filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_17534
# rasterio from collections import namedtuple import logging import os import warnings from rasterio._base import eval_window, window_shape, window_index from rasterio._drivers import driver_count, GDALEnv import rasterio.dtypes from rasterio.dtypes import ( bool_, ubyte, uint8, uint16, int16, uint32, int32, float32, float64, complex_) from rasterio.five import string_types from rasterio.transform import Affine, guard_transform # Classes in rasterio._io are imported below just before we need them. __all__ = [ 'band', 'open', 'drivers', 'copy', 'pad'] __version__ = "0.15.1" log = logging.getLogger('rasterio') class NullHandler(logging.Handler): def emit(self, record): pass log.addHandler(NullHandler()) def open( path, mode='r', driver=None, width=None, height=None, count=None, crs=None, transform=None, dtype=None, nodata=None, **kwargs): """Open file at ``path`` in ``mode`` "r" (read), "r+" (read/write), or "w" (write) and return a ``Reader`` or ``Updater`` object. In write mode, a driver name such as "GTiff" or "JPEG" (see GDAL docs or ``gdal_translate --help`` on the command line), ``width`` (number of pixels per line) and ``height`` (number of lines), the ``count`` number of bands in the new file must be specified. Additionally, the data type for bands such as ``rasterio.ubyte`` for 8-bit bands or ``rasterio.uint16`` for 16-bit bands must be specified using the ``dtype`` argument. A coordinate reference system for raster datasets in write mode can be defined by the ``crs`` argument. It takes Proj4 style mappings like {'proj': 'longlat', 'ellps': 'WGS84', 'datum': 'WGS84', 'no_defs': True} An affine transformation that maps ``col,row`` pixel coordinates to ``x,y`` coordinates in the coordinate reference system can be specified using the ``transform`` argument. The value may be either an instance of ``affine.Affine`` or a 6-element sequence of the affine transformation matrix coefficients ``a, b, c, d, e, f``. These coefficients are shown in the figure below. | x | | a b c | | c | | y | = | d e f | | r | | 1 | | 0 0 1 | | 1 | a: rate of change of X with respect to increasing column, i.e. pixel width b: rotation, 0 if the raster is oriented "north up" c: X coordinate of the top left corner of the top left pixel f: Y coordinate of the top left corner of the top left pixel d: rotation, 0 if the raster is oriented "north up" e: rate of change of Y with respect to increasing row, usually a negative number i.e. -1 * pixel height f: Y coordinate of the top left corner of the top left pixel Finally, additional kwargs are passed to GDAL as driver-specific dataset creation parameters. """ if not isinstance(path, string_types): raise TypeError("invalid path: %r" % path) if mode and not isinstance(mode, string_types): raise TypeError("invalid mode: %r" % mode) if driver and not isinstance(driver, string_types): raise TypeError("invalid driver: %r" % driver) if mode in ('r', 'r+'): if not os.path.exists(path): raise IOError("no such file or directory: %r" % path) if transform: transform = guard_transform(transform) if mode == 'r': from rasterio._io import RasterReader s = RasterReader(path) elif mode == 'r+': from rasterio._io import writer s = writer(path, mode) elif mode == 'r-': from rasterio._base import DatasetReader s = DatasetReader(path) elif mode == 'w': from rasterio._io import writer s = writer(path, mode, driver=driver, width=width, height=height, count=count, crs=crs, transform=transform, dtype=dtype, nodata=nodata, **kwargs) else: raise ValueError( "mode string must be one of 'r', 'r+', or 'w', not %s" % mode) s.start() return s def copy(src, dst, **kw): """Copy a source dataset to a new destination with driver specific creation options. ``src`` must be an existing file and ``dst`` a valid output file. A ``driver`` keyword argument with value like 'GTiff' or 'JPEG' is used to control the output format. This is the one way to create write-once files like JPEGs. """ from rasterio._copy import RasterCopier with drivers(): return RasterCopier()(src, dst, **kw) def drivers(**kwargs): """Returns a gdal environment with registered drivers.""" if driver_count() == 0: log.debug("Creating a chief GDALEnv in drivers()") return GDALEnv(True, **kwargs) else: log.debug("Creating a not-responsible GDALEnv in drivers()") return GDALEnv(False, **kwargs) Band = namedtuple('Band', ['ds', 'bidx', 'dtype', 'shape']) def band(ds, bidx): """Wraps a dataset and a band index up as a 'Band'""" return Band( ds, bidx, set(ds.dtypes).pop(), ds.shape) def pad(array, transform, pad_width, mode=None, **kwargs): """Returns a padded array and shifted affine transform matrix. Array is padded using `numpy.pad()`.""" import numpy transform = guard_transform(transform) padded_array = numpy.pad(array, pad_width, mode, **kwargs) padded_trans = list(transform) padded_trans[2] -= pad_width*padded_trans[0] padded_trans[5] -= pad_width*padded_trans[4] return padded_array, Affine(*padded_trans[:6])
the-stack_106_17535
""" URL: https://codeforces.com/problemset/problem/1417/A Author: Safiul Kabir [safiulanik at gmail.com] Tags: greedy, math, *800 """ t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() count = 0 for i in range(1, n): if a[i] <= k: while a[0] + a[i] <= k: a[i] += a[0] count += 1 print(count)
the-stack_106_17536
# # Copyright (c) 2020 Idiap Research Institute, http://www.idiap.ch/ # Written by Angelos Katharopoulos <[email protected]>, # Apoorv Vyas <[email protected]> # """Similar to the corresponding module in fast_transformers.attention, this module performs all the query, key, value projections and output projections leaving the implementation of the attention to the inner attention module.""" from torch.nn import Linear, Module from ....events import EventDispatcher from ..._utils import check_state class RecurrentAttentionLayer(Module): """See fast_transformers.attention.attention_layer.AttentionLayer. The only difference with the corresponding module is that this projects only one input and then calls the inner attention with the provided previous state. Arguments --------- attention: Specific inner attention implementation that just computes a weighted average of values given a similarity of queries and keys. d_model: The input feature dimensionality n_heads: The number of heads for the multi head attention d_keys: The dimensionality of the keys/queries (default: d_model/n_heads) d_values: The dimensionality of the values (default: d_model/n_heads) event_dispatcher: str or EventDispatcher instance to be used by this module for dispatching events (default: the default global dispatcher) """ def __init__(self, attention, d_model, n_heads, d_keys=None, d_values=None, d_model_keys=None, event_dispatcher=""): super(RecurrentAttentionLayer, self).__init__() # Fill d_keys and d_values d_keys = d_keys or (d_model//n_heads) d_values = d_values or (d_model//n_heads) d_model_keys = d_model_keys or d_model self.inner_attention = attention self.query_projection = Linear(d_model, d_keys * n_heads) self.key_projection = Linear(d_model_keys, d_keys * n_heads) self.value_projection = Linear(d_model_keys, d_values * n_heads) self.out_projection = Linear(d_values * n_heads, d_model) self.n_heads = n_heads self.event_dispatcher = EventDispatcher.get(event_dispatcher) def forward(self, query, key, value, state=None, memory=None): """Apply attention to the passed in query/key/value after projecting them to multiple heads. In the argument description we make use of the following sizes - N: the batch size - D: The input feature dimensionality passed in the constructor as 'd_model' Arguments --------- query: (N, D) The tensor containing the queries key: (N, D) The tensor containing the keys value: (N, D) The tensor containing the values state: The state varies depending on the inner attention implementation memory: **Deprecated** and replaced by state Returns ------- The new value for each query as a tensor of shape (N, D). """ # Normalize the state/memory state = check_state(state, memory) # Project the queries/keys/values query = self.query_projection(query) key = self.key_projection(key) value = self.value_projection(value) # Reshape them into many heads and compute the attention N, D = query.shape H = self.n_heads new_value, state = self.inner_attention( query.view(N, H, -1), key.view(N, H, -1), value.view(N, H, -1), state ) new_value = new_value.view(N, -1) # Project the output and return return self.out_projection(new_value), state
the-stack_106_17537
# Copyright (c) 2015-2016, 2018, 2020 Claudiu Popa <[email protected]> # Copyright (c) 2016 Ceridwen <[email protected]> # Copyright (c) 2017 Roy Wright <[email protected]> # Copyright (c) 2018 Ashley Whetter <[email protected]> # Copyright (c) 2019 Antoine Boellinger <[email protected]> # Copyright (c) 2020-2021 hippo91 <[email protected]> # Copyright (c) 2021 Pierre Sassoulas <[email protected]> # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/master/LICENSE """Astroid hooks for the PyQT library.""" from astroid import nodes, parse from astroid.brain.helpers import register_module_extender from astroid.builder import AstroidBuilder from astroid.manager import AstroidManager def _looks_like_signal(node, signal_name="pyqtSignal"): if "__class__" in node.instance_attrs: try: cls = node.instance_attrs["__class__"][0] return cls.name == signal_name except AttributeError: # return False if the cls does not have a name attribute pass return False def transform_pyqt_signal(node): module = parse( """ class pyqtSignal(object): def connect(self, slot, type=None, no_receiver_check=False): pass def disconnect(self, slot): pass def emit(self, *args): pass """ ) signal_cls = module["pyqtSignal"] node.instance_attrs["emit"] = signal_cls["emit"] node.instance_attrs["disconnect"] = signal_cls["disconnect"] node.instance_attrs["connect"] = signal_cls["connect"] def transform_pyside_signal(node): module = parse( """ class NotPySideSignal(object): def connect(self, receiver, type=None): pass def disconnect(self, receiver): pass def emit(self, *args): pass """ ) signal_cls = module["NotPySideSignal"] node.instance_attrs["connect"] = signal_cls["connect"] node.instance_attrs["disconnect"] = signal_cls["disconnect"] node.instance_attrs["emit"] = signal_cls["emit"] def pyqt4_qtcore_transform(): return AstroidBuilder(AstroidManager()).string_build( """ def SIGNAL(signal_name): pass class QObject(object): def emit(self, signal): pass """ ) register_module_extender(AstroidManager(), "PyQt4.QtCore", pyqt4_qtcore_transform) AstroidManager().register_transform( nodes.FunctionDef, transform_pyqt_signal, _looks_like_signal ) AstroidManager().register_transform( nodes.ClassDef, transform_pyside_signal, lambda node: node.qname() in ("PySide.QtCore.Signal", "PySide2.QtCore.Signal"), )
the-stack_106_17538
from unittest import mock import pytest from h.search import ( DeletedFilter, Limiter, Search, TopLevelAnnotationsFilter, UserFilter, ) from h.services.annotation_stats import AnnotationStatsService, annotation_stats_factory class TestAnnotationStatsService: def test_total_user_annotation_count_calls_search_with_request( self, svc, search, pyramid_request ): svc.total_user_annotation_count("userid") search.assert_called_with(pyramid_request) def test_total_user_annotation_count_calls_run_with_userid_and_limit( self, svc, search ): svc.total_user_annotation_count("userid") search.return_value.run.assert_called_with({"limit": 0, "user": "userid"}) def test_toal_user_annotation_count_attaches_correct_modifiers( self, svc, search, limiter, deleted_filter, user_filter ): svc.total_user_annotation_count("userid") assert search.return_value.clear.called assert search.return_value.append_modifier.call_count == 3 search.return_value.append_modifier.assert_has_calls( [ mock.call(limiter.return_value), mock.call(deleted_filter.return_value), mock.call(user_filter.return_value), ] ) def test_total_user_annotation_count_returns_total(self, svc, search): search.return_value.run.return_value.total = 3 anns = svc.total_user_annotation_count("userid") assert anns == 3 def test_user_annotation_count_calls_search_with_request( self, svc, search, pyramid_request ): svc.user_annotation_count("userid") search.assert_called_with(pyramid_request) def test_user_annotation_count_calls_run_with_userid_and_limit(self, svc, search): svc.user_annotation_count("userid") search.return_value.run.assert_called_with({"limit": 0, "user": "userid"}) def test_user_annotation_count_excludes_replies( self, svc, search, top_level_annotation_filter ): svc.user_annotation_count("userid") search.return_value.append_modifier.assert_called_with( top_level_annotation_filter.return_value ) def test_user_annotation_count_returns_total(self, svc, search): search.return_value.run.return_value.total = 3 anns = svc.user_annotation_count("userid") assert anns == 3 def test_group_annotation_count_calls_search_with_request( self, svc, search, pyramid_request ): svc.group_annotation_count("groupid") search.assert_called_with(pyramid_request) def test_group_annotation_count_calls_run_with_groupid_and_limit(self, svc, search): svc.group_annotation_count("groupid") search.return_value.run.assert_called_with({"limit": 0, "group": "groupid"}) def test_group_annotation_count_excludes_replies( self, svc, search, top_level_annotation_filter ): svc.group_annotation_count("groupid") search.return_value.append_modifier.assert_called_with( top_level_annotation_filter.return_value ) def test_group_annotation_count_returns_total(self, svc, search): search.return_value.run.return_value.total = 3 anns = svc.group_annotation_count("groupid") assert anns == 3 class TestAnnotationStatsFactory: def test_returns_service(self): svc = annotation_stats_factory(mock.Mock(), mock.Mock()) assert isinstance(svc, AnnotationStatsService) def test_sets_request(self): request = mock.Mock() svc = annotation_stats_factory(mock.Mock(), request) assert svc.request == request @pytest.fixture def svc(pyramid_request): return AnnotationStatsService(request=pyramid_request) @pytest.fixture def search(patch): return patch("h.services.annotation_stats.Search", autospec=Search, spec_set=True) @pytest.fixture def top_level_annotation_filter(patch): return patch( "h.services.annotation_stats.TopLevelAnnotationsFilter", autospec=TopLevelAnnotationsFilter, spec_set=True, ) @pytest.fixture def limiter(patch): return patch("h.services.annotation_stats.Limiter", autospec=Limiter, spec_set=True) @pytest.fixture def deleted_filter(patch): return patch( "h.services.annotation_stats.DeletedFilter", autospec=DeletedFilter, spec_set=True, ) @pytest.fixture def user_filter(patch): return patch( "h.services.annotation_stats.UserFilter", autospec=UserFilter, spec_set=True )
the-stack_106_17540
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import s1ap_types import time from integ_tests.s1aptests import s1ap_wrapper from integ_tests.s1aptests.s1ap_utils import SpgwUtil class TestAttachDetachDedicatedInvalidImsi(unittest.TestCase): def setUp(self): self._s1ap_wrapper = s1ap_wrapper.TestWrapper() self._spgw_util = SpgwUtil() def tearDown(self): self._s1ap_wrapper.cleanup() def test_attach_detach(self): """ attach/detach + invalid IMSI in dedicated bearer test with a single UE """ num_ues = 1 detach_type = [s1ap_types.ueDetachType_t.UE_NORMAL_DETACH.value, s1ap_types.ueDetachType_t.UE_SWITCHOFF_DETACH.value] wait_for_s1 = [True, False] self._s1ap_wrapper.configUEDevice(num_ues) for i in range(num_ues): req = self._s1ap_wrapper.ue_req print("********************** Running End to End attach for ", "UE id ", req.ue_id) # Now actually complete the attach self._s1ap_wrapper._s1_util.attach( req.ue_id, s1ap_types.tfwCmd.UE_END_TO_END_ATTACH_REQUEST, s1ap_types.tfwCmd.UE_ATTACH_ACCEPT_IND, s1ap_types.ueAttachAccept_t) # Wait on EMM Information from MME self._s1ap_wrapper._s1_util.receive_emm_info() time.sleep(5) print("********************** Adding dedicated bearer to IMSI", ''.join('001010000000004')) # Send wrong IMSI self._spgw_util.create_bearer( 'IMSI' + ''.join('001010000000004'), 5) time.sleep(5) print("********************** Running UE detach for UE id ", req.ue_id) # Now detach the UE self._s1ap_wrapper.s1_util.detach( req.ue_id, detach_type[i], wait_for_s1[i]) if __name__ == "__main__": unittest.main()
the-stack_106_17541
# # The Python Imaging Library. # $Id$ # # BMP file handler # # Windows (and OS/2) native bitmap storage format. # # history: # 1995-09-01 fl Created # 1996-04-30 fl Added save # 1997-08-27 fl Fixed save of 1-bit images # 1998-03-06 fl Load P images as L where possible # 1998-07-03 fl Load P images as 1 where possible # 1998-12-29 fl Handle small palettes # 2002-12-30 fl Fixed load of 1-bit palette images # 2003-04-21 fl Fixed load of 1-bit monochrome images # 2003-04-23 fl Added limited support for BI_BITFIELDS compression # # Copyright (c) 1997-2003 by Secret Labs AB # Copyright (c) 1995-2003 by Fredrik Lundh # # See the README file for information on usage and redistribution. # from . import Image, ImageFile, ImagePalette from ._binary import i8, i16le as i16, i32le as i32, \ o8, o16le as o16, o32le as o32 import math __version__ = "0.7" # # -------------------------------------------------------------------- # Read BMP file BIT2MODE = { # bits => mode, rawmode 1: ("P", "P;1"), 4: ("P", "P;4"), 8: ("P", "P"), 16: ("RGB", "BGR;15"), 24: ("RGB", "BGR"), 32: ("RGB", "BGRX"), } def _accept(prefix): return prefix[:2] == b"BM" # ============================================================================== # Image plugin for the Windows BMP format. # ============================================================================== class BmpImageFile(ImageFile.ImageFile): """ Image plugin for the Windows Bitmap format (BMP) """ # -------------------------------------------------------------- Description format_description = "Windows Bitmap" format = "BMP" # --------------------------------------------------- BMP Compression values COMPRESSIONS = {'RAW': 0, 'RLE8': 1, 'RLE4': 2, 'BITFIELDS': 3, 'JPEG': 4, 'PNG': 5} RAW, RLE8, RLE4, BITFIELDS, JPEG, PNG = 0, 1, 2, 3, 4, 5 def _bitmap(self, header=0, offset=0): """ Read relevant info about the BMP """ read, seek = self.fp.read, self.fp.seek if header: seek(header) file_info = {} file_info['header_size'] = i32(read(4)) # read bmp header size @offset 14 (this is part of the header size) file_info['direction'] = -1 # --------------------- If requested, read header at a specific position header_data = ImageFile._safe_read(self.fp, file_info['header_size'] - 4) # read the rest of the bmp header, without its size # --------------------------------------------------- IBM OS/2 Bitmap v1 # ------ This format has different offsets because of width/height types if file_info['header_size'] == 12: file_info['width'] = i16(header_data[0:2]) file_info['height'] = i16(header_data[2:4]) file_info['planes'] = i16(header_data[4:6]) file_info['bits'] = i16(header_data[6:8]) file_info['compression'] = self.RAW file_info['palette_padding'] = 3 # ---------------------------------------------- Windows Bitmap v2 to v5 elif file_info['header_size'] in (40, 64, 108, 124): # v3, OS/2 v2, v4, v5 if file_info['header_size'] >= 40: # v3 and OS/2 file_info['y_flip'] = i8(header_data[7]) == 0xff file_info['direction'] = 1 if file_info['y_flip'] else -1 file_info['width'] = i32(header_data[0:4]) file_info['height'] = i32(header_data[4:8]) if not file_info['y_flip'] else 2**32 - i32(header_data[4:8]) file_info['planes'] = i16(header_data[8:10]) file_info['bits'] = i16(header_data[10:12]) file_info['compression'] = i32(header_data[12:16]) file_info['data_size'] = i32(header_data[16:20]) # byte size of pixel data file_info['pixels_per_meter'] = (i32(header_data[20:24]), i32(header_data[24:28])) file_info['colors'] = i32(header_data[28:32]) file_info['palette_padding'] = 4 self.info["dpi"] = tuple( map(lambda x: int(math.ceil(x / 39.3701)), file_info['pixels_per_meter'])) if file_info['compression'] == self.BITFIELDS: if len(header_data) >= 52: for idx, mask in enumerate(['r_mask', 'g_mask', 'b_mask', 'a_mask']): file_info[mask] = i32(header_data[36+idx*4:40+idx*4]) else: # 40 byte headers only have the three components in the bitfields masks, # ref: https://msdn.microsoft.com/en-us/library/windows/desktop/dd183376(v=vs.85).aspx # See also https://github.com/python-pillow/Pillow/issues/1293 # There is a 4th component in the RGBQuad, in the alpha location, but it # is listed as a reserved component, and it is not generally an alpha channel file_info['a_mask'] = 0x0 for mask in ['r_mask', 'g_mask', 'b_mask']: file_info[mask] = i32(read(4)) file_info['rgb_mask'] = (file_info['r_mask'], file_info['g_mask'], file_info['b_mask']) file_info['rgba_mask'] = (file_info['r_mask'], file_info['g_mask'], file_info['b_mask'], file_info['a_mask']) else: raise IOError("Unsupported BMP header type (%d)" % file_info['header_size']) # ------------------ Special case : header is reported 40, which # ---------------------- is shorter than real size for bpp >= 16 self.size = file_info['width'], file_info['height'] # -------- If color count was not found in the header, compute from bits file_info['colors'] = file_info['colors'] if file_info.get('colors', 0) else (1 << file_info['bits']) # -------------------------------- Check abnormal values for DOS attacks if file_info['width'] * file_info['height'] > 2**31: raise IOError("Unsupported BMP Size: (%dx%d)" % self.size) # ----------------------- Check bit depth for unusual unsupported values self.mode, raw_mode = BIT2MODE.get(file_info['bits'], (None, None)) if self.mode is None: raise IOError("Unsupported BMP pixel depth (%d)" % file_info['bits']) # ----------------- Process BMP with Bitfields compression (not palette) if file_info['compression'] == self.BITFIELDS: SUPPORTED = { 32: [(0xff0000, 0xff00, 0xff, 0x0), (0xff0000, 0xff00, 0xff, 0xff000000), (0x0, 0x0, 0x0, 0x0), (0xff000000, 0xff0000, 0xff00, 0x0)], 24: [(0xff0000, 0xff00, 0xff)], 16: [(0xf800, 0x7e0, 0x1f), (0x7c00, 0x3e0, 0x1f)] } MASK_MODES = { (32, (0xff0000, 0xff00, 0xff, 0x0)): "BGRX", (32, (0xff000000, 0xff0000, 0xff00, 0x0)): "XBGR", (32, (0xff0000, 0xff00, 0xff, 0xff000000)): "BGRA", (32, (0x0, 0x0, 0x0, 0x0)): "BGRA", (24, (0xff0000, 0xff00, 0xff)): "BGR", (16, (0xf800, 0x7e0, 0x1f)): "BGR;16", (16, (0x7c00, 0x3e0, 0x1f)): "BGR;15" } if file_info['bits'] in SUPPORTED: if file_info['bits'] == 32 and file_info['rgba_mask'] in SUPPORTED[file_info['bits']]: raw_mode = MASK_MODES[(file_info['bits'], file_info['rgba_mask'])] self.mode = "RGBA" if raw_mode in ("BGRA",) else self.mode elif file_info['bits'] in (24, 16) and file_info['rgb_mask'] in SUPPORTED[file_info['bits']]: raw_mode = MASK_MODES[(file_info['bits'], file_info['rgb_mask'])] else: raise IOError("Unsupported BMP bitfields layout") else: raise IOError("Unsupported BMP bitfields layout") elif file_info['compression'] == self.RAW: if file_info['bits'] == 32 and header == 22: # 32-bit .cur offset raw_mode, self.mode = "BGRA", "RGBA" else: raise IOError("Unsupported BMP compression (%d)" % file_info['compression']) # ---------------- Once the header is processed, process the palette/LUT if self.mode == "P": # Paletted for 1, 4 and 8 bit images # ----------------------------------------------------- 1-bit images if not (0 < file_info['colors'] <= 65536): raise IOError("Unsupported BMP Palette size (%d)" % file_info['colors']) else: padding = file_info['palette_padding'] palette = read(padding * file_info['colors']) greyscale = True indices = (0, 255) if file_info['colors'] == 2 else list(range(file_info['colors'])) # ------------------ Check if greyscale and ignore palette if so for ind, val in enumerate(indices): rgb = palette[ind*padding:ind*padding + 3] if rgb != o8(val) * 3: greyscale = False # -------- If all colors are grey, white or black, ditch palette if greyscale: self.mode = "1" if file_info['colors'] == 2 else "L" raw_mode = self.mode else: self.mode = "P" self.palette = ImagePalette.raw("BGRX" if padding == 4 else "BGR", palette) # ----------------------------- Finally set the tile data for the plugin self.info['compression'] = file_info['compression'] self.tile = [('raw', (0, 0, file_info['width'], file_info['height']), offset or self.fp.tell(), (raw_mode, ((file_info['width'] * file_info['bits'] + 31) >> 3) & (~3), file_info['direction']) )] def _open(self): """ Open file, check magic number and read header """ # read 14 bytes: magic number, filesize, reserved, header final offset head_data = self.fp.read(14) # choke if the file does not have the required magic bytes if head_data[0:2] != b"BM": raise SyntaxError("Not a BMP file") # read the start position of the BMP image data (u32) offset = i32(head_data[10:14]) # load bitmap information (offset=raster info) self._bitmap(offset=offset) # ============================================================================== # Image plugin for the DIB format (BMP alias) # ============================================================================== class DibImageFile(BmpImageFile): format = "DIB" format_description = "Windows Bitmap" def _open(self): self._bitmap() # # -------------------------------------------------------------------- # Write BMP file SAVE = { "1": ("1", 1, 2), "L": ("L", 8, 256), "P": ("P", 8, 256), "RGB": ("BGR", 24, 0), "RGBA": ("BGRA", 32, 0), } def _save(im, fp, filename): try: rawmode, bits, colors = SAVE[im.mode] except KeyError: raise IOError("cannot write mode %s as BMP" % im.mode) info = im.encoderinfo dpi = info.get("dpi", (96, 96)) # 1 meter == 39.3701 inches ppm = tuple(map(lambda x: int(x * 39.3701), dpi)) stride = ((im.size[0]*bits+7)//8+3) & (~3) header = 40 # or 64 for OS/2 version 2 offset = 14 + header + colors * 4 image = stride * im.size[1] # bitmap header fp.write(b"BM" + # file type (magic) o32(offset+image) + # file size o32(0) + # reserved o32(offset)) # image data offset # bitmap info header fp.write(o32(header) + # info header size o32(im.size[0]) + # width o32(im.size[1]) + # height o16(1) + # planes o16(bits) + # depth o32(0) + # compression (0=uncompressed) o32(image) + # size of bitmap o32(ppm[0]) + o32(ppm[1]) + # resolution o32(colors) + # colors used o32(colors)) # colors important fp.write(b"\0" * (header - 40)) # padding (for OS/2 format) if im.mode == "1": for i in (0, 255): fp.write(o8(i) * 4) elif im.mode == "L": for i in range(256): fp.write(o8(i) * 4) elif im.mode == "P": fp.write(im.im.getpalette("RGB", "BGRX")) ImageFile._save(im, fp, [("raw", (0, 0)+im.size, 0, (rawmode, stride, -1))]) # # -------------------------------------------------------------------- # Registry Image.register_open(BmpImageFile.format, BmpImageFile, _accept) Image.register_save(BmpImageFile.format, _save) Image.register_extension(BmpImageFile.format, ".bmp") Image.register_mime(BmpImageFile.format, "image/bmp")
the-stack_106_17542
import torch from PyTorch_VAE.models import BaseVAE from torch import nn from torch.nn import functional as F from .types_ import * class VanillaVAE(BaseVAE): def __init__(self, in_channels: int, latent_dim: int, hidden_dims: List = None, **kwargs) -> None: super(VanillaVAE, self).__init__() self.latent_dim = latent_dim modules = [] if hidden_dims is None: hidden_dims = [32, 64, 128, 256, 512] # Build Encoder for h_dim in hidden_dims: modules.append( nn.Sequential( nn.Conv2d(in_channels, out_channels=h_dim, kernel_size= 3, stride= 2, padding = 1), nn.BatchNorm2d(h_dim), nn.LeakyReLU()) ) in_channels = h_dim self.encoder = nn.Sequential(*modules) self.fc_mu = nn.Linear(hidden_dims[-1]*4, latent_dim) self.fc_var = nn.Linear(hidden_dims[-1]*4, latent_dim) # Build Decoder modules = [] self.decoder_input = nn.Linear(latent_dim, hidden_dims[-1] * 4) hidden_dims.reverse() for i in range(len(hidden_dims) - 1): modules.append( nn.Sequential( nn.ConvTranspose2d(hidden_dims[i], hidden_dims[i + 1], kernel_size=3, stride = 2, padding=1, output_padding=1), nn.BatchNorm2d(hidden_dims[i + 1]), nn.LeakyReLU()) ) self.decoder = nn.Sequential(*modules) self.final_layer = nn.Sequential( nn.ConvTranspose2d(hidden_dims[-1], hidden_dims[-1], kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(hidden_dims[-1]), nn.LeakyReLU(), nn.Conv2d(hidden_dims[-1], out_channels= 3, kernel_size= 3, padding= 1), nn.Tanh()) def encode(self, input: Tensor) -> List[Tensor]: """ Encodes the input by passing through the encoder network and returns the latent codes. :param input: (Tensor) Input tensor to encoder [N x C x H x W] :return: (Tensor) List of latent codes """ result = self.encoder(input) result = torch.flatten(result, start_dim=1) # Split the result into mu and var components # of the latent Gaussian distribution mu = self.fc_mu(result) log_var = self.fc_var(result) return [mu, log_var] def decode(self, z: Tensor) -> Tensor: """ Maps the given latent codes onto the image space. :param z: (Tensor) [B x D] :return: (Tensor) [B x C x H x W] """ result = self.decoder_input(z) result = result.view(-1, 512, 2, 2) result = self.decoder(result) result = self.final_layer(result) return result def reparameterize(self, mu: Tensor, logvar: Tensor) -> Tensor: """ Reparameterization trick to sample from N(mu, var) from N(0,1). :param mu: (Tensor) Mean of the latent Gaussian [B x D] :param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D] :return: (Tensor) [B x D] """ std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps * std + mu def forward(self, input: Tensor, **kwargs) -> List[Tensor]: mu, log_var = self.encode(input) z = self.reparameterize(mu, log_var) return [self.decode(z), input, mu, log_var] def loss_function(self, *args, **kwargs) -> dict: """ Computes the VAE loss function. KL(N(\mu, \sigma), N(0, 1)) = \log \frac{1}{\sigma} + \frac{\sigma^2 + \mu^2}{2} - \frac{1}{2} :param args: :param kwargs: :return: """ recons = args[0] input = args[1] mu = args[2] log_var = args[3] kld_weight = kwargs['M_N'] # Account for the minibatch samples from the dataset recons_loss =F.mse_loss(recons, input) kld_loss = torch.mean(-0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim = 1), dim = 0) loss = recons_loss + kld_weight * kld_loss return {'loss': loss, 'Reconstruction_Loss':recons_loss, 'KLD':-kld_loss} def sample(self, num_samples:int, current_device: int, **kwargs) -> Tensor: """ Samples from the latent space and return the corresponding image space map. :param num_samples: (Int) Number of samples :param current_device: (Int) Device to run the model :return: (Tensor) """ z = torch.randn(num_samples, self.latent_dim) z = z.to(current_device) samples = self.decode(z) return samples def generate(self, x: Tensor, **kwargs) -> Tensor: """ Given an input image x, returns the reconstructed image :param x: (Tensor) [B x C x H x W] :return: (Tensor) [B x C x H x W] """ return self.forward(x)[0]
the-stack_106_17543
import os import io from google.oauth2 import service_account from google.cloud import speech_v1 def recognize(filepath, language_code='en_US', model='default', cred_file=None): # if cred_file is not None: # cred = service_account.Credentials.from_service_account_file( # cred_file, # scopes=["https://www.googleapis.com/auth/cloud-platform"] # ) # # client = speech_v1.SpeechClient(credentials=cred) # else: # client = speech_v1.SpeechClient() if cred_file is not None: os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = cred_file client = speech_v1.SpeechClient() config = { "model": model, "language_code": language_code } with io.open(filepath, 'rb') as fd: content = fd.read() audio = {"content": content} response = client.recognize(config, audio) for result in response.results: alternative = result.alternatives[0] yield alternative.transcript def main(): import argparse supported_models = ["command_and_search", "phone_call", "video", "default"] parser = argparse.ArgumentParser() parser.add_argument("-l", "--lang", type=str, default="en_US", help="audio language") parser.add_argument("-m", "--model", type=str, choices=supported_models, default="default", help="transcription model") parser.add_argument("--cred", type=str, help="credentials file") parser.add_argument("audiofile", type=str, help="path to the audio file") args = parser.parse_args() if args.cred is not None: print("Using credentials file:", args.cred) print() for transcript in recognize(args.audiofile, args.lang, cred_file=args.cred): print(transcript) print() if __name__ == '__main__': main()
the-stack_106_17545
# killableprocess - subprocesses which can be reliably killed # # Parts of this module are copied from the subprocess.py file contained # in the Python distribution. # # Copyright (c) 2003-2004 by Peter Astrand <[email protected]> # # Additions and modifications written by Benjamin Smedberg # <[email protected]> are Copyright (c) 2006 by the Mozilla Foundation # <http://www.mozilla.org/> # # More Modifications # Copyright (c) 2006-2007 by Mike Taylor <[email protected]> # Copyright (c) 2007-2008 by Mikeal Rogers <[email protected]> # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of the # author not be used in advertising or publicity pertaining to # distribution of the software without specific, written prior # permission. # # THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, # INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR # CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS # OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, # NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION # WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """killableprocess - Subprocesses which can be reliably killed This module is a subclass of the builtin "subprocess" module. It allows processes that launch subprocesses to be reliably killed on Windows (via the Popen.kill() method. It also adds a timeout argument to Wait() for a limited period of time before forcefully killing the process. Note: On Windows, this module requires Windows 2000 or higher (no support for Windows 95, 98, or NT 4.0). It also requires ctypes, which is bundled with Python 2.5+ or available from http://python.net/crew/theller/ctypes/ """ import subprocess import sys import os import time import datetime import types import exceptions try: from subprocess import CalledProcessError except ImportError: # Python 2.4 doesn't implement CalledProcessError class CalledProcessError(Exception): """This exception is raised when a process run by check_call() returns a non-zero exit status. The exit status will be stored in the returncode attribute.""" def __init__(self, returncode, cmd): self.returncode = returncode self.cmd = cmd def __str__(self): return "Command '%s' returned non-zero exit status %d" % (self.cmd, self.returncode) mswindows = (sys.platform == "win32") if mswindows: import winprocess else: import signal def call(*args, **kwargs): waitargs = {} if "timeout" in kwargs: waitargs["timeout"] = kwargs.pop("timeout") return Popen(*args, **kwargs).wait(**waitargs) def check_call(*args, **kwargs): """Call a program with an optional timeout. If the program has a non-zero exit status, raises a CalledProcessError.""" retcode = call(*args, **kwargs) if retcode: cmd = kwargs.get("args") if cmd is None: cmd = args[0] raise CalledProcessError(retcode, cmd) if not mswindows: def DoNothing(*args): pass class Popen(subprocess.Popen): if mswindows: def _execute_child(self, args, executable, preexec_fn, close_fds, cwd, env, universal_newlines, startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite): if not isinstance(args, types.StringTypes): args = subprocess.list2cmdline(args) if startupinfo is None: startupinfo = winprocess.STARTUPINFO() if None not in (p2cread, c2pwrite, errwrite): startupinfo.dwFlags |= winprocess.STARTF_USESTDHANDLES startupinfo.hStdInput = int(p2cread) startupinfo.hStdOutput = int(c2pwrite) startupinfo.hStdError = int(errwrite) if shell: startupinfo.dwFlags |= winprocess.STARTF_USESHOWWINDOW startupinfo.wShowWindow = winprocess.SW_HIDE comspec = os.environ.get("COMSPEC", "cmd.exe") args = comspec + " /c " + args # We create a new job for this process, so that we can kill # the process and any sub-processes self._job = winprocess.CreateJobObject() creationflags |= winprocess.CREATE_SUSPENDED creationflags |= winprocess.CREATE_UNICODE_ENVIRONMENT hp, ht, pid, tid = winprocess.CreateProcess( executable, args, None, None, # No special security 1, # Must inherit handles! creationflags, winprocess.EnvironmentBlock(env), cwd, startupinfo) self._child_created = True self._handle = hp self._thread = ht self.pid = pid self.tid = tid winprocess.AssignProcessToJobObject(self._job, hp) winprocess.ResumeThread(ht) if p2cread is not None: p2cread.Close() if c2pwrite is not None: c2pwrite.Close() if errwrite is not None: errwrite.Close() time.sleep(.1) def kill(self, group=True): """Kill the process. If group=True, all sub-processes will also be killed.""" if mswindows: if group: winprocess.TerminateJobObject(self._job, 127) else: winprocess.TerminateProcess(self._handle, 127) self.returncode = 127 else: if group: try: os.killpg(self.pid, signal.SIGKILL) except: pass else: os.kill(self.pid, signal.SIGKILL) self.returncode = -9 def wait(self, timeout=None, group=True): """Wait for the process to terminate. Returns returncode attribute. If timeout seconds are reached and the process has not terminated, it will be forcefully killed. If timeout is -1, wait will not time out.""" if timeout is not None: timeout = timeout * 1000 if self.returncode is not None: return self.returncode starttime = datetime.datetime.now() if mswindows: if timeout is None: timeout = -1 rc = winprocess.WaitForSingleObject(self._handle, timeout) if rc != winprocess.WAIT_TIMEOUT: while (starttime - datetime.datetime.now()).microseconds < timeout or ( winprocess.QueryInformationJobObject(self._job, 8)['BasicInfo']['ActiveProcesses'] > 0 ): time.sleep(.5) if (starttime - datetime.datetime.now()).microseconds > timeout: self.kill(group) else: self.returncode = winprocess.GetExitCodeProcess(self._handle) else: if sys.platform == 'linux2' or sys.platform == 'cygwin': def group_wait(): os.waitpid(self.pid, 0) return self.returncode elif sys.platform == 'darwin': def group_wait(): try: while 1: os.killpg(self.pid, signal.SIG_DFL) time.sleep(.5) except exceptions.OSError: return self.returncode if timeout is None: if group is True: return group_wait() else: subprocess.Popen.wait(self) return self.returncode returncode = False while (starttime - datetime.datetime.now()).microseconds < timeout or ( returncode is False ): if group is True: return group_wait() else: if subprocess.poll() is not None: returncode = self.returncode time.sleep(.5) return self.returncode return self.returncode # We get random maxint errors from subprocesses __del__ __del__ = lambda self: None def setpgid_preexec_fn(): os.setpgid(0, 0) def runCommand(cmd, **kwargs): if sys.platform != "win32": return Popen(cmd, preexec_fn=setpgid_preexec_fn, **kwargs) else: return Popen(cmd, **kwargs)
the-stack_106_17547
import pandas as pd from abc import abstractmethod import benchutils, os, time class Preprocessor: """Super class of all preprocessor implementations. Inherit from this class and implement :meth:`preprocessing.Preprocessor.preprocess()` if you want to add a new preprocessor class. :param input: absolute path to the input file. :type input: str :param metadata: absolute path to the metadata file. :type metadata: str :param output: absolute path to the output directory. :type output: str """ def __init__(self, input, metadata, output): self.input = input self.metadata = metadata self.output = output super().__init__() @abstractmethod def preprocess(self): """Abstract method. Interface method that is invoked externally to trigger preprocessing. :return: absolute path to the preprocessed output file. :rtype: str """ pass class MappingPreprocessor(Preprocessor): """Maps the input data set to a desired format. :param input: absolute path to the input file. :type input: str :param output: absolute path to the output directory. :type output: str :param currentFormat: current identifier format. :type currentFormat: str :param desiredFormat: desired identifier format. :type desiredFormat: str :param labeled: boolean value if the input data is labeled. :type labeled: bool """ def __init__(self, input, output, currentFormat, desiredFormat, labeled): self.currentFormat = currentFormat self.desiredFormat = desiredFormat self.labeled = labeled super().__init__(input, None, output) def preprocess(self): """Maps the identifiers in the input dataset to the desired format that was specified when constructing the preprocessor. :return: absolute path to the mapped file. :rtype: str """ inputMatrix = pd.read_csv(self.input, index_col = 0) original_filename = self.input.split("/")[-1] mapped_filename = "mapped_" + self.desiredFormat + "_" + original_filename output = self.input output_filepath = "/".join(self.input.split("/")[0:-1]) #as the DataFormatter always transposes the data before any further processing, we can expect all genes to be in the columns genesInColumn = "true" #only map genes if the current format is not the desired format if (self.currentFormat != self.desiredFormat): output = output_filepath + "/" + mapped_filename benchutils.mapDataMatrix(inputMatrix, genesInColumn, self.currentFormat, self.desiredFormat, output, self.labeled) return output class FilterPreprocessor(Preprocessor): """Filters features or samples above a user-defined threshold of missing values. :param input: absolute path to the input file. :type input: str :param metadata: absolute path to the metadata file. :type metadata: str :param output: absolute path to the output directory. :type output: str :param config: configuration parameter for preprocessing as specified in the config file. :type config: str """ def __init__(self, input, metadata, output): self.config = benchutils.getConfig("Preprocessing") super().__init__(input, metadata, output) def preprocess(self): """Depending on what is specified in the config file, filter samples and/or features. Remove all samples/features that have missing values above the threshold specified in the config. :return: absolute path to the filtered output file. :rtype: str """ filtered_data = pd.read_csv(self.input) if self.config.getboolean("filterMissingsInGenes"): # first filter out the genes that have more missings than threshold filtered_data = self.filterMissings(self.config["threshold"], filtered_data) if self.config.getboolean("filterMissingsInSamples"): # second transpose matrix and filter out samples that have more missings than threshold filtered_samples = self.filterMissings(self.config["threshold"], filtered_data.T) filtered_data = filtered_samples.T # transpose back into original orientation and save filePrefix = self.input.split("/")[-1].split(".")[ 0] # split path by / to receive filename, split filename by . to receive filename without ending filename = self.output + filePrefix + "_filtered.csv" filtered_data.to_csv(filename, index=False) return filename def filterMissings(self, threshold, data): """Filter the data for entries that have missing information above the given threshold. :param threshold: maximum percentage of allowed missing items as string. :type threshold: str :param data: a DataFrame to be filtered :type data: :class:`pandas.DataFrame` :return: filtered DataFrame. :rtype: :class:`pandas.DataFrame` """ #replace NAs by 0 for counting data.fillna(0).astype(bool).sum(axis=1) filtered_columns = data.columns #find out threshold, i.e. minimum number of non-zero in real numbers rowNumber = data.shape[0] min_nonZeros = int(rowNumber - ((rowNumber * int(threshold))/100)) zero_counts = data.astype(bool).sum(axis=0) for columnID, nonZeros in zero_counts.items(): if nonZeros <= min_nonZeros: filtered_columns = filtered_columns.drop(columnID) return data[filtered_columns] class DataTransformationPreprocessor(Preprocessor): """Transform the input data to have features in the columns for subsequent processing. :param input: absolute path to the input file. :type input: str :param metadata: absolute path to the metadata file. :type metadata: str :param output: absolute path to the output directory. :type output: str :param dataSeparator: delimiter to use when parsing the input file. :type dataSeparator: str """ def __init__(self, input, metadata, output, dataSeparator): self.transposeMatrix = not benchutils.getConfigBoolean("Dataset", "genesInColumns") self.dataSeparator = dataSeparator super().__init__(input, metadata, output) def preprocess(self): """If not already so, transpose the input data to have the features in the columns. :return: absolute path to the correctly formatted output file. :rtype: str """ df = pd.read_csv(self.input, sep=self.dataSeparator, index_col = 0) #ATTENTION: this processing assumes that the data is formatted in a way that header and index are automatically recognized. remove trailing commas/separators at first line of the file for this to be achieved if self.transposeMatrix: df = df.T filePrefix = self.input.split("/")[-1].split(".")[ 0] # split path by / to receive filename, split filename by . to receive filename without ending filename = self.output + filePrefix + "_transposed.csv" df.to_csv(filename) return filename class MetaDataPreprocessor(Preprocessor): """Add labels to input data. Get labels from meta data attribute that was specified in the user config. :param input: absolute path to the input file. :type input: str :param metadata: absolute path to the metadata file. :type metadata: str :param output: absolute path to the output directory. :type output: str :param dataSeparator: delimiter to use when parsing the input and metadata file. :type dataSeparator: str :param diseaseColumn: column name of the class labels. :type diseaseColumn: str :param transposeMetadataMatrix: boolean value if the identifier names are located in the columns, as specified in the config file. :type transposeMetadataMatrix: bool """ def __init__(self, input, metadata, output, separator): self.diseaseColumn = benchutils.getConfigValue("Dataset", "classLabelName") self.transposeMetadataMatrix = not benchutils.getConfigBoolean("Dataset", "metadataIDsInColumns") self.separator = separator super().__init__(input, metadata, output) def preprocess(self): """Labels all samples of a data set. Labels are taken from the corresponding metadata file and the metadata attribute that was specified in the config file. Samples without metadata information well be assigned to class "NotAvailable". :return: absolute path to the labeled data set. :rtype: str """ df = pd.read_csv(self.input, index_col = 0) diseaseCodes = pd.read_csv(self.metadata, sep = self.separator, index_col = 0, quotechar = '"') diseaseColumn = [] if self.transposeMetadataMatrix: diseaseCodes = diseaseCodes.T #iterate through all sample IDs and select the corresponding disease/annotation from the metadata for it for sample in df.index: try: diseaseCode = diseaseCodes[sample][self.diseaseColumn] except: diseaseCode = "NotAvailable" benchutils.logWarning("WARNING: No classLabel code found for sample " + str(sample) + ". Assign class NotAvailable.") diseaseColumn.append(diseaseCode) df.insert(0, column="classLabel", value=diseaseColumn) df_without_missings = df.dropna(subset=['classLabel']) filePrefix = self.input.split("/")[-1].split(".")[ 0] # split path by / to receive filename, split filename by . to receive filename without ending filename = self.output + filePrefix + "_withClassLabels.csv" df_without_missings.to_csv(filename) return filename ####### PREPROCESSOR: moves a dataset into its respective folder ####### class DataMovePreprocessor(Preprocessor): """Moves the input data set to the specified location. :param input: absolute path to the input file. :type input: str :param output: absolute path to the output directory. :type output: str """ def __init__(self, input, output): super().__init__(input, None, output) def preprocess(self): """Moves a file (self.input) to another location (self.output). Typically used at the end of preprocessing, when the final data set is moved to a new location for the actual analysis. :return: absolute path to the new file location. :rtype: str """ os.system("cp " + self.input + " " + self.output) return self.output
the-stack_106_17550
import unittest from euchre.data_model import FaceCard, Suite, CardDeck, Card, Trick from euchre.move_simulations import update_possible_cards, possible_cards_in_hand from euchre.game_controller import GameController from euchre.players.RandomPlayer import RandomPlayer from itertools import chain class TestMoveSimulations(unittest.TestCase): def test_possible_cards_in_hand(self): cards = [[Card(Suite.DIAMOND, FaceCard.JACK), Card(Suite.DIAMOND, FaceCard.TEN), Card(Suite.DIAMOND, FaceCard.QUEEN), Card(Suite.DIAMOND, FaceCard.ACE), Card(Suite.DIAMOND, FaceCard.KING)], [Card(Suite.CLUB, FaceCard.JACK), Card(Suite.CLUB, FaceCard.TEN), Card(Suite.CLUB, FaceCard.QUEEN), Card(Suite.CLUB, FaceCard.ACE), Card(Suite.CLUB, FaceCard.KING)], [Card(Suite.HEART, FaceCard.JACK), Card(Suite.HEART, FaceCard.TEN), Card(Suite.HEART, FaceCard.QUEEN), Card(Suite.HEART, FaceCard.ACE), Card(Suite.HEART, FaceCard.KING)], [Card(Suite.SPADE, FaceCard.JACK), Card(Suite.SPADE, FaceCard.TEN), Card(Suite.SPADE, FaceCard.QUEEN), Card(Suite.SPADE, FaceCard.ACE), Card(Suite.SPADE, FaceCard.KING)], [Card(Suite.DIAMOND, FaceCard.NINE), Card(Suite.SPADE, FaceCard.NINE), Card(Suite.HEART, FaceCard.NINE), Card(Suite.CLUB, FaceCard.NINE)]] possible_cards = possible_cards_in_hand(cards[0], 0, 0, cards[4][0], Suite.DIAMOND, []) self.assertTrue(len(possible_cards[0]) == 0, "First player cards should be known") self.assertTrue(len([card for card in possible_cards[1] if card.suite == Suite.DIAMOND]) == 0, "Check that the visible players hand is taken out of each persons possible hands") tricks = [Trick(2, [Card(Suite.HEART, FaceCard.JACK), Card(Suite.SPADE, FaceCard.JACK), Card(Suite.DIAMOND, FaceCard.JACK), Card(Suite.CLUB, FaceCard.JACK)])] possible_cards = possible_cards_in_hand(cards[0], 0, 2, cards[4][0], Suite.SPADE, tricks) self.assertTrue(len(possible_cards[0]) == 0, "First player cards should be known") self.assertTrue(len([card for card in possible_cards[1] if card.suite == Suite.DIAMOND]) == 0, "Check that the visible players hand is taken out of each persons possible hands") self.assertTrue(len([card for card in possible_cards[1] if card.suite == Suite.HEART]) == 0, "Check that if a player could not follow suit card was removed from hand") self.assertTrue(len([card for card in possible_cards[4] if card.face_card == FaceCard.JACK]) == 0, "Check that all visible trick cards are removed from possible cards in the deck") def test_known_cards_in_hand(self): """Idea to test function is to simulate a whole bunch of games and check at each point if the set of known cards and possible cards calculated is valid """ whole_deck = sorted([Card(suite, face_card) for face_card in FaceCard for suite in Suite]) controller = GameController([RandomPlayer(0) for _ in range(4)], CardDeck(0)) controller.play() for g_round in controller.game.rounds: if len(g_round.tricks) > 0: player_cards = g_round.players_cards[0] possible_cards = possible_cards_in_hand(player_cards.hand, player_cards.index, player_cards.order, g_round.kitty[0], g_round.trump, g_round.tricks) known_cards, possible_cards = update_possible_cards(player_cards.hand, player_cards.index, g_round.tricks, possible_cards) self.assertTrue(len(list(chain(*list(possible_cards)))) == 0, "Entire game should be played, possible cards are 0") self.assertListEqual(sorted(list(chain(*list(known_cards)))), whole_deck) self.assertListEqual(sorted(known_cards[4]), sorted(g_round.kitty)) for i in range(5): possible_cards = possible_cards_in_hand(player_cards.hand, player_cards.index, player_cards.order , g_round.kitty[0], g_round.trump, g_round.tricks) known_cards, possible_cards = update_possible_cards(player_cards.hand, player_cards.index, g_round.tricks, possible_cards) # No repeats in known cards all_known_cards = list(chain(*list(known_cards))) self.assertEqual(len(all_known_cards), len(set(all_known_cards))) # all cards accounted for self.assertEqual(set(list(chain(*list(possible_cards))) + all_known_cards), set(whole_deck)) if __name__ == '__main__': unittest.main()
the-stack_106_17551
# -*- encoding: utf-8 -*- # pylint: disable=E0203,E1101,C0111 """ @file @brief Runtime operator. """ import numpy from ._op import OpRun from ..shape_object import ShapeObjectFct from .op_conv_ import ConvFloat, ConvDouble # pylint: disable=E0611,E0401 class Conv(OpRun): atts = {'auto_pad': 'NOTSET', 'group': 1, 'dilations': [1, 1], 'kernel_shape': [], 'pads': [], 'strides': [1, 1]} def __init__(self, onnx_node, desc=None, **options): OpRun.__init__(self, onnx_node, desc=desc, expected_attributes=Conv.atts, **options) self._init() def _init(self): self.rt32_ = ConvFloat() self.rt64_ = ConvDouble() for rt in [self.rt32_, self.rt64_]: rt.init(self.auto_pad, numpy.array(self.dilations, dtype=numpy.int64), self.group, numpy.array(self.kernel_shape, dtype=numpy.int64), numpy.array(self.pads, dtype=numpy.int64), numpy.array(self.strides, dtype=numpy.int64)) def _run(self, X, W, B=None): # pylint: disable=W0221 if X is None: raise ValueError( # pragma: no cover "X cannot be None for operator %r, ONNX=%r" % ( type(self), self.onnx_node)) if min(X.shape) == 0: raise RuntimeError( "Unable to run operator Conv on an empty matrix. " "X.shape=%r." % (X.shape, )) if min(W.shape) == 0: raise RuntimeError( "Unable to run operator Conv on an empty matrix. " "W.shape=%r." % (W.shape, )) if B is not None and min(B.shape) == 0: raise RuntimeError( "Unable to run operator Conv on an empty matrix. " "B.shape=%r." % (B.shape, )) if X.dtype == numpy.float32: return (self.rt32_.compute(X, W, B), ) return (self.rt64_.compute(X, W, B), ) def _infer_shapes(self, X, W, B=None): # pylint: disable=W0221 def compute_shape(xshape, wshape, bshape): xs = numpy.ones(xshape, dtype=numpy.float32) ws = numpy.ones(wshape, dtype=numpy.float32) bs = (numpy.ones(bshape, dtype=numpy.float32) if bshape is not None else None) res = self.rt32_.compute(xs, ws, bs) return res.shape return (ShapeObjectFct( compute_shape, X, W, B, name="Conv", dtype=X.dtype), ) def _infer_types(self, X, W, B=None): # pylint: disable=W0221 return (X, ) def _infer_sizes(self, X, W, B=None): # pylint: disable=W0221 res = self.run(X, W, B=None) C = X.shape[1] kernel_size = numpy.prod(self.kernel_shape) kernel_dim = C / self.group * kernel_size temp = kernel_dim * res[0].size return (dict(temp=temp * X.dtype.itemsize), ) + res
the-stack_106_17554
""" Ansible action plugin to ensure inventory variables are set appropriately and no conflicting options have been provided. """ import re from ansible.plugins.action import ActionBase from ansible import errors # Valid values for openshift_deployment_type VALID_DEPLOYMENT_TYPES = ('origin', 'openshift-enterprise') # Tuple of variable names and default values if undefined. NET_PLUGIN_LIST = (('openshift_use_openshift_sdn', True), ('openshift_use_flannel', False), ('openshift_use_nuage', False), ('openshift_use_contiv', False), ('openshift_use_calico', False), ('openshift_use_kuryr', False)) ENTERPRISE_TAG_REGEX_ERROR = """openshift_image_tag must be in the format v#.#[.#[.#]]. Examples: v1.2, v3.4.1, v3.5.1.3, v3.5.1.3.4, v1.2-1, v1.2.3-4, v1.2.3-4.5, v1.2.3-4.5.6 You specified openshift_image_tag={}""" ORIGIN_TAG_REGEX_ERROR = """openshift_image_tag must be in the format v#.#[.#-optional.#]. Examples: v1.2.3, v3.5.1-alpha.1 You specified openshift_image_tag={}""" ORIGIN_TAG_REGEX = {'re': '(^v?\\d+\\.\\d+.*)', 'error_msg': ORIGIN_TAG_REGEX_ERROR} ENTERPRISE_TAG_REGEX = {'re': '(^v\\d+\\.\\d+(\\.\\d+)*(-\\d+(\\.\\d+)*)?$)', 'error_msg': ENTERPRISE_TAG_REGEX_ERROR} IMAGE_TAG_REGEX = {'origin': ORIGIN_TAG_REGEX, 'openshift-enterprise': ENTERPRISE_TAG_REGEX} UNSUPPORTED_OCP_VERSIONS = { '^3.8.*$': 'OCP 3.8 is not supported and cannot be installed' } CONTAINERIZED_NO_TAG_ERROR_MSG = """To install a containerized Origin release, you must set openshift_release or openshift_image_tag in your inventory to specify which version of the OpenShift component images to use. (Suggestion: add openshift_release="x.y" to inventory.)""" STORAGE_KIND_TUPLE = ( 'openshift_hosted_registry_storage_kind', 'openshift_loggingops_storage_kind', 'openshift_logging_storage_kind', 'openshift_metrics_storage_kind', 'openshift_prometheus_alertbuffer_storage_kind', 'openshift_prometheus_alertmanager_storage_kind', 'openshift_prometheus_storage_kind') def to_bool(var_to_check): """Determine a boolean value given the multiple ways bools can be specified in ansible.""" # http://yaml.org/type/bool.html yes_list = (True, 1, "True", "1", "true", "TRUE", "Yes", "yes", "Y", "y", "YES", "on", "ON", "On") return var_to_check in yes_list class ActionModule(ActionBase): """Action plugin to execute sanity checks.""" def template_var(self, hostvars, host, varname): """Retrieve a variable from hostvars and template it. If undefined, return None type.""" # We will set the current host and variable checked for easy debugging # if there are any unhandled exceptions. # pylint: disable=W0201 self.last_checked_var = varname # pylint: disable=W0201 self.last_checked_host = host res = hostvars[host].get(varname) if res is None: return None return self._templar.template(res) def check_openshift_deployment_type(self, hostvars, host): """Ensure a valid openshift_deployment_type is set""" openshift_deployment_type = self.template_var(hostvars, host, 'openshift_deployment_type') if openshift_deployment_type not in VALID_DEPLOYMENT_TYPES: type_strings = ", ".join(VALID_DEPLOYMENT_TYPES) msg = "openshift_deployment_type must be defined and one of {}".format(type_strings) raise errors.AnsibleModuleError(msg) return openshift_deployment_type def check_python_version(self, hostvars, host, distro): """Ensure python version is 3 for Fedora and python 2 for others""" ansible_python = self.template_var(hostvars, host, 'ansible_python') if distro == "Fedora": if ansible_python['version']['major'] != 3: msg = "openshift-ansible requires Python 3 for {};".format(distro) msg += " For information on enabling Python 3 with Ansible," msg += " see https://docs.ansible.com/ansible/python_3_support.html" raise errors.AnsibleModuleError(msg) else: if ansible_python['version']['major'] != 2: msg = "openshift-ansible requires Python 2 for {};".format(distro) def check_image_tag_format(self, hostvars, host, openshift_deployment_type): """Ensure openshift_image_tag is formatted correctly""" openshift_image_tag = self.template_var(hostvars, host, 'openshift_image_tag') if not openshift_image_tag or openshift_image_tag == 'latest': return None regex_to_match = IMAGE_TAG_REGEX[openshift_deployment_type]['re'] res = re.match(regex_to_match, str(openshift_image_tag)) if res is None: msg = IMAGE_TAG_REGEX[openshift_deployment_type]['error_msg'] msg = msg.format(str(openshift_image_tag)) raise errors.AnsibleModuleError(msg) def no_origin_image_version(self, hostvars, host, openshift_deployment_type): """Ensure we can determine what image version to use with origin fail when: - openshift_is_containerized - openshift_deployment_type == 'origin' - openshift_release is not defined - openshift_image_tag is not defined""" if not openshift_deployment_type == 'origin': return None oic = self.template_var(hostvars, host, 'openshift_is_containerized') if not to_bool(oic): return None orelease = self.template_var(hostvars, host, 'openshift_release') oitag = self.template_var(hostvars, host, 'openshift_image_tag') if not orelease and not oitag: raise errors.AnsibleModuleError(CONTAINERIZED_NO_TAG_ERROR_MSG) def network_plugin_check(self, hostvars, host): """Ensure only one type of network plugin is enabled""" res = [] # Loop through each possible network plugin boolean, determine the # actual boolean value, and append results into a list. for plugin, default_val in NET_PLUGIN_LIST: res_temp = self.template_var(hostvars, host, plugin) if res_temp is None: res_temp = default_val res.append(to_bool(res_temp)) if sum(res) not in (0, 1): plugin_str = list(zip([x[0] for x in NET_PLUGIN_LIST], res)) msg = "Host Checked: {} Only one of must be true. Found: {}".format(host, plugin_str) raise errors.AnsibleModuleError(msg) def check_hostname_vars(self, hostvars, host): """Checks to ensure openshift_hostname and openshift_public_hostname conform to the proper length of 63 characters or less""" for varname in ('openshift_public_hostname', 'openshift_hostname'): var_value = self.template_var(hostvars, host, varname) if var_value and len(var_value) > 63: msg = '{} must be 63 characters or less'.format(varname) raise errors.AnsibleModuleError(msg) def check_supported_ocp_version(self, hostvars, host, openshift_deployment_type): """Checks that the OCP version supported""" if openshift_deployment_type == 'origin': return None openshift_version = self.template_var(hostvars, host, 'openshift_version') for regex_to_match, error_msg in UNSUPPORTED_OCP_VERSIONS.items(): res = re.match(regex_to_match, str(openshift_version)) if res is not None: raise errors.AnsibleModuleError(error_msg) return None def check_session_auth_secrets(self, hostvars, host): """Checks session_auth_secrets is correctly formatted""" sas = self.template_var(hostvars, host, 'openshift_master_session_auth_secrets') ses = self.template_var(hostvars, host, 'openshift_master_session_encryption_secrets') # This variable isn't mandatory, only check if set. if sas is None and ses is None: return None if not ( issubclass(type(sas), list) and issubclass(type(ses), list) ) or len(sas) != len(ses): raise errors.AnsibleModuleError( 'Expects openshift_master_session_auth_secrets and ' 'openshift_master_session_encryption_secrets are equal length lists') for secret in sas: if len(secret) < 32: raise errors.AnsibleModuleError( 'Invalid secret in openshift_master_session_auth_secrets. ' 'Secrets must be at least 32 characters in length.') for secret in ses: if len(secret) not in [16, 24, 32]: raise errors.AnsibleModuleError( 'Invalid secret in openshift_master_session_encryption_secrets. ' 'Secrets must be 16, 24, or 32 characters in length.') return None def check_unsupported_nfs_configs(self, hostvars, host): """Fails if nfs storage is in use for any components. This check is ignored if openshift_enable_unsupported_configurations=True""" enable_unsupported = self.template_var( hostvars, host, 'openshift_enable_unsupported_configurations') if to_bool(enable_unsupported): return None for storage in STORAGE_KIND_TUPLE: kind = self.template_var(hostvars, host, storage) if kind == 'nfs': raise errors.AnsibleModuleError( 'nfs is an unsupported type for {}. ' 'openshift_enable_unsupported_configurations=True must' 'be specified to continue with this configuration.' ''.format(storage)) return None def run_checks(self, hostvars, host): """Execute the hostvars validations against host""" distro = self.template_var(hostvars, host, 'ansible_distribution') odt = self.check_openshift_deployment_type(hostvars, host) self.check_python_version(hostvars, host, distro) self.check_image_tag_format(hostvars, host, odt) self.no_origin_image_version(hostvars, host, odt) self.network_plugin_check(hostvars, host) self.check_hostname_vars(hostvars, host) self.check_supported_ocp_version(hostvars, host, odt) self.check_session_auth_secrets(hostvars, host) self.check_unsupported_nfs_configs(hostvars, host) def run(self, tmp=None, task_vars=None): result = super(ActionModule, self).run(tmp, task_vars) # self.task_vars holds all in-scope variables. # Ignore settting self.task_vars outside of init. # pylint: disable=W0201 self.task_vars = task_vars or {} # pylint: disable=W0201 self.last_checked_host = "none" # pylint: disable=W0201 self.last_checked_var = "none" # self._task.args holds task parameters. # check_hosts is a parameter to this plugin, and should provide # a list of hosts. check_hosts = self._task.args.get('check_hosts') if not check_hosts: msg = "check_hosts is required" raise errors.AnsibleModuleError(msg) # We need to access each host's variables hostvars = self.task_vars.get('hostvars') if not hostvars: msg = hostvars raise errors.AnsibleModuleError(msg) # We loop through each host in the provided list check_hosts for host in check_hosts: try: self.run_checks(hostvars, host) except Exception as uncaught_e: msg = "last_checked_host: {}, last_checked_var: {};" msg = msg.format(self.last_checked_host, self.last_checked_var) msg += str(uncaught_e) raise errors.AnsibleModuleError(msg) result["changed"] = False result["failed"] = False result["msg"] = "Sanity Checks passed" return result
the-stack_106_17555
from shapely.wkb import loads import json from ... import getTile from ...Core import KnownUnknown def get_tiles(names, config, coord): ''' Retrieve a list of named TopoJSON layer tiles from a TileStache config. Check integrity and compatibility of each, looking at known layers, correct JSON mime-types, "Topology" in the type attributes, and matching affine transformations. ''' unknown_layers = set(names) - set(config.layers.keys()) if unknown_layers: raise KnownUnknown("%s.get_tiles didn't recognize %s when trying to load %s." % (__name__, ', '.join(unknown_layers), ', '.join(names))) layers = [config.layers[name] for name in names] mimes, bodies = zip(*[getTile(layer, coord, 'topojson') for layer in layers]) bad_mimes = [(name, mime) for (mime, name) in zip(mimes, names) if not mime.endswith('/json')] if bad_mimes: raise KnownUnknown('%s.get_tiles encountered a non-JSON mime-type in %s sub-layer: "%s"' % ((__name__, ) + bad_mimes[0])) topojsons = map(json.loads, bodies) bad_types = [(name, topo['type']) for (topo, name) in zip(topojsons, names) if topo['type'] != 'Topology'] if bad_types: raise KnownUnknown('%s.get_tiles encountered a non-Topology type in %s sub-layer: "%s"' % ((__name__, ) + bad_types[0])) transforms = [topo['transform'] for topo in topojsons] unique_xforms = set([tuple(xform['scale'] + xform['translate']) for xform in transforms]) if len(unique_xforms) > 1: raise KnownUnknown('%s.get_tiles encountered incompatible transforms: %s' % (__name__, list(unique_xforms))) return topojsons def update_arc_indexes(geometry, merged_arcs, old_arcs): ''' Updated geometry arc indexes, and add arcs to merged_arcs along the way. Arguments are modified in-place, and nothing is returned. ''' if geometry['type'] in ('Point', 'MultiPoint'): return elif geometry['type'] == 'LineString': for (arc_index, old_arc) in enumerate(geometry['arcs']): geometry['arcs'][arc_index] = len(merged_arcs) merged_arcs.append(old_arcs[old_arc]) elif geometry['type'] == 'Polygon': for ring in geometry['arcs']: for (arc_index, old_arc) in enumerate(ring): ring[arc_index] = len(merged_arcs) merged_arcs.append(old_arcs[old_arc]) elif geometry['type'] == 'MultiLineString': for part in geometry['arcs']: for (arc_index, old_arc) in enumerate(part): part[arc_index] = len(merged_arcs) merged_arcs.append(old_arcs[old_arc]) elif geometry['type'] == 'MultiPolygon': for part in geometry['arcs']: for ring in part: for (arc_index, old_arc) in enumerate(ring): ring[arc_index] = len(merged_arcs) merged_arcs.append(old_arcs[old_arc]) else: raise NotImplementedError("Can't do %s geometries" % geometry['type']) def get_transform(bounds, size=1024): ''' Return a TopoJSON transform dictionary and a point-transforming function. Size is the tile size in pixels and sets the implicit output resolution. ''' tx, ty = bounds[0], bounds[1] sx, sy = (bounds[2] - bounds[0]) / size, (bounds[3] - bounds[1]) / size def forward(lon, lat): ''' Transform a longitude and latitude to TopoJSON integer space. ''' return int(round((lon - tx) / sx)), int(round((lat - ty) / sy)) return dict(translate=(tx, ty), scale=(sx, sy)), forward def diff_encode(line, transform): ''' Differentially encode a shapely linestring or ring. ''' coords = [transform(x, y) for (x, y) in line.coords] pairs = zip(coords[:], coords[1:]) diffs = [(x2 - x1, y2 - y1) for ((x1, y1), (x2, y2)) in pairs] return coords[:1] + [(x, y) for (x, y) in diffs if (x, y) != (0, 0)] def decode(file): ''' Stub function to decode a TopoJSON file into a list of features. Not currently implemented, modeled on geojson.decode(). ''' raise NotImplementedError('topojson.decode() not yet written') def encode(file, features, bounds, is_clipped): ''' Encode a list of (WKB, property dict) features into a TopoJSON stream. Also accept three-element tuples as features: (WKB, property dict, id). Geometries in the features list are assumed to be unprojected lon, lats. Bounds are given in geographic coordinates as (xmin, ymin, xmax, ymax). ''' transform, forward = get_transform(bounds) geometries, arcs = list(), list() for feature in features: shape = loads(feature[0]) geometry = dict(properties=feature[1]) geometries.append(geometry) if is_clipped: geometry.update(dict(clipped=True)) if len(feature) >= 2: # ID is an optional third element in the feature tuple geometry.update(dict(id=feature[2])) if shape.type == 'GeometryCollection': geometries.pop() continue elif shape.type == 'Point': geometry.update(dict(type='Point', coordinates=forward(shape.x, shape.y))) elif shape.type == 'LineString': geometry.update(dict(type='LineString', arcs=[len(arcs)])) arcs.append(diff_encode(shape, forward)) elif shape.type == 'Polygon': geometry.update(dict(type='Polygon', arcs=[])) rings = [shape.exterior] + list(shape.interiors) for ring in rings: geometry['arcs'].append([len(arcs)]) arcs.append(diff_encode(ring, forward)) elif shape.type == 'MultiPoint': geometry.update(dict(type='MultiPoint', coordinates=[])) for point in shape.geoms: geometry['coordinates'].append(forward(point.x, point.y)) elif shape.type == 'MultiLineString': geometry.update(dict(type='MultiLineString', arcs=[])) for line in shape.geoms: geometry['arcs'].append([len(arcs)]) arcs.append(diff_encode(line, forward)) elif shape.type == 'MultiPolygon': geometry.update(dict(type='MultiPolygon', arcs=[])) for polygon in shape.geoms: rings = [polygon.exterior] + list(polygon.interiors) polygon_arcs = [] for ring in rings: polygon_arcs.append([len(arcs)]) arcs.append(diff_encode(ring, forward)) geometry['arcs'].append(polygon_arcs) else: raise NotImplementedError("Can't do %s geometries" % shape.type) result = { 'type': 'Topology', 'transform': transform, 'objects': { 'vectile': { 'type': 'GeometryCollection', 'geometries': geometries } }, 'arcs': arcs } json.dump(result, file, separators=(',', ':')) def merge(file, names, config, coord): ''' Retrieve a list of TopoJSON tile responses and merge them into one. get_tiles() retrieves data and performs basic integrity checks. ''' inputs = get_tiles(names, config, coord) output = { 'type': 'Topology', 'transform': inputs[0]['transform'], 'objects': dict(), 'arcs': list() } for (name, input) in zip(names, inputs): for (index, object) in enumerate(input['objects'].values()): if len(input['objects']) > 1: output['objects']['%(name)s-%(index)d' % locals()] = object else: output['objects'][name] = object for geometry in object['geometries']: update_arc_indexes(geometry, output['arcs'], input['arcs']) json.dump(output, file, separators=(',', ':'))
the-stack_106_17557
import argparse from glob import glob import cv2 import numpy as np from tensorflow.keras.applications import InceptionV3 from tensorflow.keras.applications.inception_v3 import preprocess_input from tensorflow.keras.models import model_from_json from utils import paths_to_tensor # Construct the argument parse and parse the arguments. ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="Path to the input image") args = vars(ap.parse_args()) # Input image. input_image = args["image"] """ Transfer learning using Inception V3 """ # Load the Inception V3 model as well as the network weights from disk. print("[INFO] loading {}...".format("CNN Model")) transfer_model = InceptionV3(include_top=False, weights="imagenet") """ Retrieve the saved CNN model """ # Load json and create model. json_file = open("models/CNN_model.json", "r") loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # Load weights into new model. loaded_model.load_weights("weights/CNN_model.h5") CNN_model = loaded_model print("[INFO] Loaded model from the disk.") # Prediction. tensor = paths_to_tensor([input_image]) preprocessed_image = preprocess_input(tensor) feature_extracted_image = transfer_model.predict(preprocessed_image) prediction = CNN_model.predict(feature_extracted_image) # Load lables. label_name = [item[11:-1] for item in sorted(glob("data/train/*/"))] # print("[INFO] Label names are: {}".format(label_name)) print("[INFO] Analyzing the skin lesion.") print("[INFO] Please Wait...") # Show output. cv2.namedWindow("Classification", cv2.WINDOW_NORMAL) cv2.resizeWindow("Classification", 1920, 1080) orig = cv2.imread(args["image"]) label_index = np.argmax(prediction) label = label_name[label_index] prob = prediction[0][label_index] print("[INFO] Analysis Completed!") print("[INFO] {} detected in the image.".format(label)) cv2.putText( orig, "Label: {}, {:.2f}%".format(label, prob * 100), (50, 300), cv2.FONT_HERSHEY_SIMPLEX, 5, (255, 255, 255), 2 ) cv2.imshow("Classification", orig) cv2.waitKey(0)
the-stack_106_17559
import unittest import numpy as np from operator import itemgetter from AlphaGo.go import GameState from AlphaGo.mcts import MCTS, TreeNode class TestTreeNode(unittest.TestCase): def setUp(self): self.gs = GameState() self.node = TreeNode(None, 1.0) def test_selection(self): self.node.expand(dummy_policy(self.gs)) action, next_node = self.node.select() self.assertEqual(action, (18, 18)) # according to the dummy policy below self.assertIsNotNone(next_node) def test_expansion(self): self.assertEqual(0, len(self.node._children)) self.node.expand(dummy_policy(self.gs)) self.assertEqual(19 * 19, len(self.node._children)) for a, p in dummy_policy(self.gs): self.assertEqual(p, self.node._children[a]._P) def test_update(self): self.node.expand(dummy_policy(self.gs)) child = self.node._children[(18, 18)] # Note: the root must be updated first for the visit count to work. self.node.update(leaf_value=1.0, c_puct=5.0) child.update(leaf_value=1.0, c_puct=5.0) expected_score = 1.0 + 5.0 * dummy_distribution[-1] * 0.5 self.assertEqual(expected_score, child.get_value()) # After a second update, the Q value should be the average of the two, and the u value # should be multiplied by sqrt(parent visits) / (node visits + 1) (which was simply equal # to 0.5 before) self.node.update(leaf_value=0.0, c_puct=5.0) child.update(leaf_value=0.0, c_puct=5.0) expected_score = 0.5 + 5.0 * dummy_distribution[-1] * np.sqrt(2.0) / 3.0 self.assertEqual(expected_score, child.get_value()) def test_update_recursive(self): # Assertions are identical to test_treenode_update. self.node.expand(dummy_policy(self.gs)) child = self.node._children[(18, 18)] child.update_recursive(leaf_value=1.0, c_puct=5.0) expected_score = 1.0 + 5.0 * dummy_distribution[-1] / 2.0 self.assertEqual(expected_score, child.get_value()) child.update_recursive(leaf_value=0.0, c_puct=5.0) expected_score = 0.5 + 5.0 * dummy_distribution[-1] * np.sqrt(2.0) / 3.0 self.assertEqual(expected_score, child.get_value()) class TestMCTS(unittest.TestCase): def setUp(self): self.gs = GameState() self.mcts = MCTS(dummy_value, dummy_policy, dummy_rollout, n_playout=2) def _count_expansions(self): """Helper function to count the number of expansions past the root using the dummy policy """ node = self.mcts._root expansions = 0 # Loop over actions in decreasing probability. for action, _ in sorted(dummy_policy(self.gs), key=itemgetter(1), reverse=True): if action in node._children: expansions += 1 node = node._children[action] else: break return expansions def test_playout(self): self.mcts._playout(self.gs.copy(), 8) # Assert that the most likely child was visited (according to the dummy policy below). self.assertEqual(1, self.mcts._root._children[(18, 18)]._n_visits) # Assert that the search depth expanded nodes 8 times. self.assertEqual(8, self._count_expansions()) def test_playout_with_pass(self): # Test that playout handles the end of the game (i.e. passing/no moves). Mock this by # creating a policy that returns nothing after 4 moves. def stop_early_policy(state): if len(state.get_history()) <= 4: return dummy_policy(state) else: return [] self.mcts = MCTS(dummy_value, stop_early_policy, stop_early_policy, n_playout=2) self.mcts._playout(self.gs.copy(), 8) # Assert that (18, 18) and (18, 17) are still only visited once. self.assertEqual(1, self.mcts._root._children[(18, 18)]._n_visits) # Assert that no expansions happened after reaching the "end" in 4 moves. self.assertEqual(5, self._count_expansions()) def test_get_move(self): move = self.mcts.get_move(self.gs) self.mcts.update_with_move(move) # success if no errors def test_update_with_move(self): move = self.mcts.get_move(self.gs) self.gs.do_move(move) self.mcts.update_with_move(move) # Assert that the new root still has children. self.assertTrue(len(self.mcts._root._children) > 0) # Assert that the new root has no parent (the rest of the tree will be garbage collected). self.assertIsNone(self.mcts._root._parent) # Assert that the next best move according to the root is (18, 17), according to the # dummy policy below. self.assertEqual((18, 17), self.mcts._root.select()[0]) # A distribution over positions that is smallest at (0,0) and largest at (18,18) dummy_distribution = np.arange(361, dtype=np.float) dummy_distribution = dummy_distribution / dummy_distribution.sum() def dummy_policy(state): moves = state.get_legal_moves(include_eyes=False) return list(zip(moves, dummy_distribution)) # Rollout is a clone of the policy function. dummy_rollout = dummy_policy def dummy_value(state): # it's not very confident return 0.0 if __name__ == '__main__': unittest.main()
the-stack_106_17560
import speech_recognition def listen(): with speech_recognition.Microphone() as source: recognizer.adjust_for_ambient_noise(source) audio = recognizer.listen(source) try: return recognizer.recognize_sphinx(audio) # or: return recognizer.recognize_google(audio) except speech_recognition.UnknownValueError: print("Could not understand audio") except speech_recognition.RequestError as e: print("Recog Error; {0}".format(e)) return "" print("Say something!") print("I heard you say " + listen())
the-stack_106_17561
#!/usr/bin/python #-*- coding: utf-8 -*- #cache路径 CACHE_PATH = "./cache/" #缓存合约路径 CACHE_CONTRACT_PATH = "./cache/temp.sol" #缓存路径信息文件 CACHE_PATHINFO_PATH = "./cache/temp_sol.json" #缓存抽象语法树文件 CACHE_AST_PATH = "./cache/temp.sol_json.ast" #源代码保存路径 CONTRACT_PATH = "../../contractExtractor/NonpublicVarAccessdByPublicFuncExtractor/result" #注入信息保存路径 INJECT_INFO_PATH = "../../contractExtractor/NonpublicVarAccessdByPublicFuncExtractor/injectInfo" #sol文件后缀 SOL_SUFFIX = ".sol" #json.ast文件后缀 JSON_AST_SUFFIX = "_json.ast" from NonpublicVarAccessdByPublicFuncInjector import NonpublicVarAccessdByPublicFuncInjector #注入器 import os import time class NonpublicVarAccessdByPublicFunc: def __init__(self, _injectInfo, _contractPath): self.injectInfo = _injectInfo #所有文件的路径信息情况 self.targetInfoFile = self.targetPathInfo(self.injectInfo) self.targetContract = self.targetContractList(self.targetInfoFile, _contractPath) #合约列表 self.targetAstFile = self.targetAstList(self.targetInfoFile, _contractPath) #ast列表 self.nowNum = 0 try: os.mkdir(CACHE_PATH) #建立缓存文件夹 except: #print("The cache folder already exists.") pass def targetAstList(self, _fileList, _contractPath): result = list() for filename in _fileList: jsonAstName = os.path.splitext(os.path.split(filename)[1])[0] + SOL_SUFFIX + JSON_AST_SUFFIX result.append(os.path.join(_contractPath, jsonAstName)) return result def targetContractList(self, _fileList, _contractPath): result = list() for filename in _fileList: contractName = os.path.splitext(os.path.split(filename)[1])[0] + SOL_SUFFIX result.append(os.path.join(_contractPath, contractName)) return result def targetPathInfo(self, _pathInfo): fileList = os.listdir(_pathInfo) result = list() for item in fileList: result.append(os.path.join(_pathInfo, item)) return result def getInfoFile(self, _contractName, _infoFileList): preName = os.path.splitext(os.path.split(_contractName)[1])[0] for file in _infoFileList: if preName in file: return file else: continue return str() def getAstFile(self, _contractName, _astFileList): preName = os.path.splitext(os.path.split(_contractName)[1])[0] for file in _astFileList: if preName in file: return file else: continue return str() def cacheFile(self, _contract, _pathInfo, _astPath): try: with open(CACHE_CONTRACT_PATH, "w+", encoding = "utf-8") as f: f.write(open(_contract).read()) with open(CACHE_PATHINFO_PATH, "w+", encoding = "utf-8") as f: f.write(open(_pathInfo).read()) with open(CACHE_AST_PATH, "w+", encoding = "utf-8") as f: f.write(open(_astPath).read()) return except: raise Exception("Failed to cache contract.") def run(self): stime = time.time() contractNum = 0 for contractFile in self.targetContract: contractNum += 1 try: #1. 获取每个合约的源代码, ast和注入信息 pathInfoFile = self.getInfoFile(contractFile, self.targetInfoFile) astFile = self.getAstFile(contractFile, self.targetAstFile) print("\r\t Injecting contract: ", os.path.split(contractFile)[1], end = "") #2. 缓存当前文件 self.cacheFile(contractFile, pathInfoFile, astFile) #3. 根据目标路径和源代码注入bug NI = NonpublicVarAccessdByPublicFuncInjector(CACHE_CONTRACT_PATH, CACHE_PATHINFO_PATH, astFile, self.getOriginalContractName(contractFile)) NI.inject() NI.output() #4. 输出进度 self.nowNum += 1 #print("\r当前注入进度: %.2f" % (self.nowNum / len(self.targetContract))) except Exception as e: self.nowNum += 1 #print(e) continue print() #print(time.time() - stime) #print(contractNum) def getOriginalContractName(self, _contractPath): return os.path.splitext(os.path.split(_contractPath)[1])[0] #单元测试 if __name__ == "__main__": nvabpf = NonpublicVarAccessdByPublicFunc(INJECT_INFO_PATH, CONTRACT_PATH) nvabpf.run()
the-stack_106_17562
from setuptools import setup description = "Simple command line pomodoro app with visualization of statistics" long_description = """ Simple command line pomodoro app with visualization of statistics. The Pomodoro technique is a time management technique for improving productivity. Check (https://en.wikipedia.org/wiki/Pomodoro_Technique) for more details. The code is based on : http://code.activestate.com/recipes/577358-pomodoro-timer/ """ setup( name="pomodoro-cli", version="0.2.0", author="mehdi cherti", author_email="[email protected]", description=description, long_description=long_description, license="MIT", keywords="pomodoro productivity", url="https://github.com/mehdidc/pomodoro", zip_safe=False, # the package can run out of an .egg file classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS'], platforms='any', scripts=['pomodoro', 'pomostat'], include_package_data=True, data_files=['clock.mp3'], install_requires=['clize', 'sigtools', 'pandas', 'matplotlib'], )
the-stack_106_17564
"""保守的指针规划算法""" import math from typing import Any from .algo_base import TouchAction, TouchEvent from chart import Chart from note import Note from utils import distance_of, recalc_pos class Pointer: pid: int pos: tuple[float, float] timestamp: int occupied: int def __init__(self, pid: int, pos: tuple[float, float], timestamp: int): self.pid = pid self.pos = pos self.timestamp = timestamp self.occupied = 0 def __repr__(self): return f'Pointer(pid={self.pid}, pos={self.pos}, timestamp={self.timestamp})' class Pointers: max_pointer_id: int pointers: dict[int, Pointer] begin: int direction: int now: int recycled: set[int] unused: dict[int, Pointer] unused_now: dict[int, Pointer] mark_as_released: list[int] def __init__(self, begin: int, direction: int = 1): self.begin = begin self.max_pointer_id = begin self.pointers = {} self.recycled = set() self.unused = {} self.direction = direction self.unused_now = {} self.mark_as_released = [] def _new(self) -> int: if not self.recycled: pid = self.max_pointer_id self.max_pointer_id += self.direction return pid return self.recycled.pop() def _del(self, pointer_id: int): self.recycled.add(pointer_id) if len(self.recycled) == (self.max_pointer_id - self.begin) / self.direction: self.max_pointer_id = self.begin self.recycled.clear() def acquire(self, note: dict[str, Any], new: bool = True) -> tuple[int, bool]: event_id = note['i'] if event_id in self.pointers: ptr = self.pointers[event_id] ptr.timestamp = self.now ptr.pos = note['p'] return ptr.pid, False if not new: nearest_distance = 200 nearest_pid = None for pid, ptr in self.unused.items(): if (d := distance_of(note['p'], ptr.pos)) < nearest_distance: nearest_pid = ptr.pid nearest_distance = d if nearest_pid is not None: ptr = self.unused[nearest_pid] del self.unused[nearest_pid] ptr.timestamp = self.now ptr.pos = note['p'] ptr.occupied = 0 self.pointers[event_id] = ptr return ptr.pid, False pid = self._new() self.pointers[event_id] = Pointer(pid, note['p'], self.now) return pid, True def release(self, note: dict[str, Any]): event_id = note['i'] if event_id in self.pointers: ptr = self.pointers[event_id] self.unused_now[ptr.pid] = ptr self.mark_as_released.append(event_id) def recycle(self, is_keyframe: bool): marked = [] for event_id in self.mark_as_released: del self.pointers[event_id] self.mark_as_released = [] if is_keyframe: for ptr in self.unused.values(): ptr.occupied += 1 if ptr.occupied > 0: yield ptr.pid, ptr.timestamp + 1, ptr.pos self._del(ptr.pid) marked.append(ptr.pid) for pid in marked: del self.unused[pid] self.unused |= self.unused_now self.unused_now = {} if len(self.unused) + len(self.pointers) > 10: raise RuntimeError( f'unused: {len(self.unused)} & pointers: {len(self.pointers)} are on screen @ {self.now}') def finish(self): for ptr in self.unused.values(): yield ptr.pid, ptr.timestamp + 1, ptr.pos for ptr in self.unused_now.values(): yield ptr.pid, ptr.timestamp + 1, ptr.pos for ptr in self.pointers.values(): yield ptr.pid, ptr.timestamp + 1, ptr.pos def solve(chart: Chart) -> dict[int, list[TouchEvent]]: flick_start = -30 flick_end = 30 flick_scale_factor = 100 frames: dict[int, list] = {} result: dict[int, list[TouchEvent]] = {} def insert(milliseconds: int, event: dict): if milliseconds not in frames: frames[milliseconds] = [] frames[milliseconds].append(event) def ins(milliseconds: int, event: TouchEvent): if milliseconds not in result: result[milliseconds] = [] result[milliseconds].append(event) current_event_id = 0 def flick_pos(px: float, py: float, offset: int) -> tuple[float, float]: return px + math.sin(offset * math.pi / 10) * flick_scale_factor * sa, py + math.sin( offset * math.pi / 10) * flick_scale_factor * ca print('正在统计帧...', end='') # 统计frames for line in chart.judge_lines: for note in line.notes_above + line.notes_below: ms = round(line.seconds(note.time) * 1000) off_x = note.x * 72 x, y = line.pos(note.time) alpha = - line.angle(note.time) * math.pi / 180 sa = math.sin(alpha) ca = math.cos(alpha) px, py = x + off_x * ca, y + off_x * sa if note.typ == Note.TAP: insert(ms, { 'a': 'tap', 'p': recalc_pos((px, py), sa, ca), 'i': current_event_id }) elif note.typ == Note.DRAG: insert(ms, { 'a': 'drag', 'p': recalc_pos((px, py), sa, ca), 'i': current_event_id }) elif note.typ == Note.FLICK: insert(ms + flick_start, { 'a': 'flick_start', # 'p': flick_pos(*line.pos_of(note, line.time(ms + flick_start) / 1000), flick_start), 'p': recalc_pos(flick_pos(px, py, flick_start), sa, ca), 'i': current_event_id }) for offset in range(flick_start + 1, flick_end): insert(ms + offset, { 'a': 'flick', # 'p': flick_pos(*line.pos_of(note, line.time(ms + offset) / 1000), offset), 'p': recalc_pos(flick_pos(px, py, offset), sa, ca), 'i': current_event_id }) insert(ms + flick_end, { 'a': 'flick_end', # 'p': flick_pos(*line.pos_of(note, line.time(ms + flick_end) / 1000), flick_end), 'p': recalc_pos(flick_pos(px, py, flick_end), sa, ca), 'i': current_event_id }) elif note.typ == Note.HOLD: hold_ms = math.ceil(line.seconds(note.hold) * 1000) insert(ms, { 'a': 'hold_start', 'p': recalc_pos((px, py), sa, ca), 'i': current_event_id }) for offset in range(1, hold_ms): insert(ms + offset, { 'a': 'hold', 'p': recalc_pos(line.pos_of(note, line.time((ms + offset) / 1000)), sa, ca), 'i': current_event_id }) insert(ms + hold_ms, { 'a': 'hold_end', 'p': recalc_pos(line.pos_of(note, line.time((ms + hold_ms) / 1000)), sa, ca), 'i': current_event_id }) current_event_id += 1 print(f'统计完毕,当前谱面共计{len(frames)}帧') pointers = Pointers(0) print('正在规划触控事件...', end='') for ms, frame in sorted(frames.items()): pointers.now = ms is_keyframe = False for note in frame: action = note['a'] if action == 'tap': ins(ms, TouchEvent(note['p'], TouchAction.DOWN, pointers.acquire(note)[0])) pointers.release(note) is_keyframe = True elif action == 'drag': pid, new = pointers.acquire(note, new=False) act = TouchAction.DOWN if new else TouchAction.MOVE ins(ms, TouchEvent(note['p'], act, pid)) pointers.release(note) # is_keyframe = True elif action == 'flick_start': pid, new = pointers.acquire(note, new=False) act = TouchAction.DOWN if new else TouchAction.MOVE ins(ms, TouchEvent(note['p'], act, pid)) elif action == 'flick': ins(ms, TouchEvent(note['p'], TouchAction.MOVE, pointers.acquire(note)[0])) elif action == 'flick_end': ins(ms, TouchEvent(note['p'], TouchAction.MOVE, pointers.acquire(note)[0])) pointers.release(note) elif action == 'hold_start': ins(ms, TouchEvent(note['p'], TouchAction.DOWN, pointers.acquire(note)[0])) is_keyframe = True elif action == 'hold': ins(ms, TouchEvent(note['p'], TouchAction.MOVE, pointers.acquire(note)[0])) elif action == 'hold_end': ins(ms, TouchEvent(note['p'], TouchAction.MOVE, pointers.acquire(note)[0])) pointers.release(note) for pid, ts, pos in pointers.recycle(is_keyframe): ins(ts, TouchEvent(pos, TouchAction.UP, pid)) for pid, ts, pos in pointers.finish(): ins(ts, TouchEvent(pos, TouchAction.UP, pid)) print('规划完毕.') return result
the-stack_106_17572
"""Unit tests for case detection and application.""" from case_restorer import case import unittest class CaseTests(unittest.TestCase): """Tests of the helper methods for the casing system.""" # Helpers. def assertEmpty(self, arg): self.assertTrue(not arg) def assertSimpleTcEqual(self, token, expected_case): (tc, pattern) = case.get_tc(token) self.assertEqual(tc, expected_case) self.assertEmpty(pattern) def assertMixedTcEqual(self, token, expected_pattern): (tc, pattern) = case.get_tc(token) self.assertEqual(tc, case.TokenCase.MIXED) self.assertEqual(pattern, expected_pattern) # Data definitions. lower = [ "über", "año", "cöoperation", "résumé", "être", "očudit", "pająk", "fracoð", "þæt", "açai", "ealneġ", "2pac", ] upper = [ "ÜBER", "AÑO", "CÖOPERATION", "RÉSUMÉ", "ÊTRE", "OČUDIT", "PAJĄK", "FRACOÐ", "ÞÆT", "AÇAI", "EALNEĠ", "2PAC", ] title = [ "Über", "Año", "Cöoperation", "Résumé", "Être", "Očudit", "Pająk", "Fracoð", "Þæt", "Açai", "Ealneġ", "2Pac", ] mixed = [ ( "SMiLE", [ case.CharCase.UPPER, case.CharCase.UPPER, case.CharCase.LOWER, case.CharCase.UPPER, case.CharCase.UPPER, ], ), ( "m.A.A.d", [ case.CharCase.LOWER, case.CharCase.DC, case.CharCase.UPPER, case.CharCase.DC, case.CharCase.UPPER, case.CharCase.DC, case.CharCase.LOWER, ], ), ( "iFoo", [ case.CharCase.LOWER, case.CharCase.UPPER, case.CharCase.LOWER, case.CharCase.LOWER, ], ), ( "IJmuiden", [ case.CharCase.UPPER, case.CharCase.UPPER, case.CharCase.LOWER, case.CharCase.LOWER, case.CharCase.LOWER, case.CharCase.LOWER, case.CharCase.LOWER, case.CharCase.LOWER, ], ), ( "tRuEcasIng", [ case.CharCase.LOWER, case.CharCase.UPPER, case.CharCase.LOWER, case.CharCase.UPPER, case.CharCase.LOWER, case.CharCase.LOWER, case.CharCase.LOWER, case.CharCase.UPPER, case.CharCase.LOWER, case.CharCase.LOWER, ], ), ] # Basics. def testLower(self): for token in self.lower: self.assertSimpleTcEqual(token, case.TokenCase.LOWER) def testUpper(self): for token in self.upper: self.assertSimpleTcEqual(token, case.TokenCase.UPPER) def testTitle(self): for token in self.title: self.assertSimpleTcEqual(token, case.TokenCase.TITLE) def testMixed(self): for (token, expected_pattern) in self.mixed: self.assertMixedTcEqual(token, expected_pattern) # Conversions. def testLowerToUpper(self): for (ltoken, utoken) in zip(self.lower, self.upper): self.assertEqual( case.apply_tc(utoken, case.TokenCase.LOWER), ltoken ) self.assertEqual( case.apply_tc(ltoken, case.TokenCase.UPPER), utoken ) def testLowerToTitle(self): for (ltoken, ttoken) in zip(self.lower, self.title): self.assertEqual( case.apply_tc(ttoken, case.TokenCase.LOWER), ltoken ) self.assertEqual( case.apply_tc(ltoken, case.TokenCase.TITLE), ttoken ) def testLowerToMixed(self): for (token, pattern) in self.mixed: self.assertEqual( case.apply_tc(token.casefold(), case.TokenCase.MIXED, pattern), token, ) # Hard cases. def testFiLigature(self): finger = "finger" self.assertEqual(case.apply_tc(finger, case.TokenCase.UPPER), "FINGER") self.assertEqual(case.apply_tc(finger, case.TokenCase.TITLE), "Finger") def testEszet(self): strasse = "Straße" self.assertEqual( case.apply_tc(strasse, case.TokenCase.UPPER), "STRASSE" ) def testUnicodeFonts(self): quirky_titlecase = ["The", "𝐓𝐡𝐞", "𝕿𝖍𝖊", "𝑻𝒉𝒆", "𝓣𝓱𝓮", "𝕋𝕙𝕖", "𝚃𝚑𝚎"] for token in quirky_titlecase: self.assertSimpleTcEqual(token, case.TokenCase.TITLE) def testNumbers(self): numbers = ["212", "97000", "123", "١٢٣"] for token in numbers: self.assertSimpleTcEqual(token, case.TokenCase.DC) def testFuzz(self): fuzz = [ # Wide characters. "田中さんにあげて下さい" "パーティーへ行かないか", "和製漢語", "部落格", "사회과학원어학연구소", "찦차를타고온펲시맨과쑛다리똠방각하", "社會科學院語學研究所", "울란바토르", "𠜎𠜱𠝹𠱓𠱸𠲖𠳏", "新しい日の誕生", # Emoji and kaomoji. "ヽ༼ຈل͜ຈ༽ノ ヽ༼ຈل͜ຈ༽ノ", "(。◕ ∀ ◕。)", "`ィ( ́∀`∩", "__ロ(,_,*)", "・( ̄∀ ̄)・:*:", "・✿ヾ╲(。◕‿◕。)╱✿・゚", "(╯°□°)╯( ┻━┻)", "😍", "👾 🙇 💁 🙅 🙆 🙋 🙎 🙍", "🐵 🙈 🙉 ❤️ 💔 💌 💕 💞 💓 💗 💖 💘 💝 💟 💜 💛 💚 💙", ] for token in fuzz: self.assertSimpleTcEqual(token, case.TokenCase.DC) if __name__ == "__main__": unittest.main()
the-stack_106_17573
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2019 Palo Alto Networks, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' --- module: panos_vlan_interface short_description: configure VLAN interfaces description: - Configure VLAN interfaces. author: "Garfield Lee Freeman (@shinmog)" version_added: '1.0.0' requirements: - pan-python - pandevice notes: - Checkmode is supported. - If the PAN-OS device is a firewall and I(vsys) is not specified, then the vsys will default to I(vsys=vsys1). extends_documentation_fragment: - paloaltonetworks.panos.fragments.transitional_provider - paloaltonetworks.panos.fragments.state - paloaltonetworks.panos.fragments.vsys_import - paloaltonetworks.panos.fragments.template_only options: name: description: - Name of the interface to configure. - This should be in the format "vlan.<some_number>". type: str required: true ip: description: - List of static IP addresses. type: list elements: str ipv6_enabled: description: - Enable IPv6. type: bool management_profile: description: - Interface management profile name. type: str mtu: description: - MTU for layer3 interface. type: int adjust_tcp_mss: description: - Adjust TCP MSS for layer3 interface. type: bool netflow_profile: description: - Netflow profile for layer3 interface. type: str comment: description: - Interface comment. type: str ipv4_mss_adjust: description: - (7.1+) TCP MSS adjustment for IPv4. type: int ipv6_mss_adjust: description: - (7.1+) TCP MSS adjustment for IPv6. type: int enable_dhcp: description: - Enable DHCP on this interface. type: bool create_dhcp_default_route: description: - Whether or not to add default route with router learned via DHCP. type: bool dhcp_default_route_metric: description: - Metric for the DHCP default route. type: int zone_name: description: - Name of the zone for the interface. - If the zone does not exist it is created. - If the zone already exists it should be I(mode=layer3). type: str vlan_name: description: - The VLAN to put this interface in. - If the VLAN does not exist it is created. type: str vr_name: description: - Name of the virtual router type: str ''' EXAMPLES = ''' # Create vlan.2 as DHCP - name: enable DHCP client on ethernet1/1 in zone public panos_vlan_interface: provider: '{{ provider }}' name: "vlan.2" zone_name: "public" enable_dhcp: true create_default_route: true # Set vlan.7 with a static IP - name: Configure vlan.7 panos_vlan_interface: provider: '{{ provider }}' name: "vlan.7" ip: ["10.1.1.1/24"] management_profile: "allow ping" vlan_name: "dmz" zone_name: "L3-untrust" vr_name: "default" ''' RETURN = ''' # Default return values ''' from ansible.module_utils.basic import AnsibleModule from ansible_collections.paloaltonetworks.panos.plugins.module_utils.panos import get_connection try: from panos.network import Vlan from panos.network import VlanInterface from panos.errors import PanDeviceError except ImportError: try: from pandevice.network import Vlan from pandevice.network import VlanInterface from pandevice.errors import PanDeviceError except ImportError: pass def main(): helper = get_connection( vsys_importable=True, template=True, with_classic_provider_spec=True, with_state=True, min_pandevice_version=(0, 9, 0), argument_spec=dict( name=dict(required=True), ip=dict(type='list', elements='str'), ipv6_enabled=dict(type='bool'), management_profile=dict(), mtu=dict(type='int'), adjust_tcp_mss=dict(type='bool'), netflow_profile=dict(), comment=dict(), ipv4_mss_adjust=dict(type='int'), ipv6_mss_adjust=dict(type='int'), enable_dhcp=dict(type='bool'), create_dhcp_default_route=dict(type='bool'), dhcp_default_route_metric=dict(type='int'), zone_name=dict(), vlan_name=dict(), vr_name=dict(), ), ) module = AnsibleModule( argument_spec=helper.argument_spec, supports_check_mode=True, required_one_of=helper.required_one_of, ) # Get the object params. spec = { 'name': module.params['name'], 'ip': module.params['ip'], 'ipv6_enabled': module.params['ipv6_enabled'], 'management_profile': module.params['management_profile'], 'mtu': module.params['mtu'], 'adjust_tcp_mss': module.params['adjust_tcp_mss'], 'netflow_profile': module.params['netflow_profile'], 'comment': module.params['comment'], 'ipv4_mss_adjust': module.params['ipv4_mss_adjust'], 'ipv6_mss_adjust': module.params['ipv6_mss_adjust'], 'enable_dhcp': True if module.params['enable_dhcp'] else None, 'create_dhcp_default_route': True if module.params['create_dhcp_default_route'] else None, 'dhcp_default_route_metric': module.params['dhcp_default_route_metric'], } # Get other info. zone_name = module.params['zone_name'] vlan_name = module.params['vlan_name'] vr_name = module.params['vr_name'] vsys = module.params['vsys'] if vsys is None: vsys = 'vsys1' module.params['vsys'] = vsys # Verify libs are present, get the parent object. parent = helper.get_pandevice_parent(module) # Retrieve the current config. try: listing = VlanInterface.refreshall( parent, add=False, matching_vsys=False) except PanDeviceError as e: module.fail_json(msg='Failed refresh: {0}'.format(e)) # Build the object based on the user spec. obj = VlanInterface(**spec) parent.add(obj) # Which action should we take on the interface? changed = False reference_params = { 'refresh': True, 'update': not module.check_mode, 'return_type': 'bool', } if module.params['state'] == 'present': for item in listing: if item.name != obj.name: continue # Interfaces have children, so don't compare them. if not item.equal(obj, compare_children=False): changed = True obj.extend(item.children) if not module.check_mode: try: obj.apply() except PanDeviceError as e: module.fail_json(msg='Failed apply: {0}'.format(e)) break else: changed = True if not module.check_mode: try: obj.create() except PanDeviceError as e: module.fail_json(msg='Failed create: {0}'.format(e)) # Set references. try: changed |= obj.set_vsys(vsys, **reference_params) changed |= obj.set_vlan_interface(vlan_name, **reference_params) changed |= obj.set_zone(zone_name, mode='layer3', **reference_params) changed |= obj.set_virtual_router(vr_name, **reference_params) except PanDeviceError as e: module.fail_json(msg='Failed setref: {0}'.format(e)) elif module.params['state'] == 'absent': # Remove references. try: changed |= obj.set_virtual_router(None, **reference_params) changed |= obj.set_zone(None, mode='layer3', **reference_params) changed |= obj.set_vlan_interface(None, **reference_params) changed |= obj.set_vsys(None, **reference_params) except PanDeviceError as e: module.fail_json(msg='Failed setref: {0}'.format(e)) # Remove the interface. if obj.name in [x.name for x in listing]: changed = True if not module.check_mode: try: obj.delete() except PanDeviceError as e: module.fail_json(msg='Failed delete: {0}'.format(e)) # Done! module.exit_json(changed=changed, msg='done') if __name__ == '__main__': main()
the-stack_106_17574
import re from base64 import b64encode from functools import partial from typing import Any, Callable, Dict, Optional, Tuple, Union from urllib.parse import quote_plus from hypothesis import strategies as st from hypothesis_jsonschema import from_schema from requests.auth import _basic_auth_str from ... import utils from ...exceptions import InvalidSchema from ...hooks import GLOBAL_HOOK_DISPATCHER, HookContext, HookDispatcher from ...models import Case, Endpoint from ...stateful import Feedback PARAMETERS = frozenset(("path_parameters", "headers", "cookies", "query", "body", "form_data")) SLASH = "/" STRING_FORMATS = {} def register_string_format(name: str, strategy: st.SearchStrategy) -> None: """Register a new strategy for generating data for specific string "format".""" if not isinstance(name, str): raise TypeError(f"name must be of type {str}, not {type(name)}") if not isinstance(strategy, st.SearchStrategy): raise TypeError(f"strategy must be of type {st.SearchStrategy}, not {type(strategy)}") STRING_FORMATS[name] = strategy def init_default_strategies() -> None: """Register all default "format" strategies.""" register_string_format("binary", st.binary()) register_string_format("byte", st.binary().map(lambda x: b64encode(x).decode())) def make_basic_auth_str(item: Tuple[str, str]) -> str: return _basic_auth_str(*item) latin1_text = st.text(alphabet=st.characters(min_codepoint=0, max_codepoint=255)) register_string_format("_basic_auth", st.tuples(latin1_text, latin1_text).map(make_basic_auth_str)) # type: ignore register_string_format("_bearer_auth", st.text().map("Bearer {}".format)) def is_valid_header(headers: Dict[str, Any]) -> bool: """Verify if the generated headers are valid.""" for name, value in headers.items(): if not utils.is_latin_1_encodable(value): return False if utils.has_invalid_characters(name, value): return False return True def is_illegal_surrogate(item: Any) -> bool: return isinstance(item, str) and bool(re.search(r"[\ud800-\udfff]", item)) def is_valid_query(query: Dict[str, Any]) -> bool: """Surrogates are not allowed in a query string. `requests` and `werkzeug` will fail to send it to the application. """ for name, value in query.items(): if is_illegal_surrogate(name) or is_illegal_surrogate(value): return False return True def get_case_strategy( endpoint: Endpoint, hooks: Optional[HookDispatcher] = None, feedback: Optional[Feedback] = None ) -> st.SearchStrategy: """Create a strategy for a complete test case. Path & endpoint are static, the others are JSON schemas. """ strategies = {} static_kwargs: Dict[str, Any] = {"feedback": feedback} for parameter in PARAMETERS: value = getattr(endpoint, parameter) if value is not None: location = {"headers": "header", "cookies": "cookie", "path_parameters": "path"}.get(parameter, parameter) strategies[parameter] = prepare_strategy(parameter, value, endpoint.get_hypothesis_conversions(location)) else: static_kwargs[parameter] = None return _get_case_strategy(endpoint, static_kwargs, strategies, hooks) def to_bytes(value: Union[str, bytes, int, bool, float]) -> bytes: return str(value).encode(errors="ignore") def prepare_form_data(form_data: Dict[str, Any]) -> Dict[str, Any]: for name, value in form_data.items(): if isinstance(value, list): form_data[name] = [to_bytes(item) if not isinstance(item, (bytes, str, int)) else item for item in value] elif not isinstance(value, (bytes, str, int)): form_data[name] = to_bytes(value) return form_data def prepare_headers_schema(value: Dict[str, Any]) -> Dict[str, Any]: """Improve schemas for headers. Headers are strings, but it is not always explicitly defined in the schema. By preparing them properly we can achieve significant performance improvements for such cases. For reference (my machine) - running a single test with 100 examples with the resulting strategy: - without: 4.37 s - with: 294 ms It also reduces the number of cases when the "filter_too_much" health check fails during testing. """ for schema in value.get("properties", {}).values(): schema.setdefault("type", "string") return value def prepare_strategy(parameter: str, value: Dict[str, Any], map_func: Optional[Callable]) -> st.SearchStrategy: """Create a strategy for a schema and add location-specific filters & maps.""" if parameter in ("headers", "cookies"): value = prepare_headers_schema(value) if parameter == "form_data": value.setdefault("type", "object") strategy = from_schema(value, custom_formats=STRING_FORMATS) if map_func is not None: strategy = strategy.map(map_func) if parameter == "path_parameters": strategy = strategy.filter(filter_path_parameters).map(quote_all) # type: ignore elif parameter in ("headers", "cookies"): strategy = strategy.filter(is_valid_header) # type: ignore elif parameter == "query": strategy = strategy.filter(is_valid_query) # type: ignore elif parameter == "form_data": strategy = strategy.map(prepare_form_data) # type: ignore return strategy def filter_path_parameters(parameters: Dict[str, Any]) -> bool: """Single "." chars and empty strings "" are excluded from path by urllib3. A path containing to "/" or "%2F" will lead to ambiguous path resolution in many frameworks and libraries, such behaviour have been observed in both WSGI and ASGI applications. In this case one variable in the path template will be empty, which will lead to 404 in most of the cases. Because of it this case doesn't bring much value and might lead to false positives results of Schemathesis runs. """ path_parameter_blacklist = (".", SLASH, "") return not any( (value in path_parameter_blacklist or is_illegal_surrogate(value) or isinstance(value, str) and SLASH in value) for value in parameters.values() ) def quote_all(parameters: Dict[str, Any]) -> Dict[str, Any]: """Apply URL quotation for all values in a dictionary.""" return {key: quote_plus(value) if isinstance(value, str) else value for key, value in parameters.items()} def _get_case_strategy( endpoint: Endpoint, extra_static_parameters: Dict[str, Any], strategies: Dict[str, st.SearchStrategy], hook_dispatcher: Optional[HookDispatcher] = None, ) -> st.SearchStrategy[Case]: static_parameters: Dict[str, Any] = {"endpoint": endpoint, **extra_static_parameters} if endpoint.schema.validate_schema and endpoint.method.upper() == "GET": if endpoint.body is not None: raise InvalidSchema("Body parameters are defined for GET request.") static_parameters["body"] = None strategies.pop("body", None) context = HookContext(endpoint) _apply_hooks(strategies, GLOBAL_HOOK_DISPATCHER, context) _apply_hooks(strategies, endpoint.schema.hooks, context) if hook_dispatcher is not None: _apply_hooks(strategies, hook_dispatcher, context) return st.builds(partial(Case, **static_parameters), **strategies) def _apply_hooks(strategies: Dict[str, st.SearchStrategy], dispatcher: HookDispatcher, context: HookContext) -> None: for key in strategies: for hook in dispatcher.get_all_by_name(f"before_generate_{key}"): # Get the strategy on each hook to pass the first hook output as an input to the next one strategy = strategies[key] strategies[key] = hook(context, strategy)
the-stack_106_17575
#!/usr/bin/env python3 import sys import os sys.path.append(os.path.abspath(os.path.dirname(__file__) + '/..')) from asyncdbus import MessageBus import anyio async def main(): async with MessageBus().connect() as bus: # the introspection xml would normally be included in your project, but # this is convenient for development introspection = await bus.introspect('org.mpris.MediaPlayer2.vlc', '/org/mpris/MediaPlayer2') obj = await bus.get_proxy_object('org.mpris.MediaPlayer2.vlc', '/org/mpris/MediaPlayer2', introspection) player = await obj.get_interface('org.mpris.MediaPlayer2.Player') properties = await obj.get_interface('org.freedesktop.DBus.Properties') # call methods on the interface (this causes the media player to play) await player.call_play() volume = await player.get_volume() print(f'current volume: {volume}, setting to 0.5') await player.set_volume(0.5) # listen to signals def on_properties_changed(interface_name, changed_properties, invalidated_properties): for changed, variant in changed_properties.items(): print(f'property changed: {changed} - {variant.value}') properties.on_properties_changed(on_properties_changed) await anyio.sleep(99999) anyio.run(main)
the-stack_106_17576
import uuid from datetime import datetime from django.test import TestCase from pillowtop.es_utils import initialize_index_and_mapping from corehq.apps.domain.shortcuts import create_domain from corehq.apps.locations.models import LocationType, SQLLocation from corehq.apps.userreports.app_manager.helpers import clean_table_name from corehq.apps.userreports.models import DataSourceConfiguration from corehq.apps.userreports.pillow import get_location_pillow from corehq.apps.userreports.tasks import rebuild_indicators from corehq.apps.userreports.util import get_indicator_adapter from corehq.apps.users.models import CommCareUser from corehq.elastic import get_es_new from corehq.pillows.mappings.user_mapping import USER_INDEX_INFO from corehq.util.elastic import ensure_index_deleted from corehq.util.test_utils import trap_extra_setup class TestLocationDataSource(TestCase): domain = "delos_corp" def setUp(self): self.domain_obj = create_domain(self.domain) es = get_es_new() initialize_index_and_mapping(es, USER_INDEX_INFO) self.region = LocationType.objects.create(domain=self.domain, name="region") self.town = LocationType.objects.create(domain=self.domain, name="town", parent_type=self.region) self.data_source_config = DataSourceConfiguration( domain=self.domain, display_name='Locations in Westworld', referenced_doc_type='Location', table_id=clean_table_name(self.domain, str(uuid.uuid4().hex)), configured_filter={}, configured_indicators=[{ "type": "expression", "expression": { "type": "property_name", "property_name": "name" }, "column_id": "location_name", "display_name": "location_name", "datatype": "string" }], ) self.data_source_config.validate() self.data_source_config.save() self.pillow = get_location_pillow(ucr_configs=[self.data_source_config]) self.pillow.get_change_feed().get_latest_offsets() def tearDown(self): ensure_index_deleted(USER_INDEX_INFO.index) self.domain_obj.delete() self.data_source_config.delete() def _make_loc(self, name, location_type): return SQLLocation.objects.create( domain=self.domain, name=name, site_code=name, location_type=location_type) def assertDataSourceAccurate(self, expected_locations): adapter = get_indicator_adapter(self.data_source_config) query = adapter.get_query_object() data_source = query.all() self.assertItemsEqual( expected_locations, [row[-1] for row in data_source] ) def test_location_data_source(self): self._make_loc("Westworld", self.region) sweetwater = self._make_loc("Sweetwater", self.town) las_mudas = self._make_loc("Las Mudas", self.town) rebuild_indicators(self.data_source_config._id) self.assertDataSourceAccurate(["Westworld", "Sweetwater", "Las Mudas"]) # Insert new location since = self.pillow.get_change_feed().get_latest_offsets() self._make_loc("Blood Arroyo", self.town) # Change an existing location sweetwater.name = "Pariah" sweetwater.save() # Process both changes together and verify that they went through self.pillow.process_changes(since=since, forever=False) self.assertDataSourceAccurate(["Westworld", "Pariah", "Las Mudas", "Blood Arroyo"]) # Delete a location since = self.pillow.get_change_feed().get_latest_offsets() las_mudas.delete() self.pillow.process_changes(since=since, forever=False) self.assertDataSourceAccurate(["Westworld", "Pariah", "Blood Arroyo"])
the-stack_106_17581
""" Know more, visit my Python tutorial page: https://morvanzhou.github.io/tutorials/ My Youtube Channel: https://www.youtube.com/user/MorvanZhou Dependencies: tensorflow: 1.1.0 matplotlib numpy """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D LR = 0.1 REAL_PARAMS = [1.2, 2.5] INIT_PARAMS = [[5, 4], [5, 1], [2, 4.5]][2] x = np.linspace(-1, 1, 200, dtype=np.float32) # x data # Test (1): Visualize a simple linear function with two parameters, # you can change LR to 1 to see the different pattern in gradient descent. # y_fun = lambda a, b: a * x + b # tf_y_fun = lambda a, b: a * x + b # Test (2): Using Tensorflow as a calibrating tool for empirical formula like following. # y_fun = lambda a, b: a * x**3 + b * x**2 # tf_y_fun = lambda a, b: a * x**3 + b * x**2 # Test (3): Most simplest two parameters and two layers Neural Net, and their local & global minimum, # you can try different INIT_PARAMS set to visualize the gradient descent. def y_fun(a, b): return np.sin(b*np.cos(a*x)) def tf_y_fun(a, b): return tf.sin(b*tf.cos(a*x)) noise = np.random.randn(200)/10 y = y_fun(*REAL_PARAMS) + noise # target # tensorflow graph a, b = [tf.Variable(initial_value=p, dtype=tf.float32) for p in INIT_PARAMS] pred = tf_y_fun(a, b) mse = tf.reduce_mean(tf.square(y-pred)) train_op = tf.train.GradientDescentOptimizer(LR).minimize(mse) a_list, b_list, cost_list = [], [], [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for t in range(400): a_, b_, mse_ = sess.run([a, b, mse]) a_list.append(a_) b_list.append(b_) cost_list.append(mse_) # record parameter changes result, _ = sess.run([pred, train_op]) # training # visualization codes: print('a=', a_, 'b=', b_) plt.figure(1) plt.scatter(x, y, c='b') # plot data plt.plot(x, result, 'r-', lw=2) # plot line fitting # 3D cost figure fig = plt.figure(2) ax = Axes3D(fig) a3D, b3D = np.meshgrid(np.linspace(-2, 7, 30), np.linspace(-2, 7, 30)) # parameter space cost3D = np.array([np.mean(np.square(y_fun(a_, b_) - y)) for a_, b_ in zip(a3D.flatten(), b3D.flatten())]) cost3D = cost3D.reshape(a3D.shape) ax.plot_surface(a3D, b3D, cost3D, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'), alpha=0.5) ax.scatter(a_list[0], b_list[0], zs=cost_list[0], s=300, c='r') # initial parameter place ax.set_xlabel('a') ax.set_ylabel('b') ax.plot(a_list, b_list, zs=cost_list, zdir='z', c='r', lw=3) # plot 3D gradient descent plt.show() sess.close()
the-stack_106_17582
# -*- coding: utf-8 -*- import json import urllib.request headers = { "Host": "flights.ctrip.com", "User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:56.0) Gecko/20100101 Firefox/56.0", "Referer": "http://flights.ctrip.com/booking/SHA-BJS-day-1.html?DDate1=2018-2-16", "Connection": "keep-alive", } url = "http://flights.ctrip.com/domesticsearch/search/SearchFirstRouteFlights?DCity1=SHA&ACity1=CTU&SearchType=S&DDate1=2018-03-05" res = urllib.request.Request(url, headers=headers) data = urllib.request.urlopen(res).read().decode("gb2312") # 获取json数据 jsondata = json.loads(data) # 将json数据解码成python字典 fh = open("E:/allFile/Python_Project/Spider/ctripSpider_Normal/data/data.json", "w", encoding="utf-8") airLineMarketingDict = {} # 航空公司信息 for key in jsondata["als"]: airLineMarketingDict[key] = jsondata["als"][key] spaceDict = { "F": "头等舱", "Y": "经济舱", "C": "公务舱", } i = 1 for eachinfo in jsondata["fis"]: airLineMarketing = eachinfo["alc"] # 航空公司 takeoffOTD = json.loads(eachinfo["confort"])["HistoryPunctuality"] # 出发准点率 arriveOTD = json.loads(eachinfo["confort"])[ "HistoryPunctualityArr"] # 到达准点率 flightNumber = eachinfo["fn"] # 航班号 takeoffPlace = eachinfo["dpbn"] # 起飞机场 takeoffTime = eachinfo["dt"] # 起飞时间 arrivePlace = eachinfo["apbn"] # 到达机场 arriveTime = eachinfo["at"] # 到达时间 shareState = eachinfo["sdft"] # 共享航班状态 planType1 = eachinfo["cf"]["c"] # 飞机型号 planType2 = eachinfo["cf"]["dn"] # 飞机型号备注 planTypeSize = eachinfo["cf"]["s"] # 飞机大小 if (eachinfo["sts"]): transfer = {} # 转机信息 for transferlist in eachinfo["sts"]: transfer["转机到达时间"] = transferlist["at"] # 转机到达时间 transfer["转机起飞时间"] = transferlist["dt"] # 转机起飞时间 transfer["转机地点"] = transferlist["cn"] # 转机地点 basicInfo = { "航空公司": airLineMarketingDict.get(airLineMarketing), "航班号": flightNumber, "起飞机场": takeoffPlace, "起飞时间": takeoffTime, "达到机场": arrivePlace, "到达时间": arriveTime, "出发准点率": takeoffOTD, "到达准点率": arriveOTD, "飞机型号": planType1 + "(" + planTypeSize + ")", "飞机型号备注": planType2, "共享航班状态": shareState, } if (transfer): basicInfo = dict(basicInfo, **transfer) # 合并字典 fh.write('——————————————————————第'+str(i)+'个航班——————————————————'+'\n') #print("——————————————————————第%d个航班——————————————————" %i) fh.write(json.dumps(basicInfo, ensure_ascii=False)+'\n') # print(basicInfo) i += 1 fh.writelines('——————————————————————票价信息————————————————————'+'\n') # print("——————————————————————票价信息————————————————————") priceInfo = {} # 各票价信息 for pricelist in eachinfo["scs"]: priceInfo["舱位类型"] = spaceDict.get(pricelist["c"]) # 舱位类型 priceInfo["舱位类型备注"] = pricelist["son"] # 舱位类型备注 priceInfo["折扣"] = pricelist["rt"] # 折扣 priceInfo["票价"] = pricelist["isair"]["p"] # 票价 priceInfo["退改手续费说明"] = pricelist["tgq"]["rrn"] # 退改手续费说明 priceInfo["产品退订费包含内容"] = pricelist["tgq"]["rfn"] # 产品退订费包含内容 priceInfo["产品签转条件"] = pricelist["tgq"]["edn"] # 产品签转条件 priceInfo["产品更改费"] = pricelist["tgq"]["mef"] # 产品更改费 if (pricelist["hotel"]): priceInfo["机票所含酒店名称"] = pricelist["hotel"]["hn"] # 机票所含酒店名称 priceInfo["机票所含酒店地址"] = pricelist["hotel"]["ads"] # 机票所含酒店地址 priceInfo["机票所含酒店地址备注"] = pricelist["hotel"]["bd"] # 机票所含酒店地址备注 priceInfo["酒店电话"] = pricelist["hotel"]["tel"] # 酒店电话 priceInfo["酒店星级"] = pricelist["hotel"]["star"] # 酒店星级 for roomlist in pricelist["hotel"]["rooms"]: priceInfo["酒店房间类型"] = roomlist["name"] # 酒店房间类型 priceInfo["酒店房间类型备注"] = roomlist["bed"] # 酒店房间类型备注 priceInfo["入住时间"] = roomlist["ci"] # 入住时间 priceInfo["离店时间"] = roomlist["co"] # 离店时间 fh.writelines(json.dumps(priceInfo, ensure_ascii=False)+'\n') # print(priceInfo) # print("\n") priceInfo.clear() transfer.clear() fh.close() #
the-stack_106_17584
def quicksort(lista, inicio=0, fim=None): if fim is None: fim = len(lista) - 1 if inicio < fim: p = lista[fim] indice = inicio for j in range(inicio, fim): if lista[j] <= p: lista[j], lista[indice] = lista[indice], lista[j] indice += 1 lista[indice], lista[fim] = lista[fim], lista[indice] quicksort(lista, inicio, indice-1) quicksort(lista, indice + 1, fim) if __name__ == "__main__": lista = [2, 1, 3, 4, 6, 5] quicksort(lista) print(lista)
the-stack_106_17585
import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10) ]) predictions = model(x_train[:1]).numpy() print(predictions) print(tf.nn.softmax(predictions).numpy()) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) print(loss_fn) loss_fn(y_train[:1], predictions).numpy() model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test, verbose=2) probability_model = tf.keras.Sequential([ model, tf.keras.layers.Softmax() ]) print(probability_model(x_test[:5]))
the-stack_106_17586
import importlib.abc import importlib.util import os import platform import re import string import sys import tokenize import traceback import webbrowser from tkinter import * from tkinter.font import Font from tkinter.ttk import Scrollbar import tkinter.simpledialog as tkSimpleDialog import tkinter.messagebox as tkMessageBox from idlelib.config import idleConf from idlelib import configdialog from idlelib import grep from idlelib import help from idlelib import help_about from idlelib import macosx from idlelib.multicall import MultiCallCreator from idlelib import pyparse from idlelib import query from idlelib import replace from idlelib import search from idlelib.tree import wheel_event from idlelib import window # The default tab setting for a Text widget, in average-width characters. TK_TABWIDTH_DEFAULT = 8 _py_version = ' (%s)' % platform.python_version() darwin = sys.platform == 'darwin' def _sphinx_version(): "Format sys.version_info to produce the Sphinx version string used to install the chm docs" major, minor, micro, level, serial = sys.version_info release = '%s%s' % (major, minor) release += '%s' % (micro,) if level == 'candidate': release += 'rc%s' % (serial,) elif level != 'final': release += '%s%s' % (level[0], serial) return release class EditorWindow(object): from idlelib.percolator import Percolator from idlelib.colorizer import ColorDelegator, color_config from idlelib.undo import UndoDelegator from idlelib.iomenu import IOBinding, encoding from idlelib import mainmenu from idlelib.statusbar import MultiStatusBar from idlelib.autocomplete import AutoComplete from idlelib.autoexpand import AutoExpand from idlelib.calltip import Calltip from idlelib.codecontext import CodeContext from idlelib.sidebar import LineNumbers from idlelib.format import FormatParagraph, FormatRegion, Indents, Rstrip from idlelib.parenmatch import ParenMatch from idlelib.squeezer import Squeezer from idlelib.zoomheight import ZoomHeight filesystemencoding = sys.getfilesystemencoding() # for file names help_url = None allow_code_context = True allow_line_numbers = True def __init__(self, flist=None, filename=None, key=None, root=None): # Delay import: runscript imports pyshell imports EditorWindow. from idlelib.runscript import ScriptBinding if EditorWindow.help_url is None: dochome = os.path.join(sys.base_prefix, 'Doc', 'index.html') if sys.platform.count('linux'): # look for html docs in a couple of standard places pyver = 'python-docs-' + '%s.%s.%s' % sys.version_info[:3] if os.path.isdir('/var/www/html/python/'): # "python2" rpm dochome = '/var/www/html/python/index.html' else: basepath = '/usr/share/doc/' # standard location dochome = os.path.join(basepath, pyver, 'Doc', 'index.html') elif sys.platform[:3] == 'win': chmfile = os.path.join(sys.base_prefix, 'Doc', 'Python%s.chm' % _sphinx_version()) if os.path.isfile(chmfile): dochome = chmfile elif sys.platform == 'darwin': # documentation may be stored inside a python framework dochome = os.path.join(sys.base_prefix, 'Resources/English.lproj/Documentation/index.html') dochome = os.path.normpath(dochome) if os.path.isfile(dochome): EditorWindow.help_url = dochome if sys.platform == 'darwin': # Safari requires real file:-URLs EditorWindow.help_url = 'file://' + EditorWindow.help_url else: EditorWindow.help_url = ("https://docs.python.org/%d.%d/" % sys.version_info[:2]) self.flist = flist root = root or flist.root self.root = root self.menubar = Menu(root) self.top = top = window.ListedToplevel(root, menu=self.menubar) if flist: self.tkinter_vars = flist.vars #self.top.instance_dict makes flist.inversedict available to #configdialog.py so it can access all EditorWindow instances self.top.instance_dict = flist.inversedict else: self.tkinter_vars = {} # keys: Tkinter event names # values: Tkinter variable instances self.top.instance_dict = {} self.recent_files_path = idleConf.userdir and os.path.join( idleConf.userdir, 'recent-files.lst') self.prompt_last_line = '' # Override in PyShell self.text_frame = text_frame = Frame(top) self.vbar = vbar = Scrollbar(text_frame, name='vbar') width = idleConf.GetOption('main', 'EditorWindow', 'width', type='int') text_options = { 'name': 'text', 'padx': 5, 'wrap': 'none', 'highlightthickness': 0, 'width': width, 'tabstyle': 'wordprocessor', # new in 8.5 'height': idleConf.GetOption( 'main', 'EditorWindow', 'height', type='int'), } self.text = text = MultiCallCreator(Text)(text_frame, **text_options) self.top.focused_widget = self.text self.createmenubar() self.apply_bindings() self.top.protocol("WM_DELETE_WINDOW", self.close) self.top.bind("<<close-window>>", self.close_event) if macosx.isAquaTk(): # Command-W on editor windows doesn't work without this. text.bind('<<close-window>>', self.close_event) # Some OS X systems have only one mouse button, so use # control-click for popup context menus there. For two # buttons, AquaTk defines <2> as the right button, not <3>. text.bind("<Control-Button-1>",self.right_menu_event) text.bind("<2>", self.right_menu_event) else: # Elsewhere, use right-click for popup menus. text.bind("<3>",self.right_menu_event) text.bind('<MouseWheel>', wheel_event) text.bind('<Button-4>', wheel_event) text.bind('<Button-5>', wheel_event) text.bind('<Configure>', self.handle_winconfig) text.bind("<<cut>>", self.cut) text.bind("<<copy>>", self.copy) text.bind("<<paste>>", self.paste) text.bind("<<center-insert>>", self.center_insert_event) text.bind("<<help>>", self.help_dialog) text.bind("<<python-docs>>", self.python_docs) text.bind("<<about-idle>>", self.about_dialog) text.bind("<<open-config-dialog>>", self.config_dialog) text.bind("<<open-module>>", self.open_module_event) text.bind("<<do-nothing>>", lambda event: "break") text.bind("<<select-all>>", self.select_all) text.bind("<<remove-selection>>", self.remove_selection) text.bind("<<find>>", self.find_event) text.bind("<<find-again>>", self.find_again_event) text.bind("<<find-in-files>>", self.find_in_files_event) text.bind("<<find-selection>>", self.find_selection_event) text.bind("<<replace>>", self.replace_event) text.bind("<<goto-line>>", self.goto_line_event) text.bind("<<smart-backspace>>",self.smart_backspace_event) text.bind("<<newline-and-indent>>",self.newline_and_indent_event) text.bind("<<smart-indent>>",self.smart_indent_event) self.fregion = fregion = self.FormatRegion(self) # self.fregion used in smart_indent_event to access indent_region. text.bind("<<indent-region>>", fregion.indent_region_event) text.bind("<<dedent-region>>", fregion.dedent_region_event) text.bind("<<comment-region>>", fregion.comment_region_event) text.bind("<<uncomment-region>>", fregion.uncomment_region_event) text.bind("<<tabify-region>>", fregion.tabify_region_event) text.bind("<<untabify-region>>", fregion.untabify_region_event) indents = self.Indents(self) text.bind("<<toggle-tabs>>", indents.toggle_tabs_event) text.bind("<<change-indentwidth>>", indents.change_indentwidth_event) text.bind("<Left>", self.move_at_edge_if_selection(0)) text.bind("<Right>", self.move_at_edge_if_selection(1)) text.bind("<<del-word-left>>", self.del_word_left) text.bind("<<del-word-right>>", self.del_word_right) text.bind("<<beginning-of-line>>", self.home_callback) if flist: flist.inversedict[self] = key if key: flist.dict[key] = self text.bind("<<open-new-window>>", self.new_callback) text.bind("<<close-all-windows>>", self.flist.close_all_callback) text.bind("<<open-class-browser>>", self.open_module_browser) text.bind("<<open-path-browser>>", self.open_path_browser) text.bind("<<open-turtle-demo>>", self.open_turtle_demo) self.set_status_bar() text_frame.pack(side=LEFT, fill=BOTH, expand=1) text_frame.rowconfigure(1, weight=1) text_frame.columnconfigure(1, weight=1) vbar['command'] = self.handle_yview vbar.grid(row=1, column=2, sticky=NSEW) text['yscrollcommand'] = vbar.set text['font'] = idleConf.GetFont(self.root, 'main', 'EditorWindow') text.grid(row=1, column=1, sticky=NSEW) text.focus_set() self.set_width() # usetabs true -> literal tab characters are used by indent and # dedent cmds, possibly mixed with spaces if # indentwidth is not a multiple of tabwidth, # which will cause Tabnanny to nag! # false -> tab characters are converted to spaces by indent # and dedent cmds, and ditto TAB keystrokes # Although use-spaces=0 can be configured manually in config-main.def, # configuration of tabs v. spaces is not supported in the configuration # dialog. IDLE promotes the preferred Python indentation: use spaces! usespaces = idleConf.GetOption('main', 'Indent', 'use-spaces', type='bool') self.usetabs = not usespaces # tabwidth is the display width of a literal tab character. # CAUTION: telling Tk to use anything other than its default # tab setting causes it to use an entirely different tabbing algorithm, # treating tab stops as fixed distances from the left margin. # Nobody expects this, so for now tabwidth should never be changed. self.tabwidth = 8 # must remain 8 until Tk is fixed. # indentwidth is the number of screen characters per indent level. # The recommended Python indentation is four spaces. self.indentwidth = self.tabwidth self.set_notabs_indentwidth() # Store the current value of the insertofftime now so we can restore # it if needed. if not hasattr(idleConf, 'blink_off_time'): idleConf.blink_off_time = self.text['insertofftime'] self.update_cursor_blink() # When searching backwards for a reliable place to begin parsing, # first start num_context_lines[0] lines back, then # num_context_lines[1] lines back if that didn't work, and so on. # The last value should be huge (larger than the # of lines in a # conceivable file). # Making the initial values larger slows things down more often. self.num_context_lines = 50, 500, 5000000 self.per = per = self.Percolator(text) self.undo = undo = self.UndoDelegator() per.insertfilter(undo) text.undo_block_start = undo.undo_block_start text.undo_block_stop = undo.undo_block_stop undo.set_saved_change_hook(self.saved_change_hook) # IOBinding implements file I/O and printing functionality self.io = io = self.IOBinding(self) io.set_filename_change_hook(self.filename_change_hook) self.good_load = False self.set_indentation_params(False) self.color = None # initialized below in self.ResetColorizer self.code_context = None # optionally initialized later below self.line_numbers = None # optionally initialized later below if filename: if os.path.exists(filename) and not os.path.isdir(filename): if io.loadfile(filename): self.good_load = True is_py_src = self.ispythonsource(filename) self.set_indentation_params(is_py_src) else: io.set_filename(filename) self.good_load = True self.ResetColorizer() self.saved_change_hook() self.update_recent_files_list() self.load_extensions() menu = self.menudict.get('window') if menu: end = menu.index("end") if end is None: end = -1 if end >= 0: menu.add_separator() end = end + 1 self.wmenu_end = end window.register_callback(self.postwindowsmenu) # Some abstractions so IDLE extensions are cross-IDE self.askyesno = tkMessageBox.askyesno self.askinteger = tkSimpleDialog.askinteger self.showerror = tkMessageBox.showerror # Add pseudoevents for former extension fixed keys. # (This probably needs to be done once in the process.) text.event_add('<<autocomplete>>', '<Key-Tab>') text.event_add('<<try-open-completions>>', '<KeyRelease-period>', '<KeyRelease-slash>', '<KeyRelease-backslash>') text.event_add('<<try-open-calltip>>', '<KeyRelease-parenleft>') text.event_add('<<refresh-calltip>>', '<KeyRelease-parenright>') text.event_add('<<paren-closed>>', '<KeyRelease-parenright>', '<KeyRelease-bracketright>', '<KeyRelease-braceright>') # Former extension bindings depends on frame.text being packed # (called from self.ResetColorizer()). autocomplete = self.AutoComplete(self) text.bind("<<autocomplete>>", autocomplete.autocomplete_event) text.bind("<<try-open-completions>>", autocomplete.try_open_completions_event) text.bind("<<force-open-completions>>", autocomplete.force_open_completions_event) text.bind("<<expand-word>>", self.AutoExpand(self).expand_word_event) text.bind("<<format-paragraph>>", self.FormatParagraph(self).format_paragraph_event) parenmatch = self.ParenMatch(self) text.bind("<<flash-paren>>", parenmatch.flash_paren_event) text.bind("<<paren-closed>>", parenmatch.paren_closed_event) scriptbinding = ScriptBinding(self) text.bind("<<check-module>>", scriptbinding.check_module_event) text.bind("<<run-module>>", scriptbinding.run_module_event) text.bind("<<run-custom>>", scriptbinding.run_custom_event) text.bind("<<do-rstrip>>", self.Rstrip(self).do_rstrip) self.ctip = ctip = self.Calltip(self) text.bind("<<try-open-calltip>>", ctip.try_open_calltip_event) #refresh-calltip must come after paren-closed to work right text.bind("<<refresh-calltip>>", ctip.refresh_calltip_event) text.bind("<<force-open-calltip>>", ctip.force_open_calltip_event) text.bind("<<zoom-height>>", self.ZoomHeight(self).zoom_height_event) if self.allow_code_context: self.code_context = self.CodeContext(self) text.bind("<<toggle-code-context>>", self.code_context.toggle_code_context_event) else: self.update_menu_state('options', '*Code Context', 'disabled') if self.allow_line_numbers: self.line_numbers = self.LineNumbers(self) if idleConf.GetOption('main', 'EditorWindow', 'line-numbers-default', type='bool'): self.toggle_line_numbers_event() text.bind("<<toggle-line-numbers>>", self.toggle_line_numbers_event) else: self.update_menu_state('options', '*Line Numbers', 'disabled') def handle_winconfig(self, event=None): self.set_width() def set_width(self): text = self.text inner_padding = sum(map(text.tk.getint, [text.cget('border'), text.cget('padx')])) pixel_width = text.winfo_width() - 2 * inner_padding # Divide the width of the Text widget by the font width, # which is taken to be the width of '0' (zero). # http://www.tcl.tk/man/tcl8.6/TkCmd/text.htm#M21 zero_char_width = \ Font(text, font=text.cget('font')).measure('0') self.width = pixel_width // zero_char_width def new_callback(self, event): dirname, basename = self.io.defaultfilename() self.flist.new(dirname) return "break" def home_callback(self, event): if (event.state & 4) != 0 and event.keysym == "Home": # state&4==Control. If <Control-Home>, use the Tk binding. return None if self.text.index("iomark") and \ self.text.compare("iomark", "<=", "insert lineend") and \ self.text.compare("insert linestart", "<=", "iomark"): # In Shell on input line, go to just after prompt insertpt = int(self.text.index("iomark").split(".")[1]) else: line = self.text.get("insert linestart", "insert lineend") for insertpt in range(len(line)): if line[insertpt] not in (' ','\t'): break else: insertpt=len(line) lineat = int(self.text.index("insert").split('.')[1]) if insertpt == lineat: insertpt = 0 dest = "insert linestart+"+str(insertpt)+"c" if (event.state&1) == 0: # shift was not pressed self.text.tag_remove("sel", "1.0", "end") else: if not self.text.index("sel.first"): # there was no previous selection self.text.mark_set("my_anchor", "insert") else: if self.text.compare(self.text.index("sel.first"), "<", self.text.index("insert")): self.text.mark_set("my_anchor", "sel.first") # extend back else: self.text.mark_set("my_anchor", "sel.last") # extend forward first = self.text.index(dest) last = self.text.index("my_anchor") if self.text.compare(first,">",last): first,last = last,first self.text.tag_remove("sel", "1.0", "end") self.text.tag_add("sel", first, last) self.text.mark_set("insert", dest) self.text.see("insert") return "break" def set_status_bar(self): self.status_bar = self.MultiStatusBar(self.top) sep = Frame(self.top, height=1, borderwidth=1, background='grey75') if sys.platform == "darwin": # Insert some padding to avoid obscuring some of the statusbar # by the resize widget. self.status_bar.set_label('_padding1', ' ', side=RIGHT) self.status_bar.set_label('column', 'Col: ?', side=RIGHT) self.status_bar.set_label('line', 'Ln: ?', side=RIGHT) self.status_bar.pack(side=BOTTOM, fill=X) sep.pack(side=BOTTOM, fill=X) self.text.bind("<<set-line-and-column>>", self.set_line_and_column) self.text.event_add("<<set-line-and-column>>", "<KeyRelease>", "<ButtonRelease>") self.text.after_idle(self.set_line_and_column) def set_line_and_column(self, event=None): line, column = self.text.index(INSERT).split('.') self.status_bar.set_label('column', 'Col: %s' % column) self.status_bar.set_label('line', 'Ln: %s' % line) menu_specs = [ ("file", "_File"), ("edit", "_Edit"), ("format", "F_ormat"), ("run", "_Run"), ("options", "_Options"), ("window", "_Window"), ("help", "_Help"), ] def createmenubar(self): mbar = self.menubar self.menudict = menudict = {} for name, label in self.menu_specs: underline, label = prepstr(label) menudict[name] = menu = Menu(mbar, name=name, tearoff=0) mbar.add_cascade(label=label, menu=menu, underline=underline) if macosx.isCarbonTk(): # Insert the application menu menudict['application'] = menu = Menu(mbar, name='apple', tearoff=0) mbar.add_cascade(label='IDLE', menu=menu) self.fill_menus() self.recent_files_menu = Menu(self.menubar, tearoff=0) self.menudict['file'].insert_cascade(3, label='Recent Files', underline=0, menu=self.recent_files_menu) self.base_helpmenu_length = self.menudict['help'].index(END) self.reset_help_menu_entries() def postwindowsmenu(self): # Only called when Window menu exists menu = self.menudict['window'] end = menu.index("end") if end is None: end = -1 if end > self.wmenu_end: menu.delete(self.wmenu_end+1, end) window.add_windows_to_menu(menu) def update_menu_label(self, menu, index, label): "Update label for menu item at index." menuitem = self.menudict[menu] menuitem.entryconfig(index, label=label) def update_menu_state(self, menu, index, state): "Update state for menu item at index." menuitem = self.menudict[menu] menuitem.entryconfig(index, state=state) def handle_yview(self, event, *args): "Handle scrollbar." if event == 'moveto': fraction = float(args[0]) lines = (round(self.getlineno('end') * fraction) - self.getlineno('@0,0')) event = 'scroll' args = (lines, 'units') self.text.yview(event, *args) return 'break' rmenu = None def right_menu_event(self, event): self.text.mark_set("insert", "@%d,%d" % (event.x, event.y)) if not self.rmenu: self.make_rmenu() rmenu = self.rmenu self.event = event iswin = sys.platform[:3] == 'win' if iswin: self.text.config(cursor="arrow") for item in self.rmenu_specs: try: label, eventname, verify_state = item except ValueError: # see issue1207589 continue if verify_state is None: continue state = getattr(self, verify_state)() rmenu.entryconfigure(label, state=state) rmenu.tk_popup(event.x_root, event.y_root) if iswin: self.text.config(cursor="ibeam") return "break" rmenu_specs = [ # ("Label", "<<virtual-event>>", "statefuncname"), ... ("Close", "<<close-window>>", None), # Example ] def make_rmenu(self): rmenu = Menu(self.text, tearoff=0) for item in self.rmenu_specs: label, eventname = item[0], item[1] if label is not None: def command(text=self.text, eventname=eventname): text.event_generate(eventname) rmenu.add_command(label=label, command=command) else: rmenu.add_separator() self.rmenu = rmenu def rmenu_check_cut(self): return self.rmenu_check_copy() def rmenu_check_copy(self): try: indx = self.text.index('sel.first') except TclError: return 'disabled' else: return 'normal' if indx else 'disabled' def rmenu_check_paste(self): try: self.text.tk.call('tk::GetSelection', self.text, 'CLIPBOARD') except TclError: return 'disabled' else: return 'normal' def about_dialog(self, event=None): "Handle Help 'About IDLE' event." # Synchronize with macosx.overrideRootMenu.about_dialog. help_about.AboutDialog(self.top) return "break" def config_dialog(self, event=None): "Handle Options 'Configure IDLE' event." # Synchronize with macosx.overrideRootMenu.config_dialog. configdialog.ConfigDialog(self.top,'Settings') return "break" def help_dialog(self, event=None): "Handle Help 'IDLE Help' event." # Synchronize with macosx.overrideRootMenu.help_dialog. if self.root: parent = self.root else: parent = self.top help.show_idlehelp(parent) return "break" def python_docs(self, event=None): if sys.platform[:3] == 'win': try: os.startfile(self.help_url) except OSError as why: tkMessageBox.showerror(title='Document Start Failure', message=str(why), parent=self.text) else: webbrowser.open(self.help_url) return "break" def cut(self,event): self.text.event_generate("<<Cut>>") return "break" def copy(self,event): if not self.text.tag_ranges("sel"): # There is no selection, so do nothing and maybe interrupt. return None self.text.event_generate("<<Copy>>") return "break" def paste(self,event): self.text.event_generate("<<Paste>>") self.text.see("insert") return "break" def select_all(self, event=None): self.text.tag_add("sel", "1.0", "end-1c") self.text.mark_set("insert", "1.0") self.text.see("insert") return "break" def remove_selection(self, event=None): self.text.tag_remove("sel", "1.0", "end") self.text.see("insert") return "break" def move_at_edge_if_selection(self, edge_index): """Cursor move begins at start or end of selection When a left/right cursor key is pressed create and return to Tkinter a function which causes a cursor move from the associated edge of the selection. """ self_text_index = self.text.index self_text_mark_set = self.text.mark_set edges_table = ("sel.first+1c", "sel.last-1c") def move_at_edge(event): if (event.state & 5) == 0: # no shift(==1) or control(==4) pressed try: self_text_index("sel.first") self_text_mark_set("insert", edges_table[edge_index]) except TclError: pass return move_at_edge def del_word_left(self, event): self.text.event_generate('<Meta-Delete>') return "break" def del_word_right(self, event): self.text.event_generate('<Meta-d>') return "break" def find_event(self, event): search.find(self.text) return "break" def find_again_event(self, event): search.find_again(self.text) return "break" def find_selection_event(self, event): search.find_selection(self.text) return "break" def find_in_files_event(self, event): grep.grep(self.text, self.io, self.flist) return "break" def replace_event(self, event): replace.replace(self.text) return "break" def goto_line_event(self, event): text = self.text lineno = tkSimpleDialog.askinteger("Goto", "Go to line number:",parent=text) if lineno is None: return "break" if lineno <= 0: text.bell() return "break" text.mark_set("insert", "%d.0" % lineno) text.see("insert") return "break" def open_module(self): """Get module name from user and open it. Return module path or None for calls by open_module_browser when latter is not invoked in named editor window. """ # XXX This, open_module_browser, and open_path_browser # would fit better in iomenu.IOBinding. try: name = self.text.get("sel.first", "sel.last").strip() except TclError: name = '' file_path = query.ModuleName( self.text, "Open Module", "Enter the name of a Python module\n" "to search on sys.path and open:", name).result if file_path is not None: if self.flist: self.flist.open(file_path) else: self.io.loadfile(file_path) return file_path def open_module_event(self, event): self.open_module() return "break" def open_module_browser(self, event=None): filename = self.io.filename if not (self.__class__.__name__ == 'PyShellEditorWindow' and filename): filename = self.open_module() if filename is None: return "break" from idlelib import browser browser.ModuleBrowser(self.root, filename) return "break" def open_path_browser(self, event=None): from idlelib import pathbrowser pathbrowser.PathBrowser(self.root) return "break" def open_turtle_demo(self, event = None): import subprocess cmd = [sys.executable, '-c', 'from turtledemo.__main__ import main; main()'] subprocess.Popen(cmd, shell=False) return "break" def gotoline(self, lineno): if lineno is not None and lineno > 0: self.text.mark_set("insert", "%d.0" % lineno) self.text.tag_remove("sel", "1.0", "end") self.text.tag_add("sel", "insert", "insert +1l") self.center() def ispythonsource(self, filename): if not filename or os.path.isdir(filename): return True base, ext = os.path.splitext(os.path.basename(filename)) if os.path.normcase(ext) in (".py", ".pyw"): return True line = self.text.get('1.0', '1.0 lineend') return line.startswith('#!') and 'python' in line def close_hook(self): if self.flist: self.flist.unregister_maybe_terminate(self) self.flist = None def set_close_hook(self, close_hook): self.close_hook = close_hook def filename_change_hook(self): if self.flist: self.flist.filename_changed_edit(self) self.saved_change_hook() self.top.update_windowlist_registry(self) self.ResetColorizer() def _addcolorizer(self): if self.color: return if self.ispythonsource(self.io.filename): self.color = self.ColorDelegator() # can add more colorizers here... if self.color: self.per.removefilter(self.undo) self.per.insertfilter(self.color) self.per.insertfilter(self.undo) def _rmcolorizer(self): if not self.color: return self.color.removecolors() self.per.removefilter(self.color) self.color = None def ResetColorizer(self): "Update the color theme" # Called from self.filename_change_hook and from configdialog.py self._rmcolorizer() self._addcolorizer() EditorWindow.color_config(self.text) if self.code_context is not None: self.code_context.update_highlight_colors() if self.line_numbers is not None: self.line_numbers.update_colors() IDENTCHARS = string.ascii_letters + string.digits + "_" def colorize_syntax_error(self, text, pos): text.tag_add("ERROR", pos) char = text.get(pos) if char and char in self.IDENTCHARS: text.tag_add("ERROR", pos + " wordstart", pos) if '\n' == text.get(pos): # error at line end text.mark_set("insert", pos) else: text.mark_set("insert", pos + "+1c") text.see(pos) def update_cursor_blink(self): "Update the cursor blink configuration." cursorblink = idleConf.GetOption( 'main', 'EditorWindow', 'cursor-blink', type='bool') if not cursorblink: self.text['insertofftime'] = 0 else: # Restore the original value self.text['insertofftime'] = idleConf.blink_off_time def ResetFont(self): "Update the text widgets' font if it is changed" # Called from configdialog.py # Update the code context widget first, since its height affects # the height of the text widget. This avoids double re-rendering. if self.code_context is not None: self.code_context.update_font() # Next, update the line numbers widget, since its width affects # the width of the text widget. if self.line_numbers is not None: self.line_numbers.update_font() # Finally, update the main text widget. new_font = idleConf.GetFont(self.root, 'main', 'EditorWindow') self.text['font'] = new_font self.set_width() def RemoveKeybindings(self): "Remove the keybindings before they are changed." # Called from configdialog.py self.mainmenu.default_keydefs = keydefs = idleConf.GetCurrentKeySet() for event, keylist in keydefs.items(): self.text.event_delete(event, *keylist) for extensionName in self.get_standard_extension_names(): xkeydefs = idleConf.GetExtensionBindings(extensionName) if xkeydefs: for event, keylist in xkeydefs.items(): self.text.event_delete(event, *keylist) def ApplyKeybindings(self): "Update the keybindings after they are changed" # Called from configdialog.py self.mainmenu.default_keydefs = keydefs = idleConf.GetCurrentKeySet() self.apply_bindings() for extensionName in self.get_standard_extension_names(): xkeydefs = idleConf.GetExtensionBindings(extensionName) if xkeydefs: self.apply_bindings(xkeydefs) #update menu accelerators menuEventDict = {} for menu in self.mainmenu.menudefs: menuEventDict[menu[0]] = {} for item in menu[1]: if item: menuEventDict[menu[0]][prepstr(item[0])[1]] = item[1] for menubarItem in self.menudict: menu = self.menudict[menubarItem] end = menu.index(END) if end is None: # Skip empty menus continue end += 1 for index in range(0, end): if menu.type(index) == 'command': accel = menu.entrycget(index, 'accelerator') if accel: itemName = menu.entrycget(index, 'label') event = '' if menubarItem in menuEventDict: if itemName in menuEventDict[menubarItem]: event = menuEventDict[menubarItem][itemName] if event: accel = get_accelerator(keydefs, event) menu.entryconfig(index, accelerator=accel) def set_notabs_indentwidth(self): "Update the indentwidth if changed and not using tabs in this window" # Called from configdialog.py if not self.usetabs: self.indentwidth = idleConf.GetOption('main', 'Indent','num-spaces', type='int') def reset_help_menu_entries(self): "Update the additional help entries on the Help menu" help_list = idleConf.GetAllExtraHelpSourcesList() helpmenu = self.menudict['help'] # first delete the extra help entries, if any helpmenu_length = helpmenu.index(END) if helpmenu_length > self.base_helpmenu_length: helpmenu.delete((self.base_helpmenu_length + 1), helpmenu_length) # then rebuild them if help_list: helpmenu.add_separator() for entry in help_list: cmd = self.__extra_help_callback(entry[1]) helpmenu.add_command(label=entry[0], command=cmd) # and update the menu dictionary self.menudict['help'] = helpmenu def __extra_help_callback(self, helpfile): "Create a callback with the helpfile value frozen at definition time" def display_extra_help(helpfile=helpfile): if not helpfile.startswith(('www', 'http')): helpfile = os.path.normpath(helpfile) if sys.platform[:3] == 'win': try: os.startfile(helpfile) except OSError as why: tkMessageBox.showerror(title='Document Start Failure', message=str(why), parent=self.text) else: webbrowser.open(helpfile) return display_extra_help def update_recent_files_list(self, new_file=None): "Load and update the recent files list and menus" # TODO: move to iomenu. rf_list = [] file_path = self.recent_files_path if file_path and os.path.exists(file_path): with open(file_path, 'r', encoding='utf_8', errors='replace') as rf_list_file: rf_list = rf_list_file.readlines() if new_file: new_file = os.path.abspath(new_file) + '\n' if new_file in rf_list: rf_list.remove(new_file) # move to top rf_list.insert(0, new_file) # clean and save the recent files list bad_paths = [] for path in rf_list: if '\0' in path or not os.path.exists(path[0:-1]): bad_paths.append(path) rf_list = [path for path in rf_list if path not in bad_paths] ulchars = "1234567890ABCDEFGHIJK" rf_list = rf_list[0:len(ulchars)] if file_path: try: with open(file_path, 'w', encoding='utf_8', errors='replace') as rf_file: rf_file.writelines(rf_list) except OSError as err: if not getattr(self.root, "recentfiles_message", False): self.root.recentfiles_message = True tkMessageBox.showwarning(title='IDLE Warning', message="Cannot save Recent Files list to disk.\n" f" {err}\n" "Select OK to continue.", parent=self.text) # for each edit window instance, construct the recent files menu for instance in self.top.instance_dict: menu = instance.recent_files_menu menu.delete(0, END) # clear, and rebuild: for i, file_name in enumerate(rf_list): file_name = file_name.rstrip() # zap \n callback = instance.__recent_file_callback(file_name) menu.add_command(label=ulchars[i] + " " + file_name, command=callback, underline=0) def __recent_file_callback(self, file_name): def open_recent_file(fn_closure=file_name): self.io.open(editFile=fn_closure) return open_recent_file def saved_change_hook(self): short = self.short_title() long = self.long_title() if short and long: title = short + " - " + long + _py_version elif short: title = short elif long: title = long else: title = "untitled" icon = short or long or title if not self.get_saved(): title = "*%s*" % title icon = "*%s" % icon self.top.wm_title(title) self.top.wm_iconname(icon) def get_saved(self): return self.undo.get_saved() def set_saved(self, flag): self.undo.set_saved(flag) def reset_undo(self): self.undo.reset_undo() def short_title(self): filename = self.io.filename return os.path.basename(filename) if filename else "untitled" def long_title(self): return self.io.filename or "" def center_insert_event(self, event): self.center() return "break" def center(self, mark="insert"): text = self.text top, bot = self.getwindowlines() lineno = self.getlineno(mark) height = bot - top newtop = max(1, lineno - height//2) text.yview(float(newtop)) def getwindowlines(self): text = self.text top = self.getlineno("@0,0") bot = self.getlineno("@0,65535") if top == bot and text.winfo_height() == 1: # Geometry manager hasn't run yet height = int(text['height']) bot = top + height - 1 return top, bot def getlineno(self, mark="insert"): text = self.text return int(float(text.index(mark))) def get_geometry(self): "Return (width, height, x, y)" geom = self.top.wm_geometry() m = re.match(r"(\d+)x(\d+)\+(-?\d+)\+(-?\d+)", geom) return list(map(int, m.groups())) def close_event(self, event): self.close() return "break" def maybesave(self): if self.io: if not self.get_saved(): if self.top.state()!='normal': self.top.deiconify() self.top.lower() self.top.lift() return self.io.maybesave() def close(self): try: reply = self.maybesave() if str(reply) != "cancel": self._close() return reply except AttributeError: # bpo-35379: close called twice pass def _close(self): if self.io.filename: self.update_recent_files_list(new_file=self.io.filename) window.unregister_callback(self.postwindowsmenu) self.unload_extensions() self.io.close() self.io = None self.undo = None if self.color: self.color.close() self.color = None self.text = None self.tkinter_vars = None self.per.close() self.per = None self.top.destroy() if self.close_hook: # unless override: unregister from flist, terminate if last window self.close_hook() def load_extensions(self): self.extensions = {} self.load_standard_extensions() def unload_extensions(self): for ins in list(self.extensions.values()): if hasattr(ins, "close"): ins.close() self.extensions = {} def load_standard_extensions(self): for name in self.get_standard_extension_names(): try: self.load_extension(name) except: print("Failed to load extension", repr(name)) traceback.print_exc() def get_standard_extension_names(self): return idleConf.GetExtensions(editor_only=True) extfiles = { # Map built-in config-extension section names to file names. 'ZzDummy': 'zzdummy', } def load_extension(self, name): fname = self.extfiles.get(name, name) try: try: mod = importlib.import_module('.' + fname, package=__package__) except (ImportError, TypeError): mod = importlib.import_module(fname) except ImportError: print("\nFailed to import extension: ", name) raise cls = getattr(mod, name) keydefs = idleConf.GetExtensionBindings(name) if hasattr(cls, "menudefs"): self.fill_menus(cls.menudefs, keydefs) ins = cls(self) self.extensions[name] = ins if keydefs: self.apply_bindings(keydefs) for vevent in keydefs: methodname = vevent.replace("-", "_") while methodname[:1] == '<': methodname = methodname[1:] while methodname[-1:] == '>': methodname = methodname[:-1] methodname = methodname + "_event" if hasattr(ins, methodname): self.text.bind(vevent, getattr(ins, methodname)) def apply_bindings(self, keydefs=None): if keydefs is None: keydefs = self.mainmenu.default_keydefs text = self.text text.keydefs = keydefs for event, keylist in keydefs.items(): if keylist: text.event_add(event, *keylist) def fill_menus(self, menudefs=None, keydefs=None): """Add appropriate entries to the menus and submenus Menus that are absent or None in self.menudict are ignored. """ if menudefs is None: menudefs = self.mainmenu.menudefs if keydefs is None: keydefs = self.mainmenu.default_keydefs menudict = self.menudict text = self.text for mname, entrylist in menudefs: menu = menudict.get(mname) if not menu: continue for entry in entrylist: if not entry: menu.add_separator() else: label, eventname = entry checkbutton = (label[:1] == '!') if checkbutton: label = label[1:] underline, label = prepstr(label) accelerator = get_accelerator(keydefs, eventname) def command(text=text, eventname=eventname): text.event_generate(eventname) if checkbutton: var = self.get_var_obj(eventname, BooleanVar) menu.add_checkbutton(label=label, underline=underline, command=command, accelerator=accelerator, variable=var) else: menu.add_command(label=label, underline=underline, command=command, accelerator=accelerator) def getvar(self, name): var = self.get_var_obj(name) if var: value = var.get() return value else: raise NameError(name) def setvar(self, name, value, vartype=None): var = self.get_var_obj(name, vartype) if var: var.set(value) else: raise NameError(name) def get_var_obj(self, name, vartype=None): var = self.tkinter_vars.get(name) if not var and vartype: # create a Tkinter variable object with self.text as master: self.tkinter_vars[name] = var = vartype(self.text) return var # Tk implementations of "virtual text methods" -- each platform # reusing IDLE's support code needs to define these for its GUI's # flavor of widget. # Is character at text_index in a Python string? Return 0 for # "guaranteed no", true for anything else. This info is expensive # to compute ab initio, but is probably already known by the # platform's colorizer. def is_char_in_string(self, text_index): if self.color: # Return true iff colorizer hasn't (re)gotten this far # yet, or the character is tagged as being in a string return self.text.tag_prevrange("TODO", text_index) or \ "STRING" in self.text.tag_names(text_index) else: # The colorizer is missing: assume the worst return 1 # If a selection is defined in the text widget, return (start, # end) as Tkinter text indices, otherwise return (None, None) def get_selection_indices(self): try: first = self.text.index("sel.first") last = self.text.index("sel.last") return first, last except TclError: return None, None # Return the text widget's current view of what a tab stop means # (equivalent width in spaces). def get_tk_tabwidth(self): current = self.text['tabs'] or TK_TABWIDTH_DEFAULT return int(current) # Set the text widget's current view of what a tab stop means. def set_tk_tabwidth(self, newtabwidth): text = self.text if self.get_tk_tabwidth() != newtabwidth: # Set text widget tab width pixels = text.tk.call("font", "measure", text["font"], "-displayof", text.master, "n" * newtabwidth) text.configure(tabs=pixels) ### begin autoindent code ### (configuration was moved to beginning of class) def set_indentation_params(self, is_py_src, guess=True): if is_py_src and guess: i = self.guess_indent() if 2 <= i <= 8: self.indentwidth = i if self.indentwidth != self.tabwidth: self.usetabs = False self.set_tk_tabwidth(self.tabwidth) def smart_backspace_event(self, event): text = self.text first, last = self.get_selection_indices() if first and last: text.delete(first, last) text.mark_set("insert", first) return "break" # Delete whitespace left, until hitting a real char or closest # preceding virtual tab stop. chars = text.get("insert linestart", "insert") if chars == '': if text.compare("insert", ">", "1.0"): # easy: delete preceding newline text.delete("insert-1c") else: text.bell() # at start of buffer return "break" if chars[-1] not in " \t": # easy: delete preceding real char text.delete("insert-1c") return "break" # Ick. It may require *inserting* spaces if we back up over a # tab character! This is written to be clear, not fast. tabwidth = self.tabwidth have = len(chars.expandtabs(tabwidth)) assert have > 0 want = ((have - 1) // self.indentwidth) * self.indentwidth # Debug prompt is multilined.... ncharsdeleted = 0 while 1: if chars == self.prompt_last_line: # '' unless PyShell break chars = chars[:-1] ncharsdeleted = ncharsdeleted + 1 have = len(chars.expandtabs(tabwidth)) if have <= want or chars[-1] not in " \t": break text.undo_block_start() text.delete("insert-%dc" % ncharsdeleted, "insert") if have < want: text.insert("insert", ' ' * (want - have)) text.undo_block_stop() return "break" def smart_indent_event(self, event): # if intraline selection: # delete it # elif multiline selection: # do indent-region # else: # indent one level text = self.text first, last = self.get_selection_indices() text.undo_block_start() try: if first and last: if index2line(first) != index2line(last): return self.fregion.indent_region_event(event) text.delete(first, last) text.mark_set("insert", first) prefix = text.get("insert linestart", "insert") raw, effective = get_line_indent(prefix, self.tabwidth) if raw == len(prefix): # only whitespace to the left self.reindent_to(effective + self.indentwidth) else: # tab to the next 'stop' within or to right of line's text: if self.usetabs: pad = '\t' else: effective = len(prefix.expandtabs(self.tabwidth)) n = self.indentwidth pad = ' ' * (n - effective % n) text.insert("insert", pad) text.see("insert") return "break" finally: text.undo_block_stop() def newline_and_indent_event(self, event): """Insert a newline and indentation after Enter keypress event. Properly position the cursor on the new line based on information from the current line. This takes into account if the current line is a shell prompt, is empty, has selected text, contains a block opener, contains a block closer, is a continuation line, or is inside a string. """ text = self.text first, last = self.get_selection_indices() text.undo_block_start() try: # Close undo block and expose new line in finally clause. if first and last: text.delete(first, last) text.mark_set("insert", first) line = text.get("insert linestart", "insert") # Count leading whitespace for indent size. i, n = 0, len(line) while i < n and line[i] in " \t": i += 1 if i == n: # The cursor is in or at leading indentation in a continuation # line; just inject an empty line at the start. text.insert("insert linestart", '\n') return "break" indent = line[:i] # Strip whitespace before insert point unless it's in the prompt. i = 0 while line and line[-1] in " \t" and line != self.prompt_last_line: line = line[:-1] i += 1 if i: text.delete("insert - %d chars" % i, "insert") # Strip whitespace after insert point. while text.get("insert") in " \t": text.delete("insert") # Insert new line. text.insert("insert", '\n') # Adjust indentation for continuations and block open/close. # First need to find the last statement. lno = index2line(text.index('insert')) y = pyparse.Parser(self.indentwidth, self.tabwidth) if not self.prompt_last_line: for context in self.num_context_lines: startat = max(lno - context, 1) startatindex = repr(startat) + ".0" rawtext = text.get(startatindex, "insert") y.set_code(rawtext) bod = y.find_good_parse_start( self._build_char_in_string_func(startatindex)) if bod is not None or startat == 1: break y.set_lo(bod or 0) else: r = text.tag_prevrange("console", "insert") if r: startatindex = r[1] else: startatindex = "1.0" rawtext = text.get(startatindex, "insert") y.set_code(rawtext) y.set_lo(0) c = y.get_continuation_type() if c != pyparse.C_NONE: # The current statement hasn't ended yet. if c == pyparse.C_STRING_FIRST_LINE: # After the first line of a string do not indent at all. pass elif c == pyparse.C_STRING_NEXT_LINES: # Inside a string which started before this line; # just mimic the current indent. text.insert("insert", indent) elif c == pyparse.C_BRACKET: # Line up with the first (if any) element of the # last open bracket structure; else indent one # level beyond the indent of the line with the # last open bracket. self.reindent_to(y.compute_bracket_indent()) elif c == pyparse.C_BACKSLASH: # If more than one line in this statement already, just # mimic the current indent; else if initial line # has a start on an assignment stmt, indent to # beyond leftmost =; else to beyond first chunk of # non-whitespace on initial line. if y.get_num_lines_in_stmt() > 1: text.insert("insert", indent) else: self.reindent_to(y.compute_backslash_indent()) else: assert 0, "bogus continuation type %r" % (c,) return "break" # This line starts a brand new statement; indent relative to # indentation of initial line of closest preceding # interesting statement. indent = y.get_base_indent_string() text.insert("insert", indent) if y.is_block_opener(): self.smart_indent_event(event) elif indent and y.is_block_closer(): self.smart_backspace_event(event) return "break" finally: text.see("insert") text.undo_block_stop() # Our editwin provides an is_char_in_string function that works # with a Tk text index, but PyParse only knows about offsets into # a string. This builds a function for PyParse that accepts an # offset. def _build_char_in_string_func(self, startindex): def inner(offset, _startindex=startindex, _icis=self.is_char_in_string): return _icis(_startindex + "+%dc" % offset) return inner # XXX this isn't bound to anything -- see tabwidth comments ## def change_tabwidth_event(self, event): ## new = self._asktabwidth() ## if new != self.tabwidth: ## self.tabwidth = new ## self.set_indentation_params(0, guess=0) ## return "break" # Make string that displays as n leading blanks. def _make_blanks(self, n): if self.usetabs: ntabs, nspaces = divmod(n, self.tabwidth) return '\t' * ntabs + ' ' * nspaces else: return ' ' * n # Delete from beginning of line to insert point, then reinsert # column logical (meaning use tabs if appropriate) spaces. def reindent_to(self, column): text = self.text text.undo_block_start() if text.compare("insert linestart", "!=", "insert"): text.delete("insert linestart", "insert") if column: text.insert("insert", self._make_blanks(column)) text.undo_block_stop() # Guess indentwidth from text content. # Return guessed indentwidth. This should not be believed unless # it's in a reasonable range (e.g., it will be 0 if no indented # blocks are found). def guess_indent(self): opener, indented = IndentSearcher(self.text, self.tabwidth).run() if opener and indented: raw, indentsmall = get_line_indent(opener, self.tabwidth) raw, indentlarge = get_line_indent(indented, self.tabwidth) else: indentsmall = indentlarge = 0 return indentlarge - indentsmall def toggle_line_numbers_event(self, event=None): if self.line_numbers is None: return if self.line_numbers.is_shown: self.line_numbers.hide_sidebar() menu_label = "Show" else: self.line_numbers.show_sidebar() menu_label = "Hide" self.update_menu_label(menu='options', index='*Line Numbers', label=f'{menu_label} Line Numbers') # "line.col" -> line, as an int def index2line(index): return int(float(index)) _line_indent_re = re.compile(r'[ \t]*') def get_line_indent(line, tabwidth): """Return a line's indentation as (# chars, effective # of spaces). The effective # of spaces is the length after properly "expanding" the tabs into spaces, as done by str.expandtabs(tabwidth). """ m = _line_indent_re.match(line) return m.end(), len(m.group().expandtabs(tabwidth)) class IndentSearcher(object): # .run() chews over the Text widget, looking for a block opener # and the stmt following it. Returns a pair, # (line containing block opener, line containing stmt) # Either or both may be None. def __init__(self, text, tabwidth): self.text = text self.tabwidth = tabwidth self.i = self.finished = 0 self.blkopenline = self.indentedline = None def readline(self): if self.finished: return "" i = self.i = self.i + 1 mark = repr(i) + ".0" if self.text.compare(mark, ">=", "end"): return "" return self.text.get(mark, mark + " lineend+1c") def tokeneater(self, type, token, start, end, line, INDENT=tokenize.INDENT, NAME=tokenize.NAME, OPENERS=('class', 'def', 'for', 'if', 'try', 'while')): if self.finished: pass elif type == NAME and token in OPENERS: self.blkopenline = line elif type == INDENT and self.blkopenline: self.indentedline = line self.finished = 1 def run(self): save_tabsize = tokenize.tabsize tokenize.tabsize = self.tabwidth try: try: tokens = tokenize.generate_tokens(self.readline) for token in tokens: self.tokeneater(*token) except (tokenize.TokenError, SyntaxError): # since we cut off the tokenizer early, we can trigger # spurious errors pass finally: tokenize.tabsize = save_tabsize return self.blkopenline, self.indentedline ### end autoindent code ### def prepstr(s): # Helper to extract the underscore from a string, e.g. # prepstr("Co_py") returns (2, "Copy"). i = s.find('_') if i >= 0: s = s[:i] + s[i+1:] return i, s keynames = { 'bracketleft': '[', 'bracketright': ']', 'slash': '/', } def get_accelerator(keydefs, eventname): keylist = keydefs.get(eventname) # issue10940: temporary workaround to prevent hang with OS X Cocoa Tk 8.5 # if not keylist: if (not keylist) or (macosx.isCocoaTk() and eventname in { "<<open-module>>", "<<goto-line>>", "<<change-indentwidth>>"}): return "" s = keylist[0] s = re.sub(r"-[a-z]\b", lambda m: m.group().upper(), s) s = re.sub(r"\b\w+\b", lambda m: keynames.get(m.group(), m.group()), s) s = re.sub("Key-", "", s) s = re.sub("Cancel","Ctrl-Break",s) # [email protected] s = re.sub("Control-", "Ctrl-", s) s = re.sub("-", "+", s) s = re.sub("><", " ", s) s = re.sub("<", "", s) s = re.sub(">", "", s) return s def fixwordbreaks(root): # On Windows, tcl/tk breaks 'words' only on spaces, as in Command Prompt. # We want Motif style everywhere. See #21474, msg218992 and followup. tk = root.tk tk.call('tcl_wordBreakAfter', 'a b', 0) # make sure word.tcl is loaded tk.call('set', 'tcl_wordchars', r'\w') tk.call('set', 'tcl_nonwordchars', r'\W') def _editor_window(parent): # htest # # error if close master window first - timer event, after script root = parent fixwordbreaks(root) if sys.argv[1:]: filename = sys.argv[1] else: filename = None macosx.setupApp(root, None) edit = EditorWindow(root=root, filename=filename) text = edit.text text['height'] = 10 for i in range(20): text.insert('insert', ' '*i + str(i) + '\n') # text.bind("<<close-all-windows>>", edit.close_event) # Does not stop error, neither does following # edit.text.bind("<<close-window>>", edit.close_event) if __name__ == '__main__': from unittest import main main('idlelib.idle_test.test_editor', verbosity=2, exit=False) from idlelib.idle_test.htest import run run(_editor_window)
the-stack_106_17587
from flask import Flask, render_template, request, url_for, redirect import csv app = Flask(__name__) @app.route('/') def hello_world(): return render_template('index.html') @app.route('/<string:page_name>') def page_name(page_name ): return render_template(page_name) def write_to_file(data): with open('database.txt', mode='a') as database: email = data['email'] subject = data['subject'] message = data['message'] file = database.write(f'\n {email}, {subject}, {message}') def write_to_csv(data): with open('database.csv', mode='a', newline='') as database2: email = data['email'] subject = data['subject'] message = data['message'] csv_writer = csv.writer(database2, delimiter = ',', quotechar = '"', quoting = csv. QUOTE_MINIMAL) csv_writer.writerow([email,subject,message]) @app.route('/submit_form', methods=['POST', 'GET']) def submit_form(): if request.method == 'POST': data = request.form.to_dict() write_to_csv(data) write_to_file(data) return redirect('/thank.html') else: return 'Something went wrong!!please try again!!'
the-stack_106_17588
# Copyright 2008-2015 Nokia Solutions and Networks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import difflib import re import time import token from tokenize import generate_tokens, untokenize from robot.utils import StringIO from robot.api import logger from robot.errors import (ContinueForLoop, DataError, ExecutionFailed, ExecutionFailures, ExecutionPassed, ExitForLoop, PassExecution, ReturnFromKeyword) from robot.running import Keyword, RUN_KW_REGISTER from robot.running.context import EXECUTION_CONTEXTS from robot.running.usererrorhandler import UserErrorHandler from robot.utils import (asserts, DotDict, escape, format_assign_message, get_error_message, get_time, is_falsy, is_integer, is_string, is_truthy, is_unicode, JYTHON, Matcher, normalize, NormalizedDict, parse_time, prepr, RERAISED_EXCEPTIONS, plural_or_not as s, secs_to_timestr, seq2str, split_from_equals, timestr_to_secs, type_name, unic) from robot.variables import (is_list_var, is_var, DictVariableTableValue, VariableTableValue, VariableSplitter, variable_not_found) from robot.version import get_version if JYTHON: from java.lang import String, Number # TODO: The name of this decorator should be changed. It is used for avoiding # arguments to be resolved by many other keywords than run keyword variants. # Should also consider: # - Exposing this functionality to external libraries. Would require doc # enhancements and clean way to expose variables to make resolving them # based on needs easier. # - Removing the functionality that run keyword variants can be overridded # by custom keywords without a warning. def run_keyword_variant(resolve): def decorator(method): RUN_KW_REGISTER.register_run_keyword('BuiltIn', method.__name__, resolve) return method return decorator class _BuiltInBase(object): @property def _context(self): return self._get_context() def _get_context(self, top=False): ctx = EXECUTION_CONTEXTS.current if not top else EXECUTION_CONTEXTS.top if ctx is None: raise RobotNotRunningError('Cannot access execution context') return ctx @property def _namespace(self): return self._get_context().namespace def _get_namespace(self, top=False): return self._get_context(top).namespace @property def _variables(self): return self._namespace.variables def _matches(self, string, pattern): # Must use this instead of fnmatch when string may contain newlines. matcher = Matcher(pattern, caseless=False, spaceless=False) return matcher.match(string) def _is_true(self, condition): if is_string(condition): condition = self.evaluate(condition, modules='os,sys') return bool(condition) def _log_types(self, *args): self._log_types_at_level('DEBUG', *args) def _log_types_at_level(self, level, *args): msg = ["Argument types are:"] + [self._get_type(a) for a in args] self.log('\n'.join(msg), level) def _get_type(self, arg): # In IronPython type(u'x') is str. We want to report unicode anyway. if is_unicode(arg): return "<type 'unicode'>" return str(type(arg)) class _Converter(_BuiltInBase): def convert_to_integer(self, item, base=None): """Converts the given item to an integer number. If the given item is a string, it is by default expected to be an integer in base 10. There are two ways to convert from other bases: - Give base explicitly to the keyword as ``base`` argument. - Prefix the given string with the base so that ``0b`` means binary (base 2), ``0o`` means octal (base 8), and ``0x`` means hex (base 16). The prefix is considered only when ``base`` argument is not given and may itself be prefixed with a plus or minus sign. The syntax is case-insensitive and possible spaces are ignored. Examples: | ${result} = | Convert To Integer | 100 | | # Result is 100 | | ${result} = | Convert To Integer | FF AA | 16 | # Result is 65450 | | ${result} = | Convert To Integer | 100 | 8 | # Result is 64 | | ${result} = | Convert To Integer | -100 | 2 | # Result is -4 | | ${result} = | Convert To Integer | 0b100 | | # Result is 4 | | ${result} = | Convert To Integer | -0x100 | | # Result is -256 | See also `Convert To Number`, `Convert To Binary`, `Convert To Octal`, `Convert To Hex`, and `Convert To Bytes`. """ self._log_types(item) return self._convert_to_integer(item, base) def _convert_to_integer(self, orig, base=None): try: item = self._handle_java_numbers(orig) item, base = self._get_base(item, base) if base: return int(item, self._convert_to_integer(base)) return int(item) except: raise RuntimeError("'%s' cannot be converted to an integer: %s" % (orig, get_error_message())) def _handle_java_numbers(self, item): if not JYTHON: return item if isinstance(item, String): return unic(item) if isinstance(item, Number): return item.doubleValue() return item def _get_base(self, item, base): if not is_string(item): return item, base item = normalize(item) if item.startswith(('-', '+')): sign = item[0] item = item[1:] else: sign = '' bases = {'0b': 2, '0o': 8, '0x': 16} if base or not item.startswith(tuple(bases)): return sign+item, base return sign+item[2:], bases[item[:2]] def convert_to_binary(self, item, base=None, prefix=None, length=None): """Converts the given item to a binary string. The ``item``, with an optional ``base``, is first converted to an integer using `Convert To Integer` internally. After that it is converted to a binary number (base 2) represented as a string such as ``1011``. The returned value can contain an optional ``prefix`` and can be required to be of minimum ``length`` (excluding the prefix and a possible minus sign). If the value is initially shorter than the required length, it is padded with zeros. Examples: | ${result} = | Convert To Binary | 10 | | | # Result is 1010 | | ${result} = | Convert To Binary | F | base=16 | prefix=0b | # Result is 0b1111 | | ${result} = | Convert To Binary | -2 | prefix=B | length=4 | # Result is -B0010 | See also `Convert To Integer`, `Convert To Octal` and `Convert To Hex`. """ return self._convert_to_bin_oct_hex(bin, item, base, prefix, length) def convert_to_octal(self, item, base=None, prefix=None, length=None): """Converts the given item to an octal string. The ``item``, with an optional ``base``, is first converted to an integer using `Convert To Integer` internally. After that it is converted to an octal number (base 8) represented as a string such as ``775``. The returned value can contain an optional ``prefix`` and can be required to be of minimum ``length`` (excluding the prefix and a possible minus sign). If the value is initially shorter than the required length, it is padded with zeros. Examples: | ${result} = | Convert To Octal | 10 | | | # Result is 12 | | ${result} = | Convert To Octal | -F | base=16 | prefix=0 | # Result is -017 | | ${result} = | Convert To Octal | 16 | prefix=oct | length=4 | # Result is oct0020 | See also `Convert To Integer`, `Convert To Binary` and `Convert To Hex`. """ return self._convert_to_bin_oct_hex(oct, item, base, prefix, length) def convert_to_hex(self, item, base=None, prefix=None, length=None, lowercase=False): """Converts the given item to a hexadecimal string. The ``item``, with an optional ``base``, is first converted to an integer using `Convert To Integer` internally. After that it is converted to a hexadecimal number (base 16) represented as a string such as ``FF0A``. The returned value can contain an optional ``prefix`` and can be required to be of minimum ``length`` (excluding the prefix and a possible minus sign). If the value is initially shorter than the required length, it is padded with zeros. By default the value is returned as an upper case string, but the ``lowercase`` argument a true value (see `Boolean arguments`) turns the value (but not the given prefix) to lower case. Examples: | ${result} = | Convert To Hex | 255 | | | # Result is FF | | ${result} = | Convert To Hex | -10 | prefix=0x | length=2 | # Result is -0x0A | | ${result} = | Convert To Hex | 255 | prefix=X | lowercase=yes | # Result is Xff | See also `Convert To Integer`, `Convert To Binary` and `Convert To Octal`. """ return self._convert_to_bin_oct_hex(hex, item, base, prefix, length, lowercase) def _convert_to_bin_oct_hex(self, method, item, base, prefix, length, lowercase=False): self._log_types(item) ret = method(self._convert_to_integer(item, base)).upper().rstrip('L') prefix = prefix or '' if ret[0] == '-': prefix = '-' + prefix ret = ret[1:] if len(ret) > 1: # oct(0) -> '0' (i.e. has no prefix) prefix_length = {bin: 2, oct: 1, hex: 2}[method] ret = ret[prefix_length:] if length: ret = ret.rjust(self._convert_to_integer(length), '0') if is_truthy(lowercase): ret = ret.lower() return prefix + ret def convert_to_number(self, item, precision=None): """Converts the given item to a floating point number. If the optional ``precision`` is positive or zero, the returned number is rounded to that number of decimal digits. Negative precision means that the number is rounded to the closest multiple of 10 to the power of the absolute precision. Examples: | ${result} = | Convert To Number | 42.512 | | # Result is 42.512 | | ${result} = | Convert To Number | 42.512 | 1 | # Result is 42.5 | | ${result} = | Convert To Number | 42.512 | 0 | # Result is 43.0 | | ${result} = | Convert To Number | 42.512 | -1 | # Result is 40.0 | Notice that machines generally cannot store floating point numbers accurately. This may cause surprises with these numbers in general and also when they are rounded. For more information see, for example, these resources: - http://docs.python.org/2/tutorial/floatingpoint.html - http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition If you need an integer number, use `Convert To Integer` instead. """ self._log_types(item) return self._convert_to_number(item, precision) def _convert_to_number(self, item, precision=None): number = self._convert_to_number_without_precision(item) if precision: number = round(number, self._convert_to_integer(precision)) return number def _convert_to_number_without_precision(self, item): try: if JYTHON: item = self._handle_java_numbers(item) return float(item) except: error = get_error_message() try: return float(self._convert_to_integer(item)) except RuntimeError: raise RuntimeError("'%s' cannot be converted to a floating " "point number: %s" % (item, error)) def convert_to_string(self, item): """Converts the given item to a Unicode string. Uses ``__unicode__`` or ``__str__`` method with Python objects and ``toString`` with Java objects. Use `Encode String To Bytes` and `Decode Bytes To String` keywords in ``String`` library if you need to convert between Unicode and byte strings using different encodings. Use `Convert To Bytes` if you just want to create byte strings. """ self._log_types(item) return self._convert_to_string(item) def _convert_to_string(self, item): return unic(item) def convert_to_boolean(self, item): """Converts the given item to Boolean true or false. Handles strings ``True`` and ``False`` (case-insensitive) as expected, otherwise returns item's [http://docs.python.org/2/library/stdtypes.html#truth|truth value] using Python's ``bool()`` method. """ self._log_types(item) if is_string(item): if item.upper() == 'TRUE': return True if item.upper() == 'FALSE': return False return bool(item) def convert_to_bytes(self, input, input_type='text'): u"""Converts the given ``input`` to bytes according to the ``input_type``. Valid input types are listed below: - ``text:`` Converts text to bytes character by character. All characters with ordinal below 256 can be used and are converted to bytes with same values. Many characters are easiest to represent using escapes like ``\\x00`` or ``\\xff``. - ``int:`` Converts integers separated by spaces to bytes. Similarly as with `Convert To Integer`, it is possible to use binary, octal, or hex values by prefixing the values with ``0b``, ``0o``, or ``0x``, respectively. - ``hex:`` Converts hexadecimal values to bytes. Single byte is always two characters long (e.g. ``01`` or ``FF``). Spaces are ignored and can be used freely as a visual separator. - ``bin:`` Converts binary values to bytes. Single byte is always eight characters long (e.g. ``00001010``). Spaces are ignored and can be used freely as a visual separator. In addition to giving the input as a string, it is possible to use lists or other iterables containing individual characters or numbers. In that case numbers do not need to be padded to certain length and they cannot contain extra spaces. Examples (last column shows returned bytes): | ${bytes} = | Convert To Bytes | hyv\xe4 | | # hyv\\xe4 | | ${bytes} = | Convert To Bytes | \\xff\\x07 | | # \\xff\\x07 | | ${bytes} = | Convert To Bytes | 82 70 | int | # RF | | ${bytes} = | Convert To Bytes | 0b10 0x10 | int | # \\x02\\x10 | | ${bytes} = | Convert To Bytes | ff 00 07 | hex | # \\xff\\x00\\x07 | | ${bytes} = | Convert To Bytes | 5246212121 | hex | # RF!!! | | ${bytes} = | Convert To Bytes | 0000 1000 | bin | # \\x08 | | ${input} = | Create List | 1 | 2 | 12 | | ${bytes} = | Convert To Bytes | ${input} | int | # \\x01\\x02\\x0c | | ${bytes} = | Convert To Bytes | ${input} | hex | # \\x01\\x02\\x12 | Use `Encode String To Bytes` in ``String`` library if you need to convert text to bytes using a certain encoding. New in Robot Framework 2.8.2. """ try: try: ordinals = getattr(self, '_get_ordinals_from_%s' % input_type) except AttributeError: raise RuntimeError("Invalid input type '%s'." % input_type) return bytes(bytearray(o for o in ordinals(input))) except: raise RuntimeError("Creating bytes failed: %s" % get_error_message()) def _get_ordinals_from_text(self, input): for char in input: yield self._test_ordinal(ord(char), char, 'Character') def _test_ordinal(self, ordinal, original, type): if 0 <= ordinal <= 255: return ordinal raise RuntimeError("%s '%s' cannot be represented as a byte." % (type, original)) def _get_ordinals_from_int(self, input): if is_string(input): input = input.split() elif is_integer(input): input = [input] for integer in input: ordinal = self._convert_to_integer(integer) yield self._test_ordinal(ordinal, integer, 'Integer') def _get_ordinals_from_hex(self, input): for token in self._input_to_tokens(input, length=2): ordinal = self._convert_to_integer(token, base=16) yield self._test_ordinal(ordinal, token, 'Hex value') def _get_ordinals_from_bin(self, input): for token in self._input_to_tokens(input, length=8): ordinal = self._convert_to_integer(token, base=2) yield self._test_ordinal(ordinal, token, 'Binary value') def _input_to_tokens(self, input, length): if not is_string(input): return input input = ''.join(input.split()) if len(input) % length != 0: raise RuntimeError('Expected input to be multiple of %d.' % length) return (input[i:i+length] for i in range(0, len(input), length)) def create_list(self, *items): """Returns a list containing given items. The returned list can be assigned both to ``${scalar}`` and ``@{list}`` variables. Examples: | @{list} = | Create List | a | b | c | | ${scalar} = | Create List | a | b | c | | ${ints} = | Create List | ${1} | ${2} | ${3} | """ return list(items) @run_keyword_variant(resolve=0) def create_dictionary(self, *items): """Creates and returns a dictionary based on given items. Items are given using ``key=value`` syntax same way as ``&{dictionary}`` variables are created in the Variable table. Both keys and values can contain variables, and possible equal sign in key can be escaped with a backslash like ``escaped\\=key=value``. It is also possible to get items from existing dictionaries by simply using them like ``&{dict}``. If same key is used multiple times, the last value has precedence. The returned dictionary is ordered, and values with strings as keys can also be accessed using convenient dot-access syntax like ``${dict.key}``. Examples: | &{dict} = | Create Dictionary | key=value | foo=bar | | Should Be True | ${dict} == {'key': 'value', 'foo': 'bar'} | | &{dict} = | Create Dictionary | ${1}=${2} | &{dict} | foo=new | | Should Be True | ${dict} == {1: 2, 'key': 'value', 'foo': 'new'} | | Should Be Equal | ${dict.key} | value | This keyword was changed in Robot Framework 2.9 in many ways: - Moved from ``Collections`` library to ``BuiltIn``. - Support also non-string keys in ``key=value`` syntax. - Deprecated old syntax to give keys and values separately. - Returned dictionary is ordered and dot-accessible. """ separate, combined = self._split_dict_items(items) if separate: self.log("Giving keys and values separately to 'Create Dictionary' " "keyword is deprecated. Use 'key=value' syntax instead.", level='WARN') separate = self._format_separate_dict_items(separate) combined = DictVariableTableValue(combined).resolve(self._variables) result = DotDict(separate) result.update(combined) return result def _split_dict_items(self, items): separate = [] for item in items: name, value = split_from_equals(item) if value is not None or VariableSplitter(item).is_dict_variable(): break separate.append(item) return separate, items[len(separate):] def _format_separate_dict_items(self, separate): separate = self._variables.replace_list(separate) if len(separate) % 2 != 0: raise DataError('Expected even number of keys and values, got %d.' % len(separate)) return [separate[i:i+2] for i in range(0, len(separate), 2)] class _Verify(_BuiltInBase): def _set_and_remove_tags(self, tags): set_tags = [tag for tag in tags if not tag.startswith('-')] remove_tags = [tag[1:] for tag in tags if tag.startswith('-')] if remove_tags: self.remove_tags(*remove_tags) if set_tags: self.set_tags(*set_tags) def fail(self, msg=None, *tags): """Fails the test with the given message and optionally alters its tags. The error message is specified using the ``msg`` argument. It is possible to use HTML in the given error message, similarly as with any other keyword accepting an error message, by prefixing the error with ``*HTML*``. It is possible to modify tags of the current test case by passing tags after the message. Tags starting with a hyphen (e.g. ``-regression``) are removed and others added. Tags are modified using `Set Tags` and `Remove Tags` internally, and the semantics setting and removing them are the same as with these keywords. Examples: | Fail | Test not ready | | | # Fails with the given message. | | Fail | *HTML*<b>Test not ready</b> | | | # Fails using HTML in the message. | | Fail | Test not ready | not-ready | | # Fails and adds 'not-ready' tag. | | Fail | OS not supported | -regression | | # Removes tag 'regression'. | | Fail | My message | tag | -t* | # Removes all tags starting with 't' except the newly added 'tag'. | See `Fatal Error` if you need to stop the whole test execution. Support for modifying tags was added in Robot Framework 2.7.4 and HTML message support in 2.8. """ self._set_and_remove_tags(tags) raise AssertionError(msg) if msg else AssertionError() def fatal_error(self, msg=None): """Stops the whole test execution. The test or suite where this keyword is used fails with the provided message, and subsequent tests fail with a canned message. Possible teardowns will nevertheless be executed. See `Fail` if you only want to stop one test case unconditionally. """ error = AssertionError(msg) if msg else AssertionError() error.ROBOT_EXIT_ON_FAILURE = True raise error def should_not_be_true(self, condition, msg=None): """Fails if the given condition is true. See `Should Be True` for details about how ``condition`` is evaluated and how ``msg`` can be used to override the default error message. """ if not msg: msg = "'%s' should not be true." % condition asserts.fail_if(self._is_true(condition), msg) def should_be_true(self, condition, msg=None): """Fails if the given condition is not true. If ``condition`` is a string (e.g. ``${rc} < 10``), it is evaluated as a Python expression as explained in `Evaluating expressions` and the keyword status is decided based on the result. If a non-string item is given, the status is got directly from its [http://docs.python.org/2/library/stdtypes.html#truth|truth value]. The default error message (``<condition> should be true``) is not very informative, but it can be overridden with the ``msg`` argument. Examples: | Should Be True | ${rc} < 10 | | Should Be True | '${status}' == 'PASS' | # Strings must be quoted | | Should Be True | ${number} | # Passes if ${number} is not zero | | Should Be True | ${list} | # Passes if ${list} is not empty | Variables used like ``${variable}``, as in the examples above, are replaced in the expression before evaluation. Variables are also available in the evaluation namespace and can be accessed using special syntax ``$variable``. This is a new feature in Robot Framework 2.9 and it is explained more thoroughly in `Evaluating expressions`. Examples: | Should Be True | $rc < 10 | | Should Be True | $status == 'PASS' | # Expected string must be quoted | Starting from Robot Framework 2.8, `Should Be True` automatically imports Python's [http://docs.python.org/2/library/os.html|os] and [http://docs.python.org/2/library/sys.html|sys] modules that contain several useful attributes: | Should Be True | os.linesep == '\\n' | # Unixy | | Should Be True | os.linesep == '\\r\\n' | # Windows | | Should Be True | sys.platform == 'darwin' | # OS X | | Should Be True | sys.platform.startswith('java') | # Jython | """ if not msg: msg = "'%s' should be true." % condition asserts.fail_unless(self._is_true(condition), msg) def should_be_equal(self, first, second, msg=None, values=True): """Fails if the given objects are unequal. Optional ``msg`` and ``values`` arguments specify how to construct the error message if this keyword fails: - If ``msg`` is not given, the error message is ``<first> != <second>``. - If ``msg`` is given and ``values`` gets a true value, the error message is ``<msg>: <first> != <second>``. - If ``msg`` is given and ``values`` gets a false value, the error message is simply ``<msg>``. ``values`` is true by default, but can be turned to false by using, for example, string ``false`` or ``no values``. See `Boolean arguments` section for more details. If both arguments are multiline strings, the comparison is done using `multiline string comparisons`. """ self._log_types_at_info_if_different(first, second) self._should_be_equal(first, second, msg, values) def _should_be_equal(self, first, second, msg, values): if first == second: return include_values = self._include_values(values) if include_values and is_string(first) and is_string(second): self._raise_multi_diff(first, second) asserts.fail_unless_equal(first, second, msg, include_values) def _log_types_at_info_if_different(self, first, second): level = 'DEBUG' if type(first) == type(second) else 'INFO' self._log_types_at_level(level, first, second) def _raise_multi_diff(self, first, second): first_lines, second_lines = first.splitlines(), second.splitlines() if len(first_lines) < 3 or len(second_lines) < 3: return self.log("%s\n!=\n%s" % (first, second)) err = 'Multiline strings are different:\n' for line in difflib.unified_diff(first_lines, second_lines, fromfile='first', tofile='second', lineterm=''): err += line + '\n' raise AssertionError(err) def _include_values(self, values): return is_truthy(values) and str(values).upper() != 'NO VALUES' def should_not_be_equal(self, first, second, msg=None, values=True): """Fails if the given objects are equal. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. """ self._log_types_at_info_if_different(first, second) self._should_not_be_equal(first, second, msg, values) def _should_not_be_equal(self, first, second, msg, values): asserts.fail_if_equal(first, second, msg, self._include_values(values)) def should_not_be_equal_as_integers(self, first, second, msg=None, values=True, base=None): """Fails if objects are equal after converting them to integers. See `Convert To Integer` for information how to convert integers from other bases than 10 using ``base`` argument or ``0b/0o/0x`` prefixes. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. See `Should Be Equal As Integers` for some usage examples. """ self._log_types_at_info_if_different(first, second) self._should_not_be_equal(self._convert_to_integer(first, base), self._convert_to_integer(second, base), msg, values) def should_be_equal_as_integers(self, first, second, msg=None, values=True, base=None): """Fails if objects are unequal after converting them to integers. See `Convert To Integer` for information how to convert integers from other bases than 10 using ``base`` argument or ``0b/0o/0x`` prefixes. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. Examples: | Should Be Equal As Integers | 42 | ${42} | Error message | | Should Be Equal As Integers | ABCD | abcd | base=16 | | Should Be Equal As Integers | 0b1011 | 11 | """ self._log_types_at_info_if_different(first, second) self._should_be_equal(self._convert_to_integer(first, base), self._convert_to_integer(second, base), msg, values) def should_not_be_equal_as_numbers(self, first, second, msg=None, values=True, precision=6): """Fails if objects are equal after converting them to real numbers. The conversion is done with `Convert To Number` keyword using the given ``precision``. See `Should Be Equal As Numbers` for examples on how to use ``precision`` and why it does not always work as expected. See also `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. """ self._log_types_at_info_if_different(first, second) first = self._convert_to_number(first, precision) second = self._convert_to_number(second, precision) self._should_not_be_equal(first, second, msg, values) def should_be_equal_as_numbers(self, first, second, msg=None, values=True, precision=6): """Fails if objects are unequal after converting them to real numbers. The conversion is done with `Convert To Number` keyword using the given ``precision``. Examples: | Should Be Equal As Numbers | ${x} | 1.1 | | # Passes if ${x} is 1.1 | | Should Be Equal As Numbers | 1.123 | 1.1 | precision=1 | # Passes | | Should Be Equal As Numbers | 1.123 | 1.4 | precision=0 | # Passes | | Should Be Equal As Numbers | 112.3 | 75 | precision=-2 | # Passes | As discussed in the documentation of `Convert To Number`, machines generally cannot store floating point numbers accurately. Because of this limitation, comparing floats for equality is problematic and a correct approach to use depends on the context. This keyword uses a very naive approach of rounding the numbers before comparing them, which is both prone to rounding errors and does not work very well if numbers are really big or small. For more information about comparing floats, and ideas on how to implement your own context specific comparison algorithm, see http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/. See `Should Not Be Equal As Numbers` for a negative version of this keyword and `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. """ self._log_types_at_info_if_different(first, second) first = self._convert_to_number(first, precision) second = self._convert_to_number(second, precision) self._should_be_equal(first, second, msg, values) def should_not_be_equal_as_strings(self, first, second, msg=None, values=True): """Fails if objects are equal after converting them to strings. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. """ self._log_types_at_info_if_different(first, second) first, second = [self._convert_to_string(i) for i in (first, second)] self._should_not_be_equal(first, second, msg, values) def should_be_equal_as_strings(self, first, second, msg=None, values=True): """Fails if objects are unequal after converting them to strings. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. If both arguments are multiline strings, the comparison is done using `multiline string comparisons`. """ self._log_types_at_info_if_different(first, second) first, second = [self._convert_to_string(i) for i in (first, second)] self._should_be_equal(first, second, msg, values) def should_not_start_with(self, str1, str2, msg=None, values=True): """Fails if the string ``str1`` starts with the string ``str2``. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. """ msg = self._get_string_msg(str1, str2, msg, values, 'starts with') asserts.fail_if(str1.startswith(str2), msg) def should_start_with(self, str1, str2, msg=None, values=True): """Fails if the string ``str1`` does not start with the string ``str2``. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. """ msg = self._get_string_msg(str1, str2, msg, values, 'does not start with') asserts.fail_unless(str1.startswith(str2), msg) def should_not_end_with(self, str1, str2, msg=None, values=True): """Fails if the string ``str1`` ends with the string ``str2``. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. """ msg = self._get_string_msg(str1, str2, msg, values, 'ends with') asserts.fail_if(str1.endswith(str2), msg) def should_end_with(self, str1, str2, msg=None, values=True): """Fails if the string ``str1`` does not end with the string ``str2``. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. """ msg = self._get_string_msg(str1, str2, msg, values, 'does not end with') asserts.fail_unless(str1.endswith(str2), msg) def should_not_contain(self, item1, item2, msg=None, values=True): """Fails if ``item1`` contains ``item2`` one or more times. Works with strings, lists, and anything that supports Python's ``in`` operator. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. Examples: | Should Not Contain | ${output} | FAILED | | Should Not Contain | ${some_list} | value | """ msg = self._get_string_msg(item1, item2, msg, values, 'contains') asserts.fail_if(item2 in item1, msg) def should_contain(self, item1, item2, msg=None, values=True): """Fails if ``item1`` does not contain ``item2`` one or more times. Works with strings, lists, and anything that supports Python's ``in`` operator. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. Examples: | Should Contain | ${output} | PASS | | Should Contain | ${some_list} | value | """ msg = self._get_string_msg(item1, item2, msg, values, 'does not contain') asserts.fail_unless(item2 in item1, msg) def should_contain_x_times(self, item1, item2, count, msg=None): """Fails if ``item1`` does not contain ``item2`` ``count`` times. Works with strings, lists and all objects that `Get Count` works with. The default error message can be overridden with ``msg`` and the actual count is always logged. Examples: | Should Contain X Times | ${output} | hello | 2 | | Should Contain X Times | ${some list} | value | 3 | """ count = self._convert_to_integer(count) x = self.get_count(item1, item2) if not msg: msg = "'%s' contains '%s' %d time%s, not %d time%s." \ % (unic(item1), unic(item2), x, s(x), count, s(count)) self.should_be_equal_as_integers(x, count, msg, values=False) def get_count(self, item1, item2): """Returns and logs how many times ``item2`` is found from ``item1``. This keyword works with Python strings and lists and all objects that either have ``count`` method or can be converted to Python lists. Example: | ${count} = | Get Count | ${some item} | interesting value | | Should Be True | 5 < ${count} < 10 | """ if not hasattr(item1, 'count'): try: item1 = list(item1) except: raise RuntimeError("Converting '%s' to list failed: %s" % (item1, get_error_message())) count = item1.count(item2) self.log('Item found from the first item %d time%s' % (count, s(count))) return count def should_not_match(self, string, pattern, msg=None, values=True): """Fails if the given ``string`` matches the given ``pattern``. Pattern matching is similar as matching files in a shell, and it is always case-sensitive. In the pattern ``*`` matches to anything and ``?`` matches to any single character. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. """ msg = self._get_string_msg(string, pattern, msg, values, 'matches') asserts.fail_if(self._matches(string, pattern), msg) def should_match(self, string, pattern, msg=None, values=True): """Fails unless the given ``string`` matches the given ``pattern``. Pattern matching is similar as matching files in a shell, and it is always case-sensitive. In the pattern, ``*`` matches to anything and ``?`` matches to any single character. See `Should Be Equal` for an explanation on how to override the default error message with ``msg`` and ``values``. """ msg = self._get_string_msg(string, pattern, msg, values, 'does not match') asserts.fail_unless(self._matches(string, pattern), msg) def should_match_regexp(self, string, pattern, msg=None, values=True): """Fails if ``string`` does not match ``pattern`` as a regular expression. Regular expression check is implemented using the Python [http://docs.python.org/2/library/re.html|re module]. Python's regular expression syntax is derived from Perl, and it is thus also very similar to the syntax used, for example, in Java, Ruby and .NET. Things to note about the regexp syntax in Robot Framework test data: 1) Backslash is an escape character in the test data, and possible backslashes in the pattern must thus be escaped with another backslash (e.g. ``\\\\d\\\\w+``). 2) Strings that may contain special characters, but should be handled as literal strings, can be escaped with the `Regexp Escape` keyword. 3) The given pattern does not need to match the whole string. For example, the pattern ``ello`` matches the string ``Hello world!``. If a full match is needed, the ``^`` and ``$`` characters can be used to denote the beginning and end of the string, respectively. For example, ``^ello$`` only matches the exact string ``ello``. 4) Possible flags altering how the expression is parsed (e.g. ``re.IGNORECASE``, ``re.MULTILINE``) can be set by prefixing the pattern with the ``(?iLmsux)`` group like ``(?im)pattern``. The available flags are ``i`` (case-insensitive), ``m`` (multiline mode), ``s`` (dotall mode), ``x`` (verbose), ``u`` (Unicode dependent) and ``L`` (locale dependent). If this keyword passes, it returns the portion of the string that matched the pattern. Additionally, the possible captured groups are returned. See the `Should Be Equal` keyword for an explanation on how to override the default error message with the ``msg`` and ``values`` arguments. Examples: | Should Match Regexp | ${output} | \\\\d{6} | # Output contains six numbers | | Should Match Regexp | ${output} | ^\\\\d{6}$ | # Six numbers and nothing more | | ${ret} = | Should Match Regexp | Foo: 42 | (?i)foo: \\\\d+ | | ${match} | ${group1} | ${group2} = | | ... | Should Match Regexp | Bar: 43 | (Foo|Bar): (\\\\d+) | => | ${ret} = 'Foo: 42' | ${match} = 'Bar: 43' | ${group1} = 'Bar' | ${group2} = '43' """ msg = self._get_string_msg(string, pattern, msg, values, 'does not match') res = re.search(pattern, string) asserts.fail_if_none(res, msg, values=False) match = res.group(0) groups = res.groups() if groups: return [match] + list(groups) return match def should_not_match_regexp(self, string, pattern, msg=None, values=True): """Fails if ``string`` matches ``pattern`` as a regular expression. See `Should Match Regexp` for more information about arguments. """ msg = self._get_string_msg(string, pattern, msg, values, 'matches') asserts.fail_unless_none(re.search(pattern, string), msg, values=False) def get_length(self, item): """Returns and logs the length of the given item as an integer. The item can be anything that has a length, for example, a string, a list, or a mapping. The keyword first tries to get the length with the Python function ``len``, which calls the item's ``__len__`` method internally. If that fails, the keyword tries to call the item's possible ``length`` and ``size`` methods directly. The final attempt is trying to get the value of the item's ``length`` attribute. If all these attempts are unsuccessful, the keyword fails. Examples: | ${length} = | Get Length | Hello, world! | | | Should Be Equal As Integers | ${length} | 13 | | @{list} = | Create List | Hello, | world! | | ${length} = | Get Length | ${list} | | | Should Be Equal As Integers | ${length} | 2 | See also `Length Should Be`, `Should Be Empty` and `Should Not Be Empty`. """ length = self._get_length(item) self.log('Length is %d' % length) return length def _get_length(self, item): try: return len(item) except RERAISED_EXCEPTIONS: raise except: try: return item.length() except RERAISED_EXCEPTIONS: raise except: try: return item.size() except RERAISED_EXCEPTIONS: raise except: try: return item.length except RERAISED_EXCEPTIONS: raise except: raise RuntimeError("Could not get length of '%s'." % item) def length_should_be(self, item, length, msg=None): """Verifies that the length of the given item is correct. The length of the item is got using the `Get Length` keyword. The default error message can be overridden with the ``msg`` argument. """ length = self._convert_to_integer(length) actual = self.get_length(item) if actual != length: raise AssertionError(msg or "Length of '%s' should be %d but is %d." % (item, length, actual)) def should_be_empty(self, item, msg=None): """Verifies that the given item is empty. The length of the item is got using the `Get Length` keyword. The default error message can be overridden with the ``msg`` argument. """ if self.get_length(item) > 0: raise AssertionError(msg or "'%s' should be empty." % item) def should_not_be_empty(self, item, msg=None): """Verifies that the given item is not empty. The length of the item is got using the `Get Length` keyword. The default error message can be overridden with the ``msg`` argument. """ if self.get_length(item) == 0: raise AssertionError(msg or "'%s' should not be empty." % item) def _get_string_msg(self, str1, str2, msg, values, delim): default = "'%s' %s '%s'" % (unic(str1), delim, unic(str2)) if not msg: msg = default elif self._include_values(values): msg = '%s: %s' % (msg, default) return msg class _Variables(_BuiltInBase): def get_variables(self, no_decoration=False): """Returns a dictionary containing all variables in the current scope. Variables are returned as a special dictionary that allows accessing variables in space, case, and underscore insensitive manner similarly as accessing variables in the test data. This dictionary supports all same operations as normal Python dictionaries and, for example, Collections library can be used to access or modify it. Modifying the returned dictionary has no effect on the variables available in the current scope. By default variables are returned with ``${}``, ``@{}`` or ``&{}`` decoration based on variable types. Giving a true value (see `Boolean arguments`) to the optional argument ``no_decoration`` will return the variables without the decoration. This option is new in Robot Framework 2.9. Example: | ${example_variable} = | Set Variable | example value | | ${variables} = | Get Variables | | | Dictionary Should Contain Key | ${variables} | \\${example_variable} | | Dictionary Should Contain Key | ${variables} | \\${ExampleVariable} | | Set To Dictionary | ${variables} | \\${name} | value | | Variable Should Not Exist | \\${name} | | | | ${no decoration} = | Get Variables | no_decoration=Yes | | Dictionary Should Contain Key | ${no decoration} | example_variable | Note: Prior to Robot Framework 2.7.4 variables were returned as a custom object that did not support all dictionary methods. """ return self._variables.as_dict(decoration=is_falsy(no_decoration)) @run_keyword_variant(resolve=0) def get_variable_value(self, name, default=None): """Returns variable value or ``default`` if the variable does not exist. The name of the variable can be given either as a normal variable name (e.g. ``${NAME}``) or in escaped format (e.g. ``\\${NAME}``). Notice that the former has some limitations explained in `Set Suite Variable`. Examples: | ${x} = | Get Variable Value | ${a} | default | | ${y} = | Get Variable Value | ${a} | ${b} | | ${z} = | Get Variable Value | ${z} | | => | ${x} gets value of ${a} if ${a} exists and string 'default' otherwise | ${y} gets value of ${a} if ${a} exists and value of ${b} otherwise | ${z} is set to Python None if it does not exist previously See `Set Variable If` for another keyword to set variables dynamically. """ try: return self._variables[self._get_var_name(name)] except DataError: return self._variables.replace_scalar(default) def log_variables(self, level='INFO'): """Logs all variables in the current scope with given log level.""" variables = self.get_variables() for name in sorted(variables, key=lambda s: s[2:-1].lower()): msg = format_assign_message(name, variables[name], cut_long=False) self.log(msg, level) @run_keyword_variant(resolve=0) def variable_should_exist(self, name, msg=None): """Fails unless the given variable exists within the current scope. The name of the variable can be given either as a normal variable name (e.g. ``${NAME}``) or in escaped format (e.g. ``\\${NAME}``). Notice that the former has some limitations explained in `Set Suite Variable`. The default error message can be overridden with the ``msg`` argument. See also `Variable Should Not Exist` and `Keyword Should Exist`. """ name = self._get_var_name(name) msg = self._variables.replace_string(msg) if msg \ else "Variable %s does not exist." % name try: self._variables[name] except DataError: raise AssertionError(msg) @run_keyword_variant(resolve=0) def variable_should_not_exist(self, name, msg=None): """Fails if the given variable exists within the current scope. The name of the variable can be given either as a normal variable name (e.g. ``${NAME}``) or in escaped format (e.g. ``\\${NAME}``). Notice that the former has some limitations explained in `Set Suite Variable`. The default error message can be overridden with the ``msg`` argument. See also `Variable Should Exist` and `Keyword Should Exist`. """ name = self._get_var_name(name) msg = self._variables.replace_string(msg) if msg \ else "Variable %s exists." % name try: self._variables[name] except DataError: pass else: raise AssertionError(msg) def replace_variables(self, text): """Replaces variables in the given text with their current values. If the text contains undefined variables, this keyword fails. If the given ``text`` contains only a single variable, its value is returned as-is and it can be any object. Otherwise this keyword always returns a string. Example: The file ``template.txt`` contains ``Hello ${NAME}!`` and variable ``${NAME}`` has the value ``Robot``. | ${template} = | Get File | ${CURDIR}/template.txt | | ${message} = | Replace Variables | ${template} | | Should Be Equal | ${message} | Hello Robot! | """ return self._variables.replace_scalar(text) def set_variable(self, *values): """Returns the given values which can then be assigned to a variables. This keyword is mainly used for setting scalar variables. Additionally it can be used for converting a scalar variable containing a list to a list variable or to multiple scalar variables. It is recommended to use `Create List` when creating new lists. Examples: | ${hi} = | Set Variable | Hello, world! | | ${hi2} = | Set Variable | I said: ${hi} | | ${var1} | ${var2} = | Set Variable | Hello | world | | @{list} = | Set Variable | ${list with some items} | | ${item1} | ${item2} = | Set Variable | ${list with 2 items} | Variables created with this keyword are available only in the scope where they are created. See `Set Global Variable`, `Set Test Variable` and `Set Suite Variable` for information on how to set variables so that they are available also in a larger scope. """ if len(values) == 0: return '' elif len(values) == 1: return values[0] else: return list(values) @run_keyword_variant(resolve=0) def set_test_variable(self, name, *values): """Makes a variable available everywhere within the scope of the current test. Variables set with this keyword are available everywhere within the scope of the currently executed test case. For example, if you set a variable in a user keyword, it is available both in the test case level and also in all other user keywords used in the current test. Other test cases will not see variables set with this keyword. See `Set Suite Variable` for more information and examples. """ name = self._get_var_name(name) value = self._get_var_value(name, values) self._variables.set_test(name, value) self._log_set_variable(name, value) @run_keyword_variant(resolve=0) def set_suite_variable(self, name, *values): """Makes a variable available everywhere within the scope of the current suite. Variables set with this keyword are available everywhere within the scope of the currently executed test suite. Setting variables with this keyword thus has the same effect as creating them using the Variable table in the test data file or importing them from variable files. Possible child test suites do not see variables set with this keyword by default. Starting from Robot Framework 2.9, that can be controlled by using ``children=<option>`` as the last argument. If the specified ``<option>`` is a non-empty string or any other value considered true in Python, the variable is set also to the child suites. Parent and sibling suites will never see variables set with this keyword. The name of the variable can be given either as a normal variable name (e.g. ``${NAME}``) or in escaped format as ``\\${NAME}`` or ``$NAME``. Variable value can be given using the same syntax as when variables are created in the Variable table. If a variable already exists within the new scope, its value will be overwritten. Otherwise a new variable is created. If a variable already exists within the current scope, the value can be left empty and the variable within the new scope gets the value within the current scope. Examples: | Set Suite Variable | ${SCALAR} | Hello, world! | | Set Suite Variable | ${SCALAR} | Hello, world! | children=true | | Set Suite Variable | @{LIST} | First item | Second item | | Set Suite Variable | &{DICT} | key=value | foo=bar | | ${ID} = | Get ID | | Set Suite Variable | ${ID} | To override an existing value with an empty value, use built-in variables ``${EMPTY}``, ``@{EMPTY}`` or ``&{EMPTY}``: | Set Suite Variable | ${SCALAR} | ${EMPTY} | | Set Suite Variable | @{LIST} | @{EMPTY} | # New in RF 2.7.4 | | Set Suite Variable | &{DICT} | &{EMPTY} | # New in RF 2.9 | *NOTE:* If the variable has value which itself is a variable (escaped or not), you must always use the escaped format to set the variable: Example: | ${NAME} = | Set Variable | \\${var} | | Set Suite Variable | ${NAME} | value | # Sets variable ${var} | | Set Suite Variable | \\${NAME} | value | # Sets variable ${NAME} | This limitation applies also to `Set Test Variable`, `Set Global Variable`, `Variable Should Exist`, `Variable Should Not Exist` and `Get Variable Value` keywords. """ name = self._get_var_name(name) if (values and is_string(values[-1]) and values[-1].startswith('children=')): children = self._variables.replace_scalar(values[-1][9:]) children = is_truthy(children) values = values[:-1] else: children = False value = self._get_var_value(name, values) self._variables.set_suite(name, value, children=children) self._log_set_variable(name, value) @run_keyword_variant(resolve=0) def set_global_variable(self, name, *values): """Makes a variable available globally in all tests and suites. Variables set with this keyword are globally available in all test cases and suites executed after setting them. Setting variables with this keyword thus has the same effect as creating from the command line using the options ``--variable`` or ``--variablefile``. Because this keyword can change variables everywhere, it should be used with care. See `Set Suite Variable` for more information and examples. """ name = self._get_var_name(name) value = self._get_var_value(name, values) self._variables.set_global(name, value) self._log_set_variable(name, value) # Helpers def _get_var_name(self, orig): name = self._resolve_possible_variable(orig) try: return self._unescape_variable_if_needed(name) except ValueError: raise RuntimeError("Invalid variable syntax '%s'." % orig) def _resolve_possible_variable(self, name): try: resolved = self._variables.replace_string(name) return self._unescape_variable_if_needed(resolved) except (KeyError, ValueError, DataError): return name def _unescape_variable_if_needed(self, name): if name.startswith('\\'): name = name[1:] if len(name) < 2: raise ValueError if name[0] in '$@&' and name[1] != '{': name = '%s{%s}' % (name[0], name[1:]) if is_var(name): return name # Support for possible internal variables (issue 397) name = '%s{%s}' % (name[0], self.replace_variables(name[2:-1])) if is_var(name): return name raise ValueError def _get_var_value(self, name, values): if not values: return self._variables[name] # TODO: In RF 2.10/3.0 the if branch below can be removed and # VariableTableValue used with all variables. See issue #1919. if name[0] == '$': if len(values) != 1 or VariableSplitter(values[0]).is_list_variable(): raise DataError("Setting list value to scalar variable '%s' " "is not supported anymore. Create list " "variable '@%s' instead." % (name, name[1:])) return self._variables.replace_scalar(values[0]) return VariableTableValue(values, name).resolve(self._variables) def _log_set_variable(self, name, value): self.log(format_assign_message(name, value)) class _RunKeyword(_BuiltInBase): # If you use any of these run keyword variants from another library, you # should register those keywords with 'register_run_keyword' method. See # the documentation of that method at the end of this file. There are also # other run keyword variant keywords in BuiltIn which can also be seen # at the end of this file. @run_keyword_variant(resolve=1) def run_keyword(self, name, *args): """Executes the given keyword with the given arguments. Because the name of the keyword to execute is given as an argument, it can be a variable and thus set dynamically, e.g. from a return value of another keyword or from the command line. """ if not is_string(name): raise RuntimeError('Keyword name must be a string.') kw = Keyword(name, args=args) return kw.run(self._context) @run_keyword_variant(resolve=0) def run_keywords(self, *keywords): """Executes all the given keywords in a sequence. This keyword is mainly useful in setups and teardowns when they need to take care of multiple actions and creating a new higher level user keyword would be an overkill. By default all arguments are expected to be keywords to be executed. Examples: | Run Keywords | Initialize database | Start servers | Clear logs | | Run Keywords | ${KW 1} | ${KW 2} | | Run Keywords | @{KEYWORDS} | Starting from Robot Framework 2.7.6, keywords can also be run with arguments using upper case ``AND`` as a separator between keywords. The keywords are executed so that the first argument is the first keyword and proceeding arguments until the first ``AND`` are arguments to it. First argument after the first ``AND`` is the second keyword and proceeding arguments until the next ``AND`` are its arguments. And so on. Examples: | Run Keywords | Initialize database | db1 | AND | Start servers | server1 | server2 | | Run Keywords | Initialize database | ${DB NAME} | AND | Start servers | @{SERVERS} | AND | Clear logs | | Run Keywords | ${KW} | AND | @{KW WITH ARGS} | Notice that the ``AND`` control argument must be used explicitly and cannot itself come from a variable. If you need to use literal ``AND`` string as argument, you can either use variables or escape it with a backslash like ``\\AND``. """ self._run_keywords(self._split_run_keywords(list(keywords))) def _run_keywords(self, iterable): errors = [] for kw, args in iterable: try: self.run_keyword(kw, *args) except ExecutionPassed as err: err.set_earlier_failures(errors) raise err except ExecutionFailed as err: errors.extend(err.get_errors()) if not err.can_continue(self._context.in_teardown): break if errors: raise ExecutionFailures(errors) def _split_run_keywords(self, keywords): if 'AND' not in keywords: for name in self._variables.replace_list(keywords): yield name, () else: for name, args in self._split_run_keywords_from_and(keywords): yield name, args def _split_run_keywords_from_and(self, keywords): while 'AND' in keywords: index = keywords.index('AND') yield self._resolve_run_keywords_name_and_args(keywords[:index]) keywords = keywords[index+1:] yield self._resolve_run_keywords_name_and_args(keywords) def _resolve_run_keywords_name_and_args(self, kw_call): kw_call = self._variables.replace_list(kw_call, replace_until=1) if not kw_call: raise DataError('Incorrect use of AND') return kw_call[0], kw_call[1:] @run_keyword_variant(resolve=2) def run_keyword_if(self, condition, name, *args): """Runs the given keyword with the given arguments, if ``condition`` is true. The given ``condition`` is evaluated in Python as explained in `Evaluating expressions`, and ``name`` and ``*args`` have same semantics as with `Run Keyword`. Example, a simple if/else construct: | ${status} | ${value} = | `Run Keyword And Ignore Error` | `My Keyword` | | `Run Keyword If` | '${status}' == 'PASS' | `Some Action` | arg | | `Run Keyword Unless` | '${status}' == 'PASS' | `Another Action` | In this example, only either `Some Action` or `Another Action` is executed, based on the status of `My Keyword`. Instead of `Run Keyword And Ignore Error` you can also use `Run Keyword And Return Status`. Variables used like ``${variable}``, as in the examples above, are replaced in the expression before evaluation. Variables are also available in the evaluation namespace and can be accessed using special syntax ``$variable``. This is a new feature in Robot Framework 2.9 and it is explained more thoroughly in `Evaluating expressions`. Example: | `Run Keyword If` | $result is None or $result == 'FAIL' | `Keyword` | Starting from Robot version 2.7.4, this keyword supports also optional ELSE and ELSE IF branches. Both of these are defined in ``*args`` and must use exactly format ``ELSE`` or ``ELSE IF``, respectively. ELSE branches must contain first the name of the keyword to execute and then its possible arguments. ELSE IF branches must first contain a condition, like the first argument to this keyword, and then the keyword to execute and its possible arguments. It is possible to have ELSE branch after ELSE IF and to have multiple ELSE IF branches. Given previous example, if/else construct can also be created like this: | ${status} | ${value} = | `Run Keyword And Ignore Error` | My Keyword | | `Run Keyword If` | '${status}' == 'PASS' | `Some Action` | arg | ELSE | `Another Action` | The return value is the one of the keyword that was executed or None if no keyword was executed (i.e. if ``condition`` was false). Hence, it is recommended to use ELSE and/or ELSE IF branches to conditionally assign return values from keyword to variables (to conditionally assign fixed values to variables, see `Set Variable If`). This is illustrated by the example below: | ${var1} = | `Run Keyword If` | ${rc} == 0 | `Some keyword returning a value` | | ... | ELSE IF | 0 < ${rc} < 42 | `Another keyword` | | ... | ELSE IF | ${rc} < 0 | `Another keyword with args` | ${rc} | arg2 | | ... | ELSE | `Final keyword to handle abnormal cases` | ${rc} | | ${var2} = | `Run Keyword If` | ${condition} | `Some keyword` | In this example, ${var2} will be set to None if ${condition} is false. Notice that ``ELSE`` and ``ELSE IF`` control words must be used explicitly and thus cannot come from variables. If you need to use literal ``ELSE`` and ``ELSE IF`` strings as arguments, you can escape them with a backslash like ``\\ELSE`` and ``\\ELSE IF``. Starting from Robot Framework 2.8, Python's [http://docs.python.org/2/library/os.html|os] and [http://docs.python.org/2/library/sys.html|sys] modules are automatically imported when evaluating the ``condition``. Attributes they contain can thus be used in the condition: | `Run Keyword If` | os.sep == '/' | `Unix Keyword` | | ... | ELSE IF | sys.platform.startswith('java') | `Jython Keyword` | | ... | ELSE | `Windows Keyword` | """ args, branch = self._split_elif_or_else_branch(args) if self._is_true(condition): return self.run_keyword(name, *args) return branch() def _split_elif_or_else_branch(self, args): if 'ELSE IF' in args: args, branch = self._split_branch(args, 'ELSE IF', 2, 'condition and keyword') return args, lambda: self.run_keyword_if(*branch) if 'ELSE' in args: args, branch = self._split_branch(args, 'ELSE', 1, 'keyword') return args, lambda: self.run_keyword(*branch) return args, lambda: None def _split_branch(self, args, control_word, required, required_error): index = list(args).index(control_word) branch = self._variables.replace_list(args[index+1:], required) if len(branch) < required: raise DataError('%s requires %s.' % (control_word, required_error)) return args[:index], branch @run_keyword_variant(resolve=2) def run_keyword_unless(self, condition, name, *args): """Runs the given keyword with the given arguments, if ``condition`` is false. See `Run Keyword If` for more information and an example. """ if not self._is_true(condition): return self.run_keyword(name, *args) @run_keyword_variant(resolve=1) def run_keyword_and_ignore_error(self, name, *args): """Runs the given keyword with the given arguments and ignores possible error. This keyword returns two values, so that the first is either string ``PASS`` or ``FAIL``, depending on the status of the executed keyword. The second value is either the return value of the keyword or the received error message. See `Run Keyword And Return Status` If you are only interested in the execution status. The keyword name and arguments work as in `Run Keyword`. See `Run Keyword If` for a usage example. Errors caused by invalid syntax, timeouts, or fatal exceptions are not caught by this keyword. Otherwise this keyword itself never fails. Since Robot Framework 2.9, variable errors are caught by this keyword. """ try: return 'PASS', self.run_keyword(name, *args) except ExecutionFailed as err: if err.dont_continue: raise return 'FAIL', unic(err) @run_keyword_variant(resolve=1) def run_keyword_and_return_status(self, name, *args): """Runs the given keyword with given arguments and returns the status as a Boolean value. This keyword returns Boolean ``True`` if the keyword that is executed succeeds and ``False`` if it fails. This is useful, for example, in combination with `Run Keyword If`. If you are interested in the error message or return value, use `Run Keyword And Ignore Error` instead. The keyword name and arguments work as in `Run Keyword`. Example: | ${passed} = | `Run Keyword And Return Status` | Keyword | args | | `Run Keyword If` | ${passed} | Another keyword | Errors caused by invalid syntax, timeouts, or fatal exceptions are not caught by this keyword. Otherwise this keyword itself never fails. New in Robot Framework 2.7.6. """ status, _ = self.run_keyword_and_ignore_error(name, *args) return status == 'PASS' @run_keyword_variant(resolve=1) def run_keyword_and_continue_on_failure(self, name, *args): """Runs the keyword and continues execution even if a failure occurs. The keyword name and arguments work as with `Run Keyword`. Example: | Run Keyword And Continue On Failure | Fail | This is a stupid example | | Log | This keyword is executed | The execution is not continued if the failure is caused by invalid syntax, timeout, or fatal exception. Since Robot Framework 2.9, variable errors are caught by this keyword. """ try: return self.run_keyword(name, *args) except ExecutionFailed as err: if not err.dont_continue: err.continue_on_failure = True raise err @run_keyword_variant(resolve=2) def run_keyword_and_expect_error(self, expected_error, name, *args): """Runs the keyword and checks that the expected error occurred. The expected error must be given in the same format as in Robot Framework reports. It can be a pattern containing characters ``?``, which matches to any single character and ``*``, which matches to any number of any characters. ``name`` and ``*args`` have same semantics as with `Run Keyword`. If the expected error occurs, the error message is returned and it can be further processed/tested, if needed. If there is no error, or the error does not match the expected error, this keyword fails. Examples: | Run Keyword And Expect Error | My error | Some Keyword | arg1 | arg2 | | ${msg} = | Run Keyword And Expect Error | * | My KW | | Should Start With | ${msg} | Once upon a time in | Errors caused by invalid syntax, timeouts, or fatal exceptions are not caught by this keyword. Since Robot Framework 2.9, variable errors are caught by this keyword. """ try: self.run_keyword(name, *args) except ExecutionFailed as err: if err.dont_continue: raise error = err else: raise AssertionError("Expected error '%s' did not occur." % expected_error) if not self._matches(unic(error), expected_error): raise AssertionError("Expected error '%s' but got '%s'." % (expected_error, error)) return unic(error) @run_keyword_variant(resolve=2) def repeat_keyword(self, times, name, *args): """Executes the specified keyword multiple times. ``name`` and ``args`` define the keyword that is executed similarly as with `Run Keyword`, and ``times`` specifies how many the keyword should be executed. ``times`` can be given as an integer or as a string that can be converted to an integer. If it is a string, it can have postfix ``times`` or ``x`` (case and space insensitive) to make the expression more explicit. If ``times`` is zero or negative, the keyword is not executed at all. This keyword fails immediately if any of the execution rounds fails. Examples: | Repeat Keyword | 5 times | Go to Previous Page | | Repeat Keyword | ${var} | Some Keyword | arg1 | arg2 | """ times = self._get_times_to_repeat(times) self._run_keywords(self._yield_repeated_keywords(times, name, args)) def _get_times_to_repeat(self, times, require_postfix=False): times = normalize(str(times)) if times.endswith('times'): times = times[:-5] elif times.endswith('x'): times = times[:-1] elif require_postfix: raise ValueError return self._convert_to_integer(times) def _yield_repeated_keywords(self, times, name, args): if times <= 0: self.log("Keyword '%s' repeated zero times." % name) for i in range(times): self.log("Repeating keyword, round %d/%d." % (i+1, times)) yield name, args @run_keyword_variant(resolve=3) def wait_until_keyword_succeeds(self, retry, retry_interval, name, *args): """Runs the specified keyword and retries if it fails. ``name`` and ``args`` define the keyword that is executed similarly as with `Run Keyword`. How long to retry running the keyword is defined using ``retry`` argument either as timeout or count. ``retry_interval`` is the time to wait before trying to run the keyword again after the previous run has failed. If ``retry`` is given as timeout, it must be in Robot Framework's time format (e.g. ``1 minute``, ``2 min 3 s``, ``4.5``) that is explained in an appendix of Robot Framework User Guide. If it is given as count, it must have ``times`` or ``x`` postfix (e.g. ``5 times``, ``10 x``). ``retry_interval`` must always be given in Robot Framework's time format. If the keyword does not succeed regardless of retries, this keyword fails. If the executed keyword passes, its return value is returned. Examples: | Wait Until Keyword Succeeds | 2 min | 5 sec | My keyword | argument | | ${result} = | Wait Until Keyword Succeeds | 3x | 200ms | My keyword | All normal failures are caught by this keyword. Errors caused by invalid syntax, test or keyword timeouts, or fatal exceptions (caused e.g. by `Fatal Error`) are not caught. Running the same keyword multiple times inside this keyword can create lots of output and considerably increase the size of the generated output files. Starting from Robot Framework 2.7, it is possible to remove unnecessary keywords from the outputs using ``--RemoveKeywords WUKS`` command line option. Support for specifying ``retry`` as a number of times to retry is a new feature in Robot Framework 2.9. Since Robot Framework 2.9, variable errors are caught by this keyword. """ maxtime = count = -1 try: count = self._get_times_to_repeat(retry, require_postfix=True) except ValueError: timeout = timestr_to_secs(retry) maxtime = time.time() + timeout message = 'for %s' % secs_to_timestr(timeout) else: if count <= 0: raise ValueError('Retry count %d is not positive.' % count) message = '%d time%s' % (count, s(count)) retry_interval = timestr_to_secs(retry_interval) while True: try: return self.run_keyword(name, *args) except ExecutionFailed as err: if err.dont_continue: raise count -= 1 if time.time() > maxtime > 0 or count == 0: raise AssertionError("Keyword '%s' failed after retrying " "%s. The last error was: %s" % (name, message, err)) self._sleep_in_parts(retry_interval) @run_keyword_variant(resolve=1) def set_variable_if(self, condition, *values): """Sets variable based on the given condition. The basic usage is giving a condition and two values. The given condition is first evaluated the same way as with the `Should Be True` keyword. If the condition is true, then the first value is returned, and otherwise the second value is returned. The second value can also be omitted, in which case it has a default value None. This usage is illustrated in the examples below, where ``${rc}`` is assumed to be zero. | ${var1} = | Set Variable If | ${rc} == 0 | zero | nonzero | | ${var2} = | Set Variable If | ${rc} > 0 | value1 | value2 | | ${var3} = | Set Variable If | ${rc} > 0 | whatever | | => | ${var1} = 'zero' | ${var2} = 'value2' | ${var3} = None It is also possible to have 'else if' support by replacing the second value with another condition, and having two new values after it. If the first condition is not true, the second is evaluated and one of the values after it is returned based on its truth value. This can be continued by adding more conditions without a limit. | ${var} = | Set Variable If | ${rc} == 0 | zero | | ... | ${rc} > 0 | greater than zero | less then zero | | | | ${var} = | Set Variable If | | ... | ${rc} == 0 | zero | | ... | ${rc} == 1 | one | | ... | ${rc} == 2 | two | | ... | ${rc} > 2 | greater than two | | ... | ${rc} < 0 | less than zero | Use `Get Variable Value` if you need to set variables dynamically based on whether a variable exist or not. """ values = self._verify_values_for_set_variable_if(list(values)) if self._is_true(condition): return self._variables.replace_scalar(values[0]) values = self._verify_values_for_set_variable_if(values[1:], True) if len(values) == 1: return self._variables.replace_scalar(values[0]) return self.run_keyword('BuiltIn.Set Variable If', *values[0:]) def _verify_values_for_set_variable_if(self, values, default=False): if not values: if default: return [None] raise RuntimeError('At least one value is required') if is_list_var(values[0]): values[:1] = [escape(item) for item in self._variables[values[0]]] return self._verify_values_for_set_variable_if(values) return values @run_keyword_variant(resolve=1) def run_keyword_if_test_failed(self, name, *args): """Runs the given keyword with the given arguments, if the test failed. This keyword can only be used in a test teardown. Trying to use it anywhere else results in an error. Otherwise, this keyword works exactly like `Run Keyword`, see its documentation for more details. Prior to Robot Framework 2.9 failures in test teardown itself were not detected by this keyword. """ test = self._get_test_in_teardown('Run Keyword If Test Failed') if not test.passed: return self.run_keyword(name, *args) @run_keyword_variant(resolve=1) def run_keyword_if_test_passed(self, name, *args): """Runs the given keyword with the given arguments, if the test passed. This keyword can only be used in a test teardown. Trying to use it anywhere else results in an error. Otherwise, this keyword works exactly like `Run Keyword`, see its documentation for more details. Prior to Robot Framework 2.9 failures in test teardown itself were not detected by this keyword. """ test = self._get_test_in_teardown('Run Keyword If Test Passed') if test.passed: return self.run_keyword(name, *args) @run_keyword_variant(resolve=1) def run_keyword_if_timeout_occurred(self, name, *args): """Runs the given keyword if either a test or a keyword timeout has occurred. This keyword can only be used in a test teardown. Trying to use it anywhere else results in an error. Otherwise, this keyword works exactly like `Run Keyword`, see its documentation for more details. """ self._get_test_in_teardown('Run Keyword If Timeout Occurred') if self._context.timeout_occurred: return self.run_keyword(name, *args) def _get_test_in_teardown(self, kwname): ctx = self._context if ctx.test and ctx.in_test_teardown: return ctx.test raise RuntimeError("Keyword '%s' can only be used in test teardown." % kwname) @run_keyword_variant(resolve=1) def run_keyword_if_all_critical_tests_passed(self, name, *args): """Runs the given keyword with the given arguments, if all critical tests passed. This keyword can only be used in suite teardown. Trying to use it in any other place will result in an error. Otherwise, this keyword works exactly like `Run Keyword`, see its documentation for more details. """ suite = self._get_suite_in_teardown('Run Keyword If ' 'All Critical Tests Passed') if suite.statistics.critical.failed == 0: return self.run_keyword(name, *args) @run_keyword_variant(resolve=1) def run_keyword_if_any_critical_tests_failed(self, name, *args): """Runs the given keyword with the given arguments, if any critical tests failed. This keyword can only be used in a suite teardown. Trying to use it anywhere else results in an error. Otherwise, this keyword works exactly like `Run Keyword`, see its documentation for more details. """ suite = self._get_suite_in_teardown('Run Keyword If ' 'Any Critical Tests Failed') if suite.statistics.critical.failed > 0: return self.run_keyword(name, *args) @run_keyword_variant(resolve=1) def run_keyword_if_all_tests_passed(self, name, *args): """Runs the given keyword with the given arguments, if all tests passed. This keyword can only be used in a suite teardown. Trying to use it anywhere else results in an error. Otherwise, this keyword works exactly like `Run Keyword`, see its documentation for more details. """ suite = self._get_suite_in_teardown('Run Keyword If All Tests Passed') if suite.statistics.all.failed == 0: return self.run_keyword(name, *args) @run_keyword_variant(resolve=1) def run_keyword_if_any_tests_failed(self, name, *args): """Runs the given keyword with the given arguments, if one or more tests failed. This keyword can only be used in a suite teardown. Trying to use it anywhere else results in an error. Otherwise, this keyword works exactly like `Run Keyword`, see its documentation for more details. """ suite = self._get_suite_in_teardown('Run Keyword If Any Tests Failed') if suite.statistics.all.failed > 0: return self.run_keyword(name, *args) def _get_suite_in_teardown(self, kwname): if not self._context.in_suite_teardown: raise RuntimeError("Keyword '%s' can only be used in suite teardown." % kwname) return self._context.suite class _Control(_BuiltInBase): def continue_for_loop(self): """Skips the current for loop iteration and continues from the next. Skips the remaining keywords in the current for loop iteration and continues from the next one. Can be used directly in a for loop or in a keyword that the loop uses. Example: | :FOR | ${var} | IN | @{VALUES} | | | Run Keyword If | '${var}' == 'CONTINUE' | Continue For Loop | | | Do Something | ${var} | See `Continue For Loop If` to conditionally continue a for loop without using `Run Keyword If` or other wrapper keywords. New in Robot Framework 2.8. """ self.log("Continuing for loop from the next iteration.") raise ContinueForLoop() def continue_for_loop_if(self, condition): """Skips the current for loop iteration if the ``condition`` is true. A wrapper for `Continue For Loop` to continue a for loop based on the given condition. The condition is evaluated using the same semantics as with `Should Be True` keyword. Example: | :FOR | ${var} | IN | @{VALUES} | | | Continue For Loop If | '${var}' == 'CONTINUE' | | | Do Something | ${var} | New in Robot Framework 2.8. """ if self._is_true(condition): self.continue_for_loop() def exit_for_loop(self): """Stops executing the enclosing for loop. Exits the enclosing for loop and continues execution after it. Can be used directly in a for loop or in a keyword that the loop uses. Example: | :FOR | ${var} | IN | @{VALUES} | | | Run Keyword If | '${var}' == 'EXIT' | Exit For Loop | | | Do Something | ${var} | See `Exit For Loop If` to conditionally exit a for loop without using `Run Keyword If` or other wrapper keywords. """ self.log("Exiting for loop altogether.") raise ExitForLoop() def exit_for_loop_if(self, condition): """Stops executing the enclosing for loop if the ``condition`` is true. A wrapper for `Exit For Loop` to exit a for loop based on the given condition. The condition is evaluated using the same semantics as with `Should Be True` keyword. Example: | :FOR | ${var} | IN | @{VALUES} | | | Exit For Loop If | '${var}' == 'EXIT' | | | Do Something | ${var} | New in Robot Framework 2.8. """ if self._is_true(condition): self.exit_for_loop() @run_keyword_variant(resolve=0) def return_from_keyword(self, *return_values): """Returns from the enclosing user keyword. This keyword can be used to return from a user keyword with PASS status without executing it fully. It is also possible to return values similarly as with the ``[Return]`` setting. For more detailed information about working with the return values, see the User Guide. This keyword is typically wrapped to some other keyword, such as `Run Keyword If` or `Run Keyword If Test Passed`, to return based on a condition: | Run Keyword If | ${rc} < 0 | Return From Keyword | | Run Keyword If Test Passed | Return From Keyword | It is possible to use this keyword to return from a keyword also inside a for loop. That, as well as returning values, is demonstrated by the `Find Index` keyword in the following somewhat advanced example. Notice that it is often a good idea to move this kind of complicated logic into a test library. | ***** Variables ***** | @{LIST} = foo baz | | ***** Test Cases ***** | Example | ${index} = Find Index baz @{LIST} | Should Be Equal ${index} ${1} | ${index} = Find Index non existing @{LIST} | Should Be Equal ${index} ${-1} | | ***** Keywords ***** | Find Index | [Arguments] ${element} @{items} | ${index} = Set Variable ${0} | :FOR ${item} IN @{items} | \\ Run Keyword If '${item}' == '${element}' Return From Keyword ${index} | \\ ${index} = Set Variable ${index + 1} | Return From Keyword ${-1} # Also [Return] would work here. The most common use case, returning based on an expression, can be accomplished directly with `Return From Keyword If`. Both of these keywords are new in Robot Framework 2.8. See also `Run Keyword And Return` and `Run Keyword And Return If`. """ self.log('Returning from the enclosing user keyword.') raise ReturnFromKeyword(return_values) @run_keyword_variant(resolve=1) def return_from_keyword_if(self, condition, *return_values): """Returns from the enclosing user keyword if ``condition`` is true. A wrapper for `Return From Keyword` to return based on the given condition. The condition is evaluated using the same semantics as with `Should Be True` keyword. Given the same example as in `Return From Keyword`, we can rewrite the `Find Index` keyword as follows: | ***** Keywords ***** | Find Index | [Arguments] ${element} @{items} | ${index} = Set Variable ${0} | :FOR ${item} IN @{items} | \\ Return From Keyword If '${item}' == '${element}' ${index} | \\ ${index} = Set Variable ${index + 1} | Return From Keyword ${-1} # Also [Return] would work here. See also `Run Keyword And Return` and `Run Keyword And Return If`. New in Robot Framework 2.8. """ if self._is_true(condition): self.return_from_keyword(*return_values) @run_keyword_variant(resolve=1) def run_keyword_and_return(self, name, *args): """Runs the specified keyword and returns from the enclosing user keyword. The keyword to execute is defined with ``name`` and ``*args`` exactly like with `Run Keyword`. After running the keyword, returns from the enclosing user keyword and passes possible return value from the executed keyword further. Returning from a keyword has exactly same semantics as with `Return From Keyword`. Example: | `Run Keyword And Return` | `My Keyword` | arg1 | arg2 | | # Above is equivalent to: | | ${result} = | `My Keyword` | arg1 | arg2 | | `Return From Keyword` | ${result} | | | Use `Run Keyword And Return If` if you want to run keyword and return based on a condition. New in Robot Framework 2.8.2. """ ret = self.run_keyword(name, *args) self.return_from_keyword(escape(ret)) @run_keyword_variant(resolve=2) def run_keyword_and_return_if(self, condition, name, *args): """Runs the specified keyword and returns from the enclosing user keyword. A wrapper for `Run Keyword And Return` to run and return based on the given ``condition``. The condition is evaluated using the same semantics as with `Should Be True` keyword. Example: | `Run Keyword And Return If` | ${rc} > 0 | `My Keyword` | arg1 | arg2 | | # Above is equivalent to: | | `Run Keyword If` | ${rc} > 0 | `Run Keyword And Return` | `My Keyword ` | arg1 | arg2 | Use `Return From Keyword If` if you want to return a certain value based on a condition. New in Robot Framework 2.8.2. """ if self._is_true(condition): self.run_keyword_and_return(name, *args) def pass_execution(self, message, *tags): """Skips rest of the current test, setup, or teardown with PASS status. This keyword can be used anywhere in the test data, but the place where used affects the behavior: - When used in any setup or teardown (suite, test or keyword), passes that setup or teardown. Possible keyword teardowns of the started keywords are executed. Does not affect execution or statuses otherwise. - When used in a test outside setup or teardown, passes that particular test case. Possible test and keyword teardowns are executed. Possible continuable failures before this keyword is used, as well as failures in executed teardowns, will fail the execution. It is mandatory to give a message explaining why execution was passed. By default the message is considered plain text, but starting it with ``*HTML*`` allows using HTML formatting. It is also possible to modify test tags passing tags after the message similarly as with `Fail` keyword. Tags starting with a hyphen (e.g. ``-regression``) are removed and others added. Tags are modified using `Set Tags` and `Remove Tags` internally, and the semantics setting and removing them are the same as with these keywords. Examples: | Pass Execution | All features available in this version tested. | | Pass Execution | Deprecated test. | deprecated | -regression | This keyword is typically wrapped to some other keyword, such as `Run Keyword If`, to pass based on a condition. The most common case can be handled also with `Pass Execution If`: | Run Keyword If | ${rc} < 0 | Pass Execution | Negative values are cool. | | Pass Execution If | ${rc} < 0 | Negative values are cool. | Passing execution in the middle of a test, setup or teardown should be used with care. In the worst case it leads to tests that skip all the parts that could actually uncover problems in the tested application. In cases where execution cannot continue do to external factors, it is often safer to fail the test case and make it non-critical. New in Robot Framework 2.8. """ message = message.strip() if not message: raise RuntimeError('Message cannot be empty.') self._set_and_remove_tags(tags) log_message, level = self._get_logged_test_message_and_level(message) self.log('Execution passed with message:\n%s' % log_message, level) raise PassExecution(message) @run_keyword_variant(resolve=1) def pass_execution_if(self, condition, message, *tags): """Conditionally skips rest of the current test, setup, or teardown with PASS status. A wrapper for `Pass Execution` to skip rest of the current test, setup or teardown based the given ``condition``. The condition is evaluated similarly as with `Should Be True` keyword, and ``message`` and ``*tags`` have same semantics as with `Pass Execution`. Example: | :FOR | ${var} | IN | @{VALUES} | | | Pass Execution If | '${var}' == 'EXPECTED' | Correct value was found | | | Do Something | ${var} | New in Robot Framework 2.8. """ if self._is_true(condition): message = self._variables.replace_string(message) tags = [self._variables.replace_string(tag) for tag in tags] self.pass_execution(message, *tags) class _Misc(_BuiltInBase): def no_operation(self): """Does absolutely nothing.""" def sleep(self, time_, reason=None): """Pauses the test executed for the given time. ``time`` may be either a number or a time string. Time strings are in a format such as ``1 day 2 hours 3 minutes 4 seconds 5milliseconds`` or ``1d 2h 3m 4s 5ms``, and they are fully explained in an appendix of Robot Framework User Guide. Optional `reason` can be used to explain why sleeping is necessary. Both the time slept and the reason are logged. Examples: | Sleep | 42 | | Sleep | 1.5 | | Sleep | 2 minutes 10 seconds | | Sleep | 10s | Wait for a reply | """ seconds = timestr_to_secs(time_) # Python hangs with negative values if seconds < 0: seconds = 0 self._sleep_in_parts(seconds) self.log('Slept %s' % secs_to_timestr(seconds)) if reason: self.log(reason) def _sleep_in_parts(self, seconds): # time.sleep can't be stopped in windows # to ensure that we can signal stop (with timeout) # split sleeping to small pieces endtime = time.time() + float(seconds) while True: remaining = endtime - time.time() if remaining <= 0: break time.sleep(min(remaining, 0.5)) def catenate(self, *items): """Catenates the given items together and returns the resulted string. By default, items are catenated with spaces, but if the first item contains the string ``SEPARATOR=<sep>``, the separator ``<sep>`` is used instead. Items are converted into strings when necessary. Examples: | ${str1} = | Catenate | Hello | world | | | ${str2} = | Catenate | SEPARATOR=--- | Hello | world | | ${str3} = | Catenate | SEPARATOR= | Hello | world | => | ${str1} = 'Hello world' | ${str2} = 'Hello---world' | ${str3} = 'Helloworld' """ if not items: return '' items = [unic(item) for item in items] if items[0].startswith('SEPARATOR='): sep = items[0][len('SEPARATOR='):] items = items[1:] else: sep = ' ' return sep.join(items) def log(self, message, level='INFO', html=False, console=False, repr=False): u"""Logs the given message with the given level. Valid levels are TRACE, DEBUG, INFO (default), HTML, WARN, and ERROR. Messages below the current active log level are ignored. See `Set Log Level` keyword and ``--loglevel`` command line option for more details about setting the level. Messages logged with the WARN or ERROR levels will be automatically visible also in the console and in the Test Execution Errors section in the log file. Logging can be configured using optional ``html``, ``console`` and ``repr`` arguments. They are off by default, but can be enabled by giving them a true value. See `Boolean arguments` section for more information about true and false values. If the ``html`` argument is given a true value, the message will be considered HTML and special characters such as ``<`` in it are not escaped. For example, logging ``<img src="image.png">`` creates an image when ``html`` is true, but otherwise the message is that exact string. An alternative to using the ``html`` argument is using the HTML pseudo log level. It logs the message as HTML using the INFO level. If the ``console`` argument is true, the message will be written to the console where test execution was started from in addition to the log file. This keyword always uses the standard output stream and adds a newline after the written message. Use `Log To Console` instead if either of these is undesirable, If the ``repr`` argument is true, the given item will be passed through a custom version of Python's ``pprint.pformat()`` function before logging it. This is useful, for example, when working with strings or bytes containing invisible characters, or when working with nested data structures. The custom version differs from the standard one so that it omits the ``u`` prefix from Unicode strings and adds ``b`` prefix to byte strings. Examples: | Log | Hello, world! | | | # Normal INFO message. | | Log | Warning, world! | WARN | | # Warning. | | Log | <b>Hello</b>, world! | html=yes | | # INFO message as HTML. | | Log | <b>Hello</b>, world! | HTML | | # Same as above. | | Log | <b>Hello</b>, world! | DEBUG | html=true | # DEBUG as HTML. | | Log | Hello, console! | console=yes | | # Log also to the console. | | Log | Hyv\xe4 \\x00 | repr=yes | | # Log ``'Hyv\\xe4 \\x00'``. | See `Log Many` if you want to log multiple messages in one go, and `Log To Console` if you only want to write to the console. Arguments ``html``, ``console``, and ``repr`` are new in Robot Framework 2.8.2. Pprint support when ``repr`` is used is new in Robot Framework 2.8.6, and it was changed to drop the ``u`` prefix and add the ``b`` prefix in Robot Framework 2.9. """ if is_truthy(repr): message = prepr(message, width=80) logger.write(message, level, is_truthy(html)) if is_truthy(console): logger.console(message) @run_keyword_variant(resolve=0) def log_many(self, *messages): """Logs the given messages as separate entries using the INFO level. Supports also logging list and dictionary variable items individually. Examples: | Log Many | Hello | ${var} | | Log Many | @{list} | &{dict} | See `Log` and `Log To Console` keywords if you want to use alternative log levels, use HTML, or log to the console. """ for msg in self._yield_logged_messages(messages): self.log(msg) def _yield_logged_messages(self, messages): for msg in messages: var = VariableSplitter(msg) value = self._variables.replace_scalar(msg) if var.is_list_variable(): for item in value: yield item elif var.is_dict_variable(): for name, value in value.items(): yield '%s=%s' % (name, value) else: yield value def log_to_console(self, message, stream='STDOUT', no_newline=False): """Logs the given message to the console. By default uses the standard output stream. Using the standard error stream is possibly by giving the ``stream`` argument value ``STDERR`` (case-insensitive). By default appends a newline to the logged message. This can be disabled by giving the ``no_newline`` argument a true value (see `Boolean arguments`). Examples: | Log To Console | Hello, console! | | | Log To Console | Hello, stderr! | STDERR | | Log To Console | Message starts here and is | no_newline=true | | Log To Console | continued without newline. | | This keyword does not log the message to the normal log file. Use `Log` keyword, possibly with argument ``console``, if that is desired. New in Robot Framework 2.8.2. """ logger.console(message, newline=is_falsy(no_newline), stream=stream) @run_keyword_variant(resolve=0) def comment(self, *messages): """Displays the given messages in the log file as keyword arguments. This keyword does nothing with the arguments it receives, but as they are visible in the log, this keyword can be used to display simple messages. Given arguments are ignored so thoroughly that they can even contain non-existing variables. If you are interested about variable values, you can use the `Log` or `Log Many` keywords. """ pass def set_log_level(self, level): """Sets the log threshold to the specified level and returns the old level. Messages below the level will not logged. The default logging level is INFO, but it can be overridden with the command line option ``--loglevel``. The available levels: TRACE, DEBUG, INFO (default), WARN, ERROR and NONE (no logging). """ try: old = self._context.output.set_log_level(level) except DataError as err: raise RuntimeError(unic(err)) self._namespace.variables.set_global('${LOG_LEVEL}', level.upper()) self.log('Log level changed from %s to %s' % (old, level.upper())) return old def reload_library(self, name_or_instance): """Rechecks what keywords the specified library provides. Can be called explicitly in the test data or by a library itself when keywords it provides have changed. The library can be specified by its name or as the active instance of the library. The latter is especially useful if the library itself calls this keyword as a method. New in Robot Framework 2.9. """ library = self._namespace.reload_library(name_or_instance) self.log('Reloaded library %s with %s keywords.' % (library.name, len(library))) @run_keyword_variant(resolve=0) def import_library(self, name, *args): """Imports a library with the given name and optional arguments. This functionality allows dynamic importing of libraries while tests are running. That may be necessary, if the library itself is dynamic and not yet available when test data is processed. In a normal case, libraries should be imported using the Library setting in the Setting table. This keyword supports importing libraries both using library names and physical paths. When paths are used, they must be given in absolute format. Forward slashes can be used as path separators in all operating systems. It is possible to pass arguments to the imported library and also named argument syntax works if the library supports it. ``WITH NAME`` syntax can be used to give a custom name to the imported library. Examples: | Import Library | MyLibrary | | Import Library | ${CURDIR}/../Library.py | arg1 | named=arg2 | | Import Library | ${LIBRARIES}/Lib.java | arg | WITH NAME | JavaLib | """ try: self._namespace.import_library(name, list(args)) except DataError as err: raise RuntimeError(unic(err)) @run_keyword_variant(resolve=0) def import_variables(self, path, *args): """Imports a variable file with the given path and optional arguments. Variables imported with this keyword are set into the test suite scope similarly when importing them in the Setting table using the Variables setting. These variables override possible existing variables with the same names. This functionality can thus be used to import new variables, for example, for each test in a test suite. The given path must be absolute. Forward slashes can be used as path separator regardless the operating system. Examples: | Import Variables | ${CURDIR}/variables.py | | | | Import Variables | ${CURDIR}/../vars/env.py | arg1 | arg2 | """ try: self._namespace.import_variables(path, list(args), overwrite=True) except DataError as err: raise RuntimeError(unic(err)) @run_keyword_variant(resolve=0) def import_resource(self, path): """Imports a resource file with the given path. Resources imported with this keyword are set into the test suite scope similarly when importing them in the Setting table using the Resource setting. The given path must be absolute. Forward slashes can be used as path separator regardless the operating system. Examples: | Import Resource | ${CURDIR}/resource.txt | | Import Resource | ${CURDIR}/../resources/resource.html | """ try: self._namespace.import_resource(path) except DataError as err: raise RuntimeError(unic(err)) def set_library_search_order(self, *search_order): """Sets the resolution order to use when a name matches multiple keywords. The library search order is used to resolve conflicts when a keyword name in the test data matches multiple keywords. The first library (or resource, see below) containing the keyword is selected and that keyword implementation used. If the keyword is not found from any library (or resource), test executing fails the same way as when the search order is not set. When this keyword is used, there is no need to use the long ``LibraryName.Keyword Name`` notation. For example, instead of having | MyLibrary.Keyword | arg | | MyLibrary.Another Keyword | | MyLibrary.Keyword | xxx | you can have | Set Library Search Order | MyLibrary | | Keyword | arg | | Another Keyword | | Keyword | xxx | This keyword can be used also to set the order of keywords in different resource files. In this case resource names must be given without paths or extensions like: | Set Library Search Order | resource | another_resource | *NOTE:* - The search order is valid only in the suite where this keywords is used. - Keywords in resources always have higher priority than keywords in libraries regardless the search order. - The old order is returned and can be used to reset the search order later. - Library and resource names in the search order are both case and space insensitive. """ return self._namespace.set_search_order(search_order) def keyword_should_exist(self, name, msg=None): """Fails unless the given keyword exists in the current scope. Fails also if there are more than one keywords with the same name. Works both with the short name (e.g. ``Log``) and the full name (e.g. ``BuiltIn.Log``). The default error message can be overridden with the ``msg`` argument. See also `Variable Should Exist`. """ try: handler = self._namespace.get_handler(name) if isinstance(handler, UserErrorHandler): handler.run() except DataError as err: raise AssertionError(msg or unic(err)) def get_time(self, format='timestamp', time_='NOW'): """Returns the given time in the requested format. *NOTE:* DateTime library added in Robot Framework 2.8.5 contains much more flexible keywords for getting the current date and time and for date and time handling in general. How time is returned is determined based on the given ``format`` string as follows. Note that all checks are case-insensitive. 1) If ``format`` contains the word ``epoch``, the time is returned in seconds after the UNIX epoch (1970-01-01 00:00:00 UTC). The return value is always an integer. 2) If ``format`` contains any of the words ``year``, ``month``, ``day``, ``hour``, ``min``, or ``sec``, only the selected parts are returned. The order of the returned parts is always the one in the previous sentence and the order of words in ``format`` is not significant. The parts are returned as zero-padded strings (e.g. May -> ``05``). 3) Otherwise (and by default) the time is returned as a timestamp string in the format ``2006-02-24 15:08:31``. By default this keyword returns the current local time, but that can be altered using ``time`` argument as explained below. Note that all checks involving strings are case-insensitive. 1) If ``time`` is a number, or a string that can be converted to a number, it is interpreted as seconds since the UNIX epoch. This documentation was originally written about 1177654467 seconds after the epoch. 2) If ``time`` is a timestamp, that time will be used. Valid timestamp formats are ``YYYY-MM-DD hh:mm:ss`` and ``YYYYMMDD hhmmss``. 3) If ``time`` is equal to ``NOW`` (default), the current local time is used. This time is got using Python's ``time.time()`` function. 4) If ``time`` is equal to ``UTC``, the current time in [http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC] is used. This time is got using ``time.time() + time.altzone`` in Python. 5) If ``time`` is in the format like ``NOW - 1 day`` or ``UTC + 1 hour 30 min``, the current local/UTC time plus/minus the time specified with the time string is used. The time string format is described in an appendix of Robot Framework User Guide. Examples (expecting the current local time is 2006-03-29 15:06:21): | ${time} = | Get Time | | | | | ${secs} = | Get Time | epoch | | | | ${year} = | Get Time | return year | | | | ${yyyy} | ${mm} | ${dd} = | Get Time | year,month,day | | @{time} = | Get Time | year month day hour min sec | | | | ${y} | ${s} = | Get Time | seconds and year | | => | ${time} = '2006-03-29 15:06:21' | ${secs} = 1143637581 | ${year} = '2006' | ${yyyy} = '2006', ${mm} = '03', ${dd} = '29' | @{time} = ['2006', '03', '29', '15', '06', '21'] | ${y} = '2006' | ${s} = '21' Examples (expecting the current local time is 2006-03-29 15:06:21 and UTC time is 2006-03-29 12:06:21): | ${time} = | Get Time | | 1177654467 | # Time given as epoch seconds | | ${secs} = | Get Time | sec | 2007-04-27 09:14:27 | # Time given as a timestamp | | ${year} = | Get Time | year | NOW | # The local time of execution | | @{time} = | Get Time | hour min sec | NOW + 1h 2min 3s | # 1h 2min 3s added to the local time | | @{utc} = | Get Time | hour min sec | UTC | # The UTC time of execution | | ${hour} = | Get Time | hour | UTC - 1 hour | # 1h subtracted from the UTC time | => | ${time} = '2007-04-27 09:14:27' | ${secs} = 27 | ${year} = '2006' | @{time} = ['16', '08', '24'] | @{utc} = ['12', '06', '21'] | ${hour} = '11' Support for UTC time was added in Robot Framework 2.7.5 but it did not work correctly until 2.7.7. """ return get_time(format, parse_time(time_)) def evaluate(self, expression, modules=None, namespace=None): """Evaluates the given expression in Python and returns the results. ``expression`` is evaluated in Python as explained in `Evaluating expressions`. ``modules`` argument can be used to specify a comma separated list of Python modules to be imported and added to the evaluation namespace. ``namespace`` argument can be used to pass a custom evaluation namespace as a dictionary. Possible ``modules`` are added to this namespace. This is a new feature in Robot Framework 2.8.4. Variables used like ``${variable}`` are replaced in the expression before evaluation. Variables are also available in the evaluation namespace and can be accessed using special syntax ``$variable``. This is a new feature in Robot Framework 2.9 and it is explained more thoroughly in `Evaluating expressions`. Examples (expecting ``${result}`` is 3.14): | ${status} = | Evaluate | 0 < ${result} < 10 | # Would also work with string '3.14' | | ${status} = | Evaluate | 0 < $result < 10 | # Using variable itself, not string representation | | ${random} = | Evaluate | random.randint(0, sys.maxint) | modules=random, sys | | ${ns} = | Create Dictionary | x=${4} | y=${2} | | ${result} = | Evaluate | x*10 + y | namespace=${ns} | => | ${status} = True | ${random} = <random integer> | ${result} = 42 """ variables = self._variables.as_dict(decoration=False) expression = self._handle_variables_in_expression(expression, variables) namespace = self._create_evaluation_namespace(namespace, modules) variables = self._decorate_variables_for_evaluation(variables) try: if not is_string(expression): raise TypeError("Expression must be string, got %s." % type_name(expression)) if not expression: raise ValueError("Expression cannot be empty.") return eval(expression, namespace, variables) except: raise RuntimeError("Evaluating expression '%s' failed: %s" % (expression, get_error_message())) def _handle_variables_in_expression(self, expression, variables): if not is_string(expression): return expression tokens = [] variable_started = seen_variable = False generated = generate_tokens(StringIO(expression).readline) for toknum, tokval, _, _, _ in generated: if variable_started: if toknum == token.NAME: if tokval not in variables: variable_not_found('$%s' % tokval, variables, deco_braces=False) tokval = 'RF_VAR_' + tokval seen_variable = True else: tokens.append((token.ERRORTOKEN, '$')) variable_started = False if toknum == token.ERRORTOKEN and tokval == '$': variable_started = True else: tokens.append((toknum, tokval)) if seen_variable: return untokenize(tokens).strip() return expression def _create_evaluation_namespace(self, namespace, modules): namespace = dict(namespace or {}) modules = modules.replace(' ', '').split(',') if modules else [] namespace.update((m, __import__(m)) for m in modules if m) return namespace def _decorate_variables_for_evaluation(self, variables): decorated = [('RF_VAR_' + name, value) for name, value in variables.items()] return NormalizedDict(decorated, ignore='_') def call_method(self, object, method_name, *args, **kwargs): """Calls the named method of the given object with the provided arguments. The possible return value from the method is returned and can be assigned to a variable. Keyword fails both if the object does not have a method with the given name or if executing the method raises an exception. Support for ``**kwargs`` is new in Robot Framework 2.9. Since that possible equal signs in other arguments must be escaped with a backslash like ``\\=``. Examples: | Call Method | ${hashtable} | put | myname | myvalue | | ${isempty} = | Call Method | ${hashtable} | isEmpty | | | Should Not Be True | ${isempty} | | | | | ${value} = | Call Method | ${hashtable} | get | myname | | Should Be Equal | ${value} | myvalue | | | | Call Method | ${object} | kwargs | name=value | foo=bar | | Call Method | ${object} | positional | escaped\\=equals | """ try: method = getattr(object, method_name) except AttributeError: raise RuntimeError("Object '%s' does not have method '%s'." % (object, method_name)) try: return method(*args, **kwargs) except: raise RuntimeError("Calling method '%s' failed: %s" % (method_name, get_error_message())) def regexp_escape(self, *patterns): """Returns each argument string escaped for use as a regular expression. This keyword can be used to escape strings to be used with `Should Match Regexp` and `Should Not Match Regexp` keywords. Escaping is done with Python's ``re.escape()`` function. Examples: | ${escaped} = | Regexp Escape | ${original} | | @{strings} = | Regexp Escape | @{strings} | """ if len(patterns) == 0: return '' if len(patterns) == 1: return re.escape(patterns[0]) return [re.escape(p) for p in patterns] def set_test_message(self, message, append=False): """Sets message for the current test case. If the optional ``append`` argument is given a true value (see `Boolean arguments`), the given ``message`` is added after the possible earlier message by joining the messages with a space. In test teardown this keyword can alter the possible failure message, but otherwise failures override messages set by this keyword. Notice that in teardown the initial message is available as a built-in variable ``${TEST MESSAGE}``. It is possible to use HTML format in the message by starting the message with ``*HTML*``. Examples: | Set Test Message | My message | | | Set Test Message | is continued. | append=yes | | Should Be Equal | ${TEST MESSAGE} | My message is continued. | | Set Test Message | `*`HTML`*` <b>Hello!</b> | | This keyword can not be used in suite setup or suite teardown. Support for ``append`` was added in Robot Framework 2.7.7 and support for HTML format in 2.8. """ test = self._namespace.test if not test: raise RuntimeError("'Set Test Message' keyword cannot be used in " "suite setup or teardown.") test.message = self._get_possibly_appended_value(test.message, message, append) message, level = self._get_logged_test_message_and_level(test.message) self.log('Set test message to:\n%s' % message, level) def _get_possibly_appended_value(self, initial, new, append): if not is_unicode(new): new = unic(new) if is_truthy(append) and initial: return '%s %s' % (initial, new) return new def _get_logged_test_message_and_level(self, message): if message.startswith('*HTML*'): return message[6:].lstrip(), 'HTML' return message, 'INFO' def set_test_documentation(self, doc, append=False): """Sets documentation for the current test case. By default the possible existing documentation is overwritten, but this can be changed using the optional ``append`` argument similarly as with `Set Test Message` keyword. The current test documentation is available as a built-in variable ``${TEST DOCUMENTATION}``. This keyword can not be used in suite setup or suite teardown. New in Robot Framework 2.7. Support for ``append`` was added in 2.7.7. """ test = self._namespace.test if not test: raise RuntimeError("'Set Test Documentation' keyword cannot be " "used in suite setup or teardown.") test.doc = self._get_possibly_appended_value(test.doc, doc, append) self._variables.set_test('${TEST_DOCUMENTATION}', test.doc) self.log('Set test documentation to:\n%s' % test.doc) def set_suite_documentation(self, doc, append=False, top=False): """Sets documentation for the current test suite. By default the possible existing documentation is overwritten, but this can be changed using the optional ``append`` argument similarly as with `Set Test Message` keyword. This keyword sets the documentation of the current suite by default. If the optional ``top`` argument is given a true value (see `Boolean arguments`), the documentation of the top level suite is altered instead. The documentation of the current suite is available as a built-in variable ``${SUITE DOCUMENTATION}``. New in Robot Framework 2.7. Support for ``append`` and ``top`` were added in 2.7.7. """ top = is_truthy(top) suite = self._get_namespace(top).suite suite.doc = self._get_possibly_appended_value(suite.doc, doc, append) self._variables.set_suite('${SUITE_DOCUMENTATION}', suite.doc, top) self.log('Set suite documentation to:\n%s' % suite.doc) def set_suite_metadata(self, name, value, append=False, top=False): """Sets metadata for the current test suite. By default possible existing metadata values are overwritten, but this can be changed using the optional ``append`` argument similarly as with `Set Test Message` keyword. This keyword sets the metadata of the current suite by default. If the optional ``top`` argument is given a true value (see `Boolean arguments`), the metadata of the top level suite is altered instead. The metadata of the current suite is available as a built-in variable ``${SUITE METADATA}`` in a Python dictionary. Notice that modifying this variable directly has no effect on the actual metadata the suite has. New in Robot Framework 2.7.4. Support for ``append`` and ``top`` were added in 2.7.7. """ top = is_truthy(top) if not is_unicode(name): name = unic(name) metadata = self._get_namespace(top).suite.metadata original = metadata.get(name, '') metadata[name] = self._get_possibly_appended_value(original, value, append) self._variables.set_suite('${SUITE_METADATA}', metadata.copy(), top) self.log("Set suite metadata '%s' to value '%s'." % (name, metadata[name])) def set_tags(self, *tags): """Adds given ``tags`` for the current test or all tests in a suite. When this keyword is used inside a test case, that test gets the specified tags and other tests are not affected. If this keyword is used in a suite setup, all test cases in that suite, recursively, gets the given tags. It is a failure to use this keyword in a suite teardown. The current tags are available as a built-in variable ``@{TEST TAGS}``. See `Remove Tags` if you want to remove certain tags and `Fail` if you want to fail the test case after setting and/or removing tags. """ ctx = self._context if ctx.test: ctx.test.tags.add(tags) ctx.variables.set_test('@{TEST_TAGS}', list(ctx.test.tags)) elif not ctx.in_suite_teardown: ctx.suite.set_tags(tags, persist=True) else: raise RuntimeError("'Set Tags' cannot be used in suite teardown.") self.log('Set tag%s %s.' % (s(tags), seq2str(tags))) def remove_tags(self, *tags): """Removes given ``tags`` from the current test or all tests in a suite. Tags can be given exactly or using a pattern where ``*`` matches anything and ``?`` matches one character. This keyword can affect either one test case or all test cases in a test suite similarly as `Set Tags` keyword. The current tags are available as a built-in variable ``@{TEST TAGS}``. Example: | Remove Tags | mytag | something-* | ?ython | See `Set Tags` if you want to add certain tags and `Fail` if you want to fail the test case after setting and/or removing tags. """ ctx = self._context if ctx.test: ctx.test.tags.remove(tags) ctx.variables.set_test('@{TEST_TAGS}', list(ctx.test.tags)) elif not ctx.in_suite_teardown: ctx.suite.set_tags(remove=tags, persist=True) else: raise RuntimeError("'Remove Tags' cannot be used in suite teardown.") self.log('Removed tag%s %s.' % (s(tags), seq2str(tags))) def get_library_instance(self, name=None, all=False): """Returns the currently active instance of the specified test library. This keyword makes it easy for test libraries to interact with other test libraries that have state. This is illustrated by the Python example below: | from robot.libraries.BuiltIn import BuiltIn | | def title_should_start_with(expected): | seleniumlib = BuiltIn().get_library_instance('SeleniumLibrary') | title = seleniumlib.get_title() | if not title.startswith(expected): | raise AssertionError("Title '%s' did not start with '%s'" | % (title, expected)) It is also possible to use this keyword in the test data and pass the returned library instance to another keyword. If a library is imported with a custom name, the ``name`` used to get the instance must be that name and not the original library name. If the optional argument ``all`` is given a true value, then a dictionary mapping all library names to instances will be returned. This feature is new in Robot Framework 2.9.2. Example: | &{all libs} = | Get library instance | all=True | """ if is_truthy(all): return self._namespace.get_library_instances() try: return self._namespace.get_library_instance(name) except DataError as err: raise RuntimeError(unic(err)) class BuiltIn(_Verify, _Converter, _Variables, _RunKeyword, _Control, _Misc): """An always available standard library with often needed keywords. ``BuiltIn`` is Robot Framework's standard library that provides a set of generic keywords needed often. It is imported automatically and thus always available. The provided keywords can be used, for example, for verifications (e.g. `Should Be Equal`, `Should Contain`), conversions (e.g. `Convert To Integer`) and for various other purposes (e.g. `Log`, `Sleep`, `Run Keyword If`, `Set Global Variable`). == Table of contents == - `HTML error messages` - `Evaluating expressions` - `Boolean arguments` - `Multiline string comparisons` - `Shortcuts` - `Keywords` = HTML error messages = Many of the keywords accept an optional error message to use if the keyword fails. Starting from Robot Framework 2.8, it is possible to use HTML in these messages by prefixing them with ``*HTML*``. See `Fail` keyword for a usage example. Notice that using HTML in messages is not limited to BuiltIn library but works with any error message. = Evaluating expressions = Many keywords, such as `Evaluate`, `Run Keyword If` and `Should Be True`, accept an expression that is evaluated in Python. These expressions are evaluated using Python's [https://docs.python.org/2/library/functions.html#eval|eval] function so that all Python built-ins like ``len()`` and ``int()`` are available. `Evaluate` allows configuring the execution namespace with custom modules, and other keywords have [https://docs.python.org/2/library/os.html|os] and [https://docs.python.org/2/library/sys.html|sys] modules available automatically. Examples: | `Run Keyword If` | os.sep == '/' | Log | Not on Windows | | ${random int} = | `Evaluate` | random.randint(0, 5) | modules=random | When a variable is used in the expressing using the normal ``${variable}`` syntax, its value is replaces before the expression is evaluated. This means that the value used in the expression will be the string representation of the variable value, not the variable value itself. This is not a problem with numbers and other objects that have a string representation that can be evaluated directly, but with other objects the behavior depends on the string representation. Most importantly, strings must always be quoted, and if they can contain newlines, they must be triple quoted. Examples: | `Should Be True` | ${rc} < 10 | Return code greater than 10 | | `Run Keyword If` | '${status}' == 'PASS' | Log | Passed | | `Run Keyword If` | 'FAIL' in '''${output}''' | Log | Output contains FAIL | Starting from Robot Framework 2.9, variables themselves are automatically available in the evaluation namespace. They can be accessed using special variable syntax without the curly braces like ``$variable``. These variables should never be quoted, and in fact they are not even replaced inside strings. Examples: | `Should Be True` | $rc < 10 | Return code greater than 10 | | `Run Keyword If` | $status == 'PASS' | `Log` | Passed | | `Run Keyword If` | 'FAIL' in $output | `Log` | Output contains FAIL | | `Should Be True` | len($result) > 1 and $result[1] == 'OK' | Notice that instead of creating complicated expressions, it is often better to move the logic into a test library. = Boolean arguments = Some keywords accept arguments that are handled as Boolean values true or false. If such an argument is given as a string, it is considered false if it is either empty or case-insensitively equal to ``false`` or ``no``. Keywords verifying something that allow dropping actual and expected values from the possible error message also consider string ``no values`` as false. Other strings are considered true regardless their value, and other argument types are tested using same [http://docs.python.org/2/library/stdtypes.html#truth-value-testing|rules as in Python]. True examples: | `Should Be Equal` | ${x} | ${y} | Custom error | values=True | # Strings are generally true. | | `Should Be Equal` | ${x} | ${y} | Custom error | values=yes | # Same as the above. | | `Should Be Equal` | ${x} | ${y} | Custom error | values=${TRUE} | # Python ``True`` is true. | | `Should Be Equal` | ${x} | ${y} | Custom error | values=${42} | # Numbers other than 0 are true. | False examples: | `Should Be Equal` | ${x} | ${y} | Custom error | values=False | # String ``false`` is false. | | `Should Be Equal` | ${x} | ${y} | Custom error | values=no | # Also string ``no`` is false. | | `Should Be Equal` | ${x} | ${y} | Custom error | values=${EMPTY} | # Empty string is false. | | `Should Be Equal` | ${x} | ${y} | Custom error | values=${FALSE} | # Python ``False`` is false. | | `Should Be Equal` | ${x} | ${y} | Custom error | values=no values | # ``no values`` works with ``values`` argument | Note that prior to Robot Framework 2.9 some keywords considered all non-empty strings, including ``false`` and ``no``, to be true. = Multiline string comparisons = `Should Be Equal` and `Should Be Equal As Strings` report the failures using [https://en.wikipedia.org/wiki/Diff_utility#Unified_format|unified diff format] if both strings have more than two lines. New in Robot Framework 2.9.1. Example: | ${first} = | `Catenate` | SEPARATOR=\\n | Not in second | Same | Differs | Same | | ${second} = | `Catenate` | SEPARATOR=\\n | Same | Differs2 | Same | Not in first | | `Should Be Equal` | ${first} | ${second} | Results in the following error message: | Multiline strings are different: | --- first | +++ second | @@ -1,4 +1,4 @@ | -Not in second | Same | -Differs | +Differs2 | Same | +Not in first """ ROBOT_LIBRARY_SCOPE = 'GLOBAL' ROBOT_LIBRARY_VERSION = get_version() class RobotNotRunningError(AttributeError): """Used when something cannot be done because Robot is not running. Based on AttributeError to be backwards compatible with RF < 2.8.5. May later be based directly on Exception, so new code should except this exception explicitly. """ pass def register_run_keyword(library, keyword, args_to_process=None): """Registers 'run keyword' so that its arguments can be handled correctly. 1) Why is this method needed Keywords running other keywords internally (normally using `Run Keyword` or some variants of it in BuiltIn) must have the arguments meant to the internally executed keyword handled specially to prevent processing them twice. This is done ONLY for keywords registered using this method. If the register keyword has same name as any keyword from Robot Framework standard libraries, it can be used without getting warnings. Normally there is a warning in such cases unless the keyword is used in long format (e.g. MyLib.Keyword). Keywords executed by registered run keywords can be tested in dry-run mode if they have 'name' argument which takes the name of the executed keyword. 2) How to use this method `library` is the name of the library where the registered keyword is implemented. `keyword` can be either a function or method implementing the keyword, or name of the implemented keyword as a string. `args_to_process` is needed when `keyword` is given as a string, and it defines how many of the arguments to the registered keyword must be processed normally. When `keyword` is a method or function, this information is got directly from it so that varargs (those specified with syntax '*args') are not processed but others are. 3) Examples from robot.libraries.BuiltIn import BuiltIn, register_run_keyword def my_run_keyword(name, *args): # do something return BuiltIn().run_keyword(name, *args) # Either one of these works register_run_keyword(__name__, my_run_keyword) register_run_keyword(__name__, 'My Run Keyword', 1) ------------- from robot.libraries.BuiltIn import BuiltIn, register_run_keyword class MyLibrary: def my_run_keyword_if(self, expression, name, *args): # do something return BuiltIn().run_keyword_if(expression, name, *args) # Either one of these works register_run_keyword('MyLibrary', MyLibrary.my_run_keyword_if) register_run_keyword('MyLibrary', 'my_run_keyword_if', 2) """ RUN_KW_REGISTER.register_run_keyword(library, keyword, args_to_process)
the-stack_106_17589
r""" .. _ref_deflection_of_a_hinged_support: Deflection of a Hinged Support ------------------------------ Problem Description: - A structure consisting of two equal steel bars, each of length :math:`l` and cross-sectional area :math:`A`, with hinged ends is subjected to the action of a load :math:`F`. Determine the stress, :math:`\sigma`, in the bars and the deflection, :math:`\delta`, of point 2. Neglect the weight of the bars as a small quantity in comparison with the load :math:`F`. Reference: - S. Timoshenko, Strength of Materials, Part I, Elementary Theory and Problems, 3rd Edition, D. Van Nostrand Co., Inc., New York, NY, 1955, pg. 10, problem 2. Analysis Type(s): - Static Analysis ``ANTYPE=0`` Element Type(s): - 3-D Spar (or Truss) Elements (LINK180) .. image:: ../../../_static/vm4_setup.png :width: 400 :alt: VM4 Problem Sketch Material Properties - :math:`E = 30 \cdot 10^6 psi` Geometric Properties: - :math:`l = 15 ft` - :math:`A = 0.5 in^2` - :math:`\Theta = 30 ^\circ` Loading: - :math:`F = 5000 lb` Analytical Equations: - The tensile force in the bars is :math:`S` - :math:`S = \frac{P}{2 sin \Theta}` - The necessary cross-sectional area :math:`A` is - :math:`A = \frac{S}{\sigma}` - The elongation of the bar :math:`AB` is - :math:`B_1 D = \frac{\sigma l}{E}` - The deflection :math:`BB_1` is - :math:`BB_1 = \frac{B_1 D}{sin \Theta}` Notes: - Consistent length units are used. The dimensions :math:`a` and :math:`b` are calculated parametrically in the input as follows: - :math:`a = 2 l cos \Theta`, - :math:`b = l sin \Theta`. """ # sphinx_gallery_thumbnail_path = '_static/vm4_setup.png' ############################################################################### # Start MAPDL # ~~~~~~~~~~~ from math import cos, pi, sin from ansys.mapdl.core import launch_mapdl # start mapdl and clear it mapdl = launch_mapdl() mapdl.clear() # optional as MAPDL just started # enter verification example mode and the pre-processing routine mapdl.verify() mapdl.prep7() ############################################################################### # Define Material # ~~~~~~~~~~~~~~~ # Create a simple hinge geometry. # We use the `LINK180` element type to model this and an elastic modulus # of 30e6. # We store the x-coordinate of node 3 and the y-coordinate of node 2 for # ease of use later on. length_bar = 15 * 12 theta = 30 theta_rad = theta * pi / 180.0 node3_x = 2 * length_bar * cos(theta_rad) node2_y = length_bar * sin(theta_rad) mapdl.et(1, "LINK180") mapdl.sectype(1, "LINK") mapdl.secdata(0.5) mapdl.mp("EX", 1, 30e6) ############################################################################### # Define Geometry # ~~~~~~~~~~~~~~~ # We create three nodes in an isosceles triangle shape, with elements # along the equal sides, forming a hinge. n1 = mapdl.n(1, 0, 0, 0) n2 = mapdl.n(2, node3_x * 0.5, -node2_y, 0) n3 = mapdl.n(3, node3_x, 0, 0) mapdl.e(n1, n2) mapdl.e(n2, n3) mapdl.eplot(show_node_numbering=True, line_width=5, cpos="xy") ############################################################################### # Define Boundary Conditions # ~~~~~~~~~~~~~~~~~~~~~~~~~~ # - Fix nodes 1 and 3 in place # - Apply a force of -5000 in the negative y-direction to node 2 # - Then finish the prep7 section mapdl.d(1, "ALL", "", "", 3, 2) mapdl.f(2, "FY", -5000) mapdl.finish() ############################################################################### # Solve # ~~~~~ # Enter solution mode and solve the system. mapdl.run("/SOLU") out = mapdl.solve() mapdl.finish() ############################################################################### # Post-processing # ~~~~~~~~~~~~~~~ # Enter post-processing, get the results and view the nodal displacement # as well as the equivalent stress on the nodes. # # We make the line width larger for ease of visualization as well as # using two perceptually linear colormaps to enhance display of the # data. mapdl.post1() mapdl.post_processing.plot_nodal_displacement( "Y", cmap="magma", line_width=5, cpos="xy", scalar_bar_args={"title": "Displacement", "vertical": False}, ) ############################################################################### # Principal nodal stress # ~~~~~~~~~~~~~~~~~~~~~~ # Use the ``post_processing`` attribute to get the principal nodal # stress as an array. # # .. note:: # This returns the same data as :func:`prnsol # <ansys.mapdl.core.Mapdl.prnsol>`, except instead of returning # text, it returns a numpy array. seqv = mapdl.post_processing.nodal_eqv_stress() # print out the nodes for i, nnum in enumerate(mapdl.mesh.nnum): print(f"Node {nnum} : {seqv[i]} psi") # Which is identical to: # print(mapdl.prnsol('S', 'PRIN')) ############################################################################### # Check Results # ~~~~~~~~~~~~~ # Now that we have the results we can compare the nodal displacement and # stress experienced by node 2 to the known quantities 10000 psi and # -0.12 inches. To do this we: # # - Find the mid-node from the coordinates using the :class:`Query # <ansys.mapdl.core.inline_functions.Query>` class # - Get the y-displacement from node 2 # - Get the element nearest to node 2 # - Get the stress on this element # - Compare q = mapdl.queries mid_node = q.node(node3_x * 0.5, -node2_y, 0) displacement = mapdl.get_value("NODE", mid_node, "U", "Y") left_element = q.enearn(mid_node) mapdl.etable("STRS", "LS", 1) stress = mapdl.get_value("ELEM", left_element, "ETAB", "STRS") results = f""" --------------------- RESULTS COMPARISON ----------------------- | TARGET | TARGET | Mechanical APDL | RATIO ------------------------------------------------------------------ Stress [psi] 10000 {stress} {stress/10000:.2f} Displacement [in] -0.12 {displacement:.2f} {abs(displacement) / 0.12:.2f} ------------------------------------------------------------------ """ print(results) ############################################################################### # stop mapdl mapdl.exit()
the-stack_106_17591
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals """ This module implements a EnergyModel abstract class and some basic implementations. Basically, an EnergyModel is any model that returns an "energy" for any given structure. """ __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "[email protected]" __date__ = "11/19/13" import abc import six from monty.json import MSONable from pymatgen.analysis.ewald import EwaldSummation from pymatgen.symmetry.analyzer import SpacegroupAnalyzer class EnergyModel(six.with_metaclass(abc.ABCMeta, MSONable)): """ Abstract structure filter class. """ @abc.abstractmethod def get_energy(self, structure): """ Returns a boolean for any structure. Structures that return true are kept in the Transmuter object during filtering. """ return @classmethod def from_dict(cls, d): return cls(**d['init_args']) class EwaldElectrostaticModel(EnergyModel): """ Wrapper around EwaldSum to calculate the electrostatic energy. """ def __init__(self, real_space_cut=None, recip_space_cut=None, eta=None, acc_factor=8.0): """ Initializes the model. Args have the same definitions as in :class:`pymatgen.analysis.ewald.EwaldSummation`. Args: real_space_cut (float): Real space cutoff radius dictating how many terms are used in the real space sum. Defaults to None, which means determine automagically using the formula given in gulp 3.1 documentation. recip_space_cut (float): Reciprocal space cutoff radius. Defaults to None, which means determine automagically using the formula given in gulp 3.1 documentation. eta (float): Screening parameter. Defaults to None, which means determine automatically. acc_factor (float): No. of significant figures each sum is converged to. """ self.real_space_cut = real_space_cut self.recip_space_cut = recip_space_cut self.eta = eta self.acc_factor = acc_factor def get_energy(self, structure): e = EwaldSummation(structure, real_space_cut=self.real_space_cut, recip_space_cut=self.recip_space_cut, eta=self.eta, acc_factor=self.acc_factor) return e.total_energy def as_dict(self): return {"version": __version__, "@module": self.__class__.__module__, "@class": self.__class__.__name__, "init_args": {"real_space_cut": self.real_space_cut, "recip_space_cut": self.recip_space_cut, "eta": self.eta, "acc_factor": self.acc_factor}} class SymmetryModel(EnergyModel): """ Sets the energy to the -ve of the spacegroup number. Higher symmetry => lower "energy". Args have same meaning as in :class:`pymatgen.symmetry.finder.SpacegroupAnalyzer`. Args: symprec (float): Symmetry tolerance. Defaults to 0.1. angle_tolerance (float): Tolerance for angles. Defaults to 5 degrees. """ def __init__(self, symprec=0.1, angle_tolerance=5): self.symprec = symprec self.angle_tolerance = angle_tolerance def get_energy(self, structure): f = SpacegroupAnalyzer(structure, symprec=self.symprec, angle_tolerance=self.angle_tolerance) return -f.get_space_group_number() def as_dict(self): return {"version": __version__, "@module": self.__class__.__module__, "@class": self.__class__.__name__, "init_args": {"symprec": self.symprec, "angle_tolerance": self.angle_tolerance}} class IsingModel(EnergyModel): """ A very simple Ising model, with r^2 decay. Args: j (float): The interaction parameter. E = J * spin1 * spin2. radius (float): max_radius for the interaction. """ def __init__(self, j, max_radius): self.j = j self.max_radius = max_radius def get_energy(self, structure): all_nn = structure.get_all_neighbors(r=self.max_radius) energy = 0 for i, nn in enumerate(all_nn): s1 = getattr(structure[i].specie, "spin", 0) for site, dist in nn: energy += self.j * s1 * getattr(site.specie, "spin", 0) / (dist ** 2) return energy def as_dict(self): return {"version": __version__, "@module": self.__class__.__module__, "@class": self.__class__.__name__, "init_args": {"j": self.j, "max_radius": self.max_radius}} class NsitesModel(EnergyModel): """ Sets the energy to the number of sites. More sites => higher "energy". Used to rank structures from smallest number of sites to largest number of sites after enumeration. """ def get_energy(self, structure): return len(structure) def as_dict(self): return {"version": __version__, "@module": self.__class__.__module__, "@class": self.__class__.__name__, "init_args": {}}
the-stack_106_17593
# -*- coding: utf-8 -*- """ Created on Mon Nov 16 08:59:34 2020 @author: wantysal """ # Standard library imports import numpy as np from scipy.io import wavfile, loadmat from scipy.signal import resample # Optional package import try: import pyuff except ImportError: pyuff = None def load(file, calib=1, mat_signal="", mat_fs=""): """Extract the signal and its time axis from .wav or .uff file, resample the signal to 48 kHz, and affects its sampling frequency and time signal values. Parameters ---------- file : string string path to the signal file calib : float, optional Amplification factor. Shall be equal to 1 if the imported signal is already in Pascal [pa]. In some cases (while working with .wav files, for instance) the original signal in Pa, of amplitude A, is scaled to A/factor before being exported. When using the present function with such file, the factor shall be defined as input parameter (calib=factor) to be able to scale the signal back to Pascal. mat_signal : string in case of a .mat file, name of the signal variable mat_fs : string in case of a .mat file, name of the sampling frequency variable Outputs ------- signal : numpy.array time signal values fs : integer sampling frequency """ # load the .wav file content if file[-3:] == "wav" or file[-3:] == "WAV": fs, signal = wavfile.read(file) # manage multichannel files if signal.ndim > 1: signal = signal[:, 0] print("[Info] Multichannel signal loaded. Keeping only first channel") # calibration factor for the signal to be in Pa if isinstance(signal[0], np.int16): signal = calib * signal / (2 ** 15 - 1) elif isinstance(signal[0], np.int32): signal = calib * signal / (2 ** 31 - 1) elif isinstance(signal[0], np.float): signal = calib * signal # load the .uff file content elif file[-3:].lower() == "uff" or file[-3:].lower() == "unv": data = uff_load(file) # extract the signal values signal = data["data"] # calculate the sampling frequency fs = int(1 / data["abscissa_inc"]) # load the .mat file content elif file[-3:] == "mat": matfile = loadmat(file) # extract the signal values and sampling frequency signal = matfile[mat_signal][:, 0] fs = matfile[mat_fs] fs = fs[:, 0] # load the .txt file content elif file[-3:] == "txt": # extract the values data = np.loadtxt(file) signal = data[:,1] time = data[:,0] # calibration for for the signal to be in Pa signal = signal * calib # calculate sampling frequency fs = 1/(time[1]-time[0]) else: raise ValueError("""ERROR: only .wav .mat .uff or .txt files are supported""") # resample to 48kHz to allow calculation if fs != 48000: signal = resample(signal, int(48000 * len(signal) / fs)) fs = 48000 print("[Info] Signal resampled to 48 kHz to allow calculation.") return signal, fs # def load2oct3(is_stationary, file, calib=1): # """Load .wav signal and output its third-octave band spectrum # Parameters # ---------- # is_stationary: boolean # True if the signal is stationary, False if it is time-varying # file : string # full path to the signal file # calib : float # calibration factor for the signal to be in [pa] # Outputs # ------- # spec : numpy.ndarray # Third octave band spectrum of signal sig [dB re.2e-5 Pa] # fpref : numpy.ndarray # Corresponding preferred third octave band center frequencies # """ # # Load the signal from its file # signal, fs = load(is_stationary, file, calib) # # Compute third-octave spectrum # output = comp_third_spec(is_stationary, signal, fs) # return output # def load2wav( # is_stationary, file, sampling_freq, calib=1, encodage=16, mat_signal="", mat_fs="" # ): # """Load .uff or .mat file and create the corresponding .wav audio file # Parameters # ---------- # is_stationary: boolean # True if the signal is stationary, False if it is time-varying # file : string # full path to the signal file # sampling_freq : integer # sampling frequency of the created .wav file # calib : float # calibration factor for the signal to be in [pa] # encodage : integer # encodage of the signal, 16 for np.int16, 32 for np.int32 # mat_signal : string # in case of a .mat file, name of the signal variable # mat_fs : string # in case of a .mat file, name of the sampling frequency variable # Output # ------ # None # """ # # Load the .uff file content # if file[-3:].lower() == "uff" or file[-3:].lower() == "unv": # data = uff_load(file) # # extract the signal values # signal = data["data"] # # calculate the sampling frequency # fs = int(1 / data["abscissa_inc"]) # # Load the .mat file content # elif file[-3:] == "mat": # matfile = loadmat(file) # # extract the signal values and sampling frequency # signal = matfile[mat_signal][:, 0] # fs = matfile[mat_fs] # fs = fs[:, 0] # else: # raise ValueError("""ERROR: only .mat or .uff file are supported""") # # Resample # if fs != sampling_freq: # signal = resample(signal, sampling_freq * int(len(signal) / fs)) # # calibration factor for the signal to be in Pa # if encodage == 16: # signal = signal * (2 ** 15 - 1) / calib # signal = signal.astype(np.int16) # elif encodage == 32: # signal = signal * (2 ** 31 - 1) / calib # signal = signal.astype(np.int32) # # create the .wav file # newfile = file[:-3] + "wav" # wavfile.write(newfile, sampling_freq, signal) def uff_load(file): if pyuff is None: raise RuntimeError( "In order to load UFF files you need the 'pyuff' " "package." ) uff_file = pyuff.UFF(file) data = uff_file.read_sets() return data
the-stack_106_17594
""" 1525 medium number of good ways to split a string """ class Solution: def numSplits(self, s: str) -> int: from collections import Counter left = Counter() right = Counter(s) total = 0 for c in s: left[c] += 1 right[c] -= 1 if right[c] == 0: del right[c] if len(left) == len(right): total += 1 return total s = "aacaba" sol = Solution() print(sol.numSplits(s))
the-stack_106_17595
from django.core import mail from django.test import TestCase from bluebottle.initiatives.tests.factories import InitiativeFactory from bluebottle.time_based.tests.factories import DateActivityFactory from bluebottle.funding.tests.factories import FundingFactory from bluebottle.test.factory_models.accounts import BlueBottleUserFactory from bluebottle.test.factory_models.wallposts import MediaWallpostFactory, ReactionFactory from bluebottle.follow.tests.factories import ( DateActivityFollowFactory, FundingFollowFactory ) class InitiativeWallpostTestCase(TestCase): def setUp(self): self.initiative = InitiativeFactory.create() self.follower = BlueBottleUserFactory.create() DateActivityFollowFactory.create( instance=DateActivityFactory.create( status='open', initiative=self.initiative ), user=self.follower ) FundingFollowFactory.create( instance=FundingFactory.create( status='open', initiative=self.initiative ), user=self.follower ) DateActivityFollowFactory.create( instance=DateActivityFactory.create( status='open', initiative=self.initiative ), user=BlueBottleUserFactory(campaign_notifications=False), ) DateActivityFollowFactory.create( instance=DateActivityFactory.create( status='open', initiative=self.initiative ), user=self.initiative.owner ) def test_wallpost(self): wallpost_user = BlueBottleUserFactory.create() MediaWallpostFactory.create( content_object=self.initiative, author=wallpost_user, email_followers=False ) self.assertEqual(len(mail.outbox), 1) owner_mail = mail.outbox[0] self.assertEqual( owner_mail.subject, "You have a new post on '{}'".format(self.initiative.title) ) def test_wallpost_owner(self): MediaWallpostFactory.create( content_object=self.initiative, author=self.initiative.owner, email_followers=True ) self.assertEqual(len(mail.outbox), 1) follow_mail = mail.outbox[0] self.assertEqual( follow_mail.subject, "Update from '{}'".format(self.initiative.title) ) self.assertTrue( '{} posted an update to {}'.format( self.initiative.owner.first_name, self.initiative.title) in follow_mail.body ) def test_reaction(self): reaction_user = BlueBottleUserFactory.create() wallpost_user = BlueBottleUserFactory.create() wallpost = MediaWallpostFactory.create( content_object=self.initiative, author=wallpost_user, email_followers=True ) mail.outbox = [] ReactionFactory.create( wallpost=wallpost, author=reaction_user ) self.assertEqual(len(mail.outbox), 2) wallpost_owner_mail = mail.outbox[0] self.assertEqual( wallpost_owner_mail.subject, "You have a new post on '{}'".format(self.initiative.title) ) owner_mail = mail.outbox[1] self.assertEqual( owner_mail.subject, "You have a new post on '{}'".format(self.initiative.title) )
the-stack_106_17597
import struct import numpy as np dtypes = { 1: np.uint8, 2: np.int8, 3: np.int16, 4: np.int32, 5: np.int64, 6: np.float, 7: np.double, } def write_longs(f, a): f.write(np.array(a, dtype=np.int64)) def code(dtype): for k in dtypes.keys(): if dtypes[k] == dtype: return k class IndexedDatasetBuilder(object): element_sizes = { np.uint8: 1, np.int8: 1, np.int16: 2, np.int32: 4, np.int64: 8, np.float: 4, np.double: 8, } def __init__(self, out_file, dtype=np.int32): self.out_file = open(out_file, "wb") self.dtype = dtype self.data_offsets = [0] self.dim_offsets = [0] self.sizes = [] self.element_size = self.element_sizes[self.dtype] def add_item(self, tensor): bytes = self.out_file.write(np.array(tensor.numpy(), dtype=self.dtype)) self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size) for s in tensor.size(): self.sizes.append(s) self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size())) def finalize(self, index_file): self.out_file.close() index = open(index_file, "wb") index.write(b"TNTIDX\x00\x00") index.write(struct.pack("<Q", 1)) index.write(struct.pack("<QQ", code(self.dtype), self.element_size)) index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes))) write_longs(index, self.dim_offsets) write_longs(index, self.data_offsets) write_longs(index, self.sizes) index.close()
the-stack_106_17598
from __future__ import absolute_import, division, print_function, unicode_literals import torch_glow import unittest class TestSetGlowBackend(unittest.TestCase): def test_set_glow_backend(self): """Test setting the Glow backend type""" backend_name_before = torch_glow.getGlowBackendName() backend_num_devices_before = torch_glow.getGlowBackendNumDevices() torch_glow.setGlowBackend("CPU") torch_glow.setGlowBackendNumDevices(4) assert(torch_glow.getGlowBackendName() == "CPU") assert(torch_glow.getGlowBackendNumDevices() == 4) # reset everything torch_glow.setGlowBackend(backend_name_before) torch_glow.setGlowBackendNumDevices(backend_num_devices_before)
the-stack_106_17599
# --- Day 23: Crab queue --- # The small crab challenges you to a game! The crab is going to mix up some queue, and you have to predict where they'll end up. # The queue will be arranged in a circle and labeled clockwise (your puzzle input). For example, if your labeling were 32415, there would be five queue in the circle; going clockwise around the circle from the first cup, the queue would be labeled 3, 2, 4, 1, 5, and then back to 3 again. # Before the crab starts, it will designate the first cup in your list as the current cup. The crab is then going to do 100 moves. # Each move, the crab does the following actions: # The crab picks up the three queue that are immediately clockwise of the current cup. They are removed from the circle; cup spacing is adjusted as necessary to maintain the circle. # The crab selects a destination cup: the cup with a label equal to the current cup's label minus one. If this would select one of the queue that was just picked up, the crab will keep subtracting one until it finds a cup that wasn't just picked up. If at any point in this process the value goes below the lowest value on any cup's label, it wraps around to the highest value on any cup's label instead. # The crab places the queue it just picked up so that they are immediately clockwise of the destination cup. They keep the same order as when they were picked up. # The crab selects a new current cup: the cup which is immediately clockwise of the current cup. # For example, suppose your cup labeling were 389125467. If the crab were to do merely 10 moves, the following changes would occur: # -- move 1 -- # queue: (3) 8 9 1 2 5 4 6 7 # pick up: 8, 9, 1 # destination: 2 # -- move 2 -- # queue: 3 (2) 8 9 1 5 4 6 7 # pick up: 8, 9, 1 # destination: 7 # -- move 3 -- # queue: 3 2 (5) 4 6 7 8 9 1 # pick up: 4, 6, 7 # destination: 3 # -- move 4 -- # queue: 7 2 5 (8) 9 1 3 4 6 # pick up: 9, 1, 3 # destination: 7 # -- move 5 -- # queue: 3 2 5 8 (4) 6 7 9 1 # pick up: 6, 7, 9 # destination: 3 # -- move 6 -- # queue: 9 2 5 8 4 (1) 3 6 7 # pick up: 3, 6, 7 # destination: 9 # -- move 7 -- # queue: 7 2 5 8 4 1 (9) 3 6 # pick up: 3, 6, 7 # destination: 8 # -- move 8 -- # queue: 8 3 6 7 4 1 9 (2) 5 # pick up: 5, 8, 3 # destination: 1 # -- move 9 -- # queue: 7 4 1 5 8 3 9 2 (6) # pick up: 7, 4, 1 # destination: 5 # -- move 10 -- # queue: (5) 7 4 1 8 3 9 2 6 # pick up: 7, 4, 1 # destination: 3 # -- final -- # queue: 5 (8) 3 7 4 1 9 2 6 # In the above example, the queue' values are the labels as they appear moving clockwise around the circle; the current cup is marked with ( ). # After the crab is done, what order will the queue be in? Starting after the cup labeled 1, collect the other queue' labels clockwise into a single string with no extra characters; each number except 1 should appear exactly once. In the above example, after 10 moves, the queue clockwise from 1 are labeled 9, 2, 6, 5, and so on, producing 92658374. If the crab were to complete all 100 moves, the order after cup 1 would be 67384529. # Using your labeling, simulate 100 moves. What are the labels on the queue after cup 1? # Your puzzle input is 362981754. from collections import deque data = [int(i) for i in "362981754"] queue = deque(data) for _ in range(100): cup = queue[0] dest = queue[0] - 1 if dest < 1: dest += 9 queue.rotate(-1) values = (queue.popleft(), queue.popleft(), queue.popleft()) while dest in values: dest = dest - 1 if dest > 1 else dest + 8 while queue[0] != dest: queue.rotate(-1) queue.rotate(-1) queue.append(values[0]) queue.append(values[1]) queue.append(values[2]) while queue[0] != cup: queue.rotate(-1) queue.rotate(-1) while queue[0] != 1: queue.rotate(-1) queue.popleft() ans = ''.join([str(i) for i in queue]) print("Part 1:", ans) # --- Part Two --- # Due to what you can only assume is a mistranslation (you're not exactly fluent in Crab), you are quite surprised when the crab starts arranging many cups in a circle on your raft - one million (1000000) in total. # Your labeling is still correct for the first few cups; after that, the remaining cups are just numbered in an increasing fashion starting from the number after the highest number in your list and proceeding one by one until one million is reached. (For example, if your labeling were 54321, the cups would be numbered 5, 4, 3, 2, 1, and then start counting up from 6 until one million is reached.) In this way, every number from one through one million is used exactly once. # After discovering where you made the mistake in translating Crab Numbers, you realize the small crab isn't going to do merely 100 moves; the crab is going to do ten million (10000000) moves! # The crab is going to hide your stars - one each - under the two cups that will end up immediately clockwise of cup 1. You can have them if you predict what the labels on those cups will be when the crab is finished. # In the above example (389125467), this would be 934001 and then 159792; multiplying these together produces 149245887792. # Determine which two cups will end up immediately clockwise of cup 1. What do you get if you multiply their labels together? ONE_MILLON = 1000000 TEN_MILLON = 10000000 class Node: def __init__(self, val): self.val = val self.left = None self.right = None nodes = {} prev = None for i in data: node = Node(i) nodes[i] = node if prev is not None: prev.right = node node.left = prev prev = node for i in range(len(data)+1, ONE_MILLON+1): node = Node(i) nodes[i] = node if prev is not None: prev.right = node node.left = prev prev = node pointer = nodes[data[0]] prev.right = pointer pointer.left = prev for i in range(TEN_MILLON): cup = pointer.val c1 = pointer.right c2 = c1.right c3 = c2.right pointer.right, pointer.right.left = c3.right, pointer dest = cup - 1 or ONE_MILLON while dest in (c1.val, c2.val, c3.val): dest = dest - 1 or ONE_MILLON dest_node = nodes[dest] c3.right, c3.right.left = dest_node.right, c3 dest_node.right, c1.left = c1, dest_node pointer = pointer.right while pointer.val != 1: pointer = pointer.right ans =pointer.right.val * pointer.right.right.val print("Part 2:", ans)
the-stack_106_17602
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any from azure.core.configuration import Configuration from azure.core.pipeline import policies from .._version import VERSION class AutoRestSwaggerBATHeaderServiceConfiguration(Configuration): # pylint: disable=too-many-instance-attributes """Configuration for AutoRestSwaggerBATHeaderService. Note that all parameters used to create this instance are saved as instance attributes. """ def __init__(self, **kwargs: Any) -> None: super(AutoRestSwaggerBATHeaderServiceConfiguration, self).__init__(**kwargs) kwargs.setdefault("sdk_moniker", "autorestswaggerbatheaderservice/{}".format(VERSION)) self._configure(**kwargs) def _configure(self, **kwargs: Any) -> None: self.user_agent_policy = kwargs.get("user_agent_policy") or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get("headers_policy") or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get("proxy_policy") or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get("logging_policy") or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get("http_logging_policy") or policies.HttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get("retry_policy") or policies.AsyncRetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get("custom_hook_policy") or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get("redirect_policy") or policies.AsyncRedirectPolicy(**kwargs) self.authentication_policy = kwargs.get("authentication_policy")
the-stack_106_17603
#!/usr/bin/env python import sys sys.path.append("..") from models import iresnet from collections import OrderedDict from termcolor import cprint from torch.nn import Parameter import torch.nn.functional as F import torch.backends.cudnn as cudnn import numpy as np import math import torch import torch.nn as nn import os def builder(args): model = SoftmaxBuilder(args) return model def load_features(args): if args.arch == 'iresnet18': features = iresnet.iresnet18( pretrained=True, num_classes=args.embedding_size) elif args.arch == 'iresnet34': features = iresnet.iresnet34( pretrained=True, num_classes=args.embedding_size) elif args.arch == 'iresnet50': features = iresnet.iresnet50( pretrained=True, num_classes=args.embedding_size) elif args.arch == 'iresnet100': features = iresnet.iresnet100( pretrained=True, num_classes=args.embedding_size) else: raise ValueError() return features class SoftmaxBuilder(nn.Module): def __init__(self, args): super(SoftmaxBuilder, self).__init__() self.features = load_features(args) self.fc = MagLinear(args.embedding_size, args.last_fc_size, scale=args.arc_scale) self.l_margin = args.l_margin self.u_margin = args.u_margin self.l_a = args.l_a self.u_a = args.u_a def _margin(self, x): """generate adaptive margin """ margin = (self.u_margin-self.l_margin) / \ (self.u_a-self.l_a)*(x-self.l_a) + self.l_margin return margin def forward(self, x, target): x = self.features(x) logits, x_norm = self.fc(x, self._margin, self.l_a, self.u_a) return logits, x_norm class MagLinear(torch.nn.Module): """ Parallel fc for Mag loss """ def __init__(self, in_features, out_features, scale=64.0, easy_margin=True): super(MagLinear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.Tensor(in_features, out_features)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) self.scale = scale self.easy_margin = easy_margin def forward(self, x, m, l_a, u_a): """ Here m is a function which generate adaptive margin """ x_norm = torch.norm(x, dim=1, keepdim=True).clamp(l_a, u_a) ada_margin = m(x_norm) cos_m, sin_m = torch.cos(ada_margin), torch.sin(ada_margin) # norm the weight weight_norm = F.normalize(self.weight, dim=0) cos_theta = torch.mm(F.normalize(x), weight_norm) cos_theta = cos_theta.clamp(-1, 1) sin_theta = torch.sqrt(1.0 - torch.pow(cos_theta, 2)) cos_theta_m = cos_theta * cos_m - sin_theta * sin_m if self.easy_margin: cos_theta_m = torch.where(cos_theta > 0, cos_theta_m, cos_theta) else: mm = torch.sin(math.pi - ada_margin) * ada_margin threshold = torch.cos(math.pi - ada_margin) cos_theta_m = torch.where( cos_theta > threshold, cos_theta_m, cos_theta - mm) # multiply the scale in advance cos_theta_m = self.scale * cos_theta_m cos_theta = self.scale * cos_theta return [cos_theta, cos_theta_m], x_norm class MagLoss(torch.nn.Module): """ MagFace Loss. """ def __init__(self, l_a, u_a, l_margin, u_margin, scale=64.0): super(MagLoss, self).__init__() self.l_a = l_a self.u_a = u_a self.scale = scale self.cut_off = np.cos(np.pi/2-l_margin) self.large_value = 1 << 10 def calc_loss_G(self, x_norm): g = 1/(self.u_a**2) * x_norm + 1/(x_norm) return torch.mean(g) def forward(self, input, target, x_norm): loss_g = self.calc_loss_G(x_norm) cos_theta, cos_theta_m = input one_hot = torch.zeros_like(cos_theta) one_hot.scatter_(1, target.view(-1, 1), 1.0) output = one_hot * cos_theta_m + (1.0 - one_hot) * cos_theta loss = F.cross_entropy(output, target, reduction='mean') return loss.mean(), loss_g, one_hot
the-stack_106_17604
import pytest import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose) from sklearn.datasets import load_linnerud from sklearn.cross_decomposition._pls import ( _center_scale_xy, _get_first_singular_vectors_power_method, _get_first_singular_vectors_svd, _svd_flip_1d ) from sklearn.cross_decomposition import CCA from sklearn.cross_decomposition import PLSSVD, PLSRegression, PLSCanonical from sklearn.datasets import make_regression from sklearn.utils import check_random_state from sklearn.utils.extmath import svd_flip from sklearn.exceptions import ConvergenceWarning def assert_matrix_orthogonal(M): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K))) def test_pls_canonical_basics(): # Basic checks for PLSCanonical d = load_linnerud() X = d.data Y = d.target pls = PLSCanonical(n_components=X.shape[1]) pls.fit(X, Y) assert_matrix_orthogonal(pls.x_weights_) assert_matrix_orthogonal(pls.y_weights_) assert_matrix_orthogonal(pls._x_scores) assert_matrix_orthogonal(pls._y_scores) # Check X = TP' and Y = UQ' T = pls._x_scores P = pls.x_loadings_ U = pls._y_scores Q = pls.y_loadings_ # Need to scale first Xc, Yc, x_mean, y_mean, x_std, y_std = _center_scale_xy( X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T)) assert_array_almost_equal(Yc, np.dot(U, Q.T)) # Check that rotations on training data lead to scores Xt = pls.transform(X) assert_array_almost_equal(Xt, pls._x_scores) Xt, Yt = pls.transform(X, Y) assert_array_almost_equal(Xt, pls._x_scores) assert_array_almost_equal(Yt, pls._y_scores) # Check that inverse_transform works X_back = pls.inverse_transform(Xt) assert_array_almost_equal(X_back, X) def test_sanity_check_pls_regression(): # Sanity check for PLSRegression # The results were checked against the R-packages plspm, misOmics and pls d = load_linnerud() X = d.data Y = d.target pls = PLSRegression(n_components=X.shape[1]) pls.fit(X, Y) expected_x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) expected_x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) expected_y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) expected_y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(np.abs(pls.x_loadings_), np.abs(expected_x_loadings)) assert_array_almost_equal(np.abs(pls.x_weights_), np.abs(expected_x_weights)) assert_array_almost_equal(np.abs(pls.y_loadings_), np.abs(expected_y_loadings)) assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_weights)) # The R / Python difference in the signs should be consistent across # loadings, weights, etc. x_loadings_sign_flip = np.sign(pls.x_loadings_ / expected_x_loadings) x_weights_sign_flip = np.sign(pls.x_weights_ / expected_x_weights) y_weights_sign_flip = np.sign(pls.y_weights_ / expected_y_weights) y_loadings_sign_flip = np.sign(pls.y_loadings_ / expected_y_loadings) assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip) assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip) def test_sanity_check_pls_regression_constant_column_Y(): # Check behavior when the first column of Y is constant # The results are checked against a modified version of plsreg2 # from the R-package plsdepot d = load_linnerud() X = d.data Y = d.target Y[:, 0] = 1 pls = PLSRegression(n_components=X.shape[1]) pls.fit(X, Y) expected_x_weights = np.array( [[-0.6273573, 0.007081799, 0.7786994], [-0.7493417, -0.277612681, -0.6011807], [-0.2119194, 0.960666981, -0.1794690]]) expected_x_loadings = np.array( [[-0.6273512, -0.22464538, 0.7786994], [-0.6643156, -0.09871193, -0.6011807], [-0.5125877, 1.01407380, -0.1794690]]) expected_y_loadings = np.array( [[0.0000000, 0.0000000, 0.0000000], [0.4357300, 0.5828479, 0.2174802], [-0.1353739, -0.2486423, -0.1810386]]) assert_array_almost_equal(np.abs(expected_x_weights), np.abs(pls.x_weights_)) assert_array_almost_equal(np.abs(expected_x_loadings), np.abs(pls.x_loadings_)) # For the PLSRegression with default parameters, y_loadings == y_weights assert_array_almost_equal(np.abs(pls.y_loadings_), np.abs(expected_y_loadings)) assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_loadings)) x_loadings_sign_flip = np.sign(expected_x_loadings / pls.x_loadings_) x_weights_sign_flip = np.sign(expected_x_weights / pls.x_weights_) # we ignore the first full-zeros row for y y_loadings_sign_flip = np.sign(expected_y_loadings[1:] / pls.y_loadings_[1:]) assert_array_equal(x_loadings_sign_flip, x_weights_sign_flip) assert_array_equal(x_loadings_sign_flip[1:], y_loadings_sign_flip) def test_sanity_check_pls_canonical(): # Sanity check for PLSCanonical # The results were checked against the R-package plspm d = load_linnerud() X = d.data Y = d.target pls = PLSCanonical(n_components=X.shape[1]) pls .fit(X, Y) expected_x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) expected_x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) expected_y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) expected_y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(np.abs(pls.x_rotations_), np.abs(expected_x_rotations)) assert_array_almost_equal(np.abs(pls.x_weights_), np.abs(expected_x_weights)) assert_array_almost_equal(np.abs(pls.y_rotations_), np.abs(expected_y_rotations)) assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_weights)) x_rotations_sign_flip = np.sign(pls.x_rotations_ / expected_x_rotations) x_weights_sign_flip = np.sign(pls.x_weights_ / expected_x_weights) y_rotations_sign_flip = np.sign(pls.y_rotations_ / expected_y_rotations) y_weights_sign_flip = np.sign(pls.y_weights_ / expected_y_weights) assert_array_almost_equal(x_rotations_sign_flip, x_weights_sign_flip) assert_array_almost_equal(y_rotations_sign_flip, y_weights_sign_flip) assert_matrix_orthogonal(pls.x_weights_) assert_matrix_orthogonal(pls.y_weights_) assert_matrix_orthogonal(pls._x_scores) assert_matrix_orthogonal(pls._y_scores) def test_sanity_check_pls_canonical_random(): # Sanity check for PLSCanonical on random data # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: rng = check_random_state(11) l1 = rng.normal(size=n) l2 = rng.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + rng.normal(size=4 * n).reshape((n, 4)) Y = latents + rng.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, rng.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, rng.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) pls = PLSCanonical(n_components=3) pls.fit(X, Y) expected_x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) expected_x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) expected_y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) expected_y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(np.abs(pls.x_loadings_), np.abs(expected_x_loadings)) assert_array_almost_equal(np.abs(pls.x_weights_), np.abs(expected_x_weights)) assert_array_almost_equal(np.abs(pls.y_loadings_), np.abs(expected_y_loadings)) assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_weights)) x_loadings_sign_flip = np.sign(pls.x_loadings_ / expected_x_loadings) x_weights_sign_flip = np.sign(pls.x_weights_ / expected_x_weights) y_weights_sign_flip = np.sign(pls.y_weights_ / expected_y_weights) y_loadings_sign_flip = np.sign(pls.y_loadings_ / expected_y_loadings) assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip) assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip) assert_matrix_orthogonal(pls.x_weights_) assert_matrix_orthogonal(pls.y_weights_) assert_matrix_orthogonal(pls._x_scores) assert_matrix_orthogonal(pls._y_scores) def test_convergence_fail(): # Make sure ConvergenceWarning is raised if max_iter is too small d = load_linnerud() X = d.data Y = d.target pls_nipals = PLSCanonical(n_components=X.shape[1], max_iter=2) with pytest.warns(ConvergenceWarning): pls_nipals.fit(X, Y) @pytest.mark.filterwarnings('ignore:.*scores_ was deprecated') # 1.1 @pytest.mark.parametrize('Est', (PLSSVD, PLSRegression, PLSCanonical)) def test_attibutes_shapes(Est): # Make sure attributes are of the correct shape depending on n_components d = load_linnerud() X = d.data Y = d.target n_components = 2 pls = Est(n_components=n_components) pls.fit(X, Y) assert all(attr.shape[1] == n_components for attr in (pls.x_scores_, pls.y_scores_, pls.x_weights_, pls.y_weights_)) @pytest.mark.parametrize('Est', (PLSRegression, PLSCanonical, CCA)) def test_univariate_equivalence(Est): # Ensure 2D Y with 1 column is equivalent to 1D Y d = load_linnerud() X = d.data Y = d.target est = Est(n_components=1) one_d_coeff = est.fit(X, Y[:, 0]).coef_ two_d_coeff = est.fit(X, Y[:, :1]).coef_ assert one_d_coeff.shape == two_d_coeff.shape assert_array_almost_equal(one_d_coeff, two_d_coeff) @pytest.mark.parametrize('Est', (PLSRegression, PLSCanonical, CCA, PLSSVD)) def test_copy(Est): # check that the "copy" keyword works d = load_linnerud() X = d.data Y = d.target X_orig = X.copy() # copy=True won't modify inplace pls = Est(copy=True).fit(X, Y) assert_array_equal(X, X_orig) # copy=False will modify inplace with pytest.raises(AssertionError): Est(copy=False).fit(X, Y) assert_array_almost_equal(X, X_orig) if Est is PLSSVD: return # PLSSVD does not support copy param in predict or transform X_orig = X.copy() with pytest.raises(AssertionError): pls.transform(X, Y, copy=False), assert_array_almost_equal(X, X_orig) X_orig = X.copy() with pytest.raises(AssertionError): pls.predict(X, copy=False), assert_array_almost_equal(X, X_orig) # Make sure copy=True gives same transform and predictions as predict=False assert_array_almost_equal(pls.transform(X, Y, copy=True), pls.transform(X.copy(), Y.copy(), copy=False)) assert_array_almost_equal(pls.predict(X, copy=True), pls.predict(X.copy(), copy=False)) def _generate_test_scale_and_stability_datasets(): """Generate dataset for test_scale_and_stability""" # dataset for non-regression 7818 rng = np.random.RandomState(0) n_samples = 1000 n_targets = 5 n_features = 10 Q = rng.randn(n_targets, n_features) Y = rng.randn(n_samples, n_targets) X = np.dot(Y, Q) + 2 * rng.randn(n_samples, n_features) + 1 X *= 1000 yield X, Y # Data set where one of the features is constaint X, Y = load_linnerud(return_X_y=True) # causes X[:, -1].std() to be zero X[:, -1] = 1.0 yield X, Y X = np.array([[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [3., 5., 4.]]) Y = np.array([[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]) yield X, Y # Seeds that provide a non-regression test for #18746, where CCA fails seeds = [530, 741] for seed in seeds: rng = np.random.RandomState(seed) X = rng.randn(4, 3) Y = rng.randn(4, 2) yield X, Y @pytest.mark.parametrize('Est', (CCA, PLSCanonical, PLSRegression, PLSSVD)) @pytest.mark.parametrize('X, Y', _generate_test_scale_and_stability_datasets()) def test_scale_and_stability(Est, X, Y): """scale=True is equivalent to scale=False on centered/scaled data This allows to check numerical stability over platforms as well""" X_s, Y_s, *_ = _center_scale_xy(X, Y) X_score, Y_score = Est(scale=True).fit_transform(X, Y) X_s_score, Y_s_score = Est(scale=False).fit_transform(X_s, Y_s) assert_allclose(X_s_score, X_score, atol=1e-4) assert_allclose(Y_s_score, Y_score, atol=1e-4) @pytest.mark.parametrize('Est', (PLSSVD, PLSCanonical, CCA)) @pytest.mark.parametrize('n_components', (0, 4)) def test_n_components_bounds(Est, n_components): # n_components should be in [1, min(n_samples, n_features, n_targets)] # TODO: catch error instead of warning in 1.1 rng = np.random.RandomState(0) X = rng.randn(10, 5) Y = rng.randn(10, 3) est = Est(n_components=n_components) with pytest.warns(FutureWarning, match="n_components=3 will be used instead"): est.fit(X, Y) # make sure upper bound of rank is used as a fallback assert est.transform(X).shape[1] == 3 @pytest.mark.parametrize('n_components', (0, 6)) def test_n_components_bounds_pls_regression(n_components): # For PLSRegression, the upper bound for n_components is n_features # TODO: catch error instead of warning in 1.1 rng = np.random.RandomState(0) X = rng.randn(10, 5) Y = rng.randn(10, 3) est = PLSRegression(n_components=n_components) with pytest.warns(FutureWarning, match="n_components=5 will be used instead"): est.fit(X, Y) # make sure upper bound of rank is used as a fallback assert est.transform(X).shape[1] == 5 @pytest.mark.parametrize('Est', (PLSSVD, CCA, PLSCanonical)) def test_scores_deprecations(Est): # Make sure x_scores_ and y_scores_ are deprecated. # It's not deprecated for PLSRegression because y_score_ is different from # transform(Y_train) # TODO: remove attributes and test in 1.1 rng = np.random.RandomState(0) X = rng.randn(10, 5) Y = rng.randn(10, 3) est = Est().fit(X, Y) with pytest.warns(FutureWarning, match="x_scores_ was deprecated"): assert_allclose(est.x_scores_, est.transform(X)) with pytest.warns(FutureWarning, match="y_scores_ was deprecated"): assert_allclose(est.y_scores_, est.transform(X, Y)[1]) @pytest.mark.parametrize('Est', (PLSRegression, PLSCanonical, CCA)) def test_norm_y_weights_deprecation(Est): rng = np.random.RandomState(0) X = rng.randn(10, 5) Y = rng.randn(10, 3) est = Est().fit(X, Y) with pytest.warns(FutureWarning, match="norm_y_weights was deprecated"): est.norm_y_weights # TODO: Remove test in 1.1 @pytest.mark.parametrize('Estimator', (PLSRegression, PLSCanonical, CCA, PLSSVD)) @pytest.mark.parametrize('attribute', ("x_mean_", "y_mean_", "x_std_", "y_std_")) def test_mean_and_std_deprecation(Estimator, attribute): rng = np.random.RandomState(0) X = rng.randn(10, 5) Y = rng.randn(10, 3) estimator = Estimator().fit(X, Y) with pytest.warns(FutureWarning, match=f"{attribute} was deprecated"): getattr(estimator, attribute) @pytest.mark.parametrize('n_samples, n_features', [(100, 10), (100, 200)]) @pytest.mark.parametrize('seed', range(10)) def test_singular_value_helpers(n_samples, n_features, seed): # Make sure SVD and power method give approximately the same results X, Y = make_regression(n_samples, n_features, n_targets=5, random_state=seed) u1, v1, _ = _get_first_singular_vectors_power_method(X, Y, norm_y_weights=True) u2, v2 = _get_first_singular_vectors_svd(X, Y) _svd_flip_1d(u1, v1) _svd_flip_1d(u2, v2) rtol = 1e-1 assert_allclose(u1, u2, rtol=rtol) assert_allclose(v1, v2, rtol=rtol) def test_one_component_equivalence(): # PLSSVD, PLSRegression and PLSCanonical should all be equivalent when # n_components is 1 X, Y = make_regression(100, 10, n_targets=5, random_state=0) svd = PLSSVD(n_components=1).fit(X, Y).transform(X) reg = PLSRegression(n_components=1).fit(X, Y).transform(X) canonical = PLSCanonical(n_components=1).fit(X, Y).transform(X) assert_allclose(svd, reg, rtol=1e-2) assert_allclose(svd, canonical, rtol=1e-2) def test_svd_flip_1d(): # Make sure svd_flip_1d is equivalent to svd_flip u = np.array([1, -4, 2]) v = np.array([1, 2, 3]) u_expected, v_expected = svd_flip(u.reshape(-1, 1), v.reshape(1, -1)) _svd_flip_1d(u, v) # inplace assert_allclose(u, u_expected.ravel()) assert_allclose(u, [-1, 4, -2]) assert_allclose(v, v_expected.ravel()) assert_allclose(v, [-1, -2, -3])
the-stack_106_17605
# coding=utf8 """ translate.py - Willie Translation Module Copyright 2008, Sean B. Palmer, inamidst.com Copyright © 2013-2014, Elad Alfassa <[email protected]> Licensed under the Eiffel Forum License 2. http://willie.dftba.net """ from __future__ import unicode_literals from willie import web from willie.module import rule, commands, priority, example import json import sys import random import os mangle_lines = {} if sys.version_info.major >= 3: unicode = str def translate(text, in_lang='auto', out_lang='en'): raw = False if unicode(out_lang).endswith('-raw'): out_lang = out_lang[:-4] raw = True headers = { 'User-Agent': 'Mozilla/5.0' + '(X11; U; Linux i686)' + 'Gecko/20071127 Firefox/2.0.0.11' } url_query = { "client": "gtx", "sl": in_lang, "tl": out_lang, "dt": "t", "q": text, } query_string = "&".join( "{key}={value}".format(key=key, value=value) for key, value in url_query.items() ) url = "http://translate.googleapis.com/translate_a/single?{query}".format(query=query_string) result = web.get(url, timeout=40, headers=headers) while ',,' in result: result = result.replace(',,', ',null,') result = result.replace('[,', '[null,') data = json.loads(result) if raw: return str(data), 'en-raw' try: language = data[2] # -2][0][0] except: language = '?' return ''.join(x[0] for x in data[0]), language @rule(u'$nickname[,:]\s+(?:([a-z]{2}) +)?(?:([a-z]{2}|en-raw) +)?["“](.+?)["”]\? *$') @example('$nickname: "mon chien"? or $nickname: fr "mon chien"?') @priority('low') def tr(bot, trigger): """Translates a phrase, with an optional language hint.""" in_lang, out_lang, phrase = trigger.groups() if (len(phrase) > 350) and (not trigger.admin): return bot.reply('Phrase must be under 350 characters.') in_lang = in_lang or 'auto' out_lang = out_lang or 'en' if in_lang != out_lang: msg, in_lang = translate(phrase, in_lang, out_lang) if sys.version_info.major < 3 and isinstance(msg, str): msg = msg.decode('utf-8') if msg: msg = web.decode(msg) # msg.replace('&#39;', "'") msg = '"%s" (%s to %s, translate.google.com)' % (msg, in_lang, out_lang) else: msg = 'The %s to %s translation failed, sorry!' % (in_lang, out_lang) bot.reply(msg) else: bot.reply('Language guessing failed, so try suggesting one!') @commands('translate', 'tr') @example('.tr :en :fr my dog', '"mon chien" (en to fr, translate.google.com)') @example('.tr היי', '"Hi" (iw to en, translate.google.com)') @example('.tr mon chien', '"my dog" (fr to en, translate.google.com)') def tr2(bot, trigger): """Translates a phrase, with an optional language hint.""" command = trigger.group(2) if not command: return bot.reply('You did not give me anything to translate') def langcode(p): return p.startswith(':') and (2 < len(p) < 10) and p[1:].isalpha() args = ['auto', 'en'] for i in range(2): if ' ' not in command: break prefix, cmd = command.split(' ', 1) if langcode(prefix): args[i] = prefix[1:] command = cmd phrase = command if (len(phrase) > 350) and (not trigger.admin): return bot.reply('Phrase must be under 350 characters.') src, dest = args if src != dest: msg, src = translate(phrase, src, dest) if sys.version_info.major < 3 and isinstance(msg, str): msg = msg.decode('utf-8') if msg: msg = web.decode(msg) # msg.replace('&#39;', "'") msg = '"%s" (%s to %s, translate.google.com)' % (msg, src, dest) else: msg = 'The %s to %s translation failed, sorry!' % (src, dest) bot.reply(msg) else: bot.reply('Language guessing failed, so try suggesting one!') def get_random_lang(long_list, short_list): random_index = random.randint(0, len(long_list) - 1) random_lang = long_list[random_index] if random_lang not in short_list: short_list.append(random_lang) else: return get_random_lang(long_list, short_list) return short_list @commands('mangle', 'mangle2') def mangle(bot, trigger): """Repeatedly translate the input until it makes absolutely no sense.""" global mangle_lines long_lang_list = ['fr', 'de', 'es', 'it', 'no', 'he', 'la', 'ja', 'cy', 'ar', 'yi', 'zh', 'nl', 'ru', 'fi', 'hi', 'af', 'jw', 'mr', 'ceb', 'cs', 'ga', 'sv', 'eo', 'el', 'ms', 'lv'] lang_list = [] for __ in range(0, 8): lang_list = get_random_lang(long_lang_list, lang_list) random.shuffle(lang_list) if trigger.group(2) is None: try: phrase = (mangle_lines[trigger.sender.lower()], '') except: bot.reply("What do you want me to mangle?") return else: phrase = (trigger.group(2).strip(), '') if phrase[0] == '': bot.reply("What do you want me to mangle?") return for lang in lang_list: backup = phrase try: phrase = translate(phrase[0], 'en', lang) except: phrase = False if not phrase: phrase = backup break try: phrase = translate(phrase[0], lang, 'en') except: phrase = backup continue if not phrase: phrase = backup break bot.reply(phrase[0]) @rule('(.*)') @priority('low') def collect_mangle_lines(bot, trigger): global mangle_lines mangle_lines[trigger.sender.lower()] = "%s said '%s'" % (trigger.nick, (trigger.group(0).strip())) if __name__ == "__main__": from willie.test_tools import run_example_tests run_example_tests(__file__)
the-stack_106_17606
import os import subprocess as sp import random as RNG import numpy as np from turbojpeg import TurboJPEG as JPEG reader = JPEG() def read(fname): with open(fname, 'rb') as f: return reader.decode(f.read(), pixel_format=0) min_diff = 1e8 def remove_static_and_sample(frames, num_frames): global min_diff DUPLICATES_THRESHOLD = 0.01 filtered_frames = [] next_img = read(frames[0]) static = 0 for i in range(len(frames) - 1): img = next_img next_img = read(frames[i + 1]) assert img.shape == next_img.shape diff = np.abs(img - next_img).mean() if diff > DUPLICATES_THRESHOLD * 255: filtered_frames.append(frames[i]) else: static += 1 if len(filtered_frames) + 1 >= num_frames: filtered_frames.append(frames[i + 1]) break min_diff = min(diff, min_diff) del img if static > 0: print("Removed static frames: ", static) if len(filtered_frames) < num_frames: raise Exception( "Cannot sumsample {} frames. Too many static frames".format(num_frames)) return filtered_frames def generate_splits(data_dir, out_dir, train_prop=0.9, subsample=1.0, name=None): '''Splits the traininig set in training, validation and test sets. The training ad validation sets are obtained from the waymo's training folder. We assume that sequences on the training folder dont cover the same secenes. ''' tr_dir = os.path.join(data_dir, 'training') val_dir = os.path.join(data_dir, 'validation') # list traininig sequences tr_seqs = sp.run( "find {} -mindepth 2 -maxdepth 2 -type d".format(tr_dir), shell=True, stdout=sp.PIPE) tr_seqs = tr_seqs.stdout.decode('utf-8').split('\n') tr_seqs = sorted(tr_seqs) tmp = [] for i in range(len(tr_seqs)): if len(tr_seqs[i]) > 0: tmp.append(tr_seqs[i]) tr_seqs = tmp RNG.seed(10000003) RNG.shuffle(tr_seqs) # split in tr and val if name is None: train_fname = 'train.txt' val_fname = 'val.txt' test_fname = 'test.txt' else: train_fname = 'train_{}.txt'.format(name) val_fname = 'val_{}.txt'.format(name) test_fname = 'test_{}.txt'.format(name) with open(os.path.join(out_dir, train_fname), 'w') as trf: with open(os.path.join(out_dir, val_fname), 'w') as valf: num_train = int(train_prop * len(tr_seqs)) num_val = len(tr_seqs) - num_train for i in range(0, num_train): print("({}/{}) {}".format(i, num_train, tr_seqs[i])) frames = sp.run( "find {}/*.jpg".format(tr_seqs[i]), shell=True, stdout=sp.PIPE) frames = frames.stdout.decode('utf-8').strip().split('\n') frames = sorted(frames) num_frames = int(len(frames) * subsample) frames = remove_static_and_sample(frames, num_frames) for i in range(num_frames): if len(frames[i]) > 0: frame = frames[i][len(data_dir):].strip(os.sep) trf.write(frame + '\n') print('min_diff', min_diff) val_offset = int(train_prop * len(tr_seqs)) for i in range(val_offset, val_offset + num_val): frames = sp.run( "find {}/*.jpg".format(tr_seqs[i]), shell=True, stdout=sp.PIPE) frames = frames.stdout.decode('utf-8').strip().split('\n') frames = sorted(frames) num_frames = int(len(frames) * subsample) frames = remove_static_and_sample(frames, num_frames) for i in range(num_frames): if len(frames[i]) > 0: frame = frames[i][len(data_dir):].strip(os.sep) valf.write(frame + '\n') print('min_diff', min_diff) # list test sequences te_seqs = sp.run( "find {} -mindepth 2 -maxdepth 2 -type d".format(val_dir), shell=True, stdout=sp.PIPE) te_seqs = te_seqs.stdout.decode('utf-8').split('\n') te_seqs = sorted(te_seqs) tmp = [] for i in range(len(te_seqs)): if len(te_seqs[i]) > 0: tmp.append(te_seqs[i]) te_seqs = tmp num_test = len(te_seqs) with open(os.path.join(out_dir, test_fname), 'w') as tef: for i in range(num_test): frames = sp.run( "find {}/*.jpg".format(te_seqs[i]), shell=True, stdout=sp.PIPE) frames = frames.stdout.decode('utf-8').split('\n') frames = sorted(frames) num_frames = int(len(frames) * subsample) for i in range(num_frames): if len(frames[i]) > 0: frame = frames[i][len(data_dir):].strip(os.sep) tef.write(frame + '\n') if __name__ == '__main__': data_dir = '/data/ra153646/datasets/waymo/waymo76k' #data_dir = '/data/ra153646/datasets/waymo/waymo_test_processed' out_dir = '/home/phd/ra153646/robustness/robustdepthflow/data/waymo' generate_splits(data_dir, out_dir, subsample=0.2, name='sub0.2-rmstatic')
the-stack_106_17608
""" This file contains functions to be used in miscellaneous tasks like comparing simulated to estimated results, etc """ # base import math import numpy as np import statsmodels.api as sm from copy import deepcopy import pandas as pd # viz import matplotlib.pyplot as plt from matplotlib import gridspec import seaborn as sns # feems from .utils import prepare_graph_inputs from .sim import setup_graph, setup_graph_long_range, simulate_genotypes from .spatial_graph import SpatialGraph, query_node_attributes from .cross_validation import comp_mats, run_cv from .objective import Objective from .viz import Viz # change matplotlib fonts plt.rcParams["font.family"] = "Arial" plt.rcParams["font.sans-serif"] = "Arial" def cov_to_dist(S): """Convert a covariance matrix to a distance matrix """ s2 = np.diag(S).reshape(-1, 1) ones = np.ones((s2.shape[0], 1)) D = s2 @ ones.T + ones @ s2.T - 2 * S return(D) def plot_default_vs_long_range( sp_Graph_def, sp_Graph, max_res_nodes=None, lamb=np.array((1.0,1.0)) ): """Function to plot default graph with NO long range edges next to full graph with long range edges (useful for comparison of feems default fit with extra parameters) """ assert all(lamb>=0.0), "lamb must be non-negative" assert type(max_res_nodes) == list, "max_res_nodes must be a list of int 2-tuples" fig = plt.figure(dpi=100) #sp_Graph_def.fit(lamb = float(lamb[0])) ax = fig.add_subplot(1, 2, 1) v = Viz(ax, sp_Graph_def, edge_width=2, edge_alpha=1, edge_zorder=100, sample_pt_size=20, obs_node_size=7.5, sample_pt_color="black", cbar_font_size=10) v.draw_edges(use_weights=True) v.draw_obs_nodes(use_ids=False) #sp_Graph.fit(lamb = float(lamb[1])) ax = fig.add_subplot(1, 2, 2) v = Viz(ax, sp_Graph, edge_width=2.0, edge_alpha=1, edge_zorder=100, sample_pt_size=20, obs_node_size=7.5, sample_pt_color="black", cbar_font_size=10) v.draw_edges(use_weights=True) v.draw_obs_nodes(use_ids=False) lre_idx = [list(sp_Graph.edges).index(val) for val in max_res_nodes] # paste correlation between the two weights ax.text(0.5, 1.0, "cor={:.2f}".format(np.corrcoef(sp_Graph.w[~np.in1d(np.arange(len(sp_Graph.w)), lre_idx)],sp_Graph_def.w)[0,1]), transform=ax.transAxes) return(None) def comp_genetic_vs_fitted_distance( sp_Graph_def, lrn=None, lamb=None, n_lre=3, plotFig=True ): """Function to plot genetic vs fitted distance to visualize outliers in residual calculations, passes back 3 pairs of nodes (default) with largest residuals if plotFig=False """ if lamb is not None: assert lamb >= 0.0, "lambda must be non-negative" assert type(lamb) == float, "lambda must be float" assert type(n_lre) == int, "n_lre must be int" tril_idx = np.tril_indices(sp_Graph_def.n_observed_nodes, k=-1) if lamb is None: lamb_grid = np.geomspace(1e-6, 1e2, 20)[::-1] cv_err = run_cv(sp_Graph_def, lamb_grid, n_folds=sp_Graph_def.n_observed_nodes, factr=1e10) # average over folds mean_cv_err = np.mean(cv_err, axis=0) # argmin of cv error lamb = float(lamb_grid[np.argmin(mean_cv_err)]) sp_Graph_def.fit(lamb=lamb, lb=math.log(1e-6), ub=math.log(1e+6)) sp_Graph_def.comp_graph_laplacian(sp_Graph_def.w) obj = Objective(sp_Graph_def) fit_cov, _, emp_cov = comp_mats(obj) fit_dist = cov_to_dist(fit_cov)[tril_idx] emp_dist = cov_to_dist(emp_cov)[tril_idx] # using code from supp fig 6 of feems-analysis X = sm.add_constant(fit_dist) mod = sm.OLS(emp_dist, X) res = mod.fit() muhat, betahat = res.params if(plotFig): if lrn is not None: # computing the vector index for lower triangular matrix of long range nodes (i+j(j+1)/2-j for lower triangle) lrn_idx = [np.int(val[0] + 0.5*val[1]*(val[1]+1) - val[1]) if val[0]<val[1] else np.int(val[1] + 0.5*val[0]*(val[0]+1) - val[0]) for val in lrn] fig = plt.figure(dpi=100) ax = fig.add_subplot() ax.scatter(fit_dist, emp_dist, marker=".", alpha=1, zorder=0, color="grey", s=3) if lrn is not None: ax.scatter(fit_dist[lrn_idx], emp_dist[lrn_idx], marker=".", alpha=1, zorder=0, color="black", s=10) x_ = np.linspace(np.min(fit_dist), np.max(fit_dist), 20) ax.plot(x_, muhat + betahat * x_, zorder=2, color="orange", linestyle='--', linewidth=1) ax.text(0.8, 0.15, "$\lambda$={:.3}".format(lamb), transform=ax.transAxes) ax.text(0.8, 0.05, "R²={:.4f}".format(res.rsquared), transform=ax.transAxes) ax.set_ylabel("genetic distance") ax.set_xlabel("fitted distance") # TODO: include a scaling here to downweight residuals from small pops - sqrt(n1*n2)? # TODO: find a way to exclude edges already in the graph (super unlikely in empirical analyses tho...) # extract indices with most negative residuals max_idx = np.argpartition(res.resid, -n_lre) # no need to reorder here, since we are looking for highest negative residuals max_idx = max_idx[np.argsort(res.resid[max_idx])] # getting the labels for pairs of nodes from the array index max_res_node = [] for k in max_idx: x = np.floor(np.sqrt(2*k+0.25)-0.5).astype('int')+1 y = np.int(k - 0.5*x*(x-1)) max_res_node.append(tuple(sorted((x,y)))) return(max_res_node) else: # extract indices with maximum absolute residuals max_idx = np.argpartition(res.resid, -n_lre) # np.argpartition does not return indices in order of max to min, so another round of ordering max_idx = max_idx[np.argsort(res.resid[max_idx])] # can also choose outliers based on z-score #max_idx = np.where(np.abs((res.resid-np.mean(res.resid))/np.std(res.resid))>3)[0] # getting the labels for pairs of nodes from the array index max_res_node = [] for k in max_idx: x = np.floor(np.sqrt(2*k+0.25)-0.5).astype('int')+1 y = np.int(k - 0.5*x*(x-1)) max_res_node.append(tuple(sorted((x,y)))) return(max_res_node) def plot_estimated_vs_simulated_edges( graph, sp_Graph, lrn=None, max_res_nodes=None, lamb=1.0 ): """Function to plot estimated vs simulated edge weights to look for significant deviations """ assert lamb >= 0.0, "lambda must be non-negative" assert type(lamb) == float, "lambda must be float" # both variables below are long range nodes but lrn is from the simulated and max_res_nodes is from the empirical assert type(lrn) == list, "lrn must be a list of int 2-tuples" assert type(max_res_nodes) == list, "max_res_nodes must be a list of int 2-tuples" # getting edges from the simulated graph idx = [list(graph.edges).index(val) for val in lrn] sim_edges = np.append(np.array([graph[val[0]][val[1]]["w"] for i, val in enumerate(graph.edges) if i not in idx]), np.array([graph[val[0]][val[1]]["w"] for i, val in enumerate(graph.edges) if i in idx])) idx = [list(sp_Graph.edges).index(val) for val in max_res_nodes] w_plot = np.append(sp_Graph.w[[i for i in range(len(sp_Graph.w)) if i not in idx]], sp_Graph.w[idx]) X = sm.add_constant(sim_edges) mod = sm.OLS(w_plot[range(len(graph.edges))], X) res = mod.fit() muhat, betahat = res.params # getting index of long range edges lre_idx = [list(graph.edges).index(val) for val in lrn] fig = plt.figure(dpi=100) ax = fig.add_subplot() ax.scatter(sim_edges, w_plot[range(len(sim_edges))], marker=".", alpha=1, zorder=0, color="grey", s=3) ax.scatter(sim_edges[-len(lrn)::], w_plot[-len(lrn)::], marker=".", alpha=1, zorder=0, color="black", s=10) x_ = np.linspace(np.min(sim_edges), np.max(sim_edges), 20) ax.plot(x_, muhat + betahat * x_, zorder=2, color="orange", linestyle='--', linewidth=1) ax.text(0.8, 0.05, "R²={:.4f}".format(res.rsquared), transform=ax.transAxes) ax.text(0.8, 0.15, "$\lambda$={:.3}".format(lamb), transform=ax.transAxes) ax.set_xlabel("simulated edge weights") ax.set_ylabel("estimated edge weights") return(None) def plot_residual_matrix( sp_Graph, lamb_cv, pop_labs_file=None ): """Function to plot the residual matrix of the pairs of populations """ # TODO: finalize way to map samples to pops and pops to nodes # reading in file with sample and pop labels #pop_labs_file = pd.read_csv() permuted_idx = query_node_attributes(sp_Graph, "permuted_idx") obs_perm_ids = permuted_idx[: sp_Graph.n_observed_nodes] # code for mapping nodes back to populations (since multiple pops can be assigned to the same nodes) node_to_pop = pd.DataFrame(index = np.arange(sp_Graph.n_observed_nodes), columns = ['nodes', 'pops']) node_to_pop['nodes'] = obs_perm_ids node_to_pop['pops'] = [np.unique(sample_data['popId'][query_node_attributes(sp_Graph,"sample_idx")[x]]) for x in obs_perm_ids] tril_idx = np.tril_indices(sp_Graph.n_observed_nodes, k=-1) sp_Graph.fit(lamb=lamb_cv) obj = Objective(sp_Graph) fit_cov, _, emp_cov = comp_mats(obj) fit_dist = cov_to_dist(fit_cov)[tril_idx] emp_dist = cov_to_dist(emp_cov)[tril_idx] X = sm.add_constant(fit_dist) mod = sm.OLS(emp_dist, X) res = mod.fit() resnode = np.zeros((sp_Graph.n_observed_nodes,sp_Graph.n_observed_nodes)) resnode[np.tril_indices_from(resmat, k=-1)] = np.abs(res.resid) mask = np.zeros_like(resnode) mask[np.triu_indices_from(mask)] = True with sns.axes_style("white"): fig = plt.figure(dpi=100) # try clustermap(col_cluster=False) ax = sns.heatmap(resnode, mask=mask, square=True, cmap=sns.color_palette("crest", as_cmap=True), xticklabels=node_to_pop['pops']) plt.show() return(None)
the-stack_106_17610
"""DVXplorer Test. Author: Yuhuang Hu Email : [email protected] """ from __future__ import print_function, absolute_import import numpy as np import cv2 from pyaer.dvxplorer import DVXPLORER from timer import Timer device = DVXPLORER() print("Device ID:", device.device_id) print("Device Serial Number:", device.device_serial_number) print("Device USB bus Number:", device.device_usb_bus_number) print("Device USB device address:", device.device_usb_device_address) print("Device String:", device.device_string) print("Device Firmware Version:", device.firmware_version) print("Logic Version:", device.logic_version) print("Device Chip ID:", device.chip_id) if device.device_is_master: print("Device is master.") else: print("Device is slave.") print("MUX has statistics:", device.mux_has_statistics) print("Device size X:", device.dvs_size_X) print("Device size Y:", device.dvs_size_Y) print("DVS has statistics:", device.dvs_has_statistics) print("IMU Type:", device.imu_type) print("EXT input has generator:", device.ext_input_has_generator) clip_value = 3 histrange = [(0, v) for v in (device.dvs_size_Y, device.dvs_size_X)] # load new config device.set_bias_from_json("./configs/dvxplorer_config.json") print(device.get_bias()) device.start_data_stream() while True: try: with Timer("time to fetch data"): (pol_events, num_pol_event, special_events, num_special_event, imu_events, num_imu_event) = \ device.get_event("events_hist") print("Number of events:", num_pol_event) if num_pol_event != 0: with Timer("time to prepare plotting"): img = pol_events[..., 1]-pol_events[..., 0] img = np.clip(img, -clip_value, clip_value) img = (img+clip_value)/float(clip_value*2) # print("I'm here") # pol_on = (pol_events[:, 3] == 1) # pol_off = np.logical_not(pol_on) # img_on, _, _ = np.histogram2d( # pol_events[pol_on, 2], pol_events[pol_on, 1], # bins=(device.dvs_size_Y, device.dvs_size_X), # range=histrange) # img_off, _, _ = np.histogram2d( # pol_events[pol_off, 2], pol_events[pol_off, 1], # bins=(device.dvs_size_Y, device.dvs_size_X), # range=histrange) # if clip_value is not None: # integrated_img = np.clip( # (img_on-img_off), -clip_value, clip_value) # else: # integrated_img = (img_on-img_off) # img = integrated_img+clip_value with Timer("Time to plot"): cv2.imshow("image", img) if cv2.waitKey(1) & 0xFF == ord('q'): break except KeyboardInterrupt: device.shutdown() break
the-stack_106_17611
import logging class Logger(object): """ Class to setup and utilize basic logging Args: name: Name of class utilizing logger """ def __init__(self, name): logging.basicConfig( filename=None, level=logging.INFO, format='[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s', datefmt='%H:%M:%S' ) name = name.replace('.log', '') logger = logging.getLogger('log_namespace.%s' % name) self._logger = logger def get(self): """ Method to return an instance of the logger """ return self._logger
the-stack_106_17612
#!/usr/bin/env python # # Electrum - lightweight UraniumX client # Copyright (C) 2015 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # A QR scanner that uses zbar (via ctypes) # - to access the camera, # - and to find and decode QR codes (visible in the live feed). import os import sys import ctypes from typing import Optional, Mapping from .util import UserFacingException from .i18n import _ from .logging import get_logger _logger = get_logger(__name__) if sys.platform == 'darwin': name = 'libzbar.0.dylib' elif sys.platform in ('windows', 'win32'): name = 'libzbar-0.dll' else: name = 'libzbar.so.0' try: libzbar = ctypes.cdll.LoadLibrary(os.path.join(os.path.dirname(__file__), name)) except BaseException as e1: try: libzbar = ctypes.cdll.LoadLibrary(name) except BaseException as e2: libzbar = None _logger.error(f"failed to load zbar. exceptions: {[e1,e2]!r}") def scan_barcode(device='', timeout=-1, display=True, threaded=False) -> Optional[str]: if libzbar is None: raise UserFacingException("Cannot start QR scanner: zbar not available.") libzbar.zbar_symbol_get_data.restype = ctypes.c_char_p libzbar.zbar_processor_create.restype = ctypes.POINTER(ctypes.c_int) libzbar.zbar_processor_get_results.restype = ctypes.POINTER(ctypes.c_int) libzbar.zbar_symbol_set_first_symbol.restype = ctypes.POINTER(ctypes.c_int) # libzbar.zbar_set_verbosity(100) # verbose logs for debugging proc = libzbar.zbar_processor_create(threaded) libzbar.zbar_processor_request_size(proc, 640, 480) if libzbar.zbar_processor_init(proc, device.encode('utf-8'), display) != 0: raise UserFacingException( _("Cannot start QR scanner: initialization failed.") + "\n" + _("Make sure you have a camera connected and enabled.")) libzbar.zbar_processor_set_visible(proc) if libzbar.zbar_process_one(proc, timeout): symbols = libzbar.zbar_processor_get_results(proc) else: symbols = None libzbar.zbar_processor_destroy(proc) if symbols is None: return if not libzbar.zbar_symbol_set_get_size(symbols): return symbol = libzbar.zbar_symbol_set_first_symbol(symbols) data = libzbar.zbar_symbol_get_data(symbol) return data.decode('utf8') def find_system_cameras() -> Mapping[str, str]: device_root = "/sys/class/video4linux" devices = {} # Name -> device if os.path.exists(device_root): for device in os.listdir(device_root): path = os.path.join(device_root, device, 'name') try: with open(path, encoding='utf-8') as f: name = f.read() except Exception: continue name = name.strip('\n') devices[name] = os.path.join("/dev", device) return devices if __name__ == "__main__": print(scan_barcode())
the-stack_106_17613
import os from enum import Enum from parallelm.mlops.mlops_exception import MLOpsException from parallelm.mlops.models.mlobject import MLObject from parallelm.mlops.models.mlobject import MLObjectType from parallelm.mlops.stats.stats_helper import StatsHelper from parallelm.mlops.stats_category import StatCategory class ModelFormat(str, Enum): JSON = "Json" SAVEDMODEL = "Savedmodel" SPARKML = "SparkML" BINARY = "Binary" TEXT = "Text" SCIKIT_LEARN_2 = "ScikitLearn_2" SCIKIT_LEARN_3 = "ScikitLearn_3" H2O_3 = "H2O_3" H2O_DRIVERLESS_AI = "H2O_Driverless_AI" UNKNOWN = "Unknown" @classmethod def from_str(cls, name): for e in cls: if e.name.lower() == name.lower(): return e class ModelMetadata(object): """ Model related metadata """ def __init__(self, modelId, name="", model_format=ModelFormat.UNKNOWN, description="", user_defined="", size=0): if model_format and not isinstance(model_format, ModelFormat): raise MLOpsException("model_format object must be an instance of ModelFormat class! provided: " "{}, type: {}".format(model_format, type(model_format))) if model_format == ModelFormat.UNKNOWN: raise MLOpsException( "model_format can not be {}. Did you forget to set a format for model?".format(model_format.value)) self.modelId = modelId self.name = name self.modelFormat = model_format self.description = description self.user_defined = user_defined self.size = size # these fields are set by MCenter server self.source = "" self.user = "" self.state = "" self.createdTimestamp = "" self.workflowRunId = "" def __str__(self): return "MODEL METADATA - name: {}; modelId: {}; source: {}; user: {}; status: {}; modelFormat: {}; createdTimestamp: {}; size: {}; " \ "description: {}; user_defined {}; workflowRunId {};" \ .format(self.name, self.modelId, self.source, self.user, self.state, self.modelFormat, self.createdTimestamp, self.size, self.description, self.user_defined, self.workflowRunId) def __eq__(self, other): """ Implements a naive equal comparison. Yet to be improved. :param other: a model metadata :return: True if model id are equal else False """ if isinstance(other, ModelMetadata): return self.modelId == other.modelId return NotImplemented def __ne__(self, other): result = self.__eq__(other) if result is NotImplemented: return result return not result def to_dict(self): return {"description": self.description, "workflowRunId": self.workflowRunId, "modelFormat": self.modelFormat.value, "modelId": self.modelId, "name": self.name, "createdTimestamp": self.createdTimestamp, "source": self.source, "state": self.state, "user": self.user, "user_defined": self.user_defined, "size": self.size} class Model(MLObject): """ This class provides APIs to access Model related data, publish model, attach statistics to model. """ def __init__(self, stats_helper, rest_helper, name, model_format, description, user_defined, id=None): super(Model, self).__init__(rest_helper, id) self.model_path = None self.metadata = ModelMetadata(self.get_id(), name, model_format, description, user_defined, 0) if stats_helper and not isinstance(stats_helper, StatsHelper): raise MLOpsException("stats_helper object must be an instance of StatsHelper class") self._stats_helper = stats_helper def __eq__(self, other): """ Models are regarded as equal if their metadata are equal :param other: another model :return: True if model's metadata are equal else False """ return self.metadata == other.metadata def __ne__(self, other): """ Models are regarded as not equal if their metadata are not equal :param other: another model :return: True if model's metadata are not equal else False """ return self.metadata != other.metadata def _get_object_type(self): return MLObjectType.MODEL def __str__(self): return self.metadata.__str__() def _validate_stats_helper(self): if not self._stats_helper: raise MLOpsException("stats_helper object was not set or is None") def set_model_path(self, path): self.model_path = path self.metadata.size = os.stat(path).st_size def get_model_path(self): return self.model_path def set_stat(self, name, data=None, category=StatCategory.TIME_SERIES, timestamp=None): """ Report this statistic. Statistic is attached to the current model and can be fetched later for this model. :param name: name to use in the export :param data: data object to export :param category: category of the statistic. One of :class:`StatsCategory` :param timestamp: optional timestamp :raises: MLOpsException """ self._validate_stats_helper() self._stats_helper.set_stat(name, data, self.get_id(), category, timestamp) def set_data_distribution_stat(self, data, model=None, timestamp=None): """ Exports distribution statistics which will be shown in Health View. Statistic is attached to the current model and can be fetched later for this model. :param data: The data that represents distribution. Data must have specific type according to engine. For PyStark engine: RDD or DataFrame. For Python engine: Numpy ND array or Pandas DataFrame Currently the only expected data type is a line graph, which consists of discrete numeric values :param model: For PySpark engine: model is used to classify categorical and continuous features. :param timestamp: The timestamp is a given units (Optional). If not provided, the current time is assumed :raises: MLOpsException """ self._validate_stats_helper() self._stats_helper.set_data_distribution_stat(data, self.get_id(), model, timestamp) def set_kpi(self, name, data, timestamp=None, units=None): """ Exports KPI data to the PM service. Users may supply a timestamp, which allows older data to be loaded. Statistic is attached to the current model and can be fetched later for this model. :param name: KPI name, which will be displayed in the UI. It can be used to fetch the stored data at a later time. :param data: The data to store. Currently the only expected data type is a line graph, which consists of discrete numeric values :param timestamp: The timestamp is a given units (Optional). If not provided, the current time is assumed :param units: The timestamp units. One of: KpiValue.TIME_SEC, KpiValue.TIME_MSEC, KpiValue.TIME_NSEC :return: The current PM instance for further calls :raises: MLOpsException """ self._validate_stats_helper() self._stats_helper.set_kpi(name, data, self.get_id(), timestamp, units) def feature_importance(self, feature_importance_vector=None, feature_names=None, model=None, df=None, num_significant_features=8): """ present feature importance, either according to the provided vector or generated from the provided model if available. Feature importance bar graph is attached to the current model and can be fetched later for this model. this function implements: 1) use feature_importance_vector if exists 2) feature_names from the model if available 3) get feature names vector if exists 4) extract feature name from pipeline model or dataframe if exists - (code different to pyspark and sklearn) 5) sort the vector. 6) take first k elements 7) create a bar graph for feature importance :param feature_importance_vector: feature importance vector optional :param feature_names: feature names vector optional :param model: optional pipeline model for pyspark, sklearn model for python :param df: optional dataframe for analysis :raises: MLOpsException """ self._validate_stats_helper() self._stats_helper.feature_importance(self, feature_importance_vector, feature_names, model, df, num_significant_features) def download(self, filepath): """ Download the model content specified by this model metadata and save it on the local file system. Note model size might be big, check the expected model size before downloading it. :param: filepath the file path in the local file system to save the model's content """ content = self._rest_helper.download_model(self.get_id()) # In case the model was created from a json response of get model REST API if self.metadata.size and self.metadata.size != len(content): raise MLOpsException("Unexpected downloaded model size! model id: {}, expected size: {}," " downloaded size: {}".format(self.get_id(), self.metadata.size, len(content))) with open(filepath, 'w') as f: f.write(content) self.set_model_path(filepath)
the-stack_106_17614
#app/ecommend.py # Imports from os import path import pandas as pd import pickle import json # Load pickled vectorizer and model with open('pickles/tfidf.pkl', 'rb') as tfidf_pkl: tfidf = pickle.load(tfidf_pkl) with open('pickles/nn_model.pkl', 'rb') as nn_pkl: nn_model = pickle.load(nn_pkl) #with open('./pickles/min_data.pkl', 'rb') as data_pkl: # data = pickle.load(data_pkl) """Pickle data to use here, or try loading from DB""" # Import pop_rent_crime_bins csv #file_name = path.join(path.dirname(__file__), "cityspire-c-ds/app/data/pop_rent_crime_walk_cost_livability_bins.csv") prcb = pd.read_csv("data/pop_rent_crime_walk_cost_livability_bins.csv") # Recommend Function def recommend(user_input): temp_df = nn_model.kneighbors(tfidf.transform([user_input]).todense())[1] for i in range(4): info = prcb.iloc[temp_df[0][i]]['Location'] info_pop = prcb.iloc[temp_df[0][i]]['2019 Population'] info_town_or_city = prcb.iloc[temp_df[0][i]]['Town or City'] info_rent = prcb.iloc[temp_df[0][i]]['2019 Rental Rates'] info_state = prcb.iloc[temp_df[0][i]]['State'] info_city = prcb.iloc[temp_df[0][i]]['City'] info_population = prcb.iloc[temp_df[0][i]]['Population'] info_violent_crime = prcb.iloc[temp_df[0][i]]['Violent crime'] info_murder = prcb.iloc[temp_df[0][i]]['Murder and nonnegligent manslaughter'] info_vehicle_theft = prcb.iloc[temp_df[0][i]]['Motor vehicle theft'] info_arson = prcb.iloc[temp_df[0][i]]['Arson'] info_crime_rate = prcb.iloc[temp_df[0][i]]['Crime Rate'] info_urb_pop_cat = prcb.iloc[temp_df[0][i]]['Urban Population by City Size Categories'] info_urb_pop_rang = prcb.iloc[temp_df[0][i]]['Urban Population by City Size Ranges'] info_rent_cat = prcb.iloc[temp_df[0][i]]['Rental Rate Categories'] info_rent_rang = prcb.iloc[temp_df[0][i]]['Rental Rate Ranges'] info_crime_cat = prcb.iloc[temp_df[0][i]]['Crime Rate Categories'] info_crime_rang = prcb.iloc[temp_df[0][i]]['Crime Rate Categories'] # Possible Outputs location = json.dumps(info) pop = json.dumps(int(info_pop)) town_or_city = json.dumps(info_town_or_city) rent = json.dumps(int(info_rent)) state = json.dumps(info_state) city = json.dumps(info_city) population = json.dumps(int(info_population)) violent_crime = json.dumps(int(info_violent_crime)) murder = json.dumps(int(info_murder)) vehicle_theft = json.dumps(int(info_vehicle_theft)) arson = json.dumps(int(info_arson)) crime_rate = json.dumps(int(info_crime_rate)) urb_pop_cat = json.dumps(info_urb_pop_cat) urb_pop_rang = json.dumps(info_urb_pop_rang) rent_cat = json.dumps(info_rent_cat) rent_rang = json.dumps(info_rent_rang) crime_cat = json.dumps(info_crime_cat) crime_rang = json.dumps(info_crime_rang) # Add all future column names return [location, pop, town_or_city, rent, state, city, population, violent_crime, murder, vehicle_theft, arson, crime_rate, urb_pop_cat, urb_pop_rang, rent_cat, rent_rang, crime_cat, crime_rang]
the-stack_106_17616
import json import arcade from .base import Base from .util import arcade_int_to_string import queue import multiprocessing OFFSET = 320 COLOURS = [(200, 100, 100), (100, 200, 100), (100, 100, 200)] class Lobby(Base): def __init__(self, display): self.display = display self.spritelist = arcade.SpriteList() self.spritedict = dict() self.sceneTime = 0 self.name = "" self.cursor_index = -1 self.focus = None self.network_thread = None self.receive_queue = None self.send_queue = None self.players = [{}, {}, {}] self.host = False self.player_id = None self.sprite_setup() def reset(self, network_thread: multiprocessing.Process, receive: multiprocessing.Queue, send: multiprocessing.Queue, player_id, host=False) -> None: self.network_thread = network_thread self.receive_queue = receive self.send_queue = send self.host = host self.sceneTime = 0 self.name = "" self.cursor_index = -1 self.focus = None self.player_id = player_id self.players = [{}, {}, {}] if self.host is True: self.spritedict["start"] = arcade.Sprite( "./assets/start_button.png", scale=0.25, center_x=160, center_y=557.5 ) self.spritelist.append(self.spritedict["start"]) else: try: self.spritedict.pop("start") except KeyError: pass def sprite_setup(self): self.spritedict = { "back": arcade.Sprite( "./assets/back_button.png", scale=0.25, center_x=160, center_y=687.5 ), "name": arcade.Sprite( "./assets/simple_button.png", scale=0.25, center_x=160, center_y=622.5 ) } self.spritelist.extend(list(self.spritedict.values())) def update(self, delta_time: float) -> None: self.sceneTime += delta_time try: data = self.receive_queue.get(block=False) except queue.Empty: pass else: if data["type"] == "playersUpdate": self.players = data["data"] elif data["type"] == "startGame": self.start_game() def draw(self): self.spritelist.draw() if len(self.name) < 25: buffer = " " * (25 - len(self.name)) else: buffer = "" arcade.draw_text(buffer + self.name[-25:], 15, 600, color=(255, 255, 255), font_size=35, width=560) for c, player in enumerate(self.players): if len(player) == 0: continue arcade.draw_text(player["name"], OFFSET * (c + 1), 640, color=(0, 0, 100), font_size=25) arcade.draw_rectangle_filled(OFFSET * (c + 1.5), 700, 320, 40, COLOURS[c]) def mouse_release(self, x: float, y: float, button: int, modifiers: int): print(self.host) if self.spritedict["back"].collides_with_point((x, y)) is True: self.display.change_scenes("mainMenu") elif self.spritedict["name"].collides_with_point((x, y)) is True: self.focus = "name" elif self.host is True and self.spritedict["start"].collides_with_point((x, y)) is True: print("starting game") self.send_queue.put({"type": "startGame"}) else: self.focus = None def key_press(self, key, modifiers): if self.focus == "name": if key == arcade.key.BACKSPACE: if self.cursor_index == -1: self.name = self.name[:-1] else: self.name = self.name[:self.cursor_index] + self.name[self.cursor_index + 1:] elif key == arcade.key.DELETE: if self.cursor_index == - (len(self.name) + 1): self.name = self.name[1:] self.cursor_index += 1 elif self.cursor_index < -2: self.name = self.name[:self.cursor_index + 1] + self.name[self.cursor_index + 2:] self.cursor_index += 1 elif self.cursor_index == -2: self.name = self.name[:-1] self.cursor_index += 1 elif key == arcade.key.LEFT: self.cursor_index -= 1 if self.cursor_index <= - (len(self.name) + 2): self.cursor_index = -1 elif key == arcade.key.RIGHT: self.cursor_index += 1 if self.cursor_index >= 0: self.cursor_index = - (len(self.name) + 1) else: key = arcade_int_to_string(key, modifiers) if key != "": if self.cursor_index == -1: self.name = self.name + key else: self.name = self.name[:self.cursor_index + 1] + key + self.name[self.cursor_index + 1:] self.send_queue.put({"type": "nameChange", "newName": self.name}) def start_game(self): self.display.change_scenes("game", self.network_thread, self.receive_queue, self.send_queue, self.players, self.player_id)
the-stack_106_17619
"""Functions to make 3D plots with M/EEG data """ from __future__ import print_function # Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # Mainak Jas <[email protected]> # # License: Simplified BSD from ..externals.six import string_types, advance_iterator from distutils.version import LooseVersion import os import inspect import warnings from itertools import cycle import numpy as np from scipy import linalg from ..io.pick import pick_types from ..surface import get_head_surf, get_meg_helmet_surf, read_surface from ..transforms import read_trans, _find_trans, apply_trans from ..utils import get_subjects_dir, logger, _check_subject from .utils import mne_analyze_colormap, _prepare_trellis, COLORS def plot_evoked_field(evoked, surf_maps, time=None, time_label='t = %0.0f ms', n_jobs=1): """Plot MEG/EEG fields on head surface and helmet in 3D Parameters ---------- evoked : instance of mne.Evoked The evoked object. surf_maps : list The surface mapping information obtained with make_field_map. time : float | None The time point at which the field map shall be displayed. If None, the average peak latency (across sensor types) is used. time_label : str How to print info about the time instant visualized. n_jobs : int Number of jobs to eggie in parallel. Returns ------- fig : instance of mlab.Figure The mayavi figure. """ types = [t for t in ['eeg', 'grad', 'mag'] if t in evoked] time_idx = None if time is None: time = np.mean([evoked.get_peak(ch_type=t)[1] for t in types]) if not evoked.times[0] <= time <= evoked.times[-1]: raise ValueError('`time` (%0.3f) must be inside `evoked.times`' % time) time_idx = np.argmin(np.abs(evoked.times - time)) types = [sm['kind'] for sm in surf_maps] # Plot them from mayavi import mlab alphas = [1.0, 0.5] colors = [(0.6, 0.6, 0.6), (1.0, 1.0, 1.0)] colormap = mne_analyze_colormap(format='mayavi') colormap_lines = np.concatenate([np.tile([0., 0., 255., 255.], (127, 1)), np.tile([0., 0., 0., 255.], (2, 1)), np.tile([255., 0., 0., 255.], (127, 1))]) fig = mlab.figure(bgcolor=(0.0, 0.0, 0.0), size=(600, 600)) for ii, this_map in enumerate(surf_maps): surf = this_map['surf'] map_data = this_map['data'] map_type = this_map['kind'] map_ch_names = this_map['ch_names'] if map_type == 'eeg': pick = pick_types(evoked.info, meg=False, eeg=True) else: pick = pick_types(evoked.info, meg=True, eeg=False, ref_meg=False) ch_names = [evoked.ch_names[k] for k in pick] set_ch_names = set(ch_names) set_map_ch_names = set(map_ch_names) if set_ch_names != set_map_ch_names: message = ['Channels in map and data do not match.'] diff = set_map_ch_names - set_ch_names if len(diff): message += ['%s not in data file. ' % list(diff)] diff = set_ch_names - set_map_ch_names if len(diff): message += ['%s not in map file.' % list(diff)] raise RuntimeError(' '.join(message)) data = np.dot(map_data, evoked.data[pick, time_idx]) x, y, z = surf['rr'].T nn = surf['nn'] # make absolutely sure these are normalized for Mayavi nn = nn / np.sum(nn * nn, axis=1)[:, np.newaxis] # Make a solid surface vlim = np.max(np.abs(data)) alpha = alphas[ii] with warnings.catch_warnings(record=True): # traits mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris']) mesh.data.point_data.normals = nn mesh.data.cell_data.normals = None mlab.pipeline.surface(mesh, color=colors[ii], opacity=alpha) # Now show our field pattern with warnings.catch_warnings(record=True): # traits mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris'], scalars=data) mesh.data.point_data.normals = nn mesh.data.cell_data.normals = None with warnings.catch_warnings(record=True): # traits fsurf = mlab.pipeline.surface(mesh, vmin=-vlim, vmax=vlim) fsurf.module_manager.scalar_lut_manager.lut.table = colormap # And the field lines on top with warnings.catch_warnings(record=True): # traits mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris'], scalars=data) mesh.data.point_data.normals = nn mesh.data.cell_data.normals = None with warnings.catch_warnings(record=True): # traits cont = mlab.pipeline.contour_surface(mesh, contours=21, line_width=1.0, vmin=-vlim, vmax=vlim, opacity=alpha) cont.module_manager.scalar_lut_manager.lut.table = colormap_lines if '%' in time_label: time_label %= (1e3 * evoked.times[time_idx]) mlab.text(0.01, 0.01, time_label, width=0.4) mlab.view(10, 60) return fig def _plot_mri_contours(mri_fname, surf_fnames, orientation='coronal', slices=None, show=True): """Plot BEM contours on anatomical slices. Parameters ---------- mri_fname : str The name of the file containing anatomical data. surf_fnames : list of str The filenames for the BEM surfaces in the format ['inner_skull.surf', 'outer_skull.surf', 'outer_skin.surf']. orientation : str 'coronal' or 'transverse' or 'sagittal' slices : list of int Slice indices. show : bool Call pyplot.show() at the end. Returns ------- fig : Instance of matplotlib.figure.Figure The figure. """ import matplotlib.pyplot as plt import nibabel as nib if orientation not in ['coronal', 'axial', 'sagittal']: raise ValueError("Orientation must be 'coronal', 'axial' or " "'sagittal'. Got %s." % orientation) # Load the T1 data nim = nib.load(mri_fname) data = nim.get_data() affine = nim.get_affine() n_sag, n_axi, n_cor = data.shape orientation_name2axis = dict(sagittal=0, axial=1, coronal=2) orientation_axis = orientation_name2axis[orientation] if slices is None: n_slices = data.shape[orientation_axis] slices = np.linspace(0, n_slices, 12, endpoint=False).astype(np.int) # create of list of surfaces surfs = list() trans = linalg.inv(affine) # XXX : next line is a hack don't ask why trans[:3, -1] = [n_sag // 2, n_axi // 2, n_cor // 2] for surf_fname in surf_fnames: surf = dict() surf['rr'], surf['tris'] = read_surface(surf_fname) # move back surface to MRI coordinate system surf['rr'] = nib.affines.apply_affine(trans, surf['rr']) surfs.append(surf) fig, axs = _prepare_trellis(len(slices), 4) for ax, sl in zip(axs, slices): # adjust the orientations for good view if orientation == 'coronal': dat = data[:, :, sl].transpose() elif orientation == 'axial': dat = data[:, sl, :] elif orientation == 'sagittal': dat = data[sl, :, :] # First plot the anatomical data ax.imshow(dat, cmap=plt.cm.gray) ax.axis('off') # and then plot the contours on top for surf in surfs: if orientation == 'coronal': ax.tricontour(surf['rr'][:, 0], surf['rr'][:, 1], surf['tris'], surf['rr'][:, 2], levels=[sl], colors='yellow', linewidths=2.0) elif orientation == 'axial': ax.tricontour(surf['rr'][:, 2], surf['rr'][:, 0], surf['tris'], surf['rr'][:, 1], levels=[sl], colors='yellow', linewidths=2.0) elif orientation == 'sagittal': ax.tricontour(surf['rr'][:, 2], surf['rr'][:, 1], surf['tris'], surf['rr'][:, 0], levels=[sl], colors='yellow', linewidths=2.0) if show: plt.subplots_adjust(left=0., bottom=0., right=1., top=1., wspace=0., hspace=0.) plt.show() return fig def plot_trans(info, trans_fname='auto', subject=None, subjects_dir=None, ch_type=None, source='bem'): """Plot MEG/EEG head surface and helmet in 3D. Parameters ---------- info : dict The measurement info. trans_fname : str | 'auto' The full path to the `*-trans.fif` file produced during coregistration. subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. subjects_dir : str The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR. ch_type : None | 'eeg' | 'meg' If None, both the MEG helmet and EEG electrodes will be shown. If 'meg', only the MEG helmet will be shown. If 'eeg', only the EEG electrodes will be shown. source : str Type to load. Common choices would be `'bem'` or `'head'`. We first try loading `'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'`, and then look for `'$SUBJECT*$SOURCE.fif'` in the same directory. Defaults to 'bem'. Note. For single layer bems it is recommended to use 'head'. Returns ------- fig : instance of mlab.Figure The mayavi figure. """ if ch_type not in [None, 'eeg', 'meg']: raise ValueError('Argument ch_type must be None | eeg | meg. Got %s.' % ch_type) if trans_fname == 'auto': # let's try to do this in MRI coordinates so they're easy to plot trans_fname = _find_trans(subject, subjects_dir) trans = read_trans(trans_fname) surfs = [get_head_surf(subject, source=source, subjects_dir=subjects_dir)] if ch_type is None or ch_type == 'meg': surfs.append(get_meg_helmet_surf(info, trans)) # Plot them from mayavi import mlab alphas = [1.0, 0.5] colors = [(0.6, 0.6, 0.6), (0.0, 0.0, 0.6)] fig = mlab.figure(bgcolor=(0.0, 0.0, 0.0), size=(600, 600)) for ii, surf in enumerate(surfs): x, y, z = surf['rr'].T nn = surf['nn'] # make absolutely sure these are normalized for Mayavi nn = nn / np.sum(nn * nn, axis=1)[:, np.newaxis] # Make a solid surface alpha = alphas[ii] with warnings.catch_warnings(record=True): # traits mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris']) mesh.data.point_data.normals = nn mesh.data.cell_data.normals = None mlab.pipeline.surface(mesh, color=colors[ii], opacity=alpha) if ch_type is None or ch_type == 'eeg': eeg_locs = [l['eeg_loc'][:, 0] for l in info['chs'] if l['eeg_loc'] is not None] if len(eeg_locs) > 0: eeg_loc = np.array(eeg_locs) # Transform EEG electrodes to MRI coordinates eeg_loc = apply_trans(trans['trans'], eeg_loc) with warnings.catch_warnings(record=True): # traits mlab.points3d(eeg_loc[:, 0], eeg_loc[:, 1], eeg_loc[:, 2], color=(1.0, 0.0, 0.0), scale_factor=0.005) else: warnings.warn('EEG electrode locations not found. ' 'Cannot plot EEG electrodes.') mlab.view(90, 90) return fig def plot_source_estimates(stc, subject=None, surface='inflated', hemi='lh', colormap='hot', time_label='time=%0.2f ms', smoothing_steps=10, fmin=5., fmid=10., fmax=15., transparent=True, alpha=1.0, time_viewer=False, config_opts={}, subjects_dir=None, figure=None, views='lat', colorbar=True): """Plot SourceEstimates with PySurfer Note: PySurfer currently needs the SUBJECTS_DIR environment variable, which will automatically be set by this function. Plotting multiple SourceEstimates with different values for subjects_dir will cause PySurfer to use the wrong FreeSurfer surfaces when using methods of the returned Brain object. It is therefore recommended to set the SUBJECTS_DIR environment variable or always use the same value for subjects_dir (within the same Python session). Parameters ---------- stc : SourceEstimates The source estimates to plot. subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. If None stc.subject will be used. If that is None, the environment will be used. surface : str The type of surface (inflated, white etc.). hemi : str, 'lh' | 'rh' | 'split' | 'both' The hemisphere to display. Using 'both' or 'split' requires PySurfer version 0.4 or above. colormap : str The type of colormap to use. time_label : str How to print info about the time instant visualized. smoothing_steps : int The amount of smoothing fmin : float The minimum value to display. fmid : float The middle value on the colormap. fmax : float The maximum value for the colormap. transparent : bool If True, use a linear transparency between fmin and fmid. alpha : float Alpha value to apply globally to the overlay. time_viewer : bool Display time viewer GUI. config_opts : dict Keyword arguments for Brain initialization. See pysurfer.viz.Brain. subjects_dir : str The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR. figure : instance of mayavi.core.scene.Scene | list | int | None If None, a new figure will be created. If multiple views or a split view is requested, this must be a list of the appropriate length. If int is provided it will be used to identify the Mayavi figure by it's id or create a new figure with the given id. views : str | list View to use. See surfer.Brain(). colorbar : bool If True, display colorbar on scene. Returns ------- brain : Brain A instance of surfer.viz.Brain from PySurfer. """ import surfer from surfer import Brain, TimeViewer if hemi in ['split', 'both'] and LooseVersion(surfer.__version__) < '0.4': raise NotImplementedError('hemi type "%s" not supported with your ' 'version of pysurfer. Please upgrade to ' 'version 0.4 or higher.' % hemi) try: import mayavi from mayavi import mlab except ImportError: from enthought import mayavi from enthought.mayavi import mlab # import here to avoid circular import problem from ..source_estimate import SourceEstimate if not isinstance(stc, SourceEstimate): raise ValueError('stc has to be a surface source estimate') if hemi not in ['lh', 'rh', 'split', 'both']: raise ValueError('hemi has to be either "lh", "rh", "split", ' 'or "both"') n_split = 2 if hemi == 'split' else 1 n_views = 1 if isinstance(views, string_types) else len(views) if figure is not None: # use figure with specified id or create new figure if isinstance(figure, int): figure = mlab.figure(figure, size=(600, 600)) # make sure it is of the correct type if not isinstance(figure, list): figure = [figure] if not all([isinstance(f, mayavi.core.scene.Scene) for f in figure]): raise TypeError('figure must be a mayavi scene or list of scenes') # make sure we have the right number of figures n_fig = len(figure) if not n_fig == n_split * n_views: raise RuntimeError('`figure` must be a list with the same ' 'number of elements as PySurfer plots that ' 'will be created (%s)' % n_split * n_views) subjects_dir = get_subjects_dir(subjects_dir=subjects_dir) subject = _check_subject(stc.subject, subject, False) if subject is None: if 'SUBJECT' in os.environ: subject = os.environ['SUBJECT'] else: raise ValueError('SUBJECT environment variable not set') if hemi in ['both', 'split']: hemis = ['lh', 'rh'] else: hemis = [hemi] title = subject if len(hemis) > 1 else '%s - %s' % (subject, hemis[0]) args = inspect.getargspec(Brain.__init__)[0] kwargs = dict(title=title, figure=figure, config_opts=config_opts, subjects_dir=subjects_dir) if 'views' in args: kwargs['views'] = views else: logger.info('PySurfer does not support "views" argument, please ' 'consider updating to a newer version (0.4 or later)') with warnings.catch_warnings(record=True): # traits warnings brain = Brain(subject, hemi, surface, **kwargs) for hemi in hemis: hemi_idx = 0 if hemi == 'lh' else 1 if hemi_idx == 0: data = stc.data[:len(stc.vertno[0])] else: data = stc.data[len(stc.vertno[0]):] vertices = stc.vertno[hemi_idx] time = 1e3 * stc.times with warnings.catch_warnings(record=True): # traits warnings brain.add_data(data, colormap=colormap, vertices=vertices, smoothing_steps=smoothing_steps, time=time, time_label=time_label, alpha=alpha, hemi=hemi, colorbar=colorbar) # scale colormap and set time (index) to display brain.scale_data_colormap(fmin=fmin, fmid=fmid, fmax=fmax, transparent=transparent) if time_viewer: TimeViewer(brain) return brain def plot_sparse_source_estimates(src, stcs, colors=None, linewidth=2, fontsize=18, bgcolor=(.05, 0, .1), opacity=0.2, brain_color=(0.7,) * 3, show=True, high_resolution=False, fig_name=None, fig_number=None, labels=None, modes=['cone', 'sphere'], scale_factors=[1, 0.6], verbose=None, **kwargs): """Plot source estimates obtained with sparse solver Active dipoles are represented in a "Glass" brain. If the same source is active in multiple source estimates it is displayed with a sphere otherwise with a cone in 3D. Parameters ---------- src : dict The source space. stcs : instance of SourceEstimate or list of instances of SourceEstimate The source estimates (up to 3). colors : list List of colors linewidth : int Line width in 2D plot. fontsize : int Font size. bgcolor : tuple of length 3 Background color in 3D. opacity : float in [0, 1] Opacity of brain mesh. brain_color : tuple of length 3 Brain color. show : bool Show figures if True. fig_name : Mayavi figure name. fig_number : Matplotlib figure number. labels : ndarray or list of ndarrays Labels to show sources in clusters. Sources with the same label and the waveforms within each cluster are presented in the same color. labels should be a list of ndarrays when stcs is a list ie. one label for each stc. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). kwargs : kwargs Keyword arguments to pass to mlab.triangular_mesh. """ if not isinstance(stcs, list): stcs = [stcs] if labels is not None and not isinstance(labels, list): labels = [labels] if colors is None: colors = COLORS linestyles = ['-', '--', ':'] # Show 3D lh_points = src[0]['rr'] rh_points = src[1]['rr'] points = np.r_[lh_points, rh_points] lh_normals = src[0]['nn'] rh_normals = src[1]['nn'] normals = np.r_[lh_normals, rh_normals] if high_resolution: use_lh_faces = src[0]['tris'] use_rh_faces = src[1]['tris'] else: use_lh_faces = src[0]['use_tris'] use_rh_faces = src[1]['use_tris'] use_faces = np.r_[use_lh_faces, lh_points.shape[0] + use_rh_faces] points *= 170 vertnos = [np.r_[stc.lh_vertno, lh_points.shape[0] + stc.rh_vertno] for stc in stcs] unique_vertnos = np.unique(np.concatenate(vertnos).ravel()) try: from mayavi import mlab except ImportError: from enthought.mayavi import mlab from matplotlib.colors import ColorConverter color_converter = ColorConverter() f = mlab.figure(figure=fig_name, bgcolor=bgcolor, size=(600, 600)) mlab.clf() if mlab.options.backend != 'test': f.scene.disable_render = True with warnings.catch_warnings(record=True): # traits warnings surface = mlab.triangular_mesh(points[:, 0], points[:, 1], points[:, 2], use_faces, color=brain_color, opacity=opacity, **kwargs) import matplotlib.pyplot as plt # Show time courses plt.figure(fig_number) plt.clf() colors = cycle(colors) logger.info("Total number of active sources: %d" % len(unique_vertnos)) if labels is not None: colors = [advance_iterator(colors) for _ in range(np.unique(np.concatenate(labels).ravel()).size)] for idx, v in enumerate(unique_vertnos): # get indices of stcs it belongs to ind = [k for k, vertno in enumerate(vertnos) if v in vertno] is_common = len(ind) > 1 if labels is None: c = advance_iterator(colors) else: # if vertex is in different stcs than take label from first one c = colors[labels[ind[0]][vertnos[ind[0]] == v]] mode = modes[1] if is_common else modes[0] scale_factor = scale_factors[1] if is_common else scale_factors[0] if (isinstance(scale_factor, (np.ndarray, list, tuple)) and len(unique_vertnos) == len(scale_factor)): scale_factor = scale_factor[idx] x, y, z = points[v] nx, ny, nz = normals[v] with warnings.catch_warnings(record=True): # traits mlab.quiver3d(x, y, z, nx, ny, nz, color=color_converter.to_rgb(c), mode=mode, scale_factor=scale_factor) for k in ind: vertno = vertnos[k] mask = (vertno == v) assert np.sum(mask) == 1 linestyle = linestyles[k] plt.plot(1e3 * stc.times, 1e9 * stcs[k].data[mask].ravel(), c=c, linewidth=linewidth, linestyle=linestyle) plt.xlabel('Time (ms)', fontsize=18) plt.ylabel('Source amplitude (nAm)', fontsize=18) if fig_name is not None: plt.title(fig_name) if show: plt.show() surface.actor.property.backface_culling = True surface.actor.property.shading = True return surface
the-stack_106_17620
import os.path from os.path import basename, exists from os.path import join as pjoin from pathlib import Path from subprocess import CalledProcessError, check_output from tqdm import tqdm from skelshop.io import ShotSegmentedWriter from skelshop.shotseg.base import SHOT_CHANGE def fulldir(path): return os.path.dirname(os.path.realpath(path)) FMT_VERSION = 1 CUR_DIR = fulldir(__file__) def add_basic_metadata(h5f, video, num_frames): h5f.attrs["video"] = basename(video) h5f.attrs["num_frames"] = num_frames def add_metadata(h5f, video, num_frames, mode, limbs): add_basic_metadata(h5f, video, num_frames) h5f.attrs["mode"] = mode h5f.attrs["limbs"] = limbs def git_describe_safe(cwd): git_describe = pjoin(cwd, ".git-describe") if exists(git_describe): with open(git_describe) as describe_f: return describe_f.read() else: try: return ( check_output(["git", "describe", "--always"], cwd=cwd).decode().strip() ) except CalledProcessError: return "unknown" def extract_cmake_flags(cwd, flags): build_path = Path(cwd) flag_results = {flag: "unknown" for flag in flags} path_success = None while build_path != build_path.parent: cmake_path = build_path / "CMakeCache.txt" if cmake_path.exists(): path_success = cmake_path break build_path = build_path.parent if path_success is not None: with open(cmake_path) as cmake_cache: for line in cmake_cache: for flag in flags: if line.startswith(flag + ":STRING="): flag_results[flag] = line.split("=", 1)[1] return flag_results def add_fmt_metadata(h5f, fmt_type, running_op=False): h5f.attrs["fmt_type"] = fmt_type h5f.attrs["fmt_ver"] = FMT_VERSION h5f.attrs["legacy_skels"] = "LEGACY_SKELS" in os.environ skeldump_ver = "{}={}".format(fmt_type, git_describe_safe(CUR_DIR)) if "skeldump_ver" in h5f.attrs: h5f.attrs["skeldump_ver"] = skeldump_ver + ";" + h5f.attrs["skeldump_ver"] else: h5f.attrs["skeldump_ver"] = skeldump_ver if running_op: import openpose op_py_dir = fulldir(openpose.__file__) h5f.attrs["op_ver"] = git_describe_safe(op_py_dir) for name, val in extract_cmake_flags( op_py_dir, ("GPU_MODE", "DL_FRAMEWORK") ).items(): h5f.attrs["op_" + name] = val def write_shots( h5f, num_kps, frame_iter, writer_cls=ShotSegmentedWriter, start_frame=0, **create_kwargs ): writer = writer_cls(h5f, num_kps=num_kps, **create_kwargs) writer.start_shot(start_frame) frame_num = start_frame for frame in tqdm(frame_iter, total=frame_iter.total_frames): if frame is SHOT_CHANGE: writer.end_shot() writer.start_shot() else: writer.register_frame(frame_num) for pose_id, pose in frame: writer.add_pose(frame_num, pose_id, pose.all()) frame_num += 1 writer.end_shot()
the-stack_106_17622
# proses memasukan data ke dalam variabel nama = "John Doe" # proses mencetak variabel print(nama) # nilai dan tipe data dalam variabel dapat diubah umur = 20 # nilai awal print(umur) # mencetak nilai umur type(umur) # mengecek tipe data umur umur = "dua puluh satu" # nilai setelah diubah print(umur) # mencetak nilai umur type(umur) # mengecek tipe data umur namaDepan = "Budi" namaBelakang = "Susanto" nama = namaDepan + " " + namaBelakang umur = 22 hobi = "Berenang" print("Biodata\n", nama, "\n", umur, "\n", hobi) # contoh variabel lainya inivariabel = "Halo" ini_juga_variabel = "Hai" _inivariabeljuga = "Hi" inivariabel222 = "Bye" panjang = 10 lebar = 5 luas = panjang * lebar print(luas)
the-stack_106_17627
# -*- test-case-name: twisted.python.test.test_util -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. from __future__ import division, absolute_import, print_function import os, sys, errno, warnings try: import pwd, grp except ImportError: pwd = grp = None try: from os import setgroups, getgroups except ImportError: setgroups = getgroups = None from functools import wraps from twisted.python.compat import _PY3, unicode from twisted.python.versions import Version from twisted.python.deprecate import deprecatedModuleAttribute # For backwards compatibility, some things import this, so just link it from collections import OrderedDict deprecatedModuleAttribute( Version("Twisted", 15, 5, 0), "Use collections.OrderedDict instead.", "twisted.python.util", "OrderedDict") class InsensitiveDict: """Dictionary, that has case-insensitive keys. Normally keys are retained in their original form when queried with .keys() or .items(). If initialized with preserveCase=0, keys are both looked up in lowercase and returned in lowercase by .keys() and .items(). """ """ Modified recipe at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66315 originally contributed by Sami Hangaslammi. """ def __init__(self, dict=None, preserve=1): """Create an empty dictionary, or update from 'dict'.""" self.data = {} self.preserve=preserve if dict: self.update(dict) def __delitem__(self, key): k=self._lowerOrReturn(key) del self.data[k] def _lowerOrReturn(self, key): if isinstance(key, bytes) or isinstance(key, unicode): return key.lower() else: return key def __getitem__(self, key): """Retrieve the value associated with 'key' (in any case).""" k = self._lowerOrReturn(key) return self.data[k][1] def __setitem__(self, key, value): """Associate 'value' with 'key'. If 'key' already exists, but in different case, it will be replaced.""" k = self._lowerOrReturn(key) self.data[k] = (key, value) def has_key(self, key): """Case insensitive test whether 'key' exists.""" k = self._lowerOrReturn(key) return k in self.data __contains__ = has_key def _doPreserve(self, key): if not self.preserve and (isinstance(key, bytes) or isinstance(key, unicode)): return key.lower() else: return key def keys(self): """List of keys in their original case.""" return list(self.iterkeys()) def values(self): """List of values.""" return list(self.itervalues()) def items(self): """List of (key,value) pairs.""" return list(self.iteritems()) def get(self, key, default=None): """Retrieve value associated with 'key' or return default value if 'key' doesn't exist.""" try: return self[key] except KeyError: return default def setdefault(self, key, default): """If 'key' doesn't exist, associate it with the 'default' value. Return value associated with 'key'.""" if not self.has_key(key): self[key] = default return self[key] def update(self, dict): """Copy (key,value) pairs from 'dict'.""" for k,v in dict.items(): self[k] = v def __repr__(self): """String representation of the dictionary.""" items = ", ".join([("%r: %r" % (k,v)) for k,v in self.items()]) return "InsensitiveDict({%s})" % items def iterkeys(self): for v in self.data.values(): yield self._doPreserve(v[0]) def itervalues(self): for v in self.data.values(): yield v[1] def iteritems(self): for (k, v) in self.data.values(): yield self._doPreserve(k), v def popitem(self): i=self.items()[0] del self[i[0]] return i def clear(self): for k in self.keys(): del self[k] def copy(self): return InsensitiveDict(self, self.preserve) def __len__(self): return len(self.data) def __eq__(self, other): for k,v in self.items(): if not (k in other) or not (other[k]==v): return 0 return len(self)==len(other) def uniquify(lst): """Make the elements of a list unique by inserting them into a dictionary. This must not change the order of the input lst. """ dct = {} result = [] for k in lst: if k not in dct: result.append(k) dct[k] = 1 return result def padTo(n, seq, default=None): """ Pads a sequence out to n elements, filling in with a default value if it is not long enough. If the input sequence is longer than n, raises ValueError. Details, details: This returns a new list; it does not extend the original sequence. The new list contains the values of the original sequence, not copies. """ if len(seq) > n: raise ValueError("%d elements is more than %d." % (len(seq), n)) blank = [default] * n blank[:len(seq)] = list(seq) return blank def getPluginDirs(): warnings.warn( "twisted.python.util.getPluginDirs is deprecated since Twisted 12.2.", DeprecationWarning, stacklevel=2) import twisted systemPlugins = os.path.join(os.path.dirname(os.path.dirname( os.path.abspath(twisted.__file__))), 'plugins') userPlugins = os.path.expanduser("~/TwistedPlugins") confPlugins = os.path.expanduser("~/.twisted") allPlugins = filter(os.path.isdir, [systemPlugins, userPlugins, confPlugins]) return allPlugins def addPluginDir(): warnings.warn( "twisted.python.util.addPluginDir is deprecated since Twisted 12.2.", DeprecationWarning, stacklevel=2) sys.path.extend(getPluginDirs()) def sibpath(path, sibling): """ Return the path to a sibling of a file in the filesystem. This is useful in conjunction with the special C{__file__} attribute that Python provides for modules, so modules can load associated resource files. """ return os.path.join(os.path.dirname(os.path.abspath(path)), sibling) def _getpass(prompt): """ Helper to turn IOErrors into KeyboardInterrupts. """ import getpass try: return getpass.getpass(prompt) except IOError as e: if e.errno == errno.EINTR: raise KeyboardInterrupt raise except EOFError: raise KeyboardInterrupt def getPassword(prompt = 'Password: ', confirm = 0, forceTTY = 0, confirmPrompt = 'Confirm password: ', mismatchMessage = "Passwords don't match."): """Obtain a password by prompting or from stdin. If stdin is a terminal, prompt for a new password, and confirm (if C{confirm} is true) by asking again to make sure the user typed the same thing, as keystrokes will not be echoed. If stdin is not a terminal, and C{forceTTY} is not true, read in a line and use it as the password, less the trailing newline, if any. If C{forceTTY} is true, attempt to open a tty and prompt for the password using it. Raise a RuntimeError if this is not possible. @returns: C{str} """ isaTTY = hasattr(sys.stdin, 'isatty') and sys.stdin.isatty() old = None try: if not isaTTY: if forceTTY: try: old = sys.stdin, sys.stdout sys.stdin = sys.stdout = open('/dev/tty', 'r+') except: raise RuntimeError("Cannot obtain a TTY") else: password = sys.stdin.readline() if password[-1] == '\n': password = password[:-1] return password while 1: try1 = _getpass(prompt) if not confirm: return try1 try2 = _getpass(confirmPrompt) if try1 == try2: return try1 else: sys.stderr.write(mismatchMessage + "\n") finally: if old: sys.stdin.close() sys.stdin, sys.stdout = old def println(*a): sys.stdout.write(' '.join(map(str, a))+'\n') # XXX # This does not belong here # But where does it belong? def str_xor(s, b): return ''.join([chr(ord(c) ^ b) for c in s]) def makeStatBar(width, maxPosition, doneChar = '=', undoneChar = '-', currentChar = '>'): """ Creates a function that will return a string representing a progress bar. """ aValue = width / float(maxPosition) def statBar(position, force = 0, last = ['']): assert len(last) == 1, "Don't mess with the last parameter." done = int(aValue * position) toDo = width - done - 2 result = "[%s%s%s]" % (doneChar * done, currentChar, undoneChar * toDo) if force: last[0] = result return result if result == last[0]: return '' last[0] = result return result statBar.__doc__ = """statBar(position, force = 0) -> '[%s%s%s]'-style progress bar returned string is %d characters long, and the range goes from 0..%d. The 'position' argument is where the '%s' will be drawn. If force is false, '' will be returned instead if the resulting progress bar is identical to the previously returned progress bar. """ % (doneChar * 3, currentChar, undoneChar * 3, width, maxPosition, currentChar) return statBar def spewer(frame, s, ignored): """ A trace function for sys.settrace that prints every function or method call. """ from twisted.python import reflect if 'self' in frame.f_locals: se = frame.f_locals['self'] if hasattr(se, '__class__'): k = reflect.qual(se.__class__) else: k = reflect.qual(type(se)) print('method %s of %s at %s' % ( frame.f_code.co_name, k, id(se))) else: print('function %s in %s, line %s' % ( frame.f_code.co_name, frame.f_code.co_filename, frame.f_lineno)) def searchupwards(start, files=[], dirs=[]): """ Walk upwards from start, looking for a directory containing all files and directories given as arguments:: >>> searchupwards('.', ['foo.txt'], ['bar', 'bam']) If not found, return None """ start=os.path.abspath(start) parents=start.split(os.sep) exists=os.path.exists; join=os.sep.join; isdir=os.path.isdir while len(parents): candidate=join(parents)+os.sep allpresent=1 for f in files: if not exists("%s%s" % (candidate, f)): allpresent=0 break if allpresent: for d in dirs: if not isdir("%s%s" % (candidate, d)): allpresent=0 break if allpresent: return candidate parents.pop(-1) return None class LineLog: """ A limited-size line-based log, useful for logging line-based protocols such as SMTP. When the log fills up, old entries drop off the end. """ def __init__(self, size=10): """ Create a new log, with size lines of storage (default 10). A log size of 0 (or less) means an infinite log. """ if size < 0: size = 0 self.log = [None]*size self.size = size def append(self,line): if self.size: self.log[:-1] = self.log[1:] self.log[-1] = line else: self.log.append(line) def str(self): return '\n'.join(filter(None,self.log)) def __getitem__(self, item): return filter(None,self.log)[item] def clear(self): """Empty the log""" self.log = [None]*self.size def raises(exception, f, *args, **kwargs): """ Determine whether the given call raises the given exception. """ try: f(*args, **kwargs) except exception: return 1 return 0 class IntervalDifferential(object): """ Given a list of intervals, generate the amount of time to sleep between "instants". For example, given 7, 11 and 13, the three (infinite) sequences:: 7 14 21 28 35 ... 11 22 33 44 ... 13 26 39 52 ... will be generated, merged, and used to produce:: (7, 0) (4, 1) (2, 2) (1, 0) (7, 0) (1, 1) (4, 2) (2, 0) (5, 1) (2, 0) New intervals may be added or removed as iteration proceeds using the proper methods. """ def __init__(self, intervals, default=60): """ @type intervals: C{list} of C{int}, C{long}, or C{float} param @param intervals: The intervals between instants. @type default: C{int}, C{long}, or C{float} @param default: The duration to generate if the intervals list becomes empty. """ self.intervals = intervals[:] self.default = default def __iter__(self): return _IntervalDifferentialIterator(self.intervals, self.default) class _IntervalDifferentialIterator(object): def __init__(self, i, d): self.intervals = [[e, e, n] for (e, n) in zip(i, range(len(i)))] self.default = d self.last = 0 def __next__(self): if not self.intervals: return (self.default, None) last, index = self.intervals[0][0], self.intervals[0][2] self.intervals[0][0] += self.intervals[0][1] self.intervals.sort() result = last - self.last self.last = last return result, index # Iterators on Python 2 use next(), not __next__() next = __next__ def addInterval(self, i): if self.intervals: delay = self.intervals[0][0] - self.intervals[0][1] self.intervals.append([delay + i, i, len(self.intervals)]) self.intervals.sort() else: self.intervals.append([i, i, 0]) def removeInterval(self, interval): for i in range(len(self.intervals)): if self.intervals[i][1] == interval: index = self.intervals[i][2] del self.intervals[i] for i in self.intervals: if i[2] > index: i[2] -= 1 return raise ValueError("Specified interval not in IntervalDifferential") class FancyStrMixin: """ Mixin providing a flexible implementation of C{__str__}. C{__str__} output will begin with the name of the class, or the contents of the attribute C{fancybasename} if it is set. The body of C{__str__} can be controlled by overriding C{showAttributes} in a subclass. Set C{showAttributes} to a sequence of strings naming attributes, or sequences of C{(attributeName, callable)}, or sequences of C{(attributeName, displayName, formatCharacter)}. In the second case, the callable is passed the value of the attribute and its return value used in the output of C{__str__}. In the final case, the attribute is looked up using C{attributeName}, but the output uses C{displayName} instead, and renders the value of the attribute using C{formatCharacter}, e.g. C{"%.3f"} might be used for a float. """ # Override in subclasses: showAttributes = () def __str__(self): r = ['<', (hasattr(self, 'fancybasename') and self.fancybasename) or self.__class__.__name__] for attr in self.showAttributes: if isinstance(attr, str): r.append(' %s=%r' % (attr, getattr(self, attr))) elif len(attr) == 2: r.append((' %s=' % (attr[0],)) + attr[1](getattr(self, attr[0]))) else: r.append((' %s=' + attr[2]) % (attr[1], getattr(self, attr[0]))) r.append('>') return ''.join(r) __repr__ = __str__ class FancyEqMixin: """ Mixin that implements C{__eq__} and C{__ne__}. Comparison is done using the list of attributes defined in C{compareAttributes}. """ compareAttributes = () def __eq__(self, other): if not self.compareAttributes: return self is other if isinstance(self, other.__class__): return ( [getattr(self, name) for name in self.compareAttributes] == [getattr(other, name) for name in self.compareAttributes]) return NotImplemented def __ne__(self, other): result = self.__eq__(other) if result is NotImplemented: return result return not result try: # initgroups is available in Python 2.7+ on UNIX-likes from os import initgroups as _initgroups except ImportError: _initgroups = None if _initgroups is None: def initgroups(uid, primaryGid): """ Do nothing. Underlying platform support require to manipulate groups is missing. """ else: def initgroups(uid, primaryGid): """ Initializes the group access list. This uses the stdlib support which calls initgroups(3) under the hood. If the given user is a member of more than C{NGROUPS}, arbitrary groups will be silently discarded to bring the number below that limit. @type uid: C{int} @param uid: The UID for which to look up group information. @type primaryGid: C{int} or L{None} @param primaryGid: If provided, an additional GID to include when setting the groups. """ return _initgroups(pwd.getpwuid(uid)[0], primaryGid) def switchUID(uid, gid, euid=False): """ Attempts to switch the uid/euid and gid/egid for the current process. If C{uid} is the same value as L{os.getuid} (or L{os.geteuid}), this function will issue a L{UserWarning} and not raise an exception. @type uid: C{int} or L{None} @param uid: the UID (or EUID) to switch the current process to. This parameter will be ignored if the value is L{None}. @type gid: C{int} or L{None} @param gid: the GID (or EGID) to switch the current process to. This parameter will be ignored if the value is L{None}. @type euid: C{bool} @param euid: if True, set only effective user-id rather than real user-id. (This option has no effect unless the process is running as root, in which case it means not to shed all privileges, retaining the option to regain privileges in cases such as spawning processes. Use with caution.) """ if euid: setuid = os.seteuid setgid = os.setegid getuid = os.geteuid else: setuid = os.setuid setgid = os.setgid getuid = os.getuid if gid is not None: setgid(gid) if uid is not None: if uid == getuid(): uidText = (euid and "euid" or "uid") actionText = "tried to drop privileges and set%s %s" % (uidText, uid) problemText = "%s is already %s" % (uidText, getuid()) warnings.warn("%s but %s; should we be root? Continuing." % (actionText, problemText)) else: initgroups(uid, gid) setuid(uid) class SubclassableCStringIO(object): """ A wrapper around cStringIO to allow for subclassing. """ __csio = None def __init__(self, *a, **kw): from cStringIO import StringIO self.__csio = StringIO(*a, **kw) def __iter__(self): return self.__csio.__iter__() def next(self): return self.__csio.next() def close(self): return self.__csio.close() def isatty(self): return self.__csio.isatty() def seek(self, pos, mode=0): return self.__csio.seek(pos, mode) def tell(self): return self.__csio.tell() def read(self, n=-1): return self.__csio.read(n) def readline(self, length=None): return self.__csio.readline(length) def readlines(self, sizehint=0): return self.__csio.readlines(sizehint) def truncate(self, size=None): return self.__csio.truncate(size) def write(self, s): return self.__csio.write(s) def writelines(self, list): return self.__csio.writelines(list) def flush(self): return self.__csio.flush() def getvalue(self): return self.__csio.getvalue() def untilConcludes(f, *a, **kw): """ Call C{f} with the given arguments, handling C{EINTR} by retrying. @param f: A function to call. @param *a: Positional arguments to pass to C{f}. @param **kw: Keyword arguments to pass to C{f}. @return: Whatever C{f} returns. @raise: Whatever C{f} raises, except for C{IOError} or C{OSError} with C{errno} set to C{EINTR}. """ while True: try: return f(*a, **kw) except (IOError, OSError) as e: if e.args[0] == errno.EINTR: continue raise def mergeFunctionMetadata(f, g): """ Overwrite C{g}'s name and docstring with values from C{f}. Update C{g}'s instance dictionary with C{f}'s. @return: A function that has C{g}'s behavior and metadata merged from C{f}. """ try: g.__name__ = f.__name__ except TypeError: pass try: g.__doc__ = f.__doc__ except (TypeError, AttributeError): pass try: g.__dict__.update(f.__dict__) except (TypeError, AttributeError): pass try: g.__module__ = f.__module__ except TypeError: pass return g def nameToLabel(mname): """ Convert a string like a variable name into a slightly more human-friendly string with spaces and capitalized letters. @type mname: C{str} @param mname: The name to convert to a label. This must be a string which could be used as a Python identifier. Strings which do not take this form will result in unpredictable behavior. @rtype: C{str} """ labelList = [] word = '' lastWasUpper = False for letter in mname: if letter.isupper() == lastWasUpper: # Continuing a word. word += letter else: # breaking a word OR beginning a word if lastWasUpper: # could be either if len(word) == 1: # keep going word += letter else: # acronym # we're processing the lowercase letter after the acronym-then-capital lastWord = word[:-1] firstLetter = word[-1] labelList.append(lastWord) word = firstLetter + letter else: # definitely breaking: lower to upper labelList.append(word) word = letter lastWasUpper = letter.isupper() if labelList: labelList[0] = labelList[0].capitalize() else: return mname.capitalize() labelList.append(word) return ' '.join(labelList) def uidFromString(uidString): """ Convert a user identifier, as a string, into an integer UID. @type uid: C{str} @param uid: A string giving the base-ten representation of a UID or the name of a user which can be converted to a UID via L{pwd.getpwnam}. @rtype: C{int} @return: The integer UID corresponding to the given string. @raise ValueError: If the user name is supplied and L{pwd} is not available. """ try: return int(uidString) except ValueError: if pwd is None: raise return pwd.getpwnam(uidString)[2] def gidFromString(gidString): """ Convert a group identifier, as a string, into an integer GID. @type uid: C{str} @param uid: A string giving the base-ten representation of a GID or the name of a group which can be converted to a GID via L{grp.getgrnam}. @rtype: C{int} @return: The integer GID corresponding to the given string. @raise ValueError: If the group name is supplied and L{grp} is not available. """ try: return int(gidString) except ValueError: if grp is None: raise return grp.getgrnam(gidString)[2] def runAsEffectiveUser(euid, egid, function, *args, **kwargs): """ Run the given function wrapped with seteuid/setegid calls. This will try to minimize the number of seteuid/setegid calls, comparing current and wanted permissions @param euid: effective UID used to call the function. @type euid: C{int} @type egid: effective GID used to call the function. @param egid: C{int} @param function: the function run with the specific permission. @type function: any callable @param *args: arguments passed to C{function} @param **kwargs: keyword arguments passed to C{function} """ uid, gid = os.geteuid(), os.getegid() if uid == euid and gid == egid: return function(*args, **kwargs) else: if uid != 0 and (uid != euid or gid != egid): os.seteuid(0) if gid != egid: os.setegid(egid) if euid != 0 and (euid != uid or gid != egid): os.seteuid(euid) try: return function(*args, **kwargs) finally: if euid != 0 and (uid != euid or gid != egid): os.seteuid(0) if gid != egid: os.setegid(gid) if uid != 0 and (uid != euid or gid != egid): os.seteuid(uid) def runWithWarningsSuppressed(suppressedWarnings, f, *args, **kwargs): """ Run C{f(*args, **kwargs)}, but with some warnings suppressed. Unlike L{twisted.internet.utils.runWithWarningsSuppressed}, it has no special support for L{twisted.internet.defer.Deferred}. @param suppressedWarnings: A list of arguments to pass to filterwarnings. Must be a sequence of 2-tuples (args, kwargs). @param f: A callable. @param args: Arguments for C{f}. @param kwargs: Keyword arguments for C{f} @return: The result of C{f(*args, **kwargs)}. """ with warnings.catch_warnings(): for a, kw in suppressedWarnings: warnings.filterwarnings(*a, **kw) return f(*args, **kwargs) def _replaceIf(condition, alternative): """ If C{condition}, replace this function with C{alternative}. @param condition: A L{bool} which says whether this should be replaced. @param alternative: An alternative function that will be swapped in instead of the original, if C{condition} is truthy. @return: A decorator. """ def decorator(func): if condition is True: call = alternative elif condition is False: call = func else: raise ValueError(("condition argument to _replaceIf requires a " "bool, not {}").format(repr(condition))) @wraps(func) def wrapped(*args, **kwargs): return call(*args, **kwargs) return wrapped return decorator __all__ = [ "uniquify", "padTo", "getPluginDirs", "addPluginDir", "sibpath", "getPassword", "println", "makeStatBar", "OrderedDict", "InsensitiveDict", "spewer", "searchupwards", "LineLog", "raises", "IntervalDifferential", "FancyStrMixin", "FancyEqMixin", "switchUID", "SubclassableCStringIO", "mergeFunctionMetadata", "nameToLabel", "uidFromString", "gidFromString", "runAsEffectiveUser", "untilConcludes", "runWithWarningsSuppressed", ] if _PY3: __notported__ = ["SubclassableCStringIO", "LineLog", "makeStatBar"] for name in __all__[:]: if name in __notported__: __all__.remove(name) del globals()[name] del name, __notported__
the-stack_106_17628
import math from typing import Any, Dict, Iterator, List, Optional, Tuple, Union import numpy as np import tensorflow as tf import determined as det from determined import keras from determined_common import check ArrayLike = Union[np.ndarray, List[np.ndarray], Dict[str, np.ndarray]] def _is_list_of_numpy_array(x: Any) -> bool: return isinstance(x, (list, tuple)) and all(isinstance(v, np.ndarray) for v in x) def _is_dict_of_numpy_array(x: Any) -> bool: return isinstance(x, dict) and all(isinstance(x[k], np.ndarray) for k in x) def _length_of_multi_arraylike(data: ArrayLike) -> int: if isinstance(data, np.ndarray): return len(data) elif isinstance(data, (list, tuple)): return len(data[0]) elif isinstance(data, dict): return len(list(data.values())[0]) else: raise det.errors.InternalException(f"Unsupported data type: {type(data)}.") def _get_elements_in_multi_arraylike(data: ArrayLike, start: int, end: int) -> Any: if isinstance(data, np.ndarray): return data[start:end] elif isinstance(data, (list, tuple)): return [arraylike[start:end] for arraylike in data] elif isinstance(data, dict): return {name: data[name][start:end] for name in data} else: raise det.errors.InternalException(f"Unsupported data type: {type(data)}.") class _ArrayLikeAdapter(tf.keras.utils.Sequence): # type: ignore """This adapter adapts np.ndarray, a list of np.ndarray, and a dict of np.ndarray into a tf.keras.utils.Sequence instance. """ def __init__( self, x: ArrayLike, y: ArrayLike, batch_size: int, sample_weights: Optional[np.ndarray] = None, drop_leftovers: bool = False, ): """ If converting numpy array data to Sequence to optimize performance, consider using ArrayLikeAdapter. Args: x: Input data. It could be: 1) A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). 2) A dict mapping input names to the corresponding array, if the model has named inputs. y: Target data. Like the input data x, it could be either Numpy array(s). batch_size: Number of samples per batch. sample_weights: Numpy array of weights for the samples. drop_leftovers: If True, drop the data that cannot complete the last batch. This argument is ignored if x is a Sequence or a Dataset. """ self._x_length = _length_of_multi_arraylike(x) self._y_length = _length_of_multi_arraylike(y) check.eq(self._x_length, self._y_length, "Length of x and y do not match.") check.check_gt_eq(self._x_length, batch_size, "Batch size is too large for the input data.") if sample_weights is not None: check.eq( self._x_length, len(sample_weights), "Lengths of input data and sample weights do not match.", ) self.x = x self.y = y self.sample_weight = sample_weights self.batch_size = batch_size self.drop_leftovers = drop_leftovers def __len__(self) -> int: # Returns number of batches (keeps last partial batch). if self.drop_leftovers: return math.floor(self._x_length / self.batch_size) else: return math.ceil(self._x_length / self.batch_size) def __getitem__( self, index: int ) -> Union[Tuple[ArrayLike, ArrayLike], Tuple[ArrayLike, ArrayLike, np.ndarray]]: # Gets batch at position index. start = index * self.batch_size # The end is not `(index + 1) * self.batch_size` if the # last batch is not a full `self.batch_size` end = min((index + 1) * self.batch_size, self._x_length) if self.sample_weight is None: return ( _get_elements_in_multi_arraylike(self.x, start, end), _get_elements_in_multi_arraylike(self.y, start, end), ) else: return ( _get_elements_in_multi_arraylike(self.x, start, end), _get_elements_in_multi_arraylike(self.y, start, end), self.sample_weight[start:end], ) class _SequenceWithOffset(tf.keras.utils.Sequence): # type: ignore def __init__(self, sequence: tf.keras.utils.Sequence, batch_offset: int = 0): self._sequence = sequence self._batch_offset = batch_offset def __len__(self): # type: ignore return len(self._sequence) def __getitem__(self, index): # type: ignore index = (index + self._batch_offset) % len(self) return self._sequence[index] class SequenceAdapter: """ A class to assist to optimize the performance of loading data with ``tf.keras.utils.Sequence`` and help with restoring and saving iterators for a dataset. """ def __init__( self, data: tf.keras.utils.Sequence, use_multiprocessing: bool = False, workers: int = 1, max_queue_size: int = 10, ): """ Multiprocessing or multithreading for native Python generators is not supported. If you want these performance accelerations, please consider using a Sequence. Args: sequence: A ``tf.keras.utils.Sequence`` that holds the data. use_multiprocessing: If True, use process-based threading. If unspecified, `use_multiprocessing` will default to False. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments for the data loaders as they can't be passed easily to children processes. workers: Maximum number of processes to spin up when using process-based threading. If unspecified, workers will default to 1. If 0, will execute the data loading on the main thread. max_queue_size: Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. """ self._max_queue_size = max_queue_size if not len(data): raise ValueError("tf.keras.utils.Sequence objects should have a non-zero length.") self._sequence = _SequenceWithOffset(data) self._use_multiprocessing = use_multiprocessing self._workers = workers def __len__(self) -> int: return len(self._sequence) def start(self, batch_offset: int = 0, is_validation: bool = False) -> None: """ Sets a batch offset and starts the pre-processing of data. Pre-processing of data only happens if workers >0. If the underlying data type is an iterator, we are unable to set a batch_offset. Args: batch_offset: Batch number to start at. is_validation: Whether this iterator will be used for validation. This is necessary because `get_iterator` usually returns an infinite iterator. When `is_validation` is True, the iterator stops at the end of the epoch. """ self._is_validation = is_validation self._sequence._batch_offset = batch_offset if self._workers > 0: self._enqueuer = tf.keras.utils.OrderedEnqueuer( self._sequence, use_multiprocessing=self._use_multiprocessing ) self._enqueuer.start(workers=self._workers, max_queue_size=self._max_queue_size) def get_iterator(self) -> Iterator: """ Gets an Iterator over the data. `start` must be called prior to calling this function" """ def _make_finite(iterator: Iterator, num_steps: int) -> Iterator: for _ in range(num_steps): yield next(iterator) def _iter_sequence_infinite(sequence: tf.keras.utils.Sequence) -> Iterator: while True: yield from sequence if self._is_validation: if self._workers > 0: iterator = self._enqueuer.get() return _make_finite(iterator, len(self._sequence)) return iter(self._sequence) if self._workers > 0: return self._enqueuer.get() # type: ignore return _iter_sequence_infinite(self._sequence) def stop(self, timeout: Optional[int] = None) -> None: """ Stops processing the data. If workers is >0, this will stop any related threads and processes. Otherwise this is a no-op. Args: timeout: Maximum time to wait. """ if self._workers > 0: self._enqueuer.stop(timeout=timeout) InputData = Union[tf.keras.utils.Sequence, tf.data.Dataset, SequenceAdapter, tuple] def _get_x_y_and_sample_weight( input_data: Union[tf.keras.utils.Sequence, tf.data.Dataset, SequenceAdapter, tuple] ) -> Tuple[Any, Any, Any]: if isinstance(input_data, (tf.keras.utils.Sequence, tf.data.Dataset, SequenceAdapter)): return input_data, None, None elif isinstance(input_data, tuple) and len(input_data) == 2: return input_data[0], input_data[1], None elif isinstance(input_data, tuple) and len(input_data) == 3: return input_data[0], input_data[1], input_data[2] else: raise det.errors.InvalidDataTypeException( type(input_data), "input_data is invalid type. See the instruction below for details: \n" f"{keras.TFKerasTrial.build_training_data_loader.__doc__}", ) def _adapt_keras_data( x: Any, y: Any = None, sample_weight: Optional[np.ndarray] = None, batch_size: Optional[int] = None, use_multiprocessing: bool = False, workers: int = 1, max_queue_size: int = 10, drop_leftovers: bool = False, ) -> Union[SequenceAdapter, tf.data.Dataset]: """_adapt_keras_data adapts input and target data to a SequenceAdapter or leaves it as a tf.data.Dataset. Args: x: Input data. It could be: 1) A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). 2) A dict mapping input names to the corresponding array, if the model has named inputs. 3) A tf.data dataset. Should return a tuple of either (inputs, targets) or (inputs, targets, sample_weights). 4) A keras.utils.Sequence returning (inputs, targets) or (inputs, targets, sample weights). 5) a det.keras.SequenceAdapter returning (inputs, targets) or (inputs, targets, sample weights). y: Target data. Like the input data x, it could be either Numpy array(s). If x is a dataset or keras.utils.Sequence instance, y should not be specified (since targets will be obtained from x). use_multiprocessing: If True, use process-based threading. If unspecified, `use_multiprocessing` will default to False. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments for the data loaders as they can't be passed easily to children processes. This argument is ignored if x is a tf.data.Dataset or SequenceAdapter. sample_weight: Optional Numpy array of weights for the training samples. This argument is ignored if x is a tf.data.Dataset, SequenceAdapter, or tf.keras.Sequence. batch_size: Number of samples per gradient update. This argument is ignored if x is a tf.data.Dataset, SequenceAdapter, or tf.keras.Sequence. workers: Maximum number of processes to spin up when using process-based threading. If unspecified, workers will default to 1. If 0, will execute the data loading on the main thread. This argument is ignored if x is a tf.data.Dataset or SequenceAdapter. max_queue_size: Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. This argument is ignored if x is a tf.data.Dataset or SequenceAdapter. drop_leftovers: If True, drop the data that cannot complete the last batch. This argument is ignored if x is a Sequence or a Dataset. This argument is ignored if x is a tf.data.Dataset or SequenceAdapter. """ def check_y_is_none(y_data: Any) -> None: if y is not None: raise det.errors.InvalidDataTypeException( type(y_data), "If x is a keras.utils.Sequence or a tf.data.Dataset, " "y should not be specified (since targets will be obtained from x)." "See the instruction below for details: " f"\n{keras.TFKerasTrial.build_training_data_loader.__doc__}", ) if isinstance(x, np.ndarray) or _is_list_of_numpy_array(x) or _is_dict_of_numpy_array(x): if not ( (isinstance(y, np.ndarray) or _is_list_of_numpy_array(y)) and isinstance(batch_size, int) ): raise det.errors.InvalidDataTypeException( type(y), "If x is a numpy array or list/dict of numpy arrays, " "y must also be a numpy array. " "See the instruction below for details: " f"\n{keras.TFKerasTrial.build_training_data_loader.__doc__}", ) return SequenceAdapter( _ArrayLikeAdapter(x, y, batch_size, sample_weight, drop_leftovers), use_multiprocessing, workers, max_queue_size, ) elif isinstance(x, tf.keras.utils.Sequence): check_y_is_none(y) return SequenceAdapter(x, use_multiprocessing, workers, max_queue_size) elif isinstance(x, tf.data.Dataset): return x elif isinstance(x, SequenceAdapter): check_y_is_none(y) return x else: raise det.errors.InvalidDataTypeException( type(x), f"x is invalid type. x={x}\n" f"See the instruction below for details: \n" f"\n{keras.TFKerasTrial.build_training_data_loader.__doc__}", )
the-stack_106_17629
# Copyright 2020 Soda # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from sodasql.scan.db import sql_update from tests.common.warehouse_fixture import WarehouseFixture class RedshiftFixture(WarehouseFixture): original_dialect = None original_connection = None def create_database(self): self.database = self.create_unique_database_name() self.original_connection = self.warehouse.connection self.original_dialect = self.warehouse.dialect self.original_connection.set_isolation_level(0) sql_update(self.original_connection, f'CREATE DATABASE {self.database}') self.warehouse.dialect = self.warehouse.dialect.with_database(self.database) self.warehouse.connection = self.warehouse.dialect.create_connection() def test_warehouse_connection(self): assert(self.warehouse.dialect.sql_test_connection()) def drop_database(self): try: self.warehouse.connection.close() except Exception as e: logging.debug(f'Closing connection failed: {str(e)}') sql_update(self.original_connection, f'DROP DATABASE {self.database}')
the-stack_106_17631
""" Mastermind Game Play: Code Breaker """ import sys from argparse import ArgumentParser from collections import Counter from itertools import product, permutations from random import choice from typing import List, Tuple # variants STANDARD = 0 NO_REPEATS = 1 # number of colors for code BASIC = 6 SUPER = 8 # number of code pins NORMAL = 4 # feedback RIGHT_COLOR = 'o' RIGHT_COLOR_AND_POSITION = '+' def run(code, *, variant: int = STANDARD, colors: int = BASIC, pins: int = NORMAL) -> None: def init() -> List[Tuple[int, ...]]: possible_codes = { STANDARD: lambda c, p: list(product(range(c), repeat=p)), NO_REPEATS: lambda c, p: list(permutations(range(c), p)), }[variant](colors, pins) return possible_codes def compare_codes(a: Tuple[int, ...], b: Tuple[int, ...]) -> str: if len(a) != len(b): raise ValueError('Can not compare iterables of different length.') result = RIGHT_COLOR * sum((Counter(a) & Counter(b)).values()) for x, y in zip(a, b): if x == y: result = result[1:] + RIGHT_COLOR_AND_POSITION return result def reduce_choices() -> List[Tuple]: return [ code for code in remaining_codes if compare_codes(code, guess) == feedback and code != guess ] secret_code = code possible_codes = init() print(f'The secret code is one of {len(possible_codes)} possible combinations.') rounds = 0 feedback = '' remaining_codes = possible_codes[:] while feedback != '+' * pins: guess = choice(remaining_codes) if len(guess) != pins: print(f'Please give {pins} digits, separated by blanks.') continue rounds += 1 feedback = compare_codes(secret_code, guess) remaining_codes = reduce_choices() print(f'{rounds}: {guess} -> {feedback:4} | remaining choices: {len(remaining_codes)}') print(f'You cracked the secret code {secret_code} with {rounds} tries.') def parse_args(): parser = ArgumentParser(description='Break the code like a mastermind!', usage='%(prog)s [options]') parser.add_argument('digits', type=int, nargs='+', help='your code digits') parser.add_argument('--colors', dest='num_colors', default=6, type=int, help='set the number of different colors (default = 6)') parser.add_argument('--pins', dest='num_pins', default=4, type=int, help='set the number of code pins (default = 4)') parser.add_argument('--no_repeats', action='store_true', help='do not repeat colors in code') return parser.parse_args() def check_secret_code(args): digits = args.digits pins = args.num_pins if len(digits) != args.num_pins: print(f'Bad code: {digits}.') print(f'Please give {pins} digits, separated by blanks.') sys.exit(4) for d in digits: if not 0 <= d < 10: print(f'Bad color: {d}.') print(f'All color codes must be single digits 0 <= d < 10.') sys.exit(4) return args if __name__ == '__main__': args = check_secret_code(parse_args()) run( args.digits, colors=args.num_colors, pins=args.num_pins, variant=NO_REPEATS if args.no_repeats else STANDARD ) # last line of code
the-stack_106_17632
# -*- coding: utf-8 -*- """ ppstore.dbconnection ~~~~~~~~~~~~~~~~~ (Deprecated) A module containing a class to connect to database, query it, request updates and commit to database. :author: Muzammil Abdul Rehman :copyright: Northeastern University © 2018. :license: Custom BSD, see LICENSE for more details. :email: [email protected] """ import configs.system import MySQLdb import traceback from ConfigParser import SafeConfigParser # Notes: Please add SSL to this connection. ############################################################################## # A basic class to handle database connections, queries, inserts, updates, # commits, rollbacks, etc ############################################################################## class DatabaseConnection(object): def __init__(self): config_parser = SafeConfigParser() config_parser.read(configs.system.CONFIG_FILE_PATH) if configs.system.HOSTED_LOCALLY: section = "Local" else: section = "Remote" username = config_parser.get(section, 'username') password = config_parser.get(section, 'password') hostname = config_parser.get(section, 'hostname') database = config_parser.get(section, 'database') self.__db_con = MySQLdb.connect(host=hostname, user=username, passwd=password, db=database) self.cursor = None # self.cursor = self.__db_con.cursor() def query(self, query, params): self.new_cursor() self.cursor.query(query, params) def execute(self, query, params, commit_to_db): try: self.new_cursor() self.cursor.execute(query, params) if commit_to_db: self.__db_con.commit() self.close_cursor() return True except: traceback.print_exc() self.rollback() return False def commit(self): self.__db_con.commit() def rollback(self): try: self.__db_con.rollback() except: traceback.print_exc() def new_cursor(self): self.close_cursor() self.cursor = self.__db_con.cursor() def close_cursor(self): if self.cursor is not None: self.cursor.close() self.cursor = None def close_connection(self): self.close_cursor() self.__db_con.close()
the-stack_106_17633
# -*- coding: utf-8 -*- from numpy import cos as npCos from numpy import exp as npExp from numpy import pi as npPi from numpy import sqrt as npSqrt from pandas_ta.utils import get_offset, verify_series def ssf(close, length=None, poles=None, offset=None, **kwargs): """Indicator: Ehler's Super Smoother Filter (SSF)""" # Validate Arguments length = int(length) if length and length > 0 else 10 poles = int(poles) if poles in [2, 3] else 2 close = verify_series(close, length) offset = get_offset(offset) if close is None: return # Calculate Result m = close.size ssf = close.copy() if poles == 3: x = npPi / length # x = PI / n a0 = npExp(-x) # e^(-x) b0 = 2 * a0 * npCos(npSqrt(3) * x) # 2e^(-x)*cos(3^(.5) * x) c0 = a0 * a0 # e^(-2x) c4 = c0 * c0 # e^(-4x) c3 = -c0 * (1 + b0) # -e^(-2x) * (1 + 2e^(-x)*cos(3^(.5) * x)) c2 = c0 + b0 # e^(-2x) + 2e^(-x)*cos(3^(.5) * x) c1 = 1 - c2 - c3 - c4 for i in range(0, m): ssf.iloc[i] = c1 * close.iloc[i] + c2 * ssf.iloc[i - 1] + c3 * ssf.iloc[i - 2] + c4 * ssf.iloc[i - 3] else: # poles == 2 x = npPi * npSqrt(2) / length # x = PI * 2^(.5) / n a0 = npExp(-x) # e^(-x) a1 = -a0 * a0 # -e^(-2x) b1 = 2 * a0 * npCos(x) # 2e^(-x)*cos(x) c1 = 1 - a1 - b1 # e^(-2x) - 2e^(-x)*cos(x) + 1 for i in range(0, m): ssf.iloc[i] = c1 * close.iloc[i] + b1 * ssf.iloc[i - 1] + a1 * ssf.iloc[i - 2] # Offset if offset != 0: ssf = ssf.shift(offset) # Name & Category ssf.name = f"SSF_{length}_{poles}" ssf.category = "overlap" return ssf ssf.__doc__ = \ """Ehler's Super Smoother Filter (SSF) © 2013 John F. Ehlers's solution to reduce lag and remove aliasing noise with his research in aerospace analog filter design. This indicator comes with two versions determined by the keyword poles. By default, it uses two poles but there is an option for three poles. Since SSF is a (Resursive) Digital Filter, the number of poles determine how many prior recursive SSF bars to include in the design of the filter. So two poles uses two prior SSF bars and three poles uses three prior SSF bars for their filter calculations. Sources: http://www.stockspotter.com/files/PredictiveIndicators.pdf https://www.tradingview.com/script/VdJy0yBJ-Ehlers-Super-Smoother-Filter/ https://www.mql5.com/en/code/588 https://www.mql5.com/en/code/589 Calculation: Default Inputs: length=10, poles=[2, 3] See the source code or Sources listed above. Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 poles (int): The number of poles to use, either 2 or 3. Default: 2 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """
the-stack_106_17634
# python3 from gooey import * import synbiopython import synbiopython.genbabel as stdgen # imput parameters @Gooey(required_cols=2, program_name='genbank to sbol', header_bg_color= '#DCDCDC', terminal_font_color= '#DCDCDC', terminal_panel_color= '#DCDCDC') def main(): ap = GooeyParser() ap.add_argument("-gb", "--genbank", required=True, widget='FileChooser', help="input genbank file") ap.add_argument("-sbol", "--sbol", required=True, widget='FileSaver', help="outpul sbol file") args = vars(ap.parse_args()) # main stdconv = stdgen.GenSBOLconv() uri_Prefix_igb = 'http://synbiohub.org/public/igem' stdconv.run_sbolvalidator(args['genbank'],'SBOL2', uri_Prefix_igb, outputfile = args['sbol']) if __name__ == '__main__': main()
the-stack_106_17635
import os import os.path as osp import numpy as np import pickle from PIL import Image import glob import yaml import torch from torch.utils.data import Dataset from torch.utils.data.dataloader import DataLoader import open3d as o3d import xmuda.data.semantic_kitti.io_data as SemanticKittiIO from xmuda.data.semantic_kitti import splits # prevent "RuntimeError: received 0 items of ancdata" torch.multiprocessing.set_sharing_strategy('file_system') class DummyDataset(Dataset): """Use torch dataloader for multiprocessing""" def __init__(self, root_dir, scenes): self.root_dir = root_dir self.data = [] self.glob_frames(scenes) yaml_path, _ = os.path.split(os.path.realpath(__file__)) self.dataset_config = yaml.safe_load( open(os.path.join(yaml_path, 'semantic-kitti.yaml'), 'r')) self.nbr_classes = self.dataset_config['nbr_classes'] self.grid_dimensions = self.dataset_config['grid_dims'] # [W, H, D] self.remap_lut = self.get_remap_lut() # self.VOXEL_DIMS = (256, 256, 32) # self.img_size = (610, 185) # self.downsample = 2 # self.img_grid = self._create_img_grid() # self.scene_lower_bound = np.array([0, -25.6, -2]).reshape(1, -1) # self.output_voxel_size = 0.2 # self.num_voxelized_depth_classes = num_voxelized_depth_classes # self.depth_voxel_size = 51.2 / self.num_voxelized_depth_classes def get_remap_lut(self): ''' remap_lut to remap classes of semantic kitti for training... :return: ''' # make lookup table for mapping maxkey = max(self.dataset_config['learning_map'].keys()) # +100 hack making lut bigger just in case there are unknown labels remap_lut = np.zeros((maxkey + 100), dtype=np.int32) remap_lut[list(self.dataset_config['learning_map'].keys())] = list( self.dataset_config['learning_map'].values()) # in completion we have to distinguish empty and invalid voxels. # Important: For voxels 0 corresponds to "empty" and not "unlabeled". remap_lut[remap_lut == 0] = 255 # map 0 to 'invalid' remap_lut[0] = 0 # only 'empty' stays 'empty'. return remap_lut def glob_frames(self, scenes): for scene in scenes: # glob_path = osp.join(self.root_dir, 'dataset', 'sequences', scene, 'image_2', '*.png') # cam_paths = sorted(glob.glob(glob_path)) glob_path = osp.join(self.root_dir, 'dataset', 'sequences', scene, 'voxels', '*.label') voxel_paths = sorted(glob.glob(glob_path)) # load calibration calib = self.read_calib( osp.join(self.root_dir, 'dataset', 'sequences', scene, 'calib.txt')) P = calib['P2'] T_velo_2_cam = calib['Tr'] proj_matrix = P @ T_velo_2_cam proj_matrix = proj_matrix.astype(np.float32) # print(proj_matrix) K_intrinsic = P[0:3, 0:3] for voxel_path in voxel_paths: basename = osp.basename(voxel_path) frame_id = osp.splitext(basename)[0] assert frame_id.isdigit() data = { 'scene': scene, 'frame_id': frame_id, 'camera_path': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'image_2', frame_id + '.png'), 'edge_path': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'image_2', frame_id + '_edge.png'), 'lidar_path': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'velodyne', frame_id + '.bin'), 'label_path': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'labels', frame_id + '.label'), 'voxel_label_path_1_1': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'voxels', frame_id + '.label'), 'voxel_label_path_1_4': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'voxels', frame_id + '.label_1_4'), 'voxel_label_path_1_16': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'voxels', frame_id + '.label_1_16'), 'voxel_invalid_path_1_1': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'voxels', frame_id + '.invalid'), 'voxel_invalid_path_1_4': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'voxels', frame_id + '.invalid_1_4'), 'voxel_invalid_path_1_16': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'voxels', frame_id + '.invalid_1_16'), 'voxel_occupancy': osp.join(self.root_dir, 'dataset', 'sequences', scene, 'voxels', frame_id + '.bin'), 'proj_matrix': proj_matrix, 'K_intrinsic': K_intrinsic, 'T_velo_2_cam': T_velo_2_cam } for k, v in data.items(): if isinstance(v, str) and k != "scene" and k != "frame_id": if not osp.exists(v): raise IOError('File not found {}'.format(v)) self.data.append(data) @staticmethod def read_calib(calib_path): """ :param calib_path: Path to a calibration text file. :return: dict with calibration matrices. """ calib_all = {} with open(calib_path, 'r') as f: for line in f.readlines(): if line == '\n': break key, value = line.split(':', 1) calib_all[key] = np.array([float(x) for x in value.split()]) # reshape matrices calib_out = {} # 3x4 projection matrix for left camera calib_out['P2'] = calib_all['P2'].reshape(3, 4) calib_out['Tr'] = np.identity(4) # 4x4 matrix calib_out['Tr'][:3, :4] = calib_all['Tr'].reshape(3, 4) return calib_out @staticmethod def select_points_in_frustum(points_2d, x1, y1, x2, y2): """ Select points in a 2D frustum parametrized by x1, y1, x2, y2 in image coordinates :param points_2d: point cloud projected into 2D :param points_3d: point cloud :param x1: left bound :param y1: upper bound :param x2: right bound :param y2: lower bound :return: points (2D and 3D) that are in the frustum """ keep_ind = (points_2d[:, 0] > x1) * \ (points_2d[:, 1] > y1) * \ (points_2d[:, 0] < x2) * \ (points_2d[:, 1] < y2) return keep_ind def get_label_at_scale(self, scale, idx): scale_divide = int(scale[-1]) INVALID = SemanticKittiIO._read_invalid_SemKITTI( self.data[idx]["voxel_invalid_path_" + scale]) LABEL = SemanticKittiIO._read_label_SemKITTI( self.data[idx]["voxel_label_path_" + scale]) if scale == '1_1': LABEL = self.remap_lut[LABEL.astype(np.uint16)].astype( np.float32) # Remap 20 classes semanticKITTI SSC # unique, counts = np.unique(LABEL, return_counts=True) # Setting to unknown all voxels marked on invalid mask... LABEL[np.isclose(INVALID, 1)] = 255 LABEL = np.moveaxis(LABEL.reshape([int(self.grid_dimensions[0] / scale_divide), int(self.grid_dimensions[2] / scale_divide), int(self.grid_dimensions[1] / scale_divide)]), [0, 1, 2], [0, 2, 1]) # LABEL = LABEL.reshape(self.VOXEL_DIMS) return LABEL def save_points(path, xyz, colors=None): """ xyz: nx3 """ # print(xyz) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(xyz) if colors is not None: pcd.colors = o3d.utility.Vector3dVector(colors / 255.0) # print(xyz.shape, colors.shape) o3d.io.write_point_cloud(path, pcd) def __getitem__(self, index): data_dict = self.data[index].copy() scan = np.fromfile(data_dict['lidar_path'], dtype=np.float32) scan = scan.reshape((-1, 4)) points = scan[:, :3] label = np.fromfile(data_dict['label_path'], dtype=np.uint32) label = label.reshape((-1)) label = label & 0xFFFF # get lower half for semantics # Keep points inside the completion area # min extent: [0, -25.6, -2] # max extent: [51.2, 25.6, 4.4] # voxel size: 0.2 keep_idx = (points[:, 0] < 51.2) * \ (points[:, 1] < 25.6) * (points[:, 1] > -25.6) * \ (points[:, 2] < 4.4) * (points[:, 2] > -2) points = points[keep_idx, :] label = label[keep_idx] # load image # image = Image.open(data_dict['camera_path']) # image_size = image.size image_size = (1220, 370) keep_idx = points[:, 0] > 0 points_3d = points[keep_idx] label_3d = label[keep_idx].astype(np.int16) label_3d = self.remap_lut[label_3d].astype(np.float32) # print(points_3d.min(0)) # Extract points_2d by projecting points into image points_hcoords = np.concatenate( [points_3d, np.ones([keep_idx.sum(), 1], dtype=np.float32)], axis=1) # T_velo_2_cam = data_dict['T_velo_2_cam'] # points_3d_cam = (T_velo_2_cam @ points_hcoords.T).T img_points = (data_dict['proj_matrix'] @ points_hcoords.T).T depth = img_points[:, 2] # print(np.sum(depth < 0) / np.sum(depth)) img_points = img_points[:, :2] / \ np.expand_dims(depth, axis=1) # scale 2D points keep_idx_img_pts = self.select_points_in_frustum( img_points, 0, 0, *image_size) keep_idx[keep_idx] = keep_idx_img_pts # fliplr so that indexing is row, col and not col, row img_points = np.fliplr(img_points) points_2d = points[keep_idx] label_2d = label[keep_idx].astype(np.int16) label_2d = self.remap_lut[label_2d].astype(np.float32) data_dict['seg_label_3d'] = label_3d data_dict['seg_label_2d'] = label_2d # points 3d are points in front of the vehicle data_dict['points_3d'] = points_3d # points 2d are points in the frustum of the lidar data_dict['points_2d'] = points_2d points_img = img_points[keep_idx_img_pts] data_dict['points_img'] = points_img # print("dataset", points_img.shape) data_dict['image_size'] = np.array(image_size) data_dict['ssc_label_1_1'] = self.get_label_at_scale('1_1', index) data_dict['ssc_label_1_4'] = self.get_label_at_scale('1_4', index) data_dict['ssc_label_1_16'] = self.get_label_at_scale('1_16', index) OCCUPANCY = SemanticKittiIO._read_occupancy_SemKITTI( data_dict['voxel_occupancy']) OCCUPANCY = np.moveaxis(OCCUPANCY.reshape([self.grid_dimensions[0], self.grid_dimensions[2], self.grid_dimensions[1]]), [0, 1, 2], [0, 2, 1]) data_dict['voxel_occupancy'] = OCCUPANCY return data_dict def __len__(self): return len(self.data) def preprocess(scene, root_dir, out_dir): pkl_data = [] #split = getattr(splits, split_name) scenes = [scene] dataloader = DataLoader(DummyDataset( root_dir, scenes), num_workers=10) num_skips = 0 for i, data_dict in enumerate(dataloader): # data error leads to returning empty dict if not data_dict: print('empty dict, continue') num_skips += 1 continue for k, v in data_dict.items(): data_dict[k] = v[0] # print(data_dict['scene']) print('{}/{} {}'.format(i, len(dataloader), data_dict['lidar_path'])) # convert to relative path # lidar_path = data_dict['lidar_path'].replace(root_dir + '/', '') cam_path = data_dict['camera_path'].replace(root_dir + '/', '') edge_path = data_dict['edge_path'].replace(root_dir + '/', '') # print(data_dict['voxel_indices'].shape) # append data out_dict = { 'scene': data_dict['scene'], 'frame_id': data_dict['frame_id'], # 'points_2d': data_dict['points_2d'].numpy(), #'points_3d': data_dict['points_3d'].numpy(), # 'seg_label_3d': data_dict['seg_label_3d'].numpy(), # 'seg_label_2d': data_dict['seg_label_2d'].numpy(), # row, col format, shape: (num_points, 2) # 'points_img': data_dict['points_img'].numpy(), # 'lidar_path': lidar_path, 'camera_path': cam_path, # 'edge_path': edge_path, 'image_size': tuple(data_dict['image_size'].numpy()), # 'ssc_label_1_1': data_dict['ssc_label_1_1'].numpy(), #'ssc_label_1_2': data_dict['ssc_label_1_2'].numpy(), 'proj_matrix': data_dict['proj_matrix'].numpy(), 'K_intrinsic': data_dict['K_intrinsic'].numpy(), 'T_velo_2_cam': data['T_velo_2_cam'].numpy(), 'ssc_label_1_4': data_dict['ssc_label_1_4'].numpy(), 'ssc_label_1_16': data_dict['ssc_label_1_16'].numpy(), # 'voxel_occupancy': data_dict['voxel_occupancy'].numpy() } # pkl_data.append(out_dict) # print('Skipped {} files'.format(num_skips)) # save to pickle file save_dir = osp.join(out_dir, 'preprocess', data_dict['scene']) os.makedirs(save_dir, exist_ok=True) save_path = osp.join(save_dir, '{}.pkl'.format(data_dict['frame_id'])) with open(save_path, 'wb') as f: pickle.dump(out_dict, f, pickle.HIGHEST_PROTOCOL) print('Wrote preprocessed data to ' + save_path) if __name__ == '__main__': # root_dir = '/datasets_master/semantic_kitti' # out_dir = '/datasets_local/datasets_acao/semantic_kitti_preprocess' root_dir = '/gpfswork/rech/xqt/uyl37fq/data/semantic_kitti' out_dir = "/gpfsscratch/rech/xqt/uyl37fq/kitti_preprocess" scenes = getattr(splits, "train") scenes += getattr(splits, "val") scenes += getattr(splits, "test") for scene in scenes: preprocess(scene, root_dir, out_dir) # compute_2d_depths_to_3d_voxel_indices( # root_dir, out_dir, num_voxelized_depth_classes=num_voxelized_depth_classes)
the-stack_106_17636
import numpy as np import random, os import argparse import copy import tensorflow as tf #from datetime import datetime from Load_Controllers import Load_BBB, Load_Demonstrator from tqdm import tqdm from multiple_tasks import get_task_on_MUJOCO_environment from Dataset import getDemonstrationsFromTask import _pickle as pickle import sys sys.path.insert(0, './../') from Housekeeping import * from BBBNNRegression import BBBNNRegression from Dataset import getDemonstrationsFromTask from Detector import Detector def train_BBB(data_x, data_y, configuration_identity, epochs, number_mini_batches, activation_unit, learning_rate, hidden_units, number_samples_variance_reduction, precision_alpha, weights_prior_mean_1, weights_prior_mean_2, weights_prior_deviation_1, weights_prior_deviation_2, mixture_pie, rho_mean, extra_likelihood_emphasis): directory_to_save_tensorboard_data = configuration_identity + TENSORBOARD_DIRECTORY saved_models_during_iterations_bbb = configuration_identity + SAVED_MODELS_DURING_ITERATIONS_DIRECTORY saved_final_model_bbb = configuration_identity + SAVED_FINAL_MODEL_DIRECTORY if not os.path.exists(directory_to_save_tensorboard_data): os.makedirs(directory_to_save_tensorboard_data) if not os.path.exists(saved_models_during_iterations_bbb): os.makedirs(saved_models_during_iterations_bbb) if not os.path.exists(saved_final_model_bbb): os.makedirs(saved_final_model_bbb) controller_graph = tf.Graph() with controller_graph.as_default(): BBB_Regressor=BBBNNRegression(number_mini_batches=number_mini_batches, number_features=data_x.shape[1], number_output_units=data_y.shape[1], activation_unit=activation_unit, learning_rate=learning_rate, hidden_units=hidden_units, number_samples_variance_reduction=number_samples_variance_reduction, precision_alpha=precision_alpha, weights_prior_mean_1=weights_prior_mean_1, weights_prior_mean_2=weights_prior_mean_2, weights_prior_deviation_1=weights_prior_deviation_1, weights_prior_deviation_2=weights_prior_deviation_2, mixture_pie=mixture_pie, rho_mean=rho_mean, extra_likelihood_emphasis=extra_likelihood_emphasis) config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter(directory_to_save_tensorboard_data, sess.graph) saver = tf.train.Saver(max_to_keep=3, keep_checkpoint_every_n_hours=2) previous_minimum_loss = sys.float_info.max mini_batch_size = int(data_x.shape[0]/number_mini_batches) for epoch_iterator in tqdm(range(epochs)): data_x, data_y = randomize(data_x, data_y) ptr = 0 for mini_batch_iterator in range(number_mini_batches): x_batch = data_x[ptr:ptr+mini_batch_size, :] y_batch = data_y[ptr:ptr+mini_batch_size, :] _, loss, summary = sess.run([BBB_Regressor.train(), BBB_Regressor.getMeanSquaredError(), BBB_Regressor.summarize()], feed_dict={BBB_Regressor.X_input:x_batch, BBB_Regressor.Y_input:y_batch}) sess.run(BBB_Regressor.update_mini_batch_index()) if loss < previous_minimum_loss: saver.save(sess, saved_models_during_iterations_bbb + 'iteration', global_step=epoch_iterator, write_meta_graph=False) previous_minimum_loss = loss ptr += mini_batch_size writer.add_summary(summary, global_step=tf.train.global_step(sess, BBB_Regressor.global_step)) #if epoch_iterator % 2 == 0: # print(BLUE('Training progress: ' + str(epoch_iterator) + '/' + str(epochs))) writer.close() saver.save(sess, saved_final_model_bbb + 'final', write_state=False) def validate_BBB(domain_name, controller_identity, configuration_identity): #tf.reset_default_graph() copycat_graph = tf.Graph() with copycat_graph.as_default(): copycat_controller = Load_BBB(controller_identity=controller_identity) file_to_save_logs = configuration_identity + 'validation_logs.pkl' logs_for_all_tasks = {} for task_to_validate in ALL_MUJOCO_TASK_IDENTITIES: logs_for_a_task = {} demonstrator_graph = tf.Graph() with demonstrator_graph.as_default(): demonstrator_controller = Load_Demonstrator(domain_name=domain_name, task_identity=str(task_to_validate)) for validation_trial in range(NUMBER_VALIDATION_TRIALS): all_observations = [] all_behavior_control_means = [] all_behavior_control_deviations = [] all_behavior_rewards = [] all_demonstrator_controls = [] #all_target_control_means, all_target_control_deviations = [], [] env = get_task_on_MUJOCO_environment(env_name=domain_name, task_identity=str(task_to_validate)) total_cost = total_variance = 0. observation = env.reset() finish = False time_step = 0.0 observation = np.append(observation, time_step) # add time step feature moving_window_x = np.zeros((1, copycat_controller.moving_windows_x_size)) moving_window_x[0, -observation.shape[0]:] = observation behavior_mean_control, behavior_dev_control, maximum_this_time_step, minimum_this_time_step = copycat_controller.sess.run([copycat_controller.mean_of_predictions, copycat_controller.deviation_of_predictions, copycat_controller.maximum_of_predictions, copycat_controller.minimum_of_predictions], feed_dict={copycat_controller.x_input:NORMALIZE(copy.deepcopy(moving_window_x), copycat_controller.mean_x, copycat_controller.deviation_x)}) behavior_mean_control = REVERSE_NORMALIZE(behavior_mean_control, copycat_controller.mean_y, copycat_controller.deviation_y) maximum_this_time_step = REVERSE_NORMALIZE(maximum_this_time_step, copycat_controller.mean_y, copycat_controller.deviation_y) minimum_this_time_step = REVERSE_NORMALIZE(minimum_this_time_step, copycat_controller.mean_y, copycat_controller.deviation_y) behavior_dev_control = behavior_dev_control * copycat_controller.deviation_y demonstrator_control = demonstrator_controller.sess.run(demonstrator_controller.output_action_node, feed_dict={demonstrator_controller.scaled_observation_node: (observation.reshape(1,-1) - demonstrator_controller.offset) * demonstrator_controller.scale}) while not finish: all_observations.append(observation) all_behavior_control_means.append(behavior_mean_control) all_behavior_control_deviations.append(behavior_dev_control) all_demonstrator_controls.append(demonstrator_control) #all_target_control_means.append(target_mean_control) #all_target_control_deviations.append(target_var_control) observation, reward, finish, info = env.step(behavior_mean_control) all_behavior_rewards.append(reward) time_step += 1e-3 observation = np.append(observation, time_step) #target_mean_control, target_var_control = -1. * np.dot(K, observation), np.array([[0.]]) if not copycat_controller.window_size == 1: moving_window_x[0, :-copycat_controller.drift_per_time_step] = moving_window_x[0, copycat_controller.drift_per_time_step:] moving_window_x[0, -copycat_controller.drift_per_time_step:-(copycat_controller.drift_per_time_step-behavior_mean_control.shape[1])] = behavior_mean_control[0] moving_window_x[0, -(copycat_controller.drift_per_time_step-behavior_mean_control.shape[1])] = reward moving_window_x[0, -observation.shape[0]:] = observation behavior_mean_control, behavior_dev_control, maximum_this_time_step, minimum_this_time_step = copycat_controller.sess.run([copycat_controller.mean_of_predictions, copycat_controller.deviation_of_predictions, copycat_controller.maximum_of_predictions, copycat_controller.minimum_of_predictions], feed_dict={copycat_controller.x_input:NORMALIZE(copy.deepcopy(moving_window_x), copycat_controller.mean_x, copycat_controller.deviation_x)}) behavior_mean_control = REVERSE_NORMALIZE(behavior_mean_control, copycat_controller.mean_y, copycat_controller.deviation_y) maximum_this_time_step = REVERSE_NORMALIZE(maximum_this_time_step, copycat_controller.mean_y, copycat_controller.deviation_y) minimum_this_time_step = REVERSE_NORMALIZE(minimum_this_time_step, copycat_controller.mean_y, copycat_controller.deviation_y) behavior_dev_control = behavior_dev_control * copycat_controller.deviation_y demonstrator_control = demonstrator_controller.sess.run(demonstrator_controller.output_action_node, feed_dict={demonstrator_controller.scaled_observation_node: (observation.reshape(1,-1) - demonstrator_controller.offset) * demonstrator_controller.scale}) all_observations = np.array(all_observations) all_behavior_control_means = np.concatenate(all_behavior_control_means, axis=0) all_behavior_rewards = np.array(all_behavior_rewards) all_behavior_control_deviations = np.concatenate(all_behavior_control_deviations, axis=0) all_demonstrator_controls = np.array(all_demonstrator_controls) logs_for_a_task[str(validation_trial)] = {OBSERVATIONS_LOG_KEY: all_observations, BEHAVIORAL_CONTROL_MEANS_LOG_KEY: all_behavior_control_means, BEHAVIORAL_CONTROL_REWARDS_LOG_KEY: all_behavior_rewards, BEHAVIORAL_CONTROL_DEVIATIONS_LOG_KEY: all_behavior_control_deviations, TARGET_CONTROL_MEANS_LOG_KEY: all_demonstrator_controls} logs_for_all_tasks[str(task_to_validate)] = logs_for_a_task with open(file_to_save_logs, 'wb') as f: pickle.dump(logs_for_all_tasks, f, protocol=-1) def run_on_itself(domain_name, task_identities, controller_identity, detector=None): #tf.reset_default_graph() copycat_graph = tf.Graph() with copycat_graph.as_default(): copycat_controller = Load_BBB(controller_identity=controller_identity) stats = {} behavior_deviations_across_tasks = [] for task_identity in task_identities: #isSafe = True all_behavior_deviation = [] env = get_task_on_MUJOCO_environment(env_name=domain_name, task_identity=str(task_identity)) total_cost = total_variance = 0. observation = env.reset() finish = False time_step = 0.0 observation = np.append(observation, time_step) # add time step feature moving_window_x = np.zeros((1, copycat_controller.moving_windows_x_size)) moving_window_x[0, -observation.shape[0]:] = observation behavior_mean_control, behavior_dev_control, maximum_this_time_step, minimum_this_time_step = copycat_controller.sess.run([copycat_controller.mean_of_predictions, copycat_controller.deviation_of_predictions, copycat_controller.maximum_of_predictions, copycat_controller.minimum_of_predictions], feed_dict={copycat_controller.x_input:NORMALIZE(copy.deepcopy(moving_window_x), copycat_controller.mean_x, copycat_controller.deviation_x)}) behavior_mean_control = REVERSE_NORMALIZE(behavior_mean_control, copycat_controller.mean_y, copycat_controller.deviation_y) maximum_this_time_step = REVERSE_NORMALIZE(maximum_this_time_step, copycat_controller.mean_y, copycat_controller.deviation_y) minimum_this_time_step = REVERSE_NORMALIZE(minimum_this_time_step, copycat_controller.mean_y, copycat_controller.deviation_y) behavior_dev_control = behavior_dev_control * copycat_controller.deviation_y while not finish: all_behavior_deviation.append(behavior_dev_control) if not detector is None: isSafe, stats = detector.isSafeToContinue(behavior_dev_control) if not str_to_bool(isSafe): return 'False', np.mean(all_behavior_deviation), stats observation, reward, finish, info = env.step(behavior_mean_control) time_step += 1e-3 observation = np.append(observation, time_step) #target_mean_control, target_var_control = -1. * np.dot(K, observation), np.array([[0.]]) if not copycat_controller.window_size == 1: moving_window_x[0, :-copycat_controller.drift_per_time_step] = moving_window_x[0, copycat_controller.drift_per_time_step:] moving_window_x[0, -copycat_controller.drift_per_time_step:-(copycat_controller.drift_per_time_step-behavior_mean_control.shape[1])] = behavior_mean_control[0] moving_window_x[0, -(copycat_controller.drift_per_time_step-behavior_mean_control.shape[1])] = reward moving_window_x[0, -observation.shape[0]:] = observation behavior_mean_control, behavior_dev_control, maximum_this_time_step, minimum_this_time_step = copycat_controller.sess.run([copycat_controller.mean_of_predictions, copycat_controller.deviation_of_predictions, copycat_controller.maximum_of_predictions, copycat_controller.minimum_of_predictions], feed_dict={copycat_controller.x_input:NORMALIZE(copy.deepcopy(moving_window_x), copycat_controller.mean_x, copycat_controller.deviation_x)}) behavior_mean_control = REVERSE_NORMALIZE(behavior_mean_control, copycat_controller.mean_y, copycat_controller.deviation_y) maximum_this_time_step = REVERSE_NORMALIZE(maximum_this_time_step, copycat_controller.mean_y, copycat_controller.deviation_y) minimum_this_time_step = REVERSE_NORMALIZE(minimum_this_time_step, copycat_controller.mean_y, copycat_controller.deviation_y) behavior_dev_control = behavior_dev_control * copycat_controller.deviation_y behavior_deviations_across_tasks.append(np.mean(all_behavior_deviation)) return 'True', np.max(behavior_deviations_across_tasks), stats def data_efficient_imitation_across_multiple_tasks(experiment_type, controller, domain_name, window_size, number_demonstrations, adapt_detector_threshold, start_monitoring_at_time_step, detector_c, detector_m, initial_detector_threshold, epochs, number_mini_batches, activation_unit, learning_rate, hidden_units, number_samples_variance_reduction, precision_alpha, weights_prior_mean_1, weights_prior_mean_2, weights_prior_deviation_1, weights_prior_deviation_2, mixture_pie, rho_mean, extra_likelihood_emphasis, simulation_iteration_onset, total_simulation_runs): COPY_OF_ALL_MUJOCO_TASK_IDENTITIES = copy.deepcopy(ALL_MUJOCO_TASK_IDENTITIES) if experiment_type == 'active_learning_proof_of_concept': simulation_runs = 1 else: simulation_runs = total_simulation_runs for simulation_iterator in range(simulation_iteration_onset, simulation_runs): if experiment_type == 'active_learning_proof_of_concept': if domain_name == 'HalfCheetah': COPY_OF_ALL_MUJOCO_TASK_IDENTITIES = np.array([8, 3, 7]) elif domain_name == 'Swimmer': COPY_OF_ALL_MUJOCO_TASK_IDENTITIES = np.array([3, 4, 0]) else: random.seed(simulation_iterator) random.shuffle(COPY_OF_ALL_MUJOCO_TASK_IDENTITIES) ###### Naive Controller ###### if controller == 'NAIVE': print(RED('NAIVE controller invoked')) all_gathered_x, all_gathered_y = None, None tasks_trained_on, task_iterator_trained_on = [], [] print(GREEN('Starting runs for the naive controller')) for task_iterator, current_task_identity in enumerate(COPY_OF_ALL_MUJOCO_TASK_IDENTITIES): print(RED('Simulation iteration is ' + str(simulation_iterator) + ' and task iterator is ' + str(task_iterator))) tasks_trained_on.append(current_task_identity) task_iterator_trained_on.append(task_iterator) moving_windows_x, moving_windows_y, drift_per_time_step, moving_windows_x_size = getDemonstrationsFromTask(domain_name=domain_name, task_identity=current_task_identity, window_size=window_size, number_demonstrations=number_demonstrations) if all_gathered_x is None: all_gathered_x, all_gathered_y = copy.deepcopy(moving_windows_x), copy.deepcopy(moving_windows_y) else: all_gathered_x, all_gathered_y = np.append(all_gathered_x, moving_windows_x, axis=0), np.append(all_gathered_y, moving_windows_y, axis=0) disposible_training_x, disposible_training_y = copy.deepcopy(all_gathered_x), copy.deepcopy(all_gathered_y) mean_x, deviation_x = get_mean_and_deviation(data = disposible_training_x) disposible_training_x = NORMALIZE(disposible_training_x, mean_x, deviation_x) mean_y, deviation_y = get_mean_and_deviation(data = disposible_training_y) disposible_training_y = NORMALIZE(disposible_training_y, mean_y, deviation_y) configuration_identity = 'logs/' + domain_name + '/' + str(number_demonstrations) + '/naive_controller/' + experiment_type + '/' + str(simulation_iterator) + '/' + str(task_iterator) + '/' training_logs_configuration_identity = configuration_identity + 'training/' if not os.path.exists(training_logs_configuration_identity): os.makedirs(training_logs_configuration_identity) file_name_to_save_meta_data = training_logs_configuration_identity + 'training_meta_data.pkl' meta_data_to_store = {MEAN_KEY_X: mean_x, DEVIATION_KEY_X: deviation_x, MEAN_KEY_Y:mean_y, DEVIATION_KEY_Y:deviation_y, DRIFT_PER_TIME_STEP_KEY: drift_per_time_step, MOVING_WINDOWS_X_SIZE_KEY: moving_windows_x_size, WINDOW_SIZE_KEY: window_size} with open(file_name_to_save_meta_data, 'wb') as f: pickle.dump(meta_data_to_store, f) print(BLUE('Training phase')) train_BBB(data_x=disposible_training_x, data_y=disposible_training_y, configuration_identity=training_logs_configuration_identity, epochs=epochs, number_mini_batches=number_mini_batches, activation_unit=activation_unit, learning_rate=learning_rate, hidden_units=hidden_units, number_samples_variance_reduction=number_samples_variance_reduction, precision_alpha=precision_alpha, weights_prior_mean_1=weights_prior_mean_1, weights_prior_mean_2=weights_prior_mean_2, weights_prior_deviation_1=weights_prior_deviation_1, weights_prior_deviation_2=weights_prior_deviation_2, mixture_pie=mixture_pie, rho_mean=rho_mean, extra_likelihood_emphasis=extra_likelihood_emphasis) meta_data_file_for_this_run = 'logs/' + domain_name + '/' + str(number_demonstrations) + '/naive_controller/' + experiment_type + '/' + str(simulation_iterator) + '/meta_data.pkl' meta_data_for_this_run = {TRAINING_TASK_ITERATION_KEY: task_iterator_trained_on, TASKS_TRAINED_ON_KEY: tasks_trained_on} with open(meta_data_file_for_this_run, 'wb') as f: pickle.dump(meta_data_for_this_run, f) print(BLUE('Validation phase')) validate_BBB(domain_name=domain_name, controller_identity=configuration_identity, configuration_identity=configuration_identity) ###### BBB Controller ###### if controller == 'BBB': print(RED('BBB controller invoked')) stats='first_run' did_succeed = False all_gathered_x, all_gathered_y = None, None tasks_trained_on, tasks_encountered, task_iterator_trained_on, all_thresholds, all_stats = [], [], [], [], [] current_task_identity = COPY_OF_ALL_MUJOCO_TASK_IDENTITIES[0] tasks_encountered.append(current_task_identity) detector = Detector(domain_name=domain_name, start_monitoring_at_time_step=start_monitoring_at_time_step, initial_threshold=initial_detector_threshold, detector_m=detector_m, detector_c=detector_c) print(GREEN('Starting runs for the BBB controller')) for task_iterator in range(len(COPY_OF_ALL_MUJOCO_TASK_IDENTITIES)): print(RED('Simulation iteration is ' + str(simulation_iterator) + ', task iterator is ' + str(task_iterator) + ', and current task is ' + str(current_task_identity))) detector.reset() configuration_identity = 'logs/' + domain_name + '/' + str(number_demonstrations) + '/bbb_controller/detector_c_' + str(detector_c) + '_detector_m_' + str(detector_m) + '/' + experiment_type + '/' + str(simulation_iterator) + '/' + str(task_iterator) + '/' if not os.path.exists(configuration_identity): os.makedirs(configuration_identity) if not did_succeed: training_logs_configuration_identity = configuration_identity + 'training/' if not os.path.exists(training_logs_configuration_identity): os.makedirs(training_logs_configuration_identity) current_controllers_identity = configuration_identity tasks_trained_on.append(current_task_identity) task_iterator_trained_on.append(task_iterator) moving_windows_x, moving_windows_y, drift_per_time_step, moving_windows_x_size = getDemonstrationsFromTask(domain_name=domain_name, task_identity=current_task_identity, window_size=window_size, number_demonstrations=number_demonstrations) if all_gathered_x is None: all_gathered_x, all_gathered_y = copy.deepcopy(moving_windows_x), copy.deepcopy(moving_windows_y) else: all_gathered_x, all_gathered_y = np.append(all_gathered_x, moving_windows_x, axis=0), np.append(all_gathered_y, moving_windows_y, axis=0) disposible_training_x, disposible_training_y = copy.deepcopy(all_gathered_x), copy.deepcopy(all_gathered_y) mean_x, deviation_x = get_mean_and_deviation(data = disposible_training_x) disposible_training_x = NORMALIZE(disposible_training_x, mean_x, deviation_x) mean_y, deviation_y = get_mean_and_deviation(data = disposible_training_y) disposible_training_y = NORMALIZE(disposible_training_y, mean_y, deviation_y) file_name_to_save_meta_data = training_logs_configuration_identity + 'training_meta_data.pkl' #meta_data_to_store = {MEAN_KEY_X: mean_x, DEVIATION_KEY_X: deviation_x, MEAN_KEY_Y:mean_y, DEVIATION_KEY_Y:deviation_y, # DRIFT_PER_TIME_STEP_KEY: drift_per_time_step, MOVING_WINDOWS_X_SIZE_KEY: moving_windows_x_size, # WINDOW_SIZE_KEY: window_size, TASKS_TRAINED_ON_KEY: tasks_trained_on, TASKS_ENCOUNTERED_KEY: tasks_encountered, # STATS_KEY: stats} meta_data_to_store = {MEAN_KEY_X: mean_x, DEVIATION_KEY_X: deviation_x, MEAN_KEY_Y:mean_y, DEVIATION_KEY_Y:deviation_y, DRIFT_PER_TIME_STEP_KEY: drift_per_time_step, MOVING_WINDOWS_X_SIZE_KEY: moving_windows_x_size, WINDOW_SIZE_KEY: window_size} with open(file_name_to_save_meta_data, 'wb') as f: pickle.dump(meta_data_to_store, f) print(BLUE('Training phase')) train_BBB(data_x=disposible_training_x, data_y=disposible_training_y, configuration_identity=training_logs_configuration_identity, epochs=epochs, number_mini_batches=number_mini_batches, activation_unit=activation_unit, learning_rate=learning_rate, hidden_units=hidden_units, number_samples_variance_reduction=number_samples_variance_reduction, precision_alpha=precision_alpha, weights_prior_mean_1=weights_prior_mean_1, weights_prior_mean_2=weights_prior_mean_2, weights_prior_deviation_1=weights_prior_deviation_1, weights_prior_deviation_2=weights_prior_deviation_2, mixture_pie=mixture_pie, rho_mean=rho_mean, extra_likelihood_emphasis=extra_likelihood_emphasis) #_, average_uncertainty, _ = run_on_itself(domain_name=domain_name, task_identities=current_task_identity, controller_identity= current_controllers_identity) _, average_uncertainty, _ = run_on_itself(domain_name=domain_name, task_identities=tasks_trained_on, controller_identity= current_controllers_identity) #### Ground the threshold according to the quantitative value of uncertainty on the current task #### if adapt_detector_threshold: detector.threshold = average_uncertainty all_thresholds.append(detector.threshold) all_stats.append(stats) meta_data_file_for_this_run = 'logs/' + domain_name + '/' + str(number_demonstrations) + '/bbb_controller/detector_c_' + str(detector_c) + '_detector_m_' + str(detector_m) + '/' + experiment_type + '/' + str(simulation_iterator) + '/meta_data.pkl' meta_data_for_this_run = {TRAINING_TASK_ITERATION_KEY: task_iterator_trained_on, DETECTOR_THRESHOLD_KEY: all_thresholds, TASKS_TRAINED_ON_KEY: tasks_trained_on, TASKS_ENCOUNTERED_KEY: tasks_encountered, STATS_KEY: all_stats} with open(meta_data_file_for_this_run, 'wb') as f: pickle.dump(meta_data_for_this_run, f) #need_training = False print(BLUE('Validation phase')) validate_BBB(domain_name=domain_name, controller_identity=current_controllers_identity, configuration_identity=configuration_identity) if task_iterator == (len(COPY_OF_ALL_MUJOCO_TASK_IDENTITIES) - 1): break current_task_identity = COPY_OF_ALL_MUJOCO_TASK_IDENTITIES[task_iterator + 1] tasks_encountered.append(current_task_identity) #did_succeed, average_uncertainty, stats = run_on_itself(domain_name=domain_name, task_identities=current_task_identity, controller_identity=current_controllers_identity, detector=detector) did_succeed, average_uncertainty, stats = run_on_itself(domain_name=domain_name, task_identities=[current_task_identity], controller_identity=current_controllers_identity, detector=detector) did_succeed = str_to_bool(did_succeed) #if not did_succeed: # need_training = True if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-et', '--experiment_type', type=str, help='Experiment Type', choices=['active_learning_proof_of_concept', 'data_efficient_active_learning']) parser.add_argument('-c', '--controller_type', type=str, help='Controller Type', choices=['NAIVE', 'BBB']) parser.add_argument('-dn', '--domain_name', type=str, help='MuJoCo domain', choices=['HalfCheetah', 'Swimmer']) parser.add_argument('-ws', '--window_size', type=int, help='Number of time-steps in a moving window', default=2) parser.add_argument('-nd', '--number_demonstrations', type=int, help='Number demonstrations per request', default=10) parser.add_argument('-adt', '--adapt_detector_threshold', type=str, help='Adaptive Detector Threshold', choices=['True', 'False'], default='True') parser.add_argument('-mts', '--start_monitoring_at_time_step', type=int, help='Time step to start monitoring BBB controller uncertainty', default=200) parser.add_argument('-dc', '--detector_c', type=float, help='Scaling factor for the detector threshold', default=2.5) parser.add_argument('-dm', '--detector_m', type=int, help='Number of last few time-steps to smoothen predictive uncertainty', default=50) parser.add_argument('-idt', '--initial_detector_threshold', type=float, help='The detector threshold to start with or the value of non-adaptive threshold', default=0.3) parser.add_argument('-sio', '--simulation_iteration_onset', type=int, help='simulation_iteration_onset', default=0) parser.add_argument('-tsr', '--total_simulation_runs', type=int, help='Total Simulation Runs', default=5) args = parser.parse_args() data_efficient_imitation_across_multiple_tasks(experiment_type=args.experiment_type, controller=args.controller_type, domain_name=args.domain_name, window_size=args.window_size, number_demonstrations=args.number_demonstrations, adapt_detector_threshold=str_to_bool(args.adapt_detector_threshold), start_monitoring_at_time_step=args.start_monitoring_at_time_step, detector_c=args.detector_c, detector_m=args.detector_m, initial_detector_threshold=args.initial_detector_threshold, epochs = 10001, number_mini_batches = 20, activation_unit = 'RELU', learning_rate = 0.001, hidden_units= [90, 30, 10], number_samples_variance_reduction = 25, precision_alpha = 0.01, weights_prior_mean_1 = 0., weights_prior_mean_2 = 0., weights_prior_deviation_1 = 0.4, weights_prior_deviation_2 = 0.4, mixture_pie = 0.7, rho_mean = -3., extra_likelihood_emphasis = 10000000000000000., simulation_iteration_onset=args.simulation_iteration_onset, total_simulation_runs=args.total_simulation_runs)
the-stack_106_17637
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.cloud.vision.v1p3beta1", manifest={ "Vertex", "NormalizedVertex", "BoundingPoly", "NormalizedBoundingPoly", "Position", }, ) class Vertex(proto.Message): r"""A vertex represents a 2D point in the image. NOTE: the vertex coordinates are in the same scale as the original image. Attributes: x (int): X coordinate. y (int): Y coordinate. """ x = proto.Field(proto.INT32, number=1,) y = proto.Field(proto.INT32, number=2,) class NormalizedVertex(proto.Message): r"""A vertex represents a 2D point in the image. NOTE: the normalized vertex coordinates are relative to the original image and range from 0 to 1. Attributes: x (float): X coordinate. y (float): Y coordinate. """ x = proto.Field(proto.FLOAT, number=1,) y = proto.Field(proto.FLOAT, number=2,) class BoundingPoly(proto.Message): r"""A bounding polygon for the detected image annotation. Attributes: vertices (Sequence[google.cloud.vision_v1p3beta1.types.Vertex]): The bounding polygon vertices. normalized_vertices (Sequence[google.cloud.vision_v1p3beta1.types.NormalizedVertex]): The bounding polygon normalized vertices. """ vertices = proto.RepeatedField(proto.MESSAGE, number=1, message="Vertex",) normalized_vertices = proto.RepeatedField( proto.MESSAGE, number=2, message="NormalizedVertex", ) class NormalizedBoundingPoly(proto.Message): r"""A normalized bounding polygon around a portion of an image. Attributes: vertices (Sequence[google.cloud.vision_v1p3beta1.types.NormalizedVertex]): Normalized vertices of the bounding polygon. """ vertices = proto.RepeatedField(proto.MESSAGE, number=1, message="NormalizedVertex",) class Position(proto.Message): r"""A 3D position in the image, used primarily for Face detection landmarks. A valid Position must have both x and y coordinates. The position coordinates are in the same scale as the original image. Attributes: x (float): X coordinate. y (float): Y coordinate. z (float): Z coordinate (or depth). """ x = proto.Field(proto.FLOAT, number=1,) y = proto.Field(proto.FLOAT, number=2,) z = proto.Field(proto.FLOAT, number=3,) __all__ = tuple(sorted(__protobuf__.manifest))
the-stack_106_17638
# Copyright (c) 2012 NetApp, Inc. # Copyright (c) 2014 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import hashlib import json import os import re import tempfile import time from oslo_concurrency import processutils as putils from oslo_config import cfg from oslo_log import log as logging from oslo_utils import units from cinder import compute from cinder import db from cinder import exception from cinder.i18n import _, _LE, _LI, _LW from cinder.image import image_utils from cinder.volume import driver LOG = logging.getLogger(__name__) nas_opts = [ # TODO(eharney): deprecate nas_ip and change this to nas_host cfg.StrOpt('nas_ip', default='', help='IP address or Hostname of NAS system.'), cfg.StrOpt('nas_login', default='admin', help='User name to connect to NAS system.'), cfg.StrOpt('nas_password', default='', help='Password to connect to NAS system.', secret=True), cfg.IntOpt('nas_ssh_port', default=22, help='SSH port to use to connect to NAS system.'), cfg.StrOpt('nas_private_key', default='', help='Filename of private key to use for SSH authentication.'), cfg.StrOpt('nas_secure_file_operations', default='auto', help=('Allow network-attached storage systems to operate in a ' 'secure environment where root level access is not ' 'permitted. If set to False, access is as the root user ' 'and insecure. If set to True, access is not as root. ' 'If set to auto, a check is done to determine if this is ' 'a new installation: True is used if so, otherwise ' 'False. Default is auto.')), cfg.StrOpt('nas_secure_file_permissions', default='auto', help=('Set more secure file permissions on network-attached ' 'storage volume files to restrict broad other/world ' 'access. If set to False, volumes are created with open ' 'permissions. If set to True, volumes are created with ' 'permissions for the cinder user and group (660). If ' 'set to auto, a check is done to determine if ' 'this is a new installation: True is used if so, ' 'otherwise False. Default is auto.')), cfg.StrOpt('nas_share_path', default='', help=('Path to the share to use for storing Cinder volumes. ' 'For example: "/srv/export1" for an NFS server export ' 'available at 10.0.5.10:/srv/export1 .')), cfg.StrOpt('nas_mount_options', default=None, help=('Options used to mount the storage backend file system ' 'where Cinder volumes are stored.')) ] CONF = cfg.CONF CONF.register_opts(nas_opts) class RemoteFSDriver(driver.VolumeDriver): """Common base for drivers that work like NFS.""" driver_volume_type = None driver_prefix = None volume_backend_name = None SHARE_FORMAT_REGEX = r'.+:/.+' def __init__(self, *args, **kwargs): super(RemoteFSDriver, self).__init__(*args, **kwargs) self.shares = {} self._mounted_shares = [] self._execute_as_root = True self._is_voldb_empty_at_startup = kwargs.pop('is_vol_db_empty', None) if self.configuration: self.configuration.append_config_values(nas_opts) def check_for_setup_error(self): """Just to override parent behavior.""" pass def initialize_connection(self, volume, connector): """Allow connection to connector and return connection info. :param volume: volume reference :param connector: connector reference """ data = {'export': volume['provider_location'], 'name': volume['name']} if volume['provider_location'] in self.shares: data['options'] = self.shares[volume['provider_location']] return { 'driver_volume_type': self.driver_volume_type, 'data': data, 'mount_point_base': self._get_mount_point_base() } def do_setup(self, context): """Any initialization the volume driver does while starting.""" super(RemoteFSDriver, self).do_setup(context) # Validate the settings for our secure file options. self.configuration.nas_secure_file_permissions = \ self.configuration.nas_secure_file_permissions.lower() self.configuration.nas_secure_file_operations = \ self.configuration.nas_secure_file_operations.lower() valid_secure_opts = ['auto', 'true', 'false'] secure_options = {'nas_secure_file_permissions': self.configuration.nas_secure_file_permissions, 'nas_secure_file_operations': self.configuration.nas_secure_file_operations} for opt_name, opt_value in secure_options.iteritems(): if opt_value not in valid_secure_opts: err_parms = {'name': opt_name, 'value': opt_value} msg = _("NAS config '%(name)s=%(value)s' invalid. Must be " "'auto', 'true', or 'false'") % err_parms LOG.error(msg) raise exception.InvalidConfigurationValue(msg) def _get_mount_point_base(self): """Returns the mount point base for the remote fs. This method facilitates returning mount point base for the specific remote fs. Override this method in the respective driver to return the entry to be used while attach/detach using brick in cinder. If not overridden then it returns None without raising exception to continue working for cases when not used with brick. """ LOG.debug("Driver specific implementation needs to return" " mount_point_base.") return None def create_volume(self, volume): """Creates a volume. :param volume: volume reference :returns: provider_location update dict for database """ self._ensure_shares_mounted() volume['provider_location'] = self._find_share(volume['size']) LOG.info(_LI('casted to %s') % volume['provider_location']) self._do_create_volume(volume) return {'provider_location': volume['provider_location']} def _do_create_volume(self, volume): """Create a volume on given remote share. :param volume: volume reference """ volume_path = self.local_path(volume) volume_size = volume['size'] if getattr(self.configuration, self.driver_prefix + '_sparsed_volumes'): self._create_sparsed_file(volume_path, volume_size) else: self._create_regular_file(volume_path, volume_size) self._set_rw_permissions(volume_path) def _ensure_shares_mounted(self): """Look for remote shares in the flags and tries to mount them locally. """ mounted_shares = [] self._load_shares_config(getattr(self.configuration, self.driver_prefix + '_shares_config')) for share in self.shares.keys(): try: self._ensure_share_mounted(share) mounted_shares.append(share) except Exception as exc: LOG.error(_LE('Exception during mounting %s') % (exc,)) self._mounted_shares = mounted_shares LOG.debug('Available shares %s' % self._mounted_shares) def create_cloned_volume(self, volume, src_vref): raise NotImplementedError() def delete_volume(self, volume): """Deletes a logical volume. :param volume: volume reference """ if not volume['provider_location']: LOG.warn(_LW('Volume %s does not have ' 'provider_location specified, ' 'skipping'), volume['name']) return self._ensure_share_mounted(volume['provider_location']) mounted_path = self.local_path(volume) self._delete(mounted_path) def ensure_export(self, ctx, volume): """Synchronously recreates an export for a logical volume.""" self._ensure_share_mounted(volume['provider_location']) def create_export(self, ctx, volume): """Exports the volume. Can optionally return a dictionary of changes to the volume object to be persisted. """ pass def remove_export(self, ctx, volume): """Removes an export for a logical volume.""" pass def delete_snapshot(self, snapshot): """Do nothing for this driver, but allow manager to handle deletion of snapshot in error state. """ pass def _delete(self, path): # Note(lpetrut): this method is needed in order to provide # interoperability with Windows as it will be overridden. self._execute('rm', '-f', path, run_as_root=self._execute_as_root) def _create_sparsed_file(self, path, size): """Creates a sparse file of a given size in GiB.""" self._execute('truncate', '-s', '%sG' % size, path, run_as_root=self._execute_as_root) def _create_regular_file(self, path, size): """Creates a regular file of given size in GiB.""" block_size_mb = 1 block_count = size * units.Gi / (block_size_mb * units.Mi) self._execute('dd', 'if=/dev/zero', 'of=%s' % path, 'bs=%dM' % block_size_mb, 'count=%d' % block_count, run_as_root=self._execute_as_root) def _create_qcow2_file(self, path, size_gb): """Creates a QCOW2 file of a given size in GiB.""" self._execute('qemu-img', 'create', '-f', 'qcow2', '-o', 'preallocation=metadata', path, str(size_gb * units.Gi), run_as_root=self._execute_as_root) def _set_rw_permissions(self, path): """Sets access permissions for given NFS path. Volume file permissions are set based upon the value of secure_file_permissions: 'true' sets secure access permissions and 'false' sets more open (insecure) access permissions. :param path: the volume file path. """ if self.configuration.nas_secure_file_permissions == 'true': permissions = '660' LOG.debug('File path %s is being set with permissions: %s' % (path, permissions)) else: permissions = 'ugo+rw' parms = {'path': path, 'perm': permissions} LOG.warn(_LW('%(path)s is being set with open permissions: ' '%(perm)s') % parms) self._execute('chmod', permissions, path, run_as_root=self._execute_as_root) def _set_rw_permissions_for_all(self, path): """Sets 666 permissions for the path.""" self._execute('chmod', 'ugo+rw', path, run_as_root=self._execute_as_root) def _set_rw_permissions_for_owner(self, path): """Sets read-write permissions to the owner for the path.""" self._execute('chmod', 'u+rw', path, run_as_root=self._execute_as_root) def local_path(self, volume): """Get volume path (mounted locally fs path) for given volume :param volume: volume reference """ remotefs_share = volume['provider_location'] return os.path.join(self._get_mount_point_for_share(remotefs_share), volume['name']) def copy_image_to_volume(self, context, volume, image_service, image_id): """Fetch the image from image_service and write it to the volume.""" run_as_root = self._execute_as_root image_utils.fetch_to_raw(context, image_service, image_id, self.local_path(volume), self.configuration.volume_dd_blocksize, size=volume['size'], run_as_root=run_as_root) # NOTE (leseb): Set the virtual size of the image # the raw conversion overwrote the destination file # (which had the correct size) # with the fetched glance image size, # thus the initial 'size' parameter is not honored # this sets the size to the one asked in the first place by the user # and then verify the final virtual size image_utils.resize_image(self.local_path(volume), volume['size'], run_as_root=run_as_root) data = image_utils.qemu_img_info(self.local_path(volume), run_as_root=run_as_root) virt_size = data.virtual_size / units.Gi if virt_size != volume['size']: raise exception.ImageUnacceptable( image_id=image_id, reason=(_("Expected volume size was %d") % volume['size']) + (_(" but size is now %d") % virt_size)) def copy_volume_to_image(self, context, volume, image_service, image_meta): """Copy the volume to the specified image.""" image_utils.upload_volume(context, image_service, image_meta, self.local_path(volume)) def _read_config_file(self, config_file): # Returns list of lines in file with open(config_file) as f: return f.readlines() def _load_shares_config(self, share_file=None): self.shares = {} if all((self.configuration.nas_ip, self.configuration.nas_share_path)): LOG.debug('Using nas_ip and nas_share_path configuration.') nas_ip = self.configuration.nas_ip nas_share_path = self.configuration.nas_share_path share_address = '%s:%s' % (nas_ip, nas_share_path) if not re.match(self.SHARE_FORMAT_REGEX, share_address): msg = (_("Share %s ignored due to invalid format. Must " "be of form address:/export. Please check the " "nas_ip and nas_share_path settings."), share_address) raise exception.InvalidConfigurationValue(msg) self.shares[share_address] = self.configuration.nas_mount_options elif share_file is not None: LOG.debug('Loading shares from %s.' % share_file) for share in self._read_config_file(share_file): # A configuration line may be either: # host:/vol_name # or # host:/vol_name -o options=123,rw --other if not share.strip(): # Skip blank or whitespace-only lines continue if share.startswith('#'): continue share_info = share.split(' ', 1) # results in share_info = # [ 'address:/vol', '-o options=123,rw --other' ] share_address = share_info[0].strip().decode('unicode_escape') share_opts = None if len(share_info) > 1: share_opts = share_info[1].strip() if not re.match(self.SHARE_FORMAT_REGEX, share_address): LOG.error(_LE("Share %s ignored due to invalid format. " "Must be of form address:/export."), share_address) continue self.shares[share_address] = share_opts LOG.debug("shares loaded: %s", self.shares) def _get_mount_point_for_share(self, path): raise NotImplementedError() def terminate_connection(self, volume, connector, **kwargs): """Disallow connection from connector.""" pass def get_volume_stats(self, refresh=False): """Get volume stats. If 'refresh' is True, update the stats first. """ if refresh or not self._stats: self._update_volume_stats() return self._stats def _update_volume_stats(self): """Retrieve stats info from volume group.""" data = {} backend_name = self.configuration.safe_get('volume_backend_name') data['volume_backend_name'] = backend_name or self.volume_backend_name data['vendor_name'] = 'Open Source' data['driver_version'] = self.get_version() data['storage_protocol'] = self.driver_volume_type self._ensure_shares_mounted() global_capacity = 0 global_free = 0 for share in self._mounted_shares: capacity, free, used = self._get_capacity_info(share) global_capacity += capacity global_free += free data['total_capacity_gb'] = global_capacity / float(units.Gi) data['free_capacity_gb'] = global_free / float(units.Gi) data['reserved_percentage'] = 0 data['QoS_support'] = False self._stats = data def _do_mount(self, cmd, ensure, share): """Finalize mount command. :param cmd: command to do the actual mount :param ensure: boolean to allow remounting a share with a warning :param share: description of the share for error reporting """ try: self._execute(*cmd, run_as_root=True) except putils.ProcessExecutionError as exc: if ensure and 'already mounted' in exc.stderr: LOG.warn(_LW("%s is already mounted"), share) else: raise def _get_capacity_info(self, share): raise NotImplementedError() def _find_share(self, volume_size_in_gib): raise NotImplementedError() def _ensure_share_mounted(self, share): raise NotImplementedError() def secure_file_operations_enabled(self): """Determine if driver is operating in Secure File Operations mode. The Cinder Volume driver needs to query if this driver is operating in a secure file mode; check our nas_secure_file_operations flag. """ if self.configuration.nas_secure_file_operations == 'true': return True return False def set_nas_security_options(self, is_new_cinder_install): """Determine the setting to use for Secure NAS options. This method must be overridden by child wishing to use secure NAS file operations. This base method will set the NAS security options to false. """ doc_html = "http://docs.openstack.org/admin-guide-cloud/content" \ "/nfs_backend.html" self.configuration.nas_secure_file_operations = 'false' LOG.warn(_LW("The NAS file operations will be run as root: allowing " "root level access at the storage backend. This is " "considered an insecure NAS environment. " "Please see %s for information on a secure NAS " "configuration.") % doc_html) self.configuration.nas_secure_file_permissions = 'false' LOG.warn(_LW("The NAS file permissions mode will be 666 (allowing " "other/world read & write access). This is considered an " "insecure NAS environment. Please see %s for information " "on a secure NFS configuration.") % doc_html) def _determine_nas_security_option_setting(self, nas_option, mount_point, is_new_cinder_install): """Determine NAS security option setting when 'auto' is assigned. This method determines the final 'true'/'false' setting of an NAS security option when the default value of 'auto' has been detected. If the nas option isn't 'auto' then its current value is used. :param nas_option: The NAS security option value loaded from config. :param mount_point: Mount where indicator file is written. :param is_new_cinder_install: boolean for new Cinder installation. :return string: 'true' or 'false' for new option setting. """ if nas_option == 'auto': # For auto detection, we first check to see if we have been # through this process before by checking for the existence of # the Cinder secure environment indicator file. file_name = '.cinderSecureEnvIndicator' file_path = os.path.join(mount_point, file_name) if os.path.isfile(file_path): nas_option = 'true' LOG.info(_LI('Cinder secure environment ' 'indicator file exists.')) else: # The indicator file does not exist. If it is a new # installation, set to 'true' and create the indicator file. if is_new_cinder_install: nas_option = 'true' try: with open(file_path, 'w') as fh: fh.write('Detector file for Cinder secure ' 'environment usage.\n') fh.write('Do not delete this file.\n') # Set the permissions on our special marker file to # protect from accidental removal (owner write only). self._execute('chmod', '640', file_path, run_as_root=False) LOG.info(_LI('New Cinder secure environment indicator' ' file created at path %s.') % file_path) except IOError as err: LOG.error(_LE('Failed to created Cinder secure ' 'environment indicator file: %s') % format(err)) else: # For existing installs, we default to 'false'. The # admin can always set the option at the driver config. nas_option = 'false' return nas_option class RemoteFSSnapDriver(RemoteFSDriver): """Base class for remotefs drivers implementing qcow2 snapshots. Driver must implement: _local_volume_dir(self, volume) """ def __init__(self, *args, **kwargs): self._remotefsclient = None self.base = None self._nova = None super(RemoteFSSnapDriver, self).__init__(*args, **kwargs) def do_setup(self, context): super(RemoteFSSnapDriver, self).do_setup(context) self._nova = compute.API() def _local_volume_dir(self, volume): share = volume['provider_location'] local_dir = self._get_mount_point_for_share(share) return local_dir def _local_path_volume(self, volume): path_to_disk = os.path.join( self._local_volume_dir(volume), volume['name']) return path_to_disk def _get_new_snap_path(self, snapshot): vol_path = self.local_path(snapshot['volume']) snap_path = '%s.%s' % (vol_path, snapshot['id']) return snap_path def _local_path_volume_info(self, volume): return '%s%s' % (self.local_path(volume), '.info') def _read_file(self, filename): """This method is to make it easier to stub out code for testing. Returns a string representing the contents of the file. """ with open(filename, 'r') as f: return f.read() def _write_info_file(self, info_path, snap_info): if 'active' not in snap_info.keys(): msg = _("'active' must be present when writing snap_info.") raise exception.RemoteFSException(msg) with open(info_path, 'w') as f: json.dump(snap_info, f, indent=1, sort_keys=True) def _qemu_img_info_base(self, path, volume_name, basedir): """Sanitize image_utils' qemu_img_info. This code expects to deal only with relative filenames. """ info = image_utils.qemu_img_info(path) if info.image: info.image = os.path.basename(info.image) if info.backing_file: backing_file_template = \ "(%(basedir)s/[0-9a-f]+/)?%" \ "(volname)s(.(tmp-snap-)?[0-9a-f-]+)?$" % { 'basedir': basedir, 'volname': volume_name } if not re.match(backing_file_template, info.backing_file): msg = _("File %(path)s has invalid backing file " "%(bfile)s, aborting.") % {'path': path, 'bfile': info.backing_file} raise exception.RemoteFSException(msg) info.backing_file = os.path.basename(info.backing_file) return info def _qemu_img_info(self, path, volume_name): raise NotImplementedError() def _img_commit(self, path): self._execute('qemu-img', 'commit', path, run_as_root=self._execute_as_root) self._delete(path) def _rebase_img(self, image, backing_file, volume_format): self._execute('qemu-img', 'rebase', '-u', '-b', backing_file, image, '-F', volume_format, run_as_root=self._execute_as_root) def _read_info_file(self, info_path, empty_if_missing=False): """Return dict of snapshot information. :param: info_path: path to file :param: empty_if_missing: True=return empty dict if no file """ if not os.path.exists(info_path): if empty_if_missing is True: return {} return json.loads(self._read_file(info_path)) def _get_backing_chain_for_path(self, volume, path): """Returns list of dicts containing backing-chain information. Includes 'filename', and 'backing-filename' for each applicable entry. Consider converting this to use --backing-chain and --output=json when environment supports qemu-img 1.5.0. :param volume: volume reference :param path: path to image file at top of chain """ output = [] info = self._qemu_img_info(path, volume['name']) new_info = {} new_info['filename'] = os.path.basename(path) new_info['backing-filename'] = info.backing_file output.append(new_info) while new_info['backing-filename']: filename = new_info['backing-filename'] path = os.path.join(self._local_volume_dir(volume), filename) info = self._qemu_img_info(path, volume['name']) backing_filename = info.backing_file new_info = {} new_info['filename'] = filename new_info['backing-filename'] = backing_filename output.append(new_info) return output def _get_hash_str(self, base_str): """Return a string that represents hash of base_str (in a hex format). """ return hashlib.md5(base_str).hexdigest() def _get_mount_point_for_share(self, share): """Return mount point for share. :param share: example 172.18.194.100:/var/fs """ return self._remotefsclient.get_mount_point(share) def _get_available_capacity(self, share): """Calculate available space on the share. :param share: example 172.18.194.100:/var/fs """ mount_point = self._get_mount_point_for_share(share) out, _ = self._execute('df', '--portability', '--block-size', '1', mount_point, run_as_root=self._execute_as_root) out = out.splitlines()[1] size = int(out.split()[1]) available = int(out.split()[3]) return available, size def _get_capacity_info(self, remotefs_share): available, size = self._get_available_capacity(remotefs_share) return size, available, size - available def _get_mount_point_base(self): return self.base def _ensure_share_writable(self, path): """Ensure that the Cinder user can write to the share. If not, raise an exception. :param path: path to test :raises: RemoteFSException :returns: None """ prefix = '.cinder-write-test-' + str(os.getpid()) + '-' try: tempfile.NamedTemporaryFile(prefix=prefix, dir=path) except OSError: msg = _('Share at %(dir)s is not writable by the ' 'Cinder volume service. Snapshot operations will not be ' 'supported.') % {'dir': path} raise exception.RemoteFSException(msg) def _copy_volume_to_image(self, context, volume, image_service, image_meta): """Copy the volume to the specified image.""" # If snapshots exist, flatten to a temporary image, and upload it active_file = self.get_active_image_from_info(volume) active_file_path = os.path.join(self._local_volume_dir(volume), active_file) info = self._qemu_img_info(active_file_path, volume['name']) backing_file = info.backing_file root_file_fmt = info.file_format tmp_params = { 'prefix': '%s.temp_image.%s' % (volume['id'], image_meta['id']), 'suffix': '.img' } with image_utils.temporary_file(**tmp_params) as temp_path: if backing_file or (root_file_fmt != 'raw'): # Convert due to snapshots # or volume data not being stored in raw format # (upload_volume assumes raw format input) image_utils.convert_image(active_file_path, temp_path, 'raw') upload_path = temp_path else: upload_path = active_file_path image_utils.upload_volume(context, image_service, image_meta, upload_path) def get_active_image_from_info(self, volume): """Returns filename of the active image from the info file.""" info_file = self._local_path_volume_info(volume) snap_info = self._read_info_file(info_file, empty_if_missing=True) if not snap_info: # No info file = no snapshots exist vol_path = os.path.basename(self.local_path(volume)) return vol_path return snap_info['active'] def _create_cloned_volume(self, volume, src_vref): LOG.info(_LI('Cloning volume %(src)s to volume %(dst)s') % {'src': src_vref['id'], 'dst': volume['id']}) if src_vref['status'] != 'available': msg = _("Volume status must be 'available'.") raise exception.InvalidVolume(msg) volume_name = CONF.volume_name_template % volume['id'] volume_info = {'provider_location': src_vref['provider_location'], 'size': src_vref['size'], 'id': volume['id'], 'name': volume_name, 'status': src_vref['status']} temp_snapshot = {'volume_name': volume_name, 'size': src_vref['size'], 'volume_size': src_vref['size'], 'name': 'clone-snap-%s' % src_vref['id'], 'volume_id': src_vref['id'], 'id': 'tmp-snap-%s' % src_vref['id'], 'volume': src_vref} self._create_snapshot(temp_snapshot) try: self._copy_volume_from_snapshot(temp_snapshot, volume_info, volume['size']) finally: self._delete_snapshot(temp_snapshot) return {'provider_location': src_vref['provider_location']} def _delete_stale_snapshot(self, snapshot): info_path = self._local_path_volume_info(snapshot['volume']) snap_info = self._read_info_file(info_path) snapshot_file = snap_info[snapshot['id']] active_file = self.get_active_image_from_info(snapshot['volume']) snapshot_path = os.path.join( self._local_volume_dir(snapshot['volume']), snapshot_file) if (snapshot_file == active_file): return LOG.info(_LI('Deleting stale snapshot: %s') % snapshot['id']) self._delete(snapshot_path) del(snap_info[snapshot['id']]) self._write_info_file(info_path, snap_info) def _delete_snapshot(self, snapshot): """Delete a snapshot. If volume status is 'available', delete snapshot here in Cinder using qemu-img. If volume status is 'in-use', calculate what qcow2 files need to merge, and call to Nova to perform this operation. :raises: InvalidVolume if status not acceptable :raises: RemoteFSException(msg) if operation fails :returns: None """ LOG.debug('Deleting snapshot %s:' % snapshot['id']) volume_status = snapshot['volume']['status'] if volume_status not in ['available', 'in-use']: msg = _('Volume status must be "available" or "in-use".') raise exception.InvalidVolume(msg) vol_path = self._local_volume_dir(snapshot['volume']) self._ensure_share_writable(vol_path) # Determine the true snapshot file for this snapshot # based on the .info file info_path = self._local_path_volume_info(snapshot['volume']) snap_info = self._read_info_file(info_path, empty_if_missing=True) if snapshot['id'] not in snap_info: # If snapshot info file is present, but snapshot record does not # exist, do not attempt to delete. # (This happens, for example, if snapshot_create failed due to lack # of permission to write to the share.) LOG.info(_LI('Snapshot record for %s is not present, allowing ' 'snapshot_delete to proceed.') % snapshot['id']) return snapshot_file = snap_info[snapshot['id']] LOG.debug('snapshot_file for this snap is: %s' % snapshot_file) snapshot_path = os.path.join( self._local_volume_dir(snapshot['volume']), snapshot_file) snapshot_path_img_info = self._qemu_img_info( snapshot_path, snapshot['volume']['name']) base_file = snapshot_path_img_info.backing_file if base_file is None: # There should always be at least the original volume # file as base. LOG.warning(_LW('No backing file found for %s, allowing ' 'snapshot to be deleted.'), snapshot_path) # Snapshot may be stale, so just delete it and update the # info file instead of blocking return self._delete_stale_snapshot(snapshot) base_path = os.path.join(vol_path, base_file) base_file_img_info = self._qemu_img_info(base_path, snapshot['volume']['name']) # Find what file has this as its backing file active_file = self.get_active_image_from_info(snapshot['volume']) active_file_path = os.path.join(vol_path, active_file) if volume_status == 'in-use': # Online delete context = snapshot['context'] new_base_file = base_file_img_info.backing_file base_id = None for key, value in snap_info.iteritems(): if value == base_file and key != 'active': base_id = key break if base_id is None: # This means we are deleting the oldest snapshot msg = 'No %(base_id)s found for %(file)s' % { 'base_id': 'base_id', 'file': snapshot_file} LOG.debug(msg) online_delete_info = { 'active_file': active_file, 'snapshot_file': snapshot_file, 'base_file': base_file, 'base_id': base_id, 'new_base_file': new_base_file } return self._delete_snapshot_online(context, snapshot, online_delete_info) if snapshot_file == active_file: # There is no top file # T0 | T1 | # base | snapshot_file | None # (guaranteed to| (being deleted, | # exist) | commited down) | self._img_commit(snapshot_path) # Active file has changed snap_info['active'] = base_file else: # T0 | T1 | T2 | T3 # base | snapshot_file | higher_file | highest_file # (guaranteed to | (being deleted, | (guaranteed to | (may exist) # exist, not | commited down) | exist, needs | # used here) | | ptr update) | backing_chain = self._get_backing_chain_for_path( snapshot['volume'], active_file_path) # This file is guaranteed to exist since we aren't operating on # the active file. higher_file = next((os.path.basename(f['filename']) for f in backing_chain if f.get('backing-filename', '') == snapshot_file), None) if higher_file is None: msg = _('No file found with %s as backing file.') %\ snapshot_file raise exception.RemoteFSException(msg) higher_id = next((i for i in snap_info if snap_info[i] == higher_file and i != 'active'), None) if higher_id is None: msg = _('No snap found with %s as backing file.') %\ higher_file raise exception.RemoteFSException(msg) self._img_commit(snapshot_path) higher_file_path = os.path.join(vol_path, higher_file) base_file_fmt = base_file_img_info.file_format self._rebase_img(higher_file_path, base_file, base_file_fmt) # Remove snapshot_file from info del(snap_info[snapshot['id']]) self._write_info_file(info_path, snap_info) def _create_volume_from_snapshot(self, volume, snapshot): """Creates a volume from a snapshot. Snapshot must not be the active snapshot. (offline) """ if snapshot['status'] != 'available': msg = _('Snapshot status must be "available" to clone.') raise exception.InvalidSnapshot(msg) self._ensure_shares_mounted() volume['provider_location'] = self._find_share(volume['size']) self._do_create_volume(volume) self._copy_volume_from_snapshot(snapshot, volume, volume['size']) return {'provider_location': volume['provider_location']} def _copy_volume_from_snapshot(self, snapshot, volume, volume_size): raise NotImplementedError() def _do_create_snapshot(self, snapshot, backing_filename, new_snap_path): """Create a QCOW2 file backed by another file. :param snapshot: snapshot reference :param backing_filename: filename of file that will back the new qcow2 file :param new_snap_path: filename of new qcow2 file """ backing_path_full_path = os.path.join( self._local_volume_dir(snapshot['volume']), backing_filename) command = ['qemu-img', 'create', '-f', 'qcow2', '-o', 'backing_file=%s' % backing_path_full_path, new_snap_path] self._execute(*command, run_as_root=self._execute_as_root) info = self._qemu_img_info(backing_path_full_path, snapshot['volume']['name']) backing_fmt = info.file_format command = ['qemu-img', 'rebase', '-u', '-b', backing_filename, '-F', backing_fmt, new_snap_path] self._execute(*command, run_as_root=self._execute_as_root) self._set_rw_permissions(new_snap_path) def _create_snapshot(self, snapshot): """Create a snapshot. If volume is attached, call to Nova to create snapshot, providing a qcow2 file. Cinder creates and deletes qcow2 files, but Nova is responsible for transitioning the VM between them and handling live transfers of data between files as required. If volume is detached, create locally with qemu-img. Cinder handles manipulation of qcow2 files. A file named volume-<uuid>.info is stored with the volume data and is a JSON table which contains a mapping between Cinder snapshot UUIDs and filenames, as these associations will change as snapshots are deleted. Basic snapshot operation: 1. Initial volume file: volume-1234 2. Snapshot created: volume-1234 <- volume-1234.aaaa volume-1234.aaaa becomes the new "active" disk image. If the volume is not attached, this filename will be used to attach the volume to a VM at volume-attach time. If the volume is attached, the VM will switch to this file as part of the snapshot process. Note that volume-1234.aaaa represents changes after snapshot 'aaaa' was created. So the data for snapshot 'aaaa' is actually in the backing file(s) of volume-1234.aaaa. This file has a qcow2 header recording the fact that volume-1234 is its backing file. Delta changes since the snapshot was created are stored in this file, and the backing file (volume-1234) does not change. info file: { 'active': 'volume-1234.aaaa', 'aaaa': 'volume-1234.aaaa' } 3. Second snapshot created: volume-1234 <- volume-1234.aaaa <- volume-1234.bbbb volume-1234.bbbb now becomes the "active" disk image, recording changes made to the volume. info file: { 'active': 'volume-1234.bbbb', (* changed!) 'aaaa': 'volume-1234.aaaa', 'bbbb': 'volume-1234.bbbb' } (* added!) 4. Snapshot deletion when volume is attached ('in-use' state): * When first snapshot is deleted, Cinder calls Nova for online snapshot deletion. Nova deletes snapshot with id "aaaa" and makes snapshot with id "bbbb" point to the base image. Snapshot with id "bbbb" is the active image. volume-1234 <- volume-1234.bbbb info file: { 'active': 'volume-1234.bbbb', 'bbbb': 'volume-1234.bbbb' } * When second snapshot is deleted, Cinder calls Nova for online snapshot deletion. Nova deletes snapshot with id "bbbb" by pulling volume-1234's data into volume-1234.bbbb. This (logically) removes snapshot with id "bbbb" and the active file remains the same. volume-1234.bbbb info file: { 'active': 'volume-1234.bbbb' } TODO (deepakcs): Change this once Nova supports blockCommit for in-use volumes. 5. Snapshot deletion when volume is detached ('available' state): * When first snapshot is deleted, Cinder does the snapshot deletion. volume-1234.aaaa is removed from the snapshot chain. The data from it is merged into its parent. volume-1234.bbbb is rebased, having volume-1234 as its new parent. volume-1234 <- volume-1234.bbbb info file: { 'active': 'volume-1234.bbbb', 'bbbb': 'volume-1234.bbbb' } * When second snapshot is deleted, Cinder does the snapshot deletion. volume-1234.aaaa is removed from the snapshot chain. The base image, volume-1234 becomes the active image for this volume again. volume-1234 info file: { 'active': 'volume-1234' } (* changed!) """ status = snapshot['volume']['status'] if status not in ['available', 'in-use']: msg = _('Volume status must be "available" or "in-use"' ' for snapshot. (is %s)') % status raise exception.InvalidVolume(msg) info_path = self._local_path_volume_info(snapshot['volume']) snap_info = self._read_info_file(info_path, empty_if_missing=True) backing_filename = self.get_active_image_from_info( snapshot['volume']) new_snap_path = self._get_new_snap_path(snapshot) if status == 'in-use': self._create_snapshot_online(snapshot, backing_filename, new_snap_path) else: self._do_create_snapshot(snapshot, backing_filename, new_snap_path) snap_info['active'] = os.path.basename(new_snap_path) snap_info[snapshot['id']] = os.path.basename(new_snap_path) self._write_info_file(info_path, snap_info) def _create_snapshot_online(self, snapshot, backing_filename, new_snap_path): # Perform online snapshot via Nova context = snapshot['context'] self._do_create_snapshot(snapshot, backing_filename, new_snap_path) connection_info = { 'type': 'qcow2', 'new_file': os.path.basename(new_snap_path), 'snapshot_id': snapshot['id'] } try: result = self._nova.create_volume_snapshot( context, snapshot['volume_id'], connection_info) LOG.debug('nova call result: %s' % result) except Exception as e: LOG.error(_LE('Call to Nova to create snapshot failed')) LOG.exception(e) raise e # Loop and wait for result # Nova will call Cinderclient to update the status in the database # An update of progress = '90%' means that Nova is done seconds_elapsed = 0 increment = 1 timeout = 600 while True: s = db.snapshot_get(context, snapshot['id']) if s['status'] == 'creating': if s['progress'] == '90%': # Nova tasks completed successfully break time.sleep(increment) seconds_elapsed += increment elif s['status'] == 'error': msg = _('Nova returned "error" status ' 'while creating snapshot.') raise exception.RemoteFSException(msg) LOG.debug('Status of snapshot %(id)s is now %(status)s' % { 'id': snapshot['id'], 'status': s['status'] }) if 10 < seconds_elapsed <= 20: increment = 2 elif 20 < seconds_elapsed <= 60: increment = 5 elif 60 < seconds_elapsed: increment = 10 if seconds_elapsed > timeout: msg = _('Timed out while waiting for Nova update ' 'for creation of snapshot %s.') % snapshot['id'] raise exception.RemoteFSException(msg) def _delete_snapshot_online(self, context, snapshot, info): # Update info over the course of this method # active file never changes info_path = self._local_path_volume(snapshot['volume']) + '.info' snap_info = self._read_info_file(info_path) if info['active_file'] == info['snapshot_file']: # blockRebase/Pull base into active # info['base'] => snapshot_file file_to_delete = info['base_file'] if info['base_id'] is None: # Passing base=none to blockRebase ensures that # libvirt blanks out the qcow2 backing file pointer new_base = None else: new_base = info['new_base_file'] snap_info[info['base_id']] = info['snapshot_file'] delete_info = {'file_to_merge': new_base, 'merge_target_file': None, # current 'type': 'qcow2', 'volume_id': snapshot['volume']['id']} del(snap_info[snapshot['id']]) else: # blockCommit snapshot into base # info['base'] <= snapshot_file # delete record of snapshot file_to_delete = info['snapshot_file'] delete_info = {'file_to_merge': info['snapshot_file'], 'merge_target_file': info['base_file'], 'type': 'qcow2', 'volume_id': snapshot['volume']['id']} del(snap_info[snapshot['id']]) try: self._nova.delete_volume_snapshot( context, snapshot['id'], delete_info) except Exception as e: LOG.error(_LE('Call to Nova delete snapshot failed')) LOG.exception(e) raise e # Loop and wait for result # Nova will call Cinderclient to update the status in the database # An update of progress = '90%' means that Nova is done seconds_elapsed = 0 increment = 1 timeout = 7200 while True: s = db.snapshot_get(context, snapshot['id']) if s['status'] == 'deleting': if s['progress'] == '90%': # Nova tasks completed successfully break else: msg = ('status of snapshot %s is ' 'still "deleting"... waiting') % snapshot['id'] LOG.debug(msg) time.sleep(increment) seconds_elapsed += increment else: msg = _('Unable to delete snapshot %(id)s, ' 'status: %(status)s.') % {'id': snapshot['id'], 'status': s['status']} raise exception.RemoteFSException(msg) if 10 < seconds_elapsed <= 20: increment = 2 elif 20 < seconds_elapsed <= 60: increment = 5 elif 60 < seconds_elapsed: increment = 10 if seconds_elapsed > timeout: msg = _('Timed out while waiting for Nova update ' 'for deletion of snapshot %(id)s.') %\ {'id': snapshot['id']} raise exception.RemoteFSException(msg) # Write info file updated above self._write_info_file(info_path, snap_info) # Delete stale file path_to_delete = os.path.join( self._local_volume_dir(snapshot['volume']), file_to_delete) self._execute('rm', '-f', path_to_delete, run_as_root=True)
the-stack_106_17639
# Copyright 2018-present Kensho Technologies, LLC. import random from .utils import create_edge_statement, create_vertex_statement, get_random_limbs, get_uuid SPECIES_LIST = ( "Nazgul", "Pteranodon", "Dragon", "Hippogriff", ) FOOD_LIST = ( "Bacon", "Lembas", "Blood pie", ) NUM_FOODS = 2 def _create_food_statement(food_name): """Return a SQL statement to create a Food vertex.""" field_name_to_value = {"name": food_name, "uuid": get_uuid()} return create_vertex_statement("Food", field_name_to_value) def _create_species_statement(species_name): """Return a SQL statement to create a Species vertex.""" field_name_to_value = {"name": species_name, "limbs": get_random_limbs(), "uuid": get_uuid()} return create_vertex_statement("Species", field_name_to_value) def _create_species_eats_statement(from_name, to_name): """Return a SQL statement to create a Species_Eats edge.""" if to_name in SPECIES_LIST: to_class = "Species" elif to_name in FOOD_LIST: to_class = "Food" else: raise AssertionError("Invalid name for Species_Eats endpoint: {}".format(to_name)) return create_edge_statement("Species_Eats", "Species", from_name, to_class, to_name) def get_species_generation_commands(): """Return a list of SQL statements to create all species vertices.""" command_list = [] for food_name in FOOD_LIST: command_list.append(_create_food_statement(food_name)) for species_name in SPECIES_LIST: command_list.append(_create_species_statement(species_name)) for species_name in SPECIES_LIST: for food_or_species_name in random.sample(SPECIES_LIST + FOOD_LIST, NUM_FOODS): # nosec command_list.append(_create_species_eats_statement(species_name, food_or_species_name)) return command_list
the-stack_106_17642
############################################################################################################# ## ## Source code for training. In this source code, there are initialize part, training part, ... ## ############################################################################################################# import glob2 import os import argparse import sys import cv2 import torch import agent import numpy as np from data_loader import Generator from parameters import Parameters import test import evaluation import util import copy p = Parameters() ############################################################### ## ## Training ## ############################################################### def Training(epoch_model, loss_model, flag): print('Training') #################################################################### ## Hyper parameter #################################################################### print('Initializing hyper parameter') ######################################################################### ## Get dataset ######################################################################### print("Get dataset") loader = Generator() ############################## ## Get agent and model ############################## print('Get agent') if p.model_path == "": lane_agent = agent.Agent() else: lane_agent = agent.Agent() lane_agent.load_weights(epoch_model, f"tensor({loss_model})") ############################## ## Check GPU ############################## print('Setup GPU mode') if torch.cuda.is_available(): lane_agent.cuda() #torch.backends.cudnn.benchmark=True ############################## ## Loop for training ############################## print('Training loop') step = 0 sampling_list = None loss_though_epoch = 0 min_loss = 9999 if flag == True: begin_epoch = epoch_model + 1 else: begin_epoch = 0 for epoch in range(begin_epoch, p.n_epoch): lane_agent.training_mode() for inputs, target_lanes, target_h, test_image, data_list in loader.Generate(sampling_list): #training #util.visualize_points(inputs[0], target_lanes[0], target_h[0]) print("epoch : " + str(epoch)) print("step : " + str(step)) try: loss_p = lane_agent.train(inputs, target_lanes, target_h, epoch, lane_agent, data_list) except: continue torch.cuda.synchronize() loss_p = loss_p.cpu().data loss_though_epoch = loss_p if step%1000 == 0: lane_agent.save_model(int(step/1000), loss_p) testing(lane_agent, test_image, step, loss_p) step += 1 if loss_though_epoch < min_loss: try: best_model = glob2.glob('savefile/best*')[0] best_loss = float(best_model.split('_')[1][7:-1]) if loss_though_epoch < best_loss: os.remove(best_model) print(f'Best model: ({epoch}, {loss_though_epoch})') lane_agent.save_model('best', loss_though_epoch) min_loss = loss_though_epoch except: print(f'Best model: ({epoch}, {loss_though_epoch})') lane_agent.save_model('best', loss_though_epoch) min_loss = loss_though_epoch lane_agent.save_model(int(epoch), loss_though_epoch) sampling_list = copy.deepcopy(lane_agent.get_data_list()) lane_agent.sample_reset() #evaluation:turn it off when training. # if epoch >= 0 and epoch%1 == 0: # print("evaluation") # lane_agent.evaluate_mode() # th_list = [0.8] # index = [3] # lane_agent.save_model(int(step/100), loss_p) # for idx in index: # print("generate result") # test.evaluation(loader, lane_agent, index = idx, name="test_result_"+str(epoch)+"_"+str(idx)+".json") # for idx in index: # print("compute score") # with open("/home/kym/Dropbox/eval_result2_"+str(idx)+"_.txt", 'a') as make_file: # make_file.write( "epoch : " + str(epoch) + " loss : " + str(loss_p.cpu().data) ) # make_file.write(evaluation.LaneEval.bench_one_submit("test_result_"+str(epoch)+"_"+str(idx)+".json", "test_label.json")) # make_file.write("\n") # with open("eval_result_"+str(idx)+"_.txt", 'a') as make_file: # make_file.write( "epoch : " + str(epoch) + " loss : " + str(loss_p.cpu().data) ) # make_file.write(evaluation.LaneEval.bench_one_submit("test_result_"+str(epoch)+"_"+str(idx)+".json", "test_label.json")) # make_file.write("\n") if int(step)>700000: break def testing(lane_agent, test_image, step, loss): lane_agent.evaluate_mode() _, _, ti = test.test(lane_agent, np.array([test_image])) cv2.imwrite('test_result/result_'+str(step)+'_'+str(loss)+'.png', ti[0]) lane_agent.training_mode() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-p', '--pretrained_model', type=str, default='32_tensor(1.1001)_lane_detection_network.pkl') parser.add_argument('-m' ,'--model_weight', type=str) args = vars(parser.parse_args()) flag = False if args['model_weight']: model = args['model_weight'] flag = True else: model = args['pretrained_model'] epoch_model, loss_model = int(model.split('_')[0]), model.split('_')[1][7:-1] Training(epoch_model, loss_model, flag)
the-stack_106_17643
# Copyright 2015 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log from oslo_serialization import jsonutils from oslo_utils import versionutils from nova import objects from nova.objects import base as obj_base from nova.objects import fields LOG = log.getLogger(__name__) @obj_base.NovaObjectRegistry.register_if(False) class LiveMigrateData(obj_base.NovaObject): fields = { 'is_volume_backed': fields.BooleanField(), 'migration': fields.ObjectField('Migration'), } def to_legacy_dict(self, pre_migration_result=False): legacy = {} if self.obj_attr_is_set('is_volume_backed'): legacy['is_volume_backed'] = self.is_volume_backed if self.obj_attr_is_set('migration'): legacy['migration'] = self.migration if pre_migration_result: legacy['pre_live_migration_result'] = {} return legacy def from_legacy_dict(self, legacy): if 'is_volume_backed' in legacy: self.is_volume_backed = legacy['is_volume_backed'] if 'migration' in legacy: self.migration = legacy['migration'] @classmethod def detect_implementation(cls, legacy_dict): if 'instance_relative_path' in legacy_dict: obj = LibvirtLiveMigrateData() elif 'image_type' in legacy_dict: obj = LibvirtLiveMigrateData() elif 'migrate_data' in legacy_dict: obj = XenapiLiveMigrateData() else: obj = LiveMigrateData() obj.from_legacy_dict(legacy_dict) return obj @obj_base.NovaObjectRegistry.register class LibvirtLiveMigrateBDMInfo(obj_base.NovaObject): VERSION = '1.0' fields = { # FIXME(danms): some of these can be enums? 'serial': fields.StringField(), 'bus': fields.StringField(), 'dev': fields.StringField(), 'type': fields.StringField(), 'format': fields.StringField(nullable=True), 'boot_index': fields.IntegerField(nullable=True), 'connection_info_json': fields.StringField(), } # NOTE(danms): We don't have a connection_info object right # now, and instead mostly store/pass it as JSON that we're # careful with. When we get a connection_info object in the # future, we should use it here, so make this easy to convert # for later. @property def connection_info(self): return jsonutils.loads(self.connection_info_json) @connection_info.setter def connection_info(self, info): self.connection_info_json = jsonutils.dumps(info) def as_disk_info(self): info_dict = { 'dev': self.dev, 'bus': self.bus, 'type': self.type, } if self.obj_attr_is_set('format') and self.format: info_dict['format'] = self.format if self.obj_attr_is_set('boot_index') and self.boot_index is not None: info_dict['boot_index'] = str(self.boot_index) return info_dict @obj_base.NovaObjectRegistry.register class LibvirtLiveMigrateData(LiveMigrateData): # Version 1.0: Initial version # Version 1.1: Added target_connect_addr # Version 1.2: Added 'serial_listen_ports' to allow live migration with # serial console. VERSION = '1.2' fields = { 'filename': fields.StringField(), # FIXME: image_type should be enum? 'image_type': fields.StringField(), 'block_migration': fields.BooleanField(), 'disk_over_commit': fields.BooleanField(), 'disk_available_mb': fields.IntegerField(nullable=True), 'is_shared_instance_path': fields.BooleanField(), 'is_shared_block_storage': fields.BooleanField(), 'instance_relative_path': fields.StringField(), 'graphics_listen_addr_vnc': fields.IPAddressField(nullable=True), 'graphics_listen_addr_spice': fields.IPAddressField(nullable=True), 'serial_listen_addr': fields.StringField(nullable=True), 'serial_listen_ports': fields.ListOfIntegersField(), 'bdms': fields.ListOfObjectsField('LibvirtLiveMigrateBDMInfo'), 'target_connect_addr': fields.StringField(nullable=True), } def obj_make_compatible(self, primitive, target_version): super(LibvirtLiveMigrateData, self).obj_make_compatible( primitive, target_version) target_version = versionutils.convert_version_to_tuple(target_version) if target_version < (1, 2): if 'serial_listen_ports' in primitive: del primitive['serial_listen_ports'] if target_version < (1, 1) and 'target_connect_addr' in primitive: del primitive['target_connect_addr'] def _bdms_to_legacy(self, legacy): if not self.obj_attr_is_set('bdms'): return legacy['volume'] = {} for bdmi in self.bdms: legacy['volume'][bdmi.serial] = { 'disk_info': bdmi.as_disk_info(), 'connection_info': bdmi.connection_info} def _bdms_from_legacy(self, legacy_pre_result): self.bdms = [] volume = legacy_pre_result.get('volume', {}) for serial in volume: vol = volume[serial] bdmi = objects.LibvirtLiveMigrateBDMInfo(serial=serial) bdmi.connection_info = vol['connection_info'] bdmi.bus = vol['disk_info']['bus'] bdmi.dev = vol['disk_info']['dev'] bdmi.type = vol['disk_info']['type'] if 'format' in vol: bdmi.format = vol['disk_info']['format'] if 'boot_index' in vol: bdmi.boot_index = int(vol['disk_info']['boot_index']) self.bdms.append(bdmi) def to_legacy_dict(self, pre_migration_result=False): LOG.debug('Converting to legacy: %s' % self) legacy = super(LibvirtLiveMigrateData, self).to_legacy_dict() keys = (set(self.fields.keys()) - set(LiveMigrateData.fields.keys()) - {'bdms'}) legacy.update({k: getattr(self, k) for k in keys if self.obj_attr_is_set(k)}) graphics_vnc = legacy.pop('graphics_listen_addr_vnc', None) graphics_spice = legacy.pop('graphics_listen_addr_spice', None) transport_target = legacy.pop('target_connect_addr', None) live_result = { 'graphics_listen_addrs': { 'vnc': graphics_vnc and str(graphics_vnc), 'spice': graphics_spice and str(graphics_spice), }, 'serial_listen_addr': legacy.pop('serial_listen_addr', None), 'target_connect_addr': transport_target, } if pre_migration_result: legacy['pre_live_migration_result'] = live_result self._bdms_to_legacy(live_result) LOG.debug('Legacy result: %s' % legacy) return legacy def from_legacy_dict(self, legacy): LOG.debug('Converting legacy dict to obj: %s' % legacy) super(LibvirtLiveMigrateData, self).from_legacy_dict(legacy) keys = set(self.fields.keys()) - set(LiveMigrateData.fields.keys()) for k in keys - {'bdms'}: if k in legacy: setattr(self, k, legacy[k]) if 'pre_live_migration_result' in legacy: pre_result = legacy['pre_live_migration_result'] self.graphics_listen_addr_vnc = \ pre_result['graphics_listen_addrs'].get('vnc') self.graphics_listen_addr_spice = \ pre_result['graphics_listen_addrs'].get('spice') self.target_connect_addr = pre_result.get('target_connect_addr') if 'serial_listen_addr' in pre_result: self.serial_listen_addr = pre_result['serial_listen_addr'] self._bdms_from_legacy(pre_result) LOG.debug('Converted object: %s' % self) def is_on_shared_storage(self): return self.is_shared_block_storage or self.is_shared_instance_path @obj_base.NovaObjectRegistry.register class XenapiLiveMigrateData(LiveMigrateData): VERSION = '1.0' fields = { 'block_migration': fields.BooleanField(nullable=True), 'destination_sr_ref': fields.StringField(nullable=True), 'migrate_send_data': fields.DictOfStringsField(nullable=True), 'sr_uuid_map': fields.DictOfStringsField(), 'kernel_file': fields.StringField(), 'ramdisk_file': fields.StringField(), } def to_legacy_dict(self, pre_migration_result=False): legacy = super(XenapiLiveMigrateData, self).to_legacy_dict() if self.obj_attr_is_set('block_migration'): legacy['block_migration'] = self.block_migration if self.obj_attr_is_set('migrate_send_data'): legacy['migrate_data'] = { 'migrate_send_data': self.migrate_send_data, 'destination_sr_ref': self.destination_sr_ref, } live_result = { 'sr_uuid_map': ('sr_uuid_map' in self and self.sr_uuid_map or {}), } if pre_migration_result: legacy['pre_live_migration_result'] = live_result return legacy def from_legacy_dict(self, legacy): super(XenapiLiveMigrateData, self).from_legacy_dict(legacy) if 'block_migration' in legacy: self.block_migration = legacy['block_migration'] else: self.block_migration = False if 'migrate_data' in legacy: self.migrate_send_data = \ legacy['migrate_data']['migrate_send_data'] self.destination_sr_ref = \ legacy['migrate_data']['destination_sr_ref'] if 'pre_live_migration_result' in legacy: self.sr_uuid_map = \ legacy['pre_live_migration_result']['sr_uuid_map'] @obj_base.NovaObjectRegistry.register class HyperVLiveMigrateData(LiveMigrateData): VERSION = '1.0'
the-stack_106_17644
# Copyright (C) 2020 Electronic Arts Inc. All rights reserved. import numpy class Physics: def __init__(self, game): self.game = game def Update(self, verbosity): self.BoardCollisionUpdate(max(0, verbosity - 1)) self.PlayerCollisionUpdate(max(0, verbosity - 1)) def BoardCollisionUpdate(self, verbosity): # rectify collisions against boards arena = self.game.arena radius = self.game.rules.player_radius min_x = arena.min_x + radius max_x = arena.max_x - radius min_z = arena.min_z + radius max_z = arena.max_z - radius for player in self.game.players: position = player.GetPosition(self.game) velocity = player.GetVelocity(self.game) if position[0] < min_x: position[0] = min_x velocity[0] = 0 if position[0] > max_x: position[0] = max_x velocity[0] = 0 if position[1] < min_z: position[1] = min_z velocity[1] = 0 if position[1] > max_z: position[1] = max_z velocity[1] = 0 player.SetPosition(self.game, position) player.SetVelocity(self.game, velocity) def PlayerCollisionUpdate(self, verbosity): for player1 in self.game.players: for player2 in self.game.players: if player1 is player2: continue if numpy.linalg.norm(player1.GetPosition(self.game) - player2.GetPosition( self.game)) <= self.game.rules.player_radius * 2: control_player = self.game.control.GetControl() if self.game.rules.enable_player_collisions: center = (player1.GetPosition(self.game) + player2.GetPosition( self.game)) * 0.5 avg_vel = (player1.GetVelocity(self.game) + player2.GetVelocity( self.game)) * 0.5 for player in [player1, player2]: delta = player.GetPosition(self.game) - center dist = numpy.linalg.norm(delta) if dist > 0.001: direction = delta / dist else: direction = numpy.array([1.0, 0.0]) player.SetPosition(self.game, center + direction * self.game.rules.player_radius * 1.01) player.SetVelocity(self.game, avg_vel) if player1 is control_player and player1.team_side != player2.team_side and player2.GetActionTime( self.game) == 0: self.game.CompleteCheck(player1, player2) elif player2 is control_player and player2.team_side != player1.team_side and player1.GetActionTime( self.game) == 0: self.game.CompleteCheck(player2, player1) def InterceptTest(self, source, target, players, verbosity): # test each player in list for interception # if not intercepted the pass/shot would be successful # interception is a probability based on the ratio of the distance from the interceptor to # the intercept point and the distance of the intercept point from the start # as a baseline the probability is simply the ratio, so if the interceptor distance is 0 (along the path) # the interception is 100% and if the interceptor is just as far away it is 0% # the interception priority goes to the closest player to the start traj_delta = (target - source) traj_distance = numpy.linalg.norm(traj_delta) + 1e-10 traj_dir = traj_delta / traj_distance if verbosity: print('intercept test tick %d %f,%f to %f,%f' % ( self.game.tick, source[0], source[1], target[0], target[1])) through_chance = 1.0 intercepting_player = None shortest_intercept = traj_distance + 1.0 for player in players: # project player onto trajectory to find unconstrained intercept point player_source_delta = player.GetPosition(self.game) - source intercept_source_dist = traj_dir.dot(player_source_delta) # if behind the trajectory there is no intercept if intercept_source_dist > 0.0: # find distance from player to intercept if intercept_source_dist > traj_distance: # adjust intercept point if source or target is closer if verbosity: print( 'player %s intercept_source_dist %f > %f moving intercept to target' % ( player.name, intercept_source_dist, traj_distance)) intercept = target intercept_source_dist = traj_distance else: intercept = source + traj_dir * intercept_source_dist player_intercept_dist = numpy.linalg.norm(player.GetPosition(self.game) - intercept) closest_dist = max(0.0, player_intercept_dist - self.game.rules.player_intercept_speed * intercept_source_dist) if closest_dist > self.game.rules.max_intercept_dist: prob = 0.0 else: prob = (self.game.rules.max_intercept_chance - self.game.rules.min_intercept_chance) \ * closest_dist / self.game.rules.max_intercept_dist + self.game.rules.min_intercept_chance through_chance *= 1.0 - prob if closest_dist < shortest_intercept: r = numpy.random.random() # prob = 1.0 - self.game.rules.intercept_scale * player_intercept_dist / traj_distance if r < prob: intercepting_player = player shortest_intercept = closest_dist if verbosity: print( 'player %s random %f < probability %f so intercepted' % ( player.name, r, prob), 'closest_dist', closest_dist, 'player_intercept_dist', player_intercept_dist, 'intercept_source_dist', intercept_source_dist) else: if verbosity: print( 'player %s random %f > probability %f so not intercepted' % ( player.name, r, prob), 'closest_dist', closest_dist, 'player_intercept_dist', player_intercept_dist, 'intercept_source_dist', intercept_source_dist) else: if verbosity: print( 'player %s player_intercept_dist %f >= shortest_intercept %f so skipping' % ( player.name, player_intercept_dist, shortest_intercept)) else: if verbosity: print('player %s intercept_source_dist %f is behind' % ( player.name, intercept_source_dist)) return intercepting_player, through_chance
the-stack_106_17648
#!/usr/bin/env python # # Use the raw transactions API to spend bcashs received on particular addresses, # and send any change back to that same address. # # Example usage: # spendfrom.py # Lists available funds # spendfrom.py --from=ADDRESS --to=ADDRESS --amount=11.00 # # Assumes it will talk to a bcashd or BCash-Qt running # on localhost. # # Depends on jsonrpc # from decimal import * import getpass import math import os import os.path import platform import sys import time from jsonrpc import ServiceProxy, json BASE_FEE=Decimal("0.001") def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def determine_db_dir(): """Return the default location of the BCash data directory""" if platform.system() == "Darwin": return os.path.expanduser("~/Library/Application Support/BCashCore/") elif platform.system() == "Windows": return os.path.join(os.environ['APPDATA'], "BCashCore") return os.path.expanduser("~/.bcashcore") def read_bitcoin_config(dbdir): """Read the bcash.conf file from dbdir, returns dictionary of settings""" from ConfigParser import SafeConfigParser class FakeSecHead(object): def __init__(self, fp): self.fp = fp self.sechead = '[all]\n' def readline(self): if self.sechead: try: return self.sechead finally: self.sechead = None else: s = self.fp.readline() if s.find('#') != -1: s = s[0:s.find('#')].strip() +"\n" return s config_parser = SafeConfigParser() config_parser.readfp(FakeSecHead(open(os.path.join(dbdir, "bcash.conf")))) return dict(config_parser.items("all")) def connect_JSON(config): """Connect to a BCash JSON-RPC server""" testnet = config.get('testnet', '0') testnet = (int(testnet) > 0) # 0/1 in config file, convert to True/False if not 'rpcport' in config: config['rpcport'] = 29800 if testnet else 19800 connect = "http://%s:%[email protected]:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) try: result = ServiceProxy(connect) # ServiceProxy is lazy-connect, so send an RPC command mostly to catch connection errors, # but also make sure the bcashd we're talking to is/isn't testnet: if result.getmininginfo()['testnet'] != testnet: sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") sys.exit(1) return result except: sys.stderr.write("Error connecting to RPC server at "+connect+"\n") sys.exit(1) def unlock_wallet(bcashd): info = bcashd.getinfo() if 'unlocked_until' not in info: return True # wallet is not encrypted t = int(info['unlocked_until']) if t <= time.time(): try: passphrase = getpass.getpass("Wallet is locked; enter passphrase: ") bcashd.walletpassphrase(passphrase, 5) except: sys.stderr.write("Wrong passphrase\n") info = bcashd.getinfo() return int(info['unlocked_until']) > time.time() def list_available(bcashd): address_summary = dict() address_to_account = dict() for info in bcashd.listreceivedbyaddress(0): address_to_account[info["address"]] = info["account"] unspent = bcashd.listunspent(0) for output in unspent: # listunspent doesn't give addresses, so: rawtx = bcashd.getrawtransaction(output['txid'], 1) vout = rawtx["vout"][output['vout']] pk = vout["scriptPubKey"] # This code only deals with ordinary pay-to-bcash-address # or pay-to-script-hash outputs right now; anything exotic is ignored. if pk["type"] != "pubkeyhash" and pk["type"] != "scripthash": continue address = pk["addresses"][0] if address in address_summary: address_summary[address]["total"] += vout["value"] address_summary[address]["outputs"].append(output) else: address_summary[address] = { "total" : vout["value"], "outputs" : [output], "account" : address_to_account.get(address, "") } return address_summary def select_coins(needed, inputs): # Feel free to improve this, this is good enough for my simple needs: outputs = [] have = Decimal("0.0") n = 0 while have < needed and n < len(inputs): outputs.append({ "txid":inputs[n]["txid"], "vout":inputs[n]["vout"]}) have += inputs[n]["amount"] n += 1 return (outputs, have-needed) def create_tx(bcashd, fromaddresses, toaddress, amount, fee): all_coins = list_available(bcashd) total_available = Decimal("0.0") needed = amount+fee potential_inputs = [] for addr in fromaddresses: if addr not in all_coins: continue potential_inputs.extend(all_coins[addr]["outputs"]) total_available += all_coins[addr]["total"] if total_available < needed: sys.stderr.write("Error, only %f BTC available, need %f\n"%(total_available, needed)); sys.exit(1) # # Note: # Python's json/jsonrpc modules have inconsistent support for Decimal numbers. # Instead of wrestling with getting json.dumps() (used by jsonrpc) to encode # Decimals, I'm casting amounts to float before sending them to bcashd. # outputs = { toaddress : float(amount) } (inputs, change_amount) = select_coins(needed, potential_inputs) if change_amount > BASE_FEE: # don't bother with zero or tiny change change_address = fromaddresses[-1] if change_address in outputs: outputs[change_address] += float(change_amount) else: outputs[change_address] = float(change_amount) rawtx = bcashd.createrawtransaction(inputs, outputs) signed_rawtx = bcashd.signrawtransaction(rawtx) if not signed_rawtx["complete"]: sys.stderr.write("signrawtransaction failed\n") sys.exit(1) txdata = signed_rawtx["hex"] return txdata def compute_amount_in(bcashd, txinfo): result = Decimal("0.0") for vin in txinfo['vin']: in_info = bcashd.getrawtransaction(vin['txid'], 1) vout = in_info['vout'][vin['vout']] result = result + vout['value'] return result def compute_amount_out(txinfo): result = Decimal("0.0") for vout in txinfo['vout']: result = result + vout['value'] return result def sanity_test_fee(bcashd, txdata_hex, max_fee): class FeeError(RuntimeError): pass try: txinfo = bcashd.decoderawtransaction(txdata_hex) total_in = compute_amount_in(bcashd, txinfo) total_out = compute_amount_out(txinfo) if total_in-total_out > max_fee: raise FeeError("Rejecting transaction, unreasonable fee of "+str(total_in-total_out)) tx_size = len(txdata_hex)/2 kb = tx_size/1000 # integer division rounds down if kb > 1 and fee < BASE_FEE: raise FeeError("Rejecting no-fee transaction, larger than 1000 bytes") if total_in < 0.01 and fee < BASE_FEE: raise FeeError("Rejecting no-fee, tiny-amount transaction") # Exercise for the reader: compute transaction priority, and # warn if this is a very-low-priority transaction except FeeError as err: sys.stderr.write((str(err)+"\n")) sys.exit(1) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--from", dest="fromaddresses", default=None, help="addresses to get bcashs from") parser.add_option("--to", dest="to", default=None, help="address to get send bcashs to") parser.add_option("--amount", dest="amount", default=None, help="amount to send") parser.add_option("--fee", dest="fee", default="0.0", help="fee to include") parser.add_option("--datadir", dest="datadir", default=determine_db_dir(), help="location of bcash.conf file with RPC username/password (default: %default)") parser.add_option("--testnet", dest="testnet", default=False, action="store_true", help="Use the test network") parser.add_option("--dry_run", dest="dry_run", default=False, action="store_true", help="Don't broadcast the transaction, just create and print the transaction data") (options, args) = parser.parse_args() check_json_precision() config = read_bitcoin_config(options.datadir) if options.testnet: config['testnet'] = True bcashd = connect_JSON(config) if options.amount is None: address_summary = list_available(bcashd) for address,info in address_summary.iteritems(): n_transactions = len(info['outputs']) if n_transactions > 1: print("%s %.8f %s (%d transactions)"%(address, info['total'], info['account'], n_transactions)) else: print("%s %.8f %s"%(address, info['total'], info['account'])) else: fee = Decimal(options.fee) amount = Decimal(options.amount) while unlock_wallet(bcashd) == False: pass # Keep asking for passphrase until they get it right txdata = create_tx(bcashd, options.fromaddresses.split(","), options.to, amount, fee) sanity_test_fee(bcashd, txdata, amount*Decimal("0.01")) if options.dry_run: print(txdata) else: txid = bcashd.sendrawtransaction(txdata) print(txid) if __name__ == '__main__': main()
the-stack_106_17649
class Student: def __init__(self,name): self.name = name self.exp = 0 self.lesson = 0 #call Function #self.AddEXP(10) #student1.name # self = student1 def Hello(self): print('สวัสดีจ้า ผมชื่อ{}'.format(self.name)) def Coding(self): print('{}:กำลังเขียนโปรแกรม..'.format(self.name)) self.exp += 5 self.lesson += 1 def ShowEXP(self): print('- {} มีประสบการณ์ {} EXP'.format(self.name,self.exp)) print('- เรียนไแล้ว {} ครั้งแล้ว'.format(self.lesson)) def AddEXP(self,score): self.exp += score #self.exp = self.exp + score self.lesson += 1 class SpecialStudent(Student): def __init__(self,name,father): super().__init__(name) self.father = father mafia = ['Bill Gates','Thomas Edison'] if father in mafia: self.exp += 100 def AddEXP(self,score): self.exp += (score*3) #self.exp = self.exp + score self.lesson += 1 def AskEXP(self,score=10): print('ครู!! ขอคะแนนพิเศษให้ผมหน่อยสิ {} EXP'.format(score)) self.AddEXP(score) if __name__ == '__main__': print('======1 Jan======') student0 = SpecialStudent('Mark Zuckerberg','Bill Gates') student0.ShowEXP() student1 = Student('Albert') print(student1.name) student1.Hello() print('----------') student2 = Student('Steve') print(student2.name) student2.Hello() print('======2 Jan=====') print('-----uncle: ใครอยากเรียนโค้ดดิ้ง?---(10 exp)----') student1.AddEXP(10) print('======3 Jan=====') student1.name = 'Albert Einstein' print('ตอนนี้ exp ของแต่ละคนได้เท่าไรกันแล้ว') print(student1.name,student1.exp) print(student2.name,student2.exp) print('======4 Jan=====') for i in range(5): student2.Coding() student1.ShowEXP() student2.ShowEXP()
the-stack_106_17652
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-variable, unused-argument """Schedule for pooling operators""" import tvm from .. import tag from .. import generic @generic.schedule_adaptive_pool.register(["opengl"]) def schedule_adaptive_pool(outs): """Schedule for adaptive pool. Parameters ---------- outs: Array of Tensor The computation graph description of global_pool in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for adaptive pool. """ outs = [outs] if isinstance(outs, tvm.tensor.Tensor) else outs s = tvm.create_schedule([x.op for x in outs]) scheduled_ops = [] def _schedule(Pool): if Pool.op in s.outputs: Out = Pool else: Out = outs[0].op.output(0) s[Pool].opengl() s[Out].opengl() def traverse(OP): """Internal traverse function""" # inline all one-to-one-mapping operators except the last stage (output) if tag.is_broadcast(OP.tag): if OP not in s.outputs: s[OP].opengl() for tensor in OP.input_tensors: if isinstance(tensor.op, tvm.tensor.ComputeOp) and tensor.op not in scheduled_ops: traverse(tensor.op) # schedule global_pool elif OP.tag.startswith('adaptive_pool'): Pool = OP.output(0) _schedule(Pool) else: raise RuntimeError("Unsupported operator: %s" % OP.tag) scheduled_ops.append(OP) traverse(outs[0].op) return s @generic.schedule_pool.register(["opengl"]) def schedule_pool(outs, layout): """Schedule for pool. Parameters ---------- outs: Array of Tensor The computation graph description of pool in the format of an array of tensors. layout: str Data layout. Returns ------- s: Schedule The computation schedule for pool. """ outs = [outs] if isinstance(outs, tvm.tensor.Tensor) else outs s = tvm.create_schedule([x.op for x in outs]) scheduled_ops = [] def _schedule(PaddedInput, Pool): if isinstance(PaddedInput.op, tvm.tensor.ComputeOp): s[PaddedInput].opengl() if Pool.op in s.outputs: Out = Pool else: Out = outs[0].op.output(0) s[Pool].opengl() s[Out].opengl() def traverse(OP): """Internal traverse function""" # inline all one-to-one-mapping operators except the last stage (output) if tag.is_broadcast(OP.tag): if OP not in s.outputs: s[OP].compute_inline() for tensor in OP.input_tensors: if tensor.op not in scheduled_ops and isinstance(tensor.op, tvm.tensor.ComputeOp): traverse(tensor.op) # schedule pool elif OP.tag.startswith('pool'): PaddedInput = OP.input_tensors[0] Pool = OP.output(0) _schedule(PaddedInput, Pool) else: raise RuntimeError("Unsupported operator: %s" % OP.tag) scheduled_ops.append(OP) traverse(outs[0].op) return s
the-stack_106_17654
import json from starlette.testclient import TestClient from syndio_backend_test import api, main, sql DATA = [ {"id": 1, "gender": "male"}, {"id": 2, "gender": "male"}, {"id": 3, "gender": "male"}, {"id": 4, "gender": "female"}, {"id": 5, "gender": "female"}, {"id": 6, "gender": "female"}, ] def test_sql(): assert list(sql.get_rows(sql.get_db_conn(), "employees")) == DATA def test_api(): res = TestClient(api.API).get("employees") assert res.status_code == 200 assert res.json() == DATA
the-stack_106_17655
# Adapted from test_file.py by Daniel Stutzbach #from __future__ import unicode_literals import sys import os import unittest from array import array from weakref import proxy from test.test_support import (TESTFN, findfile, check_warnings, run_unittest, make_bad_fd) from UserList import UserList import _fileio class AutoFileTests(unittest.TestCase): # file tests for which a test file is automatically set up def setUp(self): self.f = _fileio._FileIO(TESTFN, 'w') def tearDown(self): if self.f: self.f.close() os.remove(TESTFN) def testWeakRefs(self): # verify weak references p = proxy(self.f) p.write(bytes(range(10))) self.assertEquals(self.f.tell(), p.tell()) self.f.close() self.f = None self.assertRaises(ReferenceError, getattr, p, 'tell') def testSeekTell(self): self.f.write(bytes(bytearray(range(20)))) self.assertEquals(self.f.tell(), 20) self.f.seek(0) self.assertEquals(self.f.tell(), 0) self.f.seek(10) self.assertEquals(self.f.tell(), 10) self.f.seek(5, 1) self.assertEquals(self.f.tell(), 15) self.f.seek(-5, 1) self.assertEquals(self.f.tell(), 10) self.f.seek(-5, 2) self.assertEquals(self.f.tell(), 15) def testAttributes(self): # verify expected attributes exist f = self.f self.assertEquals(f.mode, "wb") self.assertEquals(f.closed, False) # verify the attributes are readonly for attr in 'mode', 'closed': self.assertRaises((AttributeError, TypeError), setattr, f, attr, 'oops') def testReadinto(self): # verify readinto self.f.write(bytes(bytearray([1, 2]))) self.f.close() a = array('b', b'x'*10) self.f = _fileio._FileIO(TESTFN, 'r') n = self.f.readinto(a) self.assertEquals(array('b', [1, 2]), a[:n]) def testRepr(self): self.assertEquals(repr(self.f), "_fileio._FileIO(%d, %s)" % (self.f.fileno(), repr(self.f.mode))) def testErrors(self): f = self.f self.assert_(not f.isatty()) self.assert_(not f.closed) #self.assertEquals(f.name, TESTFN) self.assertRaises(ValueError, f.read, 10) # Open for reading f.close() self.assert_(f.closed) f = _fileio._FileIO(TESTFN, 'r') self.assertRaises(TypeError, f.readinto, "") self.assert_(not f.closed) f.close() self.assert_(f.closed) def testMethods(self): methods = ['fileno', 'isatty', 'read', 'readinto', 'seek', 'tell', 'truncate', 'write', 'seekable', 'readable', 'writable'] if sys.platform.startswith('atheos'): methods.remove('truncate') self.f.close() self.assert_(self.f.closed) for methodname in methods: method = getattr(self.f, methodname) # should raise on closed file self.assertRaises(ValueError, method) def testOpendir(self): # Issue 3703: opening a directory should fill the errno # Windows always returns "[Errno 13]: Permission denied # Unix calls dircheck() and returns "[Errno 21]: Is a directory" try: _fileio._FileIO('.', 'r') except IOError as e: self.assertNotEqual(e.errno, 0) self.assertEqual(e.filename, ".") else: self.fail("Should have raised IOError") class OtherFileTests(unittest.TestCase): def testAbles(self): try: f = _fileio._FileIO(TESTFN, "w") self.assertEquals(f.readable(), False) self.assertEquals(f.writable(), True) self.assertEquals(f.seekable(), True) f.close() f = _fileio._FileIO(TESTFN, "r") self.assertEquals(f.readable(), True) self.assertEquals(f.writable(), False) self.assertEquals(f.seekable(), True) f.close() f = _fileio._FileIO(TESTFN, "a+") self.assertEquals(f.readable(), True) self.assertEquals(f.writable(), True) self.assertEquals(f.seekable(), True) self.assertEquals(f.isatty(), False) f.close() if sys.platform != "win32": try: f = _fileio._FileIO("/dev/tty", "a") except EnvironmentError: # When run in a cron job there just aren't any # ttys, so skip the test. This also handles other # OS'es that don't support /dev/tty. pass else: f = _fileio._FileIO("/dev/tty", "a") self.assertEquals(f.readable(), False) self.assertEquals(f.writable(), True) if sys.platform != "darwin" and \ not sys.platform.startswith('freebsd') and \ not sys.platform.startswith('sunos'): # Somehow /dev/tty appears seekable on some BSDs self.assertEquals(f.seekable(), False) self.assertEquals(f.isatty(), True) f.close() finally: os.unlink(TESTFN) def testModeStrings(self): # check invalid mode strings for mode in ("", "aU", "wU+", "rw", "rt"): try: f = _fileio._FileIO(TESTFN, mode) except ValueError: pass else: f.close() self.fail('%r is an invalid file mode' % mode) def testUnicodeOpen(self): # verify repr works for unicode too f = _fileio._FileIO(str(TESTFN), "w") f.close() os.unlink(TESTFN) def testInvalidFd(self): self.assertRaises(ValueError, _fileio._FileIO, -10) self.assertRaises(OSError, _fileio._FileIO, make_bad_fd()) def testBadModeArgument(self): # verify that we get a sensible error message for bad mode argument bad_mode = "qwerty" try: f = _fileio._FileIO(TESTFN, bad_mode) except ValueError as msg: if msg.args[0] != 0: s = str(msg) if s.find(TESTFN) != -1 or s.find(bad_mode) == -1: self.fail("bad error message for invalid mode: %s" % s) # if msg.args[0] == 0, we're probably on Windows where there may be # no obvious way to discover why open() failed. else: f.close() self.fail("no error for invalid mode: %s" % bad_mode) def testTruncateOnWindows(self): def bug801631(): # SF bug <http://www.python.org/sf/801631> # "file.truncate fault on windows" f = _fileio._FileIO(TESTFN, 'w') f.write(bytes(bytearray(range(11)))) f.close() f = _fileio._FileIO(TESTFN,'r+') data = f.read(5) if data != bytes(bytearray(range(5))): self.fail("Read on file opened for update failed %r" % data) if f.tell() != 5: self.fail("File pos after read wrong %d" % f.tell()) f.truncate() if f.tell() != 5: self.fail("File pos after ftruncate wrong %d" % f.tell()) f.close() size = os.path.getsize(TESTFN) if size != 5: self.fail("File size after ftruncate wrong %d" % size) try: bug801631() finally: os.unlink(TESTFN) def testAppend(self): try: f = open(TESTFN, 'wb') f.write(b'spam') f.close() f = open(TESTFN, 'ab') f.write(b'eggs') f.close() f = open(TESTFN, 'rb') d = f.read() f.close() self.assertEqual(d, b'spameggs') finally: try: os.unlink(TESTFN) except: pass def testInvalidInit(self): self.assertRaises(TypeError, _fileio._FileIO, "1", 0, 0) def testWarnings(self): with check_warnings() as w: self.assertEqual(w.warnings, []) self.assertRaises(TypeError, _fileio._FileIO, []) self.assertEqual(w.warnings, []) self.assertRaises(ValueError, _fileio._FileIO, "/some/invalid/name", "rt") self.assertEqual(w.warnings, []) def test_main(): # Historically, these tests have been sloppy about removing TESTFN. # So get rid of it no matter what. try: run_unittest(AutoFileTests, OtherFileTests) finally: if os.path.exists(TESTFN): os.unlink(TESTFN) if __name__ == '__main__': test_main()
the-stack_106_17661
#!/usr/bin/env python3 # # Copyright 2021 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # Classes and functions borrowed from https://opendev.org/zuul/zuul # import collections from copy import deepcopy import io import yaml from znoyder.lib import logger from znoyder.lib import utils from znoyder.lib.exceptions import JobTypeError from znoyder.lib.exceptions import TriggerTypeError from znoyder.lib.exceptions import YAMLDuplicateKeyError LOG = logger.LOG class JobTriggerType(object): """Enumeration for the Job Trigger Type""" # TEMPLATES are same level as trigger type RANGE = (TEMPLATES, CHECK, GATE, POST, EXPERIMENTAL) = range(5) @staticmethod def to_str(column) -> str: return { JobTriggerType.TEMPLATES: 'templates', JobTriggerType.CHECK: 'check', JobTriggerType.GATE: 'gate', JobTriggerType.POST: 'post', JobTriggerType.EXPERIMENTAL: 'experimental', }[column] @staticmethod def to_type(trigger) -> int: types = { 'templates': JobTriggerType.TEMPLATES, 'check': JobTriggerType.CHECK, 'gate': JobTriggerType.GATE, 'post': JobTriggerType.POST, 'experimental': JobTriggerType.EXPERIMENTAL, } if trigger not in types: raise TriggerTypeError("Job trigger type is not valid: %s" % trigger) return types[trigger] @staticmethod def get_job_types_str(job_trigger_types) -> list: """Gets job types as strings Args: job_trigger_types (:obj:`list`): Trigger types as JobTriggerType Returns: (:obj:`list`): list of trigger types as strings """ # Convert to list if one trigger type was passed job_trigger_types = [job_trigger_types] if type(job_trigger_types) \ is int else job_trigger_types for job_type in job_trigger_types: if job_type not in JobTriggerType.RANGE: raise JobTypeError("Job type is not valid: %s" % job_trigger_types) # We are interested only in jobs defined in project trigger_types = list(map(lambda x: JobTriggerType.to_str(x), job_trigger_types)) return trigger_types class ZuulMark: # The yaml mark class differs between the C and python versions. # The C version does not provide a snippet, and also appears to # lose data under some circumstances. def __init__(self, start_mark, end_mark, stream): self.name = start_mark.name self.index = start_mark.index self.line = start_mark.line self.end_line = end_mark.line self.end_index = end_mark.index self.column = start_mark.column self.end_column = end_mark.column self.snippet = stream[start_mark.index:end_mark.index] def __str__(self): return ' in "{name}", line {line}, column {column}'.format( name=self.name, line=self.line + 1, column=self.column + 1, ) def __eq__(self, other): return (self.line == other.line and self.snippet == other.snippet) def serialize(self): return { "name": self.name, "index": self.index, "line": self.line, "end_line": self.end_line, "end_index": self.end_index, "column": self.column, "end_column": self.end_column, "snippet": self.snippet, } @classmethod def deserialize(cls, data): o = cls.__new__(cls) o.__dict__.update(data) return o # Check the class ZuulSafeLoader from configloader.py from zuul project class ZuulSafeLoader(yaml.SafeLoader): zuul_node_types = frozenset(('job', 'nodeset', 'secret', 'pipeline', 'project', 'project-template', 'semaphore', 'queue', 'pragma')) def __init__(self, stream, context): wrapped_stream = io.StringIO(stream) wrapped_stream.name = str(context) super(ZuulSafeLoader, self).__init__(wrapped_stream) self.add_multi_constructor('!encrypted/', self.construct_encrypted) self.name = str(context) self.zuul_context = context self.zuul_stream = stream @classmethod def construct_encrypted(cls, loader, tag_suffix, node): return loader.construct_sequence(node) def construct_mapping(self, node, deep=False): keys = set() for k, v in node.value: # The key << needs to be treated special since that will merge # the anchor into the mapping and not create a key on its own. if k.value == '<<': continue if not isinstance(k.value, collections.abc.Hashable): # This happens with "foo: {{ bar }}" # This will raise an error in the superclass # construct_mapping below; ignore it for now. continue if k.value in keys: mark = ZuulMark(node.start_mark, node.end_mark, self.zuul_stream) raise YAMLDuplicateKeyError(k.value, node, self.zuul_context, mark) keys.add(k.value) r = super(ZuulSafeLoader, self).construct_mapping(node, deep) keys = frozenset(r.keys()) if len(keys) == 1 and keys.intersection(self.zuul_node_types): d = list(r.values())[0] if isinstance(d, dict): d['_start_mark'] = ZuulMark(node.start_mark, node.end_mark, self.zuul_stream) d['_source_context'] = self.zuul_context return r class ZuulProject(object): """A Project represents top level component. It may define or use jobs directly as well job templates. Args: project_name (:obj:`str`): Name of the project e.g. neutron project_path (:obj:`str`): Local path to the project directory """ def __init__(self, project_name=None, project_path=None, templates=None): if templates is None: templates = [] self.project_name = project_name self.project_path = project_path self.all_templates = templates # defined by other projects self.project_templates = [] # used by this project self.defined_templates = [] # defined by this project self.project_jobs = [] self.config_paths = [] if project_path and not self.project_name: self.project_name = project_path.strip("/").split("/")[-1] def get_project_config_files(self) -> list: if self.config_paths: return self.config_paths self.config_paths = utils.get_config_paths(self.project_path) return self.config_paths def get_list_of_jobs(self, job_trigger_types=None) -> list: """Gets list of jobs for a particular project. This does not include jobs defined under templates. Args: job_trigger_types (:obj:`list`): Trigger types as JobTriggerType Returns: (:obj:`list`): list of ZuulJob objects associated with the project """ if job_trigger_types is None: job_trigger_types = [] trigger_types = JobTriggerType.get_job_types_str(job_trigger_types) LOG.debug('Discovering jobs for trigger: %s' % trigger_types) CASE = 'project' for config_file in self.get_project_config_files(): projects = self._get_entries_from_config(config_file, CASE) for project in projects: for trigger_type in trigger_types: if trigger_type in project: jobs = project.get(trigger_type).get('jobs') if not jobs: continue for job in jobs: z_jobs = self._get_jobs_from_entry(job, trigger_type) self.project_jobs.extend(z_jobs) return self.project_jobs def get_list_of_used_templates(self) -> list: """Gets list of templates used by a project. Returns: (:obj:`list`): list of ZuulProjectTemplate objects associated with the project """ LOG.debug('Discovering templates') CASE = 'project' for config_file in self.get_project_config_files(): project = self._get_entries_from_config(config_file, CASE) template_str = JobTriggerType.to_str(JobTriggerType.TEMPLATES) for used_template in project: if template_str in used_template: templates = used_template.get(template_str) LOG.debug("Found templates %s" % templates) for template in templates: zuul_template = self._get_availabie_template(template) self.project_templates.append(zuul_template) return self.project_templates def _get_availabie_template(self, template_name) -> object: """Gets template from passed by other projects Args: template_name (:obj:`str`): Name of the template Returns: (:obj:`ZuulProjectTemplate`): project template """ found = False template_obj = None for template in self.all_templates: if str(template) == template_name: found = True template_obj = template break if not found: LOG.warning("Used template not found in base templates: %s" % template_name) template_obj = ZuulProjectTemplate(template_name) return template_obj def get_list_of_defined_templates(self, job_trigger_types=None) -> list: """Gets list of templates defined in a project. Args: job_trigger_types (:obj:`list`): Trigger types as JobTriggerType Returns: (:obj:`list`): list of ZuulProjectTemplate objects associated with the project """ if job_trigger_types is None: job_trigger_types = [] trigger_types = JobTriggerType.get_job_types_str(job_trigger_types) LOG.debug('Discovering templates and jobs for trigger: %s' % trigger_types) CASE = 'project-template' for config_file in self.get_project_config_files(): project = self._get_entries_from_config(config_file, CASE) for template in project: p_template = ZuulProjectTemplate(template.get('name'), self.project_name, template) for trigger in trigger_types: if trigger in template: jobs = template.get(trigger).get('jobs') for job_r in jobs: job = self._get_jobs_from_entry(job_r, trigger) p_template.associate_job(job) self.defined_templates.append(p_template) return self.defined_templates def _get_entries_from_config(self, config_file, config_section) -> list: """Helper function to get part of the config Args: config_file (:obj:`str`): path to the config file config_section (:obj:`str`): config section Returns: (:obj:`list`): partial config """ LOG.debug('Discovering section "%s" from config: %s' % (config_section, config_file)) config = [] with open(config_file, 'r') as file: data = file.read() loader = ZuulSafeLoader(data, 'null').get_single_data() for entry in loader: if config_section in entry: config.append(entry.get(config_section)) return config def _get_jobs_from_entry(self, job_entry, trigger_type) -> list: """Helper function to standardize job object as the zuul job entry may be just a string or dictionary. Args: job_entry (:obj:`str`): zuul entry for the job trigger_type (:obj:`str`): Trigger type as JobTriggerType Returns: (:obj:`list`): list of ZuulJob objects associated with the project """ jobs = [] if isinstance(job_entry, str): LOG.debug('Found %s job: %s' % (trigger_type, job_entry)) jobs.append(ZuulJob(job_entry, trigger_type, {})) else: for job_name, job_data in job_entry.items(): LOG.debug('Found %s job: %s with options %s' % (trigger_type, job_name, job_data)) jobs.append(ZuulJob(job_name, trigger_type, job_data)) return jobs class ZuulProjectTemplate(object): """Project Template defines jobs which can be used by multiple Zuul Projects. Args: template_name (:obj:`str`): Template name """ def __init__(self, template_name, template_project=None, template_data=None): if template_data is None: template_data = {} # Project that defines template self.template_project = template_project self.template_name = template_name self.template_data = template_data self.template_jobs = [] def associate_job(self, job): if job not in self.template_jobs: self.template_jobs.extend(job) else: LOG.warning('JOB %s defined multiple times' % job) def get_jobs(self, job_trigger_type): """Get jobs associated with template with specific trigger type Args: job_trigger_type(:obj:`JobTriggerType`): Trigger type Returns: (:obj:`list`): list of ZuulJob objects associated with the project """ jobs = [] for job in self.template_jobs: trigger_type = JobTriggerType.to_type(job.job_trigger_type) if trigger_type in job_trigger_type: jobs.append(job) return jobs def __str__(self) -> str: return self.template_name def __repr__(self) -> str: return self.template_name class ZuulJob(object): """Zuul Job representation Args: job_name (:obj:`str`): Job name job_trigger_type(:obj:`str`): Trigger type e.g. check/gate/post job_data(:obj:`dict`): JSON job data """ def __init__(self, job_name, job_trigger_type, job_data=None): if job_data is None: job_data = {} self.job_name = job_name self.job_trigger_type = job_trigger_type self.job_data = deepcopy(job_data) def __str__(self) -> str: return self.job_name def __repr__(self) -> str: return self.job_name
the-stack_106_17662
# -*- coding: utf-8 -*- import logging from airflow.hooks.postgres_hook import PostgresHook as AirflowPostgresHook from airflow.exceptions import AirflowException class PostgresHook(AirflowPostgresHook): def update_row(self, table, rows, primary_key=None, commit_every=0): """ A generic way to update a set of tuples into a table, the whole set of inserts is treated as one transaction :param table: Name of the target table :type table: str :param rows: The rows to insert into the table :type rows: iterable of tuple :param primary_key: The name of primary key column :type primary_key: iterable of strings :param commit_every: The maximum number of rows to insert in one transaction. Set to 0 to insert all rows in one transaction. :type commit_every: int """ conn = self.get_conn() if self.supports_autocommit: self.set_autocommit(conn, False) conn.commit() cur = conn.cursor() row_number = 0 row_total = len(rows) for row in rows: row_number += 1 # l = ["%s = '%s'" % (k, v) for k, v in row.iteritems()] if not hasattr(row, primary_key): raise AirflowException('Row without ID for update: {}...'.format(row)) where = "%s = %s" % (primary_key, self._serialize_cell(getattr(row, primary_key), conn)) values = ["%s = %s" % (field, self._serialize_cell(getattr(row, field), conn)) for field in row._fields] logging.info("Updating line {} of {}. {}...".format( row_number, row_total, where ) ) cur.execute( "UPDATE {0} SET {1} WHERE {2};".format( table, ", ".join(values), where ) ) if commit_every and row_number % commit_every == 0: conn.commit() logging.info("Loaded {row_number} into {table} rows so far...".format(**locals())) conn.commit() cur.close() conn.close() logging.info("Done loading. Loaded a total of {row_number} rows...".format(**locals()))
the-stack_106_17663
import json import os import sys import pika import spotipy from spotipy.oauth2 import SpotifyClientCredentials import imports.broker as broker import imports.db as db from imports.logging import get_logger import imports.requests READING_QUEUE_NAME = "albums" WRITING_QUEUE_NAME = "tracks" MAX_RETRY_ATTEMPTS = 10 log = get_logger(os.path.basename(__file__)) def main(): def update_album(cursor, data): copyrights = [] for copyright in data["copyrights"]: copyrights.append(copyright["text"]) try: cursor.execute( "UPDATE albums SET popularity=%s, label=%s, copyrights=%s WHERE spotify_id=%s;", ( data["popularity"], data["label"], copyrights, data["id"], ), ) except Exception as e: log.error("Unhandled exception", exception=e, exc_info=True) else: log.info("💿 Album's details updated", spotify_id=data["id"], object="album") consume_channel = broker.create_channel(READING_QUEUE_NAME) publish_channel = broker.create_channel(WRITING_QUEUE_NAME) db_connection, cursor = db.init_connection() sp = spotipy.Spotify( auth_manager=SpotifyClientCredentials(), retries=3, status_retries=3, backoff_factor=0.3, ) # Build artist data array to add it to the tracks cursor.execute("SELECT name, genres, popularity, followers FROM artists") artist_data = { artist_data[0]: [artist_data[1], artist_data[2], artist_data[3]] for artist_data in cursor.fetchall() } def callback(ch, method, properties, body): message = json.loads(body.decode()) album_id = message["spotify_id"] album_name = message["album_name"] album_artist = message["album_artist"] album_artist_spotify_id = message["album_artist_spotify_id"] log.info( "💿 Processing album", spotify_id=album_id, album=album_name, object="album" ) attempts = 0 while attempts < MAX_RETRY_ATTEMPTS: try: result = sp.album(album_id=album_id) log.info( "Trying API request", attempt=attempts, spotify_id=album_id, object="album", ) break except Exception as e: attempts += 1 log.exception( "Unhandled exception", exception=e, attempt=attempts, spotify_id=album_id, object="album", exc_info=True, ) update_album(cursor, result) tracks = result["tracks"]["items"] album_release_date = result["release_date"] if len(album_release_date) == 4: if "0000" == album_release_date: album_release_date = "0001" album_release_date += "-01-01" elif len(album_release_date) == 7: album_release_date += "-01" for i, item in enumerate(tracks): artists = [] genres = [] main_artist_popularity = None main_artist_followers = None for artist in item["artists"]: artists.append(artist["name"]) # We use data of the last artist from the track, that exists in `artists` table # We should either grab that data from Spotify # TODO: or take the maximum from artists we have (the most popular is the most importatnt) if artist["name"] in artist_data: genres.extend(artist_data[artist["name"]][0]) main_artist_popularity = artist_data[artist["name"]][1] main_artist_followers = artist_data[artist["name"]][2] genres = list(set(genres)) try: cursor.execute( "INSERT INTO tracks (spotify_id, name, main_artist, main_artist_popularity, main_artist_followers, all_artists, all_artists_string, release_date, genres, genres_string, track_number, disc_number, duration_ms, explicit, preview_url, from_album, from_album_spotify_id, album_artist, album_artist_spotify_id) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ON CONFLICT DO NOTHING;", ( item["id"], item["name"], artists[0], main_artist_popularity, main_artist_followers, artists, " ".join(artists), album_release_date, genres, " ".join(genres), item["track_number"], item["disc_number"], item["duration_ms"], item["explicit"], item["preview_url"], album_name, album_id, album_artist, album_artist_spotify_id, ), ) except Exception as e: log.exception("Unhandled exception", exception=e, exc_info=True) else: log.info( "🎧 Track " + ("saved" if cursor.rowcount else "exists"), spotify_id=item["id"], status="saved", object="track", ) # Publish to queue only if it was added (which means it was not in the db yet) if cursor.rowcount: publish_channel.basic_publish( exchange="", routing_key=WRITING_QUEUE_NAME, body=item["id"], properties=pika.BasicProperties( delivery_mode=pika.spec.PERSISTENT_DELIVERY_MODE ), ) ch.basic_ack(method.delivery_tag) consume_channel.basic_qos(prefetch_count=1) consume_channel.basic_consume( on_message_callback=callback, queue=READING_QUEUE_NAME ) print(" [*] Waiting for messages. To exit press CTRL+C") consume_channel.start_consuming() # Clean up and close connections broker.close_connection() db.close_connection(db_connection, cursor) if __name__ == "__main__": try: main() except KeyboardInterrupt: print("Interrupted") try: sys.exit(0) except SystemExit: os._exit(0)
the-stack_106_17664
""" WNT Client ========== Simple example on how to communicate with the wirepas network tool services. .. Copyright: Copyright 2019 Wirepas Ltd under Apache License, Version 2.0. See file LICENSE for full license details. """ from .handlers import Backend from .settings import WNTSettings from wirepas_backend_client.tools import ParserHelper, LoggerHelper def main(): """ Main entrypoint to connect and talk to a WNT instance """ PARSER = ParserHelper(description="WNT client arguments") PARSER.add_file_settings() PARSER.add_wnt() PARSER.add_fluentd() SETTINGS = PARSER.settings(settings_class=WNTSettings) LOGGER = LoggerHelper( module_name="wm-wnt-viewer", args=SETTINGS, level=SETTINGS.debug_level ).setup() if SETTINGS.sanity(): Backend(settings=SETTINGS, logger=LOGGER).run(False) else: print("There is something wrong with your WNT arguments.") print(SETTINGS) if __name__ == "__main__": main()
the-stack_106_17665
############################################################################### # # Metadata - A class for writing the Excel XLSX Metadata file. # # SPDX-License-Identifier: BSD-2-Clause # Copyright 2013-2021, John McNamara, [email protected] # from . import xmlwriter class Metadata(xmlwriter.XMLwriter): """ A class for writing the Excel XLSX Metadata file. """ ########################################################################### # # Public API. # ########################################################################### def __init__(self): """ Constructor. """ super(Metadata, self).__init__() ########################################################################### # # Private API. # ########################################################################### def _assemble_xml_file(self): # Assemble and write the XML file. # Write the XML declaration. self._xml_declaration() # Write the metadata element. self._write_metadata() # Write the metadataTypes element. self._write_metadata_types() # Write the futureMetadata element. self._write_future_metadata() # Write the cellMetadata element. self._write_cell_metadata() self._xml_end_tag('metadata') # Close the file. self._xml_close() ########################################################################### # # XML methods. # ########################################################################### def _write_metadata(self): # Write the <metadata> element. xmlns = 'http://schemas.openxmlformats.org/spreadsheetml/2006/main' schema = 'http://schemas.microsoft.com/office' xmlns_xda = schema + '/spreadsheetml/2017/dynamicarray' attributes = [ ('xmlns', xmlns), ('xmlns:xda', xmlns_xda), ] self._xml_start_tag('metadata', attributes) def _write_metadata_types(self): # Write the <metadataTypes> element. attributes = [('count', 1)] self._xml_start_tag('metadataTypes', attributes) # Write the metadataType element. self._write_metadata_type() self._xml_end_tag('metadataTypes') def _write_metadata_type(self): # Write the <metadataType> element. attributes = [ ('name', 'XLDAPR'), ('minSupportedVersion', 120000), ('copy', 1), ('pasteAll', 1), ('pasteValues', 1), ('merge', 1), ('splitFirst', 1), ('rowColShift', 1), ('clearFormats', 1), ('clearComments', 1), ('assign', 1), ('coerce', 1), ('cellMeta', 1), ] self._xml_empty_tag('metadataType', attributes) def _write_future_metadata(self): # Write the <futureMetadata> element. attributes = [ ('name', 'XLDAPR'), ('count', 1), ] self._xml_start_tag('futureMetadata', attributes) self._xml_start_tag('bk') self._xml_start_tag('extLst') # Write the ext element. self._write_ext() self._xml_end_tag('extLst') self._xml_end_tag('bk') self._xml_end_tag('futureMetadata') def _write_ext(self): # Write the <ext> element. attributes = [('uri', '{bdbb8cdc-fa1e-496e-a857-3c3f30c029c3}')] self._xml_start_tag('ext', attributes) # Write the xda:dynamicArrayProperties element. self._write_xda_dynamic_array_properties() self._xml_end_tag('ext') def _write_xda_dynamic_array_properties(self): # Write the <xda:dynamicArrayProperties> element. attributes = [ ('fDynamic', 1), ('fCollapsed', 0), ] self._xml_empty_tag('xda:dynamicArrayProperties', attributes) def _write_cell_metadata(self): # Write the <cellMetadata> element. attributes = [('count', 1)] self._xml_start_tag('cellMetadata', attributes) self._xml_start_tag('bk') # Write the rc element. self._write_rc() self._xml_end_tag('bk') self._xml_end_tag('cellMetadata') def _write_rc(self): # Write the <rc> element. attributes = [ ('t', 1), ('v', 0), ] self._xml_empty_tag('rc', attributes)
the-stack_106_17668
#!/usr/bin/env python3 # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) TODO: - auto-add new translations to the build system according to the translation process ''' import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'oro_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' # Minimum number of messages for translation to be considered at all MIN_NUM_MESSAGES = 10 def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) sys.exit(1) def fetch_all_translations(): if subprocess.call([TX, 'pull', '-f', '-a']): print('Error while fetching translations', file=sys.stderr) sys.exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break try: specifiers.append(s[percent+1]) except: print('Failed to get specifier') pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # If both numeric format specifiers and "others" are used, assume we're dealing # with a Qt-formatted message. In the case of Qt formatting (see https://doc.qt.io/qt-5/qstring.html#arg) # only numeric formats are replaced at all. This means "(percentage: %1%)" is valid, without needing # any kind of escaping that would be necessary for strprintf. Without this, this function # would wrongly detect '%)' as a printf format specifier. if numeric: other = [] # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors, numerus): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation for '%s': '%s'" % (sanitize_string(source), sanitize_string(translation))) return False else: if source_f != translation_f: if numerus and source_f == (set(), ['n']) and translation_f == (set(), []) and translation.find('%') == -1: # Allow numerus translations to omit %n specifier (usually when it only has one possible value) return True errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix=''): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or filename == SOURCE_LANG+suffix: continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors, numerus) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # check if document is (virtually) empty, and remove it if so num_messages = 0 for context in root.findall('context'): for message in context.findall('message'): num_messages += 1 if num_messages < MIN_NUM_MESSAGES: print('Removing %s, as it contains only %i messages' % (filepath, num_messages)) continue # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors if __name__ == '__main__': check_at_repository_root() fetch_all_translations() postprocess_translations()
the-stack_106_17669
import random from collections import OrderedDict from datetime import datetime, timedelta import django_tables2 as tables import olympia.core.logger from django.conf import settings from django.contrib.humanize.templatetags.humanize import naturaltime from django.db.models import Count, F, Q from django.template import loader from django.urls import reverse from django.utils import translation from django.utils.translation import gettext_lazy as _, ngettext from olympia import amo from olympia.access import acl from olympia.activity.models import ActivityLog from olympia.activity.utils import log_and_notify, send_activity_mail from olympia.addons.models import Addon, AddonApprovalsCounter, AddonReviewerFlags from olympia.amo.templatetags.jinja_helpers import absolutify from olympia.amo.utils import to_language from olympia.constants.promoted import RECOMMENDED from olympia.lib.crypto.signing import sign_file from olympia.reviewers.models import ( AutoApprovalSummary, ReviewerScore, ReviewerSubscription, ViewUnlistedAllList, get_flags, get_flags_for_row, ) from olympia.reviewers.templatetags.jinja_helpers import format_score from olympia.users.models import UserProfile from olympia.users.utils import get_task_user from olympia.versions.models import VersionReviewerFlags import jinja2 log = olympia.core.logger.getLogger('z.mailer') class ItemStateTable(object): def increment_item(self): self.item_number += 1 def set_page(self, page): self.item_number = page.start_index() def safe_substitute(string, *args): return string % tuple(jinja2.escape(arg) for arg in args) class ReviewerQueueTable(tables.Table, ItemStateTable): addon_name = tables.Column(verbose_name=_('Add-on')) addon_type_id = tables.Column(verbose_name=_('Type')) waiting_time_min = tables.Column(verbose_name=_('Waiting Time')) flags = tables.Column(verbose_name=_('Flags'), orderable=False) class Meta: orderable = True @classmethod def get_queryset(cls, admin_reviewer=False): return cls.Meta.model.objects.all() def render_addon_name(self, record): url = reverse('reviewers.review', args=[record.addon_slug]) self.increment_item() return '<a href="%s">%s <em>%s</em></a>' % ( url, jinja2.escape(record.addon_name), jinja2.escape(record.latest_version), ) def render_addon_type_id(self, record): return amo.ADDON_TYPE[record.addon_type_id] def render_flags(self, record): if not hasattr(record, 'flags'): record.flags = get_flags_for_row(record) return ''.join( '<div class="app-icon ed-sprite-%s" title="%s"></div>' % flag for flag in record.flags ) @classmethod def translate_sort_cols(cls, colname): legacy_sorts = { 'name': 'addon_name', 'age': 'waiting_time_min', 'type': 'addon_type_id', } return legacy_sorts.get(colname, colname) def render_waiting_time_min(self, record): if record.waiting_time_min == 0: r = _('moments ago') elif record.waiting_time_hours == 0: # L10n: first argument is number of minutes r = ngettext('{0} minute', '{0} minutes', record.waiting_time_min).format( record.waiting_time_min ) elif record.waiting_time_days == 0: # L10n: first argument is number of hours r = ngettext('{0} hour', '{0} hours', record.waiting_time_hours).format( record.waiting_time_hours ) else: # L10n: first argument is number of days r = ngettext('{0} day', '{0} days', record.waiting_time_days).format( record.waiting_time_days ) return jinja2.escape(r) @classmethod def default_order_by(cls): return '-waiting_time_min' class ViewUnlistedAllListTable(tables.Table, ItemStateTable): id = tables.Column(verbose_name=_('ID')) addon_name = tables.Column(verbose_name=_('Add-on')) guid = tables.Column(verbose_name=_('GUID')) authors = tables.Column(verbose_name=_('Authors'), orderable=False) @classmethod def get_queryset(cls, admin_reviewer=False): return ViewUnlistedAllList.objects.all() def render_addon_name(self, record): url = reverse( 'reviewers.review', args=[ 'unlisted', record.addon_slug if record.addon_slug is not None else record.id, ], ) self.increment_item() return safe_substitute('<a href="%s">%s</a>', url, record.addon_name) def render_guid(self, record): return safe_substitute('%s', record.guid) def render_authors(self, record): authors = record.authors if not len(authors): return '' more = ' '.join(safe_substitute('%s', uname) for (_, uname) in authors) author_links = ' '.join( safe_substitute( '<a href="%s">%s</a>', UserProfile.create_user_url(id_), uname ) for (id_, uname) in authors[0:3] ) return '<span title="%s">%s%s</span>' % ( more, author_links, ' ...' if len(authors) > 3 else '', ) @classmethod def default_order_by(cls): return '-id' def view_table_factory(viewqueue): class ViewQueueTable(ReviewerQueueTable): @classmethod def get_queryset(cls, admin_reviewer=False): return viewqueue.objects.all() return ViewQueueTable class ModernAddonQueueTable(ReviewerQueueTable): addon_name = tables.Column(verbose_name=_('Add-on'), accessor='name') # Override empty_values for flags so that they can be displayed even if the # model does not have a flags attribute. flags = tables.Column(verbose_name=_('Flags'), empty_values=(), orderable=False) last_human_review = tables.DateTimeColumn( verbose_name=_('Last Review'), accessor='addonapprovalscounter__last_human_review', ) code_weight = tables.Column( verbose_name=_('Code Weight'), accessor='_current_version__autoapprovalsummary__code_weight', ) metadata_weight = tables.Column( verbose_name=_('Metadata Weight'), accessor='_current_version__autoapprovalsummary__metadata_weight', ) weight = tables.Column( verbose_name=_('Total Weight'), accessor='_current_version__autoapprovalsummary__weight', ) score = tables.Column( verbose_name=_('Maliciousness Score'), accessor='_current_version__autoapprovalsummary__score', ) class Meta(ReviewerQueueTable.Meta): fields = ( 'addon_name', 'flags', 'last_human_review', 'code_weight', 'metadata_weight', 'weight', 'score', ) # Exclude base fields ReviewerQueueTable has that we don't want. exclude = ( 'addon_type_id', 'waiting_time_min', ) orderable = False def render_flags(self, record): if not hasattr(record, 'flags'): record.flags = get_flags(record, record.current_version) return super(ModernAddonQueueTable, self).render_flags(record) def _get_addon_name_url(self, record): return reverse('reviewers.review', args=[record.slug]) def render_addon_name(self, record): url = self._get_addon_name_url(record) return '<a href="%s">%s <em>%s</em></a>' % ( url, jinja2.escape(record.name), jinja2.escape(record.current_version), ) def render_last_human_review(self, value): return naturaltime(value) if value else '' def render_weight(self, *, record, value): return '<span title="%s">%d</span>' % ( '\n'.join( record.current_version.autoapprovalsummary.get_pretty_weight_info() ), value, ) def render_score(self, value): return format_score(value) render_last_content_review = render_last_human_review class PendingRejectionTable(ModernAddonQueueTable): deadline = tables.Column( verbose_name=_('Pending Rejection Deadline'), accessor='_current_version__reviewerflags__pending_rejection', ) class Meta(ModernAddonQueueTable.Meta): fields = ( 'addon_name', 'flags', 'last_human_review', 'deadline', 'code_weight', 'metadata_weight', 'weight', 'score', ) @classmethod def get_queryset(cls, admin_reviewer=False): return Addon.objects.get_pending_rejection_queue(admin_reviewer=admin_reviewer) def render_deadline(self, value): return naturaltime(value) if value else '' class AutoApprovedTable(ModernAddonQueueTable): @classmethod def get_queryset(cls, admin_reviewer=False): return Addon.objects.get_auto_approved_queue(admin_reviewer=admin_reviewer) class ContentReviewTable(AutoApprovedTable): last_updated = tables.DateTimeColumn(verbose_name=_('Last Updated')) class Meta(ReviewerQueueTable.Meta): fields = ('addon_name', 'flags', 'last_updated') # Exclude base fields ReviewerQueueTable has that we don't want. exclude = ( 'addon_type_id', 'last_human_review', 'waiting_time_min', 'code_weight', 'metadata_weight', 'weight', ) orderable = False @classmethod def get_queryset(cls, admin_reviewer=False): return Addon.objects.get_content_review_queue(admin_reviewer=admin_reviewer) def render_last_updated(self, value): return naturaltime(value) if value else '' def _get_addon_name_url(self, record): return reverse('reviewers.review', args=['content', record.slug]) class ScannersReviewTable(AutoApprovedTable): listed_text = _('Listed versions needing human review ({0})') unlisted_text = _('Unlisted versions needing human review ({0})') @classmethod def get_queryset(cls, admin_reviewer=False): return Addon.objects.get_scanners_queue(admin_reviewer=admin_reviewer).annotate( unlisted_versions_that_need_human_review=Count( 'versions', filter=Q( versions__needs_human_review=True, versions__channel=amo.RELEASE_CHANNEL_UNLISTED, ), ), listed_versions_that_need_human_review=Count( 'versions', filter=Q( versions__needs_human_review=True, versions__channel=amo.RELEASE_CHANNEL_LISTED, ), ), ) def render_addon_name(self, record): rval = [jinja2.escape(record.name)] if record.listed_versions_that_need_human_review: url = reverse('reviewers.review', args=[record.slug]) rval.append( '<a href="%s">%s</a>' % ( url, self.listed_text.format( record.listed_versions_that_need_human_review ), ) ) if record.unlisted_versions_that_need_human_review: url = reverse('reviewers.review', args=['unlisted', record.slug]) rval.append( '<a href="%s">%s</a>' % ( url, self.unlisted_text.format( record.unlisted_versions_that_need_human_review ), ) ) return ''.join(rval) class MadReviewTable(ScannersReviewTable): listed_text = _('Listed version') unlisted_text = _('Unlisted versions ({0})') @classmethod def get_queryset(cls, admin_reviewer=False): return Addon.objects.get_mad_queue(admin_reviewer=admin_reviewer).annotate( unlisted_versions_that_need_human_review=Count( 'versions', filter=Q( versions__reviewerflags__needs_human_review_by_mad=True, versions__channel=amo.RELEASE_CHANNEL_UNLISTED, ), ), listed_versions_that_need_human_review=F( '_current_version__reviewerflags__needs_human_review_by_mad' ), ) class ReviewHelper(object): """ A class that builds enough to render the form back to the user and process off to the correct handler. """ def __init__(self, request=None, addon=None, version=None, content_review=False): self.handler = None self.required = {} self.addon = addon self.version = version self.content_review = content_review self.set_review_handler(request) self.actions = self.get_actions(request) @property def redirect_url(self): return self.handler.redirect_url def set_data(self, data): self.handler.set_data(data) def set_review_handler(self, request): """Set the handler property.""" if self.version and self.version.channel == amo.RELEASE_CHANNEL_UNLISTED: self.handler = ReviewUnlisted( request, self.addon, self.version, 'unlisted', content_review=self.content_review, ) elif self.addon.status == amo.STATUS_NOMINATED: self.handler = ReviewAddon( request, self.addon, self.version, 'nominated', content_review=self.content_review, ) else: self.handler = ReviewFiles( request, self.addon, self.version, 'pending', content_review=self.content_review, ) def get_actions(self, request): actions = OrderedDict() if request is None: # If request is not set, it means we are just (ab)using the # ReviewHelper for its `handler` attribute and we don't care about # the actions. return actions # 2 kind of checks are made for the review page. # - Base permission checks to access the review page itself, done in # the review() view # - A more specific check for each action, done below, restricting # their availability while not affecting whether the user can see # the review page or not. version_is_unlisted = ( self.version and self.version.channel == amo.RELEASE_CHANNEL_UNLISTED ) promoted_group = self.addon.promoted_group(currently_approved=False) # Default permissions / admin needed values if it's just a regular # code review, nothing fancy. permission = amo.permissions.ADDONS_REVIEW permission_post_review = amo.permissions.ADDONS_REVIEW is_admin_needed = ( self.addon.needs_admin_content_review or self.addon.needs_admin_code_review ) is_admin_needed_post_review = is_admin_needed # More complex/specific cases. if promoted_group == RECOMMENDED: permission = amo.permissions.ADDONS_RECOMMENDED_REVIEW permission_post_review = permission elif version_is_unlisted: is_admin_needed = self.addon.needs_admin_code_review permission = amo.permissions.ADDONS_REVIEW_UNLISTED permission_post_review = permission elif promoted_group.admin_review: is_admin_needed = is_admin_needed_post_review = True elif self.content_review: is_admin_needed = self.addon.needs_admin_content_review permission = amo.permissions.ADDONS_CONTENT_REVIEW elif self.addon.type == amo.ADDON_STATICTHEME: is_admin_needed = self.addon.needs_admin_theme_review permission = amo.permissions.STATIC_THEMES_REVIEW permission_post_review = permission # In addition, if the latest (or current for post-review) version is # pending rejection, an admin is needed. if self.version and self.version.pending_rejection: is_admin_needed = True if self.addon.current_version and self.addon.current_version.pending_rejection: is_admin_needed_post_review = True # Whatever permission values we set, we override if an admin is needed. if is_admin_needed: permission = amo.permissions.REVIEWS_ADMIN if is_admin_needed_post_review: permission_post_review = amo.permissions.REVIEWS_ADMIN # Is the current user a reviewer for this kind of add-on ? is_reviewer = acl.is_reviewer(request, self.addon) # Is the current user an appropriate reviewer, not only for this kind # of add-on, but also for the state the add-on is in ? (Allows more # impactful actions). is_appropriate_reviewer = acl.action_allowed_user(request.user, permission) is_appropriate_reviewer_post_review = acl.action_allowed_user( request.user, permission_post_review ) addon_is_complete = self.addon.status not in ( amo.STATUS_NULL, amo.STATUS_DELETED, ) addon_is_incomplete_and_version_is_unlisted = ( self.addon.status == amo.STATUS_NULL and version_is_unlisted ) addon_is_reviewable = ( addon_is_complete or addon_is_incomplete_and_version_is_unlisted ) version_is_unreviewed = self.version and self.version.is_unreviewed addon_is_valid = self.addon.is_public() or self.addon.is_unreviewed() addon_is_valid_and_version_is_listed = ( addon_is_valid and self.version and self.version.channel == amo.RELEASE_CHANNEL_LISTED ) current_version_is_listed_and_auto_approved = ( self.version and self.version.channel == amo.RELEASE_CHANNEL_LISTED and self.addon.current_version and self.addon.current_version.was_auto_approved ) version_is_blocked = self.version and self.version.is_blocked # Special logic for availability of reject multiple action: if version_is_unlisted: can_reject_multiple = is_appropriate_reviewer elif ( self.content_review or promoted_group.pre_review or self.addon.type == amo.ADDON_STATICTHEME ): can_reject_multiple = ( addon_is_valid_and_version_is_listed and is_appropriate_reviewer ) else: # When doing a code review, this action is also available to # users with Addons:PostReview even if the current version hasn't # been auto-approved, provided that the add-on isn't marked as # needing admin review. can_reject_multiple = addon_is_valid_and_version_is_listed and ( is_appropriate_reviewer or is_appropriate_reviewer_post_review ) # Definitions for all actions. actions['public'] = { 'method': self.handler.approve_latest_version, 'minimal': False, 'details': _( 'This will approve, sign, and publish this ' 'version. The comments will be sent to the ' 'developer.' ), 'label': _('Approve'), 'available': ( not self.content_review and addon_is_reviewable and version_is_unreviewed and is_appropriate_reviewer and not version_is_blocked ), } actions['reject'] = { 'method': self.handler.reject_latest_version, 'label': _('Reject'), 'details': _( 'This will reject this version and remove it ' 'from the queue. The comments will be sent ' 'to the developer.' ), 'minimal': False, 'available': ( not self.content_review # We specifically don't let the individual reject action be # available for unlisted review. `reject_latest_version` isn't # currently implemented for unlisted. and addon_is_valid_and_version_is_listed and version_is_unreviewed and is_appropriate_reviewer ), } actions['approve_content'] = { 'method': self.handler.approve_content, 'label': _('Approve Content'), 'details': _( 'This records your approbation of the ' 'content of the latest public version, ' 'without notifying the developer.' ), 'minimal': False, 'comments': False, 'available': ( self.content_review and addon_is_valid_and_version_is_listed and is_appropriate_reviewer ), } actions['confirm_auto_approved'] = { 'method': self.handler.confirm_auto_approved, 'label': _('Confirm Approval'), 'details': _( 'The latest public version of this add-on was ' 'automatically approved. This records your ' 'confirmation of the approval of that version, ' 'without notifying the developer.' ), 'minimal': True, 'comments': False, 'available': ( not self.content_review and addon_is_valid_and_version_is_listed and current_version_is_listed_and_auto_approved and is_appropriate_reviewer_post_review ), } actions['reject_multiple_versions'] = { 'method': self.handler.reject_multiple_versions, 'label': _('Reject Multiple Versions'), 'minimal': True, 'delayable': not version_is_unlisted, 'versions': True, 'details': _( 'This will reject the selected versions. ' 'The comments will be sent to the developer.' ), 'available': (can_reject_multiple), } actions['block_multiple_versions'] = { 'method': self.handler.block_multiple_versions, 'label': _('Block Multiple Versions'), 'minimal': True, 'versions': True, 'comments': False, 'details': _( 'This will disable the selected approved ' 'versions silently, and open up the block creation ' 'admin page.' ), 'available': ( self.addon.type != amo.ADDON_STATICTHEME and version_is_unlisted and is_appropriate_reviewer ), } actions['confirm_multiple_versions'] = { 'method': self.handler.confirm_multiple_versions, 'label': _('Confirm Multiple Versions'), 'minimal': True, 'versions': True, 'details': _( 'This will confirm approval of the selected ' 'versions without notifying the developer.' ), 'comments': False, 'available': ( self.addon.type != amo.ADDON_STATICTHEME and version_is_unlisted and is_appropriate_reviewer ), } actions['reply'] = { 'method': self.handler.reviewer_reply, 'label': _('Reviewer reply'), 'details': _( 'This will send a message to the developer. ' 'You will be notified when they reply.' ), 'minimal': True, 'available': ( self.version is not None and is_reviewer and (not promoted_group.admin_review or is_appropriate_reviewer) ), } actions['super'] = { 'method': self.handler.process_super_review, 'label': _('Request super-review'), 'details': _( 'If you have concerns about this add-on that ' 'an admin reviewer should look into, enter ' 'your comments in the area below. They will ' 'not be sent to the developer.' ), 'minimal': True, 'available': (self.version is not None and is_reviewer), } actions['comment'] = { 'method': self.handler.process_comment, 'label': _('Comment'), 'details': _( 'Make a comment on this version. The developer ' "won't be able to see this." ), 'minimal': True, 'available': (is_reviewer), } return OrderedDict( ((key, action) for key, action in actions.items() if action['available']) ) def process(self): action = self.handler.data.get('action', '') if not action: raise NotImplementedError return self.actions[action]['method']() class ReviewBase(object): def __init__( self, request, addon, version, review_type, content_review=False, user=None ): self.request = request if request: self.user = user or self.request.user self.human_review = True else: # Use the addons team go-to user "Mozilla" for the automatic # validations. self.user = user or get_task_user() self.human_review = False self.addon = addon self.version = version self.review_type = ( 'theme_%s' if addon.type == amo.ADDON_STATICTHEME else 'extension_%s' ) % review_type self.files = self.version.unreviewed_files if self.version else [] self.content_review = content_review self.redirect_url = None def set_addon(self, **kw): """Alter addon, set reviewed timestamp on version being reviewed.""" self.addon.update(**kw) self.version.update(reviewed=datetime.now()) def set_data(self, data): self.data = data def set_files(self, status, files, hide_disabled_file=False): """Change the files to be the new status.""" for file in files: file.datestatuschanged = datetime.now() file.reviewed = datetime.now() if hide_disabled_file: file.hide_disabled_file() file.status = status file.save() def set_promoted(self): group = self.addon.promoted_group(currently_approved=False) if group and group.pre_review: # These addons shouldn't be be attempted for auto approval anyway, # but double check that the cron job isn't trying to approve it. assert not self.user.id == settings.TASK_USER_ID self.addon.promotedaddon.approve_for_version(self.version) def clear_all_needs_human_review_flags_in_channel(self): """Clear needs_human_review flags on all versions in the same channel. To be called when approving a listed version: For listed, the version reviewers are approving is always the latest listed one, and then users are supposed to automatically get the update to that version, so we don't need to care about older ones anymore. """ # Do a mass UPDATE. self.addon.versions.filter( needs_human_review=True, channel=self.version.channel ).update(needs_human_review=False) # Another one for the needs_human_review_by_mad flag. VersionReviewerFlags.objects.filter( version__addon=self.addon, version__channel=self.version.channel, ).update(needs_human_review_by_mad=False) # Also reset it on self.version in case this instance is saved later. self.version.needs_human_review = False def clear_specific_needs_human_review_flags(self, version): """Clear needs_human_review flags on a specific version.""" if version.needs_human_review: version.update(needs_human_review=False) if version.needs_human_review_by_mad: version.reviewerflags.update(needs_human_review_by_mad=False) def log_action(self, action, version=None, files=None, timestamp=None): details = { 'comments': self.data.get('comments', ''), 'reviewtype': self.review_type.split('_')[1], } if files is None and self.files: files = self.files if files is not None: details['files'] = [f.id for f in files] if version is None and self.version: version = self.version if version is not None: details['version'] = version.version args = (self.addon, version) else: args = (self.addon,) if timestamp is None: timestamp = datetime.now() kwargs = {'user': self.user, 'created': timestamp, 'details': details} self.log_entry = ActivityLog.create(action, *args, **kwargs) def notify_email( self, template, subject, perm_setting='reviewer_reviewed', version=None ): """Notify the authors that their addon has been reviewed.""" if version is None: version = self.version data = self.data.copy() if self.data else {} data.update(self.get_context_data()) data['tested'] = '' os, app = data.get('operating_systems'), data.get('applications') if os and app: data['tested'] = 'Tested on %s with %s' % (os, app) elif os and not app: data['tested'] = 'Tested on %s' % os elif not os and app: data['tested'] = 'Tested with %s' % app subject = subject % (data['name'], self.version.version if self.version else '') unique_id = ( self.log_entry.id if hasattr(self, 'log_entry') else random.randrange(100000) ) message = loader.get_template('reviewers/emails/%s.ltxt' % template).render( data ) send_activity_mail( subject, message, version, self.addon.authors.all(), settings.ADDONS_EMAIL, unique_id, perm_setting=perm_setting, ) def get_context_data(self): addon_url = self.addon.get_url_path(add_prefix=False) # We need to display the name in some language that is relevant to the # recipient(s) instead of using the reviewer's. addon.default_locale # should work. if self.addon.name and self.addon.name.locale != self.addon.default_locale: lang = to_language(self.addon.default_locale) with translation.override(lang): # Force a reload of translations for this addon. addon = Addon.unfiltered.get(pk=self.addon.pk) else: addon = self.addon review_url_kw = {'addon_id': self.addon.pk} if self.version and self.version.channel == amo.RELEASE_CHANNEL_UNLISTED: review_url_kw['channel'] = 'unlisted' dev_ver_url = reverse('devhub.addons.versions', args=[self.addon.id]) else: dev_ver_url = self.addon.get_dev_url('versions') return { 'name': addon.name, 'number': self.version.version if self.version else '', 'reviewer': self.user.reviewer_name or self.user.name, 'addon_url': absolutify(addon_url), 'dev_versions_url': absolutify(dev_ver_url), 'review_url': absolutify( reverse('reviewers.review', kwargs=review_url_kw, add_prefix=False) ), 'comments': self.data.get('comments'), 'SITE_URL': settings.SITE_URL, } def reviewer_reply(self): # Default to reviewer reply action. action = amo.LOG.REVIEWER_REPLY_VERSION if self.version: if ( self.version.channel == amo.RELEASE_CHANNEL_UNLISTED and not self.version.reviewed ): self.version.update(reviewed=datetime.now()) log.info( 'Sending reviewer reply for %s to authors and other' 'recipients' % self.addon ) log_and_notify( action, self.data['comments'], self.user, self.version, perm_setting='individual_contact', detail_kwargs={'reviewtype': self.review_type.split('_')[1]}, ) def sign_files(self): assert not (self.version and self.version.is_blocked) for file_ in self.files: if file_.is_experiment: ActivityLog.create(amo.LOG.EXPERIMENT_SIGNED, file_, user=self.user) sign_file(file_) def process_comment(self): self.log_action(amo.LOG.COMMENT_VERSION) update_reviewed = ( self.version and self.version.channel == amo.RELEASE_CHANNEL_UNLISTED and not self.version.reviewed ) if update_reviewed: self.version.update(reviewed=datetime.now()) def approve_latest_version(self): """Approve the add-on latest version (potentially setting the add-on to approved if it was awaiting its first review).""" # Safeguard to force implementation for unlisted add-ons to completely # override this method. assert self.version.channel == amo.RELEASE_CHANNEL_LISTED # Safeguard to make sure this action is not used for content review # (it should use confirm_auto_approved instead). assert not self.content_review # Sign addon. self.sign_files() # Hold onto the status before we change it. status = self.addon.status # Save files first, because set_addon checks to make sure there # is at least one public file or it won't make the addon public. self.set_files(amo.STATUS_APPROVED, self.files) self.set_promoted() if self.set_addon_status: self.set_addon(status=amo.STATUS_APPROVED) if self.human_review: # No need for a human review anymore in this channel. self.clear_all_needs_human_review_flags_in_channel() # Clear pending rejection since we approved that version. VersionReviewerFlags.objects.filter( version=self.version, ).update(pending_rejection=None) # An approval took place so we can reset this. AddonReviewerFlags.objects.update_or_create( addon=self.addon, defaults={'auto_approval_disabled_until_next_approval': False}, ) # The counter can be incremented. AddonApprovalsCounter.increment_for_addon(addon=self.addon) # Assign reviewer incentive scores. ReviewerScore.award_points( self.user, self.addon, status, version=self.version ) else: # Automatic approval, reset the counter. AddonApprovalsCounter.reset_for_addon(addon=self.addon) self.log_action(amo.LOG.APPROVE_VERSION) template = '%s_to_approved' % self.review_type if self.review_type in ['extension_pending', 'theme_pending']: subject = 'Mozilla Add-ons: %s %s Updated' else: subject = 'Mozilla Add-ons: %s %s Approved' self.notify_email(template, subject) self.log_public_message() log.info('Sending email for %s' % (self.addon)) def reject_latest_version(self): """Reject the add-on latest version (potentially setting the add-on back to incomplete if it was awaiting its first review).""" # Safeguard to force implementation for unlisted add-ons to completely # override this method. assert self.version.channel == amo.RELEASE_CHANNEL_LISTED # Safeguard to make sure this action is not used for content review # (it should use reject_multiple_versions instead). assert not self.content_review # Hold onto the status before we change it. status = self.addon.status if self.set_addon_status: self.set_addon(status=amo.STATUS_NULL) self.set_files(amo.STATUS_DISABLED, self.files, hide_disabled_file=True) if self.human_review: # Clear needs human review flags, but only on the latest version: # it's the only version we can be certain that the reviewer looked # at. self.clear_specific_needs_human_review_flags(self.version) # Assign reviewer incentive scores. ReviewerScore.award_points( self.user, self.addon, status, version=self.version ) self.log_action(amo.LOG.REJECT_VERSION) template = '%s_to_rejected' % self.review_type subject = "Mozilla Add-ons: %s %s didn't pass review" self.notify_email(template, subject) self.log_sandbox_message() log.info('Sending email for %s' % (self.addon)) def process_super_review(self): """Mark an add-on as needing admin code, content, or theme review.""" addon_type = self.addon.type if addon_type == amo.ADDON_STATICTHEME: needs_admin_property = 'needs_admin_theme_review' log_action_type = amo.LOG.REQUEST_ADMIN_REVIEW_THEME elif self.content_review: needs_admin_property = 'needs_admin_content_review' log_action_type = amo.LOG.REQUEST_ADMIN_REVIEW_CONTENT else: needs_admin_property = 'needs_admin_code_review' log_action_type = amo.LOG.REQUEST_ADMIN_REVIEW_CODE AddonReviewerFlags.objects.update_or_create( addon=self.addon, defaults={needs_admin_property: True} ) self.log_action(log_action_type) log.info('%s for %s' % (log_action_type.short, self.addon)) def approve_content(self): """Approve content of an add-on.""" channel = self.version.channel version = self.addon.current_version # Content review only action. assert self.content_review # Doesn't make sense for unlisted versions. assert channel == amo.RELEASE_CHANNEL_LISTED # Like confirm auto approval, the approve content action should not # show the comment box, so override the text in case the reviewer # switched between actions and accidently submitted some comments from # another action. self.data['comments'] = '' # When doing a content review, don't increment the approvals counter, # just record the date of the content approval and log it. AddonApprovalsCounter.approve_content_for_addon(addon=self.addon) self.log_action(amo.LOG.APPROVE_CONTENT, version=version) # Assign reviewer incentive scores. if self.human_review: is_post_review = channel == amo.RELEASE_CHANNEL_LISTED ReviewerScore.award_points( self.user, self.addon, self.addon.status, version=version, post_review=is_post_review, content_review=self.content_review, ) def confirm_auto_approved(self): """Confirm an auto-approval decision.""" channel = self.version.channel if channel == amo.RELEASE_CHANNEL_LISTED: # When doing an approval in listed channel, the version we care # about is always current_version and *not* self.version. # This allows reviewers to confirm approval of a public add-on even # when their latest version is disabled. version = self.addon.current_version else: # For unlisted, we just use self.version. version = self.version # The confirm auto-approval action should not show the comment box, # so override the text in case the reviewer switched between actions # and accidently submitted some comments from another action. self.data['comments'] = '' self.log_action(amo.LOG.CONFIRM_AUTO_APPROVED, version=version) if self.human_review: # Mark the approval as confirmed (handle DoesNotExist, it may have # been auto-approved before we unified workflow for unlisted and # listed). try: version.autoapprovalsummary.update(confirmed=True) except AutoApprovalSummary.DoesNotExist: pass if channel == amo.RELEASE_CHANNEL_LISTED: # Clear needs human review flags on past versions in channel. self.clear_all_needs_human_review_flags_in_channel() AddonApprovalsCounter.increment_for_addon(addon=self.addon) else: # For unlisted versions, only drop the needs_human_review flag # on the latest version. self.clear_specific_needs_human_review_flags(self.version) # Clear the "pending_rejection" flag for all versions (Note that # the action should only be accessible to admins if the current # version is pending rejection). VersionReviewerFlags.objects.filter( version__addon=self.addon, version__channel=channel, ).update(pending_rejection=None) # Assign reviewer incentive scores. is_post_review = channel == amo.RELEASE_CHANNEL_LISTED ReviewerScore.award_points( self.user, self.addon, self.addon.status, version=version, post_review=is_post_review, content_review=self.content_review, ) def reject_multiple_versions(self): """Reject a list of versions. Note: this is used in blocklist.utils.disable_addon_for_block for both listed and unlisted versions (human_review=False).""" # self.version and self.files won't point to the versions we want to # modify in this action, so set them to None before finding the right # versions. status = self.addon.status latest_version = self.version self.version = None self.files = None now = datetime.now() if self.data.get('delayed_rejection'): pending_rejection_deadline = now + timedelta( days=int(self.data['delayed_rejection_days']) ) else: pending_rejection_deadline = None if pending_rejection_deadline: action_id = ( amo.LOG.REJECT_CONTENT_DELAYED if self.content_review else amo.LOG.REJECT_VERSION_DELAYED ) log.info( 'Marking %s versions %s for delayed rejection' % (self.addon, ', '.join(str(v.pk) for v in self.data['versions'])) ) else: action_id = ( amo.LOG.REJECT_CONTENT if self.content_review else amo.LOG.REJECT_VERSION ) log.info( 'Making %s versions %s disabled' % (self.addon, ', '.join(str(v.pk) for v in self.data['versions'])) ) for version in self.data['versions']: files = version.files.all() if not pending_rejection_deadline: self.set_files(amo.STATUS_DISABLED, files, hide_disabled_file=True) self.log_action(action_id, version=version, files=files, timestamp=now) if self.human_review: # Clear needs human review flags on rejected versions, we # consider that the reviewer looked at them before rejecting. self.clear_specific_needs_human_review_flags(version) # (Re)set pending_rejection. Could be reset to None if doing an # immediate rejection. VersionReviewerFlags.objects.update_or_create( version=version, defaults={'pending_rejection': pending_rejection_deadline}, ) if pending_rejection_deadline: # A delayed rejection implies the next version should be manually # reviewed and the developers should be notified again once the # deadline is close. AddonReviewerFlags.objects.update_or_create( addon=self.addon, defaults={ 'notified_about_expiring_delayed_rejections': False, 'auto_approval_disabled_until_next_approval': True, }, ) # The reviewer should be automatically subscribed to any new # versions posted to the same channel. ReviewerSubscription.objects.get_or_create( user=self.user, addon=self.addon, channel=latest_version.channel ) else: # An immediate one might require the add-on status to change. self.addon.update_status() # Assign reviewer incentive scores and send email, if it's an human # reviewer: if it's not, it's coming from some automation where we # don't need to notify the developer (we should already have done that # before) and don't need to award points. if self.human_review: channel = latest_version.channel # Send the email to the developer. We need to pass the latest # version of the add-on instead of one of the versions we rejected, # it will be used to generate a token allowing the developer to # reply, and that only works with the latest version. self.data['version_numbers'] = ', '.join( str(v.version) for v in self.data['versions'] ) if pending_rejection_deadline: template = 'reject_multiple_versions_with_delay' subject = 'Mozilla Add-ons: %s%s will be disabled on addons.mozilla.org' elif ( self.addon.status != amo.STATUS_APPROVED and channel == amo.RELEASE_CHANNEL_LISTED ): template = 'reject_multiple_versions_disabled_addon' subject = ( 'Mozilla Add-ons: %s%s has been disabled on addons.mozilla.org' ) else: template = 'reject_multiple_versions' subject = 'Mozilla Add-ons: Versions disabled for %s%s' log.info('Sending email for %s' % (self.addon)) self.notify_email(template, subject, version=latest_version) ReviewerScore.award_points( self.user, self.addon, status, version=latest_version, post_review=True, content_review=self.content_review, ) def notify_about_auto_approval_delay(self, version): """Notify developers of the add-on when their version has not been auto-approved for a while.""" template = 'held_for_review' subject = 'Mozilla Add-ons: %s %s is pending review' AddonReviewerFlags.objects.update_or_create( addon=self.addon, defaults={'notified_about_auto_approval_delay': True} ) self.data['version'] = version self.notify_email(template, subject, version=version) def confirm_multiple_versions(self): raise NotImplementedError # only implemented for unlisted below. def block_multiple_versions(self): raise NotImplementedError # only implemented for unlisted below. class ReviewAddon(ReviewBase): set_addon_status = True def log_public_message(self): log.info('Making %s public' % (self.addon)) def log_sandbox_message(self): log.info('Making %s disabled' % (self.addon)) class ReviewFiles(ReviewBase): set_addon_status = False def log_public_message(self): log.info( 'Making %s files %s public' % (self.addon, ', '.join([f.filename for f in self.files])) ) def log_sandbox_message(self): log.info( 'Making %s files %s disabled' % (self.addon, ', '.join([f.filename for f in self.files])) ) class ReviewUnlisted(ReviewBase): def approve_latest_version(self): """Set an unlisted addon version files to public.""" assert self.version.channel == amo.RELEASE_CHANNEL_UNLISTED # Sign addon. self.sign_files() for file_ in self.files: ActivityLog.create(amo.LOG.UNLISTED_SIGNED, file_, user=self.user) self.set_files(amo.STATUS_APPROVED, self.files) template = 'unlisted_to_reviewed_auto' subject = 'Mozilla Add-ons: %s %s signed and ready to download' self.log_action(amo.LOG.APPROVE_VERSION) if self.human_review: self.clear_specific_needs_human_review_flags(self.version) self.notify_email(template, subject, perm_setting=None) log.info( 'Making %s files %s public' % (self.addon, ', '.join([f.filename for f in self.files])) ) log.info('Sending email for %s' % (self.addon)) def block_multiple_versions(self): min_version = ('0', None) max_version = ('*', None) for version in self.data['versions']: version_str = version.version if not min_version[1] or version_str < min_version[1]: min_version = (version, version_str) if not max_version[1] or version_str > max_version[1]: max_version = (version, version_str) params = f'?min={min_version[0].pk}&max={max_version[0].pk}' self.redirect_url = ( reverse('admin:blocklist_block_addaddon', args=(self.addon.pk,)) + params ) def confirm_multiple_versions(self): """Confirm approval on a list of versions.""" # There shouldn't be any comments for this action. self.data['comments'] = '' timestamp = datetime.now() for version in self.data['versions']: self.log_action( amo.LOG.CONFIRM_AUTO_APPROVED, version=version, timestamp=timestamp ) if self.human_review: # Mark summary as confirmed if it exists. try: version.autoapprovalsummary.update(confirmed=True) except AutoApprovalSummary.DoesNotExist: pass # Clear needs_human_review on rejected versions, we consider # that the reviewer looked at all versions they are approving. self.clear_specific_needs_human_review_flags(version)
the-stack_106_17670
"""The ozw integration.""" import asyncio from contextlib import suppress import json import logging from openzwavemqtt import OZWManager, OZWOptions from openzwavemqtt.const import ( EVENT_INSTANCE_EVENT, EVENT_NODE_ADDED, EVENT_NODE_CHANGED, EVENT_NODE_REMOVED, EVENT_VALUE_ADDED, EVENT_VALUE_CHANGED, EVENT_VALUE_REMOVED, CommandClass, ValueType, ) from openzwavemqtt.models.node import OZWNode from openzwavemqtt.models.value import OZWValue from openzwavemqtt.util.mqtt_client import MQTTClient from homeassistant.components import mqtt from homeassistant.components.hassio.handler import HassioAPIError from homeassistant.config_entries import ConfigEntry, ConfigEntryState from homeassistant.const import EVENT_HOMEASSISTANT_STOP from homeassistant.core import HomeAssistant, callback from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.device_registry import async_get_registry as get_dev_reg from homeassistant.helpers.dispatcher import async_dispatcher_send from . import const from .const import ( CONF_INTEGRATION_CREATED_ADDON, CONF_USE_ADDON, DATA_UNSUBSCRIBE, DOMAIN, MANAGER, NODES_VALUES, PLATFORMS, TOPIC_OPENZWAVE, ) from .discovery import DISCOVERY_SCHEMAS, check_node_schema, check_value_schema from .entity import ( ZWaveDeviceEntityValues, create_device_id, create_device_name, create_value_id, ) from .services import ZWaveServices from .websocket_api import async_register_api _LOGGER = logging.getLogger(__name__) DATA_DEVICES = "zwave-mqtt-devices" DATA_STOP_MQTT_CLIENT = "ozw_stop_mqtt_client" async def async_setup_entry( # noqa: C901 hass: HomeAssistant, entry: ConfigEntry ) -> bool: """Set up ozw from a config entry.""" hass.data.setdefault(DOMAIN, {}) ozw_data = hass.data[DOMAIN][entry.entry_id] = {} ozw_data[DATA_UNSUBSCRIBE] = [] data_nodes = {} hass.data[DOMAIN][NODES_VALUES] = data_values = {} removed_nodes = [] manager_options = {"topic_prefix": f"{TOPIC_OPENZWAVE}/"} if entry.unique_id is None: hass.config_entries.async_update_entry(entry, unique_id=DOMAIN) if entry.data.get(CONF_USE_ADDON): # Do not use MQTT integration. Use own MQTT client. # Retrieve discovery info from the OpenZWave add-on. discovery_info = await hass.components.hassio.async_get_addon_discovery_info( "core_zwave" ) if not discovery_info: _LOGGER.error("Failed to get add-on discovery info") raise ConfigEntryNotReady discovery_info_config = discovery_info["config"] host = discovery_info_config["host"] port = discovery_info_config["port"] username = discovery_info_config["username"] password = discovery_info_config["password"] mqtt_client = MQTTClient(host, port, username=username, password=password) manager_options["send_message"] = mqtt_client.send_message else: mqtt_entries = hass.config_entries.async_entries("mqtt") if not mqtt_entries or mqtt_entries[0].state is not ConfigEntryState.LOADED: _LOGGER.error("MQTT integration is not set up") return False mqtt_entry = mqtt_entries[0] # MQTT integration only has one entry. @callback def send_message(topic, payload): if mqtt_entry.state is not ConfigEntryState.LOADED: _LOGGER.error("MQTT integration is not set up") return hass.async_create_task(mqtt.async_publish(hass, topic, json.dumps(payload))) manager_options["send_message"] = send_message options = OZWOptions(**manager_options) manager = OZWManager(options) hass.data[DOMAIN][MANAGER] = manager @callback def async_node_added(node): # Caution: This is also called on (re)start. _LOGGER.debug("[NODE ADDED] node_id: %s", node.id) data_nodes[node.id] = node if node.id not in data_values: data_values[node.id] = [] @callback def async_node_changed(node): _LOGGER.debug("[NODE CHANGED] node_id: %s", node.id) data_nodes[node.id] = node # notify devices about the node change if node.id not in removed_nodes: hass.async_create_task(async_handle_node_update(hass, node)) @callback def async_node_removed(node): _LOGGER.debug("[NODE REMOVED] node_id: %s", node.id) data_nodes.pop(node.id) # node added/removed events also happen on (re)starts of hass/mqtt/ozw # cleanup device/entity registry if we know this node is permanently deleted # entities itself are removed by the values logic if node.id in removed_nodes: hass.async_create_task(async_handle_remove_node(hass, node)) removed_nodes.remove(node.id) @callback def async_instance_event(message): event = message["event"] event_data = message["data"] _LOGGER.debug("[INSTANCE EVENT]: %s - data: %s", event, event_data) # The actual removal action of a Z-Wave node is reported as instance event # Only when this event is detected we cleanup the device and entities from hass # Note: Find a more elegant way of doing this, e.g. a notification of this event from OZW if event in ("removenode", "removefailednode") and "Node" in event_data: removed_nodes.append(event_data["Node"]) @callback def async_value_added(value): node = value.node # Clean up node.node_id and node.id use. They are the same. node_id = value.node.node_id # Filter out CommandClasses we're definitely not interested in. if value.command_class in (CommandClass.MANUFACTURER_SPECIFIC,): return _LOGGER.debug( "[VALUE ADDED] node_id: %s - label: %s - value: %s - value_id: %s - CC: %s", value.node.id, value.label, value.value, value.value_id_key, value.command_class, ) node_data_values = data_values[node_id] # Check if this value should be tracked by an existing entity value_unique_id = create_value_id(value) for values in node_data_values: values.async_check_value(value) if values.values_id == value_unique_id: return # this value already has an entity # Run discovery on it and see if any entities need created for schema in DISCOVERY_SCHEMAS: if not check_node_schema(node, schema): continue if not check_value_schema( value, schema[const.DISC_VALUES][const.DISC_PRIMARY] ): continue values = ZWaveDeviceEntityValues(hass, options, schema, value) values.async_setup() # This is legacy and can be cleaned up since we are in the main thread: # We create a new list and update the reference here so that # the list can be safely iterated over in the main thread data_values[node_id] = node_data_values + [values] @callback def async_value_changed(value): # if an entity belonging to this value needs updating, # it's handled within the entity logic _LOGGER.debug( "[VALUE CHANGED] node_id: %s - label: %s - value: %s - value_id: %s - CC: %s", value.node.id, value.label, value.value, value.value_id_key, value.command_class, ) # Handle a scene activation message if value.command_class in ( CommandClass.SCENE_ACTIVATION, CommandClass.CENTRAL_SCENE, ): async_handle_scene_activated(hass, value) return @callback def async_value_removed(value): _LOGGER.debug( "[VALUE REMOVED] node_id: %s - label: %s - value: %s - value_id: %s - CC: %s", value.node.id, value.label, value.value, value.value_id_key, value.command_class, ) # signal all entities using this value for removal value_unique_id = create_value_id(value) async_dispatcher_send(hass, const.SIGNAL_DELETE_ENTITY, value_unique_id) # remove value from our local list node_data_values = data_values[value.node.id] node_data_values[:] = [ item for item in node_data_values if item.values_id != value_unique_id ] # Listen to events for node and value changes for event, event_callback in ( (EVENT_NODE_ADDED, async_node_added), (EVENT_NODE_CHANGED, async_node_changed), (EVENT_NODE_REMOVED, async_node_removed), (EVENT_VALUE_ADDED, async_value_added), (EVENT_VALUE_CHANGED, async_value_changed), (EVENT_VALUE_REMOVED, async_value_removed), (EVENT_INSTANCE_EVENT, async_instance_event), ): ozw_data[DATA_UNSUBSCRIBE].append(options.listen(event, event_callback)) # Register Services services = ZWaveServices(hass, manager) services.async_register() # Register WebSocket API async_register_api(hass) @callback def async_receive_message(msg): manager.receive_message(msg.topic, msg.payload) async def start_platforms(): await asyncio.gather( *( hass.config_entries.async_forward_entry_setup(entry, platform) for platform in PLATFORMS ) ) if entry.data.get(CONF_USE_ADDON): mqtt_client_task = asyncio.create_task(mqtt_client.start_client(manager)) async def async_stop_mqtt_client(event=None): """Stop the mqtt client. Do not unsubscribe the manager topic. """ mqtt_client_task.cancel() with suppress(asyncio.CancelledError): await mqtt_client_task ozw_data[DATA_UNSUBSCRIBE].append( hass.bus.async_listen_once( EVENT_HOMEASSISTANT_STOP, async_stop_mqtt_client ) ) ozw_data[DATA_STOP_MQTT_CLIENT] = async_stop_mqtt_client else: ozw_data[DATA_UNSUBSCRIBE].append( await mqtt.async_subscribe( hass, f"{manager.options.topic_prefix}#", async_receive_message ) ) hass.async_create_task(start_platforms()) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" # cleanup platforms unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if not unload_ok: return False # unsubscribe all listeners for unsubscribe_listener in hass.data[DOMAIN][entry.entry_id][DATA_UNSUBSCRIBE]: unsubscribe_listener() if entry.data.get(CONF_USE_ADDON): async_stop_mqtt_client = hass.data[DOMAIN][entry.entry_id][ DATA_STOP_MQTT_CLIENT ] await async_stop_mqtt_client() hass.data[DOMAIN].pop(entry.entry_id) return True async def async_remove_entry(hass: HomeAssistant, entry: ConfigEntry) -> None: """Remove a config entry.""" if not entry.data.get(CONF_INTEGRATION_CREATED_ADDON): return try: await hass.components.hassio.async_stop_addon("core_zwave") except HassioAPIError as err: _LOGGER.error("Failed to stop the OpenZWave add-on: %s", err) return try: await hass.components.hassio.async_uninstall_addon("core_zwave") except HassioAPIError as err: _LOGGER.error("Failed to uninstall the OpenZWave add-on: %s", err) async def async_handle_remove_node(hass: HomeAssistant, node: OZWNode): """Handle the removal of a Z-Wave node, removing all traces in device/entity registry.""" dev_registry = await get_dev_reg(hass) # grab device in device registry attached to this node dev_id = create_device_id(node) device = dev_registry.async_get_device({(DOMAIN, dev_id)}) if not device: return devices_to_remove = [device.id] # also grab slave devices (node instances) for item in dev_registry.devices.values(): if item.via_device_id == device.id: devices_to_remove.append(item.id) # remove all devices in registry related to this node # note: removal of entity registry is handled by core for dev_id in devices_to_remove: dev_registry.async_remove_device(dev_id) async def async_handle_node_update(hass: HomeAssistant, node: OZWNode): """ Handle a node updated event from OZW. Meaning some of the basic info like name/model is updated. We want these changes to be pushed to the device registry. """ dev_registry = await get_dev_reg(hass) # grab device in device registry attached to this node dev_id = create_device_id(node) device = dev_registry.async_get_device({(DOMAIN, dev_id)}) if not device: return # update device in device registry with (updated) info for item in dev_registry.devices.values(): if device.id not in (item.id, item.via_device_id): continue dev_name = create_device_name(node) dev_registry.async_update_device( item.id, manufacturer=node.node_manufacturer_name, model=node.node_product_name, name=dev_name, ) @callback def async_handle_scene_activated(hass: HomeAssistant, scene_value: OZWValue): """Handle a (central) scene activation message.""" node_id = scene_value.node.id ozw_instance_id = scene_value.ozw_instance.id scene_id = scene_value.index scene_label = scene_value.label if scene_value.command_class == CommandClass.SCENE_ACTIVATION: # legacy/network scene scene_value_id = scene_value.value scene_value_label = scene_value.label else: # central scene command if scene_value.type != ValueType.LIST: return scene_value_label = scene_value.value["Selected"] scene_value_id = scene_value.value["Selected_id"] _LOGGER.debug( "[SCENE_ACTIVATED] ozw_instance: %s - node_id: %s - scene_id: %s - scene_value_id: %s", ozw_instance_id, node_id, scene_id, scene_value_id, ) # Simply forward it to the hass event bus hass.bus.async_fire( const.EVENT_SCENE_ACTIVATED, { const.ATTR_INSTANCE_ID: ozw_instance_id, const.ATTR_NODE_ID: node_id, const.ATTR_SCENE_ID: scene_id, const.ATTR_SCENE_LABEL: scene_label, const.ATTR_SCENE_VALUE_ID: scene_value_id, const.ATTR_SCENE_VALUE_LABEL: scene_value_label, }, )
the-stack_106_17672
#!Measurement ''' baseline: after: true before: false counts: 120 detector: H2 mass: 39.862 settling_time: 15.0 default_fits: nominal equilibration: eqtime: 1.0 inlet: H inlet_delay: 3 outlet: V use_extraction_eqtime: true multicollect: counts: 400 detector: L2(CDD) isotope: Ar36 peakcenter: after: false before: false detector: H2 detectors: - H1 - L2(CDD) isotope: Ar36 integration_time: 1.048576 peakhop: hops_name: '' use_peak_hop: false ''' ACTIVE_DETECTORS=('H2','H1','AX','L1','L2(CDD)') def main(): info('unknown measurement script') activate_detectors(*ACTIVE_DETECTORS) if mx.peakcenter.before: peak_center(detector=mx.peakcenter.detector,isotope=mx.peakcenter.isotope) if mx.baseline.before: baselines(ncounts=mx.baseline.counts,mass=mx.baseline.mass, detector=mx.baseline.detector, settling_time=mx.baseline.settling_time) position_magnet(mx.multicollect.isotope, detector=mx.multicollect.detector) #sniff the gas during equilibration if mx.equilibration.use_extraction_eqtime: eqt = eqtime else: eqt = mx.equilibration.eqtime ''' Equilibrate is non-blocking so use a sniff or sleep as a placeholder e.g sniff(<equilibration_time>) or sleep(<equilibration_time>) ''' equilibrate(eqtime=eqt, inlet=mx.equilibration.inlet, outlet=mx.equilibration.outlet, delay=mx.equilibration.inlet_delay) set_time_zero() sniff(eqt) set_fits() set_baseline_fits() #multicollect on active detectors multicollect(ncounts=mx.multicollect.counts, integration_time=1.048576) if mx.baseline.after: #set_integration_time(4.194) baselines(ncounts=mx.baseline.counts,mass=mx.baseline.mass, detector=mx.baseline.detector, settling_time=mx.baseline.settling_time) #set_integration_time(1.049) if mx.peakcenter.after: activate_detectors(*mx.peakcenter.detectors, **{'peak_center':True}) peak_center(detector=mx.peakcenter.detector,isotope=mx.peakcenter.isotope, integration_time=mx.peakcenter.integration_time) if use_cdd_warming: gosub('warm_cdd', argv=(mx.equilibration.outlet,)) info('finished measure script')
the-stack_106_17673
""" Authors: The Vollab Developers 2004-2021 License: BSD 3 clause Plot implied volatility calculated by Fast Fourier Transform. Uses the Lets Be Rational library for fast calculation of Black-Scholes implied volatility. """ import argparse import json import functools import matplotlib.pyplot as plt import numpy as np import env import vollab as vl def plot_local_vol(characteristic_function_name, params): """ Display plot of local volatility surface. Args: characteristic_function_name: The name of the model. params: Dictionary of parameter values. """ tenors = [1.0, 2.0, 3.0, 4.0, 5.0] # create market parameters market_params = vl.MarketParams() market_params.__dict__.update(params) # create the characteristic function characteristic_function = vl.create_characteristic_function(characteristic_function_name) characteristic_function.__dict__.update(params) # select the range of strikes to plot strike_selector = functools.partial(vl.select_strike, 0.7 * market_params.spot, 1.3 * market_params.spot) # calculate the local vol surface strikes, tenors, local_vol_surface = vl.compute_local_vol_matrix(characteristic_function, market_params, strike_selector, tenors) tol = 1e-3 if characteristic_function_name == 'BlackScholes' else 1e-8 vl.plot_surface(strikes, tenors, np.transpose(local_vol_surface), "Local volatility as a function of strike and maturity.", "Strike", "Maturity", "Volatility", tol=tol) print("Close the plot window to continue...") plt.show() def main(): """ The main entry point function. """ parser = argparse.ArgumentParser() parser.add_argument("-m", "--model", help="The stochastic model", default="Heston", choices=vl.characteristic_function_names()) # parameters are a dictionary. parser.add_argument("-p", "--params", help="The parameter dictionary.", default="{}", type=json.loads) # parse args args = parser.parse_args() # do the plot plot_local_vol(args.model, args.params) if __name__ == "__main__": main()
the-stack_106_17674
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayEcoEprintPrinterDeleteModel(object): def __init__(self): self._client_id = None self._client_secret = None self._eprint_token = None self._machine_code = None @property def client_id(self): return self._client_id @client_id.setter def client_id(self, value): self._client_id = value @property def client_secret(self): return self._client_secret @client_secret.setter def client_secret(self, value): self._client_secret = value @property def eprint_token(self): return self._eprint_token @eprint_token.setter def eprint_token(self, value): self._eprint_token = value @property def machine_code(self): return self._machine_code @machine_code.setter def machine_code(self, value): self._machine_code = value def to_alipay_dict(self): params = dict() if self.client_id: if hasattr(self.client_id, 'to_alipay_dict'): params['client_id'] = self.client_id.to_alipay_dict() else: params['client_id'] = self.client_id if self.client_secret: if hasattr(self.client_secret, 'to_alipay_dict'): params['client_secret'] = self.client_secret.to_alipay_dict() else: params['client_secret'] = self.client_secret if self.eprint_token: if hasattr(self.eprint_token, 'to_alipay_dict'): params['eprint_token'] = self.eprint_token.to_alipay_dict() else: params['eprint_token'] = self.eprint_token if self.machine_code: if hasattr(self.machine_code, 'to_alipay_dict'): params['machine_code'] = self.machine_code.to_alipay_dict() else: params['machine_code'] = self.machine_code return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayEcoEprintPrinterDeleteModel() if 'client_id' in d: o.client_id = d['client_id'] if 'client_secret' in d: o.client_secret = d['client_secret'] if 'eprint_token' in d: o.eprint_token = d['eprint_token'] if 'machine_code' in d: o.machine_code = d['machine_code'] return o
the-stack_106_17676
import panflute as pf from .meta import Meta, MetaFilter, metapreparemethod from .Number import NumberFilter from . import utils class TableCaptionReplace(MetaFilter, NumberFilter): @metapreparemethod def prepare(self, doc, meta): self.top_level = meta.chaptersDepth if meta.chapters else '' self.tableSeqName = meta.tableTitle # 题注前缀的文字和SEQ的内容相同,以便于在Word中产生相同的前缀 self.chapDelim = self.top_level and meta.chapDelim self.auto_labels = meta.autoTblLabels self.section_no = pf.RawInline( self.top_level and f'''<w:fldSimple w:instr=" STYLEREF {self.top_level} \\s"/>''', format="openxml") self.table_no = pf.RawInline( f'''<w:fldSimple w:instr=" SEQ {self.tableSeqName} \\* ARABIC \\s {self.top_level}"/>''', format="openxml") self.table_no2 = pf.RawInline( f'''<w:fldSimple w:instr=" SEQ {self.tableSeqName} \\c \\* ARABIC \\s {self.top_level} "/>''', format="openxml") # 重复上一个编号 def generateTableNumber(self, identifier=''): # 创建表格编号 return [ pf.Str(self.meta.tableTitle), pf.Span(self.section_no, pf.Str(self.chapDelim), self.table_no, identifier=identifier), pf.Str(self.meta.titleDelim) ] def generateTableNumber2(self, identifier=''): # 创建表格编号 return [ pf.Str(self.meta.tableTitle2), pf.Span(self.section_no, pf.Str(self.chapDelim), self.table_no2, ), pf.Str(self.meta.titleDelim) ] def isSecondCaptionSeparator(self, item): return isinstance(item, pf.RawInline) and item.format == 'tex' and item.text == self.meta.secondCaptionSeparator def action(self, elem, doc): if isinstance(elem, pf.Table): elem: pf.Table # pf.debug("Table!") # 表格下面结构是Table.Caption [Plain] # table.caption.content[0].content才会得到Plain中的各个元素 # 表格的题注内容长度为0,则表格题注无内容 # 若表格无题注,则直接返回表格,不做处理 if len(elem.caption.content) == 0: return [elem, pf.Para(pf.Span()) if self.meta.isParaAfterTable else pf.Null()] # 获取题注元素 captionContent = elem.caption.content[0].content numberinfo = self.getNumberingInfo(utils.stripLabel(captionContent)) isNeedNumber = numberinfo['numbering'] identifier = numberinfo['identifier'] # 判断是否存在第二题注 for item in captionContent: if self.isSecondCaptionSeparator(item) and item.index < len(captionContent): # 只有当第二题注的分隔符后面还有元素的时候,才算存在第二题注 hasSecondCaption = True secondCaptionIndex = item.index break else: hasSecondCaption = False # 生成两级题注的文本内容 if hasSecondCaption: firstCaption = pf.Span( *captionContent[:secondCaptionIndex], identifier=identifier+":c" if identifier else '') secondCaption = pf.Span( *captionContent[secondCaptionIndex+1:], identifier=identifier+':sc' if identifier else '') else: firstCaption = pf.Span( *captionContent, identifier=identifier+":c" if identifier else '') # 用两级题注的内容和表格编号生成新的题注内容 new_caption = [] if isNeedNumber: new_caption.extend(self.generateTableNumber(identifier)) new_caption.append(firstCaption) if hasSecondCaption: new_caption.append(pf.LineBreak()) if isNeedNumber: new_caption.extend(self.generateTableNumber2(identifier)) new_caption.append(secondCaption) elem.caption.content[0].content = pf.ListContainer(*new_caption) return [elem, pf.Para(pf.Span()) if self.meta.isParaAfterTable else pf.Null()] def main(doc=None, meta=None): replacer = TableCaptionReplace(meta=meta) return pf.run_filter(replacer.action, prepare=replacer.prepare, doc=doc) if __name__ == "__main__": main()
the-stack_106_17677
import codecs import os from setuptools import find_packages, setup VERSION = "0.0.5" AUTHOR = "Free Law Project" EMAIL = "[email protected]" HERE = os.path.abspath(os.path.dirname(__file__)) def read(*parts): """ Build an absolute path from *parts* and and return the contents of the resulting file. Assume UTF-8 encoding. """ with codecs.open(os.path.join(HERE, *parts), "rb", "utf-8") as file: return file.read() reqs_path = HERE + "/requirements.txt" with open(reqs_path) as reqs_file: reqs = reqs_file.read().splitlines() setup( name="bankruptcy", description="A bankruptcy document parser.", license="BSD", url="https://github.com/freelawproject/bankruptcy-parser", version=VERSION, author=AUTHOR, author_email=EMAIL, maintainer=AUTHOR, maintainer_email=EMAIL, keywords=["legal", "document", "bankruptcy", "PDF", "form"], long_description=read("README.rst"), packages=find_packages(exclude=("tests",)), include_package_data=True, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Natural Language :: English", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Software Development :: Libraries :: Python Modules", ], install_requires=reqs, test_suite="tests", )
the-stack_106_17681
from flask import current_app from sqlalchemy import desc, and_ from sqlalchemy.orm import aliased from sqlalchemy.dialects.postgresql import insert from app import db from app.dao.dao_utils import transactional from app.models import InboundSms, InboundSmsHistory, Service, ServiceDataRetention, SMS_TYPE from app.utils import midnight_n_days_ago @transactional def dao_create_inbound_sms(inbound_sms): db.session.add(inbound_sms) def dao_get_inbound_sms_for_service(service_id, user_number=None, *, limit_days=None, limit=None): q = InboundSms.query.filter( InboundSms.service_id == service_id ).order_by( InboundSms.created_at.desc() ) if limit_days is not None: start_date = midnight_n_days_ago(limit_days) q = q.filter(InboundSms.created_at >= start_date) if user_number: q = q.filter(InboundSms.user_number == user_number) if limit: q = q.limit(limit) return q.all() def dao_get_paginated_inbound_sms_for_service_for_public_api( service_id, older_than=None, page_size=None ): if page_size is None: page_size = current_app.config['PAGE_SIZE'] filters = [InboundSms.service_id == service_id] if older_than: older_than_created_at = db.session.query( InboundSms.created_at).filter(InboundSms.id == older_than).as_scalar() filters.append(InboundSms.created_at < older_than_created_at) query = InboundSms.query.filter(*filters) return query.order_by(desc(InboundSms.created_at)).paginate( per_page=page_size ).items def dao_count_inbound_sms_for_service(service_id, limit_days): return InboundSms.query.filter( InboundSms.service_id == service_id, InboundSms.created_at >= midnight_n_days_ago(limit_days) ).count() def _insert_inbound_sms_history(subquery, query_limit=10000): offset = 0 inbound_sms_query = db.session.query( *[x.name for x in InboundSmsHistory.__table__.c] ).filter(InboundSms.id.in_(subquery)) inbound_sms_count = inbound_sms_query.count() while offset < inbound_sms_count: statement = insert(InboundSmsHistory).from_select( InboundSmsHistory.__table__.c, inbound_sms_query.limit(query_limit).offset(offset) ) statement = statement.on_conflict_do_nothing( constraint="inbound_sms_history_pkey" ) db.session.connection().execute(statement) offset += query_limit def _delete_inbound_sms(datetime_to_delete_from, query_filter): query_limit = 10000 subquery = db.session.query( InboundSms.id ).filter( InboundSms.created_at < datetime_to_delete_from, *query_filter ).limit( query_limit ).subquery() deleted = 0 # set to nonzero just to enter the loop number_deleted = 1 while number_deleted > 0: _insert_inbound_sms_history(subquery, query_limit=query_limit) number_deleted = InboundSms.query.filter(InboundSms.id.in_(subquery)).delete(synchronize_session='fetch') deleted += number_deleted return deleted @transactional def delete_inbound_sms_older_than_retention(): current_app.logger.info('Deleting inbound sms for services with flexible data retention') flexible_data_retention = ServiceDataRetention.query.join( ServiceDataRetention.service, Service.inbound_number ).filter( ServiceDataRetention.notification_type == SMS_TYPE ).all() deleted = 0 for f in flexible_data_retention: n_days_ago = midnight_n_days_ago(f.days_of_retention) current_app.logger.info("Deleting inbound sms for service id: {}".format(f.service_id)) deleted += _delete_inbound_sms(n_days_ago, query_filter=[InboundSms.service_id == f.service_id]) current_app.logger.info('Deleting inbound sms for services without flexible data retention') seven_days_ago = midnight_n_days_ago(7) deleted += _delete_inbound_sms(seven_days_ago, query_filter=[ InboundSms.service_id.notin_(x.service_id for x in flexible_data_retention), ]) current_app.logger.info('Deleted {} inbound sms'.format(deleted)) return deleted def dao_get_inbound_sms_by_id(service_id, inbound_id): return InboundSms.query.filter_by( id=inbound_id, service_id=service_id ).one() def dao_get_paginated_most_recent_inbound_sms_by_user_number_for_service( service_id, page, limit_days ): """ This query starts from inbound_sms and joins on to itself to find the most recent row for each user_number. Equivalent sql: SELECT t1.* FROM inbound_sms t1 LEFT OUTER JOIN inbound_sms AS t2 ON ( -- identifying t1.user_number = t2.user_number AND t1.service_id = t2.service_id AND -- ordering t1.created_at < t2.created_at ) WHERE t2.id IS NULL AND t1.service_id = :service_id ORDER BY t1.created_at DESC; LIMIT 50 OFFSET :page """ t2 = aliased(InboundSms) q = db.session.query( InboundSms ).outerjoin( t2, and_( InboundSms.user_number == t2.user_number, InboundSms.service_id == t2.service_id, InboundSms.created_at < t2.created_at, ) ).filter( t2.id == None, # noqa InboundSms.service_id == service_id, InboundSms.created_at >= midnight_n_days_ago(limit_days) ).order_by( InboundSms.created_at.desc() ) return q.paginate( page=page, per_page=current_app.config['PAGE_SIZE'] )
the-stack_106_17682
import math import os from random import random from typing import List, Dict import cv2 import json import numpy as np from pycocotools.coco import COCO from torch.utils.data import Dataset from pedrec.configs.dataset_configs import CocoDatasetConfig, get_coco_dataset_cfg_default from pedrec.configs.pedrec_net_config import PedRecNet50Config from pedrec.datasets.dataset_helper import get_skeleton_2d_affine_transform from pedrec.models.constants.dataset_constants import DatasetType from pedrec.models.constants.skeleton_pedrec import SKELETON_PEDREC_JOINTS from pedrec.models.data_structures import ImageSize from pedrec.utils.augmentation_helper import get_affine_transforms, get_affine_transform from pedrec.utils.bb_helper import get_center_bb_from_tl_bb, bb_to_center_scale from pedrec.utils.skeleton_helper import flip_lr_joints from pedrec.utils.skeleton_helper_3d import flip_lr_orientation class CocoDataset(Dataset): def __init__(self, dataset_path: str, mode: DatasetType, cfg: CocoDatasetConfig, input_size: ImageSize, transform, flip_all: bool = False): self.mode = mode self.flip_all: bool = flip_all self.cfg = cfg self.input_size = input_size self.dataset_path = dataset_path self.annotation_path = os.path.join(dataset_path, "annotations") if mode == DatasetType.TRAIN: self.annotation_path = os.path.join(self.annotation_path, "person_keypoints_train2017.json") self.img_dir = os.path.join(self.dataset_path, 'train2017') elif mode == DatasetType.VALIDATE: self.annotation_path = os.path.join(self.annotation_path, "person_keypoints_val2017.json") self.img_dir = os.path.join(self.dataset_path, 'val2017') else: self.annotation_path = None self.img_dir = os.path.join(self.dataset_path, 'test2017') self.mhbow_gt = self.get_mhbow_gt() self.coco = COCO(self.annotation_path) coco_classes = [cat['name'] for cat in self.coco.loadCats(self.coco.getCatIds())] self.transform = transform self.classes = ['__background__'] + coco_classes self.num_classes = len(self.classes) self.num_non_humans = 0 self._class_to_ind = dict(zip(self.classes, range(self.num_classes))) self._class_to_coco_ind = dict(zip(coco_classes, self.coco.getCatIds())) self._coco_ind_to_class_ind = dict([(self._class_to_coco_ind[cls], self._class_to_ind[cls]) for cls in self.classes[1:]]) self.num_joints = len(SKELETON_PEDREC_JOINTS) self.orientation_dummy = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=np.float32) self.no_human_joint_dummy = np.zeros((self.num_joints, 5), dtype=np.float32) self.no_human_joint_dummy[4] = 1 self.threed_dummy = np.zeros((self.num_joints, 6), dtype=np.float32) self.env_position_dummy = np.array([0, 0, 0], dtype=np.float32) # self.threed_not_available_dummy = np.zeros((self.num_joints, 1), dtype=np.float32) self.is_real_img = np.ones((1), dtype=np.float32) self.load_gt() self.__length = len(self.annotations) def get_mhbow_gt(self): if self.mode == DatasetType.TRAIN: annot_path = os.path.join(self.dataset_path, "annotations", "train_hoe.json") else: annot_path = os.path.join(self.dataset_path, "annotations", "val_hoe.json") with open(annot_path, 'r') as obj_file: annot = json.load(obj_file) return annot def load_gt(self): self.annotations = [] img_ids = self.coco.getImgIds() for img_id in img_ids: img_info = self.coco.loadImgs(img_id)[0] img_size = np.array([img_info['width'], img_info['height']], dtype=np.float32) annotation_ids = self.coco.getAnnIds(img_id, iscrowd=False) annotations = self.coco.loadAnns(annotation_ids) person_annotations, non_person_annotations = self.get_clean_bb_annotations(annotations, img_size) for annotation in person_annotations: orientation = self.orientation_dummy if self.cfg.use_mebow_orientation: mhbow_key = f"{img_id}_{annotation['id']}" if mhbow_key in self.mhbow_gt: orientation = self.orientation_dummy.copy() degrees = self.mhbow_gt[mhbow_key] + 90 if degrees < 0: degrees += 360 if degrees > 360: degrees -= 360 orientation[0, 1] = math.radians(degrees) / (2 * math.pi) orientation[0, 4] = 1 # mhbow_orientation = filename = "{}.jpg".format(str(annotation["image_id"]).zfill(12)) bb = annotation['clean_bb'] bb = get_center_bb_from_tl_bb(bb) joints = self.get_joint_data(annotation) center, scale = bb_to_center_scale(bb, self.input_size) self.annotations.append({ "coco_id": annotation['id'], "img_filename": filename, "joints": joints, "orientation": orientation, "bb": bb, "center": center, "scale": scale, "img_size": img_size, "is_human": True }) # for annotation in non_person_annotations: # if (self.mode == DatasetType.TRAIN and self.num_non_humans > 50000) or \ # (self.mode == DatasetType.VALIDATE and self.num_non_humans > 10000): # continue # self.num_non_humans += 1 # filename = "{}.jpg".format(str(annotation["image_id"]).zfill(12)) # bb = annotation['clean_bb'] # bb = get_center_bb_from_tl_bb(bb) # joints = self.get_joint_data(annotation) # center, scale = bb_to_center_scale(bb, self.input_size) # self.annotations.append({ # "img_filename": filename, # "joints": joints, # "bb": bb, # "center": center, # "scale": scale, # "img_size": img_size, # "is_human": False # }) def get_joint_data(self, annotation: Dict[str, any]): joint_data = annotation["keypoints"] joints = np.zeros((len(SKELETON_PEDREC_JOINTS), 5), dtype=np.float32) for joint_num in range(17): curr_idx = joint_num * 3 joints[joint_num][0] = joint_data[curr_idx] joints[joint_num][1] = joint_data[curr_idx + 1] joints[joint_num][2] = 1 visibility = joint_data[curr_idx + 2] if visibility == 0: joints[joint_num][0] = 0 joints[joint_num][1] = 0 joints[joint_num][2] = 0 # score joints[joint_num][3] = 0 # visibility joints[joint_num][4] = 1 # joint supported by dataset else: joints[joint_num][2] = 1 # score joints[joint_num][3] = 1 # visibility joints[joint_num][4] = 1 # joint supported by dataset return joints def get_clean_bb_annotations(self, annotations: List[Dict[str, any]], img_size: np.array): person_annotations = [] non_person_annotations = [] for annotation in annotations: x, y, w, h = annotation['bbox'] x1 = np.max((0, x)) y1 = np.max((0, y)) x2 = np.min((img_size[0] - 1, x1 + np.max((0, w - 1)))) y2 = np.min((img_size[1] - 1, y1 + np.max((0, h - 1)))) if x2 >= x1 and y2 >= y1: annotation['clean_bb'] = [x1, y1, x2 - x1, y2 - y1] if not self.is_valid_person_annotation(annotation): non_person_annotations.append(annotation) continue person_annotations.append(annotation) else: print("WAHHH") return person_annotations, non_person_annotations def is_valid_person_annotation(self, annotation: Dict[str, any]): cls = self._coco_ind_to_class_ind[annotation['category_id']] if cls != 1: return False if max(annotation['keypoints']) == 0: return False if annotation['area'] <= 0: return False return True def __len__(self): return self.__length def __getitem__(self, index): annotations = self.annotations[index] img_path = os.path.join(self.img_dir, annotations['img_filename']) # PoseResnet pretrain was trained on BGR, thus keep it for now # img = cv2.imread(img_path) img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB) img_orig = img.copy() orientation = annotations['orientation'].copy() skeleton = annotations['joints'].copy() center = annotations['center'].copy() scale = annotations['scale'].copy() rotation = 0 if self.flip_all: img = img[:, ::-1, :] skeleton = flip_lr_joints(skeleton, img.shape[1]) center[0] = img.shape[1] - center[0] - 1 orientation = flip_lr_orientation(orientation) if self.mode == DatasetType.TRAIN: scale = scale * np.clip(np.random.randn() * self.cfg.scale_factor + 1, 1 - self.cfg.scale_factor, 1 + self.cfg.scale_factor) if random() <= 0.6: rotation = np.clip(np.random.randn() * self.cfg.rotation_factor, -self.cfg.rotation_factor * 2, self.cfg.rotation_factor * 2) if self.cfg.flip and random() <= 0.5: img = img[:, ::-1, :] skeleton = flip_lr_joints(skeleton, img.shape[1]) center[0] = img.shape[1] - center[0] - 1 orientation = flip_lr_orientation(orientation) trans, trans_inv = get_affine_transforms(center, scale, rotation, self.input_size, add_inv=True) # transx = get_affine_transform(center, scale, rotation, self.input_size) skeleton = get_skeleton_2d_affine_transform(skeleton, trans, self.input_size) if np.max(skeleton[:, 2]) == 0: # augmentation screwed up, use unaugmented img = img_orig.copy() center = annotations['center'].copy() scale = annotations['scale'].copy() rotation = 0 skeleton = annotations['joints'].copy() trans, trans_inv = get_affine_transforms(center, scale, rotation, self.input_size, add_inv=True) # trans = get_affine_transform(center, scale, rotation, self.input_size) skeleton = get_skeleton_2d_affine_transform(skeleton, trans, self.input_size) model_input = cv2.warpAffine( img, trans, (int(self.input_size.width), int(self.input_size.height)), flags=cv2.INTER_LINEAR) # if np.max(skeleton[:, 2]) == 0: # still screwed # print(f"No visible skeleton COCO: {index} - {annotations['img_filename']}") skeleton[:, 0] /= model_input.shape[1] skeleton[:, 1] /= model_input.shape[0] if self.transform: model_input = self.transform(model_input) if np.max(skeleton) > 1: raise ValueError("WTF") # skeleton = np.concatenate((skeleton[:, 0:2], self.threed_dummy, skeleton[:, 2:], self.threed_dummy), axis=1) # np.insert(skeleton, 2, 0, axis=0) # returns model_input, skeleton, center, scale, rotation, is_real_img return model_input, { "skeleton": skeleton, "skeleton_3d": self.threed_dummy, "center": center, "scale": scale, "rotation": rotation, "is_real_img": self.is_real_img, "orientation": orientation, "env_position_2d": self.env_position_dummy, "trans_inv": trans_inv.astype(np.float32), "img_path": img_path, "idx": index, "img_size": annotations["img_size"], # "coco_id": annotations["coco_id"] } if __name__ == "__main__": cfg = PedRecNet50Config() dataset_cfg = get_coco_dataset_cfg_default() # MS Coco dataset_name = "MSCOCO" dataset = CocoDataset("data/datasets/COCO", DatasetType.VALIDATE, dataset_cfg, cfg.model.input_size, None) test = dataset[49] a = 1
the-stack_106_17684
import json import sqlite3, pyodbc import time import keyring import networkx as nx import dash import dash_auth import dash_core_components as dcc import dash_html_components as html import pandas as pd import plotly.graph_objs as go from dash.dependencies import Input, Output, State, MATCH, ALL import dash_bootstrap_components as dbc import plotly.express as px """ Requires Dash. Recommended install: 1) Install Anaconda3 2) Install Dash: conda install -c conda-forge dash 3) Install dash-bootstrap: conda install -c conda-forge dash-bootstrap-components 4) Optional pyodbc to connect to mssql: conda install -c conda-forge pyodbc 5) pip install dash-auth 6) conda install tabulate """ # Experimental visualization of totalnum data using the output of totalnum_builddb. Uses dash. # Now supports deployment, multiple sessions, and gunicorn! # To run with gunicorn: GUNICORN_CMD_ARGS="--bind=0.0.0.0" gunicorn 'totalnum_dashboard_new:initApp("/path/to/database")' # by Jeff Klann, PHD 10-2018 to 6-2020 instruction = """ 1. Optionally choose a site from the dropdown 2. The options in the checkboxes start at the top level of the ontology. To navigate down the tree, check one box, click the right arrow button, and its children are displayed. Likewise, to navigate up the tree, click the left arrow button. 3. Graphs: * Top-left: Check boxes as desired. Temporal totalnum will appear below, showing the trend in # patients at each refresh. * Top-right: Check boxes as desired. Site-by-site totalnum will appear, showing the breakdown in # patients per site (max among all refreshes). * Bottom: Click left or right arrow as desired. Network graph of current ontology level and its children are displayed, with node size indicating the totalnum per item (at selected site, max among all refreshes). """ app = dash.Dash(external_stylesheets=[dbc.themes.CERULEAN],suppress_callback_exceptions=False) # App Auth # Set username and password in local install, instead of hello world auth = dash_auth.BasicAuth( app, [['hello','world']] ) # App Layout app.layout = html.Div([ html.Span(id='hoo'), dbc.NavbarSimple(children=[ dbc.Button('Help', id='help',color='primary') ],brand="Patient Count Data Quality Dashboard",brand_href='#',brand_style={'align':'left'}), dbc.Modal( [ dbc.ModalHeader("Totalnum Dashboard Help"), dbc.ModalBody(dcc.Markdown(instruction)), dbc.ModalFooter( #dbc.Button("Close", id="close", className="ml-auto") ), ], id="modalHelp", size='xl' ), dbc.Row([dbc.Col("Site selection:",width=1),dbc.Col(dbc.RadioItems(id='site', options=[],inline=True),width=4)],justify='center'), #dbc.Row([dbc.Col("Mode:",width=1),dbc.Col(dbc.RadioItems(id='mode', options=[{'label':'Explore','value':'X'},{'label':'Site Variability','value':'V'},{'label':'Trends over Time','value':'T'},{'label':'Missingness','value':'M'}],inline=True),width=6)],justify='left'), dbc.Row([ dbc.Col(children=[dbc.Tabs([ dbc.Tab(html.Div([ dcc.Checklist(id='items', options=[{'label': 'No options', 'value': 'none'}], value=[], labelStyle={'display': 'none'}), dbc.ButtonGroup([ dbc.Button("no options") ],vertical=True,id="navbuttons"), html.Br(), dbc.Button('<--', id='unzoom', outline=True, color='primary'), dbc.Button('-->', id='zoom', outline=True, color='primary') ],style={'width': '300px','margin':'20px'}),label='Navigate Terms') ])],width=2), dbc.Col(children=[dbc.Tabs([ # Summary tab dbc.Tab(dbc.Card([dbc.CardHeader('',id='summary_head'),dbc.CardBody(dcc.Markdown('',id='summary'))],color='secondary',style={'width': '800px'}),label='Summary',tab_id='summary_tab',label_style={"color": "blue"}), # Explorer tab dbc.Tab(dbc.Table([html.Tr([ html.Td(dbc.Tabs([ dbc.Tab(dcc.Graph(id='hlevel_graph'),label='Trends Over Time',tab_id='hlevel_tab',disabled=True), dbc.Tab(dcc.Graph(id='bars_graph',figure=go.Figure(data=go.Bar(y=[2, 3, 1]))),label='Trends Across Sites',tab_id='bars_tab',disabled=True) ],id='graphTabs'))] ) ]),label="Explorer",tab_id='explorer_tab',label_style={"color": "blue"}), # Site variability tab dbc.Tab(dbc.Tabs([dbc.Tab( html.Div([dbc.Row([dbc.Col(dcc.Slider(id='slider_siteoutlier',min=0,max=4,step=0.1,value=1)),dbc.Col(html.P('Threshold',id='slidertext_siteoutlier'))]),dbc.Row([ #dbc.Col(dcc.Checklist(id='items_siteoutlier', options=[{'label': 'No options', 'value': 'none'}], value=[], # labelStyle={'display': 'block'}),width={"size":3,"offset":1}), dbc.Col(dcc.Graph(id='siteoutlier_graph'),width=9) ]) ]),label='Explore'), dbc.Tab(html.Div("Variability Report (not yet implemented)",id='report_div'),label='Report')] ),label='Site Variability',tab_id='siteoutlier_tab',label_style={"color":"blue"}), # Missingness tab dbc.Tab(dbc.Tabs([ # Missingness xplore dbc.Tab(dcc.Graph(id='missing_graph'),label='Explore',tab_id='missgraph_tab'), # Missingness report dbc.Tab([ dbc.Alert("All non-leaf items missing at this site, but not missing at least one other site. Red indicates missing, black just shows hierarchical structure."), html.Div("# Missingness",id='missing_div'), dbc.ListGroup([dbc.ListGroupItem(active=True)],id='missing') ],label='Report') ]),label="Missingness",tab_id='missing_tab',label_style={"color": "blue"}) ],id='mainTabs',active_tab='summary_tab')],width=9) ]), #dcc.Graph(id='tree_graph'), html.Div('written by Jeffrey Klann, PhD'), html.Br(), # html.Div('errmsghere-todo-', id='msg0'), html.Div('app_state', id='app_state'), html.Br() ]) """ For SQLite, dbtype = "SQLITE" and db = filename of db For MSSQL, dbtype = "MSSQL" and db is pyodbc format: DSN=MYMSSQL;UID=myuser;PWD=mypassword For MSSQL, dbtype = "MSSQL" and db is a dict of server, user, password, and db (e.g., dbo) """ def initApp(*, dbtype="SQLITE",db="/Users/jklann/Google Drive/SCILHS Phase II/Committee, Cores, Panels/Informatics & Technology Core/totalnums/joined/totalnums.db"): global conn,app,dbstyle,sites # Initialize dashboard-wide globals if dbtype=="SQLITE": conn = sqlite3.connect(db,detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False) # Parameter converts datetimes elif dbtype=="MSSQL": conn = pyodbc.connect(db) # Store db type - let's call it db style dbstyle=dbtype print("Dash version:"+str(dcc.__version__)) # Get site list and store it in a global sites = pd.read_sql("select distinct site from totalnums", conn).site.tolist() if 'All' not in sites: sites.append('All') options = list(map(lambda a: {'label': a, 'value': a}, sites)) #options.append({'label':'All','value':'All'}) app.layout['site'].options = options app.layout['site'].value = 'All' #app.layout['site'].children=[dbc.DropdownMenuItem(x) for x in sites] return app.server # This callback just clears the checkboxes when the button is pressed, otherwise they are never cleared when the # options are updated and hidden checkboxes accumulate in the state. @ app.callback( Output('items', 'value'), [Input('zoom', 'n_clicks'), Input('unzoom', 'n_clicks')] ) def clearTheChecks(clix, unclix): return [] # New callback to print help @app.callback( Output('modalHelp','is_open'), [Input('help','n_clicks')], [State('modalHelp','is_open')] ) def cbHelp(help,is_open): if help: return not is_open return is_open # New callback - switch explorer tabs depending on site or All selected @app.callback( Output('graphTabs','active_tab'), [Input('site', 'value')], [State('app_state', 'children')] ) def cbSiteSwitchTab(site,app_state): if site=='All': return 'bars_tab' else: return 'hlevel_tab' # New callback to print a summary header when a site is selected @app.callback( Output('summary_head', 'children'), [Input('site','value')], [State('app_state','children')] ) def cbSummaryHead(site,app_state): global conn if site is not None and site!='All': return site+' Summary' elif site=='All': return 'All sites selected' return "" # New callback to print a summary when a site is selected """@app.callback( Output('summary', 'children'), [Input('site','value')], [State('app_state','children')] ) def cbSummary(site,app_state): global conn if site is not None and site!='All': appstatedict = json.loads(app_state) if appstatedict['tab']=='summary_tab' and appstatedict['action']!='': # TODO: This query is specific to COVID ontology and should reflect some principled way of determining elements for a summary table query = "select domain, c_name, agg_count from totalnums_recent_joined j inner join toplevel_fullnames f on f.fullname_int=j.fullname_int where c_hlevel<6 and site='" + site + "'" dfsum = pd.read_sql_query(query, conn) return dfsum.to_markdown() elif site=="All": return "Select a single site for a summary." return "" """ # New callback: update outlier options when the slider is changed @app.callback( Output('slidertext_siteoutlier', 'children'), [Input('slider_siteoutlier','value')], [State('app_state','children')] ) def cbSiteoutlierSliderText(slider,app_state): return "Threshold: " + str(slider) # New callback: clear the active site selection when a tab is changed @app.callback( Output('site', 'value'), [Input('mainTabs','active_tab')], [State('app_state','children'),State('site','value')] ) def cbActiveTabSiteAdjustment(active_tab,app_state,already_site): print("ACTIVE" + already_site) return "" # New callback: update outlier options when the slider is changed """@app.callback( Output('items_siteoutlier', 'options'), [Input('slider_siteoutlier','value'),Input('site','value')], [State('app_state','children')] )""" def cbSiteoutlierItems(slider,site,app_state): global conn c = conn.cursor() #appstatedict = json.loads(app_state) if site!='All': sql = "select c_fullname AS value, c_name AS label from outliers_sites o inner join bigfullname b on o.fullname_int=b.fullname_int where site='%s' and agg_count>average+(%s*stdev)" % ( site,slider) #sql = "select distinct c_fullname AS value,c_name AS label from totalnums_oldcols t inner join bigfullname b on t.fullname_int=b.fullname_int where c_hlevel='%s' and site='%s' and c_fullname like '%s'" % ( # str(appstatedict['hlevel']), appstatedict['site'], '\\'.join(appstatedict['path']) + '\\%') items = pd.read_sql_query(sql, conn).to_dict('records') print(sql) return items # New callback: display missingness markdown when a site is selected @app.callback( Output('missing_div', 'children'), [Input('site','value')], [State('app_state','children')] ) def cbMissingMd(site,app_state): global conn if (app_state == 'app_state'): return {} appstatedict = json.loads(app_state) if appstatedict['tab'] == 'missing_tab': c = conn.cursor() # TODO: This is all non-leaf missingness. Probably want to look at leaf variance between sites vs. annotated high level missing query = """select c_fullname, c_tooltip, c_hlevel, c_name from bigfullname fn inner join totalnums_recent r on r.fullname_int=fn.fullname_int where fn.fullname_int not in (select fullname_int from totalnums_recent where site='{{}}') and c_visualattributes not like 'L%' and c_visualattributes not like '_H%' order by c_hlevel """ query=query.replace("{{}}",site) df = pd.read_sql_query(query,conn) df=df.sort_values(by='c_fullname',axis=0,ascending=True) # I had this on one line but was too hard to debug # Compute a readable string for missingness retval = [] current = [] for x in df.to_dict('records'): parensplit = x['c_tooltip'].split('\\') # Compute this here bc hlevel is unreliable if len(parensplit)>2: for c,s in enumerate(parensplit[2:],start=1): if s not in current: txtcolor='red' if c==len(parensplit[2:]) else 'black' retval.append(html.P(s,style={'margin-top':0,'margin-bottom':0,'padding':0,'margin-left':10*c,'color':('red' if c==len(parensplit[2:]) else 'black')})) #retval.append(("#"*c)+' ' + str(c) + '.' + ('*'+s+'*' if c==len(parensplit[2:]) else s)) current=parensplit return retval #return [dbc.ListGroupItem(x['c_tooltip'].split('\\')[2] + ":" + x['c_name']) if x['c_hlevel']>2 else + ":" + x['c_name']) for x in df.to_dict('records')] # New callback: display missingness when a site is selected #@app.callback( # Output('missing', 'children'), # [Input('site','value')], # [State('app_state','children')] #) def cbMissing(site,app_state): global conn c = conn.cursor() # TODO: This is all non-leaf missingness. Probably want to look at leaf variance between sites vs. annotated high level missing query = """select c_tooltip, c_hlevel, c_name from bigfullname fn inner join totalnums_recent r on r.fullname_int=fn.fullname_int where fn.fullname_int not in (select fullname_int from totalnums_recent where site='{{}}') and c_visualattributes not like 'L%' and c_visualattributes not like '_H%' order by c_hlevel """ query=query.replace("{{}}",site) df = pd.read_sql_query(query,conn) # I had this on one line but was too hard to debug # Compute a readable string for missingness retval = [] for x in df.to_dict('records'): parensplit = x['c_tooltip'].split('\\') # Compute this here bc hlevel is unreliable if len(parensplit)>2: txt = parensplit[2] + ":" + x['c_name'] else: txt = x['c_name'] retval.append(dbc.ListGroupItem(txt)) return retval #return [dbc.ListGroupItem(x['c_tooltip'].split('\\')[2] + ":" + x['c_name']) if x['c_hlevel']>2 else + ":" + x['c_name']) for x in df.to_dict('records')] # Run this when the app starts to set the state of things # Also updates the state JSON when a button is clicked or the dropdown is used @app.callback( Output('app_state','children'), [Input({'type': 'navbutton', 'index': ALL}, 'n_clicks'),Input('zoom', 'n_clicks'), Input('unzoom', 'n_clicks'), Input('site', 'value'),Input('mainTabs','active_tab'),Input('slider_siteoutlier','value')], [State('items', 'value'), State('items', 'options'),State('app_state','children')] ) def cbController(nclick_values,zoomclix,unzoomclix,site,tab,slider,checks,options,appstate): global conn,dbstyle, sites,globalDbFile if appstate=='app_state': # New version of Dash, cannot share sqlite across windows #initApp(db=globalDbFile) # Initialize the app c = conn.cursor() zoom_clix = 0 unzoom_clix = 0 c.execute("select min(c_hlevel) from bigfullname") hlevel = c.fetchone()[0] minhlevel = hlevel #query = "select top 1 c_fullname from bigfullname where c_hlevel=?" if dbstyle=="MSSQL" else "select c_fullname from bigfullname where c_hlevel=? limit 1" #c.execute(query, str(hlevel)) # Limit 1 for PGSQL c.execute("select c_fullname from bigfullname where c_hlevel="+str(hlevel)+" limit 1") # NOT SUPPORTING MSSQL RIGHT NOW TODO pathstart = c.fetchone()[0] pathstart = pathstart[0:pathstart[1:].find('\\') + 1] path = [pathstart] site = 'All' if 'All' in sites else sites[0] # There must be at least 1 site app_state = {'action':'','zoom_clix': 0, 'unzoom_clix': 0, 'hlevel':hlevel,'minhlevel': minhlevel, 'path': path, 'site': site,'tab':tab, "slider":slider, 'selected':[], 'selected_new':""} return json.dumps(app_state) appstatedict = json.loads(appstate) # If slider was moved but not button click, or callback called on startup, or multiple checked or nothing checked unclix = 0 if unzoomclix is None else unzoomclix clix=0 if zoomclix is None else zoomclix if (slider and slider != appstatedict['slider']): # Tab changed appstatedict['slider']=slider if (tab and tab != appstatedict['tab']): # Tab changed appstatedict['tab']=tab if (site and site != appstatedict['site']): # Site changed! appstatedict['site'] = site if site else 'All' print("New site selected:" + site) print("Controller - New Site selected") appstatedict['action']='site' elif unclix != appstatedict['unzoom_clix']: appstatedict['unzoom_clix'] = unclix if int(appstatedict['hlevel']) > int(appstatedict['minhlevel']): appstatedict['hlevel'] = int(appstatedict['hlevel']) - 1 appstatedict['path'] = appstatedict['path'][:-1] appstatedict['action']='unzoom' appstatedict['selected_new']='' appstatedict['selected']=[] print("Controller - Unzoom:" + str(appstatedict['path'])) #elif len(checks) == 0 or len(checks) > 1: # appstatedict['action']='none' # print("Controller - no action") elif appstatedict['zoom_clix'] != clix: appstatedict['zoom_clix'] = clix appstatedict['hlevel'] = int(appstatedict['hlevel']) + 1 # Use checkbox - appstatedict['path'].append(checks[0][checks[0][:-1].rfind('\\') + 1:-1]) #appstatedict['path'].append(appstatedict['selected_new'][appstatedict['selected_new'][:-1].rfind('\\') + 1:-1]) # new version just rebuilds the path string each time in case there segments like in ACT that just provide version info and are not part of the hierarchy #appstatedict['path']=appstatedict['selected_new'].split('\\')[:-1] # even newer version only adds one path element for reverse navigation but preserves untraversed segments in the path appstatedict['path'].append( appstatedict['selected_new'][appstatedict['selected_new'].find('\\'.join(appstatedict['path']))+len('\\'.join(appstatedict['path']))+1:-1]) appstatedict['action']='zoom' appstatedict['selected_new'] = '' appstatedict['selected'] = [] print("Controller - Zoom:" + str(appstatedict['path'])) # Nav buttons were clicked # Index is the index element of the id # nclicks is an int of the number of clicks for this button # values is a list of nclicks for all buttons in the current list if 'index' in dash.callback_context.triggered[0]['prop_id']: parsedContext = json.loads(dash.callback_context.triggered[0]['prop_id'][:-9]) index=parsedContext['index'] nclicks = dash.callback_context.triggered[0]['value'] appstatedict['action']='navclick' appstatedict['selected_new']=index if index not in appstatedict['selected']: appstatedict['selected'].append(index) else: appstatedict['selected'].remove(index) return json.dumps(appstatedict) # This is the callback when someone clicks the zoom button, which moves down the hierarchy # It also needs to handle the base case of just setting the state of the items. # THIS VERSION DOES IT WITH BUTTONS! @app.callback( Output('navbuttons', 'children'), # [Input('zoom', 'n_clicks'), Input('unzoom', 'n_clicks')], [Input('app_state','children')], [State('items', 'value'), State('navbuttons', 'children')] ) def cbNavigateButtons(state, checks, options): global conn if (state=='app_state'): return options appstatedict = json.loads(state) # Update only if we navigated the ontology or if we're in the outlier tab (which has a bunch of thinks) if appstatedict['action'] in ('zoom','unzoom','') or appstatedict['tab']=='siteoutlier_tab': #sql_select = "select distinct c_fullname AS value,c_name AS label from totalnums_oldcols t inner join bigfullname b on t.fullname_int=b.fullname_int " if appstatedict['tab']=='explorer_tab': sql_select = "select distinct c_visualattributes, c_fullname AS value,c_name AS label from bigfullname " # speedup compared to totalnums_recent_joined elif appstatedict['tab']=='siteoutlier_tab': sql_select = "select distinct abs(pct-average)>(%s*stdev) as outlier,c_fullname AS value,c_name AS label, c_visualattributes from outliers_sites_pct t inner join bigfullname b on t.fullname_int=b.fullname_int " % ( str(appstatedict['slider'])) elif appstatedict['tab']=='missing_tab': sql_select = """select c_fullname, c_tooltip, c_hlevel, c_name from bigfullname fn inner join totalnums_recent r on r.fullname_int=fn.fullname_int where fn.fullname_int not in (select fullname_int from totalnums_recent where site='{{}}') and c_visualattributes not like 'L%' and c_visualattributes not like '_H%' order by c_hlevel """ sql_select = """select case when notin is null then 1 else 0 end outlier, c_fullname as value, c_name as label, c_visualattributes from (select distinct fn.c_fullname, fn.c_tooltip, fn.c_hlevel, fn.c_name, fn.c_visualattributes, notin.fullname_int notin from bigfullname fn inner join totalnums_recent r on r.fullname_int=fn.fullname_int left outer join (select * from totalnums_recent where site='{{}}') notin on notin.fullname_int=fn.fullname_int where c_visualattributes not like 'L%' and c_visualattributes not like '_H%' order by c_hlevel) x """ sql_select = sql_select.replace("{{}}", appstatedict['site']) else: sql_select = "select distinct c_fullname AS value,c_name AS label, c_visualattributes from bigfullname " # speedup compared to totalnums_recent_joined # Compute the items for the checkboxes and return # Special logic to get all items in ontology if missing tab or all sites are selected if appstatedict['site']=='All' or appstatedict['tab']=='missing_tab' or appstatedict['tab']=='explorer_tab': sql_where=" where c_hlevel='%s' and c_fullname like '%s'" % ( str(appstatedict['hlevel']), '\\'.join(appstatedict['path']) + '\\%') else: sql_where = " where c_hlevel='%s' and site='%s' and c_fullname like '%s'" % ( str(appstatedict['hlevel']), appstatedict['site'], '\\'.join(appstatedict['path']) + '\\%') items = pd.read_sql_query(sql_select+sql_where, conn).to_dict('records') print(sql_select+sql_where) out = [] for i in items: out.append(dbc.Button(i['label'],className="mr-1", id={'type':'navbutton','index':i['value']}, style={'font-size':'10pt'}, color=('danger' if 'outlier' in i and i['outlier']==1 else 'dark'), outline=(True if i['c_visualattributes'] in ('FAE','FA','FA ','CA ','CAE','CA') else False))) return out if appstatedict['action']=='navclick': appstatedict['selected'] return options # This callback draws the graph whenever checkboxes change or site is changed @app.callback( Output('hlevel_graph', 'figure'), [Input('app_state', 'children')], [State('navbuttons', 'children'), State('hlevel_graph', 'figure')] ) def cbLineGraphButtons(state, navbuttons,oldfig): global conn if (state=='app_state'): return {} start = time.time() appstatedict = json.loads(state) if appstatedict['action'] in ('navclick','zoom','site') and appstatedict['tab']=='explorer_tab': # Get just the available data in the df sql = "select distinct c_fullname,refresh_date,c_name,c from totalnums_oldcols t inner join bigfullname b on t.fullname_int=b.fullname_int where c_hlevel='%s' and site='%s' and c_fullname like '%s' order by refresh_date asc" % ( appstatedict['hlevel'], appstatedict['site'], '\\'.join(appstatedict['path']) + '\\%') print(sql) dfsub = pd.read_sql_query(sql, conn) traces = [] ymax = 0 for n in appstatedict['selected']: xf = dfsub[dfsub.c_fullname == n] if len(xf) > 0: traces.append( go.Scatter(x=xf['refresh_date'], y=xf['c'], text=xf.iloc[0, :].c_name, name=xf.iloc[0, :].c_name, marker={'size': 15}, mode='lines+markers')) ymax=max(ymax,xf.groupby(by='c_fullname').max()['c'].values[0]) # Fix 11-19 - put the legend in the right place Cstd=xf['c'].std() Cmean=xf['c'].mean() Clow = Cmean - 3*Cstd if Clow<0: Clow=0 #traces.append(go.Scatter(x=[xf['refresh_date'].min(),xf['refresh_date'].max()],y=[Cmean,Cmean],name='mean of '+xf.iloc[0,:].c_name,mode='lines')) # Mean #traces.append(go.Scatter(x=[xf['refresh_date'].min(), xf['refresh_date'].max()], y=[Cmean+3*Cstd, Cmean+3*Cstd], # name='high control of ' + xf.iloc[0, :].c_name, mode='lines')) #traces.append(go.Scatter(x=[xf['refresh_date'].min(), xf['refresh_date'].max()], y=[Clow, Clow], # name='low control of ' + xf.iloc[0, :].c_name, mode='lines')) print("Graph time:"+str(time.time()-start)+",traces:"+str(len(traces))) layout = {'legend':{'x':0,'y':ymax},'showlegend':True} return {'data': traces, 'layout': layout} return oldfig if oldfig is not None else {} # This callback draws the bar graph whenever checkboxes change @app.callback( Output('bars_graph', 'figure'), [Input('app_state', 'children')], [State('navbuttons', 'children')] ) def cbBarGraphButtons(state,navbuttons): global conn if (state=='app_state'): return {} start = time.time() appstatedict = json.loads(state) if appstatedict['tab'] == 'explorer_tab': sql = "select distinct c_fullname,site,c_name,max(c) c from totalnums_oldcols t inner join bigfullname b on t.fullname_int=b.fullname_int where site!='All' and c_hlevel='%s' and c_fullname like '%s' group by c_fullname,site,c_name" % ( appstatedict['hlevel'], '\\'.join(appstatedict['path']) + '\\%') print(sql) dfsub = pd.read_sql_query(sql, conn) """traces = [] ymax = 0 for n in appstatedict['selected']: xf = dfsub[dfsub.c_fullname == n] if len(xf) > 0: fig = px.bar""" figure = go.Figure(data=go.Bar(y=[5, 5, 1])) traces=[] x = [ ["BB+", "BB+", "BB+", "BB", "BB", "BB"], [16, 17, 18, 16, 17, 18, ] ] fig = go.Figure() fig.add_bar(x=x, y=[1, 2, 3, 4, 5, 6]) fig.add_bar(x=x, y=[6, 5, 4, 3, 2, 1]) fig.update_layout(barmode="relative") return figure return """"# Get just the available data in the df sql = "select distinct c_fullname,site,c_name,max(c) c from totalnums_oldcols t inner join bigfullname b on t.fullname_int=b.fullname_int where site!='All' and c_hlevel='%s' and c_fullname like '%s' group by c_fullname,site,c_name" % ( appstatedict['hlevel'], '\\'.join(appstatedict['path']) + '\\%') print(sql) dfsub = pd.read_sql_query(sql, conn) traces = [] ymax=0 for n in appstatedict['selected']: xf = dfsub[dfsub.c_fullname == n] if len(xf) > 0: ymax = max(ymax, xf.groupby(by='c_fullname').max()['c'].values[0]) traces.append( #go.Bar(x=xf['site'].tolist(), y=xf['c'].tolist(), text=xf.iloc[0, :].c_name, name=xf.iloc[0, :].c_name)) go.Bar(x=xf['site'].tolist(), y=xf['c'].tolist())) # marker={'size': 15}, mode='lines+markers')) print("Bar time:"+str(time.time()-start)) #layout = {'legend':{'x':0,'y':ymax},'showlegend':True} layout = go.Layout(barmode='stack') if len(traces)>0: print(traces) return {'data': traces, 'layout': layout} #return {'data': traces}""" # This callback draws the bar graph whenever checkboxes change @app.callback( Output('siteoutlier_graph', 'figure'), #[Input('items_siteoutlier', 'value')], [Input('app_state', 'children')], [State('navbuttons', 'children'), State('hlevel_graph', 'figure')] ) def cbSiteoutlierGraph(state,navbuttons,oldfig): global conn if (state=='app_state'): return {} start = time.time() appstatedict = json.loads(state) if (appstatedict['site'] and appstatedict['site']=='All') or appstatedict['tab']!='siteoutlier_tab': return {} # Not support All sites, must choose one for compare # Get just the available data in the df sql = "select distinct c_fullname,site,c_name,max(pct) c from totalnums_recent_pct t inner join bigfullname b on t.fullname_int=b.fullname_int where site!='All' and c_hlevel='%s' and c_fullname like '%s' group by c_fullname,site,c_name" % ( appstatedict['hlevel'], '\\'.join(appstatedict['path']) + '\\%') dfsub = pd.read_sql_query(sql, conn) print(sql) # Also get average sql = "select distinct c_fullname,c_name,average avg, (%s*stdev) stdev from outliers_sites_pct t inner join bigfullname b on t.fullname_int=b.fullname_int where site!='All' and c_hlevel='%s' and c_fullname like '%s' group by c_fullname,site,c_name" % ( str(appstatedict['slider']),appstatedict['hlevel'], '\\'.join(appstatedict['path']) + '\\%') dfavg = pd.read_sql_query(sql, conn) print(sql) traces = [] n=appstatedict['selected_new'] xf = dfsub[dfsub.c_fullname == n] xavg = dfavg[dfavg.c_fullname == n] graph_title= 'Nothing selected' # Add avg if len(xavg) > 0: traces.append( go.Bar(x=['average' for x in xavg['avg']], y=xavg['avg'], error_y=dict(type='data',visible=True,array=xavg['stdev']), text=xavg.iloc[0, :].c_name, name='avg')) #traces.append( # go.Bar(x=['avg + %s * stdev' % str(appstatedict['slider']) for x in xavg['stdev']], y=xavg['stdev'], # text=xavg.iloc[0, :].c_name, name='%s * stdev' % str(appstatedict['slider']))) if len(xf) > 0: xf_site = xf[xf['site']==appstatedict['site']] xf_notsite=xf[xf['site']!=appstatedict['site']] # Site color red or green depending on outlier status print(xf_site['c'].iloc[0]) site_color= 'rgba(204,50,50,1)' if (abs(xavg['avg']-xf_site['c'].iloc[0])-xavg['stdev']).iloc[0]>0 else 'rgba(50,204,50,1)' graph_title = xf_site.iloc[0, :].c_name # Site value traces.append( go.Bar(x=xf_site['site'], y=xf_site['c'], marker={'color':site_color},text=xf_site.iloc[0, :].c_name, name=xf_site['site'].iloc[0])) # Other site values traces.append( go.Bar(x=xf_notsite['site'], y=xf_notsite['c'], text=xf_notsite.iloc[0, :].c_name, marker={'color':'rgb(204,204,204,1)'},name='Other sites')) # Add selected site avg #traces.append( # go.Bar(x=[appstatedict['site']], y=xavg['stdev'], text=xf.iloc[0, :].c_name, name=xf.iloc[0, :].c_name)) print("Bar time:"+str(time.time()-start)) layout = go.Layout(barmode='stack', title=graph_title) return {'data': traces,'layout':layout} if __name__=='__main__': # MSSQL """ password_mssql = keyring.get_password(service_name='db.totalnums_mssql',username='i2b2') # You need to previously have set it with set_password db = {'server':'localMSSQL','user':'i2b2','password':password_mssql,'db':'dbo'} db="DSN=localMSSQL;UID=i2b2;PWD="+password_mssql initApp(dbtype='MSSQL',db=db) """ # SQLite globalDbFile = "/Users/jeffklann/HMS/Projects/ACT/totalnum_data/reports/totalnums.db" initApp( db="/Users/jeffklann/HMS/Projects/ACT/totalnum_data/reports/totalnums.db") app.run_server(debug=False,threaded=False)
the-stack_106_17686
# -*- coding: utf-8 -*- """Implements Session to control USB Raw devices Loosely based on PyUSBTMC:python module to handle USB-TMC(Test and Measurement class) devices. by Noboru Yamamot, Accl. Lab, KEK, JAPAN This file is an offspring of the Lantz Project. :copyright: 2014-2020 by PyVISA-py Authors, see AUTHORS for more details. :license: MIT, see LICENSE for more details. """ from .usbtmc import USBRaw as USBRaw from .usbutil import find_devices, find_interfaces def find_raw_devices( vendor=None, product=None, serial_number=None, custom_match=None, **kwargs ): """Find connected USB RAW devices. See usbutil.find_devices for more info. """ def is_usbraw(dev): if custom_match and not custom_match(dev): return False return bool(find_interfaces(dev, bInterfaceClass=0xFF, bInterfaceSubClass=0xFF)) return find_devices(vendor, product, serial_number, is_usbraw, **kwargs) class USBRawDevice(USBRaw): RECV_CHUNK = 1024 ** 2 find_devices = staticmethod(find_raw_devices) def __init__(self, vendor=None, product=None, serial_number=None, **kwargs): super(USBRawDevice, self).__init__(vendor, product, serial_number, **kwargs) if not (self.usb_recv_ep and self.usb_send_ep): raise ValueError( "USBRAW device must have both Bulk-In and Bulk-out endpoints." ) def write(self, data): """Send raw bytes to the instrument. :param data: bytes to be sent to the instrument :type data: bytes """ begin, end, size = 0, 0, len(data) bytes_sent = 0 raw_write = super(USBRawDevice, self).write while not end > size: begin = end end = begin + self.RECV_CHUNK bytes_sent += raw_write(data[begin:end]) return bytes_sent def read(self, size): """Read raw bytes from the instrument. :param size: amount of bytes to be sent to the instrument :type size: integer :return: received bytes :return type: bytes """ raw_read = super(USBRawDevice, self).read received = bytearray() while not len(received) >= size: resp = raw_read(self.RECV_CHUNK) received.extend(resp) return bytes(received)
the-stack_106_17687
''' Function: 游戏结束界面 作者: Charles 微信公众号: Charles的皮卡丘 ''' import sys import pygame # 游戏结束界面 class EndInterface(pygame.sprite.Sprite): def __init__(self, WIDTH, HEIGHT): pygame.sprite.Sprite.__init__(self) self.imgs = ['./resource/imgs/end/gameover.png'] self.image = pygame.image.load(self.imgs[0]).convert() self.rect = self.image.get_rect() self.rect.center = (WIDTH/2, HEIGHT/2) # just pass def update(self): pass # 继续游戏按钮 class ContinueButton(pygame.sprite.Sprite): def __init__(self, position=(400, 409)): pygame.sprite.Sprite.__init__(self) self.imgs = ['./resource/imgs/end/continue_black.png', './resource/imgs/end/continue_red.png'] self.img_1 = pygame.image.load(self.imgs[0]).convert() self.img_2 = pygame.image.load(self.imgs[1]).convert() self.image = self.img_1 self.rect = self.image.get_rect() self.rect.center = position def update(self): mouse_pos = pygame.mouse.get_pos() if self.rect.collidepoint(mouse_pos): self.image = self.img_2 else: self.image = self.img_1 # 游戏结束类 class END(): def __init__(self, WIDTH, HEIGHT): self.EI = EndInterface(WIDTH, HEIGHT) self.CB = ContinueButton() self.components = pygame.sprite.LayeredUpdates(self.EI, self.CB) # 外部调用 def update(self, screen): clock = pygame.time.Clock() background = pygame.Surface(screen.get_size()) count = 0 flag = True while True: count += 1 clock.tick(60) self.components.clear(screen, background) self.components.update() if count % 10 == 0: count = 0 flag = not flag if flag: self.components.draw(screen) else: screen.blit(self.EI.image, self.EI.rect) pygame.display.flip() for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit(0) pygame.quit() elif event.type == pygame.MOUSEBUTTONDOWN: if event.button == 1: mouse_pos = pygame.mouse.get_pos() if self.CB.rect.collidepoint(mouse_pos): return True
the-stack_106_17691
import json import random import pytest from indy_common.authorize.auth_constraints import AuthConstraintForbidden from indy_common.constants import RS_CONTEXT_TYPE_VALUE, JSON_LD_CONTEXT, RS_SCHEMA_TYPE_VALUE, \ RS_MAPPING_TYPE_VALUE, RS_ENCODING_TYPE_VALUE, RS_CRED_DEF_TYPE_VALUE, RICH_SCHEMA, RICH_SCHEMA_ENCODING, \ RICH_SCHEMA_MAPPING, RICH_SCHEMA_CRED_DEF, RICH_SCHEMA_PRES_DEF, RS_PRES_DEF_TYPE_VALUE from indy_node.test.api.helper import sdk_write_rich_schema_object_and_check, \ sdk_build_rich_schema_request from indy_node.test.helper import rich_schemas_enabled_scope from indy_node.test.rich_schema.templates import W3C_BASE_CONTEXT, RICH_SCHEMA_EX1, RICH_SCHEMA_ENCODING_EX1, \ RICH_SCHEMA_MAPPING_EX1, RICH_SCHEMA_CRED_DEF_EX1, RICH_SCHEMA_PRES_DEF_EX1 from plenum.common.constants import TXN_PAYLOAD_METADATA_REQ_ID from plenum.common.exceptions import RequestRejectedException, RequestNackedException from plenum.common.types import OPERATION from plenum.common.util import randomString from plenum.test.helper import sdk_sign_and_submit_req, sdk_get_and_check_replies @pytest.fixture(scope="module") def tconf(tconf): with rich_schemas_enabled_scope(tconf): yield tconf # The order of creation is essential as some rich schema object reference others by ID # Encoding's id must be equal to the one used in RICH_SCHEMA_MAPPING_EX1 @pytest.mark.parametrize('txn_type, rs_type, content, rs_id', [(JSON_LD_CONTEXT, RS_CONTEXT_TYPE_VALUE, W3C_BASE_CONTEXT, randomString()), (RICH_SCHEMA, RS_SCHEMA_TYPE_VALUE, RICH_SCHEMA_EX1, RICH_SCHEMA_EX1['@id']), (RICH_SCHEMA_ENCODING, RS_ENCODING_TYPE_VALUE, RICH_SCHEMA_ENCODING_EX1, "did:sov:1x9F8ZmxuvDqRiqqY29x6dx9oU4qwFTkPbDpWtwGbdUsrCD"), (RICH_SCHEMA_MAPPING, RS_MAPPING_TYPE_VALUE, RICH_SCHEMA_MAPPING_EX1, RICH_SCHEMA_MAPPING_EX1['@id']), (RICH_SCHEMA_CRED_DEF, RS_CRED_DEF_TYPE_VALUE, RICH_SCHEMA_CRED_DEF_EX1, randomString()), (RICH_SCHEMA_PRES_DEF, RS_PRES_DEF_TYPE_VALUE, RICH_SCHEMA_PRES_DEF_EX1, RICH_SCHEMA_PRES_DEF_EX1['@id'])]) def test_send_rich_schema_obj(looper, sdk_pool_handle, sdk_wallet_endorser, txn_type, rs_type, content, rs_id): # 1. check that write is successful request = sdk_build_rich_schema_request(looper, sdk_wallet_endorser, txn_type, rs_id=rs_id, rs_name=randomString(), rs_version='1.0', rs_type=rs_type, rs_content=json.dumps(content)) req = sdk_sign_and_submit_req(sdk_pool_handle, sdk_wallet_endorser, request) rep1 = sdk_get_and_check_replies(looper, [req]) # 2. check that sending the same request gets the same reply req = sdk_sign_and_submit_req(sdk_pool_handle, sdk_wallet_endorser, request) rep2 = sdk_get_and_check_replies(looper, [req]) assert rep1 == rep2 # 3. check that using a different reqId for the same request gets an error request2 = json.loads(request) request2[TXN_PAYLOAD_METADATA_REQ_ID] = random.randint(10, 1000000000) request2 = json.dumps(request2) with pytest.raises(RequestRejectedException, match=str(AuthConstraintForbidden())): req = sdk_sign_and_submit_req(sdk_pool_handle, sdk_wallet_endorser, request2) sdk_get_and_check_replies(looper, [req]) @pytest.mark.parametrize('txn_type, rs_type, content, rs_id', [(JSON_LD_CONTEXT, RS_CONTEXT_TYPE_VALUE, W3C_BASE_CONTEXT, randomString()), (RICH_SCHEMA, RS_SCHEMA_TYPE_VALUE, RICH_SCHEMA_EX1, RICH_SCHEMA_EX1['@id']), (RICH_SCHEMA_ENCODING, RS_ENCODING_TYPE_VALUE, RICH_SCHEMA_ENCODING_EX1, "did:sov:1x9F8ZmxuvDqRiqqY29x6dx9oU4qwFTkPbDpWtwGbdUsrCD"), (RICH_SCHEMA_MAPPING, RS_MAPPING_TYPE_VALUE, RICH_SCHEMA_MAPPING_EX1, RICH_SCHEMA_MAPPING_EX1['@id']), (RICH_SCHEMA_CRED_DEF, RS_CRED_DEF_TYPE_VALUE, RICH_SCHEMA_CRED_DEF_EX1, randomString()), (RICH_SCHEMA_PRES_DEF, RS_PRES_DEF_TYPE_VALUE, RICH_SCHEMA_PRES_DEF_EX1, RICH_SCHEMA_PRES_DEF_EX1['@id'])]) @pytest.mark.parametrize('missing_field', ["id", "rsName", "rsVersion", "content", "rsType"]) def test_validate_fail_missing_fields(looper, sdk_pool_handle, sdk_wallet_endorser, txn_type, rs_type, content, rs_id, missing_field): request = sdk_build_rich_schema_request(looper, sdk_wallet_endorser, txn_type, rs_id=rs_id, rs_name=randomString(), rs_version='1.0', rs_type=rs_type, rs_content=json.dumps(content)) request = json.loads(request) request[OPERATION].pop(missing_field, None) request = json.dumps(request) with pytest.raises(RequestNackedException, match='missed fields'): req = sdk_sign_and_submit_req(sdk_pool_handle, sdk_wallet_endorser, request) sdk_get_and_check_replies(looper, [req])
the-stack_106_17692
# Natural Language Toolkit: Word Sense Disambiguation Algorithms # # Authors: Liling Tan <[email protected]>, # Dmitrijs Milajevs <[email protected]> # # Copyright (C) 2001-2018 NLTK Project # URL: <http://nltk.org/> # For license information, see LICENSE.TXT from nltk.corpus import wordnet def lesk(context_sentence, ambiguous_word, pos=None, synsets=None): """Return a synset for an ambiguous word in a context. :param iter context_sentence: The context sentence where the ambiguous word occurs, passed as an iterable of words. :param str ambiguous_word: The ambiguous word that requires WSD. :param str pos: A specified Part-of-Speech (POS). :param iter synsets: Possible synsets of the ambiguous word. :return: ``lesk_sense`` The Synset() object with the highest signature overlaps. This function is an implementation of the original Lesk algorithm (1986) [1]. Usage example:: >>> lesk(['I', 'went', 'to', 'the', 'bank', 'to', 'deposit', 'money', '.'], 'bank', 'n') Synset('savings_bank.n.02') [1] Lesk, Michael. "Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone." Proceedings of the 5th Annual International Conference on Systems Documentation. ACM, 1986. http://dl.acm.org/citation.cfm?id=318728 """ context = set(context_sentence) if synsets is None: synsets = wordnet.synsets(ambiguous_word) if pos: synsets = [ss for ss in synsets if str(ss.pos()) == pos] if not synsets: return None _, sense = max( (len(context.intersection(ss.definition().split())), ss) for ss in synsets ) return sense
the-stack_106_17693
""" This file offers the methods to automatically retrieve the graph Candidatus Peregrinibacteria bacterium GW2011_GWA2_38_36. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def CandidatusPeregrinibacteriaBacteriumGw2011Gwa23836( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Candidatus Peregrinibacteria bacterium GW2011_GWA2_38_36 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Candidatus Peregrinibacteria bacterium GW2011_GWA2_38_36 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="CandidatusPeregrinibacteriaBacteriumGw2011Gwa23836", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
the-stack_106_17695
import time """ The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. """ def knapsack_without_dynamic(bag_limit, items_value, items_weight, number_items): """ This function calculate in recursive mode the value. Parameters: int bag_limit list items_value list items_weight int number_items Returns: int """ if number_items == 0 or bag_limit == 0: return 0 if items_weight[number_items - 1] > bag_limit: return knapsack_without_dynamic(bag_limit, items_value, items_weight, number_items - 1) else: return max(items_value[number_items - 1] + knapsack_without_dynamic(bag_limit - items_weight[number_items - 1], items_value, items_weight, number_items - 1), knapsack_without_dynamic(bag_limit, items_value, items_weight, number_items - 1)) def knapsack_with_dynamic(bag_limit, items_value, items_weight, number_items): """ This function calculate and store the result into a matrix where we can retrieve the solution at the end Parameters: int bag_limit list items_value list items_weight int number_items Returns: int """ matrix = [[0 for x in range(bag_limit + 1)] for x in range(number_items + 1)] # Table in bottom up manner for i in range(number_items + 1): for w in range(bag_limit + 1): if i == 0 or w == 0: matrix[i][w] = 0 elif items_weight[i - 1] <= w: matrix[i][w] = max(items_value[i - 1] + matrix[i - 1][w - items_weight[i - 1]], matrix[i - 1][w]) else: matrix[i][w] = matrix[i - 1][w] return matrix[total_items][bag_limit] def execution_time(started): print('Executed in:', round(time.time() - started, 4), ' seconds') items_value = [50, 100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300] items_weight = [8, 16, 32, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170] total_items = len(items_value) limit = 1150 # without dynamic programming start = time.time() print(knapsack_without_dynamic(limit, items_value, items_weight, total_items)) execution_time(start) # with dynamic programing start = time.time() print(knapsack_with_dynamic(limit, items_value, items_weight, total_items)) execution_time(start)
the-stack_106_17696
import pickle from collections import OrderedDict from distutils.version import LooseVersion import cloudpickle import numpy as np import pytest import torch from torch import nn from pytorch_lightning.metrics.metric import Metric, MetricCollection torch.manual_seed(42) class Dummy(Metric): name = "Dummy" def __init__(self): super().__init__() self.add_state("x", torch.tensor(0.0), dist_reduce_fx=None) def update(self): pass def compute(self): pass class DummyList(Metric): name = "DummyList" def __init__(self): super().__init__() self.add_state("x", list(), dist_reduce_fx=None) def update(self): pass def compute(self): pass def test_inherit(): Dummy() def test_add_state(): a = Dummy() a.add_state("a", torch.tensor(0), "sum") assert a._reductions["a"](torch.tensor([1, 1])) == 2 a.add_state("b", torch.tensor(0), "mean") assert np.allclose(a._reductions["b"](torch.tensor([1.0, 2.0])).numpy(), 1.5) a.add_state("c", torch.tensor(0), "cat") assert a._reductions["c"]([torch.tensor([1]), torch.tensor([1])]).shape == (2, ) with pytest.raises(ValueError): a.add_state("d1", torch.tensor(0), 'xyz') with pytest.raises(ValueError): a.add_state("d2", torch.tensor(0), 42) with pytest.raises(ValueError): a.add_state("d3", [torch.tensor(0)], 'sum') with pytest.raises(ValueError): a.add_state("d4", 42, 'sum') def custom_fx(x): return -1 a.add_state("e", torch.tensor(0), custom_fx) assert a._reductions["e"](torch.tensor([1, 1])) == -1 def test_add_state_persistent(): a = Dummy() a.add_state("a", torch.tensor(0), "sum", persistent=True) assert "a" in a.state_dict() a.add_state("b", torch.tensor(0), "sum", persistent=False) if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): assert "b" not in a.state_dict() def test_reset(): class A(Dummy): pass class B(DummyList): pass a = A() assert a.x == 0 a.x = torch.tensor(5) a.reset() assert a.x == 0 b = B() assert isinstance(b.x, list) and len(b.x) == 0 b.x = torch.tensor(5) b.reset() assert isinstance(b.x, list) and len(b.x) == 0 def test_update(): class A(Dummy): def update(self, x): self.x += x a = A() assert a.x == 0 assert a._computed is None a.update(1) assert a._computed is None assert a.x == 1 a.update(2) assert a.x == 3 assert a._computed is None def test_compute(): class A(Dummy): def update(self, x): self.x += x def compute(self): return self.x a = A() assert 0 == a.compute() assert 0 == a.x a.update(1) assert a._computed is None assert a.compute() == 1 assert a._computed == 1 a.update(2) assert a._computed is None assert a.compute() == 3 assert a._computed == 3 # called without update, should return cached value a._computed = 5 assert a.compute() == 5 def test_hash(): class A(Dummy): pass class B(DummyList): pass a1 = A() a2 = A() assert hash(a1) != hash(a2) b1 = B() b2 = B() assert hash(b1) == hash(b2) assert isinstance(b1.x, list) and len(b1.x) == 0 b1.x.append(torch.tensor(5)) assert isinstance(hash(b1), int) # <- check that nothing crashes assert isinstance(b1.x, list) and len(b1.x) == 1 b2.x.append(torch.tensor(5)) # Sanity: assert isinstance(b2.x, list) and len(b2.x) == 1 # Now that they have tensor contents, they should have different hashes: assert hash(b1) != hash(b2) def test_forward(): class A(Dummy): def update(self, x): self.x += x def compute(self): return self.x a = A() assert a(5) == 5 assert a._forward_cache == 5 assert a(8) == 8 assert a._forward_cache == 8 assert a.compute() == 13 class DummyMetric1(Dummy): def update(self, x): self.x += x def compute(self): return self.x class DummyMetric2(Dummy): def update(self, y): self.x -= y def compute(self): return self.x def test_pickle(tmpdir): # doesn't tests for DDP a = DummyMetric1() a.update(1) metric_pickled = pickle.dumps(a) metric_loaded = pickle.loads(metric_pickled) assert metric_loaded.compute() == 1 metric_loaded.update(5) assert metric_loaded.compute() == 6 metric_pickled = cloudpickle.dumps(a) metric_loaded = cloudpickle.loads(metric_pickled) assert metric_loaded.compute() == 1 def test_state_dict(tmpdir): """ test that metric states can be removed and added to state dict """ metric = Dummy() assert metric.state_dict() == OrderedDict() metric.persistent(True) assert metric.state_dict() == OrderedDict(x=0) metric.persistent(False) assert metric.state_dict() == OrderedDict() def test_child_metric_state_dict(): """ test that child metric states will be added to parent state dict """ class TestModule(nn.Module): def __init__(self): super().__init__() self.metric = Dummy() self.metric.add_state('a', torch.tensor(0), persistent=True) self.metric.add_state('b', [], persistent=True) self.metric.register_buffer('c', torch.tensor(0)) module = TestModule() expected_state_dict = { 'metric.a': torch.tensor(0), 'metric.b': [], 'metric.c': torch.tensor(0), } assert module.state_dict() == expected_state_dict @pytest.mark.skipif(not torch.cuda.is_available(), reason="Test requires GPU.") def test_device_and_dtype_transfer(tmpdir): metric = DummyMetric1() assert metric.x.is_cuda is False assert metric.x.dtype == torch.float32 metric = metric.to(device='cuda') assert metric.x.is_cuda metric = metric.double() assert metric.x.dtype == torch.float64 metric = metric.half() assert metric.x.dtype == torch.float16 def test_metric_collection(tmpdir): m1 = DummyMetric1() m2 = DummyMetric2() metric_collection = MetricCollection([m1, m2]) # Test correct dict structure assert len(metric_collection) == 2 assert metric_collection['DummyMetric1'] == m1 assert metric_collection['DummyMetric2'] == m2 # Test correct initialization for name, metric in metric_collection.items(): assert metric.x == 0, f'Metric {name} not initialized correctly' # Test every metric gets updated metric_collection.update(5) for name, metric in metric_collection.items(): assert metric.x.abs() == 5, f'Metric {name} not updated correctly' # Test compute on each metric metric_collection.update(-5) metric_vals = metric_collection.compute() assert len(metric_vals) == 2 for name, metric_val in metric_vals.items(): assert metric_val == 0, f'Metric {name}.compute not called correctly' # Test that everything is reset for name, metric in metric_collection.items(): assert metric.x == 0, f'Metric {name} not reset correctly' # Test pickable metric_pickled = pickle.dumps(metric_collection) metric_loaded = pickle.loads(metric_pickled) assert isinstance(metric_loaded, MetricCollection) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Test requires GPU.") def test_device_and_dtype_transfer_metriccollection(tmpdir): m1 = DummyMetric1() m2 = DummyMetric2() metric_collection = MetricCollection([m1, m2]) for _, metric in metric_collection.items(): assert metric.x.is_cuda is False assert metric.x.dtype == torch.float32 metric_collection = metric_collection.to(device='cuda') for _, metric in metric_collection.items(): assert metric.x.is_cuda metric_collection = metric_collection.double() for _, metric in metric_collection.items(): assert metric.x.dtype == torch.float64 metric_collection = metric_collection.half() for _, metric in metric_collection.items(): assert metric.x.dtype == torch.float16 def test_metric_collection_wrong_input(tmpdir): """ Check that errors are raised on wrong input """ m1 = DummyMetric1() # Not all input are metrics (list) with pytest.raises(ValueError): _ = MetricCollection([m1, 5]) # Not all input are metrics (dict) with pytest.raises(ValueError): _ = MetricCollection({'metric1': m1, 'metric2': 5}) # Same metric passed in multiple times with pytest.raises(ValueError, match='Encountered two metrics both named *.'): _ = MetricCollection([m1, m1]) # Not a list or dict passed in with pytest.raises(ValueError, match='Unknown input to MetricCollection.'): _ = MetricCollection(m1) def test_metric_collection_args_kwargs(tmpdir): """ Check that args and kwargs gets passed correctly in metric collection, Checks both update and forward method """ m1 = DummyMetric1() m2 = DummyMetric2() metric_collection = MetricCollection([m1, m2]) # args gets passed to all metrics metric_collection.update(5) assert metric_collection['DummyMetric1'].x == 5 assert metric_collection['DummyMetric2'].x == -5 metric_collection.reset() _ = metric_collection(5) assert metric_collection['DummyMetric1'].x == 5 assert metric_collection['DummyMetric2'].x == -5 metric_collection.reset() # kwargs gets only passed to metrics that it matches metric_collection.update(x=10, y=20) assert metric_collection['DummyMetric1'].x == 10 assert metric_collection['DummyMetric2'].x == -20 metric_collection.reset() _ = metric_collection(x=10, y=20) assert metric_collection['DummyMetric1'].x == 10 assert metric_collection['DummyMetric2'].x == -20
the-stack_106_17697
#!/usr/bin/env python -w # # import argparse import os # method should be forward or reverse def Scan(pred_out,threshold,penality,method): print("### Start {} scaning".format(method)) scan_out = [] predict = dict() coor2pas = dict() for pas_id,score in pred_out: chromosome,coor,strand = pas_id.split(':') coor = int(coor) predict[coor] = score coor2pas[coor] = pas_id if 'forward' in method: predict[100000000000] = 1 coor2pas[100000000000] = 'chr' coor_list = list(coor2pas.keys()) coor_list.sort() maxPos=0 ## position of peak start=0 ## peak start end = 0 ## peak end peak = 0 ## peak coor elif 'reverse' in method: predict[-1] = 1 coor2pas[-1] = 'chr' coor_list = list(coor2pas.keys()) coor_list.sort(reverse=True) maxPos= coor_list[0] ## position of peak start= coor_list[0] ## peak start end = coor_list[0] ## peak end peak = coor_list[0] ## peak coor else: print('### Error: {} has not been defined'.format(method)) sum=0 maxPoint=0 ## score of peak peak_score = 0 ##peak score for coor in coor_list: score = predict[coor] if(abs(coor-end)>1): if(maxPoint>threshold and sum>0): newpas_id = coor2pas[maxPos] scan_out.append((newpas_id,maxPoint,maxPos,start,end,peak)) start = coor end = coor if(score>0.5): maxPos = coor maxPoint = score peak_score = score sum = score else: maxPos = coor maxPoint = 0 peak_score = 0 sum = 0 elif(score < 0.5): sum -= penality if(sum <= 0): if(maxPoint > threshold): newpas_id = coor2pas[maxPos] scan_out.append((newpas_id,maxPoint,maxPos,start,end,peak)) start = coor sum=0 maxPoint = 0 peak_score = 0 end = coor else: sum += score if(peak_score < score): peak_score = score peak = coor if(maxPoint < sum): maxPoint = sum maxPos = coor if(sum<1): start = coor maxPoint = sum maxPos = coor end=coor print("### End {} scaning".format(method)) return scan_out def args(): ### Argument Parser parser = argparse.ArgumentParser() parser.add_argument('--pred_out', default=None, help='output list from evaluation') parser.add_argument('--threshold', default=0,type=int,help='peak length lower than threshold will be fiter out') parser.add_argument('--penality', default=1,type=int,help='penality for prediction score lower than 0.5') parser.add_argument('--method', default='forward',type=str,help='method for scanning, forward or reverse') args = parser.parse_args() pred_out = args.pred_out threshold = args.threshold penality = args.penality method = args.method return pred_out,threshold,penality,method if __name__ == "__main__": scan_out = Scan(*args())