypw', dest='signkeypw', action='store', default=None, help='Password for key alias') add_parser( subparsers, 'create', help='Compile a set of requirements into a dist', parents=[generic_parser]) add_parser( subparsers, 'archs', help='List the available target architectures', parents=[generic_parser]) add_parser( subparsers, 'distributions', aliases=['dists'], help='List the currently available (compiled) dists', parents=[generic_parser]) add_parser( subparsers, 'delete_dist', aliases=['delete-dist'], help='Delete a compiled dist', parents=[generic_parser]) parser_sdk_tools = add_parser( subparsers, 'sdk_tools', aliases=['sdk-tools'], help='Run the given binary from the SDK tools dis', parents=[generic_parser]) parser_sdk_tools.add_argument( 'tool', help='The binary tool name to run') add_parser( subparsers, 'adb', help='Run adb from the given SDK', parents=[generic_parser]) add_parser( subparsers, 'logcat', help='Run logcat from the given SDK', parents=[generic_parser]) add_parser( subparsers, 'build_status', aliases=['build-status'], help='Print some debug information about current built components', parents=[generic_parser]) parser.add_argument('-v', '--version', action='version', version=__version__) args, unknown = parser.parse_known_args(sys.argv[1:]) args.unknown_args = unknown if hasattr(args, "private") and args.private is not None: # Pass this value on to the internal bootstrap build.py: args.unknown_args += ["--private", args.private] if hasattr(args, "ignore_setup_py") and args.ignore_setup_py: args.use_setup_py = False self.args = args if args.subparser_name is None: parser.print_help() exit(1) setup_color(args.color) if args.debug: logger.setLevel(logging.DEBUG) self.ctx = Context() self.ctx.use_setup_py = getattr(args, "use_setup_py", True) have_setup_py_or_similar = False if getattr(args, "private", None) is not None: project_dir = getattr(args, "private") if (os.path.exists(os.path.join(project_dir, "setup.py")) or os.path.exists(os.path.join(project_dir, "pyproject.toml"))): have_setup_py_or_similar = True # Process requirements and put version in environ if hasattr(args, 'requirements'): requirements = [] # Add dependencies from setup.py, but only if they are recipes # (because otherwise, setup.py itself will install them later) if (have_setup_py_or_similar and getattr(args, "use_setup_py", False)): try: info("Analyzing package dependencies. MAY TAKE A WHILE.") # Get all the dependencies corresponding to a recipe: dependencies = [ dep.lower() for dep in get_dep_names_of_package( args.private, keep_version_pins=True, recursive=True, verbose=True, ) ] info("Dependencies obtained: " + str(dependencies)) all_recipes = [ recipe.lower() for recipe in set(Recipe.list_recipes(self.ctx)) ] dependencies = set(dependencies).intersection( set(all_recipes) ) # Add dependencies to argument list: if len(dependencies) > 0: if len(args.requirements) > 0: args.requirements += u"," args.requirements += u",".join(dependencies) except ValueError: # Not a python package, apparently. warning( "Processing failed, is this project a valid " "package? Will continue WITHOUT setup.py deps." ) # Parse --requirements argument list: for requirement in split_argument_list(args.requirements): if "==" in requirement: requirement, version = requirement.split(u"==", 1) os.environ["VERSION_{}".format(requirement)] = version info('Recipe {}: version "{}" requested'.format( requirement, version)) requirements.append(requirement) args.requirements = u",".join(requirements) self.warn_on_deprecated_args(args) self.storage_dir = args.storage_dir self.ctx.setup_dirs(self.storage_dir) self.sdk_dir = args.sdk_dir self.ndk_dir = args.ndk_dir self.android_api = args.android_api self.ndk_api = args.ndk_api self.ctx.symlink_java_src = args.symlink_java_src self.ctx.java_build_tool = args.java_build_tool self._archs = split_argument_list(args.arch) self.ctx.local_recipes = args.local_recipes self.ctx.copy_libs = args.copy_libs # Each subparser corresponds to a method getattr(self, args.subparser_name.replace('-', '_'))(args) @staticmethod def warn_on_carriage_return_args(args): for check_arg in args: if '\r' in check_arg: warning("Argument '{}' contains a carriage return (\\r).".format(str(check_arg.replace('\r', '')))) warning("Invoking this program via scripts which use CRLF instead of LF line endings will have undefined behaviour.") def warn_on_deprecated_args(self, args): """ Print warning messages for any deprecated arguments that were passed. """ # Output warning if setup.py is present and neither --ignore-setup-py # nor --use-setup-py was specified. if getattr(args, "private", None) is not None and \ (os.path.exists(os.path.join(args.private, "setup.py")) or os.path.exists(os.path.join(args.private, "pyproject.toml")) ): if not getattr(args, "use_setup_py", False) and \ not getattr(args, "ignore_setup_py", False): warning(" **** FUTURE BEHAVIOR CHANGE WARNING ****") warning("Your project appears to contain a setup.py file.") warning("Currently, these are ignored by default.") warning("This will CHANGE in an upcoming version!") warning("") warning("To ensure your setup.py is ignored, please specify:") warning(" --ignore-setup-py") warning("") warning("To enable what will some day be the default, specify:") warning(" --use-setup-py") # NDK version is now determined automatically if args.ndk_version is not None: warning('--ndk-version is deprecated and no longer necessary, ' 'the value you passed is ignored') if 'ANDROIDNDKVER' in environ: warning('$ANDROIDNDKVER is deprecated and no longer necessary, ' 'the value you set is ignored') def hook(self, name): if not self.args.hook: return if not hasattr(self, "hook_module"): # first time, try to load the hook module self.hook_module = imp.load_source("pythonforandroid.hook", self.args.hook) if hasattr(self.hook_module, name): info("Hook: execute {}".format(name)) getattr(self.hook_module, name)(self) else: info("Hook: ignore {}".format(name)) @property def default_storage_dir(self): udd = user_data_dir('python-for-android') if ' ' in udd: udd = '~/.python-for-android' return udd @staticmethod def _read_configuration(): # search for a .p4a configuration file in the current directory if not exists(".p4a"): return info("Reading .p4a configuration") with open(".p4a") as fd: lines = fd.readlines() lines = [shlex.split(line) for line in lines if not line.startswith("#")] for line in lines: for arg in line: sys.argv.append(arg) def recipes(self, args): """ Prints recipes basic info, e.g. .. code-block:: bash python3 3.7.1 depends: ['hostpython3', 'sqlite3', 'openssl', 'libffi'] conflicts: ['python2'] optional depends: ['sqlite3', 'libffi', 'openssl'] """ ctx = self.ctx if args.compact: print(" ".join(set(Recipe.list_recipes(ctx)))) else: for name in sorted(Recipe.list_recipes(ctx)): try: recipe = Recipe.get_recipe(name, ctx) except (IOError, ValueError): warning('Recipe "{}" could not be loaded'.format(name)) except SyntaxError: import traceback traceback.print_exc() warning(('Recipe "{}" could not be loaded due to a ' 'syntax error').format(name)) version = str(recipe.version) print('{Fore.BLUE}{Style.BRIGHT}{recipe.name:<12} ' '{Style.RESET_ALL}{Fore.LIGHTBLUE_EX}' '{version:<8}{Style.RESET_ALL}'.format( recipe=recipe, Fore=Out_Fore, Style=Out_Style, version=version)) print(' {Fore.GREEN}depends: {recipe.depends}' '{Fore.RESET}'.format(recipe=recipe, Fore=Out_Fore)) if recipe.conflicts: print(' {Fore.RED}conflicts: {recipe.conflicts}' '{Fore.RESET}' .format(recipe=recipe, Fore=Out_Fore)) if recipe.opt_depends: print(' {Fore.YELLOW}optional depends: ' '{recipe.opt_depends}{Fore.RESET}' .format(recipe=recipe, Fore=Out_Fore)) def bootstraps(self, _args): """List all the bootstraps available to build with.""" for bs in Bootstrap.list_bootstraps(): bs = Bootstrap.get_bootstrap(bs, self.ctx) print('{Fore.BLUE}{Style.BRIGHT}{bs.name}{Style.RESET_ALL}' .format(bs=bs, Fore=Out_Fore, Style=Out_Style)) print(' {Fore.GREEN}depends: {bs.recipe_depends}{Fore.RESET}' .format(bs=bs, Fore=Out_Fore)) def clean(self, args): components = args.component component_clean_methods = { 'all': self.clean_all, 'dists': self.clean_dists, 'distributions': self.clean_dists, 'builds': self.clean_builds, 'bootstrap_builds': self.clean_bootstrap_builds, 'downloads': self.clean_download_cache} for component in components: if component not in component_clean_methods: raise BuildInterruptingException(( 'Asked to clean "{}" but this argument is not ' 'recognised'.format(component))) component_clean_methods[component](args) def clean_all(self, args): """Delete all build components; the package cache, package builds, bootstrap builds and distributions.""" self.clean_dists(args) self.clean_builds(args) self.clean_download_cache(args) def clean_dists(self, _args): """Delete all compiled distributions in the internal distribution directory.""" ctx = self.ctx if exists(ctx.dist_dir): shutil.rmtree(ctx.dist_dir) def clean_bootstrap_builds(self, _args): """Delete all the bootstrap builds.""" if exists(join(self.ctx.build_dir, 'bootstrap_builds')): shutil.rmtree(join(self.ctx.build_dir, 'bootstrap_builds')) # for bs in Bootstrap.list_bootstraps(): # bs = Bootstrap.get_bootstrap(bs, self.ctx) # if bs.build_dir and exists(bs.build_dir): # info('Cleaning build for {} bootstrap.'.format(bs.name)) # shutil.rmtree(bs.build_dir) def clean_builds(self, _args): """Delete all build caches for each recipe, python-install, java code and compiled libs collection. This does *not* delete the package download cache or the final distributions. You can also use clean_recipe_build to delete the build of a specific recipe. """ ctx = self.ctx if exists(ctx.build_dir): shutil.rmtree(ctx.build_dir) if exists(ctx.python_installs_dir): shutil.rmtree(ctx.python_installs_dir) libs_dir = join(self.ctx.build_dir, 'libs_collections') if exists(libs_dir): shutil.rmtree(libs_dir) def clean_recipe_build(self, args): """Deletes the build files of the given recipe. This is intended for debug purposes. You may experience strange behaviour or problems with some recipes if their build has made unexpected state changes. If this happens, run clean_builds, or attempt to clean other recipes until things work again. """ recipe = Recipe.get_recipe(args.recipe, self.ctx) info('Cleaning build for {} recipe.'.format(recipe.name)) recipe.clean_build() if not args.no_clean_dists: self.clean_dists(args) def clean_download_cache(self, args): """ Deletes a download cache for recipes passed as arguments. If no argument is passed, it'll delete *all* downloaded caches. :: p4a clean_download_cache kivy,pyjnius This does *not* delete the build caches or final distributions. """ ctx = self.ctx if hasattr(args, 'recipes') and args.recipes: for package in args.recipes: remove_path = join(ctx.packages_path, package) if exists(remove_path): shutil.rmtree(remove_path) info('Download cache removed for: "{}"'.format(package)) else: warning('No download cache found for "{}", skipping'.format( package)) else: if exists(ctx.packages_path): shutil.rmtree(ctx.packages_path) info('Download cache removed.') else: print('No cache found at "{}"'.format(ctx.packages_path)) @require_prebuilt_dist def export_dist(self, args): """Copies a created dist to an output dir. This makes it easy to navigate to the dist to investigate it or call build.py, though you do not in general need to do this and can use the apk command instead. """ ctx = self.ctx dist = dist_from_args(ctx, args) if dist.needs_build: raise BuildInterruptingException( 'You asked to export a dist, but there is no dist ' 'with suitable recipes available. For now, you must ' ' create one first with the create argument.') if args.symlink: shprint(sh.ln, '-s', dist.dist_dir, args.output_dir) else: shprint(sh.cp, '-r', dist.dist_dir, args.output_dir) @property def _dist(self): ctx = self.ctx dist = dist_from_args(ctx, self.args) ctx.distribution = dist return dist @require_prebuilt_dist def apk(self, args): """Create an APK using the given distribution.""" ctx = self.ctx dist = self._dist # Manually fixing these arguments at the string stage is # unsatisfactory and should probably be changed somehow, but # we can't leave it until later as the build.py scripts assume # they are in the current directory. fix_args = ('--dir', '--private', '--add-jar', '--add-source', '--whitelist', '--blacklist', '--presplash', '--icon') unknown_args = args.unknown_args for i, arg in enumerate(unknown_args): argx = arg.split('=') if argx[0] in fix_args: if len(argx) > 1: unknown_args[i] = '='.join( (argx[0], realpath(expanduser(argx[1])))) elif i + 1 < len(unknown_args): unknown_args[i+1] = realpath(expanduser(unknown_args[i+1])) env = os.environ.copy() if args.build_mode == 'release': if args.keystore: env['P4A_RELEASE_KEYSTORE'] = realpath(expanduser(args.keystore)) if args.signkey: env['P4A_RELEASE_KEYALIAS'] = args.signkey if args.keystorepw: env['P4A_RELEASE_KEYSTORE_PASSWD'] = args.keystorepw if args.signkeypw: env['P4A_RELEASE_KEYALIAS_PASSWD'] = args.signkeypw elif args.keystorepw and 'P4A_RELEASE_KEYALIAS_PASSWD' not in env: env['P4A_RELEASE_KEYALIAS_PASSWD'] = args.keystorepw build = imp.load_source('build', join(dist.dist_dir, 'build.py')) with current_directory(dist.dist_dir): self.hook("before_apk_build") os.environ["ANDROID_API"] = str(self.ctx.android_api) build_args = build.parse_args(args.unknown_args) self.hook("after_apk_build") self.hook("before_apk_assemble") build_type = ctx.java_build_tool if build_type == 'auto': info('Selecting java build tool:') build_tools_versions = os.listdir(join(ctx.sdk_dir, 'build-tools')) build_tools_versions = sorted(build_tools_versions, key=LooseVersion) build_tools_version = build_tools_versions[-1] info(('Detected highest available build tools ' 'version to be {}').format(build_tools_version)) if build_tools_version >= '25.0' and exists('gradlew'): build_type = 'gradle' info(' Building with gradle, as gradle executable is ' 'present') else: build_type = 'ant' if build_tools_version < '25.0': info((' Building with ant, as the highest ' 'build-tools-version is only {}').format( build_tools_version)) else: info(' Building with ant, as no gradle executable ' 'detected') if build_type == 'gradle': # gradle-based build env["ANDROID_NDK_HOME"] = self.ctx.ndk_dir env["ANDROID_HOME"] = self.ctx.sdk_dir gradlew = sh.Command('./gradlew') if exists('/usr/bin/dos2unix'): # .../dists/bdisttest_python3/gradlew # .../build/bootstrap_builds/sdl2-python3/gradlew # if docker on windows, gradle contains CRLF output = shprint( sh.Command('dos2unix'), gradlew._path.decode('utf8'), _tail=20, _critical=True, _env=env ) if args.build_mode == "debug": gradle_task = "assembleDebug" elif args.build_mode == "release": gradle_task = "assembleRelease" else: raise BuildInterruptingException( "Unknown build mode {} for apk()".format(args.build_mode)) output = shprint(gradlew, gradle_task, _tail=20, _critical=True, _env=env) # gradle output apks somewhere else # and don't have version in file apk_dir = join(dist.dist_dir, "build", "outputs", "apk", args.build_mode) apk_glob = "*-{}.apk" apk_add_version = True else: # ant-based build try: ant = sh.Command('ant') except sh.CommandNotFound: raise BuildInterruptingException( 'Could not find ant binary, please install it ' 'and make sure it is in your $PATH.') output = shprint(ant, args.build_mode, _tail=20, _critical=True, _env=env) apk_dir = join(dist.dist_dir, "bin") apk_glob = "*-*-{}.apk" apk_add_version = False self.hook("after_apk_assemble") info_main('# Copying APK to current directory') apk_re = re.compile(r'.*Package: (.*\.apk)$') apk_file = None for line in reversed(output.splitlines()): m = apk_re.match(line) if m: apk_file = m.groups()[0] break if not apk_file: info_main('# APK filename not found in build output. Guessing...') if args.build_mode == "release": suffixes = ("release", "release-unsigned") else: suffixes = ("debug", ) for suffix in suffixes: apks = glob.glob(join(apk_dir, apk_glob.format(suffix))) if apks: if len(apks) > 1: info('More than one built APK found... guessing you ' 'just built {}'.format(apks[-1])) apk_file = apks[-1] break else: raise BuildInterruptingException('Couldn\'t find the built APK') info_main('# Found APK file: {}'.format(apk_file)) if apk_add_version: info('# Add version number to APK') apk_name = basename(apk_file)[:-len(APK_SUFFIX)] apk_file_dest = "{}-{}-{}".format( apk_name, build_args.version, APK_SUFFIX) info('# APK renamed to {}'.format(apk_file_dest)) shprint(sh.cp, apk_file, apk_file_dest) else: shprint(sh.cp, apk_file, './') @require_prebuilt_dist def create(self, args): """Create a distribution directory if it doesn't already exist, run any recipes if necessary, and build the apk. """ pass # The decorator does everything def archs(self, _args): """List the target architectures available to be built for.""" print('{Style.BRIGHT}Available target architectures are:' '{Style.RESET_ALL}'.format(Style=Out_Style)) for arch in self.ctx.archs: print(' {}'.format(arch.arch)) def dists(self, args): """The same as :meth:`distributions`.""" self.distributions(args) def distributions(self, _args): """Lists all distributions currently available (i.e. that have already been built).""" ctx = self.ctx dists = Distribution.get_distributions(ctx) if dists: print('{Style.BRIGHT}Distributions currently installed are:' '{Style.RESET_ALL}'.format(Style=Out_Style, Fore=Out_Fore)) pretty_log_dists(dists, print) else: print('{Style.BRIGHT}There are no dists currently built.' '{Style.RESET_ALL}'.format(Style=Out_Style)) def delete_dist(self, _args): dist = self._dist if not dist.folder_exists(): info('No dist exists that matches your specifications, ' 'exiting without deleting.') return dist.delete() def sdk_tools(self, args): """Runs the android binary from the detected SDK directory, passing all arguments straight to it. This binary is used to install e.g. platform-tools for different API level targets. This is intended as a convenience function if android is not in your $PATH. """ ctx = self.ctx ctx.prepare_build_environment(user_sdk_dir=self.sdk_dir, user_ndk_dir=self.ndk_dir, user_android_api=self.android_api, user_ndk_api=self.ndk_api) android = sh.Command(join(ctx.sdk_dir, 'tools', args.tool)) output = android( *args.unknown_args, _iter=True, _out_bufsize=1, _err_to_out=True) for line in output: sys.stdout.write(line) sys.stdout.flush() def adb(self, args): """Runs the adb binary from the detected SDK directory, passing all arguments straight to it. This is intended as a convenience function if adb is not in your $PATH. """ self._adb(args.unknown_args) def logcat(self, args): """Runs ``adb logcat`` using the adb binary from the detected SDK directory. All extra args are passed as arguments to logcat.""" self._adb(['logcat'] + args.unknown_args) def _adb(self, commands): """Call the adb executable from the SDK, passing the given commands as arguments.""" ctx = self.ctx ctx.prepare_build_environment(user_sdk_dir=self.sdk_dir, user_ndk_dir=self.ndk_dir, user_android_api=self.android_api, user_ndk_api=self.ndk_api) if platform in ('win32', 'cygwin'): adb = sh.Command(join(ctx.sdk_dir, 'platform-tools', 'adb.exe')) else: adb = sh.Command(join(ctx.sdk_dir, 'platform-tools', 'adb')) info_notify('Starting adb...') output = adb(*commands, _iter=True, _out_bufsize=1, _err_to_out=True) for line in output: sys.stdout.write(line) sys.stdout.flush() def build_status(self, _args): """Print the status of the specified build. """ print('{Style.BRIGHT}Bootstraps whose core components are probably ' 'already built:{Style.RESET_ALL}'.format(Style=Out_Style)) bootstrap_dir = join(self.ctx.build_dir, 'bootstrap_builds') if exists(bootstrap_dir): for filen in os.listdir(bootstrap_dir): print(' {Fore.GREEN}{Style.BRIGHT}{filen}{Style.RESET_ALL}' .format(filen=filen, Fore=Out_Fore, Style=Out_Style)) print('{Style.BRIGHT}Recipes that are probably already built:' '{Style.RESET_ALL}'.format(Style=Out_Style)) other_builds_dir = join(self.ctx.build_dir, 'other_builds') if exists(other_builds_dir): for filen in sorted(os.listdir(other_builds_dir)): name = filen.split('-')[0] dependencies = filen.split('-')[1:] recipe_str = (' {Style.BRIGHT}{Fore.GREEN}{name}' '{Style.RESET_ALL}'.format( Style=Out_Style, name=name, Fore=Out_Fore)) if dependencies: recipe_str += ( ' ({Fore.BLUE}with ' + ', '.join(dependencies) + '{Fore.RESET})').format(Fore=Out_Fore) recipe_str += '{Style.RESET_ALL}'.format(Style=Out_Style) print(recipe_str) if __name__ == "__main__": main()
the-stack_106_20280
import pickle import numpy as np import matplotlib.pyplot as plt with open('c10p1.pickle', 'rb') as f: data = pickle.load(f) c10p1 = data['c10p1'] def normailze(raw_data): mean = np.mean(raw_data, axis=0) data = raw_data - mean return data data = normailze(c10p1) plt.figure(1) plt.scatter(data[:, 0], data[:, 1], marker='o', c='r') plt.title('Oja`s rule, data cloud') plt.xlabel('u1') plt.ylabel('u2') eta = 1 alpha = 1 t_step = 0.01 max_iter = 500 w0 = w = np.random.rand(2) print(f'W0:{w}') for step in np.arange(0, max_iter, 1): plt.figure(1) u = data[np.remainder(step, data.shape[0]), :] v = u @ w plt.plot(v, marker='^', c='b') w = w+t_step*eta*(v*u-alpha*v*v*w) plt.plot(w[0], w[1], marker='*', c='g') print('Question 7:') c = np.dot(data.T, data) / data.shape[0] ev, e = np.linalg.eig(c) print(ev) print(e) print('Question 8:') w1 = w0 offset = [2, 2] data1 = data + np.tile(offset, (data.shape[0], 1)) plt.figure(2) plt.scatter(data1[:, 0], data1[:, 1], marker='o', c='r') plt.title('Oja`s rule, data1 cloud') plt.xlabel('u1') plt.ylabel('u2') for step in np.arange(0, max_iter, 1): plt.figure(2) u = data1[np.remainder(step, data1.shape[0]), :] v = u @ w1 plt.plot(v, marker='^', c='b') w1 = w1+t_step*eta*(v*u-alpha*v*v*w1) plt.plot(w1[0], w1[1], marker='*', c='g') print('Question 9:') w2 = w0 plt.figure(3) plt.scatter(data[:, 0], data[:, 1], marker='o', c='r') plt.title('Hebb rule, data cloud') plt.xlabel('u1') plt.ylabel('u2') for step in np.arange(0, max_iter, 1): plt.figure(3) u = data[np.remainder(step, data.shape[0]), :] v = u @ w2 plt.plot(v, marker='^', c='b') w2 = w2+t_step*eta*(v*u) plt.plot(w2[0], w2[1], marker='*', c='g') plt.show()
the-stack_106_20281
import module_crud from time import sleep caminho = './projeto_crud_python/arquive/arquive.txt' conteudo = '\ntexto' opc1 = 'ler arquivo' opc2 = 'escrever' opc3 = 'apagar ' inicia = True while inicia : print('\n'*50) print('| ','-'*15,' |') print(f'1- {opc1}\n2- {opc2}\n3- {opc3}\n4- sair ->[') print('| ','-'*15,' |') resp = input('?_ ') if resp == '1' : print('\n'*50) print(f'--{opc1.upper()}--') print('-'*20,'\n') print(module_crud.le(caminho)) print('\n','-'*20,'\n') voltar = True while voltar: resp2 = input('voltar ?_s or n_ ') if(resp2 == 's' or resp2 == '1'): voltar = False if(resp2 == 'n' or resp2 == '2'): print('saindo...') sleep(3.0) print('---------') voltar = False inicia = False else: print('valor invalido') elif resp == '2' : print('\n'*50) print(f'--{opc2.upper()}--') print('-'*15) resp_2 = True while resp_2: resplinnha = str(input('1- na ultima linha\n2- na proxima linha \n?_ ')) if(resplinnha == '1' or resplinnha == '2'): print('-'*15,'\n') conteudo = str(input('insira o conteudo :\n\n')) print('\n') print('-'*15) print('salvando...') print('-'*15) if(resplinnha == '1'): module_crud.adiciona(conteudo,caminho,True) if(resplinnha == '2'): module_crud.adiciona(conteudo,caminho,False) sleep(3.0) print('slavo com sucesso!') quest = True while quest: resp2 = input('voltar ?_s or n_ ') if(resp2 == 's' or resp2 == '1'): resp_2 = False quest = False elif(resp2 == 'n' or resp2 == '2'): inicia = False resp_2 = False quest = False else: print('valor invalido') else: print('valor invalido') elif resp == '3' : print('\n'*50) print(f'--{opc3.upper()}--') module_crud.apaga(caminho) print('-'*15) print('arquivo apagado !') print('-'*15) voltar = True while voltar: resp2 = input('voltar ?_s or n_ ') if(resp2 == 's' or resp2 == '1'): voltar = False if(resp2 == 'n' or resp2 == '2'): print('saindo...') sleep(3.0) print('---------') voltar = False inicia = False else: print('valor invalido') elif resp == '4' : print('saindo...') sleep(3.0) inicia = False else : print('seletor não encontrado')
the-stack_106_20283
import os import sys import pytest # add scripts to the path sys.path.append( os.path.split( os.path.dirname( os.path.abspath(__file__) ) )[0] ) import pymsteams def test_env_webhook_url(): """ Test that we have the webhook set as an environment variable. This is testing our test environment, not the code. """ webhook_url = os.getenv("MS_TEAMS_WEBHOOK", None) assert webhook_url assert webhook_url.find("https") == 0 def test_send_message(): """ This sends a simple text message with a title and link button. """ teams_message = pymsteams.connectorcard(os.getenv("MS_TEAMS_WEBHOOK")) teams_message.text("This is a simple text message.") teams_message.title("Simple Message Title") teams_message.addLinkButton("Go to the Repo", "https://github.com/rveachkc/pymsteams") teams_message.send() assert isinstance(teams_message.last_http_status.status_code, int) def test_send_sectioned_message(): """ This sends a message with sections. """ # start the message teams_message = pymsteams.connectorcard(os.getenv("MS_TEAMS_WEBHOOK")) teams_message.text("This is the main title.") teams_message.title("Sectioned Message Title") # section 1 section_1 = pymsteams.cardsection() section_1.title("Section 1 title") section_1.activityTitle("my activity title") section_1.activitySubtitle("my activity subtitle") section_1.activityImage("https://raw.githubusercontent.com/rveachkc/pymsteams/develop/test/desk_toys_1.jpg") section_1.activityText("This is my activity Text. You should see an activity image, activity title, activity subtitle, and this text (of course).") section_1.addFact("Fact", "this is fine") section_1.addFact("Fact", "this is also fine") section_1.text("This is my section 1 text. This section has an activity above and two facts below.") teams_message.addSection(section_1) # section 2 section_2 = pymsteams.cardsection() section_2.text("This is section 2. You should see an image. This section does not have facts or a title.") section_2.addImage("https://raw.githubusercontent.com/rveachkc/pymsteams/develop/test/desk_toys_2.jpg", ititle="Pew Pew Pew") teams_message.addSection(section_2) # send teams_message.send() assert isinstance(teams_message.last_http_status.status_code, int) def test_send_potential_action(): """ This sends a message with a potential action """ myTeamsMessage = pymsteams.connectorcard(os.getenv("MS_TEAMS_WEBHOOK")) myTeamsMessage.text("This message should have four potential actions.") myTeamsMessage.title("Action Message Title") myTeamsPotentialAction1 = pymsteams.potentialaction(_name = "Add a comment") myTeamsPotentialAction1.addInput("TextInput","comment","Add a comment",False) myTeamsPotentialAction1.addAction("HttpPost","Add Comment","https://jsonplaceholder.typicode.com/posts") myTeamsPotentialAction2 = pymsteams.potentialaction(_name = "Get Users") myTeamsPotentialAction2.addInput("DateInput","dueDate","Enter due date") myTeamsPotentialAction2.addAction("HttpPost","save","https://jsonplaceholder.typicode.com/posts") myTeamsPotentialAction3 = pymsteams.potentialaction(_name = "Change Status") myTeamsPotentialAction3.choices.addChoices("In progress","0") myTeamsPotentialAction3.choices.addChoices("Active","1") myTeamsPotentialAction3.addInput("MultichoiceInput","list","Select a status",False) myTeamsPotentialAction3.addAction("HttpPost","Save","https://jsonplaceholder.typicode.com/posts") myTeamsPotentialAction4 = pymsteams.potentialaction(_name = "Download pymsteams") myTeamsPotentialAction4.addOpenURI("Links", [ { "os": "default", "uri": "https://pypi.org/project/pymsteams/", }, ]) myTeamsMessage.addPotentialAction(myTeamsPotentialAction1) myTeamsMessage.addPotentialAction(myTeamsPotentialAction2) myTeamsMessage.addPotentialAction(myTeamsPotentialAction3) myTeamsMessage.summary("Message Summary") myTeamsMessage.send() assert isinstance(myTeamsMessage.last_http_status.status_code, int) def test_http_500(): with pytest.raises(pymsteams.TeamsWebhookException): #myTeamsMessage = pymsteams.connectorcard(os.getenv("MS_TEAMS_WEBHOOK")) myTeamsMessage = pymsteams.connectorcard("https://httpstat.us/500") myTeamsMessage.text("This is a simple text message.") myTeamsMessage.title("Simple Message Title") myTeamsMessage.send() #myTeamsMessage.hookurl = "https://httpstat.us/500" def test_http_403(): with pytest.raises(pymsteams.TeamsWebhookException): myTeamsMessage = pymsteams.connectorcard("http://httpstat.us/403") myTeamsMessage.text("This is a simple text message.") myTeamsMessage.title("Simple Message Title") myTeamsMessage.send() def test_message_size(): def getMsg(card): msg = pymsteams.connectorcard(os.getenv("MS_TEAMS_WEBHOOK")) msg.title('Simple Message Title') msg.summary('Simple Summary') msg.addSection(card) return msg # setup text that's too large failure_char_count = 21000 text = 'a' * failure_char_count card = pymsteams.cardsection() card.text(text) msg = getMsg(card) with pytest.raises(pymsteams.TeamsWebhookException): msg.send() card1 = pymsteams.cardsection() card2 = pymsteams.cardsection() card1.text(text[:int(len(text)/2)]) card2.text(text[int(len(text)/2):]) msg = getMsg(card1) assert msg.send() msg = getMsg(card2) assert msg.send()
the-stack_106_20284
""" Train LDA model using https://pypi.python.org/pypi/lda, and visualize in 2-D space with t-SNE. """ import os import time import lda import random import argparse import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.manifold import TSNE import bokeh.plotting as bp from bokeh.plotting import save from bokeh.models import HoverTool from utils import preprocess # import dask.dataframe as dd import glob import pandas as pd if __name__ == '__main__': lda_base = 'lda_simple' if not os.path.exists(lda_base): os.makedirs(lda_base) ############################################################################## # cli inputs parser = argparse.ArgumentParser() parser.add_argument('--raw_tweet_dir', required=True, type=str, help='a directory of raw profile files') parser.add_argument('--num_train_tweet', required=True, type=int, help='number of profiles used for training a LDA model') parser.add_argument('--n_topics', required=True, type=int, default=20, help='number of topics') parser.add_argument('--n_iter', required=True, type=int, default=1500, help='number of iteration for LDA model training') parser.add_argument('--top_n', required=True, type=int, default=8, help='number of keywords to show for each topic') parser.add_argument('--threshold', required=True, type=float, default=0.0, help='threshold probability for topic assignment') parser.add_argument('--num_example', required=True, type=int, default=5000, help='number of profiles to show on the plot') parser.add_argument('--sentiment', required=True, type=str, default='all', help='sentiment from tweets of profiles to plot') args = parser.parse_args() # unpack raw_tweet_dir = args.raw_tweet_dir num_train_tweet = args.num_train_tweet n_topics = args.n_topics n_iter = args.n_iter n_top_words = args.top_n threshold = args.threshold num_example = args.num_example sentiment = args.sentiment ############################################################################## # get training num_scanned_tweet = 0 num_qualified_tweet = 0 all_files = glob.glob(raw_tweet_dir + "week_*_all.tsv") li = [] for filename in all_files: print(filename) df = pd.read_csv(filename, index_col=None, #header=0, sep='\t',encoding = 'utf8',lineterminator='\n', usecols = [16,20,36], names=['user_id_str','user_description','sentiment'] ,low_memory=False) li.append(df) raw_tweet_files = pd.concat(li, axis=0, ignore_index=True) raw_tweet_files.info() # split by sentiment raw_tweet_files["sentiment"] = raw_tweet_files["sentiment"].apply(pd.to_numeric, errors='coerce') if sentiment == 'pos': raw_tweet_files = raw_tweet_files[raw_tweet_files['sentiment'].apply(lambda x: x>0.1)] elif sentiment == 'neg': raw_tweet_files = raw_tweet_files[raw_tweet_files['sentiment'].apply(lambda x: x<-0.1)] raw_tweet_files['user_id_str'] = pd.to_numeric(raw_tweet_files['user_id_str'], errors='coerce') raw_tweet_files["user_description"]=raw_tweet_files["user_description"].astype(str) raw_tweet_files = raw_tweet_files[~raw_tweet_files['user_id_str'].isnull()] raw_tweet_files = raw_tweet_files[~raw_tweet_files['user_description'].isnull()] raw_tweet_text = set(raw_tweet_files['user_description']) print('len', len(raw_tweet_text)) raw_tweet = [] processed_tweet = [] processed_tweet_set = set() # for quicker'item in?' check t0 = time.time() for row in raw_tweet_text: num_scanned_tweet += 1 p_t = preprocess(row) if p_t and p_t not in processed_tweet_set: # ignore duplicate tweets raw_tweet += row, processed_tweet += p_t, processed_tweet_set.add(p_t) num_qualified_tweet += 1 if num_scanned_tweet % 1000000 == 0: # progress update print('scanned {} tweets'.format(num_scanned_tweet)) if num_qualified_tweet == num_train_tweet: # enough data for training break '''if num_qualified_tweet == num_train_tweet: # break outer loop break''' del processed_tweet_set # free memory t1 = time.time() print('\n>>> scanned {} tweets to find {} trainable; took {} mins\n'.format( num_scanned_tweet, num_train_tweet, (t1-t0)/60.)) ############################################################################## # train LDA # ignore terms that have a document frequency strictly lower than 5, 10 cvectorizer = CountVectorizer(min_df=5) cvz = cvectorizer.fit_transform(processed_tweet) lda_model = lda.LDA(n_topics=n_topics, n_iter=n_iter) X_topics = lda_model.fit_transform(cvz) t2 = time.time() print('\n>>> LDA training done; took {} mins\n'.format((t2-t1)/60.)) np.save('lda_simple/lda_doc_topic_{}profiles_{}topics_{}.npy'.format( X_topics.shape[0], X_topics.shape[1], sentiment), X_topics) np.save('lda_simple/lda_topic_word_{}profiles_{}topics_{}.npy'.format( X_topics.shape[0], X_topics.shape[1], sentiment), lda_model.topic_word_) print('\n>>> doc_topic & topic word written to disk\n') ############################################################################## # threshold and plot _idx = np.amax(X_topics, axis=1) > threshold # idx of tweets that > threshold _topics = X_topics[_idx] _raw_tweet = np.array(raw_tweet)[_idx] _processed_tweet = np.array(processed_tweet)[_idx] # t-SNE: 50 -> 2D tsne_model = TSNE(n_components=2, verbose=1, random_state=0, angle=.99, init='pca') tsne_lda = tsne_model.fit_transform(_topics[:num_example]) t3 = time.time() print('\n>>> t-SNE transformation done; took {} mins\n'.format((t3-t2)/60.)) # find the most probable topic for each tweet _lda_keys = [] for i, tweet in enumerate(_raw_tweet): _lda_keys += _topics[i].argmax(), # generate random hex color colormap = [] for i in range(X_topics.shape[1]): r = lambda: random.randint(0, 255) colormap += ('#%02X%02X%02X' % (r(), r(), r())), colormap = np.array(colormap) # show topics and their top words topic_summaries = [] topic_word = lda_model.topic_word_ # get the topic words vocab = cvectorizer.get_feature_names() for i, topic_dist in enumerate(topic_word): topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n_top_words+1):-1] topic_summaries.append(' '.join(topic_words)) # use the coordinate of a random tweet as string topic string coordinate topic_coord = np.empty((X_topics.shape[1], 2)) * np.nan for topic_num in _lda_keys: if not np.isnan(topic_coord).any(): break topic_coord[topic_num] = tsne_lda[_lda_keys.index(topic_num)] # plot title = "t-SNE visualization of LDA model trained on {} profiles, {} topics, " \ "thresholding at {} topic probability, {} iter ({} data points and " \ "top {} words)".format(num_qualified_tweet, n_topics, threshold, n_iter, num_example, n_top_words) plot_lda = bp.figure(plot_width=1400, plot_height=1100, title=title, tools="pan,wheel_zoom,box_zoom,reset,hover,previewsave", x_axis_type=None, y_axis_type=None, min_border=1) # create the dictionary with all the information plot_dict = { 'x': tsne_lda[:, 0],#tsne_lda[:num_example, 0], 'y': tsne_lda[:, 1],#tsne_lda[:num_example, 1], 'colors': colormap[_lda_keys][:num_example], 'tweet': _raw_tweet[:num_example],#text[:num_example], 'topic_key': _lda_keys[:num_example] } # create the dataframe from the dictionary plot_df = pd.DataFrame.from_dict(plot_dict) # declare the source source = bp.ColumnDataSource(data=plot_df) # build scatter function from the columns of the dataframe plot_lda.scatter('x', 'y', color='colors', source=source) '''plot_lda.scatter(x=tsne_lda[:, 0], y=tsne_lda[:, 1], color=colormap[_lda_keys][:num_example], source=bp.ColumnDataSource({ "tweet": _raw_tweet[:num_example], "topic_key": _lda_keys[:num_example] }))''' # plot crucial words for i in range(X_topics.shape[1]): plot_lda.text(topic_coord[i, 0], topic_coord[i, 1], [topic_summaries[i]]) hover = plot_lda.select(dict(type=HoverTool)) hover.tooltips = {"tweet": "@tweet - topic: @topic_key"} save(plot_lda, 'tsne_lda_viz_{}_{}_{}_{}_{}_{}_{}.html'.format( num_qualified_tweet, n_topics, threshold, n_iter, num_example, n_top_words, sentiment)) t4 = time.time() print('\n>>> whole process done; took {} mins\n'.format((t4-t0)/60.))
the-stack_106_20285
import click from flask.cli import FlaskGroup from myapi.app import create_app def create_myapi(info): return create_app(cli=True) @click.group(cls=FlaskGroup, create_app=create_myapi) def cli(): """Main entry point""" @cli.command("init") def init(): """Init application, create database tables and create a new user named admin with password admin """ from myapi.extensions import db from myapi.models import User click.echo("create database") db.create_all() click.echo("done") click.echo("create user") user = User( username='admin', email='[email protected]', password='admin', active=True ) db.session.add(user) db.session.commit() click.echo("created user admin") if __name__ == "__main__": cli()
the-stack_106_20288
import os import hashlib import warnings from tempfile import mkdtemp, TemporaryFile from shutil import rmtree from twisted.trial import unittest from scrapy.item import Item, Field from scrapy.http import Request, Response from scrapy.settings import Settings from scrapy.pipelines.images import ImagesPipeline skip = False try: from PIL import Image except ImportError as e: skip = 'Missing Python Imaging Library, install https://pypi.python.org/pypi/Pillow' else: encoders = set(('jpeg_encoder', 'jpeg_decoder')) if not encoders.issubset(set(Image.core.__dict__)): skip = 'Missing JPEG encoders' def _mocked_download_func(request, info): response = request.meta.get('response') return response() if callable(response) else response class ImagesPipelineTestCase(unittest.TestCase): skip = skip def setUp(self): self.tempdir = mkdtemp() self.pipeline = ImagesPipeline(self.tempdir, download_func=_mocked_download_func) def tearDown(self): rmtree(self.tempdir) def test_file_path(self): file_path = self.pipeline.file_path self.assertEqual(file_path(Request("https://dev.mydeco.com/mydeco.gif")), 'full/3fd165099d8e71b8a48b2683946e64dbfad8b52d.jpg') self.assertEqual(file_path(Request("http://www.maddiebrown.co.uk///catalogue-items//image_54642_12175_95307.jpg")), 'full/0ffcd85d563bca45e2f90becd0ca737bc58a00b2.jpg') self.assertEqual(file_path(Request("https://dev.mydeco.com/two/dirs/with%20spaces%2Bsigns.gif")), 'full/b250e3a74fff2e4703e310048a5b13eba79379d2.jpg') self.assertEqual(file_path(Request("http://www.dfsonline.co.uk/get_prod_image.php?img=status_0907_mdm.jpg")), 'full/4507be485f38b0da8a0be9eb2e1dfab8a19223f2.jpg') self.assertEqual(file_path(Request("http://www.dorma.co.uk/images/product_details/2532/")), 'full/97ee6f8a46cbbb418ea91502fd24176865cf39b2.jpg') self.assertEqual(file_path(Request("http://www.dorma.co.uk/images/product_details/2532")), 'full/244e0dd7d96a3b7b01f54eded250c9e272577aa1.jpg') self.assertEqual(file_path(Request("http://www.dorma.co.uk/images/product_details/2532"), response=Response("http://www.dorma.co.uk/images/product_details/2532"), info=object()), 'full/244e0dd7d96a3b7b01f54eded250c9e272577aa1.jpg') def test_thumbnail_name(self): thumb_path = self.pipeline.thumb_path name = '50' self.assertEqual(thumb_path(Request("file:///tmp/foo.jpg"), name), 'thumbs/50/38a86208c36e59d4404db9e37ce04be863ef0335.jpg') self.assertEqual(thumb_path(Request("file://foo.png"), name), 'thumbs/50/e55b765eba0ec7348e50a1df496040449071b96a.jpg') self.assertEqual(thumb_path(Request("file:///tmp/foo"), name), 'thumbs/50/0329ad83ebb8e93ea7c7906d46e9ed55f7349a50.jpg') self.assertEqual(thumb_path(Request("file:///tmp/some.name/foo"), name), 'thumbs/50/850233df65a5b83361798f532f1fc549cd13cbe9.jpg') self.assertEqual(thumb_path(Request("file:///tmp/some.name/foo"), name, response=Response("file:///tmp/some.name/foo"), info=object()), 'thumbs/50/850233df65a5b83361798f532f1fc549cd13cbe9.jpg') def test_convert_image(self): SIZE = (100, 100) # straigh forward case: RGB and JPEG COLOUR = (0, 127, 255) im = _create_image('JPEG', 'RGB', SIZE, COLOUR) converted, _ = self.pipeline.convert_image(im) self.assertEquals(converted.mode, 'RGB') self.assertEquals(converted.getcolors(), [(10000, COLOUR)]) # check that thumbnail keep image ratio thumbnail, _ = self.pipeline.convert_image(converted, size=(10, 25)) self.assertEquals(thumbnail.mode, 'RGB') self.assertEquals(thumbnail.size, (10, 10)) # transparency case: RGBA and PNG COLOUR = (0, 127, 255, 50) im = _create_image('PNG', 'RGBA', SIZE, COLOUR) converted, _ = self.pipeline.convert_image(im) self.assertEquals(converted.mode, 'RGB') self.assertEquals(converted.getcolors(), [(10000, (205, 230, 255))]) class DeprecatedImagesPipeline(ImagesPipeline): def file_key(self, url): return self.image_key(url) def image_key(self, url): image_guid = hashlib.sha1(url).hexdigest() return 'empty/%s.jpg' % (image_guid) def thumb_key(self, url, thumb_id): thumb_guid = hashlib.sha1(url).hexdigest() return 'thumbsup/%s/%s.jpg' % (thumb_id, thumb_guid) class DeprecatedImagesPipelineTestCase(unittest.TestCase): def setUp(self): self.tempdir = mkdtemp() def init_pipeline(self, pipeline_class): self.pipeline = pipeline_class(self.tempdir, download_func=_mocked_download_func) self.pipeline.open_spider(None) def test_default_file_key_method(self): self.init_pipeline(ImagesPipeline) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.assertEqual(self.pipeline.file_key("https://dev.mydeco.com/mydeco.gif"), 'full/3fd165099d8e71b8a48b2683946e64dbfad8b52d.jpg') self.assertEqual(len(w), 1) self.assertTrue('image_key(url) and file_key(url) methods are deprecated' in str(w[-1].message)) def test_default_image_key_method(self): self.init_pipeline(ImagesPipeline) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.assertEqual(self.pipeline.image_key("https://dev.mydeco.com/mydeco.gif"), 'full/3fd165099d8e71b8a48b2683946e64dbfad8b52d.jpg') self.assertEqual(len(w), 1) self.assertTrue('image_key(url) and file_key(url) methods are deprecated' in str(w[-1].message)) def test_overridden_file_key_method(self): self.init_pipeline(DeprecatedImagesPipeline) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.assertEqual(self.pipeline.file_path(Request("https://dev.mydeco.com/mydeco.gif")), 'empty/3fd165099d8e71b8a48b2683946e64dbfad8b52d.jpg') self.assertEqual(len(w), 1) self.assertTrue('image_key(url) and file_key(url) methods are deprecated' in str(w[-1].message)) def test_default_thumb_key_method(self): self.init_pipeline(ImagesPipeline) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.assertEqual(self.pipeline.thumb_key("file:///tmp/foo.jpg", 50), 'thumbs/50/38a86208c36e59d4404db9e37ce04be863ef0335.jpg') self.assertEqual(len(w), 1) self.assertTrue('thumb_key(url) method is deprecated' in str(w[-1].message)) def test_overridden_thumb_key_method(self): self.init_pipeline(DeprecatedImagesPipeline) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.assertEqual(self.pipeline.thumb_path(Request("file:///tmp/foo.jpg"), 50), 'thumbsup/50/38a86208c36e59d4404db9e37ce04be863ef0335.jpg') self.assertEqual(len(w), 1) self.assertTrue('thumb_key(url) method is deprecated' in str(w[-1].message)) def tearDown(self): rmtree(self.tempdir) class ImagesPipelineTestCaseFields(unittest.TestCase): def test_item_fields_default(self): class TestItem(Item): name = Field() image_urls = Field() images = Field() for cls in TestItem, dict: url = 'http://www.example.com/images/1.jpg' item = cls({'name': 'item1', 'image_urls': [url]}) pipeline = ImagesPipeline.from_settings(Settings({'IMAGES_STORE': 's3://example/images/'})) requests = list(pipeline.get_media_requests(item, None)) self.assertEqual(requests[0].url, url) results = [(True, {'url': url})] pipeline.item_completed(results, item, None) self.assertEqual(item['images'], [results[0][1]]) def test_item_fields_override_settings(self): class TestItem(Item): name = Field() image = Field() stored_image = Field() for cls in TestItem, dict: url = 'http://www.example.com/images/1.jpg' item = cls({'name': 'item1', 'image': [url]}) pipeline = ImagesPipeline.from_settings(Settings({ 'IMAGES_STORE': 's3://example/images/', 'IMAGES_URLS_FIELD': 'image', 'IMAGES_RESULT_FIELD': 'stored_image' })) requests = list(pipeline.get_media_requests(item, None)) self.assertEqual(requests[0].url, url) results = [(True, {'url': url})] pipeline.item_completed(results, item, None) self.assertEqual(item['stored_image'], [results[0][1]]) def _create_image(format, *a, **kw): buf = TemporaryFile() Image.new(*a, **kw).save(buf, format) buf.seek(0) return Image.open(buf) if __name__ == "__main__": unittest.main()
the-stack_106_20290
""" AWS keys protection module """ import sys import json import hashlib import copy import ipaddress import urllib.request import boto3 import botocore.config from .common import get_accessibility_data DENY_NOT_IP_POLICY = { "Sid": "DenyIpBased", "Effect": "Deny", "NotAction": "iam:PutUserPolicy", "Resource": "*", "Condition": { "NotIpAddress": { "aws:SourceIp": "" } } } DENY_NOT_UA_POLICY = { "Sid": "DenyUABased", "Effect": "Deny", "Action": "iam:PutUserPolicy", "Resource": "*", "Condition": { "StringNotEquals": { "aws:UserAgent": "" } } } def protect_keys(options): """ Protect AWS access keys by applying IAM policy with aws:SourceIp condition """ data = get_accessibility_data(False) accessible_profiles = [ profile for profile in data if data[profile].get('accessible', False)] if options.target_ip == "": response = urllib.request.urlopen("http://ipinfo.io").read() ip_cidr = json.loads(response)['ip'] + "/32" else: try: ip_cidr = str(ipaddress.ip_network(options.target_ip)) except ValueError as err: sys.stderr.write( f'Error parsing IP address {options.target_ip}:{str(err)}') sys.exit(-1) if options.target_profile != "" and options.target_profile not in accessible_profiles: print(f'Profile {options.target_profile} not available or accessible') return if options.target_profile == "": print(f'IP based protection ({ip_cidr}) will be applied to all \ of the following active profiles:\n') print('\n'.join(accessible_profiles)) answer = input('\nProceed? (y/n)') if not answer.lower().strip() == 'y': print('Aborting...') sys.exit(0) for profile in accessible_profiles: # if single profile targeted if options.target_profile != "" and options.target_profile != profile: continue arn = data[profile]['identity'] if ':user' not in arn: print(f'Not applying protection for non-user identity {arn}') continue arn_digest = hashlib.sha256(arn.encode('utf-8')).hexdigest() policy = { "Version": "2012-10-17", "Statement": [copy.copy(DENY_NOT_IP_POLICY), copy.copy(DENY_NOT_UA_POLICY)] } policy['Statement'][0]['Condition']['NotIpAddress']['aws:SourceIp'] = ip_cidr if not options.enable_backdoor: del policy['Statement'][1] del policy['Statement'][0]['NotAction'] policy['Statement'][0]['Action'] = '*' else: policy['Statement'][1]['Condition']['StringNotEquals']['aws:UserAgent'] = arn_digest iam = boto3.Session(profile_name=profile).client('iam', config=botocore.config.Config( user_agent=arn_digest )) print(f'Processing profile {profile}: {arn}') user = arn.split('/')[1] print(f'🔒 Set IP based protection ({ip_cidr}) on user {user}') if options.enable_backdoor: print( 'Backdoor 🚪 access enabled, you can use this utility from differenty IP to protect again\n') else: print( f'No backdoor 🚪 access. User policy will only accept API calls from {ip_cidr}\n') iam.put_user_policy( UserName=user, PolicyName='IpBasedProtection', PolicyDocument=json.dumps(policy) )
the-stack_106_20291
# Copyright (C) 2016 Atsushi Togo # All rights reserved. # # This file is part of phonopy. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the phonopy project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import sys def fix_deprecated_option_names(argv): deprecated = [] for i, v in enumerate(argv[1:]): if v[0] == '-': tag = v.split('=')[0] if '_' in tag: correct_tag = tag.replace('_', '-') deprecated.append(tag) argv[i + 1] = v.replace(tag, correct_tag) return deprecated def show_deprecated_option_warnings(deprecated): lines = ["Option names with underscores are deprecated, by which", "the underscores are replaced by dashes. Therefore"] for tag in deprecated: lines.append("'%s' has to be written as '%s'." % (tag, tag.replace('_', '-'))) maxlen = max([len(line) for line in lines]) print("*" * maxlen) print('\n'.join(lines)) print("*" * maxlen) print("") def get_parser(): deprecated = fix_deprecated_option_names(sys.argv) import argparse parser = argparse.ArgumentParser( description="Phonopy command-line-tool") parser.set_defaults( abinit_mode=False, anime=None, band_format=None, band_indices=None, band_labels=None, band_paths=None, band_points=None, cell_filename=None, crystal_mode=False, cutoff_frequency=None, cutoff_radius=None, displacement_distance=None, dynamical_matrix_decimals=None, elk_mode=False, siesta_mode=False, cp2k_mode=False, dftbp_mode=False, fc_calculator_options=None, fc_symmetry=None, fc_format=None, fc_spg_symmetry=False, fits_debye_model=False, force_constants_decimals=None, force_constants=None, force_sets=None, force_sets_zero=None, fmax=None, fmin=None, frequency_conversion_factor=None, fpitch=None, frequency_scale_factor=None, gv_delta_q=None, hdf5_compression="gzip", is_band_connection=False, is_band_const_interval=False, is_check_symmetry=False, is_displacement=False, is_dos_mode=False, is_eigenvectors=False, is_full_fc=False, is_gamma_center=False, is_graph_plot=False, is_graph_save=False, is_group_velocity=False, is_hdf5=False, is_legend=False, is_legacy_plot=False, is_little_cogroup=False, is_moment=False, is_nac=False, is_nodiag=False, is_nomeshsym=False, is_nosym=False, is_plusminus_displacements=False, is_tetrahedron_method=True, is_thermal_displacements=False, is_thermal_displacement_matrices=False, is_thermal_displacement_matrices_cif=None, is_thermal_properties=False, is_projected_thermal_properties=False, is_trigonal_displacements=False, is_wien2k_p1=False, irreps_qpoint=None, lapack_solver=False, loglevel=None, masses=None, magmom=None, mesh_format=None, mesh_numbers=None, modulation=None, moment_order=None, nac_method=None, nac_q_direction=None, pdos=None, pretend_real=False, primitive_axes=None, projection_direction=None, qe_mode=False, qpoints=None, qpoints_format=None, quiet=False, random_displacemen=None, random_seed=None, read_fc_format=None, read_force_constants=False, read_qpoints=False, show_irreps=False, sigma=None, supercell_dimension=None, symmetry_tolerance=None, temperature=None, tmax=None, tmin=None, tstep=None, turbomooe_mode=False, use_alm=False, use_hiphive=False, vasp_mode=False, verbose=False, wien2k_mode=False, write_dynamical_matrices=False, write_fc_format=None, write_force_constants=False, write_mesh=True) parser.add_argument( "--abinit", dest="abinit_mode", action="store_true", help="Invoke Abinit mode") parser.add_argument( "--alm", dest="use_alm", action="store_true", help="Use ALM for generating force constants") parser.add_argument( "--amplitude", dest="displacement_distance", type=float, help="Distance of displacements") parser.add_argument( "--anime", nargs='+', dest="anime", help="Same as ANIME tag") parser.add_argument( "--band", nargs='+', dest="band_paths", help="Same behavior as BAND tag") parser.add_argument( "--band-connection", dest="is_band_connection", action="store_true", help="Treat band crossings") parser.add_argument( "--band-const-interval", dest="is_band_const_interval", action="store_true", help="Band paths are sampled with similar interval.") parser.add_argument( "--band-labels", nargs='+', dest="band_labels", help="Show labels at band segments") parser.add_argument( "--band-format", dest="band_format", help="Band structure output file-format") parser.add_argument( "--band-points", dest="band_points", type=int, help=("Number of points calculated on a band segment in " "the band structure mode")) parser.add_argument( "--bi", "--band-indices", nargs='+', dest="band_indices", help=("Band indices to be included to calcualte thermal " "properties")) parser.add_argument( "-c", "--cell", dest="cell_filename", metavar="FILE", help="Read unit cell") parser.add_argument( "--cp2k", dest="cp2k_mode", action="store_true", help="Invoke CP2K mode") parser.add_argument( "--crystal", dest="crystal_mode", action="store_true", help="Invoke CRYSTAL mode") parser.add_argument( "--cutoff-freq", "--cutoff-frequency", dest="cutoff_frequency", type=float, help=("Thermal properties are not calculated below this " "cutoff frequency.")) parser.add_argument( "--cutoff-radius", dest="cutoff_radius", type=float, help="Out of cutoff radius, force constants are set zero.") parser.add_argument( "-d", "--displacement", dest="is_displacement", action="store_true", help="Create supercells with displacements") parser.add_argument( "--dftb+", dest="dftbp_mode", action="store_true", help="Invoke dftb+ mode") parser.add_argument( "--dim", nargs='+', dest="supercell_dimension", help="Same behavior as DIM tag") parser.add_argument( "--dm-decimals", dest="dynamical_matrix_decimals", type=int, help="Decimals of values of decimals") parser.add_argument( "--dos", dest="is_dos_mode", action="store_true", help="Calculate (P)DOS") parser.add_argument( "--eigvecs", "--eigenvectors", dest="is_eigenvectors", action="store_true", help="Output eigenvectors") parser.add_argument( "--elk", dest="elk_mode", action="store_true", help="Invoke elk mode") parser.add_argument( "-f", "--force-sets", nargs='+', dest="force_sets", help="Create FORCE_SETS") parser.add_argument( "--factor", dest="frequency_conversion_factor", type=float, help="Frequency unit conversion factor") parser.add_argument( "--fc", "--force-constants", nargs=1, dest="force_constants", help=("Create FORCE_CONSTANTS from vaspurn.xml. " "vasprun.xml has to be passed as argument.")) parser.add_argument( "--fc-calc-opt", "--fc-calculator-options", dest="fc_calculator_options", help=("Options for force constants calculator as comma separated " "string with the style of key = values")) parser.add_argument( "--fc-decimals", dest="force_constants_decimals", type=int, help="Decimals of values of force constants") parser.add_argument( "--fc-format", dest="fc_format", help="Force constants input/output file-format") parser.add_argument( "--fc-spg-symmetry", dest="fc_spg_symmetry", action="store_true", help="Enforce space group symmetry to force constants") parser.add_argument( "--fc-symmetry", dest="fc_symmetry", action="store_true", help="Symmetrize force constants") parser.add_argument( "--fits-debye-model", dest="fits_debye_model", action="store_true", help="Fits total DOS to a Debye model") parser.add_argument( "--freq-scale", dest="frequency_scale_factor", type=float, help=("Squared scale factor multiplied as fc2 * factor^2. Therefore " "frequency is changed but the contribution from NAC is not " "changed.")) parser.add_argument( "--full-fc", dest="is_full_fc", action="store_true", help="Calculate full supercell force constants matrix") parser.add_argument( "--fz", "--force-sets-zero", nargs='+', dest="force_sets_zero", help=("Create FORCE_SETS. disp.yaml in the current directory and " "vapsrun.xml's for VASP or case.scf(m) for Wien2k as arguments " "are required. The first argument is that of the perfect " "supercell to subtract residual forces")) parser.add_argument( "--fmax", dest="fmax", type=float, help="Maximum frequency used for DOS or moment calculation") parser.add_argument( "--fmin", dest="fmin", type=float, help="Minimum frequency used for DOS or moment calculation") parser.add_argument( "--fpitch", dest="fpitch", type=float, help="Frequency pitch used for DOS or moment calculation") parser.add_argument( "--gc", "--gamma-center", dest="is_gamma_center", action="store_true", help="Set mesh as Gamma center") parser.add_argument( "--gv", "--group-velocity", dest="is_group_velocity", action="store_true", help="Calculate group velocities at q-points") parser.add_argument( "--gv-delta-q", dest="gv_delta_q", type=float, help="Delta-q distance used for group velocity calculation") parser.add_argument( "--hdf5", dest="is_hdf5", action="store_true", help="Use hdf5 for force constants") parser.add_argument( "--hdf5-compression", dest="hdf5_compression", help="hdf5 compression filter") parser.add_argument( "--hiphive", dest="use_hiphive", action="store_true", help="Use hiPhive for generating force constants") parser.add_argument( "--irreps", "--irreps-qpoint", nargs='+', dest="irreps_qpoint", help="A q-point where characters of irreps are calculated") # parser.add_argument( # "--lapack-solver", dest="lapack_solver", action="store_true", # help=("Use Lapack via Lapacke for solving phonons. This " # "option can be used only when phonopy is compiled " # "specially.")) parser.add_argument( "--legend", dest="is_legend", action="store_true", help="Legend of plots is shown in thermal displacements") parser.add_argument( "--legacy-plot", dest="is_legacy_plot", action="store_true", help="Legacy style band structure pl") parser.add_argument( "--lcg", "--little-cogroup", dest="is_little_cogroup", action="store_true", help=("Show irreps of little co-group (or point-group of " "wave vector q) instead of little group")) parser.add_argument( "--loglevel", dest="loglevel", type=int, help="Log level") parser.add_argument( "--mass", nargs='+', dest="masses", help="Same as MASS tag") parser.add_argument( "--magmom", nargs='+', dest="magmoms", help="Same as MAGMOM tag") parser.add_argument( "--mesh-format", dest="mesh_format", help="Mesh output file-format") parser.add_argument( "--modulation", nargs='+', dest="modulation", help="Same as MODULATION tag") parser.add_argument( "--mp", "--mesh", nargs='+', dest="mesh_numbers", help="Same behavior as MP tag") parser.add_argument( "--moment", dest="is_moment", action="store_true", help="Calculate moment of phonon states distribution") parser.add_argument( "--moment-order", dest="moment_order", type=int, help="Order of moment of phonon states distribution") parser.add_argument( "--nac", dest="is_nac", action="store_true", help="Non-analytical term correction") parser.add_argument( "--nac-method", dest="nac_method", help="Non-analytical term correction method: Gonze (default) or Wang") parser.add_argument( "--nodiag", dest="is_nodiag", action="store_true", help="Set displacements parallel to axes") parser.add_argument( "--nomeshsym", dest="is_nomeshsym", action="store_true", help="Symmetry is not imposed for mesh sampling.") parser.add_argument( "--nosym", dest="is_nosym", action="store_true", help="Symmetry is not imposed.") parser.add_argument( "--nothm", "--no-tetrahedron-method", dest="is_tetrahedron_method", action="store_false", help="Do not use tetrahedron method for DOS/PDOS") parser.add_argument( "--nowritemesh", dest="write_mesh", action="store_false", help="Do not write mesh.yaml or mesh.hdf5") parser.add_argument( "-p", "--plot", dest="is_graph_plot", action="store_true", help="Plot data") parser.add_argument( "--pa", "--primitive-axis", "--primitive-axes", nargs='+', dest="primitive_axes", help="Same as PRIMITIVE_AXES tag") parser.add_argument( "--pd", "--projection-direction", nargs='+', dest="projection_direction", help="Same as PROJECTION_DIRECTION tag") parser.add_argument( "--pdos", nargs='+', dest="pdos", help="Same as PDOS tag") parser.add_argument( "--pm", dest="is_plusminus_displacements", action="store_true", help="Set plus minus displacements") parser.add_argument( "--pr", "--pretend-real", dest="pretend_real", action="store_true", help=("Use imaginary frequency as real for thermal property " "calculation. For a testing purpose only, when a small " "amount of imaginary branches obtained.")) parser.add_argument( "--pt", "--projected-thermal-property", dest="is_projected_thermal_properties", action="store_true", help="Output projected thermal properties") parser.add_argument( "--qe", "--pwscf", dest="qe_mode", action="store_true", help="Invoke Quantum espresso (QE) mode") parser.add_argument( "--qpoints", nargs='+', dest="qpoints", help="Calculate at specified q-points") parser.add_argument( "--qpoints-format", dest="qpoints_format", help="Q-points output file-format") parser.add_argument( "--q-direction", nargs='+', dest="nac_q_direction", help=("Direction of q-vector perturbation used for NAC at " "q->0, and group velocity for degenerate phonon " "mode in q-points mode")) parser.add_argument( "-q", "--quiet", dest="quiet", action="store_true", help="Print out smallest information") parser.add_argument( "--random-seed", dest="random_seed", type=int, help="Random seed by a 32 bit unsigned integer") parser.add_argument( "--rd", "--random-displacements", dest="random_displacements", type=int, help="Number of supercells with random displacements") parser.add_argument( "--readfc", dest="read_force_constants", action="store_true", help="Read FORCE_CONSTANTS") parser.add_argument( "--readfc-format", dest="readfc_format", help="Force constants input file-format") parser.add_argument( "--read-qpoints", dest="read_qpoints", action="store_true", help="Read QPOITNS") parser.add_argument( "-s", "--save", dest="is_graph_save", action="store_true", help="Save plot data in pdf") parser.add_argument( "--show-irreps", dest="show_irreps", action="store_true", help="Show IR-Reps along with characters") parser.add_argument( "--siesta", dest="siesta_mode", action="store_true", help="Invoke Siesta mode") parser.add_argument( "--sigma", dest="sigma", help="Smearing width for DOS") parser.add_argument( "--symmetry", dest="is_check_symmetry", action="store_true", help="Check crystal symmetry") parser.add_argument( "-t", "--thermal-property", dest="is_thermal_properties", action="store_true", help="Output thermal properties") parser.add_argument( "--td", "--thermal-displacements", dest="is_thermal_displacements", action="store_true", help="Output thermal displacements") parser.add_argument( "--tdm", "--thermal-displacement-matrix", dest="is_thermal_displacement_matrices", action="store_true", help="Output thermal displacement matrices") parser.add_argument( "--tdm-cif", "--thermal-displacement-matrix-cif", metavar='TEMPERATURE', dest="thermal_displacement_matrices_cif", type=float, help="Write cif with aniso_U for which temperature is specified") parser.add_argument( "--temperature", dest="temperature", type=float, metavar='TEMPERATURE', help="A temperature point") parser.add_argument( "--tmax", dest="tmax", type=float, help="Maximum calculated temperature") parser.add_argument( "--tmin", dest="tmin", type=float, help="Minimum calculated temperature") parser.add_argument( "--tolerance", dest="symmetry_tolerance", type=float, help="Symmetry tolerance to search") parser.add_argument( "--trigonal", dest="is_trigonal_displacements", action="store_true", help="Set displacements of all trigonal axes ") parser.add_argument( "--tstep", dest="tstep", type=float, help="Calculated temperature step") parser.add_argument( "--turbomole", dest="turbomole_mode", action="store_true", help="Invoke TURBOMOLE mode") parser.add_argument( "-v", "--verbose", dest="verbose", action="store_true", help="Detailed information is shown.") parser.add_argument( "--vasp", dest="vasp_mode", action="store_true", help="Invoke Vasp mode") parser.add_argument( "--wien2k", dest="wien2k_mode", action="store_true", help="Invoke Wien2k mode") parser.add_argument( "--wien2k_p1", dest="is_wien2k_p1", action="store_true", help="Assume Wien2k structs with displacements are P1") parser.add_argument( "--writefc", dest="write_force_constants", action="store_true", help="Write FORCE_CONSTANTS") parser.add_argument( "--writefc-format", dest="writefc_format", help="Force constants output file-format") parser.add_argument( "--writedm", dest="write_dynamical_matrices", action="store_true", help=("Write dynamical matrices. This has to be used " "with QPOINTS setting (or --qpoints)")) parser.add_argument( "--xyz-projection", dest="xyz_projection", action="store_true", help="Project PDOS x, y, z directions in Cartesian coordinates") parser.add_argument( "conf_file", nargs='*', help="Phonopy configure file") return parser, deprecated
the-stack_106_20293
from math import sqrt, acos def dist(v1, v2): return sqrt((v1[0]-v2[0])**2 + (v1[1]-v2[1])**2) def dot(v1, v2): return v1[0]*v2[0] + v1[1]*v2[1] def cross(v1, v2, v3): return (v2[0]-v1[0])*(v3[1]-v1[1]) - (v2[1]-v1[1])*(v3[0]-v1[0]) def norm(v1): return sqrt(v1[0]*v1[0] + v1[1]*v1[1]) def angle(v1, v2): return acos(dot(v1,v2)/(norm(v1)*norm(v2))) def sort_points_by_y(vect): return sorted(vect, key = lambda x: (x[1], x[0])) def sort_points_by_angle(vect): l = len(vect) angles = list(map(angle, [(1,0) for _ in range(l)], vect)) for k in range(l-1): for w in range(k+1,l): if angles[k] > angles[w]: vect[k], vect[w] = vect[w], vect[k] angles[k], angles[w] = angles[w], angles[k] return vect, angles def remove_collinear(p0, vect, angles): l = len(vect) to_remove_vect = [] to_remove_angle = [] for k in range(l-1): for w in range(k+1,l): if angles[k] == angles[w]: if dist(p0,vect[k]) < dist(p0,vect[w]): to_remove_vect.append(vect[k]) to_remove_angle.append(angles[k]) else: to_remove_vect.append(vect[w]) to_remove_angle.append(angles[w]) for v,a in zip(to_remove_vect, to_remove_angle): vect.remove(v) angles.remove(a) return vect, angles, to_remove_vect, to_remove_angle def graham_scan(p0, vect): if len(vect) < 2: return "Convex hull is empty" stack = [p0, vect[0], vect[1]] stack_size = 3 if len(vect) == 2: return stack l = len(vect) for k in range(2, l): while(True): print(stack) d = cross(stack[stack_size - 2], stack[stack_size - 1], vect[k]) print(d) if d < 0: # left turn break else: # non left turn stack.pop() stack_size -= 1 stack.append(vect[k]) stack_size += 1 return stack p1 = (1,1) p2 = (5,3) p3 = (7,6) p4 = (3,5) a1 = (4,4) a2 = (6,4) # Pipeline # 1 - sort_points_by_y # 2 - sort_points_by_angle # 3 - remove_collinear
the-stack_106_20294
#!/usr/bin/env python # # Copyright (c) 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Updates the Chrome reference builds. Before running this script, you should first verify that you are authenticated for SVN. You can do this by running: $ svn ls svn://svn.chromium.org/chrome/trunk/deps/reference_builds You may need to get your SVN password from https://chromium-access.appspot.com/. Usage: $ cd /tmp $ /path/to/update_reference_build.py $ cd reference_builds/reference_builds $ gcl change $ gcl upload <change> $ gcl commit <change> """ import collections import logging import os import shutil import subprocess import sys import urllib2 import zipfile # Google storage location (no public web URL's), example: # gs://chrome-unsigned/desktop-*/30.0.1595.0/precise32/chrome-precise32.zip CHROME_GS_URL_FMT = ('gs://chrome-unsigned/desktop-*/%s/%s/%s') def _ReportValueError(error_string): #TODO(aiolos): alert sheriffs via email when an error is seen. #This should be added when alerts are added when updating the build. raise ValueError(error_string) class BuildUpdater(object): # Remove a platform name from this list to disable updating it. _REF_BUILD_PLATFORMS = ['Mac64', 'Win', 'Linux', 'Linux_x64'] # Omaha is Chrome's autoupdate server. It reports the current versions used # by each platform on each channel. _OMAHA_PLATFORMS = ['mac', 'linux', 'win'] # All of the information we need to update each platform. # omaha: name omaha uses for the plaftorms. # zip_name: name of the zip file to be retrieved from cloud storage. # gs_build: name of the Chrome build platform used in cloud storage. # destination: Name of the folder to download the reference build to. UpdateInfo = collections.namedtuple('UpdateInfo', 'omaha, gs_build, zip_name, destination') _PLATFORM_MAP = { 'Mac64': UpdateInfo(omaha='mac', gs_build='mac64', zip_name='chrome-mac.zip', destination='chrome_mac'), 'Win': UpdateInfo(omaha='win', gs_build='win', zip_name='chrome-win.zip', destination='chrome_win'), 'Linux': UpdateInfo(omaha='linux', gs_build='precise32', zip_name='chrome-precise32.zip', destination='chrome_linux'), 'Linux_x64': UpdateInfo(omaha='linux', gs_build='precise64', zip_name='chrome-precise64.zip', destination='chrome_linux64')} def __init__(self): stable_versions = self._StableVersionsMap() current_versions = self._CurrentRefBuildsMap() self._platform_to_version_map = {} for platform in stable_versions: if (platform not in current_versions or stable_versions[platform] != current_versions[platform]): self._platform_to_version_map[platform] = stable_versions[platform] @classmethod def _StableVersionsMap(cls): omaha_versions_map = cls._OmahaVersionsMap() versions_map = {} for platform in cls._REF_BUILD_PLATFORMS: omaha_platform = cls._PLATFORM_MAP[platform].omaha if omaha_platform in omaha_versions_map: versions_map[platform] = omaha_versions_map[omaha_platform] return versions_map @classmethod def _OmahaReport(cls): url ='https://omahaproxy.appspot.com/all?channel=stable' lines = urllib2.urlopen(url).readlines() return [l.split(',') for l in lines] @classmethod def _OmahaVersionsMap(cls): platforms = cls._OMAHA_PLATFORMS rows = cls._OmahaReport() if (len(rows) < 1 or not rows[0][0:3] == ['os', 'channel', 'current_version']): _ReportValueError('Omaha report is not in the expected form: %s.' % rows) versions_map = {} for row in rows[1:]: if row[1] != 'stable': _ReportValueError('Omaha report contains a line with the channel %s' % row[1]) if row[0] in platforms: versions_map[row[0]] = row[2] if not all(platform in versions_map for platform in platforms): _ReportValueError('Omaha report did not contain all desired platforms') return versions_map @classmethod def _CurrentRefBuildsMap(cls): #TODO(aiolos): Add logic for pulling the current reference build versions. # Return an empty dictionary to force an update until we store the builds in # in cloud storage. return {} @staticmethod def _GetCmdStatusAndOutput(args, cwd=None, shell=False): """Executes a subprocess and returns its exit code and output. Args: args: A string or a sequence of program arguments. cwd: If not None, the subprocess's current directory will be changed to |cwd| before it's executed. shell: Whether to execute args as a shell command. Returns: The tuple (exit code, output). """ logging.info(str(args) + ' ' + (cwd or '')) p = subprocess.Popen(args=args, cwd=cwd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell) stdout, stderr = p.communicate() exit_code = p.returncode if stderr: logging.critical(stderr) logging.info(stdout) return (exit_code, stdout) def _GetBuildUrl(self, platform, version, filename): """Returns the URL for fetching one file. Args: platform: Platform name, must be a key in |self._PLATFORM_MAP|. version: A Chrome version number, e.g. 30.0.1600.1. filename: Name of the file to fetch. Returns: The URL for fetching a file. This may be a GS or HTTP URL. """ return CHROME_GS_URL_FMT % ( version, self._PLATFORM_MAP[platform].gs_build, filename) def _FindBuildVersion(self, platform, version, filename): """Searches for a version where a filename can be found. Args: platform: Platform name. version: A Chrome version number, e.g. 30.0.1600.1. filename: Filename to look for. Returns: A version where the file could be found, or None. """ # TODO(shadi): Iterate over official versions to find a valid one. return (version if self._DoesBuildExist(platform, version, filename) else None) def _DoesBuildExist(self, platform, version, filename): """Checks whether a file can be found for the given Chrome version. Args: platform: Platform name. version: Chrome version number, e.g. 30.0.1600.1. filename: Filename to look for. Returns: True if the file could be found, False otherwise. """ url = self._GetBuildUrl(platform, version, filename) return self._DoesGSFileExist(url) def _DoesGSFileExist(self, gs_file_name): """Returns True if the GS file can be found, False otherwise.""" exit_code = BuildUpdater._GetCmdStatusAndOutput( ['gsutil', 'ls', gs_file_name])[0] return not exit_code def _GetPlatformFiles(self, platform): """Returns the name of the zip file to fetch for |platform|.""" return BuildUpdater._PLATFORM_MAP[platform].zip_name def _DownloadBuilds(self): for platform in self._platform_to_version_map: version = self._platform_to_version_map[platform] filename = self._GetPlatformFiles(platform) output = os.path.join('dl', platform, '%s_%s_%s' % (platform, version, filename)) if os.path.exists(output): logging.info('%s alread exists, skipping download', output) continue build_version = self._FindBuildVersion(platform, version, filename) if not build_version: logging.critical('Failed to find %s build for r%s\n', platform, version) sys.exit(1) dirname = os.path.dirname(output) if dirname and not os.path.exists(dirname): os.makedirs(dirname) url = self._GetBuildUrl(platform, build_version, filename) self._DownloadFile(url, output) def _DownloadFile(self, url, output): logging.info('Downloading %s, saving to %s', url, output) BuildUpdater._GetCmdStatusAndOutput(['gsutil', 'cp', url, output]) def _FetchSvnRepos(self): if not os.path.exists('reference_builds'): os.makedirs('reference_builds') BuildUpdater._GetCmdStatusAndOutput( ['gclient', 'config', 'svn://svn.chromium.org/chrome/trunk/deps/reference_builds'], 'reference_builds') BuildUpdater._GetCmdStatusAndOutput( ['gclient', 'sync'], 'reference_builds') def _UnzipFile(self, dl_file, dest_dir): """Unzips a file if it is a zip file. Args: dl_file: The downloaded file to unzip. dest_dir: The destination directory to unzip to. Returns: True if the file was unzipped. False if it wasn't a zip file. """ if not zipfile.is_zipfile(dl_file): return False logging.info('Opening %s', dl_file) with zipfile.ZipFile(dl_file, 'r') as z: for content in z.namelist(): dest = os.path.join(dest_dir, content[content.find('/')+1:]) # Create dest parent dir if it does not exist. if not os.path.isdir(os.path.dirname(dest)): os.makedirs(os.path.dirname(dest)) # If dest is just a dir listing, do nothing. if not os.path.basename(dest): continue if not os.path.isdir(os.path.dirname(dest)): os.makedirs(os.path.dirname(dest)) with z.open(content) as unzipped_content: logging.info('Extracting %s to %s (%s)', content, dest, dl_file) with file(dest, 'wb') as dest_file: dest_file.write(unzipped_content.read()) permissions = z.getinfo(content).external_attr >> 16 if permissions: os.chmod(dest, permissions) return True def _ClearDir(self, directory): """Clears all files in |directory| except for hidden files and folders.""" for root, dirs, files in os.walk(directory): # Skip hidden files and folders (like .svn and .git). files = [f for f in files if f[0] != '.'] dirs[:] = [d for d in dirs if d[0] != '.'] for f in files: os.remove(os.path.join(root, f)) def _ExtractBuilds(self): for platform in self._platform_to_version_map: if os.path.exists('tmp_unzip'): os.path.unlink('tmp_unzip') dest_dir = os.path.join( 'reference_builds', 'reference_builds', BuildUpdater._PLATFORM_MAP[platform].destination) self._ClearDir(dest_dir) for root, _, dl_files in os.walk(os.path.join('dl', platform)): for dl_file in dl_files: dl_file = os.path.join(root, dl_file) if not self._UnzipFile(dl_file, dest_dir): logging.info('Copying %s to %s', dl_file, dest_dir) shutil.copy(dl_file, dest_dir) def _SvnAddAndRemove(self): svn_dir = os.path.join('reference_builds', 'reference_builds') # List all changes without ignoring any files. stat = BuildUpdater._GetCmdStatusAndOutput(['svn', 'stat', '--no-ignore'], svn_dir)[1] for line in stat.splitlines(): action, filename = line.split(None, 1) # Add new and ignored files. if action == '?' or action == 'I': BuildUpdater._GetCmdStatusAndOutput( ['svn', 'add', filename], svn_dir) elif action == '!': BuildUpdater._GetCmdStatusAndOutput( ['svn', 'delete', filename], svn_dir) filepath = os.path.join(svn_dir, filename) if not os.path.isdir(filepath) and os.access(filepath, os.X_OK): BuildUpdater._GetCmdStatusAndOutput( ['svn', 'propset', 'svn:executable', 'true', filename], svn_dir) def DownloadAndUpdateBuilds(self): self._DownloadBuilds() self._FetchSvnRepos() self._ExtractBuilds() self._SvnAddAndRemove() def main(): logging.getLogger().setLevel(logging.DEBUG) #TODO(aiolos): check that there are no options passed (argparse). b = BuildUpdater() b.DownloadAndUpdateBuilds() logging.info('Successfully updated reference builds. Move to ' 'reference_builds/reference_builds and make a change with gcl.') if __name__ == '__main__': main()
the-stack_106_20296
# -*- coding: utf-8 -*- from django.core.cache import cache from django.db.models.signals import pre_delete, m2m_changed, pre_save from django.dispatch import receiver from publication_backbone.models_bases.polymorphic_mptt.signals import ( move_to_done, pre_save_polymorphic_mptt, post_save_polymorphic_mptt, ) from publication_backbone.utils.dispatch import make_dispatch_uid from publication_backbone.models import BaseCategory, Category, CategoryLink from publication_backbone.utils.contrib import get_unique_slug def validate_category_path(sender, instance, raw, using, update_fields, **kwargs): """ Check for duplicate category path before save category """ if (not raw) and (sender._default_manager.exclude(pk=instance.pk).filter(path=instance.path).exists()) : ancestors = instance.get_ancestors_list() instance.slug = get_unique_slug(instance.slug, instance.id) instance.make_path(ancestors + [instance,]) # Connect validate_category_path to all categories class for clazz in BaseCategory.__subclasses__(): pre_save.connect(validate_category_path, clazz, dispatch_uid=make_dispatch_uid(pre_save, validate_category_path, clazz)) #============================================================================== # Category db event handlers #============================================================================== @receiver(m2m_changed, sender=Category.rubrics.through, dispatch_uid=make_dispatch_uid(m2m_changed, 'invalidate_after_rubrics_set_changed', Category.rubrics.through)) def invalidate_after_rubrics_set_changed(sender, instance, action, reverse, model, pk_set, **kwargs): """ Automatically normalize rubrics set """ if action == 'post_add': if not hasattr(instance, '_during_rubrics_validation'): # normalize rubrics set instance.validate_rubrics(pk_set) # clear cache keys = [instance.CATEGORY_ACTIVE_RUBRIC_COUNT_CACHE_KEY, instance.CATEGORY_ACTIVE_RUBRIC_IDS_CACHE_KEY] cache.delete_many(keys) def invalidate_ctgr_vsbl_chldrn_cache_before_save(sender, instance, **kwargs): if not instance.id is None: try: original = sender._default_manager.get(pk=instance.id) if original.parent_id != instance.parent_id and not original.parent_id is None: key = sender.CATEGORY_VISIBLE_CHILDREN_CACHE_KEY_PATTERN % {'id': original.parent_id} cache.delete(key) except sender.DoesNotExist: pass def invalidate_ctgr_vsbl_chldrn_cache_after_save(sender, instance, **kwargs): if not instance.id is None: keys = [sender.CATEGORY_VISIBLE_CHILDREN_CACHE_KEY_PATTERN % {'id': instance.id}, ] if not instance.parent_id is None: keys.append(sender.CATEGORY_VISIBLE_CHILDREN_CACHE_KEY_PATTERN % {'id': instance.parent_id}) cache.delete_many(keys) def invalidate_ctgr_vsbl_chldrn_cache_after_move(sender, instance, target, position, prev_parent, **kwargs): if not prev_parent is None: key = sender.CATEGORY_VISIBLE_CHILDREN_CACHE_KEY_PATTERN % {'id': prev_parent.id} cache.delete(key) invalidate_ctgr_vsbl_chldrn_cache_after_save(sender, instance, **kwargs) # connect all subclasses of base content item too for clazz in BaseCategory.__subclasses__(): pre_save_polymorphic_mptt.connect(invalidate_ctgr_vsbl_chldrn_cache_before_save, clazz, dispatch_uid=make_dispatch_uid(pre_save_polymorphic_mptt, invalidate_ctgr_vsbl_chldrn_cache_before_save, clazz)) post_save_polymorphic_mptt.connect(invalidate_ctgr_vsbl_chldrn_cache_after_save, clazz, dispatch_uid=make_dispatch_uid(post_save_polymorphic_mptt, invalidate_ctgr_vsbl_chldrn_cache_after_save, clazz)) pre_delete.connect(invalidate_ctgr_vsbl_chldrn_cache_after_save, clazz, dispatch_uid=make_dispatch_uid(pre_delete, invalidate_ctgr_vsbl_chldrn_cache_after_save, clazz)) move_to_done.connect(invalidate_ctgr_vsbl_chldrn_cache_after_move, clazz, dispatch_uid=make_dispatch_uid(move_to_done, invalidate_ctgr_vsbl_chldrn_cache_after_move, clazz))
the-stack_106_20297
from django.test import TestCase from grid.templatetags.grid_tags import style_element, YES_IMG, NO_IMG, \ YES_KEYWORDS, NO_KEYWORDS class GridTest(TestCase): def test_01_style_element_filter(self): tests = [ ('+', 1, 0, ''), ('++', 2, 0, ''), ('+++', 3, 0, ''), ('+1', 1, 0, ''), ('+2', 2, 0, ''), ('+3', 3, 0, ''), ('+4', 3, 0, ''), ('+42', 3, 0, ''), ('-', 0, 1, ''), ('--', 0, 2, ''), ('---', 0, 3, ''), ('-1', 0, 1, ''), ('-2', 0, 2, ''), ('-3', 0, 3, ''), ('-4', 0, 3, ''), ('-42', 0, 3, ''), ] for positive in YES_KEYWORDS: tests.append((positive, 1, 0, '')) tests.append(('%stest' % positive, 1, 0, 'test')) for negative in NO_KEYWORDS: tests.append((negative, 0, 1, '')) tests.append(('%stest' % negative, 0, 1, 'test')) for text, yes, no, endswith in tests: output = style_element(text) got_yes = output.count(YES_IMG) self.assertEqual( got_yes, yes, "%s resulted in %s yes-gifs instead of %s." % (text, got_yes, yes) ) got_no = output.count(NO_IMG) self.assertEqual( got_no, no, "%s resulted in %s no-gifs instead of %s." % (text, got_no, no) ) self.assertTrue( output.endswith(endswith), "Expected %s to end with %s, got %s instead." % (text, endswith, output) )
the-stack_106_20298
from flask import Flask, request, abort from flask.helpers import safe_join from werkzeug.utils import append_slash_redirect from lektor.db import Database from lektor.builder import Builder from lektor.buildfailures import FailureController from lektor.admin.modules import register_modules from lektor.reporter import CliReporter class LektorInfo(object): def __init__(self, env, output_path, ui_lang='en', extra_flags=None, verbosity=0): self.env = env self.ui_lang = ui_lang self.output_path = output_path self.extra_flags = extra_flags self.verbosity = verbosity def get_pad(self): return Database(self.env).new_pad() def get_builder(self, pad=None): if pad is None: pad = self.get_pad() return Builder(pad, self.output_path, extra_flags=self.extra_flags) def get_failure_controller(self, pad=None): if pad is None: pad = self.get_pad() return FailureController(pad, self.output_path) def resolve_artifact(self, path, pad=None, redirect_slash=True): """Resolves an artifact and also triggers a build if necessary. Returns a tuple in the form ``(artifact_name, filename)`` where `artifact_name` can be `None` in case a file was targeted explicitly. """ if pad is None: pad = self.get_pad() artifact_name = filename = None # We start with trying to resolve a source and then use the # primary source = pad.resolve_url_path(path) if source is not None: # If the request path does not end with a slash but we # requested a URL that actually wants a trailing slash, we # append it. This is consistent with what apache and nginx do # and it ensures our relative urls work. if not path.endswith('/') and \ source.url_path != '/' and \ source.url_path != path: return abort(append_slash_redirect(request.environ)) with CliReporter(self.env, verbosity=self.verbosity): builder = self.get_builder(pad) prog, _ = builder.build(source) artifact = prog.primary_artifact if artifact is not None: artifact_name = artifact.artifact_name filename = artifact.dst_filename if filename is None: filename = safe_join(self.output_path, path.strip('/')) return artifact_name, filename class WebUI(Flask): def __init__(self, env, debug=False, output_path=None, ui_lang='en', verbosity=0, extra_flags=None): Flask.__init__(self, 'lektor.admin', static_url_path='/admin/static') self.lektor_info = LektorInfo(env, output_path, ui_lang, extra_flags=extra_flags, verbosity=verbosity) self.debug = debug self.config['PROPAGATE_EXCEPTIONS'] = True register_modules(self) WebAdmin = WebUI
the-stack_106_20299
""" .. Deep Residual Learning for Image Recognition: https://arxiv.org/abs/1512.03385 """ import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet18(): return ResNet(BasicBlock, [2, 2, 2, 2]) def ResNet34(): return ResNet(BasicBlock, [3, 4, 6, 3]) def ResNet50(): return ResNet(Bottleneck, [3, 4, 6, 3]) def ResNet101(): return ResNet(Bottleneck, [3, 4, 23, 3]) def ResNet152(): return ResNet(Bottleneck, [3, 8, 36, 3]) def test(): net = ResNet18() y = net(torch.randn(1, 3, 32, 32)) print(y.size()) # test()
the-stack_106_20300
import logging import os import sys from urllib.request import urlopen from xml.etree.ElementTree import fromstring import pandas as pd import requests import xlrd from django.conf import settings from django.core.management.base import BaseCommand from django.core.management.color import no_style from django.db import IntegrityError, connection from protein.models import (Gene, Protein, ProteinAlias, ProteinConformation, ProteinFamily, ProteinArrestinPair, ProteinSegment, ProteinSequenceType, ProteinSource, ProteinState, Species) from residue.models import (Residue, ResidueGenericNumber, ResidueGenericNumberEquivalent, ResidueNumberingScheme) from signprot.models import SignprotStructure from structure.models import Structure class Command(BaseCommand): help = 'Build Arrestin proteins' # source files arrestin_data_file = os.sep.join([settings.DATA_DIR, 'arrestin_data', 'ortholog_alignment.xlsx']) bouvier_file = os.sep.join([settings.DATA_DIR, 'g_protein_data', '201025_bouvier_gloriam.xlsx']) local_uniprot_dir = os.sep.join([settings.DATA_DIR, 'protein_data', 'uniprot']) remote_uniprot_dir = 'https://uniprot.org/uniprot/' logger = logging.getLogger(__name__) def add_arguments(self, parser): parser.add_argument('--filename', action='append', dest='filename', help='Filename to import. Can be used multiple times') parser.add_argument('--coupling', default=False, action='store_true', help='Purge and import GPCR-Arrestin coupling data') def handle(self, *args, **options): self.options = options if options['filename']: filenames = options['filename'] else: filenames = False if self.options['coupling']: self.purge_coupling_data() self.logger.info('PASS: purge_coupling_data') if os.path.exists(self.bouvier_file): self.add_bouvier_coupling_data() self.logger.info('PASS: add_bouvier_coupling_data') else: self.logger.warning('Bouvier source data ' + self.bouvier_file + ' not found') else: try: self.purge_can_residues() self.logger.info('PASS: purge_can_residues') self.purge_can_proteins() self.logger.info('PASS: purge_can_proteins') # add proteins self.can_create_families() self.logger.info('PASS: can_create_families') self.can_add_proteins() self.logger.info('PASS: can_add_proteins') # add residues self.add_can_residues() self.logger.info('PASS: add_can_residues') # add coupling data self.purge_coupling_data() self.logger.info('PASS: purge_coupling_data') if os.path.exists(self.bouvier_file): self.add_bouvier_coupling_data() self.logger.info('PASS: add_bouvier_coupling_data') else: self.logger.warning('Bouvier source data ' + self.bouvier_file + ' not found') except Exception as msg: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(exc_type, exc_obj, fname, exc_tb.tb_lineno) self.logger.error(msg) def purge_can_residues(self): """Purge residues.""" try: Residue.objects.filter(generic_number_id__scheme__slug="can").delete() except Exception as msg: self.logger.warning('Existing Residue data cannot be deleted', msg) def purge_can_proteins(self): """Purge proteins.""" try: Protein.objects.filter(residue_numbering_scheme__slug='can').delete() except Exception as msg: self.logger.warning('Protein to delete not found' + str(msg)) def purge_coupling_data(self): """DROP data from the protein_arrestin_pair table.""" try: ProteinArrestinPair.objects.filter().delete() sequence_sql = connection.ops.sequence_reset_sql(no_style(), [ProteinArrestinPair]) with connection.cursor() as cursor: for sql in sequence_sql: cursor.execute(sql) except Exception as msg: self.logger.warning('Existing protein_arrestin_pair data cannot be deleted' + str(msg)) @staticmethod def read_coupling(filenames=False): """ Function to read Coupling data from Excel files. The ideal would be for the excel organization to hopefully be fixed in the same way for data coming from different groups. For now the data comes from Bouvier and has been processed by David E. Gloriam. """ book = xlrd.open_workbook(filenames) sheet1 = book.sheet_by_name("plain") rows = sheet1.nrows beglogmaxec50 = 36 endlogmaxec50 = 38 begpec50 = 52 endpec50 = 54 begemax = 68 endemax = 70 data = {} # data dictionary format: # {'<protein>': # {'<arrestinsubtype>': # {'logmaxec50': <logmaxec50>, # 'pec50deg': <pec50deg>} # } # } def cleanValue(s): """ Function to return a 0.0 (a value which means no coupling) since returning an NA string to the database field declared as a float won't work, also because NULL might have a meaning. In Python to return NULL one uses None :param s: :return: float """ if s == '': # return None return float(0.0) else: # return float(str(s).strip()) return format(float(s), '.2f').strip() # return str(s).strip() for i in range(3, rows): protein = sheet1.cell_value(i, 0) protein_dict = {} # logemaxec50 for j in range(beglogmaxec50, endlogmaxec50): arrestinsubtype = sheet1.cell_value(2, j) protein_dict[arrestinsubtype] = {} protein_dict[arrestinsubtype]['logmaxec50'] = cleanValue(sheet1.cell_value(i, j)) # pec50 deg = david e gloriam for j in range(begpec50, endpec50): arrestinsubtype = sheet1.cell_value(2, j) protein_dict[arrestinsubtype]['pec50deg'] = cleanValue(sheet1.cell_value(i, j)) # emax deg = david e gloriam for j in range(begemax, endemax): arrestinsubtype = sheet1.cell_value(2, j) protein_dict[arrestinsubtype]['emaxdeg'] = cleanValue(sheet1.cell_value(i, j)) data[protein] = protein_dict # pprint(protein_dict[arrestin_subtype]) # pprint(data) return data def add_bouvier_coupling_data(self): """ This function adds coupling data coming from Michel Bouvier processed by David Gloriam @return: p, source, values['logemaxec50'], values['pec50deg'], ..., ap p = protein_name source = One of GuideToPharma, Aska, Bouvier values = selfdescriptive ap = arrestin uniprot name, e.g. """ self.logger.info('BEGIN ADDING Bouvier-Gloriam coupling data') # read source files filepath = self.bouvier_file self.logger.info('Reading file ' + filepath) data = self.read_coupling(filepath) # pprint(data['AVPR2']) # pprint(data['AVP2R']) # pprint(data['BDKRB1']) source = 'Bouvier' lookup = {} for entry_name, couplings in data.items(): # if it has / then pick first, since it gets same protein entry_name = entry_name.split("/")[0] # append _human to entry name # entry_name = "{}_HUMAN".format(entry_name).lower() # Fetch protein try: p = Protein.objects.filter(genes__name=entry_name, species__common_name="Human")[0] except Protein.DoesNotExist: self.logger.warning('Protein not found for entry_name {}'.format(entry_name)) print("protein not found for ", entry_name) continue for arrestin, values in couplings.items(): if arrestin not in lookup: ap = Protein.objects.filter(family__name=arrestin, species__common_name="Human")[0] lookup[arrestin] = ap else: ap = lookup[arrestin] # print(p, source, ap) # print(p, source, values['logmaxec50'], values['pec50deg'], values['emaxdeg'], ap) apair = ProteinArrestinPair(protein=p, source=source, logmaxec50_deg=values['logmaxec50'], pec50_deg=values['pec50deg'], emax_deg=values['emaxdeg'], arrestin_subtype=ap) apair.save() self.logger.info('COMPLETED ADDING Bouvier-Gloriam coupling data') def add_can_residues(self): """Add CAN residues from source file provided by Andrija Sente.""" # Parsing pdb uniprot file for residues self.logger.info('Start parsing ARRESTIN RESIDUES') self.logger.info('Parsing file ' + self.arrestin_data_file) residue_data = pd.read_excel(self.arrestin_data_file) can_scheme = ResidueNumberingScheme.objects.get(slug='can') can_dict = residue_data[residue_data.ID == 'CAN_id'].iloc[:, 3:].to_dict('list') # Loop over data table, but skip "CAN_posand" and "CAN_id" from current input file for index, row in residue_data[2:].iterrows(): try: # for now only allow for ortholog with uniprot entries: if not row['AccessionID'].startswith('ENS'): # fetch protein for protein conformation pr, c = Protein.objects.get_or_create(accession=row['AccessionID']) # fetch protein conformation pc, c = ProteinConformation.objects.get_or_create(protein_id=pr) else: continue except: print('error making/getting protein', row['AccessionID']) continue # loop over residue generic number sequence_number = 1 for aln_pos in can_dict: canId = can_dict[aln_pos][0] # Add '0' infront of single digit positions if (int(canId.split('.')[2]) < 10): rgnsp = canId.split('.') canId = rgnsp[0] + '.' + rgnsp[1] + '.0' + rgnsp[2] ps, c = ProteinSegment.objects.get_or_create(slug=canId.split('.')[1], proteinfamily='Arrestin') rgn, c = ResidueGenericNumber.objects.get_or_create(label=canId, scheme=can_scheme, protein_segment=ps) # only add AA information if not gap if not row[aln_pos] == '-': try: Residue.objects.get_or_create(sequence_number=sequence_number, protein_conformation=pc, amino_acid=row[aln_pos], generic_number=rgn, display_generic_number=rgn, protein_segment=ps) sequence_number += 1 except Exception as msg: print("failed to add residue", msg) self.logger.error("Failed to add residues", msg) # Add also to the ResidueGenericNumberEquivalent table needed for single residue selection try: ResidueGenericNumberEquivalent.objects.get_or_create(label=rgn.label, default_generic_number=rgn, scheme=can_scheme) # Update scheme_id except Exception as msg: print("failed to add residue generic number", msg) self.logger.error("Failed to add residues to ResidueGenericNumberEquivalent") def get_uniprot_accession_id(self, response_xml): # TODO: This function seems to be legacy, perhaps it can be deleted? """Get Uniprot accession ID.""" root = fromstring(response_xml) return next( # el for el in root.getchildren()[0].getchildren() el for el in root[0] if el.attrib['dbSource'] == 'UniProt' ).attrib['dbAccessionId'] def map_pdb_to_uniprot(self, pdb_id): # TODO: This function seems to be legacy, perhaps it can be deleted? # Due to the new RCSB API this doesn't even work after December 2020 """Get uniprot ID from PDB ID.""" pdb_mapping_url = 'https://www.rcsb.org/pdb/rest/das/pdb_uniprot_mapping/alignment' pdb_mapping_response = requests.get( pdb_mapping_url, params={'query': pdb_id} ).text uniprot_id = self.get_uniprot_accession_id(pdb_mapping_response) return uniprot_id def can_add_proteins(self): """Add arrestin proteins.""" self.logger.info('Start adding ARRESTIN proteins') self.logger.info('Parsing file ' + self.arrestin_data_file) # Import ortholog alignment as pandas dataframe residue_data = pd.read_excel(self.arrestin_data_file) # Create new residue numbering scheme self.create_can_rns() rns = ResidueNumberingScheme.objects.get(slug='can') state = ProteinState.objects.get(slug='active') arrestins = residue_data[2:].Ortholog.unique() for arrestin in arrestins: pfm = ProteinFamily.objects.get(name=arrestin) for accession in residue_data[residue_data.Ortholog == arrestin].AccessionID.unique(): # only allow uniprot accession: if not accession.startswith('ENS'): up = self.parse_uniprot_file(accession) # if len(up['genes']) == 0: # print('There is no GN field in the uniprot!', accession) # self.logger.error('There is no GN field in the uniprot! {}'.format(accession)) # continue if not 'source' in up: print('No source found, probably deprecated!', accession) self.logger.error('No source found, probably deprecated! {}'.format(accession)) continue # Create new Protein self.can_create_arrestins(pfm, rns, accession, up) # add new can protein conformations try: arrestin = Protein.objects.get(accession=accession) pc, created = ProteinConformation.objects.get_or_create(protein=arrestin, state=state) self.logger.info('Created protein conformation') except Exception as msg: self.logger.error('Failed to create protein conformation', msg) def can_create_arrestins(self, family, residue_numbering_scheme, accession, uniprot): # get/create protein source try: source, created = ProteinSource.objects.get_or_create(name=uniprot['source'], defaults={'name': uniprot['source']}) if created: self.logger.info('Created protein source ' + source.name) except IntegrityError: source = ProteinSource.objects.get(name=uniprot['source']) # get/create species try: species, created = Species.objects.get_or_create(latin_name=uniprot['species_latin_name'], defaults={ 'common_name': uniprot['species_common_name'], }) if created: self.logger.info('Created species ' + species.latin_name) except IntegrityError: species = Species.objects.get(latin_name=uniprot['species_latin_name']) # get/create protein sequence type # Wild-type for all sequences from source file try: sequence_type, created = ProteinSequenceType.objects.get_or_create(slug='wt', defaults={ 'slug': 'wt', 'name': 'Wild-type', }) if created: self.logger.info('Created protein sequence type Wild-type') except: self.logger.error('Failed creating protein sequence type Wild-type') # create protein p = Protein() p.family = family p.species = species p.source = source p.residue_numbering_scheme = residue_numbering_scheme p.sequence_type = sequence_type if accession: p.accession = accession p.entry_name = uniprot['entry_name'].lower() p.name = uniprot['names'][0] p.sequence = uniprot['sequence'] try: p.save() self.logger.info('Created protein {}'.format(p.entry_name)) except: self.logger.error('Failed creating protein {}'.format(p.entry_name)) # protein aliases for i, alias in enumerate(uniprot['names']): pcan = Protein.objects.get(entry_name=uniprot['entry_name'].lower()) a = ProteinAlias() a.protein = pcan a.name = alias a.position = i try: a.save() self.logger.info('Created protein alias ' + a.name + ' for protein ' + p.name) except: self.logger.error('Failed creating protein alias ' + a.name + ' for protein ' + p.name) # genes for i, gene in enumerate(uniprot['genes']): g = False try: g, created = Gene.objects.get_or_create(name=gene, species=species, position=i) if created: self.logger.info('Created gene ' + g.name + ' for protein ' + p.name) except IntegrityError: g = Gene.objects.get(name=gene, species=species, position=i) if g: pcan = Protein.objects.get(entry_name=uniprot['entry_name'].lower()) g.proteins.add(pcan) # structures # for i, structure in enumerate(uniprot['structures']): # # try: # res = structure[1] # if res == '-': # res = 0 # structure, created = SignprotStructure.objects.get_or_create(PDB_code=structure[0], resolution=res, protein = p, id=self.signprot_struct_ids()) # if created: # self.logger.info('Created structure ' + structure.PDB_code + ' for protein ' + p.name) def signprot_struct_ids(self): structs = Structure.objects.count() s_structs = SignprotStructure.objects.count() offset = 1000 if s_structs == None: return structs + 1 + offset else: return structs + s_structs + 1 + offset def create_can_rns(self): """Add new numbering scheme entry_name.""" # rns_can, created= ResidueNumberingScheme.objects.get_or_create(slug='can', short_name='CAN', defaults={ # 'name': 'Common arrestin numbering scheme'}) try: rns_can, created = ResidueNumberingScheme.objects.get_or_create(slug='can', short_name='CAN', defaults={'name': 'Common arrestin numbering scheme'}) if created: self.logger.info('Created Arrestin Numbering ' + rns_can.slug) except IntegrityError: rns_can = ResidueNumberingScheme.objects.get(slug='can') self.logger.info('Integrity Error on creating can numbering') def can_create_families(self): """Purge and create arrestin in protein_family.""" ProteinFamily.objects.filter(slug__startswith="200").delete() # 4 arrestin subtypes, two of which are primarily expressed in the retina and bind only to visual opsins (arrestin 1 and arrestin 4), while the other two (β-arrestin 1 and β-arrestin 2) interact with the remaining ~800 GPCRs can_dict = {} can_dict['Arrestin'] = ['Beta', 'Visual'] can_dict['Beta'] = ['ARRB1', 'ARRB2'] can_dict['Visual'] = ['ARRC', 'ARRS'] pff_can, created_pf = ProteinFamily.objects.get_or_create(slug='200', defaults={ 'name': 'Arrestins'}) pf1_can = ProteinFamily.objects.get_or_create(slug='200_000', name='Arrestin', parent=pff_can) for i, family in enumerate(can_dict['Arrestin']): # slug for the different levels fam_slug = '200_000_00' + str(i + 1) pff_can = ProteinFamily.objects.get(slug='200_000') new_pf, created = ProteinFamily.objects.get_or_create(slug=fam_slug, name=family, parent=pff_can) for i, protein in enumerate(can_dict[family]): prot_slug = fam_slug + '_00' + str(i + 1) pff_fam = ProteinFamily.objects.get(slug=fam_slug) new_pf, created = ProteinFamily.objects.get_or_create(slug=prot_slug, name=protein, parent=pff_fam) def parse_uniprot_file(self, accession): filename = accession + '.txt' local_file_path = os.sep.join([self.local_uniprot_dir, filename]) remote_file_path = self.remote_uniprot_dir + filename up = { 'genes': [], 'names': [], 'structures': [] } read_sequence = False remote = False # record whether organism has been read os_read = False # should local file be written? local_file = False try: if os.path.isfile(local_file_path): uf = open(local_file_path, 'r') self.logger.info('Reading local file ' + local_file_path) else: uf = urlopen(remote_file_path) remote = True self.logger.info('Reading remote file ' + remote_file_path) local_file = open(local_file_path, 'w') for raw_line in uf: # line format if remote: line = raw_line.decode('UTF-8') else: line = raw_line # write to local file if appropriate if local_file: local_file.write(line) # end of file if line.startswith('//'): break # entry name and review status if line.startswith('ID'): split_id_line = line.split() up['entry_name'] = split_id_line[1].lower() review_status = split_id_line[2].strip(';') if review_status == 'Unreviewed': up['source'] = 'TREMBL' elif review_status == 'Reviewed': up['source'] = 'SWISSPROT' # species elif line.startswith('OS') and not os_read: species_full = line[2:].strip().strip('.') species_split = species_full.split('(') up['species_latin_name'] = species_split[0].strip() if len(species_split) > 1: up['species_common_name'] = species_split[1].strip().strip(')') else: up['species_common_name'] = up['species_latin_name'] os_read = True # names elif line.startswith('DE'): split_de_line = line.split('=') if len(split_de_line) > 1: split_segment = split_de_line[1].split('{') up['names'].append(split_segment[0].strip().strip(';')) # genes elif line.startswith('GN'): split_gn_line = line.split(';') for segment in split_gn_line: if '=' in segment: split_segment = segment.split('=') split_segment = split_segment[1].split(',') for gene_name in split_segment: split_gene_name = gene_name.split('{') up['genes'].append(split_gene_name[0].strip()) # structures elif line.startswith('DR') and 'PDB' in line and not 'sum' in line: split_gn_line = line.split(';') up['structures'].append([split_gn_line[1].lstrip(), split_gn_line[3].lstrip().split(" A")[0]]) # sequence elif line.startswith('SQ'): split_sq_line = line.split() seq_len = int(split_sq_line[2]) read_sequence = True up['sequence'] = '' elif read_sequence == True: up['sequence'] += line.strip().replace(' ', '') # close the Uniprot file uf.close() except: return False # close the local file if appropriate if local_file: local_file.close() return up
the-stack_106_20303
from marshmallow import Schema, fields, post_load from enum import Enum from src.messages.create_game import MsgCreateGame from src.messages.register import MsgRegister from src.messages.subscribe_game import MsgSubscribeGame from src.messages.turn import MsgTurn class MessageType: CREATE_GAME = 'creategame' REGISTER = 'register' SUBSCRIBE_GAME = 'subscribe' TURN = 'turn' USERS = 'users' class Message: def __init__(self, type, data=None): self.type = type self.data = data class MessageSchema(Schema): type = fields.Str() payload = fields.Raw() @post_load def extract(self, data): type = data['type'] schema = (MsgCreateGame() if type == MessageType.CREATE_GAME \ else MsgRegister() if type == MessageType.REGISTER \ else MsgSubscribeGame() if type == MessageType.SUBSCRIBE_GAME \ else MsgTurn() if type == MessageType.SUBSCRIBE_GAME \ else None) if not schema is None: payload = schema.load(data['payload']) return Message(type, payload.data) return Message(type)
the-stack_106_20305
#!/usr/bin/env python # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import sys def helm_dep_up(srcdir): command_line = "cd %s; helm dep up --skip-refresh" % (srcdir) try: res = subprocess.check_output( command_line, shell=True, executable='/bin/bash') res = res.strip() # strip whitespace if res != "": print(res) except subprocess.CalledProcessError as e: print(e) raise def _isdir(path, entry): return os.path.isdir(os.path.join(path, entry)) def main(): path = os.path.abspath(os.path.dirname(sys.argv[0])) srcdir = os.path.join(path, "..", "helm") compkitsdir = os.path.join(srcdir, "compute-kits") compkits = os.listdir(compkitsdir) for package in [p for p in compkits if _isdir(compkitsdir, p)]: helm_dep_up(os.path.join(os.path.join(compkitsdir, package))) if __name__ == '__main__': sys.exit(main())
the-stack_106_20308
bl_info = { "name": "Manipulator Menu: Key: 'Ctrl Space'", "description": "Manipulator Modes", "author": "Antony Riakiotakis, Sebastian Koenig", "version": (0, 1, 1), "blender": (2, 77, 0), "location": "Ctrl Space", "warning": "", "wiki_url": "", "category": "3d View" } import bpy from bpy.types import ( Menu, Operator, ) from bpy.props import ( EnumProperty, ) # Pie Manipulator Mode - Ctrl Space class VIEW3D_manipulator_set_of(Operator): bl_label = "Set Manipulator" bl_idname = "view3d.manipulator_set" type = EnumProperty( name="Type", items=(('TRANSLATE', "Translate", "Use the manipulator for movement transformations"), ('ROTATE', "Rotate", "Use the manipulator for rotation transformations"), ('SCALE', "Scale", "Use the manipulator for scale transformations"), ), ) def execute(self, context): # show manipulator if user selects an option context.space_data.show_manipulator = True context.space_data.transform_manipulators = {self.type} return {'FINISHED'} class VIEW3D_PIE_manipulator_of(Menu): bl_label = "Manipulator" bl_idname = "view3d.manipulator_of" def draw(self, context): layout = self.layout pie = layout.menu_pie() pie.operator("view3d.manipulator_set", icon='MAN_TRANS', text="Translate").type = 'TRANSLATE' pie.operator("view3d.manipulator_set", icon='MAN_ROT', text="Rotate").type = 'ROTATE' pie.operator("view3d.manipulator_set", icon='MAN_SCALE', text="Scale").type = 'SCALE' pie.prop(context.space_data, "show_manipulator") classes = ( VIEW3D_manipulator_set_of, VIEW3D_PIE_manipulator_of, ) addon_keymaps = [] def register(): for cls in classes: bpy.utils.register_class(cls) wm = bpy.context.window_manager if wm.keyconfigs.addon: # Align km = wm.keyconfigs.addon.keymaps.new(name='Object Non-modal') kmi = km.keymap_items.new('wm.call_menu_pie', 'SPACE', 'PRESS', ctrl=True) kmi.properties.name = "view3d.manipulator_of" addon_keymaps.append((km, kmi)) def unregister(): for cls in classes: bpy.utils.unregister_class(cls) wm = bpy.context.window_manager kc = wm.keyconfigs.addon if kc: for km, kmi in addon_keymaps: km.keymap_items.remove(kmi) addon_keymaps.clear() if __name__ == "__main__": register()
the-stack_106_20309
# Advent of Code 2021 # Day 10: Part 1 and Part 2 # Author: Nico Van den Hooff from collections import Counter def read_data(path): with open(path, "r") as f: data = f.read().splitlines() # convert data to set, makes deleting corrupted lines efficient in part 2 data = set(data) return data def get_brackets(): """Gets problem information as it relates to the brackets used in syntax""" # starting brackets opening = {"(", "[", "{", "<"} # maps starting brackets to ending brackets legal_opening = {"(": ")", "[": "]", "{": "}", "<": ">"} # maps ending brackets to starting brackets legal_closing = {")": "(", "]": "[", "}": "{", ">": "<"} return opening, legal_opening, legal_closing def get_points(problem): """Gets the point values for part 1 (corrupted) or part 2 (incomplete)""" if problem == "corrupted": return {")": 3, "]": 57, "}": 1197, ">": 25137} elif problem == "incomplete": return {")": 1, "]": 2, "}": 3, ">": 4} def calc_corrupted_score(illegals, points): """Calculates the score for problematic brackets in corrupted chunks (part 1)""" score = 0 for char, count in illegals.items(): score += points[char] * count return score def calc_incomplete_score(fixes, points): """Calculates the score for fixing incomplete chunks (part 2)""" scores = [] for fix in fixes: score = 0 for i in reversed(range(len(fix))): score *= 5 current = fix[i] score += points[current] scores.append(score) scores.sort() score = scores[len(scores) // 2] return score def solve(problem, chunks): """Solves the corrupted or incomplete chunk problem""" opening, legal_opening, legal_closing = get_brackets() # we need different data structures for part 1 and 2 if problem == "corrupted": illegals = Counter() corrupted = set() elif problem == "incomplete": fixes = [] for chunk in chunks: # stack tracks the opening brackets stack = [] # push the first bracket onto the stack stack.append(chunk[0]) for char in chunk[1:]: # push opening brackets onto stack if char in opening: stack.append(char) else: top = len(stack) - 1 # pop opening bracket if legal closing bracket encounted if legal_closing[char] == stack[top]: stack.pop() else: if problem == "corrupted": illegals[char] += 1 corrupted.add(chunk) # end here since we stop at first illegal closing bracket break if problem == "incomplete": # create a list of closing brackets to fix an incomplete chunk for i, char in enumerate(stack): stack[i] = legal_opening[char] fixes.append(stack) if problem == "corrupted": return illegals, corrupted elif problem == "incomplete": return fixes def part_1(data, problem="corrupted"): points = get_points(problem) illegals, corrupted = solve(problem, data) solution1 = calc_corrupted_score(illegals, points) return corrupted, solution1 def part_2(data, corrupted, problem="incomplete"): # remove corrupted chunks incomplete = data - corrupted points = get_points(problem) fixes = solve(problem, incomplete) solution2 = calc_incomplete_score(fixes, points) return solution2 def main(path): data = read_data(path) corrupted, solution1 = part_1(data) solution2 = part_2(data, corrupted) print(f"Part 1 Solution: {solution1}") print(f"Part 2 Solution: {solution2}") if __name__ == "__main__": path = "problems/day-10-syntax-scoring/input.txt" main(path)
the-stack_106_20310
import os from subprocess import run import platform import time def log(string, file): print(string) file.write(f"{string}\n") file.flush() def timestamp(): now = time.localtime() return f"[{now.tm_mon}/{now.tm_mday}/{now.tm_year} {now.tm_hour}:{now.tm_min}:{now.tm_sec}]" duration = 0 def time_me(f): def wrapper(*args, **kwargs): start = time.time() # Start timer res = f(*args, **kwargs) end = time.time() # Stop timer global duration duration = end - start # Calculate duration return res return wrapper @time_me def ps(cmd, env=None): # Windows # if env is None: # result = run(["powershell", cmd], capture_output=True) # else: # result = run(["powershell", cmd], env=env, capture_output=True) # Linux if env is None: result = run(cmd, capture_output=True, shell=True) else: result = run(cmd, env=env, capture_output=True, shell=True) return result def sync_examples(): # Inject .vscode folder into example projects print("Inject .vscode folder into example projects...") ps("Copy-Item ./MaximLP/Inject/* ./MaximLP/New_Project/ -force -Recurse") ps("Copy-Item ./MaximSDK/Inject/* ./MaximSDK/New_Project/ -force -Recurse") def release(version): r_dir = f"./Releases/VSCode-Maxim-{version}" # Release directory # Create release release directory print("Creating release directory...") ps(f"New-Item -Path {r_dir} -ItemType Directory") sync_examples() # Package release print("Packaging...") ps(f"New-Item -Path {r_dir}/MaximLP -ItemType Directory") ps(f"Copy-Item ./MaximLP/* {r_dir}/MaximLP/ -force -Recurse") ps(f"New-Item -Path {r_dir}/MaximSDK -ItemType Directory") ps(f"Copy-Item ./MaximSDK/* {r_dir}/MaximSDK/ -force -Recurse") ps(f"Copy-Item ./readme.md {r_dir}/ -force") ps(f"Copy-Item ./userguide.md {r_dir}/ -force") ps(f"Copy-Item ./LICENSE.txt {r_dir}/ -force") #Archive release print("Archiving...") ps(f"compress-archive -path {r_dir} -DestinationPath {r_dir}/VSCode-Maxim-{version}") # Clean up print("Cleaning up...") ps(f"Remove-Item {r_dir}/readme.md") ps(f"Remove-Item {r_dir}/userguide.md") ps(f"Remove-Item {r_dir}/LICENSE.txt") ps(f"Remove-Item {r_dir}/MaximLP -Recurse") ps(f"Remove-Item {r_dir}/MaximSDK -Recurse") print("Done!") # Tests cleaning and compiling example projects for target platforms. If no targets, boards, projects, etc. are specified then it will auto-detect def test(targets=None, boards=None, projects=None): env = os.environ.copy() curplatform = platform.system() # Simulate the VS Code terminal by appending to the Path MAXIM_PATH = "" if curplatform == 'Linux': MAXIM_PATH = "/home/jcarter/MaximSDK" # Linux env["PATH"] = f"{MAXIM_PATH}/Tools/OpenOCD:/{MAXIM_PATH}/Tools/GNUTools/bin:{MAXIM_PATH}/Tools/xPack/riscv-none-embed-gcc/bin:" + env["PATH"] # Linux elif curplatform == 'Windows': MAXIM_PATH = "C:/MaximSDK" # Windows env["PATH"] = f"{MAXIM_PATH}/Tools/MinGW/msys/1.0/bin;{MAXIM_PATH}/Tools/OpenOCD;{MAXIM_PATH}/Tools/GNUTools/bin;{MAXIM_PATH}/Tools/xPack/riscv-none-embed-gcc/bin;" + env["PATH"] # Windows LOG_DIR = os.getcwd() # Create log file try: os.mkdir(f"{LOG_DIR}/buildlogs") except FileExistsError: pass logfile = open(f"{LOG_DIR}/test.log", 'w') # Log system info log(timestamp(), logfile) log(f"[PLATFORM] {platform.platform()}", logfile) # Get list of target micros if none is specified if targets is None: targets = [] for dir in os.scandir(f"{MAXIM_PATH}/Examples"): targets.append(dir.name) # Append subdirectories of Examples to list of target micros log(f"[TARGETS] Detected targets {targets}", logfile) else: assert(type(targets) is list) log(f"[TARGETS] Testing {targets}", logfile) # Enforce alphabetical ordering targets = sorted(targets) # Create subfolders for target-specific logfiles for t in targets: try: os.mkdir(f"{LOG_DIR}/buildlogs/{t}") except FileExistsError: pass # Track failed projects for end summary failed = [] count = 0 for target in targets: log("====================", logfile) log(f"[TARGET] {target}", logfile) # Get list of supported boards for this target. if boards is None: boards = [] for dirpath, subdirs, items in os.walk(f"{MAXIM_PATH}/Libraries/Boards/{target}"): if "board.mk" in items and curplatform == 'Linux': boards.append(dirpath.split('/')[-1]) # Linux elif "board.mk" in items and curplatform == 'Windows': boards.append(dirpath.split('\\')[-1]) # Board string will be the last folder in the directory path # Windows log(f"[BOARDS] Detected {boards}", logfile) else: assert(type(boards) is list) log(f"[BOARDS] Testing {boards}") boards = sorted(boards) # Enforce alphabetical ordering # Get list of examples for this target. If a Makefile is in the root directory it's an example. if projects is None: projects = [] for dirpath, subdirs, items in os.walk(f"{MAXIM_PATH}/Examples/{target}"): if 'Makefile' in items: projects.append(dirpath) log(f"[PROJECTS] Detected {projects}", logfile) else: assert(type(projects) is list) log(f"[PROJECTS] Testing {projects}") projects = sorted(projects) # Enforce alphabetical ordering # Test each project for project in projects: if curplatform == 'Linux': project_stripped = project.split('/')[-1] # Linux elif curplatform == 'Windows': project_stripped = project.split('\\')[-1] # Windows log("---------------------", logfile) log(f"[{target}]\t[{project_stripped}]", logfile) os.chdir(project) # Need to us os.chdir to set working directory of subprocesses for board in boards: buildlog = f"{target}_{board}_{project_stripped}.log" success = True # Test build (make all) build_cmd = f"make all TARGET={target} MAXIM_PATH={MAXIM_PATH} BOARD={board} MAKE=make" res = ps(build_cmd, env=env) # Run build command # Error check build command if res.returncode != 0: # Fail success = False log(f"{timestamp()}[{board}] --- [BUILD]\t[FAILED] Return code {res.returncode}. See buildlogs/{buildlog}", logfile) # Log detailed output to separate output file with open(f"{LOG_DIR}/buildlogs/{target}/{buildlog}", 'w') as f: f.write("===============\n") f.write(timestamp() + '\n') f.write(f"[PROJECT] {project}\n") f.write(f"[BOARD] {board}\n") f.write(f"[BUILD COMMAND] {build_cmd}\n") f.write("===============\n") for line in str(res.stdout + res.stderr, encoding="ASCII").splitlines(): f.write(line + '\n') else: log(f"{timestamp()}[{board}] --- [BUILD]\t[SUCCESS] {round(duration, 4)}s", logfile) # Test clean (make clean) clean_cmd = f"make clean TARGET={target} MAXIM_PATH={MAXIM_PATH} BOARD={board} MAKE=make" res = ps(clean_cmd, env=env) # Run clean command # Error check clean command if res.returncode != 0: log(f"{timestamp()}[{board}] --- [CLEAN]\t[SUCCESS] {str(res.stderr, encoding='ASCII')}", logfile) success = False else: log(f"{timestamp()}[{board}] --- [CLEAN]\t[SUCCESS] {round(duration, 4)}s", logfile) # Add any failed projects to running list project_info = { "target":target, "project":project_stripped, "board":board, "path":project, "logfile":f"buildlogs/{buildlog}" } if not success and project_info not in failed: failed.append(project_info) count += 1 log("====================", logfile) log(f"[SUMMARY] Tested {count} projects. {count - len(failed)}/{count} succeeded. Failed projects: ", logfile) for pinfo in failed: log(f"[{pinfo['target']}] {pinfo['project']} for {pinfo['board']}... see {pinfo['logfile']}", logfile) if __name__ == "__main__": test(targets=["MAX78000"])
the-stack_106_20313
import numpy as np from opytimizer.optimizers.evolutionary import ga from opytimizer.spaces import search def test_ga_params(): params = { 'p_selection': 0.75, 'p_mutation': 0.25, 'p_crossover': 0.5, } new_ga = ga.GA(params=params) assert new_ga.p_selection == 0.75 assert new_ga.p_mutation == 0.25 assert new_ga.p_crossover == 0.5 def test_ga_params_setter(): new_ga = ga.GA() try: new_ga.p_selection = 'a' except: new_ga.p_selection = 0.75 try: new_ga.p_selection = -1 except: new_ga.p_selection = 0.75 assert new_ga.p_selection == 0.75 try: new_ga.p_mutation = 'b' except: new_ga.p_mutation = 0.25 try: new_ga.p_mutation = -1 except: new_ga.p_mutation = 0.25 assert new_ga.p_mutation == 0.25 try: new_ga.p_crossover = 'c' except: new_ga.p_crossover = 0.5 try: new_ga.p_crossover = -1 except: new_ga.p_crossover = 0.5 assert new_ga.p_crossover == 0.5 def test_ga_roulette_selection(): new_ga = ga.GA() fitness = [10, 20, 30, 40, 50] idx = new_ga._roulette_selection(len(fitness), fitness) assert len(idx) == 4 def test_ga_crossover(): search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[1, 1], upper_bound=[10, 10]) new_ga = ga.GA() alpha, beta = new_ga._crossover( search_space.agents[0], search_space.agents[1]) assert type(alpha).__name__ == 'Agent' assert type(beta).__name__ == 'Agent' def test_ga_mutation(): search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[1, 1], upper_bound=[10, 10]) new_ga = ga.GA() alpha, beta = new_ga._mutation( search_space.agents[0], search_space.agents[1]) assert type(alpha).__name__ == 'Agent' assert type(beta).__name__ == 'Agent' def test_ga_update(): def square(x): return np.sum(x**2) new_ga = ga.GA() search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[1, 1], upper_bound=[10, 10]) new_ga.update(search_space, square)
the-stack_106_20314
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import kfp.dsl as dsl @dsl.pipeline( name='Bolt Classification', description='END to END kubeflow demo with TensorRT Inference Server' ) def bolt( #pylint: disable=unused-argument trtserver_name: dsl.PipelineParam = dsl.PipelineParam(name='trtserver_name', value='trtserver'), model_name: dsl.PipelineParam = dsl.PipelineParam(name='model_name', value='bolt'), model_version: dsl.PipelineParam = dsl.PipelineParam(name='model_version', value='1'), webapp_prefix: dsl.PipelineParam = dsl.PipelineParam(name='webapp_prefix', value = 'webapp'), webapp_port: dsl.PipelineParam = dsl.PipelineParam(name='webapp_port', value='80') ): serve = dsl.ContainerOp( name='serve', image='gcr.io/gtc-2019-demo/ml-pipeline-kubeflow-trtisserve', arguments=["--trtserver_name", trtserver_name, "--model_path", 'gs://test-gtc-demo-2019/example_saved_model' ] ) webapp = dsl.ContainerOp( name='webapp', image='gcr.io/gtc-2019-demo/ml-pipeline-trtis-webapp-launcher', arguments=["--workflow_name", '%s' % ('{{workflow.name}}',), "--trtserver_name", trtserver_name, "--model_name", model_name, "--model_version", str(model_version), "--webapp_prefix", webapp_prefix, "--webapp_port", str(webapp_port) ] ) if __name__ == '__main__': import kfp.compiler as compiler compiler.Compiler().compile(bolt, __file__ + '.tar.gz')
the-stack_106_20315
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F Y' TIME_FORMAT = 'G:i' DATETIME_FORMAT = 'j F Y, G:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'j M Y' SHORT_DATETIME_FORMAT = 'j M Y, G:i' # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' # NUMBER_GROUPING =
the-stack_106_20316
#!/usr/bin/env python # Two environmental variables influence this script. # # GDAL_CONFIG: the path to a gdal-config program that points to GDAL headers, # libraries, and data files. # # PACKAGE_DATA: if defined, GDAL and PROJ4 data files will be copied into the # source or binary distribution. This is essential when creating self-contained # binary wheels. import copy from distutils.command.sdist import sdist import itertools import logging import os import platform import pprint import shutil import subprocess import sys from setuptools import setup from setuptools.extension import Extension logging.basicConfig(stream=sys.stderr, level=logging.INFO) log = logging.getLogger() def check_output(cmd): # since subprocess.check_output doesn't exist in 2.6 # we wrap it here. try: out = subprocess.check_output(cmd) return out.decode('utf') except AttributeError: # For some reasone check_output doesn't exist # So fall back on Popen p = subprocess.Popen(cmd, stdout=subprocess.PIPE) out, err = p.communicate() return out def copy_data_tree(datadir, destdir): try: shutil.rmtree(destdir) except OSError: pass shutil.copytree(datadir, destdir) # python -W all setup.py ... if 'all' in sys.warnoptions: log.level = logging.DEBUG # Parse the version from the rasterio module. with open('rasterio/__init__.py') as f: for line in f: if line.find("__version__") >= 0: version = line.split("=")[1].strip() version = version.strip('"') version = version.strip("'") continue with open('VERSION.txt', 'w') as f: f.write(version) # Use Cython if available. try: from Cython.Build import cythonize except ImportError: cythonize = None # By default we'll try to get options via gdal-config. On systems without, # options will need to be set in setup.cfg or on the setup command line. include_dirs = [] library_dirs = [] libraries = [] extra_link_args = [] gdal2plus = False gdal_output = [None] * 4 gdalversion = None try: import numpy as np include_dirs.append(np.get_include()) except ImportError: sys.exit("ERROR: Numpy and its headers are required to run setup().") try: gdal_config = os.environ.get('GDAL_CONFIG', 'gdal-config') for i, flag in enumerate(("--cflags", "--libs", "--datadir", "--version")): gdal_output[i] = check_output([gdal_config, flag]).strip() for item in gdal_output[0].split(): if item.startswith("-I"): include_dirs.extend(item[2:].split(":")) for item in gdal_output[1].split(): if item.startswith("-L"): library_dirs.extend(item[2:].split(":")) elif item.startswith("-l"): libraries.append(item[2:]) else: # e.g. -framework GDAL extra_link_args.append(item) # datadir, gdal_output[2] handled below gdalversion = gdal_output[3] if gdalversion: log.info("GDAL API version obtained from gdal-config: %s", gdalversion) except Exception as e: if os.name == "nt": log.info("Building on Windows requires extra options to setup.py " "to locate needed GDAL files. More information is available " "in the README.") else: log.warning("Failed to get options via gdal-config: %s", str(e)) # Get GDAL API version from environment variable. if 'GDAL_VERSION' in os.environ: gdalversion = os.environ['GDAL_VERSION'] log.info("GDAL API version obtained from environment: %s", gdalversion) # Get GDAL API version from the command line if specified there. if '--gdalversion' in sys.argv: index = sys.argv.index('--gdalversion') sys.argv.pop(index) gdalversion = sys.argv.pop(index) log.info("GDAL API version obtained from command line option: %s", gdalversion) if not gdalversion: sys.exit("ERROR: A GDAL API version must be specified. Provide a path " "to gdal-config using a GDAL_CONFIG environment variable " "or use a GDAL_VERSION environment variable.") gdal_version_parts = gdalversion.split('.') gdal_major_version = int(gdal_version_parts[0]) gdal_minor_version = int(gdal_version_parts[1]) if gdal_major_version == 1 and gdal_minor_version < 11: sys.exit("ERROR: GDAL >= 1.11 is required for rasterio. " "Please upgrade GDAL.") # Conditionally copy the GDAL data. To be used in conjunction with # the bdist_wheel command to make self-contained binary wheels. if os.environ.get('PACKAGE_DATA'): destdir = 'rasterio/gdal_data' if gdal_output[2]: log.info("Copying gdal data from %s" % gdal_output[2]) copy_data_tree(gdal_output[2], destdir) else: # check to see if GDAL_DATA is defined gdal_data = os.environ.get('GDAL_DATA', None) if gdal_data: log.info("Copying gdal_data from %s" % gdal_data) copy_data_tree(gdal_data, destdir) # Conditionally copy PROJ.4 data. projdatadir = os.environ.get('PROJ_LIB', '/usr/local/share/proj') if os.path.exists(projdatadir): log.info("Copying proj_data from %s" % projdatadir) copy_data_tree(projdatadir, 'rasterio/proj_data') # Extend distutil's sdist command to generate 3 C extension sources for # the _io module: a version for GDAL < 2, one for 2 <= GDAL < 2.1 and # one for GDAL >= 2.1. class sdist_multi_gdal(sdist): def run(self): shutil.copy('rasterio/_shim1.pyx', 'rasterio/_shim.pyx') _ = check_output(['cython', '-v', '-f', 'rasterio/_shim.pyx', '-o', 'rasterio/_shim1.c']) print(_) shutil.copy('rasterio/_shim20.pyx', 'rasterio/_shim.pyx') _ = check_output(['cython', '-v', '-f', 'rasterio/_shim.pyx', '-o', 'rasterio/_shim20.c']) print(_) shutil.copy('rasterio/_shim21.pyx', 'rasterio/_shim.pyx') _ = check_output(['cython', '-v', '-f', 'rasterio/_shim.pyx', '-o', 'rasterio/_shim21.c']) print(_) sdist.run(self) ext_options = { 'include_dirs': include_dirs, 'library_dirs': library_dirs, 'libraries': libraries, 'extra_link_args': extra_link_args, 'define_macros': []} if not os.name == "nt": # These options fail on Windows if using Visual Studio ext_options['extra_compile_args'] = ['-Wno-unused-parameter', '-Wno-unused-function'] # Copy extension options for cpp extension modules. cpp_ext_options = copy.deepcopy(ext_options) # Remove -std=c++11 from C extension options. try: ext_options['extra_link_args'].remove('-std=c++11') ext_options['extra_compile_args'].remove('-std=c++11') except Exception: pass # GDAL 2.3 and newer requires C++11 if (gdal_major_version, gdal_minor_version) >= (2, 3): cpp11_flag = '-std=c++11' # 'extra_compile_args' may not be defined eca = cpp_ext_options.get('extra_compile_args', []) if platform.system() == 'Darwin': if cpp11_flag not in eca: eca.append(cpp11_flag) eca += [cpp11_flag, '-mmacosx-version-min=10.9', '-stdlib=libc++'] # TODO: Windows elif cpp11_flag not in eca: eca.append(cpp11_flag) cpp_ext_options['extra_compile_args'] = eca # Configure optional Cython coverage. cythonize_options = {} if os.environ.get('CYTHON_COVERAGE'): cythonize_options['compiler_directives'] = {'linetrace': True} cythonize_options['annotate'] = True ext_options['define_macros'].extend( [('CYTHON_TRACE', '1'), ('CYTHON_TRACE_NOGIL', '1')]) log.debug('ext_options:\n%s', pprint.pformat(ext_options)) if gdal_major_version >= 2: # GDAL>=2.0 does not require vendorized rasterfill.cpp cython_fill = ['rasterio/_fill.pyx'] sdist_fill = ['rasterio/_fill.cpp'] else: cython_fill = ['rasterio/_fill.pyx', 'rasterio/rasterfill.cpp'] sdist_fill = ['rasterio/_fill.cpp', 'rasterio/rasterfill.cpp'] # When building from a repo, Cython is required. if os.path.exists("MANIFEST.in") and "clean" not in sys.argv: log.info("MANIFEST.in found, presume a repo, cythonizing...") if not cythonize: sys.exit( "ERROR: Cython.Build.cythonize not found. " "Cython is required to build from a repo.") # Copy the GDAL version-specific shim module to _shim.pyx. if gdal_major_version == 2 and gdal_minor_version >= 1: shutil.copy('rasterio/_shim21.pyx', 'rasterio/_shim.pyx') elif gdal_major_version == 2 and gdal_minor_version == 0: shutil.copy('rasterio/_shim20.pyx', 'rasterio/_shim.pyx') elif gdal_major_version == 1: shutil.copy('rasterio/_shim1.pyx', 'rasterio/_shim.pyx') ext_modules = cythonize([ Extension( 'rasterio._base', ['rasterio/_base.pyx'], **ext_options), Extension( 'rasterio._io', ['rasterio/_io.pyx'], **ext_options), Extension( 'rasterio._features', ['rasterio/_features.pyx'], **ext_options), Extension( 'rasterio._env', ['rasterio/_env.pyx'], **ext_options), Extension( 'rasterio._warp', ['rasterio/_warp.pyx'], **cpp_ext_options), Extension( 'rasterio._fill', cython_fill, **cpp_ext_options), Extension( 'rasterio._err', ['rasterio/_err.pyx'], **ext_options), Extension( 'rasterio._example', ['rasterio/_example.pyx'], **ext_options), Extension( 'rasterio._shim', ['rasterio/_shim.pyx'], **ext_options), Extension( 'rasterio._crs', ['rasterio/_crs.pyx'], **ext_options), Extension( 'rasterio.shutil', ['rasterio/shutil.pyx'], **ext_options)], quiet=True, **cythonize_options) # If there's no manifest template, as in an sdist, we just specify .c files. else: ext_modules = [ Extension( 'rasterio._base', ['rasterio/_base.c'], **ext_options), Extension( 'rasterio._io', ['rasterio/_io.c'], **ext_options), Extension( 'rasterio._features', ['rasterio/_features.c'], **ext_options), Extension( 'rasterio._env', ['rasterio/_env.c'], **ext_options), Extension( 'rasterio._warp', ['rasterio/_warp.cpp'], **cpp_ext_options), Extension( 'rasterio._fill', sdist_fill, **cpp_ext_options), Extension( 'rasterio._err', ['rasterio/_err.c'], **ext_options), Extension( 'rasterio._example', ['rasterio/_example.c'], **ext_options), Extension( 'rasterio._crs', ['rasterio/_crs.c'], **ext_options), Extension( 'rasterio.shutil', ['rasterio/shutil.c'], **ext_options)] # Copy the GDAL version-specific shim module to _shim.pyx. if gdal_major_version == 2 and gdal_minor_version >= 1: ext_modules.append( Extension('rasterio._shim', ['rasterio/_shim21.c'], **ext_options)) elif gdal_major_version == 2 and gdal_minor_version == 0: ext_modules.append( Extension('rasterio._shim', ['rasterio/_shim20.c'], **ext_options)) elif gdal_major_version == 1: ext_modules.append( Extension('rasterio._shim', ['rasterio/_shim1.c'], **ext_options)) with open('README.rst') as f: readme = f.read() # Runtime requirements. inst_reqs = [ 'affine', 'attrs', 'cligj', 'numpy', 'snuggs>=1.4.1', 'click-plugins'] if sys.version_info < (3, 4): inst_reqs.append('enum34') extra_reqs = { 'ipython': ['ipython>=2.0'], 's3': ['boto3>=1.2.4'], 'plot': ['matplotlib'], 'test': [ 'pytest>=2.8.2', 'pytest-cov>=2.2.0', 'boto3>=1.2.4', 'packaging', 'hypothesis'], 'docs': ['ghp-import', 'numpydoc', 'sphinx', 'sphinx-rtd-theme']} # Add futures to 'test' for Python < 3.2. if sys.version_info < (3, 2): extra_reqs['test'].append('futures') # Add all extra requirements extra_reqs['all'] = list(set(itertools.chain(*extra_reqs.values()))) setup_args = dict( cmdclass={'sdist': sdist_multi_gdal}, name='rasterio', version=version, description="Fast and direct raster I/O for use with Numpy and SciPy", long_description=readme, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Information Technology', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: C', 'Programming Language :: Cython', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Topic :: Multimedia :: Graphics :: Graphics Conversion', 'Topic :: Scientific/Engineering :: GIS'], keywords='raster gdal', author='Sean Gillies', author_email='[email protected]', url='https://github.com/mapbox/rasterio', license='BSD', package_dir={'': '.'}, packages=['rasterio', 'rasterio.rio'], entry_points=''' [console_scripts] rio=rasterio.rio.main:main_group [rasterio.rio_commands] blocks=rasterio.rio.blocks:blocks bounds=rasterio.rio.bounds:bounds calc=rasterio.rio.calc:calc clip=rasterio.rio.clip:clip convert=rasterio.rio.convert:convert edit-info=rasterio.rio.edit_info:edit env=rasterio.rio.env:env gcps=rasterio.rio.gcps:gcps info=rasterio.rio.info:info insp=rasterio.rio.insp:insp mask=rasterio.rio.mask:mask merge=rasterio.rio.merge:merge overview=rasterio.rio.overview:overview rasterize=rasterio.rio.rasterize:rasterize rm=rasterio.rio.rm:rm sample=rasterio.rio.sample:sample shapes=rasterio.rio.shapes:shapes stack=rasterio.rio.stack:stack transform=rasterio.rio.transform:transform warp=rasterio.rio.warp:warp ''', include_package_data=True, ext_modules=ext_modules, zip_safe=False, install_requires=inst_reqs, extras_require=extra_reqs) if os.environ.get('PACKAGE_DATA'): setup_args['package_data'] = {'rasterio': ['gdal_data/*', 'proj_data/*']} setup(**setup_args)
the-stack_106_20318
# Copyright 2017 Alethea Katherine Flowers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools def parametrize_decorator(arg_names, arg_values_list): """Parametrize a session. Add new invocations to the underlying session function using the list of ``arg_values_list`` for the given ``arg_names``. Parametrization is performed during session discovery and each invocation appears as a separate session to nox. Args: arg_names (Sequence[str]): A list of argument names. arg_values_list (Sequence[Union[Any, Tuple]]): The list of argument values determines how often a session is invoked with different argument values. If only one argument names was specified then this is a simple list of values, for example ``[1, 2, 3]``. If N argument names were specified, this must be a list of N-tuples, where each tuple-element specifies a value for its respective argument name, for example ``[(1, 'a'), (2, 'b')]``. """ # Allow args to be specified as any of 'arg', 'arg,arg2' or ('arg', 'arg2') if not isinstance(arg_names, (list, tuple)): arg_names = list(filter(None, [arg.strip() for arg in arg_names.split(",")])) # If there's only one arg_name, arg_values_list should be a single item # or list. Transform it so it'll work with the combine step. if len(arg_names) == 1: # In this case, the arg_values_list can also just be a single item. if not isinstance(arg_values_list, (list, tuple)): arg_values_list = [arg_values_list] arg_values_list = [[value] for value in arg_values_list] # Combine arg names and values into a list of dictionaries. These are # 'call specs' that will be used to generate calls. # [{arg: value1}, {arg: value2}, ...] call_specs = [] for arg_values in arg_values_list: call_spec = dict(zip(arg_names, arg_values)) call_specs.append(call_spec) def inner(f): previous_call_specs = getattr(f, "parametrize", None) new_call_specs = update_call_specs(previous_call_specs, call_specs) setattr(f, "parametrize", new_call_specs) return f return inner def update_call_specs(call_specs, new_specs): if not call_specs: call_specs = [{}] combined_specs = [] for new_spec in new_specs: for spec in call_specs: spec = spec.copy() spec.update(new_spec) combined_specs.append(spec) return combined_specs def generate_session_signature(func, call_spec): args = ["{}={}".format(k, repr(call_spec[k])) for k in sorted(call_spec.keys())] return "({})".format(", ".join(args)) def generate_calls(func, call_specs): calls = [] for call_spec in call_specs: def make_call_wrapper(call_spec): @functools.wraps(func) def call_wrapper(*args, **kwargs): kwargs.update(call_spec) return func(*args, **kwargs) return call_wrapper call = make_call_wrapper(call_spec) call.session_signature = generate_session_signature(func, call_spec) call.call_spec = call_spec calls.append(call) return calls
the-stack_106_20321
############################################ # # Author: Luca Cinquini # ############################################ """ Abstract -------- The wps module of the OWSlib package provides client-side functionality for executing invocations to a remote Web Processing Server. Disclaimer ---------- PLEASE NOTE: the owslib wps module should be considered in beta state: it has been tested versus only a handful of WPS services (deployed by the USGS, BADC and PML). More extensive testing is needed and feedback is appreciated. Usage ----- The module can be used to execute three types of requests versus a remote WPS endpoint: a) "GetCapabilities" - use the method wps.getcapabilities(xml=None) - the optional keyword argument "xml" may be used to avoid a real live request, and instead read the WPS capabilities document from a cached XML file b) "DescribeProcess" - use the method wps.describeprocess(identifier, xml=None) - identifier is the process identifier, retrieved from the list obtained from a previous "GetCapabilities" invocation - the optional keyword argument "xml" may be used to avoid a real live request, and instead read the WPS process description document from a cached XML file c) "Execute" - use the method wps.execute(identifier, inputs, output=None, request=None, response=None), which submits the job to the remote WPS server and returns a WPSExecution object that can be used to periodically check the job status until completion (or error) - the optional keyword argument "request" may be used to avoid re-building the request XML from input arguments, and instead submit a request from a pre-made XML file - alternatively, an "Execute" request can be built from input arguments by supplying the "identifier", "inputs" and "output" arguments to the execute() method. - "identifier" is the mandatory process identifier - "inputs" is a dictionary of (key,value) pairs where: - key is a named input parameter - value is either a string, or any python object that supports a getXml() method In particular, a few classes are included in the package to support a FeatuteCollection input: - "WFSFeatureCollection" can be used in conjunction with "WFSQuery" to define a FEATURE_COLLECTION retrieved from a live WFS server. - "GMLMultiPolygonFeatureCollection" can be used to define one or more polygons of (latitude, longitude) points. - "output" is an optional output identifier to be included in the ResponseForm section of the request. - the optional keyword argument "response" mey be used to avoid submitting a real live request, and instead reading the WPS execution response document from a cached XML file (for debugging or testing purposes) - the convenience module function monitorExecution() can be used to periodically check the status of a remote running job, and eventually download the output either to a named file, or to a file specified by the server. Examples -------- The files examples/wps-usgs-script.py, examples/wps-pml-script-1.py and examples/wps-pml-script-2.py contain real-world usage examples that submits a "GetCapabilities", "DescribeProcess" and "Execute" requests to the live USGS and PML servers. To run: cd examples python wps-usgs-script.py python wps-pml-script-1.py python wps-pml-script-2.py The file wps-client.py contains a command-line client that can be used to submit a "GetCapabilities", "DescribeProcess" or "Execute" request to an arbitratry WPS server. For example, you can run it as follows: cd examples To prints out usage and example invocations: wps-client -help To execute a (fake) WPS invocation: wps-client.py -v -u http://cida.usgs.gov/climate/gdp/process/WebProcessingService -r GetCapabilities -x ../tests/USGSCapabilities.xml The directory tests/ includes several doctest-style files wps_*.txt that show how to interactively submit a "GetCapabilities", "DescribeProcess" or "Execute" request, without making a live request but rather parsing the response of cached XML response documents. To run: cd tests python -m doctest wps_*.txt (or python -m doctest -v wps_*.txt for verbose output) Also, the directory tests/ contains several examples of well-formed "Execute" requests: - The files wps_USGSExecuteRequest*.xml contain requests that can be submitted to the live USGS WPS service. - The files PMLExecuteRequest*.xml contain requests that can be submitted to the live PML WPS service. """ from __future__ import (absolute_import, division, print_function) from owslib.etree import etree from owslib.ows import DEFAULT_OWS_NAMESPACE, ServiceIdentification, ServiceProvider, OperationsMetadata from time import sleep from owslib.util import (testXMLValue, build_get_url, dump, getTypedValue, getNamespace, element_to_string, nspath, openURL, nspath_eval, log) from xml.dom.minidom import parseString from owslib.namespaces import Namespaces try: # Python 3 from urllib.parse import urlparse except ImportError: # Python 2 from urlparse import urlparse # namespace definition n = Namespaces() # These static namespaces are DEPRECIATED. Please don't use them. # No great way of printing a message since there are at the file level WPS_DEFAULT_NAMESPACE = n.get_namespace("wps") WFS_NAMESPACE = n.get_namespace("wfs") OGC_NAMESPACE = n.get_namespace("ogc") GML_NAMESPACE = n.get_namespace("gml") DRAW_NAMESPACE = n.get_namespace("draw") GML_SCHEMA_LOCATION = "http://schemas.opengis.net/gml/3.1.1/base/feature.xsd" DRAW_SCHEMA_LOCATION = 'http://cida.usgs.gov/climate/derivative/xsd/draw.xsd' WPS_DEFAULT_SCHEMA_LOCATION = 'http://schemas.opengis.net/wps/1.0.0/wpsExecute_request.xsd' WPS_DEFAULT_VERSION = '1.0.0' def get_namespaces(): ns = n.get_namespaces(["ogc","wfs","wps","gml","xsi","xlink"]) ns[None] = n.get_namespace("wps") ns["ows"] = DEFAULT_OWS_NAMESPACE return ns namespaces = get_namespaces() def is_reference(val): """ Checks if the provided value is a reference (URL). """ try: parsed = urlparse(val) is_ref = parsed.scheme != '' except: is_ref = False return is_ref def is_literaldata(val): """ Checks if the provided value is a string (includes unicode). """ is_str = isinstance(val, str) if not is_str: # on python 2.x we need to check unicode try: is_str = isinstance(val, unicode) except: # unicode is not available on python 3.x is_str = False return is_str def is_complexdata(val): """ Checks if the provided value is an implementation of IComplexData. """ return hasattr(val, 'getXml') class IComplexDataInput(object): """ Abstract interface representing complex input object for a WPS request. """ def getXml(self): """ Method that returns the object data as an XML snippet, to be inserted into the WPS request document sent to the server. """ raise NotImplementedError class WebProcessingService(object): """ Class that contains client-side functionality for invoking an OGC Web Processing Service (WPS). Implements IWebProcessingService. """ def __init__(self, url, version=WPS_DEFAULT_VERSION, username=None, password=None, verbose=False, skip_caps=False): """ Initialization method resets the object status. By default it will execute a GetCapabilities invocation to the remote service, which can be skipped by using skip_caps=True. """ # fields passed in from object initializer self.url = url self.username = username self.password = password self.version = version self.verbose = verbose # fields populated by method invocations self._capabilities = None self.identification = None self.provider = None self.operations=[] self.processes=[] if not skip_caps: self.getcapabilities() def getcapabilities(self, xml=None): """ Method that requests a capabilities document from the remote WPS server and populates this object's metadata. keyword argument xml: local XML GetCapabilities document, prevents actual HTTP invocation. """ # read capabilities document reader = WPSCapabilitiesReader(version=self.version, verbose=self.verbose) if xml: # read from stored XML file self._capabilities = reader.readFromString(xml) else: self._capabilities = reader.readFromUrl(self.url, username=self.username, password=self.password) log.debug(element_to_string(self._capabilities)) # populate the capabilities metadata obects from the XML tree self._parseCapabilitiesMetadata(self._capabilities) def describeprocess(self, identifier, xml=None): """ Requests a process document from a WPS service and populates the process metadata. Returns the process object. """ # read capabilities document reader = WPSDescribeProcessReader(version=self.version, verbose=self.verbose) if xml: # read from stored XML file rootElement = reader.readFromString(xml) else: # read from server rootElement = reader.readFromUrl(self.url, identifier) log.info(element_to_string(rootElement)) # build metadata objects return self._parseProcessMetadata(rootElement) def execute(self, identifier, inputs, output=None, request=None, response=None): """ Submits a WPS process execution request. Returns a WPSExecution object, which can be used to monitor the status of the job, and ultimately retrieve the result. identifier: the requested process identifier inputs: list of process inputs as (key, value) tuples (where value is either a string for LiteralData, or an object for ComplexData) output: optional identifier for process output reference (if not provided, output will be embedded in the response) request: optional pre-built XML request document, prevents building of request from other arguments response: optional pre-built XML response document, prevents submission of request to live WPS server """ # instantiate a WPSExecution object log.info('Executing WPS request...') execution = WPSExecution(version=self.version, url=self.url, username=self.username, password=self.password, verbose=self.verbose) # build XML request from parameters if request is None: requestElement = execution.buildRequest(identifier, inputs, output) request = etree.tostring( requestElement ) execution.request = request log.debug(request) # submit the request to the live server if response is None: response = execution.submitRequest(request) else: response = etree.fromstring(response) log.debug(etree.tostring(response)) # parse response execution.parseResponse(response) return execution def _parseProcessMetadata(self, rootElement): """ Method to parse a <ProcessDescriptions> XML element and returned the constructed Process object """ processDescriptionElement = rootElement.find( 'ProcessDescription' ) process = Process(processDescriptionElement, verbose=self.verbose) # override existing processes in object metadata, if existing already found = False for n, p in enumerate(self.processes): if p.identifier==process.identifier: self.processes[n]=process found = True # otherwise add it if not found: self.processes.append(process) return process def _parseCapabilitiesMetadata(self, root): ''' Sets up capabilities metadata objects ''' # use the WPS namespace defined in the document root wpsns = getNamespace(root) # loop over children WITHOUT requiring a specific namespace for element in root: # thie element's namespace ns = getNamespace(element) # <ows:ServiceIdentification> metadata if element.tag.endswith('ServiceIdentification'): self.identification=ServiceIdentification(element, namespace=ns) if self.verbose==True: dump(self.identification) # <ows:ServiceProvider> metadata elif element.tag.endswith('ServiceProvider'): self.provider=ServiceProvider(element, namespace=ns) if self.verbose==True: dump(self.provider) # <ns0:OperationsMetadata xmlns:ns0="http://www.opengeospatial.net/ows"> # <ns0:Operation name="GetCapabilities"> # <ns0:DCP> # <ns0:HTTP> # <ns0:Get xlink:href="http://ceda-wps2.badc.rl.ac.uk/wps?" xmlns:xlink="http://www.w3.org/1999/xlink" /> # </ns0:HTTP> # </ns0:DCP> # </ns0:Operation> # ........ # </ns0:OperationsMetadata> elif element.tag.endswith('OperationsMetadata'): for child in element.findall( nspath('Operation', ns=ns) ): self.operations.append( OperationsMetadata(child, namespace=ns) ) if self.verbose==True: dump(self.operations[-1]) # <wps:ProcessOfferings> # <wps:Process ns0:processVersion="1.0.0"> # <ows:Identifier xmlns:ows="http://www.opengis.net/ows/1.1">gov.usgs.cida.gdp.wps.algorithm.filemanagement.ReceiveFiles</ows:Identifier> # <ows:Title xmlns:ows="http://www.opengis.net/ows/1.1">gov.usgs.cida.gdp.wps.algorithm.filemanagement.ReceiveFiles</ows:Title> # </wps:Process> # ...... # </wps:ProcessOfferings> elif element.tag.endswith('ProcessOfferings'): for child in element.findall( nspath('Process', ns=ns) ): p = Process(child, verbose=self.verbose) self.processes.append(p) if self.verbose==True: dump(self.processes[-1]) class WPSReader(object): """ Superclass for reading a WPS document into a lxml.etree infoset. """ def __init__(self, version=WPS_DEFAULT_VERSION, verbose=False): self.version = version self.verbose = verbose def _readFromUrl(self, url, data, method='Get', username=None, password=None): """ Method to get and parse a WPS document, returning an elementtree instance. url: WPS service base url. data: GET: dictionary of HTTP (key, value) parameter pairs, POST: XML document to post username, password: optional user credentials """ if method == 'Get': # full HTTP request url request_url = build_get_url(url, data) log.debug(request_url) # split URL into base url and query string to use utility function spliturl=request_url.split('?') u = openURL(spliturl[0], spliturl[1], method='Get', username=username, password=password) return etree.fromstring(u.read()) elif method == 'Post': u = openURL(url, data, method='Post', username = username, password = password) return etree.fromstring(u.read()) else: raise Exception("Unrecognized HTTP method: %s" % method) def readFromString(self, string): """ Method to read a WPS GetCapabilities document from an XML string. """ if not isinstance(string, str) and not isinstance(string, bytes): raise ValueError("Input must be of type string, not %s" % type(string)) return etree.fromstring(string) class WPSCapabilitiesReader(WPSReader): """ Utility class that reads and parses a WPS GetCapabilities document into a lxml.etree infoset. """ def __init__(self, version=WPS_DEFAULT_VERSION, verbose=False): # superclass initializer super(WPSCapabilitiesReader,self).__init__(version=version, verbose=verbose) def readFromUrl(self, url, username=None, password=None): """ Method to get and parse a WPS capabilities document, returning an elementtree instance. url: WPS service base url, to which is appended the HTTP parameters: service, version, and request. username, password: optional user credentials """ return self._readFromUrl(url, {'service':'WPS', 'request':'GetCapabilities', 'version':self.version}, username=username, password=password) class WPSDescribeProcessReader(WPSReader): """ Class that reads and parses a WPS DescribeProcess document into a etree infoset """ def __init__(self, version=WPS_DEFAULT_VERSION, verbose=False): # superclass initializer super(WPSDescribeProcessReader,self).__init__(version=version, verbose=verbose) def readFromUrl(self, url, identifier, username=None, password=None): """ Reads a WPS DescribeProcess document from a remote service and returns the XML etree object url: WPS service base url, to which is appended the HTTP parameters: 'service', 'version', and 'request', and 'identifier'. """ return self._readFromUrl(url, {'service':'WPS', 'request':'DescribeProcess', 'version':self.version, 'identifier':identifier}, username=username, password=password) class WPSExecuteReader(WPSReader): """ Class that reads and parses a WPS Execute response document into a etree infoset """ def __init__(self, verbose=False): # superclass initializer super(WPSExecuteReader,self).__init__(verbose=verbose) def readFromUrl(self, url, data={}, method='Get', username=None, password=None): """ Reads a WPS status document from a remote service and returns the XML etree object. url: the URL to submit the GET/POST request to. """ return self._readFromUrl(url, data, method, username=username, password=password) class WPSExecution(): """ Class that represents a single WPS process executed on a remote WPS service. """ def __init__(self, version=WPS_DEFAULT_VERSION, url=None, username=None, password=None, verbose=False): # initialize fields self.url = url self.version = version self.username = username self.password = password self.verbose = verbose # request document self.request = None # last response document self.response = None # status fields retrieved from the response documents self.process = None self.serviceInstance = None self.status = None self.percentCompleted = 0 self.statusMessage = None self.errors = [] self.statusLocation = None self.dataInputs=[] self.processOutputs=[] def buildRequest(self, identifier, inputs=[], output=None): """ Method to build a WPS process request. identifier: the requested process identifier inputs: array of input arguments for the process. - LiteralData inputs are expressed as simple (key,value) tuples where key is the input identifier, value is the value - ComplexData inputs are expressed as (key, object) tuples, where key is the input identifier, and the object must contain a 'getXml()' method that returns an XML infoset to be included in the WPS request output: optional identifier if process output is to be returned as a hyperlink reference """ #<wps:Execute xmlns:wps="http://www.opengis.net/wps/1.0.0" # xmlns:ows="http://www.opengis.net/ows/1.1" # xmlns:xlink="http://www.w3.org/1999/xlink" # xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" # service="WPS" # version="1.0.0" # xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsExecute_request.xsd"> root = etree.Element(nspath_eval('wps:Execute', namespaces)) root.set('service', 'WPS') root.set('version', WPS_DEFAULT_VERSION) root.set(nspath_eval('xsi:schemaLocation', namespaces), '%s %s' % (namespaces['wps'], WPS_DEFAULT_SCHEMA_LOCATION) ) # <ows:Identifier>gov.usgs.cida.gdp.wps.algorithm.FeatureWeightedGridStatisticsAlgorithm</ows:Identifier> identifierElement = etree.SubElement(root, nspath_eval('ows:Identifier', namespaces)) identifierElement.text = identifier # <wps:DataInputs> dataInputsElement = etree.SubElement(root, nspath_eval('wps:DataInputs', namespaces)) for (key,val) in inputs: inputElement = etree.SubElement(dataInputsElement, nspath_eval('wps:Input', namespaces)) identifierElement = etree.SubElement(inputElement, nspath_eval('ows:Identifier', namespaces)) identifierElement.text = key # Literal data # <wps:Input> # <ows:Identifier>DATASET_URI</ows:Identifier> # <wps:Data> # <wps:LiteralData>dods://igsarm-cida-thredds1.er.usgs.gov:8080/thredds/dodsC/dcp/conus_grid.w_meta.ncml</wps:LiteralData> # </wps:Data> # </wps:Input> if is_literaldata(val): log.debug("literaldata %s", key) dataElement = etree.SubElement(inputElement, nspath_eval('wps:Data', namespaces)) literalDataElement = etree.SubElement(dataElement, nspath_eval('wps:LiteralData', namespaces)) literalDataElement.text = val # Complex data # <wps:Input> # <ows:Identifier>FEATURE_COLLECTION</ows:Identifier> # <wps:Reference xlink:href="http://igsarm-cida-gdp2.er.usgs.gov:8082/geoserver/wfs"> # <wps:Body> # <wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" service="WFS" version="1.1.0" outputFormat="text/xml; subtype=gml/3.1.1" xsi:schemaLocation="http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd"> # <wfs:Query typeName="sample:CONUS_States"> # <wfs:PropertyName>the_geom</wfs:PropertyName> # <wfs:PropertyName>STATE</wfs:PropertyName> # <ogc:Filter> # <ogc:GmlObjectId gml:id="CONUS_States.508"/> # </ogc:Filter> # </wfs:Query> # </wfs:GetFeature> # </wps:Body> # </wps:Reference> # </wps:Input> elif is_complexdata(val): log.debug("complexdata %s", key) inputElement.append( val.getXml() ) else: raise Exception('input type of "%s" parameter is unknown' % key) # <wps:ResponseForm> # <wps:ResponseDocument storeExecuteResponse="true" status="true"> # <wps:Output asReference="true"> # <ows:Identifier>OUTPUT</ows:Identifier> # </wps:Output> # </wps:ResponseDocument> # </wps:ResponseForm> if output is not None: responseFormElement = etree.SubElement(root, nspath_eval('wps:ResponseForm', namespaces)) responseDocumentElement = etree.SubElement(responseFormElement, nspath_eval('wps:ResponseDocument', namespaces), attrib={'storeExecuteResponse':'true', 'status':'true'} ) if isinstance(output, str): self._add_output(responseDocumentElement, output, asReference=True) elif isinstance(output, list): for (identifier,as_reference) in output: self._add_output(responseDocumentElement, identifier, asReference=as_reference) else: raise Exception('output parameter is neither string nor list. output=%s' % output) return root def _add_output(self, element, identifier, asReference=False): outputElement = etree.SubElement(element, nspath_eval('wps:Output', namespaces), attrib={'asReference':str(asReference).lower()} ) outputIdentifierElement = etree.SubElement(outputElement, nspath_eval('ows:Identifier', namespaces)).text = identifier # wait for 60 seconds by default def checkStatus(self, url=None, response=None, sleepSecs=60): """ Method to check the status of a job execution. In the process, this method will upadte the object 'response' attribute. url: optional 'statusLocation' URL retrieved from a previous WPS Execute response document. If not provided, the current 'statusLocation' URL will be used. sleepSecs: number of seconds to sleep before returning control to the caller. """ reader = WPSExecuteReader(verbose=self.verbose) if response is None: # override status location if url is not None: self.statusLocation = url log.info('\nChecking execution status... (location=%s)' % self.statusLocation) response = reader.readFromUrl(self.statusLocation, username=self.username, password=self.password) else: response = reader.readFromString(response) # store latest response self.response = etree.tostring(response) log.debug(self.response) self.parseResponse(response) # sleep given number of seconds if self.isComplete()==False: log.info('Sleeping %d seconds...' % sleepSecs) sleep(sleepSecs) def getStatus(self): return self.status def isComplete(self): if (self.status=='ProcessSucceeded' or self.status=='ProcessFailed' or self.status=='Exception'): return True elif (self.status=='ProcessStarted'): return False elif (self.status=='ProcessAccepted' or self.status=='ProcessPaused'): return False else: raise Exception('Unknown process execution status: %s' % self.status) def isSucceded(self): if self.status=='ProcessSucceeded': return True else: return False def isNotComplete(self): return not self.isComplete() def getOutput(self, filepath=None): """ Method to write the outputs of a WPS process to a file: either retrieves the referenced files from the server, or writes out the content of response embedded output. filepath: optional path to the output file, otherwise a file will be created in the local directory with the name assigned by the server, or default name 'wps.out' for embedded output. """ if self.isSucceded(): content = '' for output in self.processOutputs: output_content = output.retrieveData(self.username, self.password) # ExecuteResponse contains reference to server-side output if output_content is not "": content = content + output_content if filepath is None: filepath = output.fileName # ExecuteResponse contain embedded output if len(output.data)>0: if filepath is None: filepath = 'wps.out' for data in output.data: content = content + data # write out content if content is not '': out = open(filepath, 'wb') out.write(content) out.close() log.info('Output written to file: %s' %filepath) else: raise Exception("Execution not successfully completed: status=%s" % self.status) def submitRequest(self, request): """ Submits a WPS Execute document to a remote service, returns the XML response document from the server. This method will save the request document and the first returned response document. request: the XML request document to be submitted as POST to the server. """ self.request = request reader = WPSExecuteReader(verbose=self.verbose) response = reader.readFromUrl(self.url, request, method='Post', username=self.username, password=self.password) self.response = response return response ''' if response is None: # override status location if url is not None: self.statusLocation = url else: response = reader.readFromString(response) ''' def parseResponse(self, response): """ Method to parse a WPS response document """ rootTag = response.tag.split('}')[1] # <ns0:ExecuteResponse> if rootTag == 'ExecuteResponse': self._parseExecuteResponse(response) # <ows:ExceptionReport> elif rootTag == 'ExceptionReport': self._parseExceptionReport(response) else: log.debug('Unknown Response') # log status, errors log.info('Execution status=%s' % self.status) log.info('Percent completed=%s' % self.percentCompleted) log.info('Status message=%s' % self.statusMessage) for error in self.errors: dump(error) def _parseExceptionReport(self, root): """ Method to parse a WPS ExceptionReport document and populate this object's metadata. """ # set exception status, unless set already if self.status is None: self.status = "Exception" for exceptionEl in root.findall( nspath('Exception', ns=namespaces['ows']) ): self.errors.append( WPSException(exceptionEl) ) def _parseExecuteResponse(self, root): """ Method to parse a WPS ExecuteResponse response document and populate this object's metadata. """ # retrieve WPS namespace directly from root element wpsns = getNamespace(root) self.serviceInstance = root.get( 'serviceInstance' ) if self.statusLocation is None: self.statusLocation = root.get( 'statusLocation' ) # <ns0:Status creationTime="2011-11-09T14:19:50Z"> # <ns0:ProcessSucceeded>PyWPS Process v.net.path successfully calculated</ns0:ProcessSucceeded> # </ns0:Status> # OR # <ns0:Status creationTime="2011-11-07T08:26:44.359-06:00"> # <ns0:ProcessFailed> # <ows:ExceptionReport xmlns:ows="http://www.opengis.net/ows/1.1"> # <ows:Exception> # <ows:ExceptionText>Attribute null not found in feature collection</ows:ExceptionText> # </ows:Exception> # </ows:ExceptionReport> # </ns0:ProcessFailed> # </ns0:Status> statusEl = root.find( nspath('Status/*', ns=wpsns) ) self.status = statusEl.tag.split('}')[1] # get progress info try: percentCompleted = int(statusEl.get('percentCompleted')) self.percentCompleted = percentCompleted except: pass # get status message self.statusMessage = statusEl.text # exceptions ? for element in statusEl: if element.tag.endswith('ExceptionReport'): self._parseExceptionReport(element) self.process = Process(root.find(nspath('Process', ns=wpsns)), verbose=self.verbose) #<wps:DataInputs xmlns:wps="http://www.opengis.net/wps/1.0.0" # xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xlink="http://www.w3.org/1999/xlink"> for inputElement in root.findall( nspath('DataInputs/Input', ns=wpsns) ): self.dataInputs.append( Input(inputElement) ) if self.verbose==True: dump(self.dataInputs[-1]) # <ns:ProcessOutputs> # xmlns:ns="http://www.opengis.net/wps/1.0.0" for outputElement in root.findall( nspath('ProcessOutputs/Output', ns=wpsns) ): self.processOutputs.append( Output(outputElement) ) if self.verbose==True: dump(self.processOutputs[-1]) class ComplexData(object): """ Class that represents a ComplexData element in a WPS document """ def __init__(self, mimeType=None, encoding=None, schema=None): self.mimeType = mimeType self.encoding = encoding self.schema = schema class InputOutput(object): """ Superclass of a WPS input or output data object. """ def __init__(self, element): self.abstract = None # loop over sub-elements without requiring a specific namespace for subElement in element: # <ows:Identifier xmlns:ows="http://www.opengis.net/ows/1.1">SUMMARIZE_TIMESTEP</ows:Identifier> if subElement.tag.endswith('Identifier'): self.identifier = testXMLValue( subElement ) # <ows:Title xmlns:ows="http://www.opengis.net/ows/1.1">Summarize Timestep</ows:Title> elif subElement.tag.endswith('Title'): self.title = testXMLValue( subElement ) # <ows:Abstract xmlns:ows="http://www.opengis.net/ows/1.1">If selected, processing output will include columns with summarized statistics for all feature attribute values for each timestep</ows:Abstract> elif subElement.tag.endswith('Abstract'): self.abstract = testXMLValue( subElement ) self.allowedValues = [] self.supportedValues = [] self.defaultValue = None self.dataType = None self.anyValue = False def _parseData(self, element): """ Method to parse a "Data" element """ # <ns0:Data> # <ns0:ComplexData mimeType="text/plain"> # 7504912.93758151 -764109.175074507,7750849.82379226 -22141.8611641468,8561828.42371234 -897195.923493867,7724946.16844165 -602984.014261927 # </ns0:ComplexData> # </ns0:Data> #nspath('Data', ns=WPS_NAMESPACE) complexDataElement = element.find( nspath('ComplexData', ns=getNamespace(element)) ) if complexDataElement is not None: self.dataType = "ComplexData" def _parseLiteralData(self, element, literalElementName): """ Method to parse the LiteralData element. """ # <LiteralData> # <ows:DataType ows:reference="xs:string" xmlns:ows="http://www.opengis.net/ows/1.1" /> # <ows:AllowedValues xmlns:ows="http://www.opengis.net/ows/1.1"> # <ows:Value>COMMA</ows:Value> # <ows:Value>TAB</ows:Value> # <ows:Value>SPACE</ows:Value> # </ows:AllowedValues> # <DefaultValue>COMMA</DefaultValue> # </LiteralData> # <LiteralData> # <ows:DataType ows:reference="xs:anyURI" xmlns:ows="http://www.opengis.net/ows/1.1" /> # <ows:AnyValue xmlns:ows="http://www.opengis.net/ows/1.1" /> # </LiteralData> literalDataElement = element.find( literalElementName ) if literalDataElement is not None: self.dataType = 'LiteralData' for subElement in literalDataElement: subns = getNamespace(subElement) if subElement.tag.endswith('DataType'): self.dataType = subElement.get( nspath("reference", ns=subns) ).split(':')[1] elif subElement.tag.endswith('AllowedValues'): for value in subElement.findall( nspath('Value', ns=subns) ): self.allowedValues.append( getTypedValue(self.dataType, value.text) ) elif subElement.tag.endswith('DefaultValue'): self.defaultValue = getTypedValue(self.dataType, subElement.text) elif subElement.tag.endswith('AnyValue'): self.anyValue = True def _parseComplexData(self, element, complexDataElementName): """ Method to parse a ComplexData or ComplexOutput element. """ # <ComplexData> # <Default> # <Format> # <MimeType>text/xml</MimeType> # <Encoding>UTF-8</Encoding> # <Schema>http://schemas.opengis.net/gml/2.0.0/feature.xsd</Schema> # </Format> # </Default> # <Supported> # <Format> # <MimeType>text/xml</MimeType> # <Encoding>UTF-8</Encoding> # <Schema>http://schemas.opengis.net/gml/2.0.0/feature.xsd</Schema> # </Format> # <Format> # <MimeType>text/xml</MimeType> # <Encoding>UTF-8</Encoding> # <Schema>http://schemas.opengis.net/gml/2.1.1/feature.xsd</Schema> # </Format> # </Supported> # </ComplexData> # OR # <ComplexOutput defaultEncoding="UTF-8" defaultFormat="text/XML" defaultSchema="NONE"> # <SupportedComplexData> # <Format>text/XML</Format> # <Encoding>UTF-8</Encoding> # <Schema>NONE</Schema> # </SupportedComplexData> # </ComplexOutput> complexDataElement = element.find( complexDataElementName ) if complexDataElement is not None: self.dataType = "ComplexData" for supportedComlexDataElement in complexDataElement.findall( 'SupportedComplexData' ): self.supportedValues.append( ComplexData( mimeType=testXMLValue( supportedComlexDataElement.find( 'Format' ) ), encoding=testXMLValue( supportedComlexDataElement.find( 'Encoding' ) ), schema=testXMLValue( supportedComlexDataElement.find( 'Schema' ) ) ) ) for formatElement in complexDataElement.findall( 'Supported/Format'): self.supportedValues.append( ComplexData( mimeType=testXMLValue( formatElement.find( 'MimeType' ) ), encoding=testXMLValue( formatElement.find( 'Encoding' ) ), schema=testXMLValue( formatElement.find( 'Schema' ) ) ) ) defaultFormatElement = complexDataElement.find( 'Default/Format' ) if defaultFormatElement is not None: self.defaultValue = ComplexData( mimeType=testXMLValue( defaultFormatElement.find( 'MimeType' ) ), encoding=testXMLValue( defaultFormatElement.find( 'Encoding' ) ), schema=testXMLValue( defaultFormatElement.find( 'Schema' ) ) ) class Input(InputOutput): """ Class that represents a WPS process input. """ def __init__(self, inputElement): # superclass initializer super(Input,self).__init__(inputElement) # <Input maxOccurs="1" minOccurs="0"> # OR # <MinimumOccurs>1</MinimumOccurs> self.minOccurs = -1 if inputElement.get("minOccurs") is not None: self.minOccurs = int( inputElement.get("minOccurs") ) if inputElement.find('MinimumOccurs') is not None: self.minOccurs = int( testXMLValue( inputElement.find('MinimumOccurs') ) ) self.maxOccurs = -1 if inputElement.get("maxOccurs") is not None: self.maxOccurs = int( inputElement.get("maxOccurs") ) if inputElement.find('MaximumOccurs') is not None: self.maxOccurs = int( testXMLValue( inputElement.find('MaximumOccurs') ) ) # <LiteralData> self._parseLiteralData(inputElement, 'LiteralData') # <ComplexData> self._parseComplexData(inputElement, 'ComplexData') class Output(InputOutput): """ Class that represents a WPS process output. """ def __init__(self, outputElement): # superclass initializer super(Output,self).__init__(outputElement) self.reference = None self.mimeType = None self.data = [] self.fileName = None self.filePath = None # extract wps namespace from outputElement itself wpsns = getNamespace(outputElement) # <ns:Reference encoding="UTF-8" mimeType="text/csv" # href="http://cida.usgs.gov/climate/gdp/process/RetrieveResultServlet?id=1318528582026OUTPUT.601bb3d0-547f-4eab-8642-7c7d2834459e" /> referenceElement = outputElement.find( nspath('Reference', ns=wpsns) ) if referenceElement is not None: self.reference = referenceElement.get('href') self.mimeType = referenceElement.get('mimeType') # <LiteralOutput> self._parseLiteralData(outputElement, 'LiteralOutput') # <ComplexData> or <ComplexOutput> self._parseComplexData(outputElement, 'ComplexOutput') # <Data> # <ns0:Data> # <ns0:ComplexData mimeType="text/plain"> # 7504912.93758151 -764109.175074507,7750849.82379226 -22141.8611641468,8561828.42371234 -897195.923493867,7724946.16844165 -602984.014261927 # </ns0:ComplexData> # </ns0:Data> # OR: # <ns0:Data> # <ns0:ComplexData encoding="UTF-8" mimeType="text/xml" schema="http://schemas.opengis.net/gml/2.1.2/feature.xsd"> # <ns3:FeatureCollection xsi:schemaLocation="http://ogr.maptools.org/ output_0n7ij9D.xsd" xmlns:ns3="http://ogr.maptools.org/"> # <gml:boundedBy xmlns:gml="http://www.opengis.net/gml"> # <gml:Box> # <gml:coord><gml:X>-960123.1421801626</gml:X><gml:Y>4665723.56559387</gml:Y></gml:coord> # <gml:coord><gml:X>-101288.6510608822</gml:X><gml:Y>5108200.011823481</gml:Y></gml:coord> # </gml:Box> # </gml:boundedBy> # <gml:featureMember xmlns:gml="http://www.opengis.net/gml"> # <ns3:output fid="F0"> # <ns3:geometryProperty><gml:LineString><gml:coordinates>-960123.142180162365548,4665723.565593870356679,0 -960123.142180162365548,4665723.565593870356679,0 -960123.142180162598379,4665723.565593870356679,0 -960123.142180162598379,4665723.565593870356679,0 -711230.141176006174646,4710278.48552671354264,0 -711230.141176006174646,4710278.48552671354264,0 -623656.677859728806652,4848552.374973464757204,0 -623656.677859728806652,4848552.374973464757204,0 -410100.337491964863148,4923834.82589447684586,0 -410100.337491964863148,4923834.82589447684586,0 -101288.651060882242746,5108200.011823480948806,0 -101288.651060882242746,5108200.011823480948806,0 -101288.651060882257298,5108200.011823480948806,0 -101288.651060882257298,5108200.011823480948806,0</gml:coordinates></gml:LineString></ns3:geometryProperty> # <ns3:cat>1</ns3:cat> # <ns3:id>1</ns3:id> # <ns3:fcat>0</ns3:fcat> # <ns3:tcat>0</ns3:tcat> # <ns3:sp>0</ns3:sp> # <ns3:cost>1002619.181</ns3:cost> # <ns3:fdist>0</ns3:fdist> # <ns3:tdist>0</ns3:tdist> # </ns3:output> # </gml:featureMember> # </ns3:FeatureCollection> # </ns0:ComplexData> # </ns0:Data> dataElement = outputElement.find( nspath('Data', ns=wpsns) ) if dataElement is not None: complexDataElement = dataElement.find( nspath('ComplexData', ns=wpsns) ) if complexDataElement is not None: self.dataType = "ComplexData" self.mimeType = complexDataElement.get('mimeType') if complexDataElement.text is not None and complexDataElement.text.strip() is not '': self.data.append(complexDataElement.text.strip()) for child in complexDataElement: self.data.append(etree.tostring(child)) literalDataElement = dataElement.find( nspath('LiteralData', ns=wpsns) ) if literalDataElement is not None: self.dataType = literalDataElement.get('dataType') if literalDataElement.text is not None and literalDataElement.text.strip() is not '': self.data.append(literalDataElement.text.strip()) def retrieveData(self, username=None, password=None): """ Method to retrieve data from server-side reference: returns "" if the reference is not known. username, password: credentials to access the remote WPS server """ url = self.reference if url is None: return "" # a) 'http://cida.usgs.gov/climate/gdp/process/RetrieveResultServlet?id=1318528582026OUTPUT.601bb3d0-547f-4eab-8642-7c7d2834459e' # b) 'http://rsg.pml.ac.uk/wps/wpsoutputs/outputImage-11294Bd6l2a.tif' log.info('Output URL=%s' % url) if '?' in url: spliturl=url.split('?') u = openURL(spliturl[0], spliturl[1], method='Get', username = username, password = password) # extract output filepath from URL query string self.fileName = spliturl[1].split('=')[1] else: u = openURL(url, '', method='Get', username = username, password = password) # extract output filepath from base URL self.fileName = url.split('/')[-1] return u.read() def writeToDisk(self, path=None, username=None, password=None): """ Method to write an output of a WPS process to disk: it either retrieves the referenced file from the server, or write out the content of response embedded output. filepath: optional path to the output file, otherwise a file will be created in the local directory with the name assigned by the server, username, password: credentials to access the remote WPS server """ # Check if ExecuteResponse contains reference to server-side output content = self.retrieveData(username, password) # ExecuteResponse contain embedded output if content is "" and len(self.data)>0: self.fileName = self.identifier for data in self.data: content = content + data # write out content if content is not "": if self.fileName == "": self.fileName = self.identifier self.filePath = path + self.fileName out = open(self.filePath, 'wb') out.write(content) out.close() log.info('Output written to file: %s' %self.filePath) class WPSException: """ Class representing an exception raised by a WPS. """ def __init__(self, root): self.code = root.attrib.get("exceptionCode", None) self.locator = root.attrib.get("locator", None) textEl = root.find( nspath('ExceptionText', ns=getNamespace(root)) ) if textEl is not None: self.text = textEl.text else: self.text = "" class Process(object): """ Class that represents a WPS process. """ def __init__(self, elem, verbose=False): """ Initialization method extracts all available metadata from an XML document (passed in as etree object) """ # <ns0:ProcessDescriptions service="WPS" version="1.0.0" # xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsDescribeProcess_response.xsd" # xml:lang="en-US" xmlns:ns0="http://www.opengis.net/wps/1.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> # OR: # <ns0:Process ns0:processVersion="1.0.0"> self._root = elem self.verbose = verbose wpsns = getNamespace(elem) # <ProcessDescription statusSupported="true" storeSupported="true" ns0:processVersion="1.0.0"> self.processVersion = elem.get( nspath('processVersion', ns=wpsns) ) self.statusSupported = bool( elem.get( "statusSupported" ) ) self.storeSupported = bool( elem.get( "storeSupported" ) ) self.abstract = None for child in elem: # this element's namespace ns = getNamespace(child) # <ows:Identifier xmlns:ows="http://www.opengis.net/ows/1.1">gov.usgs.cida.gdp.wps.algorithm.FeatureWeightedGridStatisticsAlgorithm</ows:Identifier> if child.tag.endswith('Identifier'): self.identifier = testXMLValue( child ) # <ows:Title xmlns:ows="http://www.opengis.net/ows/1.1">Feature Weighted Grid Statistics</ows:Title> elif child.tag.endswith('Title'): self.title = testXMLValue( child ) # <ows:Abstract xmlns:ows="http://www.opengis.net/ows/1.1">This algorithm generates area weighted statistics of a gridded dataset for a set of vector polygon features. Using the bounding-box that encloses the feature data and the time range, if provided, a subset of the gridded dataset is requested from the remote gridded data server. Polygon representations are generated for cells in the retrieved grid. The polygon grid-cell representations are then projected to the feature data coordinate reference system. The grid-cells are used to calculate per grid-cell feature coverage fractions. Area-weighted statistics are then calculated for each feature using the grid values and fractions as weights. If the gridded dataset has a time range the last step is repeated for each time step within the time range or all time steps if a time range was not supplied.</ows:Abstract> elif child.tag.endswith('Abstract'): self.abstract = testXMLValue( child ) if self.verbose==True: dump(self) # <DataInputs> self.dataInputs = [] for inputElement in elem.findall( 'DataInputs/Input' ): self.dataInputs.append( Input(inputElement) ) if self.verbose==True: dump(self.dataInputs[-1], prefix='\tInput: ') # <ProcessOutputs> self.processOutputs = [] for outputElement in elem.findall( 'ProcessOutputs/Output' ): self.processOutputs.append( Output(outputElement) ) if self.verbose==True: dump(self.processOutputs[-1], prefix='\tOutput: ') class ComplexDataInput(IComplexDataInput, ComplexData): def __init__(self, value, mimeType=None, encoding=None, schema=None): super(ComplexDataInput, self).__init__(mimeType=mimeType, encoding=encoding, schema=schema) self.value = value def getXml(self): if is_reference(self.value): return self.complexDataAsReference() else: return self.complexDataRaw() def complexDataAsReference(self): """ <wps:Reference xlink:href="http://somewhere/test.xml"/> """ refElement = etree.Element(nspath_eval('wps:Reference', namespaces), attrib = { nspath_eval("xlink:href",namespaces) : self.value} ) return refElement def complexDataRaw(self): ''' <wps:Data> <wps:ComplexData mimeType="text/xml" encoding="UTF-8" schema="http://schemas.opengis.net/gml/3.1.1/base/feature.xsd"> </wps:ComplexData> </wps:Data> ''' dataElement = etree.Element(nspath_eval('wps:Data', namespaces)) attrib = dict() if self.encoding: attrib['encoding'] = self.encoding if self.schema: attrib['schema'] = self.schema if self.mimeType: attrib['mimeType'] = self.mimeType complexDataElement = etree.SubElement(dataElement, nspath_eval('wps:ComplexData', namespaces), attrib=attrib ) complexDataElement.text = self.value return dataElement class FeatureCollection(IComplexDataInput): ''' Base class to represent a Feature Collection used as input to a WPS request. The method getXml() is invoked by the WPS execute() method to build the WPS request. All subclasses must implement the getXml() method to provide their specific XML. Implements IComplexDataInput. ''' def __init__(self): pass def getXml(self): raise NotImplementedError class WFSFeatureCollection(FeatureCollection): ''' FeatureCollection specified by a WFS query. All subclasses must implement the getQuery() method to provide the specific query portion of the XML. ''' def __init__(self, wfsUrl, wfsQuery): ''' wfsUrl: the WFS service URL example: wfsUrl = "http://igsarm-cida-gdp2.er.usgs.gov:8082/geoserver/wfs" wfsQuery : a WFS query instance ''' self.url = wfsUrl self.query = wfsQuery # <wps:Reference xlink:href="http://igsarm-cida-gdp2.er.usgs.gov:8082/geoserver/wfs"> # <wps:Body> # <wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" service="WFS" version="1.1.0" outputFormat="text/xml; subtype=gml/3.1.1" xsi:schemaLocation="http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd"> # ....... # </wfs:GetFeature> # </wps:Body> # </wps:Reference> def getXml(self): root = etree.Element(nspath_eval('wps:Reference', namespaces), attrib = { nspath_eval("xlink:href",namespaces) : self.url} ) bodyElement = etree.SubElement(root, nspath_eval('wps:Body', namespaces)) getFeatureElement = etree.SubElement(bodyElement, nspath_eval('wfs:GetFeature', namespaces), attrib = { "service":"WFS", "version":"1.1.0", "outputFormat":"text/xml; subtype=gml/3.1.1", nspath_eval("xsi:schemaLocation",namespaces):"%s %s" % (namespaces['wfs'], '../wfs/1.1.0/WFS.xsd')}) # <wfs:Query typeName="sample:CONUS_States"> # <wfs:PropertyName>the_geom</wfs:PropertyName> # <wfs:PropertyName>STATE</wfs:PropertyName> # <ogc:Filter> # <ogc:GmlObjectId gml:id="CONUS_States.508"/> # </ogc:Filter> # </wfs:Query> getFeatureElement.append( self.query.getXml() ) return root class WFSQuery(IComplexDataInput): ''' Class representing a WFS query, for insertion into a WFSFeatureCollection instance. Implements IComplexDataInput. ''' def __init__(self, typeName, propertyNames=[], filters=[]): self.typeName = typeName self.propertyNames = propertyNames self.filters = filters def getXml(self): # <wfs:Query typeName="sample:CONUS_States"> # <wfs:PropertyName>the_geom</wfs:PropertyName> # <wfs:PropertyName>STATE</wfs:PropertyName> # <ogc:Filter> # <ogc:GmlObjectId gml:id="CONUS_States.508"/> # </ogc:Filter> # </wfs:Query> queryElement = etree.Element(nspath_eval('wfs:Query', namespaces), attrib = { "typeName":self.typeName }) for propertyName in self.propertyNames: propertyNameElement = etree.SubElement(queryElement, nspath_eval('wfs:PropertyName', namespaces)) propertyNameElement.text = propertyName if len(self.filters)>0: filterElement = etree.SubElement(queryElement, nspath_eval('ogc:Filter', namespaces)) for filter in self.filters: gmlObjectIdElement = etree.SubElement(filterElement, nspath_eval('ogc:GmlObjectId', namespaces), attrib={nspath_eval('gml:id', namespaces):filter}) return queryElement class GMLMultiPolygonFeatureCollection(FeatureCollection): ''' Class that represents a FeatureCollection defined as a GML multi-polygon. ''' def __init__(self, polygons): ''' Initializer accepts an array of polygons, where each polygon is an array of (lat,lon) tuples. Example: polygons = [ [(-102.8184, 39.5273), (-102.8184, 37.418), (-101.2363, 37.418), (-101.2363, 39.5273), (-102.8184, 39.5273)], [(-92.8184, 39.5273), (-92.8184, 37.418), (-91.2363, 37.418), (-91.2363, 39.5273), (-92.8184, 39.5273)] ] ''' self.polygons = polygons def getXml(self): ''' <wps:Data> <wps:ComplexData mimeType="text/xml" encoding="UTF-8" schema="http://schemas.opengis.net/gml/3.1.1/base/feature.xsd"> <gml:featureMembers xmlns:ogc="http://www.opengis.net/ogc" xmlns:draw="gov.usgs.cida.gdp.draw" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ows="http://www.opengis.net/ows" xmlns:gml="http://www.opengis.net/gml" xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="gov.usgs.cida.gdp.draw http://cida.usgs.gov/climate/derivative/xsd/draw.xsd"> <gml:box gml:id="box.1"> <gml:the_geom> <gml:MultiPolygon srsDimension="2" srsName="http://www.opengis.net/gml/srs/epsg.xml#4326"> <gml:polygonMember> <gml:Polygon> <gml:exterior> <gml:LinearRing> <gml:posList>-102.8184 39.5273 -102.8184 37.418 -101.2363 37.418 -101.2363 39.5273 -102.8184 39.5273</gml:posList> </gml:LinearRing> </gml:exterior> </gml:Polygon> </gml:polygonMember> </gml:MultiPolygon> </gml:the_geom> <gml:ID>0</gml:ID> </gml:box> </gml:featureMembers> </wps:ComplexData> </wps:Data> ''' dataElement = etree.Element(nspath_eval('wps:Data', namespaces)) complexDataElement = etree.SubElement(dataElement, nspath_eval('wps:ComplexData', namespaces), attrib={"mimeType":"text/xml", "encoding":"UTF-8", "schema":GML_SCHEMA_LOCATION} ) featureMembersElement = etree.SubElement(complexDataElement, nspath_eval('gml:featureMembers', namespaces), attrib={ nspath_eval("xsi:schemaLocation",namespaces):"%s %s" % (DRAW_NAMESPACE, DRAW_SCHEMA_LOCATION)}) boxElement = etree.SubElement(featureMembersElement, nspath_eval('gml:box', namespaces), attrib={ nspath_eval("gml:id",namespaces):"box.1" }) geomElement = etree.SubElement(boxElement, nspath_eval('gml:the_geom', namespaces)) multiPolygonElement = etree.SubElement(geomElement, nspath_eval('gml:MultiPolygon', namespaces), attrib={"srsDimension":"2", "srsName":"http://www.opengis.net/gml/srs/epsg.xml#4326"} ) for polygon in self.polygons: polygonMemberElement = etree.SubElement(multiPolygonElement, nspath_eval('gml:polygonMember', namespaces)) polygonElement = etree.SubElement(polygonMemberElement, nspath_eval('gml:Polygon', namespaces)) exteriorElement = etree.SubElement(polygonElement, nspath_eval('gml:exterior', namespaces)) linearRingElement = etree.SubElement(exteriorElement, nspath_eval('gml:LinearRing', namespaces)) posListElement = etree.SubElement(linearRingElement, nspath_eval('gml:posList', namespaces)) posListElement.text = ' '.join(["%s %s" % (x, y) for x, y in polygon[:] ]) idElement = etree.SubElement(boxElement, nspath_eval('gml:ID', namespaces)) idElement.text = "0" return dataElement def monitorExecution(execution, sleepSecs=3, download=False, filepath=None): ''' Convenience method to monitor the status of a WPS execution till it completes (succesfully or not), and write the output to file after a succesfull job completion. execution: WPSExecution instance sleepSecs: number of seconds to sleep in between check status invocations download: True to download the output when the process terminates, False otherwise filepath: optional path to output file (if downloaded=True), otherwise filepath will be inferred from response document ''' while execution.isComplete()==False: execution.checkStatus(sleepSecs=sleepSecs) log.info('Execution status: %s' % execution.status) if execution.isSucceded(): if download: execution.getOutput(filepath=filepath) else: for output in execution.processOutputs: if output.reference is not None: log.info('Output URL=%s' % output.reference) else: for ex in execution.errors: log.error('Error: code=%s, locator=%s, text=%s' % (ex.code, ex.locator, ex.text)) def printValue(value): ''' Utility method to format a value for printing. ''' # ComplexData type if isinstance(value, ComplexData): return "mimeType=%s, encoding=%s, schema=%s" % (value.mimeType, value.encoding, value.schema) # other type else: return value def printInputOutput(value, indent=''): ''' Utility method to inspect an input/output element. ''' # InputOutput fields print('%s identifier=%s, title=%s, abstract=%s, data type=%s' % (indent, value.identifier, value.title, value.abstract, value.dataType)) for val in value.allowedValues: print('%s Allowed Value: %s' % (indent, printValue(val))) if value.anyValue: print(' Any value allowed') for val in value.supportedValues: print('%s Supported Value: %s' % (indent, printValue(val))) print('%s Default Value: %s ' % (indent, printValue(value.defaultValue))) # Input fields if isinstance(value, Input): print('%s minOccurs=%d, maxOccurs=%d' % (indent, value.minOccurs, value.maxOccurs)) # Output fields if isinstance(value, Output): print('%s reference=%s, mimeType=%s' % (indent, value.reference, value.mimeType)) for datum in value.data: print('%s Data Value: %s' % (indent, printValue(datum)))
the-stack_106_20322
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This file is subject to the terms and conditions defined in # file 'LICENSE.md', which is part of this source code package. # from kubernetes_py.utils import is_valid_string class SubresourceReference(object): """ https://kubernetes.io/docs/api-reference/extensions/v1beta1/definitions/#_v1beta1_subresourcereference """ def __init__(self, model=None): super(SubresourceReference, self).__init__() self._kind = None self._name = None self._api_version = None self._subresource = None if model is not None: self._build_with_model(model) def _build_with_model(self, model=None): if "kind" in model: self.kind = model["kind"] if "name" in model: self.name = model["name"] if "apiVersion" in model: self.api_version = model["apiVersion"] if "subresource" in model: self.subresource = model["subresource"] # ------------------------------------------------------------------------------------- kind @property def kind(self): return self._kind @kind.setter def kind(self, k=None): if not is_valid_string(k): raise SyntaxError("SubresourceReference: kind: [ {} ] is invalid.".format(k)) self._kind = k # ------------------------------------------------------------------------------------- name @property def name(self): return self._name @name.setter def name(self, n=None): if not is_valid_string(n): raise SyntaxError("SubresourceReference: name: [ {} ] is invalid.".format(n)) self._name = n # ------------------------------------------------------------------------------------- apiVersion @property def api_version(self): return self._api_version @api_version.setter def api_version(self, v=None): if not is_valid_string(v): raise SyntaxError("SubresourceReference: api_version: [ {} ] is invalid.".format(v)) self._api_version = v # ------------------------------------------------------------------------------------- subresource @property def subresource(self): return self._subresource @subresource.setter def subresource(self, s=None): if not is_valid_string(s): raise SyntaxError("SubresourceReference: subresource: [ {} ] is invalid.".format(s)) self._subresource = s # ------------------------------------------------------------------------------------- serialize def serialize(self): data = {} if self.kind is not None: data["kind"] = self.kind if self.name is not None: data["name"] = self.name if self.api_version is not None: data["apiVersion"] = self.api_version if self.subresource is not None: data["subresource"] = self.subresource return data
the-stack_106_20324
import matplotlib.pyplot as plt import numpy as np def show_inline(image, title=''): f, ax = plt.subplots(1, 1, figsize=(10,10)) ax.grid(False) ax.set_xticks([]) ax.set_yticks([]) ax.imshow(image) ax.set_title(title) plt.show() def get_patches(out, k, patch_size=36, random=False): image = out['image'] graph = out['graph'] if random: importance_scores = np.random.uniform(size=out['importance_scores'].size) else: importance_scores = out['importance_scores'] image = np.pad(image, ((patch_size, patch_size), (patch_size, patch_size), (0, 0)), mode="constant", constant_values=255) important_indices = (-importance_scores).argsort()[:k] important_centroids = graph.ndata['centroid'][important_indices, :].cpu().numpy().astype(int) patches = [] for i in range(k): x, y = important_centroids[i] + patch_size patch = image[y - int(patch_size / 2): y + int(patch_size / 2), x - int(patch_size / 2): x + int(patch_size / 2), :] patches.append(patch) return patches def plot_patches(patches, ncol=5, patch_size=36): nrow = len(patches) // ncol patches = np.stack(patches, axis=0) patches = np.reshape(patches, newshape=(nrow, ncol, patch_size, patch_size, 3)) for i in range(nrow): for j in range(ncol): if j == 0: grid_ = patches[i, j] else: grid_ = np.hstack((grid_, patches[i, j])) if i == 0: grid = grid_ else: grid = np.vstack((grid, grid_)) show_inline(grid)
the-stack_106_20325
#!/usr/bin/env python3 import sqlite3 import sys from typing import List from time import time from clvm_rs import run_generator from clvm import KEYWORD_FROM_ATOM, KEYWORD_TO_ATOM from clvm.casts import int_from_bytes from clvm.operators import OP_REWRITE from chia.types.full_block import FullBlock from chia.types.blockchain_format.program import Program from chia.consensus.default_constants import DEFAULT_CONSTANTS from chia.wallet.puzzles.rom_bootstrap_generator import get_generator from chia.types.condition_opcodes import ConditionOpcode GENERATOR_ROM = bytes(get_generator()) native_opcode_names_by_opcode = dict( ("op_%s" % OP_REWRITE.get(k, k), op) for op, k in KEYWORD_FROM_ATOM.items() if k not in "qa." ) def run_gen(env_data: bytes, block_program_args: bytes): max_cost = DEFAULT_CONSTANTS.MAX_BLOCK_COST_CLVM cost_per_byte = DEFAULT_CONSTANTS.COST_PER_BYTE # we don't charge for the size of the generator ROM. However, we do charge # cost for the operations it executes max_cost -= len(env_data) * cost_per_byte env_data = b"\xff" + env_data + b"\xff" + block_program_args + b"\x80" try: return run_generator( GENERATOR_ROM, env_data, KEYWORD_TO_ATOM["q"][0], KEYWORD_TO_ATOM["a"][0], native_opcode_names_by_opcode, max_cost, 0, ) except Exception as e: # GENERATOR_RUNTIME_ERROR print(f"Exception: {e}") return (117, [], None) cond_map = { ConditionOpcode.AGG_SIG_UNSAFE[0]: 0, ConditionOpcode.AGG_SIG_ME[0]: 1, ConditionOpcode.CREATE_COIN[0]: 2, ConditionOpcode.RESERVE_FEE[0]: 3, ConditionOpcode.CREATE_COIN_ANNOUNCEMENT[0]: 4, ConditionOpcode.ASSERT_COIN_ANNOUNCEMENT[0]: 5, ConditionOpcode.CREATE_PUZZLE_ANNOUNCEMENT[0]: 6, ConditionOpcode.ASSERT_PUZZLE_ANNOUNCEMENT[0]: 7, ConditionOpcode.ASSERT_MY_COIN_ID[0]: 8, ConditionOpcode.ASSERT_MY_PARENT_ID[0]: 9, ConditionOpcode.ASSERT_MY_PUZZLEHASH[0]: 10, ConditionOpcode.ASSERT_MY_AMOUNT[0]: 11, ConditionOpcode.ASSERT_SECONDS_RELATIVE[0]: 12, ConditionOpcode.ASSERT_SECONDS_ABSOLUTE[0]: 13, ConditionOpcode.ASSERT_HEIGHT_RELATIVE[0]: 14, ConditionOpcode.ASSERT_HEIGHT_ABSOLUTE[0]: 15, } c = sqlite3.connect(sys.argv[1]) rows = c.execute("SELECT header_hash, height, block FROM full_blocks ORDER BY height") height_to_hash: List[bytes] = [] for r in rows: hh = bytes.fromhex(r[0]) height = r[1] block = FullBlock.from_bytes(r[2]) if len(height_to_hash) <= height: assert len(height_to_hash) == height height_to_hash.append(hh) else: height_to_hash[height] = hh if height > 0: prev_hh = block.prev_header_hash h = height - 1 while height_to_hash[h] != prev_hh: height_to_hash[h] = prev_hh ref = c.execute("SELECT block FROM full_blocks WHERE header_hash=?", (prev_hh.hex(),)) ref_block = FullBlock.from_bytes(ref.fetchone()[0]) prev_hh = ref_block.prev_header_hash h -= 1 if h < 0: break if block.transactions_generator is None: continue # add the block program arguments block_program_args = bytearray(b"\xff") num_refs = 0 for h in block.transactions_generator_ref_list: ref = c.execute("SELECT block FROM full_blocks WHERE header_hash=?", (height_to_hash[h].hex(),)) ref_block = FullBlock.from_bytes(ref.fetchone()[0]) block_program_args += b"\xff" block_program_args += Program.to(bytes(ref_block.transactions_generator)).as_bin() num_refs += 1 ref.close() block_program_args += b"\x80\x80" start_time = time() err, result, cost = run_gen(bytes(block.transactions_generator), bytes(block_program_args)) run_time = time() - start_time if err is not None: print(f"ERROR: {hh.hex()} {height} {err}") break num_removals = 0 fees = 0 conditions = [0] * 16 for res in result: num_removals += 1 for cond in res.conditions: for cwa in cond[1]: if cwa.opcode == ConditionOpcode.RESERVE_FEE[0]: fees += int_from_bytes(cwa.vars[0]) conditions[cond_map[cwa.opcode]] += 1 print( f"{hh.hex()}\t{height}\t{cost}\t{run_time:0.3f}\t{num_refs}\t{fees}\t" f"{len(bytes(block.transactions_generator))}\t" f"{num_removals}\t" + "\t".join([f"{cond}" for cond in conditions]) )
the-stack_106_20326
#!/usr/bin/env python3 """ logplot.py Usage: logplot.py [options] [-e=<regex>...] [<filename>...] logplot.py -h | --help logplot.py --version Options: -h --help Show this screen. --version Show version. -e=<regex> Pattern to match in file. -d, --dateformat=<dateformat> Date format in strptime format. -i, --interval=<interval>[m|h|d] Sample interval in seconds with optional suffix to denote minutes, hours, or days. -o, --output=<filename> Output filename [default: logplot.html]. -t, --title=<title> Title for plot [default: Events over Time]. """ from collections import Counter, defaultdict, deque from fileinput import FileInput import re import sys from docopt import docopt import timeplots def get_timestamp(logtime, text): try: timestamp = logtime.strptime(text) except ValueError as e: print(repr(e), file=sys.stderr) else: print(">>>", timestamp, end="\r", flush=True) return timestamp def match_all(logtime, lines): for line in lines: yield get_timestamp(logtime, line) def match_regex(logtime, lines, expressions): expressions = [(exp, re.compile(exp)) for exp in expressions] for line in lines: for expression, regex in expressions: if regex.search(line): yield expression, get_timestamp(logtime, line) def get_interval(interval): if not interval: return "events", {} interval = f"{interval}s" if interval.isnumeric() else interval value, units = interval[:-1], interval[-1] units = {"s": "seconds", "m": "minutes", "h": "hours", "d": "days"}.get(units) if not units or not value.isnumeric(): raise ValueError("Invalid interval specified.") units, interval = f"events every {value} {units}", {units: int(value)} if value == "1": units = units[:-1] return units, interval def main(): args = docopt(__doc__) expressions = args.get("-e") title = args.get("--title") output_filename = args.get("--output") units, interval = get_interval(args.get("--interval")) lines = (line for line in FileInput(args.get("<filename>"))) logtime = timeplots.TimeParser(date_format=args.get("<dateformat>"), **interval) plotter = timeplots.Plotter(width=1400) plotter.new_plot(title=title, units=units) if expressions: # Prefer creating buckets over defaultdict: # - Predefined buckets assign colors based on order of command line args. # - With defaultdict, colors are assigned based on order in logs. buckets = {exp: deque() for exp in expressions} for expression, timestamp in match_regex(logtime, lines, expressions): buckets[expression].append(timestamp) for expression, times in buckets.items(): c = Counter(times) times, data = zip(*sorted(c.items())) times, data = zip(*timeplots.missing_time_data(times, data)) plotter.add_line(expression, times, data) else: c = Counter(match_all(logtime, lines)) times, data = zip(*sorted(c.items())) times, data = zip(*timeplots.missing_time_data(times, data)) plotter.add_line("values", times, data) print(f"Saving to file: '{output_filename}'") plotter.render(filename=output_filename, title=title) if __name__ == "__main__": sys.exit(main())
the-stack_106_20327
from collections import OrderedDict import copy import getpass import itertools import numpy as np from scipy import signal import time LOCAL_MODE = getpass.getuser() == 'tom' CONFIG = { 'halite_config_setting_divisor': 1.0, 'collect_smoothed_multiplier': 0.0, 'collect_actual_multiplier': 5.0, 'collect_less_halite_ships_multiplier_base': 0.55, 'collect_base_nearest_distance_exponent': 0.2, 'return_base_multiplier': 8.0, 'return_base_less_halite_ships_multiplier_base': 0.85, 'early_game_return_base_additional_multiplier': 0.1, 'early_game_return_boost_step': 50, 'establish_base_smoothed_multiplier': 0.0, 'establish_first_base_smoothed_multiplier_correction': 2.0, 'establish_base_dm_exponent': 1.1, 'first_base_no_4_way_camping_spot_bonus': 300*0, 'start_camp_if_not_winning': 0, 'max_camper_ship_budget': 2*1, 'relative_step_start_camping': 0.15, 'establish_base_deposit_multiplier': 1.0, 'establish_base_less_halite_ships_multiplier_base': 1.0, 'max_attackers_per_base': 3*1, 'attack_base_multiplier': 300.0, 'attack_base_less_halite_ships_multiplier_base': 0.9, 'attack_base_halite_sum_multiplier': 2.0, 'attack_base_run_opponent_multiplier': 1.0, 'attack_base_catch_opponent_multiplier': 1.0, 'collect_run_opponent_multiplier': 10.0, 'return_base_run_opponent_multiplier': 2.5, 'establish_base_run_opponent_multiplier': 2.5, 'collect_catch_opponent_multiplier': 1.0, 'return_base_catch_opponent_multiplier': 1.0, 'establish_base_catch_opponent_multiplier': 0.5, 'two_step_avoid_boxed_opponent_multiplier_base': 0.7, 'n_step_avoid_boxed_opponent_multiplier_base': 0.45, 'min_consecutive_chase_extrapolate': 6, 'chase_return_base_exponential_bonus': 2.0, 'ignore_catch_prob': 0.3, 'max_initial_ships': 60, 'max_final_ships': 60, 'max_standard_ships_decided_end_pack_hunting': 2, 'nearby_ship_halite_spawn_constant': 3.0, 'nearby_halite_spawn_constant': 5.0, 'remaining_budget_spawn_constant': 0.2, 'spawn_score_threshold': 75.0, 'boxed_in_halite_convert_divisor': 1.0, 'n_step_avoid_min_die_prob_cutoff': 0.05, 'n_step_avoid_window_size': 7, 'influence_map_base_weight': 2.0, 'influence_map_min_ship_weight': 0.0, 'influence_weights_additional_multiplier': 2.0, 'influence_weights_exponent': 8.0, 'escape_influence_prob_divisor': 3.0, 'rescue_ships_in_trouble': 1, 'target_strategic_base_distance': 8.0, 'target_strategic_num_bases_ship_divisor': 9, 'target_strategic_triangle_weight': 20.0, # initially: 20 'target_strategic_independent_base_distance_multiplier': 8.0, # initially 8.0 'target_strategic_influence_desirability_multiplier': 1.0, # initially: 1.0 'target_strategic_potential_divisor': 15.0, # initially: 15.0 'max_spawn_relative_step_divisor': 12.0, 'no_spawn_near_base_ship_limit': 100, 'avoid_cycles': 1, 'max_risk_n_step_risky': 0.5, 'max_steps_n_step_risky': 70, 'log_near_base_distance': 2, 'max_recent_considered_relevant_zero_move_count': 120, 'near_base_2_step_risky_min_count': 50, 'relative_stand_still_collect_boost': 1.5, 'initial_collect_boost_away_from_base': 2.0, 'start_hunting_season_relative_step': 0.1875, 'end_hunting_season_relative_step': 0.75, 'early_hunting_season_less_collect_relative_step': 0.375, 'max_standard_ships_early_hunting_season': 2, 'late_hunting_season_more_collect_relative_step': 0.5, 'late_hunting_season_collect_max_n_step_risk': 0.2, 'after_hunting_season_collect_max_n_step_risk': 0.5, 'late_hunting_season_standard_min_fraction': 0.7, 'max_standard_ships_late_hunting_season': 15, 'collect_on_safe_return_relative_step': 0.075, 'min_halite_to_stop_early_hunt': 15000.0, 'early_best_opponent_relative_step': 0.5, 'surrounding_ships_cycle_extrapolate_step_count': 5, 'surrounding_ships_extended_cycle_extrapolate_step_count': 7, } NORTH = "NORTH" SOUTH = "SOUTH" EAST = "EAST" WEST = "WEST" CONVERT = "CONVERT" SPAWN = "SPAWN" NOT_NONE_DIRECTIONS = [NORTH, SOUTH, EAST, WEST] MOVE_DIRECTIONS = [None, NORTH, SOUTH, EAST, WEST] MOVE_DIRECTIONS_TO_ID = {None: 0, NORTH: 1, SOUTH: 2, EAST: 3, WEST: 4} RELATIVE_DIR_MAPPING = {None: (0, 0), NORTH: (-1, 0), SOUTH: (1, 0), EAST: (0, 1), WEST: (0, -1)} RELATIVE_DIR_TO_DIRECTION_MAPPING = { v: k for k, v in RELATIVE_DIR_MAPPING.items()} OPPOSITE_MAPPING = {None: None, NORTH: SOUTH, SOUTH: NORTH, EAST: WEST, WEST: EAST} RELATIVE_DIRECTIONS = [(-1, 0), (1, 0), (0, -1), (0, 1), (0, 0)] RELATIVE_NOT_NONE_DIRECTIONS = [(-1, 0), (1, 0), (0, -1), (0, 1)] MOVE_GATHER_OPTIONS = [(-1, 0, False), (1, 0, False), (0, -1, False), (0, 1, False), (0, 0, True)] TWO_STEP_THREAT_DIRECTIONS = { (-2, 0): [(-1, 0)], (-1, -1): [(-1, 0), (0, -1)], (-1, 0): [(-1, 0), (0, 0)], (-1, 1): [(-1, 0), (0, 1)], (0, -2): [(0, -1)], (0, -1): [(0, -1), (0, 0)], (0, 1): [(0, 1), (0, 0)], (0, 2): [(0, 1)], (1, -1): [(1, 0), (0, -1)], (1, 0): [(1, 0), (0, 0)], (1, 1): [(1, 0),(0, 1)], (2, 0): [(1, 0)], } GAUSSIAN_2D_KERNELS = {} for dim in range(3, 20, 2): # Modified from https://scipy-lectures.org/intro/scipy/auto_examples/solutions/plot_image_blur.html center_distance = np.floor(np.abs(np.arange(dim) - (dim-1)/2)) horiz_distance = np.tile(center_distance, [dim, 1]) vert_distance = np.tile(np.expand_dims(center_distance, 1), [1, dim]) manh_distance = horiz_distance + vert_distance kernel = np.exp(-manh_distance/(dim/4)) kernel[manh_distance > dim/2] = 0 GAUSSIAN_2D_KERNELS[dim] = kernel DISTANCES = {} DISTANCE_MASKS = {} HALF_PLANES_CATCH = {} HALF_PLANES_RUN = {} ROW_COL_DISTANCE_MASKS = {} ROW_COL_MAX_DISTANCE_MASKS = {} ROW_COL_BOX_MAX_DISTANCE_MASKS = {} ROW_COL_BOX_DIR_MAX_DISTANCE_MASKS = {} BOX_DIR_MAX_DISTANCE = 4 BOX_DIRECTION_MASKS = {} ROW_MASK = {} COLUMN_MASK = {} DISTANCE_MASK_DIM = 21 half_distance_mask_dim = int(DISTANCE_MASK_DIM/2) for row in range(DISTANCE_MASK_DIM): row_mask = np.zeros((DISTANCE_MASK_DIM, DISTANCE_MASK_DIM), dtype=np.bool) row_mask[row] = 1 col_mask = np.zeros((DISTANCE_MASK_DIM, DISTANCE_MASK_DIM), dtype=np.bool) col_mask[:, row] = 1 ROW_MASK [row] = row_mask COLUMN_MASK[row] = col_mask for col in range(DISTANCE_MASK_DIM): horiz_distance = np.minimum( np.abs(np.arange(DISTANCE_MASK_DIM) - col), np.abs(np.arange(DISTANCE_MASK_DIM) - col - DISTANCE_MASK_DIM)) horiz_distance = np.minimum( horiz_distance, np.abs(np.arange(DISTANCE_MASK_DIM) - col + DISTANCE_MASK_DIM)) vert_distance = np.minimum( np.abs(np.arange(DISTANCE_MASK_DIM) - row), np.abs(np.arange(DISTANCE_MASK_DIM) - row - DISTANCE_MASK_DIM)) vert_distance = np.minimum( vert_distance, np.abs(np.arange(DISTANCE_MASK_DIM) - row + DISTANCE_MASK_DIM)) horiz_distance = np.tile(horiz_distance, [DISTANCE_MASK_DIM, 1]) vert_distance = np.tile(np.expand_dims(vert_distance, 1), [1, DISTANCE_MASK_DIM]) manh_distance = horiz_distance + vert_distance kernel = np.exp(-manh_distance/(DISTANCE_MASK_DIM/4)) DISTANCE_MASKS[(row, col)] = kernel DISTANCES[(row, col)] = manh_distance catch_distance_masks = {} run_distance_masks = {} for d in MOVE_DIRECTIONS: if d is None: catch_rows = np.array([]).astype(np.int) catch_cols = np.array([]).astype(np.int) if d == NORTH: catch_rows = np.mod(row - np.arange(half_distance_mask_dim) - 1, DISTANCE_MASK_DIM) catch_cols = np.arange(DISTANCE_MASK_DIM) box_dir_rows = np.mod(row + np.arange(BOX_DIR_MAX_DISTANCE) + 1, DISTANCE_MASK_DIM) box_dir_cols = np.mod(col + np.arange( 2*(BOX_DIR_MAX_DISTANCE+1)-1) - BOX_DIR_MAX_DISTANCE, DISTANCE_MASK_DIM) if d == SOUTH: catch_rows = np.mod(row + np.arange(half_distance_mask_dim) + 1, DISTANCE_MASK_DIM) catch_cols = np.arange(DISTANCE_MASK_DIM) box_dir_rows = np.mod(row - np.arange(BOX_DIR_MAX_DISTANCE) - 1, DISTANCE_MASK_DIM) box_dir_cols = np.mod(col + np.arange( 2*(BOX_DIR_MAX_DISTANCE+1)-1) - BOX_DIR_MAX_DISTANCE, DISTANCE_MASK_DIM) if d == WEST: catch_cols = np.mod(col - np.arange(half_distance_mask_dim) - 1, DISTANCE_MASK_DIM) catch_rows = np.arange(DISTANCE_MASK_DIM) box_dir_cols = np.mod(col + np.arange(BOX_DIR_MAX_DISTANCE) + 1, DISTANCE_MASK_DIM) box_dir_rows = np.mod(row + np.arange( 2*(BOX_DIR_MAX_DISTANCE+1)-1) - BOX_DIR_MAX_DISTANCE, DISTANCE_MASK_DIM) if d == EAST: catch_cols = np.mod(col + np.arange(half_distance_mask_dim) + 1, DISTANCE_MASK_DIM) catch_rows = np.arange(DISTANCE_MASK_DIM) box_dir_cols = np.mod(col - np.arange(BOX_DIR_MAX_DISTANCE) - 1, DISTANCE_MASK_DIM) box_dir_rows = np.mod(row + np.arange( 2*(BOX_DIR_MAX_DISTANCE+1)-1) - BOX_DIR_MAX_DISTANCE, DISTANCE_MASK_DIM) catch_mask = np.zeros((DISTANCE_MASK_DIM, DISTANCE_MASK_DIM), dtype=np.bool) catch_mask[catch_rows[:, None], catch_cols] = 1 run_mask = np.copy(catch_mask) run_mask[row, col] = 1 catch_distance_masks[d] = catch_mask run_distance_masks[d] = run_mask if d is not None: box_dir_mask = np.zeros((DISTANCE_MASK_DIM, DISTANCE_MASK_DIM), dtype=np.bool) box_dir_mask[box_dir_rows[:, None], box_dir_cols] = 1 if d in [NORTH, SOUTH]: box_dir_mask &= (horiz_distance <= vert_distance) else: box_dir_mask &= (horiz_distance >= vert_distance) ROW_COL_BOX_DIR_MAX_DISTANCE_MASKS[(row, col, d)] = box_dir_mask HALF_PLANES_CATCH[(row, col)] = catch_distance_masks HALF_PLANES_RUN[(row, col)] = run_distance_masks for d in range(1, DISTANCE_MASK_DIM): ROW_COL_DISTANCE_MASKS[(row, col, d)] = manh_distance == d for d in range(half_distance_mask_dim): ROW_COL_MAX_DISTANCE_MASKS[(row, col, d)] = manh_distance <= d ROW_COL_BOX_MAX_DISTANCE_MASKS[(row, col, d)] = np.logical_and( horiz_distance <= d, vert_distance <= d) for dist in range(2, half_distance_mask_dim+1): dist_mask_dim = dist*2+1 row_pos = np.tile(np.expand_dims(np.arange(dist_mask_dim), 1), [1, dist_mask_dim]) col_pos = np.tile(np.arange(dist_mask_dim), [dist_mask_dim, 1]) for direction in NOT_NONE_DIRECTIONS: if direction == NORTH: box_mask = (row_pos < dist) & ( np.abs(col_pos-dist) <= (dist-row_pos)) if direction == SOUTH: box_mask = (row_pos > dist) & ( np.abs(col_pos-dist) <= (row_pos-dist)) if direction == WEST: box_mask = (col_pos < dist) & ( np.abs(row_pos-dist) <= (dist-col_pos)) if direction == EAST: box_mask = (col_pos > dist) & ( np.abs(row_pos-dist) <= (col_pos-dist)) BOX_DIRECTION_MASKS[(dist, direction)] = box_mask CONSIDERED_OTHER_DISTANCES = [13] OTHER_DISTANCES = {} for other_distance in CONSIDERED_OTHER_DISTANCES: for row in range(other_distance): for col in range(other_distance): horiz_distance = np.minimum( np.abs(np.arange(other_distance) - col), np.abs(np.arange(other_distance) - col - other_distance)) horiz_distance = np.minimum( horiz_distance, np.abs(np.arange(other_distance) - col + other_distance)) vert_distance = np.minimum( np.abs(np.arange(other_distance) - row), np.abs(np.arange(other_distance) - row - other_distance)) vert_distance = np.minimum( vert_distance, np.abs(np.arange(other_distance) - row + other_distance)) horiz_distance = np.tile(horiz_distance, [other_distance, 1]) vert_distance = np.tile(np.expand_dims(vert_distance, 1), [1, other_distance]) manh_distance = horiz_distance + vert_distance OTHER_DISTANCES[(row, col, other_distance)] = manh_distance D2_ROW_COL_SHIFTS_DISTANCES = [ (-2, 0, 2), (-1, -1, 2), (-1, 0, 1), (-1, 1, 2), (0, -2, 2), (0, -1, 1), (0, 1, 1), (0, 2, 2), (1, -1, 2), (1, 0, 1), (1, 1, 2), (2, 0, 2), ] def row_col_from_square_grid_pos(pos, size): col = pos % size row = pos // size return row, col def move_ship_row_col(row, col, direction, size): if direction == "NORTH": return (size-1 if row == 0 else row-1, col) elif direction == "SOUTH": return (row+1 if row < (size-1) else 0, col) elif direction == "EAST": return (row, col+1 if col < (size-1) else 0) elif direction == "WEST": return (row, size-1 if col == 0 else col-1) elif direction is None: return (row, col) def get_directional_distance(r1, c1, r2, c2, size, d): relative_pos = get_relative_position(r1, c1, r2, c2, size) if d == NORTH: directional_distance = -relative_pos[0] elif d == SOUTH: directional_distance = relative_pos[0] elif d == EAST: directional_distance = relative_pos[1] elif d == WEST: directional_distance = -relative_pos[1] return directional_distance def mirror_edges(observation, num_mirror_dim): if num_mirror_dim > 0: # observation = np.arange(225).reshape((15,15)) # Debugging test assert len(observation.shape) == 2 grid_size = observation.shape[0] new_grid_size = grid_size + 2*num_mirror_dim mirrored_obs = np.full((new_grid_size, new_grid_size), np.nan) # Fill in the original data mirrored_obs[num_mirror_dim:(-num_mirror_dim), num_mirror_dim:(-num_mirror_dim)] = observation # Add top and bottom mirrored data mirrored_obs[:num_mirror_dim, num_mirror_dim:( -num_mirror_dim)] = observation[-num_mirror_dim:, :] mirrored_obs[-num_mirror_dim:, num_mirror_dim:( -num_mirror_dim)] = observation[:num_mirror_dim, :] # Add left and right mirrored data mirrored_obs[:, :num_mirror_dim] = mirrored_obs[ :, -(2*num_mirror_dim):(-num_mirror_dim)] mirrored_obs[:, -num_mirror_dim:] = mirrored_obs[ :, num_mirror_dim:(2*num_mirror_dim)] observation = mirrored_obs return observation def smooth2d(grid, smooth_kernel_dim=7, return_kernel=False): edge_augmented = mirror_edges(grid, smooth_kernel_dim-1) kernel = GAUSSIAN_2D_KERNELS[int(2*smooth_kernel_dim-1)] convolved = signal.convolve2d(edge_augmented, kernel, mode="valid") if return_kernel: return convolved, kernel else: return convolved def get_relative_position(row, col, other_row, other_col, size): if row >= other_row: if (other_row + size - row) < (row - other_row): row_diff = (other_row + size - row) else: row_diff = -(row - other_row) else: if (row + size - other_row) < (other_row - row): row_diff = -(row + size - other_row) else: row_diff = other_row - row if col >= other_col: if (other_col + size - col) < (col - other_col): col_diff = (other_col + size - col) else: col_diff = -(col - other_col) else: if (col + size - other_col) < (other_col - col): col_diff = -(col + size - other_col) else: col_diff = other_col - col return (row_diff, col_diff) def update_scores_opponent_ships( config, collect_grid_scores, return_to_base_scores, establish_base_scores, attack_base_scores, opponent_ships, opponent_bases, halite_ships, row, col, grid_size, spawn_cost, drop_None_valid, obs_halite, collect_rate, np_rng, opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, ignore_bad_attack_directions, observation, ship_k, my_bases, my_ships, steps_remaining, history, escape_influence_probs, player_ids, env_obs_ids, env_observation, main_base_distances, nearest_base_distances, end_game_base_return, camping_override_strategy, attack_campers_override_strategy, boxed_in_attack_squares, safe_to_collect, boxed_in_zero_halite_opponents, ignore_convert_positions, avoid_attack_squares_zero_halite, n_step_avoid_min_die_prob_cutoff, safe_to_return_halites, safe_to_return_base_halites, my_nearest_base_distances): direction_halite_diff_distance_raw = { NORTH: [], SOUTH: [], EAST: [], WEST: []} my_bases_or_ships = np.logical_or(my_bases, my_ships) chase_details = history['chase_counter'][0].get(ship_k, None) take_my_square_next_halite_diff = None take_my_next_square_dir = None wide_cycle_mask = ROW_COL_MAX_DISTANCE_MASKS[row, col, 3] tight_cycle_mask = ROW_COL_MAX_DISTANCE_MASKS[row, col, 2] opponents_in_cycle = np.any(opponent_ships[tight_cycle_mask]) and ( np.all(history['empty_or_cycled_positions'][wide_cycle_mask]) or ( np.all(history['empty_or_extended_cycled_positions'][tight_cycle_mask]))) if opponents_in_cycle: print("EXTRAPOLATING OPPONENT CYCLIC BEHAVIOR", observation['step'], row, col) if len(camping_override_strategy) == 0: navigation_zero_halite_risk_threshold = 0 else: navigation_zero_halite_risk_threshold = camping_override_strategy[0] if camping_override_strategy[1].max() >= 1e4: collect_grid_scores = 1e-4*collect_grid_scores + ( camping_override_strategy[1]) else: collect_grid_scores += camping_override_strategy[1] attack_base_scores += camping_override_strategy[2] if len(attack_campers_override_strategy) > 0: ignore_opponent_row = attack_campers_override_strategy[0] ignore_opponent_col = attack_campers_override_strategy[1] ignore_opponent_distance = attack_campers_override_strategy[5] collect_grid_scores[ignore_opponent_row, ignore_opponent_col] += ( attack_campers_override_strategy[2]) navigation_zero_halite_risk_threshold = max( navigation_zero_halite_risk_threshold, attack_campers_override_strategy[6]) else: ignore_opponent_row = None ignore_opponent_col = None ignore_opponent_distance = None # Identify directions where I can certainly reach the base in time and always # mark them as valid ship_halite = halite_ships[row, col] safe_return_base_directions = [] if ship_halite < safe_to_return_halites[row, col]: for base_safe_return_halite, base_location in safe_to_return_base_halites: if ship_halite < base_safe_return_halite[row, col]: for d in get_dir_from_target( row, col, base_location[0], base_location[1], grid_size): if not d is None and not d in safe_return_base_directions: safe_return_base_directions.append(d) # if observation['step'] == 131 and ship_k in ['63-1']: # import pdb; pdb.set_trace() can_stay_still_zero_halite = True for row_shift, col_shift, distance in D2_ROW_COL_SHIFTS_DISTANCES: considered_row = (row + row_shift) % grid_size considered_col = (col + col_shift) % grid_size if opponent_ships[considered_row, considered_col] and ( ignore_opponent_row is None or ((( considered_row != ignore_opponent_row) or ( considered_col != ignore_opponent_col)) and ( ignore_opponent_distance > 2))): relevant_dirs = [] halite_diff = halite_ships[row, col] - halite_ships[ considered_row, considered_col] assume_take_my_square_next = False # if observation['step'] == 266 and row == 11 and col == 15: # import pdb; pdb.set_trace() # Extrapolate the opponent behavior if we have been chased for a # while and chasing is likely to continue if distance == 1 and chase_details is not None and ( chase_details[1] >= config[ 'min_consecutive_chase_extrapolate']) and ( considered_row, considered_col) == ( chase_details[4], chase_details[5]): chaser_row = chase_details[4] chaser_col = chase_details[5] to_opponent_dir = get_dir_from_target( row, col, chaser_row, chaser_col, grid_size)[0] opp_to_me_dir = OPPOSITE_MAPPING[to_opponent_dir] rel_opp_to_me_dir = RELATIVE_DIR_MAPPING[opp_to_me_dir] opp_can_move_to_me = rel_opp_to_me_dir in ( opponent_ships_sensible_actions_no_risk[chaser_row, chaser_col]) # There is a unique opponent id with the least amount of halite # on the chaser square or the chaser has at least one friendly # ship that can replace it chaser_can_replace = None chaser_is_chased_by_not_me = None if opp_can_move_to_me: chaser_id = player_ids[chaser_row, chaser_col] near_chaser = ROW_COL_MAX_DISTANCE_MASKS[ chaser_row, chaser_col, 1] near_halite = halite_ships[near_chaser] near_chaser_friendly_halite = near_halite[ (near_halite >= 0) & (player_ids[near_chaser] == chaser_id)] min_non_chaser_halite = near_halite[ (near_halite >= 0) & ( player_ids[near_chaser] != chaser_id)].min() min_near_chaser_halite = near_halite[near_halite >= 0].min() opponent_min_hal_ids = player_ids[np.logical_and( near_chaser, halite_ships == min_near_chaser_halite)] near_me = ROW_COL_MAX_DISTANCE_MASKS[row, col, 1] near_me_threat_players = player_ids[np.logical_and( near_me, (halite_ships >= 0) & ( halite_ships < halite_ships[row, col]))] double_opp_chase = (near_me_threat_players.size > 1) and ( np.all(near_me_threat_players == chaser_id)) chaser_can_replace = ((opponent_min_hal_ids.size > 1) and ( np.all(opponent_min_hal_ids == chaser_id) or ( (opponent_min_hal_ids == chaser_id).sum() > 1)) or ( (near_chaser_friendly_halite <= ( min_non_chaser_halite)).sum() > 1)) or double_opp_chase if opp_can_move_to_me and not chaser_can_replace: chaser_players_index = env_obs_ids[chaser_id] chaser_k = [k for k, v in env_observation.players[ chaser_players_index][2].items() if v[0] == ( chaser_row*grid_size + chaser_col)][0] chaser_is_chased = chaser_k in history[ 'chase_counter'][chaser_id] chaser_is_chased_by_not_me = chaser_is_chased if chaser_is_chased: chaser_chaser = history['chase_counter'][chaser_id][chaser_k] chaser_is_chased_by_not_me = (chaser_chaser[4] is None) or ( player_ids[chaser_chaser[4], chaser_chaser[5]] != 0) if opp_can_move_to_me and not chaser_can_replace and not ( chaser_is_chased_by_not_me): assume_take_my_square_next = True take_my_square_next_halite_diff = halite_diff take_my_next_square_dir = to_opponent_dir # if observation['step'] == 96 and ship_k in ['80-1']: # import pdb; pdb.set_trace() can_ignore_ship = False if (considered_row, considered_col) in boxed_in_zero_halite_opponents: can_stay_still_zero_halite = can_stay_still_zero_halite and ( distance == 2) else: if halite_ships[row, col] == halite_ships[ considered_row, considered_col]: opponent_id = player_ids[considered_row, considered_col] # Note: use the opponent distance because the opponent model is # learned using the opponent distance to the nearest base (with near # base distance cutoff typically at 2) is_near_base = nearest_base_distances[ considered_row, considered_col] <= config['log_near_base_distance'] risk_lookup_k = str(is_near_base) + '_' + str(distance) if distance == 2: can_ignore_ship = history['zero_halite_move_behavior'][ opponent_id][risk_lookup_k] <= ( navigation_zero_halite_risk_threshold) else: risk_lookup_k_dist_zero = str(is_near_base) + '_' + str(0) d1_threat = history['zero_halite_move_behavior'][ opponent_id][risk_lookup_k] > ( navigation_zero_halite_risk_threshold) d0_threat = history['zero_halite_move_behavior'][ opponent_id][risk_lookup_k_dist_zero] > ( navigation_zero_halite_risk_threshold) can_stay_still_zero_halite = can_stay_still_zero_halite and ( not d0_threat) # if is_near_base and history['zero_halite_move_behavior'][ # opponent_id][str(is_near_base) + '_' + str(0) + '_ever_risky']: # import pdb; pdb.set_trace() can_ignore_ship = not (d0_threat or d1_threat) if not assume_take_my_square_next and not can_ignore_ship: relevant_dirs += [] if row_shift >= 0 else [NORTH] relevant_dirs += [] if row_shift <= 0 else [SOUTH] relevant_dirs += [] if col_shift <= 0 else [EAST] relevant_dirs += [] if col_shift >= 0 else [WEST] # When the opponents are in a cycle: only consider the direction I # expect my opponent to be at in the next step (if any) if opponents_in_cycle: relevant_dirs = [] opponent_ship_key = history['opponent_ship_pos_to_key'][( considered_row, considered_col)] opponent_id = player_ids[considered_row, considered_col] likely_opponent_action = history['opponent_cycle_counters'][ opponent_id-1][opponent_ship_key][1][0] likely_opponent_next_pos = move_ship_row_col( considered_row, considered_col, likely_opponent_action, grid_size) relative_other_pos = get_relative_position( row, col, likely_opponent_next_pos[0], likely_opponent_next_pos[1], grid_size) current_opp_relative_dir = get_relative_position( row, col, considered_row, considered_col, grid_size) if np.abs(relative_other_pos[0]) + np.abs( relative_other_pos[1]) <= 1: # At distance 1 or 0 # import pdb; pdb.set_trace() if relative_other_pos[0] == 0 and relative_other_pos[1] == 0: relevant_dirs = [RELATIVE_DIR_TO_DIRECTION_MAPPING[ current_opp_relative_dir]] elif relative_other_pos == (0, 0): relevant_dirs = [RELATIVE_DIR_TO_DIRECTION_MAPPING[ relative_other_pos]] # if observation['step'] == 215 and ship_k == '2-2': # import pdb; pdb.set_trace() for d in relevant_dirs: direction_halite_diff_distance_raw[d].append( (halite_diff, distance)) direction_halite_diff_distance = {} for d in direction_halite_diff_distance_raw: vals = np.array(direction_halite_diff_distance_raw[d]) if vals.size: diffs = vals[:, 0] distances = vals[:, 1] max_diff = diffs.max() if max_diff > 0: if can_stay_still_zero_halite: greater_min_distance = distances[diffs > 0].min() else: # My halite is > 0 and I have a threat at D1 of an aggressive equal # halite ships and a threat of a less halite ship at D2 greater_min_distance = distances[diffs >= 0].min() direction_halite_diff_distance[d] = (max_diff, greater_min_distance) elif max_diff == 0: equal_min_distance = distances[diffs == 0].min() direction_halite_diff_distance[d] = (max_diff, equal_min_distance) else: min_diff = diffs.min() min_diff_min_distance = distances[diffs == min_diff].min() direction_halite_diff_distance[d] = (min_diff, min_diff_min_distance) else: direction_halite_diff_distance[d] = None preferred_directions = [] strongly_preferred_directions = [] valid_directions = copy.copy(MOVE_DIRECTIONS) one_step_valid_directions = copy.copy(MOVE_DIRECTIONS) bad_directions = [] ignore_catch = np_rng.uniform() < config['ignore_catch_prob'] # if observation['step'] == 221 and ship_k == '54-1': # import pdb; pdb.set_trace() # x=1 for direction, halite_diff_dist in direction_halite_diff_distance.items(): if halite_diff_dist is not None: move_row, move_col = move_ship_row_col(row, col, direction, grid_size) no_escape_bonus = 0 if not ( boxed_in_attack_squares[move_row, move_col]) else 5e3 halite_diff = halite_diff_dist[0] if halite_diff >= 0: # I should avoid a collision distance_multiplier = 1/halite_diff_dist[1] mask_collect_return = np.copy(HALF_PLANES_RUN[(row, col)][direction]) valid_directions.remove(direction) one_step_valid_directions.remove(direction) bad_directions.append(direction) if halite_diff_dist[1] == 1: if halite_diff > 0 or not can_stay_still_zero_halite: # Only suppress the stay still action if the opponent has something # to gain. # Exception: the opponent may aggressively attack my zero halite # ships if None in valid_directions: valid_directions.remove(None) one_step_valid_directions.remove(None) bad_directions.append(None) else: mask_collect_return[row, col] = False # I can safely mine halite at the current square if the opponent ship # is >1 move away if halite_diff_dist[1] > 1: mask_collect_return[row, col] = False collect_grid_scores -= mask_collect_return*(ship_halite+spawn_cost)*( config['collect_run_opponent_multiplier'])*distance_multiplier return_to_base_scores -= mask_collect_return*(ship_halite+spawn_cost)*( config['return_base_run_opponent_multiplier']) base_nearby_in_direction_mask = np.logical_and( ROW_COL_MAX_DISTANCE_MASKS[(row, col, 2)], mask_collect_return) base_nearby_in_direction = np.logical_and( base_nearby_in_direction_mask, opponent_bases).sum() > 0 if not ignore_bad_attack_directions and not base_nearby_in_direction: attack_base_scores -= mask_collect_return*(ship_halite+spawn_cost)*( config['attack_base_run_opponent_multiplier']) mask_establish = np.copy(mask_collect_return) mask_establish[row, col] = False establish_base_scores -= mask_establish*(ship_halite+spawn_cost)*( config['establish_base_run_opponent_multiplier']) elif halite_diff < 0 and ( not ignore_catch or no_escape_bonus > 0) and (not ( move_row, move_col) in ignore_convert_positions): # I would like a collision unless if there is another opponent ship # chasing me - risk avoiding policy for now: if there is at least # one ship in a direction that has less halite, I should avoid it if no_escape_bonus > 0: halite_diff = max(-spawn_cost/2, halite_diff) - no_escape_bonus else: halite_diff = 0 # Dubious choice, likely not very important # halite_diff = max(-spawn_cost/2, halite_diff) - no_escape_bonus distance_multiplier = 1/halite_diff_dist[1] mask_collect_return = np.copy(HALF_PLANES_CATCH[(row, col)][direction]) collect_grid_scores -= mask_collect_return*halite_diff*( config['collect_catch_opponent_multiplier'])*distance_multiplier return_to_base_scores -= mask_collect_return*halite_diff*( config['return_base_catch_opponent_multiplier'])*distance_multiplier attack_base_scores -= mask_collect_return*halite_diff*( config['attack_base_catch_opponent_multiplier'])*distance_multiplier mask_establish = np.copy(mask_collect_return) mask_establish[row, col] = False establish_base_scores -= mask_establish*halite_diff*( config['establish_base_catch_opponent_multiplier'])*( distance_multiplier) if no_escape_bonus > 0: strongly_preferred_directions.append(direction) if boxed_in_attack_squares[row, col] and no_escape_bonus > 0 and ( ship_halite > 0 or obs_halite[row, col] == 0): # Also incentivize the None action when it is a possible escape # square of an opponent - divide by 2 to make the None action less # dominant (likely check in several directions) collect_grid_scores[row, col] += no_escape_bonus/2 if not None in strongly_preferred_directions: strongly_preferred_directions.append(None) preferred_directions.append(direction) if take_my_square_next_halite_diff is not None and None in valid_directions: valid_directions.remove(None) one_step_valid_directions.remove(None) bad_directions.append(None) if drop_None_valid and None in valid_directions: valid_directions.remove(None) one_step_valid_directions.remove(None) valid_non_base_directions = [] base_directions = [] for d in valid_directions: move_row, move_col = move_ship_row_col(row, col, d, grid_size) if not opponent_bases[move_row, move_col] : valid_non_base_directions.append(d) else: base_directions.append(d) # For the remaining valid non base directions: compute a score that resembles # the probability of being boxed in during the next step two_step_bad_directions = [] n_step_bad_directions = [] n_step_bad_directions_die_probs = {} if steps_remaining > 1: for d in valid_non_base_directions: my_next_halite = halite_ships[row, col] if d != None else ( halite_ships[row, col] + int(collect_rate*obs_halite[row, col])) move_row, move_col = move_ship_row_col(row, col, d, grid_size) my_next_halite = 0 if my_bases[move_row, move_col] else my_next_halite opponent_mask = ROW_COL_MAX_DISTANCE_MASKS[(move_row, move_col, 3)] less_halite_threat_opponents = np.where(np.logical_and( opponent_mask, np.logical_and( opponent_ships, my_next_halite > halite_ships))) num_threat_ships = less_halite_threat_opponents[0].size if num_threat_ships > 1 and not d in safe_return_base_directions: all_dir_threat_counter = { (-1, 0): 0, (1, 0): 0, (0, -1): 0, (0, 1): 0, (0, 0): 0} for i in range(num_threat_ships): other_row = less_halite_threat_opponents[0][i] other_col = less_halite_threat_opponents[1][i] relative_other_pos = get_relative_position( move_row, move_col, other_row, other_col, grid_size) for diff_rel_row, diff_rel_col, other_gather in MOVE_GATHER_OPTIONS: # Only consider sensible opponent actions if (diff_rel_row, diff_rel_col) in opponent_ships_sensible_actions[ other_row, other_col]: is_threat = (not other_gather) or (my_next_halite > ( halite_ships[other_row, other_col] + int( collect_rate*obs_halite[other_row, other_col]))) if is_threat: other_rel_row = relative_other_pos[0] + diff_rel_row other_rel_col = relative_other_pos[1] + diff_rel_col move_diff = np.abs(other_rel_row) + np.abs(other_rel_col) if move_diff < 3 and move_diff > 0: threat_dirs = TWO_STEP_THREAT_DIRECTIONS[ (other_rel_row, other_rel_col)] for threat_row_diff, threat_col_diff in threat_dirs: all_dir_threat_counter[ (threat_row_diff, threat_col_diff)] += 1 # if observation['step'] == 112 and ship_k == '76-1': # import pdb; pdb.set_trace() # Aggregate the threat count in all_dir_threat_counter threat_counts = np.array(list(all_dir_threat_counter.values())) threat_score = np.sqrt(threat_counts.prod()) if threat_score > 0: # Disincentivize an action that can get me boxed in on the next step mask_avoid_two_steps = np.copy(HALF_PLANES_RUN[(row, col)][d]) if d is not None: mask_avoid_two_steps[row, col] = False collect_grid_scores[mask_avoid_two_steps] *= (( config['two_step_avoid_boxed_opponent_multiplier_base']) ** ( threat_score)) return_to_base_scores[mask_avoid_two_steps] *= (( config['two_step_avoid_boxed_opponent_multiplier_base']) ** ( threat_score)) establish_base_scores[mask_avoid_two_steps] *= (( config['two_step_avoid_boxed_opponent_multiplier_base']) ** ( threat_score)) two_step_bad_directions.append(d) if d not in two_step_bad_directions and not end_game_base_return and ( my_next_halite > 0) and (not d in safe_return_base_directions) and ( d is not None or not safe_to_collect[row, col]): # For the remaining valid directions: compute a score that resembles # the probability of being boxed in sometime in the future opponent_mask_lt = ROW_COL_MAX_DISTANCE_MASKS[ (move_row, move_col, min( steps_remaining, config['n_step_avoid_window_size']))] less_halite_threat_opponents_lt = np.where(np.logical_and( opponent_mask_lt, np.logical_and( opponent_ships, my_next_halite > halite_ships))) num_threat_ships_lt = less_halite_threat_opponents_lt[0].size # Ignore the box in threat if I have a base and at least one zero # halite ship one step from the move square ignore_threat = my_bases[ ROW_COL_DISTANCE_MASKS[(move_row, move_col, 1)]].sum() > 0 and (( halite_ships[np.logical_and( my_ships, ROW_COL_DISTANCE_MASKS[move_row, move_col, 1])] == 0).sum() > 0) # if observation['step'] == 359 and ship_k == '67-1': # import pdb; pdb.set_trace() if not ignore_threat: lt_catch_prob = {k: [] for k in RELATIVE_NOT_NONE_DIRECTIONS} for i in range(num_threat_ships_lt): other_row = less_halite_threat_opponents_lt[0][i] other_col = less_halite_threat_opponents_lt[1][i] other_sensible_actions = opponent_ships_sensible_actions[ other_row, other_col] relative_other_pos = get_relative_position( move_row, move_col, other_row, other_col, grid_size) # Give less weight to the other ship if there is a base of mine or # a/multiple less halite ships in between # FUTURE WORK: Also give additional move leeway if I have nearby # bases? Especially relevant for None (collect) actions distance_move_other = np.abs(relative_other_pos).sum() mask_between_move_and_threat = np.logical_and( DISTANCES[(move_row, move_col)] < distance_move_other, DISTANCES[(other_row, other_col)] < distance_move_other) less_halite_ship_base_count = np.logical_and( np.logical_and(my_bases_or_ships, mask_between_move_and_threat), halite_ships <= halite_ships[other_row, other_col]).sum() + 0*( my_bases[ROW_COL_MAX_DISTANCE_MASKS[ move_row, move_col, 2]].sum()) my_material_defense_multiplier = 2**less_halite_ship_base_count for threat_dir in RELATIVE_NOT_NONE_DIRECTIONS: nz_dim = int(threat_dir[0] == 0) dir_offset = relative_other_pos[nz_dim]*threat_dir[nz_dim] other_dir_abs_offset = np.abs(relative_other_pos[1-nz_dim]) # if observation['step'] == 155 and ship_k == '63-2': # import pdb; pdb.set_trace() if dir_offset >= 0 and (other_dir_abs_offset-1) <= dir_offset: # Ignore the threat if the ship is on the diagonal and can not # move in the direction of the threat dir if (other_dir_abs_offset-1) == dir_offset and len( other_sensible_actions) < len(MOVE_DIRECTIONS): if nz_dim == 0: threat_other_dir = ( 0, 1 if relative_other_pos[1-nz_dim] < 0 else -1) else: threat_other_dir = ( 1 if relative_other_pos[1-nz_dim] < 0 else -1, 0) threat_other_dirs = [threat_other_dir, threat_dir] threats_actionable = np.array([ t in other_sensible_actions for t in threat_other_dirs]) consider_this_threat = np.any(threats_actionable) if threats_actionable[1] and not threats_actionable[0]: # Lower the threat weight - the opponent can not directly # attack the considered threat direction and can only move # along the threat direction other_dir_abs_offset += 2 else: consider_this_threat = True if other_dir_abs_offset == 0 and dir_offset == 0: # The scenario where a one step threat is ignored due to # being chased for a while and moving to the threat is # currently considered. # This avoids division by zero but is overridden later anyway other_dir_abs_offset = 2 if consider_this_threat: lt_catch_prob[threat_dir].append(max(2, other_dir_abs_offset+dir_offset)*( my_material_defense_multiplier)) # Add a "bootstrapped" catch probability using the density of the # players towards the edge of the threat direction # Only add it if the next halite is > 0 (otherwise assume I can # always escape) # Also factor in the distance to my nearest non abandoned base if my_next_halite > 0: current_nearest_base_distance = my_nearest_base_distances[row, col] moved_nearest_base_distance = my_nearest_base_distances[ move_row, move_col] move_distance_difference = current_nearest_base_distance - ( moved_nearest_base_distance) for threat_dir in RELATIVE_NOT_NONE_DIRECTIONS: dens_threat_rows = np.mod(move_row + threat_dir[0]*( np.arange(config['n_step_avoid_window_size']//2, config['n_step_avoid_window_size'])), grid_size) dens_threat_cols = np.mod(move_col + threat_dir[1]*( 1+np.arange(config['n_step_avoid_window_size']//2, config['n_step_avoid_window_size'])), grid_size) escape_probs = escape_influence_probs[ dens_threat_rows, dens_threat_cols] mean_escape_prob = escape_probs.mean() if escape_probs[:2].min() < 1: if move_distance_difference > 0: # When in trouble, it is typically better to move towards one # of my bases. The move closer distance is of course 1. mean_escape_prob *= 1.25 if mean_escape_prob < 1: lt_catch_prob[threat_dir].append(1/(1-mean_escape_prob+1e-9)) # if observation['step'] == 75 and ship_k == '64-1' and d in [ # EAST, WEST]: # import pdb; pdb.set_trace() # if observation['step'] == 112 and ship_k == '76-1': # import pdb; pdb.set_trace() if np.all([len(v) > 0 for v in lt_catch_prob.values()]): # Interpretation: for a threat at distance d, I have a probability # of surviving it of (d-1)/d. The probability of surviving all # threat is the product of all individual threats survive_probs = np.array([ (np.maximum(0.2, (np.array(lt_catch_prob[k])-1)/np.array( lt_catch_prob[k]))).prod() for k in lt_catch_prob]) min_die_prob = 1-survive_probs.max() if main_base_distances.max() > 0: if main_base_distances[move_row, move_col] <= 2: min_die_prob = 0 else: min_die_prob = max( 0, min_die_prob-0.33**main_base_distances[ move_row, move_col]) # if observation['step'] == 155 and ship_k in ['63-2', '63-1']: # import pdb; pdb.set_trace() # Disincentivize an action that can get me boxed in during the next # N steps mask_avoid_n_steps = np.copy(HALF_PLANES_RUN[(row, col)][d]) if d is not None: mask_avoid_n_steps[row, col] = False collect_grid_scores[mask_avoid_n_steps] *= (( config['n_step_avoid_boxed_opponent_multiplier_base']) ** ( min_die_prob)) return_to_base_scores[mask_avoid_n_steps] *= ( config['n_step_avoid_boxed_opponent_multiplier_base']) ** ( min_die_prob) establish_base_scores[mask_avoid_n_steps] *= ( config['n_step_avoid_boxed_opponent_multiplier_base']) ** ( min_die_prob) n_step_bad_directions_die_probs[d] = min_die_prob # Correction to act with more risk towards the end of the game die_prob_cutoff = (n_step_avoid_min_die_prob_cutoff + 0.01*max( 0, 50-steps_remaining)) if d is None: if observation['relative_step'] > config[ 'end_hunting_season_relative_step']: die_prob_cutoff = max(die_prob_cutoff, config[ 'after_hunting_season_collect_max_n_step_risk']) elif observation['relative_step'] > config[ 'late_hunting_season_more_collect_relative_step']: die_prob_cutoff = max(die_prob_cutoff, config[ 'late_hunting_season_collect_max_n_step_risk']) # print(observation['step'], die_prob_cutoff) if min_die_prob > die_prob_cutoff: n_step_bad_directions.append(d) # if observation['step'] == 215 and ship_k == '2-2': # import pdb; pdb.set_trace() # Corner case: if I have a zero halite ship that is boxed in by other zero # halite ships on a zero halite square: compute the risk for all available # actions and only retain the actions with the lowest collision risks if halite_ships[row, col] == 0 and len(valid_directions) == 0 and ( obs_halite[row, col] == 0): risk_scores = np.zeros(len(MOVE_DIRECTIONS)) for risk_id, d in enumerate(MOVE_DIRECTIONS): move_row, move_col = move_ship_row_col(row, col, d, grid_size) for potential_threat_dir in MOVE_DIRECTIONS: threat_row, threat_col = move_ship_row_col( move_row, move_col, potential_threat_dir, grid_size) if opponent_ships[threat_row, threat_col] and halite_ships[ threat_row, threat_col] == 0: opponent_id = player_ids[threat_row, threat_col] is_near_base = nearest_base_distances[ threat_row, threat_col] <= config['log_near_base_distance'] distance = int(d is not None) + int(potential_threat_dir is not None) risk_lookup_k = str(is_near_base) + '_' + str(distance) risk_scores[risk_id] = max( risk_scores[risk_id], history['zero_halite_move_behavior'][ opponent_id][risk_lookup_k]) best_risk_score = risk_scores.min() if best_risk_score < 0.05: valid_directions = [d for d_id, d in enumerate( MOVE_DIRECTIONS) if risk_scores[d_id] == best_risk_score] else: valid_directions = [None] one_step_valid_directions = copy.copy(valid_directions) bad_directions = list(set(MOVE_DIRECTIONS) - set(valid_directions)) # if observation['step'] == 169 and ship_k == '65-2': # import pdb; pdb.set_trace() # Corner case: if I have a zero halite ship that is boxed in by other zero # halite ships on a non-zero halite square: prefer moving in directions where # there is a lower risk of losing the ship as a function of opponent zero # halite behavior if halite_ships[row, col] == 0 and obs_halite[row, col] > 0 and ( (len(valid_directions) == 1 and (valid_directions[0] is None)) or ( len(valid_directions) == 0)): risk_scores = np.zeros(len(MOVE_DIRECTIONS)) risk_scores[0] = 1 # Definitely don't stand still for risk_id, d in enumerate(MOVE_DIRECTIONS): move_row, move_col = move_ship_row_col(row, col, d, grid_size) for potential_threat_dir in MOVE_DIRECTIONS: threat_row, threat_col = move_ship_row_col( move_row, move_col, potential_threat_dir, grid_size) if opponent_ships[threat_row, threat_col] and halite_ships[ threat_row, threat_col] == 0: opponent_id = player_ids[threat_row, threat_col] is_near_base = nearest_base_distances[ threat_row, threat_col] <= config['log_near_base_distance'] distance = int(d is not None) + int(potential_threat_dir is not None) risk_lookup_k = str(is_near_base) + '_' + str(distance) risk_scores[risk_id] = max( risk_scores[risk_id], history['zero_halite_move_behavior'][ opponent_id][risk_lookup_k]) best_risk_score = risk_scores.min() valid_directions = [d for d_id, d in enumerate( MOVE_DIRECTIONS) if risk_scores[d_id] == best_risk_score] one_step_valid_directions = copy.copy(valid_directions) bad_directions = list(set(MOVE_DIRECTIONS) - set(valid_directions)) # Treat attack squares I should avoid with a zero halite ship as N-step bad # directions, if that leaves us with options if np.any(avoid_attack_squares_zero_halite) and halite_ships[ row, col] == 0 and steps_remaining > 1: avoid_attack_directions = [] for d in valid_non_base_directions: move_row, move_col = move_ship_row_col(row, col, d, grid_size) if avoid_attack_squares_zero_halite[move_row, move_col]: avoid_attack_directions.append(d) if len(avoid_attack_directions): all_bad_dirs = set(bad_directions + ( two_step_bad_directions + n_step_bad_directions)) updated_bad_dirs = all_bad_dirs.union(set(avoid_attack_directions)) if len(updated_bad_dirs) > len(all_bad_dirs) and len( updated_bad_dirs) < len(MOVE_DIRECTIONS): new_bad_directions = list(updated_bad_dirs.difference(all_bad_dirs)) # import pdb; pdb.set_trace() n_step_bad_directions.extend(new_bad_directions) for new_bad_dir in new_bad_directions: if not new_bad_dir in n_step_bad_directions_die_probs: n_step_bad_directions_die_probs[new_bad_dir] = 0 # Corner case: if I can replace a chaser position and there are only very # bad two step escape directions left: replace the chaser if take_my_next_square_dir is not None and ( take_my_next_square_dir in two_step_bad_directions): make_chase_replace_n_bad = True for d in NOT_NONE_DIRECTIONS: if not d == take_my_next_square_dir: if d in n_step_bad_directions: if n_step_bad_directions_die_probs[d] < 0.6: make_chase_replace_n_bad = False break elif d in valid_directions: make_chase_replace_n_bad = False break if make_chase_replace_n_bad: print("CHASE: turning two step bad into n step bad", observation['step'], row, col) two_step_bad_directions.remove(take_my_next_square_dir) # Treat the chasing - replace chaser position as an n-step bad action. # Otherwise, we can get trapped in a loop of dumb behavior. if take_my_next_square_dir is not None and not take_my_next_square_dir in ( two_step_bad_directions) and not take_my_next_square_dir in ( n_step_bad_directions): n_step_bad_directions.append(take_my_next_square_dir) n_step_bad_directions_die_probs[take_my_next_square_dir] = 1/4 # If all valid non base directions are n step bad actions: drop n step bad # actions (call them 2 step bad) that are significantly worse than other n # step bad actions all_original_n_step_bad_directions = copy.copy(n_step_bad_directions) all_n_step_bad_directions_die_probs = copy.copy( n_step_bad_directions_die_probs) if len(n_step_bad_directions) > 1 and len( n_step_bad_directions) == len(valid_non_base_directions) and np.all( np.array([d in n_step_bad_directions for d in ( valid_non_base_directions)])): die_probs = np.array(list(n_step_bad_directions_die_probs.values())) max_die_prob = min(die_probs.min()*2, die_probs.min()+0.1) delete_from_n_step_bad = [] for d in n_step_bad_directions: if n_step_bad_directions_die_probs[d] > max_die_prob and ( not d in safe_return_base_directions): delete_from_n_step_bad.append(d) for d in delete_from_n_step_bad: two_step_bad_directions.append(d) n_step_bad_directions.remove(d) del n_step_bad_directions_die_probs[d] if valid_non_base_directions: valid_not_preferred_dirs = list(set( two_step_bad_directions + n_step_bad_directions)) if valid_not_preferred_dirs and ( len(valid_non_base_directions) - len(valid_not_preferred_dirs)) > 0: # Drop 2 and n step bad directions if that leaves us with valid options bad_directions.extend(valid_not_preferred_dirs) bad_directions = list(set(bad_directions)) valid_directions = list( set(valid_directions) - set(valid_not_preferred_dirs)) else: # Drop 2 step bad directions if that leaves us with valid options valid_not_preferred_dirs = set(two_step_bad_directions) if valid_not_preferred_dirs and ( len(valid_non_base_directions) - len(valid_not_preferred_dirs)) > 0: bad_directions.extend(valid_not_preferred_dirs) valid_directions = list( set(valid_directions) - set(valid_not_preferred_dirs)) # Only keep the strongly preferred directions if there are any if len(strongly_preferred_directions) > 0: preferred_directions = strongly_preferred_directions # Drop repetitive actions if that leaves us with valid options if ship_k in history['avoid_cycle_actions']: repetitive_action = history['avoid_cycle_actions'][ship_k] if repetitive_action in valid_directions and len(valid_directions) > 1: valid_directions.remove(repetitive_action) if repetitive_action in preferred_directions: preferred_directions.remove(repetitive_action) if repetitive_action in one_step_valid_directions: one_step_valid_directions.remove(repetitive_action) bad_directions.append(repetitive_action) # if observation['step'] == 180 and ship_k == '10-2': # import pdb; pdb.set_trace() return (collect_grid_scores, return_to_base_scores, establish_base_scores, attack_base_scores, preferred_directions, valid_directions, len(bad_directions) == len(MOVE_DIRECTIONS), two_step_bad_directions, n_step_bad_directions, one_step_valid_directions, n_step_bad_directions_die_probs, all_original_n_step_bad_directions, all_n_step_bad_directions_die_probs) # Update the scores as a function of blocking opponent bases def update_scores_blockers( collect_grid_scores, return_to_base_scores, establish_base_scores, attack_base_scores, row, col, grid_size, blockers, blocker_max_distances_to_consider, valid_directions, one_step_valid_directions, early_base_direct_dir=None, blocker_max_distance=half_distance_mask_dim, update_attack_base=True): one_step_bad_directions = [] for d in NOT_NONE_DIRECTIONS: if d == NORTH: rows = np.mod(row - (1 + np.arange(blocker_max_distance)), grid_size) cols = np.repeat(col, blocker_max_distance) considered_vals = blockers[rows, col] considered_max_distances = blocker_max_distances_to_consider[rows, col] elif d == SOUTH: rows = np.mod(row + (1 + np.arange(blocker_max_distance)), grid_size) cols = np.repeat(col, blocker_max_distance) considered_vals = blockers[rows, col] considered_max_distances = blocker_max_distances_to_consider[rows, col] elif d == WEST: rows = np.repeat(row, blocker_max_distance) cols = np.mod(col - (1 + np.arange(blocker_max_distance)), grid_size) considered_vals = blockers[row, cols] considered_max_distances = blocker_max_distances_to_consider[row, cols] elif d == EAST: rows = np.repeat(row, blocker_max_distance) cols = np.mod(col + (1 + np.arange(blocker_max_distance)), grid_size) considered_vals = blockers[row, cols] considered_max_distances = blocker_max_distances_to_consider[row, cols] if d == early_base_direct_dir: considered_vals[0] = 1 is_blocking = np.logical_and(considered_vals, np.arange( blocker_max_distance) < considered_max_distances) if np.any(is_blocking): first_blocking_id = np.where(is_blocking)[0][0] mask_rows = rows[first_blocking_id:] mask_cols = cols[first_blocking_id:] collect_grid_scores[mask_rows, mask_cols] = -1e12 return_to_base_scores[mask_rows, mask_cols] = -1e12 establish_base_scores[mask_rows, mask_cols] = -1e12 if update_attack_base: attack_base_scores[mask_rows, mask_cols] = -1e12 if first_blocking_id == 0: one_step_bad_directions.append(d) if d in valid_directions: valid_directions.remove(d) if d in one_step_valid_directions: one_step_valid_directions.remove(d) # Lower the score for entire quadrants when the two quadrant directions are # blocking the movement num_bad_one_directions = len(one_step_bad_directions) if num_bad_one_directions > 1: for i in range(num_bad_one_directions-1): bad_direction_1 = one_step_bad_directions[i] for j in range(i+1, num_bad_one_directions): bad_direction_2 = one_step_bad_directions[j] if (bad_direction_1 in [NORTH, SOUTH]) != ( bad_direction_2 in [NORTH, SOUTH]): bad_quadrant_mask = np.logical_and( HALF_PLANES_CATCH[row, col][bad_direction_1], HALF_PLANES_CATCH[row, col][bad_direction_2]) collect_grid_scores[bad_quadrant_mask] = -1e12 return_to_base_scores[bad_quadrant_mask] = -1e12 establish_base_scores[bad_quadrant_mask] = -1e12 if update_attack_base: attack_base_scores[bad_quadrant_mask] = -1e12 # Additional logic for the use of avoiding collisions when there is only a # single escape direction if blockers[row, col]: collect_grid_scores[row, col] = -1e12 return_to_base_scores[row, col] = -1e12 establish_base_scores[row, col] = -1e12 attack_base_scores[row, col] = -1e12 if None in valid_directions: valid_directions.remove(None) if None in one_step_valid_directions: one_step_valid_directions.remove(None) return (collect_grid_scores, return_to_base_scores, establish_base_scores, attack_base_scores, valid_directions, one_step_valid_directions, one_step_bad_directions) def set_scores_single_nearby_zero(scores, nearby, size, ship_row, ship_col, nearby_distance=1): nearby_pos = np.where(nearby) row = nearby_pos[0][0] col = nearby_pos[1][0] next_nearby_pos = None drop_None_valid = False for i in range(-nearby_distance, nearby_distance+1): near_row = (row + i) % size for j in range(-nearby_distance, nearby_distance+1): near_col = (col + j) % size if i != 0 or j != 0: # Don't gather near the base and don't move on top of it scores[near_row, near_col] = -1e7 if near_row == ship_row and near_col == ship_col: next_nearby_pos = get_dir_from_target( ship_row, ship_col, row, col, size)[0] else: if near_row == ship_row and near_col == ship_col: # Don't stay on top of the base drop_None_valid = True return scores, next_nearby_pos, drop_None_valid def grid_distance(r1, c1, r2, c2, size): horiz_diff = c2-c1 horiz_distance = min(np.abs(horiz_diff), min(np.abs(horiz_diff-size), np.abs(horiz_diff+size))) vert_diff = r2-r1 vert_distance = min(np.abs(vert_diff), min(np.abs(vert_diff-size), np.abs(vert_diff+size))) return horiz_distance+vert_distance def override_early_return_base_scores( base_return_grid_multiplier, my_bases, ship_row, ship_col, my_ship_count): base_pos = np.where(my_bases) base_row = base_pos[0][0] base_col = base_pos[1][0] dist_to_base = DISTANCES[base_row, base_col][ship_row, ship_col] # Remember the rule that blocks spawning when a ship is about to return if dist_to_base <= 10-my_ship_count: base_return_grid_multiplier[base_row, base_col] = 0 return base_return_grid_multiplier def get_nearest_base_distances(grid_size, ignore_abandoned, observation): base_dms = [] base_distances = [] # for b in player_obs[1]: # row, col = row_col_from_square_grid_pos(player_obs[1][b], grid_size) # if not (row, col) in ignore_abandoned: # base_dms.append(DISTANCE_MASKS[(row, col)]) # base_distances.append(DISTANCES[(row, col)]) my_bases = np.copy(observation['rewards_bases_ships'][0][1]) for r, c in ignore_abandoned: my_bases[r, c] = 0 num_my_bases = my_bases.sum() if num_my_bases > 0: my_base_positions = np.where(my_bases) for base_id in range(num_my_bases): base_row = my_base_positions[0][base_id] base_col = my_base_positions[1][base_id] base_dms.append(DISTANCE_MASKS[(base_row, base_col)]) base_distances.append(DISTANCES[(base_row, base_col)]) if base_dms: base_nearest_distance_scores = np.stack(base_dms).max(0) all_base_distances = np.stack(base_distances) else: base_nearest_distance_scores = np.ones((grid_size, grid_size)) all_base_distances = 99*np.ones((1, grid_size, grid_size)) nearest_base_distances = np.min(all_base_distances, 0) return (base_nearest_distance_scores, all_base_distances, nearest_base_distances) def get_valid_opponent_ship_actions( config, rewards_bases_ships, halite_ships, size, history, nearest_base_distances, observation, env_config): opponent_ships_sensible_actions = {} opponent_ships_sensible_actions_no_risk = {} boxed_in_zero_halite_opponents = [] likely_convert_opponent_positions = [] possible_convert_opponent_positions = [] num_agents = len(rewards_bases_ships) convert_cost = env_config.convertCost stacked_bases = np.stack([rbs[1] for rbs in rewards_bases_ships]) stacked_ships = np.stack([rbs[2] for rbs in rewards_bases_ships]) num_players = stacked_ships.shape[0] grid_size = stacked_ships.shape[1] player_base_ids = -1*np.ones((grid_size, grid_size)) boxed_in_attack_squares = np.zeros((grid_size, grid_size), dtype=np.bool) boxed_in_opponent_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) opponent_single_escape_pos = np.zeros( (grid_size, grid_size), dtype=np.bool) single_escape_mapping = {} for i in range(num_players): player_base_ids[stacked_bases[i]] = i for i in range(1, num_agents): opponent_ships = stacked_ships[i] enemy_ships = np.delete(stacked_ships, (i), axis=0).sum(0) ship_pos = np.where(opponent_ships) num_ships = ship_pos[0].size for j in range(num_ships): valid_rel_directions = copy.copy(RELATIVE_DIRECTIONS) valid_rel_directions_no_move_risk = copy.copy(RELATIVE_DIRECTIONS) row = ship_pos[0][j] col = ship_pos[1][j] ship_halite = halite_ships[row, col] for row_diff in range(-2, 3): for col_diff in range(-2, 3): distance = (np.abs(row_diff) + np.abs(col_diff)) if distance == 1 or distance == 2: other_row = (row + row_diff) % size other_col = (col + col_diff) % size if enemy_ships[other_row, other_col]: hal_diff = halite_ships[other_row, other_col] - ship_halite # if observation['step'] == 189 and row == 14 and col == 2: # import pdb; pdb.set_trace() ignores_move_collision = False risky_stay_still_collision = False if halite_ships[row, col] == halite_ships[ other_row, other_col]: # Note: use the opponent distance because the opponent model is # learned using the opponent distance to the nearest base (with # near base distance cutoff typically at 2) is_near_base = nearest_base_distances[ other_row, other_col] <= config['log_near_base_distance'] risk_lookup_k = str(is_near_base) + '_' + str(distance) + ( '_ever_risky') if distance == 2: ignores_move_collision = history[ 'zero_halite_move_behavior'][i][risk_lookup_k] else: risk_lookup_k_dist_zero = str(is_near_base) + '_' + str( 0) + '_ever_risky' risky_stay_still_collision = history[ 'zero_halite_move_behavior'][i][risk_lookup_k] ignores_move_collision = history[ 'zero_halite_move_behavior'][i][risk_lookup_k_dist_zero] # if ignores_move_collision and distance == 1: # import pdb; pdb.set_trace() # x=1 rem_dirs = [] if risky_stay_still_collision: rem_dirs += [(0, 0)] if distance == 1 and hal_diff <= 0 else [] else: rem_dirs += [(0, 0)] if distance == 1 and hal_diff < 0 else [] if not ignores_move_collision: rem_dirs += [(-1, 0)] if row_diff < 0 and hal_diff <= 0 else [] rem_dirs += [(1, 0)] if row_diff > 0 and hal_diff <= 0 else [] rem_dirs += [(0, -1)] if col_diff < 0 and hal_diff <= 0 else [] rem_dirs += [(0, 1)] if col_diff > 0 and hal_diff <= 0 else [] for d in rem_dirs: if d in valid_rel_directions: valid_rel_directions.remove(d) # if observation['step'] == 146 and row == 13 and col == 13: # import pdb; pdb.set_trace() # Don't check for risky opponent zero halite behavior rem_dirs = [] if risky_stay_still_collision: rem_dirs += [(0, 0)] if distance == 1 and hal_diff <= 0 else [] else: rem_dirs += [(0, 0)] if distance == 1 and hal_diff < 0 else [] rem_dirs += [(-1, 0)] if row_diff < 0 and hal_diff <= 0 else [] rem_dirs += [(1, 0)] if row_diff > 0 and hal_diff <= 0 else [] rem_dirs += [(0, -1)] if col_diff < 0 and hal_diff <= 0 else [] rem_dirs += [(0, 1)] if col_diff > 0 and hal_diff <= 0 else [] for d in rem_dirs: if d in valid_rel_directions_no_move_risk: valid_rel_directions_no_move_risk.remove(d) # Prune for opponent base positions rem_dirs = [] for rel_dir in valid_rel_directions: d = RELATIVE_DIR_TO_DIRECTION_MAPPING[rel_dir] move_row, move_col = move_ship_row_col(row, col, d, grid_size) move_base_id = player_base_ids[move_row, move_col] if move_base_id >= 0 and move_base_id != i: rem_dirs.append(rel_dir) for d in rem_dirs: valid_rel_directions.remove(d) # if observation['step'] == 146 and row == 14 and col == 13: # import pdb; pdb.set_trace() rem_dirs = [] for rel_dir in valid_rel_directions_no_move_risk: d = RELATIVE_DIR_TO_DIRECTION_MAPPING[rel_dir] move_row, move_col = move_ship_row_col(row, col, d, grid_size) move_base_id = player_base_ids[move_row, move_col] if move_base_id >= 0 and move_base_id != i: rem_dirs.append(rel_dir) for d in rem_dirs: valid_rel_directions_no_move_risk.remove(d) if len(valid_rel_directions) == 0: player_halite_budget = observation['rewards_bases_ships'][i][0] if ((ship_halite + player_halite_budget) >= convert_cost): if ship_halite >= history['inferred_boxed_in_conv_threshold'][i][1]: likely_convert_opponent_positions.append((row, col)) if ship_halite >= history['inferred_boxed_in_conv_threshold'][i][0]: possible_convert_opponent_positions.append((row, col)) if ship_halite > 0: for d in MOVE_DIRECTIONS: move_row, move_col = move_ship_row_col(row, col, d, grid_size) boxed_in_attack_squares[move_row, move_col] = True boxed_in_opponent_ids[move_row, move_col] = i if ship_halite == 0 and len(valid_rel_directions_no_move_risk) == 1 and ( valid_rel_directions_no_move_risk[0] == (0, 0)): boxed_in_zero_halite_opponents.append((row, col)) if len(valid_rel_directions_no_move_risk) == 1: escape_dir = RELATIVE_DIR_TO_DIRECTION_MAPPING[ valid_rel_directions_no_move_risk[0]] escape_square = move_ship_row_col(row, col, escape_dir, grid_size) opponent_single_escape_pos[escape_square] = 1 single_escape_mapping[(row, col)] = escape_square opponent_ships_sensible_actions[(row, col)] = valid_rel_directions opponent_ships_sensible_actions_no_risk[(row, col)] = ( valid_rel_directions_no_move_risk) # if observation['step'] == 146: # import pdb; pdb.set_trace() # Do another pass over the zero halite ships to figure if they are boxed in # by the escape squares of their own non zero halite ships - these ships # will very likely take risky actions and should therefore be avoided if np.any(opponent_single_escape_pos): for j in range(num_ships): row = ship_pos[0][j] col = ship_pos[1][j] ship_halite = halite_ships[row, col] if ship_halite == 0: valid_rel_directions = opponent_ships_sensible_actions[(row, col)] valid_rel_directions_no_move_risk = ( opponent_ships_sensible_actions_no_risk[row, col]) # if observation['step'] == 146 and row == 15 and col == 12: # import pdb; pdb.set_trace() # if observation['step'] == 146 and row == 14 and col == 13: # import pdb; pdb.set_trace() for d in NOT_NONE_DIRECTIONS: move_row, move_col = move_ship_row_col(row, col, d, grid_size) if opponent_single_escape_pos[move_row, move_col]: my_escape_square = False if (row, col) in single_escape_mapping: my_escape_square = (move_row, move_col) == ( single_escape_mapping[row, col]) if my_escape_square: # Still treat it as a bad direction if there is another ship # that has my escape square as it's only escape square num_escape_count = np.array( [v == (move_row, move_col) for v in ( single_escape_mapping.values())]).sum() my_escape_square = num_escape_count == 1 if not my_escape_square: avoid_rel_direction = RELATIVE_DIR_MAPPING[d] if avoid_rel_direction in valid_rel_directions: valid_rel_directions.remove(avoid_rel_direction) if avoid_rel_direction in valid_rel_directions_no_move_risk: valid_rel_directions_no_move_risk.remove(avoid_rel_direction) if (len(valid_rel_directions_no_move_risk) == 0 or ( len(valid_rel_directions_no_move_risk) == 1 and ( valid_rel_directions_no_move_risk[0] == (0, 0)))) and ( not (row, col) in boxed_in_zero_halite_opponents): # print("AVOIDING chained zero halite collision", # observation['step'], row, col) boxed_in_zero_halite_opponents.append((row, col)) opponent_ships_sensible_actions[(row, col)] = valid_rel_directions opponent_ships_sensible_actions_no_risk[(row, col)] = ( valid_rel_directions_no_move_risk) return (opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, boxed_in_attack_squares, boxed_in_opponent_ids, boxed_in_zero_halite_opponents, likely_convert_opponent_positions, possible_convert_opponent_positions) def scale_attack_scores_bases_ships( config, observation, player_obs, spawn_cost, non_abandoned_base_distances, weighted_base_mask, steps_remaining, obs_halite, halite_ships, history, smoothed_halite, player_influence_maps, nearest_base_distances_with_my_excluded, player_ids, laplace_smoother_rel_ship_count=4, initial_normalize_ship_diff=10, final_normalize_ship_diff=3): stacked_bases = np.stack([rbs[1] for rbs in observation[ 'rewards_bases_ships']]) my_bases = stacked_bases[0] # Exclude bases that are persistently camped by opponents for base_pos in history['my_base_not_attacked_positions']: my_bases[base_pos] = 0 stacked_opponent_bases = stacked_bases[1:] stacked_ships = np.stack([rbs[2] for rbs in observation[ 'rewards_bases_ships']]) stacked_opponent_ships = stacked_ships[1:] base_counts = stacked_opponent_bases.sum((1, 2)) my_ship_count = len(player_obs[2]) ship_counts = stacked_opponent_ships.sum((1, 2)) grid_size = stacked_opponent_bases.shape[1] approximate_scores = history['current_scores'] num_players = stacked_bases.shape[0] player_ranks = np.zeros(num_players) for i in range(num_players): player_ranks[i] = (approximate_scores >= approximate_scores[i]).sum() # print(approximate_scores) # Factor 1: an opponent with less bases is more attractive to attack base_count_multiplier = np.where(base_counts == 0, 0, 1/(base_counts+1e-9)) # Factor 2: an opponent that is closer in score is more attractive to attack spawn_diffs = (approximate_scores[0] - approximate_scores[1:])/spawn_cost abs_spawn_diffs = np.abs(spawn_diffs) currently_winning = approximate_scores[0] >= approximate_scores[1:] approximate_score_diff = approximate_scores[0] - approximate_scores[1:] normalize_diff = initial_normalize_ship_diff - observation['relative_step']*( initial_normalize_ship_diff-final_normalize_ship_diff) abs_rel_normalized_diff = np.maximum( 0, (normalize_diff-abs_spawn_diffs)/normalize_diff) rel_score_max_y = initial_normalize_ship_diff/normalize_diff rel_score_multiplier = abs_rel_normalized_diff*rel_score_max_y # Factor 3: an opponent with less ships is more attractive to attack since it # is harder for them to defend the base rel_ship_count_multiplier = (my_ship_count+laplace_smoother_rel_ship_count)/( ship_counts+laplace_smoother_rel_ship_count) # Additional term: attack bases nearby my main base opponent_bases = stacked_opponent_bases.sum(0).astype(np.bool) if opponent_bases.sum() > 0 and non_abandoned_base_distances.max() > 0: additive_nearby_main_base = 3/max(0.15, observation['relative_step'])/( 1.5**non_abandoned_base_distances)/( weighted_base_mask[my_bases].sum()) additive_nearby_main_base[~opponent_bases] = 0 else: additive_nearby_main_base = 0 attack_multipliers = base_count_multiplier*rel_score_multiplier*( rel_ship_count_multiplier) tiled_multipliers = np.tile(attack_multipliers.reshape((-1, 1, 1)), [1, grid_size, grid_size]) # if observation['step'] == 391: # import pdb; pdb.set_trace() opponent_bases_scaled = (stacked_opponent_bases*tiled_multipliers).sum(0) + ( additive_nearby_main_base) # Compute the priority of attacking the ships of opponents opponent_ships_scaled = np.maximum(0, 1 - np.abs( approximate_scores[0]-approximate_scores[1:])/steps_remaining/10) # print(observation['step'], opponent_ships_scaled, approximate_scores) # if observation['step'] == 300: # import pdb; pdb.set_trace() # If I am winning by a considerable margin before the game is over, and the # number three is far behind the number two: go ballistic on the number two # Prefer opponent bases that are close to my bases and halite, and where the # opponent has a relatively low density # Make sure to guarantee some continuity with a start and stop mode # Ballistic scenarios: # - I am well ahead of all opponents: target the initial best agent # - I am winning with a solid margin and the number three is far behind # the number two: target the number two # - I am in a close fight with the number two/one and the number three is # very far behind: target the number two winning_massively = np.all(spawn_diffs >= ( 18-9*observation['relative_step'])) if not winning_massively: history['ballistic_early_best_target_mode'] = False winning_very_clearly = np.all(spawn_diffs >= ( 14-7*observation['relative_step'])) winning_clearly = np.all(spawn_diffs >= (8-4*observation['relative_step'])) winning_considerably = np.all(spawn_diffs >= ( 6-4*observation['relative_step'] + int(history[ 'ballistic_early_best_target_mode']))) winning_massively_near_end_game = winning_massively and observation[ 'relative_step'] > 0.75 winning_massively_before_end_game = winning_massively and not ( winning_massively_near_end_game) first_opp_id = np.argsort(spawn_diffs)[0] second_opp_id = np.argsort(spawn_diffs)[1] second_third_spawn_diff = spawn_diffs[second_opp_id] - spawn_diffs[ first_opp_id] very_tight_fight_for_first = np.abs(spawn_diffs[first_opp_id]) < 1 and ( spawn_diffs[second_opp_id] >= (12-8*observation['relative_step'])) tight_fight_for_first = np.abs(spawn_diffs[first_opp_id]) < 3 and ( spawn_diffs[second_opp_id] >= (8-6*observation['relative_step'])) prev_ballistic_mode = history['ballistic_mode'] should_start_ballistic = (not winning_massively_before_end_game) and ( winning_clearly and second_third_spawn_diff > ( 7-2*observation['relative_step']) or very_tight_fight_for_first or ( winning_massively_near_end_game)) and ( my_ship_count >= 15-max(0, 40*(observation['relative_step']-0.8))) should_continue_ballistic = not ( winning_massively_before_end_game) and (winning_very_clearly or ( winning_clearly and (second_third_spawn_diff > 1)) or ( winning_considerably and ( second_third_spawn_diff > (2-observation['relative_step']))) or ( tight_fight_for_first) ) and (my_ship_count >= 10-max(0, 20*(observation['relative_step']-0.8))) ballistic_mode = should_start_ballistic or ( prev_ballistic_mode and should_continue_ballistic) # Select the next target in line if the opponent has no bases and no ships if history['ballistic_early_best_targets_sorted'] is not None: for opponent_id in history['ballistic_early_best_targets_sorted']: ballistic_early_best_target_mode_target = opponent_id num_opponent_bases = stacked_bases[opponent_id+1].sum() num_opponent_ships = stacked_ships[opponent_id+1].sum() if num_opponent_bases > 0 or num_opponent_ships > 0: break else: ballistic_early_best_target_mode_target = first_opp_id # print(observation['step'], ballistic_early_best_target_mode_target) # if observation['step'] == 146: # import pdb; pdb.set_trace() # Ballistic early best target mode override of the opponent id: prefer to # attack opponents that have a base which is close to one of my non # abandoned bases opponent_base_positions = np.where(stacked_opponent_bases.sum(0) > 0) opponent_near_my_base_distances = nearest_base_distances_with_my_excluded[ opponent_base_positions] targeted_base_override = None if np.any(opponent_base_positions) and winning_very_clearly and ( opponent_near_my_base_distances.min() < 6): prev_ballistic_target_override = history['prev_ballistic_target_override'] if history['prev_ballistic_target_override'] is not None and ( opponent_bases[prev_ballistic_target_override]): targeted_base_override = prev_ballistic_target_override else: # Sort annoying bases by score: prefer to attack opponent bases that # belong to the best opponent smoothed_halite = smooth2d(observation['halite']) opponent_near_my_base_scores = opponent_near_my_base_distances + 0.6*( player_ranks[player_ids[opponent_base_positions]-1]) - 1e-9*( smoothed_halite[opponent_base_positions]) target_base_id = np.argmin(opponent_near_my_base_scores) targeted_base_override = ( opponent_base_positions[0][target_base_id], opponent_base_positions[1][target_base_id]) history['prev_ballistic_target_override'] = targeted_base_override if ballistic_mode and not prev_ballistic_mode and ( winning_massively_near_end_game): # Switch to early best target mode - override of the target id print(observation['step'], "Start attack on early best target", ballistic_early_best_target_mode_target+1) ballistic_early_best_target_mode = True ballistic_target_id = ballistic_early_best_target_mode_target elif ballistic_mode: ballistic_early_best_target_mode = history[ 'ballistic_early_best_target_mode'] and winning_very_clearly if ballistic_early_best_target_mode or winning_massively_near_end_game: # Early best target mode ballistic_target_id = ballistic_early_best_target_mode_target else: # Standard ballistic mode ballistic_target_id = first_opp_id # print(observation['step'], "Winning massively near end?", # winning_massively_near_end_game, ballistic_target_id) else: ballistic_early_best_target_mode = False # Consider going ballistic on the nearest contender for the second place # when the first place no longer seems possible first_out_of_reach = spawn_diffs.min() <= ( -40+36*observation['relative_step']) # This should be conservative if first_out_of_reach and np.abs(spawn_diffs[first_opp_id]) > np.abs( spawn_diffs[second_opp_id]): ballistic_target_id = second_opp_id third_opp_id = np.argsort(spawn_diffs)[2] spawn_diffs_not_best = np.array([spawn_diffs[i] for i in range(3) if ( not i == first_opp_id)]) winning_clearly_second = np.all( spawn_diffs_not_best >= (8-4*observation['relative_step'])) winning_considerably_second = np.all(spawn_diffs_not_best >= ( 6-4*observation['relative_step'])) third_fourth_spawn_diff = spawn_diffs[third_opp_id] - ( spawn_diffs[second_opp_id]) very_tight_fight_for_second = ( np.abs(spawn_diffs[second_opp_id]) < np.abs( spawn_diffs[third_opp_id])/2) and ( spawn_diffs[third_opp_id] >= (12-8*observation['relative_step'])) tight_fight_for_second = ( np.abs(spawn_diffs[second_opp_id]) < np.abs( spawn_diffs[third_opp_id])) and ( spawn_diffs[third_opp_id] >= (10-7*observation['relative_step'])) should_start_ballistic = ( winning_clearly_second and third_fourth_spawn_diff > ( 4-2*observation['relative_step']) or ( very_tight_fight_for_second)) and ( my_ship_count >= 15-max(0, 40*(observation['relative_step']-0.8))) should_continue_ballistic = (( winning_clearly_second and (third_fourth_spawn_diff > 1)) or ( winning_considerably_second and ( third_fourth_spawn_diff > (2-observation['relative_step']))) or ( tight_fight_for_second) ) and (my_ship_count >= 10-max( 0, 20*(observation['relative_step']-0.8))) ballistic_mode = should_start_ballistic or ( prev_ballistic_mode and should_continue_ballistic) # if observation['step'] == 363: # import pdb; pdb.set_trace() # if ballistic_mode: # print("SECOND BALLISTIC MODE", observation['step'], # ballistic_target_id) if not ballistic_mode: ballistic_target_id = 0 # This could be 1 or 2 as well history['ballistic_early_best_target_mode'] = ( ballistic_early_best_target_mode) if not ballistic_mode and targeted_base_override is not None: print("Go ballistic on nearby base", observation['step'], targeted_base_override) ballistic_mode = True ballistic_target_id = np.argmax(base_counts) num_target_bases = base_counts[ballistic_target_id] ballistic_attack_base_targets = [] if ballistic_mode and num_target_bases > 0: target_bases = stacked_opponent_bases[ballistic_target_id] target_base_locations = np.where(target_bases) attack_target_base_scores = np.zeros(num_target_bases) my_base_density = smooth2d(my_bases, 10) for base_id in range(num_target_bases): base_row = target_base_locations[0][base_id] base_col = target_base_locations[1][base_id] attack_target_base_scores[base_id] = 5e-4*smoothed_halite[ base_row, base_col] + player_influence_maps[0, base_row, base_col] - ( player_influence_maps[ballistic_target_id+1, base_row, base_col]) + ( 100*int((base_row, base_col) in history['prev_step'][ 'ballistic_attack_base_targets'])) + 10*my_base_density[ base_row, base_col] # import pdb; pdb.set_trace() ordered_base_ids = np.argsort(-attack_target_base_scores) num_attacked_bases = 1 # 1 is plenty of aggression for the world for attack_id in range(num_attacked_bases): if attack_id == 0 and targeted_base_override is not None: # print("Targeted base override", observation['step'], # targeted_base_override) base_row, base_col = targeted_base_override else: base_id = ordered_base_ids[attack_id] base_row = target_base_locations[0][base_id] base_col = target_base_locations[1][base_id] opponent_bases_scaled[base_row, base_col] = 1e4 ballistic_attack_base_targets.append((base_row, base_col)) del_keys = [] for k in history['camping_ships_strategy']: if history['camping_ships_strategy'][k][5] in ( ballistic_attack_base_targets): del_keys.append(k) for k in del_keys: del history['camping_ships_strategy'][k] # print(observation['step'], ballistic_mode, ballistic_attack_base_targets) history['ballistic_mode'] = ballistic_mode return (opponent_bases_scaled, opponent_ships_scaled, abs_rel_normalized_diff, currently_winning, approximate_score_diff, history, ballistic_attack_base_targets) def get_influence_map(config, stacked_bases, stacked_ships, halite_ships, observation, player_obs, smooth_kernel_dim=7): # FUTURE WORK: incorporate the number of ships in computing the base weights # Reasoning: a base without ships is not really a threat all_ships = stacked_ships.sum(0).astype(np.bool) my_ships = stacked_ships[0].astype(np.bool) if my_ships.sum() == 0: return None, None, None, None, None, None num_players = stacked_ships.shape[0] grid_size = my_ships.shape[0] ship_range = 1-config['influence_map_min_ship_weight'] all_ships_halite = halite_ships[all_ships] unique_vals, unique_counts = np.unique( all_ships_halite, return_counts=True) assert np.all(np.diff(unique_vals) > 0) unique_halite_vals = np.sort(unique_vals).astype(np.int).tolist() num_ships = all_ships_halite.size halite_ranks = [np.array( [unique_halite_vals.index(hs) for hs in halite_ships[ stacked_ships[i]]]) for i in range(num_players)] less_rank_cum_counts = np.cumsum(unique_counts) num_unique = unique_counts.size halite_rank_counts = [np.array( [less_rank_cum_counts[r-1] if r > 0 else 0 for r in ( halite_ranks[i])]) for i in range(num_players)] ship_weights = [1 - r/(num_ships-1+1e-9)*ship_range for r in ( halite_rank_counts)] raw_influence_maps = np.zeros((num_players, grid_size, grid_size)) raw_influence_maps_unweighted = np.zeros((num_players, grid_size, grid_size)) influence_maps = np.zeros((num_players, grid_size, grid_size)) influence_maps_unweighted = np.zeros((num_players, grid_size, grid_size)) for i in range(num_players): raw_influence_maps[i][stacked_ships[i]] += ship_weights[i] raw_influence_maps[i][stacked_bases[i]] += config[ 'influence_map_base_weight'] raw_influence_maps_unweighted[i][stacked_ships[i]] += 1 raw_influence_maps_unweighted[i][stacked_bases[i]] += 1 influence_maps[i] = smooth2d(raw_influence_maps[i], smooth_kernel_dim=smooth_kernel_dim) influence_maps_unweighted[i] = smooth2d( raw_influence_maps_unweighted[i], smooth_kernel_dim=smooth_kernel_dim) my_influence = influence_maps[0] max_other_influence = influence_maps[1:].max(0) influence_map = my_influence - max_other_influence influence_map_unweighted = influence_maps_unweighted[0] - ( influence_maps_unweighted[1:].sum(0)) # Define the escape influence map rem_other_influence = influence_maps[1:].sum(0) - max_other_influence escape_influence_map = 3*my_influence-( 2*max_other_influence+rem_other_influence) escape_influence_probs = np.exp(np.minimum(0, escape_influence_map)/config[ 'escape_influence_prob_divisor']) # Derive the priority scores based on the influence map priority_scores = 1/(1+np.abs(influence_map)) # Extract a dict of my ship weights ship_priority_weights = {} for ship_k in player_obs[2]: row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_halite = halite_ships[row, col] halite_rank = unique_halite_vals.index(ship_halite) ship_priority_weights[ship_k] = 1 - halite_rank/( num_unique-1+1e-9)*ship_range return (influence_map, influence_map_unweighted, influence_maps, priority_scores, ship_priority_weights, escape_influence_probs) # Compute the weighted base mask - the base with value one represents the # main base and the values are used as a multiplier in the return to base # scores. def get_weighted_base_mask(stacked_bases, stacked_ships, observation, history, consistent_main_base_bonus=3): my_bases = stacked_bases[0] # Exclude bases that are persistently camped by opponents for base_pos in history['my_base_not_attacked_positions']: my_bases[base_pos] = 0 num_bases = my_bases.sum() my_base_locations = np.where(my_bases) grid_size = stacked_bases.shape[1] ship_diff_smoothed = smooth2d(stacked_ships[0] - stacked_ships[1:].sum(0)) if num_bases == 0: base_mask = np.ones((grid_size, grid_size)) main_base_distances = -1*np.ones((grid_size, grid_size)) non_abandoned_base_distances = -1*np.ones((grid_size, grid_size)) elif num_bases >= 1: all_non_abandoned_base_distances = [] for base_id in range(num_bases): base_row = my_base_locations[0][base_id] base_col = my_base_locations[1][base_id] all_non_abandoned_base_distances.append(DISTANCES[ base_row, base_col]) non_abandoned_base_distances = np.stack( all_non_abandoned_base_distances).min(0) # Add a bonus to identify the main base id, but don't include the bonus # in the base scaling ship_diff_smoothed_with_bonus = np.copy(ship_diff_smoothed) prev_main_base_location = history['prev_step']['my_main_base_location'] # print(observation['step'], prev_main_base_location, num_bases) if prev_main_base_location[0] >= 0: ship_diff_smoothed_with_bonus[prev_main_base_location] += ( consistent_main_base_bonus) base_densities = ship_diff_smoothed[my_base_locations] base_densities_with_bonus = ship_diff_smoothed_with_bonus[ my_base_locations] highest_base_density_with_bonus = base_densities_with_bonus.max() best_ids = np.where( base_densities_with_bonus == highest_base_density_with_bonus)[0] highest_base_density = base_densities[best_ids[0]] # Subtract some small value of the non max densities to break rare ties main_base_row = my_base_locations[0][best_ids[0]] main_base_col = my_base_locations[1][best_ids[0]] main_base_distances = DISTANCES[main_base_row, main_base_col] all_densities = np.minimum(ship_diff_smoothed, highest_base_density-1e-5) all_densities[main_base_row, main_base_col] += 1e-5 # Linearly compute the weighted base mask: 1 is my best base and 0 is the # lowest ship_diff_smoothed value all_densities -= all_densities.min() base_mask = all_densities/all_densities.max() return (base_mask, main_base_distances, non_abandoned_base_distances, ship_diff_smoothed) # Force returning to a base when the episode is almost over def force_return_base_end_episode( my_bases, base_return_grid_multiplier, main_base_distances, row, col, steps_remaining, opponent_less_halite_ships, weighted_base_mask, safe_to_collect): num_bases = my_bases.sum() base_positions = np.where(my_bases) # List the bases I *can* return to can_return_scores = np.zeros(num_bases) for i in range(num_bases): base_row = base_positions[0][i] base_col = base_positions[1][i] base_distance = DISTANCES[row, col][base_row, base_col] threat_mask = np.logical_and( DISTANCES[(row, col)] <= base_distance, DISTANCES[(base_row, base_col)] <= base_distance) if base_distance > 1: threat_mask[row, col] = 0 threat_mask[base_row, base_col] = 0 threat_ships_mask = opponent_less_halite_ships[threat_mask] can_return_scores[i] = (base_distance <= steps_remaining)*(10+ max(int(safe_to_collect[row, col]), weighted_base_mask[base_row, base_col]) - 5*( threat_ships_mask.mean()) - base_distance/30) # if observation['step'] == 384 and row == 8 and col == 11: # import pdb; pdb.set_trace() # Force an emergency return if the best return scores demand an urgent # return in order to bring the halite home before the episode is over end_game_base_return = False if num_bases > 0: best_return_id = np.argmax(can_return_scores) best_base_row = base_positions[0][best_return_id] best_base_col = base_positions[1][best_return_id] best_base_distance = DISTANCES[row, col][best_base_row, best_base_col] end_game_base_return = best_base_distance in [ steps_remaining-1, steps_remaining] if end_game_base_return: base_return_grid_multiplier[best_base_row, best_base_col] += 1e15 return base_return_grid_multiplier, end_game_base_return def edge_aware_square_subset_mask(data, row, col, window, box, grid_size): # Figure out how many rows to roll the data and box to end up with a # contiguous subset min_row = row - window max_row = row + window if min_row < 0: data = np.roll(data, -min_row, axis=0) box = np.roll(box, -min_row, axis=0) elif max_row >= grid_size: data = np.roll(data, grid_size-max_row-1, axis=0) box = np.roll(box, grid_size-max_row-1, axis=0) # Figure out how many columns to roll the data and box to end up with a # contiguous subset min_col = col - window max_col = col + window if min_col < 0: data = np.roll(data, -min_col, axis=1) box = np.roll(box, -min_col, axis=1) elif max_col >= grid_size: data = np.roll(data, grid_size-max_col-1, axis=1) box = np.roll(box, grid_size-max_col-1, axis=1) return data[box] def update_scores_opponent_boxing_in( all_ship_scores, stacked_ships, observation, env_config, opponent_ships_sensible_actions, halite_ships, steps_remaining, player_obs, np_rng, opponent_ships_scaled, collect_rate, obs_halite, main_base_distances, history, on_rescue_mission, my_defend_base_ship_positions, env_observation, player_influence_maps, override_move_squares_taken, ignore_convert_positions, convert_unavailable_positions, always_attack_opponent_id, num_non_abandoned_bases, likely_convert_opponent_positions, possible_convert_opponent_positions, my_current_base_distances, box_in_window=3, min_attackers_to_box=4): # Loop over the opponent ships and derive if I can box them in # For now this is just greedy. We should probably consider decoupling finding # targets from actually boxing in. # FUTURE WORK: proper handling of opponent bases opponent_positions = np.where(stacked_ships[1:].sum(0) > 0) opponent_bases = np.stack([rbs[1] for rbs in observation[ 'rewards_bases_ships']])[1:].sum(0) num_opponent_ships = opponent_positions[0].size double_window = box_in_window*2 dist_mask_dim = 2*double_window+1 nearby_rows = np.tile(np.expand_dims(np.arange(dist_mask_dim), 1), [1, dist_mask_dim]) nearby_cols = np.tile(np.arange(dist_mask_dim), [dist_mask_dim, 1]) ships_available = np.copy(stacked_ships[0]) & (~on_rescue_mission) & ( ~my_defend_base_ship_positions) & (~convert_unavailable_positions) boxing_in = np.zeros_like(on_rescue_mission) grid_size = stacked_ships.shape[1] # ship_pos_to_key = {v[0]: k for k, v in player_obs[2].items()} prev_step_boxing_in_ships = history['prev_step_boxing_in_ships'] num_players = stacked_ships.shape[0] spawn_cost = env_config.spawnCost ship_pos_to_key = {} for i in range(num_players): ship_pos_to_key.update({ v[0]: k for k, v in env_observation.players[i][2].items()}) # Loop over the camping ships and exclude the ones from the available mask # that have flagged they are not available for boxing in camping_ships_strategy = history['camping_ships_strategy'] for ship_k in camping_ships_strategy: if not camping_ships_strategy[ship_k][3]: camping_row, camping_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ships_available[camping_row, camping_col] = 0 # Loop over the ships that attack opponent camplers and exclude them from the # available mask attack_opponent_campers = history['attack_opponent_campers'] for ship_k in attack_opponent_campers: attacking_camper_row, attacking_camper_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ships_available[attacking_camper_row, attacking_camper_col] = 0 # Loop over the ships that are stuck in a loop and mark them as unavailable for ship_k in history['avoid_cycle_actions']: cycle_row, cycle_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ships_available[cycle_row, cycle_col] = 0 original_ships_available = np.copy(ships_available) my_ship_density = smooth2d(ships_available, smooth_kernel_dim=2) # Compute the priorities of attacking each ship # Compute the minimum opponent halite in the neighborhood of each square # by looping over all opponent ships attack_ship_priorities = np.zeros(num_opponent_ships) near_opponent_min_halite = np.ones((grid_size, grid_size))*1e6 near_opponent_2_min_halite = np.ones((grid_size, grid_size))*1e6 near_opponent_specific_2_min_halite = [ np.ones((grid_size, grid_size))*1e6 for _ in range(num_players)] should_attack = np.zeros(num_opponent_ships, dtype=np.bool) for i in range(num_opponent_ships): row = opponent_positions[0][i] col = opponent_positions[1][i] opponent_ship_k = ship_pos_to_key[row*grid_size+col] boxing_in_prev_step = opponent_ship_k in prev_step_boxing_in_ships opponent_halite = halite_ships[row, col] clipped_opponent_halite = min(spawn_cost, opponent_halite) opponent_id = np.where(stacked_ships[:, row, col])[0][0] attack_ship_priorities[i] = 1e5*boxing_in_prev_step + ( clipped_opponent_halite) + 1000*( opponent_ships_scaled[opponent_id-1]) + 1000*my_ship_density[row, col] near_opp_mask = ROW_COL_MAX_DISTANCE_MASKS[(row, col, box_in_window)] near_opp_2_mask = ROW_COL_MAX_DISTANCE_MASKS[(row, col, 2)] near_opponent_min_halite[near_opp_mask] = np.minimum( opponent_halite, near_opponent_min_halite[near_opp_mask]) near_opponent_2_min_halite[near_opp_2_mask] = np.minimum( opponent_halite, near_opponent_2_min_halite[near_opp_2_mask]) near_opponent_specific_2_min_halite[opponent_id][near_opp_2_mask] = ( np.minimum(opponent_halite, near_opponent_specific_2_min_halite[opponent_id][ near_opp_2_mask])) # if observation['step'] == 163 and row == 2: # import pdb; pdb.set_trace() should_attack[i] = (main_base_distances[row, col] >= (9-( observation['relative_step']*6 + 3*num_non_abandoned_bases)) or ( opponent_halite < history[ 'inferred_boxed_in_conv_threshold'][opponent_id][0]) or ( always_attack_opponent_id == opponent_id)) and not ( (row, col) in ignore_convert_positions) box_opponent_positions = [] boxing_in_ships = [] ships_on_box_mission = {} opponent_ship_order = np.argsort(-attack_ship_priorities) for i in range(num_opponent_ships): opponent_ship_id = opponent_ship_order[i] row = opponent_positions[0][opponent_ship_id] col = opponent_positions[1][opponent_ship_id] opponent_id = np.where(stacked_ships[:, row, col])[0][0] opponent_ship_k = ship_pos_to_key[row*grid_size+col] sensible_target_actions = opponent_ships_sensible_actions[row, col] target_halite = halite_ships[row, col] my_less_halite_mask = np.logical_and( halite_ships < target_halite, ships_available) # if observation['step'] == 210 and row == 1 and col == 8: # import pdb; pdb.set_trace() # Drop non zero halite ships towards the end of a game (they should return) my_less_halite_mask = np.logical_and( my_less_halite_mask, np.logical_or( halite_ships == 0, steps_remaining > 20)) max_dist_mask = ROW_COL_MAX_DISTANCE_MASKS[(row, col, double_window)] my_less_halite_mask &= max_dist_mask box_pos = ROW_COL_BOX_MAX_DISTANCE_MASKS[row, col, double_window] # if observation['step'] == 157 and row == 13 and col == 1: # import pdb; pdb.set_trace() if my_less_halite_mask.sum() >= min_attackers_to_box and should_attack[ opponent_ship_id]: # Look up the near opponent min halite in the square which is in the # middle between my attackers and the target - don't attack when there is # a less halite ship near that ship or if there is an equal halite ship # near that square and close to the opponent my_considered_pos = np.where(my_less_halite_mask) if my_considered_pos[0].size: considered_rows = my_considered_pos[0] considered_cols = my_considered_pos[1] mid_rows = np.where( np.abs(considered_rows-row) <= (grid_size // 2), np.round((considered_rows*(1-1e-9)+row*(1+1e-9))/2), np.where(considered_rows*(1-1e-9)+row*(1+1e-9) >= grid_size, np.round( (considered_rows*(1-1e-9)+row*(1+1e-9)-grid_size)/2), np.mod(np.round( (considered_rows*(1-1e-9)+row*(1+1e-9)+grid_size)/2), grid_size)) ).astype(np.int) mid_cols = np.where( np.abs(considered_cols-col) <= (grid_size // 2), np.round((considered_cols*(1-1e-9)+col*(1+1e-9))/2), np.where(considered_cols*(1-1e-9)+col*(1+1e-9) >= grid_size, np.round( (considered_cols*(1-1e-9)+col*(1+1e-9)-grid_size)/2), np.mod(np.round( (considered_cols*(1-1e-9)+col*(1+1e-9)+grid_size)/2), grid_size)) ).astype(np.int) # Only box in with ships that can safely do so without becoming a # target themselves. Take more risk when the halite on board is # equal to that of other target surrounding ships (typically 0 halite) considered_to_target_distances = DISTANCES[(row, col)][ (considered_rows, considered_cols)] considered_min_halite_limits = np.where( considered_to_target_distances < 3, near_opponent_2_min_halite[ (mid_rows, mid_cols)], near_opponent_min_halite[ (mid_rows, mid_cols)]) drop_ids = (considered_min_halite_limits < ( halite_ships[(considered_rows, considered_cols)])) | ( (considered_min_halite_limits == ( halite_ships[(considered_rows, considered_cols)])) & ( near_opponent_specific_2_min_halite[opponent_id][ (row, col)] <= ( halite_ships[(considered_rows, considered_cols)]))) if np.any(drop_ids): drop_row_ids = considered_rows[drop_ids] drop_col_ids = considered_cols[drop_ids] my_less_halite_mask[(drop_row_ids, drop_col_ids)] = 0 my_less_halite_mask_box = edge_aware_square_subset_mask( my_less_halite_mask, row, col, double_window, box_pos, grid_size) nearby_less_halite_mask = my_less_halite_mask_box.reshape( (dist_mask_dim, dist_mask_dim)) # if observation['step'] == 32: # import pdb; pdb.set_trace() my_num_nearby = nearby_less_halite_mask.sum() else: my_num_nearby = 0 if my_num_nearby >= min_attackers_to_box: # Check all directions to make sure I can box the opponent in can_box_in = True box_in_mask_dirs = np.zeros( (4, dist_mask_dim, dist_mask_dim), dtype=np.bool) for dim_id, d in enumerate(NOT_NONE_DIRECTIONS): dir_and_ships = BOX_DIRECTION_MASKS[(double_window, d)] & ( nearby_less_halite_mask) if not np.any(dir_and_ships): can_box_in = False break else: box_in_mask_dirs[dim_id] = dir_and_ships if can_box_in: # Sketch out the escape squares for the target ship opponent_distances = np.abs(nearby_rows-double_window) + np.abs( nearby_cols-double_window) opponent_euclid_distances = np.sqrt( (nearby_rows-double_window)**2 + ( nearby_cols-double_window)**2) nearby_mask_pos = np.where(nearby_less_halite_mask) my_nearest_distances = np.stack([np.abs( nearby_rows-nearby_mask_pos[0][j]) + np.abs( nearby_cols-nearby_mask_pos[1][j]) for j in range( my_num_nearby)]) my_nearest_euclid_distances = np.stack([np.sqrt(( nearby_rows-nearby_mask_pos[0][j])**2 + ( nearby_cols-nearby_mask_pos[1][j])**2) for j in range( my_num_nearby)]) # No boxing in if the opponent has a base in one of the escape squares escape_squares = opponent_distances <= my_nearest_distances.min(0) cropped_distances = OTHER_DISTANCES[ (double_window, double_window, dist_mask_dim)] for dim_id, d in enumerate(NOT_NONE_DIRECTIONS): box_dir_mask = BOX_DIRECTION_MASKS[(double_window, d)] closest_dim_distance = cropped_distances[ box_in_mask_dirs[dim_id]].min() escape_squares[box_dir_mask] &= ( cropped_distances[box_dir_mask] <= closest_dim_distance) if not np.any(observation['rewards_bases_ships'][opponent_id][1][ box_pos][escape_squares.flatten()]): # Let's box the opponent in! # We should move towards the opponent if we can do so without opening # up an escape direction # if observation['step'] == 32: # import pdb; pdb.set_trace() # Order the planning by priority of direction and distance to the # opponent # Reasoning: mid-distance ships plan first since that allows fast # boxing in - the nearby ships then just have to cover the remaining # directions. # Ships which cover hard to cover directions plan later. box_in_mask_dirs_sum = box_in_mask_dirs.sum((1, 2)) ship_priorities = np.zeros(my_num_nearby) must_attack_converting_square = ((row, col) in ( likely_convert_opponent_positions)) and not ( (row, col) in ignore_convert_positions) and (( always_attack_opponent_id == opponent_id) or ( my_current_base_distances[:, row, col].min() < 5)) threatened_one_step = set() for j in range(my_num_nearby): my_row = nearby_mask_pos[0][j] my_col = nearby_mask_pos[1][j] box_directions = box_in_mask_dirs[:, my_row, my_col] opponent_distance = np.abs(my_row-double_window) + np.abs( my_col-double_window) ship_priorities[j] = 20/( box_in_mask_dirs_sum[box_directions].prod())+np.abs( opponent_distance**0.9-box_in_window**0.9) if opponent_distance == 2 and box_directions.sum() == 2 and np.all( box_in_mask_dirs_sum[box_directions] == 1): two_step_dirs = [MOVE_DIRECTIONS[move_id+1] for move_id in ( np.where(box_directions)[0])] threatened_one_step.update(two_step_dirs) # I can always attack all escape squares if I have at least 5 ships # at a maximum distance of two with at least one attacker on each # half plane vert_diff = double_window-nearby_mask_pos[0] horiz_diff = double_window-nearby_mask_pos[1] distances = np.abs(vert_diff) + np.abs(horiz_diff) is_near = distances <= 2 near_vert_diff = vert_diff[is_near] near_horiz_diff = horiz_diff[is_near] i_can_attack_all_escape_squares = distances.min() == 1 and ( is_near.sum() >= 5) and np.sign(near_vert_diff).ptp() == 2 and ( np.sign(near_horiz_diff).ptp() == 2) if i_can_attack_all_escape_squares and (distances == 1).sum() == 1: # I can only attack all escape squares if my attacker can be # replaced one_step_diff_id = np.argmin(distances) single_attack_row = nearby_mask_pos[0][one_step_diff_id] single_attack_col = nearby_mask_pos[1][one_step_diff_id] can_replace = False for row_offset in [-1, 1]: for col_offset in [-1, 1]: if nearby_less_halite_mask[single_attack_row + row_offset, single_attack_col + col_offset]: can_replace = True break i_can_attack_all_escape_squares = can_replace # DISCERN if we are just chasing or actually attacking the ship in # the next move - dummy rule to have at least K neighboring ships # for us to attack the position of the targeted ship - this makes it # hard to guess the escape direction ship_target_1_distances = my_nearest_distances[ :, double_window, double_window] == 1 next_step_attack = (len(sensible_target_actions) == 0 and ( ship_target_1_distances.sum() > 2)) or ( i_can_attack_all_escape_squares) or ( must_attack_converting_square and np.any( ship_target_1_distances)) # if next_step_attack and not ( # (len(sensible_target_actions) == 0 and ( # ship_target_1_distances.sum() > 2)) or ( # i_can_attack_all_escape_squares)): # import pdb; pdb.set_trace() opponent_boxed_bases = edge_aware_square_subset_mask( opponent_bases, row, col, double_window, box_pos, grid_size).reshape((dist_mask_dim, dist_mask_dim)) pos_taken = np.copy(opponent_boxed_bases) box_override_assignment_not_next_attack = {} if next_step_attack: # If there is a ship that can take the position of my attacker: # attack with that ship and replace its position. # Otherwise pick a random attacker and keep the others in place. # Initial approach: don't move with ships at distance 1. ship_target_2_distance_ids = np.where(my_nearest_distances[ :, double_window, double_window] == 2)[0].tolist() move_ids_directions_next_attack = {} # Reorder ship_target_2_distance_ids so that the ones that can # replace a 1 step threat are considered last, except when there is # only a single 1 step threat (it would always move to the target). # Also prefer to consider ships that only have a single option # to move to the target first two_step_distance_scores = np.zeros( len(ship_target_2_distance_ids)) for two_step_id, two_step_diff_id in enumerate( ship_target_2_distance_ids): my_row = nearby_mask_pos[0][two_step_diff_id] my_col = nearby_mask_pos[1][two_step_diff_id] mask_between = get_mask_between_exclude_ends( my_row, my_col, double_window, double_window, dist_mask_dim) two_step_distance_scores[two_step_id] = mask_between.sum() + 10*( nearby_less_halite_mask[mask_between].sum())*( ship_target_1_distances.sum() > 1) # if observation['step'] == 134: # import pdb; pdb.set_trace() ship_target_2_distance_ids = np.array( ship_target_2_distance_ids)[ np.argsort(two_step_distance_scores)].tolist() # Add the positions of the one step attackers for one_step_diff_id in np.where(ship_target_1_distances)[0]: my_row = nearby_mask_pos[0][one_step_diff_id] my_col = nearby_mask_pos[1][one_step_diff_id] # If I only have one ship that can attack the target: attack with # that ship! if ship_target_1_distances.sum() == 1: attack_direction = get_dir_from_target( my_row, my_col, double_window, double_window, grid_size=1000)[0] pos_taken[double_window, double_window] = True move_ids_directions_next_attack[one_step_diff_id] = ( attack_direction) else: pos_taken[my_row, my_col] = 1 # if observation['step'] == 176: # import pdb; pdb.set_trace() two_step_pos_taken = [] while ship_target_2_distance_ids: two_step_diff_id = ship_target_2_distance_ids.pop(0) my_row = nearby_mask_pos[0][two_step_diff_id] my_col = nearby_mask_pos[1][two_step_diff_id] # Consider the shortest directions towards the target shortest_directions = get_dir_from_target( my_row, my_col, double_window, double_window, grid_size=1000) has_selected_action = False for d in shortest_directions: # Prefer empty 1-step to target spaces over replacing a one # step threat move_row, move_col = move_ship_row_col( my_row, my_col, d, size=1000) if not pos_taken[move_row, move_col] and (not ( (move_row, move_col) in two_step_pos_taken)): two_step_pos_taken.append((move_row, move_col)) move_ids_directions_next_attack[two_step_diff_id] = d has_selected_action = True break if not has_selected_action: # Replace a 1-step threatening ship for d in shortest_directions: move_row, move_col = move_ship_row_col( my_row, my_col, d, size=1000) if pos_taken[move_row, move_col] and not pos_taken[ double_window, double_window] and not opponent_boxed_bases[ move_row, move_col]: move_ids_directions_next_attack[two_step_diff_id] = d # Find the ids of the 1-step ship and make sure that ship # attacks replaced_id = np.where(my_nearest_distances[ :, move_row, move_col] == 0)[0][0] one_step_attack_dir = get_dir_from_target( move_row, move_col, double_window, double_window, grid_size=1000)[0] move_ids_directions_next_attack[replaced_id] = ( one_step_attack_dir) pos_taken[double_window, double_window] = True # Recompute the priority of the remaining two step ships # Prefer ships with the lowest pos_taken shortest actions two_step_distance_scores = np.zeros( len(ship_target_2_distance_ids)) for two_step_id, two_step_diff_id in enumerate( ship_target_2_distance_ids): my_row = nearby_mask_pos[0][two_step_diff_id] my_col = nearby_mask_pos[1][two_step_diff_id] shortest_directions = get_dir_from_target( my_row, my_col, double_window, double_window, grid_size=1000) for d in shortest_directions: move_row, move_col = move_ship_row_col( my_row, my_col, d, size=1000) two_step_distance_scores[two_step_id] += int( not (pos_taken[move_row, move_col] or ( (move_row, move_col) in two_step_pos_taken))) ship_target_2_distance_ids = np.array( ship_target_2_distance_ids)[ np.argsort(two_step_distance_scores)].tolist() one_step_diff_ids = np.where(ship_target_1_distances)[0] if pos_taken[double_window, double_window]: # Add the remaining one step attackers with stay in place actions for one_step_diff_id in one_step_diff_ids: if not one_step_diff_id in move_ids_directions_next_attack: move_ids_directions_next_attack[one_step_diff_id] = None else: # Prefer to avoid stay in place actions with zero halite ships real_mask_pos = ( np.mod(nearby_mask_pos[0]+row-double_window, grid_size), np.mod(nearby_mask_pos[1]+col-double_window, grid_size) ) one_step_halite_on_board = halite_ships[real_mask_pos][ one_step_diff_ids] one_step_halite_on_square = obs_halite[real_mask_pos][ one_step_diff_ids] prefers_box_in = (one_step_halite_on_board == 0) & ( one_step_halite_on_square > 0) if np.all(~prefers_box_in): one_step_diff_ids_attack = one_step_diff_ids else: one_step_diff_ids_attack = one_step_diff_ids[ prefers_box_in] # Of the remaining attack options: prefer an attacker from the # direction where we have the highest influence, relative to the # targeted opponent # one_step_attacker_id = np_rng.choice(one_step_diff_ids_attack) my_influences = player_influence_maps[0][real_mask_pos][ one_step_diff_ids_attack] opponent_influences = player_influence_maps[opponent_id][ real_mask_pos][one_step_diff_ids_attack] influence_differences = my_influences - opponent_influences one_step_attacker_id = one_step_diff_ids_attack[ np.argmax(influence_differences)] # Pick a random one step attacker to attack the target and make # sure the remaining 1-step ships stay in place for one_step_diff_id in one_step_diff_ids: if one_step_diff_id == one_step_attacker_id: my_row = nearby_mask_pos[0][one_step_diff_id] my_col = nearby_mask_pos[1][one_step_diff_id] attack_dir = get_dir_from_target( my_row, my_col, double_window, double_window, grid_size=1000)[0] else: attack_dir = None move_ids_directions_next_attack[one_step_diff_id] = attack_dir elif len(sensible_target_actions) == 0 or ( len(sensible_target_actions) == 1 and ( sensible_target_actions[0] == (0, 0))): # Inspect what directions I can move right next to when the # opponent has no valid escape actions. Use a greedy search to # determine the action selection order can_box_immediately = [] can_box_immediately_counts = np.zeros(4) for j in range(my_num_nearby): my_row = nearby_mask_pos[0][j] my_col = nearby_mask_pos[1][j] box_directions = box_in_mask_dirs[:, my_row, my_col] opponent_distance = np.abs(my_row-double_window) + np.abs( my_col-double_window) if opponent_distance <= 2: immediate_box_dirs = np.where(box_directions)[0] can_box_immediately.append(( j, immediate_box_dirs, box_directions, my_row, my_col)) can_box_immediately_counts[box_directions] += 1 can_box_progress = [list(cb) for cb in can_box_immediately] can_box_immediately_counts_progress = np.copy( can_box_immediately_counts) not_boxed_dirs = np.ones(4, dtype=np.bool) # if observation['step'] == 97: # import pdb; pdb.set_trace() # Iteratively look for directions where I can box in in one step # when I have others that can box in the remaining directions # and nobody else can box that direction in box_in_mask_rem_dirs_sum = np.copy(box_in_mask_dirs_sum) while len(can_box_progress) > 0 and np.any(not_boxed_dirs) and ( can_box_immediately_counts_progress.sum() > 0): considered_dir = np.argmin( can_box_immediately_counts_progress + 100*( can_box_immediately_counts_progress <= 0) + 1e-2*( box_in_mask_rem_dirs_sum)) considered_dir_ids = [( j, cb[0], box_in_mask_rem_dirs_sum[cb[1]], cb[1], cb[3], cb[4]) for j, cb in enumerate(can_box_progress) if ( considered_dir in cb[1] and np.all( box_in_mask_rem_dirs_sum[cb[1]] >= 1))] num_considered_dir_ids = len(considered_dir_ids) if num_considered_dir_ids > 0: # Tie breaker: the one with the most ships in the other dir # support if num_considered_dir_ids > 1: scores = np.zeros(num_considered_dir_ids) for k in range(num_considered_dir_ids): scores[k] = 100*len(considered_dir_ids[k][2]) - ( considered_dir_ids[k][2].sum()) picked_dir_id = np.argmin(scores) else: picked_dir_id = 0 picked = considered_dir_ids[picked_dir_id] box_override_assignment_not_next_attack[picked[1]] = ( considered_dir, picked[4], picked[5]) # If I move closer with a diagonal ship: subtract the # immediate box counter for the other direction picked_other_immediate_box_dirs = picked[3][ picked[3] != considered_dir] can_box_immediately_counts_progress[considered_dir] = 0 can_box_immediately_counts_progress[ picked_other_immediate_box_dirs] -= 1 not_boxed_dirs[considered_dir] = 0 box_in_mask_rem_dirs_sum[picked[3]] -= 1 ship_priorities[picked[1]] -= 1e6 del can_box_progress[picked[0]] else: break num_covered_directions = np.zeros(4, dtype=np.int) num_one_step_from_covered = np.zeros(4, dtype=np.bool) ship_order = np.argsort(ship_priorities) box_in_mask_rem_dirs_sum = np.copy(box_in_mask_dirs_sum) update_ship_scores = [] one_square_threats = [] almost_covered_dirs = [] for j in range(my_num_nearby): attack_id = ship_order[j] my_row = nearby_mask_pos[0][attack_id] my_col = nearby_mask_pos[1][attack_id] my_abs_row = (row+my_row-double_window) % grid_size my_abs_col = (col+my_col-double_window) % grid_size ship_pos = my_abs_row*grid_size+my_abs_col ship_k = ship_pos_to_key[ship_pos] box_directions = box_in_mask_dirs[:, my_row, my_col] opponent_distance = np.abs(my_row-double_window) + np.abs( my_col-double_window) box_in_mask_rem_dirs_sum[box_directions] -= 1 # if observation['step'] == 341: # import pdb; pdb.set_trace() if next_step_attack: # Increase the ship scores for the planned actions if attack_id in move_ids_directions_next_attack: move_dir = move_ids_directions_next_attack[attack_id] move_row, move_col = move_ship_row_col( my_abs_row, my_abs_col, move_dir, grid_size) # if observation['step'] == 204: # import pdb; pdb.set_trace() update_ship_scores.append( (ship_k, move_row, move_col, 2e6, opponent_distance, None, my_abs_row, my_abs_col)) else: # Figure out if we should use this ship to attack the target - # there is no point in using too many ships! # if observation['step'] == 201 and my_row == 6 and my_col == 7: # import pdb; pdb.set_trace() if (opponent_distance > 2) and ( (num_covered_directions[box_directions] + 0.5*( box_in_mask_rem_dirs_sum[box_directions])).min() >= 2 and ( np.all(num_covered_directions[box_directions] > 0)) or ( box_in_mask_rem_dirs_sum[box_directions].min() > 2) and ( opponent_distance > box_in_window)): # print("Dropping ship", my_abs_row, my_abs_col, "from attack") continue rel_pos_diff = (my_row-double_window, my_col-double_window) num_covered_attacker = num_covered_directions[box_directions] # Logic to cover a direction that is almost covered almost_covered_override = False if np.all((num_covered_attacker > 0) | ( box_in_mask_rem_dirs_sum[box_directions] >= 1)) & np.any( num_one_step_from_covered) and ( box_directions.sum() == 1) and len( threatened_one_step) > 0 and (( np.abs(my_row - my_col) == 1) or (my_row + my_col in [ double_window-1, double_window+1])): move_dir = None if my_row-my_col == -1: if WEST in threatened_one_step and my_row < double_window: almost_covered_dir = WEST move_dir = SOUTH elif SOUTH in threatened_one_step and my_row > double_window: almost_covered_dir = SOUTH move_dir = WEST elif my_row-my_col == 1: if NORTH in threatened_one_step and my_row < double_window: almost_covered_dir = NORTH move_dir = EAST elif EAST in threatened_one_step and my_row > double_window: almost_covered_dir = EAST move_dir = NORTH elif my_row+my_col == double_window-1: if EAST in threatened_one_step and my_row < double_window: almost_covered_dir = EAST move_dir = SOUTH elif SOUTH in threatened_one_step and my_row > double_window: almost_covered_dir = SOUTH move_dir = EAST elif my_row+my_col == double_window+1: if NORTH in threatened_one_step and my_row < double_window: almost_covered_dir = NORTH move_dir = WEST elif WEST in threatened_one_step and my_row > double_window: almost_covered_dir = WEST move_dir = NORTH if move_dir is not None: move_row, move_col = move_ship_row_col( my_row, my_col, move_dir, grid_size) if not pos_taken[move_row, move_col]: # Override: when we are next to the target: expect opponent # to move almost_covered_override = True if opponent_distance == 1: threat_dir = OPPOSITE_MAPPING[get_dir_from_target( my_row, my_col, double_window, double_window, 1000)[0]] one_square_threats.append(threat_dir) move_dir = None else: # Make sure that the square we want to move to is # available almost_covered_dirs.append(almost_covered_dir) if not almost_covered_override: if attack_id in box_override_assignment_not_next_attack: attack_move_id = box_override_assignment_not_next_attack[ attack_id][0] assert box_directions[attack_move_id] else: attack_dir_scores = num_covered_attacker + 0.1*( box_in_mask_rem_dirs_sum[box_directions]) attack_dir_id = np.argmin(attack_dir_scores) attack_move_id = np.where(box_directions)[0][attack_dir_id] rel_pos_diff = (my_row-double_window, my_col-double_window) attack_cover_dir = np.array(NOT_NONE_DIRECTIONS)[ attack_move_id] one_hot_cover_dirs = np.zeros(4, dtype=bool) one_hot_cover_dirs[attack_move_id] = 1 other_dirs_covered = one_hot_cover_dirs | ( num_covered_directions > 0) | (box_in_mask_rem_dirs_sum >= 1) wait_reinforcements = not np.all(other_dirs_covered) or ( opponent_distance == 1) # if observation['step'] == 357: # import pdb; pdb.set_trace() # print(my_row, my_col, threatened_one_step, # num_covered_directions, num_one_step_from_covered) if wait_reinforcements: # Move away from the target if staying would mean having more # halite than the target my_next_halite = halite_ships[my_abs_row, my_abs_col] + int( collect_rate*obs_halite[my_abs_row, my_abs_col]) if my_next_halite > target_halite: move_away_dirs = get_dir_from_target( double_window, double_window, my_row, my_col, grid_size=1000) # import pdb; pdb.set_trace() move_dir = np_rng.choice(move_away_dirs) else: move_dir = None else: if num_covered_directions[attack_move_id] > 0: # Move towards the target on the diagonal (empowerment) move_penalties = 0.001*opponent_euclid_distances**4 + ( my_nearest_euclid_distances[attack_id]**4) + 1e3*( pos_taken) move_penalties[my_row, my_col] += 1e3 best_penalty_pos = np.where( move_penalties == move_penalties.min()) target_move_row = best_penalty_pos[0][0] target_move_col = best_penalty_pos[1][0] move_dir = get_dir_from_target( my_row, my_col, target_move_row, target_move_col, grid_size=1000)[0] if attack_cover_dir == NORTH: if np.abs(rel_pos_diff[1]) < (np.abs(rel_pos_diff[0])-1): move_dir = SOUTH elif rel_pos_diff[1] < 0: move_dir = EAST else: move_dir = WEST elif attack_cover_dir == SOUTH: if np.abs(rel_pos_diff[1]) < (np.abs(rel_pos_diff[0])-1): move_dir = NORTH elif rel_pos_diff[1] < 0: move_dir = EAST else: move_dir = WEST elif attack_cover_dir == EAST: if np.abs(rel_pos_diff[0]) < (np.abs(rel_pos_diff[1])-1): move_dir = WEST elif rel_pos_diff[0] < 0: move_dir = SOUTH else: move_dir = NORTH elif attack_cover_dir == WEST: if np.abs(rel_pos_diff[0]) < (np.abs(rel_pos_diff[1])-1): move_dir = EAST elif rel_pos_diff[0] < 0: move_dir = SOUTH else: move_dir = NORTH # Increase the ship scores for the planned actions moved_rel_dir = RELATIVE_DIR_MAPPING[move_dir] new_rel_pos = (rel_pos_diff[0] + moved_rel_dir[0], rel_pos_diff[1] + moved_rel_dir[1]) new_grid_pos = (double_window + new_rel_pos[0], double_window + new_rel_pos[1]) if new_grid_pos[0] < 0 or new_grid_pos[1] < 0 or new_grid_pos[ 0] > 2*double_window or new_grid_pos[1] > 2*double_window: new_rel_pos = (rel_pos_diff[0], rel_pos_diff[1]) new_grid_pos = (double_window + new_rel_pos[0], double_window + new_rel_pos[1]) if pos_taken[new_grid_pos] and opponent_distance == 2: # Override - if I can move right next to the target: do it. shortest_directions = get_dir_from_target( my_row, my_col, double_window, double_window, grid_size=1000) for move_dir in shortest_directions: moved_rel_dir = RELATIVE_DIR_MAPPING[move_dir] new_rel_pos = (rel_pos_diff[0] + moved_rel_dir[0], rel_pos_diff[1] + moved_rel_dir[1]) new_grid_pos = (double_window + new_rel_pos[0], double_window + new_rel_pos[1]) if not pos_taken[new_grid_pos]: break move_row, move_col = move_ship_row_col( my_abs_row, my_abs_col, move_dir, grid_size) if not pos_taken[new_grid_pos] and not new_rel_pos == (0, 0): # Update the covered attack directions ship_covered_directions = np.zeros(4, dtype=np.bool) ship_one_step_from_covered_directions = np.zeros( 4, dtype=np.bool) for threat_dir in RELATIVE_NOT_NONE_DIRECTIONS: nz_dim = int(threat_dir[0] == 0) dir_offset = new_rel_pos[nz_dim]*threat_dir[nz_dim] other_dir_abs_offset = np.abs(new_rel_pos[1-nz_dim]) if dir_offset > 0 and other_dir_abs_offset <= dir_offset: covered_id = np.where( RELATIVE_DIR_TO_DIRECTION_MAPPING[threat_dir] == ( np.array(NOT_NONE_DIRECTIONS)))[0][0] ship_one_step_from_covered_directions[covered_id] = 1 if other_dir_abs_offset < dir_offset: ship_covered_directions[covered_id] = 1 # if observation['step'] == 210 and row == 1 and col == 8: # import pdb; pdb.set_trace() # Join the attack - add actions to the list num_covered_directions[ship_covered_directions] += 1 num_one_step_from_covered[ ship_one_step_from_covered_directions] = 1 update_ship_scores.append( (ship_k, move_row, move_col, 2e6, opponent_distance, np.where(ship_covered_directions)[0], my_abs_row, my_abs_col)) pos_taken[new_grid_pos] = 1 # We can almost box the opponent in and rely on the opponent not # taking risky actions to escape almost_attack_nearby_blockers = False if len(threatened_one_step) > 0 and ( len(one_square_threats+almost_covered_dirs) > 0) and not np.all( num_covered_directions > 0) and not next_step_attack: not_covered_dirs = [MOVE_DIRECTIONS[i+1] for i in np.where( num_covered_directions == 0)[0]] if len(one_square_threats) > 0 and np.all( [d in threatened_one_step for d in not_covered_dirs]): almost_attack_nearby_blockers = True else: almost_attack_nearby_blockers = len( threatened_one_step.intersection(almost_covered_dirs)) > 0 # if observation['step'] == 87: # import pdb; pdb.set_trace() if next_step_attack or np.all(num_covered_directions > 0) or ( almost_attack_nearby_blockers and np.any( num_covered_directions > 0)): # Prune the attackers: only keep the closest two in each direction if not next_step_attack: drop_rows = [] distance_dir = np.array([[u[4], u[5][0]] for u in ( update_ship_scores) if u[5].size > 0]) for d_id in np.arange(4): if (distance_dir[:, 1] == d_id).sum() > 2: dir_rows = np.where(distance_dir[:, 1] == d_id)[0] drop_ids = np.argsort(distance_dir[dir_rows, 0])[2:] drop_rows.extend(dir_rows[drop_ids].tolist()) for dr in np.sort(drop_rows)[::-1]: del update_ship_scores[dr] # if observation['step'] == 237: # import pdb; pdb.set_trace() box_opponent_positions.append((row, col)) boxing_in_ships.append(opponent_ship_k) for (ship_k, move_row, move_col, new_collect_score, distance_to_target, _, my_abs_row, my_abs_col) in ( update_ship_scores): # Only update the ship scores if the box in action is in my one # step valid actions box_dir = get_dir_from_target( my_abs_row, my_abs_col, move_row, move_col, grid_size)[0] if box_dir in all_ship_scores[ship_k][9]: all_ship_scores[ship_k][0][move_row, move_col] = ( new_collect_score) # Flag the boxing in ships as unavailable for other hunts ships_available[my_abs_row, my_abs_col] = 0 boxing_in[my_abs_row, my_abs_col] = 1 ships_on_box_mission[ship_k] = distance_to_target override_move_squares_taken[move_row, move_col] = 1 # Make sure that I attack all squares where an opponent is converting that # I can not allow to happen for (row, col) in possible_convert_opponent_positions: if not (row, col) in ignore_convert_positions: my_base_distances = my_current_base_distances[:, row, col] must_attack_converting_square = my_base_distances.min() < (3.5 - ( observation['relative_step'])) if must_attack_converting_square and not override_move_squares_taken[ row, col]: # Look for nearby ships of mine that can attack the converting ship for d in NOT_NONE_DIRECTIONS: my_row, my_col = move_ship_row_col(row, col, d, grid_size) if original_ships_available[my_row, my_col] or ( my_defend_base_ship_positions[my_row, my_col]): to_target_dir = OPPOSITE_MAPPING[d] ship_pos = my_row*grid_size+my_col ship_k = ship_pos_to_key[ship_pos] if to_target_dir in all_ship_scores[ship_k][6]: all_ship_scores[ship_k][0][row, col] = 1e9 boxing_in[my_row, my_col] = 1 print("ATTACKING POSSIBLY CONVERTING SHIP", observation['step'], row, col, my_row, my_col) break history['prev_step_boxing_in_ships'] = boxing_in_ships return (all_ship_scores, boxing_in, box_opponent_positions, override_move_squares_taken, ships_on_box_mission) def update_scores_pack_hunt( all_ship_scores, config, stacked_ships, observation, opponent_ships_sensible_actions, halite_ships, steps_remaining, player_obs, np_rng, opponent_ships_scaled, collect_rate, obs_halite, main_base_distances, history, on_rescue_mission, boxing_in_mission, my_defend_base_ship_positions, env_observation, box_opponent_positions, override_move_squares_taken, player_influence_maps, ignore_convert_positions, convert_unavailable_positions, early_hunting_season, late_hunting_season, safe_collect_margin, spawn_cost, change_standard_consecutive_steps=5): available_pack_hunt_ships = np.copy(stacked_ships[0]) grid_size = available_pack_hunt_ships.shape[0] hunting_season_started = history['hunting_season_started'] prev_standard_ships = history['hunting_season_standard_ships'] # # FUTURE WORK: Make the number of standard ships a function of the hunt # # success? # # FUTURE WORK: Make the number of standard ships a function of ship losses? if early_hunting_season: max_standard_ships_hunting_season = config[ 'max_standard_ships_early_hunting_season'] elif late_hunting_season: max_standard_ships_hunting_season = max(config[ 'max_standard_ships_late_hunting_season'], int(len(player_obs[2])*( config['late_hunting_season_standard_min_fraction']))) else: max_standard_ships_hunting_season = max(10, int(len(player_obs[2])/2.5)) # print(observation['step'], len(player_obs[2]), # max_standard_ships_hunting_season) # print(observation['step'], opponent_hunt_fraction, num_my_ships, # my_target_standard_ships, max_standard_ships_hunting_season) # Determine if I should preferably target a specific opponent. # In games where there is a clear difference between the top two agents and # my agent, where I am one of those two: mostly harrass/hoard the other top # agent current_scores = history['current_scores'] spawn_diffs = (current_scores[0] - current_scores[1:])/spawn_cost first_opponent_id = np.argsort(spawn_diffs)[0] second_opponent_id = np.argsort(spawn_diffs)[1] my_agent_in_top_two = (spawn_diffs < 0).sum() <= 1 spawn_diff_first = np.abs(spawn_diffs[first_opponent_id]) spawn_diff_second = np.abs(spawn_diffs[second_opponent_id]) prev_targeted_hoard_mode = history['targeted_hoard_mode'] should_start_targeted_hoard_mode = my_agent_in_top_two and ( spawn_diff_second > 2*spawn_diff_first) and (spawn_diff_second > 6) should_continue_targeted_hoard_mode = my_agent_in_top_two and ( spawn_diff_second > spawn_diff_first) and (spawn_diff_second > 4) targeted_hoard_mode = should_start_targeted_hoard_mode or ( prev_targeted_hoard_mode and should_continue_targeted_hoard_mode) history['targeted_hoard_mode'] = targeted_hoard_mode preferred_victim = None if targeted_hoard_mode: preferred_victim = first_opponent_id+1 if should_start_targeted_hoard_mode and not prev_targeted_hoard_mode: print(observation['step'], "Start selective hoarding of opponent", preferred_victim) prev_step_opponent_ship_moves = history['prev_step_opponent_ship_moves'] num_players = stacked_ships.shape[0] ship_pos_to_key = {} for i in range(num_players): ship_pos_to_key.update({ v[0]: k for k, v in env_observation.players[i][2].items()}) ship_key_to_pos = {v: k for k, v in ship_pos_to_key.items()} player_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) for i in range(stacked_ships.shape[0]): player_ids[stacked_ships[i]] = i not_available_due_to_camping = np.zeros_like(available_pack_hunt_ships) # Loop over the camping ships and exclude the ones from the available mask # that have flagged they are not available for boxing in camping_ships_strategy = history['camping_ships_strategy'] for ship_k in camping_ships_strategy: if not camping_ships_strategy[ship_k][3]: camping_row, camping_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) not_available_due_to_camping[camping_row, camping_col] = 1 # Loop over the ships that attack opponent camplers and exclude them from the # available mask attack_opponent_campers = history['attack_opponent_campers'] for ship_k in attack_opponent_campers: attacking_camper_row, attacking_camper_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) not_available_due_to_camping[ attacking_camper_row, attacking_camper_col] = 1 # Loop over the ships that are stuck in a loop and mark them as unavailable not_available_due_to_cycle = np.zeros_like(available_pack_hunt_ships) for ship_k in history['avoid_cycle_actions']: cycle_row, cycle_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) not_available_due_to_cycle[cycle_row, cycle_col] = 1 # Loop over the ships that are temporarily assigned a collect task not_available_due_to_temp_collect = np.zeros_like(available_pack_hunt_ships) delete_keys = [] for ship_k in history['temporary_hoarding_collect_ships']: if ship_k in player_obs[2]: collect_row, collect_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) not_available_due_to_temp_collect[collect_row, collect_col] = 1 else: delete_keys.append(ship_k) for k in delete_keys: history['temporary_hoarding_collect_ships'].remove(k) # List the ships that are definitely not available for the pack hunt # In this group: # - Opponent base camping # - Attack opponent base campers # - Ships that are are on a rescue mission (rescuer and rescued) # - Base defense emergency ships # - Boxing in other ships available_pack_hunt_ships &= (~not_available_due_to_camping) available_pack_hunt_ships &= (~on_rescue_mission) available_pack_hunt_ships &= (~my_defend_base_ship_positions) available_pack_hunt_ships &= (~boxing_in_mission) available_pack_hunt_ships &= (~convert_unavailable_positions) available_pack_hunt_ships &= (~not_available_due_to_cycle) available_pack_hunt_ships &= (~not_available_due_to_temp_collect) # Of the remaining list: identify 'max_standard_ships_hunting_season' ships # that are available to gather halite/attack bases. # Preferably select ships that were also selected for these modes in the # previous step and have halite on board. # Only change the gather/attack ships if one of my gatherers was destroyed # Assign a new gatherer if my gatherer is assigned to the base camping # attack or defense (These ships tend to be indefinitely unavailable), or if # the ship was destroyed. # Prefer non-zero halite ships for the initial gathering ships. my_ship_pos_to_k = {v[0]: k for k, v in player_obs[2].items()} available_positions = np.where(available_pack_hunt_ships) num_available_ships = available_pack_hunt_ships.sum() standard_ships = [] if num_available_ships > 0: best_standard_scores = np.zeros(num_available_ships) pos_keys = [] for i in range(num_available_ships): row = available_positions[0][i] col = available_positions[1][i] pos_key = my_ship_pos_to_k[row*grid_size+col] best_standard_scores[i] = all_ship_scores[pos_key][0].max() - 1e6*( halite_ships[row, col] == 0) pos_keys.append(pos_key) if hunting_season_started: already_included_ids = np.zeros(num_available_ships, dtype=np.bool) for ship_k in prev_standard_ships: if ship_k in player_obs[2]: # The ship still exists and was a standard ship in the previous step row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) if my_defend_base_ship_positions[row, col] or boxing_in_mission[ row, col] or on_rescue_mission[row, col] or ( not_available_due_to_cycle[row, col]): # We can use the ship for collecting soon (now it is rescuing or # boxing in or defending the base) standard_ships.append(ship_k) elif available_pack_hunt_ships[row, col]: # The ship is available now. Flag it for exclusion so it doesn't # get added twice standard_ships.append(ship_k) match_id = np.where((available_positions[0] == row) & ( available_positions[1] == col))[0][0] already_included_ids[match_id] = True else: # The ship is now used for base camping or base conversion or # additional collection # Exclude it from the standard ships group assert not_available_due_to_camping[row, col] or ( convert_unavailable_positions[row, col]) or ( not_available_due_to_temp_collect[row, col]) best_standard_scores = best_standard_scores[~already_included_ids] available_positions = (available_positions[0][~already_included_ids], available_positions[1][~already_included_ids]) pos_keys = np.array(pos_keys)[~already_included_ids].tolist() num_unassigned = max_standard_ships_hunting_season - len(standard_ships) # if num_unassigned > 0: # import pdb; pdb.set_trace() num_to_assign = min(num_unassigned, num_available_ships) num_to_assign_phase_1 = max(0, num_to_assign - config[ 'max_standard_ships_decided_end_pack_hunting']) num_to_assign_phase_2 = num_to_assign-num_to_assign_phase_1 num_available_ships = best_standard_scores.size else: num_to_assign = max_standard_ships_hunting_season num_to_assign_phase_1 = min(num_to_assign, num_available_ships) num_to_assign_phase_2 = 0 # Assign the remaining standard ships # Assign the available ships with the highest collect score for collecting # (preferably non zero halite ships) best_standard_ids = np.argsort(-best_standard_scores)[ :num_to_assign_phase_1] for standard_id in best_standard_ids: standard_row = available_positions[0][standard_id] standard_col = available_positions[1][standard_id] standard_key = pos_keys[standard_id] assert not standard_key in standard_ships standard_ships.append(standard_key) # Mark the standard ships as unavailable for pack hunting for standard_key in standard_ships: standard_row, standard_col = row_col_from_square_grid_pos( player_obs[2][standard_key][0], grid_size) available_pack_hunt_ships[standard_row, standard_col] = 0 # The remaining ships are considered for pack hunting. Send the ones with # halite on board to a base. considered_hunting_ships_pos = np.where(available_pack_hunt_ships) num_available_ships = available_pack_hunt_ships.sum() for i in range(num_available_ships): row = considered_hunting_ships_pos[0][i] col = considered_hunting_ships_pos[1][i] if halite_ships[row, col] > 0: available_pack_hunt_ships[row, col] = 0 ship_k = my_ship_pos_to_k[row*grid_size+col] # Let the ship collect at will (but prefer to go to a base sooner rather # than later) before joining the pack hunt (after touching base) for j in [2, 3]: all_ship_scores[ship_k][j][:] = -1e6 # Let a hoarding ship gather when it is safe to do so if (obs_halite[row, col] < 100 or safe_collect_margin[ row, col] <= 0) and ( not ship_k in history['temporary_hoarding_collect_ships']): # FUTURE WORK: Make the multiplier a function of the opponent # aggression level? all_ship_scores[ship_k][1][:] *= 4 elif not ship_k in history['temporary_hoarding_collect_ships'] and ( safe_collect_margin[row, col] > 0): history['temporary_hoarding_collect_ships'].append(ship_k) # print(observation['step'], row, col, ship_k, # "Temporarily collecting") # Ignore ships for hunting that are already being boxed in with my box-in # ships box_opponent_mask = np.zeros((grid_size, grid_size), dtype=np.bool) for boxed_target_row, boxed_target_col in box_opponent_positions: box_opponent_mask[boxed_target_row, boxed_target_col] = 1 # Consider what to do with the zero halite ships that are available for # hunting. # First attempt: do something similar as mzotkiew # Main idea: move to the nearest non zero halite opponent if that direction # is valid. opponent_ships = stacked_ships[1:].sum(0) > 0 potential_targets = opponent_ships & (halite_ships > 0) & ( ~box_opponent_mask) hunting_ships_pos = np.where(available_pack_hunt_ships) num_hunting_ships = available_pack_hunt_ships.sum() # Exclude targets that I am willfully letting convert for (ignore_convert_row, ignore_convert_col) in ignore_convert_positions: potential_targets[ignore_convert_row, ignore_convert_col] = 0 # Exclude targets that have a safe path to one of their bases if num_hunting_ships > 0: stacked_bases = np.stack( [rbs[1] for rbs in observation['rewards_bases_ships']]) nearest_opponent_base_distances = [None] for opponent_id in range(1, num_players): num_bases = stacked_bases[opponent_id].sum() opponent_base_locations = np.where(stacked_bases[opponent_id]) all_opponent_base_distances = [DISTANCES[ opponent_base_locations[0][i], opponent_base_locations[1][i]] for i in ( range(num_bases))] + [99*np.ones((grid_size, grid_size))] nearest_opponent_base_distances.append(np.stack( all_opponent_base_distances).min(0)) considered_targets_pos = np.where(potential_targets) for j in range(potential_targets.sum()): target_row = considered_targets_pos[0][j] target_col = considered_targets_pos[1][j] opponent_id = np.where(stacked_ships[:, target_row, target_col])[0][0] opp_nearest_base_distances = nearest_opponent_base_distances[opponent_id] target_distance_to_nearest_base = opp_nearest_base_distances[ target_row, target_col] my_min_distance_to_opp_nearest_base = opp_nearest_base_distances[ hunting_ships_pos].min() # if target_row == 20 and target_col == 12 and observation['step'] == 160: # import pdb; pdb.set_trace() if target_distance_to_nearest_base < my_min_distance_to_opp_nearest_base: potential_targets[target_row, target_col] = 0 potential_targets_pos = np.where(potential_targets) num_potential_targets = potential_targets.sum() # print(observation['step'], num_hunting_ships, num_potential_targets) hoarded_one_step_opponent_keys = [] if num_potential_targets > 0 and num_hunting_ships > 0: # print(observation['step']) ordered_ship_keys = [] all_target_distances = np.zeros((num_hunting_ships, num_potential_targets)) for i in range(num_hunting_ships): row = hunting_ships_pos[0][i] col = hunting_ships_pos[1][i] ship_k = my_ship_pos_to_k[row*grid_size+col] ordered_ship_keys.append(ship_k) potential_target_distances = DISTANCES[row, col][potential_targets] # Update the target distances to only include potential targets that # correspond with valid actions potential_targets_rows = potential_targets_pos[0] potential_targets_cols = potential_targets_pos[1] south_dist = np.where( potential_targets_rows >= row, potential_targets_rows-row, potential_targets_rows-row+grid_size) east_dist = np.where( potential_targets_cols >= col, potential_targets_cols-col, potential_targets_cols-col+grid_size) valid_directions = all_ship_scores[ship_k][6] valid_move_counts = 2*np.ones(num_potential_targets) for d in NOT_NONE_DIRECTIONS: if not d in valid_directions: if d == NORTH: decrement_ids = south_dist >= grid_size/2 elif d == SOUTH: decrement_ids = (south_dist <= grid_size/2) & (south_dist > 0) elif d == EAST: decrement_ids = (east_dist <= grid_size/2) & (east_dist > 0) elif d == WEST: decrement_ids = east_dist >= grid_size/2 valid_move_counts[decrement_ids] -= 1 # Handle the case of being in the same row or column valid_move_counts[south_dist == 0] -= 1 valid_move_counts[east_dist == 0] -= 1 # if observation['step'] == 91 and row == 6 and col == 3: # import pdb; pdb.set_trace() assert np.all(valid_move_counts >= 0) potential_target_distances[valid_move_counts == 0] += 100 all_target_distances[i] = potential_target_distances opponent_num_escape_directions = np.zeros(num_potential_targets) for j in range(num_potential_targets): target_row = potential_targets_pos[0][j] target_col = potential_targets_pos[1][j] opponent_num_escape_directions[j] = len(opponent_ships_sensible_actions[ target_row, target_col]) # First coordinate my hunters to ships that have no valid escape directions hunting_ships_available = np.ones(num_hunting_ships, dtype=np.bool) for j in range(num_potential_targets): num_escape_dirs = opponent_num_escape_directions[j] if num_escape_dirs == 0: target_row = potential_targets_pos[0][j] target_col = potential_targets_pos[1][j] # Loop over my hunting ships at a distance of max two and take as many # of the potential escape squares as possible my_near_ships = np.where((all_target_distances[:, j] <= 2) & ( hunting_ships_available))[0] num_my_near_ships = my_near_ships.size if num_my_near_ships > 0: # You can always attack at most 2 escape squares. Keep track of what # escape squares each of my ships can attack without collecting # halite on the next turn (ignoring ship collision halite gain) my_target_relative_attack_dirs = np.zeros((num_my_near_ships, 5)) for loop_id, my_ship_id in enumerate(my_near_ships): row = hunting_ships_pos[0][my_ship_id] col = hunting_ships_pos[1][my_ship_id] ship_k = my_ship_pos_to_k[row*grid_size+col] valid_attack_dirs = all_ship_scores[ship_k][6] considered_attack_dirs = get_dir_from_target( row, col, target_row, target_col, grid_size) if all_target_distances[my_ship_id, j] == 1 and ( obs_halite[row, col] == 0): considered_attack_dirs.append(None) attack_dirs = list(set(considered_attack_dirs) & set( valid_attack_dirs)) # Get the relative directions from the target that I can attack for d in attack_dirs: move_row, move_col = move_ship_row_col( row, col, d, grid_size) relative_covered_dir = MOVE_DIRECTIONS_TO_ID[get_dir_from_target( target_row, target_col, move_row, move_col, grid_size)[0]] my_target_relative_attack_dirs[loop_id, relative_covered_dir] = 1 direction_covered = np.zeros(len(MOVE_DIRECTIONS), dtype=np.bool) for dir_id, d in enumerate(MOVE_DIRECTIONS): rel_target_row, rel_target_col = move_ship_row_col( target_row, target_col, d, grid_size) if override_move_squares_taken[rel_target_row, rel_target_col]: direction_covered[dir_id] = 1 # First, handle the ships that can only attack a single square that # is not covered yet my_target_relative_attack_dirs[:, direction_covered] = 0 # if observation['step'] == 149: # import pdb; pdb.set_trace() # Greedily loop over directions by ordering the count of the number # of ships that cover. Prefer low but strictly positive directions. while my_target_relative_attack_dirs.sum() > 0: ship_num_possible_attacks = my_target_relative_attack_dirs.sum(1) dir_num_possible_attacks = my_target_relative_attack_dirs.sum(0) # The None action is slightly preferred since that guarantees a max # distance of 1 on the next turn dir_num_possible_attacks[0] -= 0.1 non_zero_min_count = dir_num_possible_attacks[ dir_num_possible_attacks > 0].min() best_dir_ids = np.where(dir_num_possible_attacks == ( non_zero_min_count))[0] dir_id = np_rng.choice(best_dir_ids) considered_ships = np.where( my_target_relative_attack_dirs[:, dir_id])[0] # Break ties with the number of directions each ship covers cover_ship_scores = ship_num_possible_attacks[considered_ships] considered_ships_attacker_id = considered_ships[ np.argmin(cover_ship_scores)] attacker_id = my_near_ships[considered_ships_attacker_id] # Move my ship to the relative position of the target rel_target_row, rel_target_col = move_ship_row_col( target_row, target_col, MOVE_DIRECTIONS[dir_id], grid_size) attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] ship_k = my_ship_pos_to_k[attacker_row*grid_size+attacker_col] all_ship_scores[ship_k][0][rel_target_row, rel_target_col] = 2e5 override_move_squares_taken[rel_target_row, rel_target_col] = 1 hunting_ships_available[attacker_id] = 0 # Update the attack dir counts my_target_relative_attack_dirs[considered_ships_attacker_id] = 0 my_target_relative_attack_dirs[:, dir_id] = 0 # if observation['step'] == 188: # import pdb; pdb.set_trace() # Next, coordinate my hunters to ships that have a single moving escape # direction. # These ship are preferred targets since it is likely that I can soon box # them in, especially if it is me who cuts off three of the move directions # Order the ships so that the ships that had a single escape direction in # the previous step are handled first, so we can coordinate the # interception one_step_opponent_ids = np.arange(num_potential_targets).tolist() priority_ids = [] for opponent_ship_k in history['prev_step_hoarded_one_step_opponent_keys']: if opponent_ship_k in ship_key_to_pos: opponent_pos = ship_key_to_pos[opponent_ship_k] target_row, target_col = row_col_from_square_grid_pos( opponent_pos, grid_size) if potential_targets[target_row, target_col]: # We need to check because the target may no longer be available for # pack hunting due to boxing in or getting close to a friendly base opponent_priority_id = np.where( (potential_targets_pos[0] == target_row) & ( potential_targets_pos[1] == target_col))[0][0] priority_ids.append(opponent_priority_id) remaining_ids = list(set(one_step_opponent_ids) - set(priority_ids)) remaining_ids.sort() # Set intersect can be flaky one_step_opponent_ids = priority_ids + remaining_ids one_step_opponent_positions_directions = [] for j in one_step_opponent_ids: target_row = potential_targets_pos[0][j] target_col = potential_targets_pos[1][j] target_escape_directions = opponent_ships_sensible_actions[ target_row, target_col] move_escape_directions = copy.copy(target_escape_directions) if (0, 0) in move_escape_directions: move_escape_directions.remove((0, 0)) num_move_escape_dirs = len(move_escape_directions) # nearest_target_distances = np.tile( # all_target_distances.min(1)[:, None], [1, num_potential_targets]) if num_move_escape_dirs == 1: # The <= ensures we consider piling up on inidividual ships potential_nearby_attackers = np.where(hunting_ships_available & ( all_target_distances[:, j] <= 2))[0] if potential_nearby_attackers.size >= 2: # Figure out if I have at least one available ship at a max distance # of 2 that can push the opponent in one direction escape_dir = RELATIVE_DIR_TO_DIRECTION_MAPPING[ move_escape_directions[0]] potential_nearby_distances = all_target_distances[ potential_nearby_attackers, j] if potential_nearby_distances.min() == 1: # The None direction is covered - verify the other directions uncovered_dirs = copy.copy(NOT_NONE_DIRECTIONS) uncovered_dirs.remove(escape_dir) ignore_attacker_ids = [] d1_hunters = [] for attacker_id in potential_nearby_attackers: attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] ship_k = my_ship_pos_to_k[attacker_row*grid_size+attacker_col] valid_directions = all_ship_scores[ship_k][6] if escape_dir in valid_directions: threat_dirs = get_dir_from_target( target_row, target_col, attacker_row, attacker_col, grid_size) uncovered_dirs = list(set(uncovered_dirs) - set(threat_dirs)) if DISTANCES[target_row, target_col][ attacker_row, attacker_col] == 1: d1_hunters.append(attacker_id) else: ignore_attacker_ids.append(attacker_id) if len(uncovered_dirs) == 0 or ( len(uncovered_dirs) == 1 and len(d1_hunters) > 1): one_step_opponent_positions_directions.append(( target_row, target_col, escape_dir)) opponent_ship_k = ship_pos_to_key[ target_row*grid_size+target_col] hoarded_one_step_opponent_keys.append(opponent_ship_k) if len(uncovered_dirs) > 0: potential_nearby_attackers = d1_hunters # Move the attackers in the single escape direction # import pdb; pdb.set_trace() for attacker_id in potential_nearby_attackers: if not attacker_id in ignore_attacker_ids: attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] move_row, move_col = move_ship_row_col( attacker_row, attacker_col, escape_dir, grid_size) ship_k = my_ship_pos_to_k[ attacker_row*grid_size+attacker_col] all_ship_scores[ship_k][0][move_row, move_col] = 2e5 override_move_squares_taken[move_row, move_col] = 1 hunting_ships_available[attacker_id] = 0 # Try to get into a position where the opponent can only move in one # direction (from two to one escape direction) for j in range(num_potential_targets): num_escape_dirs = opponent_num_escape_directions[j] if num_escape_dirs == 2: target_row = potential_targets_pos[0][j] target_col = potential_targets_pos[1][j] potential_nearby_attackers = np.where(hunting_ships_available & ( all_target_distances[:, j] == 1))[0] attack_selected = False if potential_nearby_attackers.size == 2: escape_directions = opponent_ships_sensible_actions[ target_row, target_col] if (escape_directions[0][0] == 0 and ( escape_directions[1][0] == 0)) or ( escape_directions[0][1] == 0 and ( escape_directions[1][1] == 0)): # Scenario: ME | OPPONENT | ME - guess the action and then chase # Guess the opponent's next action opponent_id = np.where( stacked_ships[:, target_row, target_col])[0][0] escape_dir_scores = np.zeros(2) for escape_id, escape_dir in enumerate(escape_directions): move_row, move_col = move_ship_row_col( target_row, target_col, RELATIVE_DIR_TO_DIRECTION_MAPPING[ escape_dir], grid_size) opponent_influence = player_influence_maps[opponent_id][ move_row, move_col] my_influence = player_influence_maps[0][move_row, move_col] escape_dir_scores[escape_id] = opponent_influence-my_influence likely_opponent_move = RELATIVE_DIR_TO_DIRECTION_MAPPING[ escape_directions[np.argmax(escape_dir_scores)]] # Only continue if both my ships can move in the selected # directions both_can_move = True can_stay = np.zeros(2, dtype=np.bool) for attacker_0_or_1, attacker_id in enumerate( potential_nearby_attackers): attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] ship_k = my_ship_pos_to_k[attacker_row*grid_size+attacker_col] both_can_move = both_can_move and likely_opponent_move in ( all_ship_scores[ship_k][6]) can_stay[attacker_0_or_1] = obs_halite[ attacker_row, attacker_col] == 0 if both_can_move: # If both are on non zero halite squares: move both in the likely # escape direction. Otherwise, select a random ship to move in # the escape direction where the ship that remains in place has # no halite at the considered square if not np.any(can_stay): stay_in_place_ids = [] else: stay_in_place_ids = [np_rng.choice(potential_nearby_attackers[ can_stay])] for attacker_id in potential_nearby_attackers: # import pdb; pdb.set_trace() attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] move_dir = None if attacker_id in stay_in_place_ids else ( likely_opponent_move) move_row, move_col = move_ship_row_col( attacker_row, attacker_col, move_dir, grid_size) ship_k = my_ship_pos_to_k[ attacker_row*grid_size+attacker_col] all_ship_scores[ship_k][0][move_row, move_col] = 2e5 override_move_squares_taken[move_row, move_col] = 1 hunting_ships_available[attacker_id] = 0 attack_selected = True escape_directions = opponent_ships_sensible_actions[ target_row, target_col] if not attack_selected and not (0, 0) in escape_directions and len( escape_directions) == 2: # Scenario: ME | OPPONENT | | ME - guess the action and then chase available_nearby = np.where(hunting_ships_available & ( all_target_distances[:, j] <= 2))[0] if available_nearby.size >= 2: attacker_rows = hunting_ships_pos[0][available_nearby] attacker_cols = hunting_ships_pos[1][available_nearby] north_dist = np.where( target_row >= attacker_rows, target_row-attacker_rows, target_row-attacker_rows+grid_size) vert_rel_pos = np.where( north_dist < 3, north_dist, north_dist-grid_size) west_dist = np.where( target_col >= attacker_cols, target_col-attacker_cols, target_col-attacker_cols+grid_size) horiz_rel_pos = np.where( west_dist < 3, west_dist, west_dist-grid_size) same_row_ids = (vert_rel_pos == 0) same_col_ids = (horiz_rel_pos == 0) consider_attack = False if np.any(horiz_rel_pos[same_row_ids] < 0) and np.any( horiz_rel_pos[same_row_ids] > 0): if np.any(horiz_rel_pos[same_row_ids] == 1) and np.any( horiz_rel_pos[same_row_ids] == -2): move_to_target_id = available_nearby[same_row_ids][np.where( horiz_rel_pos[same_row_ids] == -2)[0][0]] move_escape_id = available_nearby[same_row_ids][np.where( horiz_rel_pos[same_row_ids] == 1)[0][0]] consider_attack = True elif np.any(horiz_rel_pos[same_row_ids] == -1) and np.any( horiz_rel_pos[same_row_ids] == 2): move_to_target_id = available_nearby[same_row_ids][np.where( horiz_rel_pos[same_row_ids] == 2)[0][0]] move_escape_id = available_nearby[same_row_ids][np.where( horiz_rel_pos[same_row_ids] == -1)[0][0]] consider_attack = True elif np.any(vert_rel_pos[same_col_ids] < 0) and np.any( vert_rel_pos[same_col_ids] > 0): if np.any(vert_rel_pos[same_col_ids] == 1) and np.any( vert_rel_pos[same_col_ids] == -2): move_to_target_id = available_nearby[same_col_ids][np.where( vert_rel_pos[same_col_ids] == -2)[0][0]] move_escape_id = available_nearby[same_col_ids][np.where( vert_rel_pos[same_col_ids] == 1)[0][0]] consider_attack = True elif np.any(vert_rel_pos[same_col_ids] == -1) and np.any( vert_rel_pos[same_col_ids] == 2): move_to_target_id = available_nearby[same_col_ids][np.where( vert_rel_pos[same_col_ids] == 2)[0][0]] move_escape_id = available_nearby[same_col_ids][np.where( vert_rel_pos[same_col_ids] == -1)[0][0]] consider_attack = True if consider_attack: opponent_id = np.where( stacked_ships[:, target_row, target_col])[0][0] escape_dir_scores = np.zeros(2) for escape_id, escape_dir in enumerate(escape_directions): move_row, move_col = move_ship_row_col( target_row, target_col, RELATIVE_DIR_TO_DIRECTION_MAPPING[ escape_dir], grid_size) opponent_influence = player_influence_maps[opponent_id][ move_row, move_col] my_influence = player_influence_maps[0][move_row, move_col] escape_dir_scores[escape_id] = opponent_influence-my_influence likely_opponent_move = RELATIVE_DIR_TO_DIRECTION_MAPPING[ escape_directions[np.argmax(escape_dir_scores)]] # print(observation['step'], target_row, target_col) attacker_escape_row = hunting_ships_pos[0][move_escape_id] attacker_escape_col = hunting_ships_pos[1][move_escape_id] attacker_to_target_row = hunting_ships_pos[0][move_to_target_id] attacker_to_target_col = hunting_ships_pos[1][move_to_target_id] move_escape_row, move_escape_col = move_ship_row_col( attacker_escape_row, attacker_escape_col, likely_opponent_move, grid_size) to_target_dir = get_dir_from_target( attacker_to_target_row, attacker_to_target_col, target_row, target_col, grid_size)[0] move_to_target_row, move_to_target_col = move_ship_row_col( attacker_to_target_row, attacker_to_target_col, to_target_dir, grid_size) ship_escape_k = my_ship_pos_to_k[ attacker_escape_row*grid_size+attacker_escape_col] ship_to_target_k = my_ship_pos_to_k[ attacker_to_target_row*grid_size+attacker_to_target_col] if likely_opponent_move in all_ship_scores[ship_escape_k][6] and( to_target_dir in all_ship_scores[ship_to_target_k][6]) and( not override_move_squares_taken[ move_escape_row, move_escape_col]) and not ( override_move_squares_taken[ move_to_target_row, move_to_target_col]): all_ship_scores[ship_escape_k][0][ move_escape_row, move_escape_col] = 2e5 all_ship_scores[ship_to_target_k][0][ move_to_target_row, move_to_target_col] = 2e5 override_move_squares_taken[ move_escape_row, move_escape_col] = 1 override_move_squares_taken[ move_to_target_row, move_to_target_col] = 1 hunting_ships_available[move_escape_id] = 0 hunting_ships_available[move_to_target_id] = 0 # Intercept ships that are pushed in one direction to avoid chasing forever for target_row, target_col, escape_dir in ( one_step_opponent_positions_directions): # Try to move perpendicular to the escaping ship if I can catch it in # time attacker_rows = hunting_ships_pos[0] attacker_cols = hunting_ships_pos[1] north_dist = np.where( target_row >= attacker_rows, target_row-attacker_rows, target_row-attacker_rows+grid_size) west_dist = np.where( target_col >= attacker_cols, target_col-attacker_cols, target_col-attacker_cols+grid_size) if escape_dir in [NORTH, SOUTH]: perpendicular_distances = np.minimum(west_dist, grid_size-west_dist) if escape_dir == SOUTH: direction_distances = grid_size-north_dist else: direction_distances = north_dist else: perpendicular_distances = np.minimum(north_dist, grid_size-north_dist) if escape_dir == EAST: direction_distances = grid_size-west_dist else: direction_distances = west_dist potential_nearby_attackers = np.where(hunting_ships_available & ( direction_distances >= perpendicular_distances))[0] if potential_nearby_attackers.size > 0: potential_crossing_min_steps = np.ceil(( direction_distances[potential_nearby_attackers]+( perpendicular_distances[potential_nearby_attackers]))/2) min_crossing_distance = potential_crossing_min_steps.min().astype(np.int) # FUTURE WORK: discard if there is a base on the escape track if min_crossing_distance <= 6: attacker_id = potential_nearby_attackers[ np.argmin(potential_crossing_min_steps)] attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] if escape_dir == NORTH: intersect_row = (target_row-min_crossing_distance) % grid_size intersect_col = target_col elif escape_dir == SOUTH: intersect_row = (target_row+min_crossing_distance) % grid_size intersect_col = target_col elif escape_dir == EAST: intersect_row = target_row intersect_col = (target_col+min_crossing_distance) % grid_size elif escape_dir == WEST: intersect_row = target_row intersect_col = (target_col-min_crossing_distance) % grid_size ship_k = my_ship_pos_to_k[ attacker_row*grid_size+attacker_col] intersect_bonus_mask = get_mask_between_exclude_ends( attacker_row, attacker_col, intersect_row, intersect_col, grid_size) intersect_bonus = 1e5*intersect_bonus_mask if intersect_bonus_mask.sum() > 1: # Prefer to move to low halite squares in order to avoid conflicts # with collect ships intersect_bonus[intersect_bonus_mask] -= 10*(np.minimum( 1000, 10*obs_halite[intersect_bonus_mask])+obs_halite[ intersect_bonus_mask]/10) # Give a small penalty to same rows or columns in order to allow more # move options downstream intersect_bonus[row] -= 1 intersect_bonus[:, col] -= 1 all_ship_scores[ship_k][0][:] += intersect_bonus # override_move_squares_taken[move_row, move_col] = 1 # import pdb; pdb.set_trace() hunting_ships_available[attacker_id] = 0 # Try to cut off the preferred escape direction for opponent ships that # only have a stand still valid action for j in range(num_potential_targets): target_row = potential_targets_pos[0][j] target_col = potential_targets_pos[1][j] target_escape_directions = opponent_ships_sensible_actions[ target_row, target_col] if (0, 0) in target_escape_directions and len( target_escape_directions) == 1: potential_nearby_attackers = np.where(hunting_ships_available & ( all_target_distances[:, j] <= 2))[0] num_potential_attackers = potential_nearby_attackers.size if num_potential_attackers > 0: can_cover_dirs = {d: [] for d in NOT_NONE_DIRECTIONS} for attacker_id in potential_nearby_attackers: attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] ship_k = my_ship_pos_to_k[attacker_row*grid_size+attacker_col] for d in NOT_NONE_DIRECTIONS: if d in all_ship_scores[ship_k][6]: move_attacker_row, move_attacker_col = move_ship_row_col( attacker_row, attacker_col, d, grid_size) if DISTANCES[target_row, target_col][ move_attacker_row, move_attacker_col] == 1: covered_dir = get_dir_from_target( target_row, target_col, move_attacker_row, move_attacker_col, grid_size)[0] can_cover_dirs[covered_dir].append(attacker_id) cover_dir_scores = np.zeros(len(NOT_NONE_DIRECTIONS)) opponent_id = np.where( stacked_ships[:, target_row, target_col])[0][0] for dir_id, d in enumerate(NOT_NONE_DIRECTIONS): move_row, move_col = move_ship_row_col( target_row, target_col, d, grid_size) opponent_influence = player_influence_maps[opponent_id][ move_row, move_col] not_opponent_influence = player_influence_maps[ :, move_row, move_col].sum() - opponent_influence cover_dir_scores[dir_id] = ( opponent_influence-not_opponent_influence) # Greedily cover escape directions by the order of preference for the # target ship cover_dir_argsort = np.argsort(-cover_dir_scores) for dir_id in cover_dir_argsort: d = NOT_NONE_DIRECTIONS[dir_id] covered_row, covered_col = move_ship_row_col( target_row, target_col, d, grid_size) considered_attacker_ids = can_cover_dirs[d] # if considered_attacker_ids and override_move_squares_taken[ # covered_row, covered_col]: # import pdb; pdb.set_trace() if considered_attacker_ids and not override_move_squares_taken[ covered_row, covered_col]: # Prefer my attackers that can not attack other escape squares # (on the same row or col at a distance of 2) num_considered_attackers = len(considered_attacker_ids) considered_attack_scores = np.zeros(num_considered_attackers) for cons_attack_id in range(num_considered_attackers): attacker_id = considered_attacker_ids[cons_attack_id] attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] considered_attack_scores[cons_attack_id] = int( (attacker_row != target_row) and ( attacker_col != target_col)) selected_attacker_id = considered_attacker_ids[ np.argmin(considered_attack_scores)] hunting_ships_available[selected_attacker_id] = 0 attacker_row = hunting_ships_pos[0][selected_attacker_id] attacker_col = hunting_ships_pos[1][selected_attacker_id] ship_k = my_ship_pos_to_k[attacker_row*grid_size+attacker_col] # import pdb; pdb.set_trace() all_ship_scores[ship_k][0][covered_row, covered_col] = 2e5 override_move_squares_taken[covered_row, covered_col] = 1 for d_ in NOT_NONE_DIRECTIONS: if selected_attacker_id in can_cover_dirs[d_]: can_cover_dirs[d_].remove(selected_attacker_id) # FUTURE WORK: Try to cut off the preferred escape direction for opponent # ships that only have a single non stand still valid action # Assign the remaining standard ships if num_to_assign_phase_2 > 0 and hunting_ships_available.sum() > 0: available_hunting_ids = np.where(hunting_ships_available)[0] num_remaining_available_ships = available_hunting_ids.size best_standard_scores = np.zeros(num_remaining_available_ships) pos_keys = [] for i in range(num_remaining_available_ships): row = hunting_ships_pos[0][available_hunting_ids[i]] col = hunting_ships_pos[1][available_hunting_ids[i]] pos_key = my_ship_pos_to_k[row*grid_size+col] best_standard_scores[i] = all_ship_scores[pos_key][0].max() - 1e6*( halite_ships[row, col] == 0) pos_keys.append(pos_key) # Assign the remaining collect ships # Assign the available ships with the highest collect score for collecting # (preferably non zero halite ships) best_standard_ids = np.argsort( -best_standard_scores)[:num_to_assign_phase_2] for standard_id in best_standard_ids: standard_row = hunting_ships_pos[0][available_hunting_ids[standard_id]] standard_col = hunting_ships_pos[1][available_hunting_ids[standard_id]] # print("Newly assigned standard ship", standard_row, standard_col) standard_key = pos_keys[standard_id] assert not standard_key in standard_ships standard_ships.append(standard_key) hunting_ships_available[available_hunting_ids[standard_id]] = False # Coordinate the remaining hunting actions based on the potential target # distances. Balance with staying closer to my center of mass of ships # with halite and my bases # FUTURE WORK: make this work # my_vulnerable_score = ( # observation['rewards_bases_ships'][0][2] & (halite_ships > 0)) + 3*( # observation['rewards_bases_ships'][0][1]) # Average the vulnerable map over time so that the center of mass is more # stable # my_time_averaged_vulnerable_score = 0.8*history[ # 'my_time_averaged_vulnerable_score'] + 0.2*my_vulnerable_score # history['my_time_averaged_vulnerable_score'] = ( # my_time_averaged_vulnerable_score) # smoothed_vulnerable_score = smooth2d(my_time_averaged_vulnerable_score) # center_of_vulnerable_mass = np.unravel_index( # smoothed_vulnerable_score.argmax(), smoothed_vulnerable_score.shape) # print(observation['step'], center_of_vulnerable_mass) # FUTURE WORK: don't break ranks when hoarding stacked_bases = np.stack( [rbs[1] for rbs in observation['rewards_bases_ships']]) unavailable_hunt_positions = (stacked_bases[1:].sum(0) > 0) | ( override_move_squares_taken) for i in range(num_hunting_ships): if hunting_ships_available[i]: row = hunting_ships_pos[0][i] col = hunting_ships_pos[1][i] ship_k = my_ship_pos_to_k[row*grid_size+col] potential_target_distances_ship = all_target_distances[i] potential_target_distances_ship_weighted = ( potential_target_distances_ship) # potential_target_distances_ship_weighted = ( # potential_target_distances_ship) + DISTANCES[ # center_of_vulnerable_mass][potential_targets_pos]/3 if preferred_victim is not None and ( potential_target_distances_ship.min() > 2): preferred_victim_ship_ids = player_ids[ potential_targets_pos] == preferred_victim potential_target_distances_ship_weighted[ preferred_victim_ship_ids] -= 10 selected_target_id = np.argmin( potential_target_distances_ship_weighted) target_distance = potential_target_distances_ship[selected_target_id] if target_distance < 3 or obs_halite[row, col] < 100 or ( safe_collect_margin[row, col] <= 0): target_row = potential_targets_rows[selected_target_id] target_col = potential_targets_cols[selected_target_id] hunting_bonus = 1e5*get_mask_between_exclude_ends( row, col, target_row, target_col, grid_size) if target_distance == 1 and not unavailable_hunt_positions[ target_row, target_col]: hunting_bonus[target_row, target_col] = 1e5 elif target_distance == 1: # Move in one of the at most 2 likely opponent next action # direction if that direction is still available. # This means I have another hunter/boxer at distance one which has # already claimed the target square sensible_opponent_dirs = opponent_ships_sensible_actions[ (target_row, target_col)] for d in NOT_NONE_DIRECTIONS: if RELATIVE_DIR_MAPPING[d] in sensible_opponent_dirs: move_row, move_col = move_ship_row_col( row, col, d, grid_size) if not unavailable_hunt_positions[move_row, move_col]: hunting_bonus[move_row, move_col] = 1e5 # Prefer to move in the same direction as the target when I am # tracking the target closely opponent_ship_k = ship_pos_to_key[ target_row*grid_size+target_col] if opponent_ship_k in prev_step_opponent_ship_moves and ( target_distance <= 2): target_prev_move = prev_step_opponent_ship_moves[opponent_ship_k] bonus_rel_dir = RELATIVE_DIR_MAPPING[target_prev_move] bonus_rows = np.mod(row + bonus_rel_dir[0]*( 1+np.arange(half_distance_mask_dim)), grid_size) bonus_cols = np.mod(col + bonus_rel_dir[1]*( 1+np.arange(half_distance_mask_dim)), grid_size) hunting_bonus[(bonus_rows, bonus_cols)] *= 1.5 if (hunting_bonus > 0).sum() > 1: # Prefer to move to low halite squares in order to avoid conflicts # with collect ships hunting_bonus[hunting_bonus > 0] -= 10*(np.minimum( 1000, 10*obs_halite[hunting_bonus > 0]) + obs_halite[ hunting_bonus > 0]/10) # Give a small penalty to same rows or columns in order to allow # more move options downstream hunting_bonus[row] -= 1 hunting_bonus[:, col] -= 1 else: # Override the pack hunt and collect at the current square hunting_bonus = np.zeros((grid_size, grid_size)) if ship_k in history['temporary_hoarding_collect_ships']: print(observation['step'], row, col, ship_k, "INVESTIGATE: ship in hoarding collect but also hoarding??") else: history['temporary_hoarding_collect_ships'].append(ship_k) # print(observation['step'], row, col, ship_k, # "Temporarily collecting") hunting_bonus[row, col] = 11e4 # Consider # import pdb; pd.set_trace() # x=1 all_ship_scores[ship_k][0][:] += hunting_bonus # print(standard_ships, available_pack_hunt_ships.sum(), # stacked_ships[0].sum()) # print(observation['step'], history['temporary_hoarding_collect_ships']) history['hunting_season_standard_ships'] = standard_ships history['hunting_season_started'] = True history['prev_step_hoarded_one_step_opponent_keys'] = ( hoarded_one_step_opponent_keys) # if observation['step'] == 192: # import pdb; pdb.set_trace() return all_ship_scores, history, override_move_squares_taken def get_no_zero_halite_neighbors(halite): no_zero_halite_neighbors = np.ones_like(halite, dtype=np.bool) for d in NOT_NONE_DIRECTIONS: if d == NORTH: shifted = np.concatenate([halite[None, -1], halite[:-1]]) elif d == SOUTH: shifted = np.concatenate([halite[1:], halite[None, 0]]) elif d == EAST: shifted = np.concatenate([halite[:, 1:], halite[:, 0, None]], 1) elif d == WEST: shifted = np.concatenate([halite[:, -1, None], halite[:, :-1]], 1) no_zero_halite_neighbors &= (shifted > 0) return no_zero_halite_neighbors def get_my_guaranteed_safe_collect_squares( opponent_ships, grid_size, my_bases, obs_halite, collect_rate, halite_ships, observation, halite_on_board_mult=1e-6): opp_ship_locations = np.where(opponent_ships) nearest_opponent_stacked_distances = [ 99*np.ones((grid_size, grid_size))] for i in range(opponent_ships.sum()): opponent_row = opp_ship_locations[0][i] opponent_col = opp_ship_locations[1][i] opponent_ship_halite = max(0, halite_ships[opponent_row, opponent_col]) opponent_distances = DISTANCES[opponent_row, opponent_col] nearest_opponent_stacked_distances.append( opponent_distances + halite_on_board_mult*opponent_ship_halite) nearest_opponent_distances = np.stack( nearest_opponent_stacked_distances).min(0) my_base_locations = np.where(my_bases) my_nearest_base_distances = [DISTANCES[ my_base_locations[0][i], my_base_locations[1][i]] for i in range( my_bases.sum())] safe_to_collect = np.zeros((grid_size, grid_size), dtype=np.bool) safe_to_collect_margin = -1*np.ones((grid_size, grid_size), dtype=np.int) safe_to_return_halites = -1/halite_on_board_mult*np.ones( (grid_size, grid_size), dtype=np.int) safe_to_return_base_halites = [] for i in range(my_bases.sum()): considered_base = my_base_locations[0][i], my_base_locations[1][i] margin = np.floor(( nearest_opponent_distances[considered_base]-1) - ( my_nearest_base_distances[i] + halite_on_board_mult*( np.maximum(0, halite_ships)+( collect_rate*obs_halite).astype(np.int))+1e-12)).astype(np.int) safe_base_reach = (my_nearest_base_distances[i] + halite_on_board_mult*( np.maximum(0, halite_ships)+( collect_rate*obs_halite).astype(np.int))) < ( nearest_opponent_distances[considered_base]-1) safe_to_collect |= safe_base_reach safe_to_collect_margin[safe_base_reach] = np.maximum( safe_to_collect_margin[safe_base_reach], margin[safe_base_reach]+1) base_safe_return_thresholds = 1/halite_on_board_mult*( nearest_opponent_distances[considered_base] - ( my_nearest_base_distances[i])) safe_to_return_halites = np.maximum( safe_to_return_halites, base_safe_return_thresholds) safe_to_return_base_halites.append( (base_safe_return_thresholds, considered_base)) # if observation['step'] == 78: # import pdb; pdb.set_trace() # nearest_opponent_stacked_distances_old = [DISTANCES[ # opp_ship_locations[0][i], opp_ship_locations[1][i]] for i in range( # opponent_ships.sum())] + [99*np.ones((grid_size, grid_size))] # nearest_opponent_distances_old = np.stack( # nearest_opponent_stacked_distances_old).min(0) # my_nearest_base_distances_old = np.stack(my_nearest_base_distances + [ # 99*np.ones((grid_size, grid_size))]).min(0) # safe_to_collect_old = my_nearest_base_distances_old <= ( # nearest_opponent_distances_old-2) return (safe_to_collect, safe_to_collect_margin, safe_to_return_halites, safe_to_return_base_halites) def get_ignored_convert_positions( likely_convert_opponent_positions, main_base_distances, stacked_ships, abs_rel_opponent_scores, observation, my_base_distances, opponent_bases, boxed_in_attack_squares): ignore_convert_positions = [] for (row, col) in likely_convert_opponent_positions: main_base_distance = main_base_distances[row, col] opponent_id = np.where(stacked_ships[:, row, col])[0][0] if (abs_rel_opponent_scores[opponent_id-1] == 0) and ( main_base_distance >= 9-(observation['relative_step']*6)) and ( my_base_distances[:, row, col].min() >= 5-( observation['relative_step']*3)): ignore_convert_positions.append((row, col)) opponent_bases[row, col] = True boxed_in_attack_squares[ROW_COL_MAX_DISTANCE_MASKS[row, col, 1]] = 0 # if observation['step'] == 84: # import pdb; pdb.set_trace() return ignore_convert_positions, opponent_bases, boxed_in_attack_squares def get_avoid_attack_squares( boxed_in_attack_squares, approximate_score_diff, currently_winning, abs_rel_opponent_scores, my_zero_halite_ships, opponent_ships, influence_map, influence_map_unweighted, my_base_distances, boxed_in_opponent_ids, observation): grid_size = opponent_ships.shape[0] avoid_attack_squares_zero_halite = np.zeros( (grid_size, grid_size), dtype=np.bool) # Decide what opponent to attack regardless of the risk of ship loss # Policy: I am a close second or I am winning and attacking the second always_attack_opponent_id = None best_opponent_id = 1+np.argmin(approximate_score_diff) if np.all(currently_winning) or ( (~currently_winning).sum() == 1 and abs_rel_opponent_scores[ best_opponent_id-1] > 0): always_attack_opponent_id = best_opponent_id if np.any(boxed_in_attack_squares): # Count nearby zero halite and opponent ships all_boxed_squares = np.where(boxed_in_attack_squares) for i in range(all_boxed_squares[0].size): boxed_row = all_boxed_squares[0][i] boxed_col = all_boxed_squares[1][i] num_my_nearby_zero_halite = my_zero_halite_ships[ ROW_COL_MAX_DISTANCE_MASKS[boxed_row, boxed_col, 3]].sum() num_opponent_nearby = opponent_ships[ ROW_COL_MAX_DISTANCE_MASKS[boxed_row, boxed_col, 5]].sum() if ((influence_map[boxed_row, boxed_col] < 0.5) and ( influence_map_unweighted[boxed_row, boxed_col] < -2) and ( num_my_nearby_zero_halite == 1) and ( num_opponent_nearby > 4) and ( my_base_distances[:, boxed_row, boxed_col].min() >= 5)) and ( always_attack_opponent_id is None or ( boxed_in_opponent_ids[boxed_row, boxed_col] != ( always_attack_opponent_id))): # Flag the square as bad if I don't have a likely escape path can_escape = False avoid_attack_escape_distance = 4 for d in NOT_NONE_DIRECTIONS: if d == NORTH: considered_row = (boxed_row - avoid_attack_escape_distance) % ( grid_size) considered_col = boxed_col elif d == SOUTH: considered_row = (boxed_row + avoid_attack_escape_distance) % ( grid_size) considered_col = boxed_col elif d == EAST: considered_row = boxed_row considered_col = (boxed_col + avoid_attack_escape_distance) % ( grid_size) elif d == WEST: considered_row = boxed_row considered_col = (boxed_col - avoid_attack_escape_distance) % ( grid_size) if influence_map[considered_row, considered_col] > 0.5: can_escape = True break if not can_escape: avoid_attack_squares_zero_halite[boxed_row, boxed_col] = 1 # if np.any(avoid_attack_squares_zero_halite): # print(observation['step'], np.where(avoid_attack_squares_zero_halite)) # import pdb; pdb.set_trace() # x=1 return avoid_attack_squares_zero_halite, always_attack_opponent_id def override_initial_collect( config, all_ship_scores, obs_halite, halite_ships, stacked_ships, stacked_bases, player_influence_maps, player_obs, observation, history): # ORPHANED LOGIC, this was not going anywhere # Initial collect override logic. Ships should initially aim for halite # squares at the boundaries of their influence sphere - that way opponents # don't get to mine it and I can then later focus on halite near my base grid_size = stacked_ships.shape[1] # Stack the collect scores for all my ships ship_rows = [] ship_cols = [] ship_keys = [] for ship_k in player_obs[2]: row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_rows.append(row) ship_cols.append(col) ship_keys.append(ship_k) my_num_ships = len(ship_rows) if my_num_ships > 0: my_ship_positions = (np.array(ship_rows), np.array(ship_cols)) opponent_ship_positions = np.where(stacked_ships[1:].sum(0) > 0) my_ship_halites = halite_ships[my_ship_positions] # Obtain the nearest distances for my and opponent ships my_nearest_ship_distances = 99*np.ones((grid_size, grid_size)) for ship_id in range(my_num_ships): # FUTURE WORK: Should I exclude my returning to base ships? Probably not. row = my_ship_positions[0][ship_id] col = my_ship_positions[1][ship_id] my_nearest_ship_distances = np.minimum( my_nearest_ship_distances, DISTANCES[row, col]) my_nearest_base_distances = 99*np.ones((grid_size, grid_size)) my_num_bases = stacked_bases[0].sum() my_base_positions = np.where(stacked_bases[0]) for base_id in range(my_num_bases): row = my_base_positions[0][base_id] col = my_base_positions[1][base_id] my_nearest_base_distances = np.minimum( my_nearest_base_distances, DISTANCES[row, col]) opponent_nearest_ship_distances = 99*np.ones((grid_size, grid_size)) opponent_ships = stacked_ships[1:].sum(0) > 0 num_opponent_ships = opponent_ships.sum() for ship_id in range(num_opponent_ships): row = opponent_ship_positions[0][ship_id] col = opponent_ship_positions[1][ship_id] opponent_nearest_ship_distances = np.minimum( opponent_nearest_ship_distances, DISTANCES[row, col]) opponent_nearest_base_distances = 99*np.ones((grid_size, grid_size)) opponent_bases = stacked_bases[1:].sum(0) > 0 num_opponent_bases = opponent_bases.sum() opponent_base_positions = np.where(opponent_bases) for base_id in range(num_opponent_bases): row = opponent_base_positions[0][base_id] col = opponent_base_positions[1][base_id] opponent_nearest_base_distances = np.minimum( opponent_nearest_base_distances, DISTANCES[row, col]) nearest_ship_distance_difference = ( my_nearest_ship_distances - opponent_nearest_ship_distances) if observation['step'] == 0: original_position_multiplier = 1.5**(3-np.abs(np.maximum( -3, nearest_ship_distance_difference))) history['original_position_multiplier'] = original_position_multiplier else: original_position_multiplier = history['original_position_multiplier'] # Use the opponent influence to determine the value of gather squares - # squares where the nearest distance to one of my ships is equal have the # highest value since these will likely be where the competition happens smooth_multiplier = smooth2d(obs_halite) smooth_multiplier /= smooth_multiplier.mean() collect_values = np.copy(obs_halite) * smooth_multiplier collect_values *= original_position_multiplier smooth_collect_values = smooth2d(collect_values, 5) # Compute ship specific collect scores for all considered collect values # This factors in the distance to each square and the halite on board # FUTURE WORK: factor in halite on board all_ship_collect_scores = np.zeros((my_num_ships, grid_size, grid_size)) my_assigned_squares = np.zeros((grid_size, grid_size), dtype=np.bool) ships_assigned = np.zeros(my_num_ships, dtype=np.bool) assigned_id = 0 initial_collect_zero_halite_targets = history[ 'initial_collect_zero_halite_targets'] for ship_id, ship_k in enumerate(ship_keys): row = my_ship_positions[0][ship_id] col = my_ship_positions[1][ship_id] valid_considered_mask = np.ones((grid_size, grid_size), dtype=np.bool) bad_directions = list(set(MOVE_DIRECTIONS) - set(all_ship_scores[ship_k][6])) for d in bad_directions: if d is None: valid_considered_mask[row, col] = 0 else: valid_considered_mask[HALF_PLANES_CATCH[row, col][d]] = 0 dm = DISTANCE_MASKS[(row, col)] ship_collect_scores = dm*collect_values*valid_considered_mask ship_collect_scores[row, col] *= int(my_num_bases > 0)*( config['relative_stand_still_collect_boost']) all_ship_collect_scores[ship_id] = ship_collect_scores if my_ship_halites[ship_id] > 0 and not None in bad_directions and ( ship_collect_scores[row, col] == ship_collect_scores.max()): # import pdb; pdb.set_trace() my_assigned_squares[row, col] = True all_ship_scores[ship_k][0][row, col] = 1e5 - assigned_id ships_assigned[ship_id] = True assigned_id += 1 elif my_ship_halites[ship_id] == 0 and ship_k in ( initial_collect_zero_halite_targets): # Prefer consistent target selection - only reevaluate after reaching the # target all_ship_collect_scores[ship_id][initial_collect_zero_halite_targets[ ship_k]] *= 2 # if observation['step'] == 13: # import pdb; pdb.set_trace() lowest_collect_score = all_ship_collect_scores.min() # original_ship_collect_scores = np.copy(all_ship_collect_scores) all_ship_collect_scores[:, my_assigned_squares] = lowest_collect_score all_ship_collect_scores[ships_assigned] = lowest_collect_score # First assign the zero halite ships - Ideally, they should spread out and # target high value halite squares at the boundary of the influence sphere num_zero_halite_ships = (my_ship_halites == 0).sum() zero_halite_ids = np.where(my_ship_halites == 0) zero_halite_collect_scores = all_ship_collect_scores[zero_halite_ids] zero_halite_targets = {} for _ in range(num_zero_halite_ships): (best_ship_id, best_row, best_col) = np.unravel_index( zero_halite_collect_scores.argmax(), zero_halite_collect_scores.shape) # import pdb; pdb.set_trace() ship_k = ship_keys[best_ship_id] my_assigned_squares[best_row, best_col] = True # Create a mask between the current and target positions, where we # encourage the ships to prefer squares with a higher smooth collect value row = my_ship_positions[0][best_ship_id] col = my_ship_positions[1][best_ship_id] collect_ship_score_mask = get_mask_between_exclude_ends( row, col, best_row, best_col, grid_size) collect_ship_score_mask[best_row, best_col] = 1 collect_ship_scores = (1e5-assigned_id)*collect_ship_score_mask-( 10*obs_halite) to_target_dirs = get_dir_from_target( row, col, best_row, best_col, grid_size) if len(to_target_dirs) == 2: first_move_pos = move_ship_row_col( row, col, to_target_dirs[0], grid_size) second_move_pos = move_ship_row_col( row, col, to_target_dirs[1], grid_size) if smooth_collect_values[first_move_pos] > smooth_collect_values[ second_move_pos]: avoid_dir = to_target_dirs[1] else: avoid_dir = to_target_dirs[0] collect_ship_scores[HALF_PLANES_CATCH[row, col][avoid_dir]] -= 1 # import pdb; pdb.set_trace() all_ship_scores[ship_k][0][:] = collect_ship_scores zero_halite_targets[ship_k] = (best_row, best_col) assigned_id += 1 ships_assigned[best_ship_id] = True all_ship_collect_scores[:, my_assigned_squares] zero_halite_collect_scores[:, best_row, best_col] = lowest_collect_score zero_halite_collect_scores[best_ship_id] = lowest_collect_score history['initial_collect_zero_halite_targets'] = zero_halite_targets print(observation['step'], zero_halite_targets) return all_ship_scores, history def get_ship_scores(config, observation, player_obs, env_config, np_rng, ignore_bad_attack_directions, history, env_obs_ids, env_observation, verbose): ship_scores_start_time = time.time() convert_cost = env_config.convertCost spawn_cost = env_config.spawnCost stacked_bases = np.stack( [rbs[1] for rbs in observation['rewards_bases_ships']]) all_my_bases = copy.copy(stacked_bases[0]) my_bases = stacked_bases[0] # Exclude bases that are persistently camped by opponents num_my_bases_with_excluded = my_bases.sum() base_locations_with_excluded = np.where(my_bases) excluded_base_distances = [] for base_pos in history['my_base_not_attacked_positions']: # Note: stacking ensures we are working on a copy of the original base # observation! my_bases[base_pos] = 0 excluded_base_distances.append(DISTANCES[base_pos]) obs_halite = np.maximum(0, observation['halite']) # Clip obs_halite to zero when gathering it doesn't add to the score # code: delta_halite = int(cell.halite * configuration.collect_rate) collect_rate = env_config.collectRate obs_halite[obs_halite < 1/collect_rate] = 0 obs_halite_sum = obs_halite.sum() my_ship_count = len(player_obs[2]) num_my_bases = my_bases.sum() first_base = my_ship_count == 1 and num_my_bases == 0 and observation[ 'step'] <= 10 max_ships = config['max_initial_ships'] early_game_return_boost_step = config['early_game_return_boost_step'] step = observation['step'] early_game_not_max_ships = (my_ship_count < max_ships) and ( step < early_game_return_boost_step) early_game_return_boost = (early_game_return_boost_step-step)/( early_game_return_boost_step)*config[ 'early_game_return_base_additional_multiplier']*early_game_not_max_ships steps_remaining = env_config.episodeSteps-1-observation['step'] # Override the maximum number of conversions on the last episode turn last_episode_turn = observation['relative_step'] == 1 grid_size = obs_halite.shape[0] half_dim_grid_mask = np.ones((grid_size, grid_size))*half_distance_mask_dim # smoothed_friendly_ship_halite = smooth2d( # observation['rewards_bases_ships'][0][3]) smoothed_halite = smooth2d(obs_halite) can_deposit_halite = num_my_bases > 0 stacked_ships = np.stack( [rbs[2] for rbs in observation['rewards_bases_ships']]) my_ships = stacked_ships[0] opponent_ships = stacked_ships[1:].sum(0) > 0 all_ship_count = opponent_ships.sum() + my_ship_count my_ship_fraction = my_ship_count/(1e-9+all_ship_count) halite_ships = np.stack([ rbs[3] for rbs in observation['rewards_bases_ships']]).sum(0) halite_ships[stacked_ships.sum(0) == 0] = -1e-9 my_zero_halite_ships = my_ships & (halite_ships == 0) last_ship_standing_no_collect = observation[ 'relative_step'] > 1/4 and ( stacked_ships[0] & (halite_ships == 0)).sum() == 1 opponent_bases = stacked_bases[1:].sum(0) player_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) for i in range(stacked_ships.shape[0]): player_ids[stacked_ships[i]] = i camping_ships_strategy = history['camping_ships_strategy'] # Get the distance to the nearest base for all squares all_bases = stacked_bases.sum(0) > 0 base_locations = np.where(all_bases) num_bases = all_bases.sum() all_base_distances = [DISTANCES[ base_locations[0][i], base_locations[1][i]] for i in range(num_bases)] + [ 99*np.ones((grid_size, grid_size))] nearest_base_distances = np.stack(all_base_distances).min(0) if num_my_bases_with_excluded > 0: all_base_distances_with_excluded = np.stack([DISTANCES[ base_locations_with_excluded[0][i], base_locations_with_excluded[1][i]] for i in range( num_my_bases_with_excluded)]) nearest_base_distances_with_my_excluded = ( all_base_distances_with_excluded.min(0)) else: all_base_distances_with_excluded = np.zeros((0, grid_size, grid_size)) nearest_base_distances_with_my_excluded = 99*np.ones( (grid_size, grid_size), dtype=np.int) # Flag to indicate I should not occupy/flood my base with early ships my_halite = observation['rewards_bases_ships'][0][0] avoid_base_early_game = my_halite >= spawn_cost and ( observation['step'] < 20) and num_my_bases == 1 and ( my_halite % spawn_cost) == 0 and my_ship_count < 9 # if observation['step'] in [160, 242]: # import pdb; pdb.set_trace() # Distance to nearest base mask - gathering closer to my base is better (base_nearest_distance_scores, my_base_distances, my_nearest_base_distances) = get_nearest_base_distances( grid_size, history['my_base_not_attacked_positions'], observation) # Get opponent ship actions that avoid collisions with less halite ships (opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, boxed_in_attack_squares, boxed_in_opponent_ids, boxed_in_zero_halite_opponents, likely_convert_opponent_positions, possible_convert_opponent_positions) = get_valid_opponent_ship_actions( config, observation['rewards_bases_ships'], halite_ships, grid_size, history, nearest_base_distances_with_my_excluded, observation, env_config) # Get the weighted base mask (weighted_base_mask, main_base_distances, non_abandoned_base_distances, ship_diff_smoothed) = get_weighted_base_mask( stacked_bases, stacked_ships, observation, history) # Get the influence map (influence_map, influence_map_unweighted, player_influence_maps, priority_scores, ship_priority_weights, escape_influence_probs) = get_influence_map( config, stacked_bases, stacked_ships, halite_ships, observation, player_obs) # Scale the opponent bases as a function of attack desirability (opponent_bases_scaled, opponent_ships_scaled, abs_rel_opponent_scores, currently_winning, approximate_score_diff, history, ballistic_attack_base_targets) = scale_attack_scores_bases_ships( config, observation, player_obs, spawn_cost, non_abandoned_base_distances, weighted_base_mask, steps_remaining, obs_halite, halite_ships, history, smoothed_halite, player_influence_maps, nearest_base_distances_with_my_excluded, player_ids) ignore_bad_attack_directions = ignore_bad_attack_directions or len( ballistic_attack_base_targets) > 0 # Decide what converting ships to let convert peacefully (ignore_convert_positions, opponent_bases, boxed_in_attack_squares) = get_ignored_convert_positions( likely_convert_opponent_positions, main_base_distances, stacked_ships, abs_rel_opponent_scores, observation, my_base_distances, opponent_bases, boxed_in_attack_squares) # Decide what boxed in escape squares to avoid - if I use a lonely zero # halite ship to destroy an opponent's ship, I am likely to lose my ship in # one of the subsequent turns (avoid_attack_squares_zero_halite, always_attack_opponent_id) = get_avoid_attack_squares( boxed_in_attack_squares, approximate_score_diff, currently_winning, abs_rel_opponent_scores, my_zero_halite_ships, opponent_ships, influence_map, influence_map_unweighted, my_base_distances, boxed_in_opponent_ids, observation) # Get the squares that have no zero halite neighbors - this makes it hard # to successfully camp out next to the base no_zero_halite_neighbors = get_no_zero_halite_neighbors( observation['halite']) # Only conditionally attack the bases where I have a camper that is active my_prev_step_base_attacker_ships = history[ 'my_prev_step_base_attacker_ships'] camp_attack_mask = np.ones((grid_size, grid_size), dtype=np.bool) for ship_k in camping_ships_strategy: base_location = camping_ships_strategy[ship_k][5] consider_base_attack = camping_ships_strategy[ship_k][4] camp_attack_mask[base_location] = consider_base_attack # Attack opponent ships that camp out next to my base attack_opponent_campers = history['attack_opponent_campers'] # Don't worry about collecting if I have a base at distance <= d and the # nearest opponent is at a distance of at least d+2 (safe_to_collect, safe_to_collect_margin, safe_to_return_halites, safe_to_return_base_halites) = get_my_guaranteed_safe_collect_squares( opponent_ships, grid_size, all_my_bases, obs_halite, collect_rate, halite_ships, observation) # Early on, the collect boost is high as the distance from the nearest base # grows. This effect rapidly decays once the hunting season starts stand_still_collect_boost = config['relative_stand_still_collect_boost'] # print(observation['step'], my_ship_count, (stacked_ships[0] & ( # halite_ships == 0)).sum()) n_step_avoid_min_die_prob_cutoff = config[ 'n_step_avoid_min_die_prob_cutoff'] if history['num_destroyed_ships'] == 0: low_risk_limit = 0.1 early_game_risk_limit = max( low_risk_limit, config['max_risk_n_step_risky'] - ( config['max_risk_n_step_risky']-low_risk_limit)*observation[ 'step']/config['max_steps_n_step_risky']) n_step_avoid_min_die_prob_cutoff = max( early_game_risk_limit, n_step_avoid_min_die_prob_cutoff) all_ship_scores = {} for i, ship_k in enumerate(player_obs[2]): row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) dm = DISTANCE_MASKS[(row, col)] ship_halite = player_obs[2][ship_k][1] opponent_less_halite_ships = np.logical_and( opponent_ships, halite_ships <= ship_halite) opponent_smoother_less_halite_ships = smooth2d( opponent_less_halite_ships, smooth_kernel_dim=5) # Scores 1: collecting halite at row, col # Multiply the smoothed halite, added with the obs_halite with a distance # mask, specific for the current row and column ship_influence_priority_multipliers = ( 1+config['influence_weights_additional_multiplier']*( ship_priority_weights[ship_k])**config[ 'influence_weights_exponent']) ** priority_scores collect_grid_scores = dm*( smoothed_halite * config['collect_smoothed_multiplier'] + obs_halite * config['collect_actual_multiplier']) * ( config['collect_less_halite_ships_multiplier_base'] ** ( opponent_smoother_less_halite_ships)) * ( base_nearest_distance_scores ** config[ 'collect_base_nearest_distance_exponent'])*( ship_influence_priority_multipliers) if observation['step'] < 50: # import pdb; pdb.set_trace() collect_grid_scores *= (history['original_position_multiplier']**( observation['step']/50)) base_distance = nearest_base_distances_with_my_excluded[row, col] collect_grid_scores[row, col] *= int(num_my_bases_with_excluded > 0)*( stand_still_collect_boost * (1+config[ 'initial_collect_boost_away_from_base'] * max(0, base_distance-5)/7)**( (1-observation['relative_step'])**14)) if ship_k in history['initial_not_collect_near_base_ships']: collect_grid_scores[history['initial_not_collect_near_base_mask']] = 0 # if observation['step'] == 233: # import pdb; pdb.set_trace() if last_ship_standing_no_collect and ship_halite == 0: collect_grid_scores[row, col] = -1e13 # if observation['step'] >= 14 and row == 2 and col in [9]: # import pdb; pdb.set_trace() # Override the collect score to 0 to avoid blocking the base early on in # the game: All squares right next to the initial base are set to 0 if avoid_base_early_game: collect_grid_scores, early_next_base_dir, drop_None_valid = ( set_scores_single_nearby_zero( collect_grid_scores, my_bases, grid_size, row, col)) else: early_next_base_dir = None drop_None_valid = False # At the end of a game, disincintivize all collect squares that are too far # away from the nearest base to be able to return before the game is over if steps_remaining < grid_size and nearest_base_distances.min() == 0: trajectory_lengths = DISTANCES[row, col] + my_nearest_base_distances collect_grid_scores[trajectory_lengths > (steps_remaining-1-int( steps_remaining > grid_size//2))] = 0 # Scores 2: returning to any of my bases - delay the return when it is # safe to collect safe_collect_ship_margin = safe_to_collect_margin[row, col] if ship_k in history['returning_to_base_ships'] or ( safe_collect_ship_margin <= 0) or num_my_bases < 2: delay_return_divisor = 1 else: # delay_return_divisor = 1 delay_return_divisor = 2**(safe_collect_ship_margin/2) # Always use the maximum value for a base return if I can safely move there # (regardless of my influence in that area) weighted_base_mask_ship_return = np.copy(weighted_base_mask) for base_safe_return_halite, base_location in safe_to_return_base_halites: if ship_halite < base_safe_return_halite[row, col]: weighted_base_mask_ship_return[base_location] = max( 1.0, weighted_base_mask_ship_return[base_location]) base_return_grid_multiplier = dm*min(ship_halite, 2*convert_cost)/( delay_return_divisor)*(config['return_base_multiplier'] * ( config['return_base_less_halite_ships_multiplier_base'] ** ( opponent_smoother_less_halite_ships)) + early_game_return_boost)*( weighted_base_mask_ship_return) # Further incentivize moving onto a base after a return has started when I # am close to a base since that means I can count on some of the best # collect score for future steps if ship_k in history['returning_to_base_ships'] and observation[ 'relative_step'] > config['start_hunting_season_relative_step']: base_return_grid_multiplier += (dm**2)*collect_grid_scores.max()/1.5 chase_details = history['chase_counter'][0].get(ship_k, None) if chase_details is not None: # Keep the relative order using the minimum in case the return to base # pull is big base_return_grid_multiplier = np.minimum( base_return_grid_multiplier+5e4, base_return_grid_multiplier*(config[ 'chase_return_base_exponential_bonus']**chase_details[1])) # Force returning to a base when the episode is almost over and I # have halite on board if ship_halite > 0 and steps_remaining < grid_size: base_return_grid_multiplier, end_game_base_return = ( force_return_base_end_episode( my_bases, base_return_grid_multiplier, main_base_distances, row, col, steps_remaining, opponent_less_halite_ships, weighted_base_mask, safe_to_collect)) else: end_game_base_return = False # Override the return base score to 0 to avoid blocking the base early on # in the game. if avoid_base_early_game: base_return_grid_multiplier = override_early_return_base_scores( base_return_grid_multiplier, my_bases, row, col, my_ship_count) # if observation['step'] == 247 and row == 15 and col == 4: # import pdb; pdb.set_trace() # Scores 3: establish a new base first_base_or_can_spawn = my_ship_count == 1 and num_my_bases == 0 and ( observation['step'] <= 10 or (player_obs[0]+ship_halite) >= ( 2*spawn_cost)) establish_base_scores = dm**(config['establish_base_dm_exponent'])*( smoothed_halite-obs_halite) * (config[ 'establish_base_smoothed_multiplier'] + first_base*config[ 'establish_first_base_smoothed_multiplier_correction'])*( 1-((my_bases*dm).max()))*(1-my_bases) * ( config['establish_base_less_halite_ships_multiplier_base'] ** ( opponent_smoother_less_halite_ships)) - ( convert_cost*can_deposit_halite) + min( ship_halite, convert_cost)*( config['establish_base_deposit_multiplier']) + first_base*( config['first_base_no_4_way_camping_spot_bonus']*( no_zero_halite_neighbors)) - 1e5*int(not ( first_base_or_can_spawn)) # if observation['step'] == 391 and ship_k == '58-1': # import pdb; pdb.set_trace() # Scores 4: attack an opponent base at row, col attack_step_multiplier = min(5, max(1, 1/( 2*(1-observation['relative_step']+1e-9)))) if ship_k in my_prev_step_base_attacker_ships: # Encourage the base attack of a ship to be persistent attack_step_multiplier *= 5 attack_base_scores = dm*np.minimum(15e5, camp_attack_mask*( attack_step_multiplier)*config['attack_base_multiplier']*( opponent_bases_scaled)*(config[ 'attack_base_less_halite_ships_multiplier_base'] ** ( opponent_smoother_less_halite_ships))) - (config[ 'attack_base_halite_sum_multiplier'] * obs_halite_sum**0.8 / ( all_ship_count))*int(my_ship_fraction < 0.5) - 1e12*( ship_halite > 0) # Keep the preference order in ballistic mode without abandoning recue or # base defense ships attack_base_scores = np.minimum(15e5, attack_base_scores) + 1e-10*( attack_base_scores) * (attack_base_scores > 15e5) # Update the scores as a function of nearby opponent ships to avoid # collisions with opposing ships that carry less halite and encourage # collisions with opponent ships that carry less halite # Also incorporate the camping score override behavior here camping_override_strategy = camping_ships_strategy.get(ship_k, ()) attack_campers_override_strategy = attack_opponent_campers.get(ship_k, ()) (collect_grid_scores, base_return_grid_multiplier, establish_base_scores, attack_base_scores, preferred_directions, valid_directions, agent_surrounded, two_step_bad_directions, n_step_bad_directions, one_step_valid_directions, n_step_bad_directions_die_probs, original_n_step_bad_directions, original_n_step_bad_directions_die_probs) = update_scores_opponent_ships( config, collect_grid_scores, base_return_grid_multiplier, establish_base_scores, attack_base_scores, opponent_ships, opponent_bases, halite_ships, row, col, grid_size, spawn_cost, drop_None_valid, obs_halite, collect_rate, np_rng, opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, ignore_bad_attack_directions, observation, ship_k, all_my_bases, my_ships, steps_remaining, history, escape_influence_probs, player_ids, env_obs_ids, env_observation, main_base_distances, nearest_base_distances, end_game_base_return, camping_override_strategy, attack_campers_override_strategy, boxed_in_attack_squares, safe_to_collect, boxed_in_zero_halite_opponents, ignore_convert_positions, avoid_attack_squares_zero_halite, n_step_avoid_min_die_prob_cutoff, safe_to_return_halites, safe_to_return_base_halites, my_nearest_base_distances) # if observation['step'] == 169 and ship_k == '65-2': # import pdb; pdb.set_trace() # Update the scores as a function of blocking opponent bases and my early # game initial base (collect_grid_scores, base_return_grid_multiplier, establish_base_scores, attack_base_scores, valid_directions, one_step_valid_directions, opponent_base_directions) = update_scores_blockers( collect_grid_scores, base_return_grid_multiplier, establish_base_scores, attack_base_scores, row, col, grid_size, opponent_bases, half_dim_grid_mask, valid_directions, one_step_valid_directions, early_next_base_dir, update_attack_base=False) if last_episode_turn: # Convert all ships with more halite than the convert cost on the last # episode step last_episode_step_convert = ship_halite >= convert_cost if last_episode_step_convert and num_my_bases_with_excluded > 0: # Don't convert if I can safely move to a base next to my square. min_base_distance = all_base_distances_with_excluded[:, row, col].min() if min_base_distance == 1: if opponent_less_halite_ships.sum() == 0: last_episode_step_convert = False else: for base_id in range(num_my_bases_with_excluded): base_row = base_locations_with_excluded[0][base_id] base_col = base_locations_with_excluded[1][base_id] if all_base_distances_with_excluded[base_id, row, col] == 1: if DISTANCES[base_row, base_col][ opponent_less_halite_ships].min() > 1: last_episode_step_convert = False break if last_episode_step_convert: establish_base_scores[row, col] = 1e12 base_locations_with_excluded = ( np.append(base_locations_with_excluded[0], row), np.append(base_locations_with_excluded[1], col)) all_base_distances_with_excluded = np.concatenate( [all_base_distances_with_excluded, np.expand_dims(DISTANCES[row, col], 0)]) num_my_bases_with_excluded += 1 elif ship_halite > 0: base_return_grid_multiplier[DISTANCES[row, col] == 1] += 1e5 end_game_base_return = True else: last_episode_step_convert = False all_ship_scores[ship_k] = ( collect_grid_scores, base_return_grid_multiplier, establish_base_scores, attack_base_scores, preferred_directions, agent_surrounded, valid_directions, two_step_bad_directions, n_step_bad_directions, one_step_valid_directions, opponent_base_directions, 0, end_game_base_return, last_episode_step_convert, n_step_bad_directions_die_probs, opponent_smoother_less_halite_ships, ship_influence_priority_multipliers, original_n_step_bad_directions, original_n_step_bad_directions_die_probs) # if observation['relative_step'] < config[ # 'initial_collect_override_relative_step']: # all_ship_scores, history = override_initial_collect( # config, all_ship_scores, obs_halite, halite_ships, stacked_ships, # stacked_bases, player_influence_maps, player_obs, observation, # history) ship_scores_duration = time.time() - ship_scores_start_time return (all_ship_scores, opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, weighted_base_mask, opponent_ships_scaled, main_base_distances, ship_scores_duration, halite_ships, player_influence_maps, boxed_in_zero_halite_opponents, ignore_convert_positions, ship_diff_smoothed, ballistic_attack_base_targets, safe_to_return_halites, safe_to_collect_margin, always_attack_opponent_id, likely_convert_opponent_positions, possible_convert_opponent_positions, my_base_distances, nearest_base_distances, history) def get_mask_between_exclude_ends(r1, c1, r2, c2, grid_size): rel_pos = get_relative_position(r1, c1, r2, c2, grid_size) start_row = r2 if rel_pos[0] < 0 else r1 rows = np.mod( np.arange(start_row, start_row+np.abs(rel_pos[0])+1), grid_size) start_col = c2 if rel_pos[1] < 0 else c1 cols = np.mod( np.arange(start_col, start_col+np.abs(rel_pos[1])+1), grid_size) mask = np.zeros((grid_size, grid_size), dtype=np.bool) mask[rows[:, None], cols] = 1 mask[r1, c1] = 0 mask[r2, c2] = 0 return mask def consider_restoring_base( observation, env_config, all_ship_scores, player_obs, convert_cost, np_rng, history, max_considered_attackers=3, halite_on_board_mult=1e-6): obs_halite = np.maximum(0, observation['halite']) grid_size = obs_halite.shape[0] collect_rate = env_config.collectRate obs_halite[obs_halite < 1/collect_rate] = 0 my_ships = observation['rewards_bases_ships'][0][2] my_ship_count = my_ships.sum() my_bases = observation['rewards_bases_ships'][0][1] stacked_ships = np.stack( [rbs[2] for rbs in observation['rewards_bases_ships']]) halite_ships = np.stack([ rbs[3] for rbs in observation['rewards_bases_ships']]).sum(0) halite_ships[stacked_ships.sum(0) == 0] = -1e-9 opponent_bases = np.stack([rbs[1] for rbs in observation[ 'rewards_bases_ships']])[1:].sum(0) opponent_ships = np.stack([ rbs[2] for rbs in observation['rewards_bases_ships'][1:]]).sum(0) > 0 opponent_ship_count = opponent_ships.sum() all_ship_count = opponent_ship_count + my_ship_count my_ship_fraction = my_ship_count/(1e-9+all_ship_count) remaining_halite = obs_halite.sum() steps_remaining = env_config.episodeSteps-1-observation['step'] ship_cargo = (np.minimum(convert_cost, halite_ships)*my_ships).sum() expected_payoff_conversion = ship_cargo*0.5 + (max( 0, steps_remaining-20)**0.6)*(remaining_halite**0.9)*my_ship_fraction last_ship_standing_no_collect = observation[ 'relative_step'] > 1/4 and ( stacked_ships[0] & (halite_ships == 0)).sum() == 1 halite_density = smooth2d(obs_halite, smooth_kernel_dim=10) my_base_density = smooth2d(my_bases, smooth_kernel_dim=10) can_deposit_halite = expected_payoff_conversion > convert_cost restored_base_pos = None can_defend_converted = False if can_deposit_halite: # Decide what ship to convert - it should be relatively central, have high # ship halite on board and be far away from opponent ships and bases # Also, don't build a new base next to a base where there is a camper # that I am not attacking # Preferably restore a base close to other halite and close to my other # bases next_to_my_camped_not_attacked = np.zeros( (grid_size, grid_size), dtype=np.bool) for base_pos in history['my_base_not_attacked_positions']: next_to_my_camped_not_attacked[ROW_COL_BOX_MAX_DISTANCE_MASKS[ base_pos[0], base_pos[1], 2]] = 1 my_ship_density = smooth2d(my_ships, smooth_kernel_dim=10) opponent_base_density = smooth2d(opponent_bases, smooth_kernel_dim=5) opponent_ship_density = smooth2d(opponent_ships, smooth_kernel_dim=5) convert_priority_scores = np.zeros(my_ship_count) for i, ship_k in enumerate(player_obs[2]): row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_halite = min(convert_cost, player_obs[2][ship_k][1]) # Compute if the base can be defended after conversion my_ship_distances = np.sort(DISTANCES[row, col][my_ships]+( halite_on_board_mult*halite_ships[my_ships]))[1:] opponent_ship_distances = np.sort(DISTANCES[row, col][opponent_ships])+( halite_on_board_mult*halite_ships[opponent_ships]) num_considered_distances = min([ max_considered_attackers, my_ship_count-1, opponent_ship_count]) can_defend = np.all(my_ship_distances[:num_considered_distances] <= ( opponent_ship_distances[:num_considered_distances])) if num_considered_distances >= 1 and can_defend: can_defend = my_ship_distances[0] < opponent_ship_distances[0] can_afford = (halite_ships[row, col] + player_obs[0]) >= convert_cost*( 1+1e10*int(last_ship_standing_no_collect and ship_halite == 0)) convert_priority_scores[i] = ship_halite + halite_density[ row, col]/10 + (500*( max(0, 0.3-np.abs(0.3-my_base_density[row, col])))) - 100*( my_ship_density-opponent_ship_density)[row, col] - 200*( opponent_base_density[row, col]) - 1e12*int( not can_defend or not can_afford or next_to_my_camped_not_attacked[ row, col]) can_defend_converted = convert_priority_scores.max() > -1e11 # if observation['step'] == 153: # import pdb; pdb.set_trace() if can_defend_converted: convert_k = list(player_obs[2].keys())[np.argmax(convert_priority_scores)] convert_row, convert_col = row_col_from_square_grid_pos( player_obs[2][convert_k][0], grid_size) restored_base_pos = (convert_row, convert_col) all_ship_scores[convert_k][2][convert_row, convert_col] = 1e12 # Send the closest ship towards the base convert_distances = DISTANCES[convert_row, convert_col][my_ships] convert_distances[convert_distances == 0] = 100 closest_id = np.argmin(convert_distances) my_ship_positions = np.where(my_ships) ship_to_base_row = my_ship_positions[0][closest_id] ship_to_base_col = my_ship_positions[1][closest_id] my_ship_pos_to_k = {v[0]: k for k, v in player_obs[2].items()} ship_to_base_k = my_ship_pos_to_k[ ship_to_base_row*grid_size + ship_to_base_col] to_base_directions = get_dir_from_target( ship_to_base_row, ship_to_base_col, convert_row, convert_col, grid_size) for d in to_base_directions: if not d in all_ship_scores[ship_to_base_k][6]: all_ship_scores[ship_to_base_k][6].append(d) print(observation['step'], "Moving ship to restored base", ship_to_base_row, ship_to_base_col, convert_row, convert_col) all_ship_scores[ship_to_base_k][1][convert_row, convert_col] = 1e9 else: # Don't gather # Add some small positive noise to the establish base score, away from # the current square - this ensures ships keep moving around when I don't # plan on restoring my last destroyed base # Move ships closer to each other if we want to convert a base but they are # not able to defend it # Send all to the least dense opponent point that is still close to halite # and my other bases opponent_density = smooth2d(opponent_ships+opponent_bases, smooth_kernel_dim=5) desirability_score = 500*np.maximum( 0, 0.3-np.abs(0.3-my_base_density))+(halite_density/10)-100*( opponent_density) best_gather_locations = np.where( desirability_score == desirability_score.max()) gather_row = best_gather_locations[0][0] gather_col = best_gather_locations[1][0] # lowest_densities = np.where(opponent_density == opponent_density.min()) # halite_density = smooth2d(obs_halite) # target_id = np.argmax(halite_density[lowest_densities]) # gather_row = lowest_densities[0][target_id] # gather_col = lowest_densities[1][target_id] num_zero_halite_ships = ((halite_ships == 0) & my_ships).sum() for ship_k in player_obs[2]: row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) all_ship_scores[ship_k][0][:] *= 0 if can_deposit_halite: # Gather with some low probability since we may not have enough halite # to convert a ship (except when it is the last remaining zero halite # ship) if obs_halite[row, col] > 0 and np_rng.uniform() < 0.2 and ( halite_ships[row, col] > 0 or num_zero_halite_ships > 1): all_ship_scores[ship_k][0][row, col] = 2e6 ensure_move_mask = 1e6*DISTANCE_MASKS[(gather_row, gather_col)] else: ensure_move_mask = np_rng.uniform(1e5, 1e9, (grid_size, grid_size)) ensure_move_mask[row, col] = 0 all_ship_scores[ship_k][2][:] += ensure_move_mask can_deposit_halite = False return all_ship_scores, can_deposit_halite, restored_base_pos def edge_aware_3_avg(a, b, c, grid_size): # Decide if we should be edge aware near the high or low end vals = np.array([a, b, c]) num_lower_half = (vals <= grid_size//2).sum() if num_lower_half == 1: near_low_edge = vals <= grid_size//4 if np.any(near_low_edge): low_edge_id = np.where(near_low_edge)[0][0] vals[low_edge_id] += grid_size elif num_lower_half == 2: near_high_edge = vals >= 3*grid_size//4 if np.any(near_high_edge): high_edge_id = np.where(near_high_edge)[0][0] vals[high_edge_id] -= grid_size return int(np.round(vals.sum())/3) % grid_size def consider_adding_strategic_bases( config, observation, env_config, all_ship_scores, player_obs, convert_cost, np_rng, history, player_influence_maps, obs_halite, non_abandoned_base_pos, all_base_pos, halite_ships, my_nearest_ship_distances, my_nearest_ship_distances_raw, opponent_nearest_ship_distances, evaluation_add_interval=15): opponent_bases = np.stack( [rbs[1] for rbs in observation['rewards_bases_ships']][1:]).sum(0) > 0 my_ships = observation['rewards_bases_ships'][0][2] my_ship_halite_on_board = halite_ships[my_ships] my_ship_positions = np.where(my_ships) my_ship_pos_to_k = {v[0]: k for k, v in player_obs[2].items()} num_bases = all_base_pos[0].size num_non_abandoned_bases = non_abandoned_base_pos[0].size num_abandoned_bases = num_bases - num_non_abandoned_bases grid_size = opponent_bases.shape[0] convert_unavailable_positions = np.zeros( (grid_size, grid_size), dtype=np.bool) target_strategic_base_distance = config['target_strategic_base_distance'] my_stacked_ship_distances = np.stack(my_nearest_ship_distances_raw) spawn_cost = env_config.spawnCost base_added = False added_base_pos = None # Decide *WHERE* to construct a new strategic base # Determine if a converted square can be defended by the second closest of # my ships (the closest would be converted) second_closest_ids = np.argsort(my_stacked_ship_distances, 0)[1].flatten() subset_ids = (second_closest_ids, np.repeat(np.arange(grid_size), grid_size), np.tile(np.arange(grid_size), grid_size)) my_second_closest_ship_distances = my_stacked_ship_distances[ subset_ids].reshape((grid_size, grid_size)) can_defend_desirability = my_second_closest_ship_distances < ( opponent_nearest_ship_distances) # Compute the desirability for each square to establish a new base. # We want bases that are far away from opponent bases (critical), close to # our other bases (but not too close), close to current and future potential # halite, far away from opponent ships and boxing in a large number of # future farming halite. influence_desirability = player_influence_maps[0]-player_influence_maps[ 1:].sum(0) opponent_near_base_desirability = -smooth2d( opponent_bases, smooth_kernel_dim=6) opponent_distant_base_desirability = -smooth2d( opponent_bases, smooth_kernel_dim=10) near_halite_desirability = smooth2d(obs_halite)-obs_halite near_halite_desirability /= max(1e3, near_halite_desirability.max()) near_potential_halite_desirability = smooth2d(observation['halite'] > 0)-( observation['halite'] > 0) independent_base_distance_desirability = np.zeros((grid_size, grid_size)) independent_base_distance_desirabilities = [] for base_id in range(num_non_abandoned_bases): base_row = non_abandoned_base_pos[0][base_id] base_col = non_abandoned_base_pos[1][base_id] target_distance_scores = (1-np.abs( target_strategic_base_distance - DISTANCES[base_row, base_col])/( target_strategic_base_distance))**2 independent_base_distance_desirabilities.append(target_distance_scores) if num_non_abandoned_bases == 1: independent_base_distance_desirability += target_distance_scores near_base_desirability = np.zeros((grid_size, grid_size)) for base_id in range(num_bases): base_row = all_base_pos[0][base_id] base_col = all_base_pos[1][base_id] near_base_desirability[ROW_COL_MAX_DISTANCE_MASKS[ base_row, base_col, 6]] -= 1 triangle_base_distance_desirability = np.zeros((grid_size, grid_size)) if num_non_abandoned_bases > 1: # For each potential triangle (consider all pairs of bases): factor in the # symmetry and amount of potential enclosed halite triangle_desirabilities = [] for i in range(num_non_abandoned_bases-1): first_row, first_col = (non_abandoned_base_pos[0][i], non_abandoned_base_pos[1][i]) for j in range(i+1, num_non_abandoned_bases): second_row, second_col = (non_abandoned_base_pos[0][j], non_abandoned_base_pos[1][j]) col_diff = second_col-first_col row_diff = second_row-first_row col_distance = min(np.abs(col_diff), grid_size - np.abs(col_diff)) row_distance = min(np.abs(row_diff), grid_size - np.abs(row_diff)) distance = col_distance+row_distance target_height = np.sqrt(target_strategic_base_distance**2-( (target_strategic_base_distance/2)**2))*(np.sqrt(2)/2) combined_distance_scores = independent_base_distance_desirabilities[ i]*independent_base_distance_desirabilities[j] # Additionally, aim for triangles with equal angles - boost for min # distance from the two optimal locations. col_base_diff = np.abs(col_diff) if ( np.abs(col_diff) <= grid_size//2) else (grid_size-np.abs(col_diff)) if (col_diff < 0) != (np.abs(col_diff) <= grid_size//2): left_vertex = (first_row, first_col) if first_row < second_row: if row_diff <= grid_size//2: row_base_diff = row_diff else: row_base_diff = row_diff-grid_size else: # This only happens with equal rows because of the np.where row # order if (-row_diff) <= grid_size//2: row_base_diff = row_diff else: row_base_diff = row_diff+grid_size else: left_vertex = (second_row, second_col) if second_row < first_row : # This never happens because of the np.where row order if (-row_diff) <= grid_size//2: row_base_diff = (-row_diff) else: row_base_diff = -row_diff-grid_size else: if row_diff <= grid_size//2: row_base_diff = -row_diff else: row_base_diff = -row_diff+grid_size base_vector = np.array([row_base_diff, col_base_diff]) found_it = False correction = 0 correction_range = [-5, 5] iteration = 0 # Use binary search to get the optimal triangle points while not found_it and iteration < 10: orthogonal_vector = np.array([col_base_diff, -row_base_diff]) orthogonal_vector = orthogonal_vector/np.linalg.norm( orthogonal_vector) dot_product = np.dot(orthogonal_vector, np.array([1, 0])) angle = np.arccos(dot_product) height_divisor = max([ np.cos(np.abs(angle)), np.sin(angle), np.sin(angle+np.pi)]) orthogonal_vector = orthogonal_vector*( target_height/height_divisor+correction) mid_point = (left_vertex[0]+base_vector[0]/2, left_vertex[1]+base_vector[1]/2) first_optimal = ( int(np.round(mid_point[0]+orthogonal_vector[0]) % grid_size), int(np.round(mid_point[1]+orthogonal_vector[1]) % grid_size)) second_optimal = ( int(np.round(mid_point[0]-orthogonal_vector[0]) % grid_size), int(np.round(mid_point[1]-orthogonal_vector[1]) % grid_size)) distance_to_first = DISTANCES[first_optimal][first_row, first_col] # print(observation['step'], distance_to_first, correction, iteration) if distance_to_first > target_strategic_base_distance: correction_range[1] = correction elif distance_to_first < target_strategic_base_distance: correction_range[0] = correction else: found_it = True iteration += 1 correction = (correction_range[0]+correction_range[1])/2 first_optimal_center = ( edge_aware_3_avg(first_optimal[0], first_row, second_row, grid_size), edge_aware_3_avg(first_optimal[1], first_col, second_col, grid_size)) second_optimal_center = ( edge_aware_3_avg( second_optimal[0], first_row, second_row, grid_size), edge_aware_3_avg( second_optimal[1], first_col, second_col, grid_size)) # Give a penalty to the first or second optimal point as a function of # the current halite and halite potential of the centres of the # triangles first_center_score = near_halite_desirability[first_optimal_center] + ( near_potential_halite_desirability[first_optimal_center])/15*( 1-observation['relative_step'])+10*near_base_desirability[ first_optimal] second_center_score = near_halite_desirability[second_optimal_center] + ( near_potential_halite_desirability[second_optimal_center])/15*( 1-observation['relative_step'])+10*near_base_desirability[ second_optimal] first_optimal_addition = 5*min(0.2, max( 0, second_center_score-first_center_score)) second_optimal_addition = 5*min(0.2, max( 0, first_center_score-second_center_score)) optimal_min_distances = np.minimum( DISTANCES[first_optimal]+first_optimal_addition, DISTANCES[second_optimal]+second_optimal_addition) optimal_mask_scores = np.exp(-optimal_min_distances) triangle_desirability = combined_distance_scores*optimal_mask_scores triangle_desirabilities.append(( first_row, first_col, second_row, second_col, distance, triangle_desirability)) # if observation['step'] == 47: # import pdb; pdb.set_trace() # x=1 if distance <= target_strategic_base_distance+2: triangle_base_distance_desirability += triangle_desirability new_base_desirability = 100*near_base_desirability + config[ 'target_strategic_influence_desirability_multiplier']*( influence_desirability) + 2*opponent_near_base_desirability + ( opponent_distant_base_desirability) + near_halite_desirability + ( near_potential_halite_desirability/config[ 'target_strategic_potential_divisor']*( 1-observation['relative_step'])) + (config[ 'target_strategic_independent_base_distance_multiplier']*( independent_base_distance_desirability) + config[ 'target_strategic_triangle_weight']*( triangle_base_distance_desirability))*( opponent_near_base_desirability > -0.2) + ( # Min D 5 0.5*can_defend_desirability) bad_positions = (near_base_desirability < 0) | ( opponent_near_base_desirability < -0.2) any_valid_locations = np.any(~bad_positions) if any_valid_locations: new_base_desirability[bad_positions] = new_base_desirability[ ~bad_positions].min() else: # print(observation['step'], # "Not constructing a new base since there are no valid locations") new_base_desirability *= 0 # if observation['step'] == 211: # import pdb; pdb.set_trace() # x=1 # if triangle_base_distance_desirability.max() > 0: # import pdb; pdb.set_trace() # x=1 # Give a bonus to the preceding best square if we decided to create a base on # that location if history['construct_strategic_base_position']: new_base_desirability[history['construct_strategic_base_position']] += 1 # Decide *IF* we should add a strategic base # Alway add a strategic base early on in the game # Later on, only decide to add a base at fixed intervals if # - There is significant halite left to be mined AND # - I have plenty of ships relative to my number of bases - give a boost to # the target number of bases if I am currently winning num_my_ships = observation['rewards_bases_ships'][0][2].sum() current_scores = history['current_scores'] ahead_in_score = (current_scores[0] == current_scores.max()) and np.all(( current_scores[0]-3*spawn_cost) >= current_scores[1:]) current_halite_sum = history['current_halite_sum'] winning_clearly = ahead_in_score and ( current_halite_sum[0] >= (current_halite_sum.max()-2*spawn_cost)) game_almost_over = observation['relative_step'] >= 0.8 strategic_additional_bases = num_my_ships/config[ 'target_strategic_num_bases_ship_divisor'] - 0.5*history[ 'num_destroyed_bases'] if not ahead_in_score and strategic_additional_bases > 2/0.8: # Don't create too many bases if I am not winning clearly (relates to # fourth bases and beyond in the case of no base losses) strategic_additional_bases *= 0.8 my_target_num_non_abandoned_bases = int(1+strategic_additional_bases) if winning_clearly and not game_almost_over: if obs_halite.sum() > config['min_halite_to_stop_early_hunt']: my_target_num_non_abandoned_bases += 1 else: # Don't reconstruct strategic bases towards the end of the game as they # get destroyed if observation['relative_step'] >= 0.8: my_target_num_non_abandoned_bases -= 1 if observation['relative_step'] >= 0.9: my_target_num_non_abandoned_bases -= 1 if observation['relative_step'] >= 0.95: my_target_num_non_abandoned_bases -= 1 if observation['step'] % evaluation_add_interval == 0: # print(observation['step'], my_target_num_non_abandoned_bases, # num_non_abandoned_bases) add_base = my_target_num_non_abandoned_bases > ( num_non_abandoned_bases + 0.5*(1+num_abandoned_bases)) history['add_strategic_base'] = add_base else: consider_adding_base = my_target_num_non_abandoned_bases > ( num_non_abandoned_bases) add_base = history['add_strategic_base'] add_base = add_base and consider_adding_base history['add_strategic_base'] = add_base # if observation['step'] == 97: # import pdb; pdb.set_trace() # Decide *HOW* to add a strategic base should_spawn_base_next_step = None if add_base and any_valid_locations: best_positions = np.where( new_base_desirability == new_base_desirability.max()) add_strategic_base_position = ( best_positions[0][0], best_positions[1][0]) history['construct_strategic_base_position'] = ( add_strategic_base_position) # print(observation['step'], add_strategic_base_position) # If we can afford to create and defend: go ahead and do so! # Otherwise, start saving up near_new_base_ship_distances = DISTANCES[add_strategic_base_position][ my_ships] base_position_is_defended = can_defend_desirability[ add_strategic_base_position] convert_mission_cost = int( not(base_position_is_defended))*spawn_cost + convert_cost near_ship_scores = 100*near_new_base_ship_distances-np.maximum( my_ship_halite_on_board, max(0, convert_mission_cost-player_obs[0])) nearest_ship_id = np.argmin(near_ship_scores) near_ship_position = (my_ship_positions[0][nearest_ship_id], my_ship_positions[1][nearest_ship_id]) near_ship_halite = halite_ships[near_ship_position] required_halite_to_convert = convert_mission_cost - near_ship_halite requested_save_conversion_budget = max(0, required_halite_to_convert) distance_to_conversion_square = DISTANCES[add_strategic_base_position][ near_ship_position] conversion_ship_pos = near_ship_position[0]*grid_size+near_ship_position[ 1] conversion_ship_k = my_ship_pos_to_k[conversion_ship_pos] if required_halite_to_convert <= player_obs[0] and not ( distance_to_conversion_square == 0 and not None in all_ship_scores[ conversion_ship_k][9]): # Issue the conversion ship with a conversion objective all_ship_scores[conversion_ship_k][2][add_strategic_base_position] = 1e12 convert_unavailable_positions[near_ship_position] = 1 # Decide if the second closest ship should be used to defend the future # base second_closest_id = np.argmin( near_new_base_ship_distances + 100*( np.arange(num_my_ships) == nearest_ship_id)) second_closest_distance = near_new_base_ship_distances[ second_closest_id] # import pdb; pdb.set_trace() move_second_closest_to_base = second_closest_distance + 2 > int( opponent_nearest_ship_distances[add_strategic_base_position]) if move_second_closest_to_base: second_closest_row = my_ship_positions[0][second_closest_id] second_closest_col = my_ship_positions[1][second_closest_id] towards_base_mask = get_mask_between_exclude_ends( second_closest_row, second_closest_col, add_strategic_base_position[0], add_strategic_base_position[1], grid_size) second_closest_ship_pos = grid_size*second_closest_row+( second_closest_col) second_closest_ship_k = my_ship_pos_to_k[second_closest_ship_pos] all_ship_scores[second_closest_ship_k][0][towards_base_mask] += 3e6 convert_unavailable_positions[ second_closest_row, second_closest_col] = 1 # if observation['step'] == 169: # import pdb; pdb.set_trace() # x=1 # Return the conversion square when I am converting this step if distance_to_conversion_square == 0: proceed_conversion = True if not(base_position_is_defended): # Make sure the base considers a spawn in the next step so it can be # defended # import pdb; pdb.set_trace() proceed_conversion = opponent_nearest_ship_distances[ add_strategic_base_position] > 2 if proceed_conversion: should_spawn_base_next_step = add_strategic_base_position if proceed_conversion: base_added = True added_base_pos = add_strategic_base_position history['add_strategic_base'] = False requested_save_conversion_budget = max( 0, requested_save_conversion_budget-convert_cost) if move_second_closest_to_base: for score_id in range(2): all_ship_scores[second_closest_ship_k][score_id][ add_strategic_base_position] += 3e6 # Move onto the base if the ship can safely do so second_to_base_distance = DISTANCES[add_strategic_base_position][ second_closest_row, second_closest_col] if second_to_base_distance == 1: to_base_dir = get_dir_from_target( second_closest_row, second_closest_col, add_strategic_base_position[0], add_strategic_base_position[1], grid_size)[0] if to_base_dir in all_ship_scores[second_closest_ship_k][9] and ( not to_base_dir in all_ship_scores[ second_closest_ship_k][6]): all_ship_scores[second_closest_ship_k][6].append(to_base_dir) else: # If I have a ship that can move towards the desired convert position and # the target square is currently not defended and we would otherwise # proceed with the conversion: move the ship closer if not base_position_is_defended and ( required_halite_to_convert-player_obs[0]) <= spawn_cost: # import pdb; pdb.set_trace() second_closest_id = np.argmin( near_new_base_ship_distances + 100*( np.arange(num_my_ships) == nearest_ship_id)) second_closest_row = my_ship_positions[0][second_closest_id] second_closest_col = my_ship_positions[1][second_closest_id] towards_base_mask = get_mask_between_exclude_ends( second_closest_row, second_closest_col, add_strategic_base_position[0], add_strategic_base_position[1], grid_size) second_closest_ship_pos = grid_size*second_closest_row+( second_closest_col) second_closest_ship_k = my_ship_pos_to_k[second_closest_ship_pos] all_ship_scores[second_closest_ship_k][0][towards_base_mask] += 3e6 convert_unavailable_positions[ second_closest_row, second_closest_col] = 1 else: history['construct_strategic_base_position'] = None requested_save_conversion_budget = 0 # if observation['step'] == 275: # import pdb; pdb.set_trace() # x=1 return (all_ship_scores, base_added, added_base_pos, requested_save_conversion_budget, convert_unavailable_positions, should_spawn_base_next_step) def protect_base(observation, env_config, all_ship_scores, player_obs, defend_base_pos, history, base_override_move_positions, ignore_defender_positions, max_considered_attackers=3, halite_on_board_mult=1e-6): opponent_ships = np.stack([ rbs[2] for rbs in observation['rewards_bases_ships'][1:]]).sum(0) > 0 defend_base_ignore_collision_key = None base_protected = True my_defend_base_ship_positions = np.zeros_like(opponent_ships) ignore_base_collision_ship_keys = [] base_defense_keys = [] if opponent_ships.sum(): opponent_ship_count = opponent_ships.sum() grid_size = opponent_ships.shape[0] obs_halite = np.maximum(0, observation['halite']) collect_rate = env_config.collectRate obs_halite[obs_halite < 1/collect_rate] = 0 my_ship_count = len(player_obs[2]) base_row, base_col = defend_base_pos stacked_ships = np.stack( [rbs[2] for rbs in observation['rewards_bases_ships']]) halite_ships = np.stack([ rbs[3] for rbs in observation['rewards_bases_ships']]).sum(0) halite_ships[stacked_ships.sum(0) == 0] = -1e-9 opponent_ship_distances = DISTANCES[(base_row, base_col)][opponent_ships]+( halite_on_board_mult*halite_ships[opponent_ships]) sorted_opp_distance = np.sort(opponent_ship_distances) ship_keys = list(player_obs[2].keys()) ship_base_distances = np.zeros((my_ship_count, 8)) # Go over all my ships and approximately compute how far they are expected # to be from the base !with no halite on board! by the end of the next turn # Approximate since returning ships are expected to always move towards the # base and other ships are assumed to be moving away. attack_opponent_campers = history['attack_opponent_campers'] for i, ship_k in enumerate(player_obs[2]): row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_scores = all_ship_scores[ship_k] ship_halite = player_obs[2][ship_k][1] current_distance = DISTANCES[(base_row, base_col)][row, col] is_returning = ship_scores[1][base_row, base_col] > max([ ship_scores[0].max(), ship_scores[2].max(), ship_scores[3].max()]) to_base_directions = get_dir_from_target( row, col, base_row, base_col, grid_size) rather_not_move_to_base = len( set(to_base_directions) & set(ship_scores[9])) == 0 can_not_move_to_base = int( (ship_halite != 0) and rather_not_move_to_base) or ( ignore_defender_positions[row, col]) prev_step_box_ship_target_distance = 10-history['prev_step'][ 'ships_on_box_mission'].get(ship_k, 10) # Exclude ships that attack opponent campers from the base defense logic if ship_k in attack_opponent_campers: current_distance = 1e2 ship_halite = 1e6 can_not_move_to_base = True ship_base_distances[i, 0] = current_distance ship_base_distances[i, 1] = current_distance + 1 - int(2*is_returning) ship_base_distances[i, 2] = ship_halite ship_base_distances[i, 3] = row ship_base_distances[i, 4] = col ship_base_distances[i, 5] = can_not_move_to_base ship_base_distances[i, 6] = int(rather_not_move_to_base) ship_base_distances[i, 7] = prev_step_box_ship_target_distance weighted_distances = ship_base_distances[:, 1] + halite_on_board_mult*( ship_base_distances[:, 2]) defend_distances = ship_base_distances[:, 0] + halite_on_board_mult*( ship_base_distances[:, 2]) + 100*ship_base_distances[:, 5] # Update the defend distances so we allow a ship with halite to move onto # the base when it is one step away, and the closest opponent is at least # two steps away, or is one step away with strictly more halite on board. if sorted_opp_distance[0] > defend_distances.min(): # I have at least one ship that can be used to defend the base good_defense_ids = np.where(np.logical_and( np.floor(defend_distances) <= max(1, np.floor(defend_distances.min())), defend_distances < sorted_opp_distance[0]))[0] # Pick the maximum distance (max halite) of the min step ids that can # defend the base best_good_defense_id = np.argmax(defend_distances[good_defense_ids]) if defend_distances[good_defense_ids[best_good_defense_id]] > 0: defend_distances[good_defense_ids[best_good_defense_id]] = -0.1 next_ship_distances_ids = np.argsort(weighted_distances) next_ship_distances_sorted = weighted_distances[next_ship_distances_ids] worst_case_opponent_distances = sorted_opp_distance-1 num_considered_distances = min([ max_considered_attackers, my_ship_count, opponent_ship_count]) opponent_can_attack_sorted = next_ship_distances_sorted[ :num_considered_distances] > worst_case_opponent_distances[ :num_considered_distances] base_protected = worst_case_opponent_distances[0] > 0 # if observation['step'] == 186: # import pdb; pdb.set_trace() if np.any(opponent_can_attack_sorted): # Update the defend distances to make sure that two zero halite ships # switch position when one is at the base and the other is at a distance # of one - that way the second ship has no halite and can defend the base # on the next step if num_considered_distances > 1 and opponent_can_attack_sorted[1]: num_defenders = defend_distances.size argsort_defend = np.argsort(defend_distances) sorted_manh_distances = ship_base_distances[argsort_defend, 0] if (sorted_manh_distances[0] == 0 and sorted_manh_distances[1] == 1): # Both should not have halite on board if defend_distances[argsort_defend[1]] == 1 or int( next_ship_distances_sorted[1] == 2): defend_distances[argsort_defend[1]] -= 1.2 elif worst_case_opponent_distances[0] == 0 and ( worst_case_opponent_distances[1] in [0, 1]) and ( defend_distances.min() <= 0) and 2 in defend_distances and ( np.logical_and(defend_distances > 1, defend_distances < 2).sum() > 0): # FUTURE WORK: remove, this looks like a special case of the next # elif print("PROBABLY REDUNDANT - LOOK INTO ME") defend_distances[np.where(defend_distances==2)[0][0]] = 1 elif num_defenders > 2 and (defend_distances[argsort_defend[0]]-1) <= ( worst_case_opponent_distances[0]) and ( defend_distances[argsort_defend[2]]-1) <= ( worst_case_opponent_distances[1]) and ship_base_distances[ argsort_defend[1], 2] > 0: # Switch the second and third defenders when the second defender has # halite on board and the third doesn't but can still defend the base defend_score_diff = defend_distances[argsort_defend[2]] - ( defend_distances[argsort_defend[1]]) + halite_on_board_mult defend_distances[argsort_defend[1]] += defend_score_diff # Resolve ties by picking the ships that can safely move towards the # base defend_distances += 1e-9*ship_base_distances[:, 6] # Resolve ties by picking the ships that were not on a box in mission # in the past step defend_distances += 1e-10*ship_base_distances[:, 7] # Summon the closest K agents towards or onto the base to protect it. # When the ship halite is zero, we should aggressively attack base # raiders num_attackers = 1+np.where(opponent_can_attack_sorted)[0][-1] defend_distances_ids = np.argsort(defend_distances) # if observation['step'] == 178: # import pdb; pdb.set_trace() for i in range(num_attackers): defend_id = defend_distances_ids[i] if opponent_can_attack_sorted[i] or defend_distances[defend_id] < 0: # Very simple defense strategy for now: prefer returning to the # base by increasing the gather score for all squares beween the # current position and the only base. If my ship is currently on the # base: keep it there ship_id = defend_distances_ids[i] distance_to_base = ship_base_distances[ship_id, 0] ship_k = ship_keys[ship_id] base_defense_keys.append(ship_k) ship_scores = list(all_ship_scores[ship_k]) ship_halite = int(ship_base_distances[ship_id, 2]) row = int(ship_base_distances[ship_id, 3]) col = int(ship_base_distances[ship_id, 4]) if distance_to_base > 0 or i == 0: if distance_to_base <= 1: # Stay or move to the base; or stay 1 step away if i == 0: ship_scores[1][base_row, base_col] += 1e6*( 3+max_considered_attackers-i) elif obs_halite[row, col] == 0 or ( worst_case_opponent_distances[i] > distance_to_base): base_override_move_positions[row, col] = 1 ship_scores[0][row, col] += 2e6 if None in ship_scores[9]: # Stay close to the base when defending ship_scores[6].append(None) if halite_ships[row, col] == 0 or (i == 0 and ( worst_case_opponent_distances[0] > halite_on_board_mult*( ship_base_distances[defend_id, 2]))): ship_scores[11] = max_considered_attackers-i if defend_base_ignore_collision_key is None: defend_base_ignore_collision_key = ship_k else: # Set the base as the target and override the base return # synchronization towards_base_mask = get_mask_between_exclude_ends( row, col, base_row, base_col, grid_size) ship_scores[0][towards_base_mask] += 9e5*( 1+max_considered_attackers-i) ship_scores[1][base_row, base_col] += 1e6*( 1+max_considered_attackers-i) ignore_base_collision_ship_keys.append(ship_k) # Defend the base without fear if I have no halite on board # Only consider staying at the current position or moving towards # the base in order to increase the action execution priority if ship_halite == 0: ship_scores[6] = copy.copy(MOVE_DIRECTIONS) ship_scores[7] = [] ship_scores[8] = [] ship_scores[9] = copy.copy(MOVE_DIRECTIONS) ship_scores[11] = max_considered_attackers-i else: # Still move towards the base to defend it when there is halite # on board as long as it does not mean selecting a 1-step bad # action base_defend_dirs = get_dir_from_target( row, col, base_row, base_col, grid_size) not_bad_defend_dirs = list(set(ship_scores[9]) & set( base_defend_dirs)) ship_scores[6] = list( set(ship_scores[6] + not_bad_defend_dirs)) my_defend_base_ship_positions[row, col] = 1 all_ship_scores[ship_k] = tuple(ship_scores) return (all_ship_scores, defend_base_ignore_collision_key, base_protected, ignore_base_collision_ship_keys, my_defend_base_ship_positions, base_override_move_positions, base_defense_keys) def update_occupied_count( row, col, occupied_target_squares, occupied_squares_count): occupied_target_squares[row, col] = 1 occupied_squares_count[row, col] += 1 def update_scores_rescue_missions( config, all_ship_scores, stacked_ships, observation, halite_ships, steps_remaining, player_obs, obs_halite, history, opponent_ships_sensible_actions, weighted_base_mask, my_bases, np_rng, main_base_distances, my_defend_base_ship_positions, safe_to_return_halites, player_influence_maps, nearest_base_distances, max_box_distance=5, max_1_step_rescue_risk=0.02): grid_size = stacked_ships.shape[1] opponent_ships = stacked_ships[1:].sum(0) > 0 my_zero_halite_ships = stacked_ships[0] & (halite_ships == 0) & ( ~my_defend_base_ship_positions) player_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) for i in range(stacked_ships.shape[0]): player_ids[stacked_ships[i]] = i # Exclude my campers that are not available for rescuing camping_ships_strategy = history['camping_ships_strategy'] for ship_k in camping_ships_strategy: if not camping_ships_strategy[ship_k][3]: camping_row, camping_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) my_zero_halite_ships[camping_row, camping_col] = 0 opponent_zero_halite_ships = opponent_ships & (halite_ships == 0) opponent_zero_halite_ship_density = smooth2d( opponent_zero_halite_ships, smooth_kernel_dim=4) zero_halite_pos = np.where(my_zero_halite_ships) on_rescue_mission = np.zeros((grid_size, grid_size), dtype=np.bool) rescue_move_positions_taken = np.zeros((grid_size, grid_size), dtype=np.bool) pos_to_k = {v[0]: k for k, v in player_obs[2].items()} _, base_distances, _ = get_nearest_base_distances( grid_size, history['my_base_not_attacked_positions'], observation) my_ships = observation['rewards_bases_ships'][0][2] my_bases = np.copy(observation['rewards_bases_ships'][0][1]) for base_pos in history['my_base_not_attacked_positions']: # Note: Make sure to work on a copy of the original base observation! my_bases[base_pos] = 0 my_base_locations = np.where(my_bases) # main_base_location = np.where(main_base_distances == 0) # Identify the squares that are surrounded by an opponent by computing # the minimum halite of each square in each box in direction for each # opponent num_players = stacked_ships.shape[0] opponent_min_halite_box_dirs = 1e6*np.ones( (num_players, 4, grid_size, grid_size)) opponents_num_nearby = np.zeros( (num_players, grid_size, grid_size)) for i in range(1, num_players): opponent_ship_pos = np.where(stacked_ships[i]) for j in range(stacked_ships[i].sum()): row = opponent_ship_pos[0][j] col = opponent_ship_pos[1][j] opponents_num_nearby[i][DISTANCES[row, col] <= 7] += 1 opponent_ship_halite = halite_ships[row, col] for dir_id, d in enumerate(NOT_NONE_DIRECTIONS): mask = ROW_COL_BOX_DIR_MAX_DISTANCE_MASKS[row, col, d] opponent_min_halite_box_dirs[i, dir_id][mask] = np.minimum( opponent_min_halite_box_dirs[i, dir_id][mask], opponent_ship_halite) opponent_min_halite_box_all_dirs = np.max(opponent_min_halite_box_dirs, 1) opponent_min_halite_box_all_dirs[opponents_num_nearby < 4] = 1e6 any_opponent_min_halite_box_all_dirs = np.min( opponent_min_halite_box_all_dirs, 0) my_boxed_ships = my_ships & ( halite_ships > any_opponent_min_halite_box_all_dirs) boxed_ships = [] if np.any(my_boxed_ships): my_boxed_pos = np.where(my_boxed_ships) for box_id in range(my_boxed_pos[0].size): row = my_boxed_pos[0][box_id] col = my_boxed_pos[1][box_id] ship_k = pos_to_k[row*grid_size + col] boxed_ships.append(ship_k) # if observation['step'] == 36: # import pdb; pdb.set_trace() # print("Boxed in ships", observation['step'], my_boxed_pos) # Consider chased or boxed in ships chased_ships = list(history['chase_counter'][0].keys()) chased_or_boxed = list(set(chased_ships+boxed_ships)) # Put the ships that are on the escort to base list first escort_to_base_ships = list(set([ e[0] for e in history['escort_to_base_list'] if (e[0] in player_obs[2])])) if len(escort_to_base_ships): chased_or_boxed = list(escort_to_base_ships + list(set( chased_or_boxed)-set(escort_to_base_ships))) already_escorted_ships = [] num_considered_bases = my_base_locations[0].size for ship_k in chased_or_boxed: recompute_pos = False row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_scores = all_ship_scores[ship_k] valid_directions = copy.copy(ship_scores[6]) should_rescue_is_chased = ship_k in history['chase_counter'] and len( set(valid_directions) - set(ship_scores[7]+ship_scores[8])) == 0 and ( history['chase_counter'][0][ship_k][1] > 3) # Only call for help when the considered ship is nearly boxed in in all # directions and has been chased for a while # Flag the ship for rescuing if there is no safe path to my nearest base base_distances_ship = base_distances[:, row, col] nearest_base_id = np.argmin(base_distances_ship) # main_base_row = main_base_location[0][0] # main_base_col = main_base_location[1][0] # return_main_base_distance = main_base_distances[row, col] # Returning to a base that is not the main base is also supported # Select the target base as a function of the distance and influence score # on the square halfway between my current square and the considered base base_return_scores = np.zeros(num_considered_bases) for base_id in range(num_considered_bases): base_row = my_base_locations[0][base_id] base_col = my_base_locations[1][base_id] base_distance = DISTANCES[row, col][base_row, base_col] relative_pos = get_relative_position( row, col, base_row, base_col, grid_size) mid_row = int(row + relative_pos[0]/2) % grid_size mid_col = int(col + relative_pos[1]/2) % grid_size return_base_directions = get_dir_from_target( row, col, base_row, base_col, grid_size) can_move_to_base = False for d in return_base_directions: if d in valid_directions: can_move_to_base = True break base_return_scores[base_id] = player_influence_maps[ 0, mid_row, mid_col] - (player_influence_maps[ 1:, mid_row, mid_col].sum() + base_distance/1.5) + 2*int( can_move_to_base) best_base_id = np.argmax(base_return_scores) return_base_row = my_base_locations[0][best_base_id] return_base_col = my_base_locations[1][best_base_id] # if base_distances_ship[nearest_base_id] < ( # return_main_base_distance-1): # return_base_row = my_base_locations[0][nearest_base_id] # return_base_col = my_base_locations[1][nearest_base_id] # else: # return_base_row = main_base_row # return_base_col = main_base_col # if observation['step'] == 288: # import pdb; pdb.set_trace() return_base_directions = get_dir_from_target( row, col, return_base_row, return_base_col, grid_size) one_step_invalid = list(set(NOT_NONE_DIRECTIONS).difference(set( all_ship_scores[ship_k][9]))) not_good_dirs = list(set(all_ship_scores[ship_k][7] + all_ship_scores[ ship_k][8] + one_step_invalid)) base_return_not_good_dirs = [d in not_good_dirs for d in ( return_base_directions)] should_rescue_can_not_return_base = (halite_ships[row, col] > 0) and ( len(set(return_base_directions) & set( all_ship_scores[ship_k][6])) == 0 or ( np.all(np.array(base_return_not_good_dirs)))) and ( halite_ships[row, col] >= safe_to_return_halites[row, col]) if (should_rescue_is_chased or should_rescue_can_not_return_base) and ( base_distances_ship[nearest_base_id] > 2): # import pdb; pdb.set_trace() # print(observation['step'], row, col, return_base_row, return_base_col) # if observation['step'] == 56 and row == 18: # import pdb; pdb.set_trace() # if ship_k in boxed_ships and not ship_k in chased_ships: # import pdb; pdb.set_trace() # x=1 nearly_boxed_in = True if should_rescue_is_chased and not should_rescue_can_not_return_base: valid_directions = valid_directions if len(ship_scores[8]) == 0 else ( ship_scores[17]) # Also consider bad N-step directions threat_opponents = opponent_ships & (halite_ships < halite_ships[ row, col]) for d in NOT_NONE_DIRECTIONS: opposite_d = OPPOSITE_MAPPING[d] rel_move = RELATIVE_DIR_MAPPING[d] ref_square = ((row + max_box_distance*rel_move[0]) % grid_size, (col + max_box_distance*rel_move[1]) % grid_size) dir_mask = HALF_PLANES_CATCH[ref_square][opposite_d] & ( ROW_COL_MAX_DISTANCE_MASKS[ ref_square[0], ref_square[1], max_box_distance]) num_threats = (dir_mask & threat_opponents).sum() if num_threats == 0: nearly_boxed_in = False break if nearly_boxed_in and my_zero_halite_ships.sum(): friendly_zero_halite_distances = DISTANCES[row, col][zero_halite_pos] min_halite_distance = friendly_zero_halite_distances.min() # if None in valid_directions and None in ship_scores[8] and len( # valid_directions) == 1 and len(ship_scores[17]) > 1: # # Edge case - we should consider all n step bad directions rather # # than only considering staying still when rescuing a ship # valid_directions = ship_scores[17] # this_ship_scores = list(all_ship_scores[ship_k]) # this_ship_scores[6] = copy.copy(valid_directions) # this_ship_scores[8] = copy.copy(valid_directions) # this_ship_scores[14] = this_ship_scores[18] # all_ship_scores[ship_k] = tuple(this_ship_scores) # if num_considered_bases > 1: # # import pdb; pdb.set_trace() # print(observation['step'], row, col, return_base_row, # return_base_col) # Compute weights for all d1 and d2 friendly zero halite rescuers num_d1_friends = (friendly_zero_halite_distances == 1).sum() num_d2_friends = (friendly_zero_halite_distances == 2).sum() any_good_d1_rescuers = False any_good_d2_rescuers = False if num_d1_friends > 0: # import pdb; pdb.set_trace() d1_rescuer_ids = np.where(friendly_zero_halite_distances == 1)[0] d1_scores = np.zeros(num_d1_friends) for rescuer_id in range(num_d1_friends): rescuer_row = zero_halite_pos[0][d1_rescuer_ids[rescuer_id]] rescuer_col = zero_halite_pos[1][d1_rescuer_ids[rescuer_id]] to_rescuer_dir = get_dir_from_target( row, col, rescuer_row, rescuer_col, grid_size)[0] rescuer_k = pos_to_k[rescuer_row*grid_size+rescuer_col] ship_k_not_immediate_bad = list( set(all_ship_scores[ship_k][6]).union( set(all_ship_scores[ship_k][17]))) aligned_dirs = list(set(ship_k_not_immediate_bad) & set( all_ship_scores[rescuer_k][6]) & set(return_base_directions)) good_rescuer = (to_rescuer_dir in valid_directions) or ( len(aligned_dirs) > 0) d1_scores[rescuer_id] = -50 + 100*int(good_rescuer) - DISTANCES[ rescuer_row, rescuer_col][return_base_row, return_base_col]/1.5+( player_influence_maps[0, rescuer_row, rescuer_col]) - ( player_influence_maps[1:, rescuer_row, rescuer_col].sum()) any_good_d1_rescuers = np.any(d1_scores > 0) if num_d2_friends > 0: # import pdb; pdb.set_trace() d2_rescuer_ids = np.where(friendly_zero_halite_distances == 2)[0] d2_scores = np.zeros(num_d2_friends) for rescuer_id in range(num_d2_friends): rescuer_row = zero_halite_pos[0][d2_rescuer_ids[rescuer_id]] rescuer_col = zero_halite_pos[1][d2_rescuer_ids[rescuer_id]] to_rescuer_dir = get_dir_from_target( row, col, rescuer_row, rescuer_col, grid_size) any_rescuer_dir_ind_valid_dir = False for d in to_rescuer_dir: any_rescuer_dir_ind_valid_dir = any_rescuer_dir_ind_valid_dir or( d in valid_directions) rescuer_k = pos_to_k[rescuer_row*grid_size+rescuer_col] ship_k_not_immediate_bad = list( set(all_ship_scores[ship_k][6]).union( set(all_ship_scores[ship_k][17]))) aligned_dirs = list(set(ship_k_not_immediate_bad) & set( all_ship_scores[rescuer_k][6]) & set(return_base_directions)) good_rescuer = (any_rescuer_dir_ind_valid_dir and None in ( all_ship_scores[rescuer_k][6])) or (len(aligned_dirs) > 0) d2_scores[rescuer_id] = -50 + 100*int(good_rescuer) - DISTANCES[ rescuer_row, rescuer_col][return_base_row, return_base_col]/1.5+( player_influence_maps[0, rescuer_row, rescuer_col]) - ( player_influence_maps[1:, rescuer_row, rescuer_col].sum()) any_good_d2_rescuers = np.any(d2_scores > 0) friendly_zero_halite_distance_d1_scores = np.copy( friendly_zero_halite_distances).astype(np.float) if any_good_d1_rescuers: # If there are multiple 1-distance ships: pick the rescuer that is # closest to the target base which I can move to safely # import pdb; pdb.set_trace() friendly_zero_halite_distance_d1_scores[d1_rescuer_ids[ np.argmax(d1_scores)]] -= 1e-6 elif min_halite_distance == 1: # Go for a 2-distance ship if I can move to it safely and I can't # move safely to the 1-distance ship. if any_good_d2_rescuers: # Use a d2 rescuer instead # import pdb; pdb.set_trace() min_halite_distance = 2 else: # Pick the best bad d1 rescuer friendly_zero_halite_distance_d1_scores[d1_rescuer_ids[ np.argmax(d1_scores)]] -= 1e-6 # if observation['step'] >= 154: # import pdb; pdb.set_trace() # Follow the nearest zero halite ship home if it is at a distance one # of the ship is_protected = False if min_halite_distance == 1: # Jointly move to the nearest weighted base and assume that the # former zero halite position won't be attacked # dm = DISTANCE_MASKS[(row, col)] # base_scores = dm*weighted_base_mask*my_bases # target_base = np.where(base_scores == base_scores.max()) # target_base = (target_base[0][0], target_base[1][0]) target_base = (return_base_row, return_base_col) nearest_halite_id = np.argmin( friendly_zero_halite_distance_d1_scores) rescuer_row = zero_halite_pos[0][nearest_halite_id] rescuer_col = zero_halite_pos[1][nearest_halite_id] on_rescue_mission[row, col] = 1 on_rescue_mission[rescuer_row, rescuer_col] = 1 recompute_pos = True to_rescuer_dir = get_dir_from_target( row, col, rescuer_row, rescuer_col, grid_size)[0] rescuer_k = pos_to_k[rescuer_row*grid_size+rescuer_col] ship_k_not_immediate_bad = list( set(all_ship_scores[ship_k][6]).union( set(all_ship_scores[ship_k][17]))) aligned_dirs = list(set(ship_k_not_immediate_bad) & set( all_ship_scores[rescuer_k][6]) & set(return_base_directions)) # Don't risk moving onto the previous step zero halite square if a # potential opponent has a considerable probability of engaging in # 1-step risky actions if len(aligned_dirs) == 0: risk_score = 0 for d in NOT_NONE_DIRECTIONS: neighbor_rescue_row, neighbor_rescue_col = move_ship_row_col( rescuer_row, rescuer_col, d, grid_size) if opponent_zero_halite_ships[ neighbor_rescue_row, neighbor_rescue_col]: opponent_id = np.where(stacked_ships[ :, neighbor_rescue_row, neighbor_rescue_col])[0][0] risk_score += history['zero_halite_move_behavior'][opponent_id][ 'False_0'] shared_escape_dirs = list(set(ship_k_not_immediate_bad) & set( all_ship_scores[rescuer_k][6])) if None in shared_escape_dirs: shared_escape_dirs.remove(None) if risk_score > max_1_step_rescue_risk and len( shared_escape_dirs) > 0 and len(aligned_dirs) == 0: # print("Avoiding risky rescue move", observation['step'], row, # col, risk_score) aligned_dirs = shared_escape_dirs # elif risk_score > max_1_step_rescue_risk and OPPOSITE_MAPPING[ # to_rescuer_dir] in all_ship_scores[rescuer_k][6] and len( # aligned_dirs) == 0 and ( # len(all_ship_scores[ship_k][6]) > 0 and ( # not None in all_ship_scores[ship_k][6])): # # Also consider having the zero halite ship take the position of # # the rescued ship if that is safe. This branch is likely # # impossible # import pdb; pdb.set_trace() # x=1 override_override_mask = False if (to_rescuer_dir not in ship_k_not_immediate_bad) or ( len(aligned_dirs) > 0): # It is better to take a safe step with both ships if that option # is available # import pdb; pdb.set_trace() if len(aligned_dirs) == 0 and not to_rescuer_dir in ( all_ship_scores[ship_k][6]): all_ship_scores[ship_k][6].append(to_rescuer_dir) else: if len(aligned_dirs) > 1: str_aligned_dirs = [d if d is not None else "None" for d in ( aligned_dirs)] str_aligned_dirs.sort() # Set intersect is flaky aligned_dirs = [d if d != "None" else None for d in ( str_aligned_dirs)] override_override_mask = True if override_override_mask: aligned_dir = np_rng.choice(aligned_dirs) rescuer_move_row, rescuer_move_col = move_ship_row_col( rescuer_row, rescuer_col, aligned_dir, grid_size) rescue_move_positions_taken[rescuer_move_row, rescuer_move_col] = 1 for score_id in range(3): all_ship_scores[rescuer_k][score_id][ rescuer_move_row, rescuer_move_col] += 1e4 if not aligned_dir in all_ship_scores[ship_k][6]: all_ship_scores[ship_k][6].append(aligned_dir) escape_row, escape_col = move_ship_row_col( row, col, aligned_dir, grid_size) else: # Consider escaping along the opposite side of the board if one # side is much more congested relative_pos = get_relative_position( rescuer_row, rescuer_col, target_base[0], target_base[1], grid_size) mid_path_row_short = int( rescuer_row + relative_pos[0]/2) % grid_size mid_path_col_short = int( rescuer_col + relative_pos[1]/2) % grid_size mid_path_row_long = int( rescuer_row - (grid_size - relative_pos[0])/2) % grid_size mid_path_col_long = int( rescuer_col - (grid_size - relative_pos[1])/2) % grid_size start_rescuer_row = rescuer_row if np.abs(relative_pos[0]) > 7: # Determine start_rescuer_row mid_density_short_row = player_influence_maps[ 0, mid_path_row_short, mid_path_col_short] - ( player_influence_maps[ 1:, mid_path_row_short, mid_path_col_short]).sum() mid_density_long_row = player_influence_maps[ 0, mid_path_row_long, mid_path_col_short] - ( player_influence_maps[ 1:, mid_path_row_long, mid_path_col_short]).sum() distance_diff_short = grid_size-2*np.abs(relative_pos[0]) if mid_density_long_row - mid_density_short_row > ( distance_diff_short/2): # import pdb; pdb.set_trace() start_rescuer_row = mid_path_row_long start_rescuer_col = rescuer_col if np.abs(relative_pos[1]) > 7: # Determine start_rescuer_col mid_density_short_col = player_influence_maps[ 0, mid_path_row_short, mid_path_col_short] - ( player_influence_maps[ 1:, mid_path_row_short, mid_path_col_short]).sum() mid_density_long_col = player_influence_maps[ 0, mid_path_row_short, mid_path_col_long] - ( player_influence_maps[ 1:, mid_path_row_short, mid_path_col_long]).sum() distance_diff_short = grid_size-2*np.abs(relative_pos[1]) if mid_density_long_col - mid_density_short_col > ( distance_diff_short): # import pdb; pdb.set_trace() start_rescuer_col = mid_path_col_long increase_mask = get_mask_between_exclude_ends( target_base[0], target_base[1], start_rescuer_row, start_rescuer_col, grid_size) # Avoid the rescued ship half plane if that leaves the rescuer with # options to_base_dirs = get_dir_from_target( start_rescuer_row, start_rescuer_col, target_base[0], target_base[1], grid_size) valid_to_base_dirs = list(set(to_base_dirs) & set( all_ship_scores[rescuer_k][6])) if len(valid_to_base_dirs) > 1: to_rescued_dir = OPPOSITE_MAPPING[to_rescuer_dir] if to_rescued_dir in all_ship_scores[rescuer_k][6]: # import pdb; pdb.set_trace() increase_mask[HALF_PLANES_CATCH[ start_rescuer_row, start_rescuer_col][to_rescued_dir]] = 0 if len(all_ship_scores[rescuer_k][6]) == 1 and ( all_ship_scores[rescuer_k][6][0] is None): # Take a move risk rather than staying still - otherwise the # non zero halite ship is likely to get orphaned # import pdb; pdb.set_trace() risk_scores = np.zeros(len(to_base_dirs)) for risk_id, d in enumerate(to_base_dirs): move_row, move_col = move_ship_row_col( rescuer_row, rescuer_col, d, grid_size) for potential_threat_dir in MOVE_DIRECTIONS: threat_row, threat_col = move_ship_row_col( move_row, move_col, potential_threat_dir, grid_size) if opponent_ships[threat_row, threat_col] and halite_ships[ threat_row, threat_col] == 0: opponent_id = player_ids[threat_row, threat_col] is_near_base = nearest_base_distances[ threat_row, threat_col] <= config[ 'log_near_base_distance'] distance = int(d is not None) + int( potential_threat_dir is not None) risk_lookup_k = str(is_near_base) + '_' + str(distance) risk_scores[risk_id] = max( risk_scores[risk_id], history[ 'zero_halite_move_behavior'][opponent_id][ risk_lookup_k]) best_risk_score = risk_scores.min() if best_risk_score < 0.15: print("Risky escort move with boxed in zero halite ship", observation['step'], row, col) # import pdb; pdb.set_trace() rescuer_selected_move_dir = to_base_dirs[ np.argmin(risk_scores)] increase_mask = np.zeros_like(increase_mask) rescue_move_position = move_ship_row_col( rescuer_row, rescuer_col, rescuer_selected_move_dir, grid_size) all_ship_scores[rescuer_k][0][rescue_move_position] += 3e5 all_ship_scores[rescuer_k][6].remove(None) all_ship_scores[rescuer_k][6].append(rescuer_selected_move_dir) for score_id in range(3): all_ship_scores[rescuer_k][score_id][increase_mask] += 1e4 escape_row = rescuer_row escape_col = rescuer_col all_ship_scores[rescuer_k][3][:] -= 1e4 # No attack during rescue all_ship_scores[ship_k][0][escape_row, escape_col] = 1e8 rescue_move_positions_taken[escape_row, escape_col] = 1 history['escort_to_base_list'].append( # I will not let you go baby (ship_k, rescuer_k, True, 50, 50)) already_escorted_ships.append(ship_k) # Add the ship pair to the escort-list for a fixed number of steps is_protected = True elif min_halite_distance == 2: friendly_zero_halite_distance_scores = np.copy( friendly_zero_halite_distances).astype(np.float) # If there is a single threatening ship: prefer distance 2 ships # that are less towards that direction and avoid that direction when # moving to the base threat_directions = list( set(NOT_NONE_DIRECTIONS) - set(valid_directions)) avoid_2_step_direction = None if not None in valid_directions and len(threat_directions) == 1: single_threat_direction = threat_directions[0] avoid_2_step_direction = OPPOSITE_MAPPING[single_threat_direction] for zero_2_id, zero_halite_ship_id in enumerate( np.argsort(friendly_zero_halite_distances)[:5]): rescuer_distance = friendly_zero_halite_distances[ zero_halite_ship_id] if rescuer_distance == 2: rescuer_row = zero_halite_pos[0][zero_halite_ship_id] rescuer_col = zero_halite_pos[1][zero_halite_ship_id] direction_distance = get_directional_distance( row, col, rescuer_row, rescuer_col, grid_size, avoid_2_step_direction) friendly_zero_halite_distance_scores[zero_halite_ship_id] +=( 1e-6*direction_distance) considered_zero_2_ship_ids = np.argsort( friendly_zero_halite_distance_scores)[:5] for zero_halite_ship_id in considered_zero_2_ship_ids: rescuer_distance = friendly_zero_halite_distances[ zero_halite_ship_id] if rescuer_distance == 2: rescuer_row = zero_halite_pos[0][zero_halite_ship_id] rescuer_col = zero_halite_pos[1][zero_halite_ship_id] rescuer_k = pos_to_k[rescuer_row*grid_size+rescuer_col] # Figure out if the chased ship can move to the rescuer valid_move_dirs = [] for d in valid_directions: if d is not None: if HALF_PLANES_RUN[row, col][d][rescuer_row, rescuer_col]: valid_move_dirs.append(d) # Plan A: Let the non zero halite ship wait # (stupid, this never happens - the non zero halite ship can not # wait, it is being chased) # if None in valid_directions: # rescue_dirs = get_dir_from_target( # rescuer_row, rescuer_col, row, col, grid_size) # safe_rescue_dirs = set(rescue_dirs) & set( # all_ship_scores[rescuer_k][6]) # if len(safe_rescue_dirs) > 0: # rescue_dirs = list(safe_rescue_dirs) # rescue_dir = np_rng.choice(rescue_dirs) # rescuer_move_row, rescuer_move_col = move_ship_row_col( # rescuer_row, rescuer_col, rescue_dir, grid_size) # move_row = row # move_col = col # is_protected = True # Plan B: Let the zero halite ship wait if there is no halite at # the considered square, and the chased ship can move to the # rescuer. if not is_protected and obs_halite[ rescuer_row, rescuer_col] == 0: to_rescuer_dirs = get_dir_from_target( row, col, rescuer_row, rescuer_col, grid_size) valid_to_rescuer_dirs = list(set(to_rescuer_dirs) & set( valid_directions)) if len(valid_to_rescuer_dirs) > 0: if len(valid_to_rescuer_dirs) > 1 and ( avoid_2_step_direction in valid_to_rescuer_dirs) and ( not avoid_2_step_direction is None): valid_to_rescuer_dirs.remove(avoid_2_step_direction) to_rescuer_dir = np_rng.choice(valid_to_rescuer_dirs) move_row, move_col = move_ship_row_col( row, col, to_rescuer_dir, grid_size) rescuer_move_row = rescuer_row rescuer_move_col = rescuer_col is_protected = True # Plan C: move towards the rescuer move square and have the # rescuer move to another neighboring zero halite square if not is_protected: safe_zero_halite_squares_dirs = [] for d in NOT_NONE_DIRECTIONS: if d in all_ship_scores[rescuer_k][6]: rescue_r, rescue_c = move_ship_row_col( rescuer_row, rescuer_col, d, grid_size) if obs_halite[rescue_r, rescue_c] == 0: safe_zero_halite_squares_dirs.append(( d, rescue_r, rescue_c, DISTANCES[rescue_r, rescue_c][ return_base_row, return_base_col])) # Order the zero halite move squares by distance to the target # base distance_order = np.argsort(np.array([s[3] for s in ( safe_zero_halite_squares_dirs)])).tolist() safe_zero_halite_squares_dirs_ordered = [] for ordered_id in distance_order: safe_zero_halite_squares_dirs_ordered.append( safe_zero_halite_squares_dirs[ordered_id]) for rescue_d, rescue_r, rescue_c, _ in ( safe_zero_halite_squares_dirs_ordered): # Figure out if the chased ship can move to the new rescuer # square valid_to_rescuer_moved_dirs = [] for d in valid_directions: if d is not None: move_row, move_col = move_ship_row_col( row, col, d, grid_size) if HALF_PLANES_RUN[row, col][d][rescue_r, rescue_c] and ( not (move_row == rescue_r and move_col == rescue_c)): valid_to_rescuer_moved_dirs.append(d) if valid_to_rescuer_moved_dirs: if len(valid_to_rescuer_moved_dirs) > 1 and ( not avoid_2_step_direction is None) and ( avoid_2_step_direction in valid_to_rescuer_moved_dirs): valid_to_rescuer_moved_dirs.remove( avoid_2_step_direction) to_rescuer_dir = np_rng.choice(valid_to_rescuer_moved_dirs) move_row, move_col = move_ship_row_col( row, col, to_rescuer_dir, grid_size) rescuer_move_row = rescue_r rescuer_move_col = rescue_c is_protected = True break # Plan D: Consider other rescuers up to distance 3 if I # can't wait at the current/nearby square # This won't be implemented if is_protected: on_rescue_mission[row, col] = 1 on_rescue_mission[rescuer_row, rescuer_col] = 1 recompute_pos = True rescue_move_positions_taken[ rescuer_move_row, rescuer_move_col] = 1 rescue_move_positions_taken[move_row, move_col] = 1 all_ship_scores[ship_k][0][move_row, move_col] = 1e8 all_ship_scores[rescuer_k][0][ rescuer_move_row, rescuer_move_col] = 1e8 already_escorted_ships.append(ship_k) break if not is_protected and len(valid_directions) > 0: # Only consider zero halite ships in the directions I can move to # or ships that are about as close as the nearest threatening # opponent valid_rescue_mask = np.zeros_like(my_zero_halite_ships) for d in valid_directions: valid_rescue_mask[HALF_PLANES_RUN[row, col][d]] = 1 nearest_threat_distance = DISTANCES[row, col][opponent_ships & ( halite_ships < halite_ships[row, col])].min() nearby_mask = DISTANCES[row, col] <= (nearest_threat_distance+1) valid_rescue_mask = valid_rescue_mask | nearby_mask valid_zero_halite_ships = np.copy(my_zero_halite_ships)*( valid_rescue_mask) valid_zero_halite_pos = np.where(valid_zero_halite_ships) valid_friendly_zero_halite_distances = DISTANCES[row, col][ valid_zero_halite_pos] if valid_zero_halite_pos[0].size: min_valid_distance = valid_friendly_zero_halite_distances.min() else: min_valid_distance = grid_size if min_valid_distance <= 6: # Consider rescuing the ship if there is a nearby zero halite ship # that can move to me and is in a valid direction of the move pos considered_zero_ship_ids = np.argsort( valid_friendly_zero_halite_distances)[:5] for zero_halite_ship_id in considered_zero_ship_ids: rescuer_distance = valid_friendly_zero_halite_distances[ zero_halite_ship_id] if rescuer_distance > 2: rescuer_row = valid_zero_halite_pos[0][zero_halite_ship_id] rescuer_col = valid_zero_halite_pos[1][zero_halite_ship_id] rescuer_k = pos_to_k[rescuer_row*grid_size+rescuer_col] valid_move_dirs = [] for d in valid_directions: if d is not None: if HALF_PLANES_RUN[row, col][d][rescuer_row, rescuer_col]: valid_move_dirs.append(d) # Break valid move ties using moving towards my weighted bases # and a region where I have more 0 halite ships and preferably # a lower die probability while moving along the diagonal # (empowerment) if len(valid_move_dirs) > 1: my_valid_zero_halite_ship_density = smooth2d( valid_zero_halite_ships, smooth_kernel_dim=8) move_scores = np.zeros(len(valid_move_dirs)) for i, d in enumerate(valid_move_dirs): move_row, move_col = move_ship_row_col( row, col, d, grid_size) dm = DISTANCE_MASKS[(row, col)] dir_penalty = ship_scores[14][d] if ( d in ship_scores[14]) else 1 horiz_diff = move_col-rescuer_col horiz_distance = min(np.abs(horiz_diff), min(np.abs(horiz_diff-grid_size), np.abs(horiz_diff+grid_size))) vert_diff = move_row-rescuer_row vert_distance = min(np.abs(vert_diff), min(np.abs(vert_diff-grid_size), np.abs(vert_diff+grid_size))) empowerment_bonus = min( vert_distance, horiz_distance)/2 # import pdb; pdb.set_trace() move_scores[i] = 0.5*my_valid_zero_halite_ship_density[ move_row, move_col] + empowerment_bonus + ( dm*weighted_base_mask*my_bases).sum() - dir_penalty move_dir = valid_move_dirs[np.argmax(move_scores)] else: if valid_move_dirs: move_dir = valid_move_dirs[0] if valid_move_dirs: move_row, move_col = move_ship_row_col( row, col, move_dir, grid_size) # Check if the zero halite ship can move to the move position rescue_dirs = get_dir_from_target( rescuer_row, rescuer_col, move_row, move_col, grid_size) valid_rescue_dirs = [d for d in rescue_dirs if ( d in all_ship_scores[rescuer_k][6])] rescuer_should_wait = rescuer_distance in [4, 6] and ( obs_halite[rescuer_row, rescuer_col] == 0) and not ( my_bases[rescuer_row, rescuer_col]) if valid_rescue_dirs or rescuer_should_wait or ( rescuer_distance == 3): if rescuer_should_wait: # The rescuer should wait on a zero halite square when # the distance is 4 or 6 and there is no halite at the # waiting square rescuer_move_row = rescuer_row rescuer_move_col = rescuer_col else: if rescuer_distance == 3 and len(valid_rescue_dirs) == 0: valid_rescue_dirs = rescue_dirs # Both ships should move to each other # Break rescuer ties using the lower 0 halite opponent # density and moving along the diagonal (empowerment) # Strongly prefer zero halite squares when the current # distance is 4 rescuer_move_scores = np.zeros(len(valid_rescue_dirs)) for i, d in enumerate(valid_rescue_dirs): rescuer_move_row, rescuer_move_col = move_ship_row_col( rescuer_row, rescuer_col, d, grid_size) move_zero_halite_bonus = int((rescuer_distance == 4)*( obs_halite[rescuer_move_row, rescuer_move_col] == 0)) horiz_diff = rescuer_move_col-move_col horiz_distance = min(np.abs(horiz_diff), min(np.abs(horiz_diff-grid_size), np.abs(horiz_diff+grid_size))) vert_diff = rescuer_move_row-move_row vert_distance = min(np.abs(vert_diff), min(np.abs(vert_diff-grid_size), np.abs(vert_diff+grid_size))) empowerment_bonus = min( vert_distance, horiz_distance)/2 # import pdb; pdb.set_trace() rescuer_move_scores[i] = ( -opponent_zero_halite_ship_density[ rescuer_move_row, rescuer_move_col]) + ( move_zero_halite_bonus) + empowerment_bonus rescuer_dir = valid_rescue_dirs[np.argmax( rescuer_move_scores)] rescuer_move_row, rescuer_move_col = move_ship_row_col( rescuer_row, rescuer_col, rescuer_dir, grid_size) on_rescue_mission[row, col] = 1 on_rescue_mission[rescuer_row, rescuer_col] = 1 recompute_pos = True rescue_move_positions_taken[move_row, move_col] = 1 all_ship_scores[ship_k][0][move_row, move_col] = 1e8 all_ship_scores[rescuer_k][0][ rescuer_move_row, rescuer_move_col] = 1e8 break else: # If I have no valid zero halite ships nearby - prefer moving # towards my weighted bases and a region where I have more 0 # halite ships and preferably a lower die probability if len(valid_directions) > 1: my_valid_zero_halite_ship_density = smooth2d( valid_zero_halite_ships, smooth_kernel_dim=8) move_scores = np.zeros(len(valid_directions)) for i, d in enumerate(valid_directions): move_row, move_col = move_ship_row_col( row, col, d, grid_size) dm = DISTANCE_MASKS[(row, col)] dir_penalty = ship_scores[14][d] if d in ship_scores[14] else 1 move_scores[i] = 0.5*my_valid_zero_halite_ship_density[ move_row, move_col] + (dm*weighted_base_mask*my_bases).sum( ) - dir_penalty move_dir = valid_directions[np.argmax(move_scores)] move_row, move_col = move_ship_row_col( row, col, move_dir, grid_size) rescue_move_positions_taken[move_row, move_col] = 1 all_ship_scores[ship_k][0][move_row, move_col] = 1e4 else: move_dir = valid_directions[0] # Slightly incentivize the nearest zero halite ship to move # towards my move square (does not have to be in my valid move # direction mask) if zero_halite_pos[0].size: move_row, move_col = move_ship_row_col( row, col, move_dir, grid_size) my_zero_halite_ships_move_distances = DISTANCES[ move_row, move_col][my_zero_halite_ships] nearest_halite_id = np.argmin( my_zero_halite_ships_move_distances) rescuer_row = zero_halite_pos[0][nearest_halite_id] rescuer_col = zero_halite_pos[1][nearest_halite_id] rescuer_k = pos_to_k[rescuer_row*grid_size+rescuer_col] increase_mask = get_mask_between_exclude_ends( move_row, move_col, rescuer_row, rescuer_col, grid_size) for score_id in range(3): all_ship_scores[rescuer_k][score_id][increase_mask] += 1e2 if recompute_pos: my_zero_halite_ships &= (~on_rescue_mission) zero_halite_pos = np.where(my_zero_halite_ships) # Escort previously chased ships to the base - only stop escorting once I # have two valid actions towards the base or have one valid action and am # in the same row/col new_escort_list = [] added_escorted_ships = [] for (ship_k, rescuer_k, rescue_executed, min_escort_steps_remaining, max_escort_steps_remaining) in history['escort_to_base_list']: if ship_k in player_obs[2] and (rescuer_k in player_obs[2]): row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) dm = DISTANCE_MASKS[(row, col)] base_scores = dm*weighted_base_mask*my_bases # target_base = np.where(base_scores == base_scores.max()) # target_base = (target_base[0][0], target_base[1][0]) ship_scores = all_ship_scores[ship_k] valid_directions = valid_directions if len(ship_scores[8]) == 0 else ( ship_scores[17]) # Also consider bad N-step directions base_return_scores = np.zeros(num_considered_bases) for base_id in range(num_considered_bases): base_row = my_base_locations[0][base_id] base_col = my_base_locations[1][base_id] base_distance = base_distances[base_id][row, col] relative_pos = get_relative_position( row, col, base_row, base_col, grid_size) mid_row = int(row + relative_pos[0]/2) % grid_size mid_col = int(col + relative_pos[1]/2) % grid_size # mid_row = int(np.where( # np.abs(base_row-row) <= (grid_size // 2), # np.round((base_row*(1-1e-9)+row*(1+1e-9))/2), # np.where(base_row*(1-1e-9)+row*(1+1e-9) >= grid_size, # np.round( # (base_row*(1-1e-9)+row*(1+1e-9)-grid_size)/2), # np.mod(np.round( # (base_row*(1-1e-9)+row*(1+1e-9)+grid_size)/2), # grid_size)) # )) # mid_col = int(np.where( # np.abs(base_col-col) <= (grid_size // 2), # np.round((base_col*(1-1e-9)+col*(1+1e-9))/2), # np.where(base_col*(1-1e-9)+col*(1+1e-9) >= grid_size, # np.round( # (base_col*(1-1e-9)+col*(1+1e-9)-grid_size)/2), # np.mod(np.round( # (base_col*(1-1e-9)+col*(1+1e-9)+grid_size)/2), # grid_size)) # )) return_base_directions = get_dir_from_target( row, col, base_row, base_col, grid_size) can_move_to_base = False for d in return_base_directions: if d in valid_directions: can_move_to_base = True break # base_return_scores[base_id] = player_influence_maps[ # 0, mid_row, mid_col] - (player_influence_maps[ # 1:, mid_row, mid_col].sum() + base_distance/3) base_return_scores[base_id] = player_influence_maps[ 0, mid_row, mid_col] - (player_influence_maps[ 1:, mid_row, mid_col].sum() + base_distance/1.5) + 2*int( can_move_to_base) best_base_id = np.argmax(base_return_scores) return_base_row = my_base_locations[0][best_base_id] return_base_col = my_base_locations[1][best_base_id] target_base = (return_base_row, return_base_col) base_distances_ship = base_distances[:, row, col] nearest_base_id = np.argmin(base_distances_ship) abort_rescue = base_distances_ship[nearest_base_id] <= 2 # main_base_row = main_base_location[0] # main_base_col = main_base_location[1] # return_main_base_distance = main_base_distances[row, col] # # Returning to a base that is not the main base # if base_distances_ship[nearest_base_id] < ( # return_main_base_distance-1): # return_base_row = my_base_locations[0][nearest_base_id] # return_base_col = my_base_locations[1][nearest_base_id] # else: # return_base_row = main_base_row # return_base_col = main_base_col # if observation['step'] == 278: # import pdb; pdb.set_trace() return_base_directions = get_dir_from_target( row, col, return_base_row, return_base_col, grid_size) one_step_invalid = list(set(NOT_NONE_DIRECTIONS).difference(set( all_ship_scores[ship_k][9]))) not_good_dirs = list(set(all_ship_scores[ship_k][7] + all_ship_scores[ ship_k][8] + one_step_invalid)) base_return_good_dirs = np.array([not d in not_good_dirs for d in ( return_base_directions)]) num_good_base_return_dirs = base_return_good_dirs.sum() if not rescue_executed and base_scores.max() > 0 and ( not ship_k in already_escorted_ships) and not ( ship_k in added_escorted_ships): # print("ENTERING THE ESCORT TO BASE BRANCH") # Jointly move to the nearest weighted base and assume that the # former zero halite position won't be attacked rescuer_row, rescuer_col = row_col_from_square_grid_pos( player_obs[2][rescuer_k][0], grid_size) # Abort the rescue operation when the rescuing ship has gobbled up # another non-zero halite ship or if both are no longer next to # each other abort_rescue = (DISTANCES[row, col][rescuer_row, rescuer_col] > 1) or ( halite_ships[rescuer_row, rescuer_col] > 0) # Abort once I have two valid actions towards the base or have one # valid action and am in the same row/col # print(row, col, min_escort_steps_remaining, observation['step']) if min_escort_steps_remaining == 0: abort_rescue = abort_rescue or (num_good_base_return_dirs == 2) if not abort_rescue and num_good_base_return_dirs == 1: # import pdb; pdb.set_trace() abort_rescue = (row == return_base_row) or ( col == return_base_col) # Abort if the ship can safely return to a base abort_rescue = abort_rescue or ( halite_ships[row, col] < safe_to_return_halites[row, col]) if not abort_rescue: already_escorted_ships.append(ship_k) on_rescue_mission[row, col] = 1 on_rescue_mission[rescuer_row, rescuer_col] = 1 to_rescuer_dir = get_dir_from_target( row, col, rescuer_row, rescuer_col, grid_size)[0] ship_k_not_immediate_bad = list( set(all_ship_scores[ship_k][6]).union( set(all_ship_scores[ship_k][17]))) aligned_dirs = list(set(ship_k_not_immediate_bad) & set( all_ship_scores[rescuer_k][6]) & set(return_base_directions)) # if observation['step'] == 231: # import pdb; pdb.set_trace() if len(aligned_dirs) == 0: # Don't risk moving onto the previous step zero halite square if a # potential opponent has a considerable probability of engaging in # 1-step risky actions risk_score = 0 for d in NOT_NONE_DIRECTIONS: neighbor_rescue_row, neighbor_rescue_col = move_ship_row_col( rescuer_row, rescuer_col, d, grid_size) if opponent_zero_halite_ships[ neighbor_rescue_row, neighbor_rescue_col]: opponent_id = np.where(stacked_ships[ :, neighbor_rescue_row, neighbor_rescue_col])[0][0] risk_score += history['zero_halite_move_behavior'][ opponent_id]['False_0'] shared_escape_dirs = list(set(ship_k_not_immediate_bad) & set( all_ship_scores[rescuer_k][6])) if risk_score > max_1_step_rescue_risk and len( shared_escape_dirs) > 0 and len(aligned_dirs) == 0: # print("Avoiding risky rescue move", observation['step'], row, # col) aligned_dirs = shared_escape_dirs override_override_mask = False if (to_rescuer_dir not in ship_k_not_immediate_bad) or ( len(aligned_dirs) > 0): # It is probably worth the risk when I am rescuing a ship in # trouble # It is better to take a safe step with both ships if that option # is available # import pdb; pdb.set_trace() if len(aligned_dirs) == 0 and not to_rescuer_dir in ( all_ship_scores[ship_k][6]): all_ship_scores[ship_k][6].append(to_rescuer_dir) else: if len(aligned_dirs) > 1: str_aligned_dirs = [d if d is not None else "None" for d in ( aligned_dirs)] str_aligned_dirs.sort() # Set intersect is flaky aligned_dirs = [d if d != "None" else None for d in ( str_aligned_dirs)] override_override_mask = True if override_override_mask: aligned_dir = aligned_dirs[0] rescuer_move_row, rescuer_move_col = move_ship_row_col( rescuer_row, rescuer_col, aligned_dir, grid_size) rescue_move_positions_taken[rescuer_move_row, rescuer_move_col] = 1 for score_id in range(3): all_ship_scores[rescuer_k][score_id][ rescuer_move_row, rescuer_move_col] += 1e4 if not aligned_dir in all_ship_scores[ship_k][6]: all_ship_scores[ship_k][6].append(aligned_dir) escape_row, escape_col = move_ship_row_col( row, col, aligned_dir, grid_size) else: # Consider escaping along the opposite side of the board if one # side is much more congested relative_pos = get_relative_position( rescuer_row, rescuer_col, target_base[0], target_base[1], grid_size) mid_path_row_short = int( rescuer_row + relative_pos[0]/2) % grid_size mid_path_col_short = int( rescuer_col + relative_pos[1]/2) % grid_size mid_path_row_long = int( rescuer_row - (grid_size - relative_pos[0])/2) % grid_size mid_path_col_long = int( rescuer_col - (grid_size - relative_pos[1])/2) % grid_size start_rescuer_row = rescuer_row if np.abs(relative_pos[0]) > 7: # Determine start_rescuer_row mid_density_short_row = player_influence_maps[ 0, mid_path_row_short, mid_path_col_short] - ( player_influence_maps[ 1:, mid_path_row_short, mid_path_col_short]).sum() mid_density_long_row = player_influence_maps[ 0, mid_path_row_long, mid_path_col_short] - ( player_influence_maps[ 1:, mid_path_row_long, mid_path_col_short]).sum() distance_diff_short = grid_size-2*np.abs(relative_pos[0]) if mid_density_long_row - mid_density_short_row > ( distance_diff_short/2): # import pdb; pdb.set_trace() start_rescuer_row = mid_path_row_long start_rescuer_col = rescuer_col if np.abs(relative_pos[1]) > 7: # Determine start_rescuer_col mid_density_short_col = player_influence_maps[ 0, mid_path_row_short, mid_path_col_short] - ( player_influence_maps[ 1:, mid_path_row_short, mid_path_col_short]).sum() mid_density_long_col = player_influence_maps[ 0, mid_path_row_short, mid_path_col_long] - ( player_influence_maps[ 1:, mid_path_row_short, mid_path_col_long]).sum() distance_diff_short = grid_size-2*np.abs(relative_pos[1]) if mid_density_long_col - mid_density_short_col > ( distance_diff_short): # import pdb; pdb.set_trace() start_rescuer_col = mid_path_col_long increase_mask = get_mask_between_exclude_ends( target_base[0], target_base[1], start_rescuer_row, start_rescuer_col, grid_size) # Avoid the rescued ship half plane if that leaves the rescuer with # options (that way the rescue mission makes progress) to_base_dirs = get_dir_from_target( start_rescuer_row, start_rescuer_col, target_base[0], target_base[1], grid_size) valid_to_base_dirs = list(set(to_base_dirs) & set( all_ship_scores[rescuer_k][6])) if len(valid_to_base_dirs) > 1: to_rescued_dir = OPPOSITE_MAPPING[to_rescuer_dir] if to_rescued_dir in all_ship_scores[rescuer_k][6]: # import pdb; pdb.set_trace() increase_mask[HALF_PLANES_CATCH[ start_rescuer_row, start_rescuer_col][to_rescued_dir]] = 0 if len(all_ship_scores[rescuer_k][6]) == 1 and ( all_ship_scores[rescuer_k][6][0] is None): # Take a move risk rather than staying still - otherwise the # non zero halite ship is likely to get orphaned # import pdb; pdb.set_trace() risk_scores = np.zeros(len(to_base_dirs)) for risk_id, d in enumerate(to_base_dirs): move_row, move_col = move_ship_row_col( rescuer_row, rescuer_col, d, grid_size) for potential_threat_dir in MOVE_DIRECTIONS: threat_row, threat_col = move_ship_row_col( move_row, move_col, potential_threat_dir, grid_size) if opponent_ships[threat_row, threat_col] and halite_ships[ threat_row, threat_col] == 0: opponent_id = player_ids[threat_row, threat_col] is_near_base = nearest_base_distances[ threat_row, threat_col] <= config[ 'log_near_base_distance'] distance = int(d is not None) + int( potential_threat_dir is not None) risk_lookup_k = str(is_near_base) + '_' + str(distance) risk_scores[risk_id] = max( risk_scores[risk_id], history[ 'zero_halite_move_behavior'][opponent_id][ risk_lookup_k]) best_risk_score = risk_scores.min() if best_risk_score < 0.15: print("Risky escort move with boxed in zero halite ship", observation['step'], row, col) # import pdb; pdb.set_trace() rescuer_selected_move_dir = to_base_dirs[ np.argmin(risk_scores)] increase_mask = np.zeros_like(increase_mask) rescue_move_position = move_ship_row_col( rescuer_row, rescuer_col, rescuer_selected_move_dir, grid_size) all_ship_scores[rescuer_k][0][rescue_move_position] += 3e5 all_ship_scores[rescuer_k][6].remove(None) all_ship_scores[rescuer_k][6].append(rescuer_selected_move_dir) for score_id in range(3): all_ship_scores[rescuer_k][score_id][increase_mask] += 1e4 escape_row = rescuer_row escape_col = rescuer_col all_ship_scores[rescuer_k][3][:] -= 1e4 # No attack during rescue all_ship_scores[ship_k][0][escape_row, escape_col] = 1e8 rescue_move_positions_taken[escape_row, escape_col] = 1 if not abort_rescue: if min_escort_steps_remaining > 1: if not ship_k in added_escorted_ships: added_escorted_ships.append(ship_k) new_escort_list.append((ship_k, rescuer_k, False, min_escort_steps_remaining-1, max_escort_steps_remaining-1)) elif (max_escort_steps_remaining > 1) and not ( ship_k in added_escorted_ships): # can_not_return_base = (halite_ships[row, col] > 0) and ( # len(set(return_base_directions) & set( # all_ship_scores[ship_k][6])) == 0 or ( # len(set(return_base_directions) & set( # all_ship_scores[ship_k][7])) == num_return_directions) or ( # len(set(return_base_directions) & set( # all_ship_scores[ship_k][8])) == num_return_directions)) added_escorted_ships.append(ship_k) # can_not_return_base = (halite_ships[row, col] > 0) and ( # len(set(return_base_directions) & set( # all_ship_scores[ship_k][6])) == 0 or ( # np.all(np.array(base_return_not_good_dirs)))) # Decide on the next step if we should abort escorting the ship new_escort_list.append( (ship_k, rescuer_k, False, 0, max_escort_steps_remaining-1)) history['escort_to_base_list'] = new_escort_list # print(observation['step'], history['escort_to_base_list']) return (all_ship_scores, on_rescue_mission, rescue_move_positions_taken, history) def update_scores_victory_formation( all_ship_scores, config, env_config, stacked_ships, observation, halite_ships, steps_remaining, obs_halite, player_obs, main_base_distances): # Compute the current approximate player score scores = np.array( [rbs[0] for rbs in observation['rewards_bases_ships']]) halite_cargos = np.array( [rbs[3].sum() for rbs in observation['rewards_bases_ships']]) halite_ships = np.stack([ rbs[3] for rbs in observation['rewards_bases_ships']]).sum(0) halite_ships[stacked_ships.sum(0) == 0] = -1e-9 my_bases = observation['rewards_bases_ships'][0][1] grid_size = halite_ships.shape[0] ship_counts = stacked_ships.sum((1, 2)) all_ship_count = ship_counts.sum() obs_halite_sum = observation['halite'].sum() ship_value = min(env_config.spawnCost, steps_remaining*obs_halite_sum**0.6/( all_ship_count+1e-9)) current_scores = scores+halite_cargos+ship_value*ship_counts min_advantage = current_scores[0] - current_scores[1:].max() # Obtain the TOM pattern location top_row = 8 left_col = 1 target_pattern = np.zeros((grid_size, grid_size), dtype=np.bool) # T of TOM target_pattern[top_row, left_col:(left_col+5)] = 1 target_pattern[top_row:(top_row+4), left_col+2] = 1 # O of TOM target_pattern[top_row, (left_col+7):(left_col+9)] = 1 target_pattern[top_row+3, (left_col+7):(left_col+9)] = 1 target_pattern[(top_row+1):(top_row+3), left_col+6] = 1 target_pattern[(top_row+1):(top_row+3), left_col+9] = 1 # M of TOM target_pattern[top_row+3, left_col+11] = 1 target_pattern[top_row+2, left_col+12] = 1 target_pattern[top_row+1, left_col+13] = 1 target_pattern[top_row+2, left_col+14] = 1 target_pattern[top_row+1, left_col+15] = 1 target_pattern[top_row+2, left_col+16] = 1 target_pattern[top_row+3, left_col+17] = 1 # First compute if we can afford a victory formation uncovered_pattern = target_pattern & ~(my_bases) num_uncovered_squares = uncovered_pattern.sum() min_required_for_formation = ( steps_remaining*0.2+10+num_uncovered_squares)*( env_config.spawnCost + ship_value) player_ship_counts = stacked_ships.sum((1, 2)) ship_advantage = player_ship_counts[0] - player_ship_counts[1:].max() available_ships_formation = np.copy(stacked_ships[0]) can_form_victory_formation = min_advantage > min_required_for_formation and ( steps_remaining < 20) and (ship_advantage > num_uncovered_squares) and ( num_uncovered_squares > 0) if can_form_victory_formation: my_ship_pos_to_k = {v[0]: k for k, v in player_obs[2].items()} uncovered_positions = np.where(uncovered_pattern) for uncovered_id in range(num_uncovered_squares): pattern_row = uncovered_positions[0][uncovered_id] pattern_col = uncovered_positions[1][uncovered_id] my_pattern_distances = DISTANCES[pattern_row, pattern_col] + 100*( ~available_ships_formation) best_target_match = np.where( my_pattern_distances == my_pattern_distances.min()) ship_row = best_target_match[0][0] ship_col = best_target_match[1][0] ship_k = my_ship_pos_to_k[ship_row*grid_size+ship_col] # import pdb; pdb.set_trace() all_ship_scores[ship_k][0][pattern_row, pattern_col] += 1e12 all_ship_scores[ship_k][2][pattern_row, pattern_col] = 1e13 available_ships_formation[ship_row, ship_col] = 0 # for ship_k in all_ship_scores: # row, col = row_col_from_square_grid_pos( # player_obs[2][ship_k][0], grid_size) # ship_halite = halite_ships[row, col] # # Greedily assign ships to convert at each of the uncovered positions in # # the target pattern # for j in [0, 1, 2, 3]: # all_ship_scores[ship_k][j][:] = -1e6 # dance_scores = 1e12*(v_pattern*( # DISTANCE_MASKS[(row, col)] ** (1/np.sqrt(steps_remaining+1)))*( # 1.08**main_base_distances) - 0.2*( # my_zero_halite_ship_density)) # if obs_halite[row, col] > 0: # dance_scores[row, col] = -1e6 # best_dance_score = dance_scores.max() # best_squares = np.where(dance_scores == best_dance_score) # best_row = best_squares[0][0] # best_col = best_squares[1][0] # v_pattern[best_row, best_col] = 0 # all_ship_scores[ship_k][0][best_row, best_col] = best_dance_score return all_ship_scores, can_form_victory_formation def get_ship_plans( config, observation, player_obs, env_config, verbose, all_ship_scores, np_rng, weighted_base_mask, steps_remaining, opponent_ships_sensible_actions, opponent_ships_scaled, main_base_distances, history, env_observation, player_influence_maps, ignore_convert_positions, ship_diff_smoothed, safe_to_return_halites, safe_collect_margin, always_attack_opponent_id, likely_convert_opponent_positions, possible_convert_opponent_positions, my_current_base_distances, nearest_base_distances, convert_first_ship_on_None_action=True, halite_on_board_mult=1e-6): ship_plans_start_time = time.time() all_my_bases = copy.copy(observation['rewards_bases_ships'][0][1]) my_considered_bases = copy.copy(observation['rewards_bases_ships'][0][1]) all_base_pos = np.where(all_my_bases) my_abandoned_base_count = len( history['my_base_not_attacked_positions']) if history['my_base_not_attacked_positions']: abandoned_rows, abandoned_cols = zip(*history[ 'my_base_not_attacked_positions']) abandoned_base_pos = (np.array(abandoned_rows), np.array(abandoned_cols)) else: abandoned_base_pos = () # Exclude bases that are persistently camped by opponents for base_pos in history['my_base_not_attacked_positions']: my_considered_bases[base_pos] = 0 opponent_bases = np.stack( [rbs[1] for rbs in observation['rewards_bases_ships'][1:]]).sum(0) > 0 can_deposit_halite = my_considered_bases.sum() > 0 stacked_ships = np.stack( [rbs[2] for rbs in observation['rewards_bases_ships']]) all_ships = stacked_ships.sum(0) > 0 my_ships = stacked_ships[0] opponent_ships = stacked_ships[1:].sum(0) > 0 halite_ships = np.stack([ rbs[3] for rbs in observation['rewards_bases_ships']]).sum(0) halite_ships[~all_ships] = -1e-9 grid_size = observation['halite'].shape[0] ship_ids = list(player_obs[2]) my_ship_count = len(player_obs[2]) my_non_converted_ship_count = my_ship_count convert_cost = env_config.convertCost obs_halite = np.maximum(0, observation['halite']) collect_rate = env_config.collectRate spawn_cost = env_config.spawnCost num_bases = my_considered_bases.sum() non_abandoned_base_pos = np.where(my_considered_bases) new_bases = [] base_attackers = {} max_attackers_per_base = config['max_attackers_per_base'] camping_ships_strategy = history['camping_ships_strategy'] my_nearest_ship_distances_raw = [] opponent_nearest_ship_distances = [1e6*np.ones((grid_size, grid_size))] my_ship_pos = np.where(my_ships) opponent_ship_pos = np.where(opponent_ships) if my_ships.sum(): for ship_id in range(my_ship_pos[0].size): row = my_ship_pos[0][ship_id] col = my_ship_pos[1][ship_id] my_nearest_ship_distances_raw.append(DISTANCES[row, col] + ( halite_on_board_mult*halite_ships[row, col])) my_nearest_ship_distances_raw.append(1e6*np.ones((grid_size, grid_size))) if opponent_ships.sum(): for ship_id in range(opponent_ship_pos[0].size): row = opponent_ship_pos[0][ship_id] col = opponent_ship_pos[1][ship_id] opponent_nearest_ship_distances.append(DISTANCES[row, col] + ( halite_on_board_mult*halite_ships[row, col])) my_nearest_ship_distances = np.stack(my_nearest_ship_distances_raw).min(0) opponent_nearest_ship_distances = np.stack( opponent_nearest_ship_distances).min(0) # if observation['step'] == 131: # import pdb; pdb.set_trace() # Update ship scores to make sure that the plan does not contradict with # invalid actions when the plan is executed (ship_plans_to_actions) for ship_k in all_ship_scores: # if observation['step'] == 360 and ship_k == '134-1': # import pdb; pdb.set_trace() bad_directions = list(set(MOVE_DIRECTIONS) - set( all_ship_scores[ship_k][6])) row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) if max_attackers_per_base <= 0: all_ship_scores[ship_k][3][:] = -1e12 if len(bad_directions) < len(MOVE_DIRECTIONS) and not all_ship_scores[ ship_k][13] and not ( all_ship_scores[ship_k][12] and steps_remaining == 1): for d in bad_directions: mask_avoid = np.copy(HALF_PLANES_RUN[(row, col)][d]) # Don't punish entire half plains when there is only a single bad # direction. > 20 hack to avoid blocking my own base early on if len(bad_directions) == 1 and observation['step'] > 20: # FUTURE WORK: should we do this only for base return? Should we make # this even less strict? if d in [NORTH, SOUTH]: mask_avoid &= COLUMN_MASK[col] elif d in [EAST, WEST]: mask_avoid &= ROW_MASK[row] if d is not None: mask_avoid[row, col] = False for i in range(3): all_ship_scores[ship_k][i][mask_avoid] -= 1e5 if d is None and num_bases == 0: # Don't suppress conversion at the current square for the first or # reconstructed base all_ship_scores[ship_k][2][mask_avoid] += 1e5 if d not in all_ship_scores[ship_k][10]: move_row, move_col = move_ship_row_col(row, col, d, grid_size) if opponent_bases.sum() > 0 and DISTANCES[(move_row, move_col)][ opponent_bases].min() > 1: if not d in all_ship_scores[ship_k][9]: all_ship_scores[ship_k][3][mask_avoid] -= 1e5 # if observation['step'] == 131: # import pdb; pdb.set_trace() # Decide whether to build a new base after my last base has been destroyed. # A camped base where I do not consider attacking the campers is also # considered destroyed should_spawn_base_next_step = None if num_bases == 0 and my_ship_count > 1: requested_save_conversion_budget = 0 all_ship_scores, can_deposit_halite, restored_base_pos = ( consider_restoring_base( observation, env_config, all_ship_scores, player_obs, convert_cost, np_rng, history)) num_restored_or_added_bases = int(can_deposit_halite) convert_unavailable_positions = np.zeros( (grid_size, grid_size), dtype=np.bool) if can_deposit_halite: non_abandoned_base_pos = ( np.array([restored_base_pos[0]]), np.array([restored_base_pos[1]])) restored_or_added_base_pos = restored_base_pos my_considered_bases[restored_base_pos] = 1 else: can_deposit_halite = num_bases > 0 # Strategically add bases if num_bases > 0 and my_ship_count > 2: (all_ship_scores, base_added, added_base_pos, requested_save_conversion_budget, convert_unavailable_positions, should_spawn_base_next_step) = consider_adding_strategic_bases( config, observation, env_config, all_ship_scores, player_obs, convert_cost, np_rng, history, player_influence_maps, obs_halite, non_abandoned_base_pos, all_base_pos, halite_ships, my_nearest_ship_distances, my_nearest_ship_distances_raw, opponent_nearest_ship_distances) num_restored_or_added_bases = int(base_added) num_bases += num_restored_or_added_bases if base_added: non_abandoned_base_pos = ( np.array(non_abandoned_base_pos[0].tolist() + [added_base_pos[0]]), np.array(non_abandoned_base_pos[1].tolist() + [added_base_pos[1]]) ) restored_or_added_base_pos = added_base_pos else: num_restored_or_added_bases = 0 requested_save_conversion_budget = 0 convert_unavailable_positions = np.zeros( (grid_size, grid_size), dtype=np.bool) # if observation['step'] == 360: # import pdb; pdb.set_trace() # Decide to redirect ships to the base to avoid the main and potential other # strategic bases being destroyed by opposing ships defend_base_ignore_collision_key = None ignore_base_collision_ship_keys = [] should_defend = (my_ship_count-num_restored_or_added_bases) > min( 4, 2 + steps_remaining/5) remaining_defend_base_budget = max(0, min([7, int((my_ship_count-2)/2.5)])) base_override_move_positions = history['base_camping_override_positions'] my_defended_abandoned_bases = np.zeros((grid_size, grid_size), dtype=np.bool) defend_base_ignore_collision_keys = [] bases_protected = {} all_ignore_base_collision_ship_keys = [] this_step_base_defense_keys = [] my_defend_base_ship_positions = np.zeros( (grid_size, grid_size), dtype=np.bool) my_considered_bases_rescue_mission = np.copy(my_considered_bases) my_considered_bases_rescue_mission &= ( my_nearest_ship_distances <= opponent_nearest_ship_distances) if num_restored_or_added_bases > 0: # The converted ship can not be used to defend the newly created base my_defend_base_ship_positions[restored_or_added_base_pos] = 1 early_hunting_season = observation['relative_step'] >= config[ 'start_hunting_season_relative_step'] and observation[ 'relative_step'] <= config[ 'early_hunting_season_less_collect_relative_step'] and ( obs_halite.sum() < config['min_halite_to_stop_early_hunt']) and ( not history['early_hunting_season_ended']) late_hunting_season = observation['relative_step'] > config[ 'late_hunting_season_more_collect_relative_step'] if (num_bases >= 1 or my_abandoned_base_count > 0) and should_defend: if abandoned_base_pos: can_defend_abandoned = my_nearest_ship_distances[abandoned_base_pos] <= ( opponent_nearest_ship_distances[abandoned_base_pos]) num_can_defend_abandoned = can_defend_abandoned.sum() else: num_can_defend_abandoned = 0 defend_desirabilities = player_influence_maps[0] - player_influence_maps[ 1:].max(0) abandoned_defend_desirabilities = defend_desirabilities[abandoned_base_pos] # First, consider non abandoned bases - prefer bases where I have a # relatively high number of ships (same logic to compute the main base) can_defend_not_abandoned = my_nearest_ship_distances[ non_abandoned_base_pos] <= opponent_nearest_ship_distances[ non_abandoned_base_pos] non_abandoned_defend_desirabilities = ship_diff_smoothed[ non_abandoned_base_pos] + 100*can_defend_not_abandoned defend_priority_ids = np.argsort(-non_abandoned_defend_desirabilities) base_locations_defense_budget = [] num_non_abandoned = defend_priority_ids.size if num_non_abandoned > 0: non_abandoned_min_defenders = min(3, ( remaining_defend_base_budget-num_can_defend_abandoned)//( num_non_abandoned)) if (num_non_abandoned + num_can_defend_abandoned) == 1: main_base_defense_budget = 3 else: if remaining_defend_base_budget <= ( num_non_abandoned + num_can_defend_abandoned): main_base_defense_budget = 1 else: main_base_defense_budget = 2 if not early_hunting_season and observation['relative_step'] >= config[ 'start_hunting_season_relative_step']: # Once we trigger the condition once, the early hunting season remains # over history['early_hunting_season_ended'] = True # Defend with less passion if my bases were not destroyed before if history['num_destroyed_bases'] == 0: non_abandoned_min_defenders = 1 main_base_defense_budget = min( main_base_defense_budget, 1 + int( num_non_abandoned == 1 or early_hunting_season)) elif history['num_destroyed_bases'] == 1: non_abandoned_min_defenders = min(non_abandoned_min_defenders, 2) main_base_defense_budget = min(main_base_defense_budget, 2) for defend_id, defend_priority_id in enumerate(defend_priority_ids): base_max_defenders = main_base_defense_budget if defend_id == 0 else 1 num_defenders = max(non_abandoned_min_defenders, min( remaining_defend_base_budget, base_max_defenders)) if num_defenders > 0 and ( defend_id == 0 or can_defend_not_abandoned[defend_priority_id]): remaining_defend_base_budget -= num_defenders base_locations_defense_budget.append(( non_abandoned_base_pos[0][defend_priority_id], non_abandoned_base_pos[1][defend_priority_id], num_defenders)) # First consider the non main, non abandoned bases, then the main base and # finally the abandoned bases base_locations_defense_budget = base_locations_defense_budget[::-1] if abandoned_base_pos and can_defend_abandoned.sum() and ( remaining_defend_base_budget > 0): # Minimally (1 ship) defend at most N of the abandoned bases - prefer # squares where I have a relatively high influence abandoned_defense_scores = -50+100*can_defend_abandoned + ( abandoned_defend_desirabilities) abandoned_defend_priority_ids = np.argsort(-abandoned_defense_scores) max_abandoned_defenses = 3 for abandoned_defend_priority_id in abandoned_defend_priority_ids: num_defenders = min( remaining_defend_base_budget, int(can_defend_abandoned[abandoned_defend_priority_id] and ( max_abandoned_defenses > 0))) if num_defenders > 0: abandoned_base_row = abandoned_base_pos[ 0][abandoned_defend_priority_id] abandoned_base_col = abandoned_base_pos[ 1][abandoned_defend_priority_id] my_defended_abandoned_bases[ abandoned_base_row, abandoned_base_col] = 1 max_abandoned_defenses -= 1 remaining_defend_base_budget -= num_defenders base_locations_defense_budget.append( (abandoned_base_row, abandoned_base_col, num_defenders)) # print(observation['step'], base_locations_defense_budget) # if observation['step'] == 360: # import pdb; pdb.set_trace() for base_row, base_col, num_defenders in base_locations_defense_budget: defend_base_pos = (base_row, base_col) (all_ship_scores, defend_base_ignore_collision_key, base_protected, ignore_base_collision_ship_keys, defend_base_ship_positions_base, base_override_move_positions, base_defense_keys) = protect_base( observation, env_config, all_ship_scores, player_obs, defend_base_pos, history, base_override_move_positions, my_defend_base_ship_positions, max_considered_attackers=num_defenders) defend_base_ignore_collision_keys.append( defend_base_ignore_collision_key) bases_protected[defend_base_pos] = base_protected all_ignore_base_collision_ship_keys += ignore_base_collision_ship_keys this_step_base_defense_keys += base_defense_keys my_defend_base_ship_positions |= defend_base_ship_positions_base else: # main_base_protected = True my_defend_base_ship_positions = np.zeros( (grid_size, grid_size), dtype=np.bool) num_non_abandoned = 0 # if observation['step'] == 360: # import pdb; pdb.set_trace() # Decide on redirecting ships to friendly ships that are boxed in/chased and # can not return to any of my bases if (num_bases - num_restored_or_added_bases) > 0: (all_ship_scores, on_rescue_mission, rescue_move_positions_taken, history) = update_scores_rescue_missions( config, all_ship_scores, stacked_ships, observation, halite_ships, steps_remaining, player_obs, obs_halite, history, opponent_ships_sensible_actions, weighted_base_mask, my_considered_bases_rescue_mission, np_rng, main_base_distances, my_defend_base_ship_positions, safe_to_return_halites, player_influence_maps, nearest_base_distances) else: on_rescue_mission = np.zeros((grid_size, grid_size), dtype=np.bool) rescue_move_positions_taken = np.zeros( (grid_size, grid_size), dtype=np.bool) override_move_squares_taken = rescue_move_positions_taken | ( base_override_move_positions) # if observation['step'] == 188: # import pdb; pdb.set_trace() # Coordinate box in actions of opponent more halite ships box_start_time = time.time() if main_base_distances.max() > 0: (all_ship_scores, boxing_in_mission, box_opponent_targets, override_move_squares_taken, ships_on_box_mission) = update_scores_opponent_boxing_in( all_ship_scores, stacked_ships, observation, env_config, opponent_ships_sensible_actions, halite_ships, steps_remaining, player_obs, np_rng, opponent_ships_scaled, collect_rate, obs_halite, main_base_distances, history, on_rescue_mission, my_defend_base_ship_positions, env_observation, player_influence_maps, override_move_squares_taken, ignore_convert_positions, convert_unavailable_positions, always_attack_opponent_id, num_non_abandoned, likely_convert_opponent_positions, possible_convert_opponent_positions, my_current_base_distances) else: boxing_in_mission = np.zeros((grid_size, grid_size), dtype=np.bool) box_opponent_targets = [] ships_on_box_mission = {} box_in_duration = time.time() - box_start_time # if observation['step'] == 188: # import pdb; pdb.set_trace() # Coordinated pack hunting (hoard in fixed directions with zero halite ships) # Send all non zero halite ships to a base so we can hunt safely if observation['relative_step'] >= config[ 'start_hunting_season_relative_step'] and observation[ 'relative_step'] <= config['end_hunting_season_relative_step']: if not history['limit_ships_timeout']: (all_ship_scores, history, override_move_squares_taken) = update_scores_pack_hunt( all_ship_scores, config, stacked_ships, observation, opponent_ships_sensible_actions, halite_ships, steps_remaining, player_obs, np_rng, opponent_ships_scaled, collect_rate, obs_halite, main_base_distances, history, on_rescue_mission, boxing_in_mission, my_defend_base_ship_positions, env_observation, box_opponent_targets, override_move_squares_taken, player_influence_maps, ignore_convert_positions, convert_unavailable_positions, early_hunting_season, late_hunting_season, safe_collect_margin, spawn_cost) # if observation['step'] == 188: # import pdb; pdb.set_trace() # Go into a victory formation when I have won # This can be perceived as arrogant (because it is) if observation['relative_step'] >= 0.85: all_ship_scores, victory_formation = update_scores_victory_formation( all_ship_scores, config, env_config, stacked_ships, observation, halite_ships, steps_remaining, obs_halite, player_obs, main_base_distances) else: victory_formation = False # Lower the collect scores for non high priority ships for the squares where # a high priority ships has claimed the move position. # High priority actions: # - Rescue # - Base defense # - Base attack # - Boxing in # - Opponent hoarding # - Victory dance if override_move_squares_taken.sum() > 0: for ship_k in all_ship_scores: best_collect_score = all_ship_scores[ship_k][0].max() if best_collect_score <= 5e4: # Very likely not a high priority collect override ship - lower the # collect scores for the claimed high priority ships to avoid conflicts # downstream # override_move_squares_taken = 1 all_ship_scores[ship_k][0][override_move_squares_taken] *= 0.1 # First, process the convert actions ship_plans = OrderedDict() for i, ship_k in enumerate(player_obs[2]): row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_scores = all_ship_scores[ship_k] ship_halite = player_obs[2][ship_k][1] has_budget_to_convert = (ship_halite + player_obs[0]) >= convert_cost convert_surrounded_ship = ship_scores[5] and ( ship_halite >= (convert_cost/config[ 'boxed_in_halite_convert_divisor'])) and has_budget_to_convert and( my_non_converted_ship_count > 1) one_step_valid_directions = ship_scores[9] almost_boxed_in = not None in one_step_valid_directions and (len( one_step_valid_directions) == 1 or set(one_step_valid_directions) in [ set([NORTH, SOUTH]), set([EAST, WEST])]) can_return_safely = all_my_bases & ( opponent_nearest_ship_distances >= ( DISTANCES[row, col] + ship_halite*halite_on_board_mult)) # if np.any(can_return_safely & (~(my_considered_bases | ( # my_defended_abandoned_bases)))): # import pdb; pdb.set_trace() # x=1 # if observation['step'] == 129 and row == 11 and col == 8: # import pdb; pdb.set_trace() # if observation['step'] == 63 and ship_k in ['5-3', '36-1']: # import pdb; pdb.set_trace() if (has_budget_to_convert and ( my_ship_count > 1 or observation['step'] < 20 or ( steps_remaining == 1 and ship_halite >= convert_cost and ( ship_halite + player_obs[0]) >= 2*convert_cost or (( (ship_halite + player_obs[0]) >= convert_cost) and ( my_ship_count > 3)))) and ( ship_scores[2].max()) >= max([ ship_scores[0].max()*can_deposit_halite, (ship_scores[1]*(my_considered_bases | ( my_defended_abandoned_bases) | can_return_safely)).max(), ship_scores[3].max(), ]) and (not almost_boxed_in)) or convert_surrounded_ship or ( ship_scores[13]) or victory_formation: # Obtain the row and column of the new target base target_base = np.where(ship_scores[2] == ship_scores[2].max()) target_row = target_base[0][0] target_col = target_base[1][0] my_non_converted_ship_count -= 1 if (target_row == row and target_col == col) or convert_surrounded_ship: ship_plans[ship_k] = CONVERT new_bases.append((row, col)) my_considered_bases[row, col] = True can_deposit_halite = True else: ship_plans[ship_k] = (target_row, target_col, ship_scores[4], False, row, col, -1) # if observation['step'] == 322: # import pdb; pdb.set_trace() # x=1 # Next, do another pass to coordinate the target squares. This is done in a # double pass for now where the selection order is determined based on the # availability of > 1 direction in combination with the initial best score. # The priorities are recomputed as target squares are taken by higher # priority ships. my_prev_step_base_attacker_ships = history[ 'my_prev_step_base_attacker_ships'] best_ship_scores = {} ship_priority_scores = np.zeros(my_ship_count) ship_priority_matrix = np.zeros((my_ship_count, 8)) all_ship_valid_directions = {} for i, ship_k in enumerate(player_obs[2]): if ship_k in ship_plans: # Make sure that already planned ships stay on top of the priority Q ship_priority_scores[i] = 1e20 else: ship_scores = all_ship_scores[ship_k] row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) # if observation['step'] == 131 and ship_k in ['74-1']: # import pdb; pdb.set_trace() # Incorporate new bases in the return to base scores ship_scores = list(ship_scores) ship_halite = player_obs[2][ship_k][1] can_return_safely = all_my_bases & ( opponent_nearest_ship_distances >= ( DISTANCES[row, col] + ship_halite*halite_on_board_mult)) ship_scores[1][np.logical_not( my_considered_bases | my_defended_abandoned_bases | ( can_return_safely))] = -1e7 ship_scores[3][np.logical_not(opponent_bases)] = -1e7 ship_scores = tuple(ship_scores) for (r, c) in new_bases: if r != row or c != col: ship_scores[0][r, c] = -1e7 ship_scores[2][r, c] = -1e7 all_ship_scores[ship_k] = ship_scores num_non_immediate_bad_directions = len(set( ship_scores[6] + ship_scores[8])) num_two_step_neighbors = all_ships[ ROW_COL_MAX_DISTANCE_MASKS[(row, col, 2)]].sum() - 1 best_score = np.stack([ ship_scores[0], ship_scores[1], ship_scores[2], ship_scores[3]]).max() best_ship_scores[ship_k] = best_score prev_base_attacker = int(ship_k in my_prev_step_base_attacker_ships) all_ship_valid_directions[ship_k] = copy.copy(ship_scores[6]) ship_priority_scores[i] = best_score + 1e12*( (len(ship_scores[6]) == 1)) - 1e6*( num_non_immediate_bad_directions) + 1e4*( len(ship_scores[8])) + 1e2*( num_two_step_neighbors) - 1e5*( len(ship_scores[9])) + 1e7*( ship_scores[11]) + 3e5*prev_base_attacker ship_priority_matrix[i] = np.array([ len(ship_scores[6]) == 1, # 1e12 ship_scores[11], # 1e7 num_non_immediate_bad_directions, # 1e6 prev_base_attacker, # 3e5 len(ship_scores[9]), #1e5 len(ship_scores[8]), #1e4 num_two_step_neighbors, #1e2 best_score, #no unit ]) ship_order = np.argsort(-ship_priority_scores) occupied_target_squares = np.zeros((grid_size, grid_size), dtype=np.bool) occupied_squares_count = np.zeros((grid_size, grid_size), dtype=np.int) single_path_squares = np.zeros((grid_size, grid_size), dtype=np.bool) single_path_max_block_distances = np.ones( (grid_size, grid_size), dtype=np.int) return_base_distances = [] chain_conflict_resolution = [] ship_conflict_resolution = [] # if observation['step'] == 279: # # ship_positions = [ # # row_col_from_square_grid_pos( # # player_obs[2][ship_ids[o]][0], grid_size) for o in (ship_order)] # # print([ship_ids[o] for o in ship_order]) # import pdb; pdb.set_trace() # List the ships that want to collect and greedily assign conflicted collect # squares to the ship with the highest collect score all_collect_scores = [] collect_ship_keys = [] all_collect_multipliers = [] taken_collect_squares = np.zeros((grid_size, grid_size), dtype=np.bool) for i in range(my_ship_count): ship_k = ship_ids[ship_order[i]] ship_scores = all_ship_scores[ship_k] collect_scores = np.copy(ship_scores[0]) best_collect_score = collect_scores.max() best_return_score = ship_scores[1].max() best_establish_score = ship_scores[2].max() best_attack_base_score = ship_scores[3].max() best_other_score = max([ best_return_score, best_establish_score, best_attack_base_score]) best_score = max(best_collect_score, best_other_score) if best_collect_score < 0: # Set the collect scores to a small value on all squares in the valid # directions row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) valid_mask = np.zeros((grid_size, grid_size), dtype=np.bool) if len(ship_scores[6]) == 0: # Add all squares to the valid mask - everything seems lost anyway valid_mask |= np.ones_like(valid_mask) else: # Add a small positive value for the escape directions - this way # the planning is undisturbed and the other ships remain unaffected of # the selected escape path for d in ship_scores[6]: valid_mask |= HALF_PLANES_CATCH[row, col][d] # Boxed in by zero halite ships on a non zero halite square collect_scores[valid_mask] = 1e-10*np.random.uniform( size=valid_mask.sum()) if best_score == best_collect_score: if best_collect_score < 1e4: collect_ship_keys.append(ship_k) all_collect_scores.append(collect_scores) all_collect_multipliers.append(ship_scores[16]) else: best_collect_pos = np.unravel_index( collect_scores.argmax(), collect_scores.shape) taken_collect_squares[best_collect_pos] = 1 num_collect_ships = len(collect_ship_keys) if num_collect_ships > 0: stacked_collect_scores = np.stack(all_collect_scores) updated_collect_scores = np.copy(stacked_collect_scores) # original_collect_scores = np.copy(stacked_collect_scores) stacked_collect_scores /= np.stack(all_collect_multipliers) min_collect_score = stacked_collect_scores.min() if np.any(taken_collect_squares): stacked_collect_scores[:, taken_collect_squares] = min_collect_score for loop_id in range(num_collect_ships): best_index = np.unravel_index(stacked_collect_scores.argmax(), stacked_collect_scores.shape) # print(loop_id, best_index) # Reduce the best square for all other ships by an order of magnitude other_ships = np.arange(num_collect_ships) != best_index[0] updated_collect_scores[ other_ships, best_index[1], best_index[2]] /= 10 stacked_collect_scores [ other_ships, best_index[1], best_index[2]] = min_collect_score # Exclude the assigned ship for subsequent steps stacked_collect_scores[best_index[0]] = min_collect_score for ship_id, ship_k in enumerate(collect_ship_keys): all_ship_scores[ship_k][0][:] = updated_collect_scores[ship_id] # List the ships that want to attack bases and greedily assign # base squares to the ships with the highest attack scores if max_attackers_per_base > 0: all_attack_details = {} for i in range(my_ship_count): ship_k = ship_ids[ship_order[i]] ship_scores = all_ship_scores[ship_k] row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) attack_base_scores = ship_scores[3] best_collect_score = ship_scores[0].max() best_return_score = ship_scores[1].max() best_establish_score = ship_scores[2].max() best_attack_base_score = attack_base_scores.max() best_other_score = max([ best_collect_score, best_return_score, best_establish_score]) best_score = max(best_attack_base_score, best_other_score) if best_score == best_attack_base_score: best_collect_pos = np.unravel_index( attack_base_scores.argmax(), attack_base_scores.shape) attack_ship_details = (best_score, ship_k, row, col) if best_collect_pos in all_attack_details: all_attack_details[best_collect_pos].append( attack_ship_details) else: all_attack_details[best_collect_pos] = [attack_ship_details] for base_pos in all_attack_details: num_attackers_this_base = len(all_attack_details[base_pos]) if num_attackers_this_base > max_attackers_per_base: attack_ship_scores = np.array([d[0] for d in ( all_attack_details[base_pos])]) keep_attack_ids = np.argsort(-attack_ship_scores)[ :max_attackers_per_base].tolist() for attacker_id in range(num_attackers_this_base): ship_k = all_attack_details[base_pos][attacker_id][1] if not attacker_id in keep_attack_ids: all_ship_scores[ship_k][3][base_pos] = -1e12 # if observation['step'] == 75: # import pdb; pdb.set_trace() # x=1 inner_loop_start_time = time.time() recompute_ship_plan_order_duration = 0 base_return_ship_keys = [] for i in range(my_ship_count): ship_k = ship_ids[ship_order[i]] ship_scores = all_ship_scores[ship_k] ship_halite = player_obs[2][ship_k][1] if not ship_k in ship_plans: row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) valid_directions = ship_scores[6] # if observation['step'] == 118 and ship_k == '50-1': # import pdb; pdb.set_trace() after_blocked_valid_dirs = copy.copy(ship_scores[6]) if single_path_squares.sum() and not ship_scores[12]: (s0, s1, s2, s3, after_blocked_valid_dirs, _, _) = update_scores_blockers( ship_scores[0], ship_scores[1], ship_scores[2], ship_scores[3], row, col, grid_size, single_path_squares, single_path_max_block_distances, valid_directions, ship_scores[9], update_attack_base=True) ship_scores = (s0, s1, s2, s3, ship_scores[4], ship_scores[5], ship_scores[6], ship_scores[7], ship_scores[8], ship_scores[9], ship_scores[10], ship_scores[11], ship_scores[12], ship_scores[13], ship_scores[14], ship_scores[15], ship_scores[16], ship_scores[17], ship_scores[18]) if ship_halite == 0 and (len(after_blocked_valid_dirs) == 0 or (len( after_blocked_valid_dirs) == 1 and ( valid_directions[0] is None))) and obs_halite[row, col] > 0: # There are no longer any valid directions available for my zero halite # ship due to my other ships taking the final escape squares. # Typically this means being surrounded by opponent zero halite ships # In this situation we have to prefer risky actions over staying still! for d in np_rng.permutation(NOT_NONE_DIRECTIONS): move_row, move_col = move_ship_row_col( row, col, d, grid_size) if not single_path_squares[move_row, move_col]: ship_scores[0][move_row, move_col] = 5e4 ship_scores[6].append(d) break best_collect_score = ship_scores[0].max() best_return_score = ship_scores[1].max() best_establish_score = ship_scores[2].max() best_attack_base_score = ship_scores[3].max() best_score = max([best_collect_score, best_return_score, best_establish_score, best_attack_base_score]) # if observation['step'] == 247 and ship_k == '52-2': # import pdb; pdb.set_trace() if best_collect_score == best_score: # 1) Gather mode target_gather = np.where(ship_scores[0] == ship_scores[0].max()) target_row = target_gather[0][0] target_col = target_gather[1][0] if target_row == row and target_col == col and my_ship_count == 1 and ( num_bases == 0 and ( ship_halite+player_obs[0]) >= 2*convert_cost) and ( convert_first_ship_on_None_action): ship_plans[ship_k] = CONVERT my_considered_bases[row, col] = True update_occupied_count( row, col, occupied_target_squares, occupied_squares_count) else: # Join the base attack in some base camping phases consider_base_attack = False if ship_k in camping_ships_strategy: base_location = camping_ships_strategy[ship_k][5] consider_base_attack = camping_ships_strategy[ship_k][4] if consider_base_attack: base_distance = DISTANCES[base_location][row, col] attack_tuple = (base_distance, ship_halite, ship_k, row, col, True) if base_location in base_attackers: base_attackers[base_location].append(attack_tuple) else: base_attackers[base_location] = [attack_tuple] ship_plans[ship_k] = (target_row, target_col, ship_scores[4], consider_base_attack, row, col, best_score) if best_collect_score > 1e5: # If there is only one path to defend the base: treat it as if # there is only one valid action: defend_dirs = get_dir_from_target( row, col, target_row, target_col, grid_size) if len(defend_dirs) == 1: move_row, move_col = move_ship_row_col( row, col, defend_dirs[0], grid_size) single_path_squares[move_row, move_col] = 1 update_occupied_count( target_row, target_col, occupied_target_squares, occupied_squares_count) elif best_return_score == best_score: # 2) Return base mode target_return = np.where(ship_scores[1] == ship_scores[1].max()) target_row = target_return[0][0] target_col = target_return[1][0] # Element 4 is whether we can ignore collisions when moving onto a base ship_plans[ship_k] = (target_row, target_col, ship_scores[4], ship_k in defend_base_ignore_collision_keys and ( not bases_protected.get( (target_row, target_col), True)), row, col, best_score) base_distance = DISTANCES[target_row, target_col][row, col] base_return_ship_keys.append(ship_k) # Mark the ship as returning to a base if not ship_k in history['returning_to_base_ships']: history['returning_to_base_ships'].append(ship_k) if not bases_protected.get((target_row, target_col), True): bases_protected[target_row, target_col] = base_distance==0 if not ship_k in all_ignore_base_collision_ship_keys: return_base_distances.append((target_row, target_col, base_distance)) elif best_establish_score == best_score: # 3) Establish base mode target_base = np.where(ship_scores[2] == ship_scores[2].max()) target_row = target_base[0][0] target_col = target_base[1][0] ship_plans[ship_k] = (target_row, target_col, ship_scores[4], False, row, col, best_score) update_occupied_count( target_row, target_col, occupied_target_squares, occupied_squares_count) else: # 4) Attack base mode # print("Attack!", observation['step'], row, col) target_base = np.where(ship_scores[3] == ship_scores[3].max()) target_row = target_base[0][0] target_col = target_base[1][0] base_distance = DISTANCES[(row, col)][target_row, target_col] attack_tuple = (base_distance, ship_halite, ship_k, row, col, False) if (target_row, target_col) in base_attackers: base_attackers[(target_row, target_col)].append(attack_tuple) else: base_attackers[(target_row, target_col)] = [attack_tuple] ship_plans[ship_k] = (target_row, target_col, ship_scores[4], True, row, col, best_score) update_occupied_count( target_row, target_col, occupied_target_squares, occupied_squares_count) deterministic_next_pos = None if target_row == row and target_col == col: deterministic_next_pos = (row, col) single_path_squares[row, col] = 1 elif len(valid_directions) == 1 and not None in valid_directions and ( target_row != row or target_col != col): # I have only one escape direction and must therefore take that path escape_square = move_ship_row_col( row, col, valid_directions[0], grid_size) deterministic_next_pos = escape_square single_path_squares[escape_square[0], escape_square[1]] = 1 elif (target_row == row) != (target_col == col): # I only have a single path to my target, so my next position, which is # deterministic, should be treated as an opponent base (don't set # plan targets behind the ship to avoid collisions with myself) move_dir = get_dir_from_target( row, col, target_row, target_col, grid_size)[0] next_square = move_ship_row_col(row, col, move_dir, grid_size) deterministic_next_pos = next_square single_path_squares[next_square[0], next_square[1]] = 1 else: # Check if higher priority ships have already selected one of my two # possible paths to the target and keep track of the domino effect of # selected optimal squares for two-path targets move_dirs = get_dir_from_target( row, col, target_row, target_col, grid_size) if len(move_dirs) == 2: square_taken = [] considered_squares = [] for square_id, d in enumerate(move_dirs): move_square = move_ship_row_col(row, col, d, grid_size) taken = single_path_squares[move_square] square_taken.append(taken) considered_squares.append(move_square) if not taken: not_taken_square = move_square if square_taken[0] != square_taken[1]: single_path_squares[not_taken_square] = 1 else: if not square_taken[0]: first_pair = (considered_squares[0], considered_squares[1]) second_pair = (considered_squares[1], considered_squares[0]) chain_conflict_resolution.append(first_pair) chain_conflict_resolution.append(second_pair) # If two ships move in opposite diagonal directions, both squares # are definitely occupied if ((first_pair, second_pair) in ship_conflict_resolution) and ( first_pair in chain_conflict_resolution) and ( second_pair in chain_conflict_resolution): deterministic_next_pos = considered_squares[0] ship_conflict_resolution.remove((first_pair, second_pair)) ship_conflict_resolution.remove((second_pair, first_pair)) else: ship_conflict_resolution.append((first_pair, second_pair)) ship_conflict_resolution.append((second_pair, first_pair)) # if observation['step'] == 55 and (row, col) in [ # (3, 4), (4, 5), (5, 4)]: # import pdb; pdb.set_trace() if deterministic_next_pos is not None: det_stack = [deterministic_next_pos] while det_stack: det_pos = det_stack.pop() single_path_squares[det_pos] = 1 chained_pos = [] del_pairs = [] for sq1, sq2 in chain_conflict_resolution: if det_pos == sq1: if not sq2 in chained_pos: chained_pos.append(sq2) del_pairs.append((sq1, sq2)) del_pairs.append((sq2, sq1)) if chained_pos: det_stack += chained_pos chain_conflict_resolution = list( set(chain_conflict_resolution)-set(del_pairs)) all_ship_scores[ship_k] = ship_scores # Update the ship scores for future ships - largely redundant but likely # not to be a performance bottleneck. # Just to be sure: don't do this when I have a risk of timing out if not history['limit_ships_timeout']: reorder_start_time = time.time() for j in range(i+1, my_ship_count): order_id = ship_order[j] ship_k_future = ship_ids[order_id] if not ship_k_future in ship_plans and not all_ship_scores[ ship_k_future][12]: future_ship_scores = all_ship_scores[ship_k_future] future_row, future_col = row_col_from_square_grid_pos( player_obs[2][ship_k_future][0], grid_size) # if observation['step'] == 122 and ship_k_future == '102-1': # import pdb; pdb.set_trace() future_ship_scores[0][occupied_target_squares] = -1e7 future_ship_scores[2][occupied_target_squares] = -1e7 future_ship_scores[3][ occupied_squares_count >= max_attackers_per_base] = -1e7 # if np.any(future_ship_scores_c[0] != future_ship_scores[0]) or np.any( # future_ship_scores_c[2] != future_ship_scores[2]) or np.any( # future_ship_scores_c[3] != future_ship_scores[3]): # import pdb; pdb.set_trace() for (r, c, d) in return_base_distances: # This coordinates return to base actions and avoids base blocking if DISTANCES[r, c][future_row, future_col] == d: future_ship_scores[1][r, c] = -1e7 updated_best_score = max([ future_ship_scores[0].max(), future_ship_scores[1].max(), future_ship_scores[2].max(), future_ship_scores[3].max()]) # Verify if the number of valid directions changed from > 1 to 1 or # from 1 to 0 and change the priority accordingly. considered_valid_directions = all_ship_valid_directions[ship_k_future] valid_considered_valid_directions = [] for d in considered_valid_directions: move_future_row, move_future_col = move_ship_row_col( future_row, future_col, d, grid_size) if not single_path_squares[move_future_row, move_future_col]: valid_considered_valid_directions.append(d) all_ship_valid_directions[ship_k_future] = ( valid_considered_valid_directions) # if (int(len( # valid_considered_valid_directions) == 1) - int(len( # considered_valid_directions) == 1)) != 0 and observation[ # 'step'] == 142: # import pdb; pdb.set_trace() # Update the priority for future ships using the updated ship scores # and the updated single valid direction counts priority_change = updated_best_score - ( best_ship_scores[ship_k_future]) + 1e12*(int(len( valid_considered_valid_directions) == 1) - int(len( considered_valid_directions) == 1)) # assert priority_change <= 0 # Only relevant for best score changes ship_priority_scores[order_id] += priority_change best_ship_scores[ship_k_future] = updated_best_score all_ship_scores[ship_k_future] = future_ship_scores # if observation['step'] == 142: # import pdb; pdb.set_trace() # Update the ship order - this works since priorities can only be lowered # and we only consider future ships when downgrading priorities # Make sure no ships get skipped by the +X hack ship_priority_scores[ship_order[:(i+1)]] += 1e30 # Max float 32: 3e38 ship_order = np.argsort(-ship_priority_scores) recompute_ship_plan_order_duration += time.time() - reorder_start_time # Override of the ship plan: if I have a ship that is returning to a base # after the first N steps, and it can safely collect on an interesting # halite square: collect rather than return. if observation['relative_step'] > config[ 'collect_on_safe_return_relative_step']: for ship_k in base_return_ship_keys: row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) base_row = ship_plans[ship_k][0] base_col = ship_plans[ship_k][1] safe_collect_ship_margin = safe_collect_margin[row, col] return_score = ship_plans[ship_k][6] this_square_collect_score = all_ship_scores[ship_k][0][row, col] distance_to_base = DISTANCES[row, col][base_row, base_col] # if observation['step'] == 393 and row == 11 and col == 7: # import pdb; pdb.set_trace() if safe_collect_ship_margin > 0 and obs_halite[row, col] > 100 and ( not occupied_target_squares[row, col]) and ( (distance_to_base == (steps_remaining-1)) or ( return_score < 1e6 and ( distance_to_base > 5-3*observation['relative_step']))) and ( this_square_collect_score < 1e5) and ( steps_remaining >= distance_to_base): # print("Forced gather", observation['step'], row, col) ship_plans[ship_k] = ( row, col, [], False, row, col, this_square_collect_score) # Drop the camping ships from the base attackers if there are no non-camper # base attacker for the targeted base del_keys = [] for target_base in base_attackers: attackers = base_attackers[target_base] has_non_camp_attacker = False for i in range(len(attackers)): if not attackers[i][5]: has_non_camp_attacker = True break if not has_non_camp_attacker: del_keys.append(target_base) for del_key in del_keys: del base_attackers[del_key] my_prev_step_base_attacker_ships = [] for target_base in base_attackers: base_attacker_keys = [attacker[2] for attacker in base_attackers[ target_base]] my_prev_step_base_attacker_ships.extend(base_attacker_keys) history['my_prev_step_base_attacker_ships'] = ( my_prev_step_base_attacker_ships) # if observation['step'] == 247: # import pdb; pdb.set_trace() # Reorder the ship plans by current location for debugging purposed ship_plans_reordered = [] all_reordered_vals = [] order_scores = [] for k in ship_plans: vals = ship_plans[k] if isinstance(vals, str): reordered_vals = vals else: reordered_vals = (vals[4], vals[5], k, vals[0], vals[1], vals[2], vals[3], int(vals[6])) all_reordered_vals.append(reordered_vals) order_scores.append(vals[4]*grid_size+vals[5]) for ordered_id in np.argsort(np.array(order_scores)): ship_plans_reordered.append(all_reordered_vals[ordered_id]) ship_plans_duration = time.time() - ship_plans_start_time inner_loop_ship_plans_duration = time.time() - inner_loop_start_time return (ship_plans, my_considered_bases, all_ship_scores, base_attackers, box_in_duration, history, ship_plans_duration, inner_loop_ship_plans_duration, recompute_ship_plan_order_duration, on_rescue_mission, ships_on_box_mission, requested_save_conversion_budget, non_abandoned_base_pos, this_step_base_defense_keys, should_spawn_base_next_step, ship_plans_reordered, victory_formation) def get_dir_from_target(row, col, target_row, target_col, grid_size): if row == target_row and col == target_col: return [None] horiz_diff = target_col-col horiz_distance = min(np.abs(horiz_diff), min(np.abs(horiz_diff-grid_size), np.abs(horiz_diff+grid_size))) vert_diff = target_row-row vert_distance = min(np.abs(vert_diff), min(np.abs(vert_diff-grid_size), np.abs(vert_diff+grid_size))) half_grid = grid_size / 2 shortest_directions = [] if horiz_distance > 0: if target_col > col: shortest_dirs = [EAST if (target_col - col) <= half_grid else WEST] else: shortest_dirs = [WEST if (col - target_col) <= half_grid else EAST] if horiz_distance == grid_size/2: shortest_dirs = [EAST, WEST] shortest_directions.extend(shortest_dirs) if vert_distance > 0: if target_row > row: shortest_dirs = [SOUTH if (target_row - row) <= half_grid else NORTH] else: shortest_dirs = [NORTH if (row - target_row) <= half_grid else SOUTH] if vert_distance == grid_size/2: shortest_dirs = [NORTH, SOUTH] shortest_directions.extend(shortest_dirs) return shortest_directions def base_can_be_defended(base_attackers, target_row, target_col, stacked_bases, stacked_ships, halite_ships): attackers = base_attackers[(target_row, target_col)] num_attackers = len(attackers) attack_distances = np.array([a[0] for a in attackers]) distance_argsort = np.argsort(attack_distances) attack_distances_sorted = np.maximum( attack_distances[distance_argsort], 1+np.arange(num_attackers)) attack_halite_sorted = np.array([ attackers[distance_argsort[i]][1] for i in range(num_attackers)]) attack_scores = np.sort(attack_distances_sorted+1e-6*attack_halite_sorted) opponent_ids = np.where(stacked_bases[:, target_row, target_col])[0] can_defend = False if opponent_ids: opponent_id = opponent_ids[0] opponent_ships = stacked_ships[opponent_id] defend_scores = 1e-6*halite_ships[opponent_ships] + np.maximum( 1, DISTANCES[(target_row, target_col)][opponent_ships]) sorted_defend_scores = np.sort(defend_scores) max_ships = min(attack_scores.size, defend_scores.size) can_defend = not np.any( attack_scores[:max_ships] < sorted_defend_scores[:max_ships]) if can_defend: # Check that the opponent can defend against a sequence of sacrifices in_sequence_near_base = attack_distances_sorted[:max_ships] == ( 1+np.arange(max_ships)) num_lined_up = (np.cumprod(in_sequence_near_base) == 1).sum() opponent_zero_halite_sorted_base_distances = np.sort(DISTANCES[ (target_row, target_col)][np.logical_and( opponent_ships, halite_ships == 0)]) can_defend = opponent_zero_halite_sorted_base_distances.size >= ( num_lined_up) and not np.any( opponent_zero_halite_sorted_base_distances[:num_lined_up] > ( 1+np.arange(num_lined_up))) return can_defend def get_opponent_blocked_escape_dir( bad_positions, opponent_ships_sensible_actions, row, col, np_rng, grid_size, observation, ship_k): escape_actions = [] for a in MOVE_DIRECTIONS: move_row, move_col = move_ship_row_col(row, col, a, grid_size) if not bad_positions[move_row, move_col]: # Check all five ways the move row, move col can be reached. If none is # in the opponent sensible actions: take that action opponent_can_attack_square = False for b in MOVE_DIRECTIONS: neighbor_row, neighbor_col = move_ship_row_col( move_row, move_col, b, grid_size) neighbor_k = (neighbor_row, neighbor_col) if neighbor_k in opponent_ships_sensible_actions: threat_opponent_rel_dir = RELATIVE_DIR_MAPPING[OPPOSITE_MAPPING[b]] if threat_opponent_rel_dir in opponent_ships_sensible_actions[ neighbor_k]: opponent_can_attack_square = True break if not opponent_can_attack_square: escape_actions.append(a) return escape_actions def map_ship_plans_to_actions( config, observation, player_obs, env_observation, env_config, verbose, all_ship_scores, before_plan_ship_scores, ship_plans, np_rng, ignore_bad_attack_directions, base_attackers, steps_remaining, opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, history, env_obs_ids, opponent_ships_scaled, main_base_distances, ignore_convert_positions, ballistic_attack_base_targets, player_influence_maps): ship_map_start_time = time.time() ship_actions = {} remaining_budget = player_obs[0] convert_cost = env_config.convertCost obs_halite = np.maximum(0, observation['halite']) # Clip obs_halite to zero when gathering it doesn't add to the score # code: delta_halite = int(cell.halite * configuration.collect_rate) obs_halite[obs_halite < 1/env_config.collectRate] = 0 grid_size = obs_halite.shape[0] my_ship_count = len(player_obs[2]) my_next_ships = np.zeros((grid_size, grid_size), dtype=np.bool) stacked_bases = np.stack( [rbs[1] for rbs in observation['rewards_bases_ships']]) my_bases = stacked_bases[0] stacked_ships = np.stack( [rbs[2] for rbs in observation['rewards_bases_ships']]) halite_ships = np.stack([ rbs[3] for rbs in observation['rewards_bases_ships']]).sum(0) halite_ships[stacked_ships.sum(0) == 0] = -1e-9 updated_ship_pos = {} my_non_zero_halite_ship_density = smooth2d(np.logical_and( stacked_ships[0], halite_ships > 0), smooth_kernel_dim=3) my_zero_halite_ship_density = smooth2d(np.logical_and( stacked_ships[0], halite_ships == 0), smooth_kernel_dim=5) player_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) for i in range(stacked_ships.shape[0]): player_ids[stacked_ships[i]] = i # When boxed in: avoid squares where lower halite opponents have their only # escape square since they will most likely move there avoid_squares_boxed_in = np.zeros_like(stacked_ships[0]) for (row, col) in opponent_ships_sensible_actions: escape_directions = opponent_ships_sensible_actions[(row, col)] if len(escape_directions) == 1: escape_dir = RELATIVE_DIR_TO_DIRECTION_MAPPING[escape_directions[0]] move_row, move_col = move_ship_row_col(row, col, escape_dir, grid_size) avoid_squares_boxed_in[move_row, move_col] = 1 # For debugging - the order in which actions are planned ordered_debug_ship_plans = [[k]+list(v) for k, v in ship_plans.items()] ordered_debug_ship_plans = ordered_debug_ship_plans # if observation['step'] == 394: # import pdb; pdb.set_trace() base_attack_override_wait = [] for target_base in base_attackers: attackers = base_attackers[target_base] # Only consider attackers that can make it onto the base in time attackers = [a for a in attackers if a[0] <= steps_remaining] num_attackers = len(attackers) attack_distances = np.array([a[0] for a in attackers]) if num_attackers > 1 and steps_remaining > 2*attack_distances.max(): # If the base can not be defended: don't bother synchronizing the attack # if observation['step'] == 349: # import pdb; pdb.set_trace() # x=1 can_defend = base_can_be_defended( base_attackers, target_base[0], target_base[1], stacked_bases, stacked_ships, halite_ships) # Synchronize the attackers try_to_wait_strategy = False if can_defend: argsort_distances = np.argsort(attack_distances) sorted_distances = attack_distances[argsort_distances] if not np.all(np.diff(sorted_distances) == 1): # Pause the attackers that are the closest to the target on squares # with no halite should_wait = np.zeros((num_attackers), dtype=np.bool) if sorted_distances[0] == sorted_distances[1]: should_wait[argsort_distances[1]] = 1 next_distance = sorted_distances[0] elif sorted_distances[0] == sorted_distances[1]-1: should_wait[argsort_distances[0]] = 1 should_wait[argsort_distances[1]] = 1 next_distance = sorted_distances[1] else: should_wait[argsort_distances[0]] = 1 next_distance = sorted_distances[1]-1 for i in range(2, num_attackers): if next_distance == sorted_distances[i]-2: # I should close the ranks and move along next_distance = sorted_distances[i]-1 else: # I should wait for other ships to catch up should_wait[argsort_distances[i]] = 1 next_distance = sorted_distances[i] # if observation['step'] == 225: # import pdb; pdb.set_trace() # Verify that all ships that should wait can wait can_all_wait = True should_wait_ids = np.where(should_wait)[0] for should_wait_id in should_wait_ids: row = attackers[should_wait_id][3] col = attackers[should_wait_id][4] # Don't wait at one of my bases or a non-zero halite square if obs_halite[row, col] > 0 or my_bases[row, col]: can_all_wait = False break if can_all_wait: for should_wait_id in should_wait_ids: ship_k = attackers[should_wait_id][2] row = attackers[should_wait_id][3] col = attackers[should_wait_id][4] ship_plans[ship_k] = (row, col, [], False, row, col, -2) if not None in all_ship_scores[ship_k][6]: # print("PERFORMING A RISKY BASE ATTACK OVERRIDE SHIP WAIT", # observation['step'], row, col) all_ship_scores[ship_k][6].append(None) else: # Consider waiting with one of the two closest attackers to make # the two closest attackers aligned try_to_wait_strategy = True else: try_to_wait_strategy = True if try_to_wait_strategy: # Maybe override the attack actions - wait on zero halite squares so # we can take the base down in one of the subsequent steps attack_distances = np.array([a[0] for a in attackers]) min_distance = attack_distances.min() consider_wait_ids = None if (attack_distances == min_distance).sum() > 1: consider_wait_ids = np.where(attack_distances == min_distance)[0] elif (attack_distances == (min_distance+1)).sum() > 1: consider_wait_ids = np.where(attack_distances == (min_distance+1))[0] if consider_wait_ids is not None: for wait_id in range(consider_wait_ids.size): consider_wait_id = consider_wait_ids[wait_id] considered_ship_k = attackers[consider_wait_id][2] considered_row = attackers[consider_wait_id][3] considered_col = attackers[consider_wait_id][4] if obs_halite[considered_row, considered_col] == 0: base_attack_override_wait.append(considered_ship_k) break # List all positions you definitely don't want to move to. Initially this # only contains opponent bases and eventually also earlier ships. opponent_bases = np.stack([rbs[1] for rbs in observation[ 'rewards_bases_ships']])[1:].sum(0) bad_positions = np.copy(opponent_bases) # Add current likely converted bases to the bad positions for (ignore_convert_row, ignore_convert_col) in ignore_convert_positions: bad_positions[ignore_convert_row, ignore_convert_col] = 1 # Order the ship plans based on the available valid direction count. Break # ties using the original order. # move_valid_actions = OrderedDict() shortest_path_count = {} ship_priority_scores = np.zeros(my_ship_count) ship_key_plans = list(ship_plans) for i, ship_k in enumerate(ship_key_plans): row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) valid_actions = [] if not isinstance(ship_plans[ship_k], str): (target_row, target_col, preferred_directions, ignore_base_collision, _, _, _) = ship_plans[ship_k] shortest_actions = get_dir_from_target(row, col, target_row, target_col, grid_size) # Filter out bad positions from the shortest actions for a in shortest_actions: move_row, move_col = move_ship_row_col(row, col, a, grid_size) if not bad_positions[move_row, move_col] or ( ignore_base_collision and ( move_row == target_row and move_col == target_col)) or ( not opponent_bases[move_row, move_col] and all_ship_scores[ ship_k][12]): valid_actions.append(a) for a in valid_actions: move_row, move_col = move_ship_row_col(row, col, a, grid_size) path_lookup_k = (move_row, move_col) square_weight = 1 if len(valid_actions) > 1 else 1.1 if path_lookup_k in shortest_path_count: shortest_path_count[path_lookup_k] += square_weight else: shortest_path_count[path_lookup_k] = square_weight # move_valid_actions[ship_k] = valid_actions # num_non_immediate_bad_directions = len(set( # all_ship_scores[ship_k][6] + all_ship_scores[ship_k][8])) # Just keep the order from the planning - this is cleaner and works better! ship_priority_scores[i] = -i # ship_priority_scores[i] = -1e6*num_non_immediate_bad_directions -1e3*len( # valid_actions) + 1e4*len(all_ship_scores[ship_k][8]) - 1e5*len( # before_plan_ship_scores[ship_k][9]) - i + 1e7*( # all_ship_scores[ship_k][11]) ship_order = np.argsort(-ship_priority_scores) ordered_ship_plans = [ship_key_plans[o] for o in ship_order] # Keep track of all my ship positions and rearrange the action planning when # one of my ships only has one remaining option that does not self destruct. ship_non_self_destructive_actions = {} for ship_k in ordered_ship_plans: ship_non_self_destructive_actions[ship_k] = copy.copy(MOVE_DIRECTIONS) num_ships = len(ordered_ship_plans) action_overrides = np.zeros((7)) camping_ships_strategy = history['camping_ships_strategy'] for i in range(num_ships): ship_k = ordered_ship_plans[i] row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) has_selected_action = False if isinstance(ship_plans[ship_k], str): if ship_plans[ship_k] == CONVERT and ( halite_ships[row, col] < convert_cost/config[ 'boxed_in_halite_convert_divisor']) and ( halite_ships[row, col] > 0) and my_ship_count > 1 and ( all_ship_scores[ship_k][2][row, col] < 1e6): # Override the convert logic - it's better to lose some ships than to # convert too often (good candidate for stateful logic) # We enter this path when the only remaining base is reconstructed # (rare!) if not all_ship_scores[ship_k][6]: target_row = np.mod(row + np_rng.choice([-1, 1]), grid_size) target_col = np.mod(col + np_rng.choice([-1, 1]), grid_size) else: target_row = np.mod(row + np_rng.choice([-1, 1]), grid_size) target_col = np.mod(col + np_rng.choice([-1, 1]), grid_size) shortest_actions = get_dir_from_target( row, col, target_row, target_col, grid_size) # Filter out bad positions from the shortest actions for a in shortest_actions: move_row, move_col = move_ship_row_col(row, col, a, grid_size) if not bad_positions[move_row, move_col] or (not opponent_bases[ move_row, move_col] and all_ship_scores[ship_k][12]): path_lookup_k = (move_row, move_col) if not path_lookup_k in shortest_path_count: shortest_path_count[path_lookup_k] = 0 ship_plans[ship_k] = (target_row, target_col, [], False, row, col, -3) else: ship_actions[ship_k] = ship_plans[ship_k] obs_halite[row, col] = 0 remaining_budget -= convert_cost has_selected_action = True del ship_non_self_destructive_actions[ship_k] # if observation['step'] == 78 and ship_k in ['30-2', '35-2']: # import pdb; pdb.set_trace() if not has_selected_action: (target_row, target_col, preferred_directions, ignore_base_collision, _, _, _) = ship_plans[ship_k] # Override the target row and column if this ship is an aggressive base # camper and the base can not be defended if ship_k in camping_ships_strategy: base_location = camping_ships_strategy[ship_k][5] consider_base_attack = camping_ships_strategy[ship_k][4] if consider_base_attack and ( base_location[0], base_location[1]) in base_attackers: base_distance = DISTANCES[base_location][row, col] can_defend = base_can_be_defended( base_attackers, base_location[0], base_location[1], stacked_bases, stacked_ships, halite_ships) if base_distance == 1 and not can_defend: target_row = base_location[0] target_col = base_location[1] shortest_path_count[base_location] = 1.0 shortest_actions = get_dir_from_target(row, col, target_row, target_col, grid_size) if ship_k in base_attack_override_wait: shortest_actions = [None] path_lookup_k = (row, col) if not path_lookup_k in shortest_path_count: shortest_path_count[path_lookup_k] = 1.0 ignore_bad_attack_directions_this_ship = ignore_bad_attack_directions if ignore_base_collision and not ignore_bad_attack_directions and ( (target_row, target_col) in base_attackers): can_defend = base_can_be_defended( base_attackers, target_row, target_col, stacked_bases, stacked_ships, halite_ships) if can_defend: ignore_base_collision = False else: ignore_bad_attack_directions_this_ship = True # You shall have no fear in ballistic mode if (target_row, target_col) in ballistic_attack_base_targets: ignore_bad_attack_directions_this_ship = True ignore_base_collision = True # if observation['step'] == 106 and row == 20 and col == 7: # import pdb; pdb.set_trace() # Remove own ships from the shortest action bad positions when the ships # are returning to the base at the end of the game for a in shortest_actions: move_row, move_col = move_ship_row_col(row, col, a, grid_size) if bad_positions[move_row, move_col] and not opponent_bases[ move_row, move_col] and all_ship_scores[ship_k][12]: bad_positions[move_row, move_col] = False # Filter out bad positions from the shortest actions valid_actions = [] valid_move_positions = [] for a in shortest_actions: move_row, move_col = move_ship_row_col(row, col, a, grid_size) if (not bad_positions[move_row, move_col] and ( a in all_ship_scores[ship_k][6])) or (ignore_base_collision and (( move_row == target_row and move_col == target_col) or ( ignore_bad_attack_directions_this_ship and not bad_positions[ move_row, move_col])) and not my_next_ships[ move_row, move_col]) or ( all_ship_scores[ship_k][12] and steps_remaining == 1): valid_actions.append(a) valid_move_positions.append((move_row, move_col)) path_lookup_k = (move_row, move_col) if not path_lookup_k in shortest_path_count: # import pdb; pdb.set_trace() print("Path key lookup fail step", observation['step'], row, col, ship_k, i, move_row, move_col) shortest_path_count[path_lookup_k] = 1 if valid_actions: # Prefer actions that conflict with the lowest number of optimal # ship trajectories if len(valid_actions) > 1: shortest_path_counts = np.array([ shortest_path_count[k] for k in valid_move_positions]) shortest_path_ids = np.where( shortest_path_counts == shortest_path_counts.min())[0].tolist() valid_actions = [a for i, a in enumerate(valid_actions) if ( i in shortest_path_ids)] # Don't take an action that blocks my path to the target with an # opponent base if len(valid_actions) > 1: row_distance = DISTANCES[row, 0][target_row, 0] col_distance = DISTANCES[0, col][0, target_col] single_path_square = None if row_distance == 1 and col_distance > 1: single_path_square = (target_row, col) single_path_dir = NORTH if NORTH in valid_actions else SOUTH elif col_distance == 1 and row_distance > 1: single_path_square = (row, target_col) single_path_dir = EAST if EAST in valid_actions else WEST if single_path_square is not None: should_avoid = np.any(opponent_bases[get_mask_between_exclude_ends( single_path_square[0], single_path_square[1], target_row, target_col, grid_size)]) if should_avoid and single_path_dir in valid_actions: valid_actions.remove(single_path_dir) # Take a preferred action when it is among the shortest path options if len(valid_actions) > 1 and preferred_directions: intersect_directions = list(set(valid_actions) & set( preferred_directions)) if intersect_directions: valid_actions = intersect_directions # Prefer a non invalid one step action when defending the base if len(valid_actions) > 1: intersect_directions = list(set(valid_actions) & set( before_plan_ship_scores[ship_k][9])) if intersect_directions: valid_actions = intersect_directions # Move onto one of my friendly bases if I have halite on board and it # is one of the available options if len(valid_actions) > 1 and halite_ships[row, col] > 0: move_onto_base_action = None for a in valid_actions: move_row, move_col = move_ship_row_col(row, col, a, grid_size) if my_bases[move_row, move_col]: move_onto_base_action = a break if move_onto_base_action is not None: valid_actions = [move_onto_base_action] # When all actions are equally valid, move to a square with lower non # zero halite ship density in order to avoid double box-ins. # Only do this for non zero halite ships if len(valid_actions) > 1 and halite_ships[row, col] > 0: considered_densities = np.zeros(len(valid_actions)) for a_id, a in enumerate(valid_actions): move_row, move_col = move_ship_row_col(row, col, a, grid_size) considered_densities[a_id] = my_non_zero_halite_ship_density[ move_row, move_col] min_density = considered_densities.min() valid_actions = [a for (a_id, a) in enumerate(valid_actions) if ( considered_densities[a_id] == min_density)] if len(valid_actions) > 1 and halite_ships[row, col] > 0: # When all actions are equally valid: prefer a square where I have # more influence considered_influences = np.zeros(len(valid_actions)) for a_id, a in enumerate(valid_actions): move_row, move_col = move_ship_row_col(row, col, a, grid_size) considered_influences[a_id] = player_influence_maps[ 0, move_row, move_col] - player_influence_maps[ 1:, move_row, move_col].sum() max_influence = considered_influences.max() valid_actions = [a for (a_id, a) in enumerate(valid_actions) if ( considered_influences[a_id] == max_influence)] if len(valid_actions) > 1: # Do this in order to obtain reproducible results - the set intersect # logic is flaky. valid_actions.sort() action = str(np_rng.choice(valid_actions)) action = None if action == 'None' else action else: # I can not move to my target using a shortest path action # Alternative: consider all valid, not bad actions # import pdb; pdb.set_trace() action_overrides[0] += 1 valid_not_bad_actions = [] for a in np_rng.permutation(MOVE_DIRECTIONS): if a in all_ship_scores[ship_k][6]: move_row, move_col = move_ship_row_col(row, col, a, grid_size) if not bad_positions[move_row, move_col]: valid_not_bad_actions.append(a) # if valid_not_bad_actions: # import pdb; pdb.set_trace() # Pick a direction where my opponent should not go to since I can # attack that square with one of my less halite ships if not valid_not_bad_actions: action_overrides[1] += 1 self_escape_actions = get_opponent_blocked_escape_dir( bad_positions, opponent_ships_sensible_actions, row, col, np_rng, grid_size, observation, ship_k) if len(self_escape_actions) == 0: # Consider non risky opponent actions to plan my escape self_escape_actions = get_opponent_blocked_escape_dir( bad_positions, opponent_ships_sensible_actions_no_risk, row, col, np_rng, grid_size, observation, ship_k) if self_escape_actions: if halite_ships[row, col] == 0 and len( self_escape_actions) > 1 and None in self_escape_actions and ( obs_halite[row, col] > 0) and ( main_base_distances[row, col] < 0 or main_base_distances[ row, col] > 2): # Filter out the stay still action for zero halite ships on a non # zero halite square if that leaves us with options self_escape_actions.remove(None) if before_plan_ship_scores[ship_k][9]: # Filter out 1-step bad actions if that leaves us with options self_escape_actions_not_1_step_bad = list( set(self_escape_actions) & set( before_plan_ship_scores[ship_k][9])) if self_escape_actions_not_1_step_bad: self_escape_actions = self_escape_actions_not_1_step_bad if all_ship_scores[ship_k][7]: # Filter out 2-step bad actions if that leaves us with options self_escape_actions_not_2_step_bad = list( set(self_escape_actions) - set(all_ship_scores[ship_k][7])) if self_escape_actions_not_2_step_bad: self_escape_actions = self_escape_actions_not_2_step_bad # Filter out n-step bad actions if that leaves us with options if all_ship_scores[ship_k][8]: self_escape_actions_not_n_step_bad = list( set(self_escape_actions) - set(all_ship_scores[ship_k][8])) if self_escape_actions_not_n_step_bad: self_escape_actions = self_escape_actions_not_n_step_bad # Select the shortest actions if that leaves us with options (that # way we stick to the ship plan) if bool(self_escape_actions) and bool(shortest_actions): intersect_directions = list(set(self_escape_actions) & set( shortest_actions)) if intersect_directions: self_escape_actions = intersect_directions # Pick the least bad of the n-step bad directions if that is all we # are choosing from if len(all_ship_scores[ship_k][8]) > 1 and len( self_escape_actions) > 1: if np.all( [a in all_ship_scores[ship_k][8] for a in ( self_escape_actions)]): missing_keys = [a for a in (self_escape_actions) if not a in ( all_ship_scores[ship_k][14])] if len(missing_keys) > 0: print("MISSING N-STEP BAD KEYS:", observation['step'], row, col, missing_keys) die_probs = np.array([all_ship_scores[ship_k][14].get( a, 0) for a in self_escape_actions]) self_escape_actions = [ self_escape_actions[np.argmin(die_probs)]] valid_not_bad_actions = self_escape_actions # There is no valid direction available; consider n step bad actions # This check is most probably obsolete since it would appear in # self_escape_actions if not valid_not_bad_actions: action_overrides[2] += 1 for a in np_rng.permutation(MOVE_DIRECTIONS): if a in all_ship_scores[ship_k][8]: move_row, move_col = move_ship_row_col(row, col, a, grid_size) if not bad_positions[move_row, move_col]: valid_not_bad_actions.append(a) # There is still no valid direction available; consider 2 step bad # actions # This check is most probably obsolete since it would appear in # self_escape_actions if not valid_not_bad_actions: action_overrides[3] += 1 for a in np_rng.permutation(MOVE_DIRECTIONS): if a in all_ship_scores[ship_k][7]: move_row, move_col = move_ship_row_col(row, col, a, grid_size) if not bad_positions[move_row, move_col]: valid_not_bad_actions.append(a) # When attacking a base it is better to keep moving or stay still on # a square that has no halite - otherwise it becomes a target for # stealing halite. # if observation['step'] == 258: # import pdb; pdb.set_trace() if valid_not_bad_actions and ignore_base_collision and obs_halite[ row, col] > 0: if len(valid_not_bad_actions) > 1 and None in valid_not_bad_actions: valid_not_bad_actions.remove(None) if valid_not_bad_actions: if len(valid_not_bad_actions) > 1: # Do this in order to obtain reproducible results - the set # intersect logic is flaky. valid_not_bad_actions = [str(a) for a in valid_not_bad_actions] valid_not_bad_actions.sort() valid_not_bad_actions = [ a if a != "None" else None for a in valid_not_bad_actions] action = np_rng.choice(valid_not_bad_actions) else: action_overrides[4] += 1 # By default: pick a random, not bad moving action found_non_bad = False # When being chased: consider replacing the postion of the chaser if ship_k in history['chase_counter'][0]: chase_details = history['chase_counter'][0][ship_k] # If the opponent can move towards me and has no other ships that # can take the position of the chaser: take the place of the chaser chaser_row = chase_details[4] chaser_col = chase_details[5] num_opp_chase_step_counter = chase_details[1] if num_opp_chase_step_counter > 2: to_opponent_dir = get_dir_from_target( row, col, chaser_row, chaser_col, grid_size)[0] opp_to_me_dir = OPPOSITE_MAPPING[to_opponent_dir] rel_opp_to_me_dir = RELATIVE_DIR_MAPPING[opp_to_me_dir] opp_can_move_to_me = rel_opp_to_me_dir in ( opponent_ships_sensible_actions_no_risk[ chaser_row, chaser_col]) # There is a unique opponent id with the least amount of halite # on the chaser square or the chaser has at least one friendly # ship that can replace it chaser_id = player_ids[chaser_row, chaser_col] near_chaser = ROW_COL_MAX_DISTANCE_MASKS[ chaser_row, chaser_col, 1] near_halite = halite_ships[near_chaser] near_chaser_friendly_halite = near_halite[ (near_halite >= 0) & (player_ids[near_chaser] == chaser_id)] min_non_chaser_halite = near_halite[ (near_halite >= 0) & ( player_ids[near_chaser] != chaser_id)].min() min_near_chaser_halite = near_halite[near_halite >= 0].min() opponent_min_hal_ids = player_ids[np.logical_and( near_chaser, halite_ships == min_near_chaser_halite)] near_me = ROW_COL_MAX_DISTANCE_MASKS[row, col, 1] near_me_threat_players = player_ids[np.logical_and( near_me, (halite_ships >= 0) & ( halite_ships < halite_ships[row, col]))] double_opp_chase = (near_me_threat_players.size > 1) and ( np.all(near_me_threat_players == chaser_id)) chaser_can_replace = ((opponent_min_hal_ids.size > 1) and ( np.all(opponent_min_hal_ids == chaser_id) or ( (opponent_min_hal_ids == chaser_id).sum() > 1)) or ( (near_chaser_friendly_halite <= ( min_non_chaser_halite)).sum() > 1)) or double_opp_chase chaser_players_index = env_obs_ids[chaser_id] chaser_k = [k for k, v in env_observation.players[ chaser_players_index][2].items() if v[0] == ( chaser_row*grid_size + chaser_col)][0] chaser_is_chased = chaser_k in history[ 'chase_counter'][chaser_id] chaser_is_chased_by_not_me = chaser_is_chased if chaser_is_chased: chaser_chaser = history['chase_counter'][chaser_id][chaser_k] chaser_is_chased_by_not_me = (chaser_chaser[4] is None) or ( player_ids[chaser_chaser[4], chaser_chaser[5]] != 0) # if observation['step'] == 179: # import pdb; pdb.set_trace() if opp_can_move_to_me and not chaser_can_replace and not ( chaser_is_chased_by_not_me): # Move to the position of the chaser action = str(to_opponent_dir) found_non_bad = True # if observation['step'] == 161: # import pdb; pdb.set_trace() if not found_non_bad: action_scores = np.zeros(4) for a_id, a in enumerate(NOT_NONE_DIRECTIONS): move_row, move_col = move_ship_row_col(row, col, a, grid_size) # There is always only a single opponent that can safely attack # my move_square. First determine the opponent and count the # number of potential attack ships potential_threat_ships = [] for d_move in MOVE_DIRECTIONS: other_row, other_col = move_ship_row_col( move_row, move_col, d_move, grid_size) other_player = player_ids[other_row, other_col] if other_player > 0: potential_threat_ships.append( (other_player, halite_ships[other_row, other_col])) other_ships = np.array(potential_threat_ships) if len(other_ships) == 0: opponent_threat_count = 0 opponent_id_penalty = 0 # I have already taken the square if my_next_ships[move_row, move_col]: attack_base_bonus = 0 else: # This is an opponent base - add an attack base bonus if # it can not be defended attack_base_bonus = 0 print("BOXED IN NEXT TO AN OPPONENT BASE!") assert opponent_bases[move_row, move_col] opponent_base_id = np.where( stacked_bases[:, move_row, move_col])[0][0] opponent_id_bonus = opponent_ships_scaled[ opponent_base_id-1] base_distance_my_main_base = main_base_distances[ move_row, move_col] # import pdb; pdb.set_trace() opponent_can_move_to_base = False for base_dir in MOVE_DIRECTIONS: base_defend_row, base_defend_col = move_ship_row_col( move_row, move_col, base_dir, grid_size) if stacked_ships[ opponent_base_id, base_defend_row, base_defend_col]: defend_dir = RELATIVE_DIR_MAPPING[ OPPOSITE_MAPPING[base_dir]] print("OPPONENT NEXT TO BASE!") if defend_dir in opponent_ships_sensible_actions[ base_defend_row, base_defend_col]: print("OPPONENT CAN MOVE TO BASE!") opponent_can_move_to_base = True break if not opponent_can_move_to_base: attack_base_bonus = 1e6*int( base_distance_my_main_base <= 5 or ( opponent_id_bonus > 0)) + (20*opponent_id_bonus-5) + ( max(0, 6-base_distance_my_main_base)) else: attack_base_bonus = 0 min_halite_player = int( other_ships[np.argmin(other_ships[:, 1]), 0]) if np.all(other_ships[:, 0] == min_halite_player): min_other_halite = 1e10 else: min_other_halite = other_ships[other_ships[:, 0] != ( min_halite_player), 1].min() my_move_neighbor_halite_mask = stacked_ships[0] & ( ROW_COL_DISTANCE_MASKS[move_row, move_col, 1]) min_other_halite = min(min_other_halite, halite_ships[ my_move_neighbor_halite_mask].min()) opponent_threat_count = (other_ships[ other_ships[:, 0] == min_halite_player, 1] < ( min_other_halite)).sum() opponent_id_penalty = opponent_ships_scaled[ min_halite_player-1] # import pdb; pdb.set_trace() action_scores[a_id] = -1e6*bad_positions[ move_row, move_col] - main_base_distances[ move_row, move_col] - 3*opponent_threat_count -2*( opponent_id_penalty*halite_ships[row, col]/250) + ( attack_base_bonus) - 0.5*all_ship_scores[ship_k][15][ move_row, move_col] - 0.5*( my_non_zero_halite_ship_density[ move_row, move_col]) + my_zero_halite_ship_density[ move_row, move_col] -1e2*( avoid_squares_boxed_in[move_row, move_col]) best_action_score = action_scores.max() if best_action_score > -1e5: best_ids = np.where(action_scores == best_action_score)[0] select_id = np_rng.choice(best_ids) action = str(NOT_NONE_DIRECTIONS[select_id]) found_non_bad = True # If all actions are bad: do nothing - this is very rare since it # would mean being surrounded by my other ships and opponent bases if not found_non_bad: action_overrides[5] += 1 action = None # Update my_next_ships new_row, new_col = move_ship_row_col(row, col, action, grid_size) my_next_ships[new_row, new_col] = 1 bad_positions[new_row, new_col] = 1 updated_ship_pos[ship_k] = (new_row, new_col) if action is not None: ship_actions[ship_k] = action # Update the shortest path counts for the remaining ships shortest_path_count = {} for future_ship_k in ordered_ship_plans[(i+1):]: row, col = row_col_from_square_grid_pos( player_obs[2][future_ship_k][0], grid_size) # if observation['step'] == 390 and row == 0 and col == 8 and i == 5: # import pdb; pdb.set_trace() if not isinstance(ship_plans[future_ship_k], str): (target_row, target_col, _, ignore_base_collision, _, _, _) = ship_plans[future_ship_k] shortest_actions = get_dir_from_target( row, col, target_row, target_col, grid_size) # Filter out bad positions from the shortest actions valid_actions = [] for a in shortest_actions: move_row, move_col = move_ship_row_col(row, col, a, grid_size) if not bad_positions[move_row, move_col] or ( ignore_base_collision and ( move_row == target_row and move_col == target_col)) or ( not opponent_bases[move_row, move_col] and all_ship_scores[ future_ship_k][12]): valid_actions.append(a) for a in valid_actions: move_row, move_col = move_ship_row_col(row, col, a, grid_size) path_lookup_k = (move_row, move_col) square_weight = 1 if len(valid_actions) > 1 else 1.1 if path_lookup_k in shortest_path_count: shortest_path_count[path_lookup_k] += square_weight else: shortest_path_count[path_lookup_k] = square_weight # Update the non self destructive actions for ships where no action is # planned yet del ship_non_self_destructive_actions[ship_k] rearrange_self_destruct_ships = [] if not all_ship_scores[ship_k][12]: for j in range(i+1, num_ships): other_ship_k = ordered_ship_plans[j] if ship_plans[other_ship_k] != CONVERT: other_row = ship_plans[other_ship_k][4] other_col = ship_plans[other_ship_k][5] # If I move to a distance of <= 1 of the other ship: update valid # non self destruct actions # Exception: end of episode base return distance = DISTANCES[new_row, new_col][other_row, other_col] if distance <= 1: remove_dir = get_dir_from_target( other_row, other_col, new_row, new_col, grid_size)[0] if remove_dir in ship_non_self_destructive_actions[other_ship_k]: ship_non_self_destructive_actions[other_ship_k].remove( remove_dir) if len(ship_non_self_destructive_actions[other_ship_k]) == 1: rearrange_self_destruct_ships.append(other_ship_k) # Place ships that only have a single non self destruct action to the # front of the queue. if rearrange_self_destruct_ships: remaining_ships = [s for s in ordered_ship_plans[(i+1):] if ( s not in rearrange_self_destruct_ships)] ordered_ship_plans = ordered_ship_plans[:(i+1)] + ( rearrange_self_destruct_ships) + remaining_ships map_duration = time.time() - ship_map_start_time return (ship_actions, remaining_budget, my_next_ships, obs_halite, updated_ship_pos, -np.diff(action_overrides), map_duration) def decide_existing_base_spawns( config, observation, player_obs, my_next_bases, my_next_ships, obs_halite, env_config, remaining_budget, verbose, ship_plans, updated_ship_pos, weighted_base_mask, history, requested_save_conversion_budget, victory_formation): spawn_cost = env_config.spawnCost convert_cost = env_config.convertCost my_ship_count = my_next_ships.sum() # Start saving for an alternative base when my base is spammed by opponents # print(observation['step'], history['my_base_flooded_counter']) if history['my_base_flooded_counter']: min_flood_counter = np.array( list(history['my_base_flooded_counter'].values())).min() save_base_flood_fraction = min(1, (min_flood_counter/5))**0.5 save_restore_budget = save_base_flood_fraction*convert_cost else: save_restore_budget = 0 max_spawns = int((remaining_budget-save_restore_budget-( requested_save_conversion_budget))/spawn_cost) relative_step = observation['relative_step'] max_allowed_ships = config['max_initial_ships'] - relative_step*( config['max_initial_ships'] - config['max_final_ships']) # print(observation['step'], max_allowed_ships, my_ship_count) if history['limit_ships_timeout']: # In order to avoid weird timeouts max_allowed_ships -= 15 total_ship_count = np.stack([ rbs[2] for rbs in observation['rewards_bases_ships']]).sum() max_spawns = min(max_spawns, int(max_allowed_ships - my_ship_count)) # if observation['step'] == 60: # import pdb; pdb.set_trace() # Restrict the number of spawns if there is little halite remaining on the # map when I am not winning or the game is almost over current_scores = history['current_scores'] current_halite_sum = history['current_halite_sum'] not_winning = (current_scores[0] < current_scores.max()) or ( current_halite_sum[0] < (current_halite_sum[1:].max()+(3-10*( 0.8-max(0.8, observation['relative_step'])))*spawn_cost)) halite_sum_spawn_advantage = (current_halite_sum[0] - ( current_halite_sum[1:].max()))/spawn_cost massively_ahead_in_halite = halite_sum_spawn_advantage > 8 game_almost_over = observation['relative_step'] >= 0.8 steps_remaining = env_config.episodeSteps-1-observation['step'] if not_winning or (game_almost_over and not massively_ahead_in_halite): max_spawns = min(max_spawns, int( min(3000, (obs_halite.sum())**0.8)/min( total_ship_count+1e-9, (my_ship_count+1e-9)*2)/spawn_cost*( 1-relative_step)*(env_config.episodeSteps-2)/config[ 'max_spawn_relative_step_divisor'])) elif game_almost_over and massively_ahead_in_halite and ( steps_remaining >= 20 or not victory_formation): max_spawns = min(max_spawns, int(halite_sum_spawn_advantage-8)) last_episode_turn = observation['relative_step'] == 1 # if observation['step'] == 176: # import pdb; pdb.set_trace() if max_spawns <= 0 or not player_obs[1] or last_episode_turn: return {}, remaining_budget num_bases = len(player_obs[1]) spawn_scores = np.zeros(num_bases) grid_size = obs_halite.shape[0] smoothed_friendly_ship_halite = smooth2d( observation['rewards_bases_ships'][0][3]) smoothed_halite = smooth2d(obs_halite) for i, base_k in enumerate(player_obs[1]): row, col = row_col_from_square_grid_pos(player_obs[1][base_k], grid_size) # # Don't spawn if it is not the main base - OBSOLETE # spawn_scores[i] -= 1e12*int(weighted_base_mask[row, col] < 1) # Don't spawn when there will be a ship at the base spawn_scores[i] -= 1e12*my_next_ships[row, col] # Don't spawn when there is a returning ship that wants to enter the base # in two steps # Exception: if the base is not too crowded, it is ok to spawn in this # scenario. near_base_ship_count = np.logical_and( my_next_ships, ROW_COL_MAX_DISTANCE_MASKS[(row, col, 3)]).sum() if near_base_ship_count >= config['no_spawn_near_base_ship_limit']: for k in ship_plans: if ship_plans[k][0] == row and ship_plans[k][1] == col: updated_distance = DISTANCES[row, col][updated_ship_pos[k]] if updated_distance == 1: spawn_scores[i] -= 1e6 break # Spawn when the base is instructed to do so in the previous step (newly) # created if history['prev_step']['should_spawn_base_next_step'] == (row, col): # import pdb; pdb.set_trace() print(observation['step'], "NEW BASE SPAWN", (row, col)) spawn_scores[i] += 1e6 # Spawn less when the base is crowded with ships with a lot of halite spawn_scores[i] -= smoothed_friendly_ship_halite[row, col]*( config['nearby_ship_halite_spawn_constant']) # Spawn more when there is a lot of nearby halite spawn_scores[i] += smoothed_halite[row, col]*( config['nearby_halite_spawn_constant']) # Spawn more when there is a lot of remaining budget available spawn_scores[i] += remaining_budget*( config['remaining_budget_spawn_constant']) if verbose: print(smoothed_friendly_ship_halite[row, col]*( config['nearby_ship_halite_spawn_constant']), smoothed_halite[row, col]*( config['nearby_halite_spawn_constant']), remaining_budget*(config['remaining_budget_spawn_constant']), ) if verbose: print("Spawn scores and threshold: {}; {}".format( spawn_scores, config['spawn_score_threshold'])) # Convert the ships with the top conversion scores that stay within the # max conversion limits num_above_threshold = (spawn_scores > config['spawn_score_threshold']).sum() spawn_ids = np.argsort(-spawn_scores)[:min( num_above_threshold, max_spawns)] mapped_actions = {} for i, base_k in enumerate(player_obs[1]): if np.isin(i, spawn_ids): mapped_actions[base_k] = SPAWN remaining_budget -= spawn_cost return mapped_actions, remaining_budget def get_env_obs_ids(env_observation): num_players = len(env_observation.players) my_id = env_observation.player env_obs_ids = [i for i in range(num_players)] env_obs_ids.remove(my_id) env_obs_ids = [my_id] + env_obs_ids return env_obs_ids def update_chase_counter(history, observation, env_observation, stacked_ships, other_halite_ships, player_ids, env_obs_ids): grid_size = stacked_ships.shape[1] num_players = stacked_ships.shape[0] if observation['step'] == 0: history['chase_counter'] = [{} for _ in range(num_players)] history['escort_to_base_list'] = [] else: for player_id in range(num_players): # Remove converted or destroyed ships from the chase counter player_obs = env_observation.players[env_obs_ids[player_id]] delete_keys = [] for ship_k in history['chase_counter'][player_id]: if not ship_k in player_obs[2]: # if player_id > 0 or (not history['prev_step']['my_ship_actions'][ # ship_k] == CONVERT): # # import pdb; pdb.set_trace() # print("Destroyed ship player", player_id, "step", # observation['step'], # history['chase_counter'][player_id][ship_k]) delete_keys.append(ship_k) for del_k in delete_keys: del history['chase_counter'][player_id][del_k] # Increment the chase counter of ships that are 1 step away from a less # halite ship, delete the counter for other ships for ship_k in player_obs[2]: row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_halite = player_obs[2][ship_k][1] step_1_mask = ROW_COL_DISTANCE_MASKS[row, col, 1] threats = ship_halite > other_halite_ships[step_1_mask] direct_threat = np.any(threats) # if observation['step'] == 88 and row == 11 and col == 8: # import pdb; pdb.set_trace() if direct_threat: chaser_ids = player_ids[step_1_mask][threats] if (player_id == 0 and ( history['prev_step']['my_ship_actions'][ship_k] is None)) or ( not ship_k in history['chase_counter'][player_id]): history['chase_counter'][player_id][ship_k] = ( chaser_ids, 1, row, col, None, None) else: prev_chasers, prev_count, prev_row, prev_col, _, _ = history[ 'chase_counter'][player_id][ship_k] prev_pos_opponent = player_ids[prev_row, prev_col] if ship_halite > other_halite_ships[prev_row, prev_col] and ( prev_pos_opponent > 0) and prev_pos_opponent in prev_chasers: # if player_id == 0 and prev_count > 20: # import pdb; pdb.set_trace() # print(prev_count, observation['step'], row, col) history['chase_counter'][player_id][ship_k] = ( np.array([prev_pos_opponent]), prev_count+1, row, col, prev_row, prev_col) else: history['chase_counter'][player_id][ship_k] = ( chaser_ids, 1, row, col, None, None) else: if ship_k in history['chase_counter'][player_id]: del history['chase_counter'][player_id][ship_k] return history def list_of_combs(arr): """returns a list of all subsets of a list""" combs = [] for i in range(len(arr)): listing = [list(x) for x in itertools.combinations(arr, i+1)] combs.extend(listing) return combs def infer_player_conversions(player_obs, prev_player_obs, env_config, observation, env_obs_id): # By considering the score change, the gather behavior and the number of # spawns, the number of conversions can be aproximately inferred (not exact # because of base attacks) convert_cost = env_config.convertCost score_change = prev_player_obs[0] - player_obs[0] # Consider new, disappeared and remaining ships current_ships = set(player_obs[2].keys()) prev_ships = set(prev_player_obs[2].keys()) disappeared_ships = list(prev_ships - current_ships) new_ships = list(current_ships-prev_ships) new_ship_count = len(new_ships) spent_spawns = new_ship_count*env_config.spawnCost not_destroyed_ships = set(current_ships & prev_ships) # Consider new bases current_bases = set(player_obs[1].keys()) current_base_pos = [player_obs[1][b] for b in current_bases] prev_bases = set(prev_player_obs[1].keys()) new_bases = set(current_bases-prev_bases) spent_new_bases = len(new_bases)*convert_cost deposited = 0 for k in not_destroyed_ships: if player_obs[2][k][0] in current_base_pos: deposited += prev_player_obs[2][k][1] prev_pos_to_k = {v[0]: k for k, v in prev_player_obs[2].items()} converted_ships = [prev_pos_to_k[player_obs[1][b]] for b in new_bases] for k in converted_ships: deposited += prev_player_obs[2][k][1] unexplained_score_change = ( score_change-spent_spawns-spent_new_bases+deposited) if unexplained_score_change != 0: unexplained_ship_scores = [convert_cost-prev_player_obs[2][k][1] for k in ( disappeared_ships)] num_disappeared = len(disappeared_ships) if num_disappeared < 7: # This is to avoid spending too much time in a crazy conversion scenario combination_found = False for comb in list_of_combs(np.arange(num_disappeared)): unexplained_sum = np.array( [unexplained_ship_scores[c_id] for c_id in comb]).sum() if unexplained_sum == unexplained_score_change: converted_ships.extend([disappeared_ships[c_id] for c_id in comb]) combination_found = True break # One scenario where no combination can be found is when one of the ships # self-collides when returning to a base # if not combination_found: # print("No convert resolution combination found", observation['step'], # env_obs_id) combination_found = combination_found return converted_ships def update_box_in_counter(history, observation, env_observation, stacked_ships, env_obs_ids, env_config): grid_size = stacked_ships.shape[1] num_players = stacked_ships.shape[0] convert_cost = env_config.convertCost if observation['step'] in [0, env_config.episodeSteps-2]: history['raw_box_data'] = [[] for _ in range(num_players)] history['inferred_boxed_in_conv_threshold'] = [[ convert_cost/2, convert_cost] for _ in range(num_players)] else: prev_opponent_sensible_actions = history['prev_step'][ 'opponent_ships_sensible_actions'] for player_id in range(1, num_players): # Consider all boxed in ships and infer the action that each player took env_obs_id = env_obs_ids[player_id] player_obs = env_observation.players[env_obs_id] prev_player_obs = history['prev_step']['env_observation'].players[ env_obs_id] converted_ships = infer_player_conversions( player_obs, prev_player_obs, env_config, observation, env_obs_id) for k in prev_player_obs[2]: row, col = row_col_from_square_grid_pos( prev_player_obs[2][k][0], grid_size) if len(prev_opponent_sensible_actions[row, col]) == 0: prev_halite = prev_player_obs[2][k][1] prev_halite_score = prev_player_obs[0] if (prev_halite + prev_halite_score) >= convert_cost: did_convert = k in converted_ships history['raw_box_data'][player_id].append( (prev_halite, did_convert)) # Infer the halite convert threshold when being boxed in if history['raw_box_data'][player_id]: box_data = np.array(history['raw_box_data'][player_id]) current_thresholds = history['inferred_boxed_in_conv_threshold'][ player_id] # The high estimate is the lowest halite value at which a ship was # ever converted - defaults to convert_cost if np.any(box_data[:, 1] == 0): highest_not_converted = box_data[box_data[:, 1] == 0, 0].max() else: highest_not_converted = 0 if np.any(box_data[:, 1] == 1): lowest_converted = box_data[box_data[:, 1] == 1, 0].min() else: lowest_converted = current_thresholds[1] # This can happen if the opponent does not take the halite on board # into account (non consistent convert threshold) highest_not_converted = min(highest_not_converted, lowest_converted) # The low estimate is the average between the high estimate and the # highest halite at which a ship was *not* converted (defaults) to 0 history['inferred_boxed_in_conv_threshold'][player_id] = [ (lowest_converted+highest_not_converted)/2, lowest_converted] return history def update_zero_halite_ship_behavior( config, history, observation, env_observation, stacked_ships, env_obs_ids, env_config): grid_size = stacked_ships.shape[1] num_players = stacked_ships.shape[0] near_base_distance = config['log_near_base_distance'] max_recent_considered_relevant = config[ 'max_recent_considered_relevant_zero_move_count'] # Minimum number of required examples to be able to estimate the opponent's # zero halite ship behavior. Format ('nearbase_shipdistance') min_considered_types = { 'False_0': 0, 'False_1': 8, 'False_2': 15, 'True_0': 8, 'True_1': 8, 'True_2': config['near_base_2_step_risky_min_count'], } if observation['step'] == 0: history['raw_zero_halite_move_data'] = [[] for _ in range(num_players)] history['zero_halite_move_behavior'] = [{} for _ in range(num_players)] history['my_zero_lost_ships_opponents'] = {} initial_aggressive_behavior = {} for is_near_base in [False, True]: for considered_distance in [0, 1, 2]: dict_k = str(is_near_base) + '_' + str(considered_distance) dict_k_always_careful = dict_k + '_always_careful' dict_k_real_count = dict_k + '_real_count' dict_k_ever_risky = dict_k + '_ever_risky' if min_considered_types[dict_k] == 0: initial_aggressive_behavior[dict_k] = 0.0 initial_aggressive_behavior[dict_k_always_careful] = True initial_aggressive_behavior[dict_k_real_count] = 0 initial_aggressive_behavior[dict_k_ever_risky] = False else: initial_aggressive_behavior[dict_k] = 1.0 initial_aggressive_behavior[dict_k_always_careful] = False initial_aggressive_behavior[dict_k_real_count] = 0 initial_aggressive_behavior[dict_k_ever_risky] = False for player_id in range(1, num_players): history['zero_halite_move_behavior'][player_id] = ( copy.copy(initial_aggressive_behavior)) else: prev_stacked_bases = history['prev_step']['stacked_bases'] all_prev_bases = prev_stacked_bases.sum(0) > 0 prev_stacked_ships = history['prev_step']['stacked_ships'] all_prev_ships = np.sum(prev_stacked_ships, 0) > 0 prev_base_locations = np.where(all_prev_bases) prev_boxed_in_zero_halite_opponents = history['prev_step'][ 'boxed_in_zero_halite_opponents'] num_prev_bases = all_prev_bases.sum() if num_prev_bases > 0: all_prev_base_distances = [DISTANCES[ prev_base_locations[0][i], prev_base_locations[1][i]] for i in range( num_prev_bases)] + [ 99*np.ones((grid_size, grid_size))] stacked_prev_base_distances = np.stack(all_prev_base_distances) nearest_prev_base_distances = stacked_prev_base_distances.min(0) prev_base_player_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) for i in range(prev_stacked_bases.shape[0]): prev_base_player_ids[prev_stacked_bases[i]] = i prev_ship_player_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) for i in range(prev_stacked_ships.shape[0]): prev_ship_player_ids[prev_stacked_ships[i]] = i prev_halite_ships = history['prev_step']['halite_ships'] prev_opponent_sensible_actions_no_risk = history['prev_step'][ 'opponent_ships_sensible_actions_no_risk'] my_prev_ship_pos_to_key = { v[0]: k for k, v in history['prev_step']['env_observation'].players[ env_obs_ids[0]][2].items()} all_prev_ship_pos_to_key = {} all_ship_keys = [] for player_id in range(num_players): env_obs_id = env_obs_ids[player_id] all_prev_ship_pos_to_key.update({ v[0]: k for k, v in history['prev_step']['env_observation'].players[ env_obs_id][2].items()}) all_ship_keys.extend(list(env_observation.players[ env_obs_id][2].keys())) history['my_zero_lost_ships_opponents'] = {} for player_id in range(1, num_players): # Consider all zero halite ships and infer the action that each player # took env_obs_id = env_obs_ids[player_id] player_obs = env_observation.players[env_obs_id] prev_player_obs = history['prev_step']['env_observation'].players[ env_obs_id] for k in prev_player_obs[2]: prev_row, prev_col = row_col_from_square_grid_pos( prev_player_obs[2][k][0], grid_size) ignore_boxed_zero_halite = (prev_row, prev_col) in ( prev_boxed_in_zero_halite_opponents) if k in player_obs[2] and prev_player_obs[2][k][1] == 0 and ( not ignore_boxed_zero_halite): row, col = row_col_from_square_grid_pos( player_obs[2][k][0], grid_size) nearest_prev_base_distance = nearest_prev_base_distances[ prev_row, prev_col] nearest_prev_base_id = np.argmin(stacked_prev_base_distances[ :, prev_row, prev_col]) nearest_prev_base_row = prev_base_locations[0][ nearest_prev_base_id] nearest_prev_base_col = prev_base_locations[1][ nearest_prev_base_id] nearest_base_player = prev_base_player_ids[ nearest_prev_base_row, nearest_prev_base_col] friendly_prev_nearest_base = (nearest_base_player == player_id) if len(prev_opponent_sensible_actions_no_risk[ prev_row, prev_col]) < len(MOVE_DIRECTIONS): # Loop over all zero halite opponent ships at a distance of max 2 # and log the distance, None action count, move towards count and # move away count as well as the distance to the nearest base. # Also record whether the nearest base is friendly or not. considered_threat_data = [] for row_shift, col_shift, distance in ( D2_ROW_COL_SHIFTS_DISTANCES): considered_row = (prev_row + row_shift) % grid_size considered_col = (prev_col + col_shift) % grid_size if all_prev_ships[considered_row, considered_col] and ( prev_ship_player_ids[ considered_row, considered_col] != player_id) and ( history['prev_step']['halite_ships'][ considered_row, considered_col] == 0): # Compute the distance of the considered ship, relative # to the threat moved_distance = DISTANCES[row, col][ considered_row, considered_col] considered_threat_data.append(( distance, moved_distance, nearest_prev_base_distance, friendly_prev_nearest_base, observation['step'], True)) # Aggregate the per-ship behavior - only consider the nearest # opponent threats num_considered_threats = len(considered_threat_data) if num_considered_threats == 1: history['raw_zero_halite_move_data'][player_id].append( considered_threat_data[0]) elif num_considered_threats > 0: threat_data = np.array(considered_threat_data) min_distance = threat_data[:, 0].min() for row_id in range(num_considered_threats): if threat_data[row_id, 0] == min_distance: history['raw_zero_halite_move_data'][player_id].append( considered_threat_data[row_id]) elif k not in player_obs[2] and prev_player_obs[2][k][1] == 0 and ( not ignore_boxed_zero_halite): # The opponent lost their zero halite ship - infer what happened # Investigate if there is no new base at the position where there # used to be a ship (this would explain why the ship disappeared) prev_pos = prev_player_obs[2][k][0] if not (prev_pos in player_obs[1].values() and ( not prev_pos in prev_player_obs[1].values())): prev_row, prev_col = row_col_from_square_grid_pos( prev_pos, grid_size) nearest_prev_base_distance = nearest_prev_base_distances[ prev_row, prev_col] base_destroyed = False if nearest_prev_base_distance == 1: # Determine if a base at a distance of 1 from the previous # position was destroyed for destroyed_dir in NOT_NONE_DIRECTIONS: base_near_row, base_near_col = move_ship_row_col( prev_row, prev_col, destroyed_dir, grid_size) base_near_pos = base_near_row*grid_size+base_near_col if all_prev_bases[base_near_row, base_near_col]: base_destroyed = True for p_id in range(num_players): if base_near_pos in env_observation.players[ p_id][1].values(): base_destroyed = False break if base_destroyed: break nearest_prev_base_id = np.argmin(stacked_prev_base_distances[ :, prev_row, prev_col]) nearest_prev_base_row = prev_base_locations[0][ nearest_prev_base_id] nearest_prev_base_col = prev_base_locations[1][ nearest_prev_base_id] nearest_base_player = prev_base_player_ids[ nearest_prev_base_row, nearest_prev_base_col] friendly_prev_nearest_base = (nearest_base_player == player_id) # Consider all potential move squares for the destroyed ship and # all potential non friendly ship movements. For my ships: only # consider the actions I actually selected. potential_ship_collisions = [] for d1 in MOVE_DIRECTIONS: # D1 are the potential actions of the opponent ship row_d1, col_d1 = move_ship_row_col( prev_row, prev_col, d1, grid_size) for d2 in MOVE_DIRECTIONS: # D2 are the potential collision directions, relative to the # moved position of the opponent ship row_d2, col_d2 = move_ship_row_col( row_d1, col_d1, d2, grid_size) if all_prev_ships[row_d2, col_d2] and ( prev_halite_ships[row_d2, col_d2] == 0) and ( prev_ship_player_ids[row_d2, col_d2] != player_id): d2_pos = row_d2*grid_size+col_d2 my_ship_position = d2_pos in my_prev_ship_pos_to_key consider_action = not my_ship_position if not consider_action: # Only consider the actions I actually selected for my # ships my_action = history['prev_step']['my_ship_actions'][ my_prev_ship_pos_to_key[d2_pos]] consider_action = my_action is not CONVERT and ( my_action == OPPOSITE_MAPPING[d2]) if consider_action: # Final condition: the ship at the considered location # no longer exists in the current step other_ship_k = all_prev_ship_pos_to_key[ row_d2*grid_size+col_d2] if other_ship_k not in all_ship_keys: distance = DISTANCES[prev_row, prev_col][ row_d2, col_d2] threat_distance = DISTANCES[row_d2, col_d2][ row_d1, col_d1] # Use the distance of the opponent ship to the base # rather than the collision distance since it is # ambiguous where the ships collided potential_ship_collisions.append(( distance, threat_distance, nearest_prev_base_distance, friendly_prev_nearest_base, observation['step'], my_ship_position, row_d2, col_d2)) # if observation['step'] == 99: # import pdb; pdb.set_trace() # Potential collisions at distance 2 come in pairs # of items in potential_ship_collisions must be even. # Investigate if it is 0 without a ship collisions or >= 4 num_potential_collisions = len(potential_ship_collisions) to_add_data = [] if num_potential_collisions == 0: if not base_destroyed and observation['relative_step'] < 0.9: pass # Unexplained ship loss - likely due to an opponent self # collision elif num_potential_collisions <= 2: # Either a single d1/d2 potential collisions or two potential # d2 collisions. Either way: the collision data would be # identical to_add_data = potential_ship_collisions[0][:-3] else: # In case of disagreement in the distance of the collision: # pick the lowest distance one collision_distances = np.array([ pc[0] for pc in potential_ship_collisions]) to_add_data = potential_ship_collisions[ np.argmin(collision_distances)][:-3] certain_data = False if num_potential_collisions == 1: ship_collision = potential_ship_collisions[0] certain_data = ship_collision[5] if ship_collision[5]: history['my_zero_lost_ships_opponents'][ (ship_collision[6], ship_collision[7])] = player_id if to_add_data: history['raw_zero_halite_move_data'][player_id].append(tuple( list(to_add_data) + [certain_data])) # Infer the zero halite behavior as a function of distance to opponent # base and distance to other zero halite ships if history['raw_zero_halite_move_data'][player_id]: zero_halite_data = np.array(history['raw_zero_halite_move_data'][ player_id]) aggregate_data = {} for is_near_base in [False, True]: for considered_distance in [0, 1, 2]: relevant_rows = (zero_halite_data[:, 0] == max( 1, considered_distance)) if is_near_base: relevant_rows &= (zero_halite_data[:, 2] <= near_base_distance) else: relevant_rows &= (zero_halite_data[:, 2] > near_base_distance) if considered_distance < 2: relevant_rows &= (zero_halite_data[:, 5] == 1) num_relevant = relevant_rows.sum() if num_relevant > max_recent_considered_relevant: num_relevant = max_recent_considered_relevant relevant_ids = np.where(relevant_rows)[0] relevant_rows[ relevant_ids[:-(max_recent_considered_relevant)]] = 0 aggressive_relevant_count = ( relevant_rows & (zero_halite_data[:, 1] <= min( 1, considered_distance))).sum() dict_k = str(is_near_base) + '_' + str(considered_distance) dict_k_always_careful = dict_k + '_always_careful' dict_k_real_count = dict_k + '_real_count' dict_k_ever_risky = dict_k + '_ever_risky' min_considered = min_considered_types[dict_k] num_aggressive_added = max(0, min_considered-num_relevant) if num_relevant == 0 and num_aggressive_added == 0: num_relevant = 1 elif num_aggressive_added > 0: num_aggressive_added = min_considered-num_relevant num_relevant += num_aggressive_added aggressive_relevant_count += num_aggressive_added # if player_id == 3 and considered_distance == 0 and is_near_base: # print(observation['step'], num_relevant, num_aggressive_added, # aggressive_relevant_count) # # if observation['step'] == 72: # # import pdb; pdb.set_trace() # # x=1 aggregate_data[dict_k] = aggressive_relevant_count/max( 1e-9, num_relevant) aggregate_data[dict_k_always_careful] = ( aggressive_relevant_count == 0) aggregate_data[dict_k_real_count] = ( num_relevant - num_aggressive_added) aggregate_data[dict_k_ever_risky] = ( aggressive_relevant_count > num_aggressive_added) if is_near_base: # If an opponent is aggressive away from the base, they likely # are near the base too # Approach: assume the most aggressive of near and away from # the base behavior when the considered ship is near the base dict_k_away_base = str(False) + '_' + str(considered_distance) dict_k_always_careful_away_base = dict_k_away_base + ( '_always_careful') dict_k_ever_risky_away_base = dict_k_away_base + '_ever_risky' aggregate_data[dict_k] = max( aggregate_data[dict_k], aggregate_data[dict_k_away_base]) aggregate_data[dict_k_always_careful] = ( aggregate_data[dict_k_always_careful]) and aggregate_data[ dict_k_always_careful_away_base] aggregate_data[dict_k_ever_risky] = ( aggregate_data[dict_k_ever_risky]) or aggregate_data[ dict_k_ever_risky_away_base] history['zero_halite_move_behavior'][player_id] = aggregate_data return history def update_base_camping_strategy( config, history, observation, env_observation, stacked_ships, env_obs_ids, env_config, np_rng, continued_camping_bonus=0.2, corner_camping_patience=3, other_camping_patience=5, max_non_unique_campers=2, max_campers_per_base=2, play_safe_aggression_limit=1, my_base_flooded_patience=5, flood_patience_buffer=2, min_ships_to_consider_camping=5, camping_risk_phase_2_7_multiplier=0.00): grid_size = stacked_ships.shape[1] num_players = stacked_ships.shape[0] my_ships_obs = env_observation.players[env_obs_ids[0]][2] stacked_bases = np.stack( [rbs[1] for rbs in observation['rewards_bases_ships']]) # flood_base_convert_threshold = my_base_flooded_patience + ( # min(3, stacked_bases[0].sum()))**2 - 1 halite_ships = np.stack([ rbs[3] for rbs in observation['rewards_bases_ships']]).sum(0) halite_ships[stacked_ships.sum(0) == 0] = -1e-9 all_bases = stacked_bases.sum(0) > 0 player_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) for i in range(stacked_ships.shape[0]): player_ids[stacked_ships[i]] = i player_ids[stacked_bases[i]] = i # if observation['step'] == 116: # import pdb; pdb.set_trace() if observation['step'] == 0: history['camping_ships_strategy'] = {} history['camping_ships_targets'] = {} history['remaining_camping_budget'] = config['max_camper_ship_budget'] history['aggression_stage_opponents_camping'] = [ 0 for _ in range(num_players)] history['aggression_opponents_camping_counter'] = [ 0 for _ in range(num_players)] history['camping_phase_opponents'] = [{} for _ in range(num_players)] history['camping_attack_opponent_budget'] = [2 for _ in range(num_players)] history['camping_phase_2_details_opponents'] = [(0, 0) for _ in range( num_players)] history['camping_phase_3_4_ignore_threats_counter'] = [0 for _ in range( num_players)] history['base_deposit_data'] = [[] for _ in range(num_players)] history['obs_base_camping_behavior'] = {} history['attack_opponent_campers'] = {} history['my_base_not_attacked_positions'] = [] history['my_camped_base_not_attacked_positions'] = [] history['base_camping_override_positions'] = np.zeros(( grid_size, grid_size), dtype=np.bool) history['my_base_flooded_counter'] = {} history['current_scores'] = np.zeros(num_players) history['current_halite_sum'] = np.zeros(num_players) else: # Compute the current approximate player score scores = np.array( [rbs[0] for rbs in observation['rewards_bases_ships']]) my_score = scores[0] num_my_ships = stacked_ships[0].sum() prev_stacked_bases = np.stack( [rbs[1] for rbs in history['prev_step']['observation'][ 'rewards_bases_ships']]) halite_cargos = np.array( [rbs[3].sum() for rbs in observation['rewards_bases_ships']]) obs_halite = np.maximum(0, observation['halite']) collect_rate = env_config.collectRate obs_halite[obs_halite < 1/collect_rate] = 0 opponent_bases = stacked_bases[1:].sum(0) > 0 opponent_base_counts = stacked_bases[1:].sum((1, 2)) num_all_opponent_bases = opponent_base_counts.sum() base_counts = stacked_bases.sum((1, 2)) convert_cost = env_config.convertCost spawn_cost = env_config.spawnCost steps_remaining = env_config.episodeSteps-1-observation['step'] if steps_remaining < grid_size: # Our ships may be returning - aggressively attack nearby campers corner_camping_patience = 1 other_camping_patience = 1 obs_halite_sum = observation['halite'].sum() base_value = min(convert_cost+spawn_cost, steps_remaining*obs_halite_sum**0.6/( 10*base_counts.sum()+1e-9)) ship_counts = stacked_ships.sum((1, 2)) all_ship_count = ship_counts.sum() ship_value = max(min(1, 2*(1-observation['relative_step']))*( env_config.spawnCost), min( env_config.spawnCost, (steps_remaining-1)*obs_halite_sum**0.6/( all_ship_count+1e-9))) # A base is only valuable if there are ships to return to them base_score_counts = np.minimum(base_counts, 1+ship_counts/5) current_scores = scores+halite_cargos+ship_value*ship_counts+( base_value*np.sqrt(np.maximum(0, base_score_counts-1))) + ( convert_cost+ship_value)*(base_score_counts > 0)*min( 1, (steps_remaining-1)/20) # print(observation['step'], ship_value, base_value) history['current_scores'] = current_scores history['current_halite_sum'] = scores+halite_cargos base_camping_override_positions = np.zeros(( grid_size, grid_size), dtype=np.bool) # Keep track of the deposit location of all opponents (used to decide # what bases to attack) for player_id in range(1, num_players): env_obs_id = env_obs_ids[player_id] player_obs = env_observation.players[env_obs_id] prev_player_obs = history['prev_step']['env_observation'].players[ env_obs_id] # For all ships that are at a base location and had halite in the # previous turn: add it to the memory base_locations = list(player_obs[1].values()) player_base_pos_to_key = {v: k for k, v in player_obs[1].items()} for ship_k in player_obs[2]: ship_position = player_obs[2][ship_k][0] if ship_position in base_locations and ship_k in prev_player_obs[2]: halite_deposited = prev_player_obs[2][ship_k][1] if halite_deposited > 0: history['base_deposit_data'][player_id].append(( player_base_pos_to_key[ship_position], observation['step'])) # Keep track of the non friendly zero halite behavior near all bases base_locations = np.where(all_bases) prev_base_camping_behavior = history['obs_base_camping_behavior'] obs_base_camping_behavior = {} num_bases = base_locations[0].size for base_id in range(num_bases): base_row = base_locations[0][base_id] base_col = base_locations[1][base_id] base_k = (base_row, base_col) base_player_id = player_ids[base_k] not_my_base = base_player_id > 0 around_base_mask = ROW_COL_BOX_MAX_DISTANCE_MASKS[base_row, base_col, 1] zero_halite_near_base_mask = edge_aware_square_subset_mask( (player_ids != base_player_id) & (halite_ships == 0), base_row, base_col, window=1, box=around_base_mask, grid_size=grid_size) zero_halite_near_base_players = edge_aware_square_subset_mask( player_ids, base_row, base_col, window=1, box=around_base_mask, grid_size=grid_size) if zero_halite_near_base_mask.sum() > 0: if base_k in prev_base_camping_behavior: prev_camping = prev_base_camping_behavior[base_k] prev_zero_halite_near_base_mask = prev_camping[3] prev_corner_camping_counter = prev_camping[4] prev_other_camping_counter = prev_camping[5] prev_zero_halite_near_base_players = prev_camping[6] else: prev_zero_halite_near_base_mask = np.zeros_like( zero_halite_near_base_mask) prev_corner_camping_counter = np.zeros(9) prev_other_camping_counter = np.zeros(9) prev_zero_halite_near_base_players = -1*np.ones(9) # Count the number of zero halite opponents that stay at the same # location (switching zero halite ships within the same team would also # qualify here) stay_near_base = prev_zero_halite_near_base_mask & ( zero_halite_near_base_mask) & ( prev_zero_halite_near_base_players == ( zero_halite_near_base_players )) num_stay_near_base = stay_near_base.sum() num_my_stay_near_base = ( stay_near_base & (zero_halite_near_base_players == 0)).sum() # Inspect if there is any ship that statically remains at a base corner stay_base_corner = (np.mod(np.arange(9), 2) == 1) & ( stay_near_base) num_my_stay_near_base_corner = ( stay_base_corner & (zero_halite_near_base_players == 0)).sum() other_camping_counter = prev_other_camping_counter other_camping_counter[stay_near_base] += 1 other_camping_counter[~stay_near_base] = 0 if np.any(stay_base_corner): corner_camping_counter = prev_corner_camping_counter corner_camping_counter[stay_base_corner] += 1 corner_camping_counter[~stay_base_corner] = 0 attack_corner_camper = np.any( corner_camping_counter >= corner_camping_patience) # LEGEND: # obs_base_camping_behavior[k] = (consider_for_camping_target, # attack_corner_camper, attack_non_corner_camper, # zero_halite_near_base_mask, corner_camping_counter, # zero_halite_near_base_players) obs_base_camping_behavior[base_k] = ( not_my_base and num_my_stay_near_base_corner > 0, attack_corner_camper, False, zero_halite_near_base_mask, corner_camping_counter, other_camping_counter, zero_halite_near_base_players) else: attack_other_camper = np.any( other_camping_counter >= other_camping_patience) obs_base_camping_behavior[base_k] = ( not_my_base and ((num_stay_near_base-num_my_stay_near_base) < 2), False, attack_other_camper, zero_halite_near_base_mask, np.zeros(9), other_camping_counter, zero_halite_near_base_players) else: obs_base_camping_behavior[base_k] = ( not_my_base, False, False, zero_halite_near_base_mask, np.zeros(9), np.zeros(9), -1*np.ones(9)) history['obs_base_camping_behavior'] = obs_base_camping_behavior # Update the opponent camper attack budget based on my planned opponent # camper ship attacks for k in history['attack_opponent_campers']: if k in env_observation.players[env_obs_ids[0]][2]: # My attacking ship is still alive - add it back to the attack budget opponent_id = history['attack_opponent_campers'][k][4] history['camping_attack_opponent_budget'][opponent_id] += 1 history['attack_opponent_campers'] = {} # Decide on which campers I should attack or if I should create a new base num_my_bases = stacked_bases[0].sum() my_zero_halite_excluded_from_camping = np.zeros_like(stacked_ships[0]) # Exclude ships that were used for base defense in the previous step and # ships located at any of my bases for ship_k in list(set( history['prev_step']['base_defense_keys'] + history[ 'prev_step']['prev_base_defense_keys'])): if ship_k in my_ships_obs: ship_position = my_ships_obs[ship_k][0] row, col = row_col_from_square_grid_pos(ship_position, grid_size) my_zero_halite_excluded_from_camping[row, col] = 1 my_zero_halite_ships_pos = np.where( (halite_ships == 0) & stacked_ships[0] & ( ~my_zero_halite_excluded_from_camping) & (~stacked_bases[0])) my_num_zero_halite_ships = my_zero_halite_ships_pos[0].size history['my_base_not_attacked_positions'] = [] history['my_camped_base_not_attacked_positions'] = [] ####################### ### DEFENSIVE LOGIC ### ####################### opponent_ships = stacked_ships[1:].sum(0) > 0 num_opponent_zero_halite_ships = ( opponent_ships & (halite_ships == 0)).sum() opponent_zero_halite_ships_pos = np.where( opponent_ships & (halite_ships == 0)) # if observation['step'] == 315: # import pdb; pdb.set_trace() if num_my_bases > 0: ship_pos_to_key = {} for i in range(num_players): ship_pos_to_key.update({ v[0]: k for k, v in env_observation.players[ env_obs_ids[i]][2].items()}) for base_k in obs_base_camping_behavior: if stacked_bases[0, base_k[0], base_k[1]]: # Only attack campers around my previous step main base opp_camping_behavior = obs_base_camping_behavior[base_k] if num_my_bases == 1 or ( base_k in history['prev_step']['non_abandoned_base_locations']): if opp_camping_behavior[1] or opp_camping_behavior[2]: my_score_rank = (current_scores >= current_scores[0]).sum() # Loop over the opponent camping ships which have to be punished # It is not a camper if the ship sits at an opponent base offending_ship_flat_pos = np.where(( opp_camping_behavior[4] >= corner_camping_patience) | ( opp_camping_behavior[5] >= other_camping_patience))[0] offending_ship_rows = np.mod( base_k[0] + (offending_ship_flat_pos//3) - 1, grid_size) offending_ship_cols = np.mod( base_k[1] + np.mod(offending_ship_flat_pos, 3) - 1, grid_size) for i in range(offending_ship_flat_pos.size): opponent_row = offending_ship_rows[i] opponent_col = offending_ship_cols[i] opponent_id = player_ids[opponent_row, opponent_col] opponent_score_rank = ( current_scores >= current_scores[opponent_id]).sum() # import pdb; pdb.set_trace() if ((my_score < convert_cost and num_my_ships > 4) or ( opponent_score_rank+my_score_rank <= 3) or ( my_score_rank == 1) or ( opponent_score_rank+my_score_rank == 4 and ( observation['relative_step'] < 0.4)) or ( history['camping_attack_opponent_budget'][ opponent_id] > 0)) and num_my_ships > 4 and ( not opponent_bases[opponent_row, opponent_col]): # Attack the opponent if there is a zero halite ship nearby my_zero_halite_distances = DISTANCES[ opponent_row, opponent_col][my_zero_halite_ships_pos] my_zero_halite_at_base = (DISTANCES[base_k][ my_zero_halite_ships_pos] == 0) if my_num_zero_halite_ships != 0: # Attack the ship if I have a non base ship at distance # <= 3 with the non base ship. # Otherwise: attack the ship with some probability with the # base ship safe_attack_ships = np.where(( my_zero_halite_distances <= 3) & ( ~my_zero_halite_at_base))[0] defender_id = -1 # If it takes too long for a safe attack: attack from the # base anyway edge_attack_from_base_prob = ( opp_camping_behavior[4].max()-( corner_camping_patience+2))/4 if safe_attack_ships.size > 0 and ( edge_attack_from_base_prob) < np_rng.uniform(): defender_id = safe_attack_ships[ np.where(my_zero_halite_distances[ safe_attack_ships] == (my_zero_halite_distances[ safe_attack_ships].min()))[0][0]] else: # Attack the camper with a probability so that that it is # hard to model (losing the base is always worse). if np_rng.uniform() < 0.5: defender_id = np.where(my_zero_halite_distances == ( my_zero_halite_distances.min()))[0][0] if defender_id >= 0: defender_row = my_zero_halite_ships_pos[0][defender_id] defender_col = my_zero_halite_ships_pos[1][defender_id] defender_k = ship_pos_to_key[ defender_row*grid_size + defender_col] opponent_k = ship_pos_to_key[ opponent_row*grid_size + opponent_col] opponent_distance = my_zero_halite_distances[defender_id] base_camping_override_positions[ opponent_row, opponent_col] = 1 attack_risk_threshold = 0 if opponent_distance > 2 else ( 0.5 if opponent_distance == 1 else 0.05) history['attack_opponent_campers'][defender_k] = ( opponent_row, opponent_col, 1e10, opponent_k, opponent_id, opponent_distance, attack_risk_threshold) my_zero_halite_excluded_from_camping[ defender_row, defender_col] = True history['camping_attack_opponent_budget'][ opponent_id] -= 1 else: history['my_base_not_attacked_positions'].append(base_k) history['my_camped_base_not_attacked_positions'].append( base_k) else: if opp_camping_behavior[1] or opp_camping_behavior[2]: # Flag the base as bad (there is a camper present), and don't # consider it when returning to a base # import pdb; pdb.set_trace() history['my_base_not_attacked_positions'].append(base_k) history['my_camped_base_not_attacked_positions'].append(base_k) # Identify if a base is jammed by opponent ships making it hard for # me to return to the base # Only consider zero halite opponents base_row, base_col = base_k if (opponent_ships & (halite_ships == 0)).sum() > 2: potential_threat_rows = opponent_zero_halite_ships_pos[0] potential_threat_cols = opponent_zero_halite_ships_pos[1] south_dist = np.where( potential_threat_rows >= base_row, potential_threat_rows-base_row, potential_threat_rows-base_row+grid_size) vert_dist = np.where(south_dist <= grid_size//2, south_dist, grid_size-south_dist) east_dist = np.where( potential_threat_cols >= base_col, potential_threat_cols-base_col, potential_threat_cols-base_col+grid_size) horiz_dist = np.where(east_dist <= grid_size//2, east_dist, grid_size-east_dist) dist = horiz_dist+vert_dist considered_distance_ids = dist <= 4 # 12 considered squares if considered_distance_ids.sum() > 1: # Check each quadrant for threats north_threat_ids = (south_dist[ considered_distance_ids] > grid_size//2) & ( vert_dist[considered_distance_ids] >= horiz_dist[ considered_distance_ids]) north_threat_score = ( 1/dist[considered_distance_ids][north_threat_ids]).sum() south_threat_ids = (south_dist[ considered_distance_ids] < grid_size//2) & ( vert_dist[considered_distance_ids] >= horiz_dist[ considered_distance_ids]) south_threat_score = (1/dist[ considered_distance_ids][south_threat_ids]).sum() east_threat_ids = (east_dist[ considered_distance_ids] < grid_size//2) & ( vert_dist[considered_distance_ids] <= horiz_dist[ considered_distance_ids]) east_threat_score = (1/dist[ considered_distance_ids][east_threat_ids]).sum() west_threat_ids = (east_dist[ considered_distance_ids] > grid_size//2) & ( vert_dist[considered_distance_ids] <= horiz_dist[ considered_distance_ids]) west_threat_score = (1/dist[ considered_distance_ids][west_threat_ids]).sum() threat_scores = np.array([ north_threat_score, south_threat_score, east_threat_score, west_threat_score]) min_threat_score = threat_scores.min() else: min_threat_score = 0 current_flood_counter = history[ 'my_base_flooded_counter'].get(base_k, 0) # Linear model on the expected min threat score of a sim study expected_min_threat_score = 3.412e-03 - 1.047e-03*( num_opponent_zero_halite_ships) + 8.706e-05*( num_opponent_zero_halite_ships**2) - 2.878e-07*( num_opponent_zero_halite_ships**3) # print(num_opponent_zero_halite_ships, expected_min_threat_score) current_flood_counter = max(0, min( my_base_flooded_patience+flood_patience_buffer, current_flood_counter+min_threat_score-expected_min_threat_score) ) history['my_base_flooded_counter'][base_k] = ( current_flood_counter) # print(observation['step'], threat_counts, current_flood_counter) # import pdb; pdb.set_trace() # x=1 if current_flood_counter >= my_base_flooded_patience and not ( base_k in history['my_base_not_attacked_positions']): history['my_base_not_attacked_positions'].append(base_k) # Delete the base flooded counter for destroyed bases destroyed_bases = ~stacked_bases[0] & ( history['prev_step']['stacked_bases'][0]) if np.any(destroyed_bases): destroyed_base_pos = np.where(destroyed_bases) for destroyed_base_id in range(destroyed_base_pos[0].size): destroyed_base_row = destroyed_base_pos[0][destroyed_base_id] destroyed_base_col = destroyed_base_pos[1][destroyed_base_id] destroyed_base_k = (destroyed_base_row, destroyed_base_col) if destroyed_base_k in history['my_base_flooded_counter']: del history['my_base_flooded_counter'][destroyed_base_k] # Reset the 'my_camped_base_not_attacked_positions' for the bases that are # flooded if all bases are flooded or camped and when I have a large number # of bases to avoid creating too many bases if (len(history['my_base_not_attacked_positions']) - len( history['my_camped_base_not_attacked_positions'])) > 2 and len( history['my_base_not_attacked_positions']) > 3: history['my_base_not_attacked_positions'] = copy.copy( history['my_camped_base_not_attacked_positions']) ######################## ### AGGRESSIVE LOGIC ### ######################## if (observation['relative_step'] >= config['relative_step_start_camping']): remaining_camping_budget = history['remaining_camping_budget'] prev_camping_ships_targets = history['camping_ships_targets'] number_already_camping = len(prev_camping_ships_targets) camping_ships_strategy = {} camping_ships_targets = {} aggression_stage_opponents = copy.copy( history['aggression_stage_opponents_camping']) aggression_camping_counter = copy.copy( history['aggression_opponents_camping_counter']) camping_phase_opponents = copy.copy(history['camping_phase_opponents']) prev_camping_phase_opponents = copy.copy( history['camping_phase_opponents']) prev_opponent_bases = history['prev_step']['stacked_bases'][1:].sum(0) > 0 my_zero_lost_ships_opponents = history['my_zero_lost_ships_opponents'] total_opponent_bases_count = stacked_bases.sum((1, 2))[1:] max_camping_budget_this_step = int(observation['relative_step']*( config['max_camper_ship_budget']*2)) if remaining_camping_budget >= 1 or (number_already_camping > 0): # Aim higher than the current ranking: being behind is only counted half # as much as being ahead to determine who to attack score_diffs = current_scores[0]-current_scores[1:] win_preferred_score_diff = np.abs(score_diffs) win_preferred_score_diff[score_diffs < 0] /= 2 opponent_scores_scaled = 1-win_preferred_score_diff/max( 100, steps_remaining)/15-1e2*( (scores[1:] < env_config.spawnCost) & (ship_counts[1:] == 0)) # Always keep targeting the number two when I am the number one # Also keep targeting the number one if I am the number two and the # number three is far behind my_score_rank = (current_scores >= current_scores[0]).sum() play_safe_aggression_limits = np.ones(num_players)*( play_safe_aggression_limit) if my_score_rank == 1 or (my_score_rank == 2 and np.all( opponent_scores_scaled <= 0)): argmax_id = np.argmax(opponent_scores_scaled) opponent_scores_scaled[argmax_id] = max( opponent_scores_scaled[argmax_id], 1e-9) play_safe_aggression_limits[argmax_id+1] += 50 # Don't camp at an opponent that has more bases than the camping budget # for this step opponent_scores_scaled[ total_opponent_bases_count > min( max_camping_budget_this_step, remaining_camping_budget)] = -100 if num_all_opponent_bases > 0: # Compute target scores for each of the opponent bases base_camping_scores = {} for player_id in range(1, num_players): opponent_bases = stacked_bases[player_id] env_obs_id = env_obs_ids[player_id] player_obs = env_observation.players[env_obs_id] current_base_keys = list(player_obs[1].keys()) if opponent_bases.sum(): num_opponent_bases = opponent_bases.sum() opponent_base_positions = np.where(opponent_bases) deposit_data = np.array(history['base_deposit_data'][player_id]) # Delete old bases from the deposit data and consider at most the # most recent 20 deposits if deposit_data.size > 0: actual_base_rows = np.array([ d in current_base_keys for d in deposit_data[:, 0]]) deposit_data = deposit_data[actual_base_rows][-20:] player_base_pos_to_key = {v: k for k, v in player_obs[1].items()} for base_id in range(num_opponent_bases): base_row = opponent_base_positions[0][base_id] base_col = opponent_base_positions[1][base_id] base_key = player_base_pos_to_key[base_row*grid_size+base_col] if deposit_data.size == 0: relative_deposit_base_score = 1 else: if opponent_scores_scaled[player_id-1] < 0: relative_deposit_base_score = 1 else: relative_deposit_base_score = min(1, (deposit_data[:, 0] == ( base_key)).mean() + 1e-2) should_consider_camp_penalty = -1*int( not obs_base_camping_behavior[(base_row, base_col)][0]) base_camping_score = opponent_scores_scaled[player_id-1]*( relative_deposit_base_score)+should_consider_camp_penalty base_camping_scores[(base_row, base_col)] = base_camping_score # print(observation['step'], base_camping_scores) all_opponent_bases = list(base_camping_scores.keys()) # Increment the score for the bases where we are already camping to # avoid switching targets too often prev_env_observation = history['prev_step']['env_observation'] my_prev_ships_obs = prev_env_observation.players[env_obs_ids[0]][2] delete_keys = [] for ship_k in prev_camping_ships_targets: ship_still_alive = ship_k in my_ships_obs # Incorporate the past step opponent behavior to infer what phase of # the camping each opponent is in (see details on the phases below) base_target = prev_camping_ships_targets[ship_k] prev_pos = my_prev_ships_obs[ship_k][0] prev_row, prev_col = row_col_from_square_grid_pos( prev_pos, grid_size) prev_base_distance = DISTANCES[prev_row, prev_col][base_target] opponent_id = np.where(prev_stacked_bases[ :, base_target[0], base_target[1]])[0][0] opponent_prev_camping_phase = prev_camping_phase_opponents[ opponent_id][base_target] aggression_already_added = False if not ship_still_alive: if (prev_row, prev_col) in my_zero_lost_ships_opponents: aggression_occurred = my_zero_lost_ships_opponents[ (prev_row, prev_col)] == opponent_id if aggression_occurred: aggression_already_added = True aggression_camping_counter[opponent_id] += 1 if aggression_camping_counter[opponent_id] >= ( play_safe_aggression_limits[opponent_id]): aggression_stage_opponents[opponent_id] = 2 camping_phase_opponents[opponent_id][base_target] = 7 if prev_base_distance <= 2: # Possible transitions (on a per-opponent level): # - 2 -> 3: My ship does not get attacked at least M times and # the opponent has returned at least N ships to the # base and there is a zero halite square right next to # the base # - 3 -> 4: My ship is not attacked when there are > 1 opponent # zero halite ships that can get to me # - 3 -> 5: The opponent is ignoring my camper and stil returns # to the base # - 4 -> 5: The opponent is ignoring my camper and stil returns # to the base # - 2 -> 6: My camping ship is not aggressively attacked but # there is no zero halite square at distance 1 of the # base # - 6 -> 7: My camping ship is aggressively attacked # - 2 -> 7: My camping ship is aggressively attacked if opponent_prev_camping_phase == 2 and ( camping_phase_opponents[opponent_id][base_target] == 2): (num_halite_ships_returned, non_aggression_counter) = history[ 'camping_phase_2_details_opponents'][opponent_id] # Update the number of opponent non zero halite ships returned # to the base opponent_pos_to_ship = {v[0]: k for k, v in ( env_observation.players[env_obs_ids[opponent_id]][2]).items()} opponent_prev_ships_obs = prev_env_observation.players[ env_obs_ids[opponent_id]][2] target_base_pos = base_target[0]*grid_size + base_target[1] if target_base_pos in opponent_pos_to_ship: at_base_opponent_ship_k = opponent_pos_to_ship[target_base_pos] if at_base_opponent_ship_k in opponent_prev_ships_obs: num_halite_ships_returned += int(opponent_prev_ships_obs[ at_base_opponent_ship_k][1] > 0) # Update the non aggression counter. aggression_occurred = (prev_pos in opponent_pos_to_ship) and ( opponent_prev_ships_obs[ opponent_pos_to_ship[prev_pos]][1] == 0) # If I lost my ship, it was likely due to an aggression if not ship_still_alive and not aggression_occurred and ( prev_row, prev_col) in my_zero_lost_ships_opponents: aggression_occurred = my_zero_lost_ships_opponents[ (prev_row, prev_col)] == opponent_id # If an aggression occurred: move to phase 7. if aggression_occurred: if not aggression_already_added: aggression_camping_counter[opponent_id] += 1 if aggression_camping_counter[opponent_id] >= ( play_safe_aggression_limits[opponent_id]): aggression_stage_opponents[opponent_id] = 2 camping_phase_opponents[opponent_id][base_target] = 7 else: non_aggression_counter += 1 # If the no aggression and ship return thresholds get exceeded: # move to phase 3 or 6 if non_aggression_counter >= 10 and ( num_halite_ships_returned >= 5): # Figure out if there is a non-zero halite square to camp at # right next to the base to decide on the next camping phase dist_1_zero_halite = (obs_halite == 0) & (DISTANCES[ base_target] == 1) if aggression_stage_opponents[opponent_id] != 2: aggression_stage_opponents[opponent_id] = 1 if dist_1_zero_halite.sum() > 0: camping_phase_opponents[opponent_id][base_target] = 3 else: camping_phase_opponents[opponent_id][base_target] = 6 history['camping_phase_2_details_opponents'][opponent_id] = ( num_halite_ships_returned, non_aggression_counter) elif opponent_prev_camping_phase == 6: # Some nice code duplication # Update the number of opponent non zero halite ships returned # to the base opponent_pos_to_ship = {v[0]: k for k, v in ( env_observation.players[env_obs_ids[opponent_id]][2]).items()} opponent_prev_ships_obs = prev_env_observation.players[ env_obs_ids[opponent_id]][2] aggression_occurred = (prev_pos in opponent_pos_to_ship) and ( opponent_prev_ships_obs[ opponent_pos_to_ship[prev_pos]][1] == 0) # If I lost my ship, it was likely due to an aggression if not ship_still_alive and not aggression_occurred and ( prev_row, prev_col) in my_zero_lost_ships_opponents: aggression_occurred = my_zero_lost_ships_opponents[ (prev_row, prev_col)] == opponent_id # If an aggression occurred: move to phase 7. if aggression_occurred: # import pdb; pdb.set_trace() camping_phase_opponents[opponent_id][base_target] = 7 elif opponent_prev_camping_phase in [3, 4]: # If I remain at a zero halite square at a distance of 1 of the # target and the opponent repeatedly ignores my threat: go to # phase 5 ignore_camping_threats_counter = history[ 'camping_phase_3_4_ignore_threats_counter'][opponent_id] if ship_still_alive: ship_position = my_ships_obs[ship_k][0] row, col = row_col_from_square_grid_pos( ship_position, grid_size) if prev_row == row and prev_col == col and obs_halite[ row, col] == 0 and (prev_base_distance == 1): opponent_pos_to_ship = {v[0]: k for k, v in ( env_observation.players[ env_obs_ids[opponent_id]][2]).items()} opponent_prev_ships_obs = prev_env_observation.players[ env_obs_ids[opponent_id]][2] target_base_pos = base_target[0]*grid_size + base_target[1] if target_base_pos in opponent_pos_to_ship: at_base_opponent_ship_k = opponent_pos_to_ship[ target_base_pos] if at_base_opponent_ship_k in opponent_prev_ships_obs: if opponent_prev_ships_obs[ at_base_opponent_ship_k][1] > 0: ignore_camping_threats_counter += 1 if ignore_camping_threats_counter >= 3*0: camping_phase_opponents[opponent_id][base_target] = 5 else: # If a successful aggression occurred: move to phase 7. camping_phase_opponents[opponent_id][base_target] = 7 history['camping_phase_3_4_ignore_threats_counter'][ opponent_id] = ignore_camping_threats_counter if ship_still_alive: if base_target in all_opponent_bases: base_camping_scores[base_target] += continued_camping_bonus else: # Delete the camping ship from the dict if it was destroyed # Subtract half a ship from the budget if I ended up attacking a # base # Subtract a full ship if I used the ship to construct a new base delete_keys.append(ship_k) number_already_camping -= 1 my_prev_move = history['prev_step']['my_ship_actions'][ship_k] my_prev_row, my_prev_col = row_col_from_square_grid_pos( history['prev_step']['env_observation'].players[ env_obs_ids[0]][2][ship_k][0], grid_size) if my_prev_move == CONVERT: remaining_camping_budget -= 1 else: my_moved_row, my_moved_col = move_ship_row_col( my_prev_row, my_prev_col, my_prev_move, grid_size) if not prev_opponent_bases[my_moved_row, my_moved_col]: remaining_camping_budget -= 1/2 # Move to stage 7 after exceeding the allowable aggression count if aggression_camping_counter[opponent_id] >= ( play_safe_aggression_limits[opponent_id]): camping_phase_opponents[opponent_id][base_target] = 7 for del_ship_k in delete_keys: del prev_camping_ships_targets[del_ship_k] # Camping ships participate in opponent hunts depending on the phase max_campers_assigned = min([ max_camping_budget_this_step, np.floor(remaining_camping_budget), 100*int(opponent_scores_scaled.max() > 0), number_already_camping+100*int( config['start_camp_if_not_winning'] or np.all( (current_scores[1:] <= (current_scores[0] - 2*spawn_cost)))), ]) num_interesting_bases = ( np.array(list(base_camping_scores.values())) > 0).sum() num_campers_assigned = int(min([ num_all_opponent_bases + max_non_unique_campers, max(number_already_camping, max_campers_assigned), my_num_zero_halite_ships-my_zero_halite_excluded_from_camping.sum(), num_interesting_bases + max_non_unique_campers, 100*int(num_my_ships >= min_ships_to_consider_camping), ])) # Assign the campers to the top identified opponent bases camping_ships_targets = {} if num_campers_assigned > 0 and num_all_opponent_bases > 0 and ( num_interesting_bases > 0): my_ship_pos_to_key = {v[0]: k for k, v in my_ships_obs.items()} my_zero_halite_ship_positions = np.where( stacked_ships[0] & (halite_ships == 0) & ( ~my_zero_halite_excluded_from_camping)) target_pos_scores = np.array([list(k) + [v] for k, v in ( base_camping_scores.items())]) target_pos_scores = np.concatenate([np.zeros( (target_pos_scores.shape[0], 1)), target_pos_scores], 1) for score_id in range(target_pos_scores.shape[0]): base_row = int(target_pos_scores[score_id, 1]) base_col = int(target_pos_scores[score_id, 2]) opponent_id = np.where(stacked_bases[ :, base_row, base_col])[0][0] if not (base_row, base_col) in camping_phase_opponents[ opponent_id]: initial_phase = 2 if ( aggression_stage_opponents[opponent_id] <= 1) else 7 camping_phase_opponents[opponent_id][(base_row, base_col)] = ( initial_phase) target_pos_scores[score_id, 0] = camping_phase_opponents[ opponent_id][(base_row, base_col)] target_rows = np.argsort(-target_pos_scores[:, -1])[ :num_campers_assigned] consider_non_unique_base_attack = np.any( target_pos_scores[target_rows, -1] <= 0) or target_rows.size < ( num_campers_assigned) if consider_non_unique_base_attack: # Only continue if there is a target opponent which is in camping # phase 6 or 7, and the number of assigned campers is strictly # greater than the number of positive base camping scores. # Update num_campers_assigned to the number of positive base # camping scores if I don't find such a base target_rows = target_rows[target_pos_scores[target_rows, -1] > 0] num_valid_targeted_bases = target_rows.size num_unassigned_campers = num_campers_assigned-( num_valid_targeted_bases) bases_ids_that_can_take_more_campers = target_rows[ target_pos_scores[target_rows, 0] >= 6] num_can_add_bases_multiple_campers = ( bases_ids_that_can_take_more_campers.size) if num_can_add_bases_multiple_campers > 0: max_add_iterations = max_campers_per_base-1 add_iteration = 0 while num_unassigned_campers > 0 and ( add_iteration < max_add_iterations): num_added = min(num_unassigned_campers, num_can_add_bases_multiple_campers) target_rows = np.concatenate([ target_rows, bases_ids_that_can_take_more_campers[ :num_added]]) num_unassigned_campers -= num_added add_iteration += 1 num_campers_assigned = target_rows.size else: num_campers_assigned = num_valid_targeted_bases # First handle the bases where we already have a camper to avoid # releasing the pressure temporarily if num_campers_assigned > 1: all_prev_camping_bases = list(prev_camping_ships_targets.values()) already_camping = np.zeros(num_campers_assigned, dtype=np.bool) for i in range(num_campers_assigned): considered_row = target_rows[i] base_row = int(target_pos_scores[considered_row, 1]) base_col = int(target_pos_scores[considered_row, 2]) camp_prev_step = (base_row, base_col) in all_prev_camping_bases near_my_zh_ship = ((DISTANCES[base_row, base_col] <= 2) & ( halite_ships == 0) & (stacked_ships[0])).sum() already_camping[i] = camp_prev_step and (near_my_zh_ship > 0) target_rows = np.concatenate([target_rows[already_camping], target_rows[~already_camping]]) camping_ships_targets_positions = {} for target_id in range(num_campers_assigned): target_row = target_rows[target_id] # Compute the distance to all my zero halite ships and pick the # closest to camp out base_row = int(target_pos_scores[target_row, 1]) base_col = int(target_pos_scores[target_row, 2]) zero_halite_base_distances = DISTANCES[base_row, base_col][ my_zero_halite_ship_positions] best_ship_id = np.argmin(zero_halite_base_distances) camper_ship_row = my_zero_halite_ship_positions[0][best_ship_id] camper_ship_col = my_zero_halite_ship_positions[1][best_ship_id] ship_camper_k = my_ship_pos_to_key[ camper_ship_row*grid_size+camper_ship_col] camping_ships_targets[ship_camper_k] = (base_row, base_col) camping_ships_targets_positions[(base_row, base_col)] = ( camping_ships_targets_positions.get((base_row, base_col), [])) +( [(camper_ship_row, camper_ship_col)]) # Delete the selected ship from my_zero_halite_ship_positions so # that it does not get assigned twice remaining_rows = np.delete(my_zero_halite_ship_positions[0], best_ship_id) remaining_cols = np.delete(my_zero_halite_ship_positions[1], best_ship_id) my_zero_halite_ship_positions = (remaining_rows, remaining_cols) # Camping strategy - always risky so losing a ship is fine # Phase 1: Aggressively navigate to the proximity of the base # Navigate cautiously once I am at a distance 2 of the base, since the # target opponent may start to get aggressive here. # The subsequent phases are computed on a per-opponent basis. # Phase 2: Aim at a static zero halite corner or circle around a base # as long as not many opponent returns to the base. Shy away when a # zero halite opponent ship threatens me. # Phase 3: Aim at a zero halite square right next to the base but move # away when > 1 zero halite ships threaten me. # Phase 4: aim at a zero halite square right next to the base and do # not move away. # Phase 5: If my camper gets ignored: attack the base when it can not # be protected. # Phase 6: Aggressively circle around the base # Phase 7: Keep circling annoyingly around the base but do so in a safe # way. for ship_k in camping_ships_targets: target_base_row, target_base_col = camping_ships_targets[ship_k] target_base_loc_tuple = (target_base_row, target_base_col) ship_position = my_ships_obs[ship_k][0] row, col = row_col_from_square_grid_pos(ship_position, grid_size) current_base_distance = DISTANCES[row, col][ target_base_row, target_base_col] opponent_id = np.where(stacked_bases[ :, target_base_row, target_base_col])[0][0] camping_phase = camping_phase_opponents[opponent_id][( target_base_row, target_base_col)] zeros_grid_mask = np.zeros((grid_size, grid_size)) if current_base_distance > 2: # Phase 1 # Aim towards the base neighborhood and prefer squares that are # closer to my current square collect_override_addition = 2e4/(DISTANCES[ target_base_row, target_base_col]+1) collect_override_addition[target_base_row, target_base_col] = -1e5 collect_override_addition[row, col] = -1e5 # Increase the 0.0 to encourage more risky behavior when navigating # towards an opponent base camping_ships_strategy[ship_k] = ( 0.01, collect_override_addition, zeros_grid_mask, current_base_distance > 3, False, target_base_loc_tuple) else: dist_1_zero_halite = (obs_halite == 0) & (DISTANCES[ target_base_row, target_base_col] == 1) if dist_1_zero_halite.sum() == 0 and camping_phase in [ 3, 4, 5]: camping_phase = 6 if camping_phase in [2, 6, 7]: # Passively select targets around the base in phase 2 and 7. # Set the targets aggressively in phase 6 # Avoid my other zero halite ships next to the base target_box = ROW_COL_BOX_MAX_DISTANCE_MASKS[ target_base_row, target_base_col, 1] collect_override_addition = 2e4*target_box collect_override_addition[target_base_row, target_base_col] = ( -1e5) if obs_halite[row, col] > 0: collect_override_addition[row, col] = -1e5 # Prefer box corners (top left, top righ, bottom left, bottom # right) that have an opposite corner with no halite target_box_pos = np.where(target_box) top_left = (target_box_pos[0][0], target_box_pos[1][0]) top_left_zero = obs_halite[top_left] == 0 top_right = (target_box_pos[0][2], target_box_pos[1][2]) top_right_zero = obs_halite[top_right] == 0 bottom_left = (target_box_pos[0][6], target_box_pos[1][6]) bottom_left_zero = obs_halite[bottom_left] == 0 bottom_right = (target_box_pos[0][8], target_box_pos[1][8]) bottom_right_zero = obs_halite[bottom_right] == 0 if top_left_zero and bottom_right_zero: collect_override_addition[top_left] += 7e4 collect_override_addition[bottom_right] += 7e4 if top_right_zero and bottom_left_zero: collect_override_addition[top_right] += 7e4 collect_override_addition[bottom_left] += 7e4 # Get the nearby mask of other zero halite ships so that my # ships that camp at the same base stay out of each other's way subtract_mask = np.zeros_like(collect_override_addition) num_this_base_campers = len(camping_ships_targets_positions[( target_base_row, target_base_col)]) my_ship_at_opposite_edge = False for other_row, other_col in camping_ships_targets_positions[( target_base_row, target_base_col)]: if other_row != row or other_col != col: base_row_diff = other_row-target_base_row base_col_diff = other_col-target_base_col ship_row_dir = np.sign(base_row_diff) ship_col_dir = np.sign(base_col_diff) row_central_mask = np.mod(target_base_row + 3*ship_row_dir, grid_size) col_central_mask = np.mod(target_base_col + 3*ship_col_dir, grid_size) other_row_central_mask = np.mod(target_base_row - 3*ship_row_dir, grid_size) other_col_central_mask = np.mod(target_base_col - 3*ship_col_dir, grid_size) mask_ship_dir = ROW_COL_BOX_MAX_DISTANCE_MASKS[ row_central_mask, col_central_mask, 3] mask_other_ship_dir = ROW_COL_BOX_MAX_DISTANCE_MASKS[ other_row_central_mask, other_col_central_mask, 3] subtract_mask += (2e3*(mask_ship_dir * DISTANCE_MASKS[ other_row, other_col] + ROW_COL_BOX_MAX_DISTANCE_MASKS[ other_row, other_col, 2]) - 1e4*mask_other_ship_dir)*( DISTANCE_MASKS[row, col]**0.1) # Very high bonus for camping out at opposite corners or a # zero halite square next to the base if np.abs(base_row_diff) == 1 and np.abs(base_col_diff) == 1: opposite_corner_row = np.mod( target_base_row - base_row_diff, grid_size) opposite_corner_col = np.mod( target_base_col - base_col_diff, grid_size) # When I block an opponent with two static ships at zero # halite corners: keep them there! my_ship_at_opposite_edge = my_ship_at_opposite_edge or ( row == opposite_corner_row and ( col == opposite_corner_col)) subtract_mask[opposite_corner_row, opposite_corner_col] -=( 1e6) collect_override_addition -= subtract_mask # if observation['step'] == 107: # import pdb; pdb.set_trace() # Take more risky actions when I have > 1 campers risk_threshold = camping_risk_phase_2_7_multiplier*( num_this_base_campers-1) if (camping_phase in [2, 7]) else 0.1 consider_ship_other_tactics = not my_ship_at_opposite_edge camping_ships_strategy[ship_k] = ( risk_threshold, collect_override_addition, zeros_grid_mask, consider_ship_other_tactics, consider_ship_other_tactics, target_base_loc_tuple) elif camping_phase in [3, 4, 5]: # Select a zero halite target right next to the base to camp # The aggression level depends on the number of nearby zero # halite ships and the camping phase # Only attack the base when it is not protected in phase 5 base_protected = (DISTANCES[row, col][ target_base_row, target_base_col] > 1) or ((stacked_ships[ opponent_id]) & (halite_ships == 0) & ( DISTANCES[target_base_row, target_base_col] <= 1) ).sum() > 0 collect_override_addition = np.zeros((grid_size, grid_size)) if base_protected or camping_phase != 5: target_camp_positions = np.where(dist_1_zero_halite) for target_camp_id in range(target_camp_positions[0].size): target_camp_row = target_camp_positions[0][target_camp_id] target_camp_col = target_camp_positions[1][target_camp_id] collect_override_addition += 2e4/((DISTANCES[ target_camp_row, target_camp_col]+1)**2) collect_override_addition *= (DISTANCE_MASKS[row, col]**0.2) collect_override_addition[ target_base_row, target_base_col] = -1e5 if obs_halite[row, col] > 0: collect_override_addition[row, col] = -1e5 num_zero_halite_threats = ((stacked_ships[1:].sum(0) > 0) & ( halite_ships == 0) & (DISTANCES[row, col] == 1)).sum() risk_threshold = 0.0 if ( camping_phase == 3 and num_zero_halite_threats > 1) else 0.1 camping_ships_strategy[ship_k] = ( risk_threshold, collect_override_addition, zeros_grid_mask, False, camping_phase == 5, target_base_loc_tuple) else: # Successfully attack the base print("Aggressively attacking base", target_base_row, target_base_col, observation['step']) collect_attack_addition = 1e5*( DISTANCES[target_base_row, target_base_col] == 0) camping_ships_strategy[ship_k] = ( 0.0, collect_override_addition, collect_attack_addition, False, True, target_base_loc_tuple) history['camping_ships_targets'] = camping_ships_targets history['camping_ships_strategy'] = camping_ships_strategy history['remaining_camping_budget'] = remaining_camping_budget history['aggression_stage_opponents_camping'] = aggression_stage_opponents history['aggression_opponents_camping_counter'] = ( aggression_camping_counter) history['camping_phase_opponents'] = camping_phase_opponents history['base_camping_override_positions'] = ( base_camping_override_positions) return history def update_opponent_ships_move_directions( history, observation, env_observation, env_obs_ids): prev_step_opponent_ship_moves = {} if observation['step'] > 0: prev_env_players = history['prev_step']['env_observation'].players num_players = len(prev_env_players) grid_size = observation['halite'].shape[0] for player_id in range(1, num_players): env_obs_id = env_obs_ids[player_id] player_ships = env_observation.players[env_obs_id][2] prev_player_ships = prev_env_players[env_obs_id][2] for ship_k in player_ships: if ship_k in prev_player_ships: prev_row, prev_col = row_col_from_square_grid_pos( prev_player_ships[ship_k][0], grid_size) row, col = row_col_from_square_grid_pos( player_ships[ship_k][0], grid_size) prev_action = get_dir_from_target( prev_row, prev_col, row, col, grid_size)[0] if prev_action is not None: prev_step_opponent_ship_moves[ship_k] = prev_action history['prev_step_opponent_ship_moves'] = prev_step_opponent_ship_moves return history def update_cycle_counters( config, history, observation, player_obs, env_observation, env_obs_ids): num_players = len(observation['rewards_bases_ships']) stacked_bases = np.stack( [rbs[1] for rbs in observation['rewards_bases_ships']]) all_bases = stacked_bases.sum(0) > 0 grid_size = all_bases.shape[0] if observation['step'] == 0: history['ship_action_cycle_counter'] = {} history['avoid_cycle_actions'] = {} history['opponent_cycle_counters'] = [{} for _ in range(num_players-1)] history['empty_or_cycled_positions'] = np.zeros( (grid_size, grid_size), dtype=np.bool) history['cycled_position_counts'] = -1*np.ones((grid_size, grid_size)) history['opponent_ship_pos_to_key'] = {} elif config['avoid_cycles'] > 0: cycle_counters = history['ship_action_cycle_counter'] avoid_cycle_actions = {} prev_ship_actions = history['prev_step']['my_ship_actions'] prev_step_rescue_ships = history['prev_step']['ships_on_rescue_mission'] opponent_ship_pos_to_key = {} # Update the cycles and according cycle counters for all my ships that # are still alive for ship_k in prev_ship_actions: if not ship_k in player_obs[2]: # The ship died or was converted - delete it from the cycle data if ship_k in cycle_counters: del cycle_counters[ship_k] else: # If the ship is new: add the action and default counter to the cycle # counters dict prev_action = prev_ship_actions[ship_k] if not ship_k in cycle_counters: cycle_counters[ship_k] = (prev_action, -1, 0) else: prev_a_min_1, prev_a_min_2, cycle_count = cycle_counters[ship_k] if cycle_count > 0 and (prev_a_min_2 != prev_action): cycle_count = 0 cycle_counters[ship_k] = (prev_action, prev_a_min_1, cycle_count+1) ship_halite = player_obs[2][ship_k][1] cycle_limit = 12 if ship_halite > 0 else 20 if cycle_count > cycle_limit: # Avoid the action if the action is not a rescue action and the # ship is not near a base row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) near_base = np.any(all_bases[ROW_COL_MAX_DISTANCE_MASKS[ row, col, 2]]) if not ship_k in prev_step_rescue_ships and not near_base: avoid_cycle_actions[ship_k] = prev_a_min_1 history['ship_action_cycle_counter'] = cycle_counters history['avoid_cycle_actions'] = avoid_cycle_actions if observation['step'] > 0: # Update the opponent cycle counters prev_env_players = history['prev_step']['env_observation'].players for player_id in range(1, num_players): cycle_counters = history['opponent_cycle_counters'][player_id-1] env_obs_id = env_obs_ids[player_id] # Update the cycles and according cycle counters for all opponnent ships # that are still alive player_ships = env_observation.players[env_obs_id][2] prev_player_ships = prev_env_players[env_obs_id][2] grid_size = observation['halite'].shape[0] for ship_k in prev_player_ships: if not ship_k in player_ships: # The ship died or was converted - delete it from the cycle data if ship_k in cycle_counters: del cycle_counters[ship_k] else: # If the ship is new: add the action and default counter to the cycle # counters dict prev_row, prev_col = row_col_from_square_grid_pos( prev_player_ships[ship_k][0], grid_size) row, col = row_col_from_square_grid_pos( player_ships[ship_k][0], grid_size) opponent_ship_pos_to_key[(row, col)] = ship_k prev_action = get_dir_from_target( prev_row, prev_col, row, col, grid_size) if not ship_k in cycle_counters: cycle_counters[ship_k] = (prev_action, -1, 0) else: prev_a_min_1, prev_a_min_2, cycle_count = cycle_counters[ship_k] if cycle_count > 0 and (prev_a_min_2 != prev_action): cycle_count = 0 cycle_counters[ship_k] = (prev_action, prev_a_min_1, cycle_count+1) history['opponent_cycle_counters'][player_id-1] = cycle_counters history['opponent_ship_pos_to_key'] = opponent_ship_pos_to_key # Loop over all ships and mark their corresponding squares as empty or # cycled prev_stacked_bases = history['prev_step']['stacked_bases'] all_prev_bases = prev_stacked_bases.sum(0) > 0 base_positions_equal = all_prev_bases == all_bases empty_or_cycled_positions = np.copy(base_positions_equal) empty_or_extended_cycled_positions = np.copy(base_positions_equal) cycled_position_counts = np.copy(base_positions_equal).astype(np.int)*-1 for player_id in range(num_players): env_obs_id = env_obs_ids[player_id] player_ships = env_observation.players[env_obs_id][2] prev_player_ships = prev_env_players[env_obs_id][2] if player_id == 0: cycle_counters = history['ship_action_cycle_counter'] else: cycle_counters = history['opponent_cycle_counters'][player_id-1] for ship_k in player_ships: row, col = row_col_from_square_grid_pos( player_ships[ship_k][0], grid_size) if not ship_k in prev_player_ships: empty_or_cycled_positions[row, col] = 0 empty_or_extended_cycled_positions[row, col] = 0 cycled_position_counts[row, col] = 0 else: cycle_duration = cycle_counters[ship_k][2] ship_in_repeat_cycle = (cycle_duration >= config[ 'surrounding_ships_cycle_extrapolate_step_count']) and (( cycle_counters[ship_k][0] != cycle_counters[ship_k][1]) or ( cycle_counters[ship_k][0] is None)) ship_in_extended_repeat_cycle = (cycle_duration >= config[ 'surrounding_ships_extended_cycle_extrapolate_step_count']) and (( cycle_counters[ship_k][0] != cycle_counters[ship_k][1]) or ( cycle_counters[ship_k][0] is None)) cycled_position_counts[row, col] = cycle_duration*int( ship_in_repeat_cycle) empty_or_cycled_positions[row, col] = ship_in_repeat_cycle empty_or_extended_cycled_positions[row, col] = ( ship_in_extended_repeat_cycle) history['empty_or_cycled_positions'] = empty_or_cycled_positions history['empty_or_extended_cycled_positions'] = ( empty_or_extended_cycled_positions) history['cycled_position_counts'] = cycled_position_counts return history def update_destoyed_base_ship_count(history, observation, player_obs): if observation['step'] == 0: history['num_destroyed_bases'] = 0 history['num_destroyed_ships'] = 0 else: grid_size = observation['rewards_bases_ships'][0][1].shape[0] prev_bases = history[ 'prev_step']['observation']['rewards_bases_ships'][0][1] current_bases = observation['rewards_bases_ships'][0][1] destroyed_base_count_this_step = (prev_bases& (~current_bases )).sum() history['num_destroyed_bases'] += destroyed_base_count_this_step prev_player_obs = history['prev_step']['player_obs'] current_ship_keys = list(player_obs[2].keys()) destroyed_ship_count_this_step = 0 for ship_k in prev_player_obs[2]: if not ship_k in current_ship_keys: row, col = row_col_from_square_grid_pos( prev_player_obs[2][ship_k][0], grid_size) if not current_bases[row, col]: # import pdb; pdb.set_trace() destroyed_ship_count_this_step += 1 history['num_destroyed_ships'] += destroyed_ship_count_this_step return history def update_returning_to_base_ships(history, observation, player_obs): if observation['step'] == 0: history['returning_to_base_ships'] = [] history['temporary_hoarding_collect_ships'] = [] else: current_bases = observation['rewards_bases_ships'][0][1] grid_size = current_bases.shape[0] delete_keys = [] delete_temp_hoard_keys = [] # Temporary collect ships that don't collect should join the hoarding for ship_k in history['temporary_hoarding_collect_ships']: if not ship_k in player_obs[2]: # My ship was destroyed delete_temp_hoard_keys.append(ship_k) else: row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_halite = player_obs[2][ship_k][1] if ship_halite == 0: delete_temp_hoard_keys.append(ship_k) for ship_k in history['returning_to_base_ships']: if not ship_k in player_obs[2]: # My ship was destroyed delete_keys.append(ship_k) else: row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_halite = player_obs[2][ship_k][1] if ship_halite == 0: delete_keys.append(ship_k) for ship_k in delete_keys: history['returning_to_base_ships'].remove(ship_k) if ship_k in history['temporary_hoarding_collect_ships'] and ship_k in ( player_obs[2]): # Join the pack hunt if the base has a nearby opponent or if there # is little halite to be mined nearby row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) if history['prev_step']['safe_to_collect_margin'][row, col] < 4 or ( observation['halite'][ROW_COL_MAX_DISTANCE_MASKS[ row, col, 5]].sum() < 1000): delete_temp_hoard_keys.append(ship_k) # else: # print(observation['step'], row, col, # "Not joining the pack hunt quite yet") for ship_k in delete_temp_hoard_keys: if ship_k in history['temporary_hoarding_collect_ships']: history['temporary_hoarding_collect_ships'].remove(ship_k) return history def update_early_best_opponent(config, history, observation): if observation['step'] == 0: history['ballistic_early_best_target_mode'] = False history['ballistic_early_best_targets_sorted'] = None elif history['ballistic_early_best_targets_sorted'] is None: if observation['relative_step'] >= config[ 'early_best_opponent_relative_step']: current_scores = history['current_scores'] # import pdb; pdb.set_trace() history['ballistic_early_best_targets_sorted'] = np.argsort( -current_scores[1:]) # print(observation['step'], history['ballistic_early_best_targets_sorted']) return history def update_initial_collect_boost(history, observation, player_obs): if observation['step'] == 0: stacked_ships = np.stack([rbs[2] for rbs in observation[ 'rewards_bases_ships']]) grid_size = stacked_ships.shape[1] # Stack the collect scores for all my ships ship_rows = [] ship_cols = [] ship_keys = [] for ship_k in player_obs[2]: row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_rows.append(row) ship_cols.append(col) ship_keys.append(ship_k) my_num_ships = len(ship_rows) my_ship_positions = (np.array(ship_rows), np.array(ship_cols)) opponent_ship_positions = np.where(stacked_ships[1:].sum(0) > 0) # Obtain the nearest distances for my and opponent ships my_nearest_ship_distances = 99*np.ones((grid_size, grid_size)) for ship_id in range(my_num_ships): row = my_ship_positions[0][ship_id] col = my_ship_positions[1][ship_id] my_nearest_ship_distances = np.minimum( my_nearest_ship_distances, DISTANCES[row, col]) opponent_nearest_ship_distances = 99*np.ones((grid_size, grid_size)) opponent_ships = stacked_ships[1:].sum(0) > 0 num_opponent_ships = opponent_ships.sum() for ship_id in range(num_opponent_ships): row = opponent_ship_positions[0][ship_id] col = opponent_ship_positions[1][ship_id] opponent_nearest_ship_distances = np.minimum( opponent_nearest_ship_distances, DISTANCES[row, col]) nearest_ship_distance_difference = ( my_nearest_ship_distances - opponent_nearest_ship_distances) original_position_multiplier = (1.5**(np.minimum( 3, nearest_ship_distance_difference)))**0.5 history['original_position_multiplier'] = original_position_multiplier return history def update_initial_ship_strategy( history, observation, player_obs, not_collect_first_ships_near_base=6, initial_near_base_collect_excluded_steps=20, initial_exclude_box_size=3): grid_size = observation['halite'].shape[0] if observation['step'] == 0: history['first_base_position'] = None history['initial_not_collect_near_base_ships'] = [] history['initial_not_collect_near_base_mask'] = np.zeros( (grid_size, grid_size), dtype=np.bool) else: if history['first_base_position'] is None and len(player_obs[1]) > 0: base_row, base_col = row_col_from_square_grid_pos( list(player_obs[1].values())[0], grid_size) history['first_base_position'] = (base_row, base_col) history['initial_not_collect_near_base_mask'] = ( ROW_COL_BOX_MAX_DISTANCE_MASKS[ base_row, base_col, initial_exclude_box_size]) if history['first_base_position'] is not None: # The first "not_collect_first_ships_near_base" are added to the excluded # near base collect list. They are removed from the list after returning # to a base after "initial_near_base_collect_excluded_steps" steps # Detect new ships if len(history['initial_not_collect_near_base_ships']) < ( not_collect_first_ships_near_base) and observation['step'] <= ( initial_near_base_collect_excluded_steps): current_excluded = set(history['initial_not_collect_near_base_ships']) exclusion_budget = not_collect_first_ships_near_base - len( current_excluded) current_ships = list(player_obs[2].keys()) new_ships = list(set(current_ships) - current_excluded) if len(new_ships) > 0: new_excluded = new_ships[:exclusion_budget] history['initial_not_collect_near_base_ships'] += new_excluded elif ( observation['step'] > initial_near_base_collect_excluded_steps) and ( len(history['initial_not_collect_near_base_ships']) > 0): # Detect ships that have returned to a base delete_keys = [] base_positions = list(player_obs[1].values()) for ship_k in history['initial_not_collect_near_base_ships']: if not ship_k in player_obs[2]: # The ship was destroyed delete_keys.append(ship_k) else: ship_position = player_obs[2][ship_k][0] if ship_position in base_positions: delete_keys.append(ship_k) for ship_k in delete_keys: history['initial_not_collect_near_base_ships'].remove(ship_k) # print(observation['step'], history['initial_not_collect_near_base_ships']) return history def update_history_start_step( config, history, observation, env_observation, env_obs_ids, env_config, np_rng): history_start_time = time.time() stacked_ships = np.stack([rbs[2] for rbs in observation[ 'rewards_bases_ships']]) opponent_ships = stacked_ships[1:].sum(0) > 0 other_halite_ships = np.stack([ rbs[3] for rbs in observation['rewards_bases_ships']])[1:].sum(0) other_halite_ships[~opponent_ships] = 1e9 grid_size = opponent_ships.shape[0] player_obs = env_observation.players[env_obs_ids[0]] player_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) for i in range(stacked_ships.shape[0]): player_ids[stacked_ships[i]] = i if observation['step'] == 0: history['hunting_season_started'] = False history['hunting_season_standard_ships'] = [] history['prev_step_boxing_in_ships'] = [] history['prev_step_hoarded_one_step_opponent_keys'] = [] history['my_prev_step_base_attacker_ships'] = [] history['request_increment_num_standard_hunting'] = 0 history['request_decrement_num_standard_hunting'] = 0 history['add_strategic_base'] = False history['construct_strategic_base_position'] = None history['ballistic_mode'] = False history['my_time_averaged_vulnerable_score'] = np.zeros( (grid_size, grid_size)) history['early_hunting_season_ended'] = False history['targeted_hoard_mode'] = False history['limit_ships_timeout'] = False history['initial_collect_zero_halite_targets'] = {} history['prev_ballistic_target_override'] = None # Update the counter that keeps track of how long ships are chased history = update_chase_counter( history, observation, env_observation, stacked_ships, other_halite_ships, player_ids, env_obs_ids) # Update the data that keeps track of opponent behavior when being boxed in history = update_box_in_counter( history, observation, env_observation, stacked_ships, env_obs_ids, env_config) # Update the data that keeps track of zero halite ship opponent behavior as a # function of opponent zero halite ships history = update_zero_halite_ship_behavior( config, history, observation, env_observation, stacked_ships, env_obs_ids, env_config) # Update the data that keeps track of camping behavior history = update_base_camping_strategy( config, history, observation, env_observation, stacked_ships, env_obs_ids, env_config, np_rng) # Update the data that keeps track of the early game best opponent (targeted # at the end if I am winning massively) history = update_early_best_opponent(config, history, observation) # Update the move directions of all opponent ships history = update_opponent_ships_move_directions( history, observation, env_observation, env_obs_ids) # Update the counters that keep track of my repetitive actions - avoid # cycling in a cycle of max length 2 for more than X steps when I can afford # other actions history = update_cycle_counters( config, history, observation, player_obs, env_observation, env_obs_ids) # Update the count of my destroyed bases and ships history = update_destoyed_base_ship_count(history, observation, player_obs) # Update returning to base ships history = update_returning_to_base_ships(history, observation, player_obs) # Update the initial collect boost to make sure we focus on halite near the # boundary of our influence sphere history = update_initial_collect_boost(history, observation, player_obs) # Update the logic to make sure that my first ships don't gather near my # first base in the first N steps history = update_initial_ship_strategy(history, observation, player_obs) return history, (time.time()-history_start_time) def update_history_end_step( history, observation, ship_actions, opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, ship_plans, player_obs, env_observation, main_base_distances, on_rescue_mission, boxed_in_zero_halite_opponents, ships_on_box_mission, non_abandoned_base_pos, this_step_base_defense_keys, should_spawn_base_next_step, ballistic_attack_base_targets, safe_to_collect_margin, get_actions_start_time): none_included_ship_actions = {k: (ship_actions[k] if ( k in ship_actions) else None) for k in player_obs[2]} stacked_bases = np.stack([rbs[1] for rbs in observation[ 'rewards_bases_ships']]) stacked_ships = np.stack([rbs[2] for rbs in observation[ 'rewards_bases_ships']]) halite_ships = np.stack([ rbs[3] for rbs in observation['rewards_bases_ships']]).sum(0) halite_ships[stacked_ships.sum(0) == 0] = -1e-9 grid_size = halite_ships.shape[0] if main_base_distances.max() > 0: base_zero_dist_locations = np.where(main_base_distances == 0) my_main_base_location = (base_zero_dist_locations[0][0], base_zero_dist_locations[1][0]) else: my_main_base_location = (-1, -1) ships_on_rescue_mission = [] rescue_positions = np.where(on_rescue_mission) ship_pos_to_key = {v[0]: k for k, v in player_obs[2].items()} if np.any(on_rescue_mission): for i in range(rescue_positions[0].size): position = grid_size*rescue_positions[0][i] + rescue_positions[1][i] ships_on_rescue_mission.append(ship_pos_to_key[position]) non_abandoned_base_locations = [] if non_abandoned_base_pos: for base_id in range(non_abandoned_base_pos[0].size): non_abandoned_base_locations.append(( non_abandoned_base_pos[0][base_id], non_abandoned_base_pos[1][base_id])) if 'prev_step' in history: prev_base_defense_keys = history['prev_step']['base_defense_keys'] else: prev_base_defense_keys = [] # Reduce the max ship count when there is a risk of timing out ( # < 6 for local debugging) and no longer perform pack hunting get_actions_duration = time.time() - get_actions_start_time history['limit_ships_timeout'] = history['limit_ships_timeout'] or ( get_actions_duration > 2 and get_actions_duration < 6) history['prev_step'] = { 'my_ship_actions': none_included_ship_actions, 'opponent_ships_sensible_actions': opponent_ships_sensible_actions, 'opponent_ships_sensible_actions_no_risk': ( opponent_ships_sensible_actions_no_risk), 'boxed_in_zero_halite_opponents': boxed_in_zero_halite_opponents, 'ship_plans': ship_plans, 'env_observation': env_observation, 'stacked_bases': stacked_bases, 'stacked_ships': stacked_ships, 'halite_ships': halite_ships, 'observation': observation, 'my_main_base_location': my_main_base_location, 'non_abandoned_base_locations': non_abandoned_base_locations, 'ships_on_rescue_mission': ships_on_rescue_mission, 'ships_on_box_mission': ships_on_box_mission, 'base_defense_keys': this_step_base_defense_keys, 'prev_base_defense_keys': prev_base_defense_keys, 'should_spawn_base_next_step': should_spawn_base_next_step, 'player_obs': player_obs, 'ballistic_attack_base_targets': ballistic_attack_base_targets, 'safe_to_collect_margin': safe_to_collect_margin, } return history def get_numpy_random_generator( config, observation, rng_action_seed, print_seed=False): if rng_action_seed is None: rng_action_seed = 0 if observation['step'] == 0 and print_seed: print("Random acting seed: {}".format(rng_action_seed)) # Add the observation step to the seed so we are less predictable step_seed = int(rng_action_seed+observation['step']) return np.random.RandomState(step_seed) def get_config_actions(config, observation, player_obs, env_observation, env_config, history, rng_action_seed, verbose=False): get_actions_start_time = time.time() # if observation['step'] in [242] and ( # observation['rewards_bases_ships'][0][1].sum()) == 1: # import pdb; pdb.set_trace() # Set the random seed np_rng = get_numpy_random_generator( config, observation, rng_action_seed, print_seed=True) # Obtain the ordered player ids (myself in the first position) env_obs_ids = get_env_obs_ids(env_observation) # Decide how many ships I can have attack bases aggressively steps_remaining = env_config.episodeSteps-1-observation['step'] max_aggressive_attackers = int(len(player_obs[2]) - (3+0.25*steps_remaining)) ignore_bad_attack_directions = max_aggressive_attackers > 0 # Update the history based on what happened during the past observation history, history_start_duration = update_history_start_step( config, history, observation, env_observation, env_obs_ids, env_config, np_rng) # Compute the ship scores for all high level actions (all_ship_scores, opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, weighted_base_mask, opponent_ships_scaled, main_base_distances, ship_scores_duration, halite_ships, player_influence_maps, boxed_in_zero_halite_opponents, ignore_convert_positions, ship_diff_smoothed, ballistic_attack_base_targets, safe_to_return_halites, safe_to_collect_margin, always_attack_opponent_id, likely_convert_opponent_positions, possible_convert_opponent_positions, my_base_distances, nearest_base_distances, history) = get_ship_scores( config, observation, player_obs, env_config, np_rng, ignore_bad_attack_directions, history, env_obs_ids, env_observation, verbose) # if observation['step'] in [242] and ( # observation['rewards_bases_ships'][0][1].sum()) == 1: # import pdb; pdb.set_trace() # Compute the coordinated high level ship plan (ship_plans, my_next_bases, plan_ship_scores, base_attackers, box_in_duration, history, ship_plans_duration, inner_loop_ship_plans_duration, recompute_ship_plan_order_duration, on_rescue_mission, ships_on_box_mission, requested_save_conversion_budget, non_abandoned_base_pos, this_step_base_defense_keys, should_spawn_base_next_step, ship_plans_reordered, victory_formation) = get_ship_plans( config, observation, player_obs, env_config, verbose, copy.deepcopy(all_ship_scores), np_rng, weighted_base_mask, steps_remaining, opponent_ships_sensible_actions, opponent_ships_scaled, main_base_distances, history, env_observation, player_influence_maps, ignore_convert_positions, ship_diff_smoothed, safe_to_return_halites, safe_to_collect_margin, always_attack_opponent_id, likely_convert_opponent_positions, possible_convert_opponent_positions, my_base_distances, nearest_base_distances) # Translate the ship high level plans to basic move/convert actions (mapped_actions, remaining_budget, my_next_ships, my_next_halite, updated_ship_pos, action_overrides, ship_map_duration) = map_ship_plans_to_actions( config, observation, player_obs, env_observation, env_config, verbose, plan_ship_scores, all_ship_scores, ship_plans, np_rng, ignore_bad_attack_directions, base_attackers, steps_remaining, opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, history, env_obs_ids, opponent_ships_scaled, main_base_distances, ignore_convert_positions, ballistic_attack_base_targets, player_influence_maps) ship_actions = copy.copy(mapped_actions) # Decide for all bases whether to spawn or keep the base available base_actions, remaining_budget = decide_existing_base_spawns( config, observation, player_obs, my_next_bases, my_next_ships, my_next_halite, env_config, remaining_budget, verbose, ship_plans, updated_ship_pos, weighted_base_mask, history, requested_save_conversion_budget, victory_formation) # Add data to my history so I can update it appropriately at the beginning of # the next step. history = update_history_end_step( history, observation, ship_actions, opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, ship_plans, player_obs, env_observation, main_base_distances, on_rescue_mission, boxed_in_zero_halite_opponents, ships_on_box_mission, non_abandoned_base_pos, this_step_base_defense_keys, should_spawn_base_next_step, ballistic_attack_base_targets, safe_to_collect_margin, get_actions_start_time) mapped_actions.update(base_actions) return mapped_actions, history, ship_plans def get_base_pos(base_data, grid_size): base_pos = np.zeros((grid_size, grid_size), dtype=np.bool) for _, v in base_data.items(): row, col = row_col_from_square_grid_pos(v, grid_size) base_pos[row, col] = 1 return base_pos def get_ship_halite_pos(ship_data, grid_size): ship_pos = np.zeros((grid_size, grid_size), dtype=np.bool) ship_halite = np.zeros((grid_size, grid_size), dtype=np.float32) for _, v in ship_data.items(): row, col = row_col_from_square_grid_pos(v[0], grid_size) ship_pos[row, col] = 1 ship_halite[row, col] = v[1] return ship_pos, ship_halite def structured_env_obs(env_configuration, env_observation, active_id): grid_size = env_configuration.size halite = np.array(env_observation['halite']).reshape([ grid_size, grid_size]) num_episode_steps = env_configuration.episodeSteps step = env_observation.step relative_step = step/(num_episode_steps-2) num_agents = len(env_observation.players) rewards_bases_ships = [] for i in range(num_agents): player_obs = env_observation.players[i] reward = player_obs[0] base_pos = get_base_pos(player_obs[1], grid_size) ship_pos, ship_halite = get_ship_halite_pos(player_obs[2], grid_size) rewards_bases_ships.append((reward, base_pos, ship_pos, ship_halite)) # Move the agent's rewards_bases_ships to the front of the list agent_vals = rewards_bases_ships.pop(active_id) rewards_bases_ships = [agent_vals] + rewards_bases_ships return { 'halite': halite, 'relative_step': relative_step, 'rewards_bases_ships': rewards_bases_ships, 'step': step, } ############################################################################### HISTORY = {} def my_agent(observation, env_config, **kwargs): global HISTORY rng_action_seed = kwargs.get('rng_action_seed', 0) active_id = observation.player current_observation = structured_env_obs(env_config, observation, active_id) player_obs = observation.players[active_id] mapped_actions, HISTORY, ship_plans = get_config_actions( CONFIG, current_observation, player_obs, observation, env_config, HISTORY, rng_action_seed) if LOCAL_MODE: # This is to allow for debugging of the history outside of the agent return mapped_actions, copy.deepcopy(HISTORY) else: print(ship_plans) return mapped_actions
the-stack_106_20331
# Copyright: 2009 PathsScale # Copyright: 2010 Brian Harring <[email protected]> # License: GPL2/BSD import time from snakeoil.data_source import text_data_source from snakeoil.osutils import pjoin, unlink_if_exists from snakeoil.process.spawn import spawn from pkgcore.fs import tar, fs, contents OPS = { '>=': (True, '>='), '!<': (False, '<<'), } def parsedeps(s): #pkgs = s #(' ') pkgs = s.split(' ') deps = [] cons = [] for pkg in pkgs: cat, name = pkg.split('/', 1) name = name.split('-', 1) if len(name) == 1: name, ver = name, None else: name, ver = name cstart = min(i for (i, c) in enumerate(cat) if c.isalpha()) op, cat = cat[:cstart], cat[cstart:] if not op: deps.append((name, None, None)) continue dop = OPS[op] if dop[0]: deps.append((name, dop[1], ver)) else: cons.append((name, dop[1], ver)) sdeps = [] for name, op, ver in deps: if op is None or ver is None: assert op is None and ver is None sdeps.append(name) continue sdeps.append('%s (%s %s)' % (name, op, ver)) scons = [] for name, op, ver in cons: if op is None or ver is None: assert op is None and ver is None cons.append(name) continue scons.append('%s (%s %s)' % (name, op, ver)) #return {'Depends': ', '.join(sdeps), 'Conflicts': ', '.join(scons)} ret = {'Depends': ', '.join(sdeps)} if scons and scons != "": ret['Conflicts'] = ', '.join(scons) return ret def write(tempspace, finalpath, pkg, cset=None, platform='', maintainer='', compressor='gz'): # The debian-binary file if cset is None: cset = pkg.contents # The data.tar.gz file data_path = pjoin(tempspace, 'data.tar.gz') tar.write_set(cset, data_path, compressor='gz', absolute_paths=False) # Control data file control = {} control['Package'] = pkg.package #control['Section'] = pkg.category control['Version'] = pkg.fullver control['Architecture'] = platform if maintainer: control['Maintainer'] = maintainer control['Description'] = pkg.description pkgdeps = "%s" % (pkg.rdepend,) if (pkgdeps is not None and pkgdeps != ""): control.update(parsedeps(pkgdeps)) control_ds = text_data_source("".join("%s: %s\n" % (k, v) for (k, v) in control.items())) control_path = pjoin(tempspace, 'control.tar.gz') tar.write_set( contents.contentsSet([ fs.fsFile('control', {'size':len(control_ds.text_fileobj().getvalue())}, data=control_ds, uid=0, gid=0, mode=0o644, mtime=time.time()) ]), control_path, compressor='gz') dbinary_path = pjoin(tempspace, 'debian-binary') with open(dbinary_path, 'w') as f: f.write("2.0\n") ret = spawn(['ar', '-r', finalpath, dbinary_path, data_path, control_path]) if ret != 0: unlink_if_exists(finalpath) raise Exception("failed creating archive: return code %s" % (ret,))
the-stack_106_20332
# Copyright 2018 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for the Cirq interface routines """ import cirq import pytest import pennylane as qml from pennylane import numpy as np from pennylane_cirq.cirq_interface import CirqOperation, unitary_matrix_gate class TestCirqOperation: """Tests the CirqOperation class.""" def test_init(self): """Tests that the class is properly initialized.""" fun = lambda x: cirq.Ry(x) operation = CirqOperation(fun) assert operation.parametrized_cirq_gates is None assert operation.parametrization == fun assert not operation.is_inverse def test_parametrize(self): """Tests that parametrize yields the correct queue of operations.""" operation = CirqOperation( lambda a, b, c: [cirq.X, cirq.Ry(a), cirq.Rx(b), cirq.Z, cirq.Rz(c)] ) operation.parametrize(0.1, 0.2, 0.3) assert operation.parametrized_cirq_gates[0] == cirq.X assert operation.parametrized_cirq_gates[1] == cirq.Ry(0.1) assert operation.parametrized_cirq_gates[2] == cirq.Rx(0.2) assert operation.parametrized_cirq_gates[3] == cirq.Z assert operation.parametrized_cirq_gates[4] == cirq.Rz(0.3) def test_apply(self): """Tests that the operations in the queue are correctly applied.""" operation = CirqOperation( lambda a, b, c: [cirq.X, cirq.Ry(a), cirq.Rx(b), cirq.Z, cirq.Rz(c)] ) operation.parametrize(0.1, 0.2, 0.3) qubit = cirq.LineQubit(1) gate_applications = list(operation.apply(qubit)) assert gate_applications[0] == cirq.X.on(qubit) assert gate_applications[1] == cirq.Ry(0.1).on(qubit) assert gate_applications[2] == cirq.Rx(0.2).on(qubit) assert gate_applications[3] == cirq.Z.on(qubit) assert gate_applications[4] == cirq.Rz(0.3).on(qubit) def test_apply_not_parametrized(self): """Tests that the proper error is raised if an Operation is applied that was not parametrized before.""" operation = CirqOperation( lambda a, b, c: [cirq.X, cirq.Ry(a), cirq.Rx(b), cirq.Z, cirq.Rz(c)] ) qubit = cirq.LineQubit(1) with pytest.raises( qml.DeviceError, match="CirqOperation must be parametrized before it can be applied." ): operation.apply(qubit) def test_inv(self): """Test that inv inverts the gate and applying inv twice yields the initial state.""" operation = CirqOperation( lambda a, b, c: [cirq.X, cirq.Ry(a), cirq.Rx(b), cirq.Z, cirq.Rz(c)] ) assert not operation.is_inverse operation.inv() assert operation.is_inverse operation.inv() assert not operation.is_inverse def test_inv_apply(self): """Tests that the operations in the queue are correctly applied if the CirqOperation is inverted.""" operation = CirqOperation( lambda a, b, c: [cirq.X, cirq.Ry(a), cirq.Rx(b), cirq.Z, cirq.Rz(c)] ) operation.inv() operation.parametrize(0.1, 0.2, 0.3) qubit = cirq.LineQubit(1) gate_applications = list(operation.apply(qubit)) assert gate_applications[0] == cirq.Rz(-0.3).on(qubit) assert gate_applications[1] == (cirq.Z ** -1).on(qubit) assert gate_applications[2] == cirq.Rx(-0.2).on(qubit) assert gate_applications[3] == cirq.Ry(-0.1).on(qubit) assert gate_applications[4] == (cirq.X ** -1).on(qubit) def test_inv_error(self): """Test that inv raises an error if the CirqOperation was already parametrized.""" operation = CirqOperation( lambda a, b, c: [cirq.X, cirq.Ry(a), cirq.Rx(b), cirq.Z, cirq.Rz(c)] ) operation.parametrize(0.1, 0.2, 0.3) with pytest.raises( qml.DeviceError, match="CirqOperation can't be inverted after it was parametrized" ): operation.inv() class TestMethods: """Tests the independent methods in the Cirq interface.""" @pytest.mark.parametrize( "U,expected_cirq_operation", [ ([[1, 0], [0, -1]], cirq.SingleQubitMatrixGate(np.array([[1, 0], [0, -1]])),), ([[0, 1j], [-1j, 0]], cirq.SingleQubitMatrixGate(np.array([[0, 1j], [-1j, 0]])),), ( [[0, 1j, 0, 0], [-1j, 0, 0, 0], [0, 0, 0, 1j], [0, 0, -1j, 0]], cirq.TwoQubitMatrixGate( np.array([[0, 1j, 0, 0], [-1j, 0, 0, 0], [0, 0, 0, 1j], [0, 0, -1j, 0]]) ), ), ], ) def test_unitary_matrix_gate(self, U, expected_cirq_operation): """Tests that the correct Cirq operation is returned for the unitary matrix gate.""" assert unitary_matrix_gate(np.array(U)) == expected_cirq_operation @pytest.mark.parametrize("U", [np.eye(6), np.eye(10), np.eye(3), np.eye(3, 5)]) def test_unitary_matrix_gate_error(self, U): """Tests that an error is raised if the given matrix is of wrong format.""" with pytest.raises( qml.DeviceError, match="Cirq only supports single-qubit and two-qubit unitary matrix gates.", ): unitary_matrix_gate(np.array(U))
the-stack_106_20335
# Copyright (c) 2015, Ecole Polytechnique Federale de Lausanne, Blue Brain Project # All rights reserved. # # This file is part of NeuroM <https://github.com/BlueBrain/NeuroM> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of # its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """NeuroM neuron checking functions. Contains functions for checking validity of neuron neurites and somata. """ from itertools import chain, islice import numpy as np from neurom import NeuriteType from neurom.check import CheckResult from neurom.check.morphtree import get_flat_neurites from neurom.core import Section, iter_neurites, iter_sections, iter_segments from neurom.core.dataformat import COLS from neurom.features import neuritefunc as _nf from neurom.morphmath import section_length, segment_length def _read_neurite_type(neurite): """Simply read the stored neurite type.""" return neurite.type def has_axon(neuron, treefun=_read_neurite_type): """Check if a neuron has an axon. Arguments: neuron(Neuron): The neuron object to test treefun: Optional function to calculate the tree type of neuron's neurites Returns: CheckResult with result """ return CheckResult(NeuriteType.axon in (treefun(n) for n in neuron.neurites)) def has_apical_dendrite(neuron, min_number=1, treefun=_read_neurite_type): """Check if a neuron has apical dendrites. Arguments: neuron(Neuron): The neuron object to test min_number: minimum number of apical dendrites required treefun: Optional function to calculate the tree type of neuron's neurites Returns: CheckResult with result """ types = [treefun(n) for n in neuron.neurites] return CheckResult(types.count(NeuriteType.apical_dendrite) >= min_number) def has_basal_dendrite(neuron, min_number=1, treefun=_read_neurite_type): """Check if a neuron has basal dendrites. Arguments: neuron(Neuron): The neuron object to test min_number: minimum number of basal dendrites required treefun: Optional function to calculate the tree type of neuron's neurites Returns: CheckResult with result """ types = [treefun(n) for n in neuron.neurites] return CheckResult(types.count(NeuriteType.basal_dendrite) >= min_number) def has_no_flat_neurites(neuron, tol=0.1, method='ratio'): """Check that a neuron has no flat neurites. Arguments: neuron(Neuron): The neuron object to test tol(float): tolerance method(string): way of determining flatness, 'tolerance', 'ratio' \ as described in :meth:`neurom.check.morphtree.get_flat_neurites` Returns: CheckResult with result """ return CheckResult(len(get_flat_neurites(neuron, tol, method)) == 0) def has_all_nonzero_segment_lengths(neuron, threshold=0.0): """Check presence of neuron segments with length not above threshold. Arguments: neuron(Neuron): The neuron object to test threshold(float): value above which a segment length is considered to be non-zero Returns: CheckResult with result including list of (section_id, segment_id) of zero length segments """ bad_ids = [] for sec in _nf.iter_sections(neuron): p = sec.points for i, s in enumerate(zip(p[:-1], p[1:])): if segment_length(s) <= threshold: bad_ids.append((sec.id, i)) return CheckResult(len(bad_ids) == 0, bad_ids) def has_all_nonzero_section_lengths(neuron, threshold=0.0): """Check presence of neuron sections with length not above threshold. Arguments: neuron(Neuron): The neuron object to test threshold(float): value above which a section length is considered to be non-zero Returns: CheckResult with result including list of ids of bad sections """ bad_ids = [s.id for s in _nf.iter_sections(neuron.neurites) if section_length(s.points) <= threshold] return CheckResult(len(bad_ids) == 0, bad_ids) def has_all_nonzero_neurite_radii(neuron, threshold=0.0): """Check presence of neurite points with radius not above threshold. Arguments: neuron(Neuron): The neuron object to test threshold: value above which a radius is considered to be non-zero Returns: CheckResult with result including list of (section ID, point ID) pairs of zero-radius points """ bad_ids = [] seen_ids = set() for s in _nf.iter_sections(neuron): for i, p in enumerate(s.points): info = (s.id, i) if p[COLS.R] <= threshold and info not in seen_ids: seen_ids.add(info) bad_ids.append(info) return CheckResult(len(bad_ids) == 0, bad_ids) def has_nonzero_soma_radius(neuron, threshold=0.0): """Check if soma radius not above threshold. Arguments: neuron(Neuron): The neuron object to test threshold: value above which the soma radius is considered to be non-zero Returns: CheckResult with result """ return CheckResult(neuron.soma.radius > threshold) def has_no_jumps(neuron, max_distance=30.0, axis='z'): """Check if there are jumps (large movements in the `axis`). Arguments: neuron(Neuron): The neuron object to test max_distance(float): value above which consecutive z-values are considered a jump axis(str): one of x/y/z, which axis to check for jumps Returns: CheckResult with result list of ids of bad sections """ bad_ids = [] axis = {'x': COLS.X, 'y': COLS.Y, 'z': COLS.Z, }[axis.lower()] for neurite in iter_neurites(neuron): section_segment = ((sec, seg) for sec in iter_sections(neurite) for seg in iter_segments(sec)) for sec, (p0, p1) in islice(section_segment, 1, None): # Skip neurite root segment if max_distance < abs(p0[axis] - p1[axis]): bad_ids.append((sec.id, [p0, p1])) return CheckResult(len(bad_ids) == 0, bad_ids) def has_no_root_node_jumps(neuron, radius_multiplier=2): """Check that the neurites have no root node jumps. Their first point not should not be further than `radius_multiplier * soma radius` from the soma center """ bad_ids = [] for neurite in iter_neurites(neuron): p0 = neurite.root_node.points[0, COLS.XYZ] distance = np.linalg.norm(p0 - neuron.soma.center) if distance > radius_multiplier * neuron.soma.radius: bad_ids.append((neurite.root_node.id, [p0])) return CheckResult(len(bad_ids) == 0, bad_ids) def has_no_fat_ends(neuron, multiple_of_mean=2.0, final_point_count=5): """Check if leaf points are too large. Arguments: neuron(Neuron): The neuron object to test multiple_of_mean(float): how many times larger the final radius has to be compared to the mean of the final points final_point_count(int): how many points to include in the mean Returns: CheckResult with result list of ids of bad sections Note: A fat end is defined as a leaf segment whose last point is larger by a factor of `multiple_of_mean` than the mean of the points in `final_point_count` """ bad_ids = [] for leaf in _nf.iter_sections(neuron.neurites, iterator_type=Section.ileaf): mean_radius = np.mean(leaf.points[1:][-final_point_count:, COLS.R]) if mean_radius * multiple_of_mean <= leaf.points[-1, COLS.R]: bad_ids.append((leaf.id, leaf.points[-1:])) return CheckResult(len(bad_ids) == 0, bad_ids) def has_no_narrow_start(neuron, frac=0.9): """Check if neurites have a narrow start. Arguments: neuron(Neuron): The neuron object to test frac(float): Ratio that the second point must be smaller than the first Returns: CheckResult with a list of all first segments of neurites with a narrow start """ bad_ids = [(neurite.root_node.id, neurite.root_node.points[np.newaxis, 1]) for neurite in neuron.neurites if neurite.root_node.points[0][COLS.R] < frac * neurite.root_node.points[1][COLS.R]] return CheckResult(len(bad_ids) == 0, bad_ids) def has_no_dangling_branch(neuron): """Check if the neuron has dangling neurites. Are considered dangling - dendrites whose first point is too far from the soma center - axons whose first point is too far from the soma center AND from any point belonging to a dendrite Arguments: neuron(Neuron): The neuron object to test Returns: CheckResult with a list of all first segments of dangling neurites """ soma_center = neuron.soma.points[:, COLS.XYZ].mean(axis=0) recentered_soma = neuron.soma.points[:, COLS.XYZ] - soma_center radius = np.linalg.norm(recentered_soma, axis=1) soma_max_radius = radius.max() dendritic_points = np.array(list(chain.from_iterable(n.points for n in iter_neurites(neuron) if n.type != NeuriteType.axon))) def is_dangling(neurite): """Is the neurite dangling ?.""" starting_point = neurite.points[0][COLS.XYZ] if np.linalg.norm(starting_point - soma_center) - soma_max_radius <= 12.: return False if neurite.type != NeuriteType.axon: return True distance_to_dendrites = np.linalg.norm(dendritic_points[:, COLS.XYZ] - starting_point, axis=1) return np.all(distance_to_dendrites >= 2 * dendritic_points[:, COLS.R] + 2) bad_ids = [(n.root_node.id, [n.root_node.points[0]]) for n in iter_neurites(neuron) if is_dangling(n)] return CheckResult(len(bad_ids) == 0, bad_ids) def has_no_narrow_neurite_section(neuron, neurite_filter, radius_threshold=0.05, considered_section_min_length=50): """Check if the neuron has dendrites with narrow sections. Arguments: neuron(Neuron): The neuron object to test neurite_filter(callable): filter the neurites by this callable radius_threshold(float): radii below this are considered narro considered_section_min_length(float): sections with length below this are not taken into account Returns: CheckResult with result. result.info contains the narrow section ids and their first point """ considered_sections = (sec for sec in iter_sections(neuron, neurite_filter=neurite_filter) if sec.length > considered_section_min_length) def narrow_section(section): """Select narrow sections.""" return section.points[:, COLS.R].mean() < radius_threshold bad_ids = [(section.id, section.points[np.newaxis, 1]) for section in considered_sections if narrow_section(section)] return CheckResult(len(bad_ids) == 0, bad_ids) def has_multifurcation(neuron): """Check if a section has more than 3 children.""" bad_ids = [(section.id, section.points[np.newaxis, -1]) for section in iter_sections(neuron) if len(section.children) > 3] return CheckResult(len(bad_ids) == 0, bad_ids) def has_no_single_children(neuron): """Check if the neuron has sections with only one child section.""" bad_ids = [section.id for section in iter_sections(neuron) if len(section.children) == 1] return CheckResult(len(bad_ids) == 0, bad_ids)
the-stack_106_20336
""" molecule.py A python package for the MolSSI Software Summer School. Contains a molecule class """ import numpy as np from .measure import calculate_angle, calculate_distance class Molecule: def __init__(self, name, symbols, coordinates): if isinstance(name, str): self.name = name else: raise TypeError("Name is not a string.") self.symbols = symbols self._coordinates = coordinates self.bonds = self.build_bond_list() @property def num_atoms(self): return len(self._coordinates) @property def coordinates(self): return self._coordinates @coordinates.setter def coordinates(self, new_coordinates): self._coordinates = new_coordinates #setting the coordinates variable to private self.bonds = self.build_bond_list() def build_bond_list(self, max_bond=2.93, min_bond=0): """ Build a list of bonds based on a distance criteria. Atoms within a specified distance of one another will be considered bonded. Parameters ---------- max_bond : float, optional min_bond : float, optional Returns ------- bond_list : list List of bonded atoms. Returned as list of tuples where the values are the atom indices. """ bonds = {} for atom1 in range(self.num_atoms): for atom2 in range(atom1, self.num_atoms): distance = calculate_distance(self.coordinates[atom1], self.coordinates[atom2]) if distance > min_bond and distance < max_bond: bonds[(atom1, atom2)] = distance return bonds if __name__ == "__main__": # Do something if this file is invoked on its own random_coordinates = np.random.random([3, 3]) name = "my_molecule" symbols = ["H", "O", "H"] my_molecule = Molecule(name, symbols, random_coordinates) print(F'There are {len(my_molecule.bonds)} bonds') print(F'The coordinates are {my_molecule.coordinates}') random_coordinates[0] += 100 my_molecule.coordinates = random_coordinates print(F'\n\nThere are {len(my_molecule.bonds)} bonds') print(F'The coordinates are {my_molecule.coordinates}') pass