filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_14563
#!/usr/bin/env python3 # SPDX-License-Identifier: BSD-2-Clause # # Copyright (c) 2016, Linaro Limited import struct import argparse def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--input', required=False, dest='inf', default='../out/arm/core/tee.bin', help='The input tee.bin') return parser.parse_args() def main(): args = get_args() with open(args.inf, "rb") as f: data = f.read(4) magic = struct.unpack('<I', data)[0] print("Magic: \t\t0x{:08x}".format(magic)) data = f.read(1) version = struct.unpack('<B', data)[0] print("Version: \t0x{:02x}".format(version)) data = f.read(1) arch_id = struct.unpack('<B', data)[0] print("ArchID: \t0x{:02x}".format(arch_id)) data = f.read(2) flags = struct.unpack('<H', data)[0] print("Arch Flags: \t0x{:04x}".format(arch_id)) data = f.read(4) init_size = struct.unpack('<I', data)[0] print("Init size: \t0x{:04x}".format(init_size)) data = f.read(4) laddr_h = struct.unpack('<I', data)[0] print("Load addr high:\t0x{:04x}".format(laddr_h)) data = f.read(4) laddr_l = struct.unpack('<I', data)[0] print("Load addr low: \t0x{:04x}".format(laddr_l)) data = f.read(4) mem_usage = struct.unpack('<I', data)[0] print("Mem usage: \t0x{:04x}".format(mem_usage)) data = f.read(4) pgd_size = struct.unpack('<I', data)[0] print("Pages size: \t0x{:04x}".format(pgd_size)) if __name__ == "__main__": main()
the-stack_106_14564
"""Contains the drivers and interface code for pinball machines which use the Multimorphic R-ROC hardware controllers. This code can be used with P-ROC driver boards, or with Stern SAM, Stern Whitestar, Williams WPC, or Williams WPC95 driver boards. Much of this code is from the P-ROC drivers section of the pyprocgame project, written by Adam Preble and Gerry Stellenberg. It was originally released under the MIT license and is released here under the MIT License. More info on the P-ROC hardware platform: http://pinballcontrollers.com/ Original code source on which this module was based: https://github.com/preble/pyprocgame """ import logging import asyncio from mpf.core.platform import DmdPlatform, DriverConfig, SwitchConfig, SegmentDisplayPlatform from mpf.platforms.interfaces.dmd_platform import DmdPlatformInterface from mpf.platforms.interfaces.segment_display_platform_interface import SegmentDisplayPlatformInterface from mpf.platforms.p_roc_common import PDBConfig, PROCBasePlatform from mpf.core.utility_functions import Util from mpf.platforms.p_roc_devices import PROCDriver class PRocHardwarePlatform(PROCBasePlatform, DmdPlatform, SegmentDisplayPlatform): """Platform class for the P-ROC hardware controller. Args: machine: The MachineController instance. Attributes: machine: The MachineController instance. """ __slots__ = ["config", "dmd", "alpha_display", "aux_port", "_use_extended_matrix", "_use_first_eight_direct_inputs"] def __init__(self, machine): """Initialise P-ROC.""" super().__init__(machine) self.log = logging.getLogger('P-ROC') self.debug_log("Configuring P-ROC hardware") # validate config for p_roc self.config = self.machine.config_validator.validate_config("p_roc", self.machine.config['p_roc']) self.dmd = None self.alpha_display = None self.connect() self.aux_port = AuxPort(self) self.aux_port.reset() self._use_extended_matrix = False self._use_first_eight_direct_inputs = False # Because PDBs can be configured in many different ways, we need to # traverse the YAML settings to see how many PDBs are being used. # Then we can configure the P-ROC appropriately to use those PDBs. # Only then can we relate the YAML coil/light #'s to P-ROC numbers for # the collections. if self.machine_type == self.pinproc.MachineTypePDB: self.debug_log("Configuring P-ROC for PDBs (P-ROC driver boards)") self.pdbconfig = PDBConfig(self.proc, self.machine.config, self.pinproc.DriverCount) else: self.debug_log("Configuring P-ROC for OEM driver boards") def _get_default_subtype(self): """Return default subtype for P-Roc.""" return "matrix" def __repr__(self): """Return string representation.""" return '<Platform.P-ROC>' def get_info_string(self): """Dump infos about boards.""" infos = "Firmware Version: {} Firmware Revision: {} Hardware Board ID: {}\n".format( self.version, self.revision, self.hardware_version) return infos def configure_driver(self, config: DriverConfig, number: str, platform_settings: dict): """Create a P-ROC driver. Typically drivers are coils or flashers, but for the P-ROC this is also used for matrix-based lights. Args: config: Dictionary of settings for the driver. Returns: A reference to the PROCDriver object which is the actual object you can use to pulse(), patter(), enable(), etc. """ # todo need to add Aux Bus support # todo need to add virtual driver support for driver counts > 256 # Find the P-ROC number for each driver. For P-ROC driver boards, the # P-ROC number is specified via the Ax-By-C format. For OEM driver # boards configured via driver numbers, libpinproc's decode() method # can provide the number. if self.machine_type == self.pinproc.MachineTypePDB: proc_num = self.pdbconfig.get_proc_coil_number(str(number)) if proc_num == -1: raise AssertionError("Driver {} cannot be controlled by the P-ROC. ".format(str(number))) else: proc_num = self.pinproc.decode(self.machine_type, str(number)) return PROCDriver(proc_num, config, self, number) def configure_switch(self, number: str, config: SwitchConfig, platform_config: dict): """Configure a P-ROC switch. Args: number: String number of the switch to configure. config: SwitchConfig settings. Returns: A configured switch object. """ del platform_config try: if number.startswith("SD") and 0 <= int(number[2:]) <= 7: self._use_first_eight_direct_inputs = True _, y = number.split('/', 2) if int(y) > 7: self._use_extended_matrix = True except ValueError: pass if self._use_extended_matrix and self._use_first_eight_direct_inputs: raise AssertionError( "P-Roc vannot use extended matrix and the first eight direct inputs at the same " "time. Either only use SD8 to SD31 or only use matrix X/Y with Y <= 7. Offending " "switch: {}".format(number)) if self.machine_type == self.pinproc.MachineTypePDB: proc_num = self.pdbconfig.get_proc_switch_number(str(number)) if proc_num == -1: raise AssertionError("Switch {} cannot be controlled by the P-ROC. ".format(str(number))) else: proc_num = self.pinproc.decode(self.machine_type, str(number)) return self._configure_switch(config, proc_num) @asyncio.coroutine def get_hw_switch_states(self): """Read in and set the initial switch state. The P-ROC uses the following values for hw switch states: 1 - closed (debounced) 2 - open (debounced) 3 - closed (not debounced) 4 - open (not debounced) """ states = self.proc.switch_get_states() for switch, state in enumerate(states): if state == 3 or state == 1: states[switch] = 1 else: states[switch] = 0 return states def configure_dmd(self): """Configure a hardware DMD connected to a classic P-ROC.""" self.dmd = PROCDMD(self.pinproc, self.proc, self.machine) return self.dmd def configure_segment_display(self, number: str) -> "SegmentDisplayPlatformInterface": """Configure display.""" number_int = int(number) if 0 < number_int >= 4: raise AssertionError("Number must be between 0 and 3 for p_roc segment display.") if not self.alpha_display: self.alpha_display = AuxAlphanumericDisplay(self, self.aux_port) return PRocAlphanumericDisplay(self.alpha_display, number_int) def tick(self): """Check the P-ROC for any events (switch state changes or notification that a DMD frame was updated). Also tickles the watchdog and flushes any queued commands to the P-ROC. """ # Get P-ROC events (switches & DMD frames displayed) for event in self.proc.get_events(): event_type = event['type'] event_value = event['value'] if event_type == self.pinproc.EventTypeDMDFrameDisplayed: pass elif event_type == self.pinproc.EventTypeSwitchClosedDebounced: self.machine.switch_controller.process_switch_by_num( state=1, num=event_value, platform=self) elif event_type == self.pinproc.EventTypeSwitchOpenDebounced: self.machine.switch_controller.process_switch_by_num( state=0, num=event_value, platform=self) elif event_type == self.pinproc.EventTypeSwitchClosedNondebounced: self.machine.switch_controller.process_switch_by_num( state=1, num=event_value, platform=self) elif event_type == self.pinproc.EventTypeSwitchOpenNondebounced: self.machine.switch_controller.process_switch_by_num( state=0, num=event_value, platform=self) else: self.log.warning("Received unrecognized event from the P-ROC. " "Type: %s, Value: %s", event_type, event_value) self.proc.watchdog_tickle() self.proc.flush() class PROCDMD(DmdPlatformInterface): """Parent class for a physical DMD attached to a P-ROC. Args: proc: Reference to the MachineController's proc attribute. machine: Reference to the MachineController Attributes: dmd: Reference to the P-ROC's DMD buffer. """ __slots__ = ["proc", "machine", "dmd"] def __init__(self, pinproc, proc, machine): """Set up DMD.""" self.proc = proc self.machine = machine # size is hardcoded here since 128x32 is all the P-ROC hw supports self.dmd = pinproc.DMDBuffer(128, 32) # dmd_timing defaults should be 250, 400, 180, 800 if self.machine.config['p_roc']['dmd_timing_cycles']: dmd_timing = Util.string_to_list( self.machine.config['p_roc']['dmd_timing_cycles']) self.proc.dmd_update_config(high_cycles=dmd_timing) def set_brightness(self, brightness: float): """Set brightness.""" # currently not supported. can be implemented using dmd_timing_cycles assert brightness == 1.0 def update(self, data): """Update the DMD with a new frame. Args: data: A 4096-byte raw string. """ if len(data) == 4096: self.dmd.set_data(data) self.proc.dmd_draw(self.dmd) else: self.machine.log.warning("Received DMD frame of length %s instead" "of 4096. Discarding...", len(data)) class AuxPort(object): """Aux port on the P-Roc.""" __slots__ = ["platform", "_commands"] def __init__(self, platform): """Initialise aux port.""" self.platform = platform self._commands = [] def reset(self): """Reset aux port.""" commands = [self.platform.pinproc.aux_command_disable()] for _ in range(1, 255): commands += [self.platform.pinproc.aux_command_jump(0)] self.platform.proc.aux_send_commands(0, commands) def reserve_index(self): """Return index of next free command slot and reserve it.""" self._commands += [[]] return len(self._commands) - 1 def update(self, index, commands): """Update command slot with command.""" self._commands[index] = commands self._write_commands() def _write_commands(self): """Write commands to hardware.""" # disable program commands = [self.platform.pinproc.aux_command_disable()] # build command list for command_set in self._commands: commands += command_set self.platform.proc.aux_send_commands(0, commands) # jump from slot 0 to slot 1. overwrites the disable self.platform.proc.aux_send_commands(0, [self.platform.pinproc.aux_command_jump(1)]) class PRocAlphanumericDisplay(SegmentDisplayPlatformInterface): """Since AuxAlphanumericDisplay updates all four displays wrap it and set the correct offset.""" __slots__ = ["display"] def __init__(self, display, index): """Initialise alpha numeric display.""" super().__init__(index) self.display = display def set_text(self, text: str, flashing: bool): """Set digits to display.""" # TODO: handle flashing using delay self.display.set_text(text, self.number) class AuxAlphanumericDisplay(object): """An alpha numeric display connected to the aux port on the P-Roc.""" # Start at ASCII table offset 32: ' ' asciiSegments = [0x0000, # ' ' 0x016a, # '!' Random Debris Character 1 0x3014, # '"' Random Debris Character 2 0x5d80, # '#' Random Debris Character 3 0x00a4, # '$' Random Debris Character 4 0x3270, # '%' Random Debris Character 5 0x4640, # '&' Random Debris Character 6 0x0200, # ''' 0x1400, # '(' 0x4100, # ')' 0x7f40, # '*' 0x2a40, # '+' 0x8080, # ',' 0x0840, # '-' 0x8000, # '.' 0x4400, # '/' 0x003f, # '0' 0x0006, # '1' 0x085b, # '2' 0x084f, # '3' 0x0866, # '4' 0x086d, # '5' 0x087d, # '6' 0x0007, # '7' 0x087f, # '8' 0x086f, # '9' 0x0821, # ':' Random Debris Character 7 0x1004, # ';' Random Debris Character 8 0x1c00, # '<' Left Arrow 0x1386, # '=' Random Debris Character 9 0x4140, # '>' Right Arrow 0x0045, # '?' Random Debris Character 10 0x4820, # '@' Random Debris Character 11 0x0877, # 'A' 0x2a4f, # 'B' 0x0039, # 'C' 0x220f, # 'D' 0x0879, # 'E' 0x0871, # 'F' 0x083d, # 'G' 0x0876, # 'H' 0x2209, # 'I' 0x001e, # 'J' 0x1470, # 'K' 0x0038, # 'L' 0x0536, # 'M' 0x1136, # 'N' 0x003f, # 'O' 0x0873, # 'P' 0x103f, # 'Q' 0x1873, # 'R' 0x086d, # 'S' 0x2201, # 'T' 0x003e, # 'U' 0x4430, # 'V' 0x5036, # 'W' 0x5500, # 'X' 0x2500, # 'Y' 0x4409, # 'Z' 0x6004, # '[' Random Debris Character 12 0x6411, # '\' Random Debris Character 13 0x780a, # ']' Random Debris Character 14 0x093a, # '^' Random Debris Character 15 0x0008, # '_' 0x2220, # '`' Random Debris Character 16 0x0c56, # 'a' Broken Letter a 0x684e, # 'b' Broken Letter b 0x081c, # 'c' Broken Letter c 0x380e, # 'd' Broken Letter d 0x1178, # 'e' Broken Letter e 0x4831, # 'f' Broken Letter f 0x083d, # 'g' Broken Letter g NOT CREATED YET 0x0854, # 'h' Broken Letter h 0x2209, # 'i' Broken Letter i NOT CREATED YET 0x001e, # 'j' Broken Letter j NOT CREATED YET 0x1070, # 'k' Broken Letter k 0x0038, # 'l' Broken Letter l NOT CREATED YET 0x0536, # 'm' Broken Letter m NOT CREATED YET 0x1136, # 'n' Broken Letter n NOT CREATED YET 0x085c, # 'o' Broken Letter o 0x0873, # 'p' Broken Letter p NOT CREATED YET 0x103f, # 'q' Broken Letter q NOT CREATED YET 0x1c72, # 'r' Broken Letter r 0x116c, # 's' Broken Letter s 0x2120, # 't' Broken Letter t 0x003e, # 'u' Broken Letter u NOT CREATED YET 0x4430, # 'v' Broken Letter v NOT CREATED YET 0x5036, # 'w' Broken Letter w NOT CREATED YET 0x5500, # 'x' Broken Letter x NOT CREATED YET 0x2500, # 'y' Broken Letter y NOT CREATED YET 0x4409 # 'z' Broken Letter z NOT CREATED YET ] strobes = [8, 9, 10, 11, 12] full_intensity_delay = 350 # microseconds inter_char_delay = 40 # microseconds __slots__ = ["platform", "aux_controller", "aux_index", "texts"] def __init__(self, platform, aux_controller): """Initialise the alphanumeric display.""" self.platform = platform self.aux_controller = aux_controller self.aux_index = aux_controller.reserve_index() self.texts = [" "] * 4 def set_text(self, text, index): """Set text for display.""" if len(text) != 8: text = text[0:8].rjust(8, ' ') self.texts[index] = text # build expected format input_strings = [self.texts[0] + self.texts[1], self.texts[2] + self.texts[3]] self.display(input_strings) def display(self, input_strings, intensities=None): """Set display text.""" strings = [] if intensities is None: intensities = [[1] * 16] * 2 # Make sure strings are at least 16 chars. # Then convert each string to a list of chars. for j in range(0, 2): input_strings[j] = input_strings[j] if len(input_strings[j]) < 16: input_strings[j] += ' ' * (16 - len(input_strings[j])) strings += [list(input_strings[j])] # Make sure insensities are 1 or less for i in range(0, 16): for j in range(0, 2): if intensities[j][i] > 1: intensities[j][i] = 1 commands = [] char_on_time = [] char_off_time = [] # Initialize a 2x16 array for segments value segs = [[0] * 16 for _ in range(2)] # Loop through each character for i in range(0, 16): # Activate the character position (this goes to both displayas) commands += [self.platform.pinproc.aux_command_output_custom(i, 0, self.strobes[0], False, 0)] for j in range(0, 2): segs[j][i] = self.asciiSegments[ord(strings[j][i]) - 32] # Check for commas or periods. # If found, squeeze comma into previous character. # No point checking the last character (plus, this avoids an # indexing error by not checking i+1 on the 16th char. if i < 15: comma_dot = strings[j][i + 1] if comma_dot == "," or comma_dot == ".": segs[j][i] |= self.asciiSegments[ord(comma_dot) - 32] strings[j].remove(comma_dot) # Append a space to ensure there are enough chars. strings[j].append(' ') # character is 16 bits long, characters are loaded in 2 lots of 8 bits, # for each display (4 enable lines total) commands += [self.platform.pinproc.aux_command_output_custom( segs[j][i] & 0xff, 0, self.strobes[j * 2 + 1], False, 0)] # first 8 bits of characater data commands += [self.platform.pinproc.aux_command_output_custom( (segs[j][i] >> 8) & 0xff, 0, self.strobes[j * 2 + 2], False, 0)] # second 8 bits of characater data char_on_time += [intensities[j][i] * self.full_intensity_delay] char_off_time += [self.inter_char_delay + (self.full_intensity_delay - char_on_time[j])] if char_on_time[0] < char_on_time[1]: first = 0 second = 1 else: first = 1 second = 0 # Determine amount of time to leave the other char on after the # first is off. between_delay = char_on_time[second] - char_on_time[first] # Not sure if the hardware will like a delay of 0 # Use 2 to be extra safe. 2 microseconds won't affect display. if between_delay == 0: between_delay = 2 # Delay until it's time to turn off the character with the lowest intensity commands += [self.platform.pinproc.aux_command_delay(char_on_time[first])] commands += [self.platform.pinproc.aux_command_output_custom(0, 0, self.strobes[first * 2 + 1], False, 0)] commands += [self.platform.pinproc.aux_command_output_custom(0, 0, self.strobes[first * 2 + 2], False, 0)] # Delay until it's time to turn off the other character. commands += [self.platform.pinproc.aux_command_delay(between_delay)] commands += [self.platform.pinproc.aux_command_output_custom(0, 0, self.strobes[second * 2 + 1], False, 0)] commands += [self.platform.pinproc.aux_command_output_custom(0, 0, self.strobes[second * 2 + 2], False, 0)] # Delay for the inter-digit delay. commands += [self.platform.pinproc.aux_command_delay(char_off_time[second])] # Send the new list of commands to the Aux port controller. self.aux_controller.update(self.aux_index, commands)
the-stack_106_14565
import logging from django.db.models import signals import purpleserver.core.serializers as serializers import purpleserver.manager.models as models import purpleserver.events.tasks as tasks from purpleserver.events.serializers import EventTypes logger = logging.getLogger(__name__) def register_signals(): signals.post_save.connect(shipment_updated, sender=models.Shipment) signals.post_delete.connect(shipment_cancelled, sender=models.Shipment) signals.post_save.connect(tracker_updated, sender=models.Tracking) logger.info("webhooks signals registered...") def shipment_updated(sender, instance, created, raw, using, update_fields, *args, **kwargs): """Shipment related events: - shipment purchased (label purchased) - shipment fulfilled (shipped) """ changes = update_fields or {} if created or 'status' not in changes: return elif instance.status == serializers.ShipmentStatus.purchased.value: event = EventTypes.shipment_purchased.value elif instance.status == serializers.ShipmentStatus.transit.value: event = EventTypes.shipment_fulfilled.value elif instance.status == serializers.ShipmentStatus.cancelled.value: event = EventTypes.shipment_cancelled.value else: return data = serializers.Shipment(instance).data event_at = instance.updated_at test_mode = instance.test_mode tasks.notify_webhooks(event, data, event_at, test_mode) def shipment_cancelled(sender, instance, *args, **kwargs): """Shipment related events: - shipment cancelled/deleted (label voided) """ event = EventTypes.shipment_cancelled.value data = serializers.Shipment(instance) event_at = instance.updated_at test_mode = instance.test_mode tasks.notify_webhooks(event, data, event_at, test_mode) def tracker_updated(sender, instance, created, raw, using, update_fields, *args, **kwargs): """Tracking related events: - tracker created (pending) - tracker status changed (in-transit, delivered or blocked) """ if created: event = EventTypes.tracker_created.value elif any(field in (update_fields or []) for field in ['status']): event = EventTypes.tracker_updated.value else: return data = serializers.TrackingStatus(instance).data event_at = instance.updated_at test_mode = instance.test_mode tasks.notify_webhooks(event, data, event_at, test_mode)
the-stack_106_14567
from hypothesis import given import hypothesis.strategies as st import numpy as np from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial class TestCosineEmbeddingCriterion(serial.SerializedTestCase): @serial.given(N=st.integers(min_value=10, max_value=20), seed=st.integers(min_value=0, max_value=65535), margin=st.floats(min_value=-0.5, max_value=0.5), **hu.gcs) def test_cosine_embedding_criterion(self, N, seed, margin, gc, dc): np.random.seed(seed) S = np.random.randn(N).astype(np.float32) Y = np.random.choice([-1, 1], size=N).astype(np.int32) op = core.CreateOperator( "CosineEmbeddingCriterion", ["S", "Y"], ["output"], margin=margin) def ref_cec(S, Y): result = (1 - S) * (Y == 1) + np.maximum(S - margin, 0) * (Y == -1) return (result, ) # This checks the op implementation against a reference function in # python. self.assertReferenceChecks(gc, op, [S, Y], ref_cec) # This checks the op implementation over multiple device options (e.g. # CPU and CUDA). [0] means that the 0-th output is checked. self.assertDeviceChecks(dc, op, [S, Y], [0]) # Now, since this operator's output has a "kink" around the margin # value, we move the S vector away from the margin a little bit. This # is a standard trick to avoid gradient check to fail on subgradient # points. S[np.abs(S - margin) < 0.1] += 0.2 # This checks the operator's gradient. the first 0 means that we are # checking the gradient of the first input (S), and the second [0] means # that the gradient check should initiate from the 0-th output. self.assertGradientChecks(gc, op, [S, Y], 0, [0]) if __name__ == "__main__": import unittest unittest.main()
the-stack_106_14568
from __future__ import absolute_import from rest_framework.response import Response from sentry import tsdb from sentry.api.base import DocSection, EnvironmentMixin, StatsMixin from sentry.api.bases.organization import OrganizationEndpoint from sentry.api.exceptions import ResourceDoesNotExist from sentry.models import Environment, Project, Team from sentry.utils.apidocs import attach_scenarios, scenario @scenario('RetrieveEventCountsOrganization') def retrieve_event_counts_organization(runner): runner.request(method='GET', path='/organizations/%s/stats/' % runner.org.slug) class OrganizationStatsEndpoint(OrganizationEndpoint, EnvironmentMixin, StatsMixin): doc_section = DocSection.ORGANIZATIONS @attach_scenarios([retrieve_event_counts_organization]) def get(self, request, organization): """ Retrieve Event Counts for an Organization ````````````````````````````````````````` .. caution:: This endpoint may change in the future without notice. Return a set of points representing a normalized timestamp and the number of events seen in the period. :pparam string organization_slug: the slug of the organization for which the stats should be retrieved. :qparam string stat: the name of the stat to query (``"received"``, ``"rejected"``, ``"blacklisted"``) :qparam timestamp since: a timestamp to set the start of the query in seconds since UNIX epoch. :qparam timestamp until: a timestamp to set the end of the query in seconds since UNIX epoch. :qparam string resolution: an explicit resolution to search for (eg: ``10s``). This should not be used unless you are familiar with Sentry's internals as it's restricted to pre-defined values. :auth: required """ group = request.GET.get('group', 'organization') if group == 'organization': keys = [organization.id] elif group == 'project': team_list = Team.objects.get_for_user( organization=organization, user=request.user, ) project_ids = request.GET.getlist('projectID') if not project_ids: project_list = [] for team in team_list: project_list.extend(Project.objects.get_for_user( team=team, user=request.user, )) else: project_list = Project.objects.filter( teams__in=team_list, id__in=project_ids, ) keys = list({p.id for p in project_list}) else: raise ValueError('Invalid group: %s' % group) if 'id' in request.GET: id_filter_set = frozenset(map(int, request.GET.getlist('id'))) keys = [k for k in keys if k in id_filter_set] if not keys: return Response([]) stat_model = None stat = request.GET.get('stat', 'received') query_kwargs = {} if stat == 'received': if group == 'project': stat_model = tsdb.models.project_total_received else: stat_model = tsdb.models.organization_total_received elif stat == 'rejected': if group == 'project': stat_model = tsdb.models.project_total_rejected else: stat_model = tsdb.models.organization_total_rejected elif stat == 'blacklisted': if group == 'project': stat_model = tsdb.models.project_total_blacklisted else: stat_model = tsdb.models.organization_total_blacklisted elif stat == 'generated': if group == 'project': stat_model = tsdb.models.project try: query_kwargs['environment_id'] = self._get_environment_id_from_request( request, organization.id, ) except Environment.DoesNotExist: raise ResourceDoesNotExist if stat_model is None: raise ValueError('Invalid group: %s, stat: %s' % (group, stat)) data = tsdb.get_range(model=stat_model, keys=keys, **self._parse_args(request, **query_kwargs)) if group == 'organization': data = data[organization.id] return Response(data)
the-stack_106_14571
# Ignoring some linting rules in tests # pylint: disable=redefined-outer-name # pylint: disable=missing-docstring import pytest import numpy as np from bingo.chromosomes.multiple_values import SinglePointCrossover, \ SinglePointMutation, MultipleValueChromosomeGenerator from bingo.evolutionary_optimizers.fitness_predictor_island \ import FitnessPredictorIsland as FPI from bingo.evolutionary_optimizers \ import fitness_predictor_island as fpi_module from bingo.evolutionary_algorithms.mu_plus_lambda import MuPlusLambda from bingo.selection.tournament import Tournament from bingo.evaluation.evaluation import Evaluation from bingo.evaluation.fitness_function import FitnessFunction from bingo.stats.hall_of_fame import HallOfFame MAIN_POPULATION_SIZE = 40 PREDICTOR_POPULATION_SIZE = 4 TRAINER_POPULATION_SIZE = 4 SUBSET_TRAINING_DATA_SIZE = 2 FULL_TRAINING_DATA_SIZE = 20 class DistanceToAverage(FitnessFunction): def __call__(self, individual): self.eval_count += 1 avg_data = np.mean(self.training_data) return np.linalg.norm(individual.values - avg_data) @pytest.fixture def full_training_data(): return np.linspace(0.1, 1, FULL_TRAINING_DATA_SIZE) @pytest.fixture def ev_alg(full_training_data): crossover = SinglePointCrossover() mutation = SinglePointMutation(np.random.random) selection = Tournament(2) fitness = DistanceToAverage(full_training_data) evaluator = Evaluation(fitness) return MuPlusLambda(evaluator, selection, crossover, mutation, 0., 1.0, MAIN_POPULATION_SIZE) @pytest.fixture def generator(): return MultipleValueChromosomeGenerator(np.random.random, 10) @pytest.fixture def fitness_predictor_island(ev_alg, generator): island = FPI(ev_alg, generator, MAIN_POPULATION_SIZE, predictor_population_size=PREDICTOR_POPULATION_SIZE, trainer_population_size=TRAINER_POPULATION_SIZE, predictor_size_ratio=SUBSET_TRAINING_DATA_SIZE/FULL_TRAINING_DATA_SIZE, predictor_computation_ratio=0.4, trainer_update_frequency=4, predictor_update_frequency=5) island._predictor_island._ea.variation._mutation_probability = 1.0 return island @pytest.fixture def fp_island_and_hof(ev_alg, generator): hof = HallOfFame(5) fp_island = FPI(ev_alg, generator, MAIN_POPULATION_SIZE, predictor_population_size=PREDICTOR_POPULATION_SIZE, trainer_population_size=TRAINER_POPULATION_SIZE, predictor_size_ratio=SUBSET_TRAINING_DATA_SIZE/FULL_TRAINING_DATA_SIZE, predictor_computation_ratio=0.4, trainer_update_frequency=4, predictor_update_frequency=5, hall_of_fame=hof) fp_island._predictor_island._ea.variation._mutation_probability = 1.0 return fp_island, hof def test_best_fitness_is_true_fitness(fitness_predictor_island, full_training_data): true_fitness_function = DistanceToAverage(full_training_data) best_individual = fitness_predictor_island.get_best_individual() best_fitness = fitness_predictor_island.get_best_fitness() expected_best_fitness = true_fitness_function(best_individual) assert best_fitness == expected_best_fitness def test_predictor_compute_ratios(fitness_predictor_island): # init point_evals_predictor = FULL_TRAINING_DATA_SIZE*TRAINER_POPULATION_SIZE point_evals_predictor += 2 * point_evals_per_predictor_step() point_evals_main = 0 assert_expected_compute_ratio(fitness_predictor_island, point_evals_main, point_evals_predictor) # main step fitness_predictor_island.evolve(1, suppress_logging=True) point_evals_main += 2 * point_evals_per_main_step() assert_expected_compute_ratio(fitness_predictor_island, point_evals_main, point_evals_predictor) # main + predictor fitness_predictor_island.evolve(1, suppress_logging=True) point_evals_main += point_evals_per_main_step() point_evals_predictor += point_evals_per_predictor_step() assert_expected_compute_ratio(fitness_predictor_island, point_evals_main, point_evals_predictor) # main + 2 predictor fitness_predictor_island.evolve(1, suppress_logging=True) point_evals_main += point_evals_per_main_step() point_evals_predictor += 2 * point_evals_per_predictor_step() assert_expected_compute_ratio(fitness_predictor_island, point_evals_main, point_evals_predictor) # main + predictor + trainer update fitness_predictor_island.evolve(1, suppress_logging=True) point_evals_main += point_evals_per_main_step() point_evals_predictor += point_evals_per_predictor_step() point_evals_predictor += point_evals_per_trainer_update() assert_expected_compute_ratio(fitness_predictor_island, point_evals_main, point_evals_predictor) # main + predictor update fitness_predictor_island.evolve(1, suppress_logging=True) point_evals_main += point_evals_per_main_step() point_evals_main += point_evals_per_predictor_update() assert_expected_compute_ratio(fitness_predictor_island, point_evals_main, point_evals_predictor) def test_fitness_predictor_island_ages(fitness_predictor_island): predictor_age = 1 main_age = 0 assert fitness_predictor_island.generational_age == main_age assert fitness_predictor_island._predictor_island.generational_age \ == predictor_age fitness_predictor_island._execute_generational_step() main_age += 1 assert fitness_predictor_island.generational_age == main_age assert fitness_predictor_island._predictor_island.generational_age \ == predictor_age fitness_predictor_island._execute_generational_step() main_age += 1 predictor_age += 1 assert fitness_predictor_island.generational_age == main_age assert fitness_predictor_island._predictor_island.generational_age \ == predictor_age fitness_predictor_island._execute_generational_step() main_age += 1 predictor_age += 2 assert fitness_predictor_island.generational_age == main_age assert fitness_predictor_island._predictor_island.generational_age \ == predictor_age fitness_predictor_island._execute_generational_step() main_age += 1 predictor_age += 1 assert fitness_predictor_island.generational_age == main_age assert fitness_predictor_island._predictor_island.generational_age \ == predictor_age def test_nan_on_predicted_variance_of_trainer(mocker, fitness_predictor_island): mocker.patch('bingo.evolutionary_optimizers.' 'fitness_predictor_island.np.var') fpi_module.np.var.side_effect = OverflowError island = fitness_predictor_island trainer = island.population[0] variance = island._calculate_predictor_variance_of(trainer) assert np.isnan(variance) def test_hof_gets_filled(fp_island_and_hof): fp_island, hof = fp_island_and_hof fp_island.evolve(1) assert len(hof) == 5 def test_hof_has_true_fitness(fp_island_and_hof, full_training_data): fp_island, hof = fp_island_and_hof true_fitness_function = DistanceToAverage(full_training_data) fp_island.evolve(1) for indv in hof: true_fitness = true_fitness_function(indv) assert indv.fitness == pytest.approx(true_fitness) def test_temp_hof_is_cleared_with_predictor_update(fp_island_and_hof, mocker): fp_island, hof = fp_island_and_hof mocker.spy(fp_island._hof_w_predicted_fitness, 'clear') fp_island.evolve(9) assert fp_island._hof_w_predicted_fitness.clear.call_count == 1 def assert_expected_compute_ratio(fitness_predictor_island, point_evals_main, point_evals_predictor): current_ratio = \ fitness_predictor_island._get_predictor_computation_ratio() np.testing.assert_almost_equal(current_ratio, point_evals_predictor / (point_evals_predictor + point_evals_main)) def point_evals_per_predictor_step(): return SUBSET_TRAINING_DATA_SIZE * PREDICTOR_POPULATION_SIZE \ * TRAINER_POPULATION_SIZE def point_evals_per_main_step(): return SUBSET_TRAINING_DATA_SIZE * MAIN_POPULATION_SIZE def point_evals_per_trainer_update(): return SUBSET_TRAINING_DATA_SIZE * MAIN_POPULATION_SIZE * \ PREDICTOR_POPULATION_SIZE + FULL_TRAINING_DATA_SIZE + \ point_evals_per_predictor_step() def point_evals_per_predictor_update(): return point_evals_per_main_step()
the-stack_106_14572
from django.http import HttpResponse from django.test import RequestFactory from django.test.utils import override_settings from kitsune.sumo.tests import TestCase from kitsune.wiki.decorators import check_simple_wiki_locale rf = RequestFactory() @override_settings(SIMPLE_WIKI_LANGUAGES=["es"]) class SimpleWikiDecoratorTests(TestCase): def test_faq_locale_redirects(self): @check_simple_wiki_locale def temp(request): return HttpResponse("OK") req = rf.get("/es/products/firefox") req.LANGUAGE_CODE = "es" res = temp(req) self.assertEqual(302, res.status_code) self.assertEqual("/kb/frequently-asked-questions", res["location"]) def test_non_faq_locale_doesnt_redirect(self): @check_simple_wiki_locale def temp(request): return HttpResponse("OK") req = rf.get("/de/products/firefox") req.LANGUAGE_CODE = "de" res = temp(req) self.assertEqual(200, res.status_code)
the-stack_106_14573
from src.full_node.full_node import FullNode from typing import Callable, List, Optional, Dict from aiohttp import web from src.types.header import Header from src.types.full_block import FullBlock from src.util.ints import uint32, uint64, uint128 from src.types.sized_bytes import bytes32 from src.util.byte_types import hexstr_to_bytes from src.consensus.pot_iterations import calculate_min_iters_from_iterations from src.util.ws_message import create_payload class FullNodeRpcApi: def __init__(self, full_node: FullNode): self.service = full_node self.service_name = "chia_full_node" self.cached_blockchain_state: Optional[Dict] = None def get_routes(self) -> Dict[str, Callable]: return { "/get_blockchain_state": self.get_blockchain_state, "/get_block": self.get_block, "/get_header_by_height": self.get_header_by_height, "/get_header": self.get_header, "/get_unfinished_block_headers": self.get_unfinished_block_headers, "/get_network_space": self.get_network_space, "/get_unspent_coins": self.get_unspent_coins, "/get_heaviest_block_seen": self.get_heaviest_block_seen, } async def _state_changed(self, change: str) -> List[str]: payloads = [] if change == "block": data = await self.get_latest_block_headers({}) assert data is not None payloads.append( create_payload( "get_latest_block_headers", data, self.service_name, "wallet_ui" ) ) data = await self.get_blockchain_state({}) assert data is not None payloads.append( create_payload( "get_blockchain_state", data, self.service_name, "wallet_ui" ) ) return payloads return [] async def get_blockchain_state(self, request: Dict): """ Returns a summary of the node's view of the blockchain. """ tips: List[Header] = self.service.blockchain.get_current_tips() lca: Header = self.service.blockchain.lca_block sync_mode: bool = self.service.sync_store.get_sync_mode() difficulty: uint64 = self.service.blockchain.get_next_difficulty(lca) lca_block = await self.service.block_store.get_block(lca.header_hash) if lca_block is None: return None min_iters: uint64 = self.service.blockchain.get_next_min_iters(lca_block) ips: uint64 = min_iters // ( self.service.constants["BLOCK_TIME_TARGET"] / self.service.constants["MIN_ITERS_PROPORTION"] ) tip_hashes = [] for tip in tips: tip_hashes.append(tip.header_hash) if sync_mode and self.service.sync_peers_handler is not None: sync_tip_height = len(self.service.sync_store.get_potential_hashes()) sync_progress_height = self.service.sync_peers_handler.fully_validated_up_to else: sync_tip_height = 0 sync_progress_height = uint32(0) if lca.height > 1: newer_block_hex = lca.header_hash.hex() older_block_hex = self.service.blockchain.height_to_hash[ max(1, lca.height - 100) ].hex() space = await self.get_network_space( { "newer_block_header_hash": newer_block_hex, "older_block_header_hash": older_block_hex, } ) else: space = {"space": uint128(0)} assert space is not None response: Dict = { "success": True, "blockchain_state": { "tips": tips, "tip_hashes": tip_hashes, "lca": lca, "sync": { "sync_mode": sync_mode, "sync_tip_height": sync_tip_height, "sync_progress_height": sync_progress_height, }, "difficulty": difficulty, "ips": ips, "min_iters": min_iters, "space": space["space"], }, } self.cached_blockchain_state = dict(response["blockchain_state"]) return response async def get_block(self, request: Dict) -> Optional[Dict]: if "header_hash" not in request: return None header_hash = hexstr_to_bytes(request["header_hash"]) block: Optional[FullBlock] = await self.service.block_store.get_block( header_hash ) if block is None: return None return {"success": True, "block": block} async def get_header_by_height(self, request: Dict) -> Optional[Dict]: if "height" not in request: return None height = request["height"] header_height = uint32(int(height)) header_hash: Optional[bytes32] = self.service.blockchain.height_to_hash.get( header_height, None ) if header_hash is None: return None header: Header = self.service.blockchain.headers[header_hash] return {"success": True, "header": header} async def get_header(self, request: Dict): if "header_hash" not in request: return None header_hash_str = request["header_hash"] header_hash = hexstr_to_bytes(header_hash_str) header: Optional[Header] = self.service.blockchain.headers.get( header_hash, None ) return {"success": True, "header": header} async def get_unfinished_block_headers(self, request: Dict) -> Optional[Dict]: if "height" not in request: return None height = request["height"] response_headers: List[Header] = [] for block in ( await self.service.full_node_store.get_unfinished_blocks() ).values(): if block.height == height: response_headers.append(block.header) return {"success": True, "headers": response_headers} async def get_latest_block_headers(self, request: Dict) -> Optional[Dict]: headers: Dict[bytes32, Header] = {} tips = self.service.blockchain.tips lca_hash = self.service.blockchain.lca_block.header_hash heights = [] seen_lca = False for tip in tips: current = tip heights.append(current.height + 1) headers[current.header_hash] = current i = 0 while True: # Returns blocks up to the LCA, and at least 10 blocks from the tip if current.header_hash == lca_hash: seen_lca = True if seen_lca and i > 10: break if current.height == 0: break header: Optional[Header] = self.service.blockchain.headers.get( current.prev_header_hash, None ) assert header is not None headers[header.header_hash] = header current = header i += 1 all_unfinished = {} for h in heights: unfinished_dict = await self.get_unfinished_block_headers({"height": h}) assert unfinished_dict is not None for header in unfinished_dict["headers"]: assert header is not None all_unfinished[header.header_hash] = header sorted_headers = [ v for v in sorted( headers.values(), key=lambda item: item.height, reverse=True ) ] sorted_unfinished = [ v for v in sorted( all_unfinished.values(), key=lambda item: item.height, reverse=True ) ] finished_with_meta = [] finished_header_hashes = set() for header in sorted_headers: header_hash = header.header_hash header_dict = header.to_json_dict() header_dict["data"]["header_hash"] = header_hash header_dict["data"]["finished"] = True finished_with_meta.append(header_dict) finished_header_hashes.add(header_hash) if self.cached_blockchain_state is None: await self.get_blockchain_state({}) assert self.cached_blockchain_state is not None ips = self.cached_blockchain_state["ips"] unfinished_with_meta = [] for header in sorted_unfinished: header_hash = header.header_hash if header_hash in finished_header_hashes: continue header_dict = header.to_json_dict() header_dict["data"]["header_hash"] = header_hash header_dict["data"]["finished"] = False prev_header = self.service.blockchain.headers.get(header.prev_header_hash) if prev_header is not None: iter = header.data.total_iters - prev_header.data.total_iters time_add = int(iter / ips) header_dict["data"]["finish_time"] = header.data.timestamp + time_add unfinished_with_meta.append(header_dict) unfinished_with_meta.extend(finished_with_meta) return {"success": True, "latest_blocks": unfinished_with_meta} async def get_total_miniters(self, newer_block, older_block) -> Optional[uint64]: """ Calculates the sum of min_iters from all blocks starting from old and up to and including new_block, but not including old_block. """ older_block_parent = await self.service.block_store.get_block( older_block.prev_header_hash ) if older_block_parent is None: return None older_diff = older_block.weight - older_block_parent.weight curr_mi = calculate_min_iters_from_iterations( older_block.proof_of_space, older_diff, older_block.proof_of_time.number_of_iterations, self.service.constants["NUMBER_ZERO_BITS_CHALLENGE_SIG"], ) # We do not count the min iters in the old block, since it's not included in the range total_mi: uint64 = uint64(0) for curr_h in range(older_block.height + 1, newer_block.height + 1): if ( curr_h % self.service.constants["DIFFICULTY_EPOCH"] ) == self.service.constants["DIFFICULTY_DELAY"]: curr_b_header_hash = self.service.blockchain.height_to_hash.get( uint32(int(curr_h)) ) if curr_b_header_hash is None: return None curr_b_block = await self.service.block_store.get_block( curr_b_header_hash ) if curr_b_block is None or curr_b_block.proof_of_time is None: return None curr_parent = await self.service.block_store.get_block( curr_b_block.prev_header_hash ) if curr_parent is None: return None curr_diff = curr_b_block.weight - curr_parent.weight curr_mi = calculate_min_iters_from_iterations( curr_b_block.proof_of_space, uint64(curr_diff), curr_b_block.proof_of_time.number_of_iterations, self.service.constants["NUMBER_ZERO_BITS_CHALLENGE_SIG"], ) if curr_mi is None: raise web.HTTPBadRequest() total_mi = uint64(total_mi + curr_mi) return total_mi async def get_network_space(self, request: Dict) -> Optional[Dict]: """ Retrieves an estimate of total space validating the chain between two block header hashes. """ if ( "newer_block_header_hash" not in request or "older_block_header_hash" not in request ): return None newer_block_hex = request["newer_block_header_hash"] older_block_hex = request["older_block_header_hash"] if newer_block_hex == older_block_hex: return None newer_block_bytes = hexstr_to_bytes(newer_block_hex) older_block_bytes = hexstr_to_bytes(older_block_hex) newer_block = await self.service.block_store.get_block(newer_block_bytes) if newer_block is None: raise web.HTTPNotFound() older_block = await self.service.block_store.get_block(older_block_bytes) if older_block is None: raise web.HTTPNotFound() delta_weight = newer_block.header.data.weight - older_block.header.data.weight delta_iters = ( newer_block.header.data.total_iters - older_block.header.data.total_iters ) total_min_inters = await self.get_total_miniters(newer_block, older_block) if total_min_inters is None: raise web.HTTPNotFound() delta_iters -= total_min_inters weight_div_iters = delta_weight / delta_iters tips_adjustment_constant = 0.65 network_space_constant = 2 ** 32 # 2^32 eligible_plots_filter_mult = ( 2 ** self.service.constants["NUMBER_ZERO_BITS_CHALLENGE_SIG"] ) network_space_bytes_estimate = ( weight_div_iters * network_space_constant * tips_adjustment_constant * eligible_plots_filter_mult ) return {"success": True, "space": uint128(int(network_space_bytes_estimate))} async def get_unspent_coins(self, request: Dict) -> Optional[Dict]: """ Retrieves the unspent coins for a given puzzlehash. """ if "puzzle_hash" not in request: return None puzzle_hash = hexstr_to_bytes(request["puzzle_hash"]) header_hash = request.get("header_hash", None) if header_hash is not None: header_hash = bytes32(hexstr_to_bytes(header_hash)) header = self.service.blockchain.headers.get(header_hash) else: header = None coin_records = await self.service.blockchain.coin_store.get_coin_records_by_puzzle_hash( puzzle_hash, header ) return {"success": True, "coin_records": coin_records} async def get_heaviest_block_seen(self, request: Dict) -> Optional[Dict]: tips: List[Header] = self.service.blockchain.get_current_tips() tip_weights = [tip.weight for tip in tips] i = tip_weights.index(max(tip_weights)) max_tip: Header = tips[i] if self.service.sync_store.get_sync_mode(): potential_tips = self.service.sync_store.get_potential_tips_tuples() for _, pot_block in potential_tips: if pot_block.weight > max_tip.weight: max_tip = pot_block.header return {"success": True, "tip": max_tip}
the-stack_106_14574
import sys import os import pickle as pkl from subprocess import Popen, PIPE from multiprocessing import Pool, cpu_count import argparse from typing import List, Tuple, Dict, Iterator from collections import namedtuple from tqdm import tqdm from decomp.semantics.predpatt import PredPattCorpus from decomp.semantics.uds import UDSCorpus sys.path.insert(0, "/home/hltcoe/estengel/miso/") from miso.data.dataset_readers.decomp.decomp import DecompGraph from miso.metrics.s_metric.s_metric import S, TEST1 from miso.metrics.s_metric.repr import Triple from miso.metrics.s_metric import utils from miso.commands.s_score import compute_args, ComputeTup # Desired functionality: compute UD Parses from text in parallel, concatenatate them, create predpatt corpus, convert to arbor_graph global_cmd = "./execute_java.sh {input_path} {output_path}" input_dir = "/exp/estengel/miso/baselines/inputs" output_dir = "/exp/estengel/miso/baselines/output" def uds_worker(tup): os.chdir("/home/hltcoe/estengel/miso/baseline") lines, line_id = tup line_id = str(line_id) input_path = os.path.join(input_dir, line_id) #output_path = os.path.join(output_dir, f"{line_id}.conllu") output_path = output_dir with open(input_path, "w") as f1: for line in lines: f1.write(line.strip() + "\n") cmd_str = global_cmd.format(input_path = input_path, output_path = output_path) p = Popen(cmd_str.split(), stdout = PIPE, stderr = PIPE) out, errs = p.communicate() with open(os.path.join(output_dir, "worker_outputs", f"{line_id}.err"), "w") as f1: f1.write(errs.decode("utf8")) with open(os.path.join(output_dir, "worker_outputs", f"{line_id}.out"), "w") as f1: f1.write(out.decode("utf8")) def get_uds_lines(lines, n_cpus): chunksize = int(len(lines) / n_cpus) + 1 print('chunksize', chunksize) # chunk lines chunks = [] curr_chunk = [] for i, line in enumerate(lines): curr_chunk.append(line) if len(curr_chunk) == chunksize: chunks.append(curr_chunk) curr_chunk = [] # add last chunk if curr_chunk != []: chunks.append(curr_chunk) chunks = [(chunk, i) for i, chunk in enumerate(chunks)] print(f"Making {n_cpus} workers for {len(chunks)} chunks with {len(chunks[0][0])} lines per job") pool = Pool(n_cpus) res = pool.map(uds_worker, chunks) file_content = [] for i in range(len(chunks)): with open(os.path.join(output_dir, f"{i}.conllu")) as f1: conllu_lines = f1.read() file_content.append((i, conllu_lines)) # sort by file_content=sorted(file_content, key = lambda x: x[0]) #join sorted lines into one file all_lines = "".join([x[1] for x in file_content]) return all_lines def get_lines_and_graphs(split): # circular, but we'll read this from the Decomp corpus print(f"reading corpus from {split}") corpus = UDSCorpus(split = split) lines = [] graphs = {} for i, (id, graph) in enumerate(corpus.items()): # get true graph true_arbor_graph = get_arbor_graph(graph) # if no semantics in gold, skip everything if true_arbor_graph is None: continue graphs[i] = true_arbor_graph # get text for prediction lines.append(graph.sentence) return lines, graphs def get_uds_corpus(uds_text, split): corpus_path = os.path.join(output_dir, f"{split}.conllu") corpus = UDSCorpus.from_conll(corpus = uds_text, name = split) return corpus def get_arbor_graph(pp_graph): dg = DecompGraph(pp_graph) __, __, arbor_graph = dg.get_list_node() return arbor_graph def compute_smetric(true_graphs: List[DecompGraph], pred_graphs: List[DecompGraph], args: namedtuple, semantics_only: bool): """ compute s-score between lists of decomp graphs """ print(len(true_graphs), len(pred_graphs)) assert(len(true_graphs) == len(pred_graphs)) total_match_num, total_test_num, total_gold_num = 0, 0, 0 for g1, g2 in tqdm(zip(true_graphs, pred_graphs), total = len(true_graphs)): instances1, relations1, attributes1 = DecompGraph.get_triples(g1, semantics_only) instances1 = [Triple(x[1], x[0], x[2]) for x in instances1] attributes1 = [Triple(x[1], x[0], x[2]) for x in attributes1] relations1 = [Triple(x[1], x[0], x[2]) for x in relations1] try: instances2, relations2, attributes2 = DecompGraph.get_triples(g2, semantics_only) except AttributeError: # None predicted instances2, relations2, attributes2 = [], [], [] instances2 = [Triple(x[1], x[0], x[2]) for x in instances2] attributes2 = [Triple(x[1], x[0], x[2]) for x in attributes2] relations2 = [Triple(x[1], x[0], x[2]) for x in relations2] best_mapping, best_match_num, test_triple_num, gold_triple_num = S.get_best_match( instances1, attributes1, relations1, instances2, attributes2, relations2, args) total_match_num += best_match_num total_test_num += test_triple_num total_gold_num += gold_triple_num precision, recall, best_f_score = utils.compute_f( total_match_num, total_test_num, total_gold_num) return precision, recall, best_f_score if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--input-split", type = str, default = "dev") parser.add_argument("--precomputed", action = "store_true") parser.add_argument("--semantics-only", action = "store_true") parser.add_argument("--drop-syntax", action = "store_true") parser.add_argument("--nodes", default = 1, type = int) parser.add_argument("--output-path", type=str) args = parser.parse_args() if not args.precomputed: #n_cpus = cpu_count() n_cpus = 8 lines, true_graphs = get_lines_and_graphs(args.input_split) with open(os.path.join(output_dir, f"{args.input_split}.graphs"), "wb") as f1: pkl.dump(true_graphs, f1) uds = get_uds_lines(lines, n_cpus) # pickle true graphs with open(os.path.join(output_dir, f"{args.input_split}.conllu"), "w") as f1: f1.write(uds) else: with open(os.path.join(output_dir, f"{args.input_split}.conllu")) as f1: uds = f1.read() with open(os.path.join(output_dir, f"{args.input_split}.graphs"), "rb") as f1: true_graphs = pkl.load(f1) corpus = get_uds_corpus(uds, args.input_split) pred_graphs = {} for i, e in enumerate(corpus): pg = get_arbor_graph(corpus[e]) pred_graphs[i] = pg true_graphs = [x[1] for x in sorted(true_graphs.items(), key = lambda x: x[0])] pred_graphs = [x[1] for x in sorted(pred_graphs.items(), key = lambda x: x[0])] if args.output_path is not None: with open(args.output_path, "wb") as f1: zipped = [x for x in zip(true_graphs, pred_graphs)] pkl.dump(zipped, f1) c_args = ComputeTup(**compute_args) p, r, f1 = compute_smetric(true_graphs, pred_graphs, c_args, args.semantics_only) print(f"precision: {p}, recall: {r}, F1: {f1}")
the-stack_106_14575
#!/usr/bin/env python3 import sys import os import argparse import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap import math def main(): parser = argparse.ArgumentParser(description="Evaluate predicted frequencies.") parser.add_argument('predictions', type=str, nargs='+', help="prediction files") parser.add_argument('--voc', dest='voc', type=str, required=True, help="comma-separated list of strains of interest") parser.add_argument('-o,--outdir', dest='outdir', required=True) parser.add_argument('--suffix', dest='suffix', default="", help="add suffix to output figure names") parser.add_argument('-v,--verbose', dest='verbose', action='store_true') parser.add_argument('-m', dest='min_ab', default=0, type=float, help="minimal abundance (any samples with true abundance below this threshold are skipped; any predictions below this threshold are considered absent)") parser.add_argument('--no_plots', action='store_true') parser.add_argument('--output_format', dest='output_format', default='png', help="comma-separated list of desired output formats") parser.add_argument('--font_size', dest='font_size', default=12, type=int, help="set font size for the plots") parser.add_argument('--conts_in_meta', action='store_true', help="Enable if contaminants are present in metadata and kallisto index") args = parser.parse_args() false_pos_count = 0 false_neg_count = 0 true_pos_count = 0 true_neg_count = 0 err_list = [] variant_set = set() voc_list = args.voc.split(',') output_formats = args.output_format.split(',') # read predictions for filename in args.predictions: dir_name = filename.split('/')[-2] dataset = filename.split('/')[-4] voc_name = dir_name.split('_')[0] hcov = dataset.split('_')[-2] voc_freq = float(dir_name.split('_')[-1].lstrip('ab')) if voc_name not in voc_list: continue elif voc_freq < args.min_ab: continue variant_set.add(voc_name) with open(filename, 'r') as f: variant_found = False err_tups = [] positives = [] for line in f: if line[0] == "#": continue [variant, tpm, ab, corrected_ab] = line.rstrip('\n').split('\t') if variant not in voc_list: continue ab = float(ab) if (args.conts_in_meta): ab = ab * (100 / voc_freq) abs_err = abs(ab - 10) if ab < args.min_ab: continue positives.append(variant) if variant == voc_name: variant_found = True err_tups.append((voc_name, voc_freq, abs_err, ab, hcov)) else: false_pos_count += 1 if args.verbose: print("False positive: {} predicted at {}% in {}".format( variant, ab, filename)) if variant_found: true_pos_count += 1 if len(err_tups) == 1: err_list.append(err_tups[0]) else: voc_name = err_tups[0][0] voc_freq = err_tups[0][1] ab = sum([x[3] for x in err_tups]) abs_err = abs(ab - voc_freq) err_list.append((voc_name, voc_freq, abs_err, ab, hcov)) else: false_neg_count += 1 if args.verbose: print("VOC not found in {}".format(filename)) # add zero estimate to error list? # err_list.append((voc_name, voc_freq, voc_freq, 0)) for variant in voc_list: if variant not in positives and variant != voc_name: # true negative true_neg_count += 1 true_neg_count += len([x for x in voc_list if x not in positives and x != voc_name ]) _, f, e, _, h = zip(*err_list) unique_err_vals = list(set(e)) unique_freq_vals = list(set(f)) unique_hvoc_vals = list(set(h)) unique_hvoc_vals.remove("Other") unique_hvoc_vals.append("Other") # compute averages av_err_list = [] for hcov in unique_hvoc_vals: for freq in unique_freq_vals: f = list(filter(lambda x: x[4] == hcov and x[1] == freq, err_list)) _, _, err, ab, _ = zip(*f) av_err = sum(err) / len(f) av_ab = sum(ab) / len(f) av_err_list.append((hcov, freq, av_err, av_ab)) for hcov in unique_hvoc_vals: f = list(filter(lambda x: x[0] == hcov, av_err_list)) _, _, err, _ = zip(*f) pct_err = map(lambda x: x/10*100, err) av = sum(pct_err) / len(f) print("Average error for {}: {}%".format(hcov, av)) # compute stats average_rel_err = sum([x[2]/x[1]*100 for x in err_list]) / len(err_list) average_rel_err_tp = (sum([x[2]/x[1]*100 for x in err_list if x[3] > 0]) / len(err_list)) # print("average relative error: {}%".format(average_rel_err)) print("average relative error of true positives: {}%".format( average_rel_err_tp)) print("total # true positives: {}".format(true_pos_count)) print("total # true negatives: {}".format(true_neg_count)) print("total # false positives: {}".format(false_pos_count)) print("total # false negatives: {}".format(false_neg_count)) fpr = save_dev(false_pos_count, (false_pos_count + true_neg_count)) fnr = save_dev(false_neg_count, (false_neg_count + true_pos_count)) recall = save_dev(true_pos_count, (true_pos_count + false_neg_count)) precision = save_dev(true_pos_count, (true_pos_count + false_pos_count)) print("FPR = {}".format(fpr)) print("FNR = {}".format(fnr)) print("Precision = {}".format(precision)) print("Recall = {}\n".format(recall)) # sensitivity if args.no_plots: sys.exit() # sort error tuples by voc frequency av_err_list.sort(key = lambda x : x[1]) # err_list.sort(key = lambda x : x[1]) # variant_list = sorted(list(variant_set)) # fix color per voc # colormap = cm.get_cmap('Accent', len(variant_list)) # colors = {voc : colormap((i)/len(variant_list)) # for i, voc in enumerate(variant_list)} colors = {hcov : cm.tab10((i)) for i, hcov in enumerate(unique_hvoc_vals)} plt.rcParams.update({'font.size': args.font_size}) # increase font size plt.figure() for hcov in unique_hvoc_vals: freq_values = [x[1] for x in av_err_list if x[0] == hcov] # and x[2] < 10] err_values = [x[2]/10*100 for x in av_err_list if x[0] == hcov] # and x[2] < 10] plt.plot(freq_values, err_values, label=hcov, color=colors[hcov]) if (freq_values[0] > min(unique_freq_vals)): plt.plot(freq_values[0], err_values[0], marker="s", color=colors[hcov], markersize=6) plt.legend() plt.grid(which="both", alpha=0.2) plt.ylim(-5, 105) plt.xlabel("Total SARS-CoV-2 frequency (%)") plt.ylabel("Relative prediction error (%)") # plt.gcf().set_size_inches(4, 3) plt.tight_layout() for format in output_formats: plt.savefig("{}/freq_error_plot{}.{}".format(args.outdir, args.suffix, format)) # also plot on log scale plt.xscale('log') plt.tight_layout() for format in output_formats: plt.savefig("{}/freq_error_plot_logscale{}.{}".format(args.outdir, args.suffix, format)) # plot true vs estimated frequencies on a scatterplot plt.figure() for hcov in unique_hvoc_vals: freq_values = [x[1] for x in av_err_list if x[0] == hcov] est_values = [x[3] for x in av_err_list if x[0] == hcov] plt.scatter(freq_values, est_values, label=hcov, alpha=0.7, color=colors[hcov], s=20) plt.xscale('log') plt.yscale('log') plt.xlim(0.7, 150) plt.ylim(0.7, 150) # plt.plot([0, 100], [0, 100], 'k-', lw=0.75) plt.hlines(10, 0, 150, 'k', lw=0.75) plt.legend(prop={'size': args.font_size}) #ncol=len(variants_list), plt.grid(which="both", alpha=0.2) plt.xlabel("Total SARS-CoV-2 frequency (%)") plt.ylabel("Estimated VoC frequency (%)") # # Hide the right and top spines # ax = plt.gca() # ax.spines['top'].set_visible(False) # ax.spines['right'].set_visible(False) plt.tight_layout() for format in output_formats: plt.savefig("{}/freq_scatter_loglog{}.{}".format(args.outdir, args.suffix, format)) return def save_dev(a: int, b: int): if a == 0: return 0 else: return a / b if __name__ == "__main__": sys.exit(main())
the-stack_106_14576
import json import os import uuid from collections import defaultdict from random import randint from unittest.mock import patch from torchtext.data.datasets_utils import _ParseSQuADQAData from torchtext.datasets.squad1 import SQuAD1 from torchtext.datasets.squad2 import SQuAD2 from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode from ..common.parameterized_utils import nested_params from ..common.torchtext_test_case import TorchtextTestCase def _get_mock_json_data(): rand_string = get_random_unicode(10) mock_json_data = { "data": [ { "title": rand_string, "paragraphs": [ { "context": rand_string, "qas": [ { "answers": [ { "answer_start": randint(1, 1000), "text": rand_string, } ], "question": rand_string, "id": uuid.uuid1().hex, }, ], } ], } ] } return mock_json_data def _get_mock_dataset(root_dir, base_dir_name): """ root_dir: directory to the mocked dataset """ base_dir = os.path.join(root_dir, base_dir_name) os.makedirs(base_dir, exist_ok=True) if base_dir_name == SQuAD1.__name__: file_names = ("train-v1.1.json", "dev-v1.1.json") else: file_names = ("train-v2.0.json", "dev-v2.0.json") mocked_data = defaultdict(list) for file_name in file_names: txt_file = os.path.join(base_dir, file_name) with open(txt_file, "w", encoding="utf-8") as f: mock_json_data = _get_mock_json_data() f.write(json.dumps(mock_json_data)) split = "train" if "train" in file_name else "dev" dataset_line = next( iter(_ParseSQuADQAData([("file_handle", mock_json_data)])) ) mocked_data[split].append(dataset_line) return mocked_data class TestSQuADs(TempDirMixin, TorchtextTestCase): root_dir = None samples = [] @classmethod def setUpClass(cls): super().setUpClass() cls.root_dir = cls.get_base_temp_dir() cls.patcher = patch( "torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True ) cls.patcher.start() @classmethod def tearDownClass(cls): cls.patcher.stop() super().tearDownClass() @nested_params([SQuAD1, SQuAD2], ["train", "dev"]) def test_squads(self, squad_dataset, split): expected_samples = _get_mock_dataset(self.root_dir, squad_dataset.__name__)[ split ] dataset = squad_dataset(root=self.root_dir, split=split) samples = list(dataset) for sample, expected_sample in zip_equal(samples, expected_samples): self.assertEqual(sample, expected_sample) @nested_params([SQuAD1, SQuAD2], ["train", "dev"]) def test_squads_split_argument(self, squad_dataset, split): # call `_get_mock_dataset` to create mock dataset files _ = _get_mock_dataset(self.root_dir, squad_dataset.__name__) dataset1 = squad_dataset(root=self.root_dir, split=split) (dataset2,) = squad_dataset(root=self.root_dir, split=(split,)) for d1, d2 in zip_equal(dataset1, dataset2): self.assertEqual(d1, d2)
the-stack_106_14578
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import codecs import datetime import filecmp import hashlib import http.client import os import platform import re import shutil import subprocess import sys import textwrap import traceback import urllib.error import urllib.parse import urllib.parse import urllib.request import xml.etree.ElementTree as ET import zipfile from collections import namedtuple import scriptutil # This tool expects to find /lucene off the base URL. You # must have a working gpg, tar, unzip in your path. This has been # tested on Linux and on Cygwin under Windows 7. cygwin = platform.system().lower().startswith('cygwin') cygwinWindowsRoot = os.popen('cygpath -w /').read().strip().replace('\\','/') if cygwin else '' def unshortenURL(url): parsed = urllib.parse.urlparse(url) if parsed[0] in ('http', 'https'): h = http.client.HTTPConnection(parsed.netloc) h.request('HEAD', parsed.path) response = h.getresponse() if int(response.status/100) == 3 and response.getheader('Location'): return response.getheader('Location') return url # TODO # - make sure jars exist inside bin release # - make sure docs exist reHREF = re.compile('<a href="(.*?)">(.*?)</a>') # Set to False to avoid re-downloading the packages... FORCE_CLEAN = True def getHREFs(urlString): # Deref any redirects while True: url = urllib.parse.urlparse(urlString) if url.scheme == "http": h = http.client.HTTPConnection(url.netloc) elif url.scheme == "https": h = http.client.HTTPSConnection(url.netloc) else: raise RuntimeError("Unknown protocol: %s" % url.scheme) h.request('HEAD', url.path) r = h.getresponse() newLoc = r.getheader('location') if newLoc is not None: urlString = newLoc else: break links = [] try: html = load(urlString) except: print('\nFAILED to open url %s' % urlString) traceback.print_exc() raise for subUrl, text in reHREF.findall(html): fullURL = urllib.parse.urljoin(urlString, subUrl) links.append((text, fullURL)) return links def load(urlString): try: content = urllib.request.urlopen(urlString).read().decode('utf-8') except Exception as e: print('Retrying download of url %s after exception: %s' % (urlString, e)) content = urllib.request.urlopen(urlString).read().decode('utf-8') return content def noJavaPackageClasses(desc, file): with zipfile.ZipFile(file) as z2: for name2 in z2.namelist(): if name2.endswith('.class') and (name2.startswith('java/') or name2.startswith('javax/')): raise RuntimeError('%s contains sheisty class "%s"' % (desc, name2)) def decodeUTF8(bytes): return codecs.getdecoder('UTF-8')(bytes)[0] MANIFEST_FILE_NAME = 'META-INF/MANIFEST.MF' NOTICE_FILE_NAME = 'META-INF/NOTICE.txt' LICENSE_FILE_NAME = 'META-INF/LICENSE.txt' def checkJARMetaData(desc, jarFile, gitRevision, version): with zipfile.ZipFile(jarFile, 'r') as z: for name in (MANIFEST_FILE_NAME, NOTICE_FILE_NAME, LICENSE_FILE_NAME): try: # The Python docs state a KeyError is raised ... so this None # check is just defensive: if z.getinfo(name) is None: raise RuntimeError('%s is missing %s' % (desc, name)) except KeyError: raise RuntimeError('%s is missing %s' % (desc, name)) s = decodeUTF8(z.read(MANIFEST_FILE_NAME)) for verify in ( 'Specification-Vendor: The Apache Software Foundation', 'Implementation-Vendor: The Apache Software Foundation', 'Specification-Title: Lucene Search Engine:', 'Implementation-Title: org.apache.lucene', 'X-Compile-Source-JDK: 11', 'X-Compile-Target-JDK: 11', 'Specification-Version: %s' % version, 'X-Build-JDK: 11.', 'Extension-Name: org.apache.lucene'): if type(verify) is not tuple: verify = (verify,) for x in verify: if s.find(x) != -1: break else: if len(verify) == 1: raise RuntimeError('%s is missing "%s" inside its META-INF/MANIFEST.MF' % (desc, verify[0])) else: raise RuntimeError('%s is missing one of "%s" inside its META-INF/MANIFEST.MF' % (desc, verify)) if gitRevision != 'skip': # Make sure this matches the version and git revision we think we are releasing: match = re.search("Implementation-Version: (.+\r\n .+)", s, re.MULTILINE) if match: implLine = match.group(1).replace("\r\n ", "") verifyRevision = '%s %s' % (version, gitRevision) if implLine.find(verifyRevision) == -1: raise RuntimeError('%s is missing "%s" inside its META-INF/MANIFEST.MF (wrong git revision?)' % \ (desc, verifyRevision)) else: raise RuntimeError('%s is missing Implementation-Version inside its META-INF/MANIFEST.MF' % desc) notice = decodeUTF8(z.read(NOTICE_FILE_NAME)) lucene_license = decodeUTF8(z.read(LICENSE_FILE_NAME)) if LUCENE_LICENSE is None: raise RuntimeError('BUG in smokeTestRelease!') if LUCENE_NOTICE is None: raise RuntimeError('BUG in smokeTestRelease!') if notice != LUCENE_NOTICE: raise RuntimeError('%s: %s contents doesn\'t match main NOTICE.txt' % \ (desc, NOTICE_FILE_NAME)) if lucene_license != LUCENE_LICENSE: raise RuntimeError('%s: %s contents doesn\'t match main LICENSE.txt' % \ (desc, LICENSE_FILE_NAME)) def normSlashes(path): return path.replace(os.sep, '/') def checkAllJARs(topDir, gitRevision, version): print(' verify JAR metadata/identity/no javax.* or java.* classes...') for root, dirs, files in os.walk(topDir): normRoot = normSlashes(root) for file in files: if file.lower().endswith('.jar'): if normRoot.endswith('/replicator/lib') and file.startswith('javax.servlet'): continue fullPath = '%s/%s' % (root, file) noJavaPackageClasses('JAR file "%s"' % fullPath, fullPath) if file.lower().find('lucene') != -1: checkJARMetaData('JAR file "%s"' % fullPath, fullPath, gitRevision, version) def checkSigs(urlString, version, tmpDir, isSigned, keysFile): print(' test basics...') ents = getDirEntries(urlString) artifact = None changesURL = None mavenURL = None artifactURL = None expectedSigs = [] if isSigned: expectedSigs.append('asc') expectedSigs.extend(['sha512']) sigs = [] artifacts = [] for text, subURL in ents: if text == 'KEYS': raise RuntimeError('lucene: release dir should not contain a KEYS file - only toplevel /dist/lucene/KEYS is used') elif text == 'maven/': mavenURL = subURL elif text.startswith('changes'): if text not in ('changes/', 'changes-%s/' % version): raise RuntimeError('lucene: found %s vs expected changes-%s/' % (text, version)) changesURL = subURL elif artifact is None: artifact = text artifactURL = subURL expected = 'lucene-%s' % version if not artifact.startswith(expected): raise RuntimeError('lucene: unknown artifact %s: expected prefix %s' % (text, expected)) sigs = [] elif text.startswith(artifact + '.'): sigs.append(text[len(artifact)+1:]) else: if sigs != expectedSigs: raise RuntimeError('lucene: artifact %s has wrong sigs: expected %s but got %s' % (artifact, expectedSigs, sigs)) artifacts.append((artifact, artifactURL)) artifact = text artifactURL = subURL sigs = [] if sigs != []: artifacts.append((artifact, artifactURL)) if sigs != expectedSigs: raise RuntimeError('lucene: artifact %s has wrong sigs: expected %s but got %s' % (artifact, expectedSigs, sigs)) expected = ['lucene-%s-src.tgz' % version, 'lucene-%s.tgz' % version] actual = [x[0] for x in artifacts] if expected != actual: raise RuntimeError('lucene: wrong artifacts: expected %s but got %s' % (expected, actual)) # Set up clean gpg world; import keys file: gpgHomeDir = '%s/lucene.gpg' % tmpDir if os.path.exists(gpgHomeDir): shutil.rmtree(gpgHomeDir) os.makedirs(gpgHomeDir, 0o700) run('gpg --homedir %s --import %s' % (gpgHomeDir, keysFile), '%s/lucene.gpg.import.log' % tmpDir) if mavenURL is None: raise RuntimeError('lucene is missing maven') if changesURL is None: raise RuntimeError('lucene is missing changes-%s' % version) testChanges(version, changesURL) for artifact, urlString in artifacts: print(' download %s...' % artifact) scriptutil.download(artifact, urlString, tmpDir, force_clean=FORCE_CLEAN) verifyDigests(artifact, urlString, tmpDir) if isSigned: print(' verify sig') # Test sig (this is done with a clean brand-new GPG world) scriptutil.download(artifact + '.asc', urlString + '.asc', tmpDir, force_clean=FORCE_CLEAN) sigFile = '%s/%s.asc' % (tmpDir, artifact) artifactFile = '%s/%s' % (tmpDir, artifact) logFile = '%s/lucene.%s.gpg.verify.log' % (tmpDir, artifact) run('gpg --homedir %s --display-charset utf-8 --verify %s %s' % (gpgHomeDir, sigFile, artifactFile), logFile) # Forward any GPG warnings, except the expected one (since it's a clean world) with open(logFile) as f: print("File: %s" % logFile) for line in f.readlines(): if line.lower().find('warning') != -1 \ and line.find('WARNING: This key is not certified with a trusted signature') == -1: print(' GPG: %s' % line.strip()) # Test trust (this is done with the real users config) run('gpg --import %s' % (keysFile), '%s/lucene.gpg.trust.import.log' % tmpDir) print(' verify trust') logFile = '%s/lucene.%s.gpg.trust.log' % (tmpDir, artifact) run('gpg --display-charset utf-8 --verify %s %s' % (sigFile, artifactFile), logFile) # Forward any GPG warnings: with open(logFile) as f: for line in f.readlines(): if line.lower().find('warning') != -1: print(' GPG: %s' % line.strip()) def testChanges(version, changesURLString): print(' check changes HTML...') changesURL = None for text, subURL in getDirEntries(changesURLString): if text == 'Changes.html': changesURL = subURL if changesURL is None: raise RuntimeError('did not see Changes.html link from %s' % changesURLString) s = load(changesURL) checkChangesContent(s, version, changesURL, True) def testChangesText(dir, version): "Checks all CHANGES.txt under this dir." for root, dirs, files in os.walk(dir): # NOTE: O(N) but N should be smallish: if 'CHANGES.txt' in files: fullPath = '%s/CHANGES.txt' % root #print 'CHECK %s' % fullPath checkChangesContent(open(fullPath, encoding='UTF-8').read(), version, fullPath, False) reChangesSectionHREF = re.compile('<a id="(.*?)".*?>(.*?)</a>', re.IGNORECASE) reUnderbarNotDashHTML = re.compile(r'<li>(\s*(LUCENE)_\d\d\d\d+)') reUnderbarNotDashTXT = re.compile(r'\s+((LUCENE)_\d\d\d\d+)', re.MULTILINE) def checkChangesContent(s, version, name, isHTML): currentVersionTuple = versionToTuple(version, name) if isHTML and s.find('Release %s' % version) == -1: raise RuntimeError('did not see "Release %s" in %s' % (version, name)) if isHTML: r = reUnderbarNotDashHTML else: r = reUnderbarNotDashTXT m = r.search(s) if m is not None: raise RuntimeError('incorrect issue (_ instead of -) in %s: %s' % (name, m.group(1))) if s.lower().find('not yet released') != -1: raise RuntimeError('saw "not yet released" in %s' % name) if not isHTML: sub = 'Lucene %s' % version if s.find(sub) == -1: # benchmark never seems to include release info: if name.find('/benchmark/') == -1: raise RuntimeError('did not see "%s" in %s' % (sub, name)) if isHTML: # Make sure that a section only appears once under each release, # and that each release is not greater than the current version seenIDs = set() seenText = set() release = None for id, text in reChangesSectionHREF.findall(s): if text.lower().startswith('release '): release = text[8:].strip() seenText.clear() releaseTuple = versionToTuple(release, name) if releaseTuple > currentVersionTuple: raise RuntimeError('Future release %s is greater than %s in %s' % (release, version, name)) if id in seenIDs: raise RuntimeError('%s has duplicate section "%s" under release "%s"' % (name, text, release)) seenIDs.add(id) if text in seenText: raise RuntimeError('%s has duplicate section "%s" under release "%s"' % (name, text, release)) seenText.add(text) reVersion = re.compile(r'(\d+)\.(\d+)(?:\.(\d+))?\s*(-alpha|-beta|final|RC\d+)?\s*(?:\[.*\])?', re.IGNORECASE) def versionToTuple(version, name): versionMatch = reVersion.match(version) if versionMatch is None: raise RuntimeError('Version %s in %s cannot be parsed' % (version, name)) versionTuple = versionMatch.groups() while versionTuple[-1] is None or versionTuple[-1] == '': versionTuple = versionTuple[:-1] if versionTuple[-1].lower() == '-alpha': versionTuple = versionTuple[:-1] + ('0',) elif versionTuple[-1].lower() == '-beta': versionTuple = versionTuple[:-1] + ('1',) elif versionTuple[-1].lower() == 'final': versionTuple = versionTuple[:-2] + ('100',) elif versionTuple[-1].lower()[:2] == 'rc': versionTuple = versionTuple[:-2] + (versionTuple[-1][2:],) return tuple(int(x) if x is not None and x.isnumeric() else x for x in versionTuple) reUnixPath = re.compile(r'\b[a-zA-Z_]+=(?:"(?:\\"|[^"])*"' + '|(?:\\\\.|[^"\'\\s])*' + r"|'(?:\\'|[^'])*')" \ + r'|(/(?:\\.|[^"\'\s])*)' \ + r'|("/(?:\\.|[^"])*")' \ + r"|('/(?:\\.|[^'])*')") def unix2win(matchobj): if matchobj.group(1) is not None: return cygwinWindowsRoot + matchobj.group() if matchobj.group(2) is not None: return '"%s%s' % (cygwinWindowsRoot, matchobj.group().lstrip('"')) if matchobj.group(3) is not None: return "'%s%s" % (cygwinWindowsRoot, matchobj.group().lstrip("'")) return matchobj.group() def cygwinifyPaths(command): # The problem: Native Windows applications running under Cygwin can't # handle Cygwin's Unix-style paths. However, environment variable # values are automatically converted, so only paths outside of # environment variable values should be converted to Windows paths. # Assumption: all paths will be absolute. if '; gradlew ' in command: command = reUnixPath.sub(unix2win, command) return command def printFileContents(fileName): # Assume log file was written in system's default encoding, but # even if we are wrong, we replace errors ... the ASCII chars # (which is what we mostly care about eg for the test seed) should # still survive: txt = codecs.open(fileName, 'r', encoding=sys.getdefaultencoding(), errors='replace').read() # Encode to our output encoding (likely also system's default # encoding): bytes = txt.encode(sys.stdout.encoding, errors='replace') # Decode back to string and print... we should hit no exception here # since all errors have been replaced: print(codecs.getdecoder(sys.stdout.encoding)(bytes)[0]) print() def run(command, logFile): if cygwin: command = cygwinifyPaths(command) if os.system('%s > %s 2>&1' % (command, logFile)): logPath = os.path.abspath(logFile) print('\ncommand "%s" failed:' % command) printFileContents(logFile) raise RuntimeError('command "%s" failed; see log file %s' % (command, logPath)) def verifyDigests(artifact, urlString, tmpDir): print(' verify sha512 digest') sha512Expected, t = load(urlString + '.sha512').strip().split() if t != '*'+artifact: raise RuntimeError('SHA512 %s.sha512 lists artifact %s but expected *%s' % (urlString, t, artifact)) s512 = hashlib.sha512() f = open('%s/%s' % (tmpDir, artifact), 'rb') while True: x = f.read(65536) if len(x) == 0: break s512.update(x) f.close() sha512Actual = s512.hexdigest() if sha512Actual != sha512Expected: raise RuntimeError('SHA512 digest mismatch for %s: expected %s but got %s' % (artifact, sha512Expected, sha512Actual)) def getDirEntries(urlString): if urlString.startswith('file:/') and not urlString.startswith('file://'): # stupid bogus ant URI urlString = "file:///" + urlString[6:] if urlString.startswith('file://'): path = urlString[7:] if path.endswith('/'): path = path[:-1] if cygwin: # Convert Windows path to Cygwin path path = re.sub(r'^/([A-Za-z]):/', r'/cygdrive/\1/', path) l = [] for ent in os.listdir(path): entPath = '%s/%s' % (path, ent) if os.path.isdir(entPath): entPath += '/' ent += '/' l.append((ent, 'file://%s' % entPath)) l.sort() return l else: links = getHREFs(urlString) for i, (text, subURL) in enumerate(links): if text == 'Parent Directory' or text == '..': return links[(i+1):] def unpackAndVerify(java, tmpDir, artifact, gitRevision, version, testArgs): destDir = '%s/unpack' % tmpDir if os.path.exists(destDir): shutil.rmtree(destDir) os.makedirs(destDir) os.chdir(destDir) print(' unpack %s...' % artifact) unpackLogFile = '%s/lucene-unpack-%s.log' % (tmpDir, artifact) if artifact.endswith('.tar.gz') or artifact.endswith('.tgz'): run('tar xzf %s/%s' % (tmpDir, artifact), unpackLogFile) elif artifact.endswith('.zip'): run('unzip %s/%s' % (tmpDir, artifact), unpackLogFile) # make sure it unpacks to proper subdir l = os.listdir(destDir) expected = 'lucene-%s' % version if l != [expected]: raise RuntimeError('unpack produced entries %s; expected only %s' % (l, expected)) unpackPath = '%s/%s' % (destDir, expected) verifyUnpacked(java, artifact, unpackPath, gitRevision, version, testArgs) return unpackPath LUCENE_NOTICE = None LUCENE_LICENSE = None def is_in_list(in_folder, files, indent=4): for fileName in files: print("%sChecking %s" % (" "*indent, fileName)) found = False for f in [fileName, fileName + '.txt', fileName + '.md']: if f in in_folder: in_folder.remove(f) found = True if not found: raise RuntimeError('file "%s" is missing' % fileName) def verifyUnpacked(java, artifact, unpackPath, gitRevision, version, testArgs): global LUCENE_NOTICE global LUCENE_LICENSE os.chdir(unpackPath) isSrc = artifact.find('-src') != -1 # Check text files in release print(" %s" % artifact) in_root_folder = list(filter(lambda x: x[0] != '.', os.listdir(unpackPath))) in_lucene_folder = [] if isSrc: in_lucene_folder.extend(os.listdir(os.path.join(unpackPath, 'lucene'))) is_in_list(in_root_folder, ['LICENSE', 'NOTICE', 'README']) is_in_list(in_lucene_folder, ['JRE_VERSION_MIGRATION', 'CHANGES', 'MIGRATE', 'SYSTEM_REQUIREMENTS']) else: is_in_list(in_root_folder, ['LICENSE', 'NOTICE', 'README', 'JRE_VERSION_MIGRATION', 'CHANGES', 'MIGRATE', 'SYSTEM_REQUIREMENTS']) if LUCENE_NOTICE is None: LUCENE_NOTICE = open('%s/NOTICE.txt' % unpackPath, encoding='UTF-8').read() if LUCENE_LICENSE is None: LUCENE_LICENSE = open('%s/LICENSE.txt' % unpackPath, encoding='UTF-8').read() # if not isSrc: # # TODO: we should add verifyModule/verifySubmodule (e.g. analysis) here and recurse through # expectedJARs = () # # for fileName in expectedJARs: # fileName += '.jar' # if fileName not in l: # raise RuntimeError('lucene: file "%s" is missing from artifact %s' % (fileName, artifact)) # in_root_folder.remove(fileName) expected_folders = ['analysis', 'backward-codecs', 'benchmark', 'classification', 'codecs', 'core', 'demo', 'expressions', 'facet', 'grouping', 'highlighter', 'join', 'luke', 'memory', 'misc', 'monitor', 'queries', 'queryparser', 'replicator', 'sandbox', 'spatial-extras', 'spatial3d', 'suggest', 'test-framework', 'licenses'] if isSrc: expected_src_root_files = ['build.gradle', 'buildSrc', 'dev-docs', 'dev-tools', 'gradle', 'gradlew', 'gradlew.bat', 'help', 'lucene', 'settings.gradle', 'versions.lock', 'versions.props'] expected_src_lucene_files = ['build.gradle', 'documentation', 'distribution', 'dev-docs'] is_in_list(in_root_folder, expected_src_root_files) is_in_list(in_lucene_folder, expected_folders) is_in_list(in_lucene_folder, expected_src_lucene_files) if len(in_lucene_folder) > 0: raise RuntimeError('lucene: unexpected files/dirs in artifact %s lucene/ folder: %s' % (artifact, in_lucene_folder)) else: is_in_list(in_root_folder, ['bin', 'docs', 'licenses', 'modules', 'modules-test-framework', 'modules-thirdparty']) if len(in_root_folder) > 0: raise RuntimeError('lucene: unexpected files/dirs in artifact %s: %s' % (artifact, in_root_folder)) if isSrc: print(' make sure no JARs/WARs in src dist...') lines = os.popen('find . -name \\*.jar').readlines() if len(lines) != 0: print(' FAILED:') for line in lines: print(' %s' % line.strip()) raise RuntimeError('source release has JARs...') lines = os.popen('find . -name \\*.war').readlines() if len(lines) != 0: print(' FAILED:') for line in lines: print(' %s' % line.strip()) raise RuntimeError('source release has WARs...') validateCmd = './gradlew --no-daemon check -p lucene/documentation' print(' run "%s"' % validateCmd) java.run_java11(validateCmd, '%s/validate.log' % unpackPath) print(" run tests w/ Java 11 and testArgs='%s'..." % testArgs) java.run_java11('./gradlew --no-daemon test %s' % testArgs, '%s/test.log' % unpackPath) print(" compile jars w/ Java 11") java.run_java11('./gradlew --no-daemon jar -Dversion.release=%s' % version, '%s/compile.log' % unpackPath) testDemo(java.run_java11, isSrc, version, '11') if java.run_java17: print(" run tests w/ Java 17 and testArgs='%s'..." % testArgs) java.run_java17('./gradlew --no-daemon test %s' % testArgs, '%s/test.log' % unpackPath) print(" compile jars w/ Java 17") java.run_java17('./gradlew --no-daemon jar -Dversion.release=%s' % version, '%s/compile.log' % unpackPath) testDemo(java.run_java17, isSrc, version, '17') print(' confirm all releases have coverage in TestBackwardsCompatibility') confirmAllReleasesAreTestedForBackCompat(version, unpackPath) else: checkAllJARs(os.getcwd(), gitRevision, version) testDemo(java.run_java11, isSrc, version, '11') if java.run_java17: testDemo(java.run_java17, isSrc, version, '17') testChangesText('.', version) def testDemo(run_java, isSrc, version, jdk): if os.path.exists('index'): shutil.rmtree('index') # nuke any index from any previous iteration print(' test demo with %s...' % jdk) sep = ';' if cygwin else ':' if isSrc: # For source release, use the classpath for each module. classPath = ['lucene/core/build/libs/lucene-core-%s.jar' % version, 'lucene/demo/build/libs/lucene-demo-%s.jar' % version, 'lucene/analysis/common/build/libs/lucene-analyzers-common-%s.jar' % version, 'lucene/queryparser/build/libs/lucene-queryparser-%s.jar' % version] cp = sep.join(classPath) docsDir = 'lucene/core/src' checkIndexCmd = 'java -ea -cp "%s" org.apache.lucene.index.CheckIndex index' % cp indexFilesCmd = 'java -cp "%s" -Dsmoketester=true org.apache.lucene.demo.IndexFiles -index index -docs %s' % (cp, docsDir) searchFilesCmd = 'java -cp "%s" org.apache.lucene.demo.SearchFiles -index index -query lucene' % cp else: # For binary release, set up classpath as modules. cp = "--module-path modules" docsDir = 'docs' checkIndexCmd = 'java -ea %s --module lucene.core/org.apache.lucene.index.CheckIndex index' % cp indexFilesCmd = 'java -Dsmoketester=true %s --module lucene.demo/org.apache.lucene.demo.IndexFiles -index index -docs %s' % (cp, docsDir) searchFilesCmd = 'java %s --module lucene.demo/org.apache.lucene.demo.SearchFiles -index index -query lucene' % cp run_java(indexFilesCmd, 'index.log') run_java(searchFilesCmd, 'search.log') reMatchingDocs = re.compile('(\d+) total matching documents') m = reMatchingDocs.search(open('search.log', encoding='UTF-8').read()) if m is None: raise RuntimeError('lucene demo\'s SearchFiles found no results') else: numHits = int(m.group(1)) if numHits < 100: raise RuntimeError('lucene demo\'s SearchFiles found too few results: %s' % numHits) print(' got %d hits for query "lucene"' % numHits) print(' checkindex with %s...' % jdk) run_java(checkIndexCmd, 'checkindex.log') s = open('checkindex.log').read() m = re.search(r'^\s+version=(.*?)$', s, re.MULTILINE) if m is None: raise RuntimeError('unable to locate version=NNN output from CheckIndex; see checkindex.log') actualVersion = m.group(1) if removeTrailingZeros(actualVersion) != removeTrailingZeros(version): raise RuntimeError('wrong version from CheckIndex: got "%s" but expected "%s"' % (actualVersion, version)) def removeTrailingZeros(version): return re.sub(r'(\.0)*$', '', version) def checkMaven(baseURL, tmpDir, gitRevision, version, isSigned, keysFile): print(' download artifacts') artifacts = [] artifactsURL = '%s/lucene/maven/org/apache/lucene/' % baseURL targetDir = '%s/maven/org/apache/lucene' % tmpDir if not os.path.exists(targetDir): os.makedirs(targetDir) crawl(artifacts, artifactsURL, targetDir) print() verifyPOMperBinaryArtifact(artifacts, version) verifyMavenDigests(artifacts) checkJavadocAndSourceArtifacts(artifacts, version) verifyDeployedPOMsCoordinates(artifacts, version) if isSigned: verifyMavenSigs(tmpDir, artifacts, keysFile) distFiles = getBinaryDistFiles(tmpDir, version, baseURL) checkIdenticalMavenArtifacts(distFiles, artifacts, version) checkAllJARs('%s/maven/org/apache/lucene' % tmpDir, gitRevision, version) def getBinaryDistFiles(tmpDir, version, baseURL): distribution = 'lucene-%s.tgz' % version if not os.path.exists('%s/%s' % (tmpDir, distribution)): distURL = '%s/lucene/%s' % (baseURL, distribution) print(' download %s...' % distribution, end=' ') scriptutil.download(distribution, distURL, tmpDir, force_clean=FORCE_CLEAN) destDir = '%s/unpack-lucene-getBinaryDistFiles' % tmpDir if os.path.exists(destDir): shutil.rmtree(destDir) os.makedirs(destDir) os.chdir(destDir) print(' unpack %s...' % distribution) unpackLogFile = '%s/unpack-%s-getBinaryDistFiles.log' % (tmpDir, distribution) run('tar xzf %s/%s' % (tmpDir, distribution), unpackLogFile) distributionFiles = [] for root, dirs, files in os.walk(destDir): distributionFiles.extend([os.path.join(root, file) for file in files]) return distributionFiles def checkJavadocAndSourceArtifacts(artifacts, version): print(' check for javadoc and sources artifacts...') for artifact in artifacts: if artifact.endswith(version + '.jar'): javadocJar = artifact[:-4] + '-javadoc.jar' if javadocJar not in artifacts: raise RuntimeError('missing: %s' % javadocJar) sourcesJar = artifact[:-4] + '-sources.jar' if sourcesJar not in artifacts: raise RuntimeError('missing: %s' % sourcesJar) def getZipFileEntries(fileName): entries = [] with zipfile.ZipFile(fileName) as zf: for zi in zf.infolist(): entries.append(zi.filename) # Sort by name: entries.sort() return entries def checkIdenticalMavenArtifacts(distFiles, artifacts, version): print(' verify that Maven artifacts are same as in the binary distribution...') reJarWar = re.compile(r'%s\.[wj]ar$' % version) # exclude *-javadoc.jar and *-sources.jar distFilenames = dict() for file in distFiles: baseName = os.path.basename(file) distFilenames[baseName] = file for artifact in artifacts: if reJarWar.search(artifact): artifactFilename = os.path.basename(artifact) if artifactFilename not in distFilenames: raise RuntimeError('Maven artifact %s is not present in lucene binary distribution' % artifact) else: identical = filecmp.cmp(artifact, distFilenames[artifactFilename], shallow=False) if not identical: raise RuntimeError('Maven artifact %s is not identical to %s in lucene binary distribution' % (artifact, distFilenames[artifactFilename])) def verifyMavenDigests(artifacts): print(" verify Maven artifacts' md5/sha1 digests...") reJarWarPom = re.compile(r'\.(?:[wj]ar|pom)$') for artifactFile in [a for a in artifacts if reJarWarPom.search(a)]: if artifactFile + '.md5' not in artifacts: raise RuntimeError('missing: MD5 digest for %s' % artifactFile) if artifactFile + '.sha1' not in artifacts: raise RuntimeError('missing: SHA1 digest for %s' % artifactFile) with open(artifactFile + '.md5', encoding='UTF-8') as md5File: md5Expected = md5File.read().strip() with open(artifactFile + '.sha1', encoding='UTF-8') as sha1File: sha1Expected = sha1File.read().strip() md5 = hashlib.md5() sha1 = hashlib.sha1() inputFile = open(artifactFile, 'rb') while True: bytes = inputFile.read(65536) if len(bytes) == 0: break md5.update(bytes) sha1.update(bytes) inputFile.close() md5Actual = md5.hexdigest() sha1Actual = sha1.hexdigest() if md5Actual != md5Expected: raise RuntimeError('MD5 digest mismatch for %s: expected %s but got %s' % (artifactFile, md5Expected, md5Actual)) if sha1Actual != sha1Expected: raise RuntimeError('SHA1 digest mismatch for %s: expected %s but got %s' % (artifactFile, sha1Expected, sha1Actual)) def getPOMcoordinate(treeRoot): namespace = '{http://maven.apache.org/POM/4.0.0}' groupId = treeRoot.find('%sgroupId' % namespace) if groupId is None: groupId = treeRoot.find('{0}parent/{0}groupId'.format(namespace)) groupId = groupId.text.strip() artifactId = treeRoot.find('%sartifactId' % namespace).text.strip() version = treeRoot.find('%sversion' % namespace) if version is None: version = treeRoot.find('{0}parent/{0}version'.format(namespace)) version = version.text.strip() packaging = treeRoot.find('%spackaging' % namespace) packaging = 'jar' if packaging is None else packaging.text.strip() return groupId, artifactId, packaging, version def verifyMavenSigs(tmpDir, artifacts, keysFile): print(' verify maven artifact sigs', end=' ') # Set up clean gpg world; import keys file: gpgHomeDir = '%s/lucene.gpg' % tmpDir if os.path.exists(gpgHomeDir): shutil.rmtree(gpgHomeDir) os.makedirs(gpgHomeDir, 0o700) run('gpg --homedir %s --import %s' % (gpgHomeDir, keysFile), '%s/lucene.gpg.import.log' % tmpDir) reArtifacts = re.compile(r'\.(?:pom|[jw]ar)$') for artifactFile in [a for a in artifacts if reArtifacts.search(a)]: artifact = os.path.basename(artifactFile) sigFile = '%s.asc' % artifactFile # Test sig (this is done with a clean brand-new GPG world) logFile = '%s/lucene.%s.gpg.verify.log' % (tmpDir, artifact) run('gpg --display-charset utf-8 --homedir %s --verify %s %s' % (gpgHomeDir, sigFile, artifactFile), logFile) # Forward any GPG warnings, except the expected one (since it's a clean world) print_warnings_in_file(logFile) # Test trust (this is done with the real users config) run('gpg --import %s' % keysFile, '%s/lucene.gpg.trust.import.log' % tmpDir) logFile = '%s/lucene.%s.gpg.trust.log' % (tmpDir, artifact) run('gpg --display-charset utf-8 --verify %s %s' % (sigFile, artifactFile), logFile) # Forward any GPG warnings: print_warnings_in_file(logFile) sys.stdout.write('.') print() def print_warnings_in_file(file): with open(file) as f: for line in f.readlines(): if line.lower().find('warning') != -1 \ and line.find('WARNING: This key is not certified with a trusted signature') == -1 \ and line.find('WARNING: using insecure memory') == -1: print(' GPG: %s' % line.strip()) def verifyPOMperBinaryArtifact(artifacts, version): print(' verify that each binary artifact has a deployed POM...') reBinaryJarWar = re.compile(r'%s\.[jw]ar$' % re.escape(version)) for artifact in [a for a in artifacts if reBinaryJarWar.search(a)]: POM = artifact[:-4] + '.pom' if POM not in artifacts: raise RuntimeError('missing: POM for %s' % artifact) def verifyDeployedPOMsCoordinates(artifacts, version): """ verify that each POM's coordinate (drawn from its content) matches its filepath, and verify that the corresponding artifact exists. """ print(" verify deployed POMs' coordinates...") for POM in [a for a in artifacts if a.endswith('.pom')]: treeRoot = ET.parse(POM).getroot() groupId, artifactId, packaging, POMversion = getPOMcoordinate(treeRoot) POMpath = '%s/%s/%s/%s-%s.pom' \ % (groupId.replace('.', '/'), artifactId, version, artifactId, version) if not POM.endswith(POMpath): raise RuntimeError("Mismatch between POM coordinate %s:%s:%s and filepath: %s" % (groupId, artifactId, POMversion, POM)) # Verify that the corresponding artifact exists artifact = POM[:-3] + packaging if artifact not in artifacts: raise RuntimeError('Missing corresponding .%s artifact for POM %s' % (packaging, POM)) def crawl(downloadedFiles, urlString, targetDir, exclusions=set()): for text, subURL in getDirEntries(urlString): if text not in exclusions: path = os.path.join(targetDir, text) if text.endswith('/'): if not os.path.exists(path): os.makedirs(path) crawl(downloadedFiles, subURL, path, exclusions) else: if not os.path.exists(path) or FORCE_CLEAN: scriptutil.download(text, subURL, targetDir, quiet=True, force_clean=FORCE_CLEAN) downloadedFiles.append(path) sys.stdout.write('.') def make_java_config(parser, java17_home): def _make_runner(java_home, version): print('Java %s JAVA_HOME=%s' % (version, java_home)) if cygwin: java_home = subprocess.check_output('cygpath -u "%s"' % java_home, shell=True).decode('utf-8').strip() cmd_prefix = 'export JAVA_HOME="%s" PATH="%s/bin:$PATH" JAVACMD="%s/bin/java"' % \ (java_home, java_home, java_home) s = subprocess.check_output('%s; java -version' % cmd_prefix, shell=True, stderr=subprocess.STDOUT).decode('utf-8') if s.find(' version "%s' % version) == -1: parser.error('got wrong version for java %s:\n%s' % (version, s)) def run_java(cmd, logfile): run('%s; %s' % (cmd_prefix, cmd), logfile) return run_java java11_home = os.environ.get('JAVA_HOME') if java11_home is None: parser.error('JAVA_HOME must be set') run_java11 = _make_runner(java11_home, '11') run_java17 = None if java17_home is not None: run_java17 = _make_runner(java17_home, '17') jc = namedtuple('JavaConfig', 'run_java11 java11_home run_java17 java17_home') return jc(run_java11, java11_home, run_java17, java17_home) version_re = re.compile(r'(\d+\.\d+\.\d+(-ALPHA|-BETA)?)') revision_re = re.compile(r'rev-([a-f\d]+)') def parse_config(): epilogue = textwrap.dedent(''' Example usage: python3 -u dev-tools/scripts/smokeTestRelease.py https://dist.apache.org/repos/dist/dev/lucene/lucene-9.0.0-RC1-rev-c7510a0... ''') description = 'Utility to test a release.' parser = argparse.ArgumentParser(description=description, epilog=epilogue, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--tmp-dir', metavar='PATH', help='Temporary directory to test inside, defaults to /tmp/smoke_lucene_$version_$revision') parser.add_argument('--not-signed', dest='is_signed', action='store_false', default=True, help='Indicates the release is not signed') parser.add_argument('--local-keys', metavar='PATH', help='Uses local KEYS file instead of fetching from https://archive.apache.org/dist/lucene/KEYS') parser.add_argument('--revision', help='GIT revision number that release was built with, defaults to that in URL') parser.add_argument('--version', metavar='X.Y.Z(-ALPHA|-BETA)?', help='Version of the release, defaults to that in URL') parser.add_argument('--test-java17', metavar='java17_home', help='Path to Java17 home directory, to run tests with if specified') parser.add_argument('--download-only', action='store_true', default=False, help='Only perform download and sha hash check steps') parser.add_argument('url', help='Url pointing to release to test') parser.add_argument('test_args', nargs=argparse.REMAINDER, help='Arguments to pass to gradle for testing, e.g. -Dwhat=ever.') c = parser.parse_args() if c.version is not None: if not version_re.match(c.version): parser.error('version "%s" does not match format X.Y.Z[-ALPHA|-BETA]' % c.version) else: version_match = version_re.search(c.url) if version_match is None: parser.error('Could not find version in URL') c.version = version_match.group(1) if c.revision is None: revision_match = revision_re.search(c.url) if revision_match is None: parser.error('Could not find revision in URL') c.revision = revision_match.group(1) print('Revision: %s' % c.revision) if c.local_keys is not None and not os.path.exists(c.local_keys): parser.error('Local KEYS file "%s" not found' % c.local_keys) c.java = make_java_config(parser, c.test_java17) if c.tmp_dir: c.tmp_dir = os.path.abspath(c.tmp_dir) else: tmp = '/tmp/smoke_lucene_%s_%s' % (c.version, c.revision) c.tmp_dir = tmp i = 1 while os.path.exists(c.tmp_dir): c.tmp_dir = tmp + '_%d' % i i += 1 return c reVersion1 = re.compile(r'\>(\d+)\.(\d+)\.(\d+)(-alpha|-beta)?/\<', re.IGNORECASE) reVersion2 = re.compile(r'-(\d+)\.(\d+)\.(\d+)(-alpha|-beta)?\.', re.IGNORECASE) def getAllLuceneReleases(): s = load('https://archive.apache.org/dist/lucene/java') releases = set() for r in reVersion1, reVersion2: for tup in r.findall(s): if tup[-1].lower() == '-alpha': tup = tup[:3] + ('0',) elif tup[-1].lower() == '-beta': tup = tup[:3] + ('1',) elif tup[-1] == '': tup = tup[:3] else: raise RuntimeError('failed to parse version: %s' % tup[-1]) releases.add(tuple(int(x) for x in tup)) l = list(releases) l.sort() return l def confirmAllReleasesAreTestedForBackCompat(smokeVersion, unpackPath): print(' find all past Lucene releases...') allReleases = getAllLuceneReleases() #for tup in allReleases: # print(' %s' % '.'.join(str(x) for x in tup)) testedIndices = set() os.chdir(unpackPath) print(' run TestBackwardsCompatibility..') command = './gradlew --no-daemon test -p lucene/backward-codecs --tests TestBackwardsCompatibility --max-workers=1 ' \ '-Dtests.verbose=true ' p = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = p.communicate() if p.returncode != 0: # Not good: the test failed! raise RuntimeError('%s failed:\n%s' % (command, stdout)) stdout = stdout.decode('utf-8',errors='replace').replace('\r\n','\n') if stderr is not None: # Should not happen since we redirected stderr to stdout: raise RuntimeError('stderr non-empty') reIndexName = re.compile(r'TEST: index[\s*=\s*](.*?)(-cfs|-nocfs)$', re.MULTILINE) for name, cfsPart in reIndexName.findall(stdout): # Fragile: decode the inconsistent naming schemes we've used in TestBWC's indices: #print('parse name %s' % name) tup = tuple(name.split('.')) if len(tup) == 3: # ok tup = tuple(int(x) for x in tup) elif tup == ('4', '0', '0', '1'): # CONFUSING: this is the 4.0.0-alpha index?? tup = 4, 0, 0, 0 elif tup == ('4', '0', '0', '2'): # CONFUSING: this is the 4.0.0-beta index?? tup = 4, 0, 0, 1 elif name == '5x-with-4x-segments': # Mixed version test case; ignore it for our purposes because we only # tally up the "tests single Lucene version" indices continue elif name == '5.0.0.singlesegment': tup = 5, 0, 0 else: raise RuntimeError('could not parse version %s' % name) testedIndices.add(tup) l = list(testedIndices) l.sort() if False: for release in l: print(' %s' % '.'.join(str(x) for x in release)) allReleases = set(allReleases) for x in testedIndices: if x not in allReleases: # Curious: we test 1.9.0 index but it's not in the releases (I think it was pulled because of nasty bug?) if x != (1, 9, 0): raise RuntimeError('tested version=%s but it was not released?' % '.'.join(str(y) for y in x)) notTested = [] for x in allReleases: if x not in testedIndices: releaseVersion = '.'.join(str(y) for y in x) if releaseVersion in ('1.4.3', '1.9.1', '2.3.1', '2.3.2'): # Exempt the dark ages indices continue if x >= tuple(int(y) for y in smokeVersion.split('.')): # Exempt versions not less than the one being smoke tested print(' Backcompat testing not required for release %s because it\'s not less than %s' % (releaseVersion, smokeVersion)) continue notTested.append(x) if len(notTested) > 0: notTested.sort() print('Releases that don\'t seem to be tested:') failed = True for x in notTested: print(' %s' % '.'.join(str(y) for y in x)) raise RuntimeError('some releases are not tested by TestBackwardsCompatibility?') else: print(' success!') def main(): c = parse_config() # Pick <major>.<minor> part of version and require script to be from same branch scriptVersion = re.search(r'((\d+).(\d+)).(\d+)', scriptutil.find_current_version()).group(1).strip() if not c.version.startswith(scriptVersion + '.'): raise RuntimeError('smokeTestRelease.py for %s.X is incompatible with a %s release.' % (scriptVersion, c.version)) print('NOTE: output encoding is %s' % sys.stdout.encoding) smokeTest(c.java, c.url, c.revision, c.version, c.tmp_dir, c.is_signed, c.local_keys, ' '.join(c.test_args), downloadOnly=c.download_only) def smokeTest(java, baseURL, gitRevision, version, tmpDir, isSigned, local_keys, testArgs, downloadOnly=False): startTime = datetime.datetime.now() # disable flakey tests for smoke-tester runs: testArgs = '-Dtests.badapples=false %s' % testArgs # Tests annotated @Nightly are more resource-intensive but often cover # important code paths. They're disabled by default to preserve a good # developer experience, but we enable them for smoke tests where we want good # coverage. testArgs = '-Dtests.nigthly=true %s' % testArgs if FORCE_CLEAN: if os.path.exists(tmpDir): raise RuntimeError('temp dir %s exists; please remove first' % tmpDir) if not os.path.exists(tmpDir): os.makedirs(tmpDir) lucenePath = None print() print('Load release URL "%s"...' % baseURL) newBaseURL = unshortenURL(baseURL) if newBaseURL != baseURL: print(' unshortened: %s' % newBaseURL) baseURL = newBaseURL for text, subURL in getDirEntries(baseURL): if text.lower().find('lucene') != -1: lucenePath = subURL if lucenePath is None: raise RuntimeError('could not find lucene subdir') print() print('Get KEYS...') if local_keys is not None: print(" Using local KEYS file %s" % local_keys) keysFile = local_keys else: keysFileURL = "https://archive.apache.org/dist/lucene/KEYS" print(" Downloading online KEYS file %s" % keysFileURL) scriptutil.download('KEYS', keysFileURL, tmpDir, force_clean=FORCE_CLEAN) keysFile = '%s/KEYS' % (tmpDir) print() print('Test Lucene...') checkSigs(lucenePath, version, tmpDir, isSigned, keysFile) if not downloadOnly: unpackAndVerify(java, tmpDir, 'lucene-%s.tgz' % version, gitRevision, version, testArgs) unpackAndVerify(java, tmpDir, 'lucene-%s-src.tgz' % version, gitRevision, version, testArgs) print() print('Test Maven artifacts...') checkMaven(baseURL, tmpDir, gitRevision, version, isSigned, keysFile) else: print("\nLucene test done (--download-only specified)") print('\nSUCCESS! [%s]\n' % (datetime.datetime.now() - startTime)) if __name__ == '__main__': try: main() except KeyboardInterrupt: print('Keyboard interrupt...exiting')
the-stack_106_14580
# -*- coding: utf-8 -*- # Copyright (c) 2014, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. """ A Line Visual that uses the new shader Function. """ from __future__ import division import numpy as np #from .visual import Visual #from ..shader.function import Function, Variable #from ...import gloo from vispy.scene.visuals.visual import Visual from vispy.scene.shaders import ModularProgram, Function, Variable, Varying from vispy.scene.transforms import STTransform from vispy import gloo ## Snippet templates (defined as string to force user to create fresh Function) # Consider these stored in a central location in vispy ... vertex_template = """ void main() { } """ fragment_template = """ void main() { } """ dash_template = """ float dash(float distance) { float mod = distance / $dash_len; mod = mod - int(mod); return 0.5 * sin(mod*3.141593*2.0) + 0.5; } """ stub4 = Function("vec4 stub4(vec4 value) { return value; }") stub3 = Function("vec4 stub3(vec3 value) { return value; }") ## Actual code class Line(Visual): def __init__(self, parent=None, data=None, color=None): Visual.__init__(self, parent) # Create a program self._program = ModularProgram(vertex_template, fragment_template) # Define how we are going to specify position and color self._program.vert['gl_Position'] = '$transform(vec4($position, 1.0))' self._program.frag['gl_FragColor'] = 'vec4($color, 1.0)' # Set position data assert data is not None vbo = gloo.VertexBuffer(data) self._program.vert['position'] = vbo self._program.vert['transform'] = self.transform.shader_map() # Create some variables related to color. We use a combination # of these depending on the kind of color being set. # We predefine them here so that we can re-use VBO and uniforms vbo = gloo.VertexBuffer(data) self._color_var = Variable('uniform vec3 color') self._colors_var = Variable('attribute vec3 color', vbo) self._color_varying = Varying('v_color') self.set_color((0, 0, 1)) if color is not None: self.set_color(color) @property def transform(self): return Visual.transform.fget(self) # todo: this should probably be handled by base visual class.. @transform.setter def transform(self, tr): self._program.vert['transform'] = tr.shader_map() Visual.transform.fset(self, tr) def set_data(self, data): """ Set the vertex data for this line. """ vbo = self._program.vert['position'].value vbo.set_data(data) def set_color(self, color): """ Set the color for this line. Color can be specified for the whole line or per vertex. When the color is changed from single color to array, the shaders need to be recompiled, otherwise we only need to reset the uniform / attribute. """ if isinstance(color, tuple): # Single value (via a uniform) color = [float(v) for v in color] assert len(color) == 3 self._color_var.value = color self._program.frag['color'] = self._color_var elif isinstance(color, np.ndarray): # A value per vertex, via a VBO assert color.shape[1] == 3 self._colors_var.value.set_data(color) self._program.frag['color'] = self._color_varying self._program.vert[self._color_varying] = self._colors_var else: raise ValueError('Line colors must be Nx3 array or color tuple') def draw(self, event=None): gloo.set_state(blend=True, blend_func=('src_alpha', 'one')) # Draw self._program.draw('line_strip') class DashedLine(Line): """ This takes the Line and modifies the composition of Functions to create a dashing effect. """ def __init__(self, *args, **kwargs): Line.__init__(self, *args, **kwargs) dasher = Function(dash_template) distance = Varying('v_distance', dtype='float') self._program.frag['gl_FragColor.a'] = dasher(distance) dasher['dash_len'] = Variable('const float dash_len 0.001') self._program.vert[distance] = 'gl_Position.x' ## Show the visual if __name__ == '__main__': from vispy import app # vertex positions of data to draw N = 200 pos = np.zeros((N, 3), dtype=np.float32) pos[:, 0] = np.linspace(-0.9, 0.9, N) pos[:, 1] = np.random.normal(size=N, scale=0.2).astype(np.float32) # color array color = np.ones((N, 3), dtype=np.float32) color[:, 0] = np.linspace(0, 1, N) color[:, 1] = color[::-1, 0] class Canvas(app.Canvas): def __init__(self): app.Canvas.__init__(self, close_keys='escape') self.line1 = Line(None, pos, (3, 9, 0)) self.line2 = DashedLine(None, pos, color) self.line2.transform = STTransform(scale=(0.5, 0.5), translate=(0.4, 0.4)) def on_draw(self, ev): gloo.clear((0, 0, 0, 1), True) gloo.set_viewport(0, 0, *self.size) self.line1.draw() self.line2.draw() c = Canvas() c.show() timer = app.Timer() timer.start(0.016) th = 0.0 @timer.connect def on_timer(event): global th th += 0.01 pos = (np.cos(th) * 0.2 + 0.4, np.sin(th) * 0.2 + 0.4) c.line2.transform.translate = pos c.update() app.run()
the-stack_106_14582
# -*- coding: utf-8 -*- from __future__ import unicode_literals try: from html.parser import HTMLParser # py3 except ImportError: from HTMLParser import HTMLParser # py2 from django.forms import widgets from django.utils.translation import ungettext_lazy, ugettext_lazy as _ from django.utils.text import Truncator from django.utils.html import format_html from django.forms.models import ModelForm from django.forms.fields import IntegerField from cms.plugin_pool import plugin_pool from cmsplugin_cascade.forms import ManageChildrenFormMixin from cmsplugin_cascade.fields import GlossaryField from cmsplugin_cascade.plugin_base import TransparentWrapper, TransparentContainer from cmsplugin_cascade.widgets import NumberInputWidget from .plugin_base import BootstrapPluginBase from .panel import panel_heading_sizes, PanelTypeWidget class AccordionForm(ManageChildrenFormMixin, ModelForm): num_children = IntegerField(min_value=1, initial=1, widget=NumberInputWidget(attrs={'size': '3', 'style': 'width: 5em !important;'}), label=_("Panels"), help_text=_("Number of panels for this panel group.")) class BootstrapAccordionPlugin(TransparentWrapper, BootstrapPluginBase): name = _("Accordion") form = AccordionForm default_css_class = 'panel-group' require_parent = True parent_classes = ('BootstrapColumnPlugin',) direct_child_classes = ('BootstrapAccordionPanelPlugin',) allow_children = True render_template = 'cascade/bootstrap3/{}/accordion.html' fields = ('num_children', 'glossary',) close_others = GlossaryField( widgets.CheckboxInput(), label=_("Close others"), initial=True, help_text=_("Open only one panel at a time.") ) first_is_open = GlossaryField( widgets.CheckboxInput(), label=_("First panel open"), initial=True, help_text=_("Start with the first panel open.") ) @classmethod def get_identifier(cls, obj): identifier = super(BootstrapAccordionPlugin, cls).get_identifier(obj) num_cols = obj.get_num_children() content = ungettext_lazy('with {0} panel', 'with {0} panels', num_cols).format(num_cols) return format_html('{0}{1}', identifier, content) def save_model(self, request, obj, form, change): wanted_children = int(form.cleaned_data.get('num_children')) super(BootstrapAccordionPlugin, self).save_model(request, obj, form, change) self.extend_children(obj, wanted_children, BootstrapAccordionPanelPlugin) plugin_pool.register_plugin(BootstrapAccordionPlugin) class BootstrapAccordionPanelPlugin(TransparentContainer, BootstrapPluginBase): name = _("Accordion Panel") default_css_class = 'panel-body' direct_parent_classes = parent_classes = ('BootstrapAccordionPlugin',) require_parent = True alien_child_classes = True render_template = 'cascade/bootstrap3/{}/accordion-panel.html' glossary_field_order = ('panel_type', 'heading_size', 'panel_title') panel_type = GlossaryField( PanelTypeWidget.get_instance(), label=_("Panel type"), help_text=_("Display Panel using this style.") ) heading_size = GlossaryField( widgets.Select(choices=panel_heading_sizes), initial='', label=_("Heading Size") ) panel_title = GlossaryField( widgets.TextInput(attrs={'size': 80}), label=_("Panel Title") ) class Media: css = {'all': ('cascade/css/admin/bootstrap.min.css', 'cascade/css/admin/bootstrap-theme.min.css',)} @classmethod def get_identifier(cls, obj): identifier = super(BootstrapAccordionPanelPlugin, cls).get_identifier(obj) panel_title = HTMLParser().unescape(obj.glossary.get('panel_title', '')) panel_title = Truncator(panel_title).words(3, truncate=' ...') return format_html('{0}{1}', identifier, panel_title) plugin_pool.register_plugin(BootstrapAccordionPanelPlugin)
the-stack_106_14584
print('==' * 20) print(f'{"Aproveitamento Gols":^40}') print('==' * 20) jogador = dict() jogador['Nome'] = str(input('Nome do jogador: ')).strip().title() partidas = int(input(f'Nº de partidas de {jogador["Nome"]}? ')) gols = list() jogador['Total'] = 0 for x in range(partidas): x = int(input(f'Qts gols na {x + 1}ª partida: ')) gols.append(x) jogador['Total'] += x jogador['Gols'] = gols print('==' * 20) for k, v in jogador.items(): print(f'{k}: {v}') if k == 'Gols': for p, v in enumerate(jogador['Gols']): print(f'Na {p+1}ª partida foram {v} Gol(s)')
the-stack_106_14585
#!/usr/bin/env python """Compute diagnostic report from binary input.""" from operator import itemgetter, ge, lt import fileinput import sys def bit_criteria(report, index, cmp): return 1 if cmp(sum(map(itemgetter(index), report)), len(report)/2) else 0 def generate_rating(report, rating="oxygen"): if rating == "oxygen": cmp = ge elif rating == "co2": cmp = lt else: sys.exit(1) for index in range(len(report)): bit = bit_criteria(report, index, cmp) report = list(filter(lambda x: x[index] == bit, report)) if len(report) == 1: break return int(''.join(map(str, report[0])),2) if __name__ == "__main__": if len(sys.argv) != 2: print("Usage: day3_diagnostic_part2.py <input file>") sys.exit(-1) report = [list(map(int, line.strip())) for line in fileinput.input(files=sys.argv[1])] oxygen_generator_reading = generate_rating(report, rating="oxygen") co2_scrubber_rating = generate_rating(report, rating="co2") print(oxygen_generator_reading*co2_scrubber_rating)
the-stack_106_14587
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility for saving/loading training configs.""" import os import tensorflow.compat.v1 as tf import yaml def save_config(config, logdir=None): """Save a new configuration by name. If a logging directory is specified, is will be created and the configuration will be stored there. Otherwise, a log message will be printed. Args: config: Configuration object. logdir: Location for writing summaries and checkpoints if specified. Returns: Configuration object. """ if logdir: # with config.unlocked: config.logdir = logdir message = 'Start a new run and write summaries and checkpoints to {}.' tf.logging.info(message.format(config.logdir)) tf.gfile.MakeDirs(config.logdir) config_path = os.path.join(config.logdir, 'config.yaml') with tf.gfile.GFile(config_path, 'w') as file_: yaml.dump(config, file_, default_flow_style=False) else: message = ( 'Start a new run without storing summaries and checkpoints since no ' 'logging directory was specified.') tf.logging.info(message) return config def load_config(logdir): """Load a configuration from the log directory. Args: logdir: The logging directory containing the configuration file. Raises: IOError: The logging directory does not contain a configuration file. Returns: Configuration object. """ config_path = logdir and os.path.join(logdir, 'config.yaml') if not config_path or not tf.gfile.Exists(config_path): message = ( 'Cannot resume an existing run since the logging directory does not ' 'contain a configuration file.') raise IOError(message) with tf.gfile.GFile(config_path, 'r') as file_: config = yaml.load(file_) print('Resume run and write summaries and checkpoints to {}.'.format( config.logdir)) return config
the-stack_106_14589
from __future__ import absolute_import from __future__ import division from __future__ import print_function import importlib import itertools import os import sys import compas_rhino import compas._os import compas.plugins __all__ = [ 'install', 'installable_rhino_packages', 'after_rhino_install', ] def install(version=None, packages=None, clean=False): """Install COMPAS for Rhino. Parameters ---------- version : {'5.0', '6.0', '7.0', '8.0'}, optional The version number of Rhino. Default is ``'6.0'``. packages : list of str, optional List of packages to install or None to use default package list. Default is the result of ``installable_rhino_packages``, which collects all installable packages in the current environment. clean : bool, optional If ``True``, this will clean up the entire scripts folder and remove also existing symlinks that are not importable in the current environment. Examples -------- .. code-block:: python import compas_rhino.install compas_rhino.install.install('6.0') .. code-block:: bash python -m compas_rhino.install -v 6.0 """ version = compas_rhino._check_rhino_version(version) # We install COMPAS packages in the scripts folder # instead of directly as IPy module. scripts_path = compas_rhino._get_scripts_path(version) # This is for old installs ipylib_path = compas_rhino._get_ironpython_lib_path(version) # Filter the provided list of packages # If no packages are provided # this first collects all installable packages from the environment. packages = _filter_installable_packages(version, packages) results = [] symlinks_to_install = [] symlinks_to_uninstall = [] exit_code = 0 # check all installable packages # add the packages that can't be imported from the current env to the list of symlinks to uninstall # and remove the package name from the list of installable packages # make a copy of the list to avoid problems with removing items # note: perhaps this should already happen in the filter function... for name in packages[:]: try: importlib.import_module(name) except ImportError: path = os.path.join(scripts_path, name) symlinks_to_uninstall.append(dict(name=name, link=path)) packages.remove(name) # Also remove all broken symlinks from the scripts folder # because ... they're broken! # If it is an actual folder or a file, leave it alone # because probably someone put it there on purpose. for name in os.listdir(scripts_path): path = os.path.join(scripts_path, name) if os.path.islink(path): if not os.path.exists(path): symlinks_to_uninstall.append(dict(name=name, link=path)) try: importlib.import_module(name) except ImportError: pass else: if name not in packages: packages.append(name) # If the scripts folder is supposed to be cleaned # also remove all existing symlinks that cannot be imported # and reinstall symlinks that can be imported if clean: for name in os.listdir(scripts_path): path = os.path.join(scripts_path, name) if os.path.islink(path): if os.path.exists(path): try: importlib.import_module(name) except ImportError: path = os.path.join(scripts_path, name) symlinks_to_uninstall.append(dict(name=name, link=path)) else: if name not in packages: packages.append(name) # add all of the packages in the list of installable packages # to the list of symlinks to uninstall # and to the list of symlinks to install for package in packages: symlink_path = os.path.join(scripts_path, package) symlinks_to_uninstall.append(dict(name=package, link=symlink_path)) package_path = compas_rhino._get_package_path(importlib.import_module(package)) symlinks_to_install.append(dict(name=package, source_path=package_path, link=symlink_path)) # Handle legacy install location # This does not always work, # and especially not in cases where it is not necessary :) if ipylib_path: legacy_path = os.path.join(ipylib_path, package) if os.path.exists(legacy_path): symlinks_to_uninstall.append(dict(name=package, link=legacy_path)) # ------------------------- # Uninstall first # ------------------------- symlinks = [link['link'] for link in symlinks_to_uninstall] uninstall_results = compas._os.remove_symlinks(symlinks) # Let the user know if some symlinks could not be removed. for uninstall_data, success in zip(symlinks_to_uninstall, uninstall_results): if not success: results.append((uninstall_data['name'], 'ERROR: Cannot remove symlink, try to run as administrator.')) # Handle legacy bootstrapper # Again, only if possible... if ipylib_path: if not compas_rhino._try_remove_bootstrapper(ipylib_path): results.append(('compas_bootstrapper', 'ERROR: Cannot remove legacy compas_bootstrapper, try to run as administrator.')) # ------------------------- # Ready to start installing # ------------------------- # create new symlinks and register the results symlinks = [(link['source_path'], link['link']) for link in symlinks_to_install] install_results = compas._os.create_symlinks(symlinks) # set the exit code based on the installation results if not all(install_results): exit_code = -1 # make a list of installed packages # based on the installation results # and update the general results list installed_packages = [] for install_data, success in zip(symlinks_to_install, install_results): if success: installed_packages.append(install_data['name']) result = 'OK' else: result = 'ERROR: Cannot create symlink, try to run as administrator.' results.append((install_data['name'], result)) # finalize the general results list with info about the bootstrapper if exit_code == -1: results.append(('compas_bootstrapper', 'WARNING: One or more packages failed, will not install bootstrapper, try uninstalling first')) else: try: _update_bootstrapper(scripts_path, packages) results.append(('compas_bootstrapper', 'OK')) except: # noqa: E722 results.append(('compas_bootstrapper', 'ERROR: Could not create compas_bootstrapper to auto-determine Python environment')) # output the outcome of the installation process # perhaps we should more info here print('Installing COMPAS packages to Rhino {0} scripts folder:'.format(version)) print('{}\n'.format(scripts_path)) for package, status in results: print(' {} {}'.format(package.ljust(20), status)) if status != 'OK': exit_code = -1 if exit_code == 0 and len(installed_packages): print('\nRunning post-installation steps...\n') if not _run_post_execution_steps(after_rhino_install(installed_packages)): exit_code = -1 print('\nInstall completed.') if exit_code != 0: sys.exit(exit_code) def _run_post_execution_steps(steps_generator): all_steps_succeeded = True post_execution_errors = [] for result in steps_generator: if isinstance(result, Exception): post_execution_errors.append(result) continue for item in result: try: package, message, success = item status = 'OK' if success else 'ERROR' if not success: all_steps_succeeded = False print(' {} {}: {}'.format(package.ljust(20), status, message)) except ValueError: post_execution_errors.append(ValueError('Step ran without errors but result is wrongly formatted: {}'.format(str(item)))) if post_execution_errors: print('\nOne or more errors occurred:\n') for error in post_execution_errors: print(' - {}'.format(repr(error))) all_steps_succeeded = False return all_steps_succeeded @compas.plugins.plugin(category='install', pluggable_name='installable_rhino_packages', tryfirst=True) def default_installable_rhino_packages(): # While this list could obviously be hard-coded, I think # eating our own dogfood and using plugins to define this, just like # any other extension/plugin would be is a better way to ensure consistent behavior. return ['compas', 'compas_rhino'] @compas.plugins.pluggable(category='install', selector='collect_all') def installable_rhino_packages(): """Provide a list of packages to make available inside Rhino. Extensions providing Rhino or Grasshopper features can implement this pluggable interface to automatically have their packages made available inside Rhino when COMPAS is installed into it. Examples -------- >>> import compas.plugins >>> @compas.plugins.plugin(category='install') ... def installable_rhino_packages(): ... return ['compas_fab'] Returns ------- :obj:`list` of :obj:`str` List of package names to make available inside Rhino. """ pass @compas.plugins.pluggable(category='install', selector='collect_all') def after_rhino_install(installed_packages): """Allows extensions to execute actions after install to Rhino is done. Extensions providing Rhino or Grasshopper features can implement this pluggable interface to perform additional steps after an installation to Rhino has been completed. Parameters ---------- installed_packages : :obj:`list` of :obj:`str` List of packages that have been installed successfully. Examples -------- >>> import compas.plugins >>> @compas.plugins.plugin(category='install') ... def after_rhino_install(installed_packages): ... # Do something after package is installed to Rhino, eg, copy components, etc ... return [('compas_ghpython', 'GH Components installed', True)] Returns ------- :obj:`list` of 3-tuple (str, str, bool) List containing a 3-tuple with component name, message and ``True``/``False`` success flag. """ pass def _update_bootstrapper(install_path, packages): # Take either the CONDA environment directory or the current Python executable's directory python_directory = os.environ.get('CONDA_PREFIX', None) or os.path.dirname(sys.executable) environment_name = os.environ.get('CONDA_DEFAULT_ENV', '') conda_exe = os.environ.get('CONDA_EXE', '') compas_bootstrapper = compas_rhino._get_bootstrapper_path(install_path) bootstrapper_data = compas_rhino._get_bootstrapper_data(compas_bootstrapper) installed_packages = bootstrapper_data.get('INSTALLED_PACKAGES', []) installed_packages = list(set(installed_packages + list(packages))) with open(compas_bootstrapper, 'w') as f: f.write('ENVIRONMENT_NAME = r"{}"\n'.format(environment_name)) f.write('PYTHON_DIRECTORY = r"{}"\n'.format(python_directory)) f.write('CONDA_EXE = r"{}"\n'.format(conda_exe)) f.write('INSTALLED_PACKAGES = {}'.format(repr(installed_packages))) def _filter_installable_packages(version, packages): ghpython_incompatible = False if compas.OSX and version == 5.0: ghpython_incompatible = True if not packages: # Flatten list of results (resulting from collect_all pluggable) packages = sorted(set(itertools.chain.from_iterable(installable_rhino_packages()))) elif 'compas_ghpython' in packages and ghpython_incompatible: print('Skipping installation of compas_ghpython since it\'s not supported for Rhino 5 for Mac') if ghpython_incompatible: packages.remove('compas_ghpython') return packages # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( '-v', '--version', choices=compas_rhino.SUPPORTED_VERSIONS, default=compas_rhino.DEFAULT_VERSION, help="The version of Rhino to install the packages in." ) parser.add_argument('-p', '--packages', nargs='+', help="The packages to install.") parser.add_argument('--clean', dest='clean', default=False, action='store_true') args = parser.parse_args() install(version=args.version, packages=args.packages, clean=args.clean)
the-stack_106_14591
from cryptography import Fernet as fernet import string # The Code from the Cryptography branch will be deleted; it is only here for inspiration while making our own function. # The Code for Fernet is encoded in UTF-8 and as such we should try to create an encoding function first. def write_key(): # This is a key to our encrpyted item key = fernet.generate_key() with open('key.key', 'wb') as key_file: key_file.write(key) def load_key(): # This loads the key for encryption from the key.key directory return open('key.key', 'rb').read() write_key() # this creates the folder for our encryption key key = load_key() # loads the key for our encrypted function f = fernet(key) message = input('Paste data to encrypt.').encode() # this encodes our message in UTF-8. encrypted = f.encrypt(message) # this encrypts the message to be decrypted later. decrypted = f.decrypt(encrypted) # this decrypts whatever the input is.
the-stack_106_14592
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class JobPatchOptions(Model): """ Additional parameters for the Job_Patch operation. :param timeout: The maximum time that the server can spend processing the request, in seconds. The default is 30 seconds. Default value: 30 . :type timeout: int :param client_request_id: The caller-generated request identity, in the form of a GUID with no decoration such as curly braces, e.g. 9C4D50EE-2D56-4CD3-8152-34347DC9F2B0. :type client_request_id: str :param return_client_request_id: Whether the server should return the client-request-id identifier in the response. :type return_client_request_id: bool :param ocp_date: The time the request was issued. If not specified, this header will be automatically populated with the current system clock time. :type ocp_date: datetime :param if_match: An ETag is specified. Specify this header to perform the operation only if the resource's ETag is an exact match as specified. :type if_match: str :param if_none_match: An ETag is specified. Specify this header to perform the operation only if the resource's ETag does not match the specified ETag. :type if_none_match: str :param if_modified_since: Specify this header to perform the operation only if the resource has been modified since the specified date/time. :type if_modified_since: datetime :param if_unmodified_since: Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :type if_unmodified_since: datetime """ def __init__(self, timeout=30, client_request_id=None, return_client_request_id=None, ocp_date=None, if_match=None, if_none_match=None, if_modified_since=None, if_unmodified_since=None): self.timeout = timeout self.client_request_id = client_request_id self.return_client_request_id = return_client_request_id self.ocp_date = ocp_date self.if_match = if_match self.if_none_match = if_none_match self.if_modified_since = if_modified_since self.if_unmodified_since = if_unmodified_since
the-stack_106_14594
from django.conf.urls import include, url from publisher.views import catalog from publisher.views import my_publication from publisher.views import publication urlpatterns = [ # Publications(s) url(r'^publish$', catalog.catalog_page), url(r'^publication/(\d+)$', publication.publication_page), url(r'^publication/(\d+)/peer_review_modal$', publication.peer_review_modal), url(r'^publication/(\d+)/save_peer_review$', publication.save_peer_review), url(r'^publication/(\d+)/delete_peer_review$', publication.delete_peer_review), # My Publications url(r'^my_publications$', my_publication.my_publications_page), url(r'^refresh_publications_table$', my_publication.refresh_publications_table), url(r'^my_publication_modal$', my_publication.my_publication_modal), url(r'^save_publication$', my_publication.save_publication), url(r'^delete_publication$', my_publication.delete_publication), ]
the-stack_106_14598
# import necessary requirements import time import numpy as np from constants import STARTING_POSITION_OF_AGENT, INF, PROBABILITY_OF_GRID, NUM_ROWS, NUM_COLS, NUM_ITERATIONS, \ ACCURACY_TO_ACHIEVE from helpers.agent8 import set_random_target, examine_and_propagate_probability, calculate_global_threshold from helpers.helper import generate_grid_with_probability_p, compute_explored_cells_from_path, \ length_of_path_from_source_to_goal from src.Agent8 import Agent8 # make changes in Agent8 src agent = Agent8() # Initialize Agent8 def find_the_target(): """ Function to find the target :return: results containing final sum of probabilities of each cell(containing), examinations, movements """ global p # contains sum of probabilities of each cell agent.reset() # reset all the attributes of Agent8 target_found = False # used to check if target if found or not agent_num = 7 # indicates which type of prob to use result = list() # list that contains final results # list containing global threshold of executions for different terrain types. # global_threshold_for_examinations = calculate_global_threshold(ACCURACY_TO_ACHIEVE) print("Global Threshold", agent.global_threshold) # print("Global Threshold:", global_threshold_for_examinations) # loop for find a "reachable" target while True: random_maze = generate_grid_with_probability_p(PROBABILITY_OF_GRID) # generate gridworld with full information target_pos = set_random_target() # setting the target randomly # loop till target isn't blocked while random_maze[target_pos[0]][target_pos[1]] != 4: target_pos = set_random_target() # setting the target randomly # check if target is reachable or by finding path length to it from start if length_of_path_from_source_to_goal(random_maze, STARTING_POSITION_OF_AGENT, target_pos) != INF: break # reachable target is set, so now reset all the variables of the Agent8 agent.reset() # print("Main Here") print("Global Threshold", agent.global_threshold) # loop target_found is FALSE while not target_found: agent.pre_planning(agent_num) # set the agent.current_estimated_goal attribute # find path from agent.current_position to agent.current_estimates_goal using A* and set parents dict() agent.planning(agent.current_estimated_goal) # loop till the path given by Astar contains agent.current_estimated_goal while agent.current_estimated_goal not in agent.parents: # not in path so make it blocked and examine it and propagate the probability to all the cells accordingly. agent.maze[agent.current_estimated_goal[0]][agent.current_estimated_goal[1]].is_blocked = True examine_and_propagate_probability(agent.maze, agent.current_position, target_pos, agent.current_estimated_goal, agent.current_estimated_goal) agent.pre_planning(agent_num) # set new agent.current_estimated_target # find path from agent.current_position to new agent.current_estimates_goal using A* agent.planning(agent.current_estimated_goal) # out of loop means a "reachable" agent.current_estimated_goal is found # execution and examine k% cells with top probabilities. target_found = agent.execution(random_maze, target_pos) p = 0.0 # compute final sum of probabilities for row in range(NUM_ROWS): for col in range(NUM_COLS): p += agent.maze[row][col].probability_of_containing_target print("Total Probability:", p) movements = compute_explored_cells_from_path(agent.final_paths) result.append(p) result.append(agent.num_examinations) result.append(movements) return result if __name__ == "__main__": results = find_the_target() print("Sum of Probability:", results[0]) print("Total examinations:", results[1]) print("Total movements:", results[2]) print("Total cost:", (results[1]+results[2]))
the-stack_106_14599
import os import platform import socket import subprocess import time from .client import Client from .exceptions import ProxyServerError class RemoteServer(object): def __init__(self, host, port): """ Initialises a RemoteServer object :param host: The host of the proxy server. :param port: The port of the proxy server. """ self.host = host self.port = port @property def url(self): """ Gets the url that the proxy is running on. This is not the URL clients should connect to. """ return "http://%s:%d" % (self.host, self.port) def create_proxy(self, params=None): """ Gets a client class that allow to set all the proxy details that you may need to. :param dict params: Dictionary where you can specify params like httpProxy and httpsProxy """ params = params if params is not None else {} client = Client(self.url[7:], params) return client def _is_listening(self): try: socket_ = socket.socket(socket.AF_INET, socket.SOCK_STREAM) socket_.settimeout(1) socket_.connect((self.host, self.port)) socket_.close() return True except socket.error: return False class Server(RemoteServer): def __init__(self, path='browsermob-proxy', options=None): """ Initialises a Server object :param str path: Path to the browsermob proxy batch file :param dict options: Dictionary that can hold the port. More items will be added in the future. This defaults to an empty dictionary """ options = options if options is not None else {} path_var_sep = ':' if platform.system() == 'Windows': path_var_sep = ';' if not path.endswith('.bat'): path += '.bat' exec_not_on_path = True for directory in os.environ['PATH'].split(path_var_sep): if(os.path.isfile(os.path.join(directory, path))): exec_not_on_path = False break if not os.path.isfile(path) and exec_not_on_path: raise ProxyServerError("Browsermob-Proxy binary couldn't be found " "in path provided: %s" % path) self.path = path self.host = 'localhost' self.port = options.get('port', 8080) self.process = None if platform.system() == 'Darwin': self.command = ['sh'] else: self.command = [] self.command += [path, '--port=%s' % self.port] def start(self, options=None): """ This will start the browsermob proxy and then wait until it can interact with it :param dict options: Dictionary that can hold the path and filename of the log file with resp. keys of `log_path` and `log_file` """ if options is None: options = {} log_path = options.get('log_path', os.getcwd()) log_file = options.get('log_file', 'server.log') retry_sleep = options.get('retry_sleep', 0.5) retry_count = options.get('retry_count', 60) log_path_name = os.path.join(log_path, log_file) self.log_file = open(log_path_name, 'w') self.process = subprocess.Popen(self.command, stdout=self.log_file, stderr=subprocess.STDOUT) count = 0 while not self._is_listening(): if self.process.poll(): message = ( "The Browsermob-Proxy server process failed to start. " "Check {0}" "for a helpful error message.".format(self.log_file)) raise ProxyServerError(message) time.sleep(retry_sleep) count += 1 if count == retry_count: self.stop() raise ProxyServerError("Can't connect to Browsermob-Proxy") def stop(self): """ This will stop the process running the proxy """ if self.process.poll() is not None: return try: self.process.kill() self.process.wait() except AttributeError: # kill may not be available under windows environment pass self.log_file.close()
the-stack_106_14600
import _plotly_utils.basevalidators class SideValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="side", parent_name="scatter3d.line.colorbar.title", **kwargs ): super(SideValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["right", "top", "bottom"]), **kwargs )
the-stack_106_14601
#!/usr/bin/env python3 import sys sys.path.extend(["/home/jmark/projects/stirturb/turbubox/tools/%s" % s for s in "bin lib".split()]) import numpy as np import gausslobatto import flash, flexi, hopr import ulz import interpolate gamma = 5/3 srcfp = "/mnt/seagate/flexi/stirturb/run-shockcapturing/sim_State_0000000.350000000.h5" #srcfp = "/home/jmark/dump/data/sim_State_0000002.450000000.h5" #srcfp = "/mnt/seagate/flexi/stirturb/snapshots/sim_State_0000000.500000000.h5" with flexi.PeriodicBox(srcfp) as ff: #dens,momx,momy,momz,ener = ff.get_cons_fv() dens,velx,vely,velz,pres = ff.get_prims_fv() npoly = ff.Npoly xs = gausslobatto.mk_nodes_from_to(-1,1,npoly) ys = xs # modal Vandermonde Matrix Vmodal = np.zeros((npoly+1,npoly+1)) for i in range(0,npoly+1): for j in range(0,npoly+1): Vmodal[i,j] = gausslobatto.LegendrePolynomialAndDerivative(j,xs[i])[0] Wmodal = np.linalg.inv(Vmodal) modal = interpolate.change_basis(Wmodal, pres)
the-stack_106_14602
#!/usr/bin/env python # # Runs clang-tidy on files based on a `compile_commands.json` file # """ Run clang-tidy in parallel on compile databases. Example run: # This prepares the build. NOTE this is `build` not `gen` because the build # step generates required header files (this can be simplified if needed # to invoke ninja to compile only generated files if needed) ./scripts/build/build_examples.py --target linux-x64-chip-tool-clang build # Actually running clang-tidy to check status ./scripts/run-clang-tidy-on-compile-commands.py check # Run and output a fix yaml ./scripts/run-clang-tidy-on-compile-commands.py --export-fixes out/fixes.yaml check # Apply the fixes clang-apply-replacements out/fixes.yaml """ import build import click import coloredlogs import glob import json import logging import multiprocessing import os import queue import re import shlex import subprocess import sys import tempfile import threading import traceback import yaml class TidyResult: def __init__(self, path: str, ok: bool): self.path = path self.ok = ok def __repr__(self): if self.ok: status = "OK" else: status = "FAIL" return "%s(%s)" % (status, self.path) def __str__(self): return self.__repr__() class ClangTidyEntry: """Represents a single entry for running clang-tidy based on a compile_commands.json item. """ def __init__(self, json_entry, gcc_sysroot=None): # Entries in compile_commands: # - "directory": location to run the compile # - "file": a relative path to directory # - "command": full compilation command self.directory = json_entry["directory"] self.file = json_entry["file"] self.valid = False self.clang_arguments = [] self.tidy_arguments = [] command = json_entry["command"] command_items = shlex.split(command) compiler = os.path.basename(command_items[0]) # Allow gcc/g++ invocations to also be tidied - arguments should be # compatible and on darwin gcc/g++ is actually a symlink to clang if compiler in ['clang++', 'clang', 'gcc', 'g++']: self.valid = True self.clang_arguments = command_items[1:] else: logging.warning( "Cannot tidy %s - not a clang compile command", self.file) return if compiler in ['gcc', 'g++'] and gcc_sysroot: self.clang_arguments.insert(0, '--sysroot='+gcc_sysroot) @property def full_path(self): return os.path.abspath(os.path.join(self.directory, self.file)) def ExportFixesTo(self, f: str): self.tidy_arguments.append("--export-fixes") self.tidy_arguments.append(f) def SetChecks(self, checks: str): self.tidy_arguments.append("--checks") self.tidy_arguments.append(checks) def Check(self): logging.debug("Running tidy on %s from %s", self.file, self.directory) try: cmd = ["clang-tidy", self.file] + \ self.tidy_arguments + ["--"] + self.clang_arguments logging.debug("Executing: %r" % cmd) proc = subprocess.Popen( cmd, cwd=self.directory, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) output, err = proc.communicate() if output: logging.info("TIDY %s: %s", self.file, output.decode("utf-8")) if err: logging.warning("TIDY %s: %s", self.file, err.decode("utf-8")) if proc.returncode != 0: if proc.returncode < 0: logging.error( "Failed %s with signal %d", self.file, -proc.returncode ) else: logging.warning( "Tidy %s ended with code %d", self.file, proc.returncode ) return TidyResult(self.full_path, False) except: traceback.print_exc() return TidyResult(self.full_path, False) return TidyResult(self.full_path, True) class TidyState: def __init__(self): self.successes = 0 self.failures = 0 self.lock = threading.Lock() self.failed_files = [] def Success(self): with self.lock: self.successes += 1 def Failure(self, path: str): with self.lock: self.failures += 1 self.failed_files.append(path) logging.error("Failed to process %s", path) def find_darwin_gcc_sysroot(): for line in subprocess.check_output('xcodebuild -sdk -version'.split()).decode('utf8').split('\n'): if not line.startswith('Path: '): continue path = line[line.find(': ')+2:] if not '/MacOSX.platform/' in path: continue logging.info("Found %s" % path) return path # A hard-coded value that works on default installations logging.warning("Using default platform sdk path. This may be incorrect.") return '/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk' class ClangTidyRunner: """Handles running clang-tidy""" def __init__(self): self.entries = [] self.state = TidyState() self.fixes_file = None self.fixes_temporary_file_dir = None self.gcc_sysroot = None if sys.platform == 'darwin': # Darwin gcc invocation will auto select a system root, however clang requires an explicit path since # we are using the built-in pigweed clang-tidy. logging.info( 'Searching for a MacOS system root for gcc invocations...') self.gcc_sysroot = find_darwin_gcc_sysroot() logging.info(' Chose: %s' % self.gcc_sysroot) def AddDatabase(self, compile_commands_json): database = json.load(open(compile_commands_json)) for entry in database: item = ClangTidyEntry(entry, self.gcc_sysroot) if not item.valid: continue self.entries.append(item) def Cleanup(self): if self.fixes_temporary_file_dir: all_diagnostics = [] # When running over several files, fixes may be applied to the same # file over and over again, like 'append override' can result in the # same override being appended multiple times. already_seen = set() for name in glob.iglob( os.path.join(self.fixes_temporary_file_dir.name, "*.yaml") ): content = yaml.safe_load(open(name, "r")) if not content: continue diagnostics = content.get("Diagnostics", []) # Allow all diagnostics for distinct paths to be applied # at once but never again for future paths for d in diagnostics: if d['DiagnosticMessage']['FilePath'] not in already_seen: all_diagnostics.append(d) # in the future assume these files were already processed for d in diagnostics: already_seen.add(d['DiagnosticMessage']['FilePath']) if all_diagnostics: with open(self.fixes_file, "w") as out: yaml.safe_dump( {"MainSourceFile": "", "Diagnostics": all_diagnostics}, out ) else: open(self.fixes_file, "w").close() logging.info( "Cleaning up directory: %r", self.fixes_temporary_file_dir.name ) self.fixes_temporary_file_dir.cleanup() self.fixes_temporary_file_dir = None def ExportFixesTo(self, f): # use absolute path since running things will change working directories self.fixes_file = os.path.abspath(f) self.fixes_temporary_file_dir = tempfile.TemporaryDirectory( prefix="tidy-", suffix="-fixes" ) logging.info( "Storing temporary fix files into %s", self.fixes_temporary_file_dir.name ) for idx, e in enumerate(self.entries): e.ExportFixesTo( os.path.join( self.fixes_temporary_file_dir.name, "fixes%d.yaml" % ( idx + 1,) ) ) def SetChecks(self, checks: str): for e in self.entries: e.SetChecks(checks) def FilterEntries(self, f): for e in self.entries: if not f(e): logging.info("Skipping %s in %s", e.file, e.directory) self.entries = [e for e in self.entries if f(e)] def CheckThread(self, task_queue): while True: entry = task_queue.get() status = entry.Check() if status.ok: self.state.Success() else: self.state.Failure(status.path) task_queue.task_done() def Check(self): count = multiprocessing.cpu_count() task_queue = queue.Queue(count) for _ in range(count): t = threading.Thread(target=self.CheckThread, args=(task_queue,)) t.daemon = True t.start() for e in self.entries: task_queue.put(e) task_queue.join() logging.info("Successfully processed %d paths", self.state.successes) logging.info("Failed to process %d paths", self.state.failures) if self.state.failures: for name in self.state.failed_files: logging.warning("Failure reported for %s", name) return self.state.failures == 0 # Supported log levels, mapping string values required for argument # parsing into logging constants __LOG_LEVELS__ = { "debug": logging.DEBUG, "info": logging.INFO, "warn": logging.WARN, "fatal": logging.FATAL, } @click.group(chain=True) @click.option( "--compile-database", default=[], multiple=True, help="Path to `compile_commands.json` to use for executing clang-tidy.", ) @click.option( "--file-include-regex", default="/(src|examples)/", help="regular expression to apply to the file paths for running.", ) @click.option( "--file-exclude-regex", # NOTE: if trying '/third_party/' note that a lot of sources are routed through # paths like `../../examples/chip-tool/third_party/connectedhomeip/src/` default="/(repo|zzz_generated)/", help="Regular expression to apply to the file paths for running. Skip overrides includes.", ) @click.option( "--log-level", default="INFO", type=click.Choice(__LOG_LEVELS__.keys(), case_sensitive=False), help="Determines the verbosity of script output.", ) @click.option( "--no-log-timestamps", default=False, is_flag=True, help="Skip timestaps in log output", ) @click.option( "--export-fixes", default=None, type=click.Path(), help="Where to export fixes to apply.", ) @click.option( "--checks", default=None, type=str, help="Checks to run (passed in to clang-tidy). If not set the .clang-tidy file is used.", ) @click.pass_context def main( context, compile_database, file_include_regex, file_exclude_regex, log_level, no_log_timestamps, export_fixes, checks, ): log_fmt = "%(asctime)s %(levelname)-7s %(message)s" if no_log_timestamps: log_fmt = "%(levelname)-7s %(message)s" coloredlogs.install(level=__LOG_LEVELS__[log_level], fmt=log_fmt) if not compile_database: logging.warning( "Compilation database file not provided. Searching for first item in ./out" ) compile_database = next( glob.iglob("./out/**/compile_commands.json", recursive=True) ) if not compile_database: raise Exception("Could not find `compile_commands.json` in ./out") logging.info("Will use %s for compile", compile_database) context.obj = runner = ClangTidyRunner() @context.call_on_close def cleanup(): runner.Cleanup() for name in compile_database: runner.AddDatabase(name) if file_include_regex: r = re.compile(file_include_regex) runner.FilterEntries(lambda e: r.search(e.file)) if file_exclude_regex: r = re.compile(file_exclude_regex) runner.FilterEntries(lambda e: not r.search(e.file)) if export_fixes: runner.ExportFixesTo(export_fixes) if checks: runner.SetChecks(checks) for e in context.obj.entries: logging.info("Will tidy %s", e.full_path) @main.command("check", help="Run clang-tidy check") @click.pass_context def cmd_check(context): if not context.obj.Check(): sys.exit(1) @main.command("fix", help="Run check followd by fix") @click.pass_context def cmd_fix(context): runner = context.obj with tempfile.TemporaryDirectory(prefix="tidy-apply-fixes") as tmpdir: if not runner.fixes_file: runner.ExportFixesTo(os.path.join(tmpdir, "fixes.tmp")) runner.Check() runner.Cleanup() if runner.state.failures: fixes_yaml = os.path.join(tmpdir, "fixes.yaml") with open(fixes_yaml, "w") as out: out.write(open(runner.fixes_file, "r").read()) logging.info("Applying fixes in %s", tmpdir) subprocess.check_call(["clang-apply-replacements", tmpdir]) else: logging.info("No failures detected, no fixes to apply.") if __name__ == "__main__": main()
the-stack_106_14603
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Test HTTP support. """ import base64 import calendar import random import hamcrest from urllib.parse import urlparse, urlunsplit, parse_qs from urllib.parse import clear_cache # type: ignore[attr-defined] from unittest import skipIf from typing import Sequence, Union from io import BytesIO from itertools import cycle from zope.interface import ( provider, directlyProvides, providedBy, ) from zope.interface.verify import verifyObject from twisted.python.compat import (iterbytes, long, networkString, unicode, intToBytes) from twisted.python.components import proxyForInterface from twisted.python.failure import Failure from twisted.trial import unittest from twisted.trial.unittest import TestCase from twisted.web import http, http_headers, iweb from twisted.web.http import PotentialDataLoss, _DataLoss from twisted.web.http import _IdentityTransferDecoder from twisted.internet import address from twisted.internet.task import Clock from twisted.internet.error import ConnectionLost, ConnectionDone from twisted.protocols import loopback from twisted.test.proto_helpers import (StringTransport, NonStreamingProducer, EventLoggingObserver) from twisted.test.test_internet import DummyProducer from twisted.web.test.requesthelper import ( DummyChannel, bytesLinearWhitespaceComponents, sanitizedBytes, textLinearWhitespaceComponents, ) from twisted.logger import globalLogPublisher from ._util import ( assertIsFilesystemTemporary, ) class _IDeprecatedHTTPChannelToRequestInterfaceProxy(proxyForInterface( # type: ignore[misc] # noqa http._IDeprecatedHTTPChannelToRequestInterface)): """ Proxy L{_IDeprecatedHTTPChannelToRequestInterface}. Used to assert that the interface matches what L{HTTPChannel} expects. """ def _makeRequestProxyFactory(clsToWrap): """ Return a callable that proxies instances of C{clsToWrap} via L{_IDeprecatedHTTPChannelToRequestInterface}. @param clsToWrap: The class whose instances will be proxied. @type cls: L{_IDeprecatedHTTPChannelToRequestInterface} implementer. @return: A factory that returns L{_IDeprecatedHTTPChannelToRequestInterface} proxies. @rtype: L{callable} whose interface matches C{clsToWrap}'s constructor. """ def _makeRequestProxy(*args, **kwargs): instance = clsToWrap(*args, **kwargs) return _IDeprecatedHTTPChannelToRequestInterfaceProxy(instance) # For INonQueuedRequestFactory directlyProvides(_makeRequestProxy, providedBy(clsToWrap)) return _makeRequestProxy class DummyPullProducerHandler(http.Request): """ An HTTP request handler that registers a dummy pull producer to serve the body. The owner must call C{finish} to complete the response. """ def process(self): self._actualProducer = NonStreamingProducer(self) self.setResponseCode(200) self.registerProducer(self._actualProducer, False) DummyPullProducerHandlerProxy = _makeRequestProxyFactory( DummyPullProducerHandler) class DateTimeTests(unittest.TestCase): """Test date parsing functions.""" def testRoundtrip(self): for i in range(10000): time = random.randint(0, 2000000000) timestr = http.datetimeToString(time) time2 = http.stringToDatetime(timestr) self.assertEqual(time, time2) def testStringToDatetime(self): dateStrings = [ b"Sun, 06 Nov 1994 08:49:37 GMT", b"06 Nov 1994 08:49:37 GMT", b"Sunday, 06-Nov-94 08:49:37 GMT", b"06-Nov-94 08:49:37 GMT", b"Sunday, 06-Nov-1994 08:49:37 GMT", b"06-Nov-1994 08:49:37 GMT", b"Sun Nov 6 08:49:37 1994", b"Nov 6 08:49:37 1994", ] dateInt = calendar.timegm((1994, 11, 6, 8, 49, 37, 6, 6, 0)) for dateString in dateStrings: self.assertEqual(http.stringToDatetime(dateString), dateInt) self.assertEqual( http.stringToDatetime(b"Thursday, 29-Sep-16 17:15:29 GMT"), calendar.timegm((2016, 9, 29, 17, 15, 29, 3, 273, 0))) class DummyHTTPHandler(http.Request): def process(self): self.content.seek(0, 0) data = self.content.read() length = self.getHeader(b'content-length') if length is None: length = networkString(str(length)) request = b"'''\n" + length + b"\n" + data + b"'''\n" self.setResponseCode(200) self.setHeader(b"Request", self.uri) self.setHeader(b"Command", self.method) self.setHeader(b"Version", self.clientproto) self.setHeader(b"Content-Length", intToBytes(len(request))) self.write(request) self.finish() DummyHTTPHandlerProxy = _makeRequestProxyFactory(DummyHTTPHandler) @provider(iweb.INonQueuedRequestFactory) class DummyNewHTTPHandler(DummyHTTPHandler): """ This is exactly like the DummyHTTPHandler but it takes only one argument in its constructor, with no default arguments. This exists to test an alternative code path in L{HTTPChannel}. """ def __init__(self, channel): DummyHTTPHandler.__init__(self, channel) DummyNewHTTPHandlerProxy = _makeRequestProxyFactory(DummyNewHTTPHandler) class DelayedHTTPHandler(DummyHTTPHandler): """ Like L{DummyHTTPHandler}, but doesn't respond immediately. """ def process(self): pass def delayedProcess(self): DummyHTTPHandler.process(self) DelayedHTTPHandlerProxy = _makeRequestProxyFactory(DelayedHTTPHandler) class LoopbackHTTPClient(http.HTTPClient): def connectionMade(self): self.sendCommand(b"GET", b"/foo/bar") self.sendHeader(b"Content-Length", 10) self.endHeaders() self.transport.write(b"0123456789") def parametrizeTimeoutMixin(protocol, reactor): """ Parametrizes the L{TimeoutMixin} so that it works with whatever reactor is being used by the test. @param protocol: A L{_GenericHTTPChannel} or something implementing a similar interface. @type protocol: L{_GenericHTTPChannel} @param reactor: An L{IReactorTime} implementation. @type reactor: L{IReactorTime} @return: The C{channel}, with its C{callLater} method patched. """ # This is a terrible violation of the abstraction later of # _genericHTTPChannelProtocol, but we need to do it because # policies.TimeoutMixin doesn't accept a reactor on the object. # See https://twistedmatrix.com/trac/ticket/8488 protocol._channel.callLater = reactor.callLater return protocol class ResponseTestMixin: """ A mixin that provides a simple means of comparing an actual response string to an expected response string by performing the minimal parsing. """ def assertResponseEquals(self, responses, expected): """ Assert that the C{responses} matches the C{expected} responses. @type responses: C{bytes} @param responses: The bytes sent in response to one or more requests. @type expected: C{list} of C{tuple} of C{bytes} @param expected: The expected values for the responses. Each tuple element of the list represents one response. Each byte string element of the tuple is a full header line without delimiter, except for the last element which gives the full response body. """ for response in expected: expectedHeaders, expectedContent = response[:-1], response[-1] # Intentionally avoid mutating the inputs here. expectedStatus = expectedHeaders[0] expectedHeaders = expectedHeaders[1:] headers, rest = responses.split(b'\r\n\r\n', 1) headers = headers.splitlines() status = headers.pop(0) self.assertEqual(expectedStatus, status) self.assertEqual(set(headers), set(expectedHeaders)) content = rest[:len(expectedContent)] responses = rest[len(expectedContent):] self.assertEqual(content, expectedContent) class HTTP1_0Tests(unittest.TestCase, ResponseTestMixin): requests = ( b"GET / HTTP/1.0\r\n" b"\r\n" b"GET / HTTP/1.1\r\n" b"Accept: text/html\r\n" b"\r\n") expected_response = [ (b"HTTP/1.0 200 OK", b"Request: /", b"Command: GET", b"Version: HTTP/1.0", b"Content-Length: 13", b"'''\nNone\n'''\n")] # type: Union[Sequence[Sequence[bytes]], bytes] def test_buffer(self): """ Send requests over a channel and check responses match what is expected. """ b = StringTransport() a = http.HTTPChannel() a.requestFactory = DummyHTTPHandlerProxy a.makeConnection(b) # one byte at a time, to stress it. for byte in iterbytes(self.requests): a.dataReceived(byte) a.connectionLost(IOError("all one")) value = b.value() self.assertResponseEquals(value, self.expected_response) def test_requestBodyTimeout(self): """ L{HTTPChannel} resets its timeout whenever data from a request body is delivered to it. """ clock = Clock() transport = StringTransport() protocol = http.HTTPChannel() protocol.timeOut = 100 protocol.callLater = clock.callLater protocol.makeConnection(transport) protocol.dataReceived(b'POST / HTTP/1.0\r\nContent-Length: 2\r\n\r\n') clock.advance(99) self.assertFalse(transport.disconnecting) protocol.dataReceived(b'x') clock.advance(99) self.assertFalse(transport.disconnecting) protocol.dataReceived(b'x') self.assertEqual(len(protocol.requests), 1) def test_requestBodyDefaultTimeout(self): """ L{HTTPChannel}'s default timeout is 60 seconds. """ clock = Clock() transport = StringTransport() factory = http.HTTPFactory() protocol = factory.buildProtocol(None) protocol = parametrizeTimeoutMixin(protocol, clock) protocol.makeConnection(transport) protocol.dataReceived(b'POST / HTTP/1.0\r\nContent-Length: 2\r\n\r\n') clock.advance(59) self.assertFalse(transport.disconnecting) clock.advance(1) self.assertTrue(transport.disconnecting) def test_transportForciblyClosed(self): """ If a timed out transport doesn't close after 15 seconds, the L{HTTPChannel} will forcibly close it. """ logObserver = EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) clock = Clock() transport = StringTransport() factory = http.HTTPFactory() protocol = factory.buildProtocol(None) protocol = parametrizeTimeoutMixin(protocol, clock) protocol.makeConnection(transport) protocol.dataReceived(b'POST / HTTP/1.0\r\nContent-Length: 2\r\n\r\n') self.assertFalse(transport.disconnecting) self.assertFalse(transport.disconnected) # Force the initial timeout. clock.advance(60) self.assertTrue(transport.disconnecting) self.assertFalse(transport.disconnected) self.assertEquals(1, len(logObserver)) event = logObserver[0] self.assertIn("Timing out client: {peer}", event["log_format"]) # Watch the transport get force-closed. clock.advance(14) self.assertTrue(transport.disconnecting) self.assertFalse(transport.disconnected) clock.advance(1) self.assertTrue(transport.disconnecting) self.assertTrue(transport.disconnected) self.assertEquals(2, len(logObserver)) event = logObserver[1] self.assertEquals( "Forcibly timing out client: {peer}", event["log_format"] ) def test_transportNotAbortedAfterConnectionLost(self): """ If a timed out transport ends up calling C{connectionLost}, it prevents the force-closure of the transport. """ clock = Clock() transport = StringTransport() factory = http.HTTPFactory() protocol = factory.buildProtocol(None) protocol = parametrizeTimeoutMixin(protocol, clock) protocol.makeConnection(transport) protocol.dataReceived(b'POST / HTTP/1.0\r\nContent-Length: 2\r\n\r\n') self.assertFalse(transport.disconnecting) self.assertFalse(transport.disconnected) # Force the initial timeout. clock.advance(60) self.assertTrue(transport.disconnecting) self.assertFalse(transport.disconnected) # Move forward nearly to the timeout, then fire connectionLost. clock.advance(14) protocol.connectionLost(None) # Check that the transport isn't forcibly closed. clock.advance(1) self.assertTrue(transport.disconnecting) self.assertFalse(transport.disconnected) def test_transportNotAbortedWithZeroAbortTimeout(self): """ If the L{HTTPChannel} has its c{abortTimeout} set to L{None}, it never aborts. """ clock = Clock() transport = StringTransport() factory = http.HTTPFactory() protocol = factory.buildProtocol(None) protocol._channel.abortTimeout = None protocol = parametrizeTimeoutMixin(protocol, clock) protocol.makeConnection(transport) protocol.dataReceived(b'POST / HTTP/1.0\r\nContent-Length: 2\r\n\r\n') self.assertFalse(transport.disconnecting) self.assertFalse(transport.disconnected) # Force the initial timeout. clock.advance(60) self.assertTrue(transport.disconnecting) self.assertFalse(transport.disconnected) # Move an absurdly long way just to prove the point. clock.advance(2**32) self.assertTrue(transport.disconnecting) self.assertFalse(transport.disconnected) def test_connectionLostAfterForceClose(self): """ If a timed out transport doesn't close after 15 seconds, the L{HTTPChannel} will forcibly close it. """ clock = Clock() transport = StringTransport() factory = http.HTTPFactory() protocol = factory.buildProtocol(None) protocol = parametrizeTimeoutMixin(protocol, clock) protocol.makeConnection(transport) protocol.dataReceived(b'POST / HTTP/1.0\r\nContent-Length: 2\r\n\r\n') self.assertFalse(transport.disconnecting) self.assertFalse(transport.disconnected) # Force the initial timeout and the follow-on forced closure. clock.advance(60) clock.advance(15) self.assertTrue(transport.disconnecting) self.assertTrue(transport.disconnected) # Now call connectionLost on the protocol. This is done by some # transports, including TCP and TLS. We don't have anything we can # assert on here: this just must not explode. protocol.connectionLost(ConnectionDone) def test_noPipeliningApi(self): """ Test that a L{http.Request} subclass with no queued kwarg works as expected. """ b = StringTransport() a = http.HTTPChannel() a.requestFactory = DummyHTTPHandlerProxy a.makeConnection(b) # one byte at a time, to stress it. for byte in iterbytes(self.requests): a.dataReceived(byte) a.connectionLost(IOError("all done")) value = b.value() self.assertResponseEquals(value, self.expected_response) def test_noPipelining(self): """ Test that pipelined requests get buffered, not processed in parallel. """ b = StringTransport() a = http.HTTPChannel() a.requestFactory = DelayedHTTPHandlerProxy a.makeConnection(b) # one byte at a time, to stress it. for byte in iterbytes(self.requests): a.dataReceived(byte) value = b.value() # So far only one request should have been dispatched. self.assertEqual(value, b'') self.assertEqual(1, len(a.requests)) # Now, process each request one at a time. while a.requests: self.assertEqual(1, len(a.requests)) request = a.requests[0].original request.delayedProcess() value = b.value() self.assertResponseEquals(value, self.expected_response) class HTTP1_1Tests(HTTP1_0Tests): requests = ( b"GET / HTTP/1.1\r\n" b"Accept: text/html\r\n" b"\r\n" b"POST / HTTP/1.1\r\n" b"Content-Length: 10\r\n" b"\r\n" b"0123456789POST / HTTP/1.1\r\n" b"Content-Length: 10\r\n" b"\r\n" b"0123456789HEAD / HTTP/1.1\r\n" b"\r\n") expected_response = [ (b"HTTP/1.1 200 OK", b"Request: /", b"Command: GET", b"Version: HTTP/1.1", b"Content-Length: 13", b"'''\nNone\n'''\n"), (b"HTTP/1.1 200 OK", b"Request: /", b"Command: POST", b"Version: HTTP/1.1", b"Content-Length: 21", b"'''\n10\n0123456789'''\n"), (b"HTTP/1.1 200 OK", b"Request: /", b"Command: POST", b"Version: HTTP/1.1", b"Content-Length: 21", b"'''\n10\n0123456789'''\n"), (b"HTTP/1.1 200 OK", b"Request: /", b"Command: HEAD", b"Version: HTTP/1.1", b"Content-Length: 13", b"")] class HTTP1_1_close_Tests(HTTP1_0Tests): requests = ( b"GET / HTTP/1.1\r\n" b"Accept: text/html\r\n" b"Connection: close\r\n" b"\r\n" b"GET / HTTP/1.0\r\n" b"\r\n") expected_response = [ (b"HTTP/1.1 200 OK", b"Connection: close", b"Request: /", b"Command: GET", b"Version: HTTP/1.1", b"Content-Length: 13", b"'''\nNone\n'''\n")] class HTTP0_9Tests(HTTP1_0Tests): requests = ( b"GET /\r\n") expected_response = b"HTTP/1.1 400 Bad Request\r\n\r\n" def assertResponseEquals(self, response, expectedResponse): self.assertEqual(response, expectedResponse) def test_noPipelining(self): raise unittest.SkipTest("HTTP/0.9 not supported") class PipeliningBodyTests(unittest.TestCase, ResponseTestMixin): """ Tests that multiple pipelined requests with bodies are correctly buffered. """ requests = ( b"POST / HTTP/1.1\r\n" b"Content-Length: 10\r\n" b"\r\n" b"0123456789POST / HTTP/1.1\r\n" b"Content-Length: 10\r\n" b"\r\n" b"0123456789" ) expectedResponses = [ (b"HTTP/1.1 200 OK", b"Request: /", b"Command: POST", b"Version: HTTP/1.1", b"Content-Length: 21", b"'''\n10\n0123456789'''\n"), (b"HTTP/1.1 200 OK", b"Request: /", b"Command: POST", b"Version: HTTP/1.1", b"Content-Length: 21", b"'''\n10\n0123456789'''\n")] def test_noPipelining(self): """ Test that pipelined requests get buffered, not processed in parallel. """ b = StringTransport() a = http.HTTPChannel() a.requestFactory = DelayedHTTPHandlerProxy a.makeConnection(b) # one byte at a time, to stress it. for byte in iterbytes(self.requests): a.dataReceived(byte) value = b.value() # So far only one request should have been dispatched. self.assertEqual(value, b'') self.assertEqual(1, len(a.requests)) # Now, process each request one at a time. while a.requests: self.assertEqual(1, len(a.requests)) request = a.requests[0].original request.delayedProcess() value = b.value() self.assertResponseEquals(value, self.expectedResponses) def test_pipeliningReadLimit(self): """ When pipelined requests are received, we will optimistically continue receiving data up to a specified limit, then pause the transport. @see: L{http.HTTPChannel._optimisticEagerReadSize} """ b = StringTransport() a = http.HTTPChannel() a.requestFactory = DelayedHTTPHandlerProxy a.makeConnection(b) underLimit = a._optimisticEagerReadSize // len(self.requests) for x in range(1, underLimit + 1): a.dataReceived(self.requests) self.assertEqual(b.producerState, 'producing', 'state was {state!r} after {x} iterations' .format(state=b.producerState, x=x)) a.dataReceived(self.requests) self.assertEquals(b.producerState, 'paused') class ShutdownTests(unittest.TestCase): """ Tests that connections can be shut down by L{http.Request} objects. """ class ShutdownHTTPHandler(http.Request): """ A HTTP handler that just immediately calls loseConnection. """ def process(self): self.loseConnection() request = ( b"POST / HTTP/1.1\r\n" b"Content-Length: 10\r\n" b"\r\n" b"0123456789" ) def test_losingConnection(self): """ Calling L{http.Request.loseConnection} causes the transport to be disconnected. """ b = StringTransport() a = http.HTTPChannel() a.requestFactory = _makeRequestProxyFactory(self.ShutdownHTTPHandler) a.makeConnection(b) a.dataReceived(self.request) # The transport should have been shut down. self.assertTrue(b.disconnecting) # No response should have been written. value = b.value() self.assertEqual(value, b'') class SecurityTests(unittest.TestCase): """ Tests that L{http.Request.isSecure} correctly takes the transport into account. """ def test_isSecure(self): """ Calling L{http.Request.isSecure} when the channel is backed with a secure transport will return L{True}. """ b = DummyChannel.SSL() a = http.HTTPChannel() a.makeConnection(b) req = http.Request(a) self.assertTrue(req.isSecure()) def test_notSecure(self): """ Calling L{http.Request.isSecure} when the channel is not backed with a secure transport will return L{False}. """ b = DummyChannel.TCP() a = http.HTTPChannel() a.makeConnection(b) req = http.Request(a) self.assertFalse(req.isSecure()) def test_notSecureAfterFinish(self): """ After a request is finished, calling L{http.Request.isSecure} will always return L{False}. """ b = DummyChannel.SSL() a = http.HTTPChannel() a.makeConnection(b) req = http.Request(a) a.requests.append(req) req.setResponseCode(200) req.finish() self.assertFalse(req.isSecure()) class GenericHTTPChannelTests(unittest.TestCase): """ Tests for L{http._genericHTTPChannelProtocol}, a L{HTTPChannel}-alike which can handle different HTTP protocol channels. """ requests = ( b"GET / HTTP/1.1\r\n" b"Accept: text/html\r\n" b"Connection: close\r\n" b"\r\n" b"GET / HTTP/1.0\r\n" b"\r\n") def _negotiatedProtocolForTransportInstance(self, t): """ Run a request using the specific instance of a transport. Returns the negotiated protocol string. """ a = http._genericHTTPChannelProtocolFactory(b'') a.requestFactory = DummyHTTPHandlerProxy a.makeConnection(t) # one byte at a time, to stress it. for byte in iterbytes(self.requests): a.dataReceived(byte) a.connectionLost(IOError("all done")) return a._negotiatedProtocol @skipIf(not http.H2_ENABLED, "HTTP/2 support not present") def test_h2CancelsH11Timeout(self): """ When the transport is switched to H2, the HTTPChannel timeouts are cancelled. """ clock = Clock() a = http._genericHTTPChannelProtocolFactory(b'') a.requestFactory = DummyHTTPHandlerProxy # Set the original timeout to be 100s a.timeOut = 100 a.callLater = clock.callLater b = StringTransport() b.negotiatedProtocol = b'h2' a.makeConnection(b) # We've made the connection, but we actually check if we've negotiated # H2 when data arrives. Right now, the HTTPChannel will have set up a # single delayed call. hamcrest.assert_that( clock.getDelayedCalls(), hamcrest.contains( hamcrest.has_property( "cancelled", hamcrest.equal_to(False), ), ), ) h11Timeout = clock.getDelayedCalls()[0] # We give it the HTTP data, and it switches out for H2. a.dataReceived(b'') self.assertEqual(a._negotiatedProtocol, b'h2') # The first delayed call is cancelled, and H2 creates a new one for its # own timeouts. self.assertTrue(h11Timeout.cancelled) hamcrest.assert_that( clock.getDelayedCalls(), hamcrest.contains( hamcrest.has_property( "cancelled", hamcrest.equal_to(False), ), ), ) def test_protocolUnspecified(self): """ If the transport has no support for protocol negotiation (no negotiatedProtocol attribute), HTTP/1.1 is assumed. """ b = StringTransport() negotiatedProtocol = self._negotiatedProtocolForTransportInstance(b) self.assertEqual(negotiatedProtocol, b'http/1.1') def test_protocolNone(self): """ If the transport has no support for protocol negotiation (returns None for negotiatedProtocol), HTTP/1.1 is assumed. """ b = StringTransport() b.negotiatedProtocol = None negotiatedProtocol = self._negotiatedProtocolForTransportInstance(b) self.assertEqual(negotiatedProtocol, b'http/1.1') def test_http11(self): """ If the transport reports that HTTP/1.1 is negotiated, that's what's negotiated. """ b = StringTransport() b.negotiatedProtocol = b'http/1.1' negotiatedProtocol = self._negotiatedProtocolForTransportInstance(b) self.assertEqual(negotiatedProtocol, b'http/1.1') @skipIf(not http.H2_ENABLED, "HTTP/2 support not present") def test_http2_present(self): """ If the transport reports that HTTP/2 is negotiated and HTTP/2 is present, that's what's negotiated. """ b = StringTransport() b.negotiatedProtocol = b'h2' negotiatedProtocol = self._negotiatedProtocolForTransportInstance(b) self.assertEqual(negotiatedProtocol, b'h2') @skipIf(http.H2_ENABLED, "HTTP/2 support present") def test_http2_absent(self): """ If the transport reports that HTTP/2 is negotiated and HTTP/2 is not present, an error is encountered. """ b = StringTransport() b.negotiatedProtocol = b'h2' self.assertRaises( ValueError, self._negotiatedProtocolForTransportInstance, b, ) def test_unknownProtocol(self): """ If the transport reports that a protocol other than HTTP/1.1 or HTTP/2 is negotiated, an error occurs. """ b = StringTransport() b.negotiatedProtocol = b'smtp' self.assertRaises( AssertionError, self._negotiatedProtocolForTransportInstance, b, ) def test_factory(self): """ The C{factory} attribute is taken from the inner channel. """ a = http._genericHTTPChannelProtocolFactory(b'') a._channel.factory = b"Foo" self.assertEqual(a.factory, b"Foo") def test_GenericHTTPChannelPropagatesCallLater(self): """ If C{callLater} is patched onto the L{http._GenericHTTPChannelProtocol} then we need to propagate it through to the backing channel. """ clock = Clock() factory = http.HTTPFactory(reactor=clock) protocol = factory.buildProtocol(None) self.assertEqual(protocol.callLater, clock.callLater) self.assertEqual(protocol._channel.callLater, clock.callLater) @skipIf(not http.H2_ENABLED, "HTTP/2 support not present") def test_genericHTTPChannelCallLaterUpgrade(self): """ If C{callLater} is patched onto the L{http._GenericHTTPChannelProtocol} then we need to propagate it across onto a new backing channel after upgrade. """ clock = Clock() factory = http.HTTPFactory(reactor=clock) protocol = factory.buildProtocol(None) self.assertEqual(protocol.callLater, clock.callLater) self.assertEqual(protocol._channel.callLater, clock.callLater) transport = StringTransport() transport.negotiatedProtocol = b'h2' protocol.requestFactory = DummyHTTPHandler protocol.makeConnection(transport) # Send a byte to make it think the handshake is done. protocol.dataReceived(b'P') self.assertEqual(protocol.callLater, clock.callLater) self.assertEqual(protocol._channel.callLater, clock.callLater) @skipIf(not http.H2_ENABLED, "HTTP/2 support not present") def test_unregistersProducer(self): """ The L{_GenericHTTPChannelProtocol} will unregister its proxy channel from the transport if upgrade is negotiated. """ transport = StringTransport() transport.negotiatedProtocol = b'h2' genericProtocol = http._genericHTTPChannelProtocolFactory(b'') genericProtocol.requestFactory = DummyHTTPHandlerProxy genericProtocol.makeConnection(transport) originalChannel = genericProtocol._channel # We expect the transport has a underlying channel registered as # a producer. self.assertIs(transport.producer, originalChannel) # Force the upgrade. genericProtocol.dataReceived(b'P') # The transport should not have the original channel as its # producer... self.assertIsNot(transport.producer, originalChannel) # ...it should have the new H2 channel as its producer self.assertIs(transport.producer, genericProtocol._channel) class HTTPLoopbackTests(unittest.TestCase): expectedHeaders = {b'request': b'/foo/bar', b'command': b'GET', b'version': b'HTTP/1.0', b'content-length': b'21'} numHeaders = 0 gotStatus = 0 gotResponse = 0 gotEndHeaders = 0 def _handleStatus(self, version, status, message): self.gotStatus = 1 self.assertEqual(version, b"HTTP/1.0") self.assertEqual(status, b"200") def _handleResponse(self, data): self.gotResponse = 1 self.assertEqual(data, b"'''\n10\n0123456789'''\n") def _handleHeader(self, key, value): self.numHeaders = self.numHeaders + 1 self.assertEqual(self.expectedHeaders[key.lower()], value) def _handleEndHeaders(self): self.gotEndHeaders = 1 self.assertEqual(self.numHeaders, 4) def testLoopback(self): server = http.HTTPChannel() server.requestFactory = DummyHTTPHandlerProxy client = LoopbackHTTPClient() client.handleResponse = self._handleResponse client.handleHeader = self._handleHeader client.handleEndHeaders = self._handleEndHeaders client.handleStatus = self._handleStatus d = loopback.loopbackAsync(server, client) d.addCallback(self._cbTestLoopback) return d def _cbTestLoopback(self, ignored): if not (self.gotStatus and self.gotResponse and self.gotEndHeaders): raise RuntimeError( "didn't get all callbacks {}".format( [self.gotStatus, self.gotResponse, self.gotEndHeaders], ) ) del self.gotEndHeaders del self.gotResponse del self.gotStatus del self.numHeaders def _prequest(**headers): """ Make a request with the given request headers for the persistence tests. """ request = http.Request(DummyChannel(), False) for headerName, v in headers.items(): request.requestHeaders.setRawHeaders(networkString(headerName), v) return request class PersistenceTests(unittest.TestCase): """ Tests for persistent HTTP connections. """ def setUp(self): self.channel = http.HTTPChannel() self.request = _prequest() def test_http09(self): """ After being used for an I{HTTP/0.9} request, the L{HTTPChannel} is not persistent. """ persist = self.channel.checkPersistence(self.request, b"HTTP/0.9") self.assertFalse(persist) self.assertEqual( [], list(self.request.responseHeaders.getAllRawHeaders())) def test_http10(self): """ After being used for an I{HTTP/1.0} request, the L{HTTPChannel} is not persistent. """ persist = self.channel.checkPersistence(self.request, b"HTTP/1.0") self.assertFalse(persist) self.assertEqual( [], list(self.request.responseHeaders.getAllRawHeaders())) def test_http11(self): """ After being used for an I{HTTP/1.1} request, the L{HTTPChannel} is persistent. """ persist = self.channel.checkPersistence(self.request, b"HTTP/1.1") self.assertTrue(persist) self.assertEqual( [], list(self.request.responseHeaders.getAllRawHeaders())) def test_http11Close(self): """ After being used for an I{HTTP/1.1} request with a I{Connection: Close} header, the L{HTTPChannel} is not persistent. """ request = _prequest(connection=[b"close"]) persist = self.channel.checkPersistence(request, b"HTTP/1.1") self.assertFalse(persist) self.assertEqual( [(b"Connection", [b"close"])], list(request.responseHeaders.getAllRawHeaders())) class IdentityTransferEncodingTests(TestCase): """ Tests for L{_IdentityTransferDecoder}. """ def setUp(self): """ Create an L{_IdentityTransferDecoder} with callbacks hooked up so that calls to them can be inspected. """ self.data = [] self.finish = [] self.contentLength = 10 self.decoder = _IdentityTransferDecoder( self.contentLength, self.data.append, self.finish.append) def test_exactAmountReceived(self): """ If L{_IdentityTransferDecoder.dataReceived} is called with a byte string with length equal to the content length passed to L{_IdentityTransferDecoder}'s initializer, the data callback is invoked with that string and the finish callback is invoked with a zero-length string. """ self.decoder.dataReceived(b'x' * self.contentLength) self.assertEqual(self.data, [b'x' * self.contentLength]) self.assertEqual(self.finish, [b'']) def test_shortStrings(self): """ If L{_IdentityTransferDecoder.dataReceived} is called multiple times with byte strings which, when concatenated, are as long as the content length provided, the data callback is invoked with each string and the finish callback is invoked only after the second call. """ self.decoder.dataReceived(b'x') self.assertEqual(self.data, [b'x']) self.assertEqual(self.finish, []) self.decoder.dataReceived(b'y' * (self.contentLength - 1)) self.assertEqual(self.data, [b'x', b'y' * (self.contentLength - 1)]) self.assertEqual(self.finish, [b'']) def test_longString(self): """ If L{_IdentityTransferDecoder.dataReceived} is called with a byte string with length greater than the provided content length, only the prefix of that string up to the content length is passed to the data callback and the remainder is passed to the finish callback. """ self.decoder.dataReceived(b'x' * self.contentLength + b'y') self.assertEqual(self.data, [b'x' * self.contentLength]) self.assertEqual(self.finish, [b'y']) def test_rejectDataAfterFinished(self): """ If data is passed to L{_IdentityTransferDecoder.dataReceived} after the finish callback has been invoked, C{RuntimeError} is raised. """ failures = [] def finish(bytes): try: decoder.dataReceived(b'foo') except: failures.append(Failure()) decoder = _IdentityTransferDecoder(5, self.data.append, finish) decoder.dataReceived(b'x' * 4) self.assertEqual(failures, []) decoder.dataReceived(b'y') failures[0].trap(RuntimeError) self.assertEqual( str(failures[0].value), "_IdentityTransferDecoder cannot decode data after finishing") def test_unknownContentLength(self): """ If L{_IdentityTransferDecoder} is constructed with L{None} for the content length, it passes all data delivered to it through to the data callback. """ data = [] finish = [] decoder = _IdentityTransferDecoder(None, data.append, finish.append) decoder.dataReceived(b'x') self.assertEqual(data, [b'x']) decoder.dataReceived(b'y') self.assertEqual(data, [b'x', b'y']) self.assertEqual(finish, []) def _verifyCallbacksUnreferenced(self, decoder): """ Check the decoder's data and finish callbacks and make sure they are None in order to help avoid references cycles. """ self.assertIdentical(decoder.dataCallback, None) self.assertIdentical(decoder.finishCallback, None) def test_earlyConnectionLose(self): """ L{_IdentityTransferDecoder.noMoreData} raises L{_DataLoss} if it is called and the content length is known but not enough bytes have been delivered. """ self.decoder.dataReceived(b'x' * (self.contentLength - 1)) self.assertRaises(_DataLoss, self.decoder.noMoreData) self._verifyCallbacksUnreferenced(self.decoder) def test_unknownContentLengthConnectionLose(self): """ L{_IdentityTransferDecoder.noMoreData} calls the finish callback and raises L{PotentialDataLoss} if it is called and the content length is unknown. """ body = [] finished = [] decoder = _IdentityTransferDecoder(None, body.append, finished.append) self.assertRaises(PotentialDataLoss, decoder.noMoreData) self.assertEqual(body, []) self.assertEqual(finished, [b'']) self._verifyCallbacksUnreferenced(decoder) def test_finishedConnectionLose(self): """ L{_IdentityTransferDecoder.noMoreData} does not raise any exception if it is called when the content length is known and that many bytes have been delivered. """ self.decoder.dataReceived(b'x' * self.contentLength) self.decoder.noMoreData() self._verifyCallbacksUnreferenced(self.decoder) class ChunkedTransferEncodingTests(unittest.TestCase): """ Tests for L{_ChunkedTransferDecoder}, which turns a byte stream encoded using HTTP I{chunked} C{Transfer-Encoding} back into the original byte stream. """ def test_decoding(self): """ L{_ChunkedTransferDecoder.dataReceived} decodes chunked-encoded data and passes the result to the specified callback. """ L = [] p = http._ChunkedTransferDecoder(L.append, None) p.dataReceived(b'3\r\nabc\r\n5\r\n12345\r\n') p.dataReceived(b'a\r\n0123456789\r\n') self.assertEqual(L, [b'abc', b'12345', b'0123456789']) def test_short(self): """ L{_ChunkedTransferDecoder.dataReceived} decodes chunks broken up and delivered in multiple calls. """ L = [] finished = [] p = http._ChunkedTransferDecoder(L.append, finished.append) for s in iterbytes(b'3\r\nabc\r\n5\r\n12345\r\n0\r\n\r\n'): p.dataReceived(s) self.assertEqual(L, [b'a', b'b', b'c', b'1', b'2', b'3', b'4', b'5']) self.assertEqual(finished, [b'']) def test_newlines(self): """ L{_ChunkedTransferDecoder.dataReceived} doesn't treat CR LF pairs embedded in chunk bodies specially. """ L = [] p = http._ChunkedTransferDecoder(L.append, None) p.dataReceived(b'2\r\n\r\n\r\n') self.assertEqual(L, [b'\r\n']) def test_extensions(self): """ L{_ChunkedTransferDecoder.dataReceived} disregards chunk-extension fields. """ L = [] p = http._ChunkedTransferDecoder(L.append, None) p.dataReceived(b'3; x-foo=bar\r\nabc\r\n') self.assertEqual(L, [b'abc']) def test_finish(self): """ L{_ChunkedTransferDecoder.dataReceived} interprets a zero-length chunk as the end of the chunked data stream and calls the completion callback. """ finished = [] p = http._ChunkedTransferDecoder(None, finished.append) p.dataReceived(b'0\r\n\r\n') self.assertEqual(finished, [b'']) def test_extra(self): """ L{_ChunkedTransferDecoder.dataReceived} passes any bytes which come after the terminating zero-length chunk to the completion callback. """ finished = [] p = http._ChunkedTransferDecoder(None, finished.append) p.dataReceived(b'0\r\n\r\nhello') self.assertEqual(finished, [b'hello']) def test_afterFinished(self): """ L{_ChunkedTransferDecoder.dataReceived} raises C{RuntimeError} if it is called after it has seen the last chunk. """ p = http._ChunkedTransferDecoder(None, lambda bytes: None) p.dataReceived(b'0\r\n\r\n') self.assertRaises(RuntimeError, p.dataReceived, b'hello') def test_earlyConnectionLose(self): """ L{_ChunkedTransferDecoder.noMoreData} raises L{_DataLoss} if it is called and the end of the last trailer has not yet been received. """ parser = http._ChunkedTransferDecoder(None, lambda bytes: None) parser.dataReceived(b'0\r\n\r') exc = self.assertRaises(_DataLoss, parser.noMoreData) self.assertEqual( str(exc), "Chunked decoder in 'TRAILER' state, still expecting more data " "to get to 'FINISHED' state.") def test_finishedConnectionLose(self): """ L{_ChunkedTransferDecoder.noMoreData} does not raise any exception if it is called after the terminal zero length chunk is received. """ parser = http._ChunkedTransferDecoder(None, lambda bytes: None) parser.dataReceived(b'0\r\n\r\n') parser.noMoreData() def test_reentrantFinishedNoMoreData(self): """ L{_ChunkedTransferDecoder.noMoreData} can be called from the finished callback without raising an exception. """ errors = [] successes = [] def finished(extra): try: parser.noMoreData() except: errors.append(Failure()) else: successes.append(True) parser = http._ChunkedTransferDecoder(None, finished) parser.dataReceived(b'0\r\n\r\n') self.assertEqual(errors, []) self.assertEqual(successes, [True]) class ChunkingTests(unittest.TestCase, ResponseTestMixin): strings = [b"abcv", b"", b"fdfsd423", b"Ffasfas\r\n", b"523523\n\rfsdf", b"4234"] def testChunks(self): for s in self.strings: chunked = b''.join(http.toChunk(s)) self.assertEqual((s, b''), http.fromChunk(chunked)) self.assertRaises(ValueError, http.fromChunk, b'-5\r\nmalformed!\r\n') def testConcatenatedChunks(self): chunked = b''.join([b''.join(http.toChunk(t)) for t in self.strings]) result = [] buffer = b"" for c in iterbytes(chunked): buffer = buffer + c try: data, buffer = http.fromChunk(buffer) result.append(data) except ValueError: pass self.assertEqual(result, self.strings) def test_chunkedResponses(self): """ Test that the L{HTTPChannel} correctly chunks responses when needed. """ trans = StringTransport() channel = http.HTTPChannel() channel.makeConnection(trans) req = http.Request(channel, False) req.setResponseCode(200) req.clientproto = b"HTTP/1.1" req.responseHeaders.setRawHeaders(b"test", [b"lemur"]) req.write(b'Hello') req.write(b'World!') self.assertResponseEquals( trans.value(), [(b"HTTP/1.1 200 OK", b"Test: lemur", b"Transfer-Encoding: chunked", b"5\r\nHello\r\n6\r\nWorld!\r\n")]) def runChunkedRequest(self, httpRequest, requestFactory=None, chunkSize=1): """ Execute a web request based on plain text content, chunking the request payload. This is a stripped-down, chunking version of ParsingTests.runRequest. """ channel = http.HTTPChannel() if requestFactory: channel.requestFactory = _makeRequestProxyFactory(requestFactory) httpRequest = httpRequest.replace(b"\n", b"\r\n") header, body = httpRequest.split(b"\r\n\r\n", 1) transport = StringTransport() channel.makeConnection(transport) channel.dataReceived(header+b"\r\n\r\n") for pos in range(len(body)//chunkSize+1): if channel.transport.disconnecting: break channel.dataReceived(b"".join( http.toChunk(body[pos*chunkSize:(pos+1)*chunkSize]))) channel.dataReceived(b"".join(http.toChunk(b""))) channel.connectionLost(IOError("all done")) return channel def test_multipartFormData(self): """ Test that chunked uploads are actually processed into args. This is essentially a copy of ParsingTests.test_multipartFormData, just with chunking put in. This fails as of twisted version 18.9.0 because of bug #9678. """ processed = [] class MyRequest(http.Request): def process(self): processed.append(self) self.write(b"done") self.finish() req = b'''\ POST / HTTP/1.0 Content-Type: multipart/form-data; boundary=AaB03x Transfer-Encoding: chunked --AaB03x Content-Type: text/plain Content-Disposition: form-data; name="text" Content-Transfer-Encoding: quoted-printable abasdfg --AaB03x-- ''' channel = self.runChunkedRequest(req, MyRequest, chunkSize=5) self.assertEqual(channel.transport.value(), b"HTTP/1.0 200 OK\r\n\r\ndone") self.assertEqual(len(processed), 1) self.assertEqual(processed[0].args, {b"text": [b"abasdfg"]}) class ParsingTests(unittest.TestCase): """ Tests for protocol parsing in L{HTTPChannel}. """ def setUp(self): self.didRequest = False def runRequest(self, httpRequest, requestFactory=None, success=True, channel=None): """ Execute a web request based on plain text content. @param httpRequest: Content for the request which is processed. Each L{"\n"} will be replaced with L{"\r\n"}. @type httpRequest: C{bytes} @param requestFactory: 2-argument callable returning a Request. @type requestFactory: C{callable} @param success: Value to compare against I{self.didRequest}. @type success: C{bool} @param channel: Channel instance over which the request is processed. @type channel: L{HTTPChannel} @return: Returns the channel used for processing the request. @rtype: L{HTTPChannel} """ if not channel: channel = http.HTTPChannel() if requestFactory: channel.requestFactory = _makeRequestProxyFactory(requestFactory) httpRequest = httpRequest.replace(b"\n", b"\r\n") transport = StringTransport() channel.makeConnection(transport) # one byte at a time, to stress it. for byte in iterbytes(httpRequest): if channel.transport.disconnecting: break channel.dataReceived(byte) channel.connectionLost(IOError("all done")) if success: self.assertTrue(self.didRequest) else: self.assertFalse(self.didRequest) return channel def assertRequestRejected(self, requestLines): """ Execute a HTTP request and assert that it is rejected with a 400 Bad Response and disconnection. @param requestLines: Plain text lines of the request. These lines will be joined with newlines to form the HTTP request that is processed. @type requestLines: C{list} of C{bytes} """ httpRequest = b"\n".join(requestLines) processed = [] class MyRequest(http.Request): def process(self): processed.append(self) self.finish() channel = self.runRequest(httpRequest, MyRequest, success=False) self.assertEqual( channel.transport.value(), b"HTTP/1.1 400 Bad Request\r\n\r\n", ) self.assertTrue(channel.transport.disconnecting) self.assertEqual(processed, []) def test_invalidNonAsciiMethod(self): """ When client sends invalid HTTP method containing non-ascii characters HTTP 400 'Bad Request' status will be returned. """ processed = [] class MyRequest(http.Request): def process(self): processed.append(self) self.finish() badRequestLine = b"GE\xc2\xa9 / HTTP/1.1\r\n\r\n" channel = self.runRequest(badRequestLine, MyRequest, 0) self.assertEqual( channel.transport.value(), b"HTTP/1.1 400 Bad Request\r\n\r\n") self.assertTrue(channel.transport.disconnecting) self.assertEqual(processed, []) def test_basicAuth(self): """ L{HTTPChannel} provides username and password information supplied in an I{Authorization} header to the L{Request} which makes it available via its C{getUser} and C{getPassword} methods. """ requests = [] class Request(http.Request): def process(self): self.credentials = (self.getUser(), self.getPassword()) requests.append(self) for u, p in [(b"foo", b"bar"), (b"hello", b"there:z")]: s = base64.b64encode(b":".join((u, p))) f = b"GET / HTTP/1.0\nAuthorization: Basic " + s + b"\n\n" self.runRequest(f, Request, 0) req = requests.pop() self.assertEqual((u, p), req.credentials) def test_headers(self): """ Headers received by L{HTTPChannel} in a request are made available to the L{Request}. """ processed = [] class MyRequest(http.Request): def process(self): processed.append(self) self.finish() requestLines = [ b"GET / HTTP/1.0", b"Foo: bar", b"baz: Quux", b"baz: quux", b"", b""] self.runRequest(b'\n'.join(requestLines), MyRequest, 0) [request] = processed self.assertEqual( request.requestHeaders.getRawHeaders(b'foo'), [b'bar']) self.assertEqual( request.requestHeaders.getRawHeaders(b'bAz'), [b'Quux', b'quux']) def test_headersMultiline(self): """ Line folded headers are handled by L{HTTPChannel} by replacing each fold with a single space by the time they are made available to the L{Request}. Any leading whitespace in the folded lines of the header value is preserved. See RFC 7230 section 3.2.4. """ processed = [] class MyRequest(http.Request): def process(self): processed.append(self) self.finish() requestLines = [ b"GET / HTTP/1.0", b"nospace: ", b" nospace\t", b"space:space", b" space", b"spaces: spaces", b" spaces", b" spaces", b"tab: t", b"\ta", b"\tb", b"", b"", ] self.runRequest(b"\n".join(requestLines), MyRequest, 0) [request] = processed # All leading and trailing whitespace is stripped from the # header-value. self.assertEqual( request.requestHeaders.getRawHeaders(b"nospace"), [b"nospace"], ) self.assertEqual( request.requestHeaders.getRawHeaders(b"space"), [b"space space"], ) self.assertEqual( request.requestHeaders.getRawHeaders(b"spaces"), [b"spaces spaces spaces"], ) self.assertEqual( request.requestHeaders.getRawHeaders(b"tab"), [b"t \ta \tb"], ) def test_tooManyHeaders(self): """ C{HTTPChannel} enforces a limit of C{HTTPChannel.maxHeaders} on the number of headers received per request. """ requestLines = [b"GET / HTTP/1.0"] for i in range(http.HTTPChannel.maxHeaders + 2): requestLines.append(networkString("%s: foo" % (i,))) requestLines.extend([b"", b""]) self.assertRequestRejected(requestLines) def test_invalidContentLengthHeader(self): """ If a I{Content-Length} header with a non-integer value is received, a 400 (Bad Request) response is sent to the client and the connection is closed. """ self.assertRequestRejected([ b"GET / HTTP/1.0", b"Content-Length: x", b"", b"", ]) def test_invalidHeaderNoColon(self): """ If a header without colon is received a 400 (Bad Request) response is sent to the client and the connection is closed. """ self.assertRequestRejected([ b"GET / HTTP/1.0", b"HeaderName ", b"", b"", ]) def test_invalidHeaderOnlyColon(self): """ C{HTTPChannel} rejects a request with an empty header name (i.e. nothing before the colon). It produces a 400 (Bad Request) response is generated and closes the connection. """ self.assertRequestRejected([ b"GET / HTTP/1.0", b": foo", b"", b"", ]) def test_invalidHeaderWhitespaceBeforeColon(self): """ C{HTTPChannel} rejects a request containing a header with whitespace between the header name and colon as requried by RFC 7230 section 3.2.4. A 400 (Bad Request) response is generated and the connection closed. """ self.assertRequestRejected([ b"GET / HTTP/1.0", b"HeaderName : foo", b"", b"", ]) def test_headerLimitPerRequest(self): """ C{HTTPChannel} enforces the limit of C{HTTPChannel.maxHeaders} per request so that headers received in an earlier request do not count towards the limit when processing a later request. """ processed = [] class MyRequest(http.Request): def process(self): processed.append(self) self.finish() self.patch(http.HTTPChannel, 'maxHeaders', 1) requestLines = [ b"GET / HTTP/1.1", b"Foo: bar", b"", b"", b"GET / HTTP/1.1", b"Bar: baz", b"", b""] channel = self.runRequest(b"\n".join(requestLines), MyRequest, 0) [first, second] = processed self.assertEqual(first.getHeader(b'foo'), b'bar') self.assertEqual(second.getHeader(b'bar'), b'baz') self.assertEqual( channel.transport.value(), b'HTTP/1.1 200 OK\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'0\r\n' b'\r\n' b'HTTP/1.1 200 OK\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'0\r\n' b'\r\n') def test_headersTooBigInitialCommand(self): """ Enforces a limit of C{HTTPChannel.totalHeadersSize} on the size of headers received per request starting from initial command line. """ processed = [] class MyRequest(http.Request): def process(self): processed.append(self) self.finish() channel = http.HTTPChannel() channel.totalHeadersSize = 10 httpRequest = b'GET /path/longer/than/10 HTTP/1.1\n' channel = self.runRequest( httpRequest=httpRequest, requestFactory=MyRequest, channel=channel, success=False ) self.assertEqual(processed, []) self.assertEqual( channel.transport.value(), b"HTTP/1.1 400 Bad Request\r\n\r\n") def test_headersTooBigOtherHeaders(self): """ Enforces a limit of C{HTTPChannel.totalHeadersSize} on the size of headers received per request counting first line and total headers. """ processed = [] class MyRequest(http.Request): def process(self): processed.append(self) self.finish() channel = http.HTTPChannel() channel.totalHeadersSize = 40 httpRequest = ( b'GET /less/than/40 HTTP/1.1\n' b'Some-Header: less-than-40\n' ) channel = self.runRequest( httpRequest=httpRequest, requestFactory=MyRequest, channel=channel, success=False ) self.assertEqual(processed, []) self.assertEqual( channel.transport.value(), b"HTTP/1.1 400 Bad Request\r\n\r\n") def test_headersTooBigPerRequest(self): """ Enforces total size of headers per individual request and counter is reset at the end of each request. """ class SimpleRequest(http.Request): def process(self): self.finish() channel = http.HTTPChannel() channel.totalHeadersSize = 60 channel.requestFactory = SimpleRequest httpRequest = ( b'GET / HTTP/1.1\n' b'Some-Header: total-less-than-60\n' b'\n' b'GET / HTTP/1.1\n' b'Some-Header: less-than-60\n' b'\n' ) channel = self.runRequest( httpRequest=httpRequest, channel=channel, success=False) self.assertEqual( channel.transport.value(), b'HTTP/1.1 200 OK\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'0\r\n' b'\r\n' b'HTTP/1.1 200 OK\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'0\r\n' b'\r\n' ) def testCookies(self): """ Test cookies parsing and reading. """ httpRequest = b'''\ GET / HTTP/1.0 Cookie: rabbit="eat carrot"; ninja=secret; spam="hey 1=1!" ''' cookies = {} testcase = self class MyRequest(http.Request): def process(self): for name in [b'rabbit', b'ninja', b'spam']: cookies[name] = self.getCookie(name) testcase.didRequest = True self.finish() self.runRequest(httpRequest, MyRequest) self.assertEqual( cookies, { b'rabbit': b'"eat carrot"', b'ninja': b'secret', b'spam': b'"hey 1=1!"'}) def testGET(self): httpRequest = b'''\ GET /?key=value&multiple=two+words&multiple=more%20words&empty= HTTP/1.0 ''' method = [] args = [] testcase = self class MyRequest(http.Request): def process(self): method.append(self.method) args.extend([ self.args[b"key"], self.args[b"empty"], self.args[b"multiple"]]) testcase.didRequest = True self.finish() self.runRequest(httpRequest, MyRequest) self.assertEqual(method, [b"GET"]) self.assertEqual( args, [[b"value"], [b""], [b"two words", b"more words"]]) def test_extraQuestionMark(self): """ While only a single '?' is allowed in an URL, several other servers allow several and pass all after the first through as part of the query arguments. Test that we emulate this behavior. """ httpRequest = b'GET /foo?bar=?&baz=quux HTTP/1.0\n\n' method = [] path = [] args = [] testcase = self class MyRequest(http.Request): def process(self): method.append(self.method) path.append(self.path) args.extend([self.args[b'bar'], self.args[b'baz']]) testcase.didRequest = True self.finish() self.runRequest(httpRequest, MyRequest) self.assertEqual(method, [b'GET']) self.assertEqual(path, [b'/foo']) self.assertEqual(args, [[b'?'], [b'quux']]) def test_formPOSTRequest(self): """ The request body of a I{POST} request with a I{Content-Type} header of I{application/x-www-form-urlencoded} is parsed according to that content type and made available in the C{args} attribute of the request object. The original bytes of the request may still be read from the C{content} attribute. """ query = 'key=value&multiple=two+words&multiple=more%20words&empty=' httpRequest = networkString('''\ POST / HTTP/1.0 Content-Length: %d Content-Type: application/x-www-form-urlencoded %s''' % (len(query), query)) method = [] args = [] content = [] testcase = self class MyRequest(http.Request): def process(self): method.append(self.method) args.extend([ self.args[b'key'], self.args[b'empty'], self.args[b'multiple']]) content.append(self.content.read()) testcase.didRequest = True self.finish() self.runRequest(httpRequest, MyRequest) self.assertEqual(method, [b"POST"]) self.assertEqual( args, [[b"value"], [b""], [b"two words", b"more words"]]) # Reading from the content file-like must produce the entire request # body. self.assertEqual(content, [networkString(query)]) def test_multipartProcessingFailure(self): """ When the multipart processing fails the client gets a 400 Bad Request. """ # The parsing failure is having a UTF-8 boundary -- the spec # says it must be ASCII. req = b'''\ POST / HTTP/1.0 Content-Type: multipart/form-data; boundary=\xe2\x98\x83 Content-Length: 103 --\xe2\x98\x83 Content-Type: text/plain Content-Length: 999999999999999999999999999999999999999999999999999999999999999 Content-Transfer-Encoding: quoted-printable abasdfg --\xe2\x98\x83-- ''' channel = self.runRequest(req, http.Request, success=False) self.assertEqual( channel.transport.value(), b"HTTP/1.1 400 Bad Request\r\n\r\n") def test_multipartFormData(self): """ If the request has a Content-Type of C{multipart/form-data}, and the form data is parseable, the form arguments will be added to the request's args. """ processed = [] class MyRequest(http.Request): def process(self): processed.append(self) self.write(b"done") self.finish() req = b'''\ POST / HTTP/1.0 Content-Type: multipart/form-data; boundary=AaB03x Content-Length: 149 --AaB03x Content-Type: text/plain Content-Disposition: form-data; name="text" Content-Transfer-Encoding: quoted-printable abasdfg --AaB03x-- ''' channel = self.runRequest(req, MyRequest, success=False) self.assertEqual(channel.transport.value(), b"HTTP/1.0 200 OK\r\n\r\ndone") self.assertEqual(len(processed), 1) self.assertEqual(processed[0].args, {b"text": [b"abasdfg"]}) def test_multipartFileData(self): """ If the request has a Content-Type of C{multipart/form-data}, and the form data is parseable and contains files, the file portions will be added to the request's args. """ processed = [] class MyRequest(http.Request): def process(self): processed.append(self) self.write(b"done") self.finish() body = b"""-----------------------------738837029596785559389649595 Content-Disposition: form-data; name="uploadedfile"; filename="test" Content-Type: application/octet-stream abasdfg -----------------------------738837029596785559389649595-- """ req = '''\ POST / HTTP/1.0 Content-Type: multipart/form-data; boundary=---------------------------738837029596785559389649595 Content-Length: ''' + str(len(body.replace(b"\n", b"\r\n"))) + ''' ''' channel = self.runRequest(req.encode('ascii') + body, MyRequest, success=False) self.assertEqual(channel.transport.value(), b"HTTP/1.0 200 OK\r\n\r\ndone") self.assertEqual(len(processed), 1) self.assertEqual(processed[0].args, {b"uploadedfile": [b"abasdfg"]}) def test_chunkedEncoding(self): """ If a request uses the I{chunked} transfer encoding, the request body is decoded accordingly before it is made available on the request. """ httpRequest = b'''\ GET / HTTP/1.0 Content-Type: text/plain Transfer-Encoding: chunked 6 Hello, 14 spam,eggs spam spam 0 ''' path = [] method = [] content = [] decoder = [] testcase = self class MyRequest(http.Request): def process(self): content.append(self.content) content.append(self.content.read()) # Don't let it close the original content object. We want to # inspect it later. self.content = BytesIO() method.append(self.method) path.append(self.path) decoder.append(self.channel._transferDecoder) testcase.didRequest = True self.finish() self.runRequest(httpRequest, MyRequest) # We took responsibility for closing this when we replaced the request # attribute, above. self.addCleanup(content[0].close) assertIsFilesystemTemporary(self, content[0]) self.assertEqual(content[1], b'Hello, spam,eggs spam spam') self.assertEqual(method, [b'GET']) self.assertEqual(path, [b'/']) self.assertEqual(decoder, [None]) def test_malformedChunkedEncoding(self): """ If a request uses the I{chunked} transfer encoding, but provides an invalid chunk length value, the request fails with a 400 error. """ # See test_chunkedEncoding for the correct form of this request. httpRequest = b'''\ GET / HTTP/1.1 Content-Type: text/plain Transfer-Encoding: chunked MALFORMED_LINE_THIS_SHOULD_BE_'6' Hello, 14 spam,eggs spam spam 0 ''' didRequest = [] class MyRequest(http.Request): def process(self): # This request should fail, so this should never be called. didRequest.append(True) channel = self.runRequest(httpRequest, MyRequest, success=False) self.assertFalse(didRequest, "Request.process called") self.assertEqual( channel.transport.value(), b"HTTP/1.1 400 Bad Request\r\n\r\n") self.assertTrue(channel.transport.disconnecting) def test_basicAuthException(self): """ A L{Request} that throws an exception processing basic authorization logs an error and uses an empty username and password. """ logObserver = EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) requests = [] class Request(http.Request): def process(self): self.credentials = (self.getUser(), self.getPassword()) requests.append(self) u = b"foo" p = b"bar" s = base64.b64encode(b":".join((u, p))) f = b"GET / HTTP/1.0\nAuthorization: Basic " + s + b"\n\n" self.patch(base64, 'b64decode', lambda x: []) self.runRequest(f, Request, 0) req = requests.pop() self.assertEqual((b'', b''), req.credentials) self.assertEquals(1, len(logObserver)) event = logObserver[0] f = event["log_failure"] self.assertIsInstance(f.value, AttributeError) self.flushLoggedErrors(AttributeError) def test_duplicateContentLengths(self): """ A request which includes multiple C{content-length} headers fails with a 400 response without calling L{Request.process}. """ self.assertRequestRejected([ b'GET /a HTTP/1.1', b'Content-Length: 56', b'Content-Length: 0', b'Host: host.invalid', b'', b'', ]) def test_duplicateContentLengthsWithPipelinedRequests(self): """ Two pipelined requests, the first of which includes multiple C{content-length} headers, trigger a 400 response without calling L{Request.process}. """ self.assertRequestRejected([ b'GET /a HTTP/1.1', b'Content-Length: 56', b'Content-Length: 0', b'Host: host.invalid', b'', b'', b'GET /a HTTP/1.1', b'Host: host.invalid', b'', b'', ]) def test_contentLengthAndTransferEncoding(self): """ A request that includes both C{content-length} and C{transfer-encoding} headers fails with a 400 response without calling L{Request.process}. """ self.assertRequestRejected([ b'GET /a HTTP/1.1', b'Transfer-Encoding: chunked', b'Content-Length: 0', b'Host: host.invalid', b'', b'', ]) def test_contentLengthAndTransferEncodingWithPipelinedRequests(self): """ Two pipelined requests, the first of which includes both C{content-length} and C{transfer-encoding} headers, triggers a 400 response without calling L{Request.process}. """ self.assertRequestRejected([ b'GET /a HTTP/1.1', b'Transfer-Encoding: chunked', b'Content-Length: 0', b'Host: host.invalid', b'', b'', b'GET /a HTTP/1.1', b'Host: host.invalid', b'', b'', ]) def test_unknownTransferEncoding(self): """ A request whose C{transfer-encoding} header includes a value other than C{chunked} or C{identity} fails with a 400 response without calling L{Request.process}. """ self.assertRequestRejected([ b'GET /a HTTP/1.1', b'Transfer-Encoding: unknown', b'Host: host.invalid', b'', b'', ]) def test_transferEncodingIdentity(self): """ A request with a valid C{content-length} and a C{transfer-encoding} whose value is C{identity} succeeds. """ body = [] class SuccessfulRequest(http.Request): processed = False def process(self): body.append(self.content.read()) self.setHeader(b'content-length', b'0') self.finish() request = b'''\ GET / HTTP/1.1 Host: host.invalid Content-Length: 2 Transfer-Encoding: identity ok ''' channel = self.runRequest(request, SuccessfulRequest, False) self.assertEqual(body, [b'ok']) self.assertEqual( channel.transport.value(), b'HTTP/1.1 200 OK\r\nContent-Length: 0\r\n\r\n', ) class QueryArgumentsTests(unittest.TestCase): def testParseqs(self): self.assertEqual( parse_qs(b"a=b&d=c;+=f"), http.parse_qs(b"a=b&d=c;+=f")) self.assertRaises( ValueError, http.parse_qs, b"blah", strict_parsing=True) self.assertEqual( parse_qs(b"a=&b=c", keep_blank_values=1), http.parse_qs(b"a=&b=c", keep_blank_values=1)) self.assertEqual( parse_qs(b"a=&b=c"), http.parse_qs(b"a=&b=c")) def test_urlparse(self): """ For a given URL, L{http.urlparse} should behave the same as L{urlparse}, except it should always return C{bytes}, never text. """ def urls(): for scheme in (b'http', b'https'): for host in (b'example.com',): for port in (None, 100): for path in (b'', b'path'): if port is not None: host = host + b':' + networkString(str(port)) yield urlunsplit((scheme, host, path, b'', b'')) def assertSameParsing(url, decode): """ Verify that C{url} is parsed into the same objects by both L{http.urlparse} and L{urlparse}. """ urlToStandardImplementation = url if decode: urlToStandardImplementation = url.decode('ascii') # stdlib urlparse will give back whatever type we give it. To be # able to compare the values meaningfully, if it gives back unicode, # convert all the values to bytes. standardResult = urlparse(urlToStandardImplementation) if isinstance(standardResult.scheme, unicode): # The choice of encoding is basically irrelevant. The values # are all in ASCII. UTF-8 is, of course, the correct choice. expected = (standardResult.scheme.encode('utf-8'), standardResult.netloc.encode('utf-8'), standardResult.path.encode('utf-8'), standardResult.params.encode('utf-8'), standardResult.query.encode('utf-8'), standardResult.fragment.encode('utf-8')) else: expected = (standardResult.scheme, standardResult.netloc, standardResult.path, standardResult.params, standardResult.query, standardResult.fragment) scheme, netloc, path, params, query, fragment = http.urlparse(url) self.assertEqual( (scheme, netloc, path, params, query, fragment), expected) self.assertIsInstance(scheme, bytes) self.assertIsInstance(netloc, bytes) self.assertIsInstance(path, bytes) self.assertIsInstance(params, bytes) self.assertIsInstance(query, bytes) self.assertIsInstance(fragment, bytes) # With caching, unicode then str clear_cache() for url in urls(): assertSameParsing(url, True) assertSameParsing(url, False) # With caching, str then unicode clear_cache() for url in urls(): assertSameParsing(url, False) assertSameParsing(url, True) # Without caching for url in urls(): clear_cache() assertSameParsing(url, True) clear_cache() assertSameParsing(url, False) def test_urlparseRejectsUnicode(self): """ L{http.urlparse} should reject unicode input early. """ self.assertRaises(TypeError, http.urlparse, u'http://example.org/path') class ClientDriver(http.HTTPClient): def handleStatus(self, version, status, message): self.version = version self.status = status self.message = message class ClientStatusParsingTests(unittest.TestCase): def testBaseline(self): c = ClientDriver() c.lineReceived(b'HTTP/1.0 201 foo') self.assertEqual(c.version, b'HTTP/1.0') self.assertEqual(c.status, b'201') self.assertEqual(c.message, b'foo') def testNoMessage(self): c = ClientDriver() c.lineReceived(b'HTTP/1.0 201') self.assertEqual(c.version, b'HTTP/1.0') self.assertEqual(c.status, b'201') self.assertEqual(c.message, b'') def testNoMessage_trailingSpace(self): c = ClientDriver() c.lineReceived(b'HTTP/1.0 201 ') self.assertEqual(c.version, b'HTTP/1.0') self.assertEqual(c.status, b'201') self.assertEqual(c.message, b'') class RequestTests(unittest.TestCase, ResponseTestMixin): """ Tests for L{http.Request} """ def _compatHeadersTest(self, oldName, newName): """ Verify that each of two different attributes which are associated with the same state properly reflect changes made through the other. This is used to test that the C{headers}/C{responseHeaders} and C{received_headers}/C{requestHeaders} pairs interact properly. """ req = http.Request(DummyChannel(), False) getattr(req, newName).setRawHeaders(b"test", [b"lemur"]) self.assertEqual(getattr(req, oldName)[b"test"], b"lemur") setattr(req, oldName, {b"foo": b"bar"}) self.assertEqual( list(getattr(req, newName).getAllRawHeaders()), [(b"Foo", [b"bar"])]) setattr(req, newName, http_headers.Headers()) self.assertEqual(getattr(req, oldName), {}) def test_getHeader(self): """ L{http.Request.getHeader} returns the value of the named request header. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders(b"test", [b"lemur"]) self.assertEqual(req.getHeader(b"test"), b"lemur") def test_getRequestHostname(self): """ L{http.Request.getRequestHostname} returns the hostname portion of the request, based on the C{Host:} header. """ req = http.Request(DummyChannel(), False) def check(header, expectedHost): req.requestHeaders.setRawHeaders(b"host", [header]) self.assertEqual(req.getRequestHostname(), expectedHost) check(b"example.com", b"example.com") check(b"example.com:8443", b"example.com") check(b"192.168.1.1", b"192.168.1.1") check(b"192.168.1.1:19289", b"192.168.1.1") check(b"[2607:f0d0:1002:51::4]", b"2607:f0d0:1002:51::4") check(b"[2607:f0d0:1002:0051:0000:0000:0000:0004]", b"2607:f0d0:1002:0051:0000:0000:0000:0004") check(b"[::1]", b"::1") check(b"[::1]:8080", b"::1") check(b"[2607:f0d0:1002:51::4]:9443", b"2607:f0d0:1002:51::4") def test_getHeaderReceivedMultiples(self): """ When there are multiple values for a single request header, L{http.Request.getHeader} returns the last value. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders(b"test", [b"lemur", b"panda"]) self.assertEqual(req.getHeader(b"test"), b"panda") def test_getHeaderNotFound(self): """ L{http.Request.getHeader} returns L{None} when asked for the value of a request header which is not present. """ req = http.Request(DummyChannel(), False) self.assertEqual(req.getHeader(b"test"), None) def test_getAllHeaders(self): """ L{http.Request.getAllheaders} returns a C{dict} mapping all request header names to their corresponding values. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders(b"test", [b"lemur"]) self.assertEqual(req.getAllHeaders(), {b"test": b"lemur"}) def test_getAllHeadersNoHeaders(self): """ L{http.Request.getAllHeaders} returns an empty C{dict} if there are no request headers. """ req = http.Request(DummyChannel(), False) self.assertEqual(req.getAllHeaders(), {}) def test_getAllHeadersMultipleHeaders(self): """ When there are multiple values for a single request header, L{http.Request.getAllHeaders} returns only the last value. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders(b"test", [b"lemur", b"panda"]) self.assertEqual(req.getAllHeaders(), {b"test": b"panda"}) def test_setResponseCode(self): """ L{http.Request.setResponseCode} takes a status code and causes it to be used as the response status. """ channel = DummyChannel() req = http.Request(channel, False) req.setResponseCode(201) req.write(b'') self.assertEqual( channel.transport.written.getvalue().splitlines()[0], b"(no clientproto yet) 201 Created") def test_setResponseCodeAndMessage(self): """ L{http.Request.setResponseCode} takes a status code and a message and causes them to be used as the response status. """ channel = DummyChannel() req = http.Request(channel, False) req.setResponseCode(202, b"happily accepted") req.write(b'') self.assertEqual( channel.transport.written.getvalue().splitlines()[0], b'(no clientproto yet) 202 happily accepted') def test_setResponseCodeAndMessageNotBytes(self): """ L{http.Request.setResponseCode} accepts C{bytes} for the message parameter and raises L{TypeError} if passed anything else. """ channel = DummyChannel() req = http.Request(channel, False) self.assertRaises(TypeError, req.setResponseCode, 202, u"not happily accepted") def test_setResponseCodeAcceptsIntegers(self): """ L{http.Request.setResponseCode} accepts C{int} for the code parameter and raises L{TypeError} if passed anything else. """ req = http.Request(DummyChannel(), False) req.setResponseCode(1) self.assertRaises(TypeError, req.setResponseCode, "1") def test_setResponseCodeAcceptsLongIntegers(self): """ L{http.Request.setResponseCode} accepts C{long} for the code parameter. """ req = http.Request(DummyChannel(), False) req.setResponseCode(long(1)) def test_setLastModifiedNeverSet(self): """ When no previous value was set and no 'if-modified-since' value was requested, L{http.Request.setLastModified} takes a timestamp in seconds since the epoch and sets the request's lastModified attribute. """ req = http.Request(DummyChannel(), False) req.setLastModified(42) self.assertEqual(req.lastModified, 42) def test_setLastModifiedUpdate(self): """ If the supplied timestamp is later than the lastModified attribute's value, L{http.Request.setLastModified} updates the lastModifed attribute. """ req = http.Request(DummyChannel(), False) req.setLastModified(0) req.setLastModified(1) self.assertEqual(req.lastModified, 1) def test_setLastModifiedIgnore(self): """ If the supplied timestamp occurs earlier than the current lastModified attribute, L{http.Request.setLastModified} ignores it. """ req = http.Request(DummyChannel(), False) req.setLastModified(1) req.setLastModified(0) self.assertEqual(req.lastModified, 1) def test_setLastModifiedCached(self): """ If the resource is older than the if-modified-since date in the request header, L{http.Request.setLastModified} returns L{http.CACHED}. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( networkString('if-modified-since'), [b'02 Jan 1970 00:00:00 GMT'] ) result = req.setLastModified(42) self.assertEqual(result, http.CACHED) def test_setLastModifiedNotCached(self): """ If the resource is newer than the if-modified-since date in the request header, L{http.Request.setLastModified} returns None """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( networkString('if-modified-since'), [b'01 Jan 1970 00:00:00 GMT'] ) result = req.setLastModified(1000000) self.assertEqual(result, None) def test_setLastModifiedTwiceNotCached(self): """ When L{http.Request.setLastModified} is called multiple times, the highest supplied value is honored. If that value is higher than the if-modified-since date in the request header, the method returns None. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( networkString('if-modified-since'), [b'01 Jan 1970 00:00:01 GMT'] ) req.setLastModified(1000000) result = req.setLastModified(0) self.assertEqual(result, None) def test_setLastModifiedTwiceCached(self): """ When L{http.Request.setLastModified} is called multiple times, the highest supplied value is honored. If that value is lower than the if-modified-since date in the request header, the method returns L{http.CACHED}. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( networkString('if-modified-since'), [b'01 Jan 1999 00:00:01 GMT'] ) req.setLastModified(1) result = req.setLastModified(0) self.assertEqual(result, http.CACHED) def test_setHost(self): """ L{http.Request.setHost} sets the value of the host request header. The port should not be added because it is the default. """ req = http.Request(DummyChannel(), False) req.setHost(b"example.com", 80) self.assertEqual( req.requestHeaders.getRawHeaders(b"host"), [b"example.com"]) def test_setHostSSL(self): """ L{http.Request.setHost} sets the value of the host request header. The port should not be added because it is the default. """ d = DummyChannel() d.transport = DummyChannel.SSL() req = http.Request(d, False) req.setHost(b"example.com", 443) self.assertEqual( req.requestHeaders.getRawHeaders(b"host"), [b"example.com"]) def test_setHostNonDefaultPort(self): """ L{http.Request.setHost} sets the value of the host request header. The port should be added because it is not the default. """ req = http.Request(DummyChannel(), False) req.setHost(b"example.com", 81) self.assertEqual( req.requestHeaders.getRawHeaders(b"host"), [b"example.com:81"]) def test_setHostSSLNonDefaultPort(self): """ L{http.Request.setHost} sets the value of the host request header. The port should be added because it is not the default. """ d = DummyChannel() d.transport = DummyChannel.SSL() req = http.Request(d, False) req.setHost(b"example.com", 81) self.assertEqual( req.requestHeaders.getRawHeaders(b"host"), [b"example.com:81"]) def test_setHeader(self): """ L{http.Request.setHeader} sets the value of the given response header. """ req = http.Request(DummyChannel(), False) req.setHeader(b"test", b"lemur") self.assertEqual(req.responseHeaders.getRawHeaders(b"test"), [b"lemur"]) def _checkCookie(self, expectedCookieValue, *args, **kwargs): """ Call L{http.Request.addCookie} with C{*args} and C{**kwargs}, and check that the cookie value is equal to C{expectedCookieValue}. """ channel = DummyChannel() req = http.Request(channel, False) req.addCookie(*args, **kwargs) self.assertEqual(req.cookies[0], expectedCookieValue) # Write nothing to make it produce the headers req.write(b"") writtenLines = channel.transport.written.getvalue().split(b"\r\n") # There should be one Set-Cookie header addCookieLines = [x for x in writtenLines if x.startswith(b"Set-Cookie")] self.assertEqual(len(addCookieLines), 1) self.assertEqual(addCookieLines[0], b"Set-Cookie: " + expectedCookieValue) def test_addCookieWithMinimumArgumentsUnicode(self): """ L{http.Request.addCookie} adds a new cookie to be sent with the response, and can be called with just a key and a value. L{unicode} arguments are encoded using UTF-8. """ expectedCookieValue = b"foo=bar" self._checkCookie(expectedCookieValue, u"foo", u"bar") def test_addCookieWithAllArgumentsUnicode(self): """ L{http.Request.addCookie} adds a new cookie to be sent with the response. L{unicode} arguments are encoded using UTF-8. """ expectedCookieValue = ( b"foo=bar; Expires=Fri, 31 Dec 9999 23:59:59 GMT; " b"Domain=.example.com; Path=/; Max-Age=31536000; " b"Comment=test; Secure; HttpOnly") self._checkCookie(expectedCookieValue, u"foo", u"bar", expires=u"Fri, 31 Dec 9999 23:59:59 GMT", domain=u".example.com", path=u"/", max_age=u"31536000", comment=u"test", secure=True, httpOnly=True) def test_addCookieWithMinimumArgumentsBytes(self): """ L{http.Request.addCookie} adds a new cookie to be sent with the response, and can be called with just a key and a value. L{bytes} arguments are not decoded. """ expectedCookieValue = b"foo=bar" self._checkCookie(expectedCookieValue, b"foo", b"bar") def test_addCookieWithAllArgumentsBytes(self): """ L{http.Request.addCookie} adds a new cookie to be sent with the response. L{bytes} arguments are not decoded. """ expectedCookieValue = ( b"foo=bar; Expires=Fri, 31 Dec 9999 23:59:59 GMT; " b"Domain=.example.com; Path=/; Max-Age=31536000; " b"Comment=test; Secure; HttpOnly") self._checkCookie( expectedCookieValue, b"foo", b"bar", expires=b"Fri, 31 Dec 9999 23:59:59 GMT", domain=b".example.com", path=b"/", max_age=b"31536000", comment=b"test", secure=True, httpOnly=True) def test_addCookieSanitization(self): """ L{http.Request.addCookie} replaces linear whitespace and semicolons with single spaces. """ def cookieValue(key, value): return b'='.join([key, value]) arguments = [('expires', b'Expires'), ('domain', b'Domain'), ('path', b'Path'), ('max_age', b'Max-Age'), ('comment', b'Comment')] inputsAndOutputs = list( zip(textLinearWhitespaceComponents + bytesLinearWhitespaceComponents, cycle([sanitizedBytes]))) inputsAndOutputs = [ ["Foo; bar", b"Foo bar"], [b"Foo; bar", b"Foo bar"], ] for inputValue, outputValue in inputsAndOutputs: self._checkCookie(cookieValue(outputValue, outputValue), inputValue, inputValue) for argument, parameter in arguments: expected = b"; ".join([ cookieValue(outputValue, outputValue), cookieValue(parameter, outputValue), ]) self._checkCookie(expected, inputValue, inputValue, **{argument: inputValue}) def test_addCookieSameSite(self): """ L{http.Request.setCookie} supports a C{sameSite} argument. """ self._checkCookie( b"foo=bar; SameSite=lax", b"foo", b"bar", sameSite="lax") self._checkCookie( b"foo=bar; SameSite=lax", b"foo", b"bar", sameSite="Lax") self._checkCookie( b"foo=bar; SameSite=strict", b"foo", b"bar", sameSite="strict") self.assertRaises( ValueError, self._checkCookie, b"", b"foo", b"bar", sameSite="anything-else") def test_firstWrite(self): """ For an HTTP 1.0 request, L{http.Request.write} sends an HTTP 1.0 Response-Line and whatever response headers are set. """ channel = DummyChannel() req = http.Request(channel, False) trans = StringTransport() channel.transport = trans req.setResponseCode(200) req.clientproto = b"HTTP/1.0" req.responseHeaders.setRawHeaders(b"test", [b"lemur"]) req.write(b'Hello') self.assertResponseEquals( trans.value(), [(b"HTTP/1.0 200 OK", b"Test: lemur", b"Hello")]) def test_firstWriteHTTP11Chunked(self): """ For an HTTP 1.1 request, L{http.Request.write} sends an HTTP 1.1 Response-Line, whatever response headers are set, and uses chunked encoding for the response body. """ channel = DummyChannel() req = http.Request(channel, False) trans = StringTransport() channel.transport = trans req.setResponseCode(200) req.clientproto = b"HTTP/1.1" req.responseHeaders.setRawHeaders(b"test", [b"lemur"]) req.write(b'Hello') req.write(b'World!') self.assertResponseEquals( trans.value(), [(b"HTTP/1.1 200 OK", b"Test: lemur", b"Transfer-Encoding: chunked", b"5\r\nHello\r\n6\r\nWorld!\r\n")]) def test_firstWriteLastModified(self): """ For an HTTP 1.0 request for a resource with a known last modified time, L{http.Request.write} sends an HTTP Response-Line, whatever response headers are set, and a last-modified header with that time. """ channel = DummyChannel() req = http.Request(channel, False) trans = StringTransport() channel.transport = trans req.setResponseCode(200) req.clientproto = b"HTTP/1.0" req.lastModified = 0 req.responseHeaders.setRawHeaders(b"test", [b"lemur"]) req.write(b'Hello') self.assertResponseEquals( trans.value(), [(b"HTTP/1.0 200 OK", b"Test: lemur", b"Last-Modified: Thu, 01 Jan 1970 00:00:00 GMT", b"Hello")] ) def test_lastModifiedAlreadyWritten(self): """ If the last-modified header already exists in the L{http.Request} response headers, the lastModified attribute is ignored and a message is logged. """ logObserver = EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) channel = DummyChannel() req = http.Request(channel, False) trans = StringTransport() channel.transport = trans req.setResponseCode(200) req.clientproto = b"HTTP/1.0" req.lastModified = 1000000000 req.responseHeaders.setRawHeaders( b"last-modified", [b"Thu, 01 Jan 1970 00:00:00 GMT"] ) req.write(b'Hello') self.assertResponseEquals( trans.value(), [(b"HTTP/1.0 200 OK", b"Last-Modified: Thu, 01 Jan 1970 00:00:00 GMT", b"Hello")]) self.assertEquals(1, len(logObserver)) event = logObserver[0] self.assertEquals( "Warning: last-modified specified both in" " header list and lastModified attribute.", event["log_format"] ) def test_receivedCookiesDefault(self): """ L{http.Request.received_cookies} defaults to an empty L{dict}. """ req = http.Request(DummyChannel(), False) self.assertEqual(req.received_cookies, {}) def test_parseCookies(self): """ L{http.Request.parseCookies} extracts cookies from C{requestHeaders} and adds them to C{received_cookies}. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( b"cookie", [b'test="lemur"; test2="panda"']) req.parseCookies() self.assertEqual( req.received_cookies, {b"test": b'"lemur"', b"test2": b'"panda"'}) def test_parseCookiesMultipleHeaders(self): """ L{http.Request.parseCookies} can extract cookies from multiple Cookie headers. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( b"cookie", [b'test="lemur"', b'test2="panda"']) req.parseCookies() self.assertEqual( req.received_cookies, {b"test": b'"lemur"', b"test2": b'"panda"'}) def test_parseCookiesNoCookie(self): """ L{http.Request.parseCookies} can be called on a request without a cookie header. """ req = http.Request(DummyChannel(), False) req.parseCookies() self.assertEqual(req.received_cookies, {}) def test_parseCookiesEmptyCookie(self): """ L{http.Request.parseCookies} can be called on a request with an empty cookie header. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( b"cookie", []) req.parseCookies() self.assertEqual(req.received_cookies, {}) def test_parseCookiesIgnoreValueless(self): """ L{http.Request.parseCookies} ignores cookies which don't have a value. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( b"cookie", [b'foo; bar; baz;']) req.parseCookies() self.assertEqual( req.received_cookies, {}) def test_parseCookiesEmptyValue(self): """ L{http.Request.parseCookies} parses cookies with an empty value. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( b"cookie", [b'foo=']) req.parseCookies() self.assertEqual( req.received_cookies, {b'foo': b''}) def test_parseCookiesRetainRightSpace(self): """ L{http.Request.parseCookies} leaves trailing whitespace in the cookie value. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( b"cookie", [b'foo=bar ']) req.parseCookies() self.assertEqual( req.received_cookies, {b'foo': b'bar '}) def test_parseCookiesStripLeftSpace(self): """ L{http.Request.parseCookies} strips leading whitespace in the cookie key. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( b"cookie", [b' foo=bar']) req.parseCookies() self.assertEqual( req.received_cookies, {b'foo': b'bar'}) def test_parseCookiesContinueAfterMalformedCookie(self): """ L{http.Request.parseCookies} parses valid cookies set before or after malformed cookies. """ req = http.Request(DummyChannel(), False) req.requestHeaders.setRawHeaders( b"cookie", [b'12345; test="lemur"; 12345; test2="panda"; 12345']) req.parseCookies() self.assertEqual( req.received_cookies, {b"test": b'"lemur"', b"test2": b'"panda"'}) def test_connectionLost(self): """ L{http.Request.connectionLost} closes L{Request.content} and drops the reference to the L{HTTPChannel} to assist with garbage collection. """ req = http.Request(DummyChannel(), False) # Cause Request.content to be created at all. req.gotLength(10) # Grab a reference to content in case the Request drops it later on. content = req.content # Put some bytes into it req.handleContentChunk(b"hello") # Then something goes wrong and content should get closed. req.connectionLost(Failure(ConnectionLost("Finished"))) self.assertTrue(content.closed) self.assertIdentical(req.channel, None) def test_registerProducerTwiceFails(self): """ Calling L{Request.registerProducer} when a producer is already registered raises ValueError. """ req = http.Request(DummyChannel(), False) req.registerProducer(DummyProducer(), True) self.assertRaises( ValueError, req.registerProducer, DummyProducer(), True) def test_registerProducerWhenNotQueuedRegistersPushProducer(self): """ Calling L{Request.registerProducer} with an IPushProducer when the request is not queued registers the producer as a push producer on the request's transport. """ req = http.Request(DummyChannel(), False) producer = DummyProducer() req.registerProducer(producer, True) self.assertEqual([(producer, True)], req.transport.producers) def test_registerProducerWhenNotQueuedRegistersPullProducer(self): """ Calling L{Request.registerProducer} with an IPullProducer when the request is not queued registers the producer as a pull producer on the request's transport. """ req = http.Request(DummyChannel(), False) producer = DummyProducer() req.registerProducer(producer, False) self.assertEqual([(producer, False)], req.transport.producers) def test_connectionLostNotification(self): """ L{Request.connectionLost} triggers all finish notification Deferreds and cleans up per-request state. """ d = DummyChannel() request = http.Request(d, True) finished = request.notifyFinish() request.connectionLost(Failure(ConnectionLost("Connection done"))) self.assertIdentical(request.channel, None) return self.assertFailure(finished, ConnectionLost) def test_finishNotification(self): """ L{Request.finish} triggers all finish notification Deferreds. """ request = http.Request(DummyChannel(), False) finished = request.notifyFinish() # Force the request to have a non-None content attribute. This is # probably a bug in Request. request.gotLength(1) request.finish() return finished def test_writeAfterFinish(self): """ Calling L{Request.write} after L{Request.finish} has been called results in a L{RuntimeError} being raised. """ request = http.Request(DummyChannel(), False) finished = request.notifyFinish() # Force the request to have a non-None content attribute. This is # probably a bug in Request. request.gotLength(1) request.write(b'foobar') request.finish() self.assertRaises(RuntimeError, request.write, b'foobar') return finished def test_finishAfterConnectionLost(self): """ Calling L{Request.finish} after L{Request.connectionLost} has been called results in a L{RuntimeError} being raised. """ channel = DummyChannel() req = http.Request(channel, False) req.connectionLost(Failure(ConnectionLost("The end."))) self.assertRaises(RuntimeError, req.finish) def test_writeAfterConnectionLost(self): """ Calling L{Request.write} after L{Request.connectionLost} has been called does not raise an exception. L{RuntimeError} will be raised when finish is called on the request. """ channel = DummyChannel() req = http.Request(channel, False) req.connectionLost(Failure(ConnectionLost("The end."))) req.write(b'foobar') self.assertRaises(RuntimeError, req.finish) def test_reprUninitialized(self): """ L{Request.__repr__} returns the class name, object address, and dummy-place holder values when used on a L{Request} which has not yet been initialized. """ request = http.Request(DummyChannel(), False) self.assertEqual( repr(request), '<Request at 0x%x method=(no method yet) uri=(no uri yet) ' 'clientproto=(no clientproto yet)>' % (id(request),)) def test_reprInitialized(self): """ L{Request.__repr__} returns, as a L{str}, the class name, object address, and the method, uri, and client protocol of the HTTP request it represents. The string is in the form:: <Request at ADDRESS method=METHOD uri=URI clientproto=PROTOCOL> """ request = http.Request(DummyChannel(), False) request.clientproto = b'HTTP/1.0' request.method = b'GET' request.uri = b'/foo/bar' self.assertEqual( repr(request), '<Request at 0x%x method=GET uri=/foo/bar ' 'clientproto=HTTP/1.0>' % (id(request),)) def test_reprSubclass(self): """ Subclasses of L{Request} inherit a C{__repr__} implementation which includes the subclass's name in place of the string C{"Request"}. """ class Otherwise(http.Request): pass request = Otherwise(DummyChannel(), False) self.assertEqual( repr(request), '<Otherwise at 0x%x method=(no method yet) uri=(no uri yet) ' 'clientproto=(no clientproto yet)>' % (id(request),)) def test_unregisterNonQueuedNonStreamingProducer(self): """ L{Request.unregisterProducer} unregisters a non-queued non-streaming producer from the request and the request's transport. """ req = http.Request(DummyChannel(), False) req.transport = StringTransport() req.registerProducer(DummyProducer(), False) req.unregisterProducer() self.assertEqual((None, None), (req.producer, req.transport.producer)) def test_unregisterNonQueuedStreamingProducer(self): """ L{Request.unregisterProducer} unregisters a non-queued streaming producer from the request and the request's transport. """ req = http.Request(DummyChannel(), False) req.transport = StringTransport() req.registerProducer(DummyProducer(), True) req.unregisterProducer() self.assertEqual((None, None), (req.producer, req.transport.producer)) def test_finishProducesLog(self): """ L{http.Request.finish} will call the channel's factory to produce a log message. """ factory = http.HTTPFactory() factory.timeOut = None factory._logDateTime = "sometime" factory._logDateTimeCall = True factory.startFactory() factory.logFile = BytesIO() proto = factory.buildProtocol(None) val = [ b"GET /path HTTP/1.1\r\n", b"\r\n\r\n" ] trans = StringTransport() proto.makeConnection(trans) for x in val: proto.dataReceived(x) proto._channel.requests[0].finish() # A log message should be written out self.assertIn(b'sometime "GET /path HTTP/1.1"', factory.logFile.getvalue()) def test_requestBodyTimeoutFromFactory(self): """ L{HTTPChannel} timeouts whenever data from a request body is not delivered to it in time, even when it gets built from a L{HTTPFactory}. """ clock = Clock() factory = http.HTTPFactory(timeout=100, reactor=clock) factory.startFactory() protocol = factory.buildProtocol(None) transport = StringTransport() protocol = parametrizeTimeoutMixin(protocol, clock) # Confirm that the timeout is what we think it is. self.assertEqual(protocol.timeOut, 100) protocol.makeConnection(transport) protocol.dataReceived(b'POST / HTTP/1.0\r\nContent-Length: 2\r\n\r\n') clock.advance(99) self.assertFalse(transport.disconnecting) clock.advance(2) self.assertTrue(transport.disconnecting) def test_finishCleansConnection(self): """ L{http.Request.finish} will notify the channel that it is finished, and will put the transport back in the producing state so that the reactor can close the connection. """ factory = http.HTTPFactory() factory.timeOut = None factory._logDateTime = "sometime" factory._logDateTimeCall = True factory.startFactory() factory.logFile = BytesIO() proto = factory.buildProtocol(None) proto._channel._optimisticEagerReadSize = 0 val = [ b"GET /path HTTP/1.1\r\n", b"\r\n\r\n" ] trans = StringTransport() proto.makeConnection(trans) self.assertEqual(trans.producerState, 'producing') for x in val: proto.dataReceived(x) proto.dataReceived(b'GET ') # just a few extra bytes to exhaust the # optimistic buffer size self.assertEqual(trans.producerState, 'paused') proto._channel.requests[0].finish() self.assertEqual(trans.producerState, 'producing') def test_provides_IDeprecatedHTTPChannelToRequestInterface(self): """ L{http.Request} provides L{http._IDeprecatedHTTPChannelToRequestInterface}, which defines the interface used by L{http.HTTPChannel}. """ req = http.Request(DummyChannel(), False) verifyObject(http._IDeprecatedHTTPChannelToRequestInterface, req) def test_eq(self): """ A L{http.Request} is equal to itself. """ req = http.Request(DummyChannel(), False) self.assertEqual(req, req) def test_ne(self): """ A L{http.Request} is not equal to another object. """ req = http.Request(DummyChannel(), False) self.assertNotEqual(req, http.Request(DummyChannel(), False)) def test_hashable(self): """ A L{http.Request} is hashable. """ req = http.Request(DummyChannel(), False) hash(req) def test_eqWithNonRequest(self): """ A L{http.Request} on the left hand side of an equality comparison to an instance that is not a L{http.Request} hands the comparison off to that object's C{__eq__} implementation. """ eqCalls = [] class _NotARequest: def __eq__(self, other: object) -> bool: eqCalls.append(other) return True req = http.Request(DummyChannel(), False) self.assertEqual(req, _NotARequest()) self.assertEqual(eqCalls, [req]) def test_neWithNonRequest(self): """ A L{http.Request} on the left hand side of an inequality comparison to an instance that is not a L{http.Request} hands the comparison off to that object's C{__ne__} implementation. """ eqCalls = [] class _NotARequest: def __ne__(self, other: object) -> bool: eqCalls.append(other) return True req = http.Request(DummyChannel(), False) self.assertNotEqual(req, _NotARequest()) self.assertEqual(eqCalls, [req]) def test_finishProducerStillRegistered(self): """ A RuntimeError is logged if a producer is still registered when an L{http.Request} is finished. """ logObserver = EventLoggingObserver.createWithCleanup( self, globalLogPublisher ) request = http.Request(DummyChannel(), False) request.registerProducer(DummyProducer(), True) request.finish() self.assertEquals(1, len(logObserver)) event = logObserver[0] f = event["log_failure"] self.assertIsInstance(f.value, RuntimeError) self.flushLoggedErrors(RuntimeError) def test_getClientIPWithIPv4(self): """ L{http.Request.getClientIP} returns the host part of the client's address when connected over IPv4. """ request = http.Request( DummyChannel(peer=address.IPv6Address("TCP", "127.0.0.1", 12344))) self.assertEqual(request.getClientIP(), "127.0.0.1") def test_getClientIPWithIPv6(self): """ L{http.Request.getClientIP} returns the host part of the client's address when connected over IPv6. """ request = http.Request( DummyChannel(peer=address.IPv6Address("TCP", "::1", 12344))) self.assertEqual(request.getClientIP(), "::1") def test_getClientIPWithNonTCPPeer(self): """ L{http.Request.getClientIP} returns L{None} for the client's IP address when connected over a non-TCP transport. """ request = http.Request( DummyChannel(peer=address.UNIXAddress("/path/to/socket"))) self.assertEqual(request.getClientIP(), None) def test_getClientAddress(self): """ L{http.Request.getClientAddress} returns the client's address as an L{IAddress} provider. """ client = address.UNIXAddress("/path/to/socket") request = http.Request(DummyChannel(peer=client)) self.assertIs(request.getClientAddress(), client) class MultilineHeadersTests(unittest.TestCase): """ Tests to exercise handling of multiline headers by L{HTTPClient}. RFCs 1945 (HTTP 1.0) and 2616 (HTTP 1.1) state that HTTP message header fields can span multiple lines if each extra line is preceded by at least one space or horizontal tab. """ def setUp(self): """ Initialize variables used to verify that the header-processing functions are getting called. """ self.handleHeaderCalled = False self.handleEndHeadersCalled = False # Dictionary of sample complete HTTP header key/value pairs, including # multiline headers. expectedHeaders = {b'Content-Length': b'10', b'X-Multiline' : b'line-0\tline-1', b'X-Multiline2' : b'line-2 line-3'} def ourHandleHeader(self, key, val): """ Dummy implementation of L{HTTPClient.handleHeader}. """ self.handleHeaderCalled = True self.assertEqual(val, self.expectedHeaders[key]) def ourHandleEndHeaders(self): """ Dummy implementation of L{HTTPClient.handleEndHeaders}. """ self.handleEndHeadersCalled = True def test_extractHeader(self): """ A header isn't processed by L{HTTPClient.extractHeader} until it is confirmed in L{HTTPClient.lineReceived} that the header has been received completely. """ c = ClientDriver() c.handleHeader = self.ourHandleHeader c.handleEndHeaders = self.ourHandleEndHeaders c.lineReceived(b'HTTP/1.0 201') c.lineReceived(b'Content-Length: 10') self.assertIdentical(c.length, None) self.assertFalse(self.handleHeaderCalled) self.assertFalse(self.handleEndHeadersCalled) # Signal end of headers. c.lineReceived(b'') self.assertTrue(self.handleHeaderCalled) self.assertTrue(self.handleEndHeadersCalled) self.assertEqual(c.length, 10) def test_noHeaders(self): """ An HTTP request with no headers will not cause any calls to L{handleHeader} but will cause L{handleEndHeaders} to be called on L{HTTPClient} subclasses. """ c = ClientDriver() c.handleHeader = self.ourHandleHeader c.handleEndHeaders = self.ourHandleEndHeaders c.lineReceived(b'HTTP/1.0 201') # Signal end of headers. c.lineReceived(b'') self.assertFalse(self.handleHeaderCalled) self.assertTrue(self.handleEndHeadersCalled) self.assertEqual(c.version, b'HTTP/1.0') self.assertEqual(c.status, b'201') def test_multilineHeaders(self): """ L{HTTPClient} parses multiline headers by buffering header lines until an empty line or a line that does not start with whitespace hits lineReceived, confirming that the header has been received completely. """ c = ClientDriver() c.handleHeader = self.ourHandleHeader c.handleEndHeaders = self.ourHandleEndHeaders c.lineReceived(b'HTTP/1.0 201') c.lineReceived(b'X-Multiline: line-0') self.assertFalse(self.handleHeaderCalled) # Start continuing line with a tab. c.lineReceived(b'\tline-1') c.lineReceived(b'X-Multiline2: line-2') # The previous header must be complete, so now it can be processed. self.assertTrue(self.handleHeaderCalled) # Start continuing line with a space. c.lineReceived(b' line-3') c.lineReceived(b'Content-Length: 10') # Signal end of headers. c.lineReceived(b'') self.assertTrue(self.handleEndHeadersCalled) self.assertEqual(c.version, b'HTTP/1.0') self.assertEqual(c.status, b'201') self.assertEqual(c.length, 10) class Expect100ContinueServerTests(unittest.TestCase, ResponseTestMixin): """ Test that the HTTP server handles 'Expect: 100-continue' header correctly. The tests in this class all assume a simplistic behavior where user code cannot choose to deny a request. Once ticket #288 is implemented and user code can run before the body of a POST is processed this should be extended to support overriding this behavior. """ def test_HTTP10(self): """ HTTP/1.0 requests do not get 100-continue returned, even if 'Expect: 100-continue' is included (RFC 2616 10.1.1). """ transport = StringTransport() channel = http.HTTPChannel() channel.requestFactory = DummyHTTPHandlerProxy channel.makeConnection(transport) channel.dataReceived(b"GET / HTTP/1.0\r\n") channel.dataReceived(b"Host: www.example.com\r\n") channel.dataReceived(b"Content-Length: 3\r\n") channel.dataReceived(b"Expect: 100-continue\r\n") channel.dataReceived(b"\r\n") self.assertEqual(transport.value(), b"") channel.dataReceived(b"abc") self.assertResponseEquals( transport.value(), [(b"HTTP/1.0 200 OK", b"Command: GET", b"Content-Length: 13", b"Version: HTTP/1.0", b"Request: /", b"'''\n3\nabc'''\n")]) def test_expect100ContinueHeader(self): """ If a HTTP/1.1 client sends a 'Expect: 100-continue' header, the server responds with a 100 response code before handling the request body, if any. The normal resource rendering code will then be called, which will send an additional response code. """ transport = StringTransport() channel = http.HTTPChannel() channel.requestFactory = DummyHTTPHandlerProxy channel.makeConnection(transport) channel.dataReceived(b"GET / HTTP/1.1\r\n") channel.dataReceived(b"Host: www.example.com\r\n") channel.dataReceived(b"Expect: 100-continue\r\n") channel.dataReceived(b"Content-Length: 3\r\n") # The 100 continue response is not sent until all headers are # received: self.assertEqual(transport.value(), b"") channel.dataReceived(b"\r\n") # The 100 continue response is sent *before* the body is even # received: self.assertEqual(transport.value(), b"HTTP/1.1 100 Continue\r\n\r\n") channel.dataReceived(b"abc") response = transport.value() self.assertTrue( response.startswith(b"HTTP/1.1 100 Continue\r\n\r\n")) response = response[len(b"HTTP/1.1 100 Continue\r\n\r\n"):] self.assertResponseEquals( response, [(b"HTTP/1.1 200 OK", b"Command: GET", b"Content-Length: 13", b"Version: HTTP/1.1", b"Request: /", b"'''\n3\nabc'''\n")]) def sub(keys, d): """ Create a new dict containing only a subset of the items of an existing dict. @param keys: An iterable of the keys which will be added (with values from C{d}) to the result. @param d: The existing L{dict} from which to copy items. @return: The new L{dict} with keys given by C{keys} and values given by the corresponding values in C{d}. @rtype: L{dict} """ return dict([(k, d[k]) for k in keys]) class DeprecatedRequestAttributesTests(unittest.TestCase): """ Tests for deprecated attributes of L{twisted.web.http.Request}. """ def test_getClientIP(self): """ L{Request.getClientIP} is deprecated in favor of L{Request.getClientAddress}. """ request = http.Request( DummyChannel(peer=address.IPv6Address("TCP", "127.0.0.1", 12345))) request.gotLength(0) request.requestReceived(b"GET", b"/", b"HTTP/1.1") request.getClientIP() warnings = self.flushWarnings( offendingFunctions=[self.test_getClientIP]) self.assertEqual(1, len(warnings)) self.assertEqual({ "category": DeprecationWarning, "message": ( "twisted.web.http.Request.getClientIP was deprecated " "in Twisted 18.4.0; please use getClientAddress instead")}, sub(["category", "message"], warnings[0])) def test_noLongerQueued(self): """ L{Request.noLongerQueued} is deprecated, as we no longer process requests simultaneously. """ channel = DummyChannel() request = http.Request(channel) request.noLongerQueued() warnings = self.flushWarnings( offendingFunctions=[self.test_noLongerQueued]) self.assertEqual(1, len(warnings)) self.assertEqual({ "category": DeprecationWarning, "message": ( "twisted.web.http.Request.noLongerQueued was deprecated " "in Twisted 16.3.0")}, sub(["category", "message"], warnings[0])) class ChannelProductionTests(unittest.TestCase): """ Tests for the way HTTPChannel manages backpressure. """ request = ( b'GET / HTTP/1.1\r\n' b'Host: localhost\r\n' b'\r\n' ) def buildChannelAndTransport(self, transport, requestFactory): """ Setup a L{HTTPChannel} and a transport and associate them. @param transport: A transport to back the L{HTTPChannel} @param requestFactory: An object that can construct L{Request} objects. @return: A tuple of the channel and the transport. """ transport = transport channel = http.HTTPChannel() channel.requestFactory = _makeRequestProxyFactory(requestFactory) channel.makeConnection(transport) return channel, transport def test_HTTPChannelIsAProducer(self): """ L{HTTPChannel} registers itself as a producer with its transport when a connection is made. """ channel, transport = self.buildChannelAndTransport( StringTransport(), DummyHTTPHandler ) self.assertEqual(transport.producer, channel) self.assertTrue(transport.streaming) def test_HTTPChannelUnregistersSelfWhenCallingLoseConnection(self): """ L{HTTPChannel} unregisters itself when it has loseConnection called. """ channel, transport = self.buildChannelAndTransport( StringTransport(), DummyHTTPHandler ) channel.loseConnection() self.assertIs(transport.producer, None) self.assertIs(transport.streaming, None) def test_HTTPChannelRejectsMultipleProducers(self): """ If two producers are registered on a L{HTTPChannel} without the first being unregistered, a L{RuntimeError} is thrown. """ channel, transport = self.buildChannelAndTransport( StringTransport(), DummyHTTPHandler ) channel.registerProducer(DummyProducer(), True) self.assertRaises( RuntimeError, channel.registerProducer, DummyProducer(), True ) def test_HTTPChannelCanUnregisterWithNoProducer(self): """ If there is no producer, the L{HTTPChannel} can still have C{unregisterProducer} called. """ channel, transport = self.buildChannelAndTransport( StringTransport(), DummyHTTPHandler ) channel.unregisterProducer() self.assertIs(channel._requestProducer, None) def test_HTTPChannelStopWithNoRequestOutstanding(self): """ If there is no request producer currently registered, C{stopProducing} does nothing. """ channel, transport = self.buildChannelAndTransport( StringTransport(), DummyHTTPHandler ) channel.unregisterProducer() self.assertIs(channel._requestProducer, None) def test_HTTPChannelStopRequestProducer(self): """ If there is a request producer registered with L{HTTPChannel}, calling C{stopProducing} causes that producer to be stopped as well. """ channel, transport = self.buildChannelAndTransport( StringTransport(), DelayedHTTPHandler ) # Feed a request in to spawn a Request object, then grab it. channel.dataReceived(self.request) request = channel.requests[0].original # Register a dummy producer. producer = DummyProducer() request.registerProducer(producer, True) # The dummy producer is currently unpaused. self.assertEqual(producer.events, []) # The transport now stops production. This stops the request producer. channel.stopProducing() self.assertEqual(producer.events, ['stop']) def test_HTTPChannelPropagatesProducingFromTransportToTransport(self): """ When L{HTTPChannel} has C{pauseProducing} called on it by the transport it will call C{pauseProducing} on the transport. When unpaused, the L{HTTPChannel} will call C{resumeProducing} on its transport. """ channel, transport = self.buildChannelAndTransport( StringTransport(), DummyHTTPHandler ) # The transport starts in producing state. self.assertEqual(transport.producerState, 'producing') # Pause producing. The transport should now be paused as well. channel.pauseProducing() self.assertEqual(transport.producerState, 'paused') # Resume producing. The transport should be unpaused. channel.resumeProducing() self.assertEqual(transport.producerState, 'producing') def test_HTTPChannelPropagatesPausedProductionToRequest(self): """ If a L{Request} object has registered itself as a producer with a L{HTTPChannel} object, and the L{HTTPChannel} object is paused, both the transport and L{Request} objects get paused. """ channel, transport = self.buildChannelAndTransport( StringTransport(), DelayedHTTPHandler ) channel._optimisticEagerReadSize = 0 # Feed a request in to spawn a Request object, then grab it. channel.dataReceived(self.request) # A little extra data to pause the transport. channel.dataReceived(b'123') request = channel.requests[0].original # Register a dummy producer. producer = DummyProducer() request.registerProducer(producer, True) # Note that the transport is paused while it waits for a response. # The dummy producer, however, is unpaused. self.assertEqual(transport.producerState, 'paused') self.assertEqual(producer.events, []) # The transport now pauses production. This causes the producer to be # paused. The transport stays paused. channel.pauseProducing() self.assertEqual(transport.producerState, 'paused') self.assertEqual(producer.events, ['pause']) # The transport has become unblocked and resumes production. This # unblocks the dummy producer, but leaves the transport blocked. channel.resumeProducing() self.assertEqual(transport.producerState, 'paused') self.assertEqual(producer.events, ['pause', 'resume']) # Unregister the producer and then complete the response. Because the # channel is not paused, the transport now gets unpaused. request.unregisterProducer() request.delayedProcess() self.assertEqual(transport.producerState, 'producing') def test_HTTPChannelStaysPausedWhenRequestCompletes(self): """ If a L{Request} object completes its response while the transport is paused, the L{HTTPChannel} does not resume the transport. """ channel, transport = self.buildChannelAndTransport( StringTransport(), DelayedHTTPHandler ) channel._optimisticEagerReadSize = 0 # Feed a request in to spawn a Request object, then grab it. channel.dataReceived(self.request) channel.dataReceived(b'extra') # exceed buffer size to pause the # transport. request = channel.requests[0].original # Register a dummy producer. producer = DummyProducer() request.registerProducer(producer, True) # Note that the transport is paused while it waits for a response. # The dummy producer, however, is unpaused. self.assertEqual(transport.producerState, 'paused') self.assertEqual(producer.events, []) # The transport now pauses production. This causes the producer to be # paused. The transport stays paused. channel.pauseProducing() self.assertEqual(transport.producerState, 'paused') self.assertEqual(producer.events, ['pause']) # Unregister the producer and then complete the response. Because the # channel is still paused, the transport stays paused request.unregisterProducer() request.delayedProcess() self.assertEqual(transport.producerState, 'paused') # At this point the channel is resumed, and so is the transport. channel.resumeProducing() self.assertEqual(transport.producerState, 'producing') def test_HTTPChannelToleratesDataWhenTransportPaused(self): """ If the L{HTTPChannel} has paused the transport, it still tolerates receiving data, and does not attempt to pause the transport again. """ class NoDoublePauseTransport(StringTransport): """ A version of L{StringTransport} that fails tests if it is paused while already paused. """ def pauseProducing(self): if self.producerState == 'paused': raise RuntimeError("Transport was paused twice!") StringTransport.pauseProducing(self) # Confirm that pausing a NoDoublePauseTransport twice fails. transport = NoDoublePauseTransport() transport.pauseProducing() self.assertRaises(RuntimeError, transport.pauseProducing) channel, transport = self.buildChannelAndTransport( NoDoublePauseTransport(), DummyHTTPHandler ) # The transport starts in producing state. self.assertEqual(transport.producerState, 'producing') # Pause producing. The transport should now be paused as well. channel.pauseProducing() self.assertEqual(transport.producerState, 'paused') # Write in a request, even though the transport is paused. channel.dataReceived(self.request) # The transport is still paused, but we have tried to write the # response out. self.assertEqual(transport.producerState, 'paused') self.assertTrue(transport.value().startswith(b'HTTP/1.1 200 OK\r\n')) # Resume producing. The transport should be unpaused. channel.resumeProducing() self.assertEqual(transport.producerState, 'producing') def test_HTTPChannelToleratesPullProducers(self): """ If the L{HTTPChannel} has a L{IPullProducer} registered with it it can adapt that producer into an L{IPushProducer}. """ channel, transport = self.buildChannelAndTransport( StringTransport(), DummyPullProducerHandler ) transport = StringTransport() channel = http.HTTPChannel() channel.requestFactory = DummyPullProducerHandlerProxy channel.makeConnection(transport) channel.dataReceived(self.request) request = channel.requests[0].original responseComplete = request._actualProducer.result def validate(ign): responseBody = transport.value().split(b'\r\n\r\n', 1)[1] expectedResponseBody = ( b'1\r\n0\r\n' b'1\r\n1\r\n' b'1\r\n2\r\n' b'1\r\n3\r\n' b'1\r\n4\r\n' b'1\r\n5\r\n' b'1\r\n6\r\n' b'1\r\n7\r\n' b'1\r\n8\r\n' b'1\r\n9\r\n' ) self.assertEqual(responseBody, expectedResponseBody) return responseComplete.addCallback(validate) def test_HTTPChannelUnregistersSelfWhenTimingOut(self): """ L{HTTPChannel} unregisters itself when it times out a connection. """ clock = Clock() transport = StringTransport() channel = http.HTTPChannel() # Patch the channel's callLater method. channel.timeOut = 100 channel.callLater = clock.callLater channel.makeConnection(transport) # Tick the clock forward almost to the timeout. clock.advance(99) self.assertIs(transport.producer, channel) self.assertIs(transport.streaming, True) # Fire the timeout. clock.advance(1) self.assertIs(transport.producer, None) self.assertIs(transport.streaming, None) class HTTPChannelSanitizationTests(unittest.SynchronousTestCase): """ Test that L{HTTPChannel} sanitizes its output. """ def test_writeHeadersSanitizesLinearWhitespace(self): """ L{HTTPChannel.writeHeaders} removes linear whitespace from the list of header names and values it receives. """ for component in bytesLinearWhitespaceComponents: transport = StringTransport() channel = http.HTTPChannel() channel.makeConnection(transport) channel.writeHeaders( version=b"HTTP/1.1", code=b"200", reason=b"OK", headers=[(component, component)]) sanitizedHeaderLine = b": ".join([ sanitizedBytes, sanitizedBytes, ]) + b'\r\n' self.assertEqual( transport.value(), b"\r\n".join([ b"HTTP/1.1 200 OK", sanitizedHeaderLine, b'', ])) class HTTPClientSanitizationTests(unittest.SynchronousTestCase): """ Test that L{http.HTTPClient} sanitizes its output. """ def test_sendHeaderSanitizesLinearWhitespace(self): """ L{HTTPClient.sendHeader} replaces linear whitespace in its header keys and values with a single space. """ for component in bytesLinearWhitespaceComponents: transport = StringTransport() client = http.HTTPClient() client.makeConnection(transport) client.sendHeader(component, component) self.assertEqual( transport.value().splitlines(), [b": ".join([sanitizedBytes, sanitizedBytes])] )
the-stack_106_14604
"""A set of Python Classes for connecting to and interacting with a VOSpace service. Connections to VOSpace are made using a SSL X509 certificat which is stored in a .pem file. """ #from contextlib import nested import copy import errno import fnmatch import hashlib import requests from requests.exceptions import HTTPError import html2text import logging import mimetypes import os import re import stat import string import sys import time #import urllib #import urlparse from xml.etree import ElementTree from copy import deepcopy from NodeCache import NodeCache from __version__ import version import netrc try: _unicode = unicode except NameError: try: _unicode = str except NameError: # If Python is built without Unicode support, the unicode type # will not exist. Fake one. class Unicode(object): pass _unicode = unicode try: from contextlib import nested # Python 2 except ImportError: from contextlib import ExitStack, contextmanager @contextmanager def nested(*contexts): """ Reimplementation of nested in python 3. """ with ExitStack() as stack: for ctx in contexts: stack.enter_context(ctx) yield contexts try: import ConfigParser # Python 2 from urllib import splittag, splitquery, urlencode from urlparse import parse_qs, urlparse from cStringIO import StringIO import httplib as http_client except ImportError: import configparser as ConfigParser # Python 3 from urllib.parse import splittag, splitquery, urlencode from urllib.parse import parse_qs, urlparse from io import StringIO import http.client as http_client http_client.HTTPConnection.debuglevel = 0 #1 logger = logging.getLogger('vos') logger.setLevel(logging.ERROR) if sys.version_info[1] > 6: logger.addHandler(logging.NullHandler()) BUFSIZE = 8388608 # Size of read/write buffer MAX_RETRY_DELAY = 128 # maximum delay between retries DEFAULT_RETRY_DELAY = 30 # start delay between retries when Try_After not sent by server. MAX_RETRY_TIME = 900 # maximum time for retries before giving up... CONNECTION_TIMEOUT = 30 # seconds before HTTP connection should drop, should be less than DAEMON timeout in vofs VOSPACE_ARCHIVE = os.getenv("VOSPACE_ARCHIVE", "vospace") #HEADER_DELEG_TOKEN = 'X-CADC-DelegationToken' HEADER_DELEG_TOKEN = 'X-DL-AuthToken' HEADER_CONTENT_LENGTH = 'X-CADC-Content-Length' HEADER_PARTIAL_READ = 'X-CADC-Partial-Read' CONNECTION_COUNTER = 0 CADC_GMS_PREFIX = '' requests.packages.urllib3.disable_warnings() logging.getLogger("requests").setLevel(logging.WARNING) def convert_vospace_time_to_seconds(str_date): """A convenience method that takes a string from a vospace time field and converts it to seconds since epoch. :param str_date: string to parse into a VOSpace time :type str_date: str :return: A datetime object for the provided string date :rtype: datetime """ right = str_date.rfind(":") + 3 mtime = time.mktime(time.strptime(str_date[0:right], '%Y-%m-%dT%H:%M:%S')) return mtime - time.mktime(time.gmtime()) + time.mktime(time.localtime()) def compute_md5(filename, block_size=BUFSIZE): """ Given a file compute the MD5 of that file. :param filename: name of file to open and compute MD5 for. :type filename: str :param block_size: size of read blocks to stream through MD5 calculator. :type block_size: int :return: md5 as hex :rtype: hex """ md5 = hashlib.md5() with open(filename, 'r') as r: while True: buf = r.read(block_size) if len(buf) == 0: break md5.update(buf) return md5.hexdigest() class URLParser(object): """ Parse out the structure of a URL. There is a difference between the 2.5 and 2.7 version of the urlparse.urlparse command, so here I roll my own... """ def __init__(self, url): self.scheme = None self.netloc = None self.args = None self.path = None m = re.match("(^(?P<scheme>[a-zA-Z]*):)?(//(?P<netloc>(?P<server>[^!~]*)[!~](?P<service>[^/]*)))?" "(?P<path>/?[^?]*)?(?P<args>\?.*)?", url) self.scheme = m.group('scheme') self.netloc = m.group('netloc') self.server = m.group('server') self.service = m.group('service') self.path = (m.group('path') is not None and m.group('path')) or '' self.args = (m.group('args') is not None and m.group('args')) or '' def __str__(self): return "[scheme: %s, netloc: %s, path: %s]" % (self.scheme, self.netloc, self.path) class Connection(object): """Class to hold and act on the X509 certificate""" def __init__(self, vospace_certfile=None, vospace_token=None, http_debug=False): """Setup the Certificate for later usage vospace_certfile -- where to store the certificate, if None then ${HOME}/.ssl or a temporary filename vospace_token -- token string (alternative to vospace_certfile) http_debug -- set True to generate debug statements The user must supply a valid certificate or connection will be 'anonymous'. """ self.http_debug = http_debug # tokens trump certs. We should only ever have token or certfile # set in order to avoid confusion. self.vospace_certfile = None self.vospace_token = vospace_token if self.vospace_token is None: # allow anonymous access if no certfile specified if vospace_certfile is not None and not os.access(vospace_certfile, os.F_OK): logger.warning( "Could not access certificate at {0}. Reverting to anonymous.".format(vospace_certfile)) vospace_certfile = None self.vospace_certfile = vospace_certfile # create a requests session object that all requests will be made via. session = requests.Session() if self.vospace_certfile is not None: session.cert = (self.vospace_certfile, self.vospace_certfile) if self.vospace_certfile is None: # MJG look at this in operation try: auth = netrc.netrc().authenticators(EndPoints.VOSPACE_WEBSERVICE) if auth is not None: session.auth = (auth[0], auth[2]) except: pass if self.vospace_token is not None: session.headers.update({HEADER_DELEG_TOKEN: self.vospace_token}) user_agent = 'vos ' + version if "vofs" in sys.argv[0]: user_agent = 'vofs ' + version session.headers.update({"User-Agent": user_agent}) assert isinstance(session, requests.Session) self.session = session def get_connection(self, url=None): """Create an HTTPSConnection object and return. Uses the client certificate if None given. :param url: a VOSpace uri """ if url is not None: raise OSError(errno.ENOSYS, "Connections are no longer set per URL.") return self.session class Node(object): """A VOSpace node""" IVOAURL = "ivo://ivoa.net/vospace/core" VOSNS = "http://www.ivoa.net/xml/VOSpace/v2.0" XSINS = "http://www.w3.org/2001/XMLSchema-instance" TYPE = '{%s}type' % XSINS NODES = '{%s}nodes' % VOSNS NODE = '{%s}node' % VOSNS PROTOCOL = '{%s}protocol' % VOSNS PROPERTIES = '{%s}properties' % VOSNS PROPERTY = '{%s}property' % VOSNS ACCEPTS = '{%s}accepts' % VOSNS PROVIDES = '{%s}provides' % VOSNS ENDPOINT = '{%s}endpoint' % VOSNS TARGET = '{%s}target' % VOSNS DATA_NODE = "vos:DataNode" LINK_NODE = "vos:LinkNode" CONTAINER_NODE = "vos:ContainerNode" def __init__(self, node, node_type=None, properties=None, subnodes=None): """Create a Node object based on the DOM passed to the init method if node is a string then create a node named node of nodeType with properties """ self.uri = None self.name = None self.target = None self.groupread = None self.groupwrite = None self.is_public = None self.type = None self.props = {} self.attr = {} self.xattr = {} self._node_list = None self._endpoints = None if not subnodes: subnodes = [] if not properties: properties = {} if node_type is None: node_type = Node.DATA_NODE if type(node) == unicode or type(node) == str: node = self.create(node, node_type, properties, subnodes=subnodes) if node is None: raise LookupError("no node found or created?") self.node = node self.node.set('xmlns:vos', self.VOSNS) self.update() def __eq__(self, node): if not isinstance(node, Node): return False return self.props == node.props @property def endpoints(self): if not self._endpoints: self._endpoints = EndPoints(self.uri) return self._endpoints def update(self): """Update the convience links of this node as we update the xml file""" self.type = self.node.get(Node.TYPE) if self.type is None: # logger.debug("Node type unknown, no node created") return None if self.type == "vos:LinkNode": self.target = self.node.findtext(Node.TARGET) self.uri = self.node.get('uri') self.name = os.path.basename(self.uri) for propertiesNode in self.node.findall(Node.PROPERTIES): self.set_props(propertiesNode) self.is_public = False if self.props.get('ispublic', 'false') == 'true': self.is_public = True logger.debug("{0} {1} -> {2}".format(self.uri, self.endpoints.islocked, self.props)) self.groupwrite = self.props.get('groupwrite', '') self.groupread = self.props.get('groupread', '') logger.debug("Setting file attributes via setattr") self.setattr() logger.debug("Setting file x-attributes via setxattr") self.setxattr() def set_property(self, key, value): """Create a key/value pair Node.PROPERTY element. :param key: the property key :param value: the property value """ properties = self.node.find(Node.PROPERTIES) uri = "%s#%s" % (Node.IVOAURL, key) ElementTree.SubElement(properties, Node.PROPERTY, attrib={'uri': uri, 'readOnly': 'false'}).text = value def __str__(self): """Convert the Node to a string representation of the Node""" class Dummy(object): pass data = [] file_handle = Dummy() file_handle.write = data.append ElementTree.ElementTree(self.node).write(file_handle) # MJG , encoding="UTF-8") return "".join(data) def setattr(self, attr=None): """return / augment a dictionary of attributes associated with the Node These attributes are determined from the node on VOSpace. :param attr: the dictionary that holds the attributes """ if not attr: attr = {} # Get the flags for file mode settings. self.attr = {} # Only one date provided by VOSpace, so use this as all possible dates. access_time = time.time() if not self.props.get('date', None): modified_time = access_time else: # mktime is expecting a localtime but we're sending a UT date, so # some correction will be needed modified_time = convert_vospace_time_to_seconds(self.props.get('date')) self.attr['st_ctime'] = attr.get('st_ctime', modified_time) self.attr['st_mtime'] = attr.get('st_mtime', modified_time) self.attr['st_atime'] = access_time # set the MODE by or'ing together all flags from stat st_mode = 0 st_nlink = 1 if self.type == 'vos:ContainerNode': st_mode |= stat.S_IFDIR st_nlink = max(2, len(self.get_info_list()) + 2) # if getInfoList length is < 0 we have a problem elsewhere, so above hack solves that problem. elif self.type == 'vos:LinkNode': st_mode |= stat.S_IFLNK else: st_mode |= stat.S_IFREG self.attr['st_nlink'] = st_nlink # Set the OWNER permissions: all vospace Nodes have read/write/execute by owner st_mode |= stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR # Set the GROUP permissions # MJG if self.props.get('groupwrite', "NONE") != "NONE": if 'groupwrite' in self.props and self.props.get('groupwrite') is not None: st_mode |= stat.S_IWGRP # if self.props.get('groupread', "NONE") != "NONE": if 'groupread' in self.props and self.props.get('groupread') is not None: st_mode |= stat.S_IRGRP st_mode |= stat.S_IXGRP # Set the OTHER permissions if self.props.get('ispublic', 'false') == 'true': # If you can read the file then you can execute too. # Public does NOT mean writeable. EVER st_mode |= stat.S_IROTH | stat.S_IXOTH self.attr['st_mode'] = attr.get('st_mode', st_mode) # We set the owner and group bits to be those of the currently running process. # This is a hack since we don't have an easy way to figure these out. # TODO Come up with a better approach to uid setting self.attr['st_uid'] = attr.get('st_uid', os.getuid()) self.attr['st_gid'] = attr.get('st_uid', os.getgid()) st_size = int(self.props.get('length', 0)) self.attr['st_size'] = st_size > 0 and st_size or 0 self.attr['st_blocks'] = self.attr['st_size'] / 512 def setxattr(self, attrs=None): """Initialize the extended attributes using the Node properties that are not part of the core set. :param attrs: An input list of attributes being sent from an external source, not supported. """ if attrs is not None: raise OSError(errno.ENOSYS, "No externally set extended Attributes for vofs yet.") for key in self.props: if key in Client.vosProperties: continue self.xattr[key] = self.props[key] return def chwgrp(self, group): """Set the groupwrite value to group for this node :param group: the uri of he group to give write access to. :type group: str """ logger.debug("Setting groups to: {0}".format(group)) if group is not None and len(group.split()) > 3: raise AttributeError("Exceeded max of 4 write groups: {0}<-".format(group.split())) self.groupwrite = group return self.change_prop('groupwrite', group) def chrgrp(self, group): """Set the groupread value to group for this node :param group: the uri of the group to give read access to. :type group: str """ if group is not None and len(group.split()) > 3: raise AttributeError("Exceeded max of 4 read groups: {0}<-".format(group)) self.groupread = group return self.change_prop('groupread', group) def set_public(self, value): """ :param value: should the is_public flag be set? (true/false) :type value: str """ return self.change_prop('ispublic', value) @staticmethod def fix_prop(prop): """Check if prop is a well formed uri and if not then make into one :param prop: the property to expand into a IVOA uri value for a property. :rtype str """ (url, tag) = urllib.splittag(prop) if tag is None and url in ['title', 'creator', 'subject', 'description', 'publisher', 'contributer', 'date', 'type', 'format', 'identifier', 'source', 'language', 'relation', 'coverage', 'rights', 'availableSpace', 'groupread', 'groupwrite', 'publicread', 'quota', 'length', 'MD5', 'mtime', 'ctime', 'ispublic']: tag = url url = Node.IVOAURL prop = url + "#" + tag parts = URLParser(url) if parts.path is None or tag is None: raise ValueError("Invalid VOSpace property uri: {0}".format(prop)) return prop @staticmethod def set_prop(): """Build the XML for a given node""" raise NotImplementedError('No set prop.') def change_prop(self, key, value): """Change the node property 'key' to 'value'. :param key: The property key to update :type key: str :param value: The value to give that property. :type value: str,None :return True/False depending on if the property value was updated. """ # TODO split into 'set' and 'delete' uri = self.fix_prop(key) changed = False found = False properties = self.node.findall(Node.PROPERTIES) for props in properties: for prop in props.findall(Node.PROPERTY): if uri != prop.attrib.get('uri', None): continue found = True if prop.attrib.get('text', None) == value: break changed = True if value is None: # this is actually a delete property prop.attrib['xsi:nil'] = 'true' prop.attrib["xmlns:xsi"] = Node.XSINS prop.text = "" self.props[self.get_prop_name(uri)] = None else: prop.text = value if found: return changed # must not have had this kind of property already, so set value property_node = ElementTree.SubElement(properties[0], Node.PROPERTY) property_node.attrib['readOnly'] = "false" property_node.attrib['uri'] = uri property_node.text = value self.props[self.get_prop_name(uri)] = value return changed def chmod(self, mode): """Set the MODE of this Node... translates unix style MODE to voSpace and updates the properties... This function is quite limited. We can make a file publicly readable and we can turn on/off group read/write permissions, that's all. :param mode: a stat MODE bit """ changed = 0 if mode & stat.S_IROTH: changed += self.set_public('true') else: changed += self.set_public('false') if mode & stat.S_IRGRP: changed += self.chrgrp(self.groupread) else: changed += self.chrgrp('') if mode & stat.S_IWGRP: changed += self.chwgrp(self.groupwrite) else: changed += self.chwgrp('') # logger.debug("%d -> %s" % (changed, changed>0)) return changed > 0 def create(self, uri, node_type="vos:DataNode", properties=None, subnodes=None): """Build the XML needed to represent a VOSpace node returns an ElementTree representation of the XML :param uri: The URI for this node. :type uri: str :param node_type: the type of VOSpace node, likely one of vos:DataNode, vos:ContainerNode, vos:LinkNode :type node_type: str :param properties: a dictionary of the node properties, keys should be single words from the IVOA list :type properties: dict :param subnodes: Any children to attach to this node, only valid for vos:ContainerNode :type subnodes: [Node] """ if not subnodes: subnodes = [] elif node_type != 'vos:ContainerNode': raise ValueError("Only Container Nodes can have subnodes") if not properties: properties = {} endpoints = EndPoints(uri) # Build the root node called 'node' node = ElementTree.Element("node") node.attrib["xmlns"] = Node.VOSNS node.attrib["xmlns:vos"] = Node.VOSNS node.attrib[Node.TYPE] = node_type node.attrib["uri"] = uri # create a properties section if 'type' not in properties: properties['type'] = mimetypes.guess_type(uri)[0] properties_node = ElementTree.SubElement(node, Node.PROPERTIES) for prop in properties.keys(): property_node = ElementTree.SubElement(properties_node, Node.PROPERTY) property_node.attrib['readOnly'] = "false" property_node.attrib["uri"] = self.fix_prop(prop) if properties[prop] is None: # Setting the property value to None indicates that this is actually a delete property_node.attrib['xsi:nil'] = 'true' property_node.attrib["xmlns:xsi"] = Node.XSINS property_node.text = "" elif len(str(properties[prop])) > 0: property_node.text = properties[prop] # That's it for link nodes... if node_type == "vos:LinkNode": return node # create accepts accepts = ElementTree.SubElement(node, Node.ACCEPTS) ElementTree.SubElement(accepts, "view").attrib['uri'] = \ "%s#%s" % (Node.IVOAURL, "defaultview") provides = ElementTree.SubElement(node, Node.PROVIDES) ElementTree.SubElement(provides, "view").attrib['uri'] = \ "%s#%s" % (Node.IVOAURL, 'defaultview') ElementTree.SubElement(provides, "view").attrib['uri'] = \ "%s#%s" % (endpoints.core, 'rssview') # Only DataNode can have a dataview... if node_type == "vos:DataNode": ElementTree.SubElement(provides, "view").attrib['uri'] = \ "%s#%s" % (endpoints.core, 'dataview') # if this is a container node then add directory contents if node_type == "vos:ContainerNode": node_list = ElementTree.SubElement(node, Node.NODES) for sub_node in subnodes: node_list.append(sub_node.node) return node def isdir(self): """Check if target is a container Node""" # logger.debug(self.type) if self.type == "vos:ContainerNode": return True return False def islink(self): """Check if target is a link Node""" # logger.debug(self.type) if self.type == "vos:LinkNode": return True return False @property def is_locked(self): return self.islocked() @is_locked.setter def is_locked(self, lock): if lock == self.is_locked: return self.change_prop(self.endpoints.islocked, lock and "true" or "false") def islocked(self): """Check if target state is locked for update/delete.""" return self.props.get(self.endpoints.islocked, "false") == "true" def get_info(self): """Organize some information about a node and return as dictionary""" date = convert_vospace_time_to_seconds(self.props['date']) creator = string.lower(re.search('CN=([^,]*)', self.props.get('creator', 'CN=unknown_000,')) .groups()[0].replace(' ', '_')) perm = [] for i in range(10): perm.append('-') perm[1] = 'r' perm[2] = 'w' if self.type == "vos:ContainerNode": perm[0] = 'd' if self.type == "vos:LinkNode": perm[0] = 'l' if self.props.get('ispublic', "false") == "true": perm[-3] = 'r' perm[-2] = '-' # write_group = self.props.get('groupwrite', 'NONE') # MJG write_group = self.props.get('groupwrite', '') # MJG if write_group != '': perm[5] = 'w' # read_group = self.props.get('groupread', 'NONE') read_group = self.props.get('groupread', '') if read_group != '': perm[4] = 'r' is_locked = self.props.get(self.endpoints.islocked, "false") return {"permissions": string.join(perm, ''), "creator": creator, "readGroup": read_group, "writeGroup": write_group, "isLocked": is_locked, "size": float(self.props.get('length', 0)), "date": date, "target": self.target} @property def node_list(self): """Get a list of all the nodes held to by a ContainerNode return a list of Node objects""" if self._node_list is None: self._node_list = [] for nodesNode in self.node.findall(Node.NODES): for nodeNode in nodesNode.findall(Node.NODE): self.add_child(nodeNode) return self._node_list def add_child(self, child_element_tree): """ Add a child node to a node list. :param child_element_tree: a node to add as a child. :type child_element_tree: ElementTree :return: Node """ child_node = Node(child_element_tree) self.node_list.append(child_node) return child_node def clear_properties(self): logger.debug("clearing properties") properties_node_list = self.node.findall(Node.PROPERTIES) for properties_node in properties_node_list: for property_node in properties_node.findall(Node.PROPERTY): key = self.get_prop_name(property_node.get('uri')) if key in self.props: del self.props[key] properties_node.remove(property_node) logger.debug("done clearing properties") return def get_info_list(self): """ :rtype [(Node, dict)] :return a list of tuples containing the (NodeName, Info) about the node and its childern """ info = {} for node in self.node_list: info[node.name] = node.get_info() if self.type == "vos:DataNode": info[self.name] = self.get_info() return info.items() def set_props(self, props): """Set the SubElement Node PROPERTY values of the given xmlx ELEMENT provided using the Nodes props dictionary. :param props: the xmlx element to set the Node PROPERTY of. """ for property_node in props.findall(Node.PROPERTY): self.props[self.get_prop_name(property_node.get('uri'))] = self.get_prop_value(property_node) return @staticmethod def get_prop_name(prop): """parse the property uri and get the name of the property (strips off the url and just returns the tag) if this is an IVOA property, otherwise sends back the entry uri. :param prop: the uri of the property to get the name of. """ (url, prop_name) = urllib.splittag(prop) if url == Node.IVOAURL: return prop_name return prop @staticmethod def get_prop_value(prop): """Pull out the value part of PROPERTY Element. :param prop: an XML Element that represents a Node PROPERTY. """ return prop.text class VOFile(object): """ A class for managing http connections Attributes: maxRetries - maximum number of retries when transient errors encountered. When set too high (as the default value is) the number of retries are time limited (max 15min) maxRetryTime - maximum time to retry for when transient errors are encountered """ errnos = {404: errno.ENOENT, 401: errno.EACCES, 409: errno.EEXIST, 423: errno.EPERM, 408: errno.EAGAIN} # ## if we get one of these codes, retry the command... ;-( retryCodes = (503, 408, 504, 412) def __init__(self, url_list, connector, method, size=None, follow_redirect=True, byte_range=None, possible_partial_read=False): # MJG: Fix URLs for non-GET calls if method != 'GET' and '?' in url_list: url_list = url_list[: url_list.rindex('?')] self.closed = True assert isinstance(connector, Connection) self.connector = connector self.httpCon = None self.timeout = -1 self.size = size self.md5sum = None self.totalFileSize = None self.maxRetries = 10000 self.maxRetryTime = MAX_RETRY_TIME self.url = None self.method = None # TODO # Make all the calls to open send a list of URLs # this should be redone during a cleanup. Basically, a GET might # result in multiple URLs (list of URLs) but VOFile is also used to # retrieve schema files and other info. # All the calls should pass a list of URLs. Make sure that we # make a deep copy of the input list so that we don't # accidentally modify the caller's copy. if isinstance(url_list, list): self.URLs = deepcopy(url_list) else: self.URLs = [url_list] self.urlIndex = 0 self.followRedirect = follow_redirect self._fpos = 0 # initial values for retry parameters self.currentRetryDelay = DEFAULT_RETRY_DELAY self.totalRetryDelay = 0 self.retries = 0 self.fileSize = None self.request = None self.resp = None self.trans_encode = None # open the connection self._fobj = None self.open(self.URLs[self.urlIndex], method, byte_range=byte_range, possible_partial_read=possible_partial_read) def tell(self): return self._fpos def seek(self, offset, loc=os.SEEK_SET): if loc == os.SEEK_CUR: self._fpos += offset elif loc == os.SEEK_SET: self._fpos = offset elif loc == os.SEEK_END: self._fpos = int(self.size) - offset return @staticmethod def flush(): """ Flush is a NO OP in VOFile: only really flush on close. @return: """ return def close(self): """close the connection.""" if not self.closed: try: if self.trans_encode is not None: self.httpCon.send('0\r\n\r\n') logger.debug("End of document sent.") logger.debug("getting response.") self.resp = self.connector.session.send(self.request) logger.debug("checking response status.") self.checkstatus() finally: self.closed = True return self.closed def checkstatus(self, codes=(200, 201, 202, 206, 302, 303, 503, 416, 416, 402, 408, 412, 504)): """check the response status. If the status code doesn't match a value from the codes list then raise an Exception. :param codes: a list of http status_codes that are NOT failures but require some additional action. """ msgs = {404: "Node Not Found", 401: "Not Authorized", 409: "Conflict", 423: "Locked", 408: "Connection Timeout"} logger.debug("status %d for URL %s" % (self.resp.status_code, self.url)) if self.resp.status_code not in codes: logger.debug("Got status code: %s for %s" % (self.resp.status_code, self.url)) msg = self.resp.content if msg is not None: msg = html2text.html2text(msg, self.url).strip().replace('\n', ' ') logger.debug("Error message: {0}".format(msg)) if self.resp.status_code in VOFile.errnos.keys() or (msg is not None and "Node is busy" in msg): if msg is None or len(msg) == 0 and self.resp.status_code in msgs: msg = msgs[self.resp.status_code] if (self.resp.status_code == 401 and self.connector.vospace_certfile is None and self.connector.session.auth is None and self.connector.vospace_token is None): msg += " using anonymous access " exception = OSError(VOFile.errnos.get(self.resp.status_code, self.resp.status_code), msg) if self.resp.status_code == 500 and "read-only" in msg: exception = OSError(errno.EPERM, "VOSpace in read-only mode.") raise exception # Get the file size. We use this HEADER-CONTENT-LENGTH as a # fallback to work around a server-side Java bug that limits # 'Content-Length' to a signed 32-bit integer (~2 gig files) try: self.size = int(self.resp.headers.get("Content-Length", self.resp.headers.get(HEADER_CONTENT_LENGTH, 0))) except ValueError: self.size = 0 if self.resp.status_code == 200: self.md5sum = self.resp.headers.get("Content-MD5", None) self.totalFileSize = self.size return True def open(self, url, method="GET", byte_range=None, possible_partial_read=False): """Open a connection to the given URL :param url: The URL to be openned :type url: str :param method: HTTP Method to use on open (PUT/GET/POST) :type method: str :param byte_range: The range of byte_range to read, This is in open so we can set the header parameter. :type byte_range: str :param possible_partial_read: Sometimes we kill during read, this tells the server that isn't an error. :type possible_partial_read: bool """ logger.debug("Opening %s (%s)" % (url, method)) self.url = url self.method = method request = requests.Request(self.method, url) self.trans_encode = None # Try to send a content length hint if this is a PUT. # otherwise send as a chunked PUT if method in ["PUT"]: try: self.size = int(self.size) request.headers.update({"Content-Length": self.size, HEADER_CONTENT_LENGTH: self.size}) except TypeError: self.size = None self.trans_encode = "chunked" elif method in ["POST", "DELETE"]: self.size = None self.trans_encode = "chunked" if method in ["PUT", "POST", "DELETE"]: content_type = "text/xml" # Workaround for UWS library issues MJG if 'sync' in url or 'transfer' in url: content_type = 'application/x-www-form-urlencoded' if method == "PUT": ext = os.path.splitext(urllib.splitquery(url)[0])[1] if ext in ['.fz', '.fits', 'fit']: content_type = 'application/fits' else: content_type = mimetypes.guess_type(url)[0] if content_type is None: content_type = "text/xml" # MJG if content_type is not None: request.headers.update({"Content-type": content_type}) if byte_range is not None and method == "GET": request.headers.update({"Range": byte_range}) request.headers.update({"Accept": "*/*", "Expect": "100-continue"}) # set header if a partial read is possible if possible_partial_read and method == "GET": request.headers.update({HEADER_PARTIAL_READ: "true"}) try: self.request = self.connector.session.prepare_request(request) except Exception as ex: logger.error(str(ex)) def get_file_info(self): """Return information harvested from the HTTP header""" return self.totalFileSize, self.md5sum def read(self, size=None, return_response = False): """return size bytes from the connection response :param size: number of bytes to read from the file. """ if self.resp is None: try: logger.debug("Initializing read by sending request: {0}".format(self.request)) self.resp = self.connector.session.send(self.request, stream=True) self.checkstatus() except Exception as ex: logger.debug("Error on read: {0}".format(ex)) raise ex if self.resp is None: raise OSError(errno.EFAULT, "No response from VOServer") read_error = None if self.resp.status_code == 416: return "" # check the most likely response first if self.resp.status_code == 200 or self.resp.status_code == 206: if return_response: return self.resp else: buff = self.resp.raw.read(size) size = size is not None and size < len(buff) and size or len(buff) # logger.debug("Sending back {0} bytes".format(size)) return buff[:size] elif self.resp.status_code == 303 or self.resp.status_code == 302: url = self.resp.headers.get('Location', None) logger.debug("Got redirect URL: {0}".format(url)) self.url = url if not url: raise OSError(errno.ENOENT, "Got 303 on {0} but no Location value in header? [{1}]".format(self.url, self.resp.content), self.url) if self.followRedirect: # We open this new URL without the byte range and partial read as we are following a service # redirect and that service redirect is to the object that satisfies the original request. # TODO seperate out making the transfer reqest and reading the response content. self.open(url, "GET") # logger.debug("Following redirected URL: %s" % (URL)) return self.read(size) else: # logger.debug("Got url:%s from redirect but not following" % # (self.url)) return self.url elif self.resp.status_code in VOFile.retryCodes: # Note: 404 (File Not Found) might be returned when: # 1. file deleted or replaced # 2. file migrated from cache # 3. hardware failure on storage node # For 3. it is necessary to try the other URLs in the list # otherwise this the failed URL might show up even after the # caller tries to re-negotiate the transfer. # For 1. and 2., calls to the other URLs in the list might or # might not succeed. if self.urlIndex < len(self.URLs) - 1: # go to the next URL self.urlIndex += 1 self.open(self.URLs[self.urlIndex], "GET") return self.read(size) else: self.URLs.pop(self.urlIndex) # remove url from list if len(self.URLs) == 0: # no more URLs to try... if read_error is not None: raise read_error if self.resp.status_code == 404: raise OSError(errno.ENOENT, self.url) else: raise OSError(errno.EIO, "unexpected server response %s (%d)" % (self.resp.reason, self.resp.status_code), self.url) if self.urlIndex < len(self.URLs): self.open(self.URLs[self.urlIndex], "GET") return self.read(size) # start from top of URLs with a delay self.urlIndex = 0 logger.error("Servers busy {0} for {1}".format(self.resp.status_code, self.URLs)) msg = self.resp.content if msg is not None: msg = html2text.html2text(msg, self.url).strip() else: msg = "No Message Sent" logger.error("Message from VOSpace {0}: {1}".format(self.url, msg)) try: # see if there is a Retry-After in the head... ras = int(self.resp.headers.get("Retry-After", 5)) except ValueError: ras = self.currentRetryDelay if (self.currentRetryDelay * 2) < MAX_RETRY_DELAY: self.currentRetryDelay *= 2 else: self.currentRetryDelay = MAX_RETRY_DELAY if ((self.retries < self.maxRetries) and (self.totalRetryDelay < self.maxRetryTime)): logger.error("Retrying in {0} seconds".format(ras)) self.totalRetryDelay += ras self.retries += 1 time.sleep(int(ras)) self.open(self.URLs[self.urlIndex], "GET") return self.read(size) else: raise OSError(self.resp.status_code, "failed to connect to server after multiple attempts {0} {1}".format(self.resp.reason, self.resp.status_code), self.url) @staticmethod def write(buf): """write buffer to the connection :param buf: string to write to the file. """ raise OSError(errno.ENOSYS, "Direct write to a VOSpaceFile is not supported, use copy instead.") class EndPoints(object): CADC_SERVER = 'www.canfar.phys.uvic.ca' # NOAO_TEST_SERVER = "dldemo.datalab.noirlab.edu:8080/vospace-2.0" NOAO_TEST_SERVER = "dldb1.datalab.noirlab.edu:8080/vospace-2.0" LOCAL_TEST_SERVER = 'localhost:8080/vospace-2.0' DEFAULT_VOSPACE_URI = 'datalab.noao.edu!vospace' # DEFAULT_VOSPACE_URI = 'nvo.caltech!vospace' VOSPACE_WEBSERVICE = os.getenv('VOSPACE_WEBSERVICE', None) VOServers = {'cadc.nrc.ca!vospace': CADC_SERVER, 'cadc.nrc.ca~vospace': CADC_SERVER, 'datalab.noao.edu!vospace': NOAO_TEST_SERVER, 'datalab.noao.edu~vospace': NOAO_TEST_SERVER, 'nvo.caltech!vospace': LOCAL_TEST_SERVER, 'nvo.caltech~vospace': LOCAL_TEST_SERVER } VODataView = {'cadc.nrc.ca!vospace': 'ivo://cadc.nrc.ca/vospace', 'cadc.nrc.ca~vospace': 'ivo://cadc.nrc.ca/vospace', 'datalab.noao.edu!vospace': 'ivo://datalab.noao.edu/vospace', 'datalab.noao.edu~vospace': 'ivo://datalab.noao.edu/vospace', 'nvo.caltech!vospace': 'ivo://nvo.caltech/vospace', 'nvo.caltech~vospace': 'ivo://nvo.caltech/vospace'} # VONodes = "vospace/nodes" # VOProperties = {NOAO_TEST_SERVER: "/vospace", # CADC_SERVER: "/vospace/nodeprops", # LOCAL_TEST_SERVER: "/vospace"} # VOTransfer = {NOAO_TEST_SERVER: '/vospace/sync', # CADC_SERVER: '/vospace/synctrans', # LOCAL_TEST_SERVER: '/vospace/sync'} VONodes = "nodes" VOProperties = {NOAO_TEST_SERVER: "", CADC_SERVER: "nodeprops", LOCAL_TEST_SERVER: ""} VOTransfer = {NOAO_TEST_SERVER: 'sync', CADC_SERVER: 'synctrans', LOCAL_TEST_SERVER: 'sync'} def __init__(self, uri, basic_auth=False): """ Based on the URI return the various sever endpoints that will be associated with this uri. :param uri: """ self.service = basic_auth and 'vospace/auth' or 'vospace' self.uri_parts = URLParser(uri) @property def netloc(self): return self.uri_parts.netloc @property def properties(self): return "{0}/{1}/{2}".format(self.server, self.service, EndPoints.VOProperties.get(self.server)) @property def uri(self): return "ivo://{0}".format(self.netloc).replace("!", "/").replace("~", "/") @property def view(self): return "{0}/view".format(self.uri) @property def cutout(self): return "ivo://{0}/{1}#{2}".format(self.uri_parts.server, 'view', 'cutout') @property def core(self): return "{0}/core".format(self.uri) @property def islocked(self): return "{0}#islocked".format(self.core) @property def server(self): """ :return: The network location of the VOSpace server. """ return (EndPoints.VOSPACE_WEBSERVICE is not None and EndPoints.VOSPACE_WEBSERVICE or EndPoints.VOServers.get(self.netloc, None)) @property def transfer(self): """ The transfer service endpoint. :return: service location of the transfer service. :rtype: str """ if self.server in EndPoints.VOTransfer: end_point = EndPoints.VOTransfer[self.server] else: end_point = "/vospace/auth/synctrans" return "{0}/{1}/{2}".format(self.server, self.service, end_point) @property def nodes(self): """ :return: The Node service endpoint. """ return "{0}/{1}/{2}".format(self.server, self.service, EndPoints.VONodes) class Client(object): """The Client object does the work""" VO_HTTPGET_PROTOCOL = 'ivo://ivoa.net/vospace/core#httpget' VO_HTTPPUT_PROTOCOL = 'ivo://ivoa.net/vospace/core#httpput' VO_HTTPSGET_PROTOCOL = 'ivo://ivoa.net/vospace/core#httpsget' VO_HTTPSPUT_PROTOCOL = 'ivo://ivoa.net/vospace/core#httpsput' DWS = '/data/pub/' # reserved vospace properties, not to be used for extended property setting vosProperties = ["description", "type", "encoding", "MD5", "length", "creator", "date", "groupread", "groupwrite", "ispublic"] VOSPACE_CERTFILE = os.getenv("VOSPACE_CERTFILE", None) if VOSPACE_CERTFILE is None: for certfile in ['cadcproxy.pem', 'vospaceproxy.pem']: certpath = os.path.join(os.getenv("HOME", "."), '.ssl') certfilepath = os.path.join(certpath, certfile) if os.access(certfilepath, os.R_OK): VOSPACE_CERTFILE = certfilepath break def __init__(self, vospace_certfile=None, root_node=None, conn=None, transfer_shortcut=False, http_debug=False, secure_get=False, vospace_token=None): """This could/should be expanded to set various defaults :param vospace_certfile: x509 proxy certificate file location. Overrides certfile in conn. :type vospace_certfile: str :param vospace_token: token string (alternative to vospace_certfile) :type vospace_token: str :param root_node: the base of the VOSpace for uri references. :type root_node: str :param conn: a connection pool object for this Client :type conn: Session :param transfer_shortcut: if True then just assumed data web service urls :type transfer_shortcut: bool :param http_debug: turn on http debugging. :type http_debug: bool :param secure_get: Use HTTPS: ie. transfer contents of files using SSL encryption. :type secure_get: bool """ if not isinstance(conn, Connection): vospace_certfile = vospace_certfile is None and Client.VOSPACE_CERTFILE or vospace_certfile conn = Connection(vospace_certfile=vospace_certfile, vospace_token=vospace_token, http_debug=http_debug) if conn.vospace_certfile: logger.debug("Using certificate file: {0}".format(vospace_certfile)) if conn.vospace_token: logger.debug("Using vospace token: " + conn.vospace_token) vospace_certfile = conn.vospace_certfile # Set the protocol if vospace_certfile is None: self.protocol = "http" else: self.protocol = "https" self.conn = conn self.rootNode = root_node self.nodeCache = NodeCache() self.transfer_shortcut = transfer_shortcut self.secure_get = secure_get return def glob(self, pathname): """Return a list of paths matching a pathname pattern. The pattern may contain simple shell-style wildcards a la fnmatch. However, unlike fnmatch, file names starting with a dot are special cases that are not matched by '*' and '?' patterns. :param pathname: path to glob. """ return list(self.iglob(pathname)) def iglob(self, pathname): """Return an iterator which yields the paths matching a pathname pattern. The pattern may contain simple shell-style wildcards a la fnmatch. However, unlike fnmatch, filenames starting with a dot are special cases that are not matched by '*' and '?' patterns. :param pathname: path to run glob against. :type pathname: str """ dirname, basename = os.path.split(pathname) if not self.has_magic(pathname): if basename: self.get_node(pathname) yield pathname else: # Patterns ending with a slash should match only directories if self.iglob(dirname): yield pathname return if not dirname: for name in self.glob1(self.rootNode, basename): yield name return # `os.path.split()` returns the argument itself as a dirname if it is a # drive or UNC path. Prevent an infinite recursion if a drive or UNC path # contains magic characters (i.e. r'\\?\C:'). if dirname != pathname and self.has_magic(dirname): dirs = self.iglob(dirname) else: dirs = [dirname] if self.has_magic(basename): glob_in_dir = self.glob1 else: glob_in_dir = self.glob0 for dirname in dirs: for name in glob_in_dir(dirname, basename): yield os.path.join(dirname, name) # These 2 helper functions non-recursively glob inside a literal directory. # They return a list of basenames. `glob1` accepts a pattern while `glob0` # takes a literal basename (so it only has to check for its existence). def glob1(self, dirname, pattern): """ :param dirname: name of the directory to look for matches in. :type dirname: str :param pattern: pattern to match directory contents names against :type pattern: str :return: """ if not dirname: dirname = self.rootNode if isinstance(pattern, _unicode) and not isinstance(dirname, unicode): dirname = unicode(dirname, sys.getfilesystemencoding() or sys.getdefaultencoding()) try: names = self.listdir(dirname, force=True) except os.error: return [] if not pattern.startswith('.'): names = filter(lambda x: not x.startswith('.'), names) return fnmatch.filter(names, pattern) def glob0(self, dirname, basename): if basename == '': # `os.path.split()` returns an empty basename for paths ending with a # directory separator. 'q*x/' should match only directories. if self.isdir(dirname): return [basename] else: if self.access(os.path.join(dirname, basename)): return [basename] else: raise OSError(errno.EACCES, "Permission denied: {0}".format(os.path.join(dirname, basename))) return [] magic_check = re.compile('[*?[]') @classmethod def has_magic(cls, s): return cls.magic_check.search(s) is not None # @logExceptions() def copy(self, source, destination, send_md5=False): """copy from source to destination. One of source or destination must be a vospace location and the other must be a local location. :param source: The source file to send to VOSpace or the VOSpace node to retrieve :type source: str :param destination: The VOSpace location to put the file to or the local destination. :type destination: str :param send_md5: Should copy send back the md5 of the destination file or just the size? :type send_md5: bool """ # TODO: handle vospace to vospace copies. success = False destination_size = None destination_md5 = None source_md5 = None get_node_url_retried = False if source[0:4] == "vos:": check_md5 = False match = re.search("([^\[\]]*)(\[.*\])$", source) if match is not None: view = 'cutout' source = match.group(1) cutout = match.group(2) else: view = 'data' cutout = None check_md5 = True source_md5 = self.get_node(source).props.get('MD5', 'd41d8cd98f00b204e9800998ecf8427e') get_urls = self.get_node_url(source, method='GET', cutout=cutout, view=view) while not success: # If there are no urls available, drop through to full negotiation if that wasn't already tried if len(get_urls) == 0: if self.transfer_shortcut and not get_node_url_retried: get_urls = self.get_node_url(source, method='GET', cutout=cutout, view=view, full_negotiation=True) # remove the first one as we already tried that one. get_urls.pop(0) get_node_url_retried = True else: break get_url = get_urls.pop(0) try: response = self.conn.session.get(get_url, timeout=(2, 5), stream=True) source_md5 = response.headers.get('Content-MD5', source_md5) response.raise_for_status() with open(destination, 'w') as fout: for chunk in response.iter_content(chunk_size=512 * 1024): if chunk: fout.write(chunk) fout.flush() destination_size = os.stat(destination).st_size if check_md5: destination_md5 = compute_md5(destination) logger.debug("{0} {1}".format(source_md5, destination_md5)) assert destination_md5 == source_md5 success = True except Exception as ex: logging.debug("Failed to GET {0}".format(get_url)) logging.debug("Got error {0}".format(ex)) continue else: source_md5 = compute_md5(source) put_urls = self.get_node_url(destination, 'PUT') while not success: if len(put_urls) == 0: if self.transfer_shortcut and not get_node_url_retried: put_urls = self.get_node_url(destination, method='PUT', full_negotiation=True) # remove the first one as we already tried that one. put_urls.pop(0) get_node_url_retried = True else: break put_url = put_urls.pop(0) try: with open(source, 'r') as fin: self.conn.session.put(put_url, data=fin) node = self.get_node(destination, limit=0, force=True) destination_md5 = node.props.get('MD5', 'd41d8cd98f00b204e9800998ecf8427e') assert destination_md5 == source_md5 except Exception as ex: logging.debug("FAILED to PUT to {0}".format(put_url)) logging.debug("Got error: {0}".format(ex)) continue success = True break if not success: raise OSError(errno.EFAULT, "Failed copying {0} -> {1}".format(source, destination)) return send_md5 and destination_md5 or destination_size def fix_uri(self, uri): """given a uri check if the authority part is there and if it isn't then add the vospace authority :param uri: The string that should be parsed into a proper URI, if possible. """ parts = URLParser(uri) # TODO # implement support for local files (parts.scheme=None # and self.rootNode=None if parts.scheme is None: if self.rootNode is not None: uri = self.rootNode + uri else: return uri parts = URLParser(uri) if parts.scheme != "vos": # Just past this back, I don't know how to fix... return uri # Check that path name compiles with the standard logger.debug("Got value of args: {0}".format(parts.args)) if parts.args is not None and parts.args != "": uri = parse_qs(urlparse(parts.args).query).get('link', None)[0] logger.debug("Got uri: {0}".format(uri)) if uri is not None: return self.fix_uri(uri) # Check for 'cutout' syntax values. path = re.match("(?P<filename>[^\[]*)(?P<ext>(\[\d*:?\d*\])?" "(\[\d*:?\d*,?\d*:?\d*\])?)", parts.path) filename = os.path.basename(path.group('filename')) if not re.match("^[_\-\(\)=\+!,;:@&\*\$\.\w~]*$", filename): raise OSError(errno.EINVAL, "Illegal vospace container name", filename) path = path.group('filename') # insert the default VOSpace server if none given host = parts.netloc if not host or host == '': host = EndPoints.DEFAULT_VOSPACE_URI path = os.path.normpath(path).strip('/') uri = "{0}://{1}/{2}{3}".format(parts.scheme, host, path, parts.args) logger.debug("Returning URI: {0}".format(uri)) return uri def get_node(self, uri, limit=0, force=False): """connect to VOSpace and download the definition of VOSpace node :param uri: -- a voSpace node in the format vos:/VOSpaceName/nodeName :type uri: str :param limit: -- load children nodes in batches of limit :type limit: int, None :param force: force getting the node from the service, rather than returning a cached version. :return: The VOSpace Node :rtype: Node """ logger.debug("Getting node {0}".format(uri)) uri = self.fix_uri(uri) node = None if not force and uri in self.nodeCache: node = self.nodeCache[uri] if node is None: logger.debug("Getting node {0} from ws".format(uri)) with self.nodeCache.watch(uri) as watch: # If this is vospace URI then we can request the node info # using the uri directly, but if this a URL then the metadata # comes from the HTTP header. if uri.startswith('vos:'): vo_fobj = self.open(uri, os.O_RDONLY, limit=limit) vo_xml_string = vo_fobj.read() xml_file = StringIO(vo_xml_string) xml_file.seek(0) dom = ElementTree.parse(xml_file) node = Node(dom.getroot()) elif uri.startswith('http'): header = self.open(None, url=uri, mode=os.O_RDONLY, head=True) header.read() logger.debug("Got http headers: {0}".format(header.resp.headers)) properties = {'type': header.resp.headers.get('Content-type', 'txt'), 'date': time.strftime( '%Y-%m-%dT%H:%M:%S GMT', time.strptime(header.resp.headers.get('Date', None), '%a, %d %b %Y %H:%M:%S GMT')), 'groupwrite': None, 'groupread': None, 'ispublic': URLParser(uri).scheme == 'https' and 'true' or 'false', 'length': header.resp.headers.get('Content-Length', 0)} node = Node(node=uri, node_type=Node.DATA_NODE, properties=properties) logger.debug(str(node)) else: raise OSError(2, "Bad URI {0}".format(uri)) watch.insert(node) # IF THE CALLER KNOWS THEY DON'T NEED THE CHILDREN THEY # CAN SET LIMIT=0 IN THE CALL Also, if the number of nodes # on the firt call was less than 500, we likely got them # all during the init if limit != 0 and node.isdir() and len(node.node_list) > 500: next_uri = None while next_uri != node.node_list[-1].uri: next_uri = node.node_list[-1].uri xml_file = StringIO(self.open(uri, os.O_RDONLY, next_uri=next_uri, limit=limit).read()) xml_file.seek(0) next_page = Node(ElementTree.parse(xml_file).getroot()) if len(next_page.node_list) > 0 and next_uri == next_page.node_list[0].uri: next_page.node_list.pop(0) node.node_list.extend(next_page.node_list) for childNode in node.node_list: with self.nodeCache.watch(childNode.uri) as childWatch: childWatch.insert(childNode) return node def get_node_url(self, uri, method='GET', view=None, limit=0, next_uri=None, cutout=None, full_negotiation=None): """Split apart the node string into parts and return the correct URL for this node. :param uri: The VOSpace uri to get an associated url for. :type uri: str :param method: What will this URL be used to do: 'GET' the node, 'PUT' or 'POST' to the node or 'DELETE' it :type method: str :param view: If this is a 'GET' which view of the node should the URL provide. :type view: str :param limit: If this is a container how many of the children should be returned? (None - Unlimited) :type limit: int, None :param next_uri: When getting a container we make repeated calls until all 'limit' children returned. next_uri tells the service what was the last child uri retrieved in the previous call. :type next_uri: str :param cutout: The cutout pattern to apply to the file at the service end: applies to view='cutout' only. :type cutout: str :param full_negotiation: Should we use the transfer UWS or do a GET and follow the redirect. :type full_negotiation: bool """ uri = self.fix_uri(uri) if view in ['data', 'cutout'] and method == 'GET': node = self.get_node(uri, limit=0) if node.islink(): target = node.node.findtext(Node.TARGET) logger.debug("%s is a link to %s" % (node.uri, target)) if target is None: raise OSError(errno.ENOENT, "No target for link") parts = URLParser(target) if parts.scheme != "vos": # This is not a link to another VOSpace node so lets just return the target as the url url = target if cutout is not None: url = "{0}?cutout={1}".format(target, cutout) logger.debug("Line 3.1.2") logger.debug("Returning URL: {0}".format(url)) return [url] logger.debug("Getting URLs for: {0}".format(target)) return self.get_node_url(target, method=method, view=view, limit=limit, next_uri=next_uri, cutout=cutout, full_negotiation=full_negotiation) logger.debug("Getting URL for: " + str(uri)) parts = URLParser(uri) if parts.scheme.startswith('http'): return [uri] endpoints = EndPoints(uri, basic_auth=self.conn.session.auth is not None) # see if we have a VOSpace server that goes with this URI in our look up list if endpoints.server is None: # Since we don't know how to get URLs for this server we should just return the uri. return uri # full_negotiation is an override, so it can be used to force either shortcut (false) or full negotiation (true) if full_negotiation is not None: do_shortcut = not full_negotiation else: do_shortcut = self.transfer_shortcut do_shortcut = False # MJG if not do_shortcut and method == 'GET' and view in ['data', 'cutout']: return self._get(uri, view=view, cutout=cutout) if not do_shortcut and method == 'PUT': return self._put(uri) if (view == "cutout" and cutout is None) or (cutout is not None and view != "cutout"): raise ValueError("For cutout, must specify a view=cutout and for view=cutout must specify cutout") if method == 'GET' and view not in ['data', 'cutout']: # This is a request for the URL of the Node, which returns an XML document that describes the node. fields = {} # MJG: No limit keyword on URLs # if limit is not None: # fields['limit'] = limit if view is not None: fields['view'] = view if next_uri is not None: fields['uri'] = next_uri data = "" if len(fields) > 0: data = "?" + urllib.urlencode(fields) url = "%s://%s/%s%s" % (self.protocol, endpoints.nodes, parts.path.strip('/'), data) logger.debug("URL: %s (%s)" % (url, method)) return url # This is the shortcut. We do a GET request on the service with the parameters sent as arguments. direction = {'GET': 'pullFromVoSpace', 'PUT': 'pushToVoSpace'} # On GET override the protocol to be http (faster) unless a secure_get is requested. protocol = { 'GET': {'https': (self.secure_get and Client.VO_HTTPSGET_PROTOCOL) or Client.VO_HTTPGET_PROTOCOL, 'http': Client.VO_HTTPGET_PROTOCOL}, 'PUT': {'https': Client.VO_HTTPSPUT_PROTOCOL, 'http': Client.VO_HTTPPUT_PROTOCOL}} # build the url for that will request the url that provides access to the node. url = "%s://%s" % (self.protocol, endpoints.transfer) logger.debug("URL: %s" % url) args = { 'TARGET': uri, 'DIRECTION': direction[method], 'PROTOCOL': protocol[method][self.protocol], 'view': view} if cutout is not None: args['cutout'] = cutout params = urllib.urlencode(args) headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} response = self.conn.session.get(url, params=params, headers=headers, allow_redirects=False) assert isinstance(response, requests.Response) logging.debug("Transfer Server said: {0}".format(response.content)) if response.status_code == 303: # Normal case is a redirect url = response.headers.get('Location', None) elif response.status_code == 404: # The file doesn't exist raise OSError(errno.ENOENT, response.content, url) elif response.status_code == 409: raise OSError(errno.EREMOTE, response.content, url) elif response.status_code == 413: raise OSError(errno.E2BIG, response.content, url) else: logger.debug("Reverting to full negotiation") return self.get_node_url(uri, method=method, view=view, full_negotiation=True, limit=limit, next_uri=next_uri, cutout=cutout) logger.debug("Sending short cut url: {0}".format(url)) return [url] def link(self, src_uri, link_uri): """Make link_uri point to src_uri. :param src_uri: the existing resource, either a vospace uri or a http url :type src_uri: str :param link_uri: the vospace node to create that will be a link to src_uri :type link_uri: str """ link_uri = self.fix_uri(link_uri) src_uri = self.fix_uri(src_uri) # if the link_uri points at an existing directory then we try and make a link into that directory if self.isdir(link_uri): link_uri = os.path.join(link_uri, os.path.basename(src_uri)) with nested(self.nodeCache.volatile(src_uri), self.nodeCache.volatile(link_uri)): link_node = Node(link_uri, node_type="vos:LinkNode") ElementTree.SubElement(link_node.node, "target").text = src_uri data = str(link_node) size = len(data) # MJG print(data) url = self.get_node_url(link_uri) logger.debug("Got linkNode URL: {0}".format(url)) self.conn.session.put(url, data=data, headers={'size': size, 'Content-type': 'text/xml'}) def move(self, src_uri, destination_uri): """Move src_uri to destination_uri. If destination_uri is a containerNode then move src_uri into destination_uri :param src_uri: the VOSpace node to be moved. :type src_uri: str :param destination_uri: the VOSpace location to move to. :type destination_uri: str :return did the move succeed? :rtype bool """ src_uri = self.fix_uri(src_uri) destination_uri = self.fix_uri(destination_uri) with nested(self.nodeCache.volatile(src_uri), self.nodeCache.volatile(destination_uri)): return self.transfer(src_uri, destination_uri, view='move') def _get(self, uri, view="defaultview", cutout=None): with self.nodeCache.volatile(uri): return self.transfer(uri, "pullFromVoSpace", view, cutout) def _put(self, uri): with self.nodeCache.volatile(uri): return self.transfer(uri, "pushToVoSpace", view="defaultview") def transfer(self, uri, direction, view=None, cutout=None): """Build the transfer XML document :param direction: is this a pushToVoSpace or a pullFromVoSpace ? :param uri: the uri to transfer from or to VOSpace. :param view: which view of the node (data/default/cutout/etc.) is being transferred :param cutout: a special parameter added to the 'cutout' view request. e.g. '[0][1:10,1:10]' """ endpoints = EndPoints(uri, basic_auth=self.conn.session.auth is not None) protocol = {"pullFromVoSpace": "{0}get".format(self.protocol), "pushToVoSpace": "{0}put".format(self.protocol)} transfer_xml = ElementTree.Element("vos:transfer") transfer_xml.attrib['xmlns:vos'] = Node.VOSNS ElementTree.SubElement(transfer_xml, "vos:target").text = uri ElementTree.SubElement(transfer_xml, "vos:direction").text = direction if view == 'move': ElementTree.SubElement(transfer_xml, "vos:keepBytes").text = "false" else: if view == 'defaultview' or view == 'data': # MJG - data view not supported ElementTree.SubElement(transfer_xml, "vos:view").attrib['uri'] = "ivo://ivoa.net/vospace/core#defaultview" elif view is not None: vos_view = ElementTree.SubElement(transfer_xml, "vos:view") vos_view.attrib['uri'] = endpoints.view + "#{0}".format(view) if cutout is not None and view == 'cutout': param = ElementTree.SubElement(vos_view, "vos:param") param.attrib['uri'] = endpoints.cutout param.text = cutout protocol_element = ElementTree.SubElement(transfer_xml, "vos:protocol") protocol_element.attrib['uri'] = "{0}#{1}".format(Node.IVOAURL, protocol[direction]) logging.debug(ElementTree.tostring(transfer_xml)) url = "{0}://{1}".format(self.protocol, endpoints.transfer) logging.debug("Sending to : {}".format(url)) data = ElementTree.tostring(transfer_xml) resp = self.conn.session.post(url, data=data, allow_redirects=False, headers={'Content-type': 'application/x-www-form-urlencoded'}) # 'text/xml'}) # MJG logging.debug("{0}".format(resp)) logging.debug("{0}".format(resp.content)) if resp.status_code != 303 and resp.status_code != 302: # MJG raise OSError(resp.status_code, "Failed to get transfer service response.") transfer_url = resp.headers.get('Location', None) if self.conn.session.auth is not None and "auth" not in transfer_url: transfer_url = transfer_url.replace('/vospace/', '/vospace/auth/') logging.debug("Got back from transfer URL: %s" % transfer_url) # For a move this is the end of the transaction. if view == 'move': return not self.get_transfer_error(transfer_url, uri) # for get or put we need the protocol value xfer_resp = self.conn.session.get(transfer_url, allow_redirects=False) xfer_url = xfer_resp.headers.get('Location', transfer_url) # MJG if self.conn.session.auth is not None and "auth" not in xfer_url: xfer_url = xfer_url.replace('/vospace/', '/vospace/auth/') xml_string = self.conn.session.get(xfer_url).content logging.debug("Transfer Document: %s" % xml_string) transfer_document = ElementTree.fromstring(xml_string) logging.debug("XML version: {0}".format(ElementTree.tostring(transfer_document))) all_protocols = transfer_document.findall(Node.PROTOCOL) if all_protocols is None or not len(all_protocols) > 0: return self.get_transfer_error(transfer_url, uri) result = [] for protocol in all_protocols: for node in protocol.findall(Node.ENDPOINT): result.append(node.text) # if this is a connection to the 'rc' server then we reverse the # urllist to test the fail-over process if endpoints.server.startswith('rc'): result.reverse() return result def get_transfer_error(self, url, uri): """Follow a transfer URL to the Error message :param url: The URL of the transfer request that had the error. :param uri: The uri that we were trying to transfer (get or put). """ error_codes = {'NodeNotFound': errno.ENOENT, 'RequestEntityTooLarge': errno.E2BIG, 'PermissionDenied': errno.EACCES, 'OperationNotSupported': errno.EOPNOTSUPP, 'InternalFault': errno.EFAULT, 'ProtocolNotSupported': errno.EPFNOSUPPORT, 'ViewNotSupported': errno.ENOSYS, 'InvalidArgument': errno.EINVAL, 'InvalidURI': errno.EFAULT, 'TransferFailed': errno.EIO, 'DuplicateNode.': errno.EEXIST, 'NodeLocked': errno.EPERM} job_url = str.replace(url, "/results/transferDetails", "") try: phase_url = job_url + "/phase" sleep_time = 1 roller = ('\\', '-', '/', '|', '\\', '-', '/', '|') phase = VOFile(phase_url, self.conn, method="GET", follow_redirect=False).read() # do not remove the line below. It is used for testing logging.debug("Job URL: " + job_url + "/phase") while phase in ['PENDING', 'QUEUED', 'EXECUTING', 'UNKNOWN']: # poll the job. Sleeping time in between polls is doubling # each time until it gets to 32sec total_time_slept = 0 if sleep_time <= 32: sleep_time *= 2 slept = 0 if logger.getEffectiveLevel() == logging.INFO: while slept < sleep_time: sys.stdout.write("\r%s %s" % (phase, roller[total_time_slept % len(roller)])) sys.stdout.flush() slept += 1 total_time_slept += 1 time.sleep(1) sys.stdout.write("\r \n") else: time.sleep(sleep_time) phase = self.conn.session.get(phase_url, allow_redirects=False).content logging.debug("Async transfer Phase for url %s: %s " % (url, phase)) except KeyboardInterrupt: # abort the job when receiving a Ctrl-C/Interrupt from the client logging.error("Received keyboard interrupt") self.conn.session.post(job_url + "/phase", allow_redirects=False, data="PHASE=ABORT", headers={"Content-type": 'application/x-www-form-urlencoded'}) # MJG raise KeyboardInterrupt status = VOFile(phase_url, self.conn, method="GET", follow_redirect=False).read() logger.debug("Phase: {0}".format(status)) if status in ['COMPLETED']: return False if status in ['HELD', 'SUSPENDED', 'ABORTED']: # re-queue the job and continue to monitor for completion. raise OSError("UWS status: {0}".format(status), errno.EFAULT) error_url = job_url + "/error" error_message = self.conn.session.get(error_url).content logger.debug("Got transfer error {0} on URI {1}".format(error_message, uri)) # Check if the error was that the link type is unsupported and try and follow that link. target = re.search("Unsupported link target:(?P<target> .*)$", error_message) if target is not None: return target.group('target').strip() raise OSError(error_codes.get(error_message, errno.EFAULT), "{0}: {1}".format(uri, error_message)) def open(self, uri, mode=os.O_RDONLY, view=None, head=False, url=None, limit=None, next_uri=None, size=None, cutout=None, byte_range=None, full_negotiation=False, possible_partial_read=False): """Create a VOFile connection to the specified uri or url. :rtype : VOFile :param uri: The uri of the VOSpace resource to create a connection to, override by specifying url :type uri: str, None :param mode: The mode os.O_RDONLY or os.O_WRONLY to open the connection with. :type mode: bit :param view: The view of the VOSpace resource, one of: default, data, cutout :type view: str, None :param head: Just return the http header of this request. :type head: bool :param url: Ignore the uri (ie don't look up the url using get_node_url) and just connect to this url :type url: str, None :param limit: limit response from vospace to this many child nodes. relevant for containerNode type :type limit: int, None :param next_uri: The uri of the last child node returned by a previous request on a containerNode :type next_uri: str, None :param size: The size of file to expect or be put to VOSpace :type size: int, None :param cutout: The cutout pattern to use during a get :type cutout: str, None :param byte_range: The range of bytes to request, rather than getting the entire file. :type byte_range: str, None :param full_negotiation: force this interaction to use the full UWS interaction to get the url for the resource :type full_negotiation: bool :param possible_partial_read: """ # sometimes this is called with mode from ['w', 'r'] # really that's an error, but I thought I'd just accept those are # os.O_RDONLY if type(mode) == str: mode = os.O_RDONLY # the url of the connection depends if we are 'getting', 'putting' or # 'posting' data method = None if mode == os.O_RDONLY: method = "GET" elif mode & (os.O_WRONLY | os.O_CREAT): method = "PUT" elif mode & os.O_APPEND: method = "POST" elif mode & os.O_TRUNC: method = "DELETE" if head: method = "HEAD" if not method: raise OSError(errno.EOPNOTSUPP, "Invalid access mode", mode) if uri is not None and view in ['data', 'cutout']: # Check if this is a target node. try: node = self.get_node(uri) if node.type == "vos:LinkNode": target = node.node.findtext(Node.TARGET) logger.debug("%s is a link to %s" % (node.uri, target)) if target is None: raise OSError(errno.ENOENT, "No target for link") else: parts = URLParser(target) if parts.scheme == 'vos': # This is a link to another VOSpace node so lets open that instead. return self.open(target, mode, view, head, url, limit, next_uri, size, cutout, byte_range) else: # A target external link # TODO Need a way of passing along authentication. if cutout is not None: target = "{0}?cutout={1}".format(target, cutout) return VOFile([target], self.conn, method=method, size=size, byte_range=byte_range, possible_partial_read=possible_partial_read) except OSError as e: if e.errno in [2, 404]: pass else: raise e if url is None: url = self.get_node_url(uri, method=method, view=view, limit=limit, next_uri=next_uri, cutout=cutout, full_negotiation=full_negotiation) if url is None: raise OSError(errno.EREMOTE) return VOFile(url, self.conn, method=method, size=size, byte_range=byte_range, possible_partial_read=possible_partial_read) def add_props(self, node): """Given a node structure do a POST of the XML to the VOSpace to update the node properties Makes a new copy of current local state, then gets a copy of what's on the server and then updates server with differences. :param node: the Node object to add some properties to. """ new_props = copy.deepcopy(node.props) old_props = self.get_node(node.uri, force=True).props for prop in old_props: if prop in new_props and old_props[prop] == new_props[prop] and old_props[prop] is not None: del (new_props[prop]) node.node = node.create(node.uri, node_type=node.type, properties=new_props) # Now write these new properties to the node location. url = self.get_node_url(node.uri, method='GET') data = str(node) size = len(data) self.conn.session.post(url, headers={'size': size, 'Content-type': 'text/xml'}, data=data) # MJG def create(self, node): """ Create a (Container/Link/Data) Node on the VOSpace server. :param node: the Node that we are going to create on the server. :type node: bool """ url = self.get_node_url(node.uri, method='PUT') data = str(node) size = len(data) self.conn.session.put(url, data=data, headers={'size': size, 'Content-type': 'text/xml'}) return True def update(self, node, recursive=False): """Updates the node properties on the server. For non-recursive updates, node's properties are updated on the server. For recursive updates, node should only contain the properties to be changed in the node itself as well as all its children. :param node: the node to update. :param recursive: should this update be applied to all children? (True/False) """ # Let's do this update using the async transfer method url = self.get_node_url(node.uri) endpoints = node.endpoints if recursive: property_url = "{0}://{1}".format(self.protocol, endpoints.properties) logger.debug("prop URL: {0}".format(property_url)) try: resp = self.conn.session.post(property_url, allow_redirects=False, data=str(node), headers={'Content-type': 'text/xml'}) except Exception as ex: logger.error(str(ex)) raise ex if resp is None: raise OSError(errno.EFAULT, "Failed to connect VOSpace") logger.debug("Got prop-update response: {0}".format(resp.content)) transfer_url = resp.headers.get('Location', None) logger.debug("Got job status redirect: {0}".format(transfer_url)) # logger.debug("Got back %s from $Client.VOPropertiesEndPoint " % (con)) # Start the job self.conn.session.post(transfer_url + "/phase", allow_redirects=False, data="PHASE=RUN", headers={'Content-type': "application/x-www-form-urlencoded"}) # MJG self.get_transfer_error(transfer_url, node.uri) else: resp = self.conn.session.post(url, data=str(node), allow_redirects=False, headers={'Content-type': 'text/xml'}) # MJG logger.debug("update response: {0}".format(resp.content)) return 0 def mkdir(self, uri): """ Create a ContainerNode on the service. Raise OSError(EEXIST) if the container exists. :param uri: The URI of the ContainerNode to create on the service. :type uri: str """ uri = self.fix_uri(uri) node = Node(uri, node_type="vos:ContainerNode") url = self.get_node_url(uri) try: if '?' in url: url = url[: url.rindex('?')] # MJG self.conn.session.headers['Content-type'] = 'text/xml' # MJG response = self.conn.session.put(url, data=str(node)) response.raise_for_status() except HTTPError as http_error: if http_error.response.status_code != 409: raise http_error else: raise OSError(errno.EEXIST, 'ContainerNode {0} already exists'.format(uri)) def delete(self, uri): """Delete the node :param uri: The (Container/Link/Data)Node to delete from the service. """ uri = self.fix_uri(uri) logger.debug("delete {0}".format(uri)) with self.nodeCache.volatile(uri): url = self.get_node_url(uri, method='GET') response = self.conn.session.delete(url) response.raise_for_status() def get_info_list(self, uri): """Retrieve a list of tuples of (NodeName, Info dict) :param uri: the Node to get info about. """ info_list = {} uri = self.fix_uri(uri) logger.debug(str(uri)) node = self.get_node(uri, limit=None) logger.debug(str(node)) while node.type == "vos:LinkNode": uri = node.target try: node = self.get_node(uri, limit=None) except Exception as e: logger.error(str(e)) break for thisNode in node.node_list: info_list[thisNode.name] = thisNode.get_info() if node.type in ["vos:DataNode", "vos:LinkNode"]: info_list[node.name] = node.get_info() return info_list.items() def listdir(self, uri, force=False): """ Walk through the directory structure a la os.walk. Setting force=True will make sure no cached results are used. Follows LinksNodes to their destination location. :param force: don't use cached values, retrieve from service. :param uri: The ContainerNode to get a listing of. :rtype [str] """ # logger.debug("getting a listing of %s " % (uri)) names = [] logger.debug(str(uri)) node = self.get_node(uri, limit=None, force=force) while node.type == "vos:LinkNode": uri = node.target # logger.debug(uri) node = self.get_node(uri, limit=None, force=force) for thisNode in node.node_list: names.append(thisNode.name) return names def _node_type(self, uri): """ Recursively follow links until the base Node is found. :param uri: the VOSpace uri to recursively get the type of. :return: the type of Node :rtype: str """ node = self.get_node(uri, limit=0) while node.type == "vos:LinkNode": uri = node.target if uri[0:4] == "vos:": node = self.get_node(uri, limit=0) else: return "vos:DataNode" return node.type def isdir(self, uri): """Check to see if the given uri is or is a link to containerNode. :param uri: a VOSpace Node URI to test. :rtype: bool """ try: return self._node_type(uri) == "vos:ContainerNode" except OSError as ex: if ex.errno == errno.ENOENT: return False raise ex def isfile(self, uri): """ Check if the given uri is or is a link to a DataNode :param uri: the VOSpace Node URI to test. :rtype: bool """ try: return self._node_type(uri) == "vos:DataNode" except OSError as ex: if ex.errno == errno.ENOENT: return False raise ex def access(self, uri, mode=os.O_RDONLY): """Test if the give VOSpace uri can be accessed in the way requested. :param uri: a VOSpace location. :param mode: os.O_RDONLY """ return isinstance(self.open(uri, mode=mode), VOFile) def status(self, uri, code=None): """ Check to see if this given uri points at a containerNode. This is done by checking the view=data header and seeing if you get an error. :param uri: the VOSpace (Container/Link/Data)Node to check access status on. :param code: NOT SUPPORTED. """ if not code: raise OSError(errno.ENOSYS, "Use of 'code' option values no longer supported.") self.get_node(uri) return True def get_job_status(self, url): """ Returns the status of a job :param url: the URL of the UWS job to get status of. :rtype: str """ return VOFile(url, self.conn, method="GET", follow_redirect=False).read()
the-stack_106_14610
import argparse import os import panda3d.core as p3d CONFIG_DATA = """ assimp-gen-normals true bam-texture-mode unchanged """ p3d.load_prc_file_data('', CONFIG_DATA) def make_texpath_relative(node, srcdir, converted_textures): geomnode = node.node() for idx, renderstate in enumerate(geomnode.get_geom_states()): texattrib = renderstate.get_attrib(p3d.TextureAttrib) if texattrib: for texstage in texattrib.get_on_stages(): texture = texattrib.get_on_texture(texstage) if texture in converted_textures: continue texture.filename = os.path.relpath(texture.filename, srcdir) converted_textures.add(texture) renderstate = renderstate.set_attrib(texattrib) geomnode.set_geom_state(idx, renderstate) def main(): parser = argparse.ArgumentParser( description='A tool for creating BAM files from Panda3D supported file formats' ) parser.add_argument('src', type=str, help='source path') parser.add_argument('dst', type=str, help='destination path') args = parser.parse_args() src = p3d.Filename.from_os_specific(os.path.abspath(args.src)) dst = p3d.Filename.from_os_specific(os.path.abspath(args.dst)) dst.make_dir() loader = p3d.Loader.get_global_ptr() options = p3d.LoaderOptions() options.flags |= p3d.LoaderOptions.LF_no_cache scene = p3d.NodePath(loader.load_sync(src, options)) # Update texture paths converted_textures = set() for node in scene.find_all_matches('**/+GeomNode'): make_texpath_relative(node, src.get_dirname(), converted_textures) scene.write_bam_file(dst) if __name__ == '__main__': main()
the-stack_106_14611
# # Copyright 2021 Splunk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import subprocess import sys import traceback import splunktalib.splunk_platform as sp from splunktalib.common import log def _parse_modinput_configs(root, outer_block, inner_block): """ When user splunkd spawns modinput script to do config check or run <?xml version="1.0" encoding="UTF-8"?> <input> <server_host>localhost.localdomain</server_host> <server_uri>https://127.0.0.1:8089</server_uri> <session_key>xxxyyyzzz</session_key> <checkpoint_dir>ckpt_dir</checkpoint_dir> <configuration> <stanza name="snow://alm_asset"> <param name="duration">60</param> <param name="host">localhost.localdomain</param> <param name="index">snow</param> <param name="priority">10</param> </stanza> ... </configuration> </input> When user create an stanza through data input on WebUI <?xml version="1.0" encoding="UTF-8"?> <items> <server_host>localhost.localdomain</server_host> <server_uri>https://127.0.0.1:8089</server_uri> <session_key>xxxyyyzzz</session_key> <checkpoint_dir>ckpt_dir</checkpoint_dir> <item name="abc"> <param name="duration">60</param> <param name="exclude"></param> <param name="host">localhost.localdomain</param> <param name="index">snow</param> <param name="priority">10</param> </item> </items> """ confs = root.getElementsByTagName(outer_block) if not confs: log.logger.error("Invalid config, missing %s section", outer_block) raise Exception("Invalid config, missing %s section".format(outer_block)) configs = [] stanzas = confs[0].getElementsByTagName(inner_block) for stanza in stanzas: config = {} stanza_name = stanza.getAttribute("name") if not stanza_name: log.logger.error("Invalid config, missing name") raise Exception("Invalid config, missing name") config["name"] = stanza_name params = stanza.getElementsByTagName("param") for param in params: name = param.getAttribute("name") if ( name and param.firstChild and param.firstChild.nodeType == param.firstChild.TEXT_NODE ): config[name] = param.firstChild.data configs.append(config) return configs def parse_modinput_configs(config_str): """ @config_str: modinput XML configuration feed by splunkd @return: meta_config and stanza_config """ import defusedxml.minidom as xdm meta_configs = { "server_host": None, "server_uri": None, "session_key": None, "checkpoint_dir": None, } root = xdm.parseString(config_str) doc = root.documentElement for tag in meta_configs.keys(): nodes = doc.getElementsByTagName(tag) if not nodes: log.logger.error("Invalid config, missing %s section", tag) raise Exception("Invalid config, missing %s section", tag) if nodes[0].firstChild and nodes[0].firstChild.nodeType == nodes[0].TEXT_NODE: meta_configs[tag] = nodes[0].firstChild.data else: log.logger.error("Invalid config, expect text ndoe") raise Exception("Invalid config, expect text ndoe") if doc.nodeName == "input": configs = _parse_modinput_configs(doc, "configuration", "stanza") else: configs = _parse_modinput_configs(root, "items", "item") return meta_configs, configs def get_modinput_configs_from_cli(modinput, modinput_stanza=None): """ @modinput: modinput name @modinput_stanza: modinput stanza name, for multiple instance only """ assert modinput splunkbin = sp.get_splunk_bin() cli = [splunkbin, "cmd", "splunkd", "print-modinput-config", modinput] if modinput_stanza: cli.append(modinput_stanza) out, err = subprocess.Popen( cli, stdout=subprocess.PIPE, stderr=subprocess.PIPE ).communicate() if err: log.logger.error("Failed to get modinput configs with error: %s", err) return None, None else: return parse_modinput_configs(out) def get_modinput_config_str_from_stdin(): """ Get modinput from stdin which is feed by splunkd """ try: return sys.stdin.read(5000) except Exception: log.logger.error(traceback.format_exc()) raise def get_modinput_configs_from_stdin(): config_str = get_modinput_config_str_from_stdin() return parse_modinput_configs(config_str)
the-stack_106_14612
import unittest from bot.utils.message_cache import MessageCache from tests.helpers import MockMessage # noinspection SpellCheckingInspection class TestMessageCache(unittest.TestCase): """Tests for the MessageCache class in the `bot.utils.caching` module.""" def test_first_append_sets_the_first_value(self): """Test if the first append adds the message to the first cell.""" cache = MessageCache(maxlen=10) message = MockMessage() cache.append(message) self.assertEqual(cache[0], message) def test_append_adds_in_the_right_order(self): """Test if two appends are added in the same order if newest_first is False, or in reverse order otherwise.""" messages = [MockMessage(), MockMessage()] cache = MessageCache(maxlen=10, newest_first=False) for msg in messages: cache.append(msg) self.assertListEqual(messages, list(cache)) cache = MessageCache(maxlen=10, newest_first=True) for msg in messages: cache.append(msg) self.assertListEqual(messages[::-1], list(cache)) def test_appending_over_maxlen_removes_oldest(self): """Test if three appends to a 2-cell cache leave the two newest messages.""" cache = MessageCache(maxlen=2) messages = [MockMessage() for _ in range(3)] for msg in messages: cache.append(msg) self.assertListEqual(messages[1:], list(cache)) def test_appending_over_maxlen_with_newest_first_removes_oldest(self): """Test if three appends to a 2-cell cache leave the two newest messages if newest_first is True.""" cache = MessageCache(maxlen=2, newest_first=True) messages = [MockMessage() for _ in range(3)] for msg in messages: cache.append(msg) self.assertListEqual(messages[:0:-1], list(cache)) def test_pop_removes_from_the_end(self): """Test if a pop removes the right-most message.""" cache = MessageCache(maxlen=3) messages = [MockMessage() for _ in range(3)] for msg in messages: cache.append(msg) msg = cache.pop() self.assertEqual(msg, messages[-1]) self.assertListEqual(messages[:-1], list(cache)) def test_popleft_removes_from_the_beginning(self): """Test if a popleft removes the left-most message.""" cache = MessageCache(maxlen=3) messages = [MockMessage() for _ in range(3)] for msg in messages: cache.append(msg) msg = cache.popleft() self.assertEqual(msg, messages[0]) self.assertListEqual(messages[1:], list(cache)) def test_clear(self): """Test if a clear makes the cache empty.""" cache = MessageCache(maxlen=5) messages = [MockMessage() for _ in range(3)] for msg in messages: cache.append(msg) cache.clear() self.assertListEqual(list(cache), []) self.assertEqual(len(cache), 0) def test_get_message_returns_the_message(self): """Test if get_message returns the cached message.""" cache = MessageCache(maxlen=5) message = MockMessage(id=1234) cache.append(message) self.assertEqual(cache.get_message(1234), message) def test_get_message_returns_none(self): """Test if get_message returns None for an ID of a non-cached message.""" cache = MessageCache(maxlen=5) message = MockMessage(id=1234) cache.append(message) self.assertIsNone(cache.get_message(4321)) def test_update_replaces_old_element(self): """Test if an update replaced the old message with the same ID.""" cache = MessageCache(maxlen=5) message = MockMessage(id=1234) cache.append(message) message = MockMessage(id=1234) cache.update(message) self.assertIs(cache.get_message(1234), message) self.assertEqual(len(cache), 1) def test_contains_returns_true_for_cached_message(self): """Test if contains returns True for an ID of a cached message.""" cache = MessageCache(maxlen=5) message = MockMessage(id=1234) cache.append(message) self.assertIn(1234, cache) def test_contains_returns_false_for_non_cached_message(self): """Test if contains returns False for an ID of a non-cached message.""" cache = MessageCache(maxlen=5) message = MockMessage(id=1234) cache.append(message) self.assertNotIn(4321, cache) def test_indexing(self): """Test if the cache returns the correct messages by index.""" cache = MessageCache(maxlen=5) messages = [MockMessage() for _ in range(5)] for msg in messages: cache.append(msg) for current_loop in range(-5, 5): with self.subTest(current_loop=current_loop): self.assertEqual(cache[current_loop], messages[current_loop]) def test_bad_index_raises_index_error(self): """Test if the cache raises IndexError for invalid indices.""" cache = MessageCache(maxlen=5) messages = [MockMessage() for _ in range(3)] test_cases = (-10, -4, 3, 4, 5) for msg in messages: cache.append(msg) for current_loop in test_cases: with self.subTest(current_loop=current_loop): with self.assertRaises(IndexError): cache[current_loop] def test_slicing_with_unfilled_cache(self): """Test if slicing returns the correct messages if the cache is not yet fully filled.""" sizes = (5, 10, 55, 101) slices = ( slice(None), slice(2, None), slice(None, 2), slice(None, None, 2), slice(None, None, 3), slice(-1, 2), slice(-1, 3000), slice(-3, -1), slice(-10, 3), slice(-10, 4, 2), slice(None, None, -1), slice(None, 3, -2), slice(None, None, -3), slice(-1, -10, -2), slice(-3, -7, -1) ) for size in sizes: cache = MessageCache(maxlen=size) messages = [MockMessage() for _ in range(size // 3 * 2)] for msg in messages: cache.append(msg) for slice_ in slices: with self.subTest(current_loop=(size, slice_)): self.assertListEqual(cache[slice_], messages[slice_]) def test_slicing_with_overfilled_cache(self): """Test if slicing returns the correct messages if the cache was appended with more messages it can contain.""" sizes = (5, 10, 55, 101) slices = ( slice(None), slice(2, None), slice(None, 2), slice(None, None, 2), slice(None, None, 3), slice(-1, 2), slice(-1, 3000), slice(-3, -1), slice(-10, 3), slice(-10, 4, 2), slice(None, None, -1), slice(None, 3, -2), slice(None, None, -3), slice(-1, -10, -2), slice(-3, -7, -1) ) for size in sizes: cache = MessageCache(maxlen=size) messages = [MockMessage() for _ in range(size * 3 // 2)] for msg in messages: cache.append(msg) messages = messages[size // 2:] for slice_ in slices: with self.subTest(current_loop=(size, slice_)): self.assertListEqual(cache[slice_], messages[slice_]) def test_length(self): """Test if len returns the correct number of items in the cache.""" cache = MessageCache(maxlen=5) for current_loop in range(10): with self.subTest(current_loop=current_loop): self.assertEqual(len(cache), min(current_loop, 5)) cache.append(MockMessage())
the-stack_106_14613
from opendust.opendust import DustParticle from opendust.opendust import PlasmaParametersInSIUnitsFieldDriven from opendust.opendust import SimulatioParametersInSIUnits from opendust.opendust import OutputParameters from opendust.opendust import OpenDust ############################################### ### 1. Define plasma parameters in SI units ### ############################################### T_e = 30000 # electron temperature (K) T_n = 300 # neutral gas temperature (K) n_inf = 3.57167962497e15 # ion concentration (1/m^3) m_i = 1.673557e-27 # H+-ion mass (kg) w_c = 1.65562835e08 # ion-neutral collision frequency (s^-1) E = 2.72066448e04 # electric field (V/m) distributionType = "fieldDriven" plasmaParametersInSIUnits = PlasmaParametersInSIUnitsFieldDriven( T_n, T_e, n_inf, E, w_c, m_i ) plasmaParametersInSIUnits.printParameters() ################################################### ### 2. Define simulation parameters in SI units ### ################################################### R = 3 * plasmaParametersInSIUnits.r_D_e H = 6 * plasmaParametersInSIUnits.r_D_e N = int(2 ** 19) n = 50000 d_t = 1e-11 simulationParametersInSIUnits = SimulatioParametersInSIUnits( R, H, N, n, d_t, plasmaParametersInSIUnits ) simulationParametersInSIUnits.printParameters() ################################### ### 3. Define output parameters ### ################################### directory = "/home/avtimofeev/opendust/data/Patacchini2008/Animation/" nOutput = 500 nFileOutput = 500 csvOutputFileName = directory + "csv/trajectory" xyzOutputFileName = directory + "trajectory.xyz" restartFileName = directory + "RESTART" outputParameters = OutputParameters( nOutput, nFileOutput, csvOutputFileName, xyzOutputFileName, restartFileName ) ################################ ### 4. Define dust particles ### ################################ r = 1e-05 # radius of dust particles (m) q = 200000 * plasmaParametersInSIUnits.e # charge of dust particles chargeCalculationMethod = "given" # charge calculation method x_1, y_1, z_1, r_1, q_1 = 0, 0, -1 * plasmaParametersInSIUnits.r_D_e, r, q dustParticle1 = DustParticle(x_1, y_1, z_1, r_1, chargeCalculationMethod, q_1) dustParticles = [dustParticle1] ############################################################ ### 5. Create OpenDust class object and start simulation ### ############################################################ openDust = OpenDust( plasmaParametersInSIUnits, simulationParametersInSIUnits, outputParameters, dustParticles, distributionType, ) openDust.simulate(deviceIndex = "0,1,2", cutOff = False) ################## ### 6. Analyze ### ################## forceIonsOrbitZ = openDust.dustParticles[0].forceIonsOrbit forceIonsCollectZ = openDust.dustParticles[0].forceIonsCollect q = openDust.dustParticles[0].q t = openDust.t f = open(directory+"force.txt","w") for i in range(n): f.write( "{}\t{}\t{}\n".format( t[i], forceIonsOrbitZ[i][2], forceIonsCollectZ[i][2], ) ) f.close() meanForceIonsOrbitZ = 0 meanForceIonsCollectZ = 0 iterator = 0 for i in range(n): if i > 25000: iterator += 1 meanForceIonsOrbitZ += forceIonsOrbitZ[i][2] meanForceIonsCollectZ += forceIonsCollectZ[i][2] meanForceIonsOrbitZ /= iterator meanForceIonsCollectZ /= iterator print("Mean force from ions orbits = {}".format(meanForceIonsOrbitZ)) print("Mean force from collected ions = {}".format(meanForceIonsCollectZ)) print("Mean force from ions = {}".format(meanForceIonsOrbitZ+meanForceIonsCollectZ)) f = open(directory+"charge.txt","w") for i in range(n): f.write( "{}\t{}\n".format( t[i], q[i] ) ) f.close()
the-stack_106_14615
import argparse import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.layers import (AveragePooling2D, BatchNormalization, Conv2D, Dense, MaxPool2D) from tensorflow.keras.losses import Reduction, SparseCategoricalCrossentropy from tensorflow.keras.optimizers import SGD import nni from nni.nas.tensorflow.mutables import LayerChoice, InputChoice from nni.nas.tensorflow.classic_nas import get_and_apply_next_architecture tf.get_logger().setLevel('ERROR') class Net(Model): def __init__(self): super().__init__() self.conv1 = LayerChoice([ Conv2D(6, 3, padding='same', activation='relu'), Conv2D(6, 5, padding='same', activation='relu'), ]) self.pool = MaxPool2D(2) self.conv2 = LayerChoice([ Conv2D(16, 3, padding='same', activation='relu'), Conv2D(16, 5, padding='same', activation='relu'), ]) self.conv3 = Conv2D(16, 1) self.skipconnect = InputChoice(n_candidates=2, n_chosen=1) self.bn = BatchNormalization() self.gap = AveragePooling2D(2) self.fc1 = Dense(120, activation='relu') self.fc2 = Dense(84, activation='relu') self.fc3 = Dense(10) def call(self, x): bs = x.shape[0] t = self.conv1(x) x = self.pool(t) x0 = self.conv2(x) x1 = self.conv3(x0) x0 = self.skipconnect([x0, None]) if x0 is not None: x1 += x0 x = self.pool(self.bn(x1)) x = self.gap(x) x = tf.reshape(x, [bs, -1]) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) def loss(model, x, y, training): # training=training is needed only if there are layers with different # behavior during training versus inference (e.g. Dropout). y_ = model(x, training=training) return loss_object(y_true=y, y_pred=y_) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets, training=True) return loss_value, tape.gradient(loss_value, model.trainable_variables) def train(net, train_dataset, optimizer, num_epochs): train_loss_results = [] train_accuracy_results = [] for epoch in range(num_epochs): epoch_loss_avg = tf.keras.metrics.Mean() epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() for x, y in train_dataset: loss_value, grads = grad(net, x, y) optimizer.apply_gradients(zip(grads, net.trainable_variables)) epoch_loss_avg.update_state(loss_value) epoch_accuracy.update_state(y, net(x, training=True)) train_loss_results.append(epoch_loss_avg.result()) train_accuracy_results.append(epoch_accuracy.result()) if epoch % 1 == 0: print("Epoch {:03d}: Loss: {:.3f}, Accuracy: {:.3%}".format(epoch, epoch_loss_avg.result(), epoch_accuracy.result())) def test(model, test_dataset): test_accuracy = tf.keras.metrics.Accuracy() for (x, y) in test_dataset: # training=False is needed only if there are layers with different # behavior during training versus inference (e.g. Dropout). logits = model(x, training=False) prediction = tf.argmax(logits, axis=1, output_type=tf.int32) test_accuracy(prediction, y) print("Test set accuracy: {:.3%}".format(test_accuracy.result())) return test_accuracy.result() if __name__ == '__main__': # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') args, _ = parser.parse_known_args() cifar10 = tf.keras.datasets.cifar10 (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 split = int(len(x_train) * 0.9) dataset_train = tf.data.Dataset.from_tensor_slices((x_train[:split], y_train[:split])).batch(64) dataset_valid = tf.data.Dataset.from_tensor_slices((x_train[split:], y_train[split:])).batch(64) dataset_test = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(64) net = Net() get_and_apply_next_architecture(net) optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) train(net, dataset_train, optimizer, args.epochs) acc = test(net, dataset_test) nni.report_final_result(acc.numpy())
the-stack_106_14616
from torch.utils.data import Dataset import torch import random import numpy as np from collections import defaultdict class LogDataset(Dataset): def __init__(self, log_corpus, time_corpus, vocab, seq_len, encoding="utf-8", on_memory=True, predict_mode=False, mask_ratio=0.15): """ :param corpus: log sessions/line :param vocab: log events collection including pad, ukn ... :param seq_len: max sequence length :param corpus_lines: number of log sessions :param encoding: :param on_memory: :param predict_mode: if predict """ self.vocab = vocab self.seq_len = seq_len self.on_memory = on_memory self.encoding = encoding self.predict_mode = predict_mode self.log_corpus = log_corpus self.time_corpus = time_corpus self.corpus_lines = len(log_corpus) self.mask_ratio = mask_ratio def __len__(self): return self.corpus_lines def __getitem__(self, idx): k, t = self.log_corpus[idx], self.time_corpus[idx] k_masked, k_label, t_masked, t_label = self.random_item(k, t) # [CLS] tag = SOS tag, [SEP] tag = EOS tag k = [self.vocab.sos_index] + k_masked k_label = [self.vocab.pad_index] + k_label # k_label = [self.vocab.sos_index] + k_label t = [0] + t_masked t_label = [self.vocab.pad_index] + t_label return k, k_label, t, t_label # k, k_label, t, t_label = k[:100], k_label[:100], t[:100], t_label[:100] # padding = [self.vocab.pad_index for _ in range(100 - len(k))] # k.extend(padding), k_label.extend(padding), t.extend(padding), t_label.extend( # padding) # output = {"bert_input": torch.tensor(k, dtype=torch.long), # "bert_label": torch.tensor(k_label, dtype=torch.long), # "time_input": torch.tensor(t, dtype=torch.float), # "time_label": torch.tensor(t_label, dtype=torch.float) # } # return output def random_item(self, k, t): tokens = list(k) output_label = [] time_intervals = list(t) time_label = [] for i, token in enumerate(tokens): time_int = time_intervals[i] prob = random.random() # replace 15% of tokens in a sequence to a masked token if prob < self.mask_ratio: # raise AttributeError("no mask in visualization") if self.predict_mode: tokens[i] = self.vocab.mask_index output_label.append(self.vocab.stoi.get(token, self.vocab.unk_index)) time_label.append(time_int) time_intervals[i] = 0 continue prob /= self.mask_ratio # 80% randomly change token to mask token if prob < 0.8: tokens[i] = self.vocab.mask_index # 10% randomly change token to random token elif prob < 0.9: tokens[i] = random.randrange(len(self.vocab)) # 10% randomly change token to current token else: tokens[i] = self.vocab.stoi.get(token, self.vocab.unk_index) output_label.append(self.vocab.stoi.get(token, self.vocab.unk_index)) time_intervals[i] = 0 # time mask value = 0 time_label.append(time_int) else: tokens[i] = self.vocab.stoi.get(token, self.vocab.unk_index) output_label.append(0) time_label.append(0) return tokens, output_label, time_intervals, time_label def collate_fn(self, batch, percentile=100, dynamical_pad=True): lens = [len(seq[0]) for seq in batch] # find the max len in each batch if dynamical_pad: # dynamical padding seq_len = int(np.percentile(lens, percentile)) if self.seq_len is not None: seq_len = min(seq_len, self.seq_len) else: # fixed length padding seq_len = self.seq_len #print("collate_fn seq_len", seq_len) output = defaultdict(list) for seq in batch: bert_input = seq[0][:seq_len] bert_label = seq[1][:seq_len] time_input = seq[2][:seq_len] time_label = seq[3][:seq_len] padding = [self.vocab.pad_index for _ in range(seq_len - len(bert_input))] bert_input.extend(padding), bert_label.extend(padding), time_input.extend(padding), time_label.extend( padding) time_input = np.array(time_input)[:, np.newaxis] output["bert_input"].append(bert_input) output["bert_label"].append(bert_label) output["time_input"].append(time_input) output["time_label"].append(time_label) output["bert_input"] = torch.tensor(output["bert_input"], dtype=torch.long) output["bert_label"] = torch.tensor(output["bert_label"], dtype=torch.long) output["time_input"] = torch.tensor(output["time_input"], dtype=torch.float) output["time_label"] = torch.tensor(output["time_label"], dtype=torch.float) return output
the-stack_106_14617
import sys import pytest # type: ignore from helpers import mock_legacy_venv, run_pipx_cli def test_reinstall(pipx_temp_env, capsys): assert not run_pipx_cli(["install", "pycowsay"]) assert not run_pipx_cli(["reinstall", "--python", sys.executable, "pycowsay"]) def test_reinstall_nonexistent(pipx_temp_env, capsys): assert run_pipx_cli(["reinstall", "--python", sys.executable, "nonexistent"]) assert "Nothing to reinstall for nonexistent" in capsys.readouterr().out @pytest.mark.parametrize("metadata_version", [None, "0.1"]) def test_reinstall_legacy_venv(pipx_temp_env, capsys, metadata_version): assert not run_pipx_cli(["install", "pycowsay"]) mock_legacy_venv("pycowsay", metadata_version=metadata_version) assert not run_pipx_cli(["reinstall", "--python", sys.executable, "pycowsay"]) def test_reinstall_suffix(pipx_temp_env, capsys): suffix = "_x" assert not run_pipx_cli(["install", "pycowsay", f"--suffix={suffix}"]) assert not run_pipx_cli( ["reinstall", "--python", sys.executable, f"pycowsay{suffix}"] ) @pytest.mark.parametrize("metadata_version", ["0.1"]) def test_reinstall_suffix_legacy_venv(pipx_temp_env, capsys, metadata_version): suffix = "_x" assert not run_pipx_cli(["install", "pycowsay", f"--suffix={suffix}"]) mock_legacy_venv(f"pycowsay{suffix}", metadata_version=metadata_version) assert not run_pipx_cli( ["reinstall", "--python", sys.executable, f"pycowsay{suffix}"] )
the-stack_106_14618
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class OSDisk(Model): """Settings for the operating system disk of the virtual machine. :param caching: The type of caching to enable for the OS disk. Values are: none - The caching mode for the disk is not enabled. readOnly - The caching mode for the disk is read only. readWrite - The caching mode for the disk is read and write. The default value for caching is none. For information about the caching options see: https://blogs.msdn.microsoft.com/windowsazurestorage/2012/06/27/exploring-windows-azure-drives-disks-and-images/. Possible values include: 'none', 'readOnly', 'readWrite' :type caching: str or ~azure.batch.models.CachingType """ _attribute_map = { 'caching': {'key': 'caching', 'type': 'CachingType'}, } def __init__(self, caching=None): self.caching = caching
the-stack_106_14620
# -*- coding: utf-8 -*- # Copyright CERN since 2013 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from jsonschema import validate, ValidationError from rucio.common.exception import InvalidObject ACCOUNT_LENGTH = 25 ACCOUNT = {"description": "Account name", "type": "string", "pattern": "^[a-z0-9-_]{1,%s}$" % ACCOUNT_LENGTH} ACCOUNTS = {"description": "Array of accounts", "type": "array", "items": ACCOUNT, "minItems": 0, "maxItems": 1000} ACCOUNT_TYPE = {"description": "Account type", "type": "string", "enum": ["USER", "GROUP", "SERVICE"]} ACTIVITY = {"description": "Activity name", "type": "string", "enum": ["Data Brokering", "Data Consolidation", "Data rebalancing", "Debug", "Express", "Functional Test", "Functional Test XrootD", "Functional Test WebDAV", "Group Subscriptions", "Production Input", "Production Output", "Analysis Input", "Analysis Output", "Staging", "T0 Export", "T0 Tape", "Upload/Download (Job)", "Upload/Download (User)", "User Subscriptions", "Globus Online Test", "Data Challenge"]} SCOPE_LENGTH = 25 SCOPE = {"description": "Scope name", "type": "string", "pattern": "^[a-zA-Z_\\-.0-9]{1,%s}$" % SCOPE_LENGTH} R_SCOPE = {"description": "Scope name", "type": "string", "pattern": "\\w"} NAME_LENGTH = 250 NAME = {"description": "Data Identifier name", "type": "string", "pattern": "^[A-Za-z0-9][A-Za-z0-9\\.\\-\\_]{1,%s}$" % NAME_LENGTH} R_NAME = {"description": "Data Identifier name", "type": "string", "pattern": "\\w"} LOCKED = {"description": "Rule locked status", "type": ["boolean", "null"]} ASK_APPROVAL = {"description": "Rule approval request", "type": ["boolean", "null"]} ASYNCHRONOUS = {"description": "Asynchronous rule creation", "type": ["boolean", "null"]} DELAY_INJECTION = {"description": "Time (in seconds) to wait before starting applying the rule. Implies asynchronous rule creation.", "type": ["integer", "null"]} PURGE_REPLICAS = {"description": "Rule purge replica status", "type": "boolean"} IGNORE_AVAILABILITY = {"description": "Rule ignore availability status", "type": "boolean"} RSE = {"description": "RSE name", "type": "string", "pattern": "^([A-Z0-9]+([_-][A-Z0-9]+)*)$"} RSE_ATTRIBUTE = {"description": "RSE attribute", "type": "string", "pattern": r'([A-Za-z0-9\._-]+[=<>][A-Za-z0-9_-]+)'} DEFAULT_RSE_ATTRIBUTE = {"description": "Default RSE attribute", "type": "string", "pattern": r'([A-Z0-9]+([_-][A-Z0-9]+)*)'} REPLICA_STATE = {"description": "Replica state", "type": "string", "enum": ["AVAILABLE", "UNAVAILABLE", "COPYING", "BEING_DELETED", "BAD", "SOURCE", "A", "U", "C", "B", "D", "S"]} DATE = {"description": "Date", "type": "string", "pattern": r'((Mon)|(Tue)|(Wed)|(Thu)|(Fri)|(Sat)|(Sun))[,]\s\d{2}\s(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s\d{4}\s(0\d|1\d|2[0-3])(\:)(0\d|1\d|2\d|3\d|4\d|5\d)(\:)(0\d|1\d|2\d|3\d|4\d|5\d)\s(UTC)'} DID_TYPE = {"description": "DID type", "type": "string", "enum": ["DATASET", "CONTAINER", "FILE", "F"]} GROUPING = {"description": "Rule grouping", "type": ["string", "null"], "enum": ["DATASET", "NONE", "ALL", None]} NOTIFY = {"description": "Rule notification setting", "type": ["string", "null"], "enum": ["Y", "C", "N", "P", None]} COMMENT = {"description": "Rule comment", "type": ["string", "null"], "maxLength": 250} METADATA = {"description": "Rule wfms metadata", "type": ["string", "null"], "maxLength": 3999} BYTES = {"description": "Size in bytes", "type": "integer"} ADLER32 = {"description": "adler32", "type": "string", "pattern": "^[a-fA-F\\d]{8}$"} WEIGHT = {"description": "Rule weight", "type": ["string", "null"]} MD5 = {"description": "md5", "type": "string", "pattern": "^[a-fA-F\\d]{32}$"} UUID = {"description": "Universally Unique Identifier (UUID)", "type": "string", "pattern": '^(\\{){0,1}[0-9a-fA-F]{8}-?[0-9a-fA-F]{4}-?[0-9a-fA-F]{4}-?[0-9a-fA-F]{4}-?[0-9a-fA-F]{12}(\\}){0,1}$'} META = {"description": "Data Identifier(DID) metadata", "type": "object", "properties": {"guid": UUID}, "additionalProperties": True} PFN = {"description": "Physical File Name", "type": "string"} COPIES = {"description": "Number of replica copies", "type": "integer"} RSE_EXPRESSION = {"description": "RSE expression", "type": "string"} SOURCE_REPLICA_EXPRESSION = {"description": "RSE expression", "type": ["string", "null"]} LIFETIME = {"description": "Lifetime", "type": "number"} RULE_LIFETIME = {"description": "Rule lifetime", "type": ["number", "null"]} SUBSCRIPTION_ID = {"description": "Rule Subscription id", "type": ["string", "null"]} PRIORITY = {"description": "Priority of the transfers", "type": "integer"} SPLIT_CONTAINER = {"description": "Rule split container mode", "type": ["boolean", "null"]} RULE = {"description": "Replication rule", "type": "object", "properties": {"dids": {"type": "array"}, "account": ACCOUNT, "copies": COPIES, "rse_expression": RSE_EXPRESSION, "grouping": GROUPING, "weight": WEIGHT, "lifetime": RULE_LIFETIME, "locked": LOCKED, "subscription_id": SUBSCRIPTION_ID, "source_replica_expression": SOURCE_REPLICA_EXPRESSION, "activity": ACTIVITY, "notify": NOTIFY, "purge_replicas": PURGE_REPLICAS, "ignore_availability": IGNORE_AVAILABILITY, "comment": COMMENT, "ask_approval": ASK_APPROVAL, "asynchronous": ASYNCHRONOUS, "delay_injection": DELAY_INJECTION, "priority": PRIORITY, 'split_container': SPLIT_CONTAINER, 'meta': METADATA}, "required": ["dids", "copies", "rse_expression"], "additionalProperties": False} RULES = {"description": "Array of replication rules", "type": "array", "items": RULE, "minItems": 1, "maxItems": 1000} COLLECTION_TYPE = {"description": "Dataset or container type", "type": "string", "enum": ["DATASET", "CONTAINER"]} COLLECTION = {"description": "Dataset or container", "type": "object", "properties": {"scope": SCOPE, "name": NAME, "type": COLLECTION_TYPE, "meta": META, "rules": RULES}, "required": ["scope", "name", "type"], "additionalProperties": False} COLLECTIONS = {"description": "Array of datasets or containers", "type": "array", "items": COLLECTION, "minItems": 1, "maxItems": 1000} DID = {"description": "Data Identifier(DID)", "type": "object", "properties": {"scope": SCOPE, "name": NAME, "type": DID_TYPE, "meta": META, "rules": RULES, "bytes": BYTES, "adler32": ADLER32, "md5": MD5, "state": REPLICA_STATE, "pfn": PFN}, "required": ["scope", "name"], "additionalProperties": False} DID_FILTERS = {"description": "Array to filter DIDs by metadata", "type": "array", "additionalProperties": True} R_DID = {"description": "Data Identifier(DID)", "type": "object", "properties": {"scope": R_SCOPE, "name": R_NAME, "type": DID_TYPE, "meta": META, "rules": RULES, "bytes": BYTES, "adler32": ADLER32, "md5": MD5, "state": REPLICA_STATE, "pfn": PFN}, "required": ["scope", "name"], "additionalProperties": False} DIDS = {"description": "Array of Data Identifiers(DIDs)", "type": "array", "items": DID, "minItems": 1, "maxItems": 1000} R_DIDS = {"description": "Array of Data Identifiers(DIDs)", "type": "array", "items": R_DID, "minItems": 1, "maxItems": 1000} ATTACHMENT = {"description": "Attachement", "type": "object", "properties": {"scope": SCOPE, "name": NAME, "rse": {"description": "RSE name", "type": ["string", "null"], "pattern": "^([A-Z0-9]+([_-][A-Z0-9]+)*)$"}, "dids": DIDS}, "required": ["dids"], "additionalProperties": False} ATTACHMENTS = {"description": "Array of attachments", "type": "array", "items": ATTACHMENT, "minItems": 1, "maxItems": 1000} SUBSCRIPTION_FILTER = {"type": "object", "properties": {"datatype": {"type": "array"}, "prod_step": {"type": "array"}, "stream_name": {"type": "array"}, "project": {"type": "array"}, "scope": {"type": "array"}, "pattern": {"type": "string"}, "excluded_pattern": {"type": "string"}, "group": {"type": "string"}, "provenance": {"type": "string"}, "account": ACCOUNTS, "grouping": {"type": "string"}, "split_rule": {"type": "boolean"}}} ADD_REPLICA_FILE = {"description": "add replica file", "type": "object", "properties": {"scope": SCOPE, "name": NAME, "bytes": BYTES, "adler32": ADLER32}, "required": ["scope", "name", "bytes", "adler32"]} ADD_REPLICA_FILES = {"description": "add replica files", "type": "array", "items": ADD_REPLICA_FILE, "minItems": 1, "maxItems": 1000} CACHE_ADD_REPLICAS = {"description": "rucio cache add replicas", "type": "object", "properties": {"files": ADD_REPLICA_FILES, "rse": RSE, "lifetime": LIFETIME, "operation": {"enum": ["add_replicas"]}}, "required": ['files', 'rse', 'lifetime', 'operation']} DELETE_REPLICA_FILE = {"description": "delete replica file", "type": "object", "properties": {"scope": SCOPE, "name": NAME}, "required": ["scope", "name"]} DELETE_REPLICA_FILES = {"description": "delete replica files", "type": "array", "items": DELETE_REPLICA_FILE, "minItems": 1, "maxItems": 1000} CACHE_DELETE_REPLICAS = {"description": "rucio cache delete replicas", "type": "object", "properties": {"files": DELETE_REPLICA_FILES, "rse": RSE, "operation": {"enum": ["delete_replicas"]}}, "required": ['files', 'rse', 'operation']} MESSAGE_OPERATION = {"type": "object", "properties": {'operation': {"enum": ["add_replicas", "delete_replicas"]}}} ACCOUNT_ATTRIBUTE = {"description": "Account attribute", "type": "string", "pattern": r'^[a-zA-Z0-9-_\\/\\.]{1,30}$'} SCOPE_NAME_REGEXP = '/(.*)/(.*)' DISTANCE = {"description": "RSE distance", "type": "object", "properties": { "src_rse_id": {"type": "string"}, "dest_rse_id": {"type": "string"}, "ranking": {"type": "integer"} }, "required": ["src_rse_id", "dest_rse_id", "ranking"], "additionalProperties": True} IMPORT = {"description": "import data into rucio.", "type": "object", "properties": { "rses": { "type": "object" }, "distances": { "type": "object" } }} VO = {"description": "VO tag", "type": "string", "pattern": "^([a-zA-Z_\\-.0-9]{3})?$"} SCHEMAS = {'account': ACCOUNT, 'account_type': ACCOUNT_TYPE, 'activity': ACTIVITY, 'name': NAME, 'r_name': R_NAME, 'rse': RSE, 'rse_attribute': RSE_ATTRIBUTE, 'scope': SCOPE, 'r_scope': R_SCOPE, 'did': DID, 'did_filters': DID_FILTERS, 'r_did': R_DID, 'dids': DIDS, 'rule': RULE, 'r_dids': R_DIDS, 'collection': COLLECTION, 'collections': COLLECTIONS, 'attachment': ATTACHMENT, 'attachments': ATTACHMENTS, 'subscription_filter': SUBSCRIPTION_FILTER, 'cache_add_replicas': CACHE_ADD_REPLICAS, 'cache_delete_replicas': CACHE_DELETE_REPLICAS, 'account_attribute': ACCOUNT_ATTRIBUTE, 'import': IMPORT, 'vo': VO} def validate_schema(name, obj): """ Validate object against json schema :param name: The json schema name. :param obj: The object to validate. """ try: if obj: validate(obj, SCHEMAS.get(name, {})) except ValidationError as error: # NOQA, pylint: disable=W0612 raise InvalidObject("Problem validating %(name)s : %(error)s" % locals())
the-stack_106_14621
"""Prerender common images used in the application.""" from memegen.settings import ProductionConfig from memegen.factory import create_app from memegen.domain import Text def run(): app = create_app(ProductionConfig) with app.app_context(): options = [] for template in app.template_service.all(): for text in [Text("_"), template.sample_text]: for watermark in ["", "memegen.link"]: options.append((template, text, watermark)) print(f"Generating {len(options)} sample images...") for template, text, watermark in options: app.image_service.create(template, text, watermark=watermark) if __name__ == '__main__': run()
the-stack_106_14622
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import os from copy import deepcopy import mock import pytest from .common import FIXTURES_PATH from .utils import mocked_perform_request def test_flatten_json(check): check = check({}) with open(os.path.join(FIXTURES_PATH, 'nginx_plus_in.json')) as f: parsed = check.parse_json(f.read()) parsed.sort() with open(os.path.join(FIXTURES_PATH, 'nginx_plus_out.python')) as f: expected = eval(f.read()) # Check that the parsed test data is the same as the expected output assert parsed == expected def test_flatten_json_timestamp(check): check = check({}) assert ( check.parse_json( """ {"timestamp": "2018-10-23T12:12:23.123212Z"} """ ) == [('nginx.timestamp', 1540296743, [], 'gauge')] ) def test_plus_api(check, instance, aggregator): instance = deepcopy(instance) instance['use_plus_api'] = True check = check(instance) check._perform_request = mock.MagicMock(side_effect=mocked_perform_request) check.check(instance) total = 0 for m in aggregator.metric_names: total += len(aggregator.metrics(m)) assert total == 1180 def test_nest_payload(check): check = check({}) keys = ["foo", "bar"] payload = {"key1": "val1", "key2": "val2"} result = check._nest_payload(keys, payload) expected = {"foo": {"bar": payload}} assert result == expected @pytest.mark.parametrize( 'test_case, extra_config, expected_http_kwargs', [ ( "legacy auth config", {'user': 'legacy_foo', 'password': 'legacy_bar'}, {'auth': ('legacy_foo', 'legacy_bar')}, ), ("new auth config", {'username': 'new_foo', 'password': 'new_bar'}, {'auth': ('new_foo', 'new_bar')}), ("legacy ssl config True", {'ssl_validation': True}, {'verify': True}), ("legacy ssl config False", {'ssl_validation': False}, {'verify': False}), ], ) def test_config(check, instance, test_case, extra_config, expected_http_kwargs): instance = deepcopy(instance) instance.update(extra_config) c = check(instance) with mock.patch('datadog_checks.base.utils.http.requests') as r: r.get.return_value = mock.MagicMock(status_code=200, content='{}') c.check(instance) http_wargs = dict( auth=mock.ANY, cert=mock.ANY, headers=mock.ANY, proxies=mock.ANY, timeout=mock.ANY, verify=mock.ANY ) http_wargs.update(expected_http_kwargs) r.get.assert_called_with('http://localhost:8080/nginx_status', **http_wargs)
the-stack_106_14624
from deap import base from deap import creator from deap import tools import random import numpy import matplotlib.pyplot as plt import seaborn as sns import hyperparameter_tuning_genetic_test import elitism # boundaries for ADABOOST parameters: # "n_estimators": 1..100 # "learning_rate": 0.01..100 # "algorithm": 0, 1 # [n_estimators, learning_rate, algorithm]: BOUNDS_LOW = [ 1, 0.01, 0] BOUNDS_HIGH = [100, 1.00, 1] NUM_OF_PARAMS = len(BOUNDS_HIGH) # Genetic Algorithm constants: POPULATION_SIZE = 20 P_CROSSOVER = 0.9 # probability for crossover P_MUTATION = 0.5 # probability for mutating an individual MAX_GENERATIONS = 5 HALL_OF_FAME_SIZE = 5 CROWDING_FACTOR = 20.0 # crowding factor for crossover and mutation # set the random seed: RANDOM_SEED = 42 random.seed(RANDOM_SEED) # create the classifier accuracy test class: test = hyperparameter_tuning_genetic_test.HyperparameterTuningGenetic(None) toolbox = base.Toolbox() # define a single objective, maximizing fitness strategy: creator.create("FitnessMax", base.Fitness, weights=(1.0,)) # create the Individual class based on list: creator.create("Individual", list, fitness=creator.FitnessMax) # define the hyperparameter attributes individually: for i in range(NUM_OF_PARAMS): # "hyperparameter_0", "hyperparameter_1", ... toolbox.register("hyperparameter_" + str(i), random.uniform, BOUNDS_LOW[i], BOUNDS_HIGH[i]) # create a tuple containing an attribute generator for each param searched: hyperparameters = () for i in range(NUM_OF_PARAMS): hyperparameters = hyperparameters + \ (toolbox.__getattribute__("hyperparameter_" + str(i)),) # create the individual operator to fill up an Individual instance: toolbox.register("individualCreator", tools.initCycle, creator.Individual, hyperparameters, n=1) # create the population operator to generate a list of individuals: toolbox.register("populationCreator", tools.initRepeat, list, toolbox.individualCreator) # fitness calculation def classificationAccuracy(individual): return test.getAccuracy(individual), toolbox.register("evaluate", classificationAccuracy) # genetic operators:mutFlipBit # genetic operators: toolbox.register("select", tools.selTournament, tournsize=2) toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=BOUNDS_LOW, up=BOUNDS_HIGH, eta=CROWDING_FACTOR) toolbox.register("mutate", tools.mutPolynomialBounded, low=BOUNDS_LOW, up=BOUNDS_HIGH, eta=CROWDING_FACTOR, indpb=1.0 / NUM_OF_PARAMS) # Genetic Algorithm flow: def main(): # create initial population (generation 0): population = toolbox.populationCreator(n=POPULATION_SIZE) # prepare the statistics object: stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("max", numpy.max) stats.register("avg", numpy.mean) # define the hall-of-fame object: hof = tools.HallOfFame(HALL_OF_FAME_SIZE) # perform the Genetic Algorithm flow with hof feature added: population, logbook = elitism.eaSimpleWithElitism(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION, ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True) # print best solution found: print("- Best solution is: ") print("params = ", test.formatParams(hof.items[0])) print("Accuracy = %1.5f" % hof.items[0].fitness.values[0]) # extract statistics: maxFitnessValues, meanFitnessValues = logbook.select("max", "avg") # plot statistics: sns.set_style("whitegrid") plt.plot(maxFitnessValues, color='red') plt.plot(meanFitnessValues, color='green') plt.xlabel('Generation') plt.ylabel('Max / Average Fitness') plt.title('Max and Average fitness over Generations') plt.savefig("img_hyperparameter_01.png") if __name__ == "__main__": main()
the-stack_106_14625
from convoys import autograd_scipy_monkeypatch # NOQA import autograd from autograd_gamma import gammainc from deprecated.sphinx import deprecated import emcee import numpy from scipy.special import gammaincinv from autograd.scipy.special import expit, gammaln from autograd.numpy import isnan, exp, dot, log, sum import progressbar import scipy.optimize import warnings __all__ = ['Exponential', 'Weibull', 'Gamma', 'GeneralizedGamma'] def generalized_gamma_loss(x, X, B, T, W, fix_k, fix_p, hierarchical, flavor, callback=None): k = exp(x[0]) if fix_k is None else fix_k p = exp(x[1]) if fix_p is None else fix_p log_sigma_alpha = x[2] log_sigma_beta = x[3] a = x[4] b = x[5] n_features = int((len(x)-6)/2) alpha = x[6:6+n_features] beta = x[6+n_features:6+2*n_features] lambd = exp(dot(X, alpha)+a) # PDF: p*lambda^(k*p) / gamma(k) * t^(k*p-1) * exp(-(x*lambda)^p) log_pdf = log(p) + (k*p) * log(lambd) - gammaln(k) \ + (k*p-1) * log(T) - (T*lambd)**p cdf = gammainc(k, (T*lambd)**p) if flavor == 'logistic': # Log-likelihood with sigmoid c = expit(dot(X, beta)+b) LL_observed = log(c) + log_pdf LL_censored = log((1 - c) + c * (1 - cdf)) elif flavor == 'linear': # L2 loss, linear c = dot(X, beta)+b LL_observed = -(1 - c)**2 + log_pdf LL_censored = -(c*cdf)**2 LL_data = sum( W * B * LL_observed + W * (1 - B) * LL_censored, 0) if hierarchical: # Hierarchical model with sigmas ~ invgamma(1, 1) LL_prior_a = -4*log_sigma_alpha - 1/exp(log_sigma_alpha)**2 \ - dot(alpha, alpha) / (2*exp(log_sigma_alpha)**2) \ - n_features*log_sigma_alpha LL_prior_b = -4*log_sigma_beta - 1/exp(log_sigma_beta)**2 \ - dot(beta, beta) / (2*exp(log_sigma_beta)**2) \ - n_features*log_sigma_beta LL = LL_prior_a + LL_prior_b + LL_data else: LL = LL_data if isnan(LL): return -numpy.inf if callback is not None: callback(LL) return LL class RegressionModel(object): pass class GeneralizedGamma(RegressionModel): ''' Generalization of Gamma, Weibull, and Exponential :param mcmc: boolean, defaults to False. Whether to use MCMC to sample from the posterior so that a confidence interval can be estimated later (see :meth:`predict`). :param hierarchical: boolean denoting whether we have a (Normal) prior on the alpha and beta parameters to regularize. The variance of the normal distribution is in itself assumed to be an inverse gamma distribution (1, 1). :param flavor: defaults to logistic. If set to 'linear', then an linear model is fit, where the beta params will be completely additive. This creates a much more interpretable model, with some minor loss of accuracy. :param ci: boolean, deprecated alias for `mcmc`. This mostly follows the `Wikipedia article <https://en.wikipedia.org/wiki/Generalized_gamma_distribution>`_, although our notation is slightly different. Also see `this paper <http://data.princeton.edu/pop509/ParametricSurvival.pdf>`_ for an overview. **Shape of the probability function** The cumulative density function is: :math:`F(t) = P(k, (t\\lambda)^p)` where :math:`P(a, x) = \\gamma(a, x) / \\Gamma(a)` is the lower regularized incomplete gamma function. :math:`\\gamma(a, x)` is the incomplete gamma function and :math:`\\Gamma(a)` is the standard gamma function. The probability density function is: :math:`f(t) = p\\lambda^{kp} t^{kp-1} \\exp(-(t\\lambda)^p) / \\Gamma(k)` **Modeling conversion rate** Since our goal is to model the conversion rate, we assume the conversion rate converges to a final value :math:`c = \\sigma(\\mathbf{\\beta^Tx} + b)` where :math:`\\sigma(z) = 1/(1+e^{-z})` is the sigmoid function, :math:`\\mathbf{\\beta}` is an unknown vector we are solving for (with corresponding intercept :math:`b`), and :math:`\\mathbf{x}` are the feature vector (inputs). We also assume that the rate parameter :math:`\\lambda` is determined by :math:`\\lambda = exp(\\mathbf{\\alpha^Tx} + a)` where :math:`\\mathrm{\\alpha}` is another unknown vector we are trying to solve for (with corresponding intercept :math:`a`). We also assume that the :math:`\\mathbf{\\alpha}, \\mathbf{\\beta}` vectors have a normal distribution :math:`\\alpha_i \\sim \\mathcal{N}(0, \\sigma_{\\alpha})`, :math:`\\beta_i \\sim \\mathcal{N}(0, \\sigma_{\\beta})` where hyperparameters :math:`\\sigma_{\\alpha}^2, \\sigma_{\\beta}^2` are drawn from an inverse gamma distribution :math:`\\sigma_{\\alpha}^2 \\sim \\text{inv-gamma}(1, 1)`, :math:`\\sigma_{\\beta}^2 \\sim \\text{inv-gamma}(1, 1)` **List of parameters** The full model fits vectors :math:`\\mathbf{\\alpha, \\beta}` and scalars :math:`a, b, k, p, \\sigma_{\\alpha}, \\sigma_{\\beta}`. **Likelihood and censorship** For entries that convert, the contribution to the likelihood is simply the probability density given by the probability distribution function :math:`f(t)` times the final conversion rate :math:`c`. For entries that *did not* convert, there is two options. Either the entry will never convert, which has probability :math:`1-c`. Or, it will convert at some later point that we have not observed yet, with probability given by the cumulative density function :math:`F(t)`. **Solving the optimization problem** To find the MAP (max a posteriori), `scipy.optimize.minimize <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize>`_ with the SLSQP method. If `mcmc == True`, then `emcee <http://dfm.io/emcee/current/>`_ is used to sample from the full posterior in order to generate uncertainty estimates for all parameters. ''' def __init__(self, mcmc=False, fix_k=None, fix_p=None, hierarchical=True, flavor='logistic', ci=None): self._mcmc = mcmc self._fix_k = fix_k self._fix_p = fix_p self._hierarchical = hierarchical self._flavor = flavor if ci is not None: warnings.warn('The `ci` argument is deprecated in 0.2.1 in favor ' ' of `mcmc`.', DeprecationWarning) self._mcmc = ci def fit(self, X, B, T, W=None): '''Fits the model. :param X: numpy matrix of shape :math:`k \\cdot n` :param B: numpy vector of shape :math:`n` :param T: numpy vector of shape :math:`n` :param W: (optional) numpy vector of shape :math:`n` ''' if W is None: W = numpy.ones(len(X)) X, B, T, W = (Z if type(Z) == numpy.ndarray else numpy.array(Z) for Z in (X, B, T, W)) keep_indexes = (T > 0) & (B >= 0) & (B <= 1) & (W >= 0) if sum(keep_indexes) < X.shape[0]: n_removed = X.shape[0] - sum(keep_indexes) warnings.warn('Warning! Removed %d/%d entries from inputs where ' 'T <= 0 or B not 0/1 or W < 0' % (n_removed, len(X))) X, B, T, W = (Z[keep_indexes] for Z in (X, B, T, W)) n_features = X.shape[1] # scipy.optimize and emcee forces the the parameters to be a vector: # (log k, log p, log sigma_alpha, log sigma_beta, # a, b, alpha_1...alpha_k, beta_1...beta_k) # Generalized Gamma is a bit sensitive to the starting point! x0 = numpy.zeros(6+2*n_features) x0[0] = +1 if self._fix_k is None else log(self._fix_k) x0[1] = -1 if self._fix_p is None else log(self._fix_p) args = (X, B, T, W, self._fix_k, self._fix_p, self._hierarchical, self._flavor) # Set up progressbar and callback bar = progressbar.ProgressBar(widgets=[ progressbar.Variable('loss', width=15, precision=9), ' ', progressbar.BouncingBar(), ' ', progressbar.Counter(width=6), ' [', progressbar.Timer(), ']']) def callback(LL, value_history=[]): value_history.append(LL) bar.update(len(value_history), loss=LL) # Define objective and use automatic differentiation f = lambda x: -generalized_gamma_loss(x, *args, callback=callback) jac = autograd.grad(lambda x: -generalized_gamma_loss(x, *args)) # Find the maximum a posteriori of the distribution res = scipy.optimize.minimize(f, x0, jac=jac, method='SLSQP', options={'maxiter': 9999}) if not res.success: raise Exception('Optimization failed with message: %s' % res.message) result = {'map': res.x} # TODO: should not use fixed k/p as search parameters if self._fix_k: result['map'][0] = log(self._fix_k) if self._fix_p: result['map'][1] = log(self._fix_p) # Make sure we're in a local minimum gradient = jac(result['map']) gradient_norm = numpy.dot(gradient, gradient) if gradient_norm >= 1e-2 * len(X): warnings.warn('Might not have found a local minimum! ' 'Norm of gradient is %f' % gradient_norm) # Let's sample from the posterior to compute uncertainties if self._mcmc: dim, = res.x.shape n_walkers = 5*dim sampler = emcee.EnsembleSampler( nwalkers=n_walkers, ndim=dim, log_prob_fn=generalized_gamma_loss, args=args, ) mcmc_initial_noise = 1e-3 p0 = [result['map'] + mcmc_initial_noise * numpy.random.randn(dim) for i in range(n_walkers)] n_burnin = 100 n_steps = int(numpy.ceil(2000. / n_walkers)) n_iterations = n_burnin + n_steps bar = progressbar.ProgressBar(max_value=n_iterations, widgets=[ progressbar.Percentage(), ' ', progressbar.Bar(), ' %d walkers [' % n_walkers, progressbar.AdaptiveETA(), ']']) for i, _ in enumerate(sampler.sample(p0, iterations=n_iterations)): bar.update(i+1) result['samples'] = sampler.chain[:, n_burnin:, :] \ .reshape((-1, dim)).T if self._fix_k: result['samples'][0, :] = log(self._fix_k) if self._fix_p: result['samples'][1, :] = log(self._fix_p) self.params = {k: { 'k': exp(data[0]), 'p': exp(data[1]), 'a': data[4], 'b': data[5], 'alpha': data[6:6+n_features].T, 'beta': data[6+n_features:6+2*n_features].T, } for k, data in result.items()} def _predict(self, params, x, t): lambd = exp(dot(x, params['alpha'].T) + params['a']) if self._flavor == 'logistic': c = expit(dot(x, params['beta'].T) + params['b']) elif self._flavor == 'linear': c = dot(x, params['beta'].T) + params['b'] M = c * gammainc( params['k'], (t*lambd)**params['p']) return M def predict_posteriori(self, x, t): ''' Returns the trace samples generated via the MCMC steps. Requires the model to be fit with `mcmc == True`.''' x = numpy.array(x) t = numpy.array(t) assert self._mcmc params = self.params['samples'] t = numpy.expand_dims(t, -1) return self._predict(params, x, t) def predict_ci(self, x, t, ci=0.8): '''Works like :meth:`predict` but produces a confidence interval. Requires the model to be fit with `ci = True`. The return value will contain one more dimension than for :meth:`predict`, and the last dimension will have size 3, containing the mean, the lower bound of the confidence interval, and the upper bound of the confidence interval. ''' M = self.predict_posteriori(x, t) y = numpy.mean(M, axis=-1) y_lo = numpy.percentile(M, (1-ci)*50, axis=-1) y_hi = numpy.percentile(M, (1+ci)*50, axis=-1) return numpy.stack((y, y_lo, y_hi), axis=-1) def predict(self, x, t): '''Returns the value of the cumulative distribution function for a fitted model (using the maximum a posteriori estimate). :param x: feature vector (or matrix) :param t: time ''' params = self.params['map'] x = numpy.array(x) t = numpy.array(t) return self._predict(params, x, t) def rvs(self, x, n_curves=1, n_samples=1, T=None): ''' Samples values from this distribution T is optional and means we already observed non-conversion until T ''' assert self._mcmc # Need to be fit with MCMC if T is None: T = numpy.zeros((n_curves, n_samples)) else: assert T.shape == (n_curves, n_samples) B = numpy.zeros((n_curves, n_samples), dtype=numpy.bool) C = numpy.zeros((n_curves, n_samples)) params = self.params['samples'] for i, j in enumerate(numpy.random.randint(len(params['k']), size=n_curves)): k = params['k'][j] p = params['p'][j] lambd = exp(dot(x, params['alpha'][j]) + params['a'][j]) c = expit(dot(x, params['beta'][j]) + params['b'][j]) z = numpy.random.uniform(size=(n_samples,)) cdf_now = c * gammainc( k, numpy.multiply.outer(T[i], lambd)**p) # why is this outer? adjusted_z = cdf_now + (1 - cdf_now) * z B[i] = (adjusted_z < c) y = adjusted_z / c w = gammaincinv(k, y) # x = (t * lambd)**p C[i] = w**(1./p) / lambd C[i][~B[i]] = 0 return B, C @deprecated(version='0.2.0', reason='Use :meth:`predict` or :meth:`predict_ci` instead.') def cdf(self, x, t, ci=False): '''Returns the predicted values.''' if ci: return self.predict_ci(x, t) else: return self.predict(x, t) @deprecated(version='0.2.0', reason='Use :meth:`predict_posteriori` instead.') def cdf_posteriori(self, x, t): '''Returns the a posterior distribution of the predicted values.''' return self.predict_posteriori(x, t) class Exponential(GeneralizedGamma): ''' Specialization of :class:`.GeneralizedGamma` where :math:`k=1, p=1`. The cumulative density function is: :math:`F(t) = 1 - \\exp(-t\\lambda)` The probability density function is: :math:`f(t) = \\lambda\\exp(-t\\lambda)` The exponential distribution is the most simple distribution. From a conversion perspective, you can interpret it as having two competing final states where the probability of transitioning from the initial state to converted or dead is constant. See documentation for :class:`GeneralizedGamma`.''' def __init__(self, *args, **kwargs): kwargs.update(dict(fix_k=1, fix_p=1)) super(Exponential, self).__init__(*args, **kwargs) class Weibull(GeneralizedGamma): ''' Specialization of :class:`.GeneralizedGamma` where :math:`k=1`. The cumulative density function is: :math:`F(t) = 1 - \\exp(-(t\\lambda)^p)` The probability density function is: :math:`f(t) = p\\lambda(t\\lambda)^{p-1}\\exp(-(t\\lambda)^p)` See documentation for :class:`GeneralizedGamma`.''' def __init__(self, *args, **kwargs): kwargs.update(dict(fix_k=1)) super(Weibull, self).__init__(*args, **kwargs) class Gamma(GeneralizedGamma): ''' Specialization of :class:`.GeneralizedGamma` where :math:`p=1`. The cumulative density function is: :math:`F(t) = P(k, t\\lambda)` where :math:`P(a, x) = \\gamma(a, x) / \\Gamma(a)` is the lower regularized incomplete gamma function. The probability density function is: :math:`f(t) = \\lambda^k t^{k-1} \\exp(-x\\lambda) / \\Gamma(k)` See documentation for :class:`GeneralizedGamma`.''' def __init__(self, *args, **kwargs): kwargs.update(dict(fix_p=1)) super(Gamma, self).__init__(*args, **kwargs)
the-stack_106_14627
# -*- coding: utf-8 -*- """Core of box engine package""" import os import shutil import uuid import string from subprocess import CalledProcessError import vagrant from workbox import model from workbox.lib.helpers import get_vagrantfiles_base_folder, get_free_port, get_server_load_value class BoxEngine(object): """Helper class for work with boxes""" @staticmethod def get_all_boxes(): """ Get all boxes from db Returns: Collection of all boxes """ return model.Box.get_all_boxes() @staticmethod def get_all_user_boxes(user_id): """ Get all user boxes from db Args: user_id (int): user id in db Returns: Collection of all boxes """ return model.Box.get_all_user_boxes(user_id) @staticmethod def get_box_by_id(box_id): """ Get box with given box_id Args: box_id (int): box_id in db Returns: model.Box or None """ return model.Box.get_by_box_id(box_id) @staticmethod def is_author(user_name, box_id): """ Detect is user author of box Args: user_name (string): user name box_id (int): id of box Raises: IndexError: no box with given box_id Returns: True if user is author, otherwise - False """ return model.Box.is_author(user_name, box_id) @staticmethod def update_vagrantfile(box_id, vagrantfile_data): """ Update Vagrantfile of box with given box_id Args: box_id (int): id of box vagrantfile_data (string): text data of vagrantfile Raises: IndexError: no box with given box_id EnvironmentError: vagrantfile was removed """ box = BoxEngine.get_box_by_id(box_id) if box is None: raise IndexError("Виртуальная среда #" + str(box_id) + " не найдена") file_path = os.path.join(box.vagrantfile_path, 'Vagrantfile') if not os.path.exists(file_path): raise EnvironmentError("Vagrantfile был удален (#" + str(box_id) + ")") with open(file_path, 'wb') as v_file: v_file.write(vagrantfile_data) try: model.Box.update_datetime_of_modify(box_id) except IndexError: raise @staticmethod def create_box_from_vagrantfile(box_name, user_name, vagrantfile_data): """ Create box from givent Vagrantfile text Args: box_name (string): name of box user_name (string): user name vagrantfile_data (string): text data of vagrantfile Returns: Id of created box """ port = None if '#FPRT#' in vagrantfile_data: while True: port = get_free_port() if model.Box.is_port_free(port): vagrantfile_data = string.replace(vagrantfile_data, '#FPRT#', str(port)) break vagrantfile_path = BoxEngine._create_vagrantfile(vagrantfile_data) box_id = model.Box.add_new_box(user_name, box_name, port, vagrantfile_path) return box_id @staticmethod def create_box_from_parameters(box_name, user_name, vagrantfile_data): """ Create box from givent parameters Args: box_name (string): name of box user_name (string): user name vagrantfile_data (string): text data of vagrantfile """ return BoxEngine.create_box_from_vagrantfile(box_name, user_name, vagrantfile_data) @staticmethod def update_all_boxes_status(): """ Update status of all boxes Raises: EnvironmentError: vagrant failed """ boxes = BoxEngine.get_all_boxes() status = None for box in boxes: try: vagrant_box = vagrant.Vagrant(box.vagrantfile_path) status = vagrant_box.status() except CalledProcessError: raise EnvironmentError( "Не удалось выполнить 'vagrant status' (#" + str(box.box_id) + ")") except OSError: raise EnvironmentError( "Не удалось выполнить 'vagrant status' (проблема с доступом к Vagrantfile) (#" + str(box.box_id) + ")") if status is not None and len(status) > 0 and status[0].state is not None: if box.status == 'started' and status[0].state != 'running': model.Box.change_status(box.box_id, 'stopped') if box.status != 'started' and status[0].state == 'running': model.Box.change_status(box.box_id, 'started') @staticmethod def update_all_user_boxes_status(user_id): """ Update status of user boxes Args: user_id (int): user id in db Raises: EnvironmentError: vagrant failed """ boxes = BoxEngine.get_all_user_boxes(user_id) for box in boxes: try: vagrant_box = vagrant.Vagrant(box.vagrantfile_path) status = vagrant_box.status() except CalledProcessError: raise EnvironmentError( "Не удалось выполнить 'vagrant status' (#" + str(box.box_id) + ")") except OSError: raise EnvironmentError( "Не удалось выполнить 'vagrant status' (проблема с доступом к Vagrantfile) (#" + str(box.box_id) + ")") if status is not None and len(status) > 0 and status[0].state is not None: if box.status == 'started' and status[0].state != 'running': model.Box.change_status(box.box_id, 'stopped') if box.status != 'started' and status[0].state == 'running': model.Box.change_status(box.box_id, 'started') @staticmethod def start_box(box_id): """ Start box Args: box_id (int): id of box Raises: EnvironmentError: vagrant failed IndexError: no box with given box_id """ box = BoxEngine.get_box_by_id(box_id) if box is None: raise IndexError("Виртуальная среда #" + str(box_id) + " не найдена") try: vagrant_box = vagrant.Vagrant(box.vagrantfile_path) vagrant_box.up() except CalledProcessError: raise EnvironmentError("Не удалось выполнить 'vagrant up' (#" + str(box_id) + ")") except OSError: raise EnvironmentError( "Не удалось выполнить 'vagrant up' (проблема с доступом к Vagrantfile) (#" + str(box_id) + ")") model.Box.change_status(box_id, 'started') @staticmethod def stop_box(box_id): """ Stop box Args: box_id (int): id of box Raises: IndexError: no box with given box_id EnvironmentError: vagrant failed """ box = BoxEngine.get_box_by_id(box_id) if box is None: raise IndexError("Виртуальная среда #" + str(box_id) + " не найдена") try: vagrant_box = vagrant.Vagrant(box.vagrantfile_path) vagrant_box.destroy() except CalledProcessError: raise EnvironmentError("Не удалось выполнить 'vagrant destroy' (#" + str(box_id) + ")") except OSError: raise EnvironmentError( "Не удалось выполнить 'vagrant destroy' (проблема с доступом к Vagrantfile) (#" + str(box_id) + ")") model.Box.change_status(box_id, 'stopped') @staticmethod def copy_box(user_name, copied_box_id): """ Copy box from box with given box_id Args: user_name (string): user name copied_box_id (int): id of copied box Returns: Id of created box Raises: IndexError: no box with given box_id EnvironmentError: vagrantfile was removed """ copied_box = BoxEngine.get_box_by_id(copied_box_id) if copied_box is None: raise IndexError("Виртуальная среда #" + str(copied_box_id) + " не найдена") port = None if copied_box.port != None: while True: port = get_free_port() if model.Box.is_port_free(port): break file_path = os.path.join(copied_box.vagrantfile_path, 'Vagrantfile') if not os.path.exists(file_path): raise EnvironmentError("Vagrantfile был удален (#" + str(copied_box_id) + ")") with open(file_path, 'r') as v_file: vagrantfile_path = BoxEngine._create_vagrantfile(v_file.read()) box_id = model.Box.add_new_box(user_name, copied_box.name, port, vagrantfile_path) return box_id @staticmethod def delete_box(box_id): """ Delete box with given box_id Args: box_id (int): id of box Raises: IndexError: no box with given box_id """ box = BoxEngine.get_box_by_id(box_id) if box is None: raise IndexError("Виртуальная среда #" + str(box_id) + " не найдена") if box.status == 'started': BoxEngine.stop_box(box_id) vagrantfile_path = box.vagrantfile_path model.Box.delete_box(box_id) BoxEngine._delete_vagrantfile(vagrantfile_path) @staticmethod def get_vagrantfile_data(box_id): """ Return vagrantfile data of box Args: box_id (int): id of box Returns: Vagrantfile data Raises: IndexError: no box with given box_id EnvironmentError: vagrantfile was removed """ box = BoxEngine.get_box_by_id(box_id) if box is None: raise IndexError("Виртуальная среда #" + str(box_id) + " не найдена") file_path = os.path.join(box.vagrantfile_path, 'Vagrantfile') if not os.path.exists(file_path): raise EnvironmentError("Vagrantfile был удален (#" + str(box_id) + ")") with open(file_path, 'r') as v_file: return v_file.read() @staticmethod def get_server_load_value(): """ Get server load value Returns: Server load value (int between 0 and 100) """ return get_server_load_value() @staticmethod def get_number_of_user_boxes(user_id): """ Get number of all users boxes from db Args: user_id (int): user id in db Returns: Number of all user's boxes """ my_boxes = {} my_boxes['created'] = model.Box.get_number_of_user_boxes(user_id, 'created') my_boxes['started'] = model.Box.get_number_of_user_boxes(user_id, 'started') my_boxes['stopped'] = model.Box.get_number_of_user_boxes(user_id, 'stopped') return my_boxes @staticmethod def get_number_of_all_boxes(): """ Get number of all boxes from db Returns: Number of all boxes """ all_boxes = {} all_boxes['created'] = model.Box.get_number_of_all_boxes('created') all_boxes['started'] = model.Box.get_number_of_all_boxes('started') all_boxes['stopped'] = model.Box.get_number_of_all_boxes('stopped') return all_boxes @staticmethod def _create_vagrantfile(vagrantfile_data): """ Create Vagrantfile and return its path Args: vagrantfile_data (string): text data of vagrantfile Returns: Path to created vagrantfile """ directory = str(get_vagrantfiles_base_folder()) + str(uuid.uuid4()) if not os.path.exists(directory): os.makedirs(directory) file_path = os.path.join(directory, 'Vagrantfile') temp_file_path = file_path + '~' with open(temp_file_path, 'wb') as output_file: output_file.write(vagrantfile_data) os.rename(temp_file_path, file_path) return directory @staticmethod def _delete_vagrantfile(vagrantfile_dir): """ Delete Vagrantfile from disk Args: vagrantfile_dir (string): path to vagrantfile """ if os.path.exists(vagrantfile_dir): shutil.rmtree(vagrantfile_dir)
the-stack_106_14630
# Ultroid - UserBot # Copyright (C) 2021-2022 TeamUltroid # # This file is a part of < https://github.com/TeamUltroid/Ultroid/ > # PLease read the GNU Affero General Public License in # <https://www.github.com/TeamUltroid/Ultroid/blob/main/LICENSE/>. # # Ported by @mrismanaziz # FROM Man-Userbot <https://github.com/mrismanaziz/Man-Userbot> # t.me/SharingUserbot & t.me/Lunatic0de from os import remove from random import choice from telethon.tl.functions.users import GetFullUserRequest from userbot import CMD_HANDLER as cmd from userbot import CMD_HELP from userbot.utils import edit_delete, edit_or_reply, ice_cmd from userbot.utils.misc import create_quotly from .carbon import all_col @ice_cmd(pattern="q( (.*)|$)") async def quotly(event): match = event.pattern_match.group(1).strip() if not event.is_reply: return await edit_delete(event, "**Mohon Balas ke Pesan**") msg = await edit_or_reply(event, "`Processing...`") reply = await event.get_reply_message() replied_to, reply_ = None, None if match: spli_ = match.split(maxsplit=1) if (spli_[0] in ["r", "reply"]) or ( spli_[0].isdigit() and int(spli_[0]) in range(1, 21) ): if spli_[0].isdigit(): if not event.client._bot: reply_ = await event.client.get_messages( event.chat_id, min_id=event.reply_to_msg_id - 1, reverse=True, limit=int(spli_[0]), ) else: id_ = reply.id reply_ = [] for msg_ in range(id_, id_ + int(spli_[0])): msh = await event.client.get_messages(event.chat_id, ids=msg_) if msh: reply_.append(msh) else: replied_to = await reply.get_reply_message() try: match = spli_[1] except IndexError: match = None user = None if not reply_: reply_ = reply if match: match = match.split(maxsplit=1) if match: if match[0].startswith("@") or match[0].isdigit(): try: match_ = await event.client(GetFullUserRequest(match[0])) user = await event.client.get_entity(match_) except ValueError: pass match = match[1] if len(match) == 2 else None else: match = match[0] if match == "random": match = choice(all_col) try: file = await create_quotly(reply_, bg=match, reply=replied_to, sender=user) except Exception as er: return await msg.edit(f"**ERROR:** `{er}`") message = await reply.reply("Quotly by Ice-Userbot", file=file) remove(file) await msg.delete() return message CMD_HELP.update( { "quotly": f"**Plugin : **`quotly`\ \n\n • **Syntax :** `{cmd}q`\ \n • **Function : **Membuat pesan menjadi sticker dengan random background.\ \n\n • **Syntax :** `{cmd}q` <angka>\ \n • **Function : **Membuat pesan menjadi sticker dengan custom jumlah pesan yang diberikan.\ \n\n • **Syntax :** `{cmd}q` <warna>\ \n • **Function : **Membuat pesan menjadi sticker dengan custom warna background yang diberikan.\ \n\n • **Syntax :** `{cmd}q` <username>\ \n • **Function : **Membuat pesan menjadi sticker dengan custom username user tele yang diberikan.\ " } )
the-stack_106_14631
#!/usr/bin/env python """ @package mi.core.instrument.data_particle_generator Base data particle generator @file mi/core/instrument/data_particle_generator.py @author Steve Foley @brief Contains logic to generate data particles to be exchanged between the driver and agent. This involves a JSON interchange format """ import time import ntplib import base64 import json from mi.core.common import BaseEnum from mi.core.exceptions import SampleException, ReadOnlyException, NotImplementedException, InstrumentParameterException from mi.core.log import get_logger log = get_logger() __author__ = 'Steve Foley' __license__ = 'Apache 2.0' class CommonDataParticleType(BaseEnum): """ This enum defines all the common particle types defined in the modules. Currently there is only one, but by using an enum here we have the opportunity to define more common data particles. """ RAW = "raw" class DataParticleKey(BaseEnum): PKT_FORMAT_ID = "pkt_format_id" PKT_VERSION = "pkt_version" STREAM_NAME = "stream_name" INTERNAL_TIMESTAMP = "internal_timestamp" PORT_TIMESTAMP = "port_timestamp" DRIVER_TIMESTAMP = "driver_timestamp" PREFERRED_TIMESTAMP = "preferred_timestamp" QUALITY_FLAG = "quality_flag" VALUES = "values" VALUE_ID = "value_id" VALUE = "value" BINARY = "binary" NEW_SEQUENCE = "new_sequence" class DataParticleValue(BaseEnum): JSON_DATA = "JSON_Data" ENG = "eng" OK = "ok" CHECKSUM_FAILED = "checksum_failed" OUT_OF_RANGE = "out_of_range" INVALID = "invalid" QUESTIONABLE = "questionable" class DataParticle(object): """ This class is responsible for storing and ultimately generating data particles in the designated format from the associated inputs. It fills in fields as necessary, and is a valid Data Particle that can be sent up to the InstrumentAgent. It is the intent that this class is subclassed as needed if an instrument must modify fields in the outgoing packet. The hope is to have most of the superclass code be called by the child class with just values overridden as needed. """ # data particle type is intended to be defined in each derived data particle class. This value should be unique # for all data particles. Best practice is to access this variable using the accessor method: # data_particle_type() _data_particle_type = None def __init__(self, raw_data, port_timestamp=None, internal_timestamp=None, preferred_timestamp=None, quality_flag=DataParticleValue.OK, new_sequence=None): """ Build a particle seeded with appropriate information @param raw_data The raw data used in the particle """ if new_sequence is not None and not isinstance(new_sequence, bool): raise TypeError("new_sequence is not a bool") self.contents = { DataParticleKey.PKT_FORMAT_ID: DataParticleValue.JSON_DATA, DataParticleKey.PKT_VERSION: 1, DataParticleKey.PORT_TIMESTAMP: port_timestamp, DataParticleKey.INTERNAL_TIMESTAMP: internal_timestamp, DataParticleKey.DRIVER_TIMESTAMP: ntplib.system_to_ntp_time(time.time()), DataParticleKey.PREFERRED_TIMESTAMP: preferred_timestamp, DataParticleKey.QUALITY_FLAG: quality_flag, } self._encoding_errors = [] if new_sequence is not None: self.contents[DataParticleKey.NEW_SEQUENCE] = new_sequence self.raw_data = raw_data self._values = None def __eq__(self, arg): """ Quick equality check for testing purposes. If they have the same raw data, timestamp, they are the same enough for this particle """ allowed_diff = .000001 if self._data_particle_type != arg._data_particle_type: log.debug('Data particle type does not match: %s %s', self._data_particle_type, arg._data_particle_type) return False if self.raw_data != arg.raw_data: log.debug('Raw data does not match') return False t1 = self.contents[DataParticleKey.INTERNAL_TIMESTAMP] t2 = arg.contents[DataParticleKey.INTERNAL_TIMESTAMP] if (t1 is None) or (t2 is None): tdiff = allowed_diff else: tdiff = abs(t1 - t2) if tdiff > allowed_diff: log.debug('Timestamp %s does not match %s', t1, t2) return False generated1 = json.loads(self.generate()) generated2 = json.loads(arg.generate()) missing, differing = self._compare(generated1, generated2, ignore_keys=[DataParticleKey.DRIVER_TIMESTAMP, DataParticleKey.PREFERRED_TIMESTAMP]) if missing: log.error('Key mismatch between particle dictionaries: %r', missing) return False if differing: log.error('Value mismatch between particle dictionaries: %r', differing) return True @staticmethod def _compare(d1, d2, ignore_keys=None): ignore_keys = ignore_keys if ignore_keys else [] missing = set(d1).symmetric_difference(d2) differing = {} for k in d1: if k in ignore_keys or k in missing: continue if d1[k] != d2[k]: differing[k] = (d1[k], d2[k]) return missing, differing def set_internal_timestamp(self, timestamp=None, unix_time=None): """ Set the internal timestamp @param timestamp: NTP timestamp to set @param unit_time: Unix time as returned from time.time() @raise InstrumentParameterException if timestamp or unix_time not supplied """ if timestamp is None and unix_time is None: raise InstrumentParameterException("timestamp or unix_time required") if unix_time is not None: timestamp = ntplib.system_to_ntp_time(unix_time) # Do we want this to happen here or in down stream processes? # if(not self._check_timestamp(timestamp)): # raise InstrumentParameterException("invalid timestamp") self.contents[DataParticleKey.INTERNAL_TIMESTAMP] = float(timestamp) def set_port_timestamp(self, timestamp=None, unix_time=None): """ Set the port timestamp @param timestamp: NTP timestamp to set @param unix_time: Unix time as returned from time.time() @raise InstrumentParameterException if timestamp or unix_time not supplied """ if timestamp is None and unix_time is None: raise InstrumentParameterException("timestamp or unix_time required") if unix_time is not None: timestamp = ntplib.system_to_ntp_time(unix_time) # Do we want this to happen here or in down stream processes? if not self._check_timestamp(timestamp): raise InstrumentParameterException("invalid timestamp") self.contents[DataParticleKey.PORT_TIMESTAMP] = float(timestamp) def set_value(self, id, value): """ Set a content value, restricted as necessary @param id The ID of the value to set, should be from DataParticleKey @param value The value to set @raises ReadOnlyException If the parameter cannot be set """ if (id == DataParticleKey.INTERNAL_TIMESTAMP) and (self._check_timestamp(value)): self.contents[DataParticleKey.INTERNAL_TIMESTAMP] = value else: raise ReadOnlyException("Parameter %s not able to be set to %s after object creation!" % (id, value)) def get_value(self, id): """ Return a stored value @param id The ID (from DataParticleKey) for the parameter to return @raises NotImplementedException If there is an invalid id """ if DataParticleKey.has(id): return self.contents[id] else: raise NotImplementedException("Value %s not available in particle!", id) def data_particle_type(self): """ Return the data particle type (aka stream name) @raise: NotImplementedException if _data_particle_type is not set """ if self._data_particle_type is None: raise NotImplementedException("_data_particle_type not initialized") return self._data_particle_type def generate_dict(self): """ Generate a simple dictionary of sensor data and timestamps, without going to JSON. This is useful for the times when JSON is not needed to go across an interface. There are times when particles are used internally to a component/process/module/etc. @retval A python dictionary with the proper timestamps and data values @throws InstrumentDriverException if there is a problem wtih the inputs """ # verify preferred timestamp exists in the structure... if not self._check_preferred_timestamps(): raise SampleException("Preferred timestamp not in particle!") # build response structure self._encoding_errors = [] if self._values is None: self._values = self._build_parsed_values() result = self._build_base_structure() result[DataParticleKey.STREAM_NAME] = self.data_particle_type() result[DataParticleKey.VALUES] = self._values return result def generate(self, sorted=False): """ Generates a JSON_parsed packet from a sample dictionary of sensor data and associates a timestamp with it @param sorted Returned sorted json dict, useful for testing, but slow, so dont do it unless it is important @return A JSON_raw string, properly structured with port agent time stamp and driver timestamp @throws InstrumentDriverException If there is a problem with the inputs """ json_result = json.dumps(self.generate_dict(), sort_keys=sorted) return json_result def _build_parsed_values(self): """ Build values of a parsed structure. Just the values are built so so that a child class can override this class, but call it with super() to get the base structure before modification @return the values tag for this data structure ready to JSONify @raises SampleException when parsed values can not be properly returned """ raise SampleException("Parsed values block not overridden") def _build_base_structure(self): """ Build the base/header information for an output structure. Follow on methods can then modify it by adding or editing values. @return A fresh copy of a core structure to be exported """ result = dict(self.contents) # clean out optional fields that were missing if not self.contents[DataParticleKey.PORT_TIMESTAMP]: del result[DataParticleKey.PORT_TIMESTAMP] if not self.contents[DataParticleKey.INTERNAL_TIMESTAMP]: del result[DataParticleKey.INTERNAL_TIMESTAMP] return result def _check_timestamp(self, timestamp): """ Check to make sure the timestamp is reasonable @param timestamp An NTP4 formatted timestamp (64bit) @return True if timestamp is okay or None, False otherwise """ if timestamp is None: return True if not isinstance(timestamp, float): return False # is it sufficiently in the future to be unreasonable? if timestamp > ntplib.system_to_ntp_time(time.time() + (86400 * 365)): return False else: return True def _check_preferred_timestamps(self): """ Check to make sure the preferred timestamp indicated in the particle is actually listed, possibly adjusting to 2nd best if not there. @throws SampleException When there is a problem with the preferred timestamp in the sample. """ if self.contents[DataParticleKey.PREFERRED_TIMESTAMP] is None: raise SampleException("Missing preferred timestamp, %s, in particle" % self.contents[DataParticleKey.PREFERRED_TIMESTAMP]) # This should be handled downstream. Don't want to not publish data because # the port agent stopped putting out timestamps # if self.contents[self.contents[DataParticleKey.PREFERRED_TIMESTAMP]] == None: # raise SampleException("Preferred timestamp, %s, is not defined" % # self.contents[DataParticleKey.PREFERRED_TIMESTAMP]) return True def _encode_value(self, name, value, encoding_function): """ Encode a value using the encoding function, if it fails store the error in a queue """ encoded_val = None try: encoded_val = encoding_function(value) except Exception as e: log.error("Data particle error encoding. Name:%s Value:%s", name, value) self._encoding_errors.append({name: value}) return {DataParticleKey.VALUE_ID: name, DataParticleKey.VALUE: encoded_val} def get_encoding_errors(self): """ Return the encoding errors list """ return self._encoding_errors class RawDataParticleKey(BaseEnum): PAYLOAD = "raw" LENGTH = "length" TYPE = "type" CHECKSUM = "checksum" class RawDataParticle(DataParticle): """ This class a common data particle for generating data particles of raw data. It essentially is a translation of the port agent packet """ _data_particle_type = CommonDataParticleType.RAW def _build_parsed_values(self): """ Build a particle out of a port agent packet. @returns A list that is ready to be added to the "values" tag before the structure is JSONified """ port_agent_packet = self.raw_data if not isinstance(port_agent_packet, dict): raise SampleException("raw data not a dictionary") for param in ["raw", "length", "type", "checksum"]: if param not in port_agent_packet: raise SampleException("raw data not a complete port agent packet. missing %s" % param) payload = None length = None type = None checksum = None # Attempt to convert values try: payload = base64.b64encode(port_agent_packet.get("raw")) except TypeError: pass try: length = int(port_agent_packet.get("length")) except TypeError: pass try: type = int(port_agent_packet.get("type")) except TypeError: pass try: checksum = int(port_agent_packet.get("checksum")) except TypeError: pass result = [{ DataParticleKey.VALUE_ID: RawDataParticleKey.PAYLOAD, DataParticleKey.VALUE: payload, DataParticleKey.BINARY: True}, { DataParticleKey.VALUE_ID: RawDataParticleKey.LENGTH, DataParticleKey.VALUE: length}, { DataParticleKey.VALUE_ID: RawDataParticleKey.TYPE, DataParticleKey.VALUE: type}, { DataParticleKey.VALUE_ID: RawDataParticleKey.CHECKSUM, DataParticleKey.VALUE: checksum}, ] return result
the-stack_106_14634
import pytest from dsa.challenges.queue_with_stacks.queue_with_stacks import ( Node, Stack, PseudoQueue ) # Tests Instances def test_Node_exists(): assert Node("test") def test_Stack_exists(): assert Stack() def test_PseudoQueue_exists(): assert PseudoQueue() # Queue Tests def test_PseudoQueue_enqueue_one_item(): my_queue = PseudoQueue() my_queue.enqueue(1) actual = str(my_queue.storage1) expected = "[1] -> NULL" assert actual == expected def test_PseudoQueue_enqueue_multiple_items(): my_queue = PseudoQueue() my_queue.enqueue(1) my_queue.enqueue(2) my_queue.enqueue(3) actual = str(my_queue.storage1) expected = "[3] -> [2] -> [1] -> NULL" assert actual == expected def test_PseudoQueue_dequeue_one_item(): my_queue = PseudoQueue() my_queue.enqueue(1) my_queue.dequeue() actual = str(my_queue.storage1) expected = "NULL" assert actual == expected def test_PseudoQueue_dequeue_multiple_items(): my_queue = PseudoQueue() my_queue.enqueue(1) my_queue.enqueue(2) my_queue.enqueue(3) my_queue.dequeue() my_queue.dequeue() actual = str(my_queue.storage1) expected = "[3] -> NULL" assert actual == expected
the-stack_106_14635
import tkinter.ttk as ttk from bdsolve.solver.genetic import Player from bdsolve.ui.common import ArrayView, default_style class LearnUI: def __init__(self): self.p = Player() self.t = ttk.tkinter.Tk() self.t.title('bdsolve - Learning GUI') self.t.config(bd=0, relief='flat') self.t.geometry('750x500') self.t.grid_columnconfigure(0, weight=2) self.t.grid_columnconfigure(1, weight=1) self.t.grid_rowconfigure(0, weight=1) self.s = default_style(self.t) self.vars = [ ttk.tkinter.StringVar(self.t) for _ in range(5)] self.ivars = [ ttk.tkinter.IntVar(self.t) for _ in range(2)] self.f1 = ttk.Frame( self.t, borderwidth=6, relief='ridge', padding='0.3i', style='A.TFrame') self.f1.grid(row=0, column=0, sticky='nswe') self.f1.grid_columnconfigure(0, weight=1) self.f1.grid_rowconfigure(0, weight=5) self.f1.grid_rowconfigure(1, weight=1) self.f2 = ttk.Frame( self.t, borderwidth=6, relief='ridge', padding='0.3i', style='B.TFrame') self.f2.grid(row=0, column=1, sticky='nswe') self.f2.grid_columnconfigure(0, weight=1) self.f2_1 = ttk.Labelframe(self.f2, padding='0.1i', text='Controls') self.f2_1.grid(row=0, column=0, sticky='nwse') self.b1 = ttk.Button( self.f2_1, text='Learn', command=lambda: [ self.ivars[0].set(1), self.run() ]) self.b1.pack() self.b2 = ttk.Button( self.f2_1, text='Stop', command=lambda: [ self.ivars[0].set(0) ]) self.b2.pack() ttk.Separator(self.f2_1, orient='horizontal').pack() self.sb = ttk.Spinbox( self.f2_1, from_=10, to=1010, increment=100, width=5) self.sb.pack() self.sb.set(110) self.f2_2 = ttk.Labelframe(self.f2, padding='0.1i', text='Statistics') self.f2_2.grid(row=1, column=0, sticky='nwse') self.l1 = ttk.Label(self.f2_2, textvariable=self.vars[0]) self.l1.pack() self.l2 = ttk.Label(self.f2_2, textvariable=self.vars[1]) self.l2.pack() self.l3 = ttk.Label(self.f2_2, textvariable=self.vars[2]) self.l3.pack() self.l4 = ttk.Label(self.f2_2, textvariable=self.vars[3]) self.l4.pack() self.l5 = ttk.Label(self.f2_2, textvariable=self.vars[4]) self.l5.pack() self.aw = ArrayView(self.f1, self.p.board.board, 40) self.aw.canvas.grid(row=0, column=0, sticky='') self.pr = ttk.Progressbar( self.f1, orient='horizontal', mode='determinate', maximum=self.p.g.pop_count-1, variable=self.ivars[1]) self.pr.grid(row=1, column=0, sticky='swe') self.t.mainloop() def run(self): self.p.learn() self.aw.update() self.ivars[1].set(self.p.g.pop_num) self.vars[0].set(f'Score: {self.p.score}') self.vars[1].set(f'Avg score: {self.p.avg_score}') self.vars[2].set(f'Hi score: {self.p.hi_score}') self.vars[3].set(f'Current: {self.p.g.pop_num+1}/{self.p.g.pop_count}') self.vars[4].set(f'Generation: {self.p.g.gen_num}') if self.ivars[0].get(): self.t.after(int(self.sb.get()), self.run)
the-stack_106_14636
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def sortedListToBST(self, head: ListNode) -> TreeNode: if head == None: return None elif head.next == None: return TreeNode(head.val) #快慢指针法, slow最后会是中间结点, front是它前面一个 front, slow, fast = head, head, head while fast.next and fast.next.next: front = slow slow, fast = slow.next, fast.next.next fast, front.next = slow.next, None root = TreeNode(slow.val) if head != slow: root.left = self.sortedListToBST(head) root.right = self.sortedListToBST(fast) return root
the-stack_106_14637
import logging import pathlib import urllib.parse from flask import current_app from quetzal.app.api.exceptions import QuetzalException logger = logging.getLogger(__name__) def upload(filename, content, location): """ Save a file on a local filesystem. Implements the *upload* mechanism of the local file storage backend. Parameters ---------- filename: str Filename where the file will be saved. It can include a relative path. content: file-like Contents of the file. location: str URL where the file will be saved. The `filename` parameter will be relative to this parameter. Returns ------- url: str URL to the uploaded file. Its format will be ``file://absolute/path/to/file``. path_obj: :py:class:`pathlib.Path` Path object where the file was saved. Raises ------ quetzal.app.api.exceptions.QuetzalException When the location is the global data directory. This is not permitted. """ logger.debug('Saving local file %s at %s', filename, location) # Verification that the upload does not change the global data directory data_dir = pathlib.Path(current_app.config['QUETZAL_FILE_DATA_DIR']).resolve() target_dir = pathlib.Path(urllib.parse.urlparse(location).path).resolve() if str(target_dir).startswith(str(data_dir)): raise QuetzalException('Cannot upload directly to global data directory') # Rewind the file descriptor to the beginning of file in case there was a # read operation before content.seek(0) # Create target directory if needed target_path = target_dir / filename target_path.parent.mkdir(parents=True, exist_ok=True) filename = str(target_path.resolve()) # Save the contents content.save(filename) return f'file://{filename}', target_path def set_permissions(file_obj, owner): logger.debug('File permissions on file local storage does not do anything')
the-stack_106_14640
from setuptools import setup, find_packages with open("README.md", "r") as f: long_description = f.read() setup( name='ebook-convert-helper', author='Arbaaz Laskar', author_email="[email protected]", description="A helper cli for calibre's ebook-convert CLI which is used to convert all files in an directory into another format.", long_description=long_description, long_description_content_type="text/markdown", version="0.3.2", license='Apache License', url="https://github.com/arzkar/calibre-ebook-convert-helper", packages=find_packages( include=['ebook_convert_helper', 'ebook_convert_helper.*']), include_package_data=True, install_requires=[ 'tqdm>=4.62.3', 'colorama>=0.4.4' ], entry_points=''' [console_scripts] ebook-convert-helper=ebook_convert_helper.cli:main ''', classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], )
the-stack_106_14642
import base58 def isValidPublicAddress(address: str) -> bool: """Check if address is a valid NEO address""" valid = False if len(address) == 34 and address[0] == 'A': try: base58.b58decode_check(address.encode()) valid = True except ValueError: # checksum mismatch valid = False return valid
the-stack_106_14643
#!/usr/bin/env python3 """File Processing Engine. This is a generic file processing engine that sets up a watch folder and waits for files/directories to be copied to it. Any added directories are also watched (if recursive is set) but any added files are be processed using one of its built in file handler classes. Current built in file handlers: 1) Copy files/directory 2) Import CSV file to MySQL database table. 3) Import CSV file to SQLite database table. 4) SFTP copy files/directory to an SSH server. usage: fpe.py [-h] [-n NAME] file Process files copied into watch folder with a custom handler. positional arguments: file Configration file optional arguments: -h, --help show this help message and exit -n NAME, --name NAME File handler name """ from handlerfactory import create_event_handler import sys import os import time import configparser import logging import argparse from watchdog.observers import Observer __author__ = "Rob Tizzard" __copyright__ = "Copyright 20018" __credits__ = ["Rob Tizzard"] __license__ = "MIT" __version__ = "0.0.1" __maintainer__ = "Rob Tizzard" __email__ = "[email protected]" __status__ = "Pre-Alpha" def get_config_section(config, section_name): """Get configuration file section and return dictionary for it""" config_section = {} for option in config.options(section_name): try: config_section[option] = config.get(section_name, option) # Automatically set any boolean values (dont use getBoolean) if config_section[option] in ('True', 'False'): config_section[option] = config_section[option] == 'True' except Exception as e: logging.error('Error on option {}.\n{}'.format(option, e)) config_section[option] = None # Save away section name for use config_section['name'] = section_name return config_section def load_config(arguments): """Load configuration file and set logging parameters""" try: # Read in config file config = configparser.ConfigParser() config.read(arguments.file) # Default logging parameters logging_params = {'level': logging.INFO, 'format': '%(asctime)s:%(message)s'} # Read in any logging options, merge with default and # remove logging section if 'Logging' in config.sections(): logging_params.update(get_config_section(config, 'Logging')) # If level passed in then convert to int. if logging_params['level'] is not int: logging_params['level'] = int(logging_params['level']) logging_params.pop('name') config.remove_section('Logging') logging.basicConfig(**logging_params) # Set logging options # If handler name set then remove all others from config # leaving the config empty if the handler doesn't exist if arguments.name is not None: if not config.has_section(arguments.name): logging.info('Error: Non-existant file handler {}.'. format(arguments.name)) for section in config.sections(): if section != arguments.name: config.remove_section(section) except Exception as e: logging.error(e) sys.exit(1) return config def load_arguments(): """Load and parse command line arguments""" parser = argparse.ArgumentParser(description='Process files copied into watch folder with a custom handler.') parser.add_argument('file', help='Configration file') parser.add_argument('-n', '--name', help="File handler name") arguments = parser.parse_args() if not os.path.exists(arguments.file): print('Error: Non-existant config file passed to FPE.') sys.exit(1) return arguments def create_observer(config, handler_name): """Create file handler attach to an observer and start watching.""" try: # Default values for optional fields handler_section = {'recursive': False, 'deletesource': True} # Merge config with default values and create handler handler_section.update(get_config_section(config, handler_name)) file_handler = create_event_handler(handler_section) except Exception as e: logging.error(e) observer = None else: # Create observer with file handler and start watching if file_handler is not None: observer = Observer() observer.schedule(file_handler, file_handler.watch_folder, recursive=file_handler.recursive) observer.start() else: observer = None return observer def observe_folders(observers_list): """Run observers until user quits (eg.Control-C)""" try: while True: time.sleep(1) except KeyboardInterrupt: # Stop all observers for observer in observers_list: observer.stop() finally: # Wait for all observer threads to stop for observer in observers_list: observer.join() ######################## # FPE Main Entry Point # ######################## def fpe(): """Main program entry point""" arguments = load_arguments() config = load_config(arguments) logging.info('File Processing Engine Started.') observers_list = [] # Loop through config sections creating file observers for handler_name in config.sections(): observer = create_observer(config, handler_name) if observer is not None: observers_list.append(observer) # If list not empty observer folders if observers_list: observe_folders(observers_list) else: logging.error('Error: No file handlers configured.') logging.info('File Processing Engine Stopped.') if __name__ == '__main__': fpe()
the-stack_106_14644
#! /usr/bin/env python # David Cournapeau # Last Change: Wed Nov 05 07:00 PM 2008 J from __future__ import division, print_function, absolute_import import os.path import warnings import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, TestCase, run_module_suite, assert_raises, assert_allclose, assert_equal, assert_) from scipy.cluster.vq import (kmeans, kmeans2, py_vq, py_vq2, vq, whiten, ClusterError) from scipy.cluster import _vq # Optional: # import modules that are located in the same directory as this file. DATAFILE1 = os.path.join(os.path.dirname(__file__), "data.txt") # Global data X = np.array([[3.0, 3], [4, 3], [4, 2], [9, 2], [5, 1], [6, 2], [9, 4], [5, 2], [5, 4], [7, 4], [6, 5]]) CODET1 = np.array([[3.0000, 3.0000], [6.2000, 4.0000], [5.8000, 1.8000]]) CODET2 = np.array([[11.0/3, 8.0/3], [6.7500, 4.2500], [6.2500, 1.7500]]) LABEL1 = np.array([0, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1]) class TestWhiten(TestCase): def test_whiten(self): desired = np.array([[5.08738849, 2.97091878], [3.19909255, 0.69660580], [4.51041982, 0.02640918], [4.38567074, 0.95120889], [2.32191480, 1.63195503]]) for tp in np.array, np.matrix: obs = tp([[0.98744510, 0.82766775], [0.62093317, 0.19406729], [0.87545741, 0.00735733], [0.85124403, 0.26499712], [0.45067590, 0.45464607]]) assert_allclose(whiten(obs), desired, rtol=1e-5) def test_whiten_zero_std(self): desired = np.array([[0., 1.0, 2.86666544], [0., 1.0, 1.32460034], [0., 1.0, 3.74382172]]) for tp in np.array, np.matrix: obs = tp([[0., 1., 0.74109533], [0., 1., 0.34243798], [0., 1., 0.96785929]]) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_allclose(whiten(obs), desired, rtol=1e-5) assert_equal(len(w), 1) assert_(issubclass(w[-1].category, RuntimeWarning)) def test_whiten_not_finite(self): for tp in np.array, np.matrix: for bad_value in np.nan, np.inf, -np.inf: obs = tp([[0.98744510, bad_value], [0.62093317, 0.19406729], [0.87545741, 0.00735733], [0.85124403, 0.26499712], [0.45067590, 0.45464607]]) assert_raises(ValueError, whiten, obs) class TestVq(TestCase): def test_py_vq(self): initc = np.concatenate(([[X[0]], [X[1]], [X[2]]])) for tp in np.array, np.matrix: label1 = py_vq(tp(X), tp(initc))[0] assert_array_equal(label1, LABEL1) def test_py_vq2(self): initc = np.concatenate(([[X[0]], [X[1]], [X[2]]])) for tp in np.array, np.matrix: label1 = py_vq2(tp(X), tp(initc))[0] assert_array_equal(label1, LABEL1) def test_vq(self): initc = np.concatenate(([[X[0]], [X[1]], [X[2]]])) for tp in np.array, np.matrix: label1, dist = _vq.vq(tp(X), tp(initc)) assert_array_equal(label1, LABEL1) tlabel1, tdist = vq(tp(X), tp(initc)) # def test_py_vq_1d(self): # """Test special rank 1 vq algo, python implementation.""" # data = X[:, 0] # initc = data[:3] # a, b = _py_vq_1d(data, initc) # ta, tb = py_vq(data[:, np.newaxis], initc[:, np.newaxis]) # assert_array_equal(a, ta) # assert_array_equal(b, tb) def test_vq_1d(self): # Test special rank 1 vq algo, python implementation. data = X[:, 0] initc = data[:3] a, b = _vq.vq(data, initc) ta, tb = py_vq(data[:, np.newaxis], initc[:, np.newaxis]) assert_array_equal(a, ta) assert_array_equal(b, tb) def test__vq_sametype(self): a = np.array([1.0, 2.0], dtype=np.float64) b = a.astype(np.float32) assert_raises(TypeError, _vq.vq, a, b) def test__vq_invalid_type(self): a = np.array([1, 2], dtype=np.int) assert_raises(TypeError, _vq.vq, a, a) def test_vq_large_nfeat(self): X = np.random.rand(20, 20) code_book = np.random.rand(3, 20) codes0, dis0 = _vq.vq(X, code_book) codes1, dis1 = py_vq(X, code_book) assert_allclose(dis0, dis1, 1e-5) assert_array_equal(codes0, codes1) X = X.astype(np.float32) code_book = code_book.astype(np.float32) codes0, dis0 = _vq.vq(X, code_book) codes1, dis1 = py_vq(X, code_book) assert_allclose(dis0, dis1, 1e-5) assert_array_equal(codes0, codes1) def test_vq_large_features(self): X = np.random.rand(10, 5) * 1000000 code_book = np.random.rand(2, 5) * 1000000 codes0, dis0 = _vq.vq(X, code_book) codes1, dis1 = py_vq(X, code_book) assert_allclose(dis0, dis1, 1e-5) assert_array_equal(codes0, codes1) class TestKMean(TestCase): def test_large_features(self): # Generate a data set with large values, and run kmeans on it to # (regression for 1077). d = 300 n = 100 m1 = np.random.randn(d) m2 = np.random.randn(d) x = 10000 * np.random.randn(n, d) - 20000 * m1 y = 10000 * np.random.randn(n, d) + 20000 * m2 data = np.empty((x.shape[0] + y.shape[0], d), np.double) data[:x.shape[0]] = x data[x.shape[0]:] = y kmeans(data, 2) def test_kmeans_simple(self): initc = np.concatenate(([[X[0]], [X[1]], [X[2]]])) for tp in np.array, np.matrix: code1 = kmeans(tp(X), tp(initc), iter=1)[0] assert_array_almost_equal(code1, CODET2) def test_kmeans_lost_cluster(self): # This will cause kmean to have a cluster with no points. data = np.fromfile(DATAFILE1, sep=", ") data = data.reshape((200, 2)) initk = np.array([[-1.8127404, -0.67128041], [2.04621601, 0.07401111], [-2.31149087,-0.05160469]]) kmeans(data, initk) with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) kmeans2(data, initk, missing='warn') assert_raises(ClusterError, kmeans2, data, initk, missing='raise') def test_kmeans2_simple(self): initc = np.concatenate(([[X[0]], [X[1]], [X[2]]])) for tp in np.array, np.matrix: code1 = kmeans2(tp(X), tp(initc), iter=1)[0] code2 = kmeans2(tp(X), tp(initc), iter=2)[0] assert_array_almost_equal(code1, CODET1) assert_array_almost_equal(code2, CODET2) def test_kmeans2_rank1(self): data = np.fromfile(DATAFILE1, sep=", ") data = data.reshape((200, 2)) data1 = data[:, 0] initc = data1[:3] code = initc.copy() kmeans2(data1, code, iter=1)[0] kmeans2(data1, code, iter=2)[0] def test_kmeans2_rank1_2(self): data = np.fromfile(DATAFILE1, sep=", ") data = data.reshape((200, 2)) data1 = data[:, 0] kmeans2(data1, 2, iter=1) def test_kmeans2_init(self): data = np.fromfile(DATAFILE1, sep=", ") data = data.reshape((200, 2)) kmeans2(data, 3, minit='points') kmeans2(data[:, :1], 3, minit='points') # special case (1-D) # minit='random' can give warnings, filter those with warnings.catch_warnings(): warnings.filterwarnings('ignore', message="One of the clusters is empty. Re-run") kmeans2(data, 3, minit='random') kmeans2(data[:, :1], 3, minit='random') # special case (1-D) def test_kmeans2_empty(self): # Regression test for gh-1032. assert_raises(ValueError, kmeans2, [], 2) def test_kmeans_0k(self): # Regression test for gh-1073: fail when k arg is 0. assert_raises(ValueError, kmeans, X, 0) assert_raises(ValueError, kmeans2, X, 0) assert_raises(ValueError, kmeans2, X, np.array([])) if __name__ == "__main__": run_module_suite()
the-stack_106_14645
#!/usr/bin/python import sys,os #Raw log file content log = [] #line -> call chain cc = {} #lines that are inst events, record the line num. insts = [] #To match the vim, we change 0-based to 1-based def println(ln,s): print('%-*d: %s' % (10,ln+1,s)) def print_cc(ln,c): println(ln,'##CC: ' + '->'.join(c)) def print_inst(ln,s): println(ln,'--INST: ' + s) def print_match(ln,s): println(ln,' ' + s) #decide whether a line is a inst visit/update event. def is_inst_line(i): global log #After seeing a prefix string, we need to match the "!dbg" within the Nth line next, if matched, then it's an inst line. pref = [ 'AliasAnalysisVisitor::visit', 0, 'TaintAnalysisVisitor::visit', 0, 'updatePointsToObjects for', 0, 'TaintUtils::updateTaintInfo() for', 0, '*********fetchPointsToObjects', 1, '*********FieldAccess', 1, ] if i < 0 or i >= len(log) or log[i].find('!dbg') < 0: return False for k in range(0,len(pref),2): off = pref[k+1] if i-off >= 0 and log[i-off].startswith(pref[k]): return True return False def inst_analyze(): global log,insts for i in range(len(log)): if is_inst_line(i): insts.append(i) #TODO: add context lines to the identified obj lines when appropriate. def obj_slice(k): global log,cc,insts #For each tuple entry k, if the matched obj line contains k[1], then we will try to include the context #up to the line including k[0] and down to the line including k[2]. #To to safe and conservative, we will not include the context lines that are out of current inst scope. ctx = [ ('updateFieldPointsTo() for', 'updateFieldPointsTo', 'After updates'), ('createEmbObj(): host type', 'createEmbObj', 'createEmbObj(): the embedded obj created'), ] cc_index = sorted(list(cc)) cur_cc = 0 cur_in = -1 next_in = -1 i = 0 while i < len(log): if log[i].find(k) >= 0: #Print the post-inst visit context of the previous matched line if needed. if cur_in > -1 and cur_in + 1 < len(insts) and i >= insts[cur_in + 1]: print_inst(insts[cur_in + 1],log[insts[cur_in + 1]]) cur_in += 1 #First print the cc history to this matched line. while cur_cc < len(cc_index) and i >= cc_index[cur_cc]: print_cc(cc_index[cur_cc],cc[cc_index[cur_cc]]) cur_cc += 1 #Then print the nearest previous inst visit. j = cur_in while j + 1 < len(insts) and i >= insts[j+1]: j += 1 if j != cur_in: cur_in = j print_inst(insts[j],log[insts[j]]) #INVARIANT: 'cur_in' is the nearest previous inst visit of the current matched obj line. #Print the matched obj line w/ necessary contexts. has_ctx = False #Current inst scope ui = (0 if cur_in < 0 else insts[cur_in]) di = (insts[cur_in+1] if cur_in+1 < len(insts) else len(log)) for t in ctx: if log[i].find(t[1]) >= 0: #Identify the start and the end of the context. up = down = i while t[0] and up > ui and log[up].find(t[0]) < 0: up -= 1 while t[2] and down < di and log[down].find(t[2]) < 0: down += 1 #print '-----------------' + 'ui:' + str(ui) + ' di:' + str(di) + ' up:' + str(up) + ' down:' + str(down) + ' i:' + str(i) #Printing.. for m in range(up,down+1): print_match(m,log[m]) i = down has_ctx = True break if not has_ctx: print_match(i,log[i]) i += 1 def tag_slice(k): pass #Analyze the call chain at each line in the log. def cc_analyze(): global log,cc cur_cc = [] ln = 0 for l in log: #E.g. line format: #[TIMING] Start func(5) snd_seq_pool_new: Thu Feb 13 13:50:05 2020 #[TIMING] End func(5) snd_seq_pool_new in: 1.122699e+01s if l.startswith('[TIMING] Start func'): tks = l.split(' ') if len(tks) < 4: cur_cc.append('!ERR') else: cur_cc.append(tks[3][:-1]) cc[ln] = list(cur_cc) elif l.startswith('[TIMING] End func'): if len(cur_cc) > 0: cur_cc.pop() cc[ln] = list(cur_cc) ln += 1 def cc_slice(): global cc for i in sorted(list(cc)): print_cc(i,cc[i]) #The log file is in general very large, this script tries to slice only information of interest (e.g. all events related to a certain object) #and output them in a well-organized readable format, so that our life can be made easier when debugging... if __name__ == '__main__': if len(sys.argv) < 2: print('Usage: ./log_slicer.py log_file key_type(tag/obj) key(ID)') else: #First read in the log file. with open(sys.argv[1],'r') as f: for l in f: log.append(l[:-1]) #Preliminary callchain analysis cc_analyze() if len(sys.argv) < 4: cc_slice() else: inst_analyze() k = sys.argv[3] if sys.argv[2] == 'tag': tag_slice(k) elif sys.argv[2] == 'obj': obj_slice(k) else: #By default perform a callchain analysis for each line in the log. cc_slice()
the-stack_106_14646
import ClientConstants as CC import ClientDefaults import ClientGUIListBoxes import collections import HydrusConstants as HC import os import random import TestConstants import time import unittest import wx import HydrusGlobals as HG def DoClick( click, panel, do_delayed_ok_afterwards = False ): wx.QueueEvent( panel, click ) if do_delayed_ok_afterwards: HG.test_controller.CallLaterWXSafe( panel, 1, PressKeyOnFocusedWindow, wx.WXK_RETURN ) wx.YieldIfNeeded() time.sleep( 0.1 ) def GetAllClickableIndices( panel ): click = wx.MouseEvent( wx.wxEVT_LEFT_DOWN ) current_y = 5 click.SetX( 10 ) click.SetY( current_y ) all_clickable_indices = {} while panel._GetIndexUnderMouse( click ) is not None: index = panel._GetIndexUnderMouse( click ) if index not in all_clickable_indices: all_clickable_indices[ index ] = current_y current_y += 5 click.SetY( current_y ) return all_clickable_indices def PressKey( window, key ): window.SetFocus() uias = wx.UIActionSimulator() uias.Char( key ) def PressKeyOnFocusedWindow( key ): uias = wx.UIActionSimulator() uias.Char( key ) class TestListBoxes( unittest.TestCase ): def test_listbox_colour_options( self ): frame = TestConstants.TestFrame() try: initial_namespace_colours = { 'series' : ( 153, 101, 21 ), '' : ( 0, 111, 250 ), None : ( 114, 160, 193 ), 'creator' : ( 170, 0, 0 ) } panel = ClientGUIListBoxes.ListBoxTagsColourOptions( frame, initial_namespace_colours ) frame.SetPanel( panel ) self.assertEqual( panel.GetNamespaceColours(), initial_namespace_colours ) # new_namespace_colours = dict( initial_namespace_colours ) new_namespace_colours[ 'character' ] = ( 0, 170, 0 ) colour = wx.Colour( 0, 170, 0 ) panel.SetNamespaceColour( 'character', colour ) self.assertEqual( panel.GetNamespaceColours(), new_namespace_colours ) # terms = set( panel._terms ) ordered_terms = list( panel._ordered_terms ) self.assertEqual( len( terms ), len( ordered_terms ) ) # all_clickable_indices = GetAllClickableIndices( panel ) self.assertEqual( len( all_clickable_indices.keys() ), len( terms ) ) self.assertEqual( set( all_clickable_indices.keys() ), set( range( len( all_clickable_indices.keys() ) ) ) ) # for ( index, y ) in all_clickable_indices.items(): click = wx.MouseEvent( wx.wxEVT_LEFT_DOWN ) click.SetX( 10 ) click.SetY( y ) DoClick( click, panel ) self.assertEqual( panel.GetSelectedNamespaceColours(), dict( [ ordered_terms[ index ] ] ) ) # current_y = 5 click = wx.MouseEvent( wx.wxEVT_LEFT_DOWN ) click.SetX( 10 ) click.SetY( current_y ) while panel._GetIndexUnderMouse( click ) is not None: current_y += 5 click.SetY( current_y ) DoClick( click, panel ) self.assertEqual( panel.GetSelectedNamespaceColours(), {} ) # if len( all_clickable_indices.keys() ) > 2: indices = random.sample( all_clickable_indices.keys(), len( all_clickable_indices.keys() ) - 1 ) for index in indices: click = wx.MouseEvent( wx.wxEVT_LEFT_DOWN ) click.SetControlDown( True ) click.SetX( 10 ) click.SetY( all_clickable_indices[ index ] ) DoClick( click, panel ) expected_selected_terms = [ ordered_terms[ index ] for index in indices ] self.assertEqual( panel.GetSelectedNamespaceColours(), dict( expected_selected_terms ) ) # random_index = random.choice( all_clickable_indices.keys() ) while ordered_terms[ random_index ][0] in panel.PROTECTED_TERMS: random_index = random.choice( all_clickable_indices.keys() ) del new_namespace_colours[ ordered_terms[ random_index ][0] ] # select nothing current_y = 5 click = wx.MouseEvent( wx.wxEVT_LEFT_DOWN ) click.SetX( 10 ) click.SetY( current_y ) while panel._GetIndexUnderMouse( click ) is not None: current_y += 5 click.SetY( current_y ) DoClick( click, panel ) # select the random index click = wx.MouseEvent( wx.wxEVT_LEFT_DOWN ) click.SetX( 10 ) click.SetY( all_clickable_indices[ random_index ] ) DoClick( click, panel ) # now double-click to activate and hence remove doubleclick = wx.MouseEvent( wx.wxEVT_LEFT_DCLICK ) doubleclick.SetX( 5 ) doubleclick.SetY( all_clickable_indices[ random_index ] ) DoClick( doubleclick, panel, do_delayed_ok_afterwards = True ) self.assertEqual( panel.GetNamespaceColours(), new_namespace_colours ) finally: frame.DestroyLater()
the-stack_106_14647
import datetime from anchore_engine.services.policy_engine.api.models import ( FeedMetadata, FeedGroupMetadata, Image, ImageIngressResponse, ImageIngressRequest, ImageVulnerabilityListing, CpeVulnerability, CvssScore, CvssCombined, LegacyVulnerabilityReport, LegacyTableReport, LegacyMultiReport, ) from anchore_engine.utils import datetime_to_rfc3339 def test_feeds(): f = FeedMetadata() f.name = "feed1" d1 = datetime.datetime.utcnow() f.updated_at = d1 assert f.to_json() == { "name": "feed1", "updated_at": datetime_to_rfc3339(d1), "groups": None, "enabled": None, "last_full_sync": None, } f.groups = [] g = FeedGroupMetadata() g.name = "group1" g.record_count = 10 g.enabled = True f.groups.append(g) assert f.to_json() == { "name": "feed1", "updated_at": datetime_to_rfc3339(d1), "enabled": None, "last_full_sync": None, "groups": [ { "name": "group1", "enabled": True, "record_count": 10, "created_at": None, "updated_at": None, "last_sync": None, } ], } def test_groups(): d1 = datetime.datetime.utcnow() d2 = datetime.datetime.utcnow() - datetime.timedelta(days=1) g = FeedGroupMetadata() g.name = "group" g.enabled = True g.created_at = d2 g.updated_at = d1 g.last_sync = d1 g.record_count = 0 assert g.to_json() == { "name": "group", "enabled": True, "created_at": datetime_to_rfc3339(d2), "updated_at": datetime_to_rfc3339(d1), "last_sync": datetime_to_rfc3339(d1), "record_count": 0, } def test_image(): """ Simple serialization test :return: """ i = Image() i.user_id = "user" i.id = "image1" i.state = "active" i.digest = "digest" i.tags = ["tag1", "tag2"] assert i.to_json() == { "id": "image1", "user_id": "user", "digest": "digest", "tags": ["tag1", "tag2"], "state": "active", "created_at": None, "last_modified": None, "distro_namespace": None, } def test_ingress_request(): """ Simple serialization test :return: """ r = ImageIngressRequest() r.user_id = "user" r.image_id = "image1" r.fetch_url = "catalog://something.com/user/image_analysis/image1" assert r.to_json() == { "user_id": "user", "image_id": "image1", "fetch_url": "catalog://something.com/user/image_analysis/image1", } r = ImageIngressRequest() r.user_id = "user" r.image_id = "image1" r.fetch_url = "https://someserver.com/file" assert r.to_json() == { "user_id": "user", "image_id": "image1", "fetch_url": "https://someserver.com/file", } r = ImageIngressRequest() r.user_id = "user" r.image_id = "image1" r.fetch_url = "file:///path/to/file" assert r.to_json() == { "user_id": "user", "image_id": "image1", "fetch_url": "file:///path/to/file", } def test_ingress_response(): """ Simple serialization test :return: """ r = ImageIngressResponse() r.status = "ok" r.vulnerability_report = {} r.problems = [] assert r.to_json() == {"status": "ok", "vulnerability_report": {}, "problems": []} r = ImageIngressResponse() assert r.to_json() == { "status": None, "vulnerability_report": None, "problems": None, } def test_vuln_report(): r = ImageVulnerabilityListing() r.image_id = "image" r.user_id = "user" r.cpe_report = [CpeVulnerability()] v = r.cpe_report[0] v.name = "lib1" v.cpe = "cpe:*:*" v.cpe23 = "cpe2:*:*" v.version = "1.1" v.feed_name = "nvdv2" v.feed_namespace = "nvdv2:cpes" v.severity = "High" v.vulnerability_id = "CVE" v.vendor_data = [CvssCombined()] v.vendor_data[0].id = "CVE-VENDOR" v.vendor_data[0].cvss_v2 = CvssScore() v.vendor_data[0].cvss_v2.base_score = 1.0 v.vendor_data[0].cvss_v2.exploitability_score = 2.0 v.vendor_data[0].cvss_v2.impact_score = 3.0 v.vendor_data[0].cvss_v3 = CvssScore() v.vendor_data[0].cvss_v3.base_score = 1.0 v.vendor_data[0].cvss_v3.exploitability_score = 2.0 v.vendor_data[0].cvss_v3.impact_score = 3.0 v.nvd_data = [CvssCombined()] v.nvd_data[0].id = "CVE-NVD" v.nvd_data[0].cvss_v2 = CvssScore() v.nvd_data[0].cvss_v2.base_score = 1.1 v.nvd_data[0].cvss_v2.exploitability_score = 2.2 v.nvd_data[0].cvss_v2.impact_score = 3.3 v.nvd_data[0].cvss_v3 = CvssScore() v.nvd_data[0].cvss_v3.base_score = 1.1 v.nvd_data[0].cvss_v3.exploitability_score = 2.2 v.nvd_data[0].cvss_v3.impact_score = 3.3 r.legacy_report = LegacyVulnerabilityReport() r.legacy_report.multi = LegacyMultiReport() r.legacy_report.multi.result = LegacyTableReport() r.legacy_report.multi.result.colcount = 4 r.legacy_report.multi.result.rowcount = 1 r.legacy_report.multi.result.header = ["id", "name", "version", "url"] r.legacy_report.multi.result.rows = [["CVE-NVD", "lib1", "1.1", "http://someurl"]] r.legacy_report.multi.url_column_index = 3 r.legacy_report.multi.warns = [] assert r.to_json() == { "user_id": "user", "image_id": "image", "cpe_report": [ { "cpe": "cpe:*:*", "cpe23": "cpe2:*:*", "pkg_path": None, "pkg_type": None, "feed_name": "nvdv2", "feed_namespace": "nvdv2:cpes", "version": "1.1", "name": "lib1", "link": None, "nvd_data": [ { "id": "CVE-NVD", "cvss_v2": { "base_score": 1.1, "exploitability_score": 2.2, "impact_score": 3.3, }, "cvss_v3": { "base_score": 1.1, "exploitability_score": 2.2, "impact_score": 3.3, }, } ], "vendor_data": [ { "id": "CVE-VENDOR", "cvss_v2": { "base_score": 1.0, "exploitability_score": 2.0, "impact_score": 3.0, }, "cvss_v3": { "base_score": 1.0, "exploitability_score": 2.0, "impact_score": 3.0, }, } ], "severity": "High", "vulnerability_id": "CVE", } ], "legacy_report": { "multi": { "result": { "colcount": 4, "header": ["id", "name", "version", "url"], "rowcount": 1, "rows": [["CVE-NVD", "lib1", "1.1", "http://someurl"]], }, "url_column_index": 3, "warns": [], } }, }
the-stack_106_14648
import torch import torch.nn as nn from torch.nn import init import functools from torch.optim import lr_scheduler import numpy as np import torch.nn.functional as F import sys def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: init.normal_(m.weight.data, 0.0, 0.02) elif classname.find('Linear') != -1: init.normal_(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, 0.02) init.constant_(m.bias.data, 0.0) def weights_init_xavier(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.xavier_normal(m.weight.data, gain=0.02) elif classname.find('Linear') != -1: init.xavier_normal(m.weight.data, gain=0.02) elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, 0.02) init.constant_(m.bias.data, 0.0) def weights_init_kaiming(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('Linear') != -1: init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, 0.02) init.constant_(m.bias.data, 0.0) def weights_init_orthogonal(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.orthogonal(m.weight.data, gain=1) elif classname.find('Linear') != -1: init.orthogonal(m.weight.data, gain=1) elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, 0.02) init.constant_(m.bias.data, 0.0) def init_weights(net, init_type='normal'): print('initialization method [%s]' % init_type) if init_type == 'normal': net.apply(weights_init_normal) elif init_type == 'xavier': net.apply(weights_init_xavier) elif init_type == 'kaiming': net.apply(weights_init_kaiming) elif init_type == 'orthogonal': net.apply(weights_init_orthogonal) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) def get_norm_layer(norm_type='instance'): if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True) elif norm_type == 'batch_sync': norm_layer = BatchNorm2d elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) elif norm_type == 'none': norm_layer = None else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_scheduler(optimizer, opt): if opt.lr_policy == 'lambda': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + 1 + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def define_G(input_nc, output_nc, ngf, which_model_netG, norm='batch', use_dropout=False, init_type='normal', gpu_ids=[], n_downsampling=2, opt=None): netG = None use_gpu = len(gpu_ids) > 0 norm_layer = get_norm_layer(norm_type=norm) if use_gpu: assert (torch.cuda.is_available()) if which_model_netG in ['APS']: from models.APS import stylegenerator else: raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG) netG = stylegenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9, gpu_ids=gpu_ids, n_downsampling=n_downsampling, opt = opt) netG.cuda() if len(gpu_ids) > 1: netG = nn.DataParallel(netG, device_ids=gpu_ids) init_weights(netG, init_type=init_type) return netG def define_D(input_nc, ndf, which_model_netD, n_layers_D=3, norm='batch', use_sigmoid=False, init_type='normal', gpu_ids=[], use_dropout=False, n_downsampling=2): netD = None use_gpu = len(gpu_ids) > 0 norm_layer = get_norm_layer(norm_type=norm) if use_gpu: assert (torch.cuda.is_available()) if which_model_netD == 'resnet': netD = ResnetDiscriminator(input_nc, ndf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=n_layers_D, gpu_ids=[], padding_type='reflect', use_sigmoid=use_sigmoid, n_downsampling=n_downsampling) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % which_model_netD) netD.cuda() if len(gpu_ids) > 1: netD = nn.DataParallel(netD, device_ids=gpu_ids) # if use_gpu: # netD.cuda(gpu_ids[0]) return netD def print_network(net): num_params = 0 for param in net.parameters(): num_params += param.numel() print(net) print('Total number of parameters: %d' % num_params) ############################################################################## # Classes ############################################################################## # Defines the GAN loss which uses either LSGAN or the regular GAN. # When LSGAN is used, it is basically same as MSELoss, # but it abstracts away the need to create the target label tensor # that has the same size as the input class GANLoss(nn.Module): def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0, tensor=torch.FloatTensor): super(GANLoss, self).__init__() self.real_label = target_real_label self.fake_label = target_fake_label self.real_label_var = None self.fake_label_var = None self.Tensor = tensor if use_lsgan: self.loss = nn.MSELoss() else: self.loss = nn.BCELoss() def get_target_tensor(self, input, target_is_real): target_tensor = None if target_is_real: create_label = ((self.real_label_var is None) or (self.real_label_var.numel() != input.numel())) if create_label: self.real_label_var = self.Tensor(input.size()).fill_(self.real_label) # self.real_label_var = Variable(real_tensor, requires_grad=False) target_tensor = self.real_label_var else: create_label = ((self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel())) if create_label: self.fake_label_var = self.Tensor(input.size()).fill_(self.fake_label) # self.fake_label_var = Variable(fake_tensor, requires_grad=False) target_tensor = self.fake_label_var return target_tensor def __call__(self, input, target_is_real): target_tensor = self.get_target_tensor(input, target_is_real) return self.loss(input, target_tensor) # Define a resnet block class ResnetBlock(nn.Module): def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out class ResnetDiscriminator(nn.Module): def __init__(self, input_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, gpu_ids=[], padding_type='reflect', use_sigmoid=False, n_downsampling=2): assert (n_blocks >= 0) super(ResnetDiscriminator, self).__init__() self.input_nc = input_nc self.ngf = ngf self.gpu_ids = gpu_ids if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] # n_downsampling = 2 if n_downsampling <= 2: for i in range(n_downsampling): mult = 2 ** i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] elif n_downsampling == 3: mult = 2 ** 0 model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** 1 model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** 2 model += [nn.Conv2d(ngf * mult, ngf * mult, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult), nn.ReLU(True)] if n_downsampling <= 2: mult = 2 ** n_downsampling else: mult = 4 for i in range(n_blocks): model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] if use_sigmoid: model += [nn.Sigmoid()] self.model = nn.Sequential(*model) def forward(self, input, mask=None): y = self.model(input) if mask is not None: mask = F.interpolate(mask, size=(y.shape[2],y.shape[3])) y = y * mask return y
the-stack_106_14649
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # Heat documentation build configuration file, created by # sphinx-quickstart on Thu Dec 13 11:23:35 2012. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import glob import os import subprocess import sys import tempfile import warnings from oslo_config import cfg BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT = os.path.abspath(os.path.join(BASE_DIR, "..", "..")) CONTRIB_DIR = os.path.join(ROOT, 'contrib') PLUGIN_DIRS = glob.glob(os.path.join(CONTRIB_DIR, '*')) ENV_DIR = os.path.join(ROOT, "etc", "heat", "environment.d") TEMP_ENV_DIR = tempfile.mkdtemp() for f in glob.glob(os.path.join(ENV_DIR, "*.yaml")): with open(f, "r") as fin: name = os.path.split(f)[-1] with open(os.path.join(TEMP_ENV_DIR, name), "w") as fout: fout.write(fin.read().replace("file:///", "file://%s/" % ROOT)) sys.path.insert(0, ROOT) sys.path.insert(0, BASE_DIR) cfg.CONF.import_opt('plugin_dirs', 'heat.common.config') cfg.CONF.set_override(name='plugin_dirs', override=PLUGIN_DIRS) cfg.CONF.import_opt('environment_dir', 'heat.common.config') cfg.CONF.set_override(name='environment_dir', override=TEMP_ENV_DIR) # This is required for ReadTheDocs.org, but isn't a bad idea anyway. os.environ['DJANGO_SETTINGS_MODULE'] = 'openstack_dashboard.settings' # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ---------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinx.ext.doctest', 'sphinxcontrib.apidoc', 'openstackdocstheme', 'oslo_config.sphinxconfiggen', 'oslo_config.sphinxext', 'oslo_policy.sphinxext', 'oslo_policy.sphinxpolicygen', 'ext.resources', 'ext.tablefromtext', 'stevedore.sphinxext'] # policy sample file generation policy_generator_config_file = '../../etc/heat/heat-policy-generator.conf' sample_policy_basename = '_static/heat' # oslo_config.sphinxconfiggen options config_generator_config_file = '../../config-generator.conf' sample_config_basename = '_static/heat' # openstackdocstheme options repository_name = 'openstack/heat' bug_project = '989' bug_tag = 'docs' todo_include_todos = True # Add any paths that contain templates here, relative to this directory. templates_path = [] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Heat' copyright = u'(c) 2012- Heat Developers' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['**/#*', '**~', '**/#*#'] # The reST default role (used for this markup: `text`) # to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['heat.'] primary_domain = 'py' nitpicky = False # -- Options for API documentation ------------------------------------------- apidoc_module_dir = '../../heat' apidoc_separate_modules = True apidoc_excluded_paths = [ 'cmd', 'cloudinit', 'db/sqlalchemy/migrate_repo/versions', 'engine/resources/aws', 'engine/resources/openstack', 'hacking', 'httpd', 'locale', 'tests', 'version.py', ] # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme_path = ['.'] # html_theme = '_theme' html_theme = 'openstackdocs' html_last_updated_fmt = '%Y-%m-%d %H:%M' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {"sidebar_mode": "toc"} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any paths that contain "extra" files, such as .htaccess or # robots.txt. html_extra_path = ['_extra'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' git_cmd = ["git", "log", "--pretty=format:'%ad, commit %h'", "--date=local", "-n1"] try: html_last_updated_fmt = subprocess.check_output(git_cmd).decode('utf-8') except Exception: warnings.warn('Cannot get last updated time from git repository. ' 'Not setting "html_last_updated_fmt".') # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Heatdoc' # -- Options for LaTeX output ------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]) latex_documents = [ ('index', 'Heat.tex', u'Heat Documentation', u'Heat Developers', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output ------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('man/heat-api', 'heat-api', u'REST API service to the heat project.', [u'Heat Developers'], 1), ('man/heat-api-cfn', 'heat-api-cfn', u'CloudFormation compatible API service to the heat project.', [u'Heat Developers'], 1), ('man/heat-db-setup', 'heat-db-setup', u'Command line utility to setup the Heat database', [u'Heat Developers'], 1), ('man/heat-engine', 'heat-engine', u'Service which performs the actions from the API calls made by the user', [u'Heat Developers'], 1), ('man/heat-keystone-setup', 'heat-keystone-setup', u'Script which sets up keystone for usage by Heat', [u'Heat Developers'], 1), ('man/heat-keystone-setup-domain', 'heat-keystone-setup-domain', u'Script which sets up a keystone domain for heat users and projects', [u'Heat Developers'], 1), ('man/heat-manage', 'heat-manage', u'Script which helps manage specific database operations', [u'Heat Developers'], 1), ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ----------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Heat', u'Heat Documentation', u'Heat Developers', 'Heat', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
the-stack_106_14650
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.FamilyArchiveDetail import FamilyArchiveDetail class AlipayUserFamilyArchiveQueryResponse(AlipayResponse): def __init__(self): super(AlipayUserFamilyArchiveQueryResponse, self).__init__() self._archive_list = None @property def archive_list(self): return self._archive_list @archive_list.setter def archive_list(self, value): if isinstance(value, list): self._archive_list = list() for i in value: if isinstance(i, FamilyArchiveDetail): self._archive_list.append(i) else: self._archive_list.append(FamilyArchiveDetail.from_alipay_dict(i)) def parse_response_content(self, response_content): response = super(AlipayUserFamilyArchiveQueryResponse, self).parse_response_content(response_content) if 'archive_list' in response: self.archive_list = response['archive_list']
the-stack_106_14652
""" Links up the various cards in the BDF. For example, with cross referencing... .. code-block:: python >>> model = BDF() >>> model.read_bdf(bdf_filename, xref=True) >>> nid1 = 1 >>> node1 = model.nodes[nid1] >>> node.nid 1 >>> node.xyz [1., 2., 3.] >>> node.Cid() 3 >>> node.cid 3 >>> node.cid_ref CORD2S, 3, 1, 0., 0., 0., 0., 0., 1., 1., 0., 0. # get the position in the global frame >>> node.get_position() [4., 5., 6.] # get the position with respect to another frame >>> node.get_position_wrt(model, cid=2) [4., 5., 6.] Without cross referencing... .. code-block:: python >>> model = BDF() >>> model.read_bdf(bdf_filename, xref=True) >>> nid1 = 1 >>> node1 = model.nodes[nid1] >>> node.nid 1 >>> node.xyz [1., 2., 3.] >>> node.Cid() 3 >>> node.cid 3 >>> node.cid_ref None # get the position in the global frame >>> node.get_position() Error! Cross-referencing allows you to easily jump across cards and also helps with calculating things like position, area, and mass. The BDF is designed around the idea of cross-referencing, so it's recommended that you use it. """ # pylint: disable=R0902,R0904,R0914 from collections import defaultdict import traceback from typing import List, Dict, Any from numpy import zeros, argsort, arange, array_equal, array from pyNastran.bdf.bdf_interface.attributes import BDFAttributes class XrefMesh(BDFAttributes): """Links up the various cards in the BDF.""" def __init__(self) -> None: """The main BDF class defines all the parameters that are used.""" BDFAttributes.__init__(self) self._nxref_errors = 100 self._stop_on_xref_error = True # def geom_check(self): # """ # Performs various geometry checks # 1. nodal uniqueness on elements # """ # for elem in model.elements: # elem.check_unique_nodes() def cross_reference(self, xref: bool=True, xref_nodes: bool=True, xref_elements: bool=True, xref_nodes_with_elements: bool=False, xref_properties: bool=True, xref_masses: bool=True, xref_materials: bool=True, xref_loads: bool=True, xref_constraints: bool=True, xref_aero: bool=True, xref_sets: bool=True, xref_optimization: bool=True, word: str='') -> None: """ Links up all the cards to the cards they reference Parameters ---------- xref : bool; default=True cross references the model xref_nodes : bool; default=True set cross referencing of nodes/coords xref_element : bool; default=True set cross referencing of elements xref_properties : bool; default=True set cross referencing of properties xref_masses : bool; default=True set cross referencing of CMASS/PMASS xref_materials : bool; default=True set cross referencing of materials xref_loads : bool; default=True set cross referencing of loads xref_constraints : bool; default=True set cross referencing of constraints xref_aero : bool; default=True set cross referencing of CAERO/SPLINEs xref_sets : bool; default=True set cross referencing of SETx word : str; default='' model flag To only cross-reference nodes: .. code-block:: python model = BDF() model.read_bdf(bdf_filename, xref=False) model.cross_reference(xref=True, xref_loads=False, xref_constraints=False, xref_materials=False, xref_properties=False, xref_aero=False, xref_masses=False, xref_sets=False) .. warning:: be careful if you call this method with False values """ if not xref: return self.log.debug("Cross Referencing%s..." % word) if xref_nodes: self._cross_reference_nodes() self._cross_reference_coordinates() if xref_elements: self._cross_reference_elements() self._cross_reference_rigid_elements() if xref_properties: self._cross_reference_properties() if xref_masses: self._cross_reference_masses() if xref_materials: self._cross_reference_materials() if xref_aero: self._cross_reference_aero() if xref_constraints: self._cross_reference_constraints() if xref_loads: self._cross_reference_loads() if xref_sets: self._cross_reference_sets() if xref_optimization: self._cross_reference_optimization() if xref_nodes_with_elements: self._cross_reference_nodes_with_elements() self._cross_reference_contact() self._cross_reference_superelements() #self.case_control_deck.cross_reference(self) self.pop_xref_errors() for super_id, superelement in sorted(self.superelement_models.items()): superelement.cross_reference( xref=xref, xref_nodes=xref_nodes, xref_elements=xref_elements, xref_nodes_with_elements=xref_nodes_with_elements, xref_properties=xref_properties, xref_masses=xref_masses, xref_materials=xref_materials, xref_loads=xref_loads, xref_constraints=xref_constraints, xref_aero=xref_aero, xref_sets=xref_sets, xref_optimization=xref_optimization, word=' (Superelement %i)' % super_id) def _cross_reference_constraints(self) -> None: """ Links the SPCADD, SPC, SPCAX, SPCD, MPCADD, MPC, SUPORT, SUPORT1, SESUPORT cards. """ for spcadds in self.spcadds.values(): for spcadd in spcadds: spcadd.cross_reference(self) for spcs in self.spcs.values(): for spc in spcs: spc.cross_reference(self) for spcoffs in self.spcoffs.values(): for spcoff in spcoffs: spcoff.cross_reference(self) for mpcadds in self.mpcadds.values(): for mpcadd in mpcadds: mpcadd.cross_reference(self) for mpcs in self.mpcs.values(): for mpc in mpcs: mpc.cross_reference(self) for suport in self.suport: suport.cross_reference(self) for unused_suport1_id, suport1 in self.suport1.items(): suport1.cross_reference(self) for se_suport in self.se_suport: se_suport.cross_reference(self) def _cross_reference_coordinates(self) -> None: """ Links up all the coordinate cards to other coordinate cards and nodes - CORD1R, CORD1C, CORD1S - CORD2R, CORD2C, CORD2S """ # CORD2x: links the rid to coordinate systems # CORD1x: links g1,g2,g3 to grid points for coord in self.coords.values(): coord.cross_reference(self) for coord in self.coords.values(): coord.setup() def _cross_reference_aero(self, check_caero_element_ids: bool=False) -> None: """ Links up all the aero cards - CAEROx, PAEROx, SPLINEx, AECOMP, AELIST, AEPARAM, AESTAT, AESURF, AESURFS """ self.zona.cross_reference() for caero in self.caeros.values(): caero.cross_reference(self) for paero in self.paeros.values(): paero.cross_reference(self) for trim in self.trims.values(): trim.cross_reference(self) for csschd in self.csschds.values(): csschd.cross_reference(self) for spline in self.splines.values(): spline.cross_reference(self) for aecomp in self.aecomps.values(): aecomp.cross_reference(self) for aelist in self.aelists.values(): aelist.cross_reference(self) for aeparam in self.aeparams.values(): aeparam.cross_reference(self) #for aestat in self.aestats.values(s): #aestat.cross_reference(self) for aesurf in self.aesurf.values(): aesurf.cross_reference(self) for aesurfs in self.aesurfs.values(): aesurfs.cross_reference(self) for flutter in self.flutters.values(): flutter.cross_reference(self) for monitor_point in self.monitor_points: monitor_point.cross_reference(self) if self.aero: self.aero.cross_reference(self) if self.aeros: self.aeros.cross_reference(self) if check_caero_element_ids: # only support CAERO1 ncaeros = len(self.caeros) if ncaeros > 1: # we don't need to check the ncaeros=1 case i = 0 min_maxs = zeros((ncaeros, 2), dtype='int32') for unused_eid, caero in sorted(self.caeros.items()): min_maxs[i, :] = caero.min_max_eid i += 1 isort = argsort(min_maxs.ravel()) expected = arange(ncaeros * 2, dtype='int32') if not array_equal(isort, expected): msg = 'CAERO element ids are inconsistent\n' msg += 'isort = %s' % str(isort) raise RuntimeError(msg) #'AERO', ## aero #'AEROS', ## aeros #'GUST', ## gusts #'FLUTTER', ## flutters #'FLFACT', ## flfacts #'MKAERO1', 'MKAERO2', ## mkaeros #'AECOMP', ## aecomps #'AEFACT', ## aefacts #'AELINK', ## aelinks #'AELIST', ## aelists #'AEPARAM', ## aeparams #'AESTAT', ## aestats #'AESURF', ## aesurfs def _cross_reference_nodes(self) -> None: """Links the nodes to coordinate systems""" grdset = self.grdset for node in self.nodes.values(): try: node.cross_reference(self, grdset) except Exception: self.log.error("Couldn't cross reference GRID.\n%s" % (str(node))) raise for point in self.points.values(): try: point.cross_reference(self) except Exception: self.log.error("Couldn't cross reference POINT.\n%s" % (str(point))) raise # SPOINTs, EPOINTs don't need xref # GRDPNT for mass calculations #if model.has_key() #for param_key, param in self.params: #if def _cross_reference_elements(self) -> None: """ Links the elements to nodes, properties (and materials depending on the card). """ for elem in self.elements.values(): try: elem.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, elem) for elem in self.masses.values(): try: elem.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, elem) def _cross_reference_rigid_elements(self) -> None: for elem in self.rigid_elements.values(): try: elem.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, elem) for elem in self.plotels.values(): try: elem.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, elem) def _store_xref_error(self, error, card) -> None: self._ixref_errors += 1 var = traceback.format_exception_only(type(error), error) self._stored_xref_errors.append((card, var)) if self._ixref_errors > self._nxref_errors: self.pop_xref_errors() def _cross_reference_nodes_with_elements(self) -> None: """Links the nodes to all connected elements""" nodes = defaultdict(list) # type: Dict[int, List[Any]] for element in self.elements.values(): #if element.type in ['CONM2']: # pass #else: if element.nodes is not None: for nid in element.node_ids: if nid is None: continue nodes[nid].append(element) #except AttributeError: #print(element) #print('node = %s' % str(node)) #raise for node in self.nodes.values(): node.elements_ref = nodes[node.nid] def _cross_reference_masses(self) -> None: """ Links the mass to nodes, properties (and materials depending on the card). """ for mass in self.masses.values(): try: mass.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, mass) for prop in self.properties_mass.values(): try: prop.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, prop) def _cross_reference_properties(self) -> None: """Links the properties to materials""" for prop in self.properties.values(): try: prop.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, prop) def _cross_reference_materials(self) -> None: """ Links the materials to materials (e.g. MAT1, CREEP) often this is a pass statement """ for mat in self.materials.values(): # MAT1 try: mat.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, mat) for mat in self.creep_materials.values(): # CREEP try: mat.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, mat) # CREEP - depends on MAT1 data = [self.MATS1, self.MATS3, self.MATS8, self.MATT1, self.MATT2, self.MATT3, self.MATT4, self.MATT5, self.MATT8, self.MATT9] for material_deps in data: for mat in material_deps.values(): try: mat.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, mat) def _cross_reference_loads(self) -> None: """Links the loads to nodes, coordinate systems, and other loads.""" for (unused_lid, load_combinations) in self.load_combinations.items(): for load_combination in load_combinations: try: load_combination.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, load_combination) for (unused_lid, loads) in self.loads.items(): for load in loads: try: load.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, load) for (unused_lid, sid) in self.dloads.items(): for load in sid: #self.log.debug(" dloadi load=%s" % (load)) try: load.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._ixref_errors += 1 var = traceback.format_exception_only(type(error), error) self._stored_xref_errors.append((load, var)) if self._ixref_errors > self._nxref_errors: self.pop_xref_errors() for unused_lid, sid in self.dload_entries.items(): for load in sid: #self.log.debug(" dloadi load=%s" % (load)) try: load.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: #raise self._store_xref_error(error, load) for unused_key, darea in self.dareas.items(): try: darea.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, darea) for unused_key, tic in self.tics.items(): try: tic.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, tic) for unused_key, dphase in self.dphases.items(): try: dphase.cross_reference(self) except (SyntaxError, RuntimeError, AssertionError, KeyError, ValueError) as error: self._store_xref_error(error, dphase) def _cross_reference_sets(self) -> None: """cross references the SET objects""" for set_obj in self.asets: set_obj.cross_reference(self) for set_obj in self.omits: set_obj.cross_reference(self) for set_obj in self.bsets: set_obj.cross_reference(self) for set_obj in self.csets: set_obj.cross_reference(self) for set_obj in self.qsets: set_obj.cross_reference(self) for unused_name, set_objs in self.usets.items(): for set_obj in set_objs: set_obj.cross_reference(self) # superelements for unused_key, set_obj in self.se_sets.items(): set_obj.cross_reference(self) for set_obj in self.se_bsets: set_obj.cross_reference(self) for set_obj in self.se_csets: set_obj.cross_reference(self) for set_obj in self.se_qsets: set_obj.cross_reference(self) for set_obj in self.se_usets: set_obj.cross_reference(self) def _cross_reference_optimization(self) -> None: """cross references the optimization objects""" remove_missing_optimization = True dconstrs_to_remove = [] for unused_key, deqatn in self.dequations.items(): deqatn.cross_reference(self) for unused_key, dresp in self.dresps.items(): dresp.cross_reference(self) for key, dconstrs in self.dconstrs.items(): for i, dconstr in enumerate(dconstrs): try: dconstr.cross_reference(self) except: if not remove_missing_optimization: raise dconstrs_to_remove.append((key, i)) for unused_key, dvcrel in self.dvcrels.items(): dvcrel.cross_reference(self) for unused_key, dvmrel in self.dvmrels.items(): dvmrel.cross_reference(self) for unused_key, dvprel in self.dvprels.items(): dvprel.cross_reference(self) for unused_key, desvar in self.desvars.items(): desvar.cross_reference(self) for key, i in dconstrs_to_remove: del self.dconstrs[key][i] def _safe_cross_reference_contact(self) -> None: """cross references the contact objects""" self._cross_reference_contact() def _cross_reference_contact(self) -> None: """cross references the contact objects""" for blseg in self.blseg.values(): blseg.cross_reference(self) for bconp in self.bconp.values(): bconp.cross_reference(self) # bgset # bctset #for bgadd in self.bgadds.values(): #bgadd.cross_reference(self) #for bctadd in self.bctadds.values(): #bctadd.cross_reference(self) def _uncross_reference_contact(self) -> None: """uncross references the contact objects""" for blseg in self.blseg.values(): blseg.uncross_reference() for bconp in self.bconp.values(): bconp.uncross_reference() def _cross_reference_superelements(self) -> None: """cross references the superelement objects""" for unused_seid, csuper in self.csuper.items(): csuper.cross_reference(self) for unused_seid, csupext in self.csupext.items(): csupext.cross_reference(self) for unused_seid, sebulk in self.sebulk.items(): sebulk.cross_reference(self) for unused_seid, sebndry in self.sebndry.items(): sebndry.cross_reference(self) for unused_seid, seconct in self.seconct.items(): seconct.cross_reference(self) for unused_seid, seelt in self.seelt.items(): seelt.cross_reference(self) for unused_seid, seexcld in self.seexcld.items(): seexcld.cross_reference(self) for unused_seid, selabel in self.selabel.items(): selabel.cross_reference(self) for unused_seid, seloc in self.seloc.items(): seloc.cross_reference(self) for unused_seid, seload in self.seload.items(): seload.cross_reference(self) for unused_seid, sempln in self.sempln.items(): sempln.cross_reference(self) for unused_seid, setree in self.setree.items(): setree.cross_reference(self) #'senqset', #'se_sets', 'se_usets', def _safe_cross_reference_superelements( self, create_superelement_geometry: bool=False) -> None: xref_errors = {} seloc_missing = [] for seid, seloc in self.seloc.items(): if seid in self.superelement_models: superelement = self.superelement_models[seid] seloc.safe_cross_reference(self, xref_errors) #seloc.transform(self) else: seloc_missing.append(seid) try: for unused_seid, sempln in sorted(self.sempln.items()): sempln.safe_cross_reference(self, xref_errors) for unused_seid, csuper in self.csuper.items(): csuper.safe_cross_reference(self, xref_errors) for unused_seid, csupext in self.csupext.items(): csupext.safe_cross_reference(self, xref_errors) if self.sebulk and create_superelement_geometry: #print('sebulk...') import os # we have to create the superelement in order to transform it... for seid, sebulk in self.sebulk.items(): super_filename = 'super_%i.bdf' % seid if os.path.exists(super_filename): os.remove(super_filename) #print(sebulk) rseid = sebulk.rseid sebulk.safe_cross_reference(self, xref_errors) mirror_model = self._create_superelement_from_sebulk(sebulk, seid, rseid) if mirror_model is None: continue self.log.debug('made superelement %i' % seid) self.superelement_models[seid] = mirror_model mirror_model.write_bdf(super_filename) for unused_seid, sebndry in self.sebndry.items(): sebndry.safe_cross_reference(self, xref_errors) for unused_seid, seconct in self.seconct.items(): seconct.safe_cross_reference(self, xref_errors) for unused_seid, seelt in self.seelt.items(): seelt.safe_cross_reference(self, xref_errors) for unused_seid, seexcld in self.seexcld.items(): seexcld.safe_cross_reference(self, xref_errors) for unused_seid, selabel in self.selabel.items(): selabel.safe_cross_reference(self, xref_errors) for seid in seloc_missing: seloc = self.seloc[seid] seloc.safe_cross_reference(self, xref_errors) for unused_seid, seload in self.seload.items(): seload.safe_cross_reference(self, xref_errors) for unused_seid, setree in self.setree.items(): setree.safe_cross_reference(self, xref_errors) except KeyError: if not create_superelement_geometry: raise self.write_bdf('superelement_xref.bdf') self.log.error('check superelement_xref.bdf') raise def _create_superelement_from_sebulk(self, sebulk, seid: int, rseid: int) -> None: """helper for sebulk""" #C:\MSC.Software\MSC.Nastran\msc20051\nast\tpl\see103q4.dat ref_model = self.superelement_models[rseid] if sebulk.superelement_type == 'MIRROR': from pyNastran.bdf.mesh_utils.mirror_mesh import bdf_mirror_plane #print('creating superelement %s from %s' % (seid, rseid)) sempln = self.sempln[seid] plane = array([node.get_position() for node in sempln.nodes_ref]) # What about seloc on the primary and sempln+seloc on the secondary? # - move the primary # - then apply the mirror to make the secondary # - then move the secondary # # Or what about sempln+seloc on the tertiary? # # this is fine for the secondary if rseid in self.seloc: # I think this is wrong... seloc = self.seloc[rseid] plane = seloc.transform(self, plane) ref_model, mirror_model, unused_nid_offset, unused_eid_offset = bdf_mirror_plane( ref_model, plane, mirror_model=None, log=None, debug=True, use_nid_offset=False) mirror_model.properties = ref_model.properties mirror_model.materials = ref_model.materials new_model = mirror_model elif sebulk.Type in ['MANUAL', 'PRIMARY', 'COLLCTR', 'EXTERNAL']: self.log.info('skipping:\n%s' % sebulk) new_model = None else: # pragma: no cover raise NotImplementedError(sebulk) return new_model def _uncross_reference_superelements(self) -> None: """cross references the superelement objects""" for unused_seid, csuper in self.csuper.items(): csuper.uncross_reference() for unused_seid, csupext in self.csupext.items(): csupext.uncross_reference() for unused_seid, sebulk in self.sebulk.items(): sebulk.uncross_reference() for unused_seid, sebndry in self.sebndry.items(): sebndry.uncross_reference() for unused_seid, seconct in self.seconct.items(): seconct.uncross_reference() for unused_seid, seelt in self.seelt.items(): seelt.uncross_reference() for unused_seid, seexcld in self.seexcld.items(): seexcld.uncross_reference() for unused_seid, selabel in self.selabel.items(): selabel.uncross_reference() for unused_seid, seloc in self.seloc.items(): seloc.uncross_reference() for unused_seid, seload in self.seload.items(): seload.uncross_reference() for unused_seid, sempln in self.sempln.items(): sempln.uncross_reference() for unused_seid, setree in self.setree.items(): setree.uncross_reference() def get_point_grids(self, nodes: List[Any], msg: str='') -> None: """gets GRID, POINT cards""" nodes_ref = [] missing_nids = [] for nid in nodes: if nid in self.nodes: node = self.nodes[nid] elif nid in self.points: node = self.points[nid] else: missing_nids.append(nid) continue nodes_ref.append(node) if missing_nids: raise KeyError('missing GRID/POINT nids=%s%s' % (missing_nids, msg)) return nodes_ref def superelement_nodes(self, seid: int, nodes: List[Any], msg: str='') -> None: if seid == 0: return self.Nodes(nodes, msg=msg) try: superelement = self.superelement_models[seid] except KeyError: keys = list(self.superelement_models.keys()) raise KeyError('cant find superelement=%i%s; seids=%s' % (seid, msg, keys)) return superelement.Nodes(nodes, msg=msg) def geom_check(self, geom_check: bool, xref: bool) -> None: # pragma: no cover """ what about xref? """ if geom_check: if xref: for unused_eid, element in self.elements.values(): #element.Mass() element._verify(xref=True) #if 'GEOMCHECK' in self.params: # should this be an executive control parameter? #for eid, element in model.elements: #element._verify() else: for unused_eid, element in self.elements.values(): element.verify_unique_node_ids() element._verify(xref=False) # aspect ratio - ratio between element edges # warping - how planar is a face # taper - split a quad into 2 triangles and compare the area # skew - an angle, measures how skewed an element face is by drawing lines # between midpoints of elements edges, finding the smallest angle # between the intersecting lines and subtracting that from 90 degrees # Jacobian - how much does element deviate from the ideal shape by taking the # determinant of the Jacobian matrix # quad skew <= 30. # quad warp >= 0.05 # quad taper >= 0.5 # quad iamin <= 30. # quad iamax >= 150. # tria skew <= 10. # tria iamax <= 160. # tetra ar >= 100. # tetra elpr <= 0.5 # tetra detj <= 0. # hex ar >= 100. # hex elpr <= 0.5 # hex detj <= 0. # hex warp <= 0.707 # penta ar >= 100. # penta elpr <= 0.5 # penta detj <= 0. # penta warp <= 0.707 # pyram ar >= 100. # pyram elpr <= 0.5 # pyram detj <= 0. # pyram warp <= 0.707
the-stack_106_14653
class Solution: def longestValidParentheses(self, s: str) -> int: ans, stack = 0, [(")", -1)] for i, x in enumerate(s): if stack[-1][0] == "(" and x == ")": stack.pop() ans = max(ans, i - stack[-1][1]) else: stack.append((x, i)) return ans
the-stack_106_14657
import numpy as np import sys import unittest import ray import ray.rllib.agents.a3c as a3c import ray.rllib.agents.ddpg as ddpg import ray.rllib.agents.ddpg.td3 as td3 import ray.rllib.agents.dqn as dqn import ray.rllib.agents.impala as impala import ray.rllib.agents.pg as pg import ray.rllib.agents.ppo as ppo import ray.rllib.agents.sac as sac from ray.rllib.utils import check, framework_iterator, try_import_tf tf = try_import_tf() def do_test_explorations(run, env, config, dummy_obs, prev_a=None, expected_mean_action=None): """Calls an Agent's `compute_actions` with different `explore` options.""" core_config = config.copy() if run not in [a3c.A3CTrainer]: core_config["num_workers"] = 0 # Test all frameworks. for fw in framework_iterator(core_config): if fw == "tfe" and run in [ ddpg.DDPGTrainer, sac.SACTrainer, td3.TD3Trainer ]: continue print("Agent={}".format(run)) # Test for both the default Agent's exploration AND the `Random` # exploration class. for exploration in [None, "Random"]: local_config = core_config.copy() if exploration == "Random": # TODO(sven): Random doesn't work for IMPALA yet. if run is impala.ImpalaTrainer: continue local_config["exploration_config"] = {"type": "Random"} print("exploration={}".format(exploration or "default")) trainer = run(config=local_config, env=env) # Make sure all actions drawn are the same, given same # observations. actions = [] for _ in range(25): actions.append( trainer.compute_action( observation=dummy_obs, explore=False, prev_action=prev_a, prev_reward=1.0 if prev_a is not None else None)) check(actions[-1], actions[0]) # Make sure actions drawn are different # (around some mean value), given constant observations. actions = [] for _ in range(100): actions.append( trainer.compute_action( observation=dummy_obs, explore=True, prev_action=prev_a, prev_reward=1.0 if prev_a is not None else None)) check( np.mean(actions), expected_mean_action if expected_mean_action is not None else 0.5, atol=0.3) # Check that the stddev is not 0.0 (values differ). check(np.std(actions), 0.0, false=True) class TestExplorations(unittest.TestCase): """ Tests all Exploration components and the deterministic flag for compute_action calls. """ @classmethod def setUpClass(cls): ray.init(ignore_reinit_error=True) @classmethod def tearDownClass(cls): ray.shutdown() def test_a2c(self): do_test_explorations( a3c.A2CTrainer, "CartPole-v0", a3c.DEFAULT_CONFIG, np.array([0.0, 0.1, 0.0, 0.0]), prev_a=np.array(1)) def test_a3c(self): do_test_explorations( a3c.A3CTrainer, "CartPole-v0", a3c.DEFAULT_CONFIG, np.array([0.0, 0.1, 0.0, 0.0]), prev_a=np.array(1)) def test_ddpg(self): # Switch off random timesteps at beginning. We want to test actual # GaussianNoise right away. config = ddpg.DEFAULT_CONFIG.copy() config["exploration_config"]["random_timesteps"] = 0 do_test_explorations( ddpg.DDPGTrainer, "Pendulum-v0", config, np.array([0.0, 0.1, 0.0]), expected_mean_action=0.0) def test_simple_dqn(self): do_test_explorations(dqn.SimpleQTrainer, "CartPole-v0", dqn.SIMPLE_Q_DEFAULT_CONFIG, np.array([0.0, 0.1, 0.0, 0.0])) def test_dqn(self): do_test_explorations(dqn.DQNTrainer, "CartPole-v0", dqn.DEFAULT_CONFIG, np.array([0.0, 0.1, 0.0, 0.0])) def test_impala(self): do_test_explorations( impala.ImpalaTrainer, "CartPole-v0", impala.DEFAULT_CONFIG, np.array([0.0, 0.1, 0.0, 0.0]), prev_a=np.array(0)) def test_pg(self): do_test_explorations( pg.PGTrainer, "CartPole-v0", pg.DEFAULT_CONFIG, np.array([0.0, 0.1, 0.0, 0.0]), prev_a=np.array(1)) def test_ppo_discr(self): do_test_explorations( ppo.PPOTrainer, "CartPole-v0", ppo.DEFAULT_CONFIG, np.array([0.0, 0.1, 0.0, 0.0]), prev_a=np.array(0)) def test_ppo_cont(self): do_test_explorations( ppo.PPOTrainer, "Pendulum-v0", ppo.DEFAULT_CONFIG, np.array([0.0, 0.1, 0.0]), prev_a=np.array([0.0]), expected_mean_action=0.0) def test_sac(self): do_test_explorations( sac.SACTrainer, "Pendulum-v0", sac.DEFAULT_CONFIG, np.array([0.0, 0.1, 0.0]), expected_mean_action=0.0) def test_td3(self): config = td3.TD3_DEFAULT_CONFIG.copy() # Switch off random timesteps at beginning. We want to test actual # GaussianNoise right away. config["exploration_config"]["random_timesteps"] = 0 do_test_explorations( td3.TD3Trainer, "Pendulum-v0", config, np.array([0.0, 0.1, 0.0]), expected_mean_action=0.0) if __name__ == "__main__": import pytest sys.exit(pytest.main(["-v", __file__]))
the-stack_106_14661
#! /usr/bin/env python # # example2.py -- Simple, configurable FITS viewer. # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # import sys import logging from ginga import colors from ginga.canvas.CanvasObject import get_canvas_types from ginga.misc import log from ginga.web.pgw import Widgets, Viewers from ginga.util.loader import load_data class FitsViewer(object): def __init__(self, logger, window): self.logger = logger self.drawcolors = colors.get_colors() self.dc = get_canvas_types() self.top = window self.top.add_callback('close', self.closed) vbox = Widgets.VBox() vbox.set_margins(2, 2, 2, 2) vbox.set_spacing(1) fi = Viewers.CanvasView(logger) fi.enable_autocuts('on') fi.set_autocut_params('zscale') fi.enable_autozoom('on') fi.set_zoom_algorithm('rate') fi.set_zoomrate(1.4) fi.show_pan_mark(True) fi.set_callback('drag-drop', self.drop_file_cb) fi.set_callback('cursor-changed', self.cursor_cb) fi.set_bg(0.2, 0.2, 0.2) fi.ui_set_active(True) self.fitsimage = fi bd = fi.get_bindings() bd.enable_all(True) # so trackpad scrolling can be adjusted settings = bd.get_settings() settings.set(scroll_zoom_direct_scale=True, scroll_zoom_acceleration=0.07) # canvas that we will draw on canvas = self.dc.DrawingCanvas() canvas.enable_draw(True) canvas.enable_edit(True) canvas.set_drawtype('rectangle', color='lightblue') canvas.set_surface(fi) self.canvas = canvas # add canvas to view private_canvas = fi.get_canvas() private_canvas.add(canvas) canvas.ui_set_active(True) canvas.register_for_cursor_drawing(fi) self.drawtypes = canvas.get_drawtypes() self.drawtypes.sort() # add a color bar fi.show_color_bar(True) # add little mode indicator that shows keyboard modal states fi.show_mode_indicator(True, corner='ur') fi.set_desired_size(512, 512) w = Viewers.GingaViewerWidget(viewer=fi) vbox.add_widget(w, stretch=1) self.readout = Widgets.Label("") vbox.add_widget(self.readout, stretch=0) hbox = Widgets.HBox() hbox.set_margins(2, 2, 2, 2) hbox.set_spacing(4) wdrawtype = Widgets.ComboBox() for name in self.drawtypes: wdrawtype.append_text(name) index = self.drawtypes.index('rectangle') wdrawtype.set_index(index) wdrawtype.add_callback('activated', lambda w, idx: self.set_drawparams()) self.wdrawtype = wdrawtype wdrawcolor = Widgets.ComboBox() for name in self.drawcolors: wdrawcolor.append_text(name) index = self.drawcolors.index('lightblue') wdrawcolor.set_index(index) wdrawcolor.add_callback('activated', lambda w, idx: self.set_drawparams()) self.wdrawcolor = wdrawcolor wfill = Widgets.CheckBox("Fill") wfill.add_callback('activated', lambda w, tf: self.set_drawparams()) self.wfill = wfill walpha = Widgets.SpinBox(dtype=float) walpha.set_limits(0.0, 1.0, incr_value=0.1) walpha.set_value(1.0) walpha.set_decimals(2) walpha.add_callback('value-changed', lambda w, val: self.set_drawparams()) self.walpha = walpha wclear = Widgets.Button("Clear Canvas") wclear.add_callback('activated', lambda w: self.clear_canvas()) ## wopen = Widgets.Button("Open File") ## wopen.add_callback('activated', lambda w: self.open_file()) ## wquit = Widgets.Button("Quit") ## wquit.add_callback('activated', lambda w: self.quit()) hbox.add_widget(Widgets.Label(''), stretch=1) for w in (wdrawtype, wdrawcolor, wfill, Widgets.Label('Alpha:'), walpha, wclear): hbox.add_widget(w, stretch=0) vbox.add_widget(hbox, stretch=0) mode = self.canvas.get_draw_mode() hbox = Widgets.HBox() hbox.set_spacing(4) btn1 = Widgets.RadioButton("Draw") btn1.set_state(mode == 'draw') btn1.add_callback('activated', lambda w, val: self.set_mode_cb('draw', val)) btn1.set_tooltip("Choose this to draw on the canvas") hbox.add_widget(btn1) btn2 = Widgets.RadioButton("Edit", group=btn1) btn2.set_state(mode == 'edit') btn2.add_callback('activated', lambda w, val: self.set_mode_cb('edit', val)) btn2.set_tooltip("Choose this to edit things on the canvas") hbox.add_widget(btn2) hbox.add_widget(Widgets.Label('Zoom sensitivity: ')) slider = Widgets.Slider(orientation='horizontal', dtype=float) slider.add_callback('value-changed', lambda w, val: self.adjust_scrolling_accel_cb(val)) slider.set_limits(0.0, 12.0, 0.005) slider.set_value(8.0) hbox.add_widget(slider, stretch=1) # hbox.add_widget(Widgets.Label(''), stretch=1) vbox.add_widget(hbox, stretch=0) # need to put this in an hbox with an expanding label or the # browser wants to resize the canvas hbox = Widgets.HBox() hbox.add_widget(vbox, stretch=0) hbox.add_widget(Widgets.Label(''), stretch=1) self.top.set_widget(hbox) def set_drawparams(self): index = self.wdrawtype.get_index() kind = self.drawtypes[index] index = self.wdrawcolor.get_index() fill = self.wfill.get_state() alpha = self.walpha.get_value() params = {'color': self.drawcolors[index], 'alpha': alpha, } if kind in ('circle', 'rectangle', 'polygon', 'triangle', 'righttriangle', 'ellipse', 'square', 'box'): params['fill'] = fill params['fillalpha'] = alpha self.canvas.set_drawtype(kind, **params) def clear_canvas(self): self.canvas.delete_all_objects() def load_file(self, filepath): image = load_data(filepath, logger=self.logger) self.fitsimage.set_image(image) self.top.set_title(filepath) def open_file(self): res = Widgets.FileDialog.getOpenFileName(self, "Open FITS file", ".", "FITS files (*.fits)") if isinstance(res, tuple): fileName = res[0] else: fileName = str(res) if len(fileName) != 0: self.load_file(fileName) def drop_file_cb(self, viewer, paths): filename = paths[0] self.load_file(filename) def cursor_cb(self, viewer, button, data_x, data_y): """This gets called when the data position relative to the cursor changes. """ # Get the value under the data coordinates try: # We report the value across the pixel, even though the coords # change halfway across the pixel value = viewer.get_data(int(data_x + viewer.data_off), int(data_y + viewer.data_off)) except Exception: value = None fits_x, fits_y = data_x + 1, data_y + 1 # Calculate WCS RA try: # NOTE: image function operates on DATA space coords image = viewer.get_image() if image is None: # No image loaded return ra_txt, dec_txt = image.pixtoradec(fits_x, fits_y, format='str', coords='fits') except Exception as e: self.logger.warning("Bad coordinate conversion: %s" % ( str(e))) ra_txt = 'BAD WCS' dec_txt = 'BAD WCS' text = "RA: %s DEC: %s X: %.2f Y: %.2f Value: %s" % ( ra_txt, dec_txt, fits_x, fits_y, value) self.readout.set_text(text) def set_mode_cb(self, mode, tf): self.logger.info("canvas mode changed (%s) %s" % (mode, tf)) if not (tf is False): self.canvas.set_draw_mode(mode) return True def adjust_scrolling_accel_cb(self, val): def f(x): return (1.0 / 2.0**(10.0 - x)) val2 = f(val) self.logger.debug("slider value is %f, setting will be %f" % (val, val2)) settings = self.fitsimage.get_bindings().get_settings() settings.set(scroll_zoom_acceleration=val2) return True def closed(self, w): self.logger.info("Top window closed.") w.delete() self.top = None sys.exit() def quit(self, *args): self.readout.set_text("Quitting!") self.logger.info("Attempting to shut down the application...") if self.top is not None: self.top.close() sys.exit() def main(options, args): logger = log.get_logger("example2", options=options) if options.use_opencv: from ginga import trcalc try: trcalc.use('opencv') except Exception as e: logger.warning("Error using OpenCv: %s" % str(e)) if options.use_opencl: from ginga import trcalc try: trcalc.use('opencl') except Exception as e: logger.warning("Error using OpenCL: %s" % str(e)) #base_url = "http://%s:%d/app" % (options.host, options.port) # establish our widget application app = Widgets.Application(logger=logger, host=options.host, port=options.port) # create top level window window = app.make_window("Ginga web example2") # our own viewer object, customized with methods (see above) viewer = FitsViewer(logger, window) #server.add_callback('shutdown', viewer.quit) window.resize(700, 540) if len(args) > 0: viewer.load_file(args[0]) #window.show() #window.raise_() try: app.start() except KeyboardInterrupt: logger.info("Terminating viewer...") window.close() if __name__ == "__main__": # Parse command line options from argparse import ArgumentParser argprs = ArgumentParser() argprs.add_argument("--debug", dest="debug", default=False, action="store_true", help="Enter the pdb debugger on main()") argprs.add_argument("--host", dest="host", metavar="HOST", default='localhost', help="Listen on HOST for connections") argprs.add_argument("--log", dest="logfile", metavar="FILE", help="Write logging output to FILE") argprs.add_argument("--loglevel", dest="loglevel", metavar="LEVEL", type=int, default=logging.INFO, help="Set logging level to LEVEL") argprs.add_argument("--opencv", dest="use_opencv", default=False, action="store_true", help="Use OpenCv acceleration") argprs.add_argument("--opencl", dest="use_opencl", default=False, action="store_true", help="Use OpenCL acceleration") argprs.add_argument("--port", dest="port", metavar="PORT", type=int, default=9909, help="Listen on PORT for connections") argprs.add_argument("--profile", dest="profile", action="store_true", default=False, help="Run the profiler on main()") argprs.add_argument("--stderr", dest="logstderr", default=False, action="store_true", help="Copy logging also to stderr") argprs.add_argument("-t", "--toolkit", dest="toolkit", metavar="NAME", default='qt', help="Choose GUI toolkit (gtk|qt)") (options, args) = argprs.parse_known_args(sys.argv[1:]) # Are we debugging this? if options.debug: import pdb pdb.run('main(options, args)') # Are we profiling this? elif options.profile: import profile print(("%s profile:" % sys.argv[0])) profile.run('main(options, args)') else: main(options, args) # END
the-stack_106_14665
from .env import MatrixGameEnv import numpy as np class parallel_env(MatrixGameEnv): def __init__(self, max_frames, memory_length, temptation=5., reward=3., punishment=1., suckers=0.): utility_matrix = np.array([[[reward, reward], [suckers, temptation]], [[temptation, suckers], [punishment, punishment]]], dtype=np.float) super(parallel_env, self).__init__(num_agents=2, num_actions=2, utility_matrix=utility_matrix, memory_length=memory_length, max_frames=max_frames)
the-stack_106_14666
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class Libsharp(AutotoolsPackage): """Libsharp is a code library for spherical harmonic transforms (SHTs) and spin-weighted spherical harmonic transforms, which evolved from the libpsht library.""" variant('openmp', default=True, description='Build with openmp support') variant('mpi', default=True, description='Build with MPI support') variant('pic', default=True, description='Generate position-independent code (PIC)') homepage = "https://github.com/Libsharp/libsharp" git = "https://github.com/Libsharp/libsharp.git" version('1.0.0', commit='cc4753ff4b0ef393f0d4ada41a175c6d1dd85d71', preferred=True) version('2018-01-17', commit='593d4eba67d61827191c32fb94bf235cb31205e1') depends_on('autoconf', type='build') depends_on('mpi', when='+mpi') patch('arm.patch', when='@2018-01-17 target=aarch64:') patch('1.0.0-arm.patch', when='@1.0.0 target=aarch64:') def autoreconf(self, spec, prefix): """Generate autotools configuration""" bash = which('bash') bash('autoconf') def configure_args(self): args = [] if '+openmp' not in self.spec: args.append("--disable-openmp") if '+mpi' not in self.spec: args.append("--disable-mpi") if '+pic' in self.spec: args.append("--enable-pic") return args def install(self, spec, prefix): # Libsharp's only caller healpix include headers like 'libsharp/xxx.h' # Install xxx.h to include/libsharp install_tree('auto/include', prefix.include.libsharp) install_tree('auto/lib', prefix.lib)
the-stack_106_14669
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-用户管理(Bk-User) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from ..base import ComponentAPI class CollectionsBkLogin(object): """Collections of BK_LOGIN APIS""" def __init__(self, client): self.client = client self.get_all_users = ComponentAPI( client=self.client, method="GET", path="/api/c/compapi{bk_api_ver}/bk_login/get_all_users/", description=u"获取所有用户信息", ) self.get_batch_users = ComponentAPI( client=self.client, method="POST", path="/api/c/compapi{bk_api_ver}/bk_login/get_batch_users/", description=u"批量获取用户信息", ) self.get_batch_users_platform_role = ComponentAPI( client=self.client, method="POST", path="/api/c/compapi{bk_api_ver}/bk_login/get_batch_users_platform_role/", description=u"批量获取用户各平台角色信息", ) self.get_user = ComponentAPI( client=self.client, method="GET", path="/api/c/compapi{bk_api_ver}/bk_login/get_user/", description=u"获取用户信息", ) self.get_all_user = ComponentAPI( client=self.client, method="GET", path="/api/c/compapi{bk_api_ver}/bk_login/get_all_user/", description=u"获取所有用户信息", ) self.get_batch_user = ComponentAPI( client=self.client, method="GET", path="/api/c/compapi{bk_api_ver}/bk_login/get_batch_user/", description=u"获取多个用户信息", ) self.get_batch_user_platform_role = ComponentAPI( client=self.client, method="GET", path="/api/c/compapi{bk_api_ver}/bk_login/get_batch_user_platform_role/", description=u"获取多个用户在平台应用的角色", )
the-stack_106_14670
import os import random from copy import deepcopy from agents.greedy_agent_boost import GreedyAgentBoost from agents.greedysearch_agent import GreedySearchAgent from agents.minmax_agent import MinMaxAgent from agents.random_agent import RandomAgent import numpy as np from agents.state_evaluator_heuristic import StateEvaluatorHeuristic from arena.arena_multi_thread import ArenaMultiThread from gym_splendor_code.envs.mechanics.game_settings import USE_TQDM from gym_splendor_code.envs.mechanics.state_as_dict import StateAsDict from nn_models.utils.vectorizer import Vectorizer import pickle from mpi4py import MPI from nn_models.value_function_heura.value_function import ValueFunction comm = MPI.COMM_WORLD my_rank = MPI.COMM_WORLD.Get_rank() main_thread = my_rank == 0 def produce_data(when_to_start, dump_p, n_games, filename, folder): list_of_agents = [RandomAgent(), GreedyAgentBoost(), MinMaxAgent()] arek = ArenaMultiThread() arek.start_collecting_states() arek.collect_only_from_middle_game(when_to_start, dump_p) arek.all_vs_all('deterministic', list_of_agents, n_games) arek.dump_collected_states(filename, folder) def flip_states(list_of_states, list_of_values): rev_states = [] rev_values = [] for i in range(len(list_of_states)): rev_state = deepcopy(list_of_states[i]) rev_state.change_active_player() rev_states.append(rev_state) rev_values.append(-list_of_values[i]) return rev_states, rev_values def evaluate_states(files_dir, dump_dir): evaluator = ValueFunction() list_of_files = os.listdir(files_dir) for file_name in list_of_files: with open(os.path.join(files_dir, file_name), 'rb') as f: X, _ = pickle.load(f) Y = [] for x in X: state_to_eval = StateAsDict(x).to_state() Y.append(evaluator.evaluate(state_to_eval)) del state_to_eval with open(os.path.join(dump_dir, file_name), 'wb') as f: pickle.dump((X, Y), f) print(len(X)) del X del Y def pick_data_for_training(epochs_range, files_dir, dump_dir, bufor_size=10): states = [] values = [] files_list = os.listdir(files_dir) for epoch in epochs_range: print(f'Epoch = {epoch}') bufor = 0 part = 0 for file_name in files_list: bufor += 1 print(f'Current file = {file_name}') with open(os.path.join(files_dir, file_name), 'rb') as f: one_file_data = pickle.load(f) for key in one_file_data: if one_file_data[key]['states']: random_idx = random.randint(0, len(one_file_data[key]['states']) - 1) states.append(one_file_data[key]['states'][random_idx]) values.append(one_file_data[key]['values'][random_idx]) del one_file_data if bufor > bufor_size: bufor = 0 part += 1 print('\n Flipping \n') # states_rev, values_rev = flip_states(states, values) # print('States flipped') # states = states + states_rev # values = values + values_rev # del states_rev # del values_rev print('Ready to save') with open(os.path.join(dump_dir, f'epoch_{epoch}_part_{part}.pickle'), 'wb') as f: pickle.dump((states, values), f) del states del values states = [] values = [] def flatten_data_from_games(source_file, target_file): with open(source_file, 'rb') as f: one_file_data = pickle.load(f) states = [] values = [] for key in one_file_data: states += one_file_data[key]['states'] values += one_file_data[key]['values'] with open(target_file, 'wb') as f: pickle.dump((states, values), f) def load_data_for_model(file): with open(file, 'rb') as f: data_to_return = pickle.load(f) return data_to_return
the-stack_106_14674
import asyncio import logging from baseorder import BaseOrder, log from tokens import * from dexible.common import as_units async def main(): logging.basicConfig(level=logging.INFO) inputs = [WETH_KOVAN, USDC_KOVAN, WETH_KOVAN, WETH_KOVAN] outputs = [WBTC_KOVAN, WETH_KOVAN, DAI_KOVAN, USDC_KOVAN] amounts = [as_units(300, 18), as_units(300000, 6), as_units(300, 18), as_units(300, 18)] sdk = BaseOrder.create_dexible_sdk() calls = [] for i in range(0, len(inputs)): token_in = await sdk.token.lookup(inputs[i]) token_out = await sdk.token.lookup(outputs[i]) calls.append(sdk.quote.get_quote(token_in=token_in, token_out=token_out, amount_in=amounts[i], slippage_percent=.5)) r = await asyncio.gather(*calls) log.info(f"Quotes: {r}") if __name__ == '__main__': asyncio.run(main())
the-stack_106_14676
import torch from torch.utils.data import DataLoader import torchvision.transforms as T import numpy as np from tqdm import tqdm from model.vae import VAE from dataset import TanksDataset, ToTensor def train(vae, dataloader, epochs=1, device=torch.device("cpu")): vae = vae.to(device) vae = vae.double() #transform = T.ConvertImageDtype(dtype=torch.double) optimizer = torch.optim.Adam(vae.parameters(), lr=0.001) reported_loss = [] for epoch in range(epochs): collective_loss = [] for _, x in tqdm(enumerate(dataloader)): x.to(device) #x = transform(images) #assert x.dtype == torch.double _, mu, log_sigma, x_prime = vae.forward(x.double()) loss, recon, kld = vae.loss_fn(x, x_prime, mu, log_sigma) optimizer.zero_grad() loss.backward() optimizer.step() collective_loss.append([recon.item(), kld.item()]) np_collective_loss = np.array(collective_loss) average_loss = np.mean(np_collective_loss, axis=1) reported_loss.append(average_loss) print(f"Epoch {epoch+1} finished!", f"reconstruction_loss = {average_loss[0]} || KL-Divergence = {average_loss[1]}", sep="\n") if (epoch+1) % 10 == 0: with torch.no_grad(): to_img = T.ToPILImage() example = vae.sample() img_example = to_img(example) img_example.save(f"result_at_epoch_{epoch+1}.png") print("Training Finished!") return np.array(list(zip(range(epochs), average_loss))) if __name__ == "__main__": train_loader = DataLoader(TanksDataset(transform=ToTensor()), batch_size=64, shuffle=True) vae = VAE( input_shape=[3, 64, 64], conv_filters=[3, 32, 64, 128 , 256], conv_kernels=[(5, 5), (3, 3), (3, 3), (3, 3)], conv_strides=[(1, 1), (1, 1), (1, 1), (1, 1)], paddings=[(1, 1), (1, 1), (1, 1), (1, 1)], output_paddings=[(0, 0), (0, 0), (0, 0), (0, 0)], dilations=[(1, 1), (1, 1), (1, 1), (1, 1)], latent_space_dim=1024 ) train(vae, train_loader, epochs=100, device=torch.device("cuda"))
the-stack_106_14677
#!/usr/bin/env python import vtk from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # Mark the boundary and faces for different dataset types. # Here we focus on 3D types. # Control test resolution res = 50 # Create a 3D volume image = vtk.vtkImageData() image.SetDimensions(res,res,res) image.SetOrigin(-0.5,-0.5,-0.5) image.SetSpacing(1.0/float(res-1),1.0/float(res-1),1.0/float(res-1)) mark1 = vtk.vtkMarkBoundaryFilter() mark1.SetInputData(image) mark1.GenerateBoundaryFacesOn() thresh1 = vtk.vtkThreshold() thresh1.SetInputConnection(mark1.GetOutputPort()) thresh1.SetThresholdFunction(vtk.vtkThreshold.THRESHOLD_UPPER) thresh1.SetUpperThreshold(1.0) thresh1.SetInputArrayToProcess(0, 0, 0, vtk.vtkDataObject.FIELD_ASSOCIATION_CELLS, "BoundaryCells") mapper1 = vtk.vtkDataSetMapper() mapper1.SetInputConnection(thresh1.GetOutputPort()) mapper1.ScalarVisibilityOff() actor1 = vtk.vtkActor() actor1.SetMapper(mapper1) # unstructured grid sphere = vtk.vtkSphere() sphere.SetCenter(0,0,0) sphere.SetRadius(1000000) toUG = vtk.vtkExtractGeometry() toUG.SetInputData(image) toUG.SetImplicitFunction(sphere) mark2 = vtk.vtkMarkBoundaryFilter() mark2.SetInputConnection(toUG.GetOutputPort()) mark2.GenerateBoundaryFacesOn() mark2.Update() thresh2 = vtk.vtkThreshold() thresh2.SetInputConnection(mark2.GetOutputPort()) thresh2.SetThresholdFunction(vtk.vtkThreshold.THRESHOLD_UPPER) thresh2.SetUpperThreshold(1.0) thresh2.SetInputArrayToProcess(0, 0, 0, vtk.vtkDataObject.FIELD_ASSOCIATION_CELLS, "BoundaryCells") mapper2 = vtk.vtkDataSetMapper() mapper2.SetInputConnection(thresh2.GetOutputPort()) mapper2.ScalarVisibilityOff() actor2 = vtk.vtkActor() actor2.SetMapper(mapper2) # Define graphics objects ren1 = vtk.vtkRenderer() ren1.SetViewport(0,0, 0.5, 1) ren1.SetBackground(0,0,0) ren1.AddActor(actor1) ren1.GetActiveCamera().SetFocalPoint(0,0,0) ren1.GetActiveCamera().SetPosition(0.25,0.5,1) ren1.ResetCamera() ren2 = vtk.vtkRenderer() ren2.SetViewport(0.5,0, 1,1) ren2.SetBackground(0,0,0) ren2.AddActor(actor2) ren2.SetActiveCamera(ren1.GetActiveCamera()) renWin = vtk.vtkRenderWindow() renWin.SetSize(300,150) renWin.AddRenderer(ren1) renWin.AddRenderer(ren2) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) iren.Initialize() iren.Start() # --- end of script --
the-stack_106_14678
#!/usr/bin/env python from copy import deepcopy import json import os import math import traceback import click import numpy as np import tensorflow import rastervision as rv from integration_tests.chip_classification_tests.experiment \ import ChipClassificationIntegrationTest from integration_tests.object_detection_tests.experiment \ import ObjectDetectionIntegrationTest from integration_tests.semantic_segmentation_tests.experiment \ import SemanticSegmentationIntegrationTest from rastervision.rv_config import RVConfig all_tests = [ rv.CHIP_CLASSIFICATION, rv.OBJECT_DETECTION, rv.SEMANTIC_SEGMENTATION ] np.random.seed(1234) tensorflow.set_random_seed(5678) # Suppress warnings and info to avoid cluttering CI log os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' TEST_ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) class IntegrationTestExperimentRunner(rv.runner.LocalExperimentRunner): def __init__(self, tmp_dir=None): super().__init__(tmp_dir) def _run_experiment(self, command_dag): """Check serialization of all commands.""" for command_config in command_dag.get_sorted_commands(): deepcopy( rv.command.CommandConfig.from_proto(command_config.to_proto())) super()._run_experiment(command_dag) def console_info(msg): click.echo(click.style(msg, fg='green')) def console_warning(msg): click.echo(click.style(msg, fg='yellow')) def console_error(msg): click.echo(click.style(msg, fg='red', err=True)) class TestError(): def __init__(self, test, message, details=None): self.test = test self.message = message self.details = details def __str__(self): return ('Error\n' + '------\n' + 'Test: {}\n'.format(self.test) + 'Message: {}\n'.format(self.message) + 'Details: {}'.format( str(self.details)) if self.details else '' + '\n') def get_test_dir(test): return os.path.join(TEST_ROOT_DIR, test.lower().replace('-', '_')) def get_expected_eval_path(test): return os.path.join('{}_tests'.format(get_test_dir(test)), 'expected-output/eval.json') def get_actual_eval_path(test, temp_dir): return os.path.join(temp_dir, test.lower(), 'eval/default/eval.json') def open_json(path): with open(path, 'r') as file: return json.load(file) def check_eval_item(test, expected_item, actual_item): errors = [] f1_threshold = 0.01 class_name = expected_item['class_name'] expected_f1 = expected_item['f1'] or 0.0 actual_f1 = actual_item['f1'] or 0.0 if math.fabs(expected_f1 - actual_f1) > f1_threshold: errors.append( TestError( test, 'F1 scores are not close enough', 'for class_name: {} expected f1: {}, actual f1: {}'.format( class_name, expected_item['f1'], actual_item['f1']))) return errors def check_eval(test, temp_dir): errors = [] actual_eval_path = get_actual_eval_path(test, temp_dir) expected_eval_path = get_expected_eval_path(test) if os.path.isfile(actual_eval_path): expected_eval = open_json(expected_eval_path)['overall'] actual_eval = open_json(actual_eval_path)['overall'] for expected_item in expected_eval: class_name = expected_item['class_name'] actual_item = \ next(filter( lambda x: x['class_name'] == class_name, actual_eval)) errors.extend(check_eval_item(test, expected_item, actual_item)) else: errors.append( TestError(test, 'actual eval file does not exist', actual_eval_path)) return errors def get_experiment(test, tmp_dir): if test == rv.OBJECT_DETECTION: return ObjectDetectionIntegrationTest().exp_main( os.path.join(tmp_dir, test.lower())) if test == rv.CHIP_CLASSIFICATION: return ChipClassificationIntegrationTest().exp_main( os.path.join(tmp_dir, test.lower())) if test == rv.SEMANTIC_SEGMENTATION: return SemanticSegmentationIntegrationTest().exp_main( os.path.join(tmp_dir, test.lower())) raise Exception('Unknown test {}'.format(test)) def run_test(test, temp_dir): errors = [] experiment = get_experiment(test, temp_dir) # Check serialization pp_uri = os.path.join(experiment.bundle_uri, 'predict_package.zip') experiment.task.predict_package_uri = pp_uri msg = experiment.to_proto() experiment = rv.ExperimentConfig.from_proto(msg) # Check that running doesn't raise any exceptions. try: IntegrationTestExperimentRunner(os.path.join(temp_dir, test.lower())) \ .run(experiment, rerun_commands=True) except Exception as exc: errors.append( TestError(test, 'raised an exception while running', traceback.format_exc())) return errors # Check that the eval is similar to expected eval. errors.extend(check_eval(test, temp_dir)) if not errors: # Check the prediction package # This will only work with raster_sources that # have a single URI. skip = False experiment = experiment.fully_resolve() scenes_to_uris = {} scenes = experiment.dataset.validation_scenes for scene in scenes: rs = scene.raster_source if hasattr(rs, 'uri'): scenes_to_uris[scene.id] = rs.uri elif hasattr(rs, 'uris'): uris = rs.uris if len(uris) > 1: skip = True else: scenes_to_uris[scene.id] = uris[0] else: skip = True if skip: console_warning('Skipping predict package test for ' 'test {}, experiment {}'.format( test, experiment.id)) else: console_info('Checking predict package produces same results...') pp = experiment.task.predict_package_uri predict = rv.Predictor(pp, temp_dir).predict for scene_config in scenes: # Need to write out labels and read them back, # otherwise the floating point precision direct box # coordinates will not match those from the PREDICT # command, which are rounded to pixel coordinates # via pyproj logic (in the case of rasterio crs transformer. predictor_label_store_uri = os.path.join( temp_dir, test.lower(), 'predictor/{}'.format(scene_config.id)) uri = scenes_to_uris[scene_config.id] predict(uri, predictor_label_store_uri) scene = scene_config.create_scene(experiment.task, temp_dir) scene_labels = scene.prediction_label_store.get_labels() extent = scene.raster_source.get_extent() crs_transformer = scene.raster_source.get_crs_transformer() predictor_label_store = scene_config.label_store \ .for_prediction( predictor_label_store_uri) \ .create_store( experiment.task, extent, crs_transformer, temp_dir) from rastervision.data import ActivateMixin with ActivateMixin.compose(scene, predictor_label_store): if not predictor_label_store.get_labels() == scene_labels: e = TestError( test, ('Predictor did not produce the same labels ' 'as the Predict command'), 'for scene {} in experiment {}'.format( scene_config.id, experiment.id)) errors.append(e) return errors @click.command() @click.argument('tests', nargs=-1) def main(tests): """Runs RV end-to-end and checks that evaluation metrics are correct.""" if len(tests) == 0: tests = all_tests tests = list(map(lambda x: x.upper(), tests)) with RVConfig.get_tmp_dir() as temp_dir: errors = [] for test in tests: if test not in all_tests: print('{} is not a valid test.'.format(test)) return errors.extend(run_test(test, temp_dir)) for error in errors: print(error) for test in tests: nb_test_errors = len( list(filter(lambda error: error.test == test, errors))) if nb_test_errors == 0: print('{} test passed!'.format(test)) if errors: exit(1) if __name__ == '__main__': main()
the-stack_106_14679
from tkinter import * root=Tk() root.title("LABO") root.geometry('400x500') root.resizable(width=False,height=False) #menu and submenu main_menu=Menu(root) file_menu=Menu(root) #add commands to the submenu file_menu.add_command(label='New..') file_menu.add_command(label='Save As ..') file_menu.add_command(label='Exit') main_menu.add_cascade(label='File',menu=file_menu) #add the rest of the menu options to the main menu main_menu.add_command(label='Edit') main_menu.add_command(label='Quit') root.config(menu=main_menu) #conversation window chatWindow=Text(root, bd=1, bg="black", width="50", height="8", font=("Arial", 23), foreground="#00ffff") chatWindow.place(x=6,y=6,height=385,width=370) #text area window messageWindow = Text(root, bd=0, bg="black",width="30", height="4", font=("Arial", 23), foreground="#00ffff") messageWindow.place(x=128, y=400, height=88, width=260) scrollbar=Scrollbar(root,command=chatWindow.yview,cursor='star') scrollbar.place(x=375,y=5,height=385) #submit button button=Button(root, text="Send", width="12", height=5, bd=0, bg="#0080ff", activebackground="#00bfff",foreground='#ffffff',font=("Arial", 12)) button.place(x=6,y=400,height=88) root.mainloop()
the-stack_106_14682
# Copyright 2018-2019 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited (“QuantumBlack”) name and logo # (either separately or in combination, “QuantumBlack Trademarks”) are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. """This module contains unit test for the cli command 'kedro new' """ import json import os from pathlib import Path import pytest import yaml from kedro import __version__ as version from kedro.cli.cli import TEMPLATE_PATH, _fix_user_path, _get_default_config, cli FILES_IN_TEMPLATE_NO_EXAMPLE = 35 FILES_IN_TEMPLATE_WITH_EXAMPLE = 37 # pylint: disable=too-many-arguments def _invoke( cli_runner, args, project_name=None, repo_name=None, python_package=None, include_example=None, ): click_prompts = (project_name, repo_name, python_package, include_example) input_string = "\n".join(x or "" for x in click_prompts) return cli_runner.invoke(cli, args, input=input_string) # pylint: disable=too-many-arguments def _assert_template_ok( result, files_in_template, repo_name=None, project_name="New Kedro Project", output_dir=".", package_name=None, ): print(result.output) assert result.exit_code == 0 assert "Project generated in" in result.output if repo_name: full_path = (Path(output_dir) / repo_name).absolute() generated_files = [ p for p in full_path.rglob("*") if p.is_file() and p.name != ".DS_Store" ] assert len(generated_files) == files_in_template assert full_path.exists() assert (full_path / ".gitignore").is_file() if project_name: with (full_path / "README.md").open() as file: assert project_name in file.read() with (full_path / ".gitignore").open() as file: assert "KEDRO" in file.read() with (full_path / "src" / "requirements.txt").open() as file: assert version in file.read() if package_name: assert (full_path / "src" / package_name / "__init__.py").is_file() class TestInteractiveNew: """Tests for running `kedro new` interactively.""" repo_name = "project-test" package_name = "package_test" include_example = "y" def test_new_no_example(self, cli_runner): """Test new project creation without code example.""" project_name = "Test" result = _invoke( cli_runner, ["-v", "new"], project_name=project_name, repo_name=self.repo_name, include_example="N", ) _assert_template_ok( result, FILES_IN_TEMPLATE_NO_EXAMPLE, repo_name=self.repo_name, project_name=project_name, package_name="test", ) def test_new_with_example(self, cli_runner): """Test new project creation with code example.""" project_name = "Test" result = _invoke( cli_runner, ["-v", "new"], project_name=project_name, repo_name=self.repo_name, include_example="y", ) _assert_template_ok( result, FILES_IN_TEMPLATE_WITH_EXAMPLE, repo_name=self.repo_name, project_name=project_name, package_name="test", ) def test_new_custom_dir(self, cli_runner): """Test that default package name does not change if custom repo name was specified.""" result = _invoke( cli_runner, ["new"], repo_name=self.repo_name, include_example=self.include_example, ) _assert_template_ok( result, FILES_IN_TEMPLATE_WITH_EXAMPLE, repo_name=self.repo_name, package_name="new_kedro_project", ) def test_new_correct_path(self, cli_runner): """Test new project creation with the default project name.""" result = _invoke( cli_runner, ["new"], repo_name=self.repo_name, include_example=self.include_example, ) _assert_template_ok( result, FILES_IN_TEMPLATE_WITH_EXAMPLE, repo_name=self.repo_name ) def test_fail_if_dir_exists(self, cli_runner): """Check the error if the output directory already exists.""" empty_file = Path(self.repo_name) / "empty_file" empty_file.parent.mkdir(parents=True) empty_file.touch() old_contents = list(Path(self.repo_name).iterdir()) result = _invoke( cli_runner, ["-v", "new"], repo_name=self.repo_name, include_example=self.include_example, ) assert list(Path(self.repo_name).iterdir()) == old_contents assert "directory already exists" in result.output assert result.exit_code != 0 @pytest.mark.parametrize("repo_name", [".repo", "re!po", "-repo", "repo-"]) def test_bad_repo_name(self, cli_runner, repo_name): """Check the error if the repository name is invalid.""" result = _invoke( cli_runner, ["new"], repo_name=repo_name, include_example=self.include_example, ) assert result.exit_code == 0 assert "is not a valid repository name." in result.output @pytest.mark.parametrize( "pkg_name", ["0package", "_", "package-name", "package name"] ) def test_bad_pkg_name(self, cli_runner, pkg_name): """Check the error if the package name is invalid.""" result = _invoke( cli_runner, ["new"], python_package=pkg_name, include_example=self.include_example, ) assert result.exit_code == 0 assert "is not a valid Python package name." in result.output @pytest.mark.parametrize("include_example", ["A", "a", "_", "?"]) def test_bad_include_example(self, cli_runner, include_example): """Check the error include example response is invalid.""" result = _invoke( cli_runner, ["new"], python_package=self.package_name, include_example=include_example, ) assert result.exit_code == 0 assert "invalid input" in result.output def _create_config_file( config_path, project_name, repo_name, output_dir=None, include_example=False ): config = { "project_name": project_name, "repo_name": repo_name, "python_package": repo_name.replace("-", "_"), "include_example": include_example, } if output_dir is not None: config["output_dir"] = output_dir with open(config_path, "w+") as config_file: yaml.dump(config, config_file) return config class TestNewFromConfig: """Test `kedro new` with config option provided.""" project_name = "test1" repo_name = "project-test1" config_path = "config.yml" include_example = True def test_config_does_not_exist(self, cli_runner): """Check the error if the config file does not exist.""" result = _invoke(cli_runner, ["new", "-c", "missing.yml"]) assert result.exit_code != 0 assert "does not exist" in result.output def test_empty_config(self, cli_runner): """Check the error if the config file is empty.""" open("touch", "a").close() result = _invoke(cli_runner, ["-v", "new", "-c", "touch"]) assert result.exit_code != 0 assert "is empty" in result.output def test_new_from_config_no_example(self, cli_runner): """Test project created from config without example code.""" output_dir = "test_dir" include_example = False Path(output_dir).mkdir(parents=True) _create_config_file( self.config_path, self.project_name, self.repo_name, output_dir, include_example, ) result = _invoke(cli_runner, ["-v", "new", "--config", self.config_path]) _assert_template_ok( result, FILES_IN_TEMPLATE_NO_EXAMPLE, self.repo_name, self.project_name, output_dir, ) def test_new_from_config_with_example(self, cli_runner): """Test project created from config with example code.""" output_dir = "test_dir" Path(output_dir).mkdir(parents=True) _create_config_file( self.config_path, self.project_name, self.repo_name, output_dir, self.include_example, ) result = _invoke(cli_runner, ["-v", "new", "--config", self.config_path]) _assert_template_ok( result, FILES_IN_TEMPLATE_WITH_EXAMPLE, self.repo_name, self.project_name, output_dir, ) def test_wrong_config(self, cli_runner): """Check the error if the output directory is invalid.""" output_dir = "/usr/invalid/dir" _create_config_file( self.config_path, self.project_name, self.repo_name, output_dir ) result = _invoke(cli_runner, ["new", "-c", self.config_path]) assert result.exit_code != 0 assert "is not a valid output directory." in result.output def test_bad_yaml(self, cli_runner): """Check the error if config YAML is invalid.""" Path(self.config_path).write_text( "output_dir: \nproject_name:\ttest\nrepo_name:\ttest1\n" ) result = _invoke(cli_runner, ["new", "-c", self.config_path]) assert result.exit_code != 0 assert "that cannot start any token" in result.output def test_output_dir_with_tilde_in_path(self, mocker): """Check the error if the output directory contains "~" .""" home_dir = os.path.join("/home", "directory") output_dir = os.path.join("~", "here") expected = os.path.join(home_dir, "here") mocker.patch.dict("os.environ", {"HOME": home_dir, "USERPROFILE": home_dir}) actual = _fix_user_path(output_dir) assert actual == expected def test_output_dir_with_relative_path(self, mocker): """Check the error if the output directory contains a relative path.""" home_dir = os.path.join("/home", "directory") current_dir = os.path.join(home_dir, "current", "directory") output_dir = os.path.join("path", "to", "here") expected = os.path.join(current_dir, output_dir) mocker.patch.dict("os.environ", {"HOME": home_dir, "USERPROFILE": home_dir}) mocker.patch("os.getcwd", return_value=current_dir) actual = _fix_user_path(output_dir) assert actual == expected def test_missing_output_dir(self, cli_runner): """Check the error if config YAML does not contain the output directory.""" _create_config_file( self.config_path, self.project_name, self.repo_name, output_dir=None, include_example=self.include_example, ) # output dir missing result = _invoke(cli_runner, ["-v", "new", "--config", self.config_path]) assert result.exit_code != 0 assert "[output_dir] not found in" in result.output assert not Path(self.repo_name).exists() def test_missing_include_example(self, cli_runner): """Check the error if config YAML does not contain include example.""" output_dir = "test_dir" Path(output_dir).mkdir(parents=True) _create_config_file( self.config_path, self.project_name, self.repo_name, output_dir, include_example=None, ) # include_example missing result = _invoke(cli_runner, ["-v", "new", "--config", self.config_path]) assert result.exit_code != 0 assert "It must be a boolean value" in result.output assert not Path(self.repo_name).exists() def test_default_config_up_to_date(): """Validate the contents of the default config file.""" cookie_json_path = Path(TEMPLATE_PATH) / "cookiecutter.json" cookie = json.loads(cookie_json_path.read_text("utf-8")) cookie_keys = [ key for key in cookie if not key.startswith("_") and key != "kedro_version" ] cookie_keys.append("output_dir") default_config_keys = _get_default_config().keys() assert set(cookie_keys) == set(default_config_keys)
the-stack_106_14683
from pyspark import SparkContext import sys import glob import random import json import time sc = SparkContext() sc.setSystemProperty('spark.driver.memory', '4g') sc.setSystemProperty('spark.executor.memory', '4g') sc.setLogLevel("OFF") input_path = sys.argv[1] # folder: test1/, 1-5 n_cluster = int(sys.argv[2]) # 10/10/5/8/15 out_file1 = sys.argv[3] # cluster_res1.json out_file2 = sys.argv[4] # intermediate1.csv start_time = time.time() # 300s def getSquaredD(vector0, vector1): return sum([(c0 - c1) ** 2 for c0, c1 in zip(vector0, vector1)]) # K-means ++ initialize def getMinDistance(vector): return min([getSquaredD(centroid, vector) for centroid in centroids]) def getCluster(vector): compareList = [getSquaredD(vector, c) for c in centroids] return compareList.index(min(compareList)) def getCenter(points, num_points): matrix = [point[1] for point in points] return [sum(c) / num_points for c in zip(*matrix)] # [[index0, vector0], [i1,v1],... def getSumandSQ(IVlist): Sum = list() SumSQ = list() pointIndexes = list() matrix = list() for i, v in IVlist: pointIndexes.append(i) matrix.append(v) for c in zip(*matrix): Sum.append(sum(c)) SumSQ.append(sum(ci ** 2 for ci in c)) return [Sum, SumSQ, pointIndexes] def getCentroids(N, Sum): return [point / N for point in Sum] def getVariance(N, Sum, SumSQ): return [sq / N - (Sum[i] / N) ** 2 for i, sq in enumerate(SumSQ)] def determineDSCS(vector): indicator = True for idx, cent in enumerate(DScentroids): MD = sum([(pi - cent[i]) ** 2 / DSvariance[idx][i] for i, pi in enumerate(vector)]) if MD < a2d: indicator = False return [idx, vector] break if indicator: for idx, cent in enumerate(CScentroids): MD = sum([(pi - cent[i]) ** 2 / CSvariance[idx][i] for i, pi in enumerate(vector)]) if MD < a2d: indicator = False return [idx + lenDS, vector] break if indicator: return [-1, vector] def getVectorSum(vector0, vector1): return [sum(c) for c in zip(vector0, vector1)] def getMatrixSum(matrix): return [sum(c) for c in zip(*matrix)] # CSCS merge def detectMerge(vector): mergeList = list() for i, cs in enumerate(CScentroids): distance = getSquaredD(vector, cs) if distance < a2d4: mergeList.append([i + lenDS, distance]) if len(mergeList) == 0: return [] else: if len(mergeList) >= 2: minD = mergeList[0][1] index = mergeList[0][0] for candidate in mergeList: if candidate[1] < minD: minD = candidate[1] index = candidate[0] return index else: return mergeList[0][0] # DSCS merge def detectMerge1(vector): mergeList = list() for i, ds in enumerate(DScentroids): distance = getSquaredD(vector, ds) if distance < a2d4: mergeList.append([i, distance]) if len(mergeList) == 0: return [] else: if len(mergeList) >= 2: minD = mergeList[0][1] index = mergeList[0][0] for candidate in mergeList: if candidate[1] < minD: minD = candidate[1] index = candidate[0] return index else: return mergeList[0][0] intermediate = list() for round_id, filename in enumerate(glob.glob(input_path + "*.txt")): if round_id == 0: # initialize # x: point(x[0]: point index, x[1:]: vector) # x[0]: index, x[1]: vector dataRDD = sc.textFile(filename) \ .map(lambda x: [float(point) for point in x.strip("\n").split(',')]) \ .map(lambda x: [str(int(x[0])), x[1:]]) \ .cache() num_sample = int(dataRDD.count() / 2) random.seed(5) sampleList = random.sample(dataRDD.collect(), num_sample) random.seed(5) centroids = [random.choice(sampleList)[1]] # d: dimension d = len(centroids[0]) a = 2 # hyperparameter: 2,3,4 a2d = a ** 2 * d # if md(Mahalanobis D)**2 < a2d # 4a**2*d: btw centroids a2d4 = 4 * a2d kn = 2 * n_cluster # 2~5 sampleRDD = sc.parallelize(sampleList).cache() # get initial kn centroids by using K-means++ for i in range(1, kn): maxDistance = sampleRDD \ .map(lambda x: [x[1], getMinDistance(x[1])]) \ .sortBy(lambda x: x[1], False) \ .take(1) centroids.append(maxDistance[0][0]) cnt = 0 diff = 100 while (diff > 20 and cnt < 40): cnt += 1 # clusterRDD x: [0, [[1, [1,2,3]], [2, [4,5,6]]]] clusterRDD = sampleRDD \ .map(lambda x: [getCluster(x[1]), x]) \ .groupByKey() \ .map(lambda x: [x[0], list(x[1])]) \ .cache() newCenRDD = clusterRDD \ .map(lambda x: [x[0], getCenter(x[1], len(x[1]))]) \ .sortBy(lambda x: x[0]).cache() diff = newCenRDD \ .map(lambda x: [1, getSquaredD(x[1], centroids[x[0]])]) \ .reduceByKey(lambda a, b: a + b) \ .map(lambda x: x[1]).take(1)[0] # new centroids centroids = newCenRDD.map(lambda x: x[1]).collect() # clusterRDD x: [0, [[1, [1,2,3]], [2, [4,5,6]]]] # remove RS from sample sampleRDD = clusterRDD.filter(lambda x: len(x[1]) != 1) \ .flatMap(lambda x: x[1]).cache() random.seed(5) centroids = [random.choice(sampleRDD.collect())[1]] # get initial k centroids by using K-means++ for i in range(1, n_cluster): maxDistance = sampleRDD \ .map(lambda x: [x[1], getMinDistance(x[1])]) \ .sortBy(lambda x: x[1], False) \ .take(1) centroids.append(maxDistance[0][0]) cnt = 0 diff = 100 while (diff > 4 and cnt < 40): cnt += 1 # clusterRDD x: [0, [[1, [1,2,3]], [2, [4,5,6]]]] clusterRDD = sampleRDD \ .map(lambda x: [getCluster(x[1]), x]) \ .groupByKey() \ .map(lambda x: [x[0], list(x[1])]) \ .cache() newCenRDD = clusterRDD \ .map(lambda x: [x[0], getCenter(x[1], len(x[1]))]) \ .sortBy(lambda x: x[0]).cache() diff = newCenRDD \ .map(lambda x: [1, getSquaredD(x[1], centroids[x[0]])]) \ .reduceByKey(lambda a, b: a + b) \ .map(lambda x: x[1]).take(1)[0] # new centroids centroids = newCenRDD.map(lambda x: x[1]).collect() # DS # getSumandSQ: [Sum, SumSQ, pointIndexes] # [clusterNum, N, [Sum, SumSQ, pointIndexes]] DSrdd = clusterRDD \ .map(lambda x: [x[0], len(x[1]), getSumandSQ(x[1])]) \ .sortBy(lambda x: x[0]).cache() # [cln, [N, Sum, SumSQ]] DS = DSrdd.map(lambda x: [x[0], [x[1], x[2][0], x[2][1]]]) \ .collect() lenDS = DSrdd.count() # [cln, pointIndexes] DSList = DSrdd.map(lambda x: [x[0], x[2][2]]) \ .collect() DScentroids = DSrdd.map(lambda x: getCentroids(x[1], x[2][0])).collect() DSvariance = DSrdd.map(lambda x: getVariance(x[1], x[2][0], x[2][1])).collect() num_DS = DSrdd \ .map(lambda x: [1, x[1]]) \ .reduceByKey(lambda a, b: a + b) \ .map(lambda x: x[1]).take(1)[0] DSpoints = DSrdd.flatMap(lambda x: x[2][2]) \ .collect() # CS and RS: kn with remain points dataRDD = dataRDD \ .filter(lambda x: x[0] not in DSpoints) \ .cache() centroids = [random.choice(dataRDD.collect())[1]] for i in range(1, kn): maxDistance = dataRDD \ .map(lambda x: [x[1], getMinDistance(x[1])]) \ .sortBy(lambda x: x[1], False) \ .take(1) centroids.append(maxDistance[0][0]) cnt = 0 diff = 100 while (diff > 4 and cnt < 40): cnt += 1 # clusterRDD x: [0, [[1, [1,2,3]], [2, [4,5,6]]]]] clusterRDD = dataRDD \ .map(lambda x: [getCluster(x[1]), x]) \ .groupByKey() \ .map(lambda x: [x[0], list(x[1])]) \ .cache() newCenRDD = clusterRDD \ .map(lambda x: [x[0], getCenter(x[1], len(x[1]))]) \ .sortBy(lambda x: x[0]).cache() diff = newCenRDD \ .map(lambda x: [1, getSquaredD(x[1], centroids[x[0]])]) \ .reduceByKey(lambda a, b: a + b) \ .map(lambda x: x[1]).take(1)[0] # new centroids centroids = newCenRDD.map(lambda x: x[1]).collect() RSrdd = clusterRDD.filter(lambda x: len(x[1]) == 1) \ .map(lambda x: [x[1][0][0], x[1][0][1]]).cache() lenRS = RSrdd.count() RS = RSrdd.collect() # getSumandSQ: [Sum, SumSQ, pointIndexes] # [N, [Sum, SumSQ, pointIndexes]] CSrdd = clusterRDD.filter(lambda x: len(x[1]) != 1) \ .map(lambda x: [len(x[1]), getSumandSQ(x[1])]) \ .cache() CScentroids = CSrdd.map(lambda x: getCentroids(x[0], x[1][0])).collect() CSvariance = CSrdd.map(lambda x: getVariance(x[0], x[1][0], x[1][1])).collect() num_CS = CSrdd \ .map(lambda x: [1, x[0]]) \ .reduceByKey(lambda a, b: a + b) \ .map(lambda x: x[1]).take(1)[0] lenCS = CSrdd.count() # [N, Sum, SumSQ] CS = CSrdd \ .map(lambda x: [x[0], x[1][0], x[1][1]]).collect() CSList = CSrdd \ .map(lambda x: x[1][2]).collect() # CS re-numbering # CS [[10, [N, Sum, SumSQ]], # CSList [[10, pointIndexes], CS = [[idx + lenDS, cs] for idx, cs in enumerate(CS)] CSList = [[idx + lenDS, cs] for idx, cs in enumerate(CSList)] DSCS = DS + CS DSCSList = DSList + CSList intermediate.append([round_id + 1, lenDS, num_DS, lenCS, num_CS, lenRS]) del sampleList # if md(Mahalanobis D**2) < a2d # sum((pi-ci)**2/variance of i) else: # [index, [clusterNum, vector]] dataRDD = sc.textFile(filename) \ .map(lambda x: [float(point) for point in x.strip("\n").split(',')]) \ .map(lambda x: [str(int(x[0])), determineDSCS(x[1:])]).cache() addRS = dataRDD.filter(lambda x: x[1][0] == -1) \ .map(lambda x: [x[0], x[1][1]]).collect() RS += addRS lenRS = len(RS) # [index, [clusterNum, vector]] # -> [clusterNum, [index, vector]] # -> [clusterNum, N, [Sum, SumSQ, pointIndexes]] DSCSrdd = dataRDD.filter(lambda x: x[1][0] != -1) \ .map(lambda x: [x[1][0], [x[0], x[1][1]]]) \ .groupByKey() \ .map(lambda x: [x[0], len(x[1]), getSumandSQ(x[1])]) \ .cache() # [[clusterNum, [N, Sum, SumSQ]] addDSCS = DSCSrdd.map(lambda x: [x[0], [x[1], x[2][0], x[2][1]]]) \ .collect() # update DSCS for dscs in addDSCS: clNum = dscs[0] dscs0 = DSCS[clNum] N = dscs[1][0] + dscs0[1][0] Sum = getVectorSum(dscs[1][1], dscs0[1][1]) SumSQ = getVectorSum(dscs[1][2], dscs0[1][2]) DSCS[clNum] = [clNum, [N, Sum, SumSQ]] addDSCSList = DSCSrdd.map(lambda x: [x[0], x[2][2]]) \ .collect() # update DSCSList for points in addDSCSList: clNum = points[0] dscs0 = DSCSList[clNum] DSCSList[clNum][1] = points[1] + dscs0[1] DS = DSCS[:n_cluster] CS = DSCS[n_cluster:] lenCS = len(CS) DSrdd = sc.parallelize(DS).cache() lenDS = DSrdd.count() DScentroids = DSrdd.map(lambda x: getCentroids(x[1][0], x[1][1])).collect() DSvariance = DSrdd.map(lambda x: getVariance(x[1][0], x[1][1], x[1][2])).collect() num_DS = DSrdd \ .map(lambda x: [1, x[1][0]]) \ .reduceByKey(lambda a, b: a + b) \ .map(lambda x: x[1]).take(1)[0] if lenRS <= kn: # no clustering CSrdd = sc.parallelize(CS).cache() CScentroids = CSrdd.map(lambda x: getCentroids(x[1][0], x[1][1])).collect() CSvariance = CSrdd.map(lambda x: getVariance(x[1][0], x[1][1], x[1][2])).collect() num_CS = CSrdd \ .map(lambda x: [1, x[1][0]]) \ .reduceByKey(lambda a, b: a + b) \ .map(lambda x: x[1]).take(1)[0] intermediate.append([round_id + 1, lenDS, num_DS, lenCS, num_CS, lenRS]) # if len(RS) > kn, kn means for RS to generate new CS # update RS # merge old and new CS else: dataRDD = sc.parallelize(RS).cache() random.seed(5) centroids = [random.choice(dataRDD.collect())[1]] for i in range(1, kn): maxDistance = dataRDD \ .map(lambda x: [x[1], getMinDistance(x[1])]) \ .sortBy(lambda x: x[1], False) \ .take(1) centroids.append(maxDistance[0][0]) cnt = 0 diff = 100 while (diff > 4 and cnt < 40): cnt += 1 # clusterRDD x: [0, [[1, [1,2,3]], [2, [4,5,6]]]]] clusterRDD = dataRDD \ .map(lambda x: [getCluster(x[1]), x]) \ .groupByKey() \ .map(lambda x: [x[0], list(x[1])]) \ .cache() newCenRDD = clusterRDD \ .map(lambda x: [x[0], getCenter(x[1], len(x[1]))]) \ .sortBy(lambda x: x[0]).cache() diff = newCenRDD \ .map(lambda x: [1, getSquaredD(x[1], centroids[x[0]])]) \ .reduceByKey(lambda a, b: a + b) \ .map(lambda x: x[1]).take(1)[0] # new centroids centroids = newCenRDD.map(lambda x: x[1]).collect() # clusterRDD x: [0, [[1, [1,2,3]], [2, [4,5,6]]]] RS = clusterRDD.filter(lambda x: len(x[1]) == 1) \ .map(lambda x: [x[1][0][0], x[1][0][1]]).collect() # [N, Sum, SumSQ, pointIndexes] addCS = clusterRDD.filter(lambda x: len(x[1]) != 1) \ .map(lambda x: [len(x[1]), getSumandSQ(x[1])]) \ .map(lambda x: [x[0], x[1][0], x[1][1], x[1][2]]) \ .collect() # renumbering # [clusterNum, [N, Sum, SumSQ, pointIndexes]] addCS = [[i, cs] for i, cs in enumerate(addCS)] addCSrdd = sc.parallelize(addCS) \ .cache() # find pair of old and new CS # [clusterNum, [N, Sum, SumSQ, pointIndexes] CSCSpair = addCSrdd \ .map(lambda x: [x[0], getCentroids(x[1][0], x[1][1])]) \ .map(lambda x: [x[0], detectMerge(x[1])]) \ .filter(lambda x: x[1] != []) \ .map(lambda x: [x[1], x[0]]) \ .groupByKey() \ .map(lambda x: [x[0], list(x[1])]) \ .collect() if CSCSpair == []: # no merge # [N, Sum, SumSQ] addCS0 = addCSrdd \ .map(lambda x: [x[0] + lenDS + lenCS, [x[1][0], x[1][1], x[1][2]]]) \ .collect() # point indexes addCSList0 = addCSrdd \ .map(lambda x: [x[0] + lenDS + lenCS, x[1][3]]).collect() else: # merge CS and CS merger = list() for pair in CSCSpair: p1 = pair[1] N = 0 sumList = list() sumSQlist = list() indexes = list() for i in p1: N += addCS[i][1][0] sumList.append(addCS[i][1][1]) sumSQlist.append(addCS[i][1][2]) indexes += addCS[i][1][3] merger.append([N, getMatrixSum(sumList), getMatrixSum(sumSQlist), indexes]) # update DSCS, DSCSList by merging newCS for i, pair in enumerate(CSCSpair): clNum = pair[0] dscs = DSCS[clNum] N = dscs[1][0] + merger[i][0] Sum = getVectorSum(dscs[1][1], merger[i][1]) SumSQ = getVectorSum(dscs[1][2], merger[i][2]) DSCS[clNum] = [clNum, [N, Sum, SumSQ]] DSCSList[clNum][1] += merger[i][3] mergeNum = sc.parallelize(CSCSpair) \ .map(lambda x: x[1]) \ .flatMap(lambda x: x).collect() addCS = addCSrdd \ .filter(lambda x: x[0] not in mergeNum) \ .map(lambda x: x[1]).collect() # renumbering # [clusterNum, [N, Sum, SumSQ, pointIndexes]] addCS = [[i + lenDS + lenCS, cs] for i, cs in enumerate(addCS)] addCSrdd = sc.parallelize(addCS) \ .cache() # [N, Sum, SumSQ] addCS0 = addCSrdd \ .map(lambda x: [x[0], [x[1][0], x[1][1], x[1][2]]]) \ .collect() # point indexes addCSList0 = addCSrdd \ .map(lambda x: [x[0], x[1][3]]).collect() DSCS += addCS0 DSCSList += addCSList0 CS = DSCS[n_cluster:] CSrdd = sc.parallelize(CS).cache() CScentroids = CSrdd.map(lambda x: getCentroids(x[1][0], x[1][1])).collect() CSvariance = CSrdd.map(lambda x: getVariance(x[1][0], x[1][1], x[1][2])).collect() lenCS = CSrdd.count() num_CS = CSrdd \ .map(lambda x: [1, x[1][0]]) \ .reduceByKey(lambda a, b: a + b) \ .map(lambda x: x[1]).take(1)[0] intermediate.append([round_id + 1, lenDS, num_DS, lenCS, num_CS, len(RS)]) # merge DS CS DSCSpair = sc.parallelize(DSCS[n_cluster:]) \ .map(lambda x: [x[0], getCentroids(x[1][0], x[1][1])]) \ .map(lambda x: [x[0], detectMerge1(x[1])]) \ .filter(lambda x: x[1] != []) \ .map(lambda x: [x[1], x[0]]) \ .groupByKey() \ .map(lambda x: [x[0], list(x[1])]) \ .collect() for pair in DSCSpair: ds = pair[0] cslist = pair[1] for cs in cslist: DSCSList[ds][1] += DSCSList[cs][1] DSList = DSCSList[:n_cluster] num_DS = sc.parallelize(DSList) \ .flatMap(lambda x: x[1]) \ .count() mergeNum = sc.parallelize(DSCSpair) \ .flatMap(lambda x: x[1]).collect() newCSrdd = sc.parallelize(DSCSList[n_cluster:]) \ .filter(lambda x: x[0] not in mergeNum) \ .cache() lenCS = newCSrdd.count() csrdd = newCSrdd.flatMap(lambda x: x[1]).cache() num_CS = csrdd.count() CSList = csrdd.collect() # revise the last intermediate intermediate[-1] = [round_id + 1, lenDS, num_DS, lenCS, num_CS, len(RS)] f1 = open(out_file1, mode="w+") result = dict() for clusterList in DSList: clnum = clusterList[0] points = clusterList[1] for point in points: result.update({point: clnum}) for point in CSList: result.update({point: -1}) for point in RS: result.update({point[0]: -1}) json.dump(result, f1) f1.close() f2 = open(out_file2, mode="w+") f2.write( "round_id,nof_cluster_discard,nof_point_discard,nof_cluster_compression,nof_point_compression,nof_point_retained\n") for item in intermediate: f2.write(str(item).strip("[]")) f2.write("\n") f2.close() print("Duration: %d" % int(time.time() - start_time))
the-stack_106_14685
import sys import cv2 import filters filters_list = [ "black_white", "invert", "blur", "sketch", "sketch_with_edge_detection", "sharpen", "sepia", "gaussian_blur", "emboss", "image_2d_convolution", "median_filtering", "vignette", "warm", "cold", "cartoon", "moon", ] if __name__ == "__main__": if len(sys.argv) not in [3, 4]: print( "Usage: python test.py <FILTER> <IMAGE SRC> <IMAGE DESTINATION(OPTIONAL)>" ) sys.exit(0) if len(sys.argv) == 3: _, filter_name, src = sys.argv dest = None else: _, filter_name, src, dest = sys.argv filter_name = filter_name.lower() if filter_name not in filters_list: print("Invalid filter! Possible filters are" + "\n".join(filters_list)) sys.exit(1) image = cv2.imread(src) edited_image = getattr(filters, filter_name)(image) if not dest: cv2.imwrite("edited.jpg", edited_image) print("Saved in the current directory as edited.jpg") else: cv2.imwrite(dest + "edited.jpg", edited_image) print(f"Saved at {dest} as edited.jpg")
the-stack_106_14687
from myhdl import Signal, intbv from rhea.system import Clock _clkmgmt_cnt = 0 class ClockManagement(object): def __init__(self, clockin, reset=None, output_frequencies=None, vendor='none'): """ An interface to various vendor clock generators. Most FPGA have a DLL/PLL/MMCM or some kind of primitive to generate clocks. This interface is used to generically create clocks in a design. The device specific primitives will be generated based on the attributes of this interface (object). This interface is used with the vendor.*.device_clock_mgmt modules. Ports: clockin: the input clock, thre frequency attribute is used. reset: optional Parameters: output_frequencies: A list of desired output frequencies. Example usage: clockext = Clock(0, frequency=50e6) resetext = Reset(0, active=0, async=True) clkmgmt = ClockManagement(clockext, resetext, output_frequencies=(150e6, 200e6)) clkmgmt.model = brd.fpga clkmgmt.vendor = vendor.altera """ global _clkmgmt_cnt self.clkmgmt_num = _clkmgmt_cnt _clkmgmt_cnt += 1 number_of_outputs = len(output_frequencies) self.vendor = vendor self.clockin = clockin self.clockin_out = Signal(bool(0)) self.input_frequency = int(clockin.frequency) self.reset = reset self.enable = Signal(bool(0)) self.output_frequencies = tuple(map(int, output_frequencies)) self.clocks = [Clock(0, f) for f in output_frequencies] self.clocksout = Signal(intbv(0)[number_of_outputs:]) for ii, clk in enumerate(self.clocks): vars(self)['clock{:02d}'.format(ii)] = clk self.locked = Signal(bool(0))
the-stack_106_14690
""" Models (mostly base classes) for the various kinds of renderer types that Bokeh supports. """ from __future__ import absolute_import from ..plot_object import PlotObject from ..properties import Int, String, Enum, Instance, List, Dict, Tuple, Include from ..mixins import LineProps, TextProps from ..enums import Units, Orientation, RenderLevel from ..validation.errors import BAD_COLUMN_NAME, MISSING_GLYPH, NO_SOURCE_FOR_GLYPH from .. import validation from .sources import DataSource from .glyphs import Glyph class Renderer(PlotObject): """ A base class for renderer types. ``Renderer`` is not generally useful to instantiate on its own. """ class GlyphRenderer(Renderer): """ """ @validation.error(MISSING_GLYPH) def _check_missing_glyph(self): if not self.glyph: return str(self) @validation.error(NO_SOURCE_FOR_GLYPH) def _check_no_source_for_glyph(self): if not self.data_source: return str(self) @validation.error(BAD_COLUMN_NAME) def _check_bad_column_name(self): if not self.glyph: return if not self.data_source: return missing = set() for name, item in self.glyph.vm_serialize().items(): if not isinstance(item, dict): continue if 'field' in item and item['field'] not in self.data_source.column_names: missing.add(item['field']) if missing: return "%s [renderer: %s]" % (", ".join(sorted(missing)), self) data_source = Instance(DataSource, help=""" Local data source to use when rendering glyphs on the plot. """) x_range_name = String('default', help=""" A particular (named) x-range to use for computing screen locations when rendering glyphs on the plot. If unset, use the default x-range. """) y_range_name = String('default', help=""" A particular (named) y-range to use for computing screen locations when rendering glyphs on the plot. If unset, use the default -range. """) # TODO: (bev) is this actually used? units = Enum(Units) glyph = Instance(Glyph, help=""" The glyph to render, in conjunction with the supplied data source and ranges. """) selection_glyph = Instance(Glyph, help=""" An optional glyph used for selected points. """) nonselection_glyph = Instance(Glyph, help=""" An optional glyph used for explicitly non-selected points (i.e., non-selected when there are other points that are selected, but not when no points at all are selected.) """) level = Enum(RenderLevel, default="glyph", help=""" Specifies the level in which to render the glyph. """) # TODO: (bev) This should really go in a separate module class Legend(Renderer): """ Render informational legends for a plot. """ plot = Instance(".models.plots.Plot", help=""" The Plot to which this Legend is attached. """) orientation = Enum(Orientation, help=""" The location where the legend should draw itself. """) border_props = Include(LineProps, help=""" The %s for the legend border outline. """) label_props = Include(TextProps, help=""" The %s for the legend labels. """) label_standoff = Int(15, help=""" The distance (in pixels) to separate the label from its associated glyph. """) label_height = Int(20, help=""" The height (in pixels) of the area that legend labels should occupy. """) label_width = Int(50, help=""" The width (in pixels) of the area that legend labels should occupy. """) glyph_height = Int(20, help=""" The height (in pixels) that the rendered legend glyph should occupy. """) glyph_width = Int(20, help=""" The width (in pixels) that the rendered legend glyph should occupy. """) legend_padding = Int(10, help=""" Amount of padding around the legend. """) legend_spacing = Int(3, help=""" Amount of spacing between legend entries. """) legends = List(Tuple(String, List(Instance(GlyphRenderer))), help=""" A list of tuples that maps text labels to the legend to corresponding renderers that should draw sample representations for those labels. .. note:: The ``legends`` attribute may also be set from a dict or OrderedDict, but note that if a dict is used, the order of the legend entries is unspecified. """).accepts( Dict(String, List(Instance(GlyphRenderer))), lambda d: list(d.items()) ) class GuideRenderer(Renderer): """ A base class for all guide renderer types. ``GuideRenderer`` is not generally useful to instantiate on its own. """ plot = Instance(".models.plots.Plot", help=""" The plot to which this guide renderer is attached. """) def __init__(self, **kwargs): super(GuideRenderer, self).__init__(**kwargs) if self.plot is not None: if self not in self.plot.renderers: self.plot.renderers.append(self)
the-stack_106_14691
from typing import ( TYPE_CHECKING, AbstractSet, Any, Dict, Hashable, Iterable, List, Mapping, NamedTuple, Optional, Sequence, Set, Tuple, Union, ) import pandas as pd from . import dtypes, pdcompat from .alignment import deep_align from .duck_array_ops import lazy_array_equiv from .indexes import Index, PandasIndex from .utils import Frozen, compat_dict_union, dict_equiv, equivalent from .variable import Variable, as_variable, assert_unique_multiindex_level_names if TYPE_CHECKING: from .coordinates import Coordinates from .dataarray import DataArray from .dataset import Dataset DimsLike = Union[Hashable, Sequence[Hashable]] ArrayLike = Any VariableLike = Union[ ArrayLike, Tuple[DimsLike, ArrayLike], Tuple[DimsLike, ArrayLike, Mapping], Tuple[DimsLike, ArrayLike, Mapping, Mapping], ] XarrayValue = Union[DataArray, Variable, VariableLike] DatasetLike = Union[Dataset, Mapping[Hashable, XarrayValue]] CoercibleValue = Union[XarrayValue, pd.Series, pd.DataFrame] CoercibleMapping = Union[Dataset, Mapping[Hashable, CoercibleValue]] PANDAS_TYPES = (pd.Series, pd.DataFrame, pdcompat.Panel) _VALID_COMPAT = Frozen( { "identical": 0, "equals": 1, "broadcast_equals": 2, "minimal": 3, "no_conflicts": 4, "override": 5, } ) def broadcast_dimension_size(variables: List[Variable]) -> Dict[Hashable, int]: """Extract dimension sizes from a dictionary of variables. Raises ValueError if any dimensions have different sizes. """ dims: Dict[Hashable, int] = {} for var in variables: for dim, size in zip(var.dims, var.shape): if dim in dims and size != dims[dim]: raise ValueError(f"index {dim!r} not aligned") dims[dim] = size return dims class MergeError(ValueError): """Error class for merge failures due to incompatible arguments.""" # inherits from ValueError for backward compatibility # TODO: move this to an xarray.exceptions module? def unique_variable( name: Hashable, variables: List[Variable], compat: str = "broadcast_equals", equals: bool = None, ) -> Variable: """Return the unique variable from a list of variables or raise MergeError. Parameters ---------- name : hashable Name for this variable. variables : list of Variable List of Variable objects, all of which go by the same name in different inputs. compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional Type of equality check to use. equals : None or bool, optional corresponding to result of compat test Returns ------- Variable to use in the result. Raises ------ MergeError: if any of the variables are not equal. """ out = variables[0] if len(variables) == 1 or compat == "override": return out combine_method = None if compat == "minimal": compat = "broadcast_equals" if compat == "broadcast_equals": dim_lengths = broadcast_dimension_size(variables) out = out.set_dims(dim_lengths) if compat == "no_conflicts": combine_method = "fillna" if equals is None: # first check without comparing values i.e. no computes for var in variables[1:]: equals = getattr(out, compat)(var, equiv=lazy_array_equiv) if equals is not True: break if equals is None: # now compare values with minimum number of computes out = out.compute() for var in variables[1:]: equals = getattr(out, compat)(var) if not equals: break if not equals: raise MergeError( f"conflicting values for variable {name!r} on objects to be combined. " "You can skip this check by specifying compat='override'." ) if combine_method: for var in variables[1:]: out = getattr(out, combine_method)(var) return out def _assert_compat_valid(compat): if compat not in _VALID_COMPAT: raise ValueError( "compat={!r} invalid: must be {}".format(compat, set(_VALID_COMPAT)) ) MergeElement = Tuple[Variable, Optional[Index]] def merge_collected( grouped: Dict[Hashable, List[MergeElement]], prioritized: Mapping[Hashable, MergeElement] = None, compat: str = "minimal", combine_attrs="override", ) -> Tuple[Dict[Hashable, Variable], Dict[Hashable, Index]]: """Merge dicts of variables, while resolving conflicts appropriately. Parameters ---------- grouped : mapping prioritized : mapping compat : str Type of equality check to use when checking for conflicts. Returns ------- Dict with keys taken by the union of keys on list_of_mappings, and Variable values corresponding to those that should be found on the merged result. """ if prioritized is None: prioritized = {} _assert_compat_valid(compat) merged_vars: Dict[Hashable, Variable] = {} merged_indexes: Dict[Hashable, Index] = {} for name, elements_list in grouped.items(): if name in prioritized: variable, index = prioritized[name] merged_vars[name] = variable if index is not None: merged_indexes[name] = index else: indexed_elements = [ (variable, index) for variable, index in elements_list if index is not None ] if indexed_elements: # TODO(shoyer): consider adjusting this logic. Are we really # OK throwing away variable without an index in favor of # indexed variables, without even checking if values match? variable, index = indexed_elements[0] for _, other_index in indexed_elements[1:]: if not index.equals(other_index): raise MergeError( f"conflicting values for index {name!r} on objects to be " f"combined:\nfirst value: {index!r}\nsecond value: {other_index!r}" ) if compat == "identical": for other_variable, _ in indexed_elements[1:]: if not dict_equiv(variable.attrs, other_variable.attrs): raise MergeError( "conflicting attribute values on combined " f"variable {name!r}:\nfirst value: {variable.attrs!r}\nsecond value: {other_variable.attrs!r}" ) merged_vars[name] = variable merged_vars[name].attrs = merge_attrs( [var.attrs for var, _ in indexed_elements], combine_attrs=combine_attrs, ) merged_indexes[name] = index else: variables = [variable for variable, _ in elements_list] try: merged_vars[name] = unique_variable(name, variables, compat) except MergeError: if compat != "minimal": # we need more than "minimal" compatibility (for which # we drop conflicting coordinates) raise if name in merged_vars: merged_vars[name].attrs = merge_attrs( [var.attrs for var in variables], combine_attrs=combine_attrs ) return merged_vars, merged_indexes def collect_variables_and_indexes( list_of_mappings: "List[DatasetLike]", ) -> Dict[Hashable, List[MergeElement]]: """Collect variables and indexes from list of mappings of xarray objects. Mappings must either be Dataset objects, or have values of one of the following types: - an xarray.Variable - a tuple `(dims, data[, attrs[, encoding]])` that can be converted in an xarray.Variable - or an xarray.DataArray """ from .dataarray import DataArray from .dataset import Dataset grouped: Dict[Hashable, List[Tuple[Variable, Optional[Index]]]] = {} def append(name, variable, index): values = grouped.setdefault(name, []) values.append((variable, index)) def append_all(variables, indexes): for name, variable in variables.items(): append(name, variable, indexes.get(name)) for mapping in list_of_mappings: if isinstance(mapping, Dataset): append_all(mapping.variables, mapping.xindexes) continue for name, variable in mapping.items(): if isinstance(variable, DataArray): coords = variable._coords.copy() # use private API for speed indexes = dict(variable.xindexes) # explicitly overwritten variables should take precedence coords.pop(name, None) indexes.pop(name, None) append_all(coords, indexes) variable = as_variable(variable, name=name) if variable.dims == (name,): variable = variable.to_index_variable() index = variable._to_xindex() else: index = None append(name, variable, index) return grouped def collect_from_coordinates( list_of_coords: "List[Coordinates]", ) -> Dict[Hashable, List[MergeElement]]: """Collect variables and indexes to be merged from Coordinate objects.""" grouped: Dict[Hashable, List[Tuple[Variable, Optional[Index]]]] = {} for coords in list_of_coords: variables = coords.variables indexes = coords.xindexes for name, variable in variables.items(): value = grouped.setdefault(name, []) value.append((variable, indexes.get(name))) return grouped def merge_coordinates_without_align( objects: "List[Coordinates]", prioritized: Mapping[Hashable, MergeElement] = None, exclude_dims: AbstractSet = frozenset(), combine_attrs: str = "override", ) -> Tuple[Dict[Hashable, Variable], Dict[Hashable, Index]]: """Merge variables/indexes from coordinates without automatic alignments. This function is used for merging coordinate from pre-existing xarray objects. """ collected = collect_from_coordinates(objects) if exclude_dims: filtered: Dict[Hashable, List[MergeElement]] = {} for name, elements in collected.items(): new_elements = [ (variable, index) for variable, index in elements if exclude_dims.isdisjoint(variable.dims) ] if new_elements: filtered[name] = new_elements else: filtered = collected return merge_collected(filtered, prioritized, combine_attrs=combine_attrs) def determine_coords( list_of_mappings: Iterable["DatasetLike"], ) -> Tuple[Set[Hashable], Set[Hashable]]: """Given a list of dicts with xarray object values, identify coordinates. Parameters ---------- list_of_mappings : list of dict or list of Dataset Of the same form as the arguments to expand_variable_dicts. Returns ------- coord_names : set of variable names noncoord_names : set of variable names All variable found in the input should appear in either the set of coordinate or non-coordinate names. """ from .dataarray import DataArray from .dataset import Dataset coord_names: Set[Hashable] = set() noncoord_names: Set[Hashable] = set() for mapping in list_of_mappings: if isinstance(mapping, Dataset): coord_names.update(mapping.coords) noncoord_names.update(mapping.data_vars) else: for name, var in mapping.items(): if isinstance(var, DataArray): coords = set(var._coords) # use private API for speed # explicitly overwritten variables should take precedence coords.discard(name) coord_names.update(coords) return coord_names, noncoord_names def coerce_pandas_values(objects: Iterable["CoercibleMapping"]) -> List["DatasetLike"]: """Convert pandas values found in a list of labeled objects. Parameters ---------- objects : list of Dataset or mapping The mappings may contain any sort of objects coercible to xarray.Variables as keys, including pandas objects. Returns ------- List of Dataset or dictionary objects. Any inputs or values in the inputs that were pandas objects have been converted into native xarray objects. """ from .dataarray import DataArray from .dataset import Dataset out = [] for obj in objects: if isinstance(obj, Dataset): variables: "DatasetLike" = obj else: variables = {} if isinstance(obj, PANDAS_TYPES): obj = dict(obj.iteritems()) for k, v in obj.items(): if isinstance(v, PANDAS_TYPES): v = DataArray(v) variables[k] = v out.append(variables) return out def _get_priority_vars_and_indexes( objects: List["DatasetLike"], priority_arg: Optional[int], compat: str = "equals" ) -> Dict[Hashable, MergeElement]: """Extract the priority variable from a list of mappings. We need this method because in some cases the priority argument itself might have conflicting values (e.g., if it is a dict with two DataArray values with conflicting coordinate values). Parameters ---------- objects : list of dict-like of Variable Dictionaries in which to find the priority variables. priority_arg : int or None Integer object whose variable should take priority. compat : {"identical", "equals", "broadcast_equals", "no_conflicts"}, optional Compatibility checks to use when merging variables. Returns ------- A dictionary of variables and associated indexes (if any) to prioritize. """ if priority_arg is None: return {} collected = collect_variables_and_indexes([objects[priority_arg]]) variables, indexes = merge_collected(collected, compat=compat) grouped: Dict[Hashable, MergeElement] = {} for name, variable in variables.items(): grouped[name] = (variable, indexes.get(name)) return grouped def merge_coords( objects: Iterable["CoercibleMapping"], compat: str = "minimal", join: str = "outer", priority_arg: Optional[int] = None, indexes: Optional[Mapping[Hashable, Index]] = None, fill_value: object = dtypes.NA, ) -> Tuple[Dict[Hashable, Variable], Dict[Hashable, Index]]: """Merge coordinate variables. See merge_core below for argument descriptions. This works similarly to merge_core, except everything we don't worry about whether variables are coordinates or not. """ _assert_compat_valid(compat) coerced = coerce_pandas_values(objects) aligned = deep_align( coerced, join=join, copy=False, indexes=indexes, fill_value=fill_value ) collected = collect_variables_and_indexes(aligned) prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat) variables, out_indexes = merge_collected(collected, prioritized, compat=compat) assert_unique_multiindex_level_names(variables) return variables, out_indexes def merge_data_and_coords(data, coords, compat="broadcast_equals", join="outer"): """Used in Dataset.__init__.""" objects = [data, coords] explicit_coords = coords.keys() indexes = dict(_extract_indexes_from_coords(coords)) return merge_core( objects, compat, join, explicit_coords=explicit_coords, indexes=indexes ) def _extract_indexes_from_coords(coords): """Yields the name & index of valid indexes from a mapping of coords""" for name, variable in coords.items(): variable = as_variable(variable, name=name) if variable.dims == (name,): yield name, variable._to_xindex() def assert_valid_explicit_coords(variables, dims, explicit_coords): """Validate explicit coordinate names/dims. Raise a MergeError if an explicit coord shares a name with a dimension but is comprised of arbitrary dimensions. """ for coord_name in explicit_coords: if coord_name in dims and variables[coord_name].dims != (coord_name,): raise MergeError( f"coordinate {coord_name} shares a name with a dataset dimension, but is " "not a 1D variable along that dimension. This is disallowed " "by the xarray data model." ) def merge_attrs(variable_attrs, combine_attrs): """Combine attributes from different variables according to combine_attrs""" if not variable_attrs: # no attributes to merge return None if combine_attrs == "drop": return {} elif combine_attrs == "override": return dict(variable_attrs[0]) elif combine_attrs == "no_conflicts": result = dict(variable_attrs[0]) for attrs in variable_attrs[1:]: try: result = compat_dict_union(result, attrs) except ValueError as e: raise MergeError( "combine_attrs='no_conflicts', but some values are not " f"the same. Merging {str(result)} with {str(attrs)}" ) from e return result elif combine_attrs == "drop_conflicts": result = {} dropped_keys = set() for attrs in variable_attrs: result.update( { key: value for key, value in attrs.items() if key not in result and key not in dropped_keys } ) result = { key: value for key, value in result.items() if key not in attrs or equivalent(attrs[key], value) } dropped_keys |= {key for key in attrs if key not in result} return result elif combine_attrs == "identical": result = dict(variable_attrs[0]) for attrs in variable_attrs[1:]: if not dict_equiv(result, attrs): raise MergeError( f"combine_attrs='identical', but attrs differ. First is {str(result)} " f", other is {str(attrs)}." ) return result else: raise ValueError(f"Unrecognised value for combine_attrs={combine_attrs}") class _MergeResult(NamedTuple): variables: Dict[Hashable, Variable] coord_names: Set[Hashable] dims: Dict[Hashable, int] indexes: Dict[Hashable, pd.Index] attrs: Dict[Hashable, Any] def merge_core( objects: Iterable["CoercibleMapping"], compat: str = "broadcast_equals", join: str = "outer", combine_attrs: Optional[str] = "override", priority_arg: Optional[int] = None, explicit_coords: Optional[Sequence] = None, indexes: Optional[Mapping[Hashable, Index]] = None, fill_value: object = dtypes.NA, ) -> _MergeResult: """Core logic for merging labeled objects. This is not public API. Parameters ---------- objects : list of mapping All values must be convertable to labeled arrays. compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional Compatibility checks to use when merging variables. join : {"outer", "inner", "left", "right"}, optional How to combine objects with different indexes. combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \ "override"}, optional How to combine attributes of objects priority_arg : int, optional Optional argument in `objects` that takes precedence over the others. explicit_coords : set, optional An explicit list of variables from `objects` that are coordinates. indexes : dict, optional Dictionary with values given by pandas.Index objects. fill_value : scalar, optional Value to use for newly missing values Returns ------- variables : dict Dictionary of Variable objects. coord_names : set Set of coordinate names. dims : dict Dictionary mapping from dimension names to sizes. attrs : dict Dictionary of attributes Raises ------ MergeError if the merge cannot be done successfully. """ from .dataarray import DataArray from .dataset import Dataset, calculate_dimensions _assert_compat_valid(compat) coerced = coerce_pandas_values(objects) aligned = deep_align( coerced, join=join, copy=False, indexes=indexes, fill_value=fill_value ) collected = collect_variables_and_indexes(aligned) prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat) variables, out_indexes = merge_collected( collected, prioritized, compat=compat, combine_attrs=combine_attrs ) assert_unique_multiindex_level_names(variables) dims = calculate_dimensions(variables) coord_names, noncoord_names = determine_coords(coerced) if explicit_coords is not None: assert_valid_explicit_coords(variables, dims, explicit_coords) coord_names.update(explicit_coords) for dim, size in dims.items(): if dim in variables: coord_names.add(dim) ambiguous_coords = coord_names.intersection(noncoord_names) if ambiguous_coords: raise MergeError( "unable to determine if these variables should be " f"coordinates or not in the merged result: {ambiguous_coords}" ) attrs = merge_attrs( [var.attrs for var in coerced if isinstance(var, (Dataset, DataArray))], combine_attrs, ) return _MergeResult(variables, coord_names, dims, out_indexes, attrs) def merge( objects: Iterable[Union["DataArray", "CoercibleMapping"]], compat: str = "no_conflicts", join: str = "outer", fill_value: object = dtypes.NA, combine_attrs: str = "override", ) -> "Dataset": """Merge any number of xarray objects into a single Dataset as variables. Parameters ---------- objects : iterable of Dataset or iterable of DataArray or iterable of dict-like Merge together all variables from these objects. If any of them are DataArray objects, they must have a name. compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional String indicating how to compare variables of the same name for potential conflicts: - "broadcast_equals": all values must be equal when variables are broadcast against each other to ensure common dimensions. - "equals": all values and dimensions must be the same. - "identical": all values, dimensions and attributes must be the same. - "no_conflicts": only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. - "override": skip comparing and pick variable from first dataset join : {"outer", "inner", "left", "right", "exact"}, optional String indicating how to combine differing indexes in objects. - "outer": use the union of object indexes - "inner": use the intersection of object indexes - "left": use indexes from the first object with each dimension - "right": use indexes from the last object with each dimension - "exact": instead of aligning, raise `ValueError` when indexes to be aligned are not equal - "override": if indexes are of same size, rewrite indexes to be those of the first object with that dimension. Indexes for the same dimension must have the same size in all objects. fill_value : scalar or dict-like, optional Value to use for newly missing values. If a dict-like, maps variable names to fill values. Use a data array's name to refer to its values. combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \ "override"}, default: "override" String indicating how to combine attrs of the objects being merged: - "drop": empty attrs on returned Dataset. - "identical": all attrs must be the same on every object. - "no_conflicts": attrs from all objects are combined, any that have the same name must also have the same value. - "drop_conflicts": attrs from all objects are combined, any that have the same name but different values are dropped. - "override": skip comparing and copy attrs from the first dataset to the result. Returns ------- Dataset Dataset with combined variables from each object. Examples -------- >>> x = xr.DataArray( ... [[1.0, 2.0], [3.0, 5.0]], ... dims=("lat", "lon"), ... coords={"lat": [35.0, 40.0], "lon": [100.0, 120.0]}, ... name="var1", ... ) >>> y = xr.DataArray( ... [[5.0, 6.0], [7.0, 8.0]], ... dims=("lat", "lon"), ... coords={"lat": [35.0, 42.0], "lon": [100.0, 150.0]}, ... name="var2", ... ) >>> z = xr.DataArray( ... [[0.0, 3.0], [4.0, 9.0]], ... dims=("time", "lon"), ... coords={"time": [30.0, 60.0], "lon": [100.0, 150.0]}, ... name="var3", ... ) >>> x <xarray.DataArray 'var1' (lat: 2, lon: 2)> array([[1., 2.], [3., 5.]]) Coordinates: * lat (lat) float64 35.0 40.0 * lon (lon) float64 100.0 120.0 >>> y <xarray.DataArray 'var2' (lat: 2, lon: 2)> array([[5., 6.], [7., 8.]]) Coordinates: * lat (lat) float64 35.0 42.0 * lon (lon) float64 100.0 150.0 >>> z <xarray.DataArray 'var3' (time: 2, lon: 2)> array([[0., 3.], [4., 9.]]) Coordinates: * time (time) float64 30.0 60.0 * lon (lon) float64 100.0 150.0 >>> xr.merge([x, y, z]) <xarray.Dataset> Dimensions: (lat: 3, lon: 3, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 42.0 * lon (lon) float64 100.0 120.0 150.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0 var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0 >>> xr.merge([x, y, z], compat="identical") <xarray.Dataset> Dimensions: (lat: 3, lon: 3, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 42.0 * lon (lon) float64 100.0 120.0 150.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0 var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0 >>> xr.merge([x, y, z], compat="equals") <xarray.Dataset> Dimensions: (lat: 3, lon: 3, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 42.0 * lon (lon) float64 100.0 120.0 150.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0 var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0 >>> xr.merge([x, y, z], compat="equals", fill_value=-999.0) <xarray.Dataset> Dimensions: (lat: 3, lon: 3, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 42.0 * lon (lon) float64 100.0 120.0 150.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 -999.0 3.0 ... -999.0 -999.0 -999.0 var2 (lat, lon) float64 5.0 -999.0 6.0 -999.0 ... -999.0 7.0 -999.0 8.0 var3 (time, lon) float64 0.0 -999.0 3.0 4.0 -999.0 9.0 >>> xr.merge([x, y, z], join="override") <xarray.Dataset> Dimensions: (lat: 2, lon: 2, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 * lon (lon) float64 100.0 120.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 3.0 5.0 var2 (lat, lon) float64 5.0 6.0 7.0 8.0 var3 (time, lon) float64 0.0 3.0 4.0 9.0 >>> xr.merge([x, y, z], join="inner") <xarray.Dataset> Dimensions: (lat: 1, lon: 1, time: 2) Coordinates: * lat (lat) float64 35.0 * lon (lon) float64 100.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 var2 (lat, lon) float64 5.0 var3 (time, lon) float64 0.0 4.0 >>> xr.merge([x, y, z], compat="identical", join="inner") <xarray.Dataset> Dimensions: (lat: 1, lon: 1, time: 2) Coordinates: * lat (lat) float64 35.0 * lon (lon) float64 100.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 var2 (lat, lon) float64 5.0 var3 (time, lon) float64 0.0 4.0 >>> xr.merge([x, y, z], compat="broadcast_equals", join="outer") <xarray.Dataset> Dimensions: (lat: 3, lon: 3, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 42.0 * lon (lon) float64 100.0 120.0 150.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0 var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0 >>> xr.merge([x, y, z], join="exact") Traceback (most recent call last): ... ValueError: indexes along dimension 'lat' are not equal Raises ------ xarray.MergeError If any variables with the same name have conflicting values. See also -------- concat """ from .dataarray import DataArray from .dataset import Dataset dict_like_objects = [] for obj in objects: if not isinstance(obj, (DataArray, Dataset, dict)): raise TypeError( "objects must be an iterable containing only " "Dataset(s), DataArray(s), and dictionaries." ) obj = obj.to_dataset(promote_attrs=True) if isinstance(obj, DataArray) else obj dict_like_objects.append(obj) merge_result = merge_core( dict_like_objects, compat, join, combine_attrs=combine_attrs, fill_value=fill_value, ) return Dataset._construct_direct(**merge_result._asdict()) def dataset_merge_method( dataset: "Dataset", other: "CoercibleMapping", overwrite_vars: Union[Hashable, Iterable[Hashable]], compat: str, join: str, fill_value: Any, combine_attrs: str, ) -> _MergeResult: """Guts of the Dataset.merge method.""" # we are locked into supporting overwrite_vars for the Dataset.merge # method due for backwards compatibility # TODO: consider deprecating it? if isinstance(overwrite_vars, Iterable) and not isinstance(overwrite_vars, str): overwrite_vars = set(overwrite_vars) else: overwrite_vars = {overwrite_vars} if not overwrite_vars: objs = [dataset, other] priority_arg = None elif overwrite_vars == set(other): objs = [dataset, other] priority_arg = 1 else: other_overwrite: Dict[Hashable, CoercibleValue] = {} other_no_overwrite: Dict[Hashable, CoercibleValue] = {} for k, v in other.items(): if k in overwrite_vars: other_overwrite[k] = v else: other_no_overwrite[k] = v objs = [dataset, other_no_overwrite, other_overwrite] priority_arg = 2 return merge_core( objs, compat, join, priority_arg=priority_arg, fill_value=fill_value, combine_attrs=combine_attrs, ) def dataset_update_method( dataset: "Dataset", other: "CoercibleMapping" ) -> _MergeResult: """Guts of the Dataset.update method. This drops a duplicated coordinates from `other` if `other` is not an `xarray.Dataset`, e.g., if it's a dict with DataArray values (GH2068, GH2180). """ from .dataarray import DataArray from .dataset import Dataset if not isinstance(other, Dataset): other = dict(other) for key, value in other.items(): if isinstance(value, DataArray): # drop conflicting coordinates coord_names = [ c for c in value.coords if c not in value.dims and c in dataset.coords ] if coord_names: other[key] = value.drop_vars(coord_names) # use ds.coords and not ds.indexes, else str coords are cast to object # TODO: benbovy - flexible indexes: fix this (it only works with pandas indexes) indexes = {key: PandasIndex(dataset.coords[key]) for key in dataset.xindexes.keys()} return merge_core( [dataset, other], priority_arg=1, indexes=indexes, # type: ignore combine_attrs="override", )
the-stack_106_14693
from datetime import timedelta from azure.servicebus._common.utils import utc_now from azure.servicebus import ServiceBusReceivedMessage class MockReceiver: def __init__(self): self._running = True def renew_message_lock(self, message): if message._exception_on_renew_lock: raise Exception("Generated exception via MockReceivedMessage exception_on_renew_lock") if not message._prevent_renew_lock: message.locked_until_utc = message.locked_until_utc + timedelta(seconds=message._lock_duration) class MockReceivedMessage(ServiceBusReceivedMessage): def __init__(self, prevent_renew_lock=False, exception_on_renew_lock=False): self._lock_duration = 2 self._received_timestamp_utc = utc_now() self.locked_until_utc = self._received_timestamp_utc + timedelta(seconds=self._lock_duration) self._settled = False self._receiver = MockReceiver() self._prevent_renew_lock = prevent_renew_lock self._exception_on_renew_lock = exception_on_renew_lock @property def _lock_expired(self): if self.locked_until_utc and self.locked_until_utc <= utc_now(): return True return False @property def locked_until_utc(self): return self._locked_until_utc @locked_until_utc.setter def locked_until_utc(self, value): self._locked_until_utc = value
the-stack_106_14695
import pickle import re from tqdm import tqdm import json import matplotlib.patches as mpatches import seaborn as sns from pycocotools.coco import COCO import json import numpy as np import matplotlib.pyplot as plt import string import sys import os from scipy.spatial import distance sys.path.append('..') from coco_mask.datasets import * from mals.inference_debias import id2object from utils import bog_task_to_attribute, bog_attribute_to_task, bog_mals val_dataset = CoCoDataset(None, version='val') categories = val_dataset.categories labels_to_names = val_dataset.labels_to_names man_words = ['man', 'boy', 'gentleman', 'male', 'men'] woman_words = ['woman', 'girl', 'lady', 'female', 'women'] def caption_to_array(captions, categories): this_categories = [] gender = None # iterate through caption and append to this_cat for caption in captions: caption = caption.lower().translate(str.maketrans('', '', string.punctuation)) for i in range(len(categories)): if labels_to_names[categories[i]].replace(' ', '') in caption.replace(' ', ''): if labels_to_names[categories[i]] == 'car': this_caption = caption.replace(' ', '') is_car = False while 'car' in this_caption: if this_caption[this_caption.find('car'):this_caption.find('car')+len('carrot')] == 'carrot': this_caption = this_caption[this_caption.find('car')+2:] else: is_car = True break if not is_car: continue if labels_to_names[categories[i]] == 'dog': this_caption = caption.replace(' ', '') is_dog = False while 'dog' in this_caption: if this_caption[max(0, this_caption.find('dog')-3):this_caption.find('dog')+3] == 'hotdog': this_caption = this_caption[this_caption.find('dog')+2:] else: is_dog = True break if not is_dog: continue this_categories.append(i) if gender == -1: continue for man_word in man_words: if man_word in caption.split(): if gender == 0: gender = -1 else: gender = 1 for woman_word in woman_words: if woman_word in caption.split(): if gender == 1: gender = -1 else: gender = 0 if gender == -1: gender = None return list(set(this_categories)), gender ########### generate bog_tilde_train for the captions ####### if os.path.isfile('coco_captions_bog_tilde_train.pkl'): bog_tilde_train, num_attributes_train, num_images_train = pickle.load(open('coco_captions_bog_tilde_train.pkl', 'rb')) else: train_dataset = CoCoDataset(None, version='train') categories = train_dataset.categories labels_to_names = train_dataset.labels_to_names version = 'train' coco = COCO('/n/fs/visualai-scr/Data/Coco/2014data/annotations/captions_{}2014.json'.format(version)) gender_data = pickle.load(open('/n/fs/visualai-scr/Data/Coco/2014data/bias_splits/{}.data'.format(version), 'rb')) gender_info = {int(chunk['img'][10+len(version):22+len(version)]): chunk['annotation'][0] for chunk in gender_data} num_labels = len(categories) bog_tilde_train = np.zeros((num_labels, 2)) num_attributes_train = [0, 0] for image_id in train_dataset.image_ids: if int(image_id) not in gender_info.keys(): continue gender = gender_info[image_id] annIds = coco.getAnnIds(imgIds=image_id) anns = coco.loadAnns(annIds) captions = [chunk['caption'] for chunk in anns] gt_categories, gt_gender = caption_to_array(captions, categories) if gt_gender is None: continue num_attributes_train[gt_gender] += 1 for gt_cat in gt_categories: if gt_cat == 0: continue bog_tilde_train[gt_cat][gt_gender] += 1 pickle.dump([bog_tilde_train, num_attributes_train, sum(num_attributes_train)], open('coco_captions_bog_tilde_train.pkl', 'wb')) # getting an image caption given an id version = 'val' all_image_ids = {} imageid_to_captions = {} coco = COCO('/n/fs/visualai-scr/Data/Coco/2014data/annotations/captions_{}2014.json'.format(version)) gender_data = pickle.load(open('/n/fs/visualai-scr/Data/Coco/2014data/bias_splits/{}.data'.format(version), 'rb')) gender_info = {int(chunk['img'][10+len(version):22+len(version)]): chunk['annotation'][0] for chunk in gender_data} women_snowboard = ['baseline_ft', 'equalizer', 'confident', 'upweight', 'balanced', 'confusion'] model_names = ['baseline_ft', 'equalizer'] for ind, model_name in enumerate(model_names): print("Model name: {}".format(model_name)) if model_name in women_snowboard: with open('final_captions_eccv2018/{}.json'.format(model_name)) as f: results = json.load(f) else: results = pickle.load(open('ImageCaptioning.pytorch/vis/{}_results.pkl'.format(model_name), 'rb')) num_labels = len(categories) bog_tilde = np.zeros((num_labels, 2)) bog_gt_g = np.zeros((num_labels, 2)) bog_gt_o = np.zeros((num_labels, 2)) bog_preds = np.zeros((num_labels, 2)) # for outcome divergence between genders measure gender_accs = [[0, 0, 0], [0, 0, 0]] actual_nums_of_gender = [0, 0] predict_nums_of_gender = [0, 0] num_samples = 0 for i in tqdm(range(len(results))): # figure out labels and stuff based on captions if model_name in women_snowboard: eval_id = results[i]['image_id'] else: eval_id = results[i]['file_name'].split('/')[-1].split('_')[-1][:-4] if int(eval_id) not in gender_info.keys(): continue gender = gender_info[int(eval_id)] annIds = coco.getAnnIds(imgIds=int(eval_id)) anns = coco.loadAnns(annIds) captions = [chunk['caption'] for chunk in anns] gt_categories, gt_gender = caption_to_array(captions, categories) if gt_gender is None: continue pred_caption = [results[i]['caption']] pred_categories, pred_gender = caption_to_array(pred_caption, categories) if ind == 0 and gt_gender != pred_gender: all_image_ids[eval_id] = set(pred_categories).intersection(set(gt_categories)) imageid_to_captions[eval_id] = [pred_caption, None] if ind == 1: if eval_id in all_image_ids.keys(): if gt_gender != pred_gender: del all_image_ids[eval_id] else: imageid_to_captions[eval_id][1] = pred_caption wrong_cats = set(pred_categories).symmetric_difference(set(gt_categories)) all_image_ids[eval_id] = all_image_ids[eval_id].intersection(wrong_cats) if pred_gender is None: # if not predict gender, skip gender_accs[gt_gender][2] += 1 continue if gt_gender != pred_gender and pred_gender is not None: gender_accs[gt_gender][1] += 1 else: gender_accs[gt_gender][0] += 1 num_samples += 1 actual_nums_of_gender[gt_gender] += 1 predict_nums_of_gender[pred_gender] += 1 for gt_cat in gt_categories: if gt_cat == 0: continue bog_tilde[gt_cat][gt_gender] += 1 bog_gt_o[gt_cat][pred_gender] += 1 for pred_cat in pred_categories: if pred_cat == 0: continue bog_gt_g[pred_cat][gt_gender] += 1 bog_preds[pred_cat][pred_gender] += 1 print("Numbers of gender, ACTUAL: {0}, PRED: {1}".format(actual_nums_of_gender, predict_nums_of_gender)) num_attributes = actual_nums_of_gender diff_ta, t_to_a_value = bog_task_to_attribute(bog_tilde, bog_gt_o, num_attributes=num_attributes, disaggregate=True, num_attributes_train=num_attributes_train, bog_tilde_train=bog_tilde_train) diff_at, a_to_t_value = bog_attribute_to_task(bog_tilde, bog_gt_g, num_attributes=num_attributes, disaggregate=True, num_attributes_train=num_attributes_train, bog_tilde_train=bog_tilde_train) bog_mals(bog_tilde_train, bog_preds) if ind == 0: base = [diff_ta, diff_at, bog_tilde, bog_gt_o, bog_gt_g] elif ind == 1: equalize = [diff_ta, diff_at, bog_tilde, bog_gt_o, bog_gt_g] # this is gender neutral version from paper #print(gender_accs) #gender_accs[0] = 100*(gender_accs[0] / np.sum(gender_accs[0][:2])) #gender_accs[1] = 100*(gender_accs[1] / np.sum(gender_accs[1][:2])) #print("Outcome divergence: {}".format(distance.jensenshannon(gender_accs[0][:2], gender_accs[1][:2]))) #gender_accs[0] = 100*(gender_accs[0] / np.sum(gender_accs[0])) #gender_accs[1] = 100*(gender_accs[1] / np.sum(gender_accs[1])) #print("Outcome divergence: {}".format(distance.jensenshannon(gender_accs[0], gender_accs[1]))) print("---") print("--------- Comparing between baseline and equalizer --------") for i in range(len(diff_at)): for j in range(len(diff_at[0])): if base[0][i][j] > equalize[0][i][j] and base[1][i][j] < equalize[1][i][j] and equalize[1][i][j] > 0: # t->a goes down, a->t goes up print("{0} ({9}) - {1}\nbase T->A: {2}, A->T: {3}\nequalizer T->A: {4}, A->T: {5}\nnumbers for A->T: {6} to base: {7}, equalizer: {8}\n\n".format(labels_to_names[categories[i]], 'woman' if j == 0 else 'man', base[0][i][j], base[1][i][j], equalize[0][i][j], equalize[1][i][j], base[2][i], base[4][i], equalize[4][i], i)) ###### qualitative image examples ###### for image_id in all_image_ids.keys(): if len(all_image_ids[image_id]) > 0: print("{0}:\nbaseline: {1}\nequalizer: {2}\n\n".format(image_id, imageid_to_captions[image_id][0], imageid_to_captions[image_id][1]))
the-stack_106_14697
import os import pickle import numpy as np from relic.histalp_runs import multi_parameter_run from relic.preprocessing import configure, GLCDICT from relic.length_observations import get_length_observations import logging log = logging.getLogger(__name__) if __name__ == '__main__': # Local working directory (where OGGM will write its output) WORKING_DIR = os.environ.get('OGGM_WORKDIR') myglcs = list(GLCDICT.keys()) while True: try: gdirs = configure(WORKING_DIR, myglcs, baselineclimate='HISTALP') break except: log.warning('fiona error') pass # read length data observations meta, obs = get_length_observations(myglcs) pcpsf = np.arange(0.5, 4.1, 0.25) glenas = np.arange(1.0, 4.1, 0.5) mbbias = np.append(np.arange(-1400, 1100, 200), np.array([-100, 100])) pdict = {'prcp_scaling_factor': pcpsf, 'glena_factor': glenas, 'mbbias': mbbias} jobid = int(os.environ.get('JOBID')) rval = multi_parameter_run(pdict, gdirs, meta, obs, runid=jobid) out = os.path.join('/home/users/mdusch/length_change/finito/all/out', 'out_%d.p' % jobid) pickle.dump(rval, open(out, 'wb')) log.warning('finito')
the-stack_106_14700
import torch.utils.data as data import os import sys import random import numpy as np import cv2 def find_classes(dir): classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] classes.sort() class_to_idx = {classes[i]: i for i in range(len(classes))} return classes, class_to_idx def make_dataset(root, source): if not os.path.exists(source): print("Setting file %s for UCF101 dataset doesn't exist." % (source)) sys.exit() else: clips = [] with open(source) as split_f: data = split_f.readlines() for line in data: line_info = line.split() clip_path = os.path.join(root, line_info[0]) duration = int(line_info[1]) target = int(line_info[2]) item = (clip_path, duration, target) clips.append(item) return clips def ReadSegmentRGB(path, offsets, new_height, new_width, new_length, is_color, name_pattern, duration): if is_color: cv_read_flag = cv2.IMREAD_COLOR # > 0 else: cv_read_flag = cv2.IMREAD_GRAYSCALE # = 0 interpolation = cv2.INTER_LINEAR fp = open("val_video_list.txt","a") fp.write("++++++++++++++++++++++++\n"+path+"\n") sampled_list = [] for offset_id in range(len(offsets)): offset = offsets[offset_id] for length_id in range(1, new_length+1): loaded_frame_index = length_id + offset moded_loaded_frame_index = loaded_frame_index % (duration + 1) if moded_loaded_frame_index == 0: moded_loaded_frame_index = (duration + 1) frame_name = name_pattern % (moded_loaded_frame_index) frame_path = path + "/" + frame_name #if offset==0: print(offset,length_id,loaded_frame_index, moded_loaded_frame_index, frame_name) print("frame_path={}".format(frame_path)) cv_img_origin = cv2.imread(frame_path, cv_read_flag) fp.write(frame_path) if cv_img_origin is None: print("Could not load file %s" % (frame_path)) input("debugging not enough frame images") sys.exit() # TODO: error handling here if new_width > 0 and new_height > 0: # use OpenCV3, use OpenCV2.4.13 may have error cv_img = cv2.resize(cv_img_origin, (new_width, new_height), interpolation) else: cv_img = cv_img_origin cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB) sampled_list.append(cv_img) #print("sampled_list.len = {}, shape = {}".format(len(sampled_list),sampled_list[0].shape)) clip_input = np.concatenate(sampled_list, axis=2) fp.close() return clip_input def ReadSegmentFlow(path, offsets, new_height, new_width, new_length, is_color, name_pattern,duration): if is_color: cv_read_flag = cv2.IMREAD_COLOR # > 0 else: cv_read_flag = cv2.IMREAD_GRAYSCALE # = 0 interpolation = cv2.INTER_LINEAR sampled_list = [] for offset_id in range(len(offsets)): offset = offsets[offset_id] for length_id in range(1, new_length+1): loaded_frame_index = length_id + offset moded_loaded_frame_index = loaded_frame_index % (duration + 1) if moded_loaded_frame_index == 0: moded_loaded_frame_index = (duration + 1) frame_name_x = name_pattern % ("x", moded_loaded_frame_index) frame_path_x = path + "/" + frame_name_x cv_img_origin_x = cv2.imread(frame_path_x, cv_read_flag) frame_name_y = name_pattern % ("y", moded_loaded_frame_index) frame_path_y = path + "/" + frame_name_y cv_img_origin_y = cv2.imread(frame_path_y, cv_read_flag) if cv_img_origin_x is None or cv_img_origin_y is None: print("Could not load file %s or %s" % (frame_path_x, frame_path_y)) sys.exit() # TODO: error handling here if new_width > 0 and new_height > 0: cv_img_x = cv2.resize(cv_img_origin_x, (new_width, new_height), interpolation) cv_img_y = cv2.resize(cv_img_origin_y, (new_width, new_height), interpolation) else: cv_img_x = cv_img_origin_x cv_img_y = cv_img_origin_y sampled_list.append(np.expand_dims(cv_img_x, 2)) sampled_list.append(np.expand_dims(cv_img_y, 2)) clip_input = np.concatenate(sampled_list, axis=2) return clip_input class videoreloc(data.Dataset): def __init__(self, root, source, phase, modality, name_pattern=None, is_color=True, num_segments=1, new_length=1, new_width=0, new_height=0, transform=None, target_transform=None, video_transform=None, ensemble_training = False): classes, class_to_idx = find_classes(root) clips = make_dataset(root, source) if len(clips) == 0: raise(RuntimeError("Found 0 video clips in subfolders of: " + root + "\n" "Check your data directory.")) self.root = root self.source = source self.phase = phase self.modality = modality self.classes = classes self.class_to_idx = class_to_idx self.clips = clips self.ensemble_training = ensemble_training if name_pattern: self.name_pattern = name_pattern else: if self.modality == "rgb" or self.modality == "CNN" : self.name_pattern = "%04d.jpg" #"img_%05d.jpg" elif self.modality == "flow": self.name_pattern = "flow_%s_%05d.jpg" self.is_color = is_color self.num_segments = num_segments self.new_length = new_length self.new_width = new_width self.new_height = new_height self.transform = transform self.target_transform = target_transform self.video_transform = video_transform def __getitem__(self, index): path, duration, target = self.clips[index] print("index = {}, path = {}, duration = {}, target = {}".format(index, path, duration, target)) duration = duration - 1 average_duration = int(duration / self.num_segments) average_part_length = int(np.floor((duration-self.new_length) / self.num_segments)) offsets = [] for seg_id in range(self.num_segments): if self.phase == "train": if average_duration >= self.new_length: # No +1 because randint(a,b) return a random integer N such t offset = random.randint(0, average_duration - self.new_length) # No +1 because randint(a,b) return a random integer N such that a <= N <= b. offsets.append(offset + seg_id * average_duration) elif duration >= self.new_length: offset = random.randint(0, average_part_length) offsets.append(seg_id*average_part_length + offset) else: increase = random.randint(0, duration) offsets.append(0 + seg_id * increase) elif self.phase == "val": if average_duration >= self.new_length: offsets.append(int((average_duration - self.new_length + 1)/2 + seg_id * average_duration)) elif duration >= self.new_length: offsets.append(int((seg_id*average_part_length + (seg_id + 1) * average_part_length)/2)) else: increase = int(duration / self.num_segments) offsets.append(0 + seg_id * increase) else: print("Only phase train and val are supported.") #print("num_segments = {},new_length = {} ,average_duration = {}, duration = {}, offsets = {}".format(self.num_segments,self.new_length, average_duration , average_part_length, offsets )) if self.modality == "rgb" or self.modality == "CNN": clip_input = ReadSegmentRGB(path, offsets, self.new_height, self.new_width, self.new_length, self.is_color, self.name_pattern, duration ) elif self.modality == "flow": clip_input = ReadSegmentFlow(path, offsets, self.new_height, self.new_width, self.new_length, self.is_color, self.name_pattern, duration ) else: print("No such modality %s" % (self.modality)) if self.transform is not None: clip_input = self.transform(clip_input) if self.target_transform is not None: target = self.target_transform(target) if self.video_transform is not None: clip_input = self.video_transform(clip_input) print("clip_input.shape = {}, target={}".format(clip_input.shape,target)) #input('dbg dataloaded') return clip_input, target def __len__(self): return len(self.clips)
the-stack_106_14701
from datetime import datetime dados = dict() dados['Nome'] = str(input('Nome : ')) nasc = int(input('Ano de nascimento : ')) dados['idade'] = datetime.now().year - nasc dados['CTPS'] = int(input('Carteira de trabalho : (0) não tem! ')) if dados['CTPS'] != 0: dados['Contratação'] = int(input('Ano de contratação : ')) dados['Salário'] = float(input('Salário : R$ ')) dados['Aposentadoria'] = dados['idade'] + ((dados['Contratação'] + 35) - datetime.now().year) print('-=' * 30) for k, v in dados.items(): print(f' - {k} tem o valor {v} ')
the-stack_106_14702
import requests import rdflib import click from .utils import * # Examples # curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-62703-715-0_2' class SciGraphClient(object): """ Simple class for accessing SciGraph entities """ url = 'https://scigraph.springernature.com/' _default_headers = {'Accept': 'application/ld+json'} def __init__(self, *args, **kwargs): allowed_keys = ['verbose'] self.__dict__.update((k, False) for k in allowed_keys) self.__dict__.update( (k, v) for k, v in kwargs.items() if k in allowed_keys) self.uri = None self.data = None # the raw data coming back from SciGraph self.rdfgraph = rdflib.ConjunctiveGraph() @property def triples_count(self): """ Simply dereference a scigraph URI """ return len(self.rdfgraph) def get_entity_from_uri(self, uri, rdf_format): """ Simply dereference a scigraph URI """ data = self._do_request(uri, rdf_format) if data: self.uri = uri self.data = data.text self._build_rdf_object(rdf_format) return self.data else: return None def get_entity_from_doi(self, doi, rdf_format): """ Simply dereference a scigraph URI based on a DOI """ uri = self.url + "pub." + doi data = self._do_request(uri, rdf_format) if data: self.uri = uri self.data = data.text return self.data else: return None def _do_request(self, uri, rdf_format): """ Request data from back end service """ if not rdf_format or rdf_format == "json-ld" or rdf_format == "jsonld": headers = {'Accept': 'application/ld+json'} elif rdf_format == "nt": headers = {'Accept': 'application/n-triples'} elif rdf_format == "turtle": headers = {'Accept': 'text/turtle'} elif rdf_format == "xml": headers = {'Accept': 'application/rdf+xml'} if self.verbose: printDebug(f">> Requesting format '{rdf_format}' from URI: {uri}", dim=True) response = requests.get(uri, headers=headers) if response.status_code == 404: return False else: if response.url.startswith("https://"): # https ok for retrieval, but rdf payload always uses http uris response.url = response.url.replace("https://", "http://") if self.verbose: printDebug(f">> Found: {response.url}\n----------------", dim=True) return response def _build_rdf_object(self, rdf_format): """Use rdflib to create a graph using the scigraph data returned """ if rdf_format == "jsonld": rdf_format = "json-ld" # fix for rdflib if self.data: self.rdfgraph.parse(data=self.data, format=rdf_format)
the-stack_106_14703
import base64 import gzip import importlib import io import logging import secrets import urllib import zlib from . import exceptions from . import packet from . import payload from . import socket default_logger = logging.getLogger('engineio.server') class Server(object): """An Engine.IO server. This class implements a fully compliant Engine.IO web server with support for websocket and long-polling transports. :param async_mode: The asynchronous model to use. See the Deployment section in the documentation for a description of the available options. Valid async modes are "threading", "eventlet", "gevent" and "gevent_uwsgi". If this argument is not given, "eventlet" is tried first, then "gevent_uwsgi", then "gevent", and finally "threading". The first async mode that has all its dependencies installed is the one that is chosen. :param ping_interval: The interval in seconds at which the server pings the client. The default is 25 seconds. For advanced control, a two element tuple can be given, where the first number is the ping interval and the second is a grace period added by the server. :param ping_timeout: The time in seconds that the client waits for the server to respond before disconnecting. The default is 20 seconds. :param max_http_buffer_size: The maximum size of a message when using the polling transport. The default is 1,000,000 bytes. :param allow_upgrades: Whether to allow transport upgrades or not. The default is ``True``. :param http_compression: Whether to compress packages when using the polling transport. The default is ``True``. :param compression_threshold: Only compress messages when their byte size is greater than this value. The default is 1024 bytes. :param cookie: If set to a string, it is the name of the HTTP cookie the server sends back tot he client containing the client session id. If set to a dictionary, the ``'name'`` key contains the cookie name and other keys define cookie attributes, where the value of each attribute can be a string, a callable with no arguments, or a boolean. If set to ``None`` (the default), a cookie is not sent to the client. :param cors_allowed_origins: Origin or list of origins that are allowed to connect to this server. Only the same origin is allowed by default. Set this argument to ``'*'`` to allow all origins, or to ``[]`` to disable CORS handling. :param cors_credentials: Whether credentials (cookies, authentication) are allowed in requests to this server. The default is ``True``. :param logger: To enable logging set to ``True`` or pass a logger object to use. To disable logging set to ``False``. The default is ``False``. Note that fatal errors are logged even when ``logger`` is ``False``. :param json: An alternative json module to use for encoding and decoding packets. Custom json modules must have ``dumps`` and ``loads`` functions that are compatible with the standard library versions. :param async_handlers: If set to ``True``, run message event handlers in non-blocking threads. To run handlers synchronously, set to ``False``. The default is ``True``. :param monitor_clients: If set to ``True``, a background task will ensure inactive clients are closed. Set to ``False`` to disable the monitoring task (not recommended). The default is ``True``. :param transports: The list of allowed transports. Valid transports are ``'polling'`` and ``'websocket'``. Defaults to ``['polling', 'websocket']``. :param kwargs: Reserved for future extensions, any additional parameters given as keyword arguments will be silently ignored. """ compression_methods = ['gzip', 'deflate'] event_names = ['connect', 'disconnect', 'message'] valid_transports = ['polling', 'websocket'] _default_monitor_clients = True sequence_number = 0 def __init__(self, async_mode=None, ping_interval=25, ping_timeout=20, max_http_buffer_size=1000000, allow_upgrades=True, http_compression=True, compression_threshold=1024, cookie=None, cors_allowed_origins=None, cors_credentials=True, logger=False, json=None, async_handlers=True, monitor_clients=None, transports=None, **kwargs): self.ping_timeout = ping_timeout if isinstance(ping_interval, tuple): self.ping_interval = ping_interval[0] self.ping_interval_grace_period = ping_interval[1] else: self.ping_interval = ping_interval self.ping_interval_grace_period = 0 self.max_http_buffer_size = max_http_buffer_size self.allow_upgrades = allow_upgrades self.http_compression = http_compression self.compression_threshold = compression_threshold self.cookie = cookie self.cors_allowed_origins = cors_allowed_origins self.cors_credentials = cors_credentials self.async_handlers = async_handlers self.sockets = {} self.handlers = {} self.log_message_keys = set() self.start_service_task = monitor_clients \ if monitor_clients is not None else self._default_monitor_clients if json is not None: packet.Packet.json = json if not isinstance(logger, bool): self.logger = logger else: self.logger = default_logger if self.logger.level == logging.NOTSET: if logger: self.logger.setLevel(logging.INFO) else: self.logger.setLevel(logging.ERROR) self.logger.addHandler(logging.StreamHandler()) modes = self.async_modes() if async_mode is not None: modes = [async_mode] if async_mode in modes else [] self._async = None self.async_mode = None for mode in modes: try: self._async = importlib.import_module( 'engineio.async_drivers.' + mode)._async asyncio_based = self._async['asyncio'] \ if 'asyncio' in self._async else False if asyncio_based != self.is_asyncio_based(): continue # pragma: no cover self.async_mode = mode break except ImportError: pass if self.async_mode is None: raise ValueError('Invalid async_mode specified') if self.is_asyncio_based() and \ ('asyncio' not in self._async or not self._async['asyncio']): # pragma: no cover raise ValueError('The selected async_mode is not asyncio ' 'compatible') if not self.is_asyncio_based() and 'asyncio' in self._async and \ self._async['asyncio']: # pragma: no cover raise ValueError('The selected async_mode requires asyncio and ' 'must use the AsyncServer class') if transports is not None: if isinstance(transports, str): transports = [transports] transports = [transport for transport in transports if transport in self.valid_transports] if not transports: raise ValueError('No valid transports provided') self.transports = transports or self.valid_transports self.logger.info('Server initialized for %s.', self.async_mode) def is_asyncio_based(self): return False def async_modes(self): return ['eventlet', 'gevent_uwsgi', 'gevent', 'threading'] def on(self, event, handler=None): """Register an event handler. :param event: The event name. Can be ``'connect'``, ``'message'`` or ``'disconnect'``. :param handler: The function that should be invoked to handle the event. When this parameter is not given, the method acts as a decorator for the handler function. Example usage:: # as a decorator: @eio.on('connect') def connect_handler(sid, environ): print('Connection request') if environ['REMOTE_ADDR'] in blacklisted: return False # reject # as a method: def message_handler(sid, msg): print('Received message: ', msg) eio.send(sid, 'response') eio.on('message', message_handler) The handler function receives the ``sid`` (session ID) for the client as first argument. The ``'connect'`` event handler receives the WSGI environment as a second argument, and can return ``False`` to reject the connection. The ``'message'`` handler receives the message payload as a second argument. The ``'disconnect'`` handler does not take a second argument. """ if event not in self.event_names: raise ValueError('Invalid event') def set_handler(handler): self.handlers[event] = handler return handler if handler is None: return set_handler set_handler(handler) def send(self, sid, data): """Send a message to a client. :param sid: The session id of the recipient client. :param data: The data to send to the client. Data can be of type ``str``, ``bytes``, ``list`` or ``dict``. If a ``list`` or ``dict``, the data will be serialized as JSON. """ try: socket = self._get_socket(sid) except KeyError: # the socket is not available self.logger.warning('Cannot send to sid %s', sid) return socket.send(packet.Packet(packet.MESSAGE, data=data)) def get_session(self, sid): """Return the user session for a client. :param sid: The session id of the client. The return value is a dictionary. Modifications made to this dictionary are not guaranteed to be preserved unless ``save_session()`` is called, or when the ``session`` context manager is used. """ socket = self._get_socket(sid) return socket.session def save_session(self, sid, session): """Store the user session for a client. :param sid: The session id of the client. :param session: The session dictionary. """ socket = self._get_socket(sid) socket.session = session def session(self, sid): """Return the user session for a client with context manager syntax. :param sid: The session id of the client. This is a context manager that returns the user session dictionary for the client. Any changes that are made to this dictionary inside the context manager block are saved back to the session. Example usage:: @eio.on('connect') def on_connect(sid, environ): username = authenticate_user(environ) if not username: return False with eio.session(sid) as session: session['username'] = username @eio.on('message') def on_message(sid, msg): with eio.session(sid) as session: print('received message from ', session['username']) """ class _session_context_manager(object): def __init__(self, server, sid): self.server = server self.sid = sid self.session = None def __enter__(self): self.session = self.server.get_session(sid) return self.session def __exit__(self, *args): self.server.save_session(sid, self.session) return _session_context_manager(self, sid) def disconnect(self, sid=None): """Disconnect a client. :param sid: The session id of the client to close. If this parameter is not given, then all clients are closed. """ if sid is not None: try: socket = self._get_socket(sid) except KeyError: # pragma: no cover # the socket was already closed or gone pass else: socket.close() if sid in self.sockets: # pragma: no cover del self.sockets[sid] else: for client in self.sockets.values(): client.close() self.sockets = {} def transport(self, sid): """Return the name of the transport used by the client. The two possible values returned by this function are ``'polling'`` and ``'websocket'``. :param sid: The session of the client. """ return 'websocket' if self._get_socket(sid).upgraded else 'polling' def handle_request(self, environ, start_response): """Handle an HTTP request from the client. This is the entry point of the Engine.IO application, using the same interface as a WSGI application. For the typical usage, this function is invoked by the :class:`Middleware` instance, but it can be invoked directly when the middleware is not used. :param environ: The WSGI environment. :param start_response: The WSGI ``start_response`` function. This function returns the HTTP response body to deliver to the client as a byte sequence. """ if self.cors_allowed_origins != []: # Validate the origin header if present # This is important for WebSocket more than for HTTP, since # browsers only apply CORS controls to HTTP. origin = environ.get('HTTP_ORIGIN') if origin: allowed_origins = self._cors_allowed_origins(environ) if allowed_origins is not None and origin not in \ allowed_origins: self._log_error_once( origin + ' is not an accepted origin.', 'bad-origin') r = self._bad_request('Not an accepted origin.') start_response(r['status'], r['headers']) return [r['response']] method = environ['REQUEST_METHOD'] query = urllib.parse.parse_qs(environ.get('QUERY_STRING', '')) jsonp = False jsonp_index = None # make sure the client uses an allowed transport transport = query.get('transport', ['polling'])[0] if transport not in self.transports: self._log_error_once('Invalid transport', 'bad-transport') r = self._bad_request('Invalid transport') start_response(r['status'], r['headers']) return [r['response']] # make sure the client speaks a compatible Engine.IO version sid = query['sid'][0] if 'sid' in query else None if sid is None and query.get('EIO') != ['4']: self._log_error_once( 'The client is using an unsupported version of the Socket.IO ' 'or Engine.IO protocols', 'bad-version') r = self._bad_request( 'The client is using an unsupported version of the Socket.IO ' 'or Engine.IO protocols') start_response(r['status'], r['headers']) return [r['response']] if 'j' in query: jsonp = True try: jsonp_index = int(query['j'][0]) except (ValueError, KeyError, IndexError): # Invalid JSONP index number pass if jsonp and jsonp_index is None: self._log_error_once('Invalid JSONP index number', 'bad-jsonp-index') r = self._bad_request('Invalid JSONP index number') elif method == 'GET': if sid is None: # transport must be one of 'polling' or 'websocket'. # if 'websocket', the HTTP_UPGRADE header must match. upgrade_header = environ.get('HTTP_UPGRADE').lower() \ if 'HTTP_UPGRADE' in environ else None if transport == 'polling' \ or transport == upgrade_header == 'websocket': r = self._handle_connect(environ, start_response, transport, jsonp_index) else: self._log_error_once('Invalid websocket upgrade', 'bad-upgrade') r = self._bad_request('Invalid websocket upgrade') else: if sid not in self.sockets: self._log_error_once('Invalid session ' + sid, 'bad-sid') r = self._bad_request('Invalid session') else: socket = self._get_socket(sid) try: packets = socket.handle_get_request( environ, start_response) if isinstance(packets, list): r = self._ok(packets, jsonp_index=jsonp_index) else: r = packets except exceptions.EngineIOError: if sid in self.sockets: # pragma: no cover self.disconnect(sid) r = self._bad_request() if sid in self.sockets and self.sockets[sid].closed: del self.sockets[sid] elif method == 'POST': if sid is None or sid not in self.sockets: self._log_error_once( 'Invalid session ' + (sid or 'None'), 'bad-sid') r = self._bad_request('Invalid session') else: socket = self._get_socket(sid) try: socket.handle_post_request(environ) r = self._ok(jsonp_index=jsonp_index) except exceptions.EngineIOError: if sid in self.sockets: # pragma: no cover self.disconnect(sid) r = self._bad_request() except: # pragma: no cover # for any other unexpected errors, we log the error # and keep going self.logger.exception('post request handler error') r = self._ok(jsonp_index=jsonp_index) elif method == 'OPTIONS': r = self._ok() else: self.logger.warning('Method %s not supported', method) r = self._method_not_found() if not isinstance(r, dict): return r or [] if self.http_compression and \ len(r['response']) >= self.compression_threshold: encodings = [e.split(';')[0].strip() for e in environ.get('HTTP_ACCEPT_ENCODING', '').split(',')] for encoding in encodings: if encoding in self.compression_methods: r['response'] = \ getattr(self, '_' + encoding)(r['response']) r['headers'] += [('Content-Encoding', encoding)] break cors_headers = self._cors_headers(environ) start_response(r['status'], r['headers'] + cors_headers) return [r['response']] def start_background_task(self, target, *args, **kwargs): """Start a background task using the appropriate async model. This is a utility function that applications can use to start a background task using the method that is compatible with the selected async mode. :param target: the target function to execute. :param args: arguments to pass to the function. :param kwargs: keyword arguments to pass to the function. This function returns an object that represents the background task, on which the ``join()`` methond can be invoked to wait for the task to complete. """ th = self._async['thread'](target=target, args=args, kwargs=kwargs) th.start() return th # pragma: no cover def sleep(self, seconds=0): """Sleep for the requested amount of time using the appropriate async model. This is a utility function that applications can use to put a task to sleep without having to worry about using the correct call for the selected async mode. """ return self._async['sleep'](seconds) def create_queue(self, *args, **kwargs): """Create a queue object using the appropriate async model. This is a utility function that applications can use to create a queue without having to worry about using the correct call for the selected async mode. """ return self._async['queue'](*args, **kwargs) def get_queue_empty_exception(self): """Return the queue empty exception for the appropriate async model. This is a utility function that applications can use to work with a queue without having to worry about using the correct call for the selected async mode. """ return self._async['queue_empty'] def create_event(self, *args, **kwargs): """Create an event object using the appropriate async model. This is a utility function that applications can use to create an event without having to worry about using the correct call for the selected async mode. """ return self._async['event'](*args, **kwargs) def generate_id(self): """Generate a unique session id.""" id = base64.b64encode( secrets.token_bytes(12) + self.sequence_number.to_bytes(3, 'big')) self.sequence_number = (self.sequence_number + 1) & 0xffffff return id.decode('utf-8').replace('/', '_').replace('+', '-') def _generate_sid_cookie(self, sid, attributes): """Generate the sid cookie.""" cookie = attributes.get('name', 'io') + '=' + sid for attribute, value in attributes.items(): if attribute == 'name': continue if callable(value): value = value() if value is True: cookie += '; ' + attribute else: cookie += '; ' + attribute + '=' + value return cookie def _handle_connect(self, environ, start_response, transport, jsonp_index=None): """Handle a client connection request.""" if self.start_service_task: # start the service task to monitor connected clients self.start_service_task = False self.start_background_task(self._service_task) sid = self.generate_id() s = socket.Socket(self, sid) self.sockets[sid] = s pkt = packet.Packet(packet.OPEN, { 'sid': sid, 'upgrades': self._upgrades(sid, transport), 'pingTimeout': int(self.ping_timeout * 1000), 'pingInterval': int( self.ping_interval + self.ping_interval_grace_period) * 1000}) s.send(pkt) s.schedule_ping() # NOTE: some sections below are marked as "no cover" to workaround # what seems to be a bug in the coverage package. All the lines below # are covered by tests, but some are not reported as such for some # reason ret = self._trigger_event('connect', sid, environ, run_async=False) if ret is not None and ret is not True: # pragma: no cover del self.sockets[sid] self.logger.warning('Application rejected connection') return self._unauthorized(ret or None) if transport == 'websocket': # pragma: no cover ret = s.handle_get_request(environ, start_response) if s.closed and sid in self.sockets: # websocket connection ended, so we are done del self.sockets[sid] return ret else: # pragma: no cover s.connected = True headers = None if self.cookie: if isinstance(self.cookie, dict): headers = [( 'Set-Cookie', self._generate_sid_cookie(sid, self.cookie) )] else: headers = [( 'Set-Cookie', self._generate_sid_cookie(sid, { 'name': self.cookie, 'path': '/', 'SameSite': 'Lax' }) )] try: return self._ok(s.poll(), headers=headers, jsonp_index=jsonp_index) except exceptions.QueueEmpty: return self._bad_request() def _upgrades(self, sid, transport): """Return the list of possible upgrades for a client connection.""" if not self.allow_upgrades or self._get_socket(sid).upgraded or \ transport == 'websocket': return [] if self._async['websocket'] is None: # pragma: no cover self._log_error_once( 'The WebSocket transport is not available, you must install a ' 'WebSocket server that is compatible with your async mode to ' 'enable it. See the documentation for details.', 'no-websocket') return [] return ['websocket'] def _trigger_event(self, event, *args, **kwargs): """Invoke an event handler.""" run_async = kwargs.pop('run_async', False) if event in self.handlers: if run_async: return self.start_background_task(self.handlers[event], *args) else: try: return self.handlers[event](*args) except: self.logger.exception(event + ' handler error') if event == 'connect': # if connect handler raised error we reject the # connection return False def _get_socket(self, sid): """Return the socket object for a given session.""" try: s = self.sockets[sid] except KeyError: raise KeyError('Session not found') if s.closed: del self.sockets[sid] raise KeyError('Session is disconnected') return s def _ok(self, packets=None, headers=None, jsonp_index=None): """Generate a successful HTTP response.""" if packets is not None: if headers is None: headers = [] headers += [('Content-Type', 'text/plain; charset=UTF-8')] return {'status': '200 OK', 'headers': headers, 'response': payload.Payload(packets=packets).encode( jsonp_index=jsonp_index).encode('utf-8')} else: return {'status': '200 OK', 'headers': [('Content-Type', 'text/plain')], 'response': b'OK'} def _bad_request(self, message=None): """Generate a bad request HTTP error response.""" if message is None: message = 'Bad Request' message = packet.Packet.json.dumps(message) return {'status': '400 BAD REQUEST', 'headers': [('Content-Type', 'text/plain')], 'response': message.encode('utf-8')} def _method_not_found(self): """Generate a method not found HTTP error response.""" return {'status': '405 METHOD NOT FOUND', 'headers': [('Content-Type', 'text/plain')], 'response': b'Method Not Found'} def _unauthorized(self, message=None): """Generate a unauthorized HTTP error response.""" if message is None: message = 'Unauthorized' message = packet.Packet.json.dumps(message) return {'status': '401 UNAUTHORIZED', 'headers': [('Content-Type', 'application/json')], 'response': message.encode('utf-8')} def _cors_allowed_origins(self, environ): default_origins = [] if 'wsgi.url_scheme' in environ and 'HTTP_HOST' in environ: default_origins.append('{scheme}://{host}'.format( scheme=environ['wsgi.url_scheme'], host=environ['HTTP_HOST'])) if 'HTTP_X_FORWARDED_PROTO' in environ or \ 'HTTP_X_FORWARDED_HOST' in environ: scheme = environ.get( 'HTTP_X_FORWARDED_PROTO', environ['wsgi.url_scheme']).split(',')[0].strip() default_origins.append('{scheme}://{host}'.format( scheme=scheme, host=environ.get( 'HTTP_X_FORWARDED_HOST', environ['HTTP_HOST']).split( ',')[0].strip())) if self.cors_allowed_origins is None: allowed_origins = default_origins elif self.cors_allowed_origins == '*': allowed_origins = None elif isinstance(self.cors_allowed_origins, str): allowed_origins = [self.cors_allowed_origins] else: allowed_origins = self.cors_allowed_origins return allowed_origins def _cors_headers(self, environ): """Return the cross-origin-resource-sharing headers.""" if self.cors_allowed_origins == []: # special case, CORS handling is completely disabled return [] headers = [] allowed_origins = self._cors_allowed_origins(environ) if 'HTTP_ORIGIN' in environ and \ (allowed_origins is None or environ['HTTP_ORIGIN'] in allowed_origins): headers = [('Access-Control-Allow-Origin', environ['HTTP_ORIGIN'])] if environ['REQUEST_METHOD'] == 'OPTIONS': headers += [('Access-Control-Allow-Methods', 'OPTIONS, GET, POST')] if 'HTTP_ACCESS_CONTROL_REQUEST_HEADERS' in environ: headers += [('Access-Control-Allow-Headers', environ['HTTP_ACCESS_CONTROL_REQUEST_HEADERS'])] if self.cors_credentials: headers += [('Access-Control-Allow-Credentials', 'true')] return headers def _gzip(self, response): """Apply gzip compression to a response.""" bytesio = io.BytesIO() with gzip.GzipFile(fileobj=bytesio, mode='w') as gz: gz.write(response) return bytesio.getvalue() def _deflate(self, response): """Apply deflate compression to a response.""" return zlib.compress(response) def _log_error_once(self, message, message_key): """Log message with logging.ERROR level the first time, then log with given level.""" if message_key not in self.log_message_keys: self.logger.error(message + ' (further occurrences of this error ' 'will be logged with level INFO)') self.log_message_keys.add(message_key) else: self.logger.info(message) def _service_task(self): # pragma: no cover """Monitor connected clients and clean up those that time out.""" while True: if len(self.sockets) == 0: # nothing to do self.sleep(self.ping_timeout) continue # go through the entire client list in a ping interval cycle sleep_interval = float(self.ping_timeout) / len(self.sockets) try: # iterate over the current clients for s in self.sockets.copy().values(): if not s.closing and not s.closed: s.check_ping_timeout() self.sleep(sleep_interval) except (SystemExit, KeyboardInterrupt): self.logger.info('service task canceled') break except: # an unexpected exception has occurred, log it and continue self.logger.exception('service task exception')
the-stack_106_14705
import urllib.parse import uuid from flask import Flask, render_template, request, redirect, make_response from bs4 import BeautifulSoup as bs from peewee import * app = Flask(__name__) db = SqliteDatabase("core.db") class Post(Model): id = AutoField() token = CharField() content = TextField() class Meta: database = db @db.connection_context() def initialize(): db.create_tables([Post]) initialize() @app.route('/') def index(): return render_template("index.html") @app.route('/write', methods=["POST"]) def write(): content = request.form["content"] token = str(uuid.uuid4()) Post.create(token=token, content=content) return redirect("/display/" + token) def filter_url(urls): domain_list = [] for url in urls: domain = urllib.parse.urlparse(url).scheme + "://" + urllib.parse.urlparse(url).netloc if domain: domain_list.append(domain) return " ".join(domain_list) @app.route('/display/<token>') def display(token): user_obj = Post.select().where(Post.token == token) content = user_obj[-1].content if len(user_obj) > 0 else "Not Found" img_urls = [x['src'] for x in bs(content).find_all("img")] tmpl = render_template("display.html", content=content) resp = make_response(tmpl) resp.headers["Content-Security-Policy"] = "default-src 'none'; connect-src 'self'; img-src " \ f"'self' {filter_url(img_urls)}; script-src 'none'; " \ "style-src 'self'; base-uri 'self'; form-action 'self' " return resp if __name__ == '__main__': app.run()
the-stack_106_14706
"""Support for SimpliSafe alarm systems.""" import asyncio import logging from simplipy import API from simplipy.errors import InvalidCredentialsError, SimplipyError from simplipy.websocket import ( EVENT_CAMERA_MOTION_DETECTED, EVENT_CONNECTION_LOST, EVENT_CONNECTION_RESTORED, EVENT_DOORBELL_DETECTED, EVENT_ENTRY_DETECTED, EVENT_LOCK_LOCKED, EVENT_LOCK_UNLOCKED, EVENT_MOTION_DETECTED, ) import voluptuous as vol from homeassistant.config_entries import SOURCE_IMPORT from homeassistant.const import ( ATTR_CODE, CONF_CODE, CONF_PASSWORD, CONF_TOKEN, CONF_USERNAME, ) from homeassistant.core import callback from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers import ( aiohttp_client, config_validation as cv, device_registry as dr, ) from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send, ) from homeassistant.helpers.entity import Entity from homeassistant.helpers.event import async_track_time_interval from homeassistant.helpers.service import ( async_register_admin_service, verify_domain_control, ) from .const import ( ATTR_ALARM_DURATION, ATTR_ALARM_VOLUME, ATTR_CHIME_VOLUME, ATTR_ENTRY_DELAY_AWAY, ATTR_ENTRY_DELAY_HOME, ATTR_EXIT_DELAY_AWAY, ATTR_EXIT_DELAY_HOME, ATTR_LIGHT, ATTR_VOICE_PROMPT_VOLUME, DATA_CLIENT, DEFAULT_SCAN_INTERVAL, DOMAIN, VOLUMES, ) _LOGGER = logging.getLogger(__name__) CONF_ACCOUNTS = "accounts" DATA_LISTENER = "listener" TOPIC_UPDATE = "simplisafe_update_data_{0}" EVENT_SIMPLISAFE_EVENT = "SIMPLISAFE_EVENT" EVENT_SIMPLISAFE_NOTIFICATION = "SIMPLISAFE_NOTIFICATION" DEFAULT_SOCKET_MIN_RETRY = 15 WEBSOCKET_EVENTS_REQUIRING_SERIAL = [EVENT_LOCK_LOCKED, EVENT_LOCK_UNLOCKED] WEBSOCKET_EVENTS_TO_TRIGGER_HASS_EVENT = [ EVENT_CAMERA_MOTION_DETECTED, EVENT_DOORBELL_DETECTED, EVENT_ENTRY_DETECTED, EVENT_MOTION_DETECTED, ] ATTR_CATEGORY = "category" ATTR_LAST_EVENT_CHANGED_BY = "last_event_changed_by" ATTR_LAST_EVENT_INFO = "last_event_info" ATTR_LAST_EVENT_SENSOR_NAME = "last_event_sensor_name" ATTR_LAST_EVENT_SENSOR_SERIAL = "last_event_sensor_serial" ATTR_LAST_EVENT_SENSOR_TYPE = "last_event_sensor_type" ATTR_LAST_EVENT_TIMESTAMP = "last_event_timestamp" ATTR_LAST_EVENT_TYPE = "last_event_type" ATTR_LAST_EVENT_TYPE = "last_event_type" ATTR_MESSAGE = "message" ATTR_PIN_LABEL = "label" ATTR_PIN_LABEL_OR_VALUE = "label_or_pin" ATTR_PIN_VALUE = "pin" ATTR_SYSTEM_ID = "system_id" ATTR_TIMESTAMP = "timestamp" SERVICE_BASE_SCHEMA = vol.Schema({vol.Required(ATTR_SYSTEM_ID): cv.positive_int}) SERVICE_REMOVE_PIN_SCHEMA = SERVICE_BASE_SCHEMA.extend( {vol.Required(ATTR_PIN_LABEL_OR_VALUE): cv.string} ) SERVICE_SET_PIN_SCHEMA = SERVICE_BASE_SCHEMA.extend( {vol.Required(ATTR_PIN_LABEL): cv.string, vol.Required(ATTR_PIN_VALUE): cv.string} ) SERVICE_SET_SYSTEM_PROPERTIES_SCHEMA = SERVICE_BASE_SCHEMA.extend( { vol.Optional(ATTR_ALARM_DURATION): vol.All( cv.time_period, lambda value: value.seconds, vol.Range(min=30, max=480) ), vol.Optional(ATTR_ALARM_VOLUME): vol.All(vol.Coerce(int), vol.In(VOLUMES)), vol.Optional(ATTR_CHIME_VOLUME): vol.All(vol.Coerce(int), vol.In(VOLUMES)), vol.Optional(ATTR_ENTRY_DELAY_AWAY): vol.All( cv.time_period, lambda value: value.seconds, vol.Range(min=30, max=255) ), vol.Optional(ATTR_ENTRY_DELAY_HOME): vol.All( cv.time_period, lambda value: value.seconds, vol.Range(max=255) ), vol.Optional(ATTR_EXIT_DELAY_AWAY): vol.All( cv.time_period, lambda value: value.seconds, vol.Range(min=45, max=255) ), vol.Optional(ATTR_EXIT_DELAY_HOME): vol.All( cv.time_period, lambda value: value.seconds, vol.Range(max=255) ), vol.Optional(ATTR_LIGHT): cv.boolean, vol.Optional(ATTR_VOICE_PROMPT_VOLUME): vol.All( vol.Coerce(int), vol.In(VOLUMES) ), } ) ACCOUNT_CONFIG_SCHEMA = vol.Schema( { vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_CODE): cv.string, } ) CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Optional(CONF_ACCOUNTS): vol.All( cv.ensure_list, [ACCOUNT_CONFIG_SCHEMA] ) } ) }, extra=vol.ALLOW_EXTRA, ) @callback def _async_save_refresh_token(hass, config_entry, token): """Save a refresh token to the config entry.""" hass.config_entries.async_update_entry( config_entry, data={**config_entry.data, CONF_TOKEN: token} ) async def async_register_base_station(hass, system, config_entry_id): """Register a new bridge.""" device_registry = await dr.async_get_registry(hass) device_registry.async_get_or_create( config_entry_id=config_entry_id, identifiers={(DOMAIN, system.serial)}, manufacturer="SimpliSafe", model=system.version, name=system.address, ) async def async_setup(hass, config): """Set up the SimpliSafe component.""" hass.data[DOMAIN] = {} hass.data[DOMAIN][DATA_CLIENT] = {} hass.data[DOMAIN][DATA_LISTENER] = {} if DOMAIN not in config: return True conf = config[DOMAIN] for account in conf[CONF_ACCOUNTS]: hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data={ CONF_USERNAME: account[CONF_USERNAME], CONF_PASSWORD: account[CONF_PASSWORD], CONF_CODE: account.get(CONF_CODE), }, ) ) return True async def async_setup_entry(hass, config_entry): """Set up SimpliSafe as config entry.""" entry_updates = {} if not config_entry.unique_id: # If the config entry doesn't already have a unique ID, set one: entry_updates["unique_id"] = config_entry.data[CONF_USERNAME] if CONF_CODE in config_entry.data: # If an alarm code was provided as part of configuration.yaml, pop it out of # the config entry's data and move it to options: data = {**config_entry.data} entry_updates["data"] = data entry_updates["options"] = { **config_entry.options, CONF_CODE: data.pop(CONF_CODE), } if entry_updates: hass.config_entries.async_update_entry(config_entry, **entry_updates) _verify_domain_control = verify_domain_control(hass, DOMAIN) websession = aiohttp_client.async_get_clientsession(hass) try: api = await API.login_via_token(config_entry.data[CONF_TOKEN], websession) except InvalidCredentialsError: _LOGGER.error("Invalid credentials provided") return False except SimplipyError as err: _LOGGER.error("Config entry failed: %s", err) raise ConfigEntryNotReady _async_save_refresh_token(hass, config_entry, api.refresh_token) simplisafe = SimpliSafe(hass, api, config_entry) await simplisafe.async_init() hass.data[DOMAIN][DATA_CLIENT][config_entry.entry_id] = simplisafe for component in ("alarm_control_panel", "lock"): hass.async_create_task( hass.config_entries.async_forward_entry_setup(config_entry, component) ) @callback def verify_system_exists(coro): """Log an error if a service call uses an invalid system ID.""" async def decorator(call): """Decorate.""" system_id = int(call.data[ATTR_SYSTEM_ID]) if system_id not in simplisafe.systems: _LOGGER.error("Unknown system ID in service call: %s", system_id) return await coro(call) return decorator @callback def v3_only(coro): """Log an error if the decorated coroutine is called with a v2 system.""" async def decorator(call): """Decorate.""" system = simplisafe.systems[int(call.data[ATTR_SYSTEM_ID])] if system.version != 3: _LOGGER.error("Service only available on V3 systems") return await coro(call) return decorator @verify_system_exists @_verify_domain_control async def remove_pin(call): """Remove a PIN.""" system = simplisafe.systems[call.data[ATTR_SYSTEM_ID]] try: await system.remove_pin(call.data[ATTR_PIN_LABEL_OR_VALUE]) except SimplipyError as err: _LOGGER.error("Error during service call: %s", err) return @verify_system_exists @_verify_domain_control async def set_pin(call): """Set a PIN.""" system = simplisafe.systems[call.data[ATTR_SYSTEM_ID]] try: await system.set_pin(call.data[ATTR_PIN_LABEL], call.data[ATTR_PIN_VALUE]) except SimplipyError as err: _LOGGER.error("Error during service call: %s", err) return @verify_system_exists @v3_only @_verify_domain_control async def set_system_properties(call): """Set one or more system parameters.""" system = simplisafe.systems[call.data[ATTR_SYSTEM_ID]] try: await system.set_properties( { prop: value for prop, value in call.data.items() if prop != ATTR_SYSTEM_ID } ) except SimplipyError as err: _LOGGER.error("Error during service call: %s", err) return for service, method, schema in [ ("remove_pin", remove_pin, SERVICE_REMOVE_PIN_SCHEMA), ("set_pin", set_pin, SERVICE_SET_PIN_SCHEMA), ( "set_system_properties", set_system_properties, SERVICE_SET_SYSTEM_PROPERTIES_SCHEMA, ), ]: async_register_admin_service(hass, DOMAIN, service, method, schema=schema) config_entry.add_update_listener(async_update_options) return True async def async_unload_entry(hass, entry): """Unload a SimpliSafe config entry.""" tasks = [ hass.config_entries.async_forward_entry_unload(entry, component) for component in ("alarm_control_panel", "lock") ] await asyncio.gather(*tasks) hass.data[DOMAIN][DATA_CLIENT].pop(entry.entry_id) remove_listener = hass.data[DOMAIN][DATA_LISTENER].pop(entry.entry_id) remove_listener() return True async def async_update_options(hass, config_entry): """Handle an options update.""" simplisafe = hass.data[DOMAIN][DATA_CLIENT][config_entry.entry_id] simplisafe.options = config_entry.options class SimpliSafeWebsocket: """Define a SimpliSafe websocket "manager" object.""" def __init__(self, hass, websocket): """Initialize.""" self._hass = hass self._websocket = websocket self.last_events = {} @staticmethod def _on_connect(): """Define a handler to fire when the websocket is connected.""" _LOGGER.info("Connected to websocket") @staticmethod def _on_disconnect(): """Define a handler to fire when the websocket is disconnected.""" _LOGGER.info("Disconnected from websocket") def _on_event(self, event): """Define a handler to fire when a new SimpliSafe event arrives.""" _LOGGER.debug("New websocket event: %s", event) self.last_events[event.system_id] = event async_dispatcher_send(self._hass, TOPIC_UPDATE.format(event.system_id)) if event.event_type not in WEBSOCKET_EVENTS_TO_TRIGGER_HASS_EVENT: return if event.sensor_type: sensor_type = event.sensor_type.name else: sensor_type = None self._hass.bus.async_fire( EVENT_SIMPLISAFE_EVENT, event_data={ ATTR_LAST_EVENT_CHANGED_BY: event.changed_by, ATTR_LAST_EVENT_TYPE: event.event_type, ATTR_LAST_EVENT_INFO: event.info, ATTR_LAST_EVENT_SENSOR_NAME: event.sensor_name, ATTR_LAST_EVENT_SENSOR_SERIAL: event.sensor_serial, ATTR_LAST_EVENT_SENSOR_TYPE: sensor_type, ATTR_SYSTEM_ID: event.system_id, ATTR_LAST_EVENT_TIMESTAMP: event.timestamp, }, ) async def async_websocket_connect(self): """Register handlers and connect to the websocket.""" self._websocket.on_connect(self._on_connect) self._websocket.on_disconnect(self._on_disconnect) self._websocket.on_event(self._on_event) await self._websocket.async_connect() class SimpliSafe: """Define a SimpliSafe data object.""" def __init__(self, hass, api, config_entry): """Initialize.""" self._api = api self._config_entry = config_entry self._emergency_refresh_token_used = False self._hass = hass self._system_notifications = {} self.options = config_entry.options or {} self.initial_event_to_use = {} self.systems = {} self.websocket = SimpliSafeWebsocket(hass, api.websocket) @callback def _async_process_new_notifications(self, system): """Act on any new system notifications.""" old_notifications = self._system_notifications.get(system.system_id, []) latest_notifications = system.notifications # Save the latest notifications: self._system_notifications[system.system_id] = latest_notifications # Process any notifications that are new: to_add = set(latest_notifications) - set(old_notifications) if not to_add: return _LOGGER.debug("New system notifications: %s", to_add) for notification in to_add: text = notification.text if notification.link: text = f"{text} For more information: {notification.link}" self._hass.bus.async_fire( EVENT_SIMPLISAFE_NOTIFICATION, event_data={ ATTR_CATEGORY: notification.category, ATTR_CODE: notification.code, ATTR_MESSAGE: text, ATTR_TIMESTAMP: notification.timestamp, }, ) async def async_init(self): """Initialize the data class.""" asyncio.create_task(self.websocket.async_websocket_connect()) self.systems = await self._api.get_systems() for system in self.systems.values(): self._hass.async_create_task( async_register_base_station( self._hass, system, self._config_entry.entry_id ) ) # Future events will come from the websocket, but since subscription to the # websocket doesn't provide the most recent event, we grab it from the REST # API to ensure event-related attributes aren't empty on startup: try: self.initial_event_to_use[ system.system_id ] = await system.get_latest_event() except SimplipyError as err: _LOGGER.error("Error while fetching initial event: %s", err) self.initial_event_to_use[system.system_id] = {} async def refresh(event_time): """Refresh data from the SimpliSafe account.""" await self.async_update() self._hass.data[DOMAIN][DATA_LISTENER][ self._config_entry.entry_id ] = async_track_time_interval(self._hass, refresh, DEFAULT_SCAN_INTERVAL) await self.async_update() async def async_update(self): """Get updated data from SimpliSafe.""" async def update_system(system): """Update a system.""" await system.update() self._async_process_new_notifications(system) _LOGGER.debug('Updated REST API data for "%s"', system.address) async_dispatcher_send(self._hass, TOPIC_UPDATE.format(system.system_id)) tasks = [update_system(system) for system in self.systems.values()] results = await asyncio.gather(*tasks, return_exceptions=True) for result in results: if isinstance(result, InvalidCredentialsError): if self._emergency_refresh_token_used: _LOGGER.error( "SimpliSafe authentication disconnected. Please restart HASS." ) remove_listener = self._hass.data[DOMAIN][DATA_LISTENER].pop( self._config_entry.entry_id ) remove_listener() return _LOGGER.warning("SimpliSafe cloud error; trying stored refresh token") self._emergency_refresh_token_used = True return await self._api.refresh_access_token( self._config_entry.data[CONF_TOKEN] ) if isinstance(result, SimplipyError): _LOGGER.error("SimpliSafe error while updating: %s", result) return if isinstance(result, SimplipyError): _LOGGER.error("Unknown error while updating: %s", result) return if self._api.refresh_token != self._config_entry.data[CONF_TOKEN]: _async_save_refresh_token( self._hass, self._config_entry, self._api.refresh_token ) # If we've reached this point using an emergency refresh token, we're in the # clear and we can discard it: if self._emergency_refresh_token_used: self._emergency_refresh_token_used = False class SimpliSafeEntity(Entity): """Define a base SimpliSafe entity.""" def __init__(self, simplisafe, system, name, *, serial=None): """Initialize.""" self._async_unsub_dispatcher_connect = None self._last_processed_websocket_event = None self._name = name self._online = True self._simplisafe = simplisafe self._system = system self.websocket_events_to_listen_for = [ EVENT_CONNECTION_LOST, EVENT_CONNECTION_RESTORED, ] if serial: self._serial = serial else: self._serial = system.serial self._attrs = { ATTR_LAST_EVENT_INFO: simplisafe.initial_event_to_use[system.system_id].get( "info" ), ATTR_LAST_EVENT_SENSOR_NAME: simplisafe.initial_event_to_use[ system.system_id ].get("sensorName"), ATTR_LAST_EVENT_SENSOR_TYPE: simplisafe.initial_event_to_use[ system.system_id ].get("sensorType"), ATTR_LAST_EVENT_TIMESTAMP: simplisafe.initial_event_to_use[ system.system_id ].get("eventTimestamp"), ATTR_SYSTEM_ID: system.system_id, } @property def available(self): """Return whether the entity is available.""" # We can easily detect if the V3 system is offline, but no simple check exists # for the V2 system. Therefore, we mark the entity as available if: # 1. We can verify that the system is online (assuming True if we can't) # 2. We can verify that the entity is online system_offline = self._system.version == 3 and self._system.offline return not system_offline and self._online @property def device_info(self): """Return device registry information for this entity.""" return { "identifiers": {(DOMAIN, self._system.system_id)}, "manufacturer": "SimpliSafe", "model": self._system.version, "name": self._name, "via_device": (DOMAIN, self._system.serial), } @property def device_state_attributes(self): """Return the state attributes.""" return self._attrs @property def name(self): """Return the name of the entity.""" return f"{self._system.address} {self._name}" @property def unique_id(self): """Return the unique ID of the entity.""" return self._serial @callback def _async_should_ignore_websocket_event(self, event): """Return whether this entity should ignore a particular websocket event. Note that we can't check for a final condition – whether the event belongs to a particular entity, like a lock – because some events (like arming the system from a keypad _or_ from the website) should impact the same entity. """ # We've already processed this event: if self._last_processed_websocket_event == event: return True # This is an event for a system other than the one this entity belongs to: if event.system_id != self._system.system_id: return True # This isn't an event that this entity cares about: if event.event_type not in self.websocket_events_to_listen_for: return True # This event is targeted at a specific entity whose serial number is different # from this one's: if ( event.event_type in WEBSOCKET_EVENTS_REQUIRING_SERIAL and event.sensor_serial != self._serial ): return True return False async def async_added_to_hass(self): """Register callbacks.""" @callback def update(): """Update the state.""" self.update_from_latest_data() self.async_write_ha_state() self._async_unsub_dispatcher_connect = async_dispatcher_connect( self.hass, TOPIC_UPDATE.format(self._system.system_id), update ) self.update_from_latest_data() @callback def update_from_latest_data(self): """Update the entity.""" self.async_update_from_rest_api() last_websocket_event = self._simplisafe.websocket.last_events.get( self._system.system_id ) if self._async_should_ignore_websocket_event(last_websocket_event): return self._last_processed_websocket_event = last_websocket_event if last_websocket_event.sensor_type: sensor_type = last_websocket_event.sensor_type.name else: sensor_type = None self._attrs.update( { ATTR_LAST_EVENT_INFO: last_websocket_event.info, ATTR_LAST_EVENT_SENSOR_NAME: last_websocket_event.sensor_name, ATTR_LAST_EVENT_SENSOR_TYPE: sensor_type, ATTR_LAST_EVENT_TIMESTAMP: last_websocket_event.timestamp, } ) self._async_internal_update_from_websocket_event(last_websocket_event) @callback def async_update_from_rest_api(self): """Update the entity with the provided REST API data.""" @callback def _async_internal_update_from_websocket_event(self, event): """Check for connection events and set offline appropriately. Should not be called directly. """ if event.event_type == EVENT_CONNECTION_LOST: self._online = False elif event.event_type == EVENT_CONNECTION_RESTORED: self._online = True # It's uncertain whether SimpliSafe events will still propagate down the # websocket when the base station is offline. Just in case, we guard against # further action until connection is restored: if not self._online: return self.async_update_from_websocket_event(event) @callback def async_update_from_websocket_event(self, event): """Update the entity with the provided websocket API data.""" async def async_will_remove_from_hass(self) -> None: """Disconnect dispatcher listener when removed.""" if self._async_unsub_dispatcher_connect: self._async_unsub_dispatcher_connect()
the-stack_106_14707
from typing import TYPE_CHECKING from grouper.usecases.interfaces import AuditLogInterface if TYPE_CHECKING: from datetime import datetime from grouper.entities.audit_log_entry import AuditLogEntry from grouper.entities.group_request import GroupRequestStatus, UserGroupRequest from grouper.repositories.audit_log import AuditLogRepository from grouper.usecases.authorization import Authorization from typing import List, Optional class AuditLogService(AuditLogInterface): """Updates the audit log when changes are made. The date parameter to the log methods is primarily for use in tests, where to get a consistent sort order the audit log entries may need to be spaced out over time. If not set, the default is the current time. """ def __init__(self, audit_log_repository): # type: (AuditLogRepository) -> None self.audit_log_repository = audit_log_repository def entries_affecting_group(self, group, limit): # type: (str, int) -> List[AuditLogEntry] return self.audit_log_repository.entries_affecting_group(group, limit) def entries_affecting_permission(self, permission, limit): # type: (str, int) -> List[AuditLogEntry] return self.audit_log_repository.entries_affecting_permission(permission, limit) def entries_affecting_user(self, user, limit): # type: (str, int) -> List[AuditLogEntry] return self.audit_log_repository.entries_affecting_user(user, limit) def log_create_service_account(self, service, owner, authorization, date=None): # type: (str, str, Authorization, Optional[datetime]) -> None self.audit_log_repository.log( authorization=authorization, action="create_service_account", description="Created new service account", on_group=owner, on_user=service, date=date, ) def log_create_service_account_from_disabled_user(self, user, authorization, date=None): # type: (str, Authorization, Optional[datetime]) -> None self.audit_log_repository.log( authorization=authorization, action="create_service_account_from_disabled_user", description="Convert a disabled user into a disabled service account", on_user=user, date=date, ) def log_create_permission(self, permission, authorization, date=None): # type: (str, Authorization, Optional[datetime]) -> None self.audit_log_repository.log( authorization=authorization, action="create_permission", description="Created permission", on_permission=permission, date=date, ) def log_disable_permission(self, permission, authorization, date=None): # type: (str, Authorization, Optional[datetime]) -> None self.audit_log_repository.log( authorization=authorization, action="disable_permission", description="Disabled permission", on_permission=permission, date=date, ) def log_disable_user(self, username, authorization, date=None): # type: (str, Authorization, Optional[datetime]) -> None self.audit_log_repository.log( authorization=authorization, action="disable_user", description="Disabled user", on_user=username, date=date, ) def log_enable_service_account(self, user, owner, authorization, date=None): # type: (str, str, Authorization, Optional[datetime]) -> None self.audit_log_repository.log( authorization=authorization, action="enable_service_account", description="Enabled service account", on_user=user, on_group=owner, date=date, ) def log_revoke_group_permission_grant( self, group, # type: str permission, # type: str argument, # type: str authorization, # type: Authorization date=None, # type: Optional[datetime] ): # type: (...) -> None self.audit_log_repository.log( authorization=authorization, action="revoke_permission", description="Revoked permission with argument: {}".format(argument), on_group=group, on_permission=permission, ) def log_revoke_service_account_permission_grant( self, service_account, # type: str permission, # type: str argument, # type: str authorization, # type: Authorization date=None, # type: Optional[datetime] ): # type: (...) -> None self.audit_log_repository.log( authorization=authorization, action="revoke_permission", description="Revoked permission with argument: {}".format(argument), on_permission=permission, on_user=service_account, ) def log_user_group_request_status_change(self, request, status, authorization, date=None): # type: (UserGroupRequest, GroupRequestStatus, Authorization, Optional[datetime]) -> None self.audit_log_repository.log( authorization=authorization, action="update_request", description="Updated request to status: {}".format(status.value), on_group=request.group, on_user=request.requester, date=date, )
the-stack_106_14710
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. openapi_spec_methods_override = { "get": {"get": {"description": "Get query detail information."}}, "get_list": { "get": { "description": "Get a list of queries, use Rison or JSON query " "parameters for filtering, sorting, pagination and " " for selecting specific columns and metadata.", } }, } """ Overrides GET methods OpenApi descriptions """
the-stack_106_14713
"""LInked List sparse matrix class """ from __future__ import division, print_function, absolute_import __docformat__ = "restructuredtext en" __all__ = ['lil_matrix','isspmatrix_lil'] import numpy as np from scipy._lib.six import xrange from .base import spmatrix, isspmatrix from .sputils import (getdtype, isshape, isscalarlike, IndexMixin, upcast_scalar, get_index_dtype, isintlike) from . import _csparsetools class lil_matrix(spmatrix, IndexMixin): """Row-based linked list sparse matrix This is a structure for constructing sparse matrices incrementally. Note that inserting a single item can take linear time in the worst case; to construct a matrix efficiently, make sure the items are pre-sorted by index, per row. This can be instantiated in several ways: lil_matrix(D) with a dense matrix or rank-2 ndarray D lil_matrix(S) with another sparse matrix S (equivalent to S.tolil()) lil_matrix((M, N), [dtype]) to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'. Attributes ---------- dtype : dtype Data type of the matrix shape : 2-tuple Shape of the matrix ndim : int Number of dimensions (this is always 2) nnz Number of nonzero elements data LIL format data array of the matrix rows LIL format row index array of the matrix Notes ----- Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Advantages of the LIL format - supports flexible slicing - changes to the matrix sparsity structure are efficient Disadvantages of the LIL format - arithmetic operations LIL + LIL are slow (consider CSR or CSC) - slow column slicing (consider CSC) - slow matrix vector products (consider CSR or CSC) Intended Usage - LIL is a convenient format for constructing sparse matrices - once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations - consider using the COO format when constructing large matrices Data Structure - An array (``self.rows``) of rows, each of which is a sorted list of column indices of non-zero elements. - The corresponding nonzero values are stored in similar fashion in ``self.data``. """ format = 'lil' def __init__(self, arg1, shape=None, dtype=None, copy=False): spmatrix.__init__(self) self.dtype = getdtype(dtype, arg1, default=float) # First get the shape if isspmatrix(arg1): if isspmatrix_lil(arg1) and copy: A = arg1.copy() else: A = arg1.tolil() if dtype is not None: A = A.astype(dtype) self.shape = A.shape self.dtype = A.dtype self.rows = A.rows self.data = A.data elif isinstance(arg1,tuple): if isshape(arg1): if shape is not None: raise ValueError('invalid use of shape parameter') M, N = arg1 self.shape = (M,N) self.rows = np.empty((M,), dtype=object) self.data = np.empty((M,), dtype=object) for i in range(M): self.rows[i] = [] self.data[i] = [] else: raise TypeError('unrecognized lil_matrix constructor usage') else: # assume A is dense try: A = np.asmatrix(arg1) except TypeError: raise TypeError('unsupported matrix type') else: from .csr import csr_matrix A = csr_matrix(A, dtype=dtype).tolil() self.shape = A.shape self.dtype = A.dtype self.rows = A.rows self.data = A.data def set_shape(self,shape): shape = tuple(shape) if len(shape) != 2: raise ValueError("Only two-dimensional sparse arrays " "are supported.") try: shape = int(shape[0]),int(shape[1]) # floats, other weirdness except: raise TypeError('invalid shape') if not (shape[0] >= 0 and shape[1] >= 0): raise ValueError('invalid shape') if (self._shape != shape) and (self._shape is not None): try: self = self.reshape(shape) except NotImplementedError: raise NotImplementedError("Reshaping not implemented for %s." % self.__class__.__name__) self._shape = shape shape = property(fget=spmatrix.get_shape, fset=set_shape) def __iadd__(self,other): self[:,:] = self + other return self def __isub__(self,other): self[:,:] = self - other return self def __imul__(self,other): if isscalarlike(other): self[:,:] = self * other return self else: return NotImplemented def __itruediv__(self,other): if isscalarlike(other): self[:,:] = self / other return self else: return NotImplemented # Whenever the dimensions change, empty lists should be created for each # row def getnnz(self, axis=None): if axis is None: return sum([len(rowvals) for rowvals in self.data]) if axis < 0: axis += 2 if axis == 0: out = np.zeros(self.shape[1], dtype=np.intp) for row in self.rows: out[row] += 1 return out elif axis == 1: return np.array([len(rowvals) for rowvals in self.data], dtype=np.intp) else: raise ValueError('axis out of bounds') def count_nonzero(self): return sum(np.count_nonzero(rowvals) for rowvals in self.data) getnnz.__doc__ = spmatrix.getnnz.__doc__ count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__ def __str__(self): val = '' for i, row in enumerate(self.rows): for pos, j in enumerate(row): val += " %s\t%s\n" % (str((i, j)), str(self.data[i][pos])) return val[:-1] def getrowview(self, i): """Returns a view of the 'i'th row (without copying). """ new = lil_matrix((1, self.shape[1]), dtype=self.dtype) new.rows[0] = self.rows[i] new.data[0] = self.data[i] return new def getrow(self, i): """Returns a copy of the 'i'th row. """ i = self._check_row_bounds(i) new = lil_matrix((1, self.shape[1]), dtype=self.dtype) new.rows[0] = self.rows[i][:] new.data[0] = self.data[i][:] return new def _check_row_bounds(self, i): if i < 0: i += self.shape[0] if i < 0 or i >= self.shape[0]: raise IndexError('row index out of bounds') return i def _check_col_bounds(self, j): if j < 0: j += self.shape[1] if j < 0 or j >= self.shape[1]: raise IndexError('column index out of bounds') return j def __getitem__(self, index): """Return the element(s) index=(i, j), where j may be a slice. This always returns a copy for consistency, since slices into Python lists return copies. """ # Scalar fast path first if isinstance(index, tuple) and len(index) == 2: i, j = index # Use isinstance checks for common index types; this is # ~25-50% faster than isscalarlike. Other types are # handled below. if ((isinstance(i, int) or isinstance(i, np.integer)) and (isinstance(j, int) or isinstance(j, np.integer))): v = _csparsetools.lil_get1(self.shape[0], self.shape[1], self.rows, self.data, i, j) return self.dtype.type(v) # Utilities found in IndexMixin i, j = self._unpack_index(index) # Proper check for other scalar index types i_intlike = isintlike(i) j_intlike = isintlike(j) if i_intlike and j_intlike: v = _csparsetools.lil_get1(self.shape[0], self.shape[1], self.rows, self.data, i, j) return self.dtype.type(v) elif j_intlike or isinstance(j, slice): # column slicing fast path if j_intlike: j = self._check_col_bounds(j) j = slice(j, j+1) if i_intlike: i = self._check_row_bounds(i) i = xrange(i, i+1) i_shape = None elif isinstance(i, slice): i = xrange(*i.indices(self.shape[0])) i_shape = None else: i = np.atleast_1d(i) i_shape = i.shape if i_shape is None or len(i_shape) == 1: return self._get_row_ranges(i, j) i, j = self._index_to_arrays(i, j) if i.size == 0: return lil_matrix(i.shape, dtype=self.dtype) new = lil_matrix(i.shape, dtype=self.dtype) i, j = _prepare_index_for_memoryview(i, j) _csparsetools.lil_fancy_get(self.shape[0], self.shape[1], self.rows, self.data, new.rows, new.data, i, j) return new def _get_row_ranges(self, rows, col_slice): """ Fast path for indexing in the case where column index is slice. This gains performance improvement over brute force by more efficient skipping of zeros, by accessing the elements column-wise in order. Parameters ---------- rows : sequence or xrange Rows indexed. If xrange, must be within valid bounds. col_slice : slice Columns indexed """ j_start, j_stop, j_stride = col_slice.indices(self.shape[1]) col_range = xrange(j_start, j_stop, j_stride) nj = len(col_range) new = lil_matrix((len(rows), nj), dtype=self.dtype) _csparsetools.lil_get_row_ranges(self.shape[0], self.shape[1], self.rows, self.data, new.rows, new.data, rows, j_start, j_stop, j_stride, nj) return new def __setitem__(self, index, x): # Scalar fast path first if isinstance(index, tuple) and len(index) == 2: i, j = index # Use isinstance checks for common index types; this is # ~25-50% faster than isscalarlike. Scalar index # assignment for other types is handled below together # with fancy indexing. if ((isinstance(i, int) or isinstance(i, np.integer)) and (isinstance(j, int) or isinstance(j, np.integer))): x = self.dtype.type(x) if x.size > 1: # Triggered if input was an ndarray raise ValueError("Trying to assign a sequence to an item") _csparsetools.lil_insert(self.shape[0], self.shape[1], self.rows, self.data, i, j, x) return # General indexing i, j = self._unpack_index(index) # shortcut for common case of full matrix assign: if (isspmatrix(x) and isinstance(i, slice) and i == slice(None) and isinstance(j, slice) and j == slice(None) and x.shape == self.shape): x = lil_matrix(x, dtype=self.dtype) self.rows = x.rows self.data = x.data return i, j = self._index_to_arrays(i, j) if isspmatrix(x): x = x.toarray() # Make x and i into the same shape x = np.asarray(x, dtype=self.dtype) x, _ = np.broadcast_arrays(x, i) if x.shape != i.shape: raise ValueError("shape mismatch in assignment") # Set values i, j, x = _prepare_index_for_memoryview(i, j, x) _csparsetools.lil_fancy_set(self.shape[0], self.shape[1], self.rows, self.data, i, j, x) def _mul_scalar(self, other): if other == 0: # Multiply by zero: return the zero matrix new = lil_matrix(self.shape, dtype=self.dtype) else: res_dtype = upcast_scalar(self.dtype, other) new = self.copy() new = new.astype(res_dtype) # Multiply this scalar by every element. for j, rowvals in enumerate(new.data): new.data[j] = [val*other for val in rowvals] return new def __truediv__(self, other): # self / other if isscalarlike(other): new = self.copy() # Divide every element by this scalar for j, rowvals in enumerate(new.data): new.data[j] = [val/other for val in rowvals] return new else: return self.tocsr() / other def copy(self): from copy import deepcopy new = lil_matrix(self.shape, dtype=self.dtype) new.data = deepcopy(self.data) new.rows = deepcopy(self.rows) return new copy.__doc__ = spmatrix.copy.__doc__ def reshape(self,shape): new = lil_matrix(shape, dtype=self.dtype) j_max = self.shape[1] for i,row in enumerate(self.rows): for col,j in enumerate(row): new_r,new_c = np.unravel_index(i*j_max + j,shape) new[new_r,new_c] = self[i,j] return new def toarray(self, order=None, out=None): """See the docstring for `spmatrix.toarray`.""" d = self._process_toarray_args(order, out) for i, row in enumerate(self.rows): for pos, j in enumerate(row): d[i, j] = self.data[i][pos] return d def transpose(self): return self.tocsr().transpose().tolil() def tolil(self, copy=False): if copy: return self.copy() else: return self tolil.__doc__ = spmatrix.tolil.__doc__ def tocsr(self, copy=False): lst = [len(x) for x in self.rows] idx_dtype = get_index_dtype(maxval=max(self.shape[1], sum(lst))) indptr = np.asarray(lst, dtype=idx_dtype) indptr = np.concatenate((np.array([0], dtype=idx_dtype), np.cumsum(indptr, dtype=idx_dtype))) indices = [] for x in self.rows: indices.extend(x) indices = np.asarray(indices, dtype=idx_dtype) data = [] for x in self.data: data.extend(x) data = np.asarray(data, dtype=self.dtype) from .csr import csr_matrix return csr_matrix((data, indices, indptr), shape=self.shape) tocsr.__doc__ = spmatrix.tocsr.__doc__ def _prepare_index_for_memoryview(i, j, x=None): """ Convert index and data arrays to form suitable for passing to the Cython fancy getset routines. The conversions are necessary since to (i) ensure the integer index arrays are in one of the accepted types, and (ii) to ensure the arrays are writable so that Cython memoryview support doesn't choke on them. Parameters ---------- i, j Index arrays x : optional Data arrays Returns ------- i, j, x Re-formatted arrays (x is omitted, if input was None) """ if i.dtype > j.dtype: j = j.astype(i.dtype) elif i.dtype < j.dtype: i = i.astype(j.dtype) if not i.flags.writeable or i.dtype not in (np.int32, np.int64): i = i.astype(np.intp) if not j.flags.writeable or j.dtype not in (np.int32, np.int64): j = j.astype(np.intp) if x is not None: if not x.flags.writeable: x = x.copy() return i, j, x else: return i, j def isspmatrix_lil(x): return isinstance(x, lil_matrix)
the-stack_106_14715
#----------------------------------- # GLOBAL FEATURE EXTRACTION #----------------------------------- # organize imports from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler import numpy as np import mahotas import cv2 import os import h5py # fixed-sizes for image fixed_size = tuple((500, 500)) # path to training data train_path = "dataset/train" # no.of.trees for Random Forests num_trees = 100 # bins for histogram bins = 8 # train_test_split size test_size = 0.10 # seed for reproducing same results seed = 9 # feature-descriptor-1: Hu Moments def fd_hu_moments(image): image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) feature = cv2.HuMoments(cv2.moments(image)).flatten() return feature # feature-descriptor-2: Haralick Texture def fd_haralick(image): # convert the image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # compute the haralick texture feature vector haralick = mahotas.features.haralick(gray).mean(axis=0) # return the result return haralick # feature-descriptor-3: Color Histogram def fd_histogram(image, mask=None): # convert the image to HSV color-space image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # compute the color histogram hist = cv2.calcHist([image], [0, 1, 2], None, [bins, bins, bins], [0, 256, 0, 256, 0, 256]) # normalize the histogram cv2.normalize(hist, hist) # return the histogram return hist.flatten() # get the training labels train_labels = os.listdir(train_path) # sort the training labels train_labels.sort() print(train_labels) # empty lists to hold feature vectors and labels global_features = [] labels = [] i, j = 0, 0 k = 0 # num of images per class images_per_class = 778 # loop over the training data sub-folders for training_name in train_labels: # join the training data path and each species training folder dir = os.path.join(train_path, training_name) # get the current training label current_label = training_name k = 1 # loop over the images in each sub-folder for x in range(1,images_per_class+1): # get the image file name file = dir + "/" + str(x) + ".png" # read the image and resize it to a fixed-size image = cv2.imread(file) image = cv2.resize(image, fixed_size) #################################### # Global Feature extraction #################################### fv_hu_moments = fd_hu_moments(image) fv_haralick = fd_haralick(image) fv_histogram = fd_histogram(image) ################################### # Concatenate global features ################################### global_feature = np.hstack([fv_histogram, fv_haralick, fv_hu_moments]) # update the list of labels and feature vectors labels.append(current_label) global_features.append(global_feature) i += 1 k += 1 print( "[STATUS] processed folder: {}".format(current_label)) j += 1 print ("[STATUS] completed Global Feature Extraction...") # get the overall feature vector size print ("[STATUS] feature vector size {}".format(np.array(global_features).shape)) # get the overall training label size print ("[STATUS] training Labels {}".format(np.array(labels).shape)) # encode the target labels targetNames = np.unique(labels) le = LabelEncoder() target = le.fit_transform(labels) print ("[STATUS] training labels encoded...") # normalize the feature vector in the range (0-1) scaler = MinMaxScaler(feature_range=(0, 1)) rescaled_features = scaler.fit_transform(global_features) print ("[STATUS] feature vector normalized...") print ("[STATUS] target labels: {}".format(target)) print ("[STATUS] target labels shape: {}".format(target.shape)) # save the feature vector using HDF5 h5f_data = h5py.File('output/data.h5', 'w') h5f_data.create_dataset('dataset_1', data=np.array(rescaled_features)) h5f_label = h5py.File('output/labels.h5', 'w') h5f_label.create_dataset('dataset_1', data=np.array(target)) h5f_data.close() h5f_label.close() print ("[STATUS] end of training..")
the-stack_106_14717
# # (c) 2016 Red Hat Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from __future__ import (absolute_import, division, print_function) __metaclass__ = type import sys import copy from ansible import constants as C from ansible.module_utils._text import to_text from ansible.module_utils.connection import Connection from ansible.utils.display import Display try: from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.utils import load_provider from ansible_collections.ansible.netcommon.plugins.action.network import ActionModule as ActionNetworkModule except ImportError: from ansible.module_utils.network.common.utils import load_provider from ansible.plugins.action.network import ActionModule as ActionNetworkModule from ansible_collections.f5networks.f5_modules.plugins.module_utils.common import f5_provider_spec display = Display() class ActionModule(ActionNetworkModule): def run(self, tmp=None, task_vars=None): socket_path = None transport = 'rest' if self._play_context.connection == 'network_cli': provider = self._task.args.get('provider', {}) if any(provider.values()): display.warning("'provider' is unnecessary when using 'network_cli' and will be ignored") elif self._play_context.connection == 'local': provider = load_provider(f5_provider_spec, self._task.args) transport = provider['transport'] or transport display.vvvv('connection transport is %s' % transport, self._play_context.remote_addr) if transport == 'cli': pc = copy.deepcopy(self._play_context) pc.connection = 'network_cli' pc.network_os = 'bigiq' pc.remote_addr = provider.get('server', self._play_context.remote_addr) pc.port = int(provider['server_port'] or self._play_context.port or 22) pc.remote_user = provider.get('user', self._play_context.connection_user) pc.password = provider.get('password', self._play_context.password) pc.private_key_file = provider['ssh_keyfile'] or self._play_context.private_key_file command_timeout = int(provider['timeout'] or C.PERSISTENT_COMMAND_TIMEOUT) display.vvv('using connection plugin %s' % pc.connection, pc.remote_addr) connection = self._shared_loader_obj.connection_loader.get('persistent', pc, sys.stdin) connection.set_options(direct={'persistent_command_timeout': command_timeout}) socket_path = connection.run() display.vvvv('socket_path: %s' % socket_path, pc.remote_addr) if not socket_path: return {'failed': True, 'msg': 'Unable to open shell. Please see: ' 'https://docs.ansible.com/ansible/network_debug_troubleshooting.html#unable-to-open-shell'} task_vars['ansible_socket'] = socket_path if (self._play_context.connection == 'local' and transport == 'cli') or self._play_context.connection == 'network_cli': # make sure we are in the right cli context which should be # enable mode and not config module if socket_path is None: socket_path = self._connection.socket_path conn = Connection(socket_path) out = conn.get_prompt() while '(config' in to_text(out, errors='surrogate_then_replace').strip(): display.vvvv('wrong context, sending exit to device', self._play_context.remote_addr) conn.send_command('exit') out = conn.get_prompt() result = super(ActionModule, self).run(tmp, task_vars) return result
the-stack_106_14718
#!/usr/bin/env python """The setup script.""" from os.path import exists from setuptools import find_packages, setup import versioneer readme = open("README.rst").read() if exists("README.rst") else "" requirements = ["click", "docker"] setup( name="pbs-ci", description="Continuous integration utility for PBS", long_description=readme, maintainer="Anderson Banihirwe", maintainer_email="[email protected]", url="https://github.com/NCAR/pbs-ci", packages=find_packages(), package_dir={"pbs-ci": "pbs-ci"}, include_package_data=True, install_requires=requirements, license="Apache 2.0", zip_safe=False, keywords="pbs-ci", version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), entry_points=""" [console_scripts] pbs-ci-compose=pbs_ci.compose:docker_compose pbs-ci-execute=pbs_ci.execute:main """, )
the-stack_106_14719
#!/usr/bin/env python3 import sys import os import argparse import yaml import math from math import sqrt import warnings sys.path.append(os.path.join(sys.path[0], "..", "..", "..")) # load parent path of KicadModTree from KicadModTree import * # NOQA from KicadModTree.nodes.base.Pad import Pad # NOQA sys.path.append(os.path.join(sys.path[0], "..", "..", "tools")) # load parent path of tools from footprint_text_fields import addTextFields from ipc_pad_size_calculators import * from quad_dual_pad_border import add_dual_or_quad_pad_border sys.path.append(os.path.join(sys.path[0], "..", "utils")) from ep_handling_utils import getEpRoundRadiusParams ipc_density = 'nominal' ipc_doc_file = '../ipc_definitions.yaml' category = 'NoLead' default_library = 'Package_DFN_QFN' DEFAULT_PASTE_COVERAGE = 0.65 DEFAULT_VIA_PASTE_CLEARANCE = 0.15 DEFAULT_MIN_ANNULAR_RING = 0.15 SILK_MIN_LEN = 0.1 DEBUG_LEVEL = 0 def roundToBase(value, base): return round(value / base) * base class NoLead(): def __init__(self, configuration): self.configuration = configuration with open(ipc_doc_file, 'r') as ipc_stream: try: self.ipc_defintions = yaml.safe_load(ipc_stream) self.configuration['min_ep_to_pad_clearance'] = 0.2 # ToDo: find a settings file that can contain these. self.configuration['paste_radius_ratio'] = 0.25 self.configuration['paste_maximum_radius'] = 0.25 if 'ipc_generic_rules' in self.ipc_defintions: self.configuration['min_ep_to_pad_clearance'] = self.ipc_defintions['ipc_generic_rules'].get( 'min_ep_to_pad_clearance', 0.2) except yaml.YAMLError as exc: print(exc) def calcPadDetails(self, device_dimensions, EP_size, ipc_data, ipc_round_base): # Zmax = Lmin + 2JT + √(CL^2 + F^2 + P^2) # Gmin = Smax − 2JH − √(CS^2 + F^2 + P^2) # Xmax = Wmin + 2JS + √(CW^2 + F^2 + P^2) # Some manufacturers do not list the terminal spacing (S) in their datasheet but list the terminal length (T) # Then one can calculate # Stol(RMS) = √(Ltol^2 + 2*^2) # Smin = Lmin - 2*Tmax # Smax(RMS) = Smin + Stol(RMS) manf_tol = { 'F': self.configuration.get('manufacturing_tolerance', 0.1), 'P': self.configuration.get('placement_tolerance', 0.05) } pull_back_0 = TolerancedSize(nominal=0) pull_back = device_dimensions.get('lead_to_edge', pull_back_0) if 'lead_center_pos_x' in device_dimensions or 'lead_center_pos_y' in device_dimensions: Gmin_x, Zmax_x, Xmax = ipc_pad_center_plus_size(ipc_data, ipc_round_base, manf_tol, center_position=device_dimensions.get( 'lead_center_pos_x', TolerancedSize(nominal=0)), lead_length=device_dimensions.get('lead_len_H'), lead_width=device_dimensions['lead_width']) Gmin_y, Zmax_y, Xmax_y_ignored = ipc_pad_center_plus_size(ipc_data, ipc_round_base, manf_tol, center_position=device_dimensions.get( 'lead_center_pos_y', TolerancedSize(nominal=0)), lead_length=device_dimensions.get('lead_len_H'), lead_width=device_dimensions['lead_width']) else: Gmin_x, Zmax_x, Xmax = ipc_body_edge_inside_pull_back( ipc_data, ipc_round_base, manf_tol, body_size=device_dimensions['body_size_x'], lead_width=device_dimensions['lead_width'], lead_len=device_dimensions.get('lead_len_H'), body_to_inside_lead_edge=device_dimensions.get('body_to_inside_lead_edge'), heel_reduction=device_dimensions.get('heel_reduction', 0), pull_back=pull_back ) Gmin_y, Zmax_y, Xmax_y_ignored = ipc_body_edge_inside_pull_back( ipc_data, ipc_round_base, manf_tol, body_size=device_dimensions['body_size_y'], lead_width=device_dimensions['lead_width'], lead_len=device_dimensions.get('lead_len_V'), body_to_inside_lead_edge=device_dimensions.get('body_to_inside_lead_edge'), heel_reduction=device_dimensions.get('heel_reduction', 0), pull_back=pull_back ) min_ep_to_pad_clearance = self.configuration['min_ep_to_pad_clearance'] heel_reduction_max = 0 if Gmin_x - 2 * min_ep_to_pad_clearance < EP_size['x']: heel_reduction_max = ((EP_size['x'] + 2 * min_ep_to_pad_clearance - Gmin_x) / 2) #print('{}, {}, {}'.format(Gmin_x, EP_size['x'], min_ep_to_pad_clearance)) Gmin_x = EP_size['x'] + 2 * min_ep_to_pad_clearance if Gmin_y - 2 * min_ep_to_pad_clearance < EP_size['y']: heel_reduction = ((EP_size['y'] + 2 * min_ep_to_pad_clearance - Gmin_y) / 2) if heel_reduction > heel_reduction_max: heel_reduction_max = heel_reduction Gmin_y = EP_size['y'] + 2 * min_ep_to_pad_clearance heel_reduction_max += device_dimensions.get('heel_reduction', 0) # include legacy stuff if heel_reduction_max > 0 and DEBUG_LEVEL >= 1: print('Heel reduced by {:.4f} to reach minimum EP to pad clearances'.format(heel_reduction_max)) Pad = {} Pad['left'] = {'center': [-(Zmax_x + Gmin_x) / 4, 0], 'size': [(Zmax_x - Gmin_x) / 2, Xmax]} Pad['right'] = {'center': [(Zmax_x + Gmin_x) / 4, 0], 'size': [(Zmax_x - Gmin_x) / 2, Xmax]} Pad['top'] = {'center': [0, -(Zmax_y + Gmin_y) / 4], 'size': [Xmax, (Zmax_y - Gmin_y) / 2]} Pad['bottom'] = {'center': [0, (Zmax_y + Gmin_y) / 4], 'size': [Xmax, (Zmax_y - Gmin_y) / 2]} return Pad @staticmethod def deviceDimensions(device_size_data, fp_id): unit = device_size_data.get('unit') dimensions = { 'body_size_x': TolerancedSize.fromYaml(device_size_data, base_name='body_size_x', unit=unit), 'body_size_y': TolerancedSize.fromYaml(device_size_data, base_name='body_size_y', unit=unit), 'lead_width': TolerancedSize.fromYaml(device_size_data, base_name='lead_width', unit=unit), 'pitch': TolerancedSize.fromYaml(device_size_data, base_name='pitch', unit=unit).nominal } dimensions['has_EP'] = False if 'EP_size_x_min' in device_size_data and 'EP_size_x_max' in device_size_data or 'EP_size_x' in device_size_data: dimensions['EP_size_x'] = TolerancedSize.fromYaml(device_size_data, base_name='EP_size_x', unit=unit) dimensions['EP_size_y'] = TolerancedSize.fromYaml(device_size_data, base_name='EP_size_y', unit=unit) dimensions['has_EP'] = True dimensions['EP_center_x'] = TolerancedSize(nominal=0) dimensions['EP_center_y'] = TolerancedSize(nominal=0) if 'EP_center_x' in device_size_data and 'EP_center_y' in device_size_data: dimensions['EP_center_x'] = TolerancedSize.fromYaml( device_size_data, base_name='EP_center_x', unit=unit) dimensions['EP_center_y'] = TolerancedSize.fromYaml( device_size_data, base_name='EP_center_y', unit=unit) if 'heel_reduction' in device_size_data: print( "\033[1;35mThe use of manual heel reduction is deprecated. It is automatically calculated from the minimum EP to pad clearance (ipc config file)\033[0m" ) dimensions['heel_reduction'] = device_size_data.get('heel_reduction', 0) if 'lead_to_edge' in device_size_data: dimensions['lead_to_edge'] = TolerancedSize.fromYaml(device_size_data, base_name='lead_to_edge', unit=unit) if 'lead_center_pos_x' in device_size_data: dimensions['lead_center_pos_x'] = TolerancedSize.fromYaml( device_size_data, base_name='lead_center_pos_x', unit=unit) if 'lead_center_to_center_x' in device_size_data: dimensions['lead_center_pos_x'] = TolerancedSize.fromYaml( device_size_data, base_name='lead_center_to_center_x', unit=unit) / 2 if 'lead_center_pos_y' in device_size_data: dimensions['lead_center_pos_y'] = TolerancedSize.fromYaml( device_size_data, base_name='lead_center_pos_y', unit=unit) if 'lead_center_to_center_y' in device_size_data: dimensions['lead_center_pos_y'] = TolerancedSize.fromYaml( device_size_data, base_name='lead_center_to_center_y', unit=unit) / 2 dimensions['lead_len_H'] = None dimensions['lead_len_V'] = None if 'lead_len_H' in device_size_data and 'lead_len_V' in device_size_data: dimensions['lead_len_H'] = TolerancedSize.fromYaml(device_size_data, base_name='lead_len_H', unit=unit) dimensions['lead_len_V'] = TolerancedSize.fromYaml(device_size_data, base_name='lead_len_V', unit=unit) elif 'lead_len' in device_size_data or ( 'lead_len_min' in device_size_data and 'lead_len_max' in device_size_data): dimensions['lead_len_H'] = TolerancedSize.fromYaml(device_size_data, base_name='lead_len', unit=unit) dimensions['lead_len_V'] = dimensions['lead_len_H'] if 'body_to_inside_lead_edge' in device_size_data: dimensions['body_to_inside_lead_edge'] = TolerancedSize.fromYaml( device_size_data, base_name='body_to_inside_lead_edge', unit=unit) elif dimensions['lead_len_H'] is None: raise KeyError('{}: Either lead length or inside lead to edge dimension must be given.'.format(fp_id)) return dimensions def generateFootprint(self, device_params, fp_id): print('Building footprint for parameter set: {}'.format(fp_id)) device_dimensions = NoLead.deviceDimensions(device_params, fp_id) if device_dimensions['has_EP'] and 'thermal_vias' in device_params: self.__createFootprintVariant(device_params, device_dimensions, True) self.__createFootprintVariant(device_params, device_dimensions, False) def __createFootprintVariant(self, device_params, device_dimensions, with_thermal_vias): fab_line_width = self.configuration.get('fab_line_width', 0.1) silk_line_width = self.configuration.get('silk_line_width', 0.12) lib_name = device_params.get('library', default_library) pincount = device_params['num_pins_x'] * 2 + device_params['num_pins_y'] * 2 default_ipc_config = 'qfn_pull_back' if 'lead_to_edge' in device_params else 'qfn' if device_params.get('ipc_class', default_ipc_config) == 'qfn_pull_back': ipc_reference = 'ipc_spec_flat_no_lead_pull_back' else: ipc_reference = 'ipc_spec_flat_no_lead' used_density = device_params.get('ipc_density', ipc_density) ipc_data_set = self.ipc_defintions[ipc_reference][used_density] ipc_round_base = self.ipc_defintions[ipc_reference]['round_base'] layout = '' if device_dimensions['has_EP']: name_format = self.configuration['fp_name_EP_format_string_no_trailing_zero'] if 'EP_size_x_overwrite' in device_params: EP_size = { 'x': device_params['EP_size_x_overwrite'], 'y': device_params['EP_size_y_overwrite'] } else: EP_size = { 'x': device_dimensions['EP_size_x'].nominal, 'y': device_dimensions['EP_size_y'].nominal } EP_center = { 'x': device_dimensions['EP_center_x'].nominal, 'y': device_dimensions['EP_center_y'].nominal } else: name_format = self.configuration['fp_name_format_string_no_trailing_zero'] if device_params.get('use_name_format', 'QFN') == 'LGA': name_format = self.configuration['fp_name_lga_format_string_no_trailing_zero'] if device_params['num_pins_x'] > 0 and device_params['num_pins_y'] > 0: layout = self.configuration['lga_layout_border'].format( nx=device_params['num_pins_x'], ny=device_params['num_pins_y']) EP_size = {'x': 0, 'y': 0} if 'custom_name_format' in device_params: name_format = device_params['custom_name_format'] pad_details = self.calcPadDetails(device_dimensions, EP_size, ipc_data_set, ipc_round_base) pad_suffix = '_Pad{pad_x:.2f}x{pad_y:.2f}mm'.format(pad_x=pad_details['left']['size'][0], pad_y=pad_details['left']['size'][1]) pad_suffix = '' if device_params.get('include_pad_size', 'none') not in ('fp_name_only', 'both') else pad_suffix pad_suffix_3d = '' if device_params.get('include_pad_size', 'none') not in ('both') else pad_suffix suffix = device_params.get('suffix', '') suffix_3d = suffix if device_params.get('include_suffix_in_3dpath', 'True') == 'True' else "" model3d_path_prefix = self.configuration.get('3d_model_prefix', '${KICAD6_3DMODEL_DIR}') size_x = device_dimensions['body_size_x'].nominal size_y = device_dimensions['body_size_y'].nominal fp_name = name_format.format( man=device_params.get('manufacturer', ''), mpn=device_params.get('part_number', ''), pkg=device_params['device_type'], pincount=pincount, size_y=size_y, size_x=size_x, pitch=device_dimensions['pitch'], layout=layout, ep_size_x=EP_size['x'], ep_size_y=EP_size['y'], suffix=pad_suffix, suffix2=suffix, vias=self.configuration.get('thermal_via_suffix', '_ThermalVias') if with_thermal_vias else '' ).replace('__', '_').lstrip('_') fp_name_2 = name_format.format( man=device_params.get('manufacturer', ''), mpn=device_params.get('part_number', ''), pkg=device_params['device_type'], pincount=pincount, size_y=size_y, size_x=size_x, pitch=device_dimensions['pitch'], layout=layout, ep_size_x=EP_size['x'], ep_size_y=EP_size['y'], suffix=pad_suffix_3d, suffix2=suffix_3d, vias='' ).replace('__', '_').lstrip('_') if 'fp_name_prefix' in device_params: prefix = device_params['fp_name_prefix'] if not prefix.endswith('_'): prefix += '_' fp_name = prefix + fp_name fp_name_2 = prefix + fp_name_2 model_name = '{model3d_path_prefix:s}{lib_name:s}.3dshapes/{fp_name:s}.wrl'\ .format( model3d_path_prefix=model3d_path_prefix, lib_name=lib_name, fp_name=fp_name_2) # print(fp_name) # print(pad_details) kicad_mod = Footprint(fp_name) # init kicad footprint kicad_mod.setDescription( "{manufacturer} {mpn} {package}, {pincount} Pin ({datasheet}), generated with kicad-footprint-generator {scriptname}" .format( manufacturer=device_params.get('manufacturer', ''), package=device_params['device_type'], mpn=device_params.get('part_number', ''), pincount=pincount, datasheet=device_params['size_source'], scriptname=os.path.basename(__file__).replace(" ", " ") ).lstrip()) kicad_mod.setTags(self.configuration['keyword_fp_string'] .format( man=device_params.get('manufacturer', ''), package=device_params['device_type'], category=category ).lstrip()) kicad_mod.setAttribute('smd') pad_radius = add_dual_or_quad_pad_border(kicad_mod, self.configuration, pad_details, device_params) if device_dimensions['has_EP']: pad_shape_details = getEpRoundRadiusParams(device_params, self.configuration, pad_radius) ep_pad_number = device_params.get('EP_pin_number', pincount + 1) if with_thermal_vias: thermals = device_params['thermal_vias'] paste_coverage = thermals.get('EP_paste_coverage', device_params.get('EP_paste_coverage', DEFAULT_PASTE_COVERAGE)) kicad_mod.append(ExposedPad( number=ep_pad_number, size=EP_size, at=EP_center, paste_layout=thermals.get('EP_num_paste_pads', device_params.get('EP_num_paste_pads', 1)), paste_coverage=paste_coverage, via_layout=thermals.get('count', 0), paste_between_vias=thermals.get('paste_between_vias'), paste_rings_outside=thermals.get('paste_rings_outside'), via_drill=thermals.get('drill', 0.3), via_grid=thermals.get('grid'), paste_avoid_via=thermals.get('paste_avoid_via', True), via_paste_clarance=thermals.get('paste_via_clearance', DEFAULT_VIA_PASTE_CLEARANCE), min_annular_ring=thermals.get('min_annular_ring', DEFAULT_MIN_ANNULAR_RING), bottom_pad_min_size=thermals.get('bottom_min_size', 0), kicad4_compatible=args.kicad4_compatible, **pad_shape_details )) else: kicad_mod.append(ExposedPad( number=ep_pad_number, size=EP_size, at=EP_center, paste_layout=device_params.get('EP_num_paste_pads', 1), paste_coverage=device_params.get('EP_paste_coverage', DEFAULT_PASTE_COVERAGE), kicad4_compatible=args.kicad4_compatible, **pad_shape_details )) body_edge = { 'left': -size_x / 2, 'right': size_x / 2, 'top': -size_y / 2, 'bottom': size_y / 2 } bounding_box = body_edge.copy() if device_params['num_pins_x'] == 0 and EP_size['y'] > size_y: bounding_box['top'] = -EP_size['y'] / 2 bounding_box['bottom'] = EP_size['y'] / 2 if device_params['num_pins_y'] == 0 and EP_size['x'] > size_x: bounding_box['left'] = -EP_size['x'] / 2 bounding_box['right'] = EP_size['x'] / 2 if device_params['num_pins_y'] > 0: bounding_box['left'] = pad_details['left']['center'][0] - pad_details['left']['size'][0] / 2 bounding_box['right'] = pad_details['right']['center'][0] + pad_details['right']['size'][0] / 2 if device_params['num_pins_x'] > 0: bounding_box['top'] = pad_details['top']['center'][1] - pad_details['top']['size'][1] / 2 bounding_box['bottom'] = pad_details['bottom']['center'][1] + pad_details['bottom']['size'][1] / 2 pad_width = pad_details['top']['size'][0] for key in body_edge: if bounding_box[key] < 0: bounding_box[key] = min(bounding_box[key], body_edge[key]) else: bounding_box[key] = max(bounding_box[key], body_edge[key]) # ############################ SilkS ################################## silk_pad_offset = configuration['silk_pad_clearance'] + configuration['silk_line_width'] / 2 silk_offset = configuration['silk_fab_offset'] if device_params['num_pins_x'] == 0: kicad_mod.append(Line( start={'x': 0, 'y': body_edge['top'] - silk_offset}, end={'x': body_edge['right'], 'y': body_edge['top'] - silk_offset}, width=configuration['silk_line_width'], layer="F.SilkS")) kicad_mod.append(Line( start={'x': body_edge['left'], 'y': body_edge['bottom'] + silk_offset}, end={'x': body_edge['right'], 'y': body_edge['bottom'] + silk_offset}, width=configuration['silk_line_width'], layer="F.SilkS", y_mirror=0)) elif device_params['num_pins_y'] == 0: kicad_mod.append(Line( start={'y': 0, 'x': body_edge['left'] - silk_offset}, end={'y': body_edge['bottom'], 'x': body_edge['left'] - silk_offset}, width=configuration['silk_line_width'], layer="F.SilkS")) kicad_mod.append(Line( start={'y': body_edge['top'], 'x': body_edge['right'] + silk_offset}, end={'y': body_edge['bottom'], 'x': body_edge['right'] + silk_offset}, width=configuration['silk_line_width'], layer="F.SilkS", x_mirror=0)) else: sx1 = -(device_dimensions['pitch'] * (device_params['num_pins_x'] - 1) / 2.0 + pad_width / 2.0 + silk_pad_offset) sy1 = -(device_dimensions['pitch'] * (device_params['num_pins_y'] - 1) / 2.0 + pad_width / 2.0 + silk_pad_offset) poly_silk = [ {'x': sx1, 'y': body_edge['top'] - silk_offset}, {'x': body_edge['left'] - silk_offset, 'y': body_edge['top'] - silk_offset}, {'x': body_edge['left'] - silk_offset, 'y': sy1} ] if sx1 - SILK_MIN_LEN < body_edge['left'] - silk_offset: poly_silk = poly_silk[1:] if sy1 - SILK_MIN_LEN < body_edge['top'] - silk_offset: poly_silk = poly_silk[:-1] if len(poly_silk) > 1: kicad_mod.append(PolygoneLine( polygone=poly_silk, width=configuration['silk_line_width'], layer="F.SilkS", x_mirror=0)) kicad_mod.append(PolygoneLine( polygone=poly_silk, width=configuration['silk_line_width'], layer="F.SilkS", y_mirror=0)) kicad_mod.append(PolygoneLine( polygone=poly_silk, width=configuration['silk_line_width'], layer="F.SilkS", x_mirror=0, y_mirror=0)) if len(poly_silk) > 2: kicad_mod.append(Line( start={'x': sx1, 'y': body_edge['top'] - silk_offset}, end={'x': body_edge['left'] - silk_offset, 'y': body_edge['top'] - silk_offset}, width=configuration['silk_line_width'], layer="F.SilkS")) # # ######################## Fabrication Layer ########################### fab_bevel_size = min(configuration['fab_bevel_size_absolute'], configuration['fab_bevel_size_relative'] * min(size_x, size_y)) poly_fab = [ {'x': body_edge['left'] + fab_bevel_size, 'y': body_edge['top']}, {'x': body_edge['right'], 'y': body_edge['top']}, {'x': body_edge['right'], 'y': body_edge['bottom']}, {'x': body_edge['left'], 'y': body_edge['bottom']}, {'x': body_edge['left'], 'y': body_edge['top'] + fab_bevel_size}, {'x': body_edge['left'] + fab_bevel_size, 'y': body_edge['top']}, ] kicad_mod.append(PolygoneLine( polygone=poly_fab, width=configuration['fab_line_width'], layer="F.Fab")) # # ############################ CrtYd ################################## off = ipc_data_set['courtyard'] grid = configuration['courtyard_grid'] cy1 = roundToBase(bounding_box['top'] - off, grid) kicad_mod.append(RectLine( start={ 'x': roundToBase(bounding_box['left'] - off, grid), 'y': cy1 }, end={ 'x': roundToBase(bounding_box['right'] + off, grid), 'y': roundToBase(bounding_box['bottom'] + off, grid) }, width=configuration['courtyard_line_width'], layer='F.CrtYd')) # ######################### Text Fields ############################### addTextFields(kicad_mod=kicad_mod, configuration=configuration, body_edges=body_edge, courtyard={'top': cy1, 'bottom': -cy1}, fp_name=fp_name, text_y_inside_position='center') ##################### Output and 3d model ############################ kicad_mod.append(Model(filename=model_name)) output_dir = '{lib_name:s}.pretty/'.format(lib_name=lib_name) if not os.path.isdir(output_dir): # returns false if path does not yet exist!! (Does not check path validity) os.makedirs(output_dir) filename = '{outdir:s}{fp_name:s}.kicad_mod'.format(outdir=output_dir, fp_name=fp_name) file_handler = KicadFileHandler(kicad_mod) file_handler.writeFile(filename) if __name__ == "__main__": parser = argparse.ArgumentParser(description='use confing .yaml files to create footprints.') parser.add_argument('files', metavar='file', type=str, nargs='+', help='list of files holding information about what devices should be created.') parser.add_argument('--global_config', type=str, nargs='?', help='the config file defining how the footprint will look like. (KLC)', default='../../tools/global_config_files/config_KLCv3.0.yaml') parser.add_argument('--series_config', type=str, nargs='?', help='the config file defining series parameters.', default='../package_config_KLCv3.yaml') parser.add_argument('--density', type=str, nargs='?', help='IPC density level (L,N,M)', default='N') parser.add_argument('--ipc_doc', type=str, nargs='?', help='IPC definition document', default='../ipc_definitions.yaml') parser.add_argument('--force_rectangle_pads', action='store_true', help='Force the generation of rectangle pads instead of rounded rectangle') parser.add_argument('--kicad4_compatible', action='store_true', help='Create footprints kicad 4 compatible') parser.add_argument('-v', '--verbose', action='count', help='set debug level') args = parser.parse_args() if args.density == 'L': ipc_density = 'least' elif args.density == 'M': ipc_density = 'most' if args.verbose: DEBUG_LEVEL = args.verbose ipc_doc_file = args.ipc_doc with open(args.global_config, 'r') as config_stream: try: configuration = yaml.safe_load(config_stream) except yaml.YAMLError as exc: print(exc) with open(args.series_config, 'r') as config_stream: try: configuration.update(yaml.safe_load(config_stream)) except yaml.YAMLError as exc: print(exc) if args.force_rectangle_pads or args.kicad4_compatible: configuration['round_rect_max_radius'] = None configuration['round_rect_radius_ratio'] = 0 configuration['kicad4_compatible'] = args.kicad4_compatible for filepath in args.files: no_lead = NoLead(configuration) with open(filepath, 'r') as command_stream: try: cmd_file = yaml.safe_load(command_stream) except yaml.YAMLError as exc: print(exc) for pkg in cmd_file: no_lead.generateFootprint(cmd_file[pkg], pkg)
the-stack_106_14721
import numpy as np from tensorflow.keras.datasets import mnist from ournn.tools.preprocess import sparse_one_hot_encode from ournn.tools.matrix_tools import * from ournn.frame import skeleton from ournn.Layer.layers import * from ournn.optimizers import * from ournn.losses import * #无奈地拿起了tensorflow的数据 (x,y),(t,d)=mnist.load_data() x=np.expand_dims(x,axis=-1) y=y.reshape(-1,1) x,y=x[0:400],y[0:400] x=(x-x.max())/(x.max()-x.min()) #热编码 y=sparse_one_hot_encode(y) #初始化框架 sk=skeleton(name="Model1",Regularization=None) #将不同的层添加到框架中 sk.add( [ Conv2d(kernal_size=(5,5),padding=True,stride=2,channel_in=1,channel_o=3), Flatten(), Fully_connected( output_dim=500,act="relu"), Fully_connected( output_dim=100,act="relu"), Fully_connected(output_dim=10,act="relu") ] ) #优化器 optimizer=SGD(loss=sparse_softmax_cross_entropy(),sample_size=0.7,lr=1e-5) #训练 history=sk.train(x,y,epoches=20,train_test_split=0.7,optimizer=optimizer) #显示维度信息 sk.show_info() #将损失以及精度绘图 sk.visualization()
the-stack_106_14723
# coding: utf-8 # Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License. # This product includes software developed at Datadog (https://www.datadoghq.com/). # Copyright 2019-Present Datadog, Inc. import re # noqa: F401 import sys # noqa: F401 import nulltype # noqa: F401 from datadog_api_client.v1.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) class EventStreamWidgetDefinitionType(ModelSimple): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('value',): { 'EVENT_STREAM': "event_stream", }, } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'value': (str,), } @cached_property def discriminator(): return None attribute_map = {} _composed_schemas = None required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): """EventStreamWidgetDefinitionType - a model defined in OpenAPI Note that value can be passed either in args or in kwargs, but not in both. Args: args[0] (str): Type of the event stream widget.. if omitted defaults to "event_stream", must be one of ["event_stream", ] # noqa: E501 Keyword Args: value (str): Type of the event stream widget.. if omitted defaults to "event_stream", must be one of ["event_stream", ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ if 'value' in kwargs: value = kwargs.pop('value') elif args: args = list(args) value = args.pop(0) else: value = "event_stream" _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.value = value if kwargs: raise ApiTypeError( "Invalid named arguments=%s passed to %s. Remove those invalid named arguments." % ( kwargs, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), )
the-stack_106_14726
# Author: Alexander Fabisch -- <[email protected]> # Author: Christopher Moody <[email protected]> # Author: Nick Travers <[email protected]> # License: BSD 3 clause (C) 2014 # This is the exact and Barnes-Hut t-SNE implementation. There are other # modifications of the algorithm: # * Fast Optimization for t-SNE: # https://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf import warnings from time import time import numpy as np from scipy import linalg from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from scipy.sparse import csr_matrix, issparse from ..neighbors import NearestNeighbors from ..base import BaseEstimator from ..utils import check_random_state from ..utils._openmp_helpers import _openmp_effective_n_threads from ..utils.validation import check_non_negative from ..decomposition import PCA from ..metrics.pairwise import pairwise_distances # mypy error: Module 'sklearn.manifold' has no attribute '_utils' from . import _utils # type: ignore # mypy error: Module 'sklearn.manifold' has no attribute '_barnes_hut_tsne' from . import _barnes_hut_tsne # type: ignore MACHINE_EPSILON = np.finfo(np.double).eps def _joint_probabilities(distances, desired_perplexity, verbose): """Compute joint probabilities p_ij from distances. Parameters ---------- distances : ndarray of shape (n_samples * (n_samples-1) / 2,) Distances of samples are stored as condensed matrices, i.e. we omit the diagonal and duplicate entries and store everything in a one-dimensional array. desired_perplexity : float Desired perplexity of the joint probability distributions. verbose : int Verbosity level. Returns ------- P : ndarray of shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. """ # Compute conditional probabilities such that they approximately match # the desired perplexity distances = distances.astype(np.float32, copy=False) conditional_P = _utils._binary_search_perplexity( distances, desired_perplexity, verbose ) P = conditional_P + conditional_P.T sum_P = np.maximum(np.sum(P), MACHINE_EPSILON) P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON) return P def _joint_probabilities_nn(distances, desired_perplexity, verbose): """Compute joint probabilities p_ij from distances using just nearest neighbors. This method is approximately equal to _joint_probabilities. The latter is O(N), but limiting the joint probability to nearest neighbors improves this substantially to O(uN). Parameters ---------- distances : sparse matrix of shape (n_samples, n_samples) Distances of samples to its n_neighbors nearest neighbors. All other distances are left to zero (and are not materialized in memory). Matrix should be of CSR format. desired_perplexity : float Desired perplexity of the joint probability distributions. verbose : int Verbosity level. Returns ------- P : sparse matrix of shape (n_samples, n_samples) Condensed joint probability matrix with only nearest neighbors. Matrix will be of CSR format. """ t0 = time() # Compute conditional probabilities such that they approximately match # the desired perplexity distances.sort_indices() n_samples = distances.shape[0] distances_data = distances.data.reshape(n_samples, -1) distances_data = distances_data.astype(np.float32, copy=False) conditional_P = _utils._binary_search_perplexity( distances_data, desired_perplexity, verbose ) assert np.all(np.isfinite(conditional_P)), "All probabilities should be finite" # Symmetrize the joint probability distribution using sparse operations P = csr_matrix( (conditional_P.ravel(), distances.indices, distances.indptr), shape=(n_samples, n_samples), ) P = P + P.T # Normalize the joint probability distribution sum_P = np.maximum(P.sum(), MACHINE_EPSILON) P /= sum_P assert np.all(np.abs(P.data) <= 1.0) if verbose >= 2: duration = time() - t0 print("[t-SNE] Computed conditional probabilities in {:.3f}s".format(duration)) return P def _kl_divergence( params, P, degrees_of_freedom, n_samples, n_components, skip_num_points=0, compute_error=True, ): """t-SNE objective function: gradient of the KL divergence of p_ijs and q_ijs and the absolute error. Parameters ---------- params : ndarray of shape (n_params,) Unraveled embedding. P : ndarray of shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. degrees_of_freedom : int Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. skip_num_points : int, default=0 This does not compute the gradient for points with indices below `skip_num_points`. This is useful when computing transforms of new data where you'd like to keep the old data fixed. compute_error: bool, default=True If False, the kl_divergence is not computed and returns NaN. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : ndarray of shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ X_embedded = params.reshape(n_samples, n_components) # Q is a heavy-tailed distribution: Student's t-distribution dist = pdist(X_embedded, "sqeuclidean") dist /= degrees_of_freedom dist += 1.0 dist **= (degrees_of_freedom + 1.0) / -2.0 Q = np.maximum(dist / (2.0 * np.sum(dist)), MACHINE_EPSILON) # Optimization trick below: np.dot(x, y) is faster than # np.sum(x * y) because it calls BLAS # Objective: C (Kullback-Leibler divergence of P and Q) if compute_error: kl_divergence = 2.0 * np.dot(P, np.log(np.maximum(P, MACHINE_EPSILON) / Q)) else: kl_divergence = np.nan # Gradient: dC/dY # pdist always returns double precision distances. Thus we need to take grad = np.ndarray((n_samples, n_components), dtype=params.dtype) PQd = squareform((P - Q) * dist) for i in range(skip_num_points, n_samples): grad[i] = np.dot(np.ravel(PQd[i], order="K"), X_embedded[i] - X_embedded) grad = grad.ravel() c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom grad *= c return kl_divergence, grad def _kl_divergence_bh( params, P, degrees_of_freedom, n_samples, n_components, angle=0.5, skip_num_points=0, verbose=False, compute_error=True, num_threads=1, ): """t-SNE objective function: KL divergence of p_ijs and q_ijs. Uses Barnes-Hut tree methods to calculate the gradient that runs in O(NlogN) instead of O(N^2). Parameters ---------- params : ndarray of shape (n_params,) Unraveled embedding. P : sparse matrix of shape (n_samples, n_sample) Sparse approximate joint probability matrix, computed only for the k nearest-neighbors and symmetrized. Matrix should be of CSR format. degrees_of_freedom : int Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. angle : float, default=0.5 This is the trade-off between speed and accuracy for Barnes-Hut T-SNE. 'angle' is the angular size (referred to as theta in [3]) of a distant node as measured from a point. If this size is below 'angle' then it is used as a summary node of all points contained within it. This method is not very sensitive to changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error. skip_num_points : int, default=0 This does not compute the gradient for points with indices below `skip_num_points`. This is useful when computing transforms of new data where you'd like to keep the old data fixed. verbose : int, default=False Verbosity level. compute_error: bool, default=True If False, the kl_divergence is not computed and returns NaN. num_threads : int, default=1 Number of threads used to compute the gradient. This is set here to avoid calling _openmp_effective_n_threads for each gradient step. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : ndarray of shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ params = params.astype(np.float32, copy=False) X_embedded = params.reshape(n_samples, n_components) val_P = P.data.astype(np.float32, copy=False) neighbors = P.indices.astype(np.int64, copy=False) indptr = P.indptr.astype(np.int64, copy=False) grad = np.zeros(X_embedded.shape, dtype=np.float32) error = _barnes_hut_tsne.gradient( val_P, X_embedded, neighbors, indptr, grad, angle, n_components, verbose, dof=degrees_of_freedom, compute_error=compute_error, num_threads=num_threads, ) c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom grad = grad.ravel() grad *= c return error, grad def _gradient_descent( objective, p0, it, n_iter, n_iter_check=1, n_iter_without_progress=300, momentum=0.8, learning_rate=200.0, min_gain=0.01, min_grad_norm=1e-7, verbose=0, args=None, kwargs=None, ): """Batch gradient descent with momentum and individual gains. Parameters ---------- objective : callable Should return a tuple of cost and gradient for a given parameter vector. When expensive to compute, the cost can optionally be None and can be computed every n_iter_check steps using the objective_error function. p0 : array-like of shape (n_params,) Initial parameter vector. it : int Current number of iterations (this function will be called more than once during the optimization). n_iter : int Maximum number of gradient descent iterations. n_iter_check : int, default=1 Number of iterations before evaluating the global error. If the error is sufficiently low, we abort the optimization. n_iter_without_progress : int, default=300 Maximum number of iterations without progress before we abort the optimization. momentum : float within (0.0, 1.0), default=0.8 The momentum generates a weight for previous gradients that decays exponentially. learning_rate : float, default=200.0 The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. min_gain : float, default=0.01 Minimum individual gain for each parameter. min_grad_norm : float, default=1e-7 If the gradient norm is below this threshold, the optimization will be aborted. verbose : int, default=0 Verbosity level. args : sequence, default=None Arguments to pass to objective function. kwargs : dict, default=None Keyword arguments to pass to objective function. Returns ------- p : ndarray of shape (n_params,) Optimum parameters. error : float Optimum. i : int Last iteration. """ if args is None: args = [] if kwargs is None: kwargs = {} p = p0.copy().ravel() update = np.zeros_like(p) gains = np.ones_like(p) error = np.finfo(float).max best_error = np.finfo(float).max best_iter = i = it tic = time() for i in range(it, n_iter): check_convergence = (i + 1) % n_iter_check == 0 # only compute the error when needed kwargs["compute_error"] = check_convergence or i == n_iter - 1 error, grad = objective(p, *args, **kwargs) inc = update * grad < 0.0 dec = np.invert(inc) gains[inc] += 0.2 gains[dec] *= 0.8 np.clip(gains, min_gain, np.inf, out=gains) grad *= gains update = momentum * update - learning_rate * grad p += update if check_convergence: toc = time() duration = toc - tic tic = toc grad_norm = linalg.norm(grad) if verbose >= 2: print( "[t-SNE] Iteration %d: error = %.7f," " gradient norm = %.7f" " (%s iterations in %0.3fs)" % (i + 1, error, grad_norm, n_iter_check, duration) ) if error < best_error: best_error = error best_iter = i elif i - best_iter > n_iter_without_progress: if verbose >= 2: print( "[t-SNE] Iteration %d: did not make any progress " "during the last %d episodes. Finished." % (i + 1, n_iter_without_progress) ) break if grad_norm <= min_grad_norm: if verbose >= 2: print( "[t-SNE] Iteration %d: gradient norm %f. Finished." % (i + 1, grad_norm) ) break return p, error, i def trustworthiness(X, X_embedded, *, n_neighbors=5, metric="euclidean"): r"""Expresses to what extent the local structure is retained. The trustworthiness is within [0, 1]. It is defined as .. math:: T(k) = 1 - \frac{2}{nk (2n - 3k - 1)} \sum^n_{i=1} \sum_{j \in \mathcal{N}_{i}^{k}} \max(0, (r(i, j) - k)) where for each sample i, :math:`\mathcal{N}_{i}^{k}` are its k nearest neighbors in the output space, and every sample j is its :math:`r(i, j)`-th nearest neighbor in the input space. In other words, any unexpected nearest neighbors in the output space are penalised in proportion to their rank in the input space. Parameters ---------- X : ndarray of shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. X_embedded : ndarray of shape (n_samples, n_components) Embedding of the training data in low-dimensional space. n_neighbors : int, default=5 The number of neighbors that will be considered. Should be fewer than `n_samples / 2` to ensure the trustworthiness to lies within [0, 1], as mentioned in [1]_. An error will be raised otherwise. metric : str or callable, default='euclidean' Which metric to use for computing pairwise distances between samples from the original input space. If metric is 'precomputed', X must be a matrix of pairwise distances or squared distances. Otherwise, for a list of available metrics, see the documentation of argument metric in `sklearn.pairwise.pairwise_distances` and metrics listed in `sklearn.metrics.pairwise.PAIRWISE_DISTANCE_FUNCTIONS`. Note that the "cosine" metric uses :func:`~sklearn.metrics.pairwise.cosine_distances`. .. versionadded:: 0.20 Returns ------- trustworthiness : float Trustworthiness of the low-dimensional embedding. References ---------- .. [1] Jarkko Venna and Samuel Kaski. 2001. Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study. In Proceedings of the International Conference on Artificial Neural Networks (ICANN '01). Springer-Verlag, Berlin, Heidelberg, 485-491. .. [2] Laurens van der Maaten. Learning a Parametric Embedding by Preserving Local Structure. Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, PMLR 5:384-391, 2009. """ n_samples = X.shape[0] if n_neighbors >= n_samples / 2: raise ValueError( f"n_neighbors ({n_neighbors}) should be less than n_samples / 2" f" ({n_samples / 2})" ) dist_X = pairwise_distances(X, metric=metric) if metric == "precomputed": dist_X = dist_X.copy() # we set the diagonal to np.inf to exclude the points themselves from # their own neighborhood np.fill_diagonal(dist_X, np.inf) ind_X = np.argsort(dist_X, axis=1) # `ind_X[i]` is the index of sorted distances between i and other samples ind_X_embedded = ( NearestNeighbors(n_neighbors=n_neighbors) .fit(X_embedded) .kneighbors(return_distance=False) ) # We build an inverted index of neighbors in the input space: For sample i, # we define `inverted_index[i]` as the inverted index of sorted distances: # inverted_index[i][ind_X[i]] = np.arange(1, n_sample + 1) inverted_index = np.zeros((n_samples, n_samples), dtype=int) ordered_indices = np.arange(n_samples + 1) inverted_index[ordered_indices[:-1, np.newaxis], ind_X] = ordered_indices[1:] ranks = ( inverted_index[ordered_indices[:-1, np.newaxis], ind_X_embedded] - n_neighbors ) t = np.sum(ranks[ranks > 0]) t = 1.0 - t * ( 2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0)) ) return t class TSNE(BaseEstimator): """T-distributed Stochastic Neighbor Embedding. t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different initializations we can get different results. It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or TruncatedSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is very high. This will suppress some noise and speed up the computation of pairwise distances between samples. For more tips see Laurens van der Maaten's FAQ [2]. Read more in the :ref:`User Guide <t_sne>`. Parameters ---------- n_components : int, default=2 Dimension of the embedded space. perplexity : float, default=30.0 The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. Different values can result in significantly different results. The perplexity must be less that the number of samples. early_exaggeration : float, default=12.0 Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float or 'auto', default=200.0 The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. If the cost function gets stuck in a bad local minimum increasing the learning rate may help. Note that many other t-SNE implementations (bhtsne, FIt-SNE, openTSNE, etc.) use a definition of learning_rate that is 4 times smaller than ours. So our learning_rate=200 corresponds to learning_rate=800 in those other implementations. The 'auto' option sets the learning_rate to `max(N / early_exaggeration / 4, 50)` where N is the sample size, following [4] and [5]. This will become default in 1.2. n_iter : int, default=1000 Maximum number of iterations for the optimization. Should be at least 250. n_iter_without_progress : int, default=300 Maximum number of iterations without progress before we abort the optimization, used after 250 initial iterations with early exaggeration. Note that progress is only checked every 50 iterations so this value is rounded to the next multiple of 50. .. versionadded:: 0.17 parameter *n_iter_without_progress* to control stopping criteria. min_grad_norm : float, default=1e-7 If the gradient norm is below this threshold, the optimization will be stopped. metric : str or callable, default='euclidean' The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. metric_params : dict, default=None Additional keyword arguments for the metric function. .. versionadded:: 1.1 init : {'random', 'pca'} or ndarray of shape (n_samples, n_components), \ default='random' Initialization of embedding. Possible options are 'random', 'pca', and a numpy array of shape (n_samples, n_components). PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. `init='pca'` will become default in 1.2. verbose : int, default=0 Verbosity level. random_state : int, RandomState instance or None, default=None Determines the random number generator. Pass an int for reproducible results across multiple function calls. Note that different initializations might result in different local minima of the cost function. See :term:`Glossary <random_state>`. method : str, default='barnes_hut' By default the gradient calculation algorithm uses Barnes-Hut approximation running in O(NlogN) time. method='exact' will run on the slower, but exact, algorithm in O(N^2) time. The exact algorithm should be used when nearest-neighbor errors need to be better than 3%. However, the exact method cannot scale to millions of examples. .. versionadded:: 0.17 Approximate optimization *method* via the Barnes-Hut. angle : float, default=0.5 Only used if method='barnes_hut' This is the trade-off between speed and accuracy for Barnes-Hut T-SNE. 'angle' is the angular size (referred to as theta in [3]) of a distant node as measured from a point. If this size is below 'angle' then it is used as a summary node of all points contained within it. This method is not very sensitive to changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error. n_jobs : int, default=None The number of parallel jobs to run for neighbors search. This parameter has no impact when ``metric="precomputed"`` or (``metric="euclidean"`` and ``method="exact"``). ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. .. versionadded:: 0.22 square_distances : True, default='deprecated' This parameter has no effect since distance values are always squared since 1.1. .. deprecated:: 1.1 `square_distances` has no effect from 1.1 and will be removed in 1.3. Attributes ---------- embedding_ : array-like of shape (n_samples, n_components) Stores the embedding vectors. kl_divergence_ : float Kullback-Leibler divergence after optimization. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int Number of iterations run. See Also -------- sklearn.decomposition.PCA : Principal component analysis that is a linear dimensionality reduction method. sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using kernels and PCA. MDS : Manifold learning using multidimensional scaling. Isomap : Manifold learning based on Isometric Mapping. LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding. SpectralEmbedding : Spectral embedding for non-linear dimensionality. References ---------- [1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008. [2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding https://lvdmaaten.github.io/tsne/ [3] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learning Research 15(Oct):3221-3245, 2014. https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf [4] Belkina, A. C., Ciccolella, C. O., Anno, R., Halpert, R., Spidlen, J., & Snyder-Cappione, J. E. (2019). Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nature Communications, 10(1), 1-12. [5] Kobak, D., & Berens, P. (2019). The art of using t-SNE for single-cell transcriptomics. Nature Communications, 10(1), 1-14. Examples -------- >>> import numpy as np >>> from sklearn.manifold import TSNE >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> X_embedded = TSNE(n_components=2, learning_rate='auto', ... init='random', perplexity=3).fit_transform(X) >>> X_embedded.shape (4, 2) """ # Control the number of exploration iterations with early_exaggeration on _EXPLORATION_N_ITER = 250 # Control the number of iterations between progress checks _N_ITER_CHECK = 50 def __init__( self, n_components=2, *, perplexity=30.0, early_exaggeration=12.0, learning_rate="warn", n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-7, metric="euclidean", metric_params=None, init="warn", verbose=0, random_state=None, method="barnes_hut", angle=0.5, n_jobs=None, square_distances="deprecated", ): self.n_components = n_components self.perplexity = perplexity self.early_exaggeration = early_exaggeration self.learning_rate = learning_rate self.n_iter = n_iter self.n_iter_without_progress = n_iter_without_progress self.min_grad_norm = min_grad_norm self.metric = metric self.metric_params = metric_params self.init = init self.verbose = verbose self.random_state = random_state self.method = method self.angle = angle self.n_jobs = n_jobs self.square_distances = square_distances def _check_params_vs_input(self, X): if self.perplexity >= X.shape[0]: raise ValueError("perplexity must be less than n_samples") def _fit(self, X, skip_num_points=0): """Private function to fit the model using X as training data.""" if isinstance(self.init, str) and self.init == "warn": # See issue #18018 warnings.warn( "The default initialization in TSNE will change " "from 'random' to 'pca' in 1.2.", FutureWarning, ) self._init = "random" else: self._init = self.init if self.learning_rate == "warn": # See issue #18018 warnings.warn( "The default learning rate in TSNE will change " "from 200.0 to 'auto' in 1.2.", FutureWarning, ) self._learning_rate = 200.0 else: self._learning_rate = self.learning_rate if isinstance(self._init, str) and self._init == "pca" and issparse(X): raise TypeError( "PCA initialization is currently not supported " "with the sparse input matrix. Use " 'init="random" instead.' ) if self.method not in ["barnes_hut", "exact"]: raise ValueError("'method' must be 'barnes_hut' or 'exact'") if self.angle < 0.0 or self.angle > 1.0: raise ValueError("'angle' must be between 0.0 - 1.0") if self.square_distances != "deprecated": warnings.warn( "The parameter `square_distances` has not effect and will be " "removed in version 1.3.", FutureWarning, ) if self._learning_rate == "auto": # See issue #18018 self._learning_rate = X.shape[0] / self.early_exaggeration / 4 self._learning_rate = np.maximum(self._learning_rate, 50) else: if not (self._learning_rate > 0): raise ValueError("'learning_rate' must be a positive number or 'auto'.") if self.method == "barnes_hut": X = self._validate_data( X, accept_sparse=["csr"], ensure_min_samples=2, dtype=[np.float32, np.float64], ) else: X = self._validate_data( X, accept_sparse=["csr", "csc", "coo"], dtype=[np.float32, np.float64] ) if self.metric == "precomputed": if isinstance(self._init, str) and self._init == "pca": raise ValueError( 'The parameter init="pca" cannot be used with metric="precomputed".' ) if X.shape[0] != X.shape[1]: raise ValueError("X should be a square distance matrix") check_non_negative( X, "TSNE.fit(). With metric='precomputed', X " "should contain positive distances.", ) if self.method == "exact" and issparse(X): raise TypeError( 'TSNE with method="exact" does not accept sparse ' 'precomputed distance matrix. Use method="barnes_hut" ' "or provide the dense distance matrix." ) if self.method == "barnes_hut" and self.n_components > 3: raise ValueError( "'n_components' should be inferior to 4 for the " "barnes_hut algorithm as it relies on " "quad-tree or oct-tree." ) random_state = check_random_state(self.random_state) if self.early_exaggeration < 1.0: raise ValueError( "early_exaggeration must be at least 1, but is {}".format( self.early_exaggeration ) ) if self.n_iter < 250: raise ValueError("n_iter should be at least 250") n_samples = X.shape[0] neighbors_nn = None if self.method == "exact": # Retrieve the distance matrix, either using the precomputed one or # computing it. if self.metric == "precomputed": distances = X else: if self.verbose: print("[t-SNE] Computing pairwise distances...") if self.metric == "euclidean": # Euclidean is squared here, rather than using **= 2, # because euclidean_distances already calculates # squared distances, and returns np.sqrt(dist) for # squared=False. # Also, Euclidean is slower for n_jobs>1, so don't set here distances = pairwise_distances(X, metric=self.metric, squared=True) else: metric_params_ = self.metric_params or {} distances = pairwise_distances( X, metric=self.metric, n_jobs=self.n_jobs, **metric_params_ ) if np.any(distances < 0): raise ValueError( "All distances should be positive, the metric given is not correct" ) if self.metric != "euclidean": distances **= 2 # compute the joint probability distribution for the input space P = _joint_probabilities(distances, self.perplexity, self.verbose) assert np.all(np.isfinite(P)), "All probabilities should be finite" assert np.all(P >= 0), "All probabilities should be non-negative" assert np.all( P <= 1 ), "All probabilities should be less or then equal to one" else: # Compute the number of nearest neighbors to find. # LvdM uses 3 * perplexity as the number of neighbors. # In the event that we have very small # of points # set the neighbors to n - 1. n_neighbors = min(n_samples - 1, int(3.0 * self.perplexity + 1)) if self.verbose: print("[t-SNE] Computing {} nearest neighbors...".format(n_neighbors)) # Find the nearest neighbors for every point knn = NearestNeighbors( algorithm="auto", n_jobs=self.n_jobs, n_neighbors=n_neighbors, metric=self.metric, metric_params=self.metric_params, ) t0 = time() knn.fit(X) duration = time() - t0 if self.verbose: print( "[t-SNE] Indexed {} samples in {:.3f}s...".format( n_samples, duration ) ) t0 = time() distances_nn = knn.kneighbors_graph(mode="distance") duration = time() - t0 if self.verbose: print( "[t-SNE] Computed neighbors for {} samples in {:.3f}s...".format( n_samples, duration ) ) # Free the memory used by the ball_tree del knn # knn return the euclidean distance but we need it squared # to be consistent with the 'exact' method. Note that the # the method was derived using the euclidean method as in the # input space. Not sure of the implication of using a different # metric. distances_nn.data **= 2 # compute the joint probability distribution for the input space P = _joint_probabilities_nn(distances_nn, self.perplexity, self.verbose) if isinstance(self._init, np.ndarray): X_embedded = self._init elif self._init == "pca": pca = PCA( n_components=self.n_components, svd_solver="randomized", random_state=random_state, ) X_embedded = pca.fit_transform(X).astype(np.float32, copy=False) # TODO: Update in 1.2 # PCA is rescaled so that PC1 has standard deviation 1e-4 which is # the default value for random initialization. See issue #18018. warnings.warn( "The PCA initialization in TSNE will change to " "have the standard deviation of PC1 equal to 1e-4 " "in 1.2. This will ensure better convergence.", FutureWarning, ) # X_embedded = X_embedded / np.std(X_embedded[:, 0]) * 1e-4 elif self._init == "random": # The embedding is initialized with iid samples from Gaussians with # standard deviation 1e-4. X_embedded = 1e-4 * random_state.standard_normal( size=(n_samples, self.n_components) ).astype(np.float32) else: raise ValueError("'init' must be 'pca', 'random', or a numpy array") # Degrees of freedom of the Student's t-distribution. The suggestion # degrees_of_freedom = n_components - 1 comes from # "Learning a Parametric Embedding by Preserving Local Structure" # Laurens van der Maaten, 2009. degrees_of_freedom = max(self.n_components - 1, 1) return self._tsne( P, degrees_of_freedom, n_samples, X_embedded=X_embedded, neighbors=neighbors_nn, skip_num_points=skip_num_points, ) def _tsne( self, P, degrees_of_freedom, n_samples, X_embedded, neighbors=None, skip_num_points=0, ): """Runs t-SNE.""" # t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P # and the Student's t-distributions Q. The optimization algorithm that # we use is batch gradient descent with two stages: # * initial optimization with early exaggeration and momentum at 0.5 # * final optimization with momentum at 0.8 params = X_embedded.ravel() opt_args = { "it": 0, "n_iter_check": self._N_ITER_CHECK, "min_grad_norm": self.min_grad_norm, "learning_rate": self._learning_rate, "verbose": self.verbose, "kwargs": dict(skip_num_points=skip_num_points), "args": [P, degrees_of_freedom, n_samples, self.n_components], "n_iter_without_progress": self._EXPLORATION_N_ITER, "n_iter": self._EXPLORATION_N_ITER, "momentum": 0.5, } if self.method == "barnes_hut": obj_func = _kl_divergence_bh opt_args["kwargs"]["angle"] = self.angle # Repeat verbose argument for _kl_divergence_bh opt_args["kwargs"]["verbose"] = self.verbose # Get the number of threads for gradient computation here to # avoid recomputing it at each iteration. opt_args["kwargs"]["num_threads"] = _openmp_effective_n_threads() else: obj_func = _kl_divergence # Learning schedule (part 1): do 250 iteration with lower momentum but # higher learning rate controlled via the early exaggeration parameter P *= self.early_exaggeration params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args) if self.verbose: print( "[t-SNE] KL divergence after %d iterations with early exaggeration: %f" % (it + 1, kl_divergence) ) # Learning schedule (part 2): disable early exaggeration and finish # optimization with a higher momentum at 0.8 P /= self.early_exaggeration remaining = self.n_iter - self._EXPLORATION_N_ITER if it < self._EXPLORATION_N_ITER or remaining > 0: opt_args["n_iter"] = self.n_iter opt_args["it"] = it + 1 opt_args["momentum"] = 0.8 opt_args["n_iter_without_progress"] = self.n_iter_without_progress params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args) # Save the final number of iterations self.n_iter_ = it if self.verbose: print( "[t-SNE] KL divergence after %d iterations: %f" % (it + 1, kl_divergence) ) X_embedded = params.reshape(n_samples, self.n_components) self.kl_divergence_ = kl_divergence return X_embedded def fit_transform(self, X, y=None): """Fit X into an embedded space and return that transformed output. Parameters ---------- X : ndarray of shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. If the method is 'barnes_hut' and the metric is 'precomputed', X may be a precomputed sparse graph. y : None Ignored. Returns ------- X_new : ndarray of shape (n_samples, n_components) Embedding of the training data in low-dimensional space. """ self._check_params_vs_input(X) embedding = self._fit(X) self.embedding_ = embedding return self.embedding_ def fit(self, X, y=None): """Fit X into an embedded space. Parameters ---------- X : ndarray of shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. If the method is 'barnes_hut' and the metric is 'precomputed', X may be a precomputed sparse graph. y : None Ignored. Returns ------- X_new : array of shape (n_samples, n_components) Embedding of the training data in low-dimensional space. """ self.fit_transform(X) return self def _more_tags(self): return {"pairwise": self.metric == "precomputed"}
the-stack_106_14732
import unittest import pandas as pd from chemcharts.core.container.chemdata import ChemData from chemcharts.core.container.fingerprint import * from chemcharts.core.functions.binning import Binning class TestBinning(unittest.TestCase): @classmethod def setUpClass(cls) -> None: smiles = Smiles(["COc1ccc(-c2c(-c3ccc(S(N)(=O)=O)cc3)[nH]c3ccccc23)cc1", "COc1ccc(-c2c(-c3ccc(S(N)(=O)=O)cc3)oc3ccccc23)cc1F", "Cc1cc(C)c(S(=O)(=O)N2CCN(C(C)c3nc(C(C)(C)C)no3)CC2)c(C)c1", "C1ccc2c(c1)-c1ccc3ccccc3c1C2Cc1nn[nH]n1", "Cc1ccccc1-c1c(C(=O)N=c2cccc[nH]2)cnc2ccccc12", "N=c1[nH]c(=O)c2ncn(Cc3cccc4ccccc34)c2[nH]1", "O=C1c2cccc3c(F)ccc(c23)CN1c1cccnc1"]) values = pd.DataFrame([1, 3, 4, 5, 2, 1, 6], columns=["test_value"]) test_data_set = ChemData(smiles) test_data_set.set_values(values) cls.test_chemdata = test_data_set def test_preparation(self): binning = Binning() test_sorted_bin_idx, test_bin_idx = binning._preparation(values=[1, 3, 4, 5, 2, 1, 6], num_bins=4) self.assertListEqual([0, 1, 2], test_sorted_bin_idx) self.assertListEqual([0, 1, 1, 2, 0, 0, 2], test_bin_idx) def test_group_value_bins(self): binning = Binning() test_group_value_bins = binning._group_values_bins(values=[1, 3, 4, 5, 2, 1, 6], sorted_bin_idx=[0, 1, 2], bin_idx=[0, 1, 1, 2, 0, 0, 2]) self.assertListEqual([1, 2, 1], test_group_value_bins[0]) def test_calculate_medians(self): binning = Binning() test_median_values = binning._calculate_medians(grouped_value_bins=[[1, 2, 1], [3, 4], [5, 6]]) self.assertListEqual([1, 3.5, 5.5], test_median_values) def test_overwrite_values_medians(self): binning = Binning() test_new_values = binning._overwrite_value_medians(bin_idx=[0, 1, 1, 2, 0, 0, 2], median_values=[1, 3.5, 5.5], sorted_bin_idx=[0, 1, 2]) self.assertListEqual([1, 3.5, 3.5, 5.5, 1, 1, 5.5], test_new_values) def test_binning(self): binning = Binning() test_binning = binning.binning(self.test_chemdata, 4) value_df = test_binning.get_values() self.assertListEqual(list([1, 3.5, 3.5, 5.5, 1, 1, 5.5]), value_df["test_value"].tolist())
the-stack_106_14733
# -*- coding: utf-8 -*- from __future__ import print_function import argparse import logging import os import re import sys import shlex import six from importlib import import_module from six.moves import configparser from behave.model import ScenarioOutline from behave.model_core import FileLocation from behave.reporter.junit import JUnitReporter from behave.reporter.summary import SummaryReporter from behave.tag_expression import make_tag_expression from behave.formatter.base import StreamOpener from behave.formatter import _registry as _format_registry from behave.userdata import UserData, parse_user_define from behave._types import Unknown from behave.textutil import select_best_encoding, to_texts # -- PYTHON 2/3 COMPATIBILITY: # SINCE Python 3.2: ConfigParser = SafeConfigParser ConfigParser = configparser.ConfigParser if six.PY2: ConfigParser = configparser.SafeConfigParser # ----------------------------------------------------------------------------- # CONFIGURATION DATA TYPES: # ----------------------------------------------------------------------------- class LogLevel(object): names = [ "NOTSET", "CRITICAL", "FATAL", "ERROR", "WARNING", "WARN", "INFO", "DEBUG", ] @staticmethod def parse(levelname, unknown_level=None): """ Convert levelname into a numeric log level. :param levelname: Logging levelname (as string) :param unknown_level: Used if levelname is unknown (optional). :return: Numeric log-level or unknown_level, if levelname is unknown. """ return getattr(logging, levelname.upper(), unknown_level) @classmethod def parse_type(cls, levelname): level = cls.parse(levelname, Unknown) if level is Unknown: message = "%s is unknown, use: %s" % \ (levelname, ", ".join(cls.names[1:])) raise argparse.ArgumentTypeError(message) return level @staticmethod def to_string(level): return logging.getLevelName(level) # ----------------------------------------------------------------------------- # CONFIGURATION SCHEMA: # ----------------------------------------------------------------------------- def valid_python_module(path): try: module_path, class_name = path.rsplit('.', 1) module = import_module(module_path) return getattr(module, class_name) except (ValueError, AttributeError, ImportError): raise argparse.ArgumentTypeError("No module named '%s' was found." % path) options = [ (("-c", "--no-color"), dict(action="store_false", dest="color", help="Disable the use of ANSI color escapes.")), (("--color",), dict(action="store_true", dest="color", help="""Use ANSI color escapes. This is the default behaviour. This switch is used to override a configuration file setting.""")), (("-d", "--dry-run"), dict(action="store_true", help="Invokes formatters without executing the steps.")), (("-D", "--define"), dict(dest="userdata_defines", type=parse_user_define, action="append", metavar="NAME=VALUE", help="""Define user-specific data for the config.userdata dictionary. Example: -D foo=bar to store it in config.userdata["foo"].""")), (("-e", "--exclude"), dict(metavar="PATTERN", dest="exclude_re", help="""Don't run feature files matching regular expression PATTERN.""")), (("-i", "--include"), dict(metavar="PATTERN", dest="include_re", help="Only run feature files matching regular expression PATTERN.")), (("--no-junit",), dict(action="store_false", dest="junit", help="Don't output JUnit-compatible reports.")), (("--junit",), dict(action="store_true", help="""Output JUnit-compatible reports. When junit is enabled, all stdout and stderr will be redirected and dumped to the junit report, regardless of the "--capture" and "--no-capture" options. """)), (("--junit-directory",), dict(metavar="PATH", dest="junit_directory", default="reports", help="""Directory in which to store JUnit reports.""")), (("--runner-class",), dict(action="store", default="behave.runner.Runner", type=valid_python_module, help="Tells Behave to use a specific runner. (default: %(default)s)")), ((), # -- CONFIGFILE only dict(dest="default_format", help="Specify default formatter (default: pretty).")), (("-f", "--format"), dict(action="append", help="""Specify a formatter. If none is specified the default formatter is used. Pass "--format help" to get a list of available formatters.""")), (("--steps-catalog",), dict(action="store_true", dest="steps_catalog", help="""Show a catalog of all available step definitions. SAME AS: --format=steps.catalog --dry-run --no-summary -q""")), ((), # -- CONFIGFILE only dict(dest="scenario_outline_annotation_schema", help="""Specify name annotation schema for scenario outline (default="{name} -- @{row.id} {examples.name}").""")), (("-k", "--no-skipped"), dict(action="store_false", dest="show_skipped", help="Don't print skipped steps (due to tags).")), (("--show-skipped",), dict(action="store_true", help="""Print skipped steps. This is the default behaviour. This switch is used to override a configuration file setting.""")), (("--no-snippets",), dict(action="store_false", dest="show_snippets", help="Don't print snippets for unimplemented steps.")), (("--snippets",), dict(action="store_true", dest="show_snippets", help="""Print snippets for unimplemented steps. This is the default behaviour. This switch is used to override a configuration file setting.""")), (("-m", "--no-multiline"), dict(action="store_false", dest="show_multiline", help="""Don't print multiline strings and tables under steps.""")), (("--multiline", ), dict(action="store_true", dest="show_multiline", help="""Print multiline strings and tables under steps. This is the default behaviour. This switch is used to override a configuration file setting.""")), (("-n", "--name"), dict(action="append", metavar="NAME_PATTERN", help="""Select feature elements (scenarios, ...) to run which match part of the given name (regex pattern). If this option is given more than once, it will match against all the given names.""")), (("--no-capture",), dict(action="store_false", dest="stdout_capture", help="""Don't capture stdout (any stdout output will be printed immediately.)""")), (("--capture",), dict(action="store_true", dest="stdout_capture", help="""Capture stdout (any stdout output will be printed if there is a failure.) This is the default behaviour. This switch is used to override a configuration file setting.""")), (("--no-capture-stderr",), dict(action="store_false", dest="stderr_capture", help="""Don't capture stderr (any stderr output will be printed immediately.)""")), (("--capture-stderr",), dict(action="store_true", dest="stderr_capture", help="""Capture stderr (any stderr output will be printed if there is a failure.) This is the default behaviour. This switch is used to override a configuration file setting.""")), (("--no-logcapture",), dict(action="store_false", dest="log_capture", help="""Don't capture logging. Logging configuration will be left intact.""")), (("--logcapture",), dict(action="store_true", dest="log_capture", help="""Capture logging. All logging during a step will be captured and displayed in the event of a failure. This is the default behaviour. This switch is used to override a configuration file setting.""")), (("--logging-level",), dict(type=LogLevel.parse_type, help="""Specify a level to capture logging at. The default is INFO - capturing everything.""")), (("--logging-format",), dict(help="""Specify custom format to print statements. Uses the same format as used by standard logging handlers. The default is "%%(levelname)s:%%(name)s:%%(message)s".""")), (("--logging-datefmt",), dict(help="""Specify custom date/time format to print statements. Uses the same format as used by standard logging handlers.""")), (("--logging-filter",), dict(help="""Specify which statements to filter in/out. By default, everything is captured. If the output is too verbose, use this option to filter out needless output. Example: --logging-filter=foo will capture statements issued ONLY to foo or foo.what.ever.sub but not foobar or other logger. Specify multiple loggers with comma: filter=foo,bar,baz. If any logger name is prefixed with a minus, eg filter=-foo, it will be excluded rather than included.""", config_help="""Specify which statements to filter in/out. By default, everything is captured. If the output is too verbose, use this option to filter out needless output. Example: ``logging_filter = foo`` will capture statements issued ONLY to "foo" or "foo.what.ever.sub" but not "foobar" or other logger. Specify multiple loggers with comma: ``logging_filter = foo,bar,baz``. If any logger name is prefixed with a minus, eg ``logging_filter = -foo``, it will be excluded rather than included.""")), (("--logging-clear-handlers",), dict(action="store_true", help="Clear all other logging handlers.")), (("--no-summary",), dict(action="store_false", dest="summary", help="""Don't display the summary at the end of the run.""")), (("--summary",), dict(action="store_true", dest="summary", help="""Display the summary at the end of the run.""")), (("-o", "--outfile"), dict(action="append", dest="outfiles", metavar="FILE", help="Write to specified file instead of stdout.")), ((), # -- CONFIGFILE only dict(action="append", dest="paths", help="Specify default feature paths, used when none are provided.")), (("-q", "--quiet"), dict(action="store_true", help="Alias for --no-snippets --no-source.")), (("-s", "--no-source"), dict(action="store_false", dest="show_source", help="""Don't print the file and line of the step definition with the steps.""")), (("--show-source",), dict(action="store_true", dest="show_source", help="""Print the file and line of the step definition with the steps. This is the default behaviour. This switch is used to override a configuration file setting.""")), (("--stage",), dict(help="""Defines the current test stage. The test stage name is used as name prefix for the environment file and the steps directory (instead of default path names). """)), (("--stop",), dict(action="store_true", help="Stop running tests at the first failure.")), # -- DISABLE-UNUSED-OPTION: Not used anywhere. # (("-S", "--strict"), # dict(action="store_true", # help="Fail if there are any undefined or pending steps.")), ((), # -- CONFIGFILE only dict(dest="default_tags", metavar="TAG_EXPRESSION", action="append", help="""Define default tags when non are provided. See --tags for more information.""")), (("-t", "--tags"), dict(action="append", metavar="TAG_EXPRESSION", help="""Only execute features or scenarios with tags matching TAG_EXPRESSION. Pass "--tags-help" for more information.""", config_help="""Only execute certain features or scenarios based on the tag expression given. See below for how to code tag expressions in configuration files.""")), (("-T", "--no-timings"), dict(action="store_false", dest="show_timings", help="""Don't print the time taken for each step.""")), (("--show-timings",), dict(action="store_true", dest="show_timings", help="""Print the time taken, in seconds, of each step after the step has completed. This is the default behaviour. This switch is used to override a configuration file setting.""")), (("-v", "--verbose"), dict(action="store_true", help="Show the files and features loaded.")), (("-w", "--wip"), dict(action="store_true", help="""Only run scenarios tagged with "wip". Additionally: use the "plain" formatter, do not capture stdout or logging output and stop at the first failure.""")), (("-x", "--expand"), dict(action="store_true", help="Expand scenario outline tables in output.")), (("--lang",), dict(metavar="LANG", help="Use keywords for a language other than English.")), (("--lang-list",), dict(action="store_true", help="List the languages available for --lang.")), (("--lang-help",), dict(metavar="LANG", help="List the translations accepted for one language.")), (("--tags-help",), dict(action="store_true", help="Show help for tag expressions.")), (("--version",), dict(action="store_true", help="Show version.")), ] # -- OPTIONS: With raw value access semantics in configuration file. raw_value_options = frozenset([ "logging_format", "logging_datefmt", # -- MAYBE: "scenario_outline_annotation_schema", ]) def read_configuration(path): # pylint: disable=too-many-locals, too-many-branches config = ConfigParser() config.optionxform = str # -- SUPPORT: case-sensitive keys config.read(path) config_dir = os.path.dirname(path) result = {} for fixed, keywords in options: if "dest" in keywords: dest = keywords["dest"] else: for opt in fixed: if opt.startswith("--"): dest = opt[2:].replace("-", "_") else: assert len(opt) == 2 dest = opt[1:] if dest in "tags_help lang_list lang_help version".split(): continue if not config.has_option("behave", dest): continue action = keywords.get("action", "store") if action == "store": use_raw_value = dest in raw_value_options result[dest] = config.get("behave", dest, raw=use_raw_value) elif action in ("store_true", "store_false"): result[dest] = config.getboolean("behave", dest) elif action == "append": if dest == "userdata_defines": continue # -- SKIP-CONFIGFILE: Command-line only option. result[dest] = \ [s.strip() for s in config.get("behave", dest).splitlines()] else: raise ValueError('action "%s" not implemented' % action) # -- STEP: format/outfiles coupling if "format" in result: # -- OPTIONS: format/outfiles are coupled in configuration file. formatters = result["format"] formatter_size = len(formatters) outfiles = result.get("outfiles", []) outfiles_size = len(outfiles) if outfiles_size < formatter_size: for formatter_name in formatters[outfiles_size:]: outfile = "%s.output" % formatter_name outfiles.append(outfile) result["outfiles"] = outfiles elif len(outfiles) > formatter_size: print("CONFIG-ERROR: Too many outfiles (%d) provided." % outfiles_size) result["outfiles"] = outfiles[:formatter_size] for paths_name in ("paths", "outfiles"): if paths_name in result: # -- Evaluate relative paths relative to location. # NOTE: Absolute paths are preserved by os.path.join(). paths = result[paths_name] result[paths_name] = \ [os.path.normpath(os.path.join(config_dir, p)) for p in paths] # -- STEP: Special additional configuration sections. # SCHEMA: config_section: data_name special_config_section_map = { "behave.formatters": "more_formatters", "behave.userdata": "userdata", } for section_name, data_name in special_config_section_map.items(): result[data_name] = {} if config.has_section(section_name): result[data_name].update(config.items(section_name)) return result def config_filenames(): paths = ["./", os.path.expanduser("~")] if sys.platform in ("cygwin", "win32") and "APPDATA" in os.environ: paths.append(os.path.join(os.environ["APPDATA"])) for path in reversed(paths): for filename in reversed( ("behave.ini", ".behaverc", "setup.cfg", "tox.ini")): filename = os.path.join(path, filename) if os.path.isfile(filename): yield filename def load_configuration(defaults, verbose=False): for filename in config_filenames(): if verbose: print('Loading config defaults from "%s"' % filename) defaults.update(read_configuration(filename)) if verbose: print("Using defaults:") for k, v in six.iteritems(defaults): print("%15s %s" % (k, v)) def setup_parser(): # construct the parser # usage = "%(prog)s [options] [ [FILE|DIR|URL][:LINE[:LINE]*] ]+" usage = "%(prog)s [options] [ [DIR|FILE|FILE:LINE] ]+" description = """\ Run a number of feature tests with behave.""" more = """ EXAMPLES: behave features/ behave features/one.feature features/two.feature behave features/one.feature:10 behave @features.txt """ parser = argparse.ArgumentParser(usage=usage, description=description) for fixed, keywords in options: if not fixed: continue # -- CONFIGFILE only. if "config_help" in keywords: keywords = dict(keywords) del keywords["config_help"] parser.add_argument(*fixed, **keywords) parser.add_argument("paths", nargs="*", help="Feature directory, file or file location (FILE:LINE).") return parser class Configuration(object): """Configuration object for behave and behave runners.""" # pylint: disable=too-many-instance-attributes defaults = dict( color=sys.platform != "win32", show_snippets=True, show_skipped=True, dry_run=False, show_source=True, show_timings=True, stdout_capture=True, stderr_capture=True, log_capture=True, logging_format="%(levelname)s:%(name)s:%(message)s", logging_level=logging.INFO, steps_catalog=False, summary=True, junit=False, stage=None, userdata={}, # -- SPECIAL: default_format="pretty", # -- Used when no formatters are configured. default_tags="", # -- Used when no tags are defined. scenario_outline_annotation_schema=u"{name} -- @{row.id} {examples.name}" ) cmdline_only_options = set("userdata_defines") def __init__(self, command_args=None, load_config=True, verbose=None, **kwargs): """ Constructs a behave configuration object. * loads the configuration defaults (if needed). * process the command-line args * store the configuration results :param command_args: Provide command args (as sys.argv). If command_args is None, sys.argv[1:] is used. :type command_args: list<str>, str :param load_config: Indicate if configfile should be loaded (=true) :param verbose: Indicate if diagnostic output is enabled :param kwargs: Used to hand-over/overwrite default values. """ # pylint: disable=too-many-branches, too-many-statements if command_args is None: command_args = sys.argv[1:] elif isinstance(command_args, six.string_types): encoding = select_best_encoding() or "utf-8" if six.PY2 and isinstance(command_args, six.text_type): command_args = command_args.encode(encoding) elif six.PY3 and isinstance(command_args, six.binary_type): command_args = command_args.decode(encoding) command_args = shlex.split(command_args) elif isinstance(command_args, (list, tuple)): command_args = to_texts(command_args) if verbose is None: # -- AUTO-DISCOVER: Verbose mode from command-line args. verbose = ("-v" in command_args) or ("--verbose" in command_args) self.version = None self.tags_help = None self.lang_list = None self.lang_help = None self.default_tags = None self.junit = None self.logging_format = None self.logging_datefmt = None self.name = None self.scope = None self.steps_catalog = None self.userdata = None self.wip = None defaults = self.defaults.copy() for name, value in six.iteritems(kwargs): defaults[name] = value self.defaults = defaults self.formatters = [] self.reporters = [] self.name_re = None self.outputs = [] self.include_re = None self.exclude_re = None self.scenario_outline_annotation_schema = None # pylint: disable=invalid-name self.steps_dir = "steps" self.environment_file = "environment.py" self.userdata_defines = None self.more_formatters = None if load_config: load_configuration(self.defaults, verbose=verbose) parser = setup_parser() parser.set_defaults(**self.defaults) args = parser.parse_args(command_args) for key, value in six.iteritems(args.__dict__): if key.startswith("_") and key not in self.cmdline_only_options: continue setattr(self, key, value) # -- ATTRIBUTE-NAME-CLEANUP: self.tag_expression = None self._tags = self.tags self.tags = None if isinstance(self.default_tags, six.string_types): self.default_tags = self.default_tags.split() self.paths = [os.path.normpath(path) for path in self.paths] self.setup_outputs(args.outfiles) if self.steps_catalog: # -- SHOW STEP-CATALOG: As step summary. self.default_format = "steps.catalog" if self.format: self.format.append("steps.catalog") else: self.format = ["steps.catalog"] self.dry_run = True self.summary = False self.show_skipped = False self.quiet = True if self.wip: # Only run scenarios tagged with "wip". # Additionally: # * use the "plain" formatter (per default) # * do not capture stdout or logging output and # * stop at the first failure. self.default_format = "plain" self._tags = ["wip"] + self.default_tags self.color = False self.stop = True self.log_capture = False self.stdout_capture = False self.tag_expression = make_tag_expression(self._tags or self.default_tags) # -- BACKWARD-COMPATIBLE (BAD-NAMING STYLE; deprecating): self.tags = self.tag_expression if self.quiet: self.show_source = False self.show_snippets = False if self.exclude_re: self.exclude_re = re.compile(self.exclude_re) if self.include_re: self.include_re = re.compile(self.include_re) if self.name: # -- SELECT: Scenario-by-name, build regular expression. self.name_re = self.build_name_re(self.name) if self.stage is None: # pylint: disable=access-member-before-definition # -- USE ENVIRONMENT-VARIABLE, if stage is undefined. self.stage = os.environ.get("BEHAVE_STAGE", None) self.setup_stage(self.stage) self.setup_model() self.setup_userdata() # -- FINALLY: Setup Reporters and Formatters # NOTE: Reporters and Formatters can now use userdata information. if self.junit: # Buffer the output (it will be put into Junit report) self.stdout_capture = True self.stderr_capture = True self.log_capture = True self.reporters.append(JUnitReporter(self)) if self.summary: self.reporters.append(SummaryReporter(self)) self.setup_formats() unknown_formats = self.collect_unknown_formats() if unknown_formats: parser.error("format=%s is unknown" % ", ".join(unknown_formats)) def setup_outputs(self, args_outfiles=None): if self.outputs: assert not args_outfiles, "ONLY-ONCE" return # -- NORMAL CASE: Setup only initially (once). if not args_outfiles: self.outputs.append(StreamOpener(stream=sys.stdout)) else: for outfile in args_outfiles: if outfile and outfile != "-": self.outputs.append(StreamOpener(outfile)) else: self.outputs.append(StreamOpener(stream=sys.stdout)) def setup_formats(self): """Register more, user-defined formatters by name.""" if self.more_formatters: for name, scoped_class_name in self.more_formatters.items(): _format_registry.register_as(name, scoped_class_name) def collect_unknown_formats(self): unknown_formats = [] if self.format: for format_name in self.format: if (format_name == "help" or _format_registry.is_formatter_valid(format_name)): continue unknown_formats.append(format_name) return unknown_formats @staticmethod def build_name_re(names): """ Build regular expression for scenario selection by name by using a list of name parts or name regular expressions. :param names: List of name parts or regular expressions (as text). :return: Compiled regular expression to use. """ # -- NOTE: re.LOCALE is removed in Python 3.6 (deprecated in Python 3.5) # flags = (re.UNICODE | re.LOCALE) # -- ENSURE: Names are all unicode/text values (for issue #606). names = to_texts(names) pattern = u"|".join(names) return re.compile(pattern, flags=re.UNICODE) def exclude(self, filename): if isinstance(filename, FileLocation): filename = six.text_type(filename) if self.include_re and self.include_re.search(filename) is None: return True if self.exclude_re and self.exclude_re.search(filename) is not None: return True return False def setup_logging(self, level=None, configfile=None, **kwargs): """ Support simple setup of logging subsystem. Ensures that the logging level is set. But note that the logging setup can only occur once. SETUP MODES: * :func:`logging.config.fileConfig()`, if ``configfile`` is provided. * :func:`logging.basicConfig()`, otherwise. .. code-block: python # -- FILE: features/environment.py def before_all(context): context.config.setup_logging() :param level: Logging level of root logger. If None, use :attr:`logging_level` value. :param configfile: Configuration filename for fileConfig() setup. :param kwargs: Passed to :func:`logging.basicConfig()` """ if level is None: level = self.logging_level # pylint: disable=no-member if configfile: from logging.config import fileConfig fileConfig(configfile) else: # pylint: disable=no-member format_ = kwargs.pop("format", self.logging_format) datefmt = kwargs.pop("datefmt", self.logging_datefmt) logging.basicConfig(format=format_, datefmt=datefmt, **kwargs) # -- ENSURE: Default log level is set # (even if logging subsystem is already configured). logging.getLogger().setLevel(level) def setup_model(self): if self.scenario_outline_annotation_schema: name_schema = six.text_type(self.scenario_outline_annotation_schema) ScenarioOutline.annotation_schema = name_schema.strip() def setup_stage(self, stage=None): """Setup the test stage that selects a different set of steps and environment implementations. :param stage: Name of current test stage (as string or None). EXAMPLE:: # -- SETUP DEFAULT TEST STAGE (unnamed): config = Configuration() config.setup_stage() assert config.steps_dir == "steps" assert config.environment_file == "environment.py" # -- SETUP PRODUCT TEST STAGE: config.setup_stage("product") assert config.steps_dir == "product_steps" assert config.environment_file == "product_environment.py" """ steps_dir = "steps" environment_file = "environment.py" if stage: # -- USE A TEST STAGE: Select different set of implementations. prefix = stage + "_" steps_dir = prefix + steps_dir environment_file = prefix + environment_file self.steps_dir = steps_dir self.environment_file = environment_file def setup_userdata(self): if not isinstance(self.userdata, UserData): self.userdata = UserData(self.userdata) if self.userdata_defines: # -- ENSURE: Cmd-line overrides configuration file parameters. self.userdata.update(self.userdata_defines) def update_userdata(self, data): """Update userdata with data and reapply userdata defines (cmdline). :param data: Provides (partial) userdata (as dict) """ self.userdata.update(data) if self.userdata_defines: # -- REAPPLY: Cmd-line defines (override configuration file data). self.userdata.update(self.userdata_defines)
the-stack_106_14735
import math import torch.nn as nn import torch.utils.model_zoo as model_zoo from fedml.model.cv.batchnorm_utils import SynchronizedBatchNorm2d class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, BatchNorm=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = BatchNorm(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False ) self.bn2 = BatchNorm(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = BatchNorm(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, output_stride, BatchNorm, model_name, pretrained=True): self.inplanes = 64 super(ResNet, self).__init__() self.model_name = model_name blocks = [1, 2, 4] if self.model_name == "deeplabV3_plus": if output_stride == 16: strides = [1, 2, 2, 1] dilations = [1, 1, 1, 2] elif output_stride == 8: strides = [1, 2, 1, 1] dilations = [1, 1, 2, 4] else: raise NotImplementedError elif self.model_name == "unet": strides = [1, 2, 2, 2] dilations = [1, 1, 1, 2] # Modules self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer( block, 64, layers[0], stride=strides[0], dilation=dilations[0], BatchNorm=BatchNorm ) self.layer2 = self._make_layer( block, 128, layers[1], stride=strides[1], dilation=dilations[1], BatchNorm=BatchNorm ) self.layer3 = self._make_layer( block, 256, layers[2], stride=strides[2], dilation=dilations[2], BatchNorm=BatchNorm ) self.layer4 = self._make_MG_unit( block, 512, blocks=blocks, stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm ) # self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm) self._init_weight() if pretrained: self._load_pretrained_model() def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, dilation, downsample, BatchNorm)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation, BatchNorm=BatchNorm)) return nn.Sequential(*layers) def _make_MG_unit(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, dilation=blocks[0] * dilation, downsample=downsample, BatchNorm=BatchNorm ) ) self.inplanes = planes * block.expansion for i in range(1, len(blocks)): layers.append(block(self.inplanes, planes, stride=1, dilation=blocks[i] * dilation, BatchNorm=BatchNorm)) return nn.Sequential(*layers) def forward(self, input): if self.model_name == "deeplabV3_plus": x = self.conv1(input) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) low_level_feat = x x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x, low_level_feat elif self.model_name == "unet": x = input.detach().clone() stages = [ nn.Identity(), nn.Sequential(self.conv1, self.bn1, self.relu), nn.Sequential(self.maxpool, self.layer1), self.layer2, self.layer3, self.layer4, ] features = [] for i in range(len(stages)): x = stages[i](x) # print("In resnet ",x.shape) features.append(x) return features def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, SynchronizedBatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _load_pretrained_model(self): pretrain_dict = model_zoo.load_url("https://download.pytorch.org/models/resnet101-5d3b4d8f.pth") model_dict = {} state_dict = self.state_dict() for k, v in pretrain_dict.items(): if k in state_dict: model_dict[k] = v state_dict.update(model_dict) self.load_state_dict(state_dict) def ResNet101(output_stride, BatchNorm, model_name, pretrained=True): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], output_stride, BatchNorm, model_name, pretrained=True) return model if __name__ == "__main__": import torch model = ResNet101(BatchNorm=nn.BatchNorm2d, pretrained=True, output_stride=8) input = torch.rand(1, 3, 512, 512) output, low_level_feat = model(input) print(output.size()) print(low_level_feat.size())
the-stack_106_14736
#!/usr/bin/python3.6 import pyipopt import numpy as np import dynamics as dy import cost import constraint import adolc_appro as aa import pylab as plt import util import time import mujoco_py import click # import pickle np.set_printoptions(threshold=np.nan) @click.command() @click.option('--traj_filename', type=str, default='/tmp/trajectory.pkl', help='filename of the solution trajectory') def main(traj_filename): prob = {} prob["n"] = 10 prob["qdim"] = 2 prob["udim"] = 1 # prob["dt"] = 0.1/( prob["n"]-1) prob["dt"] = 0.1 p_L = [-2, -1*np.pi, -2, -np.pi, -3] p_U = [2, 1*np.pi, 2, np.pi, 3] x_L = np.tile(p_L, prob["n"]) x_U = np.tile(p_U, prob["n"]) qdim = prob['qdim'] start = np.array([0]*qdim+[0]*qdim) start[1] = -np.pi start[1] = 0 end = np.array([0]*qdim+[0]*qdim) n = prob["n"] q_v_arr_lst = [np.linspace(start[i], end[i], n) for i in range(2*prob['qdim'])] u_arr = np.ones((prob["udim"], n))*0.001 X_2d = np.vstack([q_v_arr_lst, u_arr]) X_init = X_2d.T.flatten() # set the control cost X_sample = np.random.uniform(x_L, x_U) #set the cost and the gradient of the cost ctrl_cost = cost.Control_Cost(prob) eval_f_adolc = aa.Func_Adolc(ctrl_cost, X_sample, scaler=True) eval_grad_f_adolc = aa.Eval_Grad_F_Adolc(eval_f_adolc.id) # eval_grad_f_adolc = aa.Func_Adolc(ctrl_cost.eval_grad_f, X_sample) #set the constriant function for points at specific time g1 = np.array([-np.pi, 0]) g2 = np.array([0, 0]) points = [(0, g1), (n-1, g2)] # points = [(n-1, end)] # points = [(0, start)] # p_index, p_g_func = [constraint.get_point_constriant(prob, t, g) # for (t, g) in points] # q and v of the pole dims = np.array([1,1+prob["qdim"]]) p_index_g_piar = [constraint.get_point_constriant(prob, t, g, dims) for (t, g) in points] p_index_iter, p_g_func_iter = zip(*p_index_g_piar) p_index_lst = list(p_index_iter) p_g_lst = list(p_g_func_iter) # p_g_adolc_lst = [aa.Func_Adolc(g, X_sample[i]) # for (i, g) in p_index_g_piar] D_factory= constraint.Dynamics_constriant model_path = "/home/tao/src/gym/gym/envs/mujoco/assets/inverted_pendulum.xml" model = dy.make_model(model_path) sim = mujoco_py.MjSim(model) qdim = model.nq udim = model.nu cart = dy.Mujoco_Dynamics(model, sim, qdim, udim) dynamics = cart.dynamics d_index, d_g_func = constraint.get_dynamic_constriants(prob, dynamics, range(0, n-1)) # d_g_adolc = aa.Func_Adolc(d_g_func, X_sample[d_index[0]]) #all dynamcis shares the same approximation function # d_g_adolc_lst = [d_g_adolc for i in d_index] d_g_lst = [d_g_func for i in d_index] index_lst = p_index_lst + d_index eval_g_lst = p_g_lst + d_g_lst # X_sample_lst = [X_sample[i] for i in index_lst] # # g_adolc_x_pair = zip(eval_g_adolc_lst, X_sample_lst) # # eval_jac_adolc_lst = [aa.Eval_Jac_G_Adolc(g.id, x) # for (g, x) in g_adolc_x_pair] eval_g = constraint.Stacked_Constriants(eval_g_lst, index_lst) eval_g_adolc = aa.Func_Adolc(eval_g, X_sample) eval_jac_g_adolc = aa.Eval_Jac_G_Adolc(eval_g_adolc.id, X_sample) # eval_g_adolc = aa.Func_Adolc(eval_g, X_sample) # eval_jac_g = constraint.Stacked_Constriants_Jacobian(eval_g_lst , # eval_jac_lst, # index_lst) nvar = X_init.size ncon = eval_g(X_init).size eval_lagrangian = constraint.Eval_Lagrangian(ctrl_cost, eval_g) #x, lagrangian, obj_factor x_lag_lst = [X_sample, np.ones(ncon), 1] x_lag_arr = np.hstack(x_lag_lst) eval_lagrangian_adolc = aa.Func_Adolc(eval_lagrangian, x_lag_lst) eval_h_adolc = aa.Eval_h_adolc(eval_lagrangian_adolc.id, x_lag_arr) maks = eval_h_adolc(X_init, np.ones(ncon), 1, True) H = eval_h_adolc(X_init, np.ones(ncon), 1, False) g_L = np.zeros(ncon) g_U = np.zeros(ncon) nnzj = eval_jac_g_adolc.nnzj nnzh = eval_h_adolc.nnzh nlp = pyipopt.create(nvar, x_L, x_U, ncon, g_L, g_U, nnzj, 0, eval_f_adolc , eval_grad_f_adolc, eval_g_adolc, eval_jac_g_adolc) # nlp = pyipopt.create(nvar, x_L, x_U, ncon, g_L, g_U, nnzj, nnzh, eval_f_adolc , # eval_grad_f_adolc, eval_g_adolc, eval_jac_g_adolc, eval_h_adolc) output, zl, zu, constraint_multipliers, obj, status = nlp.solve(X_init) output_2d = output.reshape(n, -1) output.dump(traj_filename) return output_2d, prob if __name__ == "__main__": start_time = time.time() output_2d, prob = main() print("--- %s seconds ---" % (time.time() - start_time)) print(output_2d) Q = output_2d[:, 1] V = output_2d[:, prob["qdim"]+1] # U = output_2d[:, 4:] plt.plot(Q, V) plt.show()