filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_13830
import json from xml.sax.saxutils import quoteattr from django.utils.safestring import mark_safe from . import field from . import container class FilterListContainerMixin(object): template_name = 'django_cradmin/uicontainer/filterlist/filterlist.django.html' def initialize(self, id_attribute='id', class_name=None, select_mode=None, auto_load_first_page=True, get_items_api_url=None, components=None, initially_selected_item_ids=None): self._id_attribute = id_attribute self._class_name = class_name self._select_mode = select_mode self._auto_load_first_page = auto_load_first_page self._get_items_api_url = get_items_api_url self._components = components or [] self._initially_selected_item_ids = initially_selected_item_ids or [] def get_config_dict(self): return { 'idAttribute': self._id_attribute, 'className': self._class_name, 'selectMode': self._select_mode, 'autoLoadFirstPage': self._auto_load_first_page, 'getItemsApiUrl': self._get_items_api_url, 'components': self._components, 'initiallySelectedItemIds': self._initially_selected_item_ids } @property def widget_config_json(self): return mark_safe(quoteattr(json.dumps(self.get_config_dict()))) class FilterListField(FilterListContainerMixin, field.BaseFieldRenderable): def __init__(self, id_attribute='id', class_name=None, select_mode=None, auto_load_first_page=True, get_items_api_url=None, components=None, initially_selected_item_ids=None, **kwargs): self.initialize(id_attribute=id_attribute, class_name=class_name, select_mode=select_mode, auto_load_first_page=auto_load_first_page, get_items_api_url=get_items_api_url, components=components, initially_selected_item_ids=initially_selected_item_ids) super(FilterListField, self).__init__(**kwargs) def should_render_as_child_of_label(self): return False class FilterListContainer(FilterListContainerMixin, container.AbstractContainerRenderable): def __init__(self, id_attribute='id', class_name=None, select_mode=None, auto_load_first_page=True, get_items_api_url=None, components=None, initially_selected_item_ids=None, **kwargs): self.initialize(id_attribute=id_attribute, class_name=class_name, select_mode=select_mode, auto_load_first_page=auto_load_first_page, get_items_api_url=get_items_api_url, components=components, initially_selected_item_ids=initially_selected_item_ids) super(FilterListContainer, self).__init__(**kwargs)
the-stack_106_13832
from mimesis_stats.providers.multivariable import MultiVariable def test_dependent_variables(): names = ["response", "count"] combinations = [("Yes", 123), ("No", None)] weights = [0, 1] provider = MultiVariable() expected_result = {"response": "No", "count": None} result = provider.dependent_variables(names, options=combinations, weights=weights) assert result == expected_result expected_result = {"response": "Yes", "count": 123} result = provider.dependent_variables(names, combinations, weights=list(reversed(weights))) assert result == expected_result
the-stack_106_13833
# --------------------------------------------------------------------------- # # Author: Ibrahim Odumas # All Rights Reserved # Open-source, free to copy # --------------------------------------------------------------------------- # import utils import os import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tabulate import tabulate from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator # ---------- Plot Setting ---------- # COLOR = sns.color_palette() FIGSIZE = (10, 6) FONTSIZE = 20 ALPHA_PLT = 1 # ---------------------------------- # # ---------- Load Data ------------- # _TRAIN = TRAIN_DF = pd.read_csv(os.path.join(utils.ROOT_DIR, "quoradata", "train.csv")) _TEST = pd.read_csv(os.path.join(utils.ROOT_DIR, "quoradata", "test.csv")) columns = ["question1", "question2"] TRAIN_X = _TRAIN[columns] TRAIN_Y = _TRAIN.is_duplicate TEST_X = _TEST[columns] del _TRAIN, _TEST # ---------------------------------- # def generate_word_cloud(text): wc = WordCloud( background_color="white", max_words=20, stopwords=stopwords, contour_width=3, contour_color="steelblue", ) wc.generate(text) plt.imshow(wc, interpolation="bilinear") plt.title(text, fontsize=FONTSIZE) plt.axis("off") plt.show() if __name__ == "__main__": # ---------- STOPWORDS ------------- # stopwords = set(STOPWORDS) stopwords.add("said") # ---------------------------------- # # ------- Analyzing Train set ------ # # 1. get the a table of 0 and 1 in the class label train_cl_tb = TRAIN_Y.value_counts() print(tabulate(pd.DataFrame(train_cl_tb), tablefmt="psql", headers="keys")) plt.figure(figsize=FIGSIZE) sns.barplot(train_cl_tb.index, train_cl_tb.values, alpha=ALPHA_PLT, color=COLOR[3]) plt.ylabel("Frequency", fontsize=FONTSIZE) plt.xlabel("Is Duplicate - (Response Variable)", fontsize=FONTSIZE) plt.show() # 2. sample size of Train vs. Test plt.figure(figsize=FIGSIZE) sns.barplot( ["Train", "Test"], [TRAIN_X.shape[0], TEST_X.shape[0]], alpha=ALPHA_PLT, color=COLOR[3], ) plt.ylabel("Frequency", fontsize=FONTSIZE) plt.xlabel("Sample Size", fontsize=FONTSIZE) plt.show() # ------ END Analyzing training set ---- # # ------- Generate Word Cloud ----------------------- # text1 = TRAIN_X.question1[0] # Que1 with is_duplicate = 0 text2 = TRAIN_X.question2[0] # Que2 with is_duplicate = 0 text3 = TRAIN_X.question1[5] # Que1 with is_duplicate = 1 text4 = TRAIN_X.question2[5] # Que2 with is_duplicate = 1 generate_word_cloud(text1) generate_word_cloud(text2) generate_word_cloud(text3) generate_word_cloud(text4) # ------- END Generate Word Cloud ----------------------- #
the-stack_106_13835
import torch from utils.loading_utils import load_model, get_device import numpy as np import argparse import pandas as pd from utils.event_readers import FixedSizeEventReader, FixedDurationEventReader from utils.inference_utils import events_to_voxel_grid, events_to_voxel_grid_pytorch from utils.timers import Timer from image_reconstructor import ImageReconstructor from options.inference_options import set_inference_options if __name__ == "__main__": parser = argparse.ArgumentParser( description='Evaluating a trained network') parser.add_argument('-c', '--path_to_model', required=True, type=str, help='path to model weights') parser.add_argument('-i', '--input_file', required=True, type=str) parser.add_argument('--fixed_duration', dest='fixed_duration', action='store_true') parser.set_defaults(fixed_duration=False) parser.add_argument('-N', '--window_size', default=None, type=int, help="Size of each event window, in number of events. Ignored if --fixed_duration=True") parser.add_argument('-T', '--window_duration', default=33.33, type=float, help="Duration of each event window, in milliseconds. Ignored if --fixed_duration=False") parser.add_argument('--num_events_per_pixel', default=0.35, type=float, help='in case N (window size) is not specified, it will be \ automatically computed as N = width * height * num_events_per_pixel') parser.add_argument('--skipevents', default=0, type=int) parser.add_argument('--suboffset', default=0, type=int) parser.add_argument('--compute_voxel_grid_on_cpu', dest='compute_voxel_grid_on_cpu', action='store_true') parser.set_defaults(compute_voxel_grid_on_cpu=False) set_inference_options(parser) args = parser.parse_args() # Read sensor size from the first first line of the event file path_to_events = args.input_file header = pd.read_csv(path_to_events, delim_whitespace=True, header=None, names=['width', 'height'], dtype={'width': np.int, 'height': np.int}, nrows=1) width, height = header.values[0] print('Sensor size: {} x {}'.format(width, height)) # Load model model = load_model(args.path_to_model) device = get_device(args.use_gpu) model = model.to(device) model.eval() reconstructor = ImageReconstructor(model, height, width, model.num_bins, args) """ Read chunks of events using Pandas """ # Loop through the events and reconstruct images N = args.window_size if not args.fixed_duration: if N is None: N = int(width * height * args.num_events_per_pixel) print('Will use {} events per tensor (automatically estimated with num_events_per_pixel={:0.2f}).'.format( N, args.num_events_per_pixel)) else: print('Will use {} events per tensor (user-specified)'.format(N)) mean_num_events_per_pixel = float(N) / float(width * height) if mean_num_events_per_pixel < 0.1: print('!!Warning!! the number of events used ({}) seems to be low compared to the sensor size. \ The reconstruction results might be suboptimal.'.format(N)) elif mean_num_events_per_pixel > 1.5: print('!!Warning!! the number of events used ({}) seems to be high compared to the sensor size. \ The reconstruction results might be suboptimal.'.format(N)) initial_offset = args.skipevents sub_offset = args.suboffset start_index = initial_offset + sub_offset if args.compute_voxel_grid_on_cpu: print('Will compute voxel grid on CPU.') if args.fixed_duration: event_window_iterator = FixedDurationEventReader(path_to_events, duration_ms=args.window_duration, start_index=start_index) else: event_window_iterator = FixedSizeEventReader(path_to_events, num_events=N, start_index=start_index) with Timer('Processing entire dataset'): for event_window in event_window_iterator: last_timestamp = event_window[-1, 0] with Timer('Building event tensor'): if args.compute_voxel_grid_on_cpu: event_tensor = events_to_voxel_grid(event_window, num_bins=model.num_bins, width=width, height=height) event_tensor = torch.from_numpy(event_tensor) else: event_tensor = events_to_voxel_grid_pytorch(event_window, num_bins=model.num_bins, width=width, height=height, device=device) num_events_in_window = event_window.shape[0] reconstructor.update_reconstruction(event_tensor, start_index + num_events_in_window, last_timestamp) start_index += num_events_in_window
the-stack_106_13836
""" 短信登陆telegram 下载设备数据,命令行 下载信息数据库,反馈为文本结构体 create by judy 2018/10/29 update by judy 2019/03/07 新增回调函数,删除读取后的文件 修改查询账号是否在线 update by judy 2020/05/18 即将新增边下边读功能,可能会新增很多函数,这里做了一些拆分 不然那就实在是太长了 """ import datetime import json import re import subprocess import threading import traceback from pathlib import Path from datacontract.ecommandstatus import ECommandStatus from datacontract.idowndataset import Task, EBackResult # 联系人信息 from idownclient.clientdatafeedback import CONTACT, CONTACT_ONE, ICHATGROUP, ICHATGROUP_ONE, ICHATLOG, ICHATLOG_ONE, \ IdownLoginLog, IdownLoginLog_ONE, PROFILE, RESOURCES, EResourceType from idownclient.spider.appcfg import AppCfg from .telegrambase import TelegramBase class SpiderTelegram(TelegramBase): def __init__(self, tsk: Task, appcfg: AppCfg, clientid): TelegramBase.__init__(self, tsk, appcfg, clientid) def _sms_login(self): if not self._environment: return self._environment # login_res = False is_login = self._is_login() if is_login: login_res = True else: login_res = self.__sms_login() return login_res def __sms_login(self): # login # 默认带了+86的 args = self._common_args(self.task.phone) p = self._run_telegram( *args, cmdtype='login', taskid=self.task.batchid, # stdout=fsout, # stderr=fserr, ) # 读取输出 process_login = threading.Thread( target=self._login_process, args=(p,)) process_login.start() process_flush = threading.Thread(target=self._std_flush, args=(p,)) process_flush.start() process_err = threading.Thread(target=self._read_err_log, args=(p,)) process_err.start() try: if self._sectimeout > 0: process_login.join(self._sectimeout) if process_login.isAlive and process_login.is_alive(): self._logger.error(f"timeout sec:{self._sectimeout}") else: process_login.join() except Exception: self._logger.error(traceback.format_exc()) if p is not None: p.kill() finally: p.poll() p.terminate() process_flush.join() process_err.join() return self._result def _online_check(self): """ 查询telegram的账号是否在线, telegram账号需要预先登陆 :return: """ # if not self._environment: # return self._environment # 查询的手机号 args = ["-file {}".format(self.task.globaltelcode + self.task.phone)] # 已经登录的账号 res = [ f"-account {self.task.preglobaltelcode + self.task.preaccount}", f"-target {self.accountsdir}", f"-phone {'Honor9'}", ] args.extend(res) p = self._run_telegram( *args, cmdtype='find_online', taskid=self.task.batchid, # stdout=fsout, # stderr=fserr, ) # 读取error process_err = threading.Thread(target=self._read_err_log, args=(p,)) process_err.start() # 刷新 process_flush = threading.Thread(target=self._std_flush, args=(p,)) process_flush.start() self._stopsigin = False while True: line = p.stdout.readline() if line is not None and line != '': msg: str = line.strip().rstrip() if not msg.startswith("#"): self._logger.info(f"{msg}") continue retcode = msg idx = msg.find(' ') if idx < 0: idx = msg.find('\t') if idx > 0: retcode = msg[:idx].strip().rstrip() if retcode == '#@1000': self._logger.info(f"result code: {msg}") self._write_task_back(ECommandStatus.Failed, msg[6:]) break elif retcode == '#@21': self._logger.info(f"result code: {msg}") self._write_task_back(ECommandStatus.Succeed, "目标账号在线", result=EBackResult.Online) break elif retcode == '#@22': self._logger.info(f"result code: {msg}") if '0' in msg: # 0 既然表示在线为啥要归类到离线里 self._write_task_back(ECommandStatus.Succeed, "目标账号在线", result=EBackResult.Online) elif '-1' in msg: self._write_task_back(ECommandStatus.Succeed, "目标账号已经很久没有登陆", result=EBackResult.Offline) else: self._write_task_back(ECommandStatus.Succeed, "目标账号离线", result=EBackResult.Offline) break elif retcode == '#@24': self._logger.info(f"result code: {msg}") self._write_task_back(ECommandStatus.Succeed, "账号没有注册", result=EBackResult.UnRegisterd) break else: self._logger.info(f"result code: {msg}") self._write_task_back(ECommandStatus.Failed, msg) break exitcode = p.wait() self._logger.info(f"program return code: {str(exitcode)}") self._stopsigin = True return def _check_registration(self): """ 没必要,查询账号是否在线的功能和register是一样的, telegram账号默认手机号都注册了 :return: """ self._write_task_back(ECommandStatus.Succeed, description="telegram默认所有手机号都注册了", result=EBackResult.Registerd) return def _logout(self) -> bool: logout_res = False args = self._common_args(self.task.phone) p = self._run_telegram( *args, cmdtype='logout', taskid=self.task.batchid, # stdout=fsout, # stderr=fserr, ) # 读取error process_err = threading.Thread(target=self._read_err_log, args=(p,)) process_err.start() # 刷新 process_flush = threading.Thread(target=self._std_flush, args=(p,)) process_flush.start() self._stopsigin = False while True: line = p.stdout.readline() if line is not None and line != '': msg: str = line.strip().rstrip() if not msg.startswith("#"): self._logger.info("{}".format(msg)) continue retcode = msg idx = msg.find(' ') if idx < 0: idx = msg.find('\t') if idx > 0: retcode = msg[:idx].strip().rstrip() if retcode == '#@1000': self._logger.info(f"result code: {msg}") self._write_task_back(ECommandStatus.Failed, msg) break elif retcode == '#@51': self._logger.info(f"result code: {msg}") logout_res = True break elif retcode == '#@52': self._logger.info(f"result code: {msg}") break else: self._logger.info(f"result code: {msg}") break exitcode = p.wait() self._logger.info(f"program return code: {str(exitcode)}") self._stopsigin = True return logout_res def _is_login(self): """ 测试telegram是否需要重新登陆 :return: """ is_login_status = False p = None try: args = ["-file {}".format(self.task.globaltelcode + self.task.phone)] args.extend(self._common_args(self.task.phone)) p = self._run_telegram( *args, cmdtype='find_online', taskid=self.task.batchid, # stdout=fsout, # stderr=fserr, ) # 读取error process_err = threading.Thread(target=self._read_err_log, args=(p,)) process_err.start() # 刷新 process_flush = threading.Thread(target=self._std_flush, args=(p,)) process_flush.start() self._stopsigin = False while True: line = p.stdout.readline() if line is not None and line != '': msg: str = line.strip().rstrip() if not msg.startswith("#"): self._logger.info(f"{msg}") continue # retcode = msg # idx = msg.find(' ') # if idx < 0: # idx = msg.find('\t') # if idx > 0: # retcode = msg[:idx].strip().rstrip() if '#@21' in msg or '#@22' in msg or '#@23' in msg or '#@24' in msg: self._logger.info(f"result code: {msg}") is_login_status = True break else: self._logger.info(f"result code: {msg}") break except Exception: self._logger.error(traceback.format_exc()) if p is not None: p.kill() finally: if p is not None: exitcode = p.wait() self._logger.info(f"program return code: {str(exitcode)}") self._stopsigin = True return is_login_status def _login_process(self, p: subprocess.Popen): if p is None or not isinstance(p, subprocess.Popen): raise Exception("subprocess.Popen object is None while dealing the stdout stream") self._stopsigin = False try: while True: line = p.stdout.readline() if line is not None and line != '': msg: str = line.strip().rstrip() if not msg.startswith("#"): self._logger.info(f"{msg}") continue retcode = msg idx = msg.find(' ') if idx < 0: idx = msg.find('\t') if idx > 0: retcode = msg[:idx].strip().rstrip() if retcode == '#@31': self._logger.info(f"result code: {msg}") try: vercode = self._get_vercode() except: # 验证码超时做的事情 vercode = '00000' p.stdin.write(f"{vercode}\n") p.stdin.flush() elif retcode == '#@36': self._logger.info(f'result code: {msg}') elif retcode == '#@32': # 登陆成功 self._logger.info(f"result code: {msg}") self._result = True break else: self._logger.info(f"result code: {msg}") self._result = False break except Exception: self._logger.error(traceback.format_exc()) self._result = False if p is not None: p.kill() finally: exitcode = p.wait() self._logger.info(f"program return code: {str(exitcode)}") self._stopsigin = True return def _download(self): # 先下载数据库是为了给userid赋值 # 下载数据库, user表,charts表,messages表 try: for dbdata in self._download_sqlitdb(): yield dbdata except: self._logger.error(f"Error downloading database data, err:{traceback.format_exc()}") # 下载设备列表 try: for clientlist in self.__get_loginlog(): yield clientlist except: self._logger.error(f"Error downloading device list, err:{traceback.format_exc()}") def __get_loginlog(self): args = self._common_args(self.task.phone) p = self._run_telegram(*args, taskid=self.task.batchid, cmdtype='client_list') # 读取error process_err = threading.Thread(target=self._read_err_log, args=(p,)) process_err.start() # 刷新 process_flush = threading.Thread(target=self._std_flush, args=(p,)) process_flush.start() clientlist = [] # 读取数据 self._stopsigin = False try: while True: line = p.stdout.readline() if line is not None and line != '': msg: str = line.strip().rstrip() if not msg.startswith("#"): self._logger.info(f"{msg}") continue retcode = msg idx = msg.find(' ') if idx < 0: idx = msg.find('\t') if idx > 0: retcode = msg[:idx].strip().rstrip() if '#@71' in msg: retcode = '#@71' if retcode == '#@71': clientlist.append(msg) elif retcode == '#@72': for msgline in clientlist: if msgline is None or msgline == '': continue if not msgline.startswith('#@71'): continue tmp = msgline.replace('#@71', '').strip().rstrip() lines = json.loads(tmp) if lines is None or len(lines) == 0: continue idown_login_log_all = IdownLoginLog( self._clientid, self.task, self.task.apptype) for line in lines: login_log = IdownLoginLog_ONE(self.task, self.task.apptype, self._userid) if line.get('country') is not None: login_log.country = line['country'] if line['region'].strip() != '': login_log.region = line['region'] if line.get('dateCreated') is not None: login_log.logintime = str(datetime.datetime.fromtimestamp(int(line['dateActive']))) if line.get('deviceModel') is not None: login_log.devicemodel = line.get('deviceModel') if line['platform'].strip() != '': login_log.platform = line['platform'] if line.get('appName') is not None: login_log.appname = line.get('appName') if line['appVersion'] is not None: login_log.appversion = line['appVersion'] if line['dateActive'] is not None: login_log.activetime = str( int(line['dateActive']) - int(line['dateCreated'])) + 'seconds' if line['ip'] is not None: login_log.ip = line['ip'] idown_login_log_all.append_innerdata(login_log) self._logger.info('Download clientlist complete') yield idown_login_log_all break else: self._logger.info(f'{msg}') break except Exception: self._logger.error(f"Download telegram client list error:{traceback.format_exc()}") if p is not None: p.kill() finally: self._stopsigin = True exitcode = p.wait() self._logger.info(f"program return code: {str(exitcode)}") p.poll() p.terminate() process_flush.join() process_err.join() def _download_sqlitdb(self): """ 这里留给新接口,发送下载命令后,telegram会持续不断的下载数据,放在一个文件夹里 里面会存在6种数据,但是里面的信息不全,需要补全相关的任务信息 modify by judy 2020/05/19 下载进度 .idown_btask_back profile .idown_profile 联系人 .idown_contact 群组信息 .ichat_group 聊天记录 .ichat_log 资源数据 .idown_resource :return: """ args = self._common_args(self.task.phone) argnew = [ f"-jar {self.telegram}", f"-{'download'}", f"-{'download_public_channel'}" ] argnew.extend(args) p = self._run_process(str(self.java), *argnew, taskid=self.task.batchid) # 读取error process_err = threading.Thread(target=self._read_err_log, args=(p,)) process_err.start() # 刷新 process_flush = threading.Thread(target=self._std_flush, args=(p,)) process_flush.start() self._stopsigin = False try: while True: line = p.stdout.readline() if line is not None and line != '': msg: str = line.strip().rstrip() if not msg.startswith("#") or msg.startswith("#@2000"): self._logger.info(f"{msg}") continue retcode = msg idx = msg.find(' ') if idx < 0: idx = msg.find('\t') if idx > 0: retcode = msg[:idx].strip().rstrip() if retcode == '#@43': self._logger.info(f'{msg}') download_process = self._downloadprogress.findall(msg) if len(download_process) != 0: cmdrecmsg = f'正在下载,当前下载进度: {float(download_process[-1])}%' self.task.progress = float(download_process[-1]) / 100 self._write_task_back(ECommandStatus.Dealing, cmdrecmsg) elif retcode == '#@41': self._logger.info(f'{msg}') try: # 去数据库拿数据,没拿到userid之前不能break for result in self._get_sqlite_dbdata(): yield result except Exception: self._logger.error(f"Sqlite get data wrong, err:{traceback.format_exc()}") break else: # 出现意外情况停止 self._logger.info(f'{msg}') break except: self._logger.error(f"There was a problem downloading the database, err:{traceback.format_exc()}") if p is not None: p.kill() finally: exitcode = p.wait() self._logger.info(f"program return code: {str(exitcode)}") self._stopsigin = True p.poll() p.terminate() process_flush.join() process_err.join() def _get_sqlite_dbdata(self): """ 这个接口会去不断地扫描telegram下的文件夹 直到 下载完成 下载出错 超时30分钟后没有数据出现表示telegram可能已经被卡死也结束 modify by judy 2020/05/19 :return: """ dbfile: Path = self.accountsdir / f'{self.task.globaltelcode + self.task.phone}' / 'database.sqlite' if not dbfile.exists(): raise Exception(f"Db file not exists: {dbfile}") # 同理先下载profile数据,是为了给userid赋值 try: profile_data = self.__get_profile(str(dbfile)) for profile in profile_data: yield profile except: self._logger.error(f"Get user error,err:{traceback.format_exc()}") # 再下载联系人数据 try: contact_data = self._get_users(str(dbfile)) for c_one in contact_data: yield c_one except: self._logger.error(f"Get user error,err:{traceback.format_exc()}") # 下载群组数据 try: for chatsdata in self._get_chats(str(dbfile)): yield chatsdata except: self._logger.error(f"Get chats error,err:{traceback.format_exc()}") # 下载聊天数据 try: for messages in self._get_messages(str(dbfile)): yield messages except: self._logger.error(f"Get message error,err:{traceback.format_exc()}") # 备份数据库,据说是实现了增量下载不需要备份 # self.mvsqlitetobak(str(dbfile)) return def __get_download_progress(self): """ 在文件夹里扫描回馈,取最新的进度,添加信息后返回 :return: """ pass def __get_profile(self, sqlpath: str): """ 在文件夹里扫描profile后缀的数据,添加task信息后返回 因为profile里包含了userid并且只有一个文件,所以会优先将 profile数据获取到再进行后续数据获取 :param sqlpath: :return: """ sql = ''' select * from users where self=? ''' par = (1,) res = self._select_data(sqlpath, sql, par) if len(res) == 0: self._logger.error("No profile in db") return eldict = res[0] if eldict.get('id') is None: self._logger.error("No profile in db") return self._userid = eldict.get('id') p_data = PROFILE(self._clientid, self.task, self.task.apptype, self._userid) phone = eldict.pop('phone') if phone is not None and phone != '': p_data.phone = self._output_format_str(phone) p_data.account = self._phone nickname = b'' if eldict.get('last_name') is not None: nickname += eldict.pop('last_name') if eldict.get('first_name') is not None: nickname += eldict.pop('first_name') if nickname == b'' and eldict.get('username') is not None: nickname += eldict.pop('username') if nickname != b'': p_data.nickname = self._output_format_str(nickname) # if len(prodata) > 0: # p_data.append_details(prodata) yield p_data def _get_users(self, sqlpath: str): """ 扫描联系人后缀的数据,添加task信息后返回 :param sqlpath: :return: """ limitdata = 1000 offsetdata = 0 while True: sql = '''SELECT * FROM users LIMIT ? OFFSET ?''' pars = ( limitdata, offsetdata, ) offsetdata += limitdata res = self._select_data(sqlpath, sql, pars) if len(res) == 0: return all_contact = CONTACT(self._clientid, self.task, self.task.apptype) for el in res: try: # 将为空的字段全部剔除 # eldict = {k: v for k, v in el.items() if v is not None} eldict = el if eldict.get('id') is None: continue contact_one = CONTACT_ONE(self._userid, eldict.get('id'), self.task, self.task.apptype) if eldict.get('phone') is not None: contact_one.phone = self._output_format_str(eldict.pop('phone')) nickname = b'' if eldict.get('last_name') is not None: nickname += eldict.pop('last_name') if eldict.get('first_name') is not None: nickname += eldict.pop('first_name') if nickname == b'' and eldict.get('username') is not None: nickname += eldict.pop('username') if nickname != b'': contact_one.nickname = self._output_format_str(nickname) if eldict.get('contact') is not None: contact_one.isfriend = eldict.pop('contact') if eldict.get('mutualContact') is not None: contact_one.bothfriend = eldict.pop('mutualContact') if eldict.get('deleted') is not None: contact_one.isdeleted = eldict.pop('deleted') all_contact.append_innerdata(contact_one) except Exception: self._logger.error(f"Get profile error,err:{traceback.format_exc()}") continue if all_contact.innerdata_len != 0: yield all_contact if len(res) < limitdata: break def _get_chats(self, sqlpath: str): """ 扫描群组后缀的数据,添加task信息后返回 :param sqlpath: :return: """ limitdata = 1000 offsetdata = 0 while True: sql = '''SELECT * FROM chats LIMIT ? OFFSET ?''' pars = ( limitdata, offsetdata, ) offsetdata += limitdata res = self._select_data(sqlpath, sql, pars) if len(res) == 0: return re_chatall = re.compile('\[(\d+)\]') ichat_all = ICHATGROUP(self._clientid, self.task, self.task.apptype) for el in res: if None in el.values(): continue try: # self._output_format_str(el['participants']) if el.get('participants') is None or el.get('participants') == '': continue chat_line = self._output_format_str(el['participants']) chat_all = re_chatall.findall(chat_line) userid = self._userid ichat_data = ICHATGROUP_ONE(self.task, self.task.apptype, userid, el['id']) ichat_data.append_participants(*chat_all) ichat_data.grouptype = self._output_format_str(el['type']) ichat_data.groupname = self._output_format_str(el['name']) ichat_all.append_innerdata(ichat_data) except Exception: self._logger.error(f"Get a chat error,err:{traceback.format_exc()}") continue if ichat_all.innerdata_len > 0: yield ichat_all if len(res) < limitdata: break def _get_messages(self, sqlpath: str): """ 扫描聊天信息后缀,添加task信息后返回 扫描资源文件后缀,添加task信息后返回 :param sqlpath: :return: """ # 获取个人聊天信息 for mes in self.__get_all_message_data(sqlpath): yield mes # 获取群组聊天信息 for channel_mes in self.__get_all_channel_message(sqlpath): yield channel_mes def __get_all_message_data(self, sqlpath: str): limitdata = 1000 offsetdata = 0 while True: sql = '''SELECT id, dialog_id, chat_id, sender_id, text, time, has_media, media_type, media_file FROM messages LIMIT ? OFFSET ?''' pars = ( limitdata, offsetdata, ) offsetdata += limitdata res = self._select_data(sqlpath, sql, pars) if len(res) == 0: return for messinfo in self._process_messages(res): yield messinfo if len(res) < limitdata: break def __get_all_channel_message(self, sqlpath: str): limitdata = 1000 offsetdata = 0 while True: sql_1 = '''SELECT id, message_type, chat_id, sender_id, text, time, has_media, media_type, media_file FROM Channels_Message LIMIT ? OFFSET ?''' pars = ( limitdata, offsetdata, ) offsetdata += limitdata res = self._select_data(sqlpath, sql_1, pars) if len(res) == 0: return for messinfo in self._process_messages(res): yield messinfo if len(res) < limitdata: break def _process_messages(self, res): ichat_log_all = ICHATLOG(self._clientid, self.task, self.task.apptype) for el in res: info = el.get('text') if (info is None or info == b'') and el.get('has_media') is None: continue try: # 频道信息只能是自己 if el.get('message_type') == b'Channels_Message' and el.get('sender_id') is None: el['sender_id'] = self._userid if el.get('sender_id') is not None: strname = '' # 私聊信息 if el.get('has_media') == 1 and len(self._output_format_str(el['media_file']).split('.')) == 2: # 写入资源文件 strname = self._output_format_str(el['media_file']) # if len(strname.split('.')) != 2: # self._logger.error( # "File name error,the file has no suffixes,messagefilename:{}".format(strname)) # continue # 这里获取文件的后缀名,并且转换为小写 file_extesnison = strname.split('.')[1] messagetypetmp = [ key for key, value in self.datatype.items() if file_extesnison.lower() in value ] messagetypefunc = lambda x: EResourceType.Other_Text if len(x) == 0 else x[0] message_type = messagetypefunc(messagetypetmp) # 寻找本地的resources文件并且读取 resourcefile = self._write_resource_file(el, strname, message_type) if resourcefile is None: # file文件在本地没有就直接跳过吧 # 这个跳过显然不是很合理,但是一般如果资源文件里面还带有信息 # 如果我找不到文件那么这条信息也就没有意义,所以现在目前的方式就是不输出这条信息 continue yield resourcefile else: message_type = EResourceType.Other_Text # ichat_log = None # 这里的messagetype用的是resources的type,但是在ichat_log的数据类型中需要的是int所以要取值 messagetype = message_type.value if el.get('dialog_id') is not None: # 私聊 ichat_log = ICHATLOG_ONE( self.task, self.task.apptype, self._userid, messagetype, el.get('dialog_id'), 0, str(el.get('id')), el.get('sender_id'), str(datetime.datetime.fromtimestamp(el['time']))) elif el.get('chat_id') is not None: # 群聊 ichat_log = ICHATLOG_ONE( self.task, self.task.apptype, self._userid, messagetype, el.get('chat_id'), 1, str(el.get('id')), el.get('sender_id'), str(datetime.datetime.fromtimestamp(el['time']))) else: continue if strname == '' and el.get('text') is None: # 如果文件是空的并且没有聊天数据那么这条数据就直接跳过了 continue if strname != '': # m_f_urls = [self._output_format_str(el.get('media_file'))] ichat_log.append_resource(resourcefile) if el.get('text') is not None: ichat_log.content = self._output_format_str(el.get('text')) ichat_log_all.append_innerdata(ichat_log) except: self._logger.error(f"Get single messages error,err:{traceback.format_exc()}") continue if ichat_log_all.innerdata_len > 0: yield ichat_log_all else: return def _write_resource_file(self, el: dict, strname, resourcetype): resource = RESOURCES(self._clientid, self.task, strname, resourcetype, self.task.apptype) resource.filename = strname resource.extension = strname.split('.')[1] strtypename = self._output_format_str(el['media_type']) fileb, telegram_file_path = self.readtherbfile({ "filetype": strtypename, "account": self.task.globaltelcode + self.task.phone, "filename": strname }) if fileb is None: # None表示数据暂时没有下载或者是数据已经回写了并且删除了 self._logger.info(f'No files were obtained locally, filename:{strname}') return None resource.io_stream = fileb # 这里进行oncomplete的赋值 resource.isdeleteable = True resource.filepath_telegram = telegram_file_path resource.on_complete = self.delete_complete_file return resource def readtherbfile(self, fileinfo: dict): """ 找到telegram下载的文件并读取文件流 :param fileinfo: :return: """ fb = None te_path = None if fileinfo['filetype'] == 'sticker': stickerspath = self.accountsdir / 'stickers' stickername = stickerspath / fileinfo['filename'] if stickername.exists(): fb = open(stickername, 'rb+') te_path = stickername else: documentpath = self.accountsdir / fileinfo['account'] / 'files' documentname = documentpath / fileinfo['filename'] if documentname.exists(): fb = open(documentname, 'rb+') te_path = documentname return fb, te_path
the-stack_106_13837
# -*- coding: utf-8 -*- """ flask.wrappers ~~~~~~~~~~~~~~ Implements the WSGI wrappers (request and response). :copyright: (c) 2015 by Armin Ronacher. :license: BSD, see LICENSE for more details. """ from werkzeug.wrappers import Request as RequestBase, Response as ResponseBase from werkzeug.exceptions import BadRequest from . import json from .globals import _request_ctx_stack _missing = object() def _get_data(req, cache): getter = getattr(req, 'get_data', None) if getter is not None: return getter(cache=cache) return req.data class Request(RequestBase): """The request object used by default in Flask. Remembers the matched endpoint and view arguments. It is what ends up as :class:`~flask.request`. If you want to replace the request object used you can subclass this and set :attr:`~flask.Flask.request_class` to your subclass. The request object is a :class:`~werkzeug.wrappers.Request` subclass and provides all of the attributes Werkzeug defines plus a few Flask specific ones. """ #: The internal URL rule that matched the request. This can be #: useful to inspect which methods are allowed for the URL from #: a before/after handler (``request.url_rule.methods``) etc. #: #: .. versionadded:: 0.6 url_rule = None #: A dict of view arguments that matched the request. If an exception #: happened when matching, this will be ``None``. view_args = None #: If matching the URL failed, this is the exception that will be #: raised / was raised as part of the request handling. This is #: usually a :exc:`~werkzeug.exceptions.NotFound` exception or #: something similar. routing_exception = None # Switched by the request context until 1.0 to opt in deprecated # module functionality. _is_old_module = False @property def max_content_length(self): """Read-only view of the ``MAX_CONTENT_LENGTH`` config key.""" ctx = _request_ctx_stack.top if ctx is not None: return ctx.app.config['MAX_CONTENT_LENGTH'] @property def endpoint(self): """The endpoint that matched the request. This in combination with :attr:`view_args` can be used to reconstruct the same or a modified URL. If an exception happened when matching, this will be ``None``. """ if self.url_rule is not None: return self.url_rule.endpoint @property def module(self): """The name of the current module if the request was dispatched to an actual module. This is deprecated functionality, use blueprints instead. """ from warnings import warn warn(DeprecationWarning('modules were deprecated in favor of ' 'blueprints. Use request.blueprint ' 'instead.'), stacklevel=2) if self._is_old_module: return self.blueprint @property def blueprint(self): """The name of the current blueprint""" if self.url_rule and '.' in self.url_rule.endpoint: return self.url_rule.endpoint.rsplit('.', 1)[0] @property def json(self): """If the mimetype is :mimetype:`application/json` this will contain the parsed JSON data. Otherwise this will be ``None``. The :meth:`get_json` method should be used instead. """ from warnings import warn warn(DeprecationWarning('json is deprecated. ' 'Use get_json() instead.'), stacklevel=2) return self.get_json() @property def is_json(self): """Indicates if this request is JSON or not. By default a request is considered to include JSON data if the mimetype is :mimetype:`application/json` or :mimetype:`application/*+json`. .. versionadded:: 0.11 """ mt = self.mimetype if mt == 'application/json': return True if mt.startswith('application/') and mt.endswith('+json'): return True return False def get_json(self, force=False, silent=False, cache=True): """Parses the incoming JSON request data and returns it. By default this function will return ``None`` if the mimetype is not :mimetype:`application/json` but this can be overridden by the ``force`` parameter. If parsing fails the :meth:`on_json_loading_failed` method on the request object will be invoked. :param force: if set to ``True`` the mimetype is ignored. :param silent: if set to ``True`` this method will fail silently and return ``None``. :param cache: if set to ``True`` the parsed JSON data is remembered on the request. """ rv = getattr(self, '_cached_json', _missing) # We return cached JSON only when the cache is enabled. if cache and rv is not _missing: return rv if not (force or self.is_json): return None # We accept a request charset against the specification as # certain clients have been using this in the past. This # fits our general approach of being nice in what we accept # and strict in what we send out. request_charset = self.mimetype_params.get('charset') try: data = _get_data(self, cache) if request_charset is not None: rv = json.loads(data, encoding=request_charset) else: rv = json.loads(data) except ValueError as e: if silent: rv = None else: rv = self.on_json_loading_failed(e) if cache: self._cached_json = rv return rv def on_json_loading_failed(self, e): """Called if decoding of the JSON data failed. The return value of this method is used by :meth:`get_json` when an error occurred. The default implementation just raises a :class:`BadRequest` exception. .. versionchanged:: 0.10 Removed buggy previous behavior of generating a random JSON response. If you want that behavior back you can trivially add it by subclassing. .. versionadded:: 0.8 """ ctx = _request_ctx_stack.top if ctx is not None and ctx.app.config.get('DEBUG', False): raise BadRequest('Failed to decode JSON object: {0}'.format(e)) raise BadRequest() def _load_form_data(self): RequestBase._load_form_data(self) # In debug mode we're replacing the files multidict with an ad-hoc # subclass that raises a different error for key errors. ctx = _request_ctx_stack.top if ctx is not None and ctx.app.debug and \ self.mimetype != 'multipart/form-data' and not self.files: from .debughelpers import attach_enctype_error_multidict attach_enctype_error_multidict(self) class Response(ResponseBase): """The response object that is used by default in Flask. Works like the response object from Werkzeug but is set to have an HTML mimetype by default. Quite often you don't have to create this object yourself because :meth:`~flask.Flask.make_response` will take care of that for you. If you want to replace the response object used you can subclass this and set :attr:`~flask.Flask.response_class` to your subclass. """ default_mimetype = 'text/html'
the-stack_106_13838
from django.forms import ModelForm, TextInput from requirements_manager.models import Requirement class RequirementForm(ModelForm): class Meta: model = Requirement fields = ["package_name", 'version'] widgets = { "package_name": TextInput(attrs={'placeholder': 'Package name'}), 'version': TextInput(attrs={'placeholder': 'Version nr.'}), }
the-stack_106_13840
from codecs import open from os import path from setuptools import setup here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name="depict-control", version="1.0", description="Control your Depict digital art frames " "(depict.com)", long_description=long_description, url="https://github.com/jkeljo/depict-control", author="Jonathan Keljo", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Topic :: Home Automation", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.5", ], keywords="depict", packages=["depict_control"], install_requires=[ "aiohttp", "netifaces", ], python_requires=">=3.5.1", )
the-stack_106_13843
# -*- encoding: utf-8 -*- # This file is distributed under the same license as the Django package. # from __future__ import unicode_literals # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j. F Y' TIME_FORMAT = 'G:i' DATETIME_FORMAT = 'j. F Y G:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = 'd.m.Y' SHORT_DATETIME_FORMAT = 'd.m.Y G:i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d.%m.%Y', '%d.%m.%y', # '25.10.2006', '25.10.06' '%y-%m-%d', # '06-10-25' # '%d. %B %Y', '%d. %b. %Y', # '25. October 2006', '25. Oct. 2006' ] DATETIME_INPUT_FORMATS = [ '%d.%m.%Y %H:%M:%S', # '25.10.2006 14:30:59' '%d.%m.%Y %H:%M:%S.%f', # '25.10.2006 14:30:59.000200' '%d.%m.%Y %H:%M', # '25.10.2006 14:30' '%d.%m.%Y', # '25.10.2006' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '\xa0' # non-breaking space NUMBER_GROUPING = 3
the-stack_106_13844
from __future__ import absolute_import, division, print_function import unittest import os import os.path from astropy.io import fits import numpy as np import lvmspec.scripts.preproc from lvmspec.preproc import preproc, _parse_sec_keyword, _clipped_std_bias from lvmspec import io def xy2hdr(xyslice): ''' convert 2D slice into IRAF style [a:b,c:d] header value e.g. xyslice2header(np.s_[0:10, 5:20]) -> '[6:20,1:10]' ''' yy, xx = xyslice value = '[{}:{},{}:{}]'.format(xx.start+1, xx.stop, yy.start+1, yy.stop) return value class TestPreProc(unittest.TestCase): def tearDown(self): for filename in [self.calibfile, self.rawfile, self.pixfile]: if os.path.exists(filename): os.remove(filename) def setUp(self): self.calibfile = 'test-calib-askjapqwhezcpasehadfaqp.fits' self.rawfile = 'test-raw-askjapqwhezcpasehadfaqp.fits' self.pixfile = 'test-pix-askjapqwhezcpasehadfaqp.fits' primary_hdr = dict() primary_hdr['DATE-OBS'] = '2018-09-23T08:17:03.988' primary_hdr['DOSVER'] = 'SIM' # ICS version hdr = dict() hdr['CAMERA'] = 'b0' hdr['DETECTOR'] = 'SIM' # CCD chip identifier hdr['FEEVER'] = 'SIM' # readout electronic #- [x,y] 1-indexed for FITS; in reality the amps will be symmetric #- but the header definitions don't require that to make sure we are #- getting dimensions correct #- Dimensions per amp, not full 4-quad CCD self.ny = ny = 500 self.nx = nx = 400 self.noverscan = nover = 50 #- BIASSEC = overscan region in raw image #- DATASEC = data region in raw image #- CCDSEC = where should this go in output hdr['BIASSEC1'] = xy2hdr(np.s_[0:ny, nx:nx+nover]) hdr['DATASEC1'] = xy2hdr(np.s_[0:ny, 0:nx]) hdr['CCDSEC1'] = xy2hdr(np.s_[0:ny, 0:nx]) hdr['BIASSEC2'] = xy2hdr(np.s_[0:ny, nx+nover:nx+2*nover]) hdr['DATASEC2'] = xy2hdr(np.s_[0:ny, nx+2*nover:nx+2*nover+nx]) hdr['CCDSEC2'] = xy2hdr(np.s_[0:ny, nx:nx+nx]) hdr['BIASSEC3'] = xy2hdr(np.s_[ny:ny+ny, nx:nx+nover]) hdr['DATASEC3'] = xy2hdr(np.s_[ny:ny+ny, 0:nx]) hdr['CCDSEC3'] = xy2hdr(np.s_[ny:ny+ny, 0:nx]) hdr['BIASSEC4'] = xy2hdr(np.s_[ny:ny+ny, nx+nover:nx+2*nover]) hdr['DATASEC4'] = xy2hdr(np.s_[ny:ny+ny, nx+2*nover:nx+2*nover+nx]) hdr['CCDSEC4'] = xy2hdr(np.s_[ny:ny+ny, nx:nx+nx]) hdr['NIGHT'] = '20150102' hdr['EXPID'] = 1 # add to header the minimal set of keywords needed to # identify the config in the ccd_calibration.yaml file self.primary_header = primary_hdr self.header = hdr self.rawimage = np.zeros((2*self.ny, 2*self.nx+2*self.noverscan)) self.offset = {'1':100.0, '2':100.5, '3':50.3, '4':200.4} self.gain = {'1':1.0, '2':1.5, '3':0.8, '4':1.2} self.rdnoise = {'1':2.0, '2':2.2, '3':2.4, '4':2.6} self.quad = { '1': np.s_[0:ny, 0:nx], '2': np.s_[0:ny, nx:nx+nx], '3': np.s_[ny:ny+ny, 0:nx], '4': np.s_[ny:ny+ny, nx:nx+nx], } for amp in ('1', '2', '3', '4'): self.header['GAIN'+amp] = self.gain[amp] self.header['RDNOISE'+amp] = self.rdnoise[amp] xy = _parse_sec_keyword(hdr['BIASSEC'+amp]) shape = [xy[0].stop-xy[0].start, xy[1].stop-xy[1].start] self.rawimage[xy] += self.offset[amp] self.rawimage[xy] += np.random.normal(scale=self.rdnoise[amp], size=shape)/self.gain[amp] xy = _parse_sec_keyword(hdr['DATASEC'+amp]) shape = [xy[0].stop-xy[0].start, xy[1].stop-xy[1].start] self.rawimage[xy] += self.offset[amp] self.rawimage[xy] += np.random.normal(scale=self.rdnoise[amp], size=shape)/self.gain[amp] #- raw data are integers, not floats self.rawimage = self.rawimage.astype(np.int32) #- Confirm that all regions were correctly offset assert not np.any(self.rawimage == 0.0) def test_preproc(self): image = preproc(self.rawimage, self.header, primary_header = self.primary_header) self.assertEqual(image.pix.shape, (2*self.ny, 2*self.nx)) self.assertTrue(np.all(image.ivar <= 1/image.readnoise**2)) for amp in ('1', '2', '3', '4'): pix = image.pix[self.quad[amp]] rdnoise = np.median(image.readnoise[self.quad[amp]]) npixover = self.ny * self.noverscan self.assertAlmostEqual(np.mean(pix), 0.0, delta=3*rdnoise/np.sqrt(npixover)) self.assertAlmostEqual(np.std(pix), self.rdnoise[amp], delta=0.2) self.assertAlmostEqual(rdnoise, self.rdnoise[amp], delta=0.2) def test_bias(self): image = preproc(self.rawimage, self.header, primary_header = self.primary_header, bias=False) bias = np.zeros(self.rawimage.shape) image = preproc(self.rawimage, self.header, primary_header = self.primary_header, bias=bias) fits.writeto(self.calibfile, bias) image = preproc(self.rawimage, self.header, primary_header = self.primary_header, bias=self.calibfile) with self.assertRaises(ValueError): image = preproc(self.rawimage, self.header, primary_header = self.primary_header, bias=bias[0:10, 0:10]) def test_pixflat(self): image = preproc(self.rawimage, self.header, primary_header = self.primary_header, pixflat=False) pixflat = np.ones_like(image.pix) image = preproc(self.rawimage, self.header, primary_header = self.primary_header, pixflat=pixflat) fits.writeto(self.calibfile, pixflat) image = preproc(self.rawimage, self.header, primary_header = self.primary_header, pixflat=self.calibfile) with self.assertRaises(ValueError): image = preproc(self.rawimage, self.header, primary_header = self.primary_header, pixflat=pixflat[0:10, 0:10]) def test_mask(self): image = preproc(self.rawimage, self.header, primary_header = self.primary_header, mask=False) mask = np.random.randint(0, 2, size=image.pix.shape) image = preproc(self.rawimage, self.header, primary_header = self.primary_header, mask=mask) self.assertTrue(np.all(image.mask == mask)) fits.writeto(self.calibfile, mask) image = preproc(self.rawimage, self.header, primary_header = self.primary_header, mask=self.calibfile) self.assertTrue(np.all(image.mask == mask)) with self.assertRaises(ValueError): image = preproc(self.rawimage, self.header, primary_header = self.primary_header, mask=mask[0:10, 0:10]) def test_pixflat_mask(self): from lvmspec.maskbits import ccdmask pixflat = np.ones((2*self.ny, 2*self.nx)) pixflat[0:10, 0:10] = 0.0 pixflat[10:20, 10:20] = 0.05 image = preproc(self.rawimage, self.header, primary_header = self.primary_header, pixflat=pixflat) self.assertTrue(np.all(image.mask[0:10,0:10] & ccdmask.PIXFLATZERO)) self.assertTrue(np.all(image.mask[10:20,10:20] & ccdmask.PIXFLATLOW)) def test_io(self): io.write_raw(self.rawfile, self.rawimage, self.header, primary_header = self.primary_header, camera='b0') io.write_raw(self.rawfile, self.rawimage, self.header, primary_header = self.primary_header, camera='R1') io.write_raw(self.rawfile, self.rawimage, self.header, primary_header = self.primary_header, camera='z9') self.header['CAMERA'] = 'B1' io.write_raw(self.rawfile, self.rawimage, self.header, primary_header = self.primary_header) b0 = io.read_raw(self.rawfile, 'b0') b1 = io.read_raw(self.rawfile, 'b1') r1 = io.read_raw(self.rawfile, 'r1') z9 = io.read_raw(self.rawfile, 'Z9') self.assertEqual(b0.meta['CAMERA'], 'b0') self.assertEqual(b1.meta['CAMERA'], 'b1') self.assertEqual(r1.meta['CAMERA'], 'r1') self.assertEqual(z9.meta['CAMERA'], 'z9') def test_32_64(self): ''' 64-bit integers aren't supported for compressed HDUs; make sure we handle that gracefully ''' data64 = np.linspace(0, 2**60, 10, dtype=np.int64) datasmall64 = np.linspace(0, 2**30, 10, dtype=np.int64) data32 = np.linspace(0, 2**30, 10, dtype=np.int32) data16 = np.linspace(0, 2**10, 10, dtype=np.int16) #- Primary HDU should be blank #- Should be written as vanilla ImageHDU io.write_raw(self.rawfile, data64, self.header, primary_header = self.primary_header, camera='b0') #- Should be written as vanilla ImageHDU io.write_raw(self.rawfile, data64, self.header, primary_header = self.primary_header, camera='b1') #- Should be converted to 32-bit CompImageHDU io.write_raw(self.rawfile, datasmall64, self.header, primary_header = self.primary_header, camera='b2') #- Should be 32-bit CompImageHDU io.write_raw(self.rawfile, data32, self.header, primary_header = self.primary_header, camera='b3') #- Should be 16-bit CompImageHDU io.write_raw(self.rawfile, data16, self.header, primary_header = self.primary_header, camera='b4') fx = fits.open(self.rawfile) #- Blank PrimaryHDU should have been inserted self.assertTrue(isinstance(fx[0], fits.PrimaryHDU)) self.assertTrue(fx[0].data == None) #- 64-bit image written uncompressed after blank HDU self.assertTrue(isinstance(fx[1], fits.ImageHDU)) self.assertEqual(fx[1].data.dtype, np.dtype('>i8')) self.assertEqual(fx[1].header['EXTNAME'], 'B0') #- 64-bit image written uncompressed self.assertTrue(isinstance(fx[2], fits.ImageHDU)) self.assertEqual(fx[2].data.dtype, np.dtype('>i8')) self.assertEqual(fx[2].header['EXTNAME'], 'B1') #- 64-bit image with small numbers converted to 32-bit compressed self.assertTrue(isinstance(fx[3], fits.CompImageHDU)) self.assertEqual(fx[3].data.dtype, np.int32) self.assertEqual(fx[3].header['EXTNAME'], 'B2') #- 32-bit image written compressed self.assertTrue(isinstance(fx[4], fits.CompImageHDU)) self.assertEqual(fx[4].data.dtype, np.int32) self.assertEqual(fx[4].header['EXTNAME'], 'B3') #- 16-bit image written compressed self.assertTrue(isinstance(fx[5], fits.CompImageHDU)) self.assertEqual(fx[5].data.dtype, np.int16) self.assertEqual(fx[5].header['EXTNAME'], 'B4') # not a very useful test : # it is tested by the other tests #def test_keywords(self): #for keyword in self.header: #- Missing GAIN* and RDNOISE* are warnings but not errors # if keyword.startswith('GAIN') or keyword.startswith('RDNOISE'): # continue #- DATE-OBS, NIGHT, and EXPID are also optional #- (but maybe they should be required...) # if keyword in ('DATE-OBS', 'NIGHT', 'EXPID'): # continue # if os.path.exists(self.rawfile): # os.remove(self.rawfile) # value = self.header[keyword] # del self.header[keyword] # with self.assertRaises(KeyError): # io.write_raw(self.rawfile, self.rawimage, self.header, primary_header = self.primary_header) # self.header[keyword] = value #dateobs = self.header #- striving for 100% coverage... def test_pedantic(self): with self.assertRaises(ValueError): _parse_sec_keyword('blat') #- should log a warning about large readnoise rawimage = self.rawimage + np.random.normal(scale=2, size=self.rawimage.shape) image = preproc(rawimage, self.header, primary_header = self.primary_header) #- should log an error about huge readnoise rawimage = self.rawimage + np.random.normal(scale=10, size=self.rawimage.shape) image = preproc(rawimage, self.header, primary_header = self.primary_header) #- should log a warning about small readnoise rdnoise = 0.7 * np.mean(list(self.rdnoise.values())) rawimage = np.random.normal(scale=rdnoise, size=self.rawimage.shape) image = preproc(rawimage, self.header, primary_header = self.primary_header) #- should log a warning about tiny readnoise rdnoise = 0.01 * np.mean(list(self.rdnoise.values())) rawimage = np.random.normal(scale=rdnoise, size=self.rawimage.shape) image = preproc(rawimage, self.header, primary_header = self.primary_header) #- Missing expected RDNOISE keywords shouldn't be fatal hdr = self.header.copy() del hdr['RDNOISE1'] del hdr['RDNOISE2'] del hdr['RDNOISE3'] del hdr['RDNOISE4'] image = preproc(self.rawimage, hdr, primary_header = self.primary_header) #- Missing expected GAIN keywords should log error but not crash hdr = self.header.copy() del hdr['GAIN1'] del hdr['GAIN2'] del hdr['GAIN3'] del hdr['GAIN4'] image = preproc(self.rawimage, hdr, primary_header = self.primary_header) def test_preproc_script(self): io.write_raw(self.rawfile, self.rawimage, self.header, primary_header = self.primary_header, camera='b0') io.write_raw(self.rawfile, self.rawimage, self.header, primary_header = self.primary_header, camera='b1') args = ['--infile', self.rawfile, '--cameras', 'b1', '--pixfile', self.pixfile] if os.path.exists(self.pixfile): os.remove(self.pixfile) lvmspec.scripts.preproc.main(args) img = io.read_image(self.pixfile) self.assertEqual(img.pix.shape, (2*self.ny, 2*self.nx)) def test_clipped_std_bias(self): '''Compare to www.wolframalpha.com integrals''' self.assertAlmostEqual(_clipped_std_bias(1), 0.53956, places=5) self.assertAlmostEqual(_clipped_std_bias(2), 0.879626, places=6) self.assertAlmostEqual(_clipped_std_bias(3), 0.986578, places=6) np.random.seed(1) x = np.random.normal(size=1000000) biased_std = np.std(x[np.abs(x)<3]) self.assertAlmostEqual(biased_std, _clipped_std_bias(3), places=3) #- Not implemented yet, but flag these as expectedFailures instead of #- successful tests of raising NotImplementedError def test_default_bias(self): image = preproc(self.rawimage, self.header, primary_header = self.primary_header, bias=True) def test_default_pixflat(self): image = preproc(self.rawimage, self.header, primary_header = self.primary_header, pixflat=True) def test_default_mask(self): image = preproc(self.rawimage, self.header, primary_header = self.primary_header, mask=True) if __name__ == '__main__': unittest.main()
the-stack_106_13848
import sys import numpy as np import setuptools from distutils.core import setup from distutils.extension import Extension package_name = 'GeodisTK' module_name = 'GeodisTK' version = sys.version[0] wrap_source = './cpp/wrap_py{0:}.cpp'.format(version) module1 = Extension(module_name, include_dirs = [np.get_include(), './cpp'], sources = ['./cpp/util.cpp', './cpp/geodesic_distance_2d.cpp', './cpp/geodesic_distance_3d.cpp', './cpp/geodesic_distance.cpp', wrap_source]) # Get the summary description = 'An open-source toolkit to calculate geodesic distance' + \ ' for 2D and 3D images' # Get the long description if(sys.version[0] == '2'): import io with io.open('README.md', 'r', encoding='utf-8') as f: long_description = f.read() else: with open('README.md', encoding='utf-8') as f: long_description = f.read() setup( name = package_name, version = "0.1.6", author ='Guotai Wang', author_email = '[email protected]', description = description, long_description = long_description, long_description_content_type = 'text/markdown', url = 'https://github.com/taigw/GeodisTK', license = 'MIT', packages = setuptools.find_packages(), ext_modules = [module1], classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', ], python_requires = '>=3.6', ) # to build, run python setup.py build or python setup.py build_ext --inplace # to install, run python setup.py install
the-stack_106_13849
import logging import numpy as np import torch result_dict = {} result_dict_entry = ["epi_dist_mean_gt", "num_prob", "num_warped_prob", "num_matches"] ######### shared functions # @staticmethod def read_file_dict_to_dict(files_dict, allow_pickle=False): # load npz exp_dict = {} for i, en in enumerate(files_dict): file = files_dict[en] exp_dict[en] = np.load(file, allow_pickle=allow_pickle) # exp_list.append(err_dict) print(f"len of exp_dict: {len(list(exp_dict))}") return exp_dict # from utils.eval_tools import Result_processor class Result_processor(object): def __init__(self, result_dict_entry): self.result_dict_all = {} self.result_dict_entry = result_dict_entry self.result_processed = {} for ent in result_dict_entry: self.result_dict_all[ent] = [] pass def add_config(self, config): """ # add config: thd """ pass def load_result(self, result_dict): """ result_dict: dictionary with entries """ for ent in self.result_dict_entry: if ent not in result_dict: logging.warning(f"{ent} not in the result dictionary") else: self.result_dict_all[ent].append(result_dict[ent]) # def read_to_ratio_dict(self, files_dict, allow_pickle=True): # exp_dict = read_file_dict_to_dict(files_dict=files_dict, allow_pickle=True) # for i, exp in enumerate(exp_dict): # result_processor.result_dict_all = exp_dict[exp] # result = result_processor.inlier_ratio( # "epi_dist_mean_gt", inlier_thd, if_print=True # ) # pass def output_result(self, method=[None], **params): for m in method: if m is not None: func = getattr(self, m) func(params[m]) pass # def inlier_ratio( # self, entry, thd_list, mask_entry=None, mask_thd=1, if_print=False # ): def inlier_ratio( self, result_list, thd_list, mask_list=None, mask_thd=1, if_print=False ): """ # mask_entry: ['mscores'] input: result_list: one nested results from a sequence mask_list: the score of the results (mscores for correspondences) """ # result_list = self.result_dict_all[entry] # mask_list = None if mask_entry is None else self.result_dict_all[mask_entry] # thd_list = np.array(thd_list) table = [] num_corrs = [] for i, re in enumerate(result_list): est_arr = np.array(re) if mask_list is not None: m = self.get_mask(mask_list[i], mask_thd) assert ( m.shape[0] == est_arr.shape[0] ), "mask size not equal to estimated arr" est_arr = est_arr[m] num_corrs.append(est_arr.shape[0]) ratio_list = self.inlier_ratio_from_est(est_arr, thd_list) table.append(ratio_list) table = np.array(table) # self.result_processed["inlier_ratio"] = table results = {"inlier_ratio": table.mean(axis=0), "num_corrs": np.array(num_corrs)} if if_print: print(f"inlier ratio thd: {thd_list}, result: {results}") return results # def collect_arr_from_result(self, entry, if_print=False): def get_entry_from_result(self, entry, if_print=False): if entry in self.result_dict_all: return self.result_dict_all[entry] else: logging.error(f"{entry} is not in the dictionary.") def ap_inlier_thd( self, inlier_entry, inlier_thds, mask_thds, mask_entry="mscores", if_print=False ): table = [] num_corrs = [] for j, thd in enumerate(mask_thds): # get inlier ratio under the thd results = self.inlier_ratio( inlier_entry, inlier_thds, mask_entry=mask_entry, mask_thd=thd, if_print=if_print, ) table.append(results["inlier_ratio"]) num_corrs.append(results["num_corrs"]) table = np.array(table) num_corrs = np.array(num_corrs) print(f"table: {table.shape}") results = { "inlier_thd": table, "num_corrs": num_corrs, # np [thds, Num of samples] } return results pass # def num_inlier_thd(self, inlier_entry, ) def save_result(self, filename, item): if item == "result_dict_all": np.savez_compressed(filename, **self.result_dict_all) pass @staticmethod def get_mask(arr, thd): return np.array(arr) < thd def inlier_ratio_nested(self, est_nested, thd_list): table = [] for i, re in enumerate(est_nested): est_arr = np.array(re) # print(f"est_arr: {est_arr}") # num_corrs.append(est_arr.shape[0]) ratio_list = self.inlier_ratio_from_est(est_arr, thd_list) table.append(ratio_list) table = np.array(table) # self.result_processed["inlier_ratio"] = table # results = {"inlier_ratio": table.mean(axis=0), "num_corrs": np.array(num_corrs)} return table.mean(axis=0) @staticmethod def inlier_ratio_from_est(est_arr, thd_list): """ inlier_ratio_from_est(est_arr, thd_list) -> list """ ratio_list = [] for thd in thd_list: ratio = np.sum(est_arr < thd) / est_arr.shape[0] ratio_list.append(ratio) return ratio_list # from Result_processor import inlier_ratio_from_est from pathlib import Path # from . import Result_processor class Exp_table_processor(Result_processor): """ # process the results of different sequences. # sort into table """ def __init__(self, config, seq_dict_name="seq_dict", debug=False, if_mean=True, if_median=True, **params): level = logging.DEBUG if debug else logging.INFO logging.basicConfig( format="[%(asctime)s %(levelname)s] %(message)s", datefmt="%m/%d/%Y %H:%M:%S", # level=logging.INFO, level=level, ) ## params self.ratio_dict = {} # thd_list = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10] # err_mat = ['err_q', 'err_t', 'epi_dists'] self.config = config self.thd_list = config["data"]["thresh"]["thd_list"] print(f"thd_list: {self.thd_list}") self.err_mat = config["data"]["err_mat"] self.seq_dict = {} if type(seq_dict_name) is list: for name in seq_dict_name: self.seq_dict.update(config["data"][name]) else: self.seq_dict.update(config["data"][seq_dict_name]) self.files_dict = self.read_file_list( self.seq_dict, base_path=config["data"]["base_path"] ) self.if_mean = if_mean self.if_median = if_median # self.if_highlights = self.config self.exp_dict = None # the most important dictionary ## print to check logging.debug(f"folder_list: {self.files_dict}") pass # def get_ @staticmethod def read_file_list(seq_dict, base_path="", folder_idx=0, file_idx=1): files_dict = {} for i, en in enumerate(seq_dict): files_dict[en] = ( Path(base_path) / seq_dict[en][folder_idx] / seq_dict[en][file_idx] ) return files_dict @staticmethod def get_mean_median(name, arr, mean=False, median=False): result = {} if mean: result[name + "_mean"] = [arr.mean()] if median: result[name + "_median"] = [np.median(arr)] return result @staticmethod def read_gt_poses(path="/data/kitti/odometry/poses", seq=10): # import dsac_tools.utils_misc as utils_misc filename = f"{path}/{seq}.txt" logging.info(f"read from: {filename}") poses = np.genfromtxt(filename).astype(np.float32).reshape(-1, 3, 4) return poses @staticmethod def compensate_poses(poses): """ # compensate part of the poses input: poses: np[batch, 3, 4] """ poses = np.stack([p for p in poses]) first_pose = poses[0] poses[:, :, -1] -= first_pose[:, -1] compensated_poses = ( np.linalg.inv(first_pose[:, :3]) @ poses ) # [3,3] @ [batch, 3, 4] return compensated_poses @staticmethod def get_abs_poses(poses, if_print=False): # table_processor.exp_dict['Si-D-k-f.k']['relative_poses_body'] poses_abs = [] poses_abs.append(np.identity(4)[:3]) last_pose = np.identity(4) from numpy.linalg import inv # for i, pose in enumerate(table_processor.exp_dict['Si-D-k-f.k']['relative_poses_body']): for i, pose in enumerate(poses): # print(f"{i}: {pose}") last_pose = pose @ last_pose ## make sure the multiplication order. poses_abs.append(inv(last_pose)[:3]) if if_print and i < 5: print(f"pose abs: {poses_abs[-1]}") poses_abs = np.array(poses_abs) logging.info(f"get abs poses: {poses_abs.shape}") return poses_abs def get_all_abs_poses(self, item="relative_poses_body"): poses_dict = {} exp_dict = self.exp_dict for i, exp in enumerate(exp_dict): poses = exp_dict[exp][item] poses_dict.update({exp: self.get_abs_poses(poses, if_print=False)}) self.poses_dict = poses_dict logging.info(f"get poses from: {list(poses_dict)}") return poses_dict @staticmethod def export_poses(poses_dict, path="logs/", prefix="", postfix="_date"): folder = Path(path) folder.mkdir(parents=True, exist_ok=True) for i, exp in enumerate(poses_dict): poses = poses_dict[exp] ### avoid using '.' in filename exp_outname = exp.replace(".", "_") filename = f"{path}/{prefix}{exp_outname}{postfix}.txt" logging.info(f"save poses to: {filename}") np.savetxt(filename, np.stack(poses).reshape(-1, 12), delimiter=" ") @staticmethod def compute_pose_error(gt, pred): RE = 0 snippet_length = gt.shape[0] scale_factor = np.sum(gt[:, :, -1] * pred[:, :, -1]) / np.sum( pred[:, :, -1] ** 2 ) ATE = np.linalg.norm((gt[:, :, -1] - scale_factor * pred[:, :, -1]).reshape(-1)) for gt_pose, pred_pose in zip(gt, pred): # Residual matrix to which we compute angle's sin and cos R = gt_pose[:, :3] @ np.linalg.inv(pred_pose[:, :3]) s = np.linalg.norm( [R[0, 1] - R[1, 0], R[1, 2] - R[2, 1], R[0, 2] - R[2, 0]] ) c = np.trace(R) - 1 # Note: we actually compute double of cos and sin, but arctan2 is invariant to scale RE += np.arctan2(s, c) # return ATE/snippet_length, RE/snippet_length return { "ATE": ATE / snippet_length, "RE": RE / snippet_length, "scale_factor": scale_factor, } @staticmethod def pose_seq_ate(est_poses, gt_poses, seq_length=5): """ # compute absolute translation error on small snippets input: est_poses: np[N, 3, 4] gt_poses: np[N, 3, 4] """ assert len(est_poses) <= len(gt_poses) # from evaluations.pose_evaluation_utils import poses_compensate est_length = len(est_poses) - seq_length errors = np.zeros((est_length, 2), np.float32) scale_factors = [] algined_poses = [] for i in range(est_length): est_pose_snip = Exp_table_processor.compensate_poses( est_poses[i : i + seq_length] ) gt_pose_snip = Exp_table_processor.compensate_poses( gt_poses[i : i + seq_length] ) results = Exp_table_processor.compute_pose_error( est_pose_snip, gt_pose_snip ) errors[i] = results["ATE"], results["RE"] pose = np.copy(est_poses[i]) pose[:, -1] = pose[:, -1] * results["scale_factor"] ### buggy algined_poses.append(pose) scale_factors.append(results["scale_factor"]) mean_errors = errors.mean(0) std_errors = errors.std(0) error_names = ["ATE", "RE"] print("") print("Results") print("\t {:>10}, {:>10}".format(*error_names)) print("mean \t {:10.4f}, {:10.4f}".format(*mean_errors)) print("std \t {:10.4f}, {:10.4f}".format(*std_errors)) return { "errors": errors, "scale_factors": scale_factors, "aligned_poses": algined_poses, } def get_entry_mean_med(self, mean_mat, if_print=False, allow_pickle=False): ratio_dict = self.ratio_dict # exp_names = list(self.files_dict) # exp_dict = read_file_dict_to_dict(self.files_dict, allow_pickle) exp_dict = self.exp_dict # assert self.exp_dict is not None for i, exp in enumerate(exp_dict): for en in mean_mat: arr = exp_dict[exp][en] arr = np.array(arr) print(f"arr: {arr}") # get mean temp_dict = self.get_mean_median( en, arr.flatten(), mean=True, median=True ) print(f"temp_dict: {temp_dict}") ratio_dict[exp].update(temp_dict) self.ratio_dict = ratio_dict print(f"ratio_dict: {ratio_dict}") pass def get_result_dict(self, if_print=False, nested=False, allow_pickle=False): ratio_dict = {} # read exps err_mat = self.err_mat exp_names = list(self.files_dict) exp_dict = read_file_dict_to_dict(self.files_dict, allow_pickle) self.exp_dict = exp_dict thd_list = self.thd_list print(f"err_mat: {err_mat}, exp_names: {exp_names}") assert len(list(exp_dict)) == len(exp_names) # loop through experiments for i, exp in enumerate(exp_dict): name = exp # exp_names[i] ratio_dict[name] = {} if if_print: print(f"- name: {name}") # loop through metrics for en in err_mat: arr = exp_dict[exp][en] print(f"exp_dict[exp]: {list(exp_dict[exp])}") # print(f"{exp}: {en}, {arr.shape}, ") # print(f"{exp}: {en}, {arr[0].shape}, {type(arr[0])}") # if arr[0] is np.ndarray: if nested: # ratio_list = self.inlier_ratio_nested(arr, thd_list) results = self.inlier_ratio( arr, thd_list, if_print=True, mask_list=exp_dict[exp]['mscores'], mask_thd=1.0 # "epi_dist_mean_gt", inlier_thd, if_print=True, ) ratio_list = results['inlier_ratio'] else: ratio_list = self.inlier_ratio_from_est(arr.reshape(-1, 1), thd_list) ratio_list = np.array(ratio_list) ratio_dict[name][en] = ratio_list # get mean and median if self.if_mean or self.if_median: temp_dict = self.get_mean_median( en, arr.flatten(), mean=self.if_mean, median=self.if_median ) ratio_dict[name].update(temp_dict) if if_print: print(f" - exp: {en}") # print(f"arr shape: {arr.shape}") if if_print: print(f"{ratio_list}") if if_print: print(f"ratio_dict: {ratio_dict}") self.ratio_dict = ratio_dict pass @staticmethod def get_highlights_table(reverse_arr, line_list, top_k=1): ## highligh the numbers # top_k = 2 # reverse_arr = np.array([1, -1, -1]*4) table_nums = np.array(line_list) * reverse_arr def find_orders(x): # for 1d array """ # https://github.com/numpy/numpy/issues/8757 """ idx = np.empty(len(x), np.intp) idx[np.argsort(x)] = np.arange(len(x))[::-1] ## reverse order, 0 is largest return idx table_argsort = np.array([find_orders(nums) for nums in table_nums.transpose()]) table_highlights = table_argsort.transpose() < top_k # print(f"table_argsort: {table_argsort}") # print(f"table_argsort: {table_highlights}") return {"table_argsort": table_argsort, "table_highlights": table_highlights} def print_tables(self, if_name=True, table_list=[""], if_print=False): def get_numbers(result_dict, entry_dict): nums = [] for i, en in enumerate(entry_dict): idxs = entry_dict[en] if if_print: print(f"entry: {en}, idxs: {idxs}, nums: {nums}") nums.extend([result_dict[en][i] for i in idxs]) return nums pass def list_to_style(item, a_list, seperator=" & ", highlights=None): if highlights is None: highlights = np.zeros(len(a_list)) highli = lambda x, hi: f"\\textbf{{{x:.3f}}}" if hi else f"{x:.3f}" line = ( f"{item} & " + seperator.join([highli(i, hi) for (i, hi) in zip(a_list, highlights)]) + "\n" ) line += "\\\\ \\hline" return line # table_body.append(line) ## mapping models ratio_dict = self.ratio_dict name_dict = self.config["data"]["symbol_dict"]["models"] if if_name else None models_desc = self.config["data"]["symbol_dict"]["models"] for table in table_list: table_body = [] spec = self.config["output"].get(table, None) if spec is None: continue ## print out the corresponding results sep = spec["sep"] name_list = [] line_list = [] for i, r in enumerate(spec["row"]): line = [] for j, c in enumerate(spec["col"]): seq_name = f"{r+sep+c}" line.extend(get_numbers(ratio_dict[seq_name], spec["entries"])) # name = name_dict[r] if if_name is not None else r # name = seq_name name = name_dict[r][0] if if_name is not None else r name_list.append(name) line_list.append(line) # table_row = list_to_style(item=name, a_list=line) # table_body.append(table_row) if if_print: print(f"line_list: {line_list}") highlights = spec.get('highlight', False) if highlights == True: reverse_arr = np.array([1, -1, -1] * 2) data = self.get_highlights_table(reverse_arr, line_list, top_k=2) table_highlights = data["table_highlights"] else: table_highlights = np.zeros_like(np.array(line_list)) table_body = [ list_to_style(item=name, a_list=line, highlights=hi) for (name, line, hi) in zip(name_list, line_list, table_highlights) ] table_ready = "\n".join(table_body) ## just print print(f"table: {table}") print(table_ready) pass @staticmethod def plot_table_for_metrics(exp, constraint=None, if_table=True): """ input: constraint: list [the index to extract] """ seperator = " & " print(f"=== exp: {exp} ===") table_body = [] for i, name in enumerate(exp_names): exp_dict = ratio_dict[name] line = "" # for exp in err_mat: a_list = [f"{i:.3f}" for i in exp_dict[exp]] if constraint is not None: a_list = [a_list[i] for i in constraint] a_list = np.array(a_list).tolist() # print(a_list) line += f"({i+1}) & " + seperator.join(a_list) + "\n" line = f"" + line + "\\\\ \\hline" table_body.append(line) # print(f"line: {line}") # titles if if_table: table = table_begin + "\n".join(table_body) + table_end else: table = "\n".join(table_body) return table @staticmethod def read_file_to_list(folder_list, result_names, allow_pickle=False): # load npz assert len(folder_list) == len(result_names) exp_list = [] for exp, result_name in zip(folder_list, result_names): err_dict = np.load(exp + "/" + result_name, allow_pickle=allow_pickle) exp_list.append(err_dict) return exp_list print(f"len of exp_list: {len(exp_list)}") class Val_pipeline_frontend(object): def __init__(self, config, device="cpu"): self.config = config self.net_dict = {} self.device = device ## for net_SP self.net_SP_helper = {} self.set_reproduce(self.config["training"]["reproduce"]) self.base_folder = "./" @staticmethod def set_reproduce(reproduce=False): if reproduce == True: # if config["training"]["reproduce"]: logging.info("reproduce = True") torch.manual_seed(0) np.random.seed(0) print(f"test random # : np({np.random.rand(1)}), torch({torch.rand(1)})") torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def add_net(self, name, net): self.net_dict[name] = net def net_toeval(self): """ # convert all the nets to eval model """ for i, name in enumerate(self.net_dict): self.net_dict[name] = self.net_dict[name].eval() pass def load_net_deepF(self, name="net_deepF"): from train_good_corr_4_vals_goodF_baseline import prepare_model from utils.loader import modelLoader device = self.device config = self.config img_zoom_xy = ( config["data"]["preprocessing"]["resize"][1] / config["data"]["image"]["size"][1], config["data"]["preprocessing"]["resize"][0] / config["data"]["image"]["size"][0], ) model_params = { "depth": config["model"]["depth"], "img_zoom_xy": img_zoom_xy, "image_size": config["data"]["image"]["size"], "quality_size": config["model"]["quality_size"], "if_quality": config["model"]["if_quality"], "if_img_des_to_pointnet": config["model"]["if_img_des_to_pointnet"], "if_goodCorresArch": config["model"]["if_goodCorresArch"], "if_img_feat": config["model"]["if_img_feat"], "if_cpu_svd": config["model"]["if_cpu_svd"], "if_learn_offsets": config["model"]["if_learn_offsets"], "if_tri_depth": config["model"]["if_tri_depth"], "if_sample_loss": config["model"]["if_sample_loss"], } net = modelLoader(config["model"]["name"], **model_params) net, optimizer, n_iter, n_iter_val = prepare_model( config, net, device, n_iter=0, n_iter_val=0, net_postfix="" ) self.net_dict[name] = net pass ## superpoint def load_net_SP(self, name="net_SP"): config = self.config device = self.device SP_params = { "out_num_points": 2000, "patch_size": 5, "device": device, "nms_dist": 4, "conf_thresh": 0.015, } from superpoint.models.model_utils import SuperPointNet_process from superpoint.models.model_wrap import PointTracker from superpoint.models.SuperPointNet_gauss2 import SuperPointNet_gauss2 from train_good_corr_4_vals_goodF_baseline import prepare_model # nn_thresh = config['training']['SP_params']['nn_thresh'] SP_processer = SuperPointNet_process(**SP_params) SP_tracker = PointTracker( max_length=2, nn_thresh=config["training"]["SP_params"]["nn_thresh"] ) net_SP = SuperPointNet_gauss2() net_SP, optimizer_SP, n_iter_SP, n_iter_val_SP = prepare_model( config, net_SP, device, n_iter=0, n_iter_val=0, net_postfix="_SP", train=False, ) logging.info("+++[Train]+++ training superpoint") ## put to class self.net_SP_helper = {"SP_processer": SP_processer, "SP_tracker": SP_tracker} self.net_dict[name] = net_SP pass def eval_one_sample(self, sample): import torch import dsac_tools.utils_F as utils_F # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_opencv as utils_opencv # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_vis as utils_vis # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_misc as utils_misc # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_geo as utils_geo # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' from train_good_utils import val_rt, get_matches_from_SP # params config = self.config net_dict = self.net_dict if_SP = self.config["model"]["if_SP"] if_quality = self.config["model"]["if_quality"] device = self.device net_SP_helper = self.net_SP_helper task = "validating" imgs = sample["imgs"] # [batch_size, H, W, 3] Ks = sample["K"].to(device) # [batch_size, 3, 3] K_invs = sample["K_inv"].to(device) # [batch_size, 3, 3] batch_size = Ks.size(0) scene_names = sample["scene_name"] frame_ids = sample["frame_ids"] scene_poses = sample[ "relative_scene_poses" ] # list of sequence_length tensors, which with size [batch_size, 4, 4]; the first being identity, the rest are [[R; t], [0, 1]] if config["data"]["read_what"]["with_X"]: Xs = sample[ "X_cam2s" ] # list of [batch_size, 3, Ni]; only support batch_size=1 because of variable points Ni for each sample # sift_kps, sift_deses = sample['sift_kps'], sample['sift_deses'] assert sample["get_flags"]["have_matches"][ 0 ].numpy(), "Did not find the corres files!" matches_all, matches_good = sample["matches_all"], sample["matches_good"] quality_all, quality_good = sample["quality_all"], sample["quality_good"] delta_Rtijs_4_4 = scene_poses[ 1 ].float() # [batch_size, 4, 4], asserting we have 2 frames where scene_poses[0] are all identities E_gts, F_gts = sample["E"], sample["F"] pts1_virt_normalizedK, pts2_virt_normalizedK = ( sample["pts1_virt_normalized"].to(device), sample["pts2_virt_normalized"].to(device), ) pts1_virt_ori, pts2_virt_ori = ( sample["pts1_virt"].to(device), sample["pts2_virt"].to(device), ) # pts1_virt_ori, pts2_virt_ori = sample['pts1_velo'].to(device), sample['pts2_velo'].to(device) # Get and Normalize points if if_SP: net_SP = net_dict["net_SP"] SP_processer, SP_tracker = ( net_SP_helper["SP_processer"], net_SP_helper["SP_tracker"], ) xs, offsets, quality = get_matches_from_SP( sample["imgs_grey"], net_SP, SP_processer, SP_tracker ) matches_use = xs + offsets # matches_use = xs + offsets quality_use = quality else: # Get and Normalize points matches_use = matches_good # [SWITCH!!!] quality_use = quality_good.to(device) if if_quality else None # [SWITCH!!!] ## process x1, x2 matches_use = matches_use.to(device) N_corres = matches_use.shape[1] # 1311 for matches_good, 2000 for matches_all x1, x2 = ( matches_use[:, :, :2], matches_use[:, :, 2:], ) # [batch_size, N, 2(W, H)] x1_normalizedK = utils_misc._de_homo( torch.matmul( torch.inverse(Ks), utils_misc._homo(x1).transpose(1, 2) ).transpose(1, 2) ) # [batch_size, N, 2(W, H)], min/max_X=[-W/2/f, W/2/f] x2_normalizedK = utils_misc._de_homo( torch.matmul( torch.inverse(Ks), utils_misc._homo(x2).transpose(1, 2) ).transpose(1, 2) ) # [batch_size, N, 2(W, H)], min/max_X=[-W/2/f, W/2/f] matches_use_normalizedK = torch.cat((x1_normalizedK, x2_normalizedK), 2) matches_use_ori = torch.cat((x1, x2), 2) # Get image feats if config["model"]["if_img_feat"]: imgs = sample["imgs"] # [batch_size, H, W, 3] imgs_stack = ((torch.cat(imgs, 3).float() - 127.5) / 127.5).permute( 0, 3, 1, 2 ) qs_scene = sample["q_scene"].to(device) # [B, 4, 1] ts_scene = sample["t_scene"].to(device) # [B, 3, 1] qs_cam = sample["q_cam"].to(device) # [B, 4, 1] ts_cam = sample["t_cam"].to(device) # [B, 3, 1] t_scene_scale = torch.norm(ts_scene, p=2, dim=1, keepdim=True) # image_height, image_width = config['data']['image']['size'][0], config['data']['image']['size'][1] # mask_x1 = (matches_use_ori[:, :, 0] > (image_width/8.*3.)).byte() & (matches_use_ori[:, :, 0] < (image_width/8.*5.)).byte() # mask_x2 = (matches_use_ori[:, :, 2] > (image_width/8.*3.)).byte() & (matches_use_ori[:, :, 2] < (image_width/8.*5.)).byte() # mask_y1 = (matches_use_ori[:, :, 1] > (image_height/8.*3.)).byte() & (matches_use_ori[:, :, 1] < (image_height/8.*5.)).byte() # mask_y2 = (matches_use_ori[:, :, 3] > (image_height/8.*3.)).byte() & (matches_use_ori[:, :, 3] < (image_height/8.*5.)).byte() # mask_center = (~(mask_x1 & mask_y1)) & (~(mask_x2 & mask_y2)) # matches_use_ori = (mask_center.float()).unsqueeze(-1) * matches_use_ori + torch.tensor([image_width/2., image_height/2., image_width/2., image_height/2.]).to(device).unsqueeze(0).unsqueeze(0) * (1- (mask_center.float()).unsqueeze(-1)) # x1, x2 = matches_use_ori[:, :, :2], matches_use_ori[:, :, 2:] # [batch_size, N, 2(W, H)] data_batch = { "matches_xy_ori": matches_use_ori, "quality": quality_use, "x1_normalizedK": x1_normalizedK, "x2_normalizedK": x2_normalizedK, "Ks": Ks, "K_invs": K_invs, "matches_good_unique_nums": sample["matches_good_unique_nums"], "t_scene_scale": t_scene_scale, } # loss_params = {'model': config['model']['name'], 'clamp_at':config['model']['clamp_at'], 'depth': config['model']['depth']} loss_params = { "model": config["model"]["name"], "clamp_at": config["model"]["clamp_at"], "depth": config["model"]["depth"], } with torch.no_grad(): outs = net_dict["net_deepF"](data_batch) pts1_eval, pts2_eval = pts1_virt_ori, pts2_virt_ori # logits = outs['logits'] # [batch_size, N] # logits_weights = F.softmax(logits, dim=1) logits_weights = outs["weights"] loss_E = 0.0 F_out, T1, T2, out_a = ( outs["F_est"], outs["T1"], outs["T2"], outs["out_layers"], ) pts1_eval = torch.bmm(T1, pts1_virt_ori.permute(0, 2, 1)).permute(0, 2, 1) pts2_eval = torch.bmm(T2, pts2_virt_ori.permute(0, 2, 1)).permute(0, 2, 1) # pts1_eval = utils_misc._homo(F.normalize(pts1_eval[:, :, :2], dim=2)) # pts2_eval = utils_misc._homo(F.normalize(pts2_eval[:, :, :2], dim=2)) loss_layers = [] losses_layers = [] # losses = utils_F.compute_epi_residual(pts1_eval, pts2_eval, F_est, loss_params['clamp_at']) #- res.mean() # losses_layers.append(losses) # loss_all = losses.mean() # loss_layers.append(loss_all) out_a.append(F_out) loss_all = 0.0 for iter in range(loss_params["depth"]): losses = utils_F.compute_epi_residual( pts1_eval, pts2_eval, out_a[iter], loss_params["clamp_at"] ) # losses = utils_F._YFX(pts1_eval, pts2_eval, out_a[iter], if_homo=True, clamp_at=loss_params['clamp_at']) losses_layers.append(losses) loss = losses.mean() loss_layers.append(loss) loss_all += loss loss_all = loss_all / len(loss_layers) F_ests = T2.permute(0, 2, 1).bmm(F_out.bmm(T1)) E_ests = Ks.transpose(1, 2) @ F_ests @ Ks last_losses = losses_layers[-1].detach().cpu().numpy() print(last_losses) print(np.amax(last_losses, axis=1)) # E_ests_list = [] # for x1_single, x2_single, K, w in zip(x1, x2, Ks, logits_weights): # E_est = utils_F._E_from_XY(x1_single, x2_single, K, torch.diag(w)) # E_ests_list.append(E_est) # E_ests = torch.stack(E_ests_list).to(device) # F_ests = utils_F._E_to_F(E_ests, Ks) K_np = Ks.cpu().detach().numpy() x1_np, x2_np = x1.cpu().detach().numpy(), x2.cpu().detach().numpy() E_est_np = E_ests.cpu().detach().numpy() F_est_np = F_ests.cpu().detach().numpy() delta_Rtijs_4_4_cpu_np = delta_Rtijs_4_4.cpu().numpy() # Tests and vis idx = 0 img1 = imgs[0][idx].numpy().astype(np.uint8) img2 = imgs[1][idx].numpy().astype(np.uint8) img1_rgb, img2_rgb = img1, img2 img1_rgb_np, img2_rgb_np = img1, img2 im_shape = img1.shape x1 = x1_np[idx] x2 = x2_np[idx] # utils_vis.draw_corr(img1, img2, x1, x2) delta_Rtij = delta_Rtijs_4_4_cpu_np[idx] print("----- delta_Rtij", delta_Rtij) delta_Rtij_inv = np.linalg.inv(delta_Rtij) K = K_np[idx] F_gt_th = F_gts[idx].cpu() F_gt = F_gt_th.numpy() E_gt_th = E_gts[idx].cpu() E_gt = E_gt_th.numpy() F_est = F_est_np[idx] E_est = E_est_np[idx] unique_rows_all, unique_rows_all_idxes = np.unique( np.hstack((x1, x2)), axis=0, return_index=True ) angle_R = utils_geo.rot12_to_angle_error(np.eye(3), delta_Rtij_inv[:3, :3]) angle_t = utils_geo.vector_angle( np.array([[0.0], [0.0], [1.0]]), delta_Rtij_inv[:3, 3:4] ) print( ">>>>>>>>>>>>>>>> Between frames: The rotation angle (degree) %.4f, and translation angle (degree) %.4f" % (angle_R, angle_t) ) def plot_corrs(mask_sample, title="corres."): utils_vis.draw_corr( img1_rgb, img2_rgb, x1[mask_sample], x2[mask_sample], linewidth=2.0, title=title, ) pass num = 100 plot_corrs( mask_sample=np.random.choice(x1.shape[0], num), title=f"Sample of {num} corres.", ) # ## Baseline: 8-points # M_8point, error_Rt_8point, mask2_8point, E_est_8point = utils_opencv.recover_camera_opencv(K, x1, x2, delta_Rtij_inv, five_point=False, threshold=0.01) ## Baseline: 5-points five_point = False M_opencv, error_Rt_opencv, mask2, E_return = utils_opencv.recover_camera_opencv( K, x1, x2, delta_Rtij_inv, five_point=five_point, threshold=0.01 ) if five_point: E_est_opencv = E_return F_est_opencv = utils_F.E_to_F_np(E_est_opencv, K) else: E_est_opencv, F_est_opencv = E_return[0], E_return[1] ################# print("" # "----- OpenCV %s (%d unique inliers)" % (opencv_name, unique_rows.shape[0]) ) mask_sample= mask2 utils_vis.show_epipolar_rui_gtEst( x2[mask_sample, :], x1[mask_sample, :], img2_rgb, img1_rgb, F_gt.T, F_est_opencv.T, weights=None, im_shape=im_shape, title_append="OpenCV 5-point with its inliers", ) ################### ## Check geo dists print(f"K: {K}") x1_normalizedK = utils_misc.de_homo_np( (np.linalg.inv(K) @ utils_misc.homo_np(x1).T).T ) x2_normalizedK = utils_misc.de_homo_np( (np.linalg.inv(K) @ utils_misc.homo_np(x2).T).T ) K_th = torch.from_numpy(K) F_gt_normalized = K_th.t() @ F_gt_th @ K_th # Should be identical to E_gts[idx] geo_dists = utils_F._sym_epi_dist( F_gt_normalized, torch.from_numpy(x1_normalizedK), torch.from_numpy(x2_normalizedK), ).numpy() geo_thres = 1e-4 mask_in = geo_dists < geo_thres mask_out = geo_dists >= geo_thres mask_sample = mask2 print(mask2.shape) np.set_printoptions(precision=8, suppress=True) ## Ours: Some analysis def plot_score_hist(): print("----- Oursssssssssss") scores_ori = logits_weights.cpu().numpy().flatten() import matplotlib.pyplot as plt plt.hist(scores_ori, 100) plt.show() plot_score_hist() sort_idxes = np.argsort(scores_ori[unique_rows_all_idxes])[::-1] scores = scores_ori[unique_rows_all_idxes][sort_idxes] num_corr = 100 mask_conf = sort_idxes[:num_corr] # mask_sample = np.array(range(x1.shape[0]))[mask_sample][:20] # utils_vis.draw_corr( # img1_rgb, # img2_rgb, # x1[unique_rows_all_idxes], # x2[unique_rows_all_idxes], # linewidth=2.0, # title=f"All {unique_rows_all_idxes.shape[0]} correspondences", # ) plot_corrs( mask_sample=unique_rows_all_idxes, title=f"All {unique_rows_all_idxes.shape[0]} corres.", ) utils_vis.draw_corr( img1_rgb, img2_rgb, x1[unique_rows_all_idxes][mask_conf, :], x2[unique_rows_all_idxes][mask_conf, :], linewidth=2.0, title=f"Ours top {num_corr} confidents", ) # print('(%d unique corres)'%scores.shape[0]) utils_vis.show_epipolar_rui_gtEst( x2[unique_rows_all_idxes][mask_conf, :], x1[unique_rows_all_idxes][mask_conf, :], img2_rgb, img1_rgb, F_gt.T, F_est.T, weights=scores_ori[unique_rows_all_idxes][mask_conf], im_shape=im_shape, title_append="Ours top %d with largest score points" % mask_conf.shape[0], ) def print_val(): print(f"F_gt: {F_gt/F_gt[2, 2]}") print(f"F_est: {F_est/F_est[2, 2]}") error_Rt_est_ours, epi_dist_mean_est_ours, _, _, _, _, _, M_estW = val_rt( idx, K, x1, x2, E_est, E_gt, F_est, F_gt, delta_Rtij, five_point=False, if_opencv=False, ) print( "Recovered by ours (camera): The rotation error (degree) %.4f, and translation error (degree) %.4f" % (error_Rt_est_ours[0], error_Rt_est_ours[1]) ) # print(epi_dist_mean_est_ours, np.mean(epi_dist_mean_est_ours)) print( "%.2f, %.2f" % ( np.sum(epi_dist_mean_est_ours < 0.1) / epi_dist_mean_est_ours.shape[0], np.sum(epi_dist_mean_est_ours < 1) / epi_dist_mean_est_ours.shape[0], ) ) ## OpenCV: Some analysis corres = np.hstack((x1[mask_sample, :], x2[mask_sample, :])) unique_rows = np.unique(corres, axis=0) if corres.shape[0] > 0 else corres opencv_name = "5-point" if five_point else "8-point" utils_vis.draw_corr( img1_rgb, img2_rgb, x1[mask_sample, :], x2[mask_sample, :], linewidth=2.0, title=f"OpenCV {opencv_name} inliers", ) print( "----- OpenCV %s (%d unique inliers)" % (opencv_name, unique_rows.shape[0]) ) utils_vis.show_epipolar_rui_gtEst( x2[mask_sample, :], x1[mask_sample, :], img2_rgb, img1_rgb, F_gt.T, F_est_opencv.T, weights=None, im_shape=im_shape, title_append="OpenCV 5-point with its inliers", ) print(F_gt / F_gt[2, 2]) print(F_est_opencv / F_est_opencv[2, 2]) error_Rt_est_5p, epi_dist_mean_est_5p, _, _, _, _, _, M_estOpenCV = val_rt( idx, K, x1, x2, E_est_opencv, E_gt, F_est_opencv, F_gt, delta_Rtij, five_point=False, if_opencv=False, ) print( "Recovered by OpenCV %s (camera): The rotation error (degree) %.4f, and translation error (degree) %.4f" % (opencv_name, error_Rt_est_5p[0], error_Rt_est_5p[1]) ) print( "%.2f, %.2f" % ( np.sum(epi_dist_mean_est_5p < 0.1) / epi_dist_mean_est_5p.shape[0], np.sum(epi_dist_mean_est_5p < 1) / epi_dist_mean_est_5p.shape[0], ) ) # dict_of_lists['opencv5p'].append((np.sum(epi_dist_mean_est_5p<0.1)/epi_dist_mean_est_5p.shape[0], np.sum(epi_dist_mean_est_5p<1)/epi_dist_mean_est_5p.shape[0])) # dict_of_lists['ours'].append((np.sum(epi_dist_mean_est_ours<0.1)/epi_dist_mean_est_ours.shape[0], np.sum(epi_dist_mean_est_ours<1)/epi_dist_mean_est_ours.shape[0])) print("+++ GT, Opencv_5p, Ours") np.set_printoptions(precision=4, suppress=True) print(delta_Rtij_inv[:3]) print( np.hstack( ( M_opencv[:, :3], M_opencv[:, 3:4] / M_opencv[2, 3] * delta_Rtij_inv[2, 3], ) ) ) print( np.hstack( (M_estW[:, :3], M_estW[:, 3:4] / M_estW[2, 3] * delta_Rtij_inv[2, 3]) ) ) return {"img1_rgb": img1_rgb, "img2_rgb": img2_rgb, "delta_Rtij": delta_Rtij} def eval_one_sift(self, sample, it=0, save_folder="plots/vis_paper/"): import torch import dsac_tools.utils_F as utils_F # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_opencv as utils_opencv # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_vis as utils_vis # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_misc as utils_misc # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_geo as utils_geo # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' from train_good_utils import val_rt, get_matches_from_SP # params config = self.config net_dict = self.net_dict if_SP = self.config["model"]["if_SP"] if_quality = self.config["model"]["if_quality"] device = self.device net_SP_helper = self.net_SP_helper Path(save_folder).mkdir(parents=True, exist_ok=True) task = "validating" imgs = sample["imgs"] # [batch_size, H, W, 3] Ks = sample["K"].to(device) # [batch_size, 3, 3] K_invs = sample["K_inv"].to(device) # [batch_size, 3, 3] batch_size = Ks.size(0) scene_names = sample["scene_name"] frame_ids = sample["frame_ids"] scene_poses = sample[ "relative_scene_poses" ] # list of sequence_length tensors, which with size [batch_size, 4, 4]; the first being identity, the rest are [[R; t], [0, 1]] if config["data"]["read_what"]["with_X"]: Xs = sample[ "X_cam2s" ] # list of [batch_size, 3, Ni]; only support batch_size=1 because of variable points Ni for each sample # sift_kps, sift_deses = sample['sift_kps'], sample['sift_deses'] assert sample["get_flags"]["have_matches"][ 0 ].numpy(), "Did not find the corres files!" matches_all, matches_good = sample["matches_all"], sample["matches_good"] quality_all, quality_good = sample["quality_all"], sample["quality_good"] delta_Rtijs_4_4 = scene_poses[ 1 ].float() # [batch_size, 4, 4], asserting we have 2 frames where scene_poses[0] are all identities E_gts, F_gts = sample["E"], sample["F"] pts1_virt_normalizedK, pts2_virt_normalizedK = ( sample["pts1_virt_normalized"].to(device), sample["pts2_virt_normalized"].to(device), ) pts1_virt_ori, pts2_virt_ori = ( sample["pts1_virt"].to(device), sample["pts2_virt"].to(device), ) # pts1_virt_ori, pts2_virt_ori = sample['pts1_velo'].to(device), sample['pts2_velo'].to(device) # Get and Normalize points if if_SP: logging.info("use sp!!") net_SP = net_dict["net_SP"] SP_processer, SP_tracker = ( net_SP_helper["SP_processer"], net_SP_helper["SP_tracker"], ) xs, offsets, quality = get_matches_from_SP( sample["imgs_grey"], net_SP, SP_processer, SP_tracker ) matches_use = xs + offsets # matches_use = xs + offsets quality_use = quality else: # Get and Normalize points matches_use = matches_good # [SWITCH!!!] quality_use = quality_good.to(device) if if_quality else None # [SWITCH!!!] ## process x1, x2 matches_use = matches_use.to(device) N_corres = matches_use.shape[1] # 1311 for matches_good, 2000 for matches_all x1, x2 = ( matches_use[:, :, :2], matches_use[:, :, 2:], ) # [batch_size, N, 2(W, H)] x1_normalizedK = utils_misc._de_homo( torch.matmul( torch.inverse(Ks), utils_misc._homo(x1).transpose(1, 2) ).transpose(1, 2) ) # [batch_size, N, 2(W, H)], min/max_X=[-W/2/f, W/2/f] x2_normalizedK = utils_misc._de_homo( torch.matmul( torch.inverse(Ks), utils_misc._homo(x2).transpose(1, 2) ).transpose(1, 2) ) # [batch_size, N, 2(W, H)], min/max_X=[-W/2/f, W/2/f] matches_use_normalizedK = torch.cat((x1_normalizedK, x2_normalizedK), 2) matches_use_ori = torch.cat((x1, x2), 2) # Get image feats if config["model"]["if_img_feat"]: imgs = sample["imgs"] # [batch_size, H, W, 3] imgs_stack = ((torch.cat(imgs, 3).float() - 127.5) / 127.5).permute( 0, 3, 1, 2 ) qs_scene = sample["q_scene"].to(device) # [B, 4, 1] ts_scene = sample["t_scene"].to(device) # [B, 3, 1] qs_cam = sample["q_cam"].to(device) # [B, 4, 1] ts_cam = sample["t_cam"].to(device) # [B, 3, 1] t_scene_scale = torch.norm(ts_scene, p=2, dim=1, keepdim=True) # image_height, image_width = config['data']['image']['size'][0], config['data']['image']['size'][1] # mask_x1 = (matches_use_ori[:, :, 0] > (image_width/8.*3.)).byte() & (matches_use_ori[:, :, 0] < (image_width/8.*5.)).byte() # mask_x2 = (matches_use_ori[:, :, 2] > (image_width/8.*3.)).byte() & (matches_use_ori[:, :, 2] < (image_width/8.*5.)).byte() # mask_y1 = (matches_use_ori[:, :, 1] > (image_height/8.*3.)).byte() & (matches_use_ori[:, :, 1] < (image_height/8.*5.)).byte() # mask_y2 = (matches_use_ori[:, :, 3] > (image_height/8.*3.)).byte() & (matches_use_ori[:, :, 3] < (image_height/8.*5.)).byte() # mask_center = (~(mask_x1 & mask_y1)) & (~(mask_x2 & mask_y2)) # matches_use_ori = (mask_center.float()).unsqueeze(-1) * matches_use_ori + torch.tensor([image_width/2., image_height/2., image_width/2., image_height/2.]).to(device).unsqueeze(0).unsqueeze(0) * (1- (mask_center.float()).unsqueeze(-1)) # x1, x2 = matches_use_ori[:, :, :2], matches_use_ori[:, :, 2:] # [batch_size, N, 2(W, H)] data_batch = { "matches_xy_ori": matches_use_ori, "quality": quality_use, "x1_normalizedK": x1_normalizedK, "x2_normalizedK": x2_normalizedK, "Ks": Ks, "K_invs": K_invs, "matches_good_unique_nums": sample["matches_good_unique_nums"], "t_scene_scale": t_scene_scale, } # loss_params = {'model': config['model']['name'], 'clamp_at':config['model']['clamp_at'], 'depth': config['model']['depth']} loss_params = { "model": config["model"]["name"], "clamp_at": config["model"]["clamp_at"], "depth": config["model"]["depth"], } with torch.no_grad(): outs = net_dict["net_deepF"](data_batch) pts1_eval, pts2_eval = pts1_virt_ori, pts2_virt_ori # logits = outs['logits'] # [batch_size, N] # logits_weights = F.softmax(logits, dim=1) logits_weights = outs["weights"] loss_E = 0.0 F_out, T1, T2, out_a = ( outs["F_est"], outs["T1"], outs["T2"], outs["out_layers"], ) pts1_eval = torch.bmm(T1, pts1_virt_ori.permute(0, 2, 1)).permute(0, 2, 1) pts2_eval = torch.bmm(T2, pts2_virt_ori.permute(0, 2, 1)).permute(0, 2, 1) # pts1_eval = utils_misc._homo(F.normalize(pts1_eval[:, :, :2], dim=2)) # pts2_eval = utils_misc._homo(F.normalize(pts2_eval[:, :, :2], dim=2)) loss_layers = [] losses_layers = [] # losses = utils_F.compute_epi_residual(pts1_eval, pts2_eval, F_est, loss_params['clamp_at']) #- res.mean() # losses_layers.append(losses) # loss_all = losses.mean() # loss_layers.append(loss_all) out_a.append(F_out) loss_all = 0.0 for iter in range(loss_params["depth"]): losses = utils_F.compute_epi_residual( pts1_eval, pts2_eval, out_a[iter], loss_params["clamp_at"] ) # losses = utils_F._YFX(pts1_eval, pts2_eval, out_a[iter], if_homo=True, clamp_at=loss_params['clamp_at']) losses_layers.append(losses) loss = losses.mean() loss_layers.append(loss) loss_all += loss loss_all = loss_all / len(loss_layers) F_ests = T2.permute(0, 2, 1).bmm(F_out.bmm(T1)) E_ests = Ks.transpose(1, 2) @ F_ests @ Ks last_losses = losses_layers[-1].detach().cpu().numpy() print(last_losses) print(np.amax(last_losses, axis=1)) # E_ests_list = [] # for x1_single, x2_single, K, w in zip(x1, x2, Ks, logits_weights): # E_est = utils_F._E_from_XY(x1_single, x2_single, K, torch.diag(w)) # E_ests_list.append(E_est) # E_ests = torch.stack(E_ests_list).to(device) # F_ests = utils_F._E_to_F(E_ests, Ks) K_np = Ks.cpu().detach().numpy() x1_np, x2_np = x1.cpu().detach().numpy(), x2.cpu().detach().numpy() E_est_np = E_ests.cpu().detach().numpy() F_est_np = F_ests.cpu().detach().numpy() delta_Rtijs_4_4_cpu_np = delta_Rtijs_4_4.cpu().numpy() # Tests and vis idx = 0 img1 = imgs[0][idx].numpy().astype(np.uint8) img2 = imgs[1][idx].numpy().astype(np.uint8) img1_rgb, img2_rgb = img1, img2 img1_rgb_np, img2_rgb_np = img1, img2 im_shape = img1.shape x1 = x1_np[idx] x2 = x2_np[idx] # utils_vis.draw_corr(img1, img2, x1, x2) delta_Rtij = delta_Rtijs_4_4_cpu_np[idx] print("----- delta_Rtij", delta_Rtij) delta_Rtij_inv = np.linalg.inv(delta_Rtij) K = K_np[idx] F_gt_th = F_gts[idx].cpu() F_gt = F_gt_th.numpy() E_gt_th = E_gts[idx].cpu() E_gt = E_gt_th.numpy() F_est = F_est_np[idx] E_est = E_est_np[idx] unique_rows_all, unique_rows_all_idxes = np.unique( np.hstack((x1, x2)), axis=0, return_index=True ) angle_R = utils_geo.rot12_to_angle_error(np.eye(3), delta_Rtij_inv[:3, :3]) angle_t = utils_geo.vector_angle( np.array([[0.0], [0.0], [1.0]]), delta_Rtij_inv[:3, 3:4] ) print( ">>>>>>>>>>>>>>>> Between frames: The rotation angle (degree) %.4f, and translation angle (degree) %.4f" % (angle_R, angle_t) ) def plot_corrs(mask_sample, title="corres."): utils_vis.draw_corr( img1_rgb, img2_rgb, x1[mask_sample], x2[mask_sample], linewidth=2.0, title=title, ) pass num = 100 plot_corrs = False if plot_corrs: plot_corrs( mask_sample=np.random.choice(x1.shape[0], num), title=f"Sample of {num} corres.", ) # ## Baseline: 8-points # M_8point, error_Rt_8point, mask2_8point, E_est_8point = utils_opencv.recover_camera_opencv(K, x1, x2, delta_Rtij_inv, five_point=False, threshold=0.01) ## Baseline: 5-points five_point = False M_opencv, error_Rt_opencv, mask2, E_return = utils_opencv.recover_camera_opencv( K, x1, x2, delta_Rtij_inv, five_point=five_point, threshold=0.01 ) if five_point: E_est_opencv = E_return F_est_opencv = utils_F.E_to_F_np(E_est_opencv, K) else: E_est_opencv, F_est_opencv = E_return[0], E_return[1] ################# print("plot out sift + ransac" # "----- OpenCV %s (%d unique inliers)" % (opencv_name, unique_rows.shape[0]) ) mask_sample = mask2 utils_vis.show_epipolar_rui_gtEst( x2[mask_sample, :], x1[mask_sample, :], img2_rgb, img1_rgb, F_gt.T, F_est_opencv.T, weights=None, im_shape=im_shape, title_append="", if_show=False, linewidth=1.5 ) ################### import matplotlib.pyplot as plt savefile = f'{save_folder}/sift_ransac_{it}.png' plt.axis("off") plt.savefig(savefile, dpi=300, bbox_inches="tight") plt.show() logging.info(f"save image: {savefile}") def eval_sample_sift(self, sample): pass @staticmethod def ransac_from_points(sample, plot_data): import dsac_tools.utils_opencv as utils_opencv # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' idx = 0 # matches_all, matches_good = sample["matches_all"], sample["matches_good"] # x1, x2 = ( # matches_use[:, :, :2], # matches_use[:, :, 2:], # ) x1, x2 = plot_data['x1'], plot_data['x2'] toNumpy = lambda x: x.cpu().numpy() x1, x2 = toNumpy(x1), toNumpy(x2) # scene_poses = sample[ # "relative_scene_poses" # ] # delta_Rtijs_4_4 = scene_poses[ # 1 # ].float() delta_Rtijs_4_4 = plot_data['delta_Rtijs_4_4'] delta_Rtij = delta_Rtijs_4_4.cpu().numpy()[idx] print("----- delta_Rtij", delta_Rtij) delta_Rtij_inv = np.linalg.inv(delta_Rtij) # E_gts, F_gts = sample["E"], sample["F"] # matches_use = matches_good.cpu().numpy() five_point = False Ks = plot_data["Ks"] K = Ks.cpu().numpy()[idx] print(f"K: {K}") M_opencv, error_Rt_opencv, mask2, E_return = utils_opencv.recover_camera_opencv( K, x1, x2, delta_Rtij_inv, five_point=five_point, threshold=0.01 ) E_est_opencv, F_est_opencv = E_return[0], E_return[1] # return {"E_est": E_return, ""} logging.info(f"E_ests: {E_est_opencv}, F_est_opencv: {F_est_opencv}" ) mask2 = np.array(mask2)[np.newaxis, np.newaxis, ...] logits_weights = np.zeros_like(x1.T).reshape(-1,1) print(f"mask2: {np.array(mask2)}") # logits_weights[mask2] = 1 # logits_weights = logits_weights.reshape(1,1,-1) # logits_weights[mask2] = 1 # print(f"mask2: {np.array(mask2).max()}, logits_weights: {logits_weights.shape}") print(f"logits_weights: {np.array(logits_weights)}") return {"E_ests": E_est_opencv, "F_ests": F_est_opencv, "logits_weights": mask2} # ransac_from_points(sample) def run_eval( self, sample, mode="full", plot_corr_list=[""], plot_epipolar_list=[""], prefix='', postfix='', save=True, title=True, ransac=False, base_folder = "plots/vis_paper" ): """ plot_corr_list=["random", "mask_epi_dist_gt"] plot_epipolar_list=["mask_conf", "mask_epi_dist_gt"] """ data = self.get_sample_data(sample) self.base_folder = base_folder Path(self.base_folder).mkdir(parents=True, exist_ok=True) if not ransac: outs = self.run_net(data["data_batch"], data["loss_params"]) else: logging.info(f"running RANSAC") outs = self.ransac_from_points(data["data_batch"], data["plot_data"]) # outs are included in plot_data # plot_data = data['plot_data'].update(outs) plot_data = data["plot_data"] plot_data.update(outs) # logging.info(f"plot_data: {plot_data}") data = self.get_plot_data(plot_data, idx=0) plot_data = data["plot_data"] img_data = self.get_img_data(sample["imgs"]) idx = sample['frame_ids'] # savefile = f"{prefix}{idx[0][0]}_{idx[1][0]}{postfix}" if save else None savefile = f"{prefix}{postfix}" if save else None self.plot_helper(plot_data, img_data, plot_corr_list, plot_epipolar_list, savefile, title=title) pass def get_sample_data(self, sample): import torch import dsac_tools.utils_F as utils_F # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_opencv as utils_opencv # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_vis as utils_vis # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_misc as utils_misc # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_geo as utils_geo # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' from train_good_utils import val_rt, get_matches_from_SP # params config = self.config net_dict = self.net_dict if_SP = self.config["model"]["if_SP"] if_quality = self.config["model"]["if_quality"] device = self.device net_SP_helper = self.net_SP_helper task = "validating" imgs = sample["imgs"] # [batch_size, H, W, 3] Ks = sample["K"].to(device) # [batch_size, 3, 3] K_invs = sample["K_inv"].to(device) # [batch_size, 3, 3] batch_size = Ks.size(0) scene_names = sample["scene_name"] frame_ids = sample["frame_ids"] scene_poses = sample[ "relative_scene_poses" ] # list of sequence_length tensors, which with size [batch_size, 4, 4]; the first being identity, the rest are [[R; t], [0, 1]] if config["data"]["read_what"]["with_X"]: Xs = sample[ "X_cam2s" ] # list of [batch_size, 3, Ni]; only support batch_size=1 because of variable points Ni for each sample # sift_kps, sift_deses = sample['sift_kps'], sample['sift_deses'] assert sample["get_flags"]["have_matches"][ 0 ].numpy(), "Did not find the corres files!" matches_all, matches_good = sample["matches_all"], sample["matches_good"] quality_all, quality_good = sample["quality_all"], sample["quality_good"] delta_Rtijs_4_4 = scene_poses[ 1 ].float() # [batch_size, 4, 4], asserting we have 2 frames where scene_poses[0] are all identities E_gts, F_gts = sample["E"], sample["F"] pts1_virt_normalizedK, pts2_virt_normalizedK = ( sample["pts1_virt_normalized"].to(device), sample["pts2_virt_normalized"].to(device), ) pts1_virt_ori, pts2_virt_ori = ( sample["pts1_virt"].to(device), sample["pts2_virt"].to(device), ) # pts1_virt_ori, pts2_virt_ori = sample['pts1_velo'].to(device), sample['pts2_velo'].to(device) ## print info delta_Rtijs_4_4_cpu_np = delta_Rtijs_4_4.cpu().numpy() delta_Rtij_inv = np.linalg.inv(delta_Rtijs_4_4_cpu_np[0]) angle_R = utils_geo.rot12_to_angle_error(np.eye(3), delta_Rtij_inv[:3, :3]) angle_t = utils_geo.vector_angle( np.array([[0.0], [0.0], [1.0]]), delta_Rtij_inv[:3, 3:4] ) print( ">>>>>>>>>>>>>>>> Between frames: The rotation angle (degree) %.4f, and translation angle (degree) %.4f" % (angle_R, angle_t) ) # Get and Normalize points if if_SP: net_SP = net_dict["net_SP"] SP_processer, SP_tracker = ( net_SP_helper["SP_processer"], net_SP_helper["SP_tracker"], ) # {'xs': xs, 'offsets': offsets, 'quality': quality, 'num_matches': num_matches, 'xs_SP': xs_SP} data = get_matches_from_SP( sample["imgs_grey"], net_SP, SP_processer, SP_tracker ) xs, offsets, quality = data["xs"], data["offsets"], data["quality"] xs_SP = data["xs_SP"] matches_use = xs + offsets # matches_use = xs + offsets quality_use = quality else: # Get and Normalize points matches_use = matches_good # [SWITCH!!!] quality_use = quality_good.to(device) if if_quality else None # [SWITCH!!!] ## process x1, x2 matches_use = matches_use.to(device) N_corres = matches_use.shape[1] # 1311 for matches_good, 2000 for matches_all x1, x2 = ( matches_use[:, :, :2], matches_use[:, :, 2:], ) # [batch_size, N, 2(W, H)] x1_normalizedK = utils_misc._de_homo( torch.matmul( torch.inverse(Ks), utils_misc._homo(x1).transpose(1, 2) ).transpose(1, 2) ) # [batch_size, N, 2(W, H)], min/max_X=[-W/2/f, W/2/f] x2_normalizedK = utils_misc._de_homo( torch.matmul( torch.inverse(Ks), utils_misc._homo(x2).transpose(1, 2) ).transpose(1, 2) ) # [batch_size, N, 2(W, H)], min/max_X=[-W/2/f, W/2/f] matches_use_normalizedK = torch.cat((x1_normalizedK, x2_normalizedK), 2) matches_use_ori = torch.cat((x1, x2), 2) # Get image feats if config["model"]["if_img_feat"]: imgs = sample["imgs"] # [batch_size, H, W, 3] imgs_stack = ((torch.cat(imgs, 3).float() - 127.5) / 127.5).permute( 0, 3, 1, 2 ) qs_scene = sample["q_scene"].to(device) # [B, 4, 1] ts_scene = sample["t_scene"].to(device) # [B, 3, 1] qs_cam = sample["q_cam"].to(device) # [B, 4, 1] ts_cam = sample["t_cam"].to(device) # [B, 3, 1] t_scene_scale = torch.norm(ts_scene, p=2, dim=1, keepdim=True) # image_height, image_width = config['data']['image']['size'][0], config['data']['image']['size'][1] # mask_x1 = (matches_use_ori[:, :, 0] > (image_width/8.*3.)).byte() & (matches_use_ori[:, :, 0] < (image_width/8.*5.)).byte() # mask_x2 = (matches_use_ori[:, :, 2] > (image_width/8.*3.)).byte() & (matches_use_ori[:, :, 2] < (image_width/8.*5.)).byte() # mask_y1 = (matches_use_ori[:, :, 1] > (image_height/8.*3.)).byte() & (matches_use_ori[:, :, 1] < (image_height/8.*5.)).byte() # mask_y2 = (matches_use_ori[:, :, 3] > (image_height/8.*3.)).byte() & (matches_use_ori[:, :, 3] < (image_height/8.*5.)).byte() # mask_center = (~(mask_x1 & mask_y1)) & (~(mask_x2 & mask_y2)) # matches_use_ori = (mask_center.float()).unsqueeze(-1) * matches_use_ori + torch.tensor([image_width/2., image_height/2., image_width/2., image_height/2.]).to(device).unsqueeze(0).unsqueeze(0) * (1- (mask_center.float()).unsqueeze(-1)) # x1, x2 = matches_use_ori[:, :, :2], matches_use_ori[:, :, 2:] # [batch_size, N, 2(W, H)] data_batch = { "matches_xy_ori": matches_use_ori, "quality": quality_use, "x1_normalizedK": x1_normalizedK, "x2_normalizedK": x2_normalizedK, "Ks": Ks, "K_invs": K_invs, "matches_good_unique_nums": sample["matches_good_unique_nums"], "t_scene_scale": t_scene_scale, "pts1_virt_ori": pts1_virt_ori, "pts2_virt_ori": pts2_virt_ori, } # loss_params = {'model': config['model']['name'], 'clamp_at':config['model']['clamp_at'], 'depth': config['model']['depth']} loss_params = { "model": config["model"]["name"], "clamp_at": config["model"]["clamp_at"], "depth": config["model"]["depth"], } plot_data = { "Ks": Ks, "x1": x1, "x2": x2, "delta_Rtijs_4_4": delta_Rtijs_4_4, "F_gts": F_gts, "E_gts": E_gts, } if if_SP: plot_data.update({"x1_SP": xs_SP[0], "x2_SP": xs_SP[1]}) return { "data_batch": data_batch, "loss_params": loss_params, "plot_data": plot_data, } def get_img_data(self, imgs, idx=0): # Tests and vis idx = 0 img1 = imgs[0][idx].numpy().astype(np.uint8) img2 = imgs[1][idx].numpy().astype(np.uint8) img1_rgb, img2_rgb = img1, img2 return {"img1_rgb": img1_rgb, "img2_rgb": img2_rgb} pass def get_plot_data(self, plot_data, idx=0, if_print=False): """ input: plot_data: dict: {'Ks', 'x1', 'x2', 'E_ests', 'F_ests', 'F_gts', 'E_gts', 'delta_Rtijs_4_4'} {'xs_SP': 'xs_SP'} """ assert idx <= 1 ##### # K_np = Ks.cpu().detach().numpy() # x1_np, x2_np = x1.cpu().detach().numpy(), x2.cpu().detach().numpy() # E_est_np = E_ests.cpu().detach().numpy() # F_est_np = F_ests.cpu().detach().numpy() # delta_Rtijs_4_4_cpu_np = delta_Rtijs_4_4.cpu().numpy() ## convert all items to numpy plot_data_np = {} plot_data_np_idx = {} for i, en in enumerate(plot_data): if not isinstance(plot_data[en], np.ndarray): plot_data_np[en] = plot_data[en].cpu().detach().numpy() else: plot_data_np[en] = np.array(plot_data[en]) # # Tests and vis # idx = 0 # img1 = imgs[0][idx].numpy().astype(np.uint8) # img2 = imgs[1][idx].numpy().astype(np.uint8) # img1_rgb, img2_rgb = img1, img2 # img1_rgb_np, img2_rgb_np = img1, img2 # im_shape = img1.shape ## name mapping # {'plot_data_np': 'plot_data_np_idx'} name_map = { "Ks": "K", "x1": "x1", "x2": "x2", "E_ests": "E_est", "F_ests": "F_est", "F_gts": "F_gt", "E_gts": "E_gt", "delta_Rtijs_4_4": "delta_Rtij", } for i, en in enumerate(plot_data_np): name = name_map[en] if en in name_map else en plot_data_np_idx[name] = plot_data_np[en][idx] # x1 = x1_np[idx] # x2 = x2_np[idx] # delta_Rtij = delta_Rtijs_4_4_cpu_np[idx] # K = K_np[idx] # F_gt_th = F_gts[idx].cpu() # F_gt = F_gt_th.numpy() # E_gt_th = E_gts[idx].cpu() # E_gt = E_gt_th.numpy() # F_est = F_est_np[idx] # E_est = E_est_np[idx] delta_Rtij = plot_data_np_idx["delta_Rtij"] if if_print: print("----- delta_Rtij", delta_Rtij) plot_data_np_idx["delta_Rtij_inv"] = np.linalg.inv(delta_Rtij) return {"plot_data": plot_data_np_idx} def get_val_rt(self, plot_data, idx=0, if_print=False): from train_good_utils import val_rt x1 = plot_data["x1"] x2 = plot_data["x2"] K = plot_data["K"] E_gt = plot_data["E_gt"] F_gt = plot_data["F_gt"] E_est = plot_data["E_est"] F_est = plot_data["F_est"] delta_Rtij = plot_data["delta_Rtij"] if if_print: print(f"F_gt: {F_gt/F_gt[2, 2]}") print(f"F_est: {F_est/F_est[2, 2]}") result = val_rt( idx, K, x1, x2, E_est, E_gt, F_est, F_gt, delta_Rtij, five_point=False, if_opencv=False, ) error_Rt_estW, epi_dist_mean_estW, error_Rt_5point, epi_dist_mean_5point, error_Rt_gt, epi_dist_mean_gt = ( result[0], result[1], result[2], result[3], result[4], result[5], ) if if_print: print( "Recovered by ours (camera): The rotation error (degree) %.4f, and translation error (degree) %.4f" % (error_Rt_estW[0], error_Rt_estW[1]) ) # print(epi_dist_mean_est_ours, np.mean(epi_dist_mean_est_ours)) epi_dist_mean_est_ours = epi_dist_mean_estW print( "%.2f, %.2f" % ( np.sum(epi_dist_mean_est_ours < 0.1) / epi_dist_mean_est_ours.shape[0], np.sum(epi_dist_mean_est_ours < 1) / epi_dist_mean_est_ours.shape[0], ) ) return { "error_Rt_est_ours": error_Rt_estW, "epi_dist_mean_est_ours": epi_dist_mean_estW, "epi_dist_mean_gt": epi_dist_mean_gt, # 'M_estW': M_estW, } def run_net(self, data_batch, loss_params, if_print=False): import torch import dsac_tools.utils_F as utils_F # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_opencv as utils_opencv # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_vis as utils_vis # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_misc as utils_misc # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import dsac_tools.utils_geo as utils_geo # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' from train_good_utils import val_rt, get_matches_from_SP net_dict = self.net_dict Ks = data_batch["Ks"] with torch.no_grad(): outs = net_dict["net_deepF"](data_batch) pts1_virt_ori, pts2_virt_ori = ( data_batch["pts1_virt_ori"], data_batch["pts2_virt_ori"], ) pts1_eval, pts2_eval = pts1_virt_ori, pts2_virt_ori # logits = outs['logits'] # [batch_size, N] # logits_weights = F.softmax(logits, dim=1) logits_weights = outs["weights"] loss_E = 0.0 F_out, T1, T2, out_a = ( outs["F_est"], outs["T1"], outs["T2"], outs["out_layers"], ) pts1_eval = torch.bmm(T1, pts1_virt_ori.permute(0, 2, 1)).permute(0, 2, 1) pts2_eval = torch.bmm(T2, pts2_virt_ori.permute(0, 2, 1)).permute(0, 2, 1) # pts1_eval = utils_misc._homo(F.normalize(pts1_eval[:, :, :2], dim=2)) # pts2_eval = utils_misc._homo(F.normalize(pts2_eval[:, :, :2], dim=2)) loss_layers = [] losses_layers = [] # losses = utils_F.compute_epi_residual(pts1_eval, pts2_eval, F_est, loss_params['clamp_at']) #- res.mean() # losses_layers.append(losses) # loss_all = losses.mean() # loss_layers.append(loss_all) out_a.append(F_out) loss_all = 0.0 for iter in range(loss_params["depth"]): losses = utils_F.compute_epi_residual( pts1_eval, pts2_eval, out_a[iter], loss_params["clamp_at"] ) # losses = utils_F._YFX(pts1_eval, pts2_eval, out_a[iter], if_homo=True, clamp_at=loss_params['clamp_at']) losses_layers.append(losses) loss = losses.mean() loss_layers.append(loss) loss_all += loss loss_all = loss_all / len(loss_layers) F_ests = T2.permute(0, 2, 1).bmm(F_out.bmm(T1)) E_ests = Ks.transpose(1, 2) @ F_ests @ Ks last_losses = losses_layers[-1].detach().cpu().numpy() if if_print: print(last_losses) print(np.amax(last_losses, axis=1)) print(f"logits_weights: {logits_weights.shape}") return {"E_ests": E_ests, "F_ests": F_ests, "logits_weights": logits_weights} def plot_helper( self, plot_data, img_data, plot_corr_list=["random", "mask_epi_dist_gt"], plot_epipolar_list=["mask_conf", "mask_epi_dist_gt"], savefile=None, title=True ): import dsac_tools.utils_vis as utils_vis # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' import matplotlib.pyplot as plt """ input: plot_data: dict: {'K', 'x1', 'x2', 'E_est', 'F_est', 'F_gt', 'E_gt', 'delta_Rtij', 'logits_weights', } img_data: {'img1_rgb', 'img2_rgb'} """ # plot epipolar lines. # plot correspondences img1_rgb = img_data["img1_rgb"] img2_rgb = img_data["img2_rgb"] x1 = plot_data["x1"] x2 = plot_data["x2"] if_SP = self.config["model"]["if_SP"] if if_SP: x1_SP = plot_data["x1_SP"] x2_SP = plot_data["x2_SP"] K = plot_data["K"] E_gt = plot_data["E_gt"] F_gt = plot_data["F_gt"] E_est = plot_data["E_est"] F_est = plot_data["F_est"] scores_ori = plot_data["logits_weights"].flatten() # logging.info(f"scores_ori: {scores_ori.shape}") im_shape = img1_rgb.shape unique_rows_all, unique_rows_all_idxes = np.unique( np.hstack((x1, x2)), axis=0, return_index=True ) def get_score_mask(scores_ori, unique_rows_all_idxes, num_corr=100, top=True): # num_corr = num_corr if top else -num_corr sort_idxes = np.argsort(scores_ori[unique_rows_all_idxes])[::-1] scores = scores_ori[unique_rows_all_idxes][sort_idxes] # num_corr = 100 mask_conf = sort_idxes[:num_corr] if top else sort_idxes[-num_corr:] logging.info(f" top 10: {scores[:10]}, last 10: {scores[-10:]}") return mask_conf def plot_corrs( unique_rows_all_idxes=None, mask_sample=None, title="corres.", savefile="test.png", axis_off=True ): def plot_scatter_xy(x1,img1_rgb,color='r',new_figure=False,zorder=2): unique_rows_all, unique_rows_all_idxes = np.unique( x1, axis=0, return_index=True ) utils_vis.scatter_xy( unique_rows_all, color, img1_rgb.shape, title="", new_figure=new_figure, s=100, # 100 set_lim=False, if_show=False, cmap=None, zorder=zorder ) pass assert unique_rows_all_idxes is not None or mask_sample is not None # if unique_rows_all_idxes is None: # x1 = x1[mask_sample] # x2 = x2[mask_sample] # else: # x1 = x1[unique_rows_all_idxes][mask_conf, :] # x2 = x2[unique_rows_all_idxes][mask_conf, :] new_figure_corr = True if_corr = True color_t = 'g' # 'C0' if if_corr: utils_vis.draw_corr( img1_rgb, img2_rgb, # x1 = x1[mask_sample] if unique_rows_all_idxes is None else x1[unique_rows_all_idxes][mask_conf, :], # x2 = x2[mask_sample] if unique_rows_all_idxes is None else x2[unique_rows_all_idxes][mask_conf, :], x1=x1[mask_sample] if unique_rows_all_idxes is None else x1[unique_rows_all_idxes], x2=x2[mask_sample] if unique_rows_all_idxes is None else x2[unique_rows_all_idxes], # x1[mask_sample], # x2[mask_sample], color=color_t, new_figure=new_figure_corr, linewidth=2, title=title, if_show=False, zorder=1 ) if_SP =False; logging.warning(f"disable if_SP") if if_SP: def remove_x_from_y(x1, x1_SP, remove=True): if remove: x1_noCorr = x1_SP[(np.isin(x1_SP[:,0], x1[:,0]) * np.isin(x1_SP[:,1], x1[:,1]) ) == False] else: x1_noCorr = x1 return x1_noCorr # x1_noCorr = x1_SP[(np.isin(x1_SP[:,0], x1[:,0]) * np.isin(x1_SP[:,1], x1[:,1]) ) == False] x1_noCorr = remove_x_from_y(x1, x1_SP) print(f"np.isin(x1_SP[:,0], x1[:,0]): {x1_SP[:5]}, {x1[:5]}") color = 'r' plot_scatter_xy(x1_noCorr,img1_rgb,color=color,new_figure=False,zorder=2) x2_noCorr = remove_x_from_y(x2, x2_SP) # x2_noCorr = x1_SP[np.isin(x2_SP[:,0], x2[:,0]) * np.isin(x2_SP[:,1], x2[:,1]) ] x2_noCorr[:, 0] += img1_rgb.shape[1] plot_scatter_xy(x2_noCorr,img1_rgb,color=color,new_figure=False,zorder=2) # new_figure_corr = False # x2[:, 0] += img1_rgb.shape[1] x2_shift = x2 + 0 x2_shift[:, 0] += img1_rgb.shape[1] plot_scatter_xy(x1,img1_rgb,color=color_t,new_figure=False,zorder=2) plot_scatter_xy(x2_shift,img1_rgb,color=color_t,new_figure=False,zorder=2) if axis_off: plt.axis('off') if savefile is not None: plt.savefig(savefile, dpi=300, bbox_inches="tight") logging.info(f"save image: {savefile}") plt.show() def plot_epipolar(unique_rows_all_idxes, mask_conf, title="", savefile=None, axis_off=True): # if mask_conf is None: # mask_conf = np.ones_like(unique_rows_all_idxes) # utils_vis.show_epipolar_rui_gtEst( # x2[unique_rows_all_idxes][:], # x1[unique_rows_all_idxes][:], # img2_rgb, # img1_rgb, # F_gt.T, # F_est.T, # # weights=scores_ori[unique_rows_all_idxes], # weights=None, # im_shape=im_shape, # title_append=title, # if_show=False, # linewidth=1.5 # ) utils_vis.show_epipolar_rui_gtEst( x2[unique_rows_all_idxes][mask_conf, :], x1[unique_rows_all_idxes][mask_conf, :], img2_rgb, img1_rgb, F_gt.T, F_est.T, weights=scores_ori[unique_rows_all_idxes][mask_conf], im_shape=im_shape, title_append=title, if_show=False, linewidth=1.5 ) if axis_off: plt.axis('off') if savefile is not None: plt.savefig(savefile, dpi=300, bbox_inches="tight") logging.info(f"save image: {savefile}") plt.show() # base_folder = "plots/vis_paper" base_folder = self.base_folder if "all" in plot_corr_list: # for i, xs in enumerate(x1_SP): # print(f"x1_SP: {x1_SP.shape}") file = None if savefile is not None: file = f"{base_folder}/corr_all_{savefile}.png" logging.info(f"save image: {savefile}") unique_rows_all, unique_rows_all_idxes = np.unique( x1, axis=0, return_index=True ) plot_corrs( unique_rows_all_idxes=unique_rows_all_idxes, mask_sample=None, title=f"Sample of {unique_rows_all_idxes.shape[0]} corres." if title else "", savefile=file, ) if "random" in plot_corr_list: # num = 100 file = None if savefile is not None: file = f"plots/corr_all_random_{savefile}.png" logging.info(f"save image: {savefile}") unique_rows_all, unique_rows_all_idxes = np.unique( x1, axis=0, return_index=True ) # logging.info(f"unique_rows_all: {unique_rows_all}, unique_rows_all: {unique_rows_all}") percentage = 0.3 num = int(unique_rows_all.shape[0]*percentage) logging.info(f"sample {percentage} of corrs. num: {num}") plot_corrs( mask_sample=unique_rows_all_idxes[np.random.choice(unique_rows_all_idxes.shape[0], num)], title=f"Sample of {num} corres." if title else "", savefile=file, ) if "mask_epi_dist_gt" in plot_corr_list: num_points = 100 data = self.get_val_rt(plot_data) mask_conf = get_score_mask( data["epi_dist_mean_gt"].flatten(), unique_rows_all_idxes, num_corr=num_points, top=False, ) plot_corrs( unique_rows_all_idxes, mask_conf, title=f"Top {mask_conf.shape[0]} correspondences with lowest epipolar distance" if title else "", ) num_points = 80 if "mask_conf" in plot_epipolar_list: file = None if savefile is not None: file = f"{base_folder}/mask_conf_{savefile}.png" logging.info(f"save image: {savefile}") print(f"scores_ori: {scores_ori.shape}, {scores_ori[0]}") mask_conf = get_score_mask(scores_ori, unique_rows_all_idxes, num_corr=num_points) print(f"mask_conf: {mask_conf}") ## sift version # print(f"x1: {x1.shape}, x2: {x2.shape}") # plot_epipolar( # scores_ori, # None, # title=f"Ours top {mask_conf.shape[0]} with largest score points" if title else "", # savefile=file # ) # original plot_epipolar( unique_rows_all_idxes, mask_conf, title=f"Ours top {mask_conf.shape[0]} with largest score points" if title else "", savefile=file ) if "mask_epi_dist_gt" in plot_epipolar_list: data = self.get_val_rt(plot_data, if_print=True) # logging.info(f"data['epi_dist_mean_gt']: {data['epi_dist_mean_gt'].shape}") file = None if savefile is not None: file = f"{base_folder}/epi_dist_all_{savefile}.png" logging.info(f"save image: {savefile}") mask_conf = get_score_mask( data["epi_dist_mean_gt"].flatten(), unique_rows_all_idxes, num_corr=num_points, top=False, ) plot_epipolar( unique_rows_all_idxes, mask_conf, title=f"Top {mask_conf.shape[0]} points with lowest epipolar distance" if title else "", savefile=file ) ## plot points selected from gt or deepF. pass # data = eval_one_sample(config, sample) if __name__ == "__main__": import logging import argparse import yaml from settings import EXPER_PATH logging.basicConfig( format="[%(asctime)s %(levelname)s] %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.DEBUG, ) # add parser parser = argparse.ArgumentParser(description="Foo") # Training command parser.add_argument("config", type=str) parser.add_argument("exper_name", type=str) args = parser.parse_args( "configs/table_trans_rot_kitti_apollo.yaml table_rot_test".split() ) print(args) ## load configs with open(args.config, "r") as f: config = yaml.load(f) output_dir = os.path.join(EXPER_PATH, args.exper_name) print(output_dir) print(f"config: {config}") ## read results from utils.eval_tools import Exp_table_processor table_processor = Exp_table_processor(config, debug=True) table_processor.get_result_dict() ## print out table table_processor.print_tables(if_name=True, table_list=["table_1"])
the-stack_106_13850
"""elbb.server""" import json import asyncio import threading from elbb.meta import BANNER from elbb.playbooks import manifest from elbb.engine import launch_client from elbb.queue import get_queue, clear_queue from sanic import Sanic, response from sanic.websocket import WebSocketProtocol app = Sanic(name='elbb') async def _consumer_handler(ws): while True: data = await ws.recv() data = json.loads(data) target_func = None command = data['command'] args = data['args'] # get target function from playbook manifest if command in manifest: target_func = manifest[command] if target_func: t = threading.Thread(target=target_func, args=[*args.values()]) t.daemon = True t.start() async def _producer_handler(ws): queue = get_queue() clear_queue() if queue: await ws.send(queue) await asyncio.sleep(.1) @app.websocket('/elbb_connect') async def elbb_connect(request, ws): # launch game client (if it's not already running) launch_client() while True: consumer_task = asyncio.ensure_future(_consumer_handler(ws)) producer_task = asyncio.ensure_future(_producer_handler(ws)) done, pending = await asyncio.wait( [consumer_task, producer_task], return_when=asyncio.FIRST_COMPLETED, ) for task in pending: task.cancel() def start_server(): app.run('0.0.0.0', port=51337, protocol=WebSocketProtocol)
the-stack_106_13856
# encoding: utf-8 import multiprocessing import sys from PyQt5.QtCore import QObject, QTimer, QUrl, pyqtSignal, pyqtSlot, Qt from PyQt5.QtGui import QFont, QGuiApplication from PyQt5.QtWidgets import ( QApplication, QLabel, QWidget, QHBoxLayout, QVBoxLayout, QDesktopWidget ) #from PyQt5.QtQml import QQmlComponent, QQmlEngine, QQmlApplicationEngine from data import DataSource from data_ser import DataSer class Info: update_ms = 16 font = QFont('SansSerif', 50) title_font = QFont('SansSerif', 60) window_sheet = 'background-color: #e0e0e0;' label_sheet = 'QLabel {color: #bb0000;}' title = "RISLAB Telemetry" def __init__(self): self.data_ser = DataSer() self.process = multiprocessing.Process(target=self.ros_process) self.process.start() self.title_font.setBold(True) self.labels = [] self.w = QWidget() self.w.resize(1280, 720) self.w.setWindowTitle(self.title) self.w.setStyleSheet(self.window_sheet) #self.engine = QQmlApplicationEngine() #self.context = self.engine.rootContext() #self.engine.load('telem.qml') #self.comp = QQmlComponent(self.engine) #self.comp.loadUrl(QUrl('telem.qml')) #level = self.comp.create() #if level is not None: # self.engine.show() #else: # for err in self.comp.errors(): # print(err.toString()) # sys.exit(1) main_vbox = QVBoxLayout() self.w.setLayout(main_vbox) hbox1 = QHBoxLayout() main_vbox.addLayout(hbox1) cols = [ ("Pos Err", "pos", 3), ("Vel Err", "vel", 3), ("Accel Dist", "accel_dist", 3), ("Torque Dist", "torque_dist", 3) ] self.updates = [] for col_name, col_id, n in cols: vbox = QVBoxLayout() hbox1.addLayout(vbox) title_label = QLabel(col_name) title_label.setFont(self.title_font) title_label.setStyleSheet(self.label_sheet) vbox.addWidget(title_label) for i in range(n): label = QLabel("", self.w) label.setStyleSheet(self.label_sheet) label.setAlignment(Qt.AlignRight) self.updates.append((label, "", (col_id, i), "%0.3f")) label.setFont(self.font) vbox.addWidget(label) self.labels.append(label) hbox1.addSpacing(70) hbox3 = QHBoxLayout() main_vbox.addLayout(hbox3) title_label = QLabel("Yaw Err: ") title_label.setFont(self.title_font) title_label.setAlignment(Qt.AlignRight | Qt.AlignVCenter) title_label.setStyleSheet(self.label_sheet) hbox3.addWidget(title_label) label = QLabel("", self.w) label.setStyleSheet(self.label_sheet) label.setAlignment(Qt.AlignVCenter) label.setFont(self.font) self.updates.append((label, "", ("yawerr", 0), "%0.3f°")) hbox3.addWidget(label) hbox2 = QHBoxLayout() main_vbox.addLayout(hbox2) cols = [ ("Euler (RPY)", "euler", 3), ("RPM", "rpms", 4), ] for col_name, col_id, n in cols: vbox = QVBoxLayout() hbox2.addLayout(vbox) title_label = QLabel(col_name) title_label.setAlignment(Qt.AlignCenter) title_label.setFont(self.title_font) title_label.setStyleSheet(self.label_sheet) vbox.addWidget(title_label) fmt_s = "%0.3f°" if col_id == "euler" else "%05d" for i in range(n): label = QLabel("", self.w) label.setAlignment(Qt.AlignRight) label.setStyleSheet(self.label_sheet) self.updates.append((label, "", (col_id, i), fmt_s)) label.setFont(self.font) vbox.addWidget(label) self.labels.append(label) hbox2.addSpacing(70) vbox_imu = QVBoxLayout() hbox2.addLayout(vbox_imu) vbox_imu.addSpacing(70) label = QLabel("") label.setAlignment(Qt.AlignRight) label.setFont(self.font) label.setStyleSheet(self.label_sheet) self.updates.append((label, "Voltage:", ("voltage", 0), "%2.2f V")) vbox_imu.addWidget(label) label = QLabel("") label.setAlignment(Qt.AlignRight) label.setFont(self.font) label.setStyleSheet(self.label_sheet) self.updates.append((label, "Current:", ("current", 0), "%2.2f A")) vbox_imu.addWidget(label) label = QLabel("") label.setAlignment(Qt.AlignRight) label.setFont(self.font) label.setStyleSheet(self.label_sheet) self.updates.append((label, "Temp:", ("temp", 0), "%2.2f °C")) vbox_imu.addWidget(label) hbox2.addSpacing(70) qr = self.w.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.w.move(qr.topLeft()) self.w.show() self.update_timer = QTimer(self.w) self.update_timer.setSingleShot(False) self.update_timer.timeout.connect(self.update) self.update_timer.start(self.update_ms) self.time_ms = 0 def ros_process(self): data = DataSource(self.data_ser) def update(self): data = self.data_ser.read() self.time_ms += self.update_ms for label, prefix, label_ids, fmt_s in self.updates: label.setText(("%s " + fmt_s) % (prefix, getattr(data, label_ids[0])[label_ids[1]])) if __name__ == "__main__": app = QApplication(sys.argv) info = Info() app.exec_()
the-stack_106_13861
import pathlib import subprocess import pytest from pytest_notebook import execution, notebook THIS_DIR = pathlib.Path(__file__).absolute().parent EXAMPLES_DIR = THIS_DIR / ".." / "examples" SH_PATHS = EXAMPLES_DIR.glob("*.sh") NB_PATHS = EXAMPLES_DIR.glob("*.ipynb") PY_PATHS = EXAMPLES_DIR.glob("*.py") @pytest.mark.parametrize("nb_path", NB_PATHS) def test_run_example_notebooks(nb_path): """Smoke test ensuring that example notebooks run without error. The `pytest_notebook` package also includes regression test functionality against saved notebook outputs, if we want to check that later. """ nb = notebook.load_notebook(nb_path) execution.execute_notebook(nb, cwd=EXAMPLES_DIR, timeout=120) @pytest.mark.parametrize("py_path", PY_PATHS) def test_run_example_py_scripts(py_path): """Smoke test ensuring that python example scripts run without error.""" exit_code = subprocess.call(["python", py_path]) assert exit_code == 0 @pytest.mark.parametrize("sh_path", SH_PATHS) def test_run_example_sh_scripts(sh_path): """Smoke test ensuring that shell example scripts run without error.""" exit_code = subprocess.call(["env", "bash", sh_path]) assert exit_code == 0 README_SNIPPET_PATHS = [EXAMPLES_DIR / "quickstart.sh"] @pytest.mark.parametrize("snippet_path", README_SNIPPET_PATHS) def test_example_snippets_are_in_readme(snippet_path): """Check that README.md examples haven't diverged from snippets.""" with open(snippet_path, "r") as f: x = f.read() with open("README.md") as f: y = f.read() assert x in y, f"{snippet_path} has diverged from README.md"
the-stack_106_13862
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ################################################ Testcase_PrepareCondition: Testcase_TestSteps: Testcase_ExpectedResult: """ import os import pytest from tests.common.base import TestBase from tests.common.test_run.ascend.diagpart_run import diagpart_run ############################################################ # TestCase= class: put to tests/*/ ############################################################ class TestCase(TestBase): def setup(self): case_name = "test_akg_diagpart_001" case_path = os.getcwd() self.params_init(case_name, case_path) self.caseresult = True self._log.info("============= {0} Setup case============".format(self.casename)) self.testarg = [ ## testflag,opfuncname,testRunArgs, dimArgs ("diagpart_001", diagpart_run, ((21, 21), "float32", "cce_diagpart_fp32"), ((1, 1),)), ("diagpart_002", diagpart_run, ((43, 43), "float16", "cce_diagpart_fp16"), ((1, 1),)), ] return @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_run(self): self.common_run(self.testarg) def teardown(self): self._log.info("============= {0} Teardown============".format(self.casename)) return
the-stack_106_13863
import math # Distance between two points def dist(p, q): return math.hypot(p[0]-q[0], p[1] - q[1]) # Square distance between two points def d2(p, q): return (p[0] - q[0])**2 + (p[1] - q[1])**2 # Converts two points to a line (a, b, c), # ax + by + c = 0 # if p == q, a = b = c = 0 def pts2line(p, q): return (-q[1] + p[1], q[0] - p[0], p[0]*q[1] - p[1]*q[0]) # Distance from a point to a line, # given that a != 0 or b != 0 def distl(l, p): return (abs(l[0]*p[0] + l[1]*p[1] + l[2]) /math.hypot(l[0], l[1])) # intersects two lines. # if parallell, returnes False. def inters(l1, l2): a1,b1,c1 = l1 a2,b2,c2 = l2 cp = a1*b2 - a2*b1 if cp != 0: return float(b1*c2 - b2*c1)/cp, float(a2*c1 - a1*c2)/cp else: return False # projects a point on a line def project(l, p): a, b, c = l return ((b*(b*p[0] - a*p[1]) - a*c)/(a*a + b*b), (a*(a*p[1] - b*p[0]) - b*c)/(a*a + b*b)) # Intersections between circles def intersections(c1, c2): if c1[2] > c2[2]: c1, c2 = c2, c1 x1, y1, r1 = c1 x2, y2, r2 = c2 if x1 == x2 and y1 == y2 and r1 == r2: return False dist2 = (x1 - x2)*(x1-x2) + (y1 - y2)*(y1 - y2) rsq = (r1 + r2)*(r1 + r2) if dist2 > rsq or dist2 < (r1-r2)*(r1-r2): return [] elif dist2 == rsq: cx = x1 + (x2-x1)*r1/(r1+r2) cy = y1 + (y2-y1)*r1/(r1+r2) return [(cx, cy)] elif dist2 == (r1-r2)*(r1-r2): cx = x1 - (x2-x1)*r1/(r2-r1) cy = y1 - (y2-y1)*r1/(r2-r1) return [(cx, cy)] d = math.sqrt(dist2) f = (r1*r1 - r2*r2 + dist2)/(2*dist2) xf = x1 + f*(x2-x1) yf = y1 + f*(y2-y1) dx = xf-x1 dy = yf-y1 h = math.sqrt(r1*r1 - dx*dx - dy*dy) norm = abs(math.hypot(dx, dy)) p1 = (xf + h*(-dy)/norm, yf + h*(dx)/norm) p2 = (xf + h*(dy)/norm, yf + h*(-dx)/norm) return sorted([p1, p2]) # Finds the bisector through origo # between two points by normalizing. def bisector(p1, p2): d1 = math.hypot(p1[0], p2[1]) d2 = math.hypot(p2[0], p2[1]) return ((p1[0]/d1 + p2[0]/d2), (p1[1]/d1 + p2[1]/d2)) # Distance from P to origo def norm(P): return (P[0]**2 + P[1]**2 + P[2]**2)**(0.5) # Finds ditance between point p # and line A + t*u in 3D def dist3D(A, u, p): AP = tuple(A[i] - p[i] for i in range(3)) cross = tuple(AP[i]*u[(i+1)%3] - AP[(i+1)%3]*u[i] for i in range(3)) return norm(cross)/norm(u) def vec(p1, p2): return p2[0]-p1[0], p2[1] - p1[1] def sign(x): if x < 0: return -1 return 1 if x > 0 else 0 def cross(u, v): return u[0] * v[1] - u[1] * v[0] # s1: (Point, Point) # s2: (Point, Point) # Point : (x, y) # returns true if intersecting s1 & s2 shares at least 1 point. def segment_intersect(s1, s2): u = vec(*s1) v = vec(*s2) p1, p2 = s1 q1, q2 = s2 d1 = cross(u, vec(p1, q1)) d2 = cross(u, vec(p1, q2)) d3 = cross(v, vec(q1, p1)) d4 = cross(v, vec(q1, p2)) if d1 * d2 * d3 * d4 == 0: return True return sign(d1) != sign(d2) and sign(d3) != sign(d4)
the-stack_106_13865
import logging import os import sys # Set up path so that tests can find SUT package sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) # Set up standadr logging config _logger = logging.getLogger() print() if _logger is None: _logger = logging.basicConfig() print("Using new logger") else: print("Using existing logger") _logger.setLevel(logging.DEBUG) _logging_handler = logging.StreamHandler() _logging_handler.setFormatter(logging.Formatter("%(levelname)-10s %(message)s")) _logger.addHandler(_logging_handler)
the-stack_106_13867
"""Implementation of packaging-related magic functions. """ #----------------------------------------------------------------------------- # Copyright (c) 2018 The IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import os import re import shlex import sys from IPython.core.magic import Magics, magics_class, line_magic def _is_conda_environment(): """Return True if the current Python executable is in a conda env""" # TODO: does this need to change on windows? conda_history = os.path.join(sys.prefix, 'conda-meta', 'history') return os.path.exists(conda_history) def _get_conda_executable(): """Find the path to the conda executable""" # Check if there is a conda executable in the same directory as the Python executable. # This is the case within conda's root environment. conda = os.path.join(os.path.dirname(sys.executable), 'conda') if os.path.isfile(conda): return conda # Otherwise, attempt to extract the executable from conda history. # This applies in any conda environment. R = re.compile(r"^#\s*cmd:\s*(?P<command>.*conda)\s[create|install]") with open(os.path.join(sys.prefix, 'conda-meta', 'history')) as f: for line in f: match = R.match(line) if match: return match.groupdict()['command'] # Fallback: assume conda is available on the system path. return "conda" CONDA_COMMANDS_REQUIRING_PREFIX = { 'install', 'list', 'remove', 'uninstall', 'update', 'upgrade', } CONDA_COMMANDS_REQUIRING_YES = { 'install', 'remove', 'uninstall', 'update', 'upgrade', } CONDA_ENV_FLAGS = {'-p', '--prefix', '-n', '--name'} CONDA_YES_FLAGS = {'-y', '--y'} @magics_class class PackagingMagics(Magics): """Magics related to packaging & installation""" @line_magic def pip(self, line): """Run the pip package manager within the current kernel. Usage: %pip install [pkgs] """ python = sys.executable if sys.platform == "win32": python = '"' + python + '"' else: python = shlex.quote(python) self.shell.system(" ".join([python, "-m", "pip", line])) print("Note: you may need to restart the kernel to use updated packages.") @line_magic def conda(self, line): """Run the conda package manager within the current kernel. Usage: %conda install [pkgs] """ if not _is_conda_environment(): raise ValueError("The python kernel does not appear to be a conda environment. " "Please use ``%pip install`` instead.") conda = _get_conda_executable() args = shlex.split(line) command = args[0] args = args[1:] extra_args = [] # When the subprocess does not allow us to respond "yes" during the installation, # we need to insert --yes in the argument list for some commands stdin_disabled = getattr(self.shell, 'kernel', None) is not None needs_yes = command in CONDA_COMMANDS_REQUIRING_YES has_yes = set(args).intersection(CONDA_YES_FLAGS) if stdin_disabled and needs_yes and not has_yes: extra_args.append("--yes") # Add --prefix to point conda installation to the current environment needs_prefix = command in CONDA_COMMANDS_REQUIRING_PREFIX has_prefix = set(args).intersection(CONDA_ENV_FLAGS) if needs_prefix and not has_prefix: extra_args.extend(["--prefix", sys.prefix]) self.shell.system(' '.join([conda, command] + extra_args + args)) print("\nNote: you may need to restart the kernel to use updated packages.")
the-stack_106_13868
import copy import sys import uuid from collections import namedtuple, OrderedDict, Hashable from six import with_metaclass from .exception import (PypherException, PypherAliasException, PypherArgumentException) from .partial import Partial CHECK_CUSTOM_CLASHES = True _LINKS = {} _MODULE = sys.modules[__name__] _PREDEFINED_STATEMENTS = [['Match',], ['Create',], ['Merge',], ['Delete',], ['Remove',], ['Drop',], ['Where',], ['OrderBy', 'ORDER BY'], ['Set',], ['Skip',], ['Limit',], ['Return',], ['Unwind',], ['ASSERT'], ['Detach'], ['DetachDelete', 'DETACH DELETE'], ['Foreach'], ['Load'], ['CSV'], ['FROM'], ['Headers'], ['LoadCsvFrom', 'LOAD CSV FROM'], ['LoadCSVWithHeadersFrom', 'LOAD CSV WITH HEADERS FROM'], ['WITH'], ['UsingPeriodIcCommit', 'USING PERIODIC COMMIT'], ['Periodic'], ['Commit'], ['FieldTerminator', 'FIELDTERMINATOR'], ['Optional', 'OPTIONAL'], ['OptionalMatch', 'OPTIONAL MATCH'], ['Desc'], ['When'], ['ELSE'], ['Case'], ['End'], ['OnCreateSet', 'ON CREATE SET'], ['OnMatchSet', 'ON MATCH SET'], ['CreateIndexOn', 'CREATE INDEX ON'], ['UsingIndex', 'USING INDEX'], ['DropIndexOn', 'DROP INDEX ON'], ['CreateConstraintOn', 'CREATE CONSTRAINT ON'], ['OnCreate', 'ON CREATE'], ['DropConstraintOn', 'DROP CONSTRAINT ON'], ['WHEN'], ['THEN'], ['NOT'], ['XOR'], ['NULL'], ['IS_NULL', 'IS NULL'], ['IS_NOT_NULL', 'IS NOT NULL'], ['OR'], ['IS'], ['CONTAINS']] _PREDEFINED_FUNCTIONS = [['size',], ['reverse',], ['head',], ['tail',], ['last',], ['extract',], ['filter',], ['reduce',], ['Type', 'type',], ['startNode',], ['endNode',], ['count',], ['collect',], ['sum',], ['percentileDisc',], ['stDev',], ['coalesce',], ['timestamp',], ['toInteger',], ['toFloat',], ['toBoolean',], ['keys',], ['properties',], ['length',], ['nodes',], ['relationships',], ['point',], ['distance',], ['abs',], ['rand',], ['ROUND', 'round',], ['CEIL', 'ceil',], ['Floor', 'floor',], ['sqrt',], ['sign',], ['sin',], ['cos',], ['tan',], ['cot',], ['asin',], ['acos',], ['atan',], ['atanZ',], ['haversin',], ['degrees',], ['radians',], ['pi',], ['log10',], ['log',], ['exp',], ['E', 'e'], ['toString',], ['replace',], ['substring',], ['left',], ['right',], ['trim',], ['ltrim',], ['toUpper',], ['toLower',], ['SPLIT', 'split',],['exists',], ['distinct', 'distinct', True], ['MAX', 'max']] RELATIONSHIP_DIRECTIONS = { '-': 'undirected', '>': 'out', '<': 'in', } def create_function(name, attrs=None, func_raw=False): """ This is a utility function that is used to dynamically create new Func or FuncRaw objects. Custom functions can be created and then used in Pypher: create_function('MyCustomFunction', {'name': 'MY_CUSTOM_FUNCTION'}) p = Pypher() p.MyCustomFunction('one', 2, 'C') str(p) # MY_CUSTOM_FUNCTION($_PY_1123_1, $_PY_1123_2, $_PY_1123_3) :param str name: the name of the Func object that will be created. This value is used when the Pypher instance is converted to a string :param dict attrs: any attributes that are passed into the Func constructor options include `name` which will override the name param and will be used when the Pypher instance is converted to a string :param func_raw bool: A flag stating if a FuncRaw instance should be crated instead of a Func instance :return None """ attrs = attrs or {} func = Func if not func_raw else FuncRaw setattr(_MODULE, name, type(name, (func,), attrs)) def create_statement(name, attrs=None): """ This is a utility function that is used to dynamically create a new Statement object. :param str name: the name of the Func object that will be created. This value is used when the Pypher instance is converted to a string :param dict attrs: any attributes that are passed into the Func constructor options include `name` which will override the name param and will be used when the Pypher instance is converted to a string :return None """ attrs = attrs or {} setattr(_MODULE, name, type(name, (Statement,), attrs)) class Param(object): """ This object handles setting a named parameter for use in Pypher instances. Anytime Pypher.bind_param is called, this object is created. :param str name: The name of the parameter that will be used in place of a value in the resuliting Cypher string :param value: The value of the parameter that is bound to the resulting Cypher string """ def __init__(self, name, value): self.name = name.lstrip('$') self.value = value self.placeholder = '$' + self.name class Params(object): """ This object is used to collect Param objects that are bound to the Pypher instance and all of its included instances. Anytime a Pypher instance is added to an existing instance, its Params objects are merged so that the parent instance handles all of the Params. :param string prefix: an optional prefix value for any Param objects that are created when the bind_param method is called without a defined name :param string key: a key that should be unique to each Params instance that will be used when Param objects are created with the bind_param method that do not have an existing name """ def __init__(self, prefix=None, key=None, pypher=None): self.prefix = prefix + '_' if prefix else '' self.key = key or str(uuid.uuid4())[-5:] self.pypher = pypher self._bound_params = {} def reset(self): """ Method used to reset the Param objects that are currently registered with the instance of the Params object. :return: None """ self._bound_params = {} def clone(self): """ Method used to create a copy of the current instance with all of the Param objects copied in the _bound_params attribute :return: a new instance with the same _bound_params values :rtype: Params """ params = Params(prefix=self.prefix, key=self.key) params._bound_params = copy.deepcopy(self._bound_params) return params @property def bound_params(self): return OrderedDict(sorted(self._bound_params.items())) def bind_params(self, params=None): if not params: return self if isinstance(params, dict): for name, value in params.items(): self.bind_param(value, name) else: for value in params: self.bind_param(value) return self.bound_params def bind_param(self, value, name=None): bind = True is_pypher = False # we want None values to be assigned as the keyword NULL in the # resulting Cypher if value is None: value = __.NULL if isinstance(value, Param): name = value.name value = value.value # we will skip binding the value if it is a Pypher instance if isinstance(value, Pypher): value.parent = self.pypher.parent value = str(value) bind = False is_pypher = True if bind and value in self._bound_params.values(): for k, v in self._bound_params.items(): if v == value and type(v) == type(value): name = k break elif bind and value in self._bound_params.keys(): for k, v in self._bound_params.items(): if k == value: name = k value = v break if not name: name = self.param_name() param = Param(name=name, value=value) self._bound_params[param.name] = param.value # if the value was a Pypher instance, we want to override the # .placeholder property with the resulting Cypher string and not # a variable if is_pypher: param.placeholder = value return param def param_name(self, name=None): return '{}{}_{}'.format(name or self.prefix, self.key, len(self.bound_params)) def __iadd__(self, other): self.bind_params(other.bound_params) return self class _Link(type): def __new__(cls, name, bases, attrs): cls = super(_Link, cls).__new__(cls, name, bases, attrs) aliases = attrs.get('_ALIASES', None) _LINKS[name.lower()] = cls if aliases: for alias in aliases: alias_low = alias.lower() if CHECK_CUSTOM_CLASHES: if alias in _LINKS: error = ('The alias: "{}" defined in "{}" is already' ' used by "{}"'.format(alias, name, _LINKS[alias])) raise PypherAliasException(error) elif alias_low in _LINKS: error = ('The alias: "{}" defined in "{}" is already' ' used by "{}"'.format(alias, name, _LINKS[alias_low])) raise PypherAliasException(error) _LINKS[alias] = cls _LINKS[alias_low] = cls return cls class Pypher(with_metaclass(_Link)): PARAM_PREFIX = '$NEO' def __init__(self, parent=None, params=None, *args, **kwargs): self._ = self self._parent = parent self.next = None self.params = params or Params(prefix=self.PARAM_PREFIX) def reset(self): self.next = None self.params = Params(prefix=self.PARAM_PREFIX) def _get_parent(self): return self._parent def _set_parent(self, parent): if not parent: return self self._parent = parent parent.params += self.params self.params = parent.params return self parent = property(_get_parent, _set_parent) @property def bound_params(self): return self.params.bound_params def safely_stringify_for_pudb(self): return None def bind_params(self, params=None): self.params.pypher = self return self.params.bind_params(params=params) def bind_param(self, value, name=None): self.params.pypher = self return self.params.bind_param(value=value, name=name) def __getattr__(self, attr): attr_low = attr.lower() if attr_low[:2] == '__' and attr_low[-2:] == '__': link = Property(name=attr.strip('__')) elif attr_low in _LINKS: link = _LINKS[attr_low]() else: link = Statement(name=attr) return self.add_link(link) def __call__(self, *args, **kwargs): if ('name' not in kwargs and '_name' in self._bottom.__dict__ and type(self._bottom) is Statement): kwargs['name'] = self._bottom.name func = self._bottom.__class__(*args, **kwargs) return self.remove_link(self._bottom).add_link(func) def __getitem__(self, *args): comp = List(parent=self, *args) return self.add_link(comp) def __str__(self): return self.__unicode__() def __unicode__(self): token = self.next prev = token tokens = [] while token: token.parent = self pre = '' suff = '' if token._CLEAR_PRECEEDING_WS: try: tokens[-1] = tokens[-1].rstrip() except Exception as e: pass if token._ADD_PRECEEDING_WS: try: skip = tokens[-1][-1] == ' ' except Exception as e: skip = False if not skip: pre = ' ' if token._ADD_SUCEEDING_WS: suff = ' ' part = '{}{}{}'.format(pre, str(token), suff) tokens.append(part) prev = token token = token.next return ''.join(tokens).strip() def __add__(self, other): return self.operator(operator='+', value=other) def __radd__(self, other): return self.operator(operator='+', value=other, inverse=True) def __iadd__(self, other): return self.operator(operator='+=', value=other) def __sub__(self, other): return self.operator(operator='-', value=other) def __rsub__(self, other): return self.operator(operator='-', value=other, inverse=True) def __isub__(self, other): return self.operator(operator='-=', value=other) def __mul__(self, other): return self.operator(operator='*', value=other) def __rmul__(self, other): return self.operator(operator='*', value=other, inverse=True) def __imul__(self, other): return self.operator(operator='*=', value=other) def __div__(self, other): return self.operator(operator='/', value=other) def __rdiv__(self, other): return self.operator(operator='/', value=other, inverse=True) def __idiv__(self, other): return self.operator(operator='/=', value=other) def __truediv__(self, other): return self.__div__(other=other) def __rtruediv__(self, other): return self.__rdiv__(other=other) def __itruediv__(self, other): return self.__idiv__(other=other) def __mod__(self, other): return self.operator(operator='%', value=other) def __rmod__(self, other): return self.operator(operator='%', value=other, inverse=True) def __imod__(self, other): return self.operator(operator='%=', value=other) def __and__(self, other): return self.operator(operator='&', value=other) def __rand__(self, other): return self.operator(operator='&', value=other, inverse=True) def __or__(self, other): return self.operator(operator='|', value=other) def __ror__(self, other): return self.operator(operator='|', value=other, inverse=True) def __xor__(self, other): return self.operator(operator='^', value=other) def __rxor__(self, other): return self.operator(operator='^', value=other, inverse=True) def __ixor__(self, other): return self.operator(operator='^=', value=other) def __gt__(self, other): return self.operator(operator='>', value=other) def __ge__(self, other): return self.operator(operator='>=', value=other) def __lt__(self, other): return self.operator(operator='<', value=other) def __le__(self, other): return self.operator(operator='<=', value=other) def __ne__(self, other): return self.operator(operator='<>', value=other) def __eq__(self, other): return self.operator(operator='=', value=other) def operator(self, operator, value, inverse=False): op = Operator(operator=operator, value=value, inverse=inverse) return self.add_link(op, before_self=inverse) def property(self, name): prop = Property(name=name) return self.add_link(prop) def raw(self, *args): raw = Raw(*args) return self.add_link(raw) def rel_out(self, *args, **kwargs): kwargs['direction'] = 'out' rel = Relationship(*args, **kwargs) return self.add_link(rel) def rel_in(self, *args, **kwargs): kwargs['direction'] = 'in' rel = Relationship(*args, **kwargs) return self.add_link(rel) def func(self, name, *args, **kwargs): kwargs['name'] = name func = Func(*args, **kwargs) return self.add_link(func) def func_raw(self, name, *args, **kwargs): kwargs['name'] = name func = FuncRaw(*args, **kwargs) return self.add_link(func) def link(self, name): statement = Statement(name=name) return self.add_link(statement) def apply_partial(self, partial): partial.pypher = self partial.build() return self def add_link(self, link, before_self=False): if before_self: link.parent = self.parent or self link.next = self.next self.next = link return self link.parent = self token = self.next if not token: self.next = link self._bottom = link return self while token: try: token.next.next token = token.next continue except Exception as e: token.next = link self._bottom = link break return self def remove_link(self, remove): link = self.next if not link: return self elif id(link) == id(remove): self.next = None self._bottom = None return self while link: if id(link.next) == id(remove): link.next = link.next.next break link = link.next return self def append(self, pypher): token = self.next if not token: self.next = pypher.next self._bottom = pypher.next while token: try: token.next.next token = token.next except Exception as e: token.next = pypher.next self._bottom = pypher.next break return self def clone(self, pypher=None): pypher = Pypher() link = self.next nxt = pypher while link: try: clone = link.__class__() clone.__dict__ = copy.copy(link.__dict__) clone.__dict__['next'] = None link = link.next nxt.next = clone nxt._bottom = clone nxt = clone except Exception as e: break return pypher class _BaseLink(Pypher): _CLEAR_PRECEEDING_WS = False _ADD_PRECEEDING_WS = False _ADD_SUCEEDING_WS = True def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs super(_BaseLink, self).__init__() def __unicode__(self): return self.__class__.__name__.upper() class Statement(_BaseLink): _ADD_PRECEEDING_WS = True _ADD_SUCEEDING_WS = True _CAPITALIZE = True def __init__(self, *args, **kwargs): try: self._name = kwargs.pop('name') except: self._name = None super(Statement, self).__init__(*args, **kwargs) @property def name(self): if self._name: return self._name if self._CAPITALIZE: return self.__class__.__name__.upper() return self.__class__.__name__ def __unicode__(self): if self.args: parts = [] for arg in self.args: if isinstance(arg, (Pypher, Partial)): arg.parent = self.parent elif isinstance(arg, Param): self.bind_param(arg) arg = arg.placeholder parts.append(str(arg)) parts = ', '.join(parts) return '{} {}'.format(self.name, parts) return self.name class Property(Statement): _ADD_PRECEEDING_WS = False _CLEAR_PRECEEDING_WS = True _ALIASES = ['prop',] def __init__(self, name=None): super(Property, self).__init__(name=name) def __unicode__(self): return '.`{}`'.format(self.name) class Label(Statement): _ADD_PRECEEDING_WS = False _CLEAR_PRECEEDING_WS = True _ALLOWED_OPERATORS = { '+': ':', '|': '|', } def __init__(self, labels=None, default_operator='+'): self._labels = [] self.labels = labels self._operator = '+' self.operator = default_operator super(Label, self).__init__() def _set_label(self, labels): if not labels: labels = [] elif not isinstance(labels, (list, set, tuple)): labels = [labels] self._labels = labels def _get_label(self): return self._labels labels = property(_get_label, _set_label) def _get_operator(self): return self._ALLOWED_OPERATORS[self._operator] def _set_operator(self, operator): if operator not in self._ALLOWED_OPERATORS: raise self._operator = operator operator = property(_get_operator, _set_operator) def __unicode__(self): if not self.labels: return '' labels = ['`{}`'.format(a) for a in self.labels] labels = ('{}'.format(self.operator)).join(labels) return ':{labels}'.format(labels=labels) class IN(Statement): def __unicode__(self): args = [] for arg in self.args: if isinstance(arg, (Pypher, Partial)): arg.parent = self.parent value = str(arg) else: param = self.bind_param(arg) value = param.placeholder args.append(value) args = ', '.join(args) return 'IN [{args}]'.format(args=args) class Func(Statement): _CAPITALIZE = False def get_args(self): args = [] for arg in self.args: if isinstance(arg, (Pypher, Partial)): arg.parent = self.parent value = str(arg) else: param = self.bind_param(arg) value = param.placeholder args.append(value) return ', '.join(args) def __unicode__(self): args = self.get_args() return '{function}({args})'.format(function=self.name, args=args) class FuncRaw(Func): def get_args(self): args = [] for arg in self.args: if isinstance(arg, (Pypher, Partial)): arg.parent = self.parent args.append(str(arg)) return ', '.join(args) class ID(FuncRaw): name = 'id' class Raw(Statement): def __unicode__(self): args = [] for arg in self.args: if isinstance(arg, (Pypher, Partial)): arg.parent = self.parent args.append(str(arg)) args = ' '.join(args) return '{args}'.format(args=args) class Conditional(Func): _ADD_PRECEEDING_WS = True _ADD_SUCEEDING_WS = True _SEPARATOR = ', ' def __unicode__(self): parts = [] for arg in self.args: if isinstance(arg, (Pypher, Partial)): arg.parent = self.parent value = str(arg) else: param = self.bind_param(arg) value = param.placeholder parts.append(value) parts = self._SEPARATOR.join(parts) return '({})'.format(parts) class ConditionalAND(Conditional): _SEPARATOR = ' AND ' _ALIASES = ['CAND', 'COND_AND'] class ConditionalOR(Conditional): _SEPARATOR = ' OR ' _ALIASES = ['COR', 'COND_OR'] class _APOCBitwiseBase(Func): def __unicode__(self): def fix(arg): if isinstance(arg, (Pypher, Partial)): arg.parent = self.parent value = str(arg) else: param = self.bind_param(arg) value = param.placeholder return value if not isinstance(self.args, list): self.args = list(self.args) left = fix(self.args.pop(0)) if len(self.args) > 1: bw = self.__class__(*self.args) bw.parent = self.parent right = str(bw) else: right = fix(self.args[0]) return 'apoc.bitwise.op({}, "{}", {})'.format(left, self._OPERATOR, right) class BitwiseAnd(_APOCBitwiseBase): _ALIASES = ['BAND',] _OPERATOR = '&' class BitwiseOr(_APOCBitwiseBase): _ALIASES = ['BOR',] _OPERATOR = '|' class BitwiseXOr(_APOCBitwiseBase): _ALIASES = ['BXOR',] _OPERATOR = '^' class BitwiseNot(_APOCBitwiseBase): _ALIASES = ['BNOT',] _OPERATOR = '~' class BitwiseLeftShift(_APOCBitwiseBase): _ALIASES = ['BLSHIFT',] _OPERATOR = '>>' class BitwiseRightShift(_APOCBitwiseBase): _ALIASES = ['BRSHIFT',] _OPERATOR = '<<' class BitwiseUnsighedLeftShift(_APOCBitwiseBase): _ALIASES = ['BULSHIFT',] _OPERATOR = '>>>' class List(_BaseLink): _ADD_PRECEEDING_WS = False _CLEAR_PRECEEDING_WS = True def __unicode__(self): args = [] for arg in self.args: if isinstance(arg, Pypher): value = str(arg) arg.parent = self.parent elif isinstance(arg, Partial): value = str(arg) else: param = self.bind_param(arg) value = param.placeholder args.append(value) args = ', '.join(args) return '[{args}]'.format(args=args) class Comprehension(List): _ADD_PRECEEDING_WS = True _CLEAR_PRECEEDING_WS = False _ALIASES = ['comp'] class Map(_BaseLink): _ADD_PRECEEDING_WS = True def __unicode__(self): body = [] def prep_value(value, name=None): if isinstance(value, (list, set, tuple)): values = [] for v in value: if isinstance(v, (Pypher, Partial)): v.parent = self.parent values.append(str(v)) else: param = self.bind_param(v) values.append(param.placeholder) values = ', '.join(values) return '[{}]'.format(values) if isinstance(value, (Pypher, Partial)): value.parent = self.parent elif name: name = self.params.param_name(name) param = self.bind_param(value=value, name=name) return param.placeholder return str(value) for arg in self.args: body.append(prep_value(arg)) kwargs = OrderedDict(sorted(self.kwargs.items())) for k, val in kwargs.items(): pair = '`{}`: {}'.format(k, prep_value(val, k)) body.append(pair) body = ', '.join(body) return '{{{}}}'.format(body) class MapProjection(Map): _ALIASES = ['map_projection', 'projection',] def __init__(self, _name=None, *args, **kwargs): super(MapProjection, self).__init__(*args, **kwargs) self.name = _name def __unicode__(self): _map = super(MapProjection, self).__unicode__() return '{} {}'.format(self.name, _map) class Operator(_BaseLink): _ADD_PRECEEDING_WS = True _ADD_SUCEEDING_WS = False _BIND_PARAMS = True def __init__(self, value=None, operator=None, inverse=False): self.operator = operator or self.operator self.value = value self.inverse = inverse super(Operator, self).__init__() def _get_value(self): return self._value def _set_value(self, value): # None should result to NULL if value is None: value = __.NULL self._value = value return self value = property(_get_value, _set_value) def __unicode__(self): operator = self.operator if isinstance(self.value, (Pypher, Partial)): self.value.parent = self.parent value = str(self.value) elif isinstance(self.value, dict): # TODO: abstract this logoic out to be used for entity params def params(item): new = [] is_dict = isinstance(item, dict) if is_dict: item = OrderedDict(sorted(item.items())) for k, v in item.items(): if isinstance(v, (list, set, tuple, dict)): v = params(v) elif self._BIND_PARAMS: param = self.bind_param(v) v = param.placeholder new.append('`{}`: {}'.format(k, v)) return '{{{}}}'.format(', '.join(new)) else: for v in item: is_seq = isinstance(v, (list, set, tuple, dict)) if is_seq: v = params(v) elif self._BIND_PARAMS: param = self.bind_param(v) v = param.placeholder new.append(v) return '[{}]'.format(', '.join(new)) return new value = params(self.value) elif self._BIND_PARAMS: param = self.bind_param(self.value) value = param.placeholder else: value = self.value if self.inverse: operator, value = value, operator return '{} {}'.format(operator, value) class OperatorRaw(Operator): _BIND_PARAMS = False class AND(Operator): operator = 'AND' class OR(Operator): operator = 'OR' class Assign(Operator): operator = '=' class Alias(OperatorRaw): _ALIASES = ['AS',] operator = 'AS' class Rexp(Operator): _ALIASES = ['re',] operator = '=~' class Entity(_BaseLink): _ADD_PRECEEDING_WS = False _ADD_SUCEEDING_WS = False _CLEAR_PRECEEDING_WS = False _LABEL_OPERATOR = '+' def __init__(self, variable=None, labels=None, **properties): if not isinstance(labels, Label): labels = Label(labels) labels.operator = self._LABEL_OPERATOR self.variable = variable or '' self._labels = labels self._properties = OrderedDict(sorted(properties.items())) super(Entity, self).__init__() @property def labels(self): variable = self.variable labels = str(self._labels) if labels: if variable: return '{variable}{labels}'.format(variable=variable, labels=labels) else: return '{labels}'.format(labels=labels) return variable @property def properties(self): properties = [] for k, v in self._properties.items(): name = self.params.param_name(k) param = self.bind_param(value=v, name=name) properties.append('`{key}`: {val}'.format(key=k, val=param.placeholder)) if properties: return '{{{props}}}'.format(props=', '.join(properties)) return '' class Node(Entity): _ALIASES = ['n_',] def __unicode__(self): properties = self.properties if properties: properties = ' ' + properties return '({labels}{properties})'.format(labels=self.labels, properties=properties) class Relationship(Entity): _ALIASES = ['rel', 'r_'] _DEFAULT_DIRECTION = 'undirected' _DIRECTIONS = { 'undirected': '-{}-', 'in': '<-{}-', 'out': '-{}->', } _LABEL_OPERATOR = '|' def __init__(self, variable=None, labels=None, types=None, direction=None, hops=None, min_hops=None, max_hops=None, **properties): labels = types or labels super(Relationship, self).__init__(variable=variable, labels=labels, **properties) self._direction = None self.direction = direction if hops is None: if min_hops is None and max_hops is None: # hops are not specified self.hops = [] else: # at least one of hops is not None # empty string gets interpreted as open bound # e.g. ["", 3] -> "..3" and [3, ""] -> "3.." min_hops = "" if min_hops is None else str(min_hops) max_hops = "" if max_hops is None else str(max_hops) if min_hops == max_hops: # depcrated functionality, use hops instead self.hops = [min_hops] else: self.hops = [min_hops, max_hops] else: if min_hops is not None or max_hops is not None: raise ValueError("If 'hops' is specified, do not specify 'min_hops' or 'max_hops'") self.hops = [str(hops)] @property def variable_length(self): if self.hops: return '*{}'.format('..'.join(self.hops)) return '' def _get_direction(self): direction = self._direction.lower() return self._DIRECTIONS[direction] def _set_direction(self, direction=None): if not direction: direction = self._DEFAULT_DIRECTION elif direction in RELATIONSHIP_DIRECTIONS: direction = RELATIONSHIP_DIRECTIONS[direction] elif direction in RELATIONSHIP_DIRECTIONS.values(): direction = direction else: error = 'The direction: {} is not valid'.format(direction) raise PypherArgumentException(error) self._direction = direction direction = property(_get_direction, _set_direction) def __unicode__(self): properties = self.properties labels = self.labels hops = self.variable_length if properties: properties = ' ' + properties if labels or properties or hops: fill = '[{labels}{properties}{hops}]'.format(labels=labels, properties=properties, hops=hops) else: fill = '' return self.direction.format(fill) class Anon(object): def __init__(self): pass def __getattr__(self, attr): py = Pypher() getattr(py, attr) return py def __call__(self, *args, **kwargs): return Pypher() # Create an anonymous Pypher factory __ = Anon() # dynamically create all pre defined Statments and functions for state in _PREDEFINED_STATEMENTS: name = state[0] try: attrs = {'name': state[1]} except Exception as e: attrs = {} create_statement(name=name, attrs=attrs) for fun in _PREDEFINED_FUNCTIONS: name = fun[0] try: attrs = {'name': fun[1]} except Exception as e: attrs = {'name': name} try: func_raw = bool(fun[2]) except Exception as e: func_raw = False create_function(name=name, attrs=attrs, func_raw=func_raw)
the-stack_106_13869
# coding:utf-8 # datetime: 2020/5/15 7:27 PM # software: PyCharm # File: app_start LICENSE = 'Copyright 2019.' import time import subprocess class Phone: def __init__(self, d=None, u2url=None,brand=None, logger=None): self.exlude_app = ["com.tencent.mm",'com.github.uiautomator', 'com.github.uiautomator.test'] self.d = d if not brand: self.brand = self.d.device_info['brand'] else: self.brand = brand self.logger = logger self.attention = { "com.android.packageinstaller": [u"确定", u"安装", u"下一步", u"好", u"允许", u"我知道"], "com.miui.securitycenter": [u"继续安装"], # xiaomi "com.lbe.security.miui": [u"允许"], # xiaomi "android": [u"好", u"安装"], # vivo "com.huawei.systemmanager": [u"立即删除"], # huawei "com.android.systemui": [u"同意"], # 锤子 } self.attention_install = { "letv" : { 'adb_install_allow' :{'times': 5, 'when': [ "//*[@resource-id='android:id/le_bottomsheet_btn_confirm_5']", "不再提示" ], 'call': (('text','不再提示'), ('text','允许') )} }, "xiaomi": { 'adb_install_allow': {'times': 5, 'when': [], 'call': None } }, "vivo": { 'adb_IMEI_allow': {'times': 5, 'when': ["//*[@resource-id='android:id/alertTitle']", "知道了"], 'call': ( ('text', '知道了'), ('text', '好') )}, 'adb_nomarket_allow': {'times': 5, 'when': ["安全警告","好"], 'call': (('text', '好'))}, 'adb_install_allow': {'times': 5, 'when': ["//*[@resource-id='vivo:id/vivo_adb_install_ok_button']","安装"], 'call': (('text', '安装'), ('resourceId', 'vivo:id/vivo_adb_install_ok_button'))} }, "meizu": { 'adb_install_allow': {'times': 5, 'when': [], 'call': None } }, "oppo": { 'adb_nomarket_allow': {'times': 5, 'when': ["安装风险", "允许"], 'call': ( ('text', '允许'), ('resourceId', 'android:id/button2') )}, 'adb_install_allow': {'times': 5, 'when': ["//*[@resource-id='com.android.packageinstaller:id/permission_list']", "安装"], 'call': ( ('text', '安装'), ('resourceId', 'com.android.packageinstaller:id/bottom_button_two') )} }, } self.attention_install['LeEco'.lower()] = self.attention_install['letv'] self.attention_start = { "letv": { 'allow_out_app': {'times': 5, 'when': ["//*[@resource-id='android:id/le_bottomsheet_btn_confirm_5']", "允许"], 'call': (('text', '允许'))}, 'allow_in_app': {'times': 3, 'when': ["//*[@resource-id='android:id/le_bottomsheet_btn_confirm_5']", "允许"], 'call': ( ('text', '不再提示'), ('text', '允许') )} }, "xiaomi": { 'allow_in_app': {'times': 5, 'when': [ "//*[@resource-id='com.lbe.security.miui:id/perm_desc_root']", "允许" ], 'call': ( ('text', '不再提示'), ('text', '允许') )} }, "vivo": { 'allow_in_app': {'times': 5, 'when': ["权限请求", "允许"], 'call': ( ('text', '允许'), ('resourceId', 'android:id/button1') )}, }, "meizu": { 'allow_in_app': {'times': 5, 'when': ["//*[@resource-id='android:id/title_template']", "允许" ], 'call': ( ('text', '允许'), ('resourceId', 'android:id/button1') )} }, "oppo": { 'allow_in_app': {'times': 5, 'when': ["//*[@resource-id='android:id/title_template']", "允许"], 'call': ( ('text', '允许'), ('resourceId', 'android:id/button1') )}, }, } self.attention_start[ 'LeEco'.lower() ] = self.attention_start['letv'] def permission_call_func(self, *args, **kwargs ): for item in args: if self.d(**{item[0]:item[1]}).exists: self.d(**{item[0]:item[1]}).click() return True def register_watcher(self, attention=None): if not attention: return False for key,value in attention.items(): watcher = self.d.watcher(key, value['times']) if not value['when']: continue for wh in value['when']: watcher = watcher.when(wh) if not value['call']: continue watcher.call( self.permission_call_func, *value['call'] ) return True def permission_install(self): device_brand = self.brand if device_brand.lower() in self.attention_install: attention = self.attention_install[ device_brand.lower() ] self.register_watcher(attention = attention) return True for key,value in self.attention_install.items(): self.register_watcher(attention=value) self.d.watcher.start() return True def permission_start(self): device_brand = self.brand if device_brand.lower() in self.attention_start: attention = self.attention_start[ device_brand.lower() ] self.register_watcher(attention = attention) return True for key,value in self.attention_start.items(): self.register_watcher(attention=value) self.d.watcher.start() return True def permission_message_install(self): # 乐视提示是否adb可安装 # d(resourceId="android:id/le_bottomsheet_btn_chk_ctn") 不再提示框 if self.brand == 'letv' or self.brand == 'leeco': self.d.watcher('adb_install_allow', 5).when( "//*[@resource-id='android:id/le_bottomsheet_btn_confirm_5']").when("不再提示").call( self.permission_call_func, ('text','不再提示'), ('text','允许')) # self.d.watcher('adb_install_allow', 5).when("不再提示").call( # self.permission_call_func, ('text', '不再提示'), ('text', '允许')) elif self.brand == 'xiaomi':# 小米 没有提示 pass elif self.brand == 'meizu': # meizu 没有安全提示警告 pass elif self.brand == 'vivo': # vivo 提示安全警告 self.d.watcher('adb_IMEI_allow', 5).when( "//*[@resource-id='android:id/alertTitle']").when("知道了").call( self.permission_call_func, ('text', '知道了'), ('text', '好')) #这个是防止vivo的IMEI MEID无效 self.d.watcher('adb_nomarket_allow', 5).when("//android.widget.TextView[@text='安全警告']").call( self.permission_call_func, ('text', '好')) self.d.watcher('adb_install_allow', 5).when( "//*[@resource-id='vivo:id/vivo_adb_install_ok_button']").when("安装").call( self.permission_call_func, ('text', '安装'), ('resourceId', 'vivo:id/vivo_adb_install_ok_button')) elif self.brand == 'oppo': # oppo 非市场应用 # 下面是点击安装按钮 self.d.watcher('adb_nomarket_allow', 5).when("安装风险").when("允许").call( self.permission_call_func, ('text', '允许'), ('resourceId', 'android:id/button2')) self.d.watcher('adb_install_allow', 5).when( "//*[@resource-id='com.android.packageinstaller:id/permission_list']").when("安装").call( self.permission_call_func, ('text', '安装'), ('resourceId', 'com.android.packageinstaller:id/bottom_button_two')) else: return False self.d.watcher.start() return True def permission_message_start(self): # 乐视在打开页面弹出确认 # d(resourceId="android:id/le_bottomsheet_btn_chk_ctn") 不再提示框 if self.brand == 'letv' or self.brand == 'leeco': self.d.watcher('allowout', 5).when( "//*[@resource-id='android:id/le_bottomsheet_btn_confirm_5']").when("允许").call( self.permission_call_func, ('text', '允许')) # 乐视在app内部弹出确认 # self.d(resourceId="com.android.packageinstaller:id/permission_message").exists text=要允许刷宝短视频使用此设备的位置信息吗? # self.d(resourceId="com.android.packageinstaller:id/permission_allow_button").click() text=允许 # self.d(resourceId="com.android.packageinstaller:id/permission_deny_button").click() text=拒绝 self.d.watcher('allowin', 3).when( "//*[@resource-id='com.android.packageinstaller:id/permission_message']").when("允许").call( self.permission_call_func, ('text', '不再提示'), ('text', '允许')) elif self.brand == 'xiaomi': # 小米手机弹出框 照片媒体文件 卫星网络定位 IMEI-IMSI-手机号码权限 #d(resourceId="com.lbe.security.miui:id/desc_container") #d(resourceId="com.lbe.security.miui:id/perm_desc_root") #d(resourceId="com.lbe.security.miui:id/permission_list") self.d.watcher('allowin_lbe', 5).when( "//*[@resource-id='com.lbe.security.miui:id/perm_desc_root']").when("允许").call( self.permission_call_func, ('text', '不再提示'), ('text', '允许')) self.d.watcher('allowin_android', 5).when( "//*[@resource-id='android:id/button1']").when("允许").call( self.permission_call_func, ('text', '不再提示'), ('text', '允许')) elif self.brand == 'vivo': # vivo手机弹出框 手机状态 拍照 录音 位置 通讯录 sdka # d(resourceId="vivo:id/rememberCB") 不再提示 # d(resourceId="vivo:id/confirm_msg") # d(resourceId="android:id/title_template") # d(resourceId="vivo:id/hint_msg") d(resourceId="android:id/button1") 允许 self.d.watcher('allowin', 5).when("权限请求").when("允许").call( self.permission_call_func, ('text', '允许'), ('resourceId', 'android:id/button1')) #这里还有个i管家 取消的按钮 elif self.brand == 'meizu': # meizu # d(resourceId="android:id/title_template") d(resourceId="android:id/topPanel") # d(resourceId="android:id/button1") 允许 d(resourceId="android:id/buttonPanel") self.d.watcher('allowin', 5).when( "//*[@resource-id='android:id/title_template']").when("允许").call( self.permission_call_func, ('text', '允许'), ('resourceId', 'android:id/button1')) elif self.brand == 'oppo': # oppo 权限 self.d.watcher('allowin', 5).when( "//*[@resource-id='android:id/title_template']").when("允许").call( self.permission_call_func, ('text', '允许'), ('resourceId', 'android:id/button1')) else: return False self.d.watcher.start() return True # TODO apk更新 apk安装 apk权限 # 针对 oppo vivo 机型需要优化, 两个品牌在安装的时候,刚开始安装就出现安装完成,所有在后面要有等待过程 def detect_start_app(self, app_info=None, app=None ,start=False, location=False): # 请求更新 以及 安装 ''' :param app_info: app_info = { "app_alias_name": "ju_news", "app_package_name": "com.xiangzi.jukandian", } :param app:{ 'appalias': 'wechat', 'chinese': '微信', 'packagename': 'com.tencent.mm', 'host_url': 'http://dldir1.qq.com/weixin/android/weixin705android1440.apk', 'mi_url': 'https://b6.market.xiaomi.com/download/AppStore/087c84ba1fb4c3299bfc2b1cd9d5bf0315943dff0/com.tencent.mm.apk', 'tencent_url': 'https://d4975263df62a5727ed5f2e8637b3c74.dd.cdntips.com/imtt.dd.qq.com/16891/apk/B1E9D2F728BAD42741673019E6FC8986.apk', 'pan_url': None, 'version': '7.0.10' } :param start: :param location: :return: ''' # step1 检查更新信息 if not app_info: return False if not app: app = self.appinfo(appinfo=app_info) if not app: self.logger.error("appalias %s info is %s" % (app_info["app_alias_name"], app)) return False self.logger.debug("appalias %s info is %s" % (app_info["app_alias_name"], app)) if app: #如果没有拿到请求就直接启动app看能否启动 install =False try: info = self.d.app_info(app_info["app_package_name"]) if info["versionName"] < app["version"]: install = True except: install = True if install: # self.d.press('home') # 回到主页面,否则可能会扰乱权限按钮的解析 # TODO watcher start urls = [app["tencent_url"], app["mi_url"], app["host_url"], app["pan_url"]] watcher_status = self.permission_message_install() for url in urls: try: self.d.app_install(url) break except: pass if watcher_status: self.d.watcher.reset() self.logger.debug("appalias %s install completed." % (app_info["app_alias_name"])) if start: # step2 启动app, 这里非常要注意,oppo vivo watcher_status = self.permission_message_start() try: if self.d.app_current()["package"] == app_info["app_package_name"]: self.exlude_app.append(app_info["app_package_name"]) self.stop_all_app() self.d.app_start(app_info["app_package_name"]) # 为了防止跳到其他app上 else: self.d.press("home") self.stop_all_app() self.start_app(app_info,location=location) except: self.logger.error("正在运行%s, 启动失败..." % self.d.app_info(app_info["app_package_name"])['label'] ) # time.sleep(5) #为了防止打开app还没来得及点击权限确认按钮 self.logger.info("正在运行%s, 启动成功..." % self.d.app_info(app_info["app_package_name"])['label'] ) if watcher_status: self.d.watcher.reset() return app def subprocess(self,cmd=None): if not cmd: return None try: p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) p.wait() out = p.stdout.read() result = out.decode().strip() return result except: return None def pmlist_package(self,string=None): if not string: return [] result = [] for line in string.strip().split('\n'): if ':' not in line: continue nline = line.strip().split(':') result.append(nline[1].strip()) return result def list_packages(self): try: result = self.subprocess(''' pm list packages -3 ''') result = self.pmlist_package(string=result) return result except: return [] def stop_all_app(self): kill_pkgs = set(self.d.app_list_running()).difference(self.exlude_app) kill_pkgs = list(set(self.list_packages()).intersection(set(kill_pkgs))) if not kill_pkgs: return True for pkg in kill_pkgs: self.d.app_stop(pkg) return True def close_all_app(self): try: self.d.press('recent') if self.d(resourceId="com.android.systemui:id/clearAnimView").exists: #小米 self.d(resourceId="com.android.systemui:id/clearAnimView").click() return True if self.d(resourceId="com.android.systemui:id/leui_recent_clear_all_txtview").exists: #乐视 self.d(resourceId="com.android.systemui:id/leui_recent_clear_all_txtview").click() return True if self.d(resourceId="com.android.systemui:id/clear_all_icon").exists: # meizu self.d(resourceId="com.android.systemui:id/clear_all_icon").click() return True if self.d(resourceId="com.coloros.recents:id/clear_button").exists: self.d(resourceId="com.coloros.recents:id/clear_button").click() return True if self.d(text="一键加速").exists: # vivo 机型 self.d(text="一键加速").click() # time.sleep(1) # self.d.press('back') # Swipe(self.d).swipeUp_from_bottom() return True if self.d(resourceId="com.coloros.recents:id/progress_bar").exists: self.d(resourceId="com.coloros.recents:id/progress_bar").click() return True if self.d(resourceId="com.android.systemui:id/leui_recent_clear_all_btn").exists: #乐视 这个可能有bug,点不到 self.d(resourceId="com.android.systemui:id/leui_recent_clear_all_btn").click() return True self.d.press('back') return False except: return False def start_app(self,app_info, location=False): if not self.d.device_info: self.logger.info("%s IP device is closed connect! reconnect again! ") return False self.close_all_app() # 点击关闭所有的app activity self.d.press('home') start_time = time.time() while True: try: self.d.app_start(app_info["app_package_name"]) time.sleep(5) # maybe is starting if self.d.app_current()["package"] == app_info["app_package_name"]: break except: self.logger.error("Start %s error, maybe app is installing, otherwise atx is running." % app_info["app_alias_name"]) time.sleep(10) if time.time() - start_time >= 60: #1分钟都没启动完就报错 raise Exception("Start %s error, check atx is running or \ app is installing." % app_info["app_alias_name"]) return True # Example # Phone(d, u2url='0.0.0.0:7912').detect_start_app(app_info=app_info, start=start)
the-stack_106_13870
# Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..types import XMLString class infrared2CameraInfoTopicName(XMLString): _NAME = 'infrared2CameraInfoTopicName' _TYPE = 'sdf' def __init__(self, default='none'): super().__init__(default)
the-stack_106_13872
# https://leetcode.com/problems/last-stone-weight/ import heapq import bisect class Solution(object): # Submitted by Jiganesh # TC : O(N*NLogN) # SC : O(1) def lastStoneWeight(self, stones): """ :type stones: List[int] :rtype: int """ while len(stones)>=2: stones.sort() y = stones.pop() x = stones.pop() if y-x :stones.append(y-x) if stones: return stones[-1] else: return 0 # Approach 2: Using a Max Heap [Accepted] def lastStoneWeight(self, A): h = [-x for x in A] heapq.heapify(h) while len(h) > 1 and h[0] != 0: heapq.heappush(h, heapq.heappop(h) - heapq.heappop(h)) return -h[0] # Approach 3: Using bisect Sort [Accepted] def lastStoneWeight(self, stones): stones.sort() while len(stones)>1: x = stones.pop() y = stones.pop() if x != y : bisect.insort(stones, x-y) return stones[0] if stones else 0
the-stack_106_13876
""" Base configuration management This file only deals with non-GUI configuration features (in other words, we won't import any PyQt object here, avoiding any sip API incompatibility issue in spyder's non-gui modules) """ from __future__ import division, absolute_import import sys import os import os.path as osp import shutil import platform STDERR = sys.stderr # ============================================================================= # Configuration paths # ============================================================================= def get_home_dir(): """ Returns user home directory. This will be determined from the first valid result out of (osp.expanduser('~'), $HOME, $USERPROFILE, $TMP). """ try: # expanduser() returns a raw byte string which needs to be # decoded with the codec that the OS is using to represent # file paths. path = osp.expanduser('~') except Exception: path = '' if osp.isdir(path): return path else: # Get home from alternative locations for env_var in ('HOME', 'USERPROFILE', 'TMP'): # os.environ.get() returns a raw byte string which needs to be # decoded with the codec that the OS is using to represent # environment variables. path = os.environ.get(env_var, '') if osp.isdir(path): return path else: path = '' if not path: raise RuntimeError('Please set the environment variable HOME to ' 'your user/home directory.') def get_conf_path(subfolder=None, filename=None, create=True): """ Returns the default config path for the platform. This will be: - macOS: '~/Library/Application Support/<subfolder>/<filename>.' - Linux: 'XDG_CONFIG_HOME/<subfolder>/<filename>' - other: '~/.config/<subfolder>/<filename>' :param str subfolder: The subfolder for the app. :param str filename: The filename to append for the app. :param bool create: If ``True``, the folder '<subfolder>' will be created on-demand. """ # Define conf_dir if platform.system() == 'Linux': # This makes us follow the XDG standard to save our settings # on Linux xdg_config_home = os.environ.get('XDG_CONFIG_HOME', '') if not xdg_config_home: xdg_config_home = osp.join(get_home_dir(), '.config') if create and not osp.isdir(xdg_config_home): os.makedirs(xdg_config_home) conf_dir = osp.join(xdg_config_home, subfolder) elif platform.system() == 'Darwin': conf_dir = osp.join(get_home_dir(), 'Library', 'Application Support', subfolder) else: conf_dir = osp.join(get_home_dir(), '.config', subfolder) # Create conf_dir if create and not osp.isdir(conf_dir): os.mkdir(conf_dir) if filename is None: return conf_dir else: return osp.join(conf_dir, filename) def get_old_conf_path(subfolder=None, filename=None): """Return absolute path to the config file with the specified filename.""" # Define conf_dir conf_dir = osp.join(get_home_dir(), subfolder) if filename is None: return conf_dir else: return osp.join(conf_dir, filename) # ============================================================================= # Reset config files # ============================================================================= def reset_config_files(subfolder, saved_config_files): """Remove all config files""" print("*** Reset settings to defaults ***", file=STDERR) for fname in saved_config_files: cfg_fname = get_conf_path(subfolder, fname) if osp.isfile(cfg_fname) or osp.islink(cfg_fname): os.remove(cfg_fname) elif osp.isdir(cfg_fname): shutil.rmtree(cfg_fname) else: continue print("removing:", cfg_fname, file=STDERR) # ============================================================================= # Migrate config files # ============================================================================= # code to migrate from old config file locations to new locations # config files will be stored in '$XDG_CONFIG_HOME/maestral' in Linux (or # '~/.config/maestral' if $XDG_CONFIG_HOME is not set) and in '~/Library/Application # Support/maestral' on macOS. def migrate_config_files(): import os import shutil old_path = get_old_conf_path('.maestral') new_path = get_conf_path('maestral', create=False) if os.path.isdir(old_path): shutil.copytree(old_path, new_path) shutil.rmtree(old_path) print("Migrated config files.")
the-stack_106_13877
#!/usr/bin/env python """ The JSON import/export module. This is rudimentary for now, assuming everything is well-formed. """ import sys import odml import json try: unicode = unicode except NameError: unicode = str class OdmlSerializer(object): """ Converts the odml class hierarchy to dictionaries and lists """ def __init__(self, odml_document): self.doc = odml_document @staticmethod def save_element(e): """ Returns an xml node for the odML object e """ fmt = e._format cur = {'_type': fmt.__class__.__name__} # Generate elements for k in fmt._args: if not hasattr(e, fmt.map(k)): continue val = getattr(e, fmt.map(k)) if val is None: continue if isinstance(val, list): for v in val: ele = OdmlSerializer.save_element(v) cur.setdefault(k, []).append(ele) else: if sys.version_info < (3, 0): cur[k] = unicode(val) else: cur[k] = str(val) return cur JSON_VERSION = "1" class JSONWriter(OdmlSerializer): def __unicode__(self): doc = self.save_element(self.doc) doc['_version'] = JSON_VERSION return json.dumps(doc) def __str__(self): doc = self.save_element(self.doc) doc['_version'] = JSON_VERSION return json.dumps(doc) def write_file(self, filename): if sys.version_info < (3, 0): data = unicode(self) else: data = str(self) f = open(filename, "w") f.write(data) f.close() class OdmlReader(object): """ Opposite of OdmlSerializer: converts dictionaries representing odml objects back to their classes """ def to_odml(self, obj): fmt = getattr(odml.format, obj['_type']) kargs = {} objects = [] for k in fmt._args: v = obj.get(k, None) if isinstance(v, list): for i, nobj in enumerate(v): objects.append(self.to_odml(nobj)) elif v is not None: kargs[fmt.map(k)] = v return getattr(self, "create_%s" % fmt._name)(fmt, kargs, obj, objects) def create_odML(self, fmt, kargs, obj, children): obj = fmt.create(**kargs) for i in children: obj.append(i) return obj create_section = create_odML create_value = create_odML def create_property(self, fmt, kargs, obj, children): kargs['value'] = children return self.create_odML(fmt, kargs, obj, []) class JSONReader(OdmlReader): def fromString(self, data): obj = json.loads(data) return self.to_odml(obj) def fromFile(self, infile): return self.fromString(infile.read()) if __name__ == "__main__": # import sys y = JSONReader().fromFile(sys.stdin) import dumper dumper.dumpDoc(y)
the-stack_106_13878
# MIT License # # Copyright (c) 2017 Ilya Kostrikov and (c) 2020 Google LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import argparse import os from typing import * import sys import time import numpy as np import torch import gym import my_pybullet_envs import random from matplotlib import pyplot as plt import pickle import joblib from third_party.a2c_ppo_acktr.envs import VecPyTorch, make_vec_envs from third_party.a2c_ppo_acktr.utils import get_render_func, get_vec_normalize from third_party.a2c_ppo_acktr.arguments import parse_args_with_unknown from gan.utils import * def plot_avg_dis_prob(args, avg_reward_list, dxs): env_name = args.env_name _, axs = plt.subplots(2, 1) axs[0].plot(avg_reward_list) # plt.title('Average Dis Reward, Env: {}'.format(env_name)) plt.xlabel('steps') # plt.ylabel('average reward') axs[1].plot(dxs) plt.show() np.save(os.path.join('./imgs', env_name + '_avg_dreward.npy'), np.array(avg_reward_list)) plt.savefig(os.path.join('./imgs', env_name + '_avg_dreward.png')) input("press enter plt") def plot_avg_dis_prob_2(args, avg_reward_list, avg_reward_list_2, dxs): env_name = args.env_name _, axs = plt.subplots(2, 1) axs[0].plot(avg_reward_list) axs[0].plot(avg_reward_list_2) # plt.title('Average Dis Reward, Env: {}'.format(env_name)) plt.xlabel('steps') # plt.ylabel('average reward') axs[1].plot(dxs) plt.show() np.save(os.path.join('./imgs', env_name + '_avg_dreward.npy'), np.array(avg_reward_list)) plt.savefig(os.path.join('./imgs', env_name + '_avg_dreward.png')) input("press enter plt") sys.path.append("third_party") parser = argparse.ArgumentParser(description="RL") parser.add_argument( "--seed", type=int, default=1, help="random seed (default: 1)" ) parser.add_argument( "--env-name", default="HumanoidSwimmerEnv-v1", help="environment to load and test on", ) parser.add_argument( "--src-env-name", default="", help="environment to transfer policy from ("" if same as test env)", ) parser.add_argument( "--load-dir", default="./trained_models/", help="directory to save agent logs (default: ./trained_models/)", ) parser.add_argument( "--save-traj", type=int, default=0, help="whether to save traj tuples", ) parser.add_argument( "--num-trajs", type=int, default=200, help="how many trajs to rollout/store", ) parser.add_argument( "--save-path", default="./tmp.pkl", help="where the traj tuples are stored", ) # parser.add_argument( # "--load-dis", # type=int, # default=0, # help="whether to load gail discriminator for debugging", # ) # parser.add_argument( # "--enlarge-act-range", # type=float, # default=0.15, # help="add white noise to action during rollout", # ) parser.add_argument( "--non-det", type=int, default=0, help="whether to use a non-deterministic policy, 1 true 0 false", ) parser.add_argument( "--iter", type=int, default=None, help="which iter pi to test" ) parser.add_argument( "--r-thres", type=int, default=4000, help="The threshold reward value above which it is considered a success.", ) args, extra_dict = parse_args_with_unknown(parser) np.set_printoptions(precision=2, suppress=None, threshold=sys.maxsize) torch.manual_seed(args.seed) np.random.seed(args.seed) random.seed(args.seed) is_cuda = False device = "cuda" if is_cuda else "cpu" args.det = not args.non_det # If render is provided, use that. Otherwise, turn it on. if "render" not in extra_dict: extra_dict["render"] = True env = make_vec_envs( args.env_name, args.seed + 1000, 1, None, None, device=device, allow_early_resets=False, **extra_dict, ) # dont know why there are so many wrappers in make_vec_envs... env_core = env.venv.venv.envs[0].env.env if args.src_env_name == "": env_name_transfer = args.env_name else: env_name_transfer = args.src_env_name actor_critic, ob_rms, recurrent_hidden_states, masks \ = load(args.load_dir, env_name_transfer, is_cuda, args.iter) # discri = None # if args.load_dis: # discri = load_gail_discriminator(args.load_dir, env_name_transfer, is_cuda, args.iter) if ob_rms: print(ob_rms.mean) print(ob_rms.var) print(ob_rms.count) input("ob_rms") vec_norm = get_vec_normalize(env) if vec_norm is not None: vec_norm.eval() vec_norm.ob_rms = ob_rms all_trajs = {} cur_traj = [] cur_traj_idx = 0 obs = env.reset() # print("obs", obs) # input("reset, press enter") done = False reward_total = 0 list_rewards = [] list_traj_lengths = [] list_r_per_step = [] dist = 0 last_dist = 0 dis_probs_imaginary = None dis_probs_real = None dxs = [] # if args.load_dis: # dis_probs_imaginary = [] # dis_probs_real = [] while True: # try: # env_core.reset_counter = 5000 # except: # pass with torch.no_grad(): # value, action, _, recurrent_hidden_states = actor_critic.act( # obs, recurrent_hidden_states, masks, deterministic=True # ) # action += torch.normal(torch.zeros(action.size()), 0.1).to(device) # print(action) value, action, _, recurrent_hidden_states = actor_critic.act( obs, recurrent_hidden_states, masks, deterministic=args.det ) # # TODO, name duplicate # # TODO parameter space noise # # xx% noise before tanh # action += (torch.rand(action.size()).to(device) - 0.5) * (args.enlarge_act_range * 2) # # print(action) # if args.save_traj: # tuple_sas = [] # obs_feat = replace_obs_with_feat(obs, is_cuda, feat_select_func, return_tensor=False) # tuple_sas.append(obs_feat[0]) # only one process env # # # save clamped action (note: dyn envs might have action larger than 1) # action = action.clamp(-1., 1) # print("obs", obs) # print("act", torch.tanh(action)) # if args.load_dis: # obs_feat = replace_obs_with_feat(obs, is_cuda, feat_select_func, return_tensor=True) # dis_state = torch.cat((obs_feat, obs[:, env_core.behavior_obs_len:]), 1) # Obser reward and next obs obs, reward, done, info = env.step(action) list_r_per_step.append(reward) if args.save_traj: sas_window = info[0]["sas_window"] # info[0] because 1-core dummy vec env. # tuple_sas.append(list(unwrap(action, is_cuda=is_cuda))) # # obs_feat = replace_obs_with_feat(obs, is_cuda, feat_select_func, return_tensor=False) # tuple_sas.append(obs_feat[0]) next_obs = list(unwrap(obs, is_cuda=is_cuda)) # print(sas_window) cur_traj.append(sas_window) # if args.load_dis: # dis_action = replace_obs_with_feat(obs, is_cuda, feat_select_func, return_tensor=True) # dis_r = discri.predict_prob_single_step(dis_state, dis_action) # dis_probs_real.append(unwrap(dis_r, is_cuda=is_cuda)) # if len(dis_probs_real)>20 and np.mean(dis_probs_real[-20:]) < 0.4: # done = True # env.reset() # try: # obs_i = env_core.return_imaginary_obs() # dis_action = obs_i[:env_core.behavior_obs_len] # dis action is next state # dis_action = wrap(dis_action, is_cuda=is_cuda) # dis_action = replace_obs_with_feat(dis_action, is_cuda, feat_select_func, return_tensor=True) # dis_r = discri.predict_prob_single_step(dis_state, dis_action) # dis_probs_imaginary.append(unwrap(dis_r, is_cuda=is_cuda)) # except: # pass # dxs.append(env_core.get_ave_dx()) try: env_core.cam_track_torso_link() last_dist = dist dist = env_core.get_dist() except: print("not bullet locomotion env") reward_total += reward.cpu().numpy()[0][0] if done: list_rewards.append(reward_total) list_traj_lengths.append(len(list_r_per_step)) print( f"{args.load_dir}\t" f"tr: {reward_total:.1f}\t" f"x: {last_dist:.2f}\t" f"tr_ave: {reward_total/len(list_r_per_step):.2f}\t" f"total_per_step_r_ave: {np.sum(list_rewards)/np.sum(list_traj_lengths):.2f}\t" ) reward_total = 0.0 # env_core.reset_counter = 0 cur_traj_idx += 1 if cur_traj_idx >= args.num_trajs: break if args.save_traj: print(np.array(cur_traj).shape) all_trajs[cur_traj_idx] = cur_traj cur_traj = [] # if args.load_dis: # print( # f"{np.array(dis_probs_real).mean()}\t" # ) # # plot_avg_dis_prob_2(args, dis_probs_imaginary, dis_probs_real, list_r_per_step) # dis_probs_imaginary = [] # dis_probs_real = [] # else: # # plot_avg_dis_prob(args, list_r_per_step, dxs) # pass list_r_per_step = [] dxs = [] masks.fill_(0.0 if done else 1.0) with open(args.save_path, "wb") as handle: # print(all_trajs) pickle.dump(all_trajs, handle, protocol=pickle.HIGHEST_PROTOCOL) # joblib.dump(all_trajs, handle) bins_list = np.arange(40) * 50.0 print(bins_list) plt.hist(list_rewards, alpha=0.5, label='r hist', bins=bins_list) plt.legend(loc='upper right') plt.show()
the-stack_106_13879
from system_baseline.exceptions import FactValidationError FACTS_MAXSIZE = 2 ** 20 # 1 MB def check_for_duplicate_names(facts): """ check if any names are duplicated; raises an exception if duplicates are found. """ names = [] for fact in facts: names.append(fact["name"]) if "values" in fact: check_for_duplicate_names(fact["values"]) for name in names: if names.count(name) > 1: raise FactValidationError("name %s declared more than once" % name) def check_for_value_values(facts): """ check if any fields have "value" and "values" both defined """ for fact in facts: if "values" in fact and "value" in fact: raise FactValidationError("fact %s cannot have value and values defined" % fact["name"]) elif "values" in fact: check_for_value_values(fact["values"]) def check_for_empty_name_values(facts): """ check if any names are duplicated; raises an exception if duplicates are found. """ for fact in facts: if "values" in fact: check_for_empty_name_values(fact["values"]) if "name" in fact and not fact["name"]: raise FactValidationError("fact name cannot be empty") elif "value" in fact and not fact["value"]: raise FactValidationError("value for %s cannot be empty" % fact["name"]) def check_for_invalid_whitespace_name_values(facts): """ check if any name or values have invalid whitespace at beginning and end; raises an exception. """ for fact in facts: if "values" in fact: check_for_invalid_whitespace_name_values(fact["values"]) if "name" in fact and not check_whitespace(fact["name"]): raise FactValidationError("fact name cannot have leading or trailing whitespace") elif "value" in fact: if not isinstance(fact["value"], list): if not check_whitespace(fact["value"]): raise FactValidationError( "value for %s cannot have leading or trailing whitespace" % fact["name"] ) def check_whitespace(input_string): """ returns true if there is no leading or trailing whitespace, otherwise returns false. """ if input_string == input_string.lstrip() == input_string.rstrip(): return True return False def check_facts_length(facts): """ check if fact length is greater than FACTS_MAXSIZE """ if len(str(facts)) > FACTS_MAXSIZE: raise FactValidationError("attempted to save fact list over %s bytes" % FACTS_MAXSIZE) def check_name_value_length(facts): """ check the following lengths: * name is over 500 char * value is over 1000 char """ for fact in facts: if "values" in fact: check_name_value_length(fact["values"]) if "name" in fact and len(fact["name"]) > 500: raise FactValidationError("fact name %s is over 500 characters" % fact["name"]) elif "value" in fact and len(fact["value"]) > 1000: raise FactValidationError("value %s is over 1000 characters" % fact["value"])
the-stack_106_13880
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Common utility functions for command line commands.""" # pylint: disable=import-error import os import sys import click from tabulate import tabulate def get_env_with_venv_bin(): """Create a clone of the current running environment with the AIIDA_PATH variable set directory of the config.""" from aiida.manage.configuration import get_config config = get_config() currenv = os.environ.copy() currenv['PATH'] = f"{os.path.dirname(sys.executable)}:{currenv['PATH']}" currenv['AIIDA_PATH'] = config.dirpath currenv['PYTHONUNBUFFERED'] = 'True' return currenv def format_local_time(timestamp, format_str='%Y-%m-%d %H:%M:%S'): """ Format a datetime object or UNIX timestamp in a human readable format :param timestamp: a datetime object or a float representing a UNIX timestamp :param format_str: optional string format to pass to strftime """ from aiida.common import timezone if isinstance(timestamp, float): return timezone.datetime.fromtimestamp(timestamp).strftime(format_str) return timestamp.strftime(format_str) def print_last_process_state_change(process_type=None): """ Print the last time that a process of the specified type has changed its state. This function will also print a warning if the daemon is not running. :param process_type: optional process type for which to get the latest state change timestamp. Valid process types are either 'calculation' or 'work'. """ from aiida.cmdline.utils.echo import echo_info, echo_warning from aiida.common import timezone from aiida.common.utils import str_timedelta from aiida.engine.daemon.client import get_daemon_client from aiida.engine.utils import get_process_state_change_timestamp client = get_daemon_client() timestamp = get_process_state_change_timestamp(process_type) if timestamp is None: echo_info('last time an entry changed state: never') else: timedelta = timezone.delta(timestamp, timezone.now()) formatted = format_local_time(timestamp, format_str='at %H:%M:%S on %Y-%m-%d') relative = str_timedelta(timedelta, negative_to_zero=True, max_num_fields=1) echo_info(f'last time an entry changed state: {relative} ({formatted})') if not client.is_daemon_running: echo_warning('the daemon is not running', bold=True) def get_node_summary(node): """Return a multi line string with a pretty formatted summary of a Node. :param node: a Node instance :return: a string summary of the node """ from plumpy import ProcessState from aiida.orm import ProcessNode table_headers = ['Property', 'Value'] table = [] if isinstance(node, ProcessNode): table.append(['type', node.process_label]) try: process_state = ProcessState(node.process_state) except (AttributeError, ValueError): pass else: process_state_string = process_state.value.capitalize() if process_state == ProcessState.FINISHED and node.exit_message: table.append(['state', f'{process_state_string} [{node.exit_status}] {node.exit_message}']) elif process_state == ProcessState.FINISHED: table.append(['state', f'{process_state_string} [{node.exit_status}]']) elif process_state == ProcessState.EXCEPTED: table.append(['state', f'{process_state_string} <{node.exception}>']) else: table.append(['state', process_state_string]) else: table.append(['type', node.__class__.__name__]) table.append(['pk', str(node.pk)]) table.append(['uuid', str(node.uuid)]) table.append(['label', node.label]) table.append(['description', node.description]) table.append(['ctime', node.ctime]) table.append(['mtime', node.mtime]) try: computer = node.computer except AttributeError: pass else: if computer is not None: table.append(['computer', f'[{node.computer.pk}] {node.computer.label}']) return tabulate(table, headers=table_headers) def get_node_info(node, include_summary=True): """Return a multi line string of information about the given node, such as the incoming and outcoming links. :param include_summary: boolean, if True, also include a summary of node properties :return: a string summary of the node including a description of all its links and log messages """ from aiida.common.links import LinkType from aiida import orm if include_summary: result = get_node_summary(node) else: result = '' nodes_caller = node.get_incoming(link_type=(LinkType.CALL_CALC, LinkType.CALL_WORK)) nodes_called = node.get_outgoing(link_type=(LinkType.CALL_CALC, LinkType.CALL_WORK)) nodes_input = node.get_incoming(link_type=(LinkType.INPUT_CALC, LinkType.INPUT_WORK)) nodes_output = node.get_outgoing(link_type=(LinkType.CREATE, LinkType.RETURN)) if nodes_input: result += f"\n{format_nested_links(nodes_input.nested(), headers=['Inputs', 'PK', 'Type'])}" if nodes_output: result += f"\n{format_nested_links(nodes_output.nested(), headers=['Outputs', 'PK', 'Type'])}" if nodes_caller: links = sorted(nodes_caller.all(), key=lambda x: x.node.ctime) result += f"\n{format_flat_links(links, headers=['Caller', 'PK', 'Type'])}" if nodes_called: links = sorted(nodes_called.all(), key=lambda x: x.node.ctime) result += f"\n{format_flat_links(links, headers=['Called', 'PK', 'Type'])}" log_messages = orm.Log.objects.get_logs_for(node) if log_messages: table = [] table_headers = ['Log messages'] table.append([f'There are {len(log_messages)} log messages for this calculation']) table.append([f"Run 'verdi process report {node.pk}' to see them"]) result += f'\n\n{tabulate(table, headers=table_headers)}' return result def format_flat_links(links, headers): """Given a flat list of LinkTriples, return a flat string representation. :param links: a list of LinkTriples :param headers: headers to use :return: formatted string """ table = [] for link_triple in links: table.append([link_triple.link_label, link_triple.node.pk, link_triple.node.get_attribute('process_label', '')]) result = f'\n{tabulate(table, headers=headers)}' return result def format_nested_links(links, headers): """Given a nested dictionary of nodes, return a nested string representation. :param links: a nested dictionary of nodes :param headers: headers to use :return: nested formatted string """ import collections import tabulate as tb tb.PRESERVE_WHITESPACE = True indent_size = 4 def format_recursive(links, depth=0): """Recursively format a dictionary of nodes into indented strings.""" rows = [] for label, value in links.items(): if isinstance(value, collections.Mapping): rows.append([depth, label, '', '']) rows.extend(format_recursive(value, depth=depth + 1)) else: rows.append([depth, label, value.pk, value.__class__.__name__]) return rows table = [] for depth, label, pk, class_name in format_recursive(links): table.append([f"{' ' * (depth * indent_size)}{label}", pk, class_name]) result = f'\n{tabulate(table, headers=headers)}' tb.PRESERVE_WHITESPACE = False return result def get_calcjob_report(calcjob): """ Return a multi line string representation of the log messages and output of a given calcjob :param calcjob: the calcjob node :return: a string representation of the log messages and scheduler output """ from aiida import orm from aiida.common.datastructures import CalcJobState log_messages = orm.Log.objects.get_logs_for(calcjob) scheduler_out = calcjob.get_scheduler_stdout() scheduler_err = calcjob.get_scheduler_stderr() calcjob_state = calcjob.get_state() scheduler_state = calcjob.get_scheduler_state() report = [] if calcjob_state == CalcJobState.WITHSCHEDULER: state_string = f"{calcjob_state}, scheduler state: {scheduler_state if scheduler_state else '(unknown)'}" else: state_string = f'{calcjob_state}' label_string = f' [{calcjob.label}]' if calcjob.label else '' report.append(f'*** {calcjob.pk}{label_string}: {state_string}') if scheduler_out is None: report.append('*** Scheduler output: N/A') elif scheduler_out: report.append(f'*** Scheduler output:\n{scheduler_out}') else: report.append('*** (empty scheduler output file)') if scheduler_err is None: report.append('*** Scheduler errors: N/A') elif scheduler_err: report.append(f'*** Scheduler errors:\n{scheduler_err}') else: report.append('*** (empty scheduler errors file)') if log_messages: report.append(f'*** {len(log_messages)} LOG MESSAGES:') else: report.append('*** 0 LOG MESSAGES') for log in log_messages: report.append(f'+-> {log.levelname} at {log.time}') for message in log.message.splitlines(): report.append(f' | {message}') return '\n'.join(report) def get_process_function_report(node): """ Return a multi line string representation of the log messages and output of a given process function node :param node: the node :return: a string representation of the log messages """ from aiida import orm report = [] for log in orm.Log.objects.get_logs_for(node): report.append(f'{log.time:%Y-%m-%d %H:%M:%S} [{log.id}]: {log.message}') return '\n'.join(report) def get_workchain_report(node, levelname, indent_size=4, max_depth=None): """ Return a multi line string representation of the log messages and output of a given workchain :param node: the workchain node :return: a nested string representation of the log messages """ # pylint: disable=too-many-locals import itertools from aiida import orm from aiida.common.log import LOG_LEVELS def get_report_messages(uuid, depth, levelname): """Return list of log messages with given levelname and their depth for a node with a given uuid.""" node_id = orm.load_node(uuid).id filters = {'dbnode_id': node_id} entries = orm.Log.objects.find(filters) entries = [entry for entry in entries if LOG_LEVELS[entry.levelname] >= LOG_LEVELS[levelname]] return [(_, depth) for _ in entries] def get_subtree(uuid, level=0): """ Get a nested tree of work calculation nodes and their nesting level starting from this uuid. The result is a list of uuid of these nodes. """ builder = orm.QueryBuilder() builder.append(cls=orm.WorkChainNode, filters={'uuid': uuid}, tag='workcalculation') builder.append( cls=orm.WorkChainNode, project=['uuid'], # In the future, we should specify here the type of link # for now, CALL links are the only ones allowing calc-calc # (we here really want instead to follow CALL links) with_incoming='workcalculation', tag='subworkchains' ) result = builder.all(flat=True) # This will return a single flat list of tuples, where the first element # corresponds to the WorkChain pk and the second element is an integer # that represents its level of nesting within the chain return [(uuid, level)] + list(itertools.chain(*[get_subtree(subuuid, level=level + 1) for subuuid in result])) workchain_tree = get_subtree(node.uuid) if max_depth: report_list = [ get_report_messages(uuid, depth, levelname) for uuid, depth in workchain_tree if depth < max_depth ] else: report_list = [get_report_messages(uuid, depth, levelname) for uuid, depth in workchain_tree] reports = list(itertools.chain(*report_list)) reports.sort(key=lambda r: r[0].time) if not reports: return 'No log messages recorded for this entry' log_ids = [entry[0].id for entry in reports] levelnames = [len(entry[0].levelname) for entry in reports] width_id = len(str(max(log_ids))) width_levelname = max(levelnames) report = [] for entry, depth in reports: line = '{time:%Y-%m-%d %H:%M:%S} [{id:<{width_id}} | {levelname:>{width_levelname}}]:{indent} {message}'.format( id=entry.id, levelname=entry.levelname, message=entry.message, time=entry.time, width_id=width_id, width_levelname=width_levelname, indent=' ' * (depth * indent_size) ) report.append(line) return '\n'.join(report) def print_process_info(process): """Print detailed information about a process class and its process specification. :param process: a :py:class:`~aiida.engine.processes.process.Process` class """ docstring = process.__doc__ if docstring is not None: docstring = docstring.strip().split('\n') if not docstring: docstring = ['No description available'] click.secho('Description:\n', fg='red', bold=True) for line in docstring: click.echo(f' {line.lstrip()}') click.echo() print_process_spec(process.spec()) def print_process_spec(process_spec): """Print the process spec in a human-readable formatted way. :param process_spec: a `ProcessSpec` instance """ def build_entries(ports): """Build a list of entries to be printed for a `PortNamespace. :param ports: the port namespace :return: list of tuples with port name, required, valid types and info strings """ result = [] for name, port in sorted(ports.items(), key=lambda x: (not x[1].required, x[0])): if name.startswith('_'): continue valid_types = port.valid_type if isinstance(port.valid_type, (list, tuple)) else (port.valid_type,) valid_types = ', '.join([valid_type.__name__ for valid_type in valid_types if valid_type is not None]) required = 'required' if port.required else 'optional' info = port.help if port.help is not None else '' info = f'{info[:75]} ...' if len(info) > 75 else info result.append([name, required, valid_types, info]) return result template = '{:>{width_name}s}: {:10s}{:{width_type}}{}' inputs = build_entries(process_spec.inputs) outputs = build_entries(process_spec.outputs) max_width_name = max([len(entry[0]) for entry in inputs + outputs]) + 2 max_width_type = max([len(entry[2]) for entry in inputs + outputs]) + 2 if process_spec.inputs: click.secho('Inputs:', fg='red', bold=True) for entry in inputs: if entry[1] == 'required': click.secho(template.format(*entry, width_name=max_width_name, width_type=max_width_type), bold=True) else: click.secho(template.format(*entry, width_name=max_width_name, width_type=max_width_type)) if process_spec.outputs: click.secho('Outputs:', fg='red', bold=True) for entry in outputs: if entry[1] == 'required': click.secho(template.format(*entry, width_name=max_width_name, width_type=max_width_type), bold=True) else: click.secho(template.format(*entry, width_name=max_width_name, width_type=max_width_type)) if process_spec.exit_codes: click.secho('Exit codes:', fg='red', bold=True) for exit_code in sorted(process_spec.exit_codes.values(), key=lambda exit_code: exit_code.status): message = exit_code.message.capitalize() click.secho('{:>{width_name}d}: {}'.format(exit_code.status, message, width_name=max_width_name)) def get_num_workers(): """ Get the number of active daemon workers from the circus client """ from aiida.common.exceptions import CircusCallError from aiida.manage.manager import get_manager manager = get_manager() client = manager.get_daemon_client() if client.is_daemon_running: response = client.get_numprocesses() if response['status'] != 'ok': if response['status'] == client.DAEMON_ERROR_TIMEOUT: raise CircusCallError('verdi thought the daemon was alive, but the call to the daemon timed-out') elif response['status'] == client.DAEMON_ERROR_NOT_RUNNING: raise CircusCallError('verdi thought the daemon was running, but really it is not') else: raise CircusCallError try: return response['numprocesses'] except KeyError: raise CircusCallError('Circus did not return the number of daemon processes') def check_worker_load(active_slots): """ Check if the percentage usage of the daemon worker slots exceeds a threshold. If it does, print a warning. The purpose of this check is to warn the user if they are close to running out of worker slots which could lead to their processes becoming stuck indefinitely. :param active_slots: the number of currently active worker slots """ from aiida.cmdline.utils import echo from aiida.common.exceptions import CircusCallError from aiida.manage.configuration import get_config warning_threshold = 0.9 # 90% config = get_config() slots_per_worker = config.get_option('daemon.worker_process_slots', config.current_profile.name) try: active_workers = get_num_workers() except CircusCallError: echo.echo_critical('Could not contact Circus to get the number of active workers') if active_workers is not None: available_slots = active_workers * slots_per_worker percent_load = (active_slots / available_slots) if percent_load > warning_threshold: echo.echo('') # New line echo.echo_warning(f'{percent_load * 100:.0f}% of the available daemon worker slots have been used!') echo.echo_warning("Increase the number of workers with 'verdi daemon incr'.\n")
the-stack_106_13883
# -*- coding: utf-8 -*- """ Shows sample call to webservice (easyborrow v2 compatible call). Example openurls: - article: 'rft.jtitle=Facial plastic surgery : FPS&rft.atitle=Anatomy for blepharoplasty and brow-lift.&rft.pages=177-85&rft.date=2010&rft.volume=26&rft.end_page=85&ctx_ver=Z39.88-2004&rft.genre=article' - book: 'sid=FirstSearch%3AWorldCat&genre=book&isbn=9780688002305&title=Zen+and+the+art+of+motorcycle+maintenance%3A+an+inquiry+into+values%2C&date=1974&aulast=Pirsig&aufirst=Robert&auinitm=M&id=doi%3A&pid=673595%3Cfssessid%3E0%3C%2Ffssessid%3E&url_ver=Z39.88-2004&rfr_id=info%3Asid%2Ffirstsearch.oclc.org%3AWorldCat&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&req_dat=%3Csessionid%3E0%3C%2Fsessionid%3E&rfe_dat=%3Caccessionnumber%3E673595%3C%2Faccessionnumber%3E&rft_id=info%3Aoclcnum%2F673595&rft_id=urn%3AISBN%3A9780688002305&rft.aulast=Pirsig&rft.aufirst=Robert&rft.auinitm=M&rft.btitle=Zen+and+the+art+of+motorcycle+maintenance%3A+an+inquiry+into+values%2C&rft.date=1974&rft.isbn=9780688002305&rft.place=New+York&rft.pub=Morrow&rft.genre=book&checksum=8bf1504d891b0a2551ab879c3a555a8c&title=Brown University&linktype=openurl&detail=RBN' Example response: { "status": "submission_successful", "transaction_number": "2468" } """ import os, pprint, random import requests ## settings API_URL = os.environ['ILLIAD_WS_SAMPLE_SCRIPT__API_URL'] API_AUTH_KEY = os.environ['ILLIAD_WS_SAMPLE_SCRIPT__API_AUTH_KEY'] USERNAME = os.environ['ILLIAD_WS_SAMPLE_SCRIPT__TEST_USERNAME'] OPENURL = os.environ['ILLIAD_WS_SAMPLE_SCRIPT__TEST_OPENURL'] REQUEST_ID = random.randint( 1111, 9999 ) # used to easily see web-service log entries for a single request ## hit api params = { 'auth_key': API_AUTH_KEY, 'username':USERNAME, 'openurl': OPENURL, 'request_id': REQUEST_ID } r = requests.post( API_URL, data=params ) ## view response pprint.pprint( r.content )
the-stack_106_13885
from django.conf import settings from django.utils.module_loading import import_string from django.views.generic.list import MultipleObjectMixin from oscar.core.loading import get_class, get_model BrowseCategoryForm = get_class('search.forms', 'BrowseCategoryForm') SearchHandler = get_class('search.search_handlers', 'SearchHandler') is_solr_supported = get_class('search.features', 'is_solr_supported') is_elasticsearch_supported = get_class('search.features', 'is_elasticsearch_supported') Product = get_model('catalogue', 'Product') def get_product_search_handler_class(): """ Determine the search handler to use. Currently only Solr is supported as a search backend, so it falls back to rudimentary category browsing if that isn't enabled. """ # Use get_class to ensure overridability if settings.OSCAR_PRODUCT_SEARCH_HANDLER is not None: return import_string(settings.OSCAR_PRODUCT_SEARCH_HANDLER) if is_solr_supported(): return get_class('catalogue.search_handlers', 'SolrProductSearchHandler') elif is_elasticsearch_supported(): return get_class( 'catalogue.search_handlers', 'ESProductSearchHandler', ) else: return get_class( 'catalogue.search_handlers', 'SimpleProductSearchHandler') class SolrProductSearchHandler(SearchHandler): """ Search handler specialised for searching products. Comes with optional category filtering. To be used with a Solr search backend. """ form_class = BrowseCategoryForm model_whitelist = [Product] paginate_by = settings.OSCAR_PRODUCTS_PER_PAGE def __init__(self, request_data, full_path, categories=None): self.categories = categories super(SolrProductSearchHandler, self).__init__(request_data, full_path) def get_search_queryset(self): sqs = super(SolrProductSearchHandler, self).get_search_queryset() if self.categories: # We use 'narrow' API to ensure Solr's 'fq' filtering is used as # opposed to filtering using 'q'. pattern = ' OR '.join([ '"%s"' % c.full_name for c in self.categories]) sqs = sqs.narrow('category_exact:(%s)' % pattern) return sqs class ESProductSearchHandler(SearchHandler): """ Search handler specialised for searching products. Comes with optional category filtering. To be used with an ElasticSearch search backend. """ form_class = BrowseCategoryForm model_whitelist = [Product] paginate_by = settings.OSCAR_PRODUCTS_PER_PAGE def __init__(self, request_data, full_path, categories=None): self.categories = categories super(ESProductSearchHandler, self).__init__(request_data, full_path) def get_search_queryset(self): sqs = super(ESProductSearchHandler, self).get_search_queryset() if self.categories: for category in self.categories: sqs = sqs.filter_or(category=category.full_name) return sqs class SimpleProductSearchHandler(MultipleObjectMixin): """ A basic implementation of the full-featured SearchHandler that has no faceting support, but doesn't require a Haystack backend. It only supports category browsing. Note that is meant as a replacement search handler and not as a view mixin; the mixin just does most of what we need it to do. """ paginate_by = settings.OSCAR_PRODUCTS_PER_PAGE def __init__(self, request_data, full_path, categories=None): self.categories = categories self.kwargs = {'page': request_data.get('page', 1)} self.object_list = self.get_queryset() def get_queryset(self): qs = Product.browsable.base_queryset() if self.categories: qs = qs.filter(categories__in=self.categories).distinct() return qs def get_search_context_data(self, context_object_name): # Set the context_object_name instance property as it's needed # internally by MultipleObjectMixin self.context_object_name = context_object_name context = self.get_context_data(object_list=self.object_list) context[context_object_name] = context['page_obj'].object_list return context
the-stack_106_13887
from abs import deeppoly import matplotlib.pyplot as plt import numpy as np def plot_deeppoly(ele: deeppoly.Ele, x_lim=(-1, 1), y_lim=(-1, 1), fig: plt.Figure = None): lb = ele.lb().detach().numpy().squeeze() ub = ele.ub().detach().numpy().squeeze() step_size = 0.01 assert len(lb) == 2 h_bound_x = np.arange(lb[0], ub[0], step_size) h_bound_y1 = np.full_like(h_bound_x, lb[1]) h_bound_y2 = np.full_like(h_bound_x, ub[1]) v_bound_y = np.arange(lb[1], ub[1], step_size) v_bound_x1 = np.full_like(v_bound_y, lb[0]) v_bound_x2 = np.full_like(v_bound_y, ub[0]) if fig is None: fig, ax = plt.subplots() else: ax = fig.get_axes()[0] ax.set_xlim(x_lim) ax.set_ylim(y_lim) ax.grid(True) ax.plot(h_bound_x, h_bound_y1, "r-", alpha=0.5) ax.plot(h_bound_x, h_bound_y2, "r-", alpha=0.5) ax.plot(v_bound_x1, v_bound_y, "r-", alpha=0.5) ax.plot(v_bound_x2, v_bound_y, "r-", alpha=0.5) ax.fill_between(h_bound_x, h_bound_y1, h_bound_y2, alpha=0.5) return fig, ax
the-stack_106_13889
import numpy as np from scipy.special import spherical_jn from scipy.misc import derivative from scipy.interpolate import InterpolatedUnivariateSpline as ius from scipy.integrate import quadrature import sys sys.path.append('../utils/') from tools import loginterp j0 = lambda x: spherical_jn(0, x) #Get model as parameter import argparse parser = argparse.ArgumentParser() parser.add_argument('-m', '--model', help='model name to use', default='ModelA') parser.add_argument('-s', '--size', help='for small or big box', default='big') args = parser.parse_args() print(args, args.model) model = args.model boxsize = args.size alist = [0.1429,0.1538,0.1667,0.1818,0.2000,0.2222,0.2500,0.2857,0.3333] suff = 'm1_00p3mh-alpha-0p8-subvol' if boxsize == 'big': suff = suff + '-big' bs = 1024 else: bs = 256 outfolder = '../data/outputs/' + suff[:] outfolder += "/%s/"%model # def get_ilpk(aa): '''return log-interpolated pk at redshift z(aa) for Hankel transform''' pkd = np.loadtxt(outfolder + "HI_bias_{:06.4f}.txt".format(aa))[1:,:] kk, pk = pkd[:, 0], pkd[:, 2]**2 * pkd[:, 3] #on large scales, extend with b^2*P_lin klin, plin = np.loadtxt('../data/pk_Planck2018BAO_matterpower_z000.dat', unpack=True) ipklin = ius(klin, plin) kt = np.concatenate((klin[(klin < kk[0])], kk)) pt = np.concatenate((plin[(klin < kk[0])]*pk[0]/ipklin(kk[0]), pk)) #On small scales, truncate at k=1 pt = pt[kt<1] kt = kt[kt<1] ilpk = loginterp(kt, pt) return ilpk def xij0f(k, r, ipk): '''return integrand for hankel transform with j0''' return k**3*ipk(k)/2/np.pi**2 *j0(k*r)/k if __name__=="__main__": r = np.linspace(1, 120, 5) for iz, aa in enumerate(alist): zz = 1/aa-1 print('For redshift : z = ', zz) xi = np.zeros_like(r) ilpk = get_ilpk(aa) for i in range(r.size): if i%1 == 0: print(i, r[i]) f = lambda k: xij0f(k, r[i], ilpk) xi[i] = quadrature(f, 1e-5, 1e2, maxiter=1000)[0] np.savetxt(outfolder + "HI_hankelxi_{:06.4f}.txt".format(aa), np.stack((r, xi)).T, header='r, xi')
the-stack_106_13890
from __future__ import absolute_import import copy import heapq import itertools import logging import os import random import select import time import six import kafka.common as Errors # TODO: make Errors a separate class from .cluster import ClusterMetadata from .conn import BrokerConnection, ConnectionStates, collect_hosts from .future import Future from .protocol.metadata import MetadataRequest from .protocol.produce import ProduceRequest from .version import __version__ if six.PY2: ConnectionError = None log = logging.getLogger('kafka.client') class KafkaClient(object): """ A network client for asynchronous request/response network i/o. This is an internal class used to implement the user-facing producer and consumer clients. This class is not thread-safe! """ DEFAULT_CONFIG = { 'bootstrap_servers': 'localhost', 'client_id': 'kafka-python-' + __version__, 'request_timeout_ms': 40000, 'reconnect_backoff_ms': 50, 'max_in_flight_requests_per_connection': 5, 'receive_buffer_bytes': 32768, 'send_buffer_bytes': 131072, 'retry_backoff_ms': 100, 'metadata_max_age_ms': 300000, } def __init__(self, **configs): """Initialize an asynchronous kafka client Keyword Arguments: bootstrap_servers: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default port is 9092. If no servers are specified, will default to localhost:9092. client_id (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: 'kafka-python-{version}' request_timeout_ms (int): Client request timeout in milliseconds. Default: 40000. reconnect_backoff_ms (int): The amount of time in milliseconds to wait before attempting to reconnect to a given host. Default: 50. max_in_flight_requests_per_connection (int): Requests are pipelined to kafka brokers up to this number of maximum requests per broker connection. Default: 5. send_buffer_bytes (int): The size of the TCP send buffer (SO_SNDBUF) to use when sending data. Default: 131072 receive_buffer_bytes (int): The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. Default: 32768 metadata_max_age_ms (int): The period of time in milliseconds after which we force a refresh of metadata even if we haven't seen any partition leadership changes to proactively discover any new brokers or partitions. Default: 300000 retry_backoff_ms (int): Milliseconds to backoff when retrying on errors. Default: 100. """ self.config = copy.copy(self.DEFAULT_CONFIG) for key in self.config: if key in configs: self.config[key] = configs[key] self.cluster = ClusterMetadata(**self.config) self._topics = set() # empty set will fetch all topic metadata self._metadata_refresh_in_progress = False self._conns = {} self._connecting = set() self._delayed_tasks = DelayedTaskQueue() self._last_bootstrap = 0 self._bootstrap_fails = 0 self._bootstrap(collect_hosts(self.config['bootstrap_servers'])) self._wake_r, self._wake_w = os.pipe() def _bootstrap(self, hosts): # Exponential backoff if bootstrap fails backoff_ms = self.config['reconnect_backoff_ms'] * 2 ** self._bootstrap_fails next_at = self._last_bootstrap + backoff_ms / 1000.0 now = time.time() if next_at > now: log.debug("Sleeping %0.4f before bootstrapping again", next_at - now) time.sleep(next_at - now) self._last_bootstrap = time.time() metadata_request = MetadataRequest([]) for host, port in hosts: log.debug("Attempting to bootstrap via node at %s:%s", host, port) bootstrap = BrokerConnection(host, port, **self.config) bootstrap.connect() while bootstrap.state is ConnectionStates.CONNECTING: bootstrap.connect() if bootstrap.state is not ConnectionStates.CONNECTED: bootstrap.close() continue future = bootstrap.send(metadata_request) while not future.is_done: bootstrap.recv() if future.failed(): bootstrap.close() continue self.cluster.update_metadata(future.value) # A cluster with no topics can return no broker metadata # in that case, we should keep the bootstrap connection if not len(self.cluster.brokers()): self._conns['bootstrap'] = bootstrap self._bootstrap_fails = 0 break # No bootstrap found... else: log.error('Unable to bootstrap from %s', hosts) # Max exponential backoff is 2^12, x4000 (50ms -> 200s) self._bootstrap_fails = min(self._bootstrap_fails + 1, 12) def _can_connect(self, node_id): if node_id not in self._conns: if self.cluster.broker_metadata(node_id): return True return False conn = self._conns[node_id] return conn.state is ConnectionStates.DISCONNECTED and not conn.blacked_out() def _initiate_connect(self, node_id): """Initiate a connection to the given node (must be in metadata)""" if node_id not in self._conns: broker = self.cluster.broker_metadata(node_id) assert broker, 'Broker id %s not in current metadata' % node_id log.debug("Initiating connection to node %s at %s:%s", node_id, broker.host, broker.port) self._conns[node_id] = BrokerConnection(broker.host, broker.port, **self.config) return self._finish_connect(node_id) def _finish_connect(self, node_id): assert node_id in self._conns, '%s is not in current conns' % node_id state = self._conns[node_id].connect() if state is ConnectionStates.CONNECTING: self._connecting.add(node_id) elif node_id in self._connecting: log.debug("Node %s connection state is %s", node_id, state) self._connecting.remove(node_id) if state is ConnectionStates.DISCONNECTED: log.warning("Node %s connect failed -- refreshing metadata", node_id) self.cluster.request_update() return state def ready(self, node_id): """Check whether a node is connected and ok to send more requests. Arguments: node_id (int): the id of the node to check Returns: bool: True if we are ready to send to the given node """ if self.is_ready(node_id): return True if self._can_connect(node_id): # if we are interested in sending to a node # and we don't have a connection to it, initiate one self._initiate_connect(node_id) if node_id in self._connecting: self._finish_connect(node_id) return self.is_ready(node_id) def close(self, node_id=None): """Closes the connection to a particular node (if there is one). Arguments: node_id (int): the id of the node to close """ if node_id is None: for conn in self._conns.values(): conn.close() elif node_id in self._conns: self._conns[node_id].close() else: log.warning("Node %s not found in current connection list; skipping", node_id) return def is_disconnected(self, node_id): """Check whether the node connection has been disconnected failed. A disconnected node has either been closed or has failed. Connection failures are usually transient and can be resumed in the next ready() call, but there are cases where transient failures need to be caught and re-acted upon. Arguments: node_id (int): the id of the node to check Returns: bool: True iff the node exists and is disconnected """ if node_id not in self._conns: return False return self._conns[node_id].state is ConnectionStates.DISCONNECTED def connection_delay(self, node_id): """ Returns the number of milliseconds to wait, based on the connection state, before attempting to send data. When disconnected, this respects the reconnect backoff time. When connecting or connected, this handles slow/stalled connections. @param node_id The id of the node to check @return The number of milliseconds to wait. """ if node_id not in self._conns: return 0 conn = self._conns[node_id] time_waited_ms = time.time() - (conn.last_attempt or 0) if conn.state is ConnectionStates.DISCONNECTED: return max(self.config['reconnect_backoff_ms'] - time_waited_ms, 0) else: return 999999999 def is_ready(self, node_id): """Check whether a node is ready to send more requests. In addition to connection-level checks, this method also is used to block additional requests from being sent during a metadata refresh. Arguments: node_id (int): id of the node to check Returns: bool: True if the node is ready and metadata is not refreshing """ # if we need to update our metadata now declare all requests unready to # make metadata requests first priority if not self._metadata_refresh_in_progress and not self.cluster.ttl() == 0: if self._can_send_request(node_id): return True return False def _can_send_request(self, node_id): if node_id not in self._conns: return False conn = self._conns[node_id] return conn.connected() and conn.can_send_more() def send(self, node_id, request): """Send a request to a specific node. Arguments: node_id (int): destination node request (Struct): request object (not-encoded) Raises: NodeNotReadyError: if node_id is not ready Returns: Future: resolves to Response struct """ if not self._can_send_request(node_id): raise Errors.NodeNotReadyError("Attempt to send a request to node" " which is not ready (node id %s)." % node_id) # Every request gets a response, except one special case: expect_response = True if isinstance(request, ProduceRequest) and request.required_acks == 0: expect_response = False return self._conns[node_id].send(request, expect_response=expect_response) def poll(self, timeout_ms=None, future=None, sleep=False): """Try to read and write to sockets. This method will also attempt to complete node connections, refresh stale metadata, and run previously-scheduled tasks. Arguments: timeout_ms (int, optional): maximum amount of time to wait (in ms) for at least one response. Must be non-negative. The actual timeout will be the minimum of timeout, request timeout and metadata timeout. Default: request_timeout_ms future (Future, optional): if provided, blocks until future.is_done sleep (bool): if True and there is nothing to do (no connections or requests in flight), will sleep for duration timeout before returning empty results. Default: False. Returns: list: responses received (can be empty) """ if timeout_ms is None: timeout_ms = self.config['request_timeout_ms'] responses = [] # Loop for futures, break after first loop if None while True: # Attempt to complete pending connections for node_id in list(self._connecting): self._finish_connect(node_id) # Send a metadata request if needed metadata_timeout_ms = self._maybe_refresh_metadata() # Send scheduled tasks for task, task_future in self._delayed_tasks.pop_ready(): try: result = task() except Exception as e: log.error("Task %s failed: %s", task, e) task_future.failure(e) else: task_future.success(result) # If we got a future that is already done, dont block in _poll if future and future.is_done: timeout = 0 else: timeout = min( timeout_ms, metadata_timeout_ms, self._delayed_tasks.next_at() * 1000, self.config['request_timeout_ms']) timeout = max(0, timeout / 1000.0) # avoid negative timeouts responses.extend(self._poll(timeout, sleep=sleep)) # If all we had was a timeout (future is None) - only do one poll # If we do have a future, we keep looping until it is done if not future or future.is_done: break return responses def _poll(self, timeout, sleep=False): # select on reads across all connected sockets, blocking up to timeout sockets = dict([(conn._sock, conn) for conn in six.itervalues(self._conns) if conn.state is ConnectionStates.CONNECTED and conn.in_flight_requests]) if not sockets: # if sockets are connecting, we can wake when they are writeable if self._connecting: sockets = [self._conns[node]._sock for node in self._connecting] select.select([self._wake_r], sockets, [], timeout) elif timeout: if sleep: log.debug('Sleeping at %s for %s', time.time(), timeout) select.select([self._wake_r], [], [], timeout) log.debug('Woke up at %s', time.time()) else: log.warning('_poll called with a non-zero timeout and' ' sleep=False -- but there was nothing to do.' ' This can cause high CPU usage during idle.') self._clear_wake_fd() return [] # Add a private pipe fd to allow external wakeups fds = list(sockets.keys()) fds.append(self._wake_r) ready, _, _ = select.select(fds, [], [], timeout) responses = [] for sock in ready: if sock == self._wake_r: continue conn = sockets[sock] while conn.in_flight_requests: response = conn.recv() # Note: conn.recv runs callbacks / errbacks if not response: break responses.append(response) self._clear_wake_fd() return responses def in_flight_request_count(self, node_id=None): """Get the number of in-flight requests for a node or all nodes. Arguments: node_id (int, optional): a specific node to check. If unspecified, return the total for all nodes Returns: int: pending in-flight requests for the node, or all nodes if None """ if node_id is not None: if node_id not in self._conns: return 0 return len(self._conns[node_id].in_flight_requests) else: return sum([len(conn.in_flight_requests) for conn in self._conns.values()]) def least_loaded_node(self): """Choose the node with fewest outstanding requests, with fallbacks. This method will prefer a node with an existing connection, but will potentially choose a node for which we don't yet have a connection if all existing connections are in use. This method will never choose a node that was disconnected within the reconnect backoff period. If all else fails, the method will attempt to bootstrap again using the bootstrap_servers list. Returns: node_id or None if no suitable node was found """ nodes = list(self._conns.keys()) random.shuffle(nodes) inflight = float('inf') found = None for node_id in nodes: conn = self._conns[node_id] curr_inflight = len(conn.in_flight_requests) if curr_inflight == 0 and conn.connected(): # if we find an established connection with no in-flight requests we can stop right away return node_id elif not conn.blacked_out() and curr_inflight < inflight: # otherwise if this is the best we have found so far, record that inflight = curr_inflight found = node_id if found is not None: return found # if we found no connected node, return a disconnected one log.debug("No connected nodes found. Trying disconnected nodes.") for node_id in nodes: if not self._conns[node_id].blacked_out(): return node_id # if still no luck, look for a node not in self._conns yet log.debug("No luck. Trying all broker metadata") for broker in self.cluster.brokers(): if broker.nodeId not in self._conns: return broker.nodeId # Last option: try to bootstrap again log.error('No nodes found in metadata -- retrying bootstrap') self._bootstrap(collect_hosts(self.config['bootstrap_servers'])) return None def set_topics(self, topics): """Set specific topics to track for metadata. Arguments: topics (list of str): topics to check for metadata Returns: Future: resolves after metadata request/response """ if set(topics).difference(self._topics): future = self.cluster.request_update() else: future = Future().success(set(topics)) self._topics = set(topics) return future def add_topic(self, topic): """Add a topic to the list of topics tracked via metadata. Arguments: topic (str): topic to track Returns: Future: resolves after metadata request/response """ if topic in self._topics: return Future().success(set(self._topics)) self._topics.add(topic) return self.cluster.request_update() # request metadata update on disconnect and timedout def _maybe_refresh_metadata(self): """Send a metadata request if needed. Returns: int: milliseconds until next refresh """ ttl = self.cluster.ttl() if ttl > 0: return ttl if self._metadata_refresh_in_progress: return 9999999999 node_id = self.least_loaded_node() if self._can_send_request(node_id): request = MetadataRequest(list(self._topics)) log.debug("Sending metadata request %s to node %s", request, node_id) future = self.send(node_id, request) future.add_callback(self.cluster.update_metadata) future.add_errback(self.cluster.failed_update) self._metadata_refresh_in_progress = True def refresh_done(val_or_error): self._metadata_refresh_in_progress = False future.add_callback(refresh_done) future.add_errback(refresh_done) elif self._can_connect(node_id): log.debug("Initializing connection to node %s for metadata request", node_id) self._initiate_connect(node_id) return 0 def schedule(self, task, at): """Schedule a new task to be executed at the given time. This is "best-effort" scheduling and should only be used for coarse synchronization. A task cannot be scheduled for multiple times simultaneously; any previously scheduled instance of the same task will be cancelled. Arguments: task (callable): task to be scheduled at (float or int): epoch seconds when task should run Returns: Future: resolves to result of task call, or exception if raised """ return self._delayed_tasks.add(task, at) def unschedule(self, task): """Unschedule a task. This will remove all instances of the task from the task queue. This is a no-op if the task is not scheduled. Arguments: task (callable): task to be unscheduled """ self._delayed_tasks.remove(task) def check_version(self, node_id=None): """Attempt to guess the broker version""" if node_id is None: node_id = self.least_loaded_node() def connect(): timeout = time.time() + 10 # brokers < 0.9 do not return any broker metadata if there are no topics # so we're left with a single bootstrap connection while not self.ready(node_id): if time.time() >= timeout: raise Errors.NodeNotReadyError(node_id) time.sleep(0.025) # kafka kills the connection when it doesnt recognize an API request # so we can send a test request and then follow immediately with a # vanilla MetadataRequest. If the server did not recognize the first # request, both will be failed with a ConnectionError that wraps # socket.error (32, 54, or 104) import socket from .protocol.admin import ListGroupsRequest from .protocol.commit import ( OffsetFetchRequest_v0, GroupCoordinatorRequest) from .protocol.metadata import MetadataRequest # Socket errors are logged as exceptions and can alarm users. Mute them from logging import Filter class ConnFilter(Filter): def filter(self, record): if record.funcName in ('recv', 'send'): return False return True log_filter = ConnFilter() test_cases = [ ('0.9', ListGroupsRequest()), ('0.8.2', GroupCoordinatorRequest('kafka-python-default-group')), ('0.8.1', OffsetFetchRequest_v0('kafka-python-default-group', [])), ('0.8.0', MetadataRequest([])), ] logging.getLogger('kafka.conn').addFilter(log_filter) for version, request in test_cases: connect() f = self.send(node_id, request) time.sleep(0.1) # HACK: sleeping to wait for socket to send bytes metadata = self.send(node_id, MetadataRequest([])) self.poll(future=f) self.poll(future=metadata) assert f.is_done if f.succeeded(): log.info('Broker version identifed as %s', version) break if six.PY2: assert isinstance(f.exception.args[0], socket.error) assert f.exception.args[0].errno in (32, 54, 104) else: assert isinstance(f.exception.args[0], ConnectionError) log.info("Broker is not v%s -- it did not recognize %s", version, request.__class__.__name__) continue else: raise Errors.UnrecognizedBrokerVersion() logging.getLogger('kafka.conn').removeFilter(log_filter) return version def wakeup(self): os.write(self._wake_w, b'x') def _clear_wake_fd(self): while True: fds, _, _ = select.select([self._wake_r], [], [], 0) if not fds: break os.read(self._wake_r, 1) class DelayedTaskQueue(object): # see https://docs.python.org/2/library/heapq.html def __init__(self): self._tasks = [] # list of entries arranged in a heap self._task_map = {} # mapping of tasks to entries self._counter = itertools.count() # unique sequence count def add(self, task, at): """Add a task to run at a later time. Arguments: task: can be anything, but generally a callable at (float or int): epoch seconds to schedule task Returns: Future: a future that will be returned with the task when ready """ if task in self._task_map: self.remove(task) count = next(self._counter) future = Future() entry = [at, count, (task, future)] self._task_map[task] = entry heapq.heappush(self._tasks, entry) return future def remove(self, task): """Remove a previously scheduled task. Raises: KeyError: if task is not found """ entry = self._task_map.pop(task) task, future = entry[-1] future.failure(Errors.Cancelled) entry[-1] = 'REMOVED' def _drop_removed(self): while self._tasks and self._tasks[0][-1] is 'REMOVED': at, count, task = heapq.heappop(self._tasks) def _pop_next(self): self._drop_removed() if not self._tasks: raise KeyError('pop from an empty DelayedTaskQueue') _, _, maybe_task = heapq.heappop(self._tasks) if maybe_task is 'REMOVED': raise ValueError('popped a removed tasks from queue - bug') else: task, future = maybe_task del self._task_map[task] return (task, future) def next_at(self): """Number of seconds until next task is ready.""" self._drop_removed() if not self._tasks: return 9999999999 else: return max(self._tasks[0][0] - time.time(), 0) def pop_ready(self): """Pop and return a list of all ready (task, future) tuples""" ready_tasks = [] while self._tasks and self._tasks[0][0] < time.time(): try: task = self._pop_next() except KeyError: break ready_tasks.append(task) return ready_tasks
the-stack_106_13894
# pylint: disable=protected-access from collections import OrderedDict from testfixtures import compare from service.ws_re.register.authors import Authors from service.ws_re.register.register_types.public_domain import PublicDomainRegister from service.ws_re.register.register_types.volume import VolumeRegister from service.ws_re.register.test_base import BaseTestRegister, copy_tst_data from service.ws_re.volumes import Volumes class TestPublicDomainRegister(BaseTestRegister): def setUp(self): copy_tst_data("authors_pd_register", "authors") copy_tst_data("I_1_alpha", "I_1") copy_tst_data("III_1_alpha", "III_1") self.authors = Authors() self.volumes = Volumes() self.registers = OrderedDict() self.registers["I,1"] = VolumeRegister(self.volumes["I,1"], self.authors) self.registers["III,1"] = VolumeRegister(self.volumes["III,1"], self.authors) def test_pd_authors(self): pd_2021_register = PublicDomainRegister(2021, self.authors, self.registers) compare(2, len(pd_2021_register._get_pd_authors())) def test_init(self): pd_2021_register = PublicDomainRegister(2021, self.authors, self.registers) compare(6, len(pd_2021_register)) def test_make_table(self): pd_2021_register = PublicDomainRegister(2021, self.authors, self.registers) expected_table = """{|class="wikitable sortable" !Artikel !Band !Status !Wikilinks !Seite !Autor !Sterbejahr |- |data-sort-value="aal"|[[RE:Aal|'''{{Anker2|Aal}}''']] ||I,1 |style="background:#AA0000"|UNK || |[[Special:Filepath/Pauly-Wissowa_I,1,_0001.jpg|1]]-4 |William Abbott |style="background:#CBCBCB"| |- |data-sort-value="aba 001"|[[RE:Aba 1|'''{{Anker2|Aba 1}}''']] ||I,1 |style="background:#AA0000"|UNK || |[[Special:Filepath/Pauly-Wissowa_I,1,_0003.jpg|4]] |Herman Abel |style="background:#B9FFC5"|1950 |- |data-sort-value="aba 002"|[[RE:Aba 2|'''{{Anker2|Aba 2}}''']] ||I,1 |style="background:#556B2F"|KOR || |[[Special:Filepath/Pauly-Wissowa_I,1,_0003.jpg|4]] |Herman Abel |style="background:#B9FFC5"|1950 |- |data-sort-value="adam"|[[RE:Adam|'''{{Anker2|Adam}}''']] ||III,1 |style="background:#AA0000"|UNK || |[[Special:Filepath/Pauly-Wissowa_III,1,_0001.jpg|1]]-4 |William Abbott |style="background:#CBCBCB"| |- |rowspan=2 data-sort-value="beta"|[[RE:Beta|'''{{Anker2|Beta}}''']] |rowspan=2 |I,1 |rowspan=2 style="background:#669966"|FER |rowspan=2 | |[[Special:Filepath/Pauly-Wissowa_I,1,_0003.jpg|4]] |Abert |style="background:#B9FFC5"|1927 |- |[[Special:Filepath/Pauly-Wissowa_I,1,_0003.jpg|4]]-5 |Herman Abel |style="background:#B9FFC5"|1950 |- |data-sort-value="charlie"|[[RE:Charlie|'''{{Anker2|Charlie}}''']] ||III,1 |style="background:#669966"|FER || |[[Special:Filepath/Pauly-Wissowa_III,1,_0003.jpg|4]] |Herman Abel |style="background:#B9FFC5"|1950 |} Zahl der Artikel: 6, """ compare(expected_table, pd_2021_register.get_register_str())
the-stack_106_13895
class Queue: """ A queue using two stacks (head and tail), the head stack keeps the elements in a queue order, it means ready to dequeue or print the top element. When necessary the last elements in the tail stack are moved to the head stack. The normalize_head method verify if its necessary to move elements from tail to head. """ head = [] tail = [] def normalize_head(self): if not self.head: while self.tail: self.head.append(self.tail.pop()) def enqueue(self, element): self.tail.append(element) def dequeue(self): self.normalize_head() self.head.pop() def print_top(self): self.normalize_head() print(self.head[-1]) if __name__ == '__main__': queue = Queue() total_queries = int(input()) for _ in range(total_queries): query_element = input().split() query = int(query_element[0]) if query == 1: element = int(query_element[1]) queue.enqueue(element) if query == 2: queue.dequeue() if query == 3: queue.print_top()
the-stack_106_13896
#!/usr/bin/env python3 import argparse import os import platform cflags = "-g -Wall -Wextra -Wpedantic -Werror -fPIC " cflags += "-Wno-gnu-zero-variadic-macro-arguments " cflags += "-Wno-unused-parameter " cflags += "-std=c11 -fcolor-diagnostics " plat = platform.system() if plat == 'Darwin': cflags += '-DPLATFORM_DARWIN ' ninja_vars = { "builddir" : "build", "cc" : "clang", "cflags" : cflags, "ldflags" : "-L$builddir", } ninjafile_base = """ rule cc command = $cc -MMD -MT $out -MF $out.d $cflags -c $in -o $out description = CC $out depfile = $out.d deps = gcc rule link command = $cc $ldflags -o $out $in description = LINK $out rule shlib command = $cc $ldflags -shared -o $out $in description = SHLIB $out """ def get_san_flags(desc): if desc is None: return "" flags = "" sans = desc.split(',') for san in sans: flags += " -fsanitize=%s" % san if san == "undefined": flags += " -fno-sanitize-recover=undefined" return flags def strip_src_ext(src_file): parts = src_file.split(".") if len(parts) != 2 or parts[1] not in ["c","m"]: return None return parts[0], parts[1] class BuildEnv: def __init__(self, vars): self.vars = vars self.progs = [] self.objs = [] self.obj_ext_map = {} self.shared_libs = [] def IsWindows(self): return os.name == 'nt' def IsDarwin(self): return platform.system() == 'Darwin' def src_helper(self, src): objects = [] for f in src: obj_name, ext = strip_src_ext(f) objects.append(obj_name) if obj_name not in self.objs: self.objs.append(obj_name) self.obj_ext_map[obj_name] = ext return objects def Program(self, name, src, **kwargs): objects = self.src_helper(src) self.progs.append((name, objects, kwargs)) def SharedLibrary(self, name, src): objects = self.src_helper(src) self.shared_libs.append((name, objects)) def Test(self, name, src): return self.Program("test/%s" % name, src + ["test.c"]) def write_ninja(self, fp): fp.write("# auto-generated by configure.py\n") for k,v in self.vars.items(): fp.write("%s = %s\n" % (k,v)) fp.write(ninjafile_base) fp.write("# objects\n") for obj in self.objs: ext = self.obj_ext_map[obj] fp.write("build $builddir/%s.o: cc %s.%s\n" % (obj, obj, ext)) fp.write("\n# executables\n") for (name, objs, props) in self.progs: obj_line = " ".join(map(lambda x: "$builddir/%s.o" % x, objs)) fw_part = "" if "frameworks" in props: fws = props["frameworks"] fw_part += "\n ldflags = $ldflags" fw_part += "".join(map(lambda x: " -framework %s" % x, fws)) ext = ".exe" if self.IsWindows() else "" fp.write("build $builddir/%s%s: link %s %s\n" % (name, ext, obj_line, fw_part)) fp.write("\n# shared libraries\n") for (name, objs) in self.shared_libs: obj_line = " ".join(map(lambda x: "$builddir/%s.o" % x, objs)) fp.write("build $builddir/%s: shlib %s\n" % (name, obj_line)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--sanitizers', '--san', dest='sanitizers', default=None) parser.add_argument('--config', default='debug') args = parser.parse_args() san_flags = get_san_flags(args.sanitizers) ninja_vars["cflags"] += san_flags ninja_vars["ldflags"] += san_flags if args.config == "release": ninja_vars["cflags"] += ' -O3' else: assert args.config == "debug", \ "Invalid config %s" % args.config env = BuildEnv(ninja_vars) env.Test('test_basic_lin_alloc', ['test_basic_lin_alloc.c', 'basic_lin_alloc.c']) env.Test('test_better_lin_alloc', ['test_better_lin_alloc.c', 'better_lin_alloc.c', 'safe_printf.c']) env.SharedLibrary('cheesy_malloc.so', ['cheesy_malloc.c', 'better_lin_alloc.c', 'safe_printf.c']) if env.IsDarwin(): env.Program('objc_test', ['objc_test.m'], frameworks=['Foundation']) with open("build.ninja", "w") as f: env.write_ninja(f)
the-stack_106_13900
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Checks the result of a test experiment run. Note that this is not a standalone unit test module, but used as part of our end-to-end integration test.""" import os import pytest import redis import rq from common import config_utils, yaml_utils from experiment.build import docker_images @pytest.fixture(scope='class') def experiment_config(): """Returns the default configuration for end-to-end testing.""" return config_utils.validate_and_expand( yaml_utils.read('fuzzbench/test_e2e/end-to-end-test-config.yaml')) @pytest.fixture(scope='class') def redis_connection(): """Returns the default redis server connection.""" return redis.Redis(host='queue-server') # pylint: disable=no-self-use @pytest.mark.skipif('E2E_INTEGRATION_TEST' not in os.environ, reason='Not running end-to-end test.') @pytest.mark.usefixtures('redis_connection', 'experiment_config') class TestEndToEndRunResults: """Checks the result of a test experiment run.""" def test_jobs_dependency(self, experiment_config, redis_connection): # pylint: disable=redefined-outer-name """Tests that jobs dependency preserves during working.""" all_images = docker_images.get_images_to_build( experiment_config['fuzzers'], experiment_config['benchmarks']) jobs = { name: rq.job.Job.fetch(name, connection=redis_connection) for name in all_images } for name, image in all_images.items(): if 'depends_on' in image: for dep in image['depends_on']: assert jobs[dep].ended_at <= jobs[name].started_at def test_all_jobs_finished_successfully( self, experiment_config, # pylint: disable=redefined-outer-name redis_connection): # pylint: disable=redefined-outer-name """Tests all jobs finished successully.""" all_images = docker_images.get_images_to_build( experiment_config['fuzzers'], experiment_config['benchmarks']) jobs = rq.job.Job.fetch_many(all_images.keys(), connection=redis_connection) for job in jobs: assert job.get_status() == 'finished' def test_measurement_jobs_were_started_before_trial_jobs_finished(self): """Fake test to be implemented later.""" assert True def test_db_contains_experiment_results(self): """Fake test to be implemented later.""" assert True def test_experiment_report_is_generated(self): """Fake test to be implemented later.""" assert True
the-stack_106_13902
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2012-2021 SoftBank Robotics. All rights reserved. # Use of this source code is governed by a BSD-style license (see the COPYING file). """ This module provides the abstract BinaryPackage class, which should be inherited when implementing additional binary package supports. qiBuild toolchains contain a set of packages, which can be extended. This module provides utility functions to import binary packages used by some distribution into any qiBuild toolchain. All qiBuild packages should have the same layout. """ from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import pprint class BinaryPackageException(Exception): """ Just a custom exception """ def __init__(self, message): """ BinaryPackageException Init """ super(BinaryPackageException, self).__init__() self._message = message def __str__(self): """ BinaryPackageException String Representation """ message = "Binary package exception:\n" message += self._message return message class BinaryPackage(object): """ A binary package is the endpoint of a binary package file provided by most of the Linux distributions. It stores metadata read from the binary package itself. """ def __init__(self, package_path): """ BinaryPackage Init """ self.path = package_path self.metadata = None self.name = None def load(self): """ Set self.metadata and self.name If the metadata has not been cached yet, then it is read/loaded and cached in the instance. The metadata is stored in a dictionary, which has the following layout:: metadata = { name, version, revision, arch, arch_variant, dependencies = { buidtime, runtime, post-install, all, }, } :return: the metadata dictionary """ if self.metadata: return self._load() if "name" not in self.metadata: raise Exception("Failed to load package. " "Expecting at least a 'name' key " "in package metadata") self.name = self.metadata["name"] def get_metadata(self): """ Get the metadata from the package. """ # Cache the result inside the Package instance: if self.metadata: return self.metadata self.load() return self.metadata def _load(self): """ Each binary package should at least implement this. """ raise NotImplementedError() def extract(self, dest_dir): """ Extract the binary package content, without the metadata. :param dest_dir: the extraction directory :return: the root directory of the extracted content """ raise NotImplementedError() def __str__(self): """ BinaryPackage String Representation """ res = "Binary package:\n" res += ' Path: {0}\n'.format(self.path) res += ' Metadata:\n' res += pprint.pformat(self.metadata, indent=2) return res
the-stack_106_13903
import numpy as np import scipy.sparse as sp from scipy.sparse import csr_matrix from sklearn import datasets from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_greater from sklearn.metrics.cluster import silhouette_score from sklearn.metrics.cluster import calinski_harabaz_score from sklearn.metrics import pairwise_distances def test_silhouette(): # Tests the Silhouette Coefficient. dataset = datasets.load_iris() X_dense = dataset.data X_csr = csr_matrix(X_dense) X_dok = sp.dok_matrix(X_dense) X_lil = sp.lil_matrix(X_dense) y = dataset.target for X in [X_dense, X_csr, X_dok, X_lil]: D = pairwise_distances(X, metric='euclidean') # Given that the actual labels are used, we can assume that S would be # positive. score_precomputed = silhouette_score(D, y, metric='precomputed') assert_greater(score_precomputed, 0) # Test without calculating D score_euclidean = silhouette_score(X, y, metric='euclidean') assert_almost_equal(score_precomputed, score_euclidean) if X is X_dense: score_dense_without_sampling = score_precomputed else: assert_almost_equal(score_euclidean, score_dense_without_sampling) # Test with sampling score_precomputed = silhouette_score(D, y, metric='precomputed', sample_size=int(X.shape[0] / 2), random_state=0) score_euclidean = silhouette_score(X, y, metric='euclidean', sample_size=int(X.shape[0] / 2), random_state=0) assert_greater(score_precomputed, 0) assert_greater(score_euclidean, 0) assert_almost_equal(score_euclidean, score_precomputed) if X is X_dense: score_dense_with_sampling = score_precomputed else: assert_almost_equal(score_euclidean, score_dense_with_sampling) def test_no_nan(): # Assert Silhouette Coefficient != nan when there is 1 sample in a class. # This tests for the condition that caused issue 960. # Note that there is only one sample in cluster 0. This used to cause the # silhouette_score to return nan (see bug #960). labels = np.array([1, 0, 1, 1, 1]) # The distance matrix doesn't actually matter. D = np.random.RandomState(0).rand(len(labels), len(labels)) silhouette = silhouette_score(D, labels, metric='precomputed') assert_false(np.isnan(silhouette)) def test_correct_labelsize(): # Assert 1 < n_labels < n_samples dataset = datasets.load_iris() X = dataset.data # n_labels = n_samples y = np.arange(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y) # n_labels = 1 y = np.zeros(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y) def test_non_encoded_labels(): dataset = datasets.load_iris() X = dataset.data labels = dataset.target assert_equal( silhouette_score(X, labels + 10), silhouette_score(X, labels)) def test_non_numpy_labels(): dataset = datasets.load_iris() X = dataset.data y = dataset.target assert_equal( silhouette_score(list(X), list(y)), silhouette_score(X, y)) def test_calinski_harabaz_score(): rng = np.random.RandomState(seed=0) # Assert message when there is only one label assert_raise_message(ValueError, "Number of labels is", calinski_harabaz_score, rng.rand(10, 2), np.zeros(10)) # Assert message when all point are in different clusters assert_raise_message(ValueError, "Number of labels is", calinski_harabaz_score, rng.rand(10, 2), np.arange(10)) # Assert the value is 1. when all samples are equals assert_equal(1., calinski_harabaz_score(np.ones((10, 2)), [0] * 5 + [1] * 5)) # Assert the value is 0. when all the mean cluster are equal assert_equal(0., calinski_harabaz_score([[-1, -1], [1, 1]] * 10, [0] * 10 + [1] * 10)) # General case (with non numpy arrays) X = ([[0, 0], [1, 1]] * 5 + [[3, 3], [4, 4]] * 5 + [[0, 4], [1, 3]] * 5 + [[3, 1], [4, 0]] * 5) labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10 assert_almost_equal(calinski_harabaz_score(X, labels), 45 * (40 - 4) / (5 * (4 - 1)))
the-stack_106_13905
# -*- coding: utf-8 -*- """ Sahana Eden Organisation Model @copyright: 2009-2014 (c) Sahana Software Foundation @license: MIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __all__ = ("S3OrganisationModel", "S3OrganisationNameModel", "S3OrganisationBranchModel", "S3OrganisationGroupModel", "S3OrganisationGroupPersonModel", "S3OrganisationGroupTeamModel", "S3OrganisationLocationModel", "S3OrganisationResourceModel", "S3OrganisationSectorModel", "S3OrganisationServiceModel", "S3OrganisationSummaryModel", "S3OrganisationTeamModel", "S3OrganisationTypeTagModel", "S3SiteModel", "S3SiteDetailsModel", "S3FacilityModel", "org_facility_rheader", "S3RoomModel", "S3OfficeModel", "S3OfficeSummaryModel", "S3OfficeTypeTagModel", "org_organisation_logo", "org_organisation_address", "org_parents", "org_root_organisation", "org_root_organisation_name", "org_organisation_requires", "org_region_options", "org_rheader", "org_site_staff_config", "org_organisation_controller", "org_office_controller", "org_facility_controller", "org_update_affiliations", "org_OrganisationRepresent", "org_SiteRepresent", #"org_AssignMethod", "org_customise_org_resource_fields", "org_organisation_list_layout", "org_resource_list_layout", "org_update_root_organisation", ) try: import json # try stdlib (Python 2.6) except ImportError: try: import simplejson as json # try external module except: import gluon.contrib.simplejson as json # fallback to pure-Python module from gluon import * try: from gluon.dal.objects import Row except ImportError: # old web2py from gluon.dal import Row from gluon.storage import Storage from ..s3 import * from s3layouts import S3AddResourceLink # Compact JSON encoding SEPARATORS = (",", ":") # ============================================================================= class S3OrganisationModel(S3Model): """ Organisations """ names = ("org_organisation_type", "org_organisation_type_id", "org_region", "org_organisation", "org_organisation_id", "org_organisation_organisation_type", "org_organisation_user", "org_organisation_represent", ) def model(self): T = current.T db = current.db gis = current.gis messages = current.messages settings = current.deployment_settings add_components = self.add_components configure = self.configure crud_strings = current.response.s3.crud_strings define_table = self.define_table NONE = messages["NONE"] hierarchical_organisation_types = settings.get_org_organisation_types_hierarchical() multiple_organisation_types = settings.get_org_organisation_types_multiple() # --------------------------------------------------------------------- # Organisation Types # tablename = "org_organisation_type" define_table(tablename, Field("name", length=128, notnull=True, unique=True, label = T("Name"), ), Field("parent", "reference org_organisation_type", # This form of hierarchy may not work on all Databases label = T("SubType of"), ondelete = "RESTRICT", readable = hierarchical_organisation_types, writable = hierarchical_organisation_types, ), s3_comments(), *s3_meta_fields()) type_represent = S3Represent(lookup=tablename, translate=True) if hierarchical_organisation_types: hierarchy = "parent" # Can't be defined in-line as otherwise get a circular reference table = db[tablename] table.parent.represent = type_represent table.parent.requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_organisation_type.id", type_represent, # If limiting to just 1 level of parent #filterby="parent", #filter_opts=(None,), orderby="org_organisation_type.name")) organisation_type_widget = S3HierarchyWidget(lookup = "org_organisation_type", represent = type_represent, multiple = multiple_organisation_types, #leafonly = True, ) type_filter = S3HierarchyFilter("organisation_organisation_type.organisation_type_id", label = T("Type"), #multiple = multiple_organisation_types, ) type_widget = "hierarchy" else: hierarchy = None organisation_type_widget = None type_filter = S3OptionsFilter("organisation_organisation_type.organisation_type_id", label = T("Type"), #multiple = multiple_organisation_types, ) type_widget = "multiselect" # CRUD strings crud_strings[tablename] = Storage( label_create = T("Create Organization Type"), title_display = T("Organization Type Details"), title_list = T("Organization Types"), title_update = T("Edit Organization Type"), label_list_button = T("List Organization Types"), label_delete_button = T("Delete Organization Type"), msg_record_created = T("Organization Type added"), msg_record_modified = T("Organization Type updated"), msg_record_deleted = T("Organization Type deleted"), msg_list_empty = T("No Organization Types currently registered")) organisation_type_id = S3ReusableField("organisation_type_id", "reference %s" % tablename, label = T("Organization Type"), ondelete = "SET NULL", represent = type_represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_organisation_type.id", type_represent, sort = True )), sortby = "name", widget = organisation_type_widget, comment = S3AddResourceLink(c="org", f="organisation_type", label=T("Create Organization Type"), title=T("Organization Type"), tooltip=T("If you don't see the Type in the list, you can add a new one by clicking link 'Create Organization Type'.") ), ) configure(tablename, # Not needed since unique=True but would be # if we removed to make these variable by Org #deduplicate = self.organisation_type_duplicate, hierarchy = hierarchy, ) # Components add_components(tablename, # Tags org_organisation_type_tag = {"name": "tag", "joinby": "organisation_type_id", }, ) if settings.get_org_regions(): hierarchical_regions = current.deployment_settings.get_org_regions_hierarchical() # --------------------------------------------------------------------- # Organisation Regions # tablename = "org_region" define_table(tablename, Field("name", length=128, label = T("Name"), ), Field("parent", "reference org_region", # This form of hierarchy may not work on all Databases # Label hard-coded for IFRC currently label = T("Zone"), ondelete = "RESTRICT", readable = hierarchical_regions, writable = hierarchical_regions, ), # Can add Path, Level, L0, L1 if-useful for performance, widgets, etc s3_comments(), *s3_meta_fields()) region_represent = S3Represent(lookup=tablename, translate=True) if hierarchical_regions: hierarchy = "parent" # Can't be defined in-line as otherwise get a circular reference table = db[tablename] table.parent.represent = region_represent table.parent.requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_region.id", region_represent, # Limited to just 1 level of parent # IFRC requirement filterby="parent", filter_opts=(None,), orderby="org_region.name")) else: hierarchy = None # CRUD strings crud_strings[tablename] = Storage( label_create = T("Add Region"), title_display = T("Region Details"), title_list = T("Regions"), title_update = T("Edit Region"), label_list_button = T("List Regions"), label_delete_button = T("Delete Region"), msg_record_created = T("Region added"), msg_record_modified = T("Region updated"), msg_record_deleted = T("Region deleted"), msg_list_empty = T("No Regions currently registered")) region_id = S3ReusableField("region_id", "reference %s" % tablename, label = T("Region"), ondelete = "SET NULL", represent = region_represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_region.id", region_represent, sort=True, # Only show the Regions, not the Zones not_filterby="parent", not_filter_opts=(None,) )), sortby = "name", comment = S3AddResourceLink(c="org", f="region", label=T("Add Region"), title=T("Region"), tooltip=T("If you don't see the Type in the list, you can add a new one by clicking link 'Add Region'.") ), ) configure(tablename, deduplicate = self.org_region_duplicate, hierarchy = hierarchy, ) else: region_represent = None region_id = S3ReusableField("region_id", "integer", readable = False, writable = False) # --------------------------------------------------------------------- # Organisations # http://xmlns.com/foaf/0.1/Organisation # tablename = "org_organisation" define_table(tablename, self.super_link("pe_id", "pr_pentity"), Field("root_organisation", "reference org_organisation", readable = False, writable = False, represent = S3Represent(lookup="org_organisation"), ), Field("name", notnull=True, unique=True, # @ToDo: Remove unique=True (ARC have 3x Wayne County chapters) length=128, # Mayon Compatibility label = T("Name"), ), # http://hxl.humanitarianresponse.info/#abbreviation Field("acronym", length=16, label = T("Acronym"), represent = lambda val: val or "", comment = DIV(_class="tooltip", _title="%s|%s" % (T("Acronym"), T("Acronym of the organization's name, eg. IFRC."))) ), #Field("registration", label = T("Registration")), # Registration Number region_id(), Field("country", length=2, label = T("Home Country"), represent = self.gis_country_code_represent, requires = IS_EMPTY_OR(IS_IN_SET_LAZY( lambda: gis.get_countries(key_type="code"), zero=messages.SELECT_LOCATION)), ), # @ToDo: Deprecate with Contact component Field("phone", label = T("Phone #"), represent = lambda v: v or NONE, requires = IS_EMPTY_OR(s3_phone_requires), #readable = False, #writable = False, ), # http://hxl.humanitarianresponse.info/#organisationHomepage Field("website", label = T("Website"), represent = s3_url_represent, requires = IS_EMPTY_OR(IS_URL()), ), Field("year", "integer", label = T("Year"), represent = lambda v: v or NONE, requires = IS_EMPTY_OR( IS_INT_IN_RANGE(1850, 2100)), comment = DIV(_class="tooltip", _title="%s|%s" % (T("Year"), T("Year that the organization was founded"))), ), Field("logo", "upload", label = T("Logo"), represent = self.doc_image_represent, requires = [IS_EMPTY_OR(IS_IMAGE(maxsize=(400, 400), error_message=T("Upload an image file (png or jpeg), max. 400x400 pixels!"))), IS_EMPTY_OR(IS_UPLOAD_FILENAME())], comment = DIV(_class="tooltip", _title="%s|%s" % (T("Logo"), T("Logo of the organization. This should be a png or jpeg file and it should be no larger than 400x400"))), uploadfolder = os.path.join( current.request.folder, "uploads"), ), s3_comments(), #document_id(), # Better to have multiple Documents on a Tab #Field("privacy", "integer", default=0), #Field("archived", "boolean", default=False), *s3_meta_fields()) form_fields = [ "name", "acronym", S3SQLInlineLink( "organisation_type", field = "organisation_type_id", label = T("Type"), multiple = multiple_organisation_types, widget = type_widget, ), "region_id", "country", "phone", "website", "year", "logo", "comments", ] if settings.get_org_summary(): # Include Summary fields in form position = form_fields.index("year") form_fields.insert(position + 1, "summary.national_staff") form_fields.insert(position + 2, "summary.international_staff") crud_form = S3SQLCustomForm(*form_fields ) # CRUD strings ADD_ORGANIZATION = T("Create Organization") crud_strings[tablename] = Storage( label_create = ADD_ORGANIZATION, title_display = T("Organization Details"), title_list = T("Organizations"), title_update = T("Edit Organization"), title_upload = T("Import Organizations"), label_list_button = T("List Organizations"), label_delete_button = T("Delete Organization"), msg_record_created = T("Organization added"), msg_record_modified = T("Organization updated"), msg_record_deleted = T("Organization deleted"), msg_list_empty = T("No Organizations currently registered")) # Default widget if settings.get_org_autocomplete(): help = messages.AUTOCOMPLETE_HELP default_widget = S3OrganisationAutocompleteWidget(default_from_profile=True) else: help = T("If you don't see the Organization in the list, you can add a new one by clicking link 'Create Organization'.") default_widget = None org_widgets = {"default": default_widget} # Representation for foreign keys org_organisation_represent = org_OrganisationRepresent(show_link=True) # Fields for text filter text_fields = ["name", "acronym", "comments", ] if settings.get_L10n_translate_org_organisation(): text_fields.extend(("name.name_l10n", "name.acronym_l10n" )) if settings.get_org_branches(): # Additional text filter fields for branches text_fields.extend(("parent.name", "parent.acronym", )) text_comment = T("You can search by name, acronym, comments or parent name or acronym.") # Hierarchy configuration and widget configure(tablename, # link table alias (organisation_branch) is ambiguous here # => need to specify the full join hierarchy="branch_id:org_organisation_branch.organisation_id") org_widgets["hierarchy"] = S3HierarchyWidget(lookup="org_organisation", represent=org_organisation_represent, multiple=False, leafonly=False, ) else: text_comment = T("You can search by name, acronym or comments") organisation_comment = S3AddResourceLink(c="org", f="organisation", label=ADD_ORGANIZATION, title=ADD_ORGANIZATION, tooltip=help) from_organisation_comment = S3AddResourceLink(c="org", f="organisation", vars=dict(child="from_organisation_id"), label=ADD_ORGANIZATION, title=ADD_ORGANIZATION, tooltip=help) # Reusable field auth = current.auth organisation_id = S3ReusableField("organisation_id", "reference %s" % tablename, comment = organisation_comment, default = auth.user.organisation_id if auth.is_logged_in() \ else None, label = messages.ORGANISATION, ondelete = "RESTRICT", represent = org_organisation_represent, requires = org_organisation_requires(), sortby = "name", widgets = org_widgets, ) filter_widgets = [ S3TextFilter(text_fields, label = T("Search"), comment = text_comment, #_class = "filter-search", ), # NB Order is important here - gets popped in asset & inv controllers & IFRC template type_filter, # NB Order is important here - gets popped in asset & inv controllers & IFRC template S3OptionsFilter("sector_organisation.sector_id", options = lambda: \ get_s3_filter_opts("org_sector", location_filter=True, none=True, translate=True), ), S3OptionsFilter("country", #label = T("Home Country"), ), ] location_context = settings.get_org_organisation_location_context() utablename = auth.settings.table_user_name configure(tablename, context = {"location": location_context, }, crud_form = crud_form, deduplicate = self.organisation_duplicate, filter_widgets = filter_widgets, list_fields = ["id", "name", "acronym", "organisation_organisation_type.organisation_type_id", "website" ], list_layout = org_organisation_list_layout, list_orderby = "org_organisation.name", onaccept = self.org_organisation_onaccept, ondelete = self.org_organisation_ondelete, referenced_by = [(utablename, "organisation_id")], super_entity = "pr_pentity", ) # Custom Method for S3OrganisationAutocompleteWidget self.set_method("org", "organisation", method = "search_ac", action = self.org_search_ac) # Components add_components(tablename, # Documents doc_document = "organisation_id", doc_image = "organisation_id", # Groups org_group = {"link": "org_group_membership", "joinby": "organisation_id", "key": "group_id", "actuate": "hide", }, # Format for InlineComponent/filter_widget org_group_membership = "organisation_id", # Names org_organisation_name = {"name": "name", "joinby": "organisation_id", }, # Sites org_site = "organisation_id", # Facilities org_facility = "organisation_id", # Offices org_office = "organisation_id", # Warehouses inv_warehouse = "organisation_id", # Staff/Volunteers hrm_human_resource = "organisation_id", # Members member_membership = "organisation_id", # Evacuees evr_case = "organisation_id", # Locations served gis_location = {"link": "org_organisation_location", "joinby": "organisation_id", "key": "location_id", "actuate": "hide", }, # Format for filter_widget org_organisation_location = "organisation_id", # Types org_organisation_type = {"link": "org_organisation_organisation_type", "joinby": "organisation_id", "key": "organisation_type_id", "multiple": multiple_organisation_types, "actuate": "hide", }, # Format for filter_widget org_organisation_organisation_type = "organisation_id", # Catalogs supply_catalog = "organisation_id", # Resources org_resource = "organisation_id", # Sectors org_sector = {"link": "org_sector_organisation", "joinby": "organisation_id", "key": "sector_id", "actuate": "hide", }, # Format for filter_widget org_sector_organisation = "organisation_id", # Services org_service = {"link": "org_service_organisation", "joinby": "organisation_id", "key": "service_id", "actuate": "hide", }, # Format for filter_widget org_service_organisation = "organisation_id", # Assets asset_asset = "organisation_id", # Needs req_organisation_needs = {"name": "needs", "joinby": "organisation_id", "multiple": False, }, # Requests #req_req = "donated_by_id", # Enable this to allow migration of users between instances #auth_user = "organisation_id", # Related Organisations org_organisation = (# Branches {"name": "branch", "link": "org_organisation_branch", "joinby": "organisation_id", "key": "branch_id", "actuate": "embed", "autocomplete": "name", "autodelete": True, }, # Parent (for imports) {"name": "parent", "link": "org_organisation_branch", "joinby": "branch_id", "key": "organisation_id", "actuate": "embed", "autocomplete": "name", "autodelete": False, }, ), ) # Projects if settings.get_project_multiple_organisations(): # Use link table add_components(tablename, project_project = {"link": "project_organisation", "joinby": "organisation_id", "key": "project_id", # Embed widget doesn't currently # support 2 fields of same name (8 hours) #"actuate": "embed", "actuate": "hide", "autocomplete": "name", "autodelete": False, }, # Format for filter_widget project_organisation = {"name": "project_organisation", "joinby": "organisation_id", }, ) else: # Direct link add_components(tablename, project_project = "organisation_id", ) # Organisation Summary data if settings.get_org_summary(): add_components(tablename, org_organisation_summary = {"name": "summary", "joinby": "organisation_id", "multiple": False, }, ) # --------------------------------------------------------------------- # Organisation <-> Organisation Type # tablename = "org_organisation_organisation_type" define_table(tablename, organisation_id(empty = False, ondelete = "CASCADE", ), organisation_type_id(empty = False, ondelete = "CASCADE", ), *s3_meta_fields()) configure(tablename, xml_post_parse = self.org_organisation_organisation_type_xml_post_parse, ) # --------------------------------------------------------------------- # Organisation <-> User # utable = auth.settings.table_user tablename = "org_organisation_user" define_table(tablename, Field("user_id", utable), organisation_id(empty = False, ondelete = "CASCADE", ), *s3_meta_fields()) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return dict(org_organisation_type_id = organisation_type_id, org_organisation_id = organisation_id, org_organisation_represent = org_organisation_represent, org_region_represent = region_represent, ) # ------------------------------------------------------------------------- @staticmethod def org_organisation_onaccept(form): """ If a logo was uploaded then create the extra versions. Process injected fields """ newfilename = form.vars.logo_newfilename if newfilename: s3db = current.s3db image = form.request_vars.logo s3db.pr_image_resize(image.file, newfilename, image.filename, (None, 60), ) s3db.pr_image_modify(image.file, newfilename, image.filename, (None, 60), "bmp", ) # Set default root_organisation ID db = current.db try: record_id = form.vars.id except AttributeError: pass else: otable = db.org_organisation query = (otable.id == record_id) & \ (otable.root_organisation == None) db(query).update(root_organisation = otable.id) # Process Injected Fields if not current.deployment_settings.get_org_summary(): return post_vars = current.request.post_vars record_id = post_vars.id if not record_id: # Not a POST request (e.g. import), hence no injected fields either return table = current.s3db.org_organisation_summary query = (table.organisation_id == record_id) existing = db(query).select(table.id, limitby=(0, 1)).first() if "national_staff" in post_vars: national_staff = post_vars.national_staff else: national_staff = None if "international_staff" in post_vars: international_staff = post_vars.international_staff else: international_staff = None if existing: db(query).update(national_staff=national_staff, international_staff=international_staff ) elif national_staff or international_staff: table.insert(organisation_id=id, national_staff=national_staff, international_staff=international_staff ) return # ------------------------------------------------------------------------- @staticmethod def org_organisation_ondelete(row): """ If an Org is deleted then remove Logo """ db = current.db table = db.org_organisation deleted_row = db(table.id == row.id).select(table.logo, limitby=(0, 1) ).first() if deleted_row and deleted_row.logo: current.s3db.pr_image_delete_all(deleted_row.logo) # ------------------------------------------------------------------------- @staticmethod def org_organisation_organisation_type_xml_post_parse(element, record): """ Check for defaults provided by project/organisation.xsl """ org_type_default = element.xpath('data[@field="_organisation_type_id"]') if org_type_default: org_type_default = org_type_default[0].text db = current.db table = db.org_organisation_type row = None # These default mappings can be overridden per-deployment if org_type_default == "Donor": row = db(table.name == "Bilateral").select(table.id, cache=current.s3db.cache, limitby=(0, 1)).first() elif org_type_default == "Partner": row = db(table.name == "NGO").select(table.id, cache=current.s3db.cache, limitby=(0, 1)).first() elif org_type_default in ("Host National Society", "Partner National Society"): row = db(table.name == "Red Cross / Red Crescent").select(table.id, cache=current.s3db.cache, limitby=(0, 1) ).first() if row: # Note this sets only the default, so won't override existing or explicit values record._organisation_type_id = row.id # ------------------------------------------------------------------------- @staticmethod def organisation_type_duplicate(item): """ Import item de-duplication """ name = item.data.get("name", None) table = item.table query = (table.name.lower() == name.lower()) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ------------------------------------------------------------------------- @staticmethod def org_region_duplicate(item): """ Import item de-duplication """ name = item.data.get("name", None) table = item.table query = (table.name.lower() == name.lower()) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ----------------------------------------------------------------------------- @staticmethod def organisation_duplicate(item): """ Import item deduplication, match by name NB: usually, this is only needed to catch cases where the import item is misspelled (case mismatch), otherwise the org name is a primary key and matches automatically. However, if there's a spelling mistake, we would want to retain the original spelling *because* the name is a primary key. @param item: the S3ImportItem instance """ name = item.data.get("name", None) if name: table = item.table query = (table.name.lower() == name.lower()) duplicate = current.db(query).select(table.id, table.name, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id # Retain the correct spelling of the name item.data.name = duplicate.name item.method = item.METHOD.UPDATE # ----------------------------------------------------------------------------- @staticmethod def org_search_ac(r, **attr): """ JSON search method for S3OrganisationAutocompleteWidget - searches name & acronym for both this organisation & the parent of branches @param r: the S3Request @param attr: request attributes """ _vars = current.request.get_vars # JQueryUI Autocomplete uses "term" # old JQuery Autocomplete uses "q" # what uses "value"? value = _vars.term or _vars.value or _vars.q or None # We want to do case-insensitive searches # (default anyway on MySQL/SQLite, but not PostgreSQL) value = value.lower().strip() if not value: output = current.xml.json_message(False, 400, "Missing option! Require value") raise HTTP(400, body=output) response = current.response resource = r.resource table = resource.table settings = current.deployment_settings use_branches = settings.get_org_branches() search_l10n = settings.get_L10n_translate_org_organisation() # Query comes in pre-filtered to accessible & deletion_status # Respect response.s3.filter resource.add_filter(response.s3.filter) query = (FS("organisation.name").lower().like(value + "%")) | \ (FS("organisation.acronym").lower().like(value + "%")) if use_branches: query |= (FS("parent.name").lower().like(value + "%")) | \ (FS("parent.acronym").lower().like(value + "%")) if search_l10n: query |= (FS("name.name_l10n").lower().like(value + "%")) | \ (FS("name.acronym_l10n").lower().like(value + "%")) resource.add_filter(query) MAX_SEARCH_RESULTS = settings.get_search_max_results() limit = int(_vars.limit or MAX_SEARCH_RESULTS) if (not limit or limit > MAX_SEARCH_RESULTS) and resource.count() > MAX_SEARCH_RESULTS: output = json.dumps([ dict(label=str(current.T("There are more than %(max)s results, please input more characters.") % dict(max=MAX_SEARCH_RESULTS))) ], separators=SEPARATORS) else: field = table.name field2 = table.acronym # Fields to return fields = ["id", "name", "acronym", ] if use_branches: fields.append("parent.name") if search_l10n: fields += ["name.name_l10n", "name.acronym_l10n", ] rows = resource.select(fields, start=0, limit=limit, orderby=field, as_rows=True) output = [] append = output.append for row in rows: acronym = "" if use_branches or search_l10n: _row = row[table] else: _row = row if search_l10n: name = row["org_organisation_name.name_l10n"] or _row.name acronym = row["org_organisation_name.acronym_l10n"] or _row.acronym else: name = _row.name acronym = _row.acronym record = dict(id = _row.id, name = name, ) if acronym: record["acronym"] = acronym if "org_parent_organisation" in row: parent = object.__getattribute__(row, "org_parent_organisation") if parent.name is not None: record["parent"] = parent.name # Determine if input is org hit or acronym hit value_len = len(value) orgNameHit = name[:value_len].lower() == value if orgNameHit: nextString = name[value_len:] if nextString != "": record["matchString"] = name[:value_len] record["nextString"] = nextString else: nextString = acronym[value_len:] if nextString != "": record["matchString"] = acronym[:value_len] record["nextString"] = nextString record["match"] = "acronym" append(record) output = json.dumps(output, separators=SEPARATORS) response.headers["Content-Type"] = "application/json" return output # ============================================================================= class S3OrganisationNameModel(S3Model): """ Location Names model - local names/acronyms for Organisations """ names = ("org_organisation_name", ) def model(self): T = current.T l10n_languages = current.deployment_settings.get_L10n_languages() # --------------------------------------------------------------------- # Local Names # tablename = "org_organisation_name" self.define_table(tablename, self.org_organisation_id(empty = False, ondelete = "CASCADE", ), Field("language", label = T("Language"), represent = lambda opt: l10n_languages.get(opt, current.messages.UNKNOWN_OPT), requires = IS_ISO639_2_LANGUAGE_CODE(), ), Field("name_l10n", label = T("Local Name"), ), Field("acronym_l10n", label = T("Local Acronym"), ), s3_comments(), *s3_meta_fields()) self.configure(tablename, deduplicate = self.org_organisation_name_deduplicate, ) # Pass names back to global scope (s3.*) return dict() # ------------------------------------------------------------------------- @staticmethod def org_organisation_name_deduplicate(item): """ If the record is a duplicate then it will set the item method to update """ data = item.data language = data.get("language", None) org = data.get("organisation_id", None) if not language or not org: return table = item.table query = (table.language == language) & \ (table.organisation_id == org) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ============================================================================= class S3OrganisationBranchModel(S3Model): """ Organisation Branches """ names = ("org_organisation_branch",) def model(self): T = current.T organisation_id = self.org_organisation_id # --------------------------------------------------------------------- # Organisation Branches # tablename = "org_organisation_branch" self.define_table(tablename, organisation_id(ondelete = "CASCADE"), organisation_id("branch_id", default = None, label = T("Branch"), ondelete = "CASCADE", ), *s3_meta_fields()) # CRUD strings current.response.s3.crud_strings[tablename] = Storage( label_create = T("Add Branch Organization"), title_display = T("Branch Organization Details"), title_list = T("Branch Organizations"), title_update = T("Edit Branch Organization"), #title_upload = T("Import Branch Organizations"), label_list_button = T("List Branch Organizations"), label_delete_button = T("Delete Branch"), msg_record_created = T("Branch Organization added"), msg_record_modified = T("Branch Organization updated"), msg_record_deleted = T("Branch Organization deleted"), msg_list_empty = T("No Branch Organizations currently registered")) self.configure(tablename, deduplicate = self.org_branch_duplicate, onaccept = self.org_branch_onaccept, ondelete = self.org_branch_ondelete, onvalidation = self.org_branch_onvalidation, ) # ----------------------------------------------------------------------------- @staticmethod def org_branch_duplicate(item): """ An Organisation can only be a branch of one Organisation """ branch_id = item.data.get("branch_id") if branch_id: table = item.table query = (table.branch_id == branch_id) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ------------------------------------------------------------------------- @staticmethod def org_branch_onvalidation(form): """ Prevent an Organisation from being a Branch of itself - this is for interactive forms, imports are caught in .xsl """ request_vars = form.request_vars if request_vars and \ request_vars.branch_id and \ int(request_vars.branch_id) == int(request_vars.organisation_id): error = current.T("Cannot make an Organization a branch of itself!") form.errors["branch_id"] = error current.response.error = error # ------------------------------------------------------------------------- @staticmethod def org_branch_onaccept(form): """ Remove any duplicate memberships and update affiliations """ _id = form.vars.id db = current.db s3db = current.s3db # Fields a branch organisation inherits from its parent organisation # (components added later) inherit = ["region_id", "country", ] otable = s3db.org_organisation ltable = db.org_organisation_branch btable = db.org_organisation.with_alias("org_branch_organisation") ifields = [otable[fn] for fn in inherit] + \ [btable[fn] for fn in inherit] left = [otable.on(ltable.organisation_id == otable.id), btable.on(ltable.branch_id == btable.id)] record = db(ltable.id == _id).select(otable.root_organisation, btable.root_organisation, ltable.branch_id, ltable.organisation_id, ltable.deleted, ltable.deleted_fk, *ifields, left=left, limitby=(0, 1)).first() if record: organisation = record.org_organisation branch = record.org_branch_organisation link = record.org_organisation_branch branch_id = link.branch_id organisation_id = link.organisation_id if branch_id and organisation_id and not link.deleted: # Eliminate duplicate affiliations query = (ltable.branch_id == branch_id) & \ (ltable.organisation_id == organisation_id) & \ (ltable.id != _id) & \ (ltable.deleted != True) deleted_fk = {"branch_id": branch_id, "organisation_id": organisation_id, } db(query).update(deleted=True, branch_id=None, organisation_id=None, deleted_fk=json.dumps(deleted_fk)) # Inherit fields from parent organisation update = dict((field, organisation[field]) for field in inherit if not branch[field] and organisation[field]) if update: db(otable.id == branch_id).update(**update) record_ids = (organisation_id, branch_id) # Inherit Org Types ltable = db.org_organisation_organisation_type rows = db(ltable.organisation_id.belongs(record_ids)) \ .select(ltable.organisation_id, ltable.organisation_type_id, ) org_types = set() branch_types = set() for row in rows: if row.organisation_id == organisation_id: org_types.add(row.organisation_type_id) else: branch_types.add(row.organisation_type_id) for t in org_types - branch_types: ltable.insert(organisation_id = branch_id, organisation_type_id = t, ) # Inherit Org Sectors ltable = s3db.org_sector_organisation rows = db(ltable.organisation_id.belongs(record_ids)) \ .select(ltable.organisation_id, ltable.sector_id, ) org_sectors = set() branch_sectors = set() for row in rows: if row.organisation_id == organisation_id: org_sectors.add(row.sector_id) else: branch_sectors.add(row.sector_id) for s in org_sectors - branch_sectors: ltable.insert(organisation_id = branch_id, sector_id = s, ) org_update_affiliations("org_organisation_branch", link) # Update the root organisation if link.deleted or \ branch.root_organisation is None or \ branch.root_organisation != organisation.root_organisation: org_update_root_organisation(branch_id) # ------------------------------------------------------------------------- @staticmethod def org_branch_ondelete(row): """ Update affiliations """ db = current.db table = db.org_organisation_branch record = db(table.id == row.id).select(table.branch_id, table.deleted, table.deleted_fk, limitby=(0, 1)).first() if record: org_update_affiliations("org_organisation_branch", record) # ============================================================================= class S3OrganisationGroupModel(S3Model): """ Organisation Group Model - 'Coalitions' or 'Networks' """ names = ("org_group", "org_group_membership", "org_group_membership_status", "org_group_id", "org_group_represent", ) def model(self): T = current.T db = current.db configure = self.configure crud_strings = current.response.s3.crud_strings define_table = self.define_table super_link = self.super_link NONE = current.messages["NONE"] # --------------------------------------------------------------------- # Organization Groups # tablename = "org_group" define_table(tablename, super_link("doc_id", "doc_entity"), super_link("pe_id", "pr_pentity"), Field("name", notnull=True, unique=True, length=128, label = T("Name"), ), Field("mission", label = T("Mission"), represent = lambda v: v or NONE, # Enable as-required in Custom Forms readable = False, writable = False, ), Field("website", label = T("Website"), represent = s3_url_represent, requires = IS_EMPTY_OR(IS_URL()), ), Field("meetings", label = T("Meetings"), represent = lambda v: v or NONE, # Enable as-required in Custom Forms readable = False, writable = False, ), self.gis_location_id( widget = S3LocationSelector(#catalog_layers = True, points = False, polygons = True, ) ), s3_comments(), *s3_meta_fields()) # CRUD Strings label = current.deployment_settings.get_org_groups() if label == "Coalition": crud_strings[tablename] = Storage( label_create = T("Create Coalition"), title_display = T("Coalition Details"), title_list = T("Coalitions"), title_update = T("Update Coalition"), label_list_button = T("List Coalitions"), label_delete_button = T("Remove Coalition"), msg_record_created = T("Coalition added"), msg_record_modified = T("Coalition updated"), msg_record_deleted = T("Coalition removed"), msg_list_empty = T("No Coalitions currently recorded")) elif label == "Network": crud_strings[tablename] = Storage( label_create = T("Create Network"), title_display = T("Network Details"), title_list = T("Networks"), title_update = T("Edit Network"), label_list_button = T("List Networks"), label_delete_button = T("Remove Network"), msg_record_created = T("Network added"), msg_record_modified = T("Network updated"), msg_record_deleted = T("Network removed"), msg_list_empty = T("No Networks currently recorded")) else: # Functionality is disabled but model is being loaded via load_all_models() label = "Group" configure(tablename, list_fields = ["name", "comments", ], super_entity = ("doc_entity", "pr_pentity"), ) group_represent = S3Represent(lookup=tablename) group_id = S3ReusableField("group_id", "reference %s" % tablename, label = T(label), # Always links via Link Tables ondelete = "CASCADE", represent = group_represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_group.id", group_represent, sort=True, )), sortby = "name", ) # Components self.add_components(tablename, org_group_membership = {"name": "membership", "joinby": "group_id", }, org_organisation = {"joinby": "group_id", "key": "organisation_id", "link": "org_group_membership", "actuate": "replace", }, pr_group = {"name": "pr_group", "joinby": "org_group_id", "key": "group_id", "link": "org_group_team", "actuate": "replace", }, ) # Custom Method to Assign Orgs self.set_method("org", "group", method = "assign", action = org_AssignMethod(component="membership")) # --------------------------------------------------------------------- # Group membership status # tablename = "org_group_membership_status" define_table(tablename, Field("name", notnull=True, unique=True, length=128, label = T("Name"), ), s3_comments(), *s3_meta_fields() ) crud_strings[tablename] = Storage( label_create = T("Create Status"), title_display = T("Status Details"), title_list = T("Statuses"), title_update = T("Edit Status"), label_list_button = T("List Statuses"), label_delete_button = T("Delete Status"), msg_record_created = T("Status added"), msg_record_modified = T("Status updated"), msg_record_deleted = T("Status removed"), msg_list_empty = T("No Statuses currently defined")) represent = S3Represent(lookup=tablename) status_id = S3ReusableField("status_id", "reference %s" % tablename, label = T("Status"), ondelete = "SET NULL", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_group_membership_status.id", represent, sort=True, )), sortby = "name", ) # --------------------------------------------------------------------- # Group membership # tablename = "org_group_membership" define_table(tablename, group_id(empty = False, ondelete = "CASCADE", ), self.org_organisation_id(empty = False, ondelete = "CASCADE", ), status_id(), *s3_meta_fields() ) configure(tablename, onaccept = self.group_membership_onaccept, ondelete = self.group_membership_onaccept, ) # Pass names back to global scope (s3.*) return dict(org_group_id = group_id, org_group_represent = group_represent, ) # ------------------------------------------------------------------------- @staticmethod def group_membership_onaccept(form): """ Remove any duplicate memberships and update affiliations """ if hasattr(form, "vars"): _id = form.vars.id elif isinstance(form, Row) and "id" in form: _id = form.id else: return db = current.db mtable = db.org_group_membership if _id: record = db(mtable.id == _id).select(limitby=(0, 1)).first() else: return if record: organisation_id = record.organisation_id group_id = record.group_id if organisation_id and group_id and not record.deleted: query = (mtable.organisation_id == organisation_id) & \ (mtable.group_id == group_id) & \ (mtable.id != record.id) & \ (mtable.deleted != True) deleted_fk = {"organisation_id": organisation_id, "group_id": group_id} db(query).update(deleted = True, organisation_id = None, group_id = None, deleted_fk = json.dumps(deleted_fk)) org_update_affiliations("org_group_membership", record) # ============================================================================= class S3OrganisationGroupPersonModel(S3Model): """ Link table between Organisation Groups & Persons """ names = ("org_group_person_status", "org_group_person", ) def model(self): T = current.T db = current.db define_table = self.define_table crud_strings = current.response.s3.crud_strings # --------------------------------------------------------------------- # Person<=>Organisation Group membership status # tablename = "org_group_person_status" define_table(tablename, Field("name", notnull=True, unique=True, length=128, label = T("Name"), ), s3_comments(), *s3_meta_fields() ) crud_strings[tablename] = Storage( label_create = T("Create Status"), title_display = T("Status Details"), title_list = T("Statuses"), title_update = T("Edit Status"), label_list_button = T("List Statuses"), label_delete_button = T("Delete Status"), msg_record_created = T("Status added"), msg_record_modified = T("Status updated"), msg_record_deleted = T("Status removed"), msg_list_empty = T("No Statuses currently defined")) represent = S3Represent(lookup=tablename) status_id = S3ReusableField("status_id", "reference %s" % tablename, label = T("Status"), ondelete = "SET NULL", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_group_person_status.id", represent, sort=True, )), sortby = "name", ) # --------------------------------------------------------------------- # Link table between Organisation Groups & Persons # tablename = "org_group_person" define_table(tablename, self.org_group_id("org_group_id", empty = False, ondelete = "CASCADE", ), self.pr_person_id(empty = False, ondelete = "CASCADE", ), status_id(), *s3_meta_fields()) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) return dict() # ============================================================================= class S3OrganisationGroupTeamModel(S3Model): """ Link table between Organisation Groups & Teams """ names = ("org_group_team",) def model(self): #T = current.T # --------------------------------------------------------------------- # Link table between Organisation Groups & Teams # tablename = "org_group_team" self.define_table(tablename, self.org_group_id("org_group_id", empty = False, ondelete = "CASCADE", ), self.pr_group_id(empty = False, ondelete = "CASCADE", ), *s3_meta_fields()) self.configure(tablename, onaccept = self.org_group_team_onaccept, ) # Pass names back to global scope (s3.*) return dict() # ------------------------------------------------------------------------- @staticmethod def org_group_team_onaccept(form): """ Update affiliations """ if hasattr(form, "vars"): _id = form.vars.id elif isinstance(form, Row) and "id" in form: _id = form.id else: return if not _id: return db = current.db table = db.org_group_team record = db(table.id == _id).select(table.group_id, table.org_group_id, limitby=(0, 1)).first() if record: org_group = ("org_organisation", record.org_group_id) pr_group = ("pr_group", record.group_id) current.s3db.pr_add_affiliation(org_group, pr_group, role="Groups", role_type=1) # 1 = OU # ============================================================================= class S3OrganisationLocationModel(S3Model): """ Organisation Location Model """ names = ("org_organisation_location",) def model(self): T = current.T # --------------------------------------------------------------------- # Organizations <> Locations Link Table # tablename = "org_organisation_location" self.define_table(tablename, self.org_organisation_id(), self.gis_location_id( requires = IS_LOCATION(), #represent = self.gis_LocationRepresent(sep=", "), widget = S3LocationAutocompleteWidget() ), *s3_meta_fields() ) # CRUD Strings current.response.s3.crud_strings[tablename] = Storage( label_create = T("New Location"), title_display = T("Location"), title_list = T("Locations"), title_update = T("Edit Location"), title_upload = T("Import Location data"), label_list_button = T("List Locations"), msg_record_created = T("Location added to Organization"), msg_record_modified = T("Location updated"), msg_record_deleted = T("Location removed from Organization"), msg_list_empty = T("No Locations found for this Organization")) self.configure(tablename, deduplicate = self.org_organisation_location_deduplicate, ) # Pass names back to global scope (s3.*) return dict() # ------------------------------------------------------------------------- @staticmethod def org_organisation_location_deduplicate(item): """ Import item de-duplication """ data = item.data organisation_id = data.get("organisation_id") location_id = data.get("location_id") if organisation_id and location_id: table = item.table query = (table.organisation_id == organisation_id) & \ (table.location_id == location_id) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ============================================================================= class S3OrganisationResourceModel(S3Model): """ Organisation Resource Model - depends on Stats module """ names = ("org_resource", "org_resource_type", ) def model(self): #settings = current.deployment_settings if not current.deployment_settings.has_module("stats"): current.log.warning("Organisation Resource Model needs Stats module enabling") return dict() T = current.T #auth = current.auth crud_strings = current.response.s3.crud_strings super_link = self.super_link configure = self.configure # --------------------------------------------------------------------- # Resource Type data # tablename = "org_resource_type" self.define_table(tablename, super_link("parameter_id", "stats_parameter"), Field("name", label = T("Resource Type"), ), s3_comments(), *s3_meta_fields()) # CRUD strings ADD_RESOURCE_TYPE = T("Create Resource Type") crud_strings[tablename] = Storage( label_create = ADD_RESOURCE_TYPE, title_display = T("Resource Type Details"), title_list = T("Resource Types"), title_update = T("Edit Resource Type"), title_upload = T("Import Resource Types"), label_list_button = T("Resource Types"), label_delete_button = T("Delete Resource Type"), msg_record_created = T("Resource Type added"), msg_record_modified = T("Resource Type updated"), msg_record_deleted = T("Resource Type deleted"), msg_list_empty = T("No Resource Types defined")) # Resource Configuration configure(tablename, super_entity = "stats_parameter", ) # --------------------------------------------------------------------- # Resource data # tablename = "org_resource" self.define_table(tablename, # Instance super_link("data_id", "stats_data"), self.org_organisation_id(ondelete="CASCADE"), # Add this when deprecating S3OfficeSummaryModel #self.super_link("site_id", "org_site", # label=current.deployment_settings.get_org_site_label(), # instance_types = auth.org_site_types, # orderby = "org_site.name", # realms = auth.permission.permitted_realms("org_site", # method="create"), # not_filterby = "obsolete", # not_filter_opts = (True,), # readable = True, # writable = True, # represent = self.org_site_represent, # ), self.gis_location_id(), # This is a component, so needs to be a super_link # - can't override field name, ondelete or requires super_link("parameter_id", "stats_parameter", label = T("Resource Type"), instance_types = ("org_resource_type",), represent = S3Represent(lookup="stats_parameter", translate=True), readable = True, writable = True, empty = False, comment = S3AddResourceLink(c="org", f="resource_type", vars = dict(child = "parameter_id"), title=ADD_RESOURCE_TYPE), ), Field("value", "integer", label = T("Quantity"), requires = IS_INT_IN_RANGE(0, 999999), ), s3_comments(), *s3_meta_fields()) # CRUD strings crud_strings[tablename] = Storage( label_create = T("Create Resource"), title_display = T("Resource Details"), title_list = T("Resource Inventory"), title_update = T("Edit Resource"), title_map = T("Map of Resources"), title_upload = T("Import Resources"), label_list_button = T("Resource Inventory"), label_delete_button = T("Delete Resource"), msg_record_created = T("Resource added"), msg_record_modified = T("Resource updated"), msg_record_deleted = T("Resource deleted"), msg_list_empty = T("No Resources in Inventory")) # Filter Widgets filter_widgets = [S3TextFilter(["organisation_id$name", "location_id", "parameter_id$name", "comments", ], label = T("Search")), S3OptionsFilter("parameter_id", label = T("Type"), ), ] # Report options report_fields = ["organisation_id", "parameter_id", ] report_options = Storage(rows = report_fields, cols = report_fields, fact = [(T("Total Number of Resources"), "sum(value)"), (T("Number of Resources"), "count(value)"), ], defaults=Storage(rows = "organisation_id", cols = "parameter_id", fact = "sum(value)", totals = True, chart = "barchart:rows", #table = "collapse", ) ) configure(tablename, context = {"location": "location_id", "organisation": "organisation_id", }, filter_widgets = filter_widgets, list_layout = org_resource_list_layout, report_options = report_options, super_entity = "stats_data", ) # Pass names back to global scope (s3.*) return dict() # ============================================================================= class S3OrganisationSectorModel(S3Model): """ Organisation Sector Model """ names = ("org_sector", "org_sector_id", #"org_subsector", "org_sector_organisation", ) def model(self): T = current.T db = current.db add_components = self.add_components configure = self.configure crud_strings = current.response.s3.crud_strings define_table = self.define_table NONE = current.messages["NONE"] location = current.session.s3.location_filter if location: filterby = "location_id" filter_opts = (location, None) else: filterby = None filter_opts = (None,) # --------------------------------------------------------------------- # Sector # (Cluster in UN-style terminology) # tablename = "org_sector" define_table(tablename, Field("name", length=128, notnull=True, label = T("Name"), represent = lambda v: T(v) if v is not None \ else NONE, ), Field("abrv", length=64, #notnull=True, label = T("Abbreviation"), ), self.gis_location_id( requires = IS_EMPTY_OR(IS_LOCATION()), widget = S3LocationAutocompleteWidget(), ), s3_comments(), *s3_meta_fields()) # CRUD strings if current.deployment_settings.get_ui_label_cluster(): SECTOR = T("Cluster") ADD_SECTOR = T("Create Cluster") help = T("If you don't see the Cluster in the list, you can add a new one by clicking link 'Add New Cluster'.") crud_strings[tablename] = Storage( label_create = ADD_SECTOR, title_display = T("Cluster Details"), title_list = T("Clusters"), title_update = T("Edit Cluster"), label_list_button = T("List Clusters"), label_delete_button = T("Delete Cluster"), msg_record_created = T("Cluster added"), msg_record_modified = T("Cluster updated"), msg_record_deleted = T("Cluster deleted"), msg_list_empty = T("No Clusters currently registered")) else: SECTOR = T("Sector") ADD_SECTOR = T("Create Sector") help = T("If you don't see the Sector in the list, you can add a new one by clicking link 'Create Sector'.") crud_strings[tablename] = Storage( label_create = ADD_SECTOR, title_display = T("Sector Details"), title_list = T("Sectors"), title_update = T("Edit Sector"), label_list_button = T("List Sectors"), label_delete_button = T("Delete Sector"), msg_record_created = T("Sector added"), msg_record_modified = T("Sector updated"), msg_record_deleted = T("Sector deleted"), msg_list_empty = T("No Sectors currently registered")) configure("org_sector", deduplicate = self.org_sector_duplicate, onaccept = self.org_sector_onaccept, ) sector_comment = lambda child: S3AddResourceLink(c="org", f="sector", vars={"child": child}, label=ADD_SECTOR, title=SECTOR, tooltip=help) represent = S3Represent(lookup=tablename, translate=True) sector_id = S3ReusableField("sector_id", "reference %s" % tablename, label = SECTOR, ondelete = "SET NULL", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_sector.id", represent, sort=True, filterby=filterby, filter_opts=filter_opts, )), sortby = "abrv", comment = sector_comment("sector_id"), ) # Components add_components(tablename, org_organisation = {"link": "org_sector_organisation", "joinby": "sector_id", "key": "organisation_id", "actuate": "hide", }, project_project = {"link": "project_sector_project", "joinby": "sector_id", "key": "project_id", "actuate": "hide", }, #project_activity_type = {"link": "project_activity_type_sector", # "joinby": "sector_id", # "key": "activity_type_id", # "actuate": "hide", # }, #project_theme = {"link": "project_theme_sector", # "joinby": "sector_id", # "key": "theme_id", # "actuate": "hide", # }, #org_subsector = "sector_id", ) # ===================================================================== # (Cluster) Subsector # # tablename = "org_subsector" # define_table(tablename, # sector_id(), # Field("name", length=128, # label = T("Name")), # Field("abrv", length=64, # notnull=True, unique=True, # label = T("Abbreviation")), # *s3_meta_fields()) ##CRUD strings # if settings.get_ui_label_cluster(): # SUBSECTOR = T("Cluster Subsector") # crud_strings[tablename] = Storage( # label_create = T("Create Cluster Subsector"), # title_display = T("Cluster Subsector Details"), # title_list = T("Cluster Subsectors"), # title_update = T("Edit Cluster Subsector"), # label_list_button = T("List Cluster Subsectors"), # label_delete_button = T("Delete Cluster Subsector"), # msg_record_created = T("Cluster Subsector added"), # msg_record_modified = T("Cluster Subsector updated"), # msg_record_deleted = T("Cluster Subsector deleted"), # msg_list_empty = T("No Cluster Subsectors currently registered")) # else: # SUBSECTOR = T("Subsector") # crud_strings[tablename] = Storage( # label_create = T("Add Subsector"), # title_display = T("Subsector Details"), # title_list = T("Subsectors"), # title_update = T("Edit Subsector"), # label_list_button = T("List Subsectors"), # label_delete_button = T("Delete Subsector"), # msg_record_created = T("Subsector added"), # msg_record_modified = T("Subsector updated"), # msg_record_deleted = T("Subsector deleted"), # msg_list_empty = T("No Subsectors currently registered")) # subsector_id = S3ReusableField("subsector_id", "reference %s" % tablename, # label = SUBSECTOR, # ondelete = "SET NULL", # represent = self.org_subsector_represent, # requires = IS_EMPTY_OR( # IS_ONE_OF(db, "org_subsector.id", # self.org_subsector_represent, # sort=True)), # sortby = "abrv", # #comment = Script to filter the sector_subsector drop down # ) # configure("org_subsector", # deduplicate = self.org_sector_duplicate, # ) # --------------------------------------------------------------------- # Organizations <> Sectors Link Table # tablename = "org_sector_organisation" define_table(tablename, sector_id(), self.org_organisation_id(), *s3_meta_fields() ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Sector"), title_display = T("Sector"), title_list = T("Sectors"), title_update = T("Edit Sector"), title_upload = T("Import Sector data"), label_list_button = T("List Sectors"), msg_record_created = T("Sector added to Organization"), msg_record_modified = T("Sector updated"), msg_record_deleted = T("Sector removed from Organization"), msg_list_empty = T("No Sectors found for this Organization")) configure(tablename, deduplicate = self.org_sector_organisation_deduplicate, ) # Pass names back to global scope (s3.*) return dict(org_sector_id = sector_id, ) # ------------------------------------------------------------------------- @staticmethod def org_sector_duplicate(item): """ Import item de-duplication """ data = item.data abrv = data.get("abrv") name = data.get("name") table = item.table if abrv: query = (table.abrv.lower() == abrv.lower()) elif name: query = (table.name.lower() == name.lower()) else: return duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ------------------------------------------------------------------------- @staticmethod def org_sector_onaccept(form): """ If no abrv is set then set it from the name """ _id = form.vars.id # Read the record db = current.db table = db.org_sector record = db(table.id == _id).select(table.abrv, table.name, limitby=(0, 1)).first() if not record.abrv: db(table.id == _id).update(abrv = record.name[:64]) # ------------------------------------------------------------------------- #@staticmethod #def org_subsector_represent(id, row=None): # """ Subsector ID representation """ # if row: # return row.name # elif not id: # return current.messages["NONE"] # db = current.db # table = db.org_subsector # r = db(table.id == id).select(table.name, # table.sector_id, # limitby=(0, 1) # ).first() # try: # sector = db(table.id == r.sector_id).select(table.abrv, # limitby=(0, 1) # ).first() # if sector: # return "%s: %s" % (sector.abrv, current.T(r.name)) # else: # return current.T(r.name) # except: # return current.messages.UNKNOWN_OPT # ------------------------------------------------------------------------- @staticmethod def org_sector_organisation_deduplicate(item): """ Import item de-duplication """ data = item.data organisation_id = data.get("organisation_id") sector_id = data.get("sector_id") if organisation_id and sector_id: table = item.table query = (table.organisation_id == organisation_id) & \ (table.sector_id == sector_id) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ============================================================================= class S3OrganisationServiceModel(S3Model): """ Organisation Service Model """ names = ("org_service", "org_service_organisation", ) def model(self): T = current.T db = current.db configure = self.configure crud_strings = current.response.s3.crud_strings define_table = self.define_table hierarchical_service_types = current.deployment_settings.get_org_services_hierarchical() # --------------------------------------------------------------------- # Service # tablename = "org_service" define_table(tablename, Field("name", length=128, notnull=True, # Comment this if we need to support the same service at different locations in hierarchy unique = True, label = T("Name"), ), Field("parent", "reference org_service", # This form of hierarchy may not work on all Databases label = T("SubType of"), ondelete = "RESTRICT", readable = hierarchical_service_types, writable = hierarchical_service_types, ), s3_comments(), *s3_meta_fields()) represent = S3Represent(lookup = tablename, # Questionable UX: #hierarchy = hierarchical_service_types, translate = True, ) if hierarchical_service_types: hierarchy = "parent" # Can't be defined in-line as otherwise get a circular reference table = db[tablename] table.parent.represent = represent table.parent.requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_service.id", represent, # If limiting to just 1 level of parent #filterby="parent", #filter_opts=(None,), orderby="org_service.name")) else: hierarchy = None # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Service"), title_display = T("Service Details"), title_list = T("Services"), title_update = T("Edit Service"), title_upload = T("Import Services"), label_list_button = T("List Services"), label_delete_button = T("Delete Service"), msg_record_created = T("Service added"), msg_record_modified = T("Service updated"), msg_record_deleted = T("Service deleted"), msg_list_empty = T("No Services currently registered")) # Reusable Field service_id = S3ReusableField("service_id", "reference %s" % tablename, label = T("Services"), ondelete = "CASCADE", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_service.id", represent, sort=True)), sortby = "name", ) configure(tablename, # If we need to support the same service at different locations in hierarchy #deduplicate = self.org_service_deduplicate, hierarchy = hierarchy, ) # --------------------------------------------------------------------- # Organizations <> Services Link Table # tablename = "org_service_organisation" define_table(tablename, service_id(), self.org_organisation_id(), *s3_meta_fields() ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Add Service"), title_display = T("Service"), title_list = T("Services"), title_update = T("Edit Service"), label_list_button = T("List Services"), msg_record_created = T("Service added to Organization"), msg_record_modified = T("Service updated"), msg_record_deleted = T("Service removed from Organization"), msg_list_empty = T("No Services found for this Organization")) configure(tablename, deduplicate = self.org_service_organisation_deduplicate, ) # Pass names back to global scope (s3.*) return dict() # ------------------------------------------------------------------------- @staticmethod def org_service_deduplicate(item): """ Import item de-duplication """ data = item.data name = data.get("name") if name: table = item.table query = (table.name == name) parent = data.get("parent") if parent: query &= (table.parent == parent) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ------------------------------------------------------------------------- @staticmethod def org_service_organisation_deduplicate(item): """ Import item de-duplication """ data = item.data organisation_id = data.get("organisation_id") service_id = data.get("service_id") if organisation_id and service_id: table = item.table query = (table.organisation_id == organisation_id) & \ (table.service_id == service_id) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ============================================================================= class S3OrganisationSummaryModel(S3Model): """ Organisation Summary fields visible when settings.org.summary = True @ToDo: Deprecate in favour of S3OrganisationResourceModel """ names = ("org_organisation_summary",) def model(self): T = current.T # --------------------------------------------------------------------- # Summary data # tablename = "org_organisation_summary" self.define_table(tablename, self.org_organisation_id(ondelete="CASCADE"), Field("national_staff", "integer", # national is a reserved word in Postgres label = T("# of National Staff"), requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, 9999)), ), Field("international_staff", "integer", label = T("# of International Staff"), requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, 9999)), ), *s3_meta_fields()) # Pass names back to global scope (s3.*) return dict() # ============================================================================= class S3OrganisationTeamModel(S3Model): """ Link table between Organisations & Teams """ names = ("org_organisation_team",) def model(self): # --------------------------------------------------------------------- # Link table between Organisations & Teams # tablename = "org_organisation_team" self.define_table(tablename, self.org_organisation_id(ondelete="CASCADE", empty=False, ), self.pr_group_id(ondelete="CASCADE", empty=False, ), *s3_meta_fields()) self.configure(tablename, onaccept = self.org_team_onaccept, ) # Pass names back to global scope (s3.*) return dict() # ------------------------------------------------------------------------- @staticmethod def org_team_onaccept(form): """ Update affiliations """ if hasattr(form, "vars"): _id = form.vars.id elif isinstance(form, Row) and "id" in form: _id = form.id else: return if not _id: return db = current.db table = db.org_organisation_team record = db(table.id == _id).select(table.group_id, table.organisation_id, limitby=(0, 1)).first() if record: org = ("org_organisation", record.organisation_id) group = ("pr_group", record.group_id) current.s3db.pr_add_affiliation(org, group, role="Groups", role_type=1) # 1 = OU # ============================================================================= class S3OrganisationTypeTagModel(S3Model): """ Organisation Type Tags """ names = ("org_organisation_type_tag",) def model(self): T = current.T # --------------------------------------------------------------------- # Local Names # # --------------------------------------------------------------------- # Organisation Type Tags # - Key-Value extensions # - can be used to provide conversions to external systems, such as: # * HXL # - can be a Triple Store for Semantic Web support # tablename = "org_organisation_type_tag" self.define_table(tablename, self.org_organisation_type_id(), # key is a reserved word in MySQL Field("tag", label = T("Key"), ), Field("value", label = T("Value"), ), s3_comments(), *s3_meta_fields()) # Pass names back to global scope (s3.*) return dict() # ============================================================================= class S3SiteModel(S3Model): """ Site Super-Entity """ names = ("org_site", "org_site_requires", "org_site_id", "org_site_represent", ) def model(self): T = current.T auth = current.auth messages = current.messages add_components = self.add_components set_method = self.set_method # ===================================================================== # Site / Facility (ICS terminology) # # Site is a generic type for any facility (office, hospital, shelter, # warehouse, project site etc.) and serves the same purpose as pentity does for person # entity types: It provides a common join key name across all types of # sites, with a unique value for each sites. This allows other types that # are useful to any sort of site to have a common way to join to any of # them. It's especially useful for component types. # org_site_types = auth.org_site_types tablename = "org_site" self.super_entity(tablename, "site_id", org_site_types, # @ToDo: Make Sites Trackable (Mobile Hospitals & Warehouses) #super_link("track_id", "sit_trackable"), Field("code", label = T("Code"), length = 10, # Mayon compatibility writable = False, ), Field("name", notnull=True, length = 64, # Mayon compatibility #unique=True, label = T("Name"), ), self.gis_location_id(), self.org_organisation_id(), Field("obsolete", "boolean", default = False, label = T("Obsolete"), represent = lambda opt: \ (opt and [T("Obsolete")] or [messages["NONE"]])[0], readable = False, writable = False, ), Field("comments", "text"), *s3_ownerstamp()) # --------------------------------------------------------------------- settings = current.deployment_settings org_site_label = settings.get_org_site_label() if settings.get_org_site_autocomplete(): widget=S3SiteAutocompleteWidget(), comment=DIV(_class="tooltip", _title="%s|%s" % (org_site_label, messages.AUTOCOMPLETE_HELP)) else: widget = None comment = None org_site_represent = org_SiteRepresent(show_link=True) site_id = self.super_link("site_id", "org_site", comment = comment, #default = auth.user.site_id if auth.is_logged_in() else None, label = org_site_label, orderby = "org_site.name", #readable = True, represent = org_site_represent, widget = widget, #writable = True, ) # Custom Method for S3SiteAutocompleteWidget set_method("org", "site", method = "search_ac", action = self.site_search_ac) # Custom Method for S3AddPersonWidget2 # @ToDo: One for HRMs set_method("org", "site", method = "site_contact_person", action = self.site_contact_person) # Custom Method to Assign HRs # - done in instances #set_method("org", "site", # method = "assign", # action = self.hrm_AssignMethod(component="human_resource_site")) self.configure(tablename, context = {"location": "location_id", "organisation": "organisation_id", "org_group": "organisation_id$group_membership.group_id", }, list_fields = ["id", "code", "instance_type", "name", "organisation_id", "location_id", ], onaccept = self.org_site_onaccept, ondelete_cascade = self.org_site_ondelete_cascade, ) # Components add_components(tablename, # Facility Types # Format for S3SQLInlineComponentCheckbox org_facility_type = {"link": "org_site_facility_type", "joinby": "site_id", "key": "facility_type_id", "actuate": "hide", }, # Format for filter_widgets & imports org_site_facility_type = "site_id", # Human Resources # - direct component (suitable for Create/List) hrm_human_resource = "site_id", # - via link table (suitable for Assign) hrm_human_resource_site = "site_id", # Documents doc_document = "site_id", doc_image = "site_id", # Inventory inv_inv_item = "site_id", inv_recv = "site_id", inv_send = "site_id", # Assets asset_asset = "site_id", # Procurement Plans proc_plan = "site_id", # Needs req_site_needs = (# with alias {"name": "needs", "joinby": "site_id", "multiple": False, }, # without alias {"joinby": "site_id", "multiple": False, }, ), # Requests req_req = "site_id", req_commit = "site_id", # Status org_site_status = {"name": "status", "joinby": "site_id", "multiple": False, }, # Coalitions org_group = {"link": "org_site_org_group", "joinby": "site_id", "key": "group_id", "actuate": "hide", }, # Format for InlineComponent/filter_widget org_site_org_group = "site_id", ) # Pass names back to global scope (s3.*) return dict(org_site_id = site_id, org_site_represent = org_site_represent, ) # ------------------------------------------------------------------------- @staticmethod def org_site_onaccept(form): """ Create the code from the name """ name = form.vars.name if not name: return code_len = current.deployment_settings.get_org_site_code_len() temp_code = name[:code_len].upper() db = current.db site_table = db.org_site query = (site_table.code == temp_code) row = db(query).select(site_table.id, limitby=(0, 1)).first() if row: code = temp_code temp_code = None wildcard_bit = 1 length = len(code) max_wc_bit = pow(2, length) while not temp_code and wildcard_bit < max_wc_bit: wildcard_posn = [] for w in range(length): if wildcard_bit & pow(2, w): wildcard_posn.append(length - (1 + w)) wildcard_bit += 1 code_list = S3SiteModel.getCodeList(code, wildcard_posn) temp_code = S3SiteModel.returnUniqueCode(code, wildcard_posn, code_list) if temp_code: db(site_table.site_id == form.vars.site_id).update(code=temp_code) # ------------------------------------------------------------------------- @staticmethod def org_site_ondelete_cascade(form): """ Update realm entity in all related HRs @todo: clean up records which RESTRICT the site_id """ site_id = form.site_id htable = current.s3db.hrm_human_resource query = (htable.site_id == site_id) db = current.db rows = db(query).select(htable.id) db(query).update(site_id = None) current.auth.set_realm_entity(htable, rows, force_update=True) # ------------------------------------------------------------------------- @staticmethod def getCodeList(code, wildcard_posn=[]): """ Called by org_site_onaccept """ temp_code = "" # Inject the wildcard charater in the right positions for posn in range(len(code)): if posn in wildcard_posn: temp_code += "%" else: temp_code += code[posn] # Now set up the db call db = current.db site_table = db.org_site query = site_table.code.like(temp_code) rows = db(query).select(site_table.id, site_table.code) # Extract the rows in the database to provide a list of used codes codeList = [] for record in rows: codeList.append(record.code) return codeList # ------------------------------------------------------------------------- @staticmethod def returnUniqueCode(code, wildcard_posn=[], code_list=[]): """ Called by org_site_onaccept """ # Select the replacement letters with numbers first and then # followed by the letters in least commonly used order replacement_char = "1234567890ZQJXKVBWPYGUMCFLDHSIRNOATE" rep_posn = [0] * len(wildcard_posn) finished = False while (not finished): # Find the next code to try temp_code = "" r = 0 for posn in range(len(code)): if posn in wildcard_posn: temp_code += replacement_char[rep_posn[r]] r += 1 else: temp_code += code[posn] if temp_code not in code_list: return temp_code # Set up the next rep_posn p = 0 while (p < len(wildcard_posn)): if rep_posn[p] == 35: # the maximum number of replacement characters rep_posn[p] = 0 p += 1 else: rep_posn[p] = rep_posn[p] + 1 break # If no new permutation of replacement characters has been found if p == len(wildcard_posn): return None # ------------------------------------------------------------------------- @staticmethod def site_contact_person(r, **attr): """ JSON lookup method for S3AddPersonWidget2 """ site_id = r.id if not site_id: output = current.xml.json_message(False, 400, "No id provided!") raise HTTP(400, body=output) db = current.db s3db = current.s3db ltable = s3db.hrm_human_resource_site htable = db.hrm_human_resource query = (ltable.site_id == site_id) & \ (ltable.site_contact == True) & \ (ltable.human_resource_id == htable.id) person = db(query).select(htable.person_id, limitby=(0, 1)).first() if person: fake = Storage(id = person.person_id, tablename = "org_site", ) return s3db.pr_person_lookup(fake, **attr) else: current.response.headers["Content-Type"] = "application/json" output = json.dumps(None, separators=SEPARATORS) return output # ------------------------------------------------------------------------- @staticmethod def site_search_ac(r, **attr): """ JSON search method for S3SiteAutocompleteWidget @param r: the S3Request @param attr: request attributes """ response = current.response resource = r.resource settings = current.deployment_settings # Query comes in pre-filtered to accessible & deletion_status # Respect response.s3.filter resource.add_filter(response.s3.filter) _vars = current.request.get_vars # JQueryUI Autocomplete uses "term" instead of "value" # (old JQuery Autocomplete uses "q" instead of "value") value = _vars.term or _vars.value or _vars.q or None # We want to do case-insensitive searches # (default anyway on MySQL/SQLite, but not PostgreSQL) value = value.lower().strip() if not value: output = current.xml.json_message(False, 400, "Missing option! Require value") raise HTTP(400, body=output) # Construct query query = (FS("name").lower().like(value + "%")) # Add template specific search criteria extra_fields = settings.get_org_site_autocomplete_fields() for field in extra_fields: if "addr_street" in field: # Need to be able to get through the street number query |= (FS(field).lower().like("%" + value + "%")) else: query |= (FS(field).lower().like(value + "%")) resource.add_filter(query) MAX_SEARCH_RESULTS = settings.get_search_max_results() limit = int(_vars.limit or MAX_SEARCH_RESULTS) if (not limit or limit > MAX_SEARCH_RESULTS) and resource.count() > MAX_SEARCH_RESULTS: output = json.dumps([ dict(label=str(current.T("There are more than %(max)s results, please input more characters.") % dict(max=MAX_SEARCH_RESULTS))) ], separators=SEPARATORS) else: from s3.s3widgets import set_match_strings s3db = current.s3db # default fields to return fields = ["name", "site_id", ] # Add template specific fields to return fields += extra_fields rows = resource.select(fields, start=0, limit=limit, orderby="name", as_rows=True) output = [] append = output.append for row in rows: # Populate record _row = row.get("org_site", row) record = {"id": _row.site_id, "name": _row.name, } # Populate fields only if present org = row.get("org_organisation.name", None) if org: record["org"] = org L1 = row.get("gis_location.L1", None) if L1: record["L1"] = L1 L2 = row.get("gis_location.L2", None) if L2: record["L2"] = L2 L3 = row.get("gis_location.L3", None) if L3: record["L3"] = L3 L4 = row.get("gis_location.L4", None) if L4: record["L4"] = L4 addr_street = row.get("gis_location.addr_street", None) if addr_street: record["addr"] = addr_street # Populate match information (if applicable) set_match_strings(record, value) append(record) output = json.dumps(output, separators=SEPARATORS) response.headers["Content-Type"] = "application/json" return output # ============================================================================= class S3SiteDetailsModel(S3Model): """ Extra optional details for Sites """ names = ("org_site_status", "org_site_org_group", ) def model(self): T = current.T define_table = self.define_table super_link = self.super_link settings = current.deployment_settings last_contacted = settings.get_org_site_last_contacted() messages = current.messages NONE = messages["NONE"] UNKNOWN_OPT = messages.UNKNOWN_OPT facility_status_opts = { 1: T("Normal"), 2: T("Compromised"), 3: T("Evacuating"), 4: T("Closed"), 99: T("No Response"), } power_supply_type_opts = { 1: T("Grid"), 2: T("Generator"), 98: T("Other"), 99: T("None"), } # --------------------------------------------------------------------- # Site Status # tablename = "org_site_status" define_table(tablename, # Component not instance super_link("site_id", "org_site"), Field("facility_status", "integer", requires = IS_EMPTY_OR( IS_IN_SET(facility_status_opts)), label = T("Facility Status"), represent = lambda opt: \ NONE if opt is None else \ facility_status_opts.get(opt, UNKNOWN_OPT)), s3_date("date_reopening", label = T("Estimated Reopening Date"), readable = False, writable = False, ), Field("power_supply_type", "integer", label = T("Power Supply Type"), requires = IS_EMPTY_OR( IS_IN_SET(power_supply_type_opts, zero=None)), represent = lambda opt: \ NONE if opt is None else \ power_supply_type_opts.get(opt, UNKNOWN_OPT)), s3_date("last_contacted", label = T("Last Contacted"), readable = last_contacted, writable = last_contacted, ), *s3_meta_fields()) # CRUD Strings site_label = settings.get_org_site_label() current.response.s3.crud_strings[tablename] = Storage( label_create = T("Add %(site_label)s Status") % dict(site_label=site_label), title_display = T("%(site_label)s Status") % dict(site_label=site_label), title_list = T("%(site_label)s Status") % dict(site_label=site_label), title_update = T("Edit %(site_label)s Status") % dict(site_label=site_label), label_list_button = T("List %(site_label)s Status") % dict(site_label=site_label), msg_record_created = T("%(site_label)s Status added") % dict(site_label=site_label), msg_record_modified = T("%(site_label)s Status updated") % dict(site_label=site_label), msg_record_deleted = T("%(site_label)s Status deleted") % dict(site_label=site_label), msg_list_empty = T("There is no status for this %(site_label)s yet. Add %(site_label)s Status.") % dict(site_label=site_label), ) # --------------------------------------------------------------------- # Sites <> Coalitions link table # tablename = "org_site_org_group" define_table(tablename, # Component not instance super_link("site_id", "org_site"), self.org_group_id(empty=False), *s3_meta_fields()) # Pass names back to global scope (s3.*) return dict() # ============================================================================= class S3FacilityModel(S3Model): """ Generic Site """ names = ("org_facility_type", "org_facility", "org_site_facility_type", "org_facility_type_id", # Passed to global for s3translate "org_facility_geojson", ) def model(self): T = current.T db = current.db s3 = current.response.s3 settings = current.deployment_settings configure = self.configure crud_strings = s3.crud_strings define_table = self.define_table super_link = self.super_link NONE = current.messages["NONE"] hierarchical_facility_types = settings.get_org_facility_types_hierarchical() # --------------------------------------------------------------------- # Facility Types (generic) # tablename = "org_facility_type" define_table(tablename, Field("name", label = T("Name"), ), Field("parent", "reference org_facility_type", # This form of hierarchy may not work on all Databases label = T("SubType of"), ondelete = "RESTRICT", readable = hierarchical_facility_types, writable = hierarchical_facility_types, ), s3_comments(), *s3_meta_fields() ) type_represent = S3Represent(lookup = tablename, # Questionable UX: #hierarchy = hierarchical_facility_types, translate = True, ) if hierarchical_facility_types: hierarchy = "parent" # Can't be defined in-line as otherwise get a circular reference table = db[tablename] table.parent.represent = type_represent table.parent.requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_facility_type.id", type_represent, # If limiting to just 1 level of parent #filterby="parent", #filter_opts=(None,), orderby="org_facility_type.name")) list_fields = [(T("Type"), "parent"), #(T("SubType"), "name"), "name", "comments", ] else: hierarchy = None list_fields = ["name", "comments", ] # CRUD strings # @ToDo: Flexible Labelling: 'Facility, 'Place', 'Site' ADD_FAC = T("Create Facility Type") crud_strings[tablename] = Storage( label_create = ADD_FAC, title_display = T("Facility Type Details"), title_list = T("Facility Types"), title_update = T("Edit Facility Type"), title_upload = T("Import Facility Types"), label_list_button = T("List Facility Types"), label_delete_button = T("Delete Facility Type"), msg_record_created = T("Facility Type added"), msg_record_modified = T("Facility Type updated"), msg_record_deleted = T("Facility Type deleted"), msg_list_empty = T("No Facility Types currently registered")) facility_type_id = S3ReusableField("facility_type_id", "reference %s" % tablename, label = T("Facility Type"), ondelete = "CASCADE", represent = type_represent, # Only used by org_site_facility_type requires = IS_ONE_OF(db, "org_facility_type.id", type_represent, sort = True, ), sortby = "name", comment = S3AddResourceLink(c = "org", f = "facility_type", label = ADD_FAC, title = T("Facility Type"), tooltip = T("If you don't see the Type in the list, you can add a new one by clicking link 'Create Facility Type'.")), ) configure(tablename, deduplicate = self.org_facility_type_duplicate, hierarchy = hierarchy, list_fields = list_fields, ) # --------------------------------------------------------------------- # Facilities (generic) # if settings.get_org_facility_code_unique(): code_requires = IS_EMPTY_OR(IS_NOT_IN_DB(db, "org_facility.code")) else: code_requires = None tablename = "org_facility" define_table(tablename, # Instance super_link("doc_id", "doc_entity"), super_link("pe_id", "pr_pentity"), super_link("site_id", "org_site"), Field("name", notnull=True, length = 64, # Mayon Compatibility label = T("Name"), ), Field("code", length=10, # Mayon compatibility #notnull=True, label = T("Code"), # Deployments that don't wants office codes can hide them #readable=False, writable=False, represent = lambda v: v or NONE, requires = code_requires, ), self.org_organisation_id( requires = self.org_organisation_requires(updateable=True), ), self.gis_location_id(), Field("opening_times", label = T("Opening Times"), represent = lambda v: v or NONE, ), Field("contact", label = T("Contact"), represent = lambda v: v or NONE, ), Field("phone1", label = T("Phone 1"), represent = lambda v: v or NONE, requires=IS_EMPTY_OR(s3_phone_requires), ), Field("phone2", label = T("Phone 2"), represent = lambda v: v or NONE, requires = IS_EMPTY_OR(s3_phone_requires), ), Field("email", label = T("Email"), represent = lambda v: v or NONE, requires = IS_EMPTY_OR(IS_EMAIL()), ), Field("website", label = T("Website"), represent = lambda v: v or NONE, ), Field("obsolete", "boolean", default = False, label = T("Obsolete"), represent = lambda opt: \ (opt and [T("Obsolete")] or [current.messages["NONE"]])[0], readable = False, writable = False, ), Field.Method("inv", org_site_has_inv), Field.Method("assets", org_site_has_assets), Field.Method("reqs", org_site_top_req_priority), s3_comments(), *s3_meta_fields()) # CRUD strings ADD_FAC = T("Create Facility") crud_strings[tablename] = Storage( label_create = ADD_FAC, title_display = T("Facility Details"), title_list = T("Facilities"), title_update = T("Edit Facility"), title_map = T("Map of Facilities"), title_upload = T("Import Facilities"), label_list_button = T("List Facilities"), label_delete_button = T("Delete Facility"), msg_record_created = T("Facility added"), msg_record_modified = T("Facility updated"), msg_record_deleted = T("Facility deleted"), msg_list_empty = T("No Facilities currently registered")) # Which levels of Hierarchy are we using? levels = current.gis.get_relevant_hierarchy_levels() text_fields = ["name", "code", "comments", "organisation_id$name", "organisation_id$acronym", ] report_fields = ["name", "site_facility_type.facility_type_id", "organisation_id", ] for level in levels: lfield = "location_id$%s" % level report_fields.append(lfield) text_fields.append(lfield) if hierarchical_facility_types: type_filter = S3HierarchyFilter("site_facility_type.facility_type_id", label = T("Type"), ) else: type_filter = S3OptionsFilter("site_facility_type.facility_type_id", # @ToDo: Introspect need for header based on # records #header = True, label = T("Type"), # Doesn't support translation #represent = "%(name)s", ) filter_widgets = [ S3TextFilter(text_fields, label = T("Search"), #_class = "filter-search", ), type_filter, S3OptionsFilter("organisation_id", # @ToDo: Introspect need for header based on # records #header = True, label = T("Organization"), represent = "%(name)s", ), S3LocationFilter("location_id", # @ToDo: Display by default in Summary Views but not others? #hidden = True, label = T("Location"), levels = levels, ), ] groups = settings.get_org_groups() if groups: report_fields.append("site_org_group.group_id") filter_widgets.insert(1, S3OptionsFilter("site_org_group.group_id", # @ToDo: Introspect need for header based on # records #header = True, represent = "%(name)s", )) if settings.get_org_regions(): report_fields.append("organisation_id$region_id") if settings.get_org_regions_hierarchical(): filter_widget = S3HierarchyFilter("organisation_id$region_id", #hidden = True, label = T("Region"), ) else: filter_widget = S3OptionsFilter("organisation_id$region_id", #hidden = True, label = T("Region"), ) filter_widgets.insert(1, filter_widget) if settings.has_module("inv"): report_fields.append((T("Inventory"), "inv")) filter_widgets.append( S3OptionsFilter("inv", label = T("Inventory"), options = {True: T("Yes"), False: T("No"), }, cols = 2, )) if settings.has_module("asset"): report_fields.append((T("Assets"), "assets")) filter_widgets.append( S3OptionsFilter("assets", label = T("Assets"), options = {True: T("Yes"), False: T("No"), }, cols = 2, )) if settings.has_module("req"): # @ToDo: Report should show Total Open/Closed Requests report_fields.append((T("Highest Priority Open Requests"), "reqs")) filter_widgets.append( S3OptionsFilter("reqs", label = T("Highest Priority Open Requests"), options = self.req_priority_opts, cols = 3, )) report_options = Storage( rows = report_fields, cols = report_fields, fact = [(T("Number of Facilities"), "count(id)"), (T("List of Facilities"), "list(name)"), ], defaults = Storage(rows = lfield, # Lowest-level of hierarchy cols = "site_facility_type.facility_type_id", fact = "count(id)", totals = True, ), ) # Custom Form if hierarchical_facility_types: type_widget = "hierarchy" else: type_widget = "groupedopts" crud_form = S3SQLCustomForm("name", "code", S3SQLInlineLink( "facility_type", label = T("Facility Type"), field = "facility_type_id", widget = type_widget, cols = 3, ), "organisation_id", "location_id", "opening_times", "contact", "phone1", "phone2", "email", "website", #S3SQLInlineComponent( # "status", # label = T("Status"), # fields = ["last_contacted"], # multiple = False, #), "obsolete", "comments", ) list_fields = ["name", "code", "site_facility_type.facility_type_id", "organisation_id", "location_id", "opening_times", "contact", "phone1", "phone2", "email", "website", "comments", ] configure(tablename, context = {"location": "location_id", "organisation": "organisation_id", "org_group": "organisation_id$group_membership.group_id", "request": "req.id", }, crud_form = crud_form, deduplicate = self.org_facility_duplicate, filter_widgets = filter_widgets, list_fields = list_fields, onaccept = self.org_facility_onaccept, realm_components = ("contact_emergency", "physical_description", "config", "image", "req", "send", "human_resource_site", "note", "contact", "role", "asset", "commit", "inv_item", "document", "recv", "address", ), report_options = report_options, summary = [{"name": "table", "label": "Table", "widgets": [{"method": "datatable"}] }, {"name": "report", "label": "Report", "widgets": [{"method": "report", "ajax_init": True}] }, {"name": "map", "label": "Map", "widgets": [{"method": "map", "ajax_init": True}], }, ], super_entity = ("doc_entity", "org_site", "pr_pentity"), update_realm = True, ) # Custom Method to Assign HRs self.set_method("org", "facility", method = "assign", action = self.hrm_AssignMethod(component="human_resource_site")) # --------------------------------------------------------------------- # Link Table: Sites <> Facility Types # - currently just used for Facilities but can be easily used by other # Site types as-required # tablename = "org_site_facility_type" define_table(tablename, # Component not instance super_link("site_id", "org_site", instance_types = current.auth.org_site_types, label = settings.get_org_site_label(), orderby = "org_site.name", represent = self.org_site_represent, not_filterby = "obsolete", not_filter_opts = (True,), readable = True, writable = True, ), facility_type_id(), *s3_meta_fields()) # Pass names back to global scope (s3.*) return dict(org_facility_type_id = facility_type_id, org_facility_geojson = self.org_facility_geojson, ) # ------------------------------------------------------------------------- @staticmethod def org_facility_onaccept(form): """ Update Affiliation, record ownership and component ownership """ org_update_affiliations("org_facility", form.vars) # ------------------------------------------------------------------------- @staticmethod def org_facility_duplicate(item): """ Import item de-duplication """ data = item.data name = data.get("name") org = data.get("organisation_id") address = data.get("address") table = item.table query = (table.name.lower() == name.lower()) if org: query = query & (table.organisation_id == org) if address: query = query & (table.address == address) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # --------------------------------------------------------------------- @staticmethod def org_facility_type_duplicate(item): """ Deduplication of Facility Types """ name = item.data.get("name") if not name: return table = item.table query = (table.name.lower() == name.lower()) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ----------------------------------------------------------------------------- @staticmethod def org_facility_geojson(jsonp=True, decimals=4): """ Produce a static GeoJSON[P] feed of Facility data Designed to be run on a schedule to serve a high-volume website """ from shapely.geometry import Point from ..geojson import dumps db = current.db s3db = current.s3db stable = s3db.org_facility ltable = db.org_site_facility_type ttable = db.org_facility_type gtable = db.gis_location ntable = s3db.req_site_needs # Limit the number of decimal places formatter = ".%sf" % decimals # All Facilities query = (stable.deleted != True) & \ (stable.obsolete != True) & \ (gtable.id == stable.location_id) lquery = (ntable.deleted != True) & \ (ntable.site_id == stable.site_id) left = [ntable.on(lquery), ltable.on(stable.site_id == ltable.site_id), ttable.on(ttable.facility_type_id == ltable.facility_type_id), ] facs = db(query).select(stable.id, stable.name, ttable.name, stable.comments, stable.opening_times, stable.phone1, stable.phone2, stable.email, stable.website, ntable.needs, gtable.addr_street, gtable.L1, gtable.L4, gtable.lat, gtable.lon, left=left, ) features = [] append = features.append for f in facs: g = f.gis_location x = g.lon y = g.lat if x is None or y is None: continue x = float(format(x, formatter)) y = float(format(y, formatter)) shape = Point(x, y) # Compact Encoding geojson = dumps(shape, separators=SEPARATORS) o = f.org_facility properties = {"id": o.id, "name": o.name, } if f.get("org_facility_type.name"): properties["type"] = f["org_facility_type.name"] if o.opening_times: properties["open"] = o.opening_times if o.comments: properties["comments"] = o.comments if g.addr_street: properties["addr"] = g.addr_street if g.L1: # Encode smaller if-possible L1 = g.L1 if L1 == "New York": properties["L1"] = "NY" elif L1 == "New Jersey": properties["L1"] = "NJ" else: properties["L1"] = L1 if g.L4: properties["L4"] = g.L4 if o.phone1: properties["ph1"] = o.phone1 if o.phone2: properties["ph2"] = o.phone2 if o.email: properties["email"] = o.email if o.website: properties["web"] = o.website n = f.req_site_needs if n: if n.needs: needs = json.loads(n.needs) if "urgent" in needs: properties["urgent"] = needs["urgent"] if "need" in needs: properties["need"] = needs["need"] if "no" in needs: properties["no"] = needs["no"] f = dict(type = "Feature", properties = properties, geometry = json.loads(geojson) ) append(f) data = dict(type = "FeatureCollection", features = features ) output = json.dumps(data, separators=SEPARATORS) if jsonp: filename = "facility.geojsonp" output = "grid(%s)" % output else: filename = "facility.geojson" path = os.path.join(current.request.folder, "static", "cache", filename) File = open(path, "w") File.write(output) File.close() # ----------------------------------------------------------------------------- def org_facility_rheader(r, tabs=[]): """ RHeader for facilities when doing a req_match """ T = current.T s3db = current.s3db # Need to use this format as otherwise /inv/incoming?viewing=org_office.x # doesn't have an rheader tablename, record = s3_rheader_resource(r) r.record = record r.table = s3db[tablename] tabs = [(T("Details"), None)] try: tabs = tabs + s3db.req_tabs(r) except: pass try: tabs = tabs + s3db.inv_tabs(r) except: pass rheader_fields = [["name"], ["location_id"]] rheader = S3ResourceHeader(rheader_fields, tabs)(r) return rheader # ============================================================================= class S3RoomModel(S3Model): """ Rooms are a location within a Site - used by Asset module """ names = ("org_room", "org_room_id", ) def model(self): T = current.T db = current.db # --------------------------------------------------------------------- # Rooms (for Sites) # @ToDo: Validate to ensure that rooms are unique per facility # tablename = "org_room" self.define_table(tablename, self.org_site_id, # site_id Field("name", length=128, notnull=True, label = T("Name"), ), *s3_meta_fields()) # CRUD strings ADD_ROOM = T("Create Room") current.response.s3.crud_strings[tablename] = Storage( label_create = ADD_ROOM, title_display = T("Room Details"), title_list = T("Rooms"), title_update = T("Edit Room"), label_list_button = T("List Rooms"), label_delete_button = T("Delete Room"), msg_record_created = T("Room added"), msg_record_modified = T("Room updated"), msg_record_deleted = T("Room deleted"), msg_list_empty = T("No Rooms currently registered")) room_comment = DIV( S3AddResourceLink(c="org", f="room", label=ADD_ROOM, tooltip=T("Select a Room from the list or click 'Create Room'")), # Filters Room based on site SCRIPT( '''$.filterOptionsS3({ 'trigger':'site_id', 'target':'room_id', 'lookupPrefix':'org', 'lookupResource':'room' })''') ) # Reusable field for other tables to reference represent = S3Represent(lookup=tablename) room_id = S3ReusableField("room_id", "reference %s" % tablename, label = T("Room"), ondelete = "SET NULL", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_room.id", represent )), sortby = "name", comment = room_comment, ) self.configure(tablename, deduplicate = self.org_room_duplicate, ) # Pass names back to global scope (s3.*) return dict(org_room_id = room_id, ) # ------------------------------------------------------------------------- @staticmethod def org_room_duplicate(item): """ Import item de-duplication """ name = item.data.get("name") table = item.table query = (table.name.lower() == name.lower()) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ============================================================================= class S3OfficeModel(S3Model): names = ("org_office", "org_office_type", "org_office_type_id", ) def model(self): T = current.T db = current.db s3 = current.response.s3 messages = current.messages settings = current.deployment_settings add_components = self.add_components configure = self.configure crud_strings = s3.crud_strings define_table = self.define_table super_link = self.super_link # --------------------------------------------------------------------- # Office Types # tablename = "org_office_type" define_table(tablename, Field("name", length=128, notnull=True, unique=True, label = T("Name"), ), s3_comments(), *s3_meta_fields()) # CRUD strings ADD_OFFICE_TYPE = T("Create Office Type") crud_strings[tablename] = Storage( label_create = ADD_OFFICE_TYPE, title_display = T("Office Type Details"), title_list = T("Office Types"), title_update = T("Edit Office Type"), label_list_button = T("List Office Types"), label_delete_button = T("Delete Office Type"), msg_record_created = T("Office Type added"), msg_record_modified = T("Office Type updated"), msg_record_deleted = T("Office Type deleted"), msg_list_empty = T("No Office Types currently registered")) represent = S3Represent(lookup=tablename, translate=True) office_type_id = S3ReusableField("office_type_id", "reference %s" % tablename, label = T("Office Type"), ondelete = "SET NULL", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_office_type.id", represent, sort=True )), sortby = "name", comment = S3AddResourceLink(c="org", f="office_type", label=ADD_OFFICE_TYPE, title=T("Office Type"), tooltip=T("If you don't see the Type in the list, you can add a new one by clicking link 'Create Office Type'.")), ) configure(tablename, deduplicate = self.office_type_duplicate, ) # Components add_components(tablename, # Tags org_office_type_tag = {"name": "tag", "joinby": "office_type_id", }, ) # --------------------------------------------------------------------- # Offices # if settings.get_org_office_code_unique(): code_requires = IS_EMPTY_OR(IS_NOT_IN_DB(db, "org_office.code")) else: code_requires = None tablename = "org_office" define_table(tablename, super_link("doc_id", "doc_entity"), super_link("pe_id", "pr_pentity"), super_link("site_id", "org_site"), Field("name", notnull=True, length=64, # Mayon Compatibility label = T("Name"), ), Field("code", length=10, # Mayon compatibility label = T("Code"), # Deployments that don't wants office codes can hide them #readable=False, #writable=False, requires = code_requires, ), self.org_organisation_id( requires = org_organisation_requires(required=True, updateable=True), ), office_type_id( #readable = False, #writable = False, ), self.gis_location_id(), Field("phone1", label = T("Phone 1"), represent = lambda v: v or "", requires = IS_EMPTY_OR(s3_phone_requires), ), Field("phone2", label = T("Phone 2"), represent = lambda v: v or "", requires = IS_EMPTY_OR(s3_phone_requires), ), Field("email", label = T("Email"), represent = lambda v: v or "", requires = IS_EMPTY_OR(IS_EMAIL()), ), Field("fax", label = T("Fax"), represent = lambda v: v or "", requires = IS_EMPTY_OR(s3_phone_requires), ), Field("obsolete", "boolean", default = False, label = T("Obsolete"), represent = lambda opt: \ (opt and [T("Obsolete")] or [messages["NONE"]])[0], readable = False, writable = False, ), s3_comments(), *s3_meta_fields()) # CRUD strings crud_strings[tablename] = Storage( label_create = T("Create Office"), title_display = T("Office Details"), title_list = T("Offices"), title_update = T("Edit Office"), title_upload = T("Import Offices"), title_map = T("Map of Offices"), label_list_button = T("List Offices"), label_delete_button = T("Delete Office"), msg_record_created = T("Office added"), msg_record_modified = T("Office updated"), msg_record_deleted = T("Office deleted"), msg_list_empty = T("No Offices currently registered")) if settings.get_org_branches(): ORGANISATION = T("Organization/Branch") comment = T("Search for office by organization or branch.") org_filter = S3HierarchyFilter("organisation_id", label = ORGANISATION, comment = comment, #hidden = True, ) else: ORGANISATION = T("Organization") comment = T("Search for office by organization.") org_filter = S3OptionsFilter("organisation_id", label = ORGANISATION, comment = comment, represent = "%(name)s", #hidden = True, ) # Which levels of Hierarchy are we using? levels = current.gis.get_relevant_hierarchy_levels() text_fields = ["name", "code", "comments", "organisation_id$name", "organisation_id$acronym", ] list_fields = ["id", "name", "organisation_id", # Filtered in Component views "office_type_id", ] for level in levels: lfield = "location_id$%s" % level text_fields.append(lfield) list_fields += [(T("Address"), "location_id$addr_street"), "phone1", "email", ] filter_widgets = [ S3TextFilter(text_fields, label = T("Search"), #_class = "filter-search", ), #S3OptionsFilter("office_type_id", # label = T("Type"), # #hidden = True, # ), org_filter, S3LocationFilter("location_id", label = T("Location"), levels = levels, #hidden = True, ), ] configure(tablename, context = {"location": "location_id", "organisation": "organisation_id", "org_group": "organisation_id$group_membership.group_id", }, deduplicate = self.org_office_duplicate, filter_widgets = filter_widgets, list_fields = list_fields, onaccept = self.org_office_onaccept, realm_components = ("contact_emergency", "config", "image", "req", "send", "human_resource_site", "note", "contact", "role", "asset", "commit", "inv_item", "document", "recv", "address", ), super_entity = ("doc_entity", "pr_pentity", "org_site"), update_realm = True, ) if settings.get_org_summary(): add_components(tablename, org_office_summary = {"name": "summary", "joinby": "office_id", }, ) # Pass names back to global scope (s3.*) return dict(org_office_type_id = office_type_id, ) # ------------------------------------------------------------------------- @staticmethod def office_type_duplicate(item): """ Import item de-duplication """ name = item.data.get("name") table = item.table query = (table.name.lower() == name.lower()) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # --------------------------------------------------------------------- @staticmethod def org_office_onaccept(form): """ * Update Affiliation and Realms * Process injected fields """ form_vars = form.vars # Affiliation, record ownership and component ownership org_update_affiliations("org_office", form_vars) if current.deployment_settings.get_org_summary(): db = current.db id = form_vars.id table = current.s3db.org_office_summary query = (table.office_id == id) existing = db(query).select(table.id, limitby=(0, 1)).first() post_vars = current.request.post_vars national_staff = post_vars.get("national_staff", None) international_staff = post_vars.get("international_staff", None) if existing: db(query).update(national_staff = national_staff, international_staff = international_staff ) elif national_staff or international_staff: table.insert(office_id = id, national_staff = national_staff, international_staff = international_staff ) # --------------------------------------------------------------------- @staticmethod def org_office_duplicate(item): """ Import item deduplication: - match by name - match org, if defined (Adding location_id doesn't seem to be a good idea) @param item: the S3ImportItem instance """ data = item.data name = data.get("name") if not name: return table = item.table query = (table.name.lower() == name.lower()) #location_id = data.get("location_id") #if location_id: # # This doesn't find deleted records: # query = query & (table.location_id == location_id) org = data.get("organisation_id") if org: query &= (table.organisation_id == org) duplicate = current.db(query).select(table.id, limitby=(0, 1)).first() # if duplicate is None and location_id: ## Search for deleted offices with this name # query = (table.name.lower() == name.lower()) & \ # (table.deleted == True) # row = db(query).select(table.id, table.deleted_fk, # limitby=(0, 1)).first() # if row: # fkeys = json.loads(row.deleted_fk) # if "location_id" in fkeys and \ # str(fkeys["location_id"]) == str(location_id): # duplicate = row if duplicate: item.id = duplicate.id item.method = item.METHOD.UPDATE # ============================================================================= class S3OfficeSummaryModel(S3Model): """ Office Summary fields visible when settings.org.summary = True @ToDo: Deprecate in favour of S3OrganisationResourceModel """ names = ("org_office_summary",) def model(self): T = current.T # --------------------------------------------------------------------- # Summary data # tablename = "org_office_summary" self.define_table(tablename, Field("office_id", label = T("Office"), ondelete = "CASCADE", requires = IS_ONE_OF(current.db, "org_office.id", "%(name)s"), ), Field("national_staff", "integer", # national is a reserved word in Postgres label = T("# of National Staff"), requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, 9999)), ), Field("international_staff", "integer", label = T("# of International Staff"), requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, 9999)), ), *s3_meta_fields()) # Pass names back to global scope (s3.*) return dict() # ============================================================================= class S3OfficeTypeTagModel(S3Model): """ Office Type Tags """ names = ("org_office_type_tag",) def model(self): T = current.T # --------------------------------------------------------------------- # Office Type Tags # - Key-Value extensions # - can be used to provide conversions to external systems, such as: # * HXL # - can be a Triple Store for Semantic Web support # tablename = "org_office_type_tag" self.define_table(tablename, self.org_office_type_id(), # key is a reserved word in MySQL Field("tag", label = T("Key"), ), Field("value", label = T("Value"), ), s3_comments(), *s3_meta_fields()) # Pass names back to global scope (s3.*) return dict() # ============================================================================= def org_organisation_address(row): """ The address of the first office """ if hasattr(row, "org_organisation"): row = row.org_organisation try: organisation_id = row.id except: # not available return current.messages["NONE"] db = current.db s3db = current.s3db otable = s3db.org_office gtable = s3db.gis_location query = (otable.deleted != True) & \ (otable.organisation_id == organisation_id) & \ (otable.location_id == gtable.id) row = db(query).select(gtable.addr_street, limitby=(0, 1)).first() if row: row.addr_street else: return current.messages["NONE"] # ============================================================================= def org_organisation_logo(id, #type="png", ): """ Return a logo of the organisation with the given id, if one exists The id can either be the id of the organisation or a Row of the organisation @ToDo: The type can either be png or bmp and is the format of the saved image """ if not id: return None s3db = current.s3db if isinstance(id, Row): # Do not repeat the lookup if already done by IS_ONE_OF or RHeader record = id else: table = s3db.org_organisation record = current.db(table.id == id).select(table.name, table.acronym, table.logo, limitby=(0, 1)).first() if record and record.logo: #format = None #if type == "bmp": # format = "bmp" size = (None, 60) image = s3db.pr_image_represent(record.logo, size=size) url_small = URL(c="default", f="download", args=image) if record.acronym is None or record.acronym == "": alt = "%s logo" % record.name else: alt = "%s logo" % record.acronym logo = IMG(_src=url_small, _alt=alt, _height=60, ) return logo return DIV() # no logo so return an empty div # ============================================================================= def org_parents(organisation_id, path=[]): """ Lookup the parent organisations of a branch organisation @param organisation_id: the organisation's record ID @return: list of ids of the parent organisations, starting with the immediate parent """ if not organisation_id: return path db = current.db s3db = current.s3db otable = s3db.org_organisation btable = s3db.org_organisation.with_alias("org_branch_organisation") ltable = s3db.org_organisation_branch query = (btable.id == organisation_id) join = (ltable.deleted != True) & \ (btable.deleted != True) & \ (otable.deleted != True) & \ (btable.id == ltable.branch_id) & \ (otable.id == ltable.organisation_id) row = db(query & join).select(otable.id, limitby=(0, 1)).first() if row is not None: # Parent exists organisation_id = row.id path.insert(0, organisation_id) return org_parents(organisation_id, path) else: # This is the root org return path # ============================================================================= def org_root_organisation(organisation_id): """ Lookup the root organisation of a branch organisation @param organisation_id: the organisation's record ID @return: id of the root organisation, or None if no root organisation can be found """ if not organisation_id: return None db = current.db s3db = current.s3db otable = s3db.org_organisation btable = s3db.org_organisation.with_alias("org_branch_organisation") ltable = s3db.org_organisation_branch query = (btable.id == organisation_id) join = (ltable.deleted != True) & \ (btable.deleted != True) & \ (otable.deleted != True) & \ (btable.id == ltable.branch_id) & \ (otable.id == ltable.organisation_id) row = db(query & join).select(otable.id, limitby=(0, 1)).first() if row is not None: # Parent exists return org_root_organisation(row.id) else: # This is the root org return organisation_id # ============================================================================= def org_root_organisation_name(organisation_id): """ Lookup the root organisation name of a branch organisation @param organisation_id: the organisation's record ID @return: name of the root organisation, or None if no root organisation can be found """ if not organisation_id: return None db = current.db s3db = current.s3db otable = s3db.org_organisation btable = s3db.org_organisation.with_alias("org_branch_organisation") ltable = s3db.org_organisation_branch query = (btable.id == organisation_id) join = (ltable.deleted != True) & \ (btable.deleted != True) & \ (otable.deleted != True) & \ (btable.id == ltable.branch_id) & \ (otable.id == ltable.organisation_id) row = db(query & join).select(otable.id, limitby=(0, 1)).first() if row is not None: # Parent exists return org_root_organisation_name(row.id) else: # This is the root org row = db(otable.id == organisation_id).select(otable.name, limitby=(0, 1)).first() if row: return row.name # ============================================================================= def org_organisation_requires(required = False, realms = None, updateable = False ): """ @param required: Whether the selection is optional or mandatory @param realms: Whether the list should be filtered to just those belonging to a list of realm entities @param updateable: Whether the list should be filtered to just those which the user has Write access to """ requires = IS_ONE_OF(current.db, "org_organisation.id", org_OrganisationRepresent(), realms = realms, updateable = updateable, orderby = "org_organisation.name", sort = True) if not required: requires = IS_EMPTY_OR(requires) return requires # ============================================================================= def org_region_options(zones=False): """ Get all options for region IDs @param zones: select only zones if True, otherwise only regions @return: dict of {org_region.id: representation} """ represent = current.s3db.org_region_represent if represent is None: return dict() db = current.db rtable = db.org_region if zones: query = (rtable.parent == None) else: query = (rtable.parent != None) query &= (rtable.deleted != True) rows = db(query).select(rtable.id, rtable.name) options = represent.bulk(None, rows=rows) options.pop(None, None) # Remove the None options return options # ============================================================================= class org_OrganisationRepresent(S3Represent): """ Representation of Organisations """ def __init__(self, show_link=False, parent=True, acronym=True, multiple=False, skip_dt_orderby=False, ): self.acronym = acronym settings = current.deployment_settings # Translation uses org_organisation_name & not T() translate = settings.get_L10n_translate_org_organisation() if translate: language = current.session.s3.language if language == current.deployment_settings.get_L10n_default_language(): translate = False if skip_dt_orderby: # org/branch component which doesn't like the left join self.skip_dt_orderby = True if parent and settings.get_org_branches(): # Need a custom lookup self.lookup_rows = self.custom_lookup_rows self.parent = True if translate: fields = ["org_organisation.name", "org_organisation.acronym", "org_parent_organisation.name", "org_organisation_name.name_l10n", "org_organisation_name.acronym_l10n", "org_parent_organisation_name.name_l10n", ] else: fields = ["org_organisation.name", "org_organisation.acronym", "org_parent_organisation.name", ] elif translate: # Need a custom lookup self.lookup_rows = self.custom_lookup_rows self.parent = False fields = ["org_organisation.name", "org_organisation.acronym", "org_organisation_name.name_l10n", "org_organisation_name.acronym_l10n", ] else: # Can use standard lookup of fields self.parent = False fields = ["name", "acronym", ] super(org_OrganisationRepresent, self).__init__(lookup="org_organisation", fields=fields, show_link=show_link, translate=translate, multiple=multiple) # ------------------------------------------------------------------------- def custom_lookup_rows(self, key, values, fields=[]): """ Custom lookup method for organisation rows, does a left join with the parent organisation. Parameters key and fields are not used, but are kept for API compatibility reasons. @param values: the organisation IDs """ db = current.db s3db = current.s3db otable = s3db.org_organisation fields = [otable.id, otable.name, otable.acronym, ] if self.parent: btable = s3db.org_organisation_branch ptable = db.org_organisation.with_alias("org_parent_organisation") fields.append(ptable.name) left = [btable.on(btable.branch_id == otable.id), ptable.on(ptable.id == btable.organisation_id), ] if self.translate: ltable = s3db.org_organisation_name fields += [ltable.name_l10n, ltable.acronym_l10n, ] if self.parent: lptable = db.org_organisation_name.with_alias("org_parent_organisation_name") fields.append(lptable.name_l10n) left += [ltable.on(ltable.organisation_id == otable.id), lptable.on(lptable.organisation_id == btable.organisation_id), ] else: left = [ltable.on(ltable.organisation_id == otable.id), ] qty = len(values) if qty == 1: query = (otable.id == values[0]) limitby = (0, 1) else: query = (otable.id.belongs(values)) limitby = (0, qty) rows = db(query).select(left=left, limitby=limitby, *fields) self.queries += 1 return rows # ------------------------------------------------------------------------- def represent_row(self, row): """ Represent a single Row @param row: the org_organisation Row """ if self.translate: # Custom Row (with the name_l10n left-joined) name = row["org_organisation_name.name_l10n"] or row["org_organisation.name"] acronym = row["org_organisation_name.acronym_l10n"] or row["org_organisation.acronym"] if self.parent: parent = row["org_parent_organisation_name.name_l10n"] or row["org_parent_organisation.name"] else: if self.parent: # Custom Row (with the parent left-joined) name = row["org_organisation.name"] acronym = row["org_organisation.acronym"] parent = row["org_parent_organisation.name"] else: # Standard row (from fields) name = row["name"] acronym = row["acronym"] if not name: return self.default if self.acronym and acronym: name = "%s (%s)" % (name, acronym) if self.parent and parent: name = "%s > %s" % (parent, name) return s3_unicode(name) # ------------------------------------------------------------------------- def dt_orderby(self, field, direction, orderby, left): """ Custom orderby logic for datatables @ToDo: Support for self.translate = True need to handle the inevitable NULL values which vary in order by DB, altthough perhaps DB handline doesn't matter here. """ otable = current.s3db.org_organisation left.add(otable.on(field == otable.id)) if self.parent: # If we use a hierarchical representation, order by root # organisation name first because it appears before the # branch name: rotable = otable.with_alias("org_root_organisation") left.add(rotable.on(otable.root_organisation == rotable.id)) orderby.extend(["org_root_organisation.name%s" % direction, "org_organisation.name%s" % direction, ]) #elif self.translate: # # Order by translated name # orderby.append("org_organisation_name.name_l10n%s" % direction) else: # Otherwise: order by organisation name # e.g. the branches component view orderby.append("org_organisation.name%s" % direction) # ============================================================================= class org_SiteRepresent(S3Represent): """ Representation of Sites """ def __init__(self, translate = False, show_link = False, multiple = False, show_type = True, ): self.show_type = show_type if show_type or show_link: # Need a custom lookup self.lookup_rows = self.custom_lookup_rows # Need a custom representation fields = ["name"] super(org_SiteRepresent, self).__init__(lookup="org_site", fields=fields, show_link=show_link, translate=translate, multiple=multiple) # ------------------------------------------------------------------------- def bulk(self, values, rows=None, list_type=False, show_link=True, include_blank=True): """ Represent multiple values as dict {value: representation} @param values: list of values @param rows: the referenced rows (if values are foreign keys) @param show_link: render each representation as link @param include_blank: Also include a blank value @return: a dict {value: representation} """ show_link = show_link and self.show_link if show_link and not rows: # Retrieve the rows rows = self.custom_lookup_rows(None, values) self._setup() # Get the values if rows and self.table: values = [row["org_site.site_id"] for row in rows] else: values = [values] if type(values) is not list else values # Lookup the representations if values: labels = self._lookup(values, rows=rows) if show_link: link = self.link rows = self.rows labels = dict((k, link(k, v, rows.get(k))) for k, v in labels.items()) for v in values: if v not in labels: labels[v] = self.default else: labels = {} if include_blank: labels[None] = self.none return labels # ------------------------------------------------------------------------- def custom_lookup_rows(self, key, values, fields=[]): """ Custom lookup method for site rows, does a left join with any instance_types found. Parameters key and fields are not used, but are kept for API compatibility reasons. @param values: the site IDs """ db = current.db s3db = current.s3db stable = s3db.org_site qty = len(values) if qty == 1: query = (stable.id == values[0]) limitby = (0, 1) else: query = (stable.id.belongs(values)) limitby = (0, qty) if self.show_link: # We need the instance_type IDs # Do a first query to see which instance_types we have rows = db(query).select(stable.instance_type, limitby=limitby) instance_types = [] for row in rows: if row.instance_type not in instance_types: instance_types.append(row.instance_type) # Now do a second query which left-joins with all the instance tables we have fields = [stable.site_id, stable.instance_type, stable.name, ] left = [] for instance_type in instance_types: table = s3db[instance_type] fields.append(table.id) left.append(table.on(table.site_id == stable.site_id)) if instance_type == "org_facility": # We also need the Facility Types ltable = db.org_site_facility_type ttable = db.org_facility_type fields.append(ttable.name) left.append(ltable.on(ltable.site_id == stable.site_id)) left.append(ttable.on(ttable.id == ltable.facility_type_id)) rows = db(query).select(*fields, left=left, limitby=limitby) else: # We don't need instance_type IDs # Just do a join with org_facility_type ttable = s3db.org_facility_type ltable = db.org_site_facility_type left = [ltable.on(ltable.site_id == stable.site_id), ttable.on(ttable.id == ltable.facility_type_id)] rows = db(query).select(stable.site_id, stable.instance_type, stable.name, ttable.name, left=left, limitby=limitby) self.queries += 1 return rows # ------------------------------------------------------------------------- def link(self, k, v, row=None): """ Represent a (key, value) as hypertext link. @param k: the key (site_id) @param v: the representation of the key @param row: the row with this key """ if row: try: instance_type = row["org_site.instance_type"] id = row[instance_type].id except AttributeError: return v else: c, f = instance_type.split("_", 1) return A(v, _href=URL(c=c, f=f, args=[id], # remove the .aaData extension in paginated views extension="" )) else: # We have no way to determine the linkto return v # ------------------------------------------------------------------------- def represent_row(self, row): """ Represent a single Row @param row: the org_site Row """ name = row["org_site.name"] if not name: return self.default if self.show_type: instance_type = row["org_site.instance_type"] facility_type = row.get("org_facility_type.name", None) if facility_type: # These need to be translated name = "%s (%s)" % (name, current.T(facility_type)) else: instance_type = current.auth.org_site_types.get(instance_type, None) if instance_type: name = "%s (%s)" % (name, instance_type) return s3_unicode(name) # ============================================================================= def org_site_has_assets(row, tablename="org_facility"): """ Whether a Site has Assets """ if not settings.has_module("asset"): return False if hasattr(row, tablename): row = row[tablename] try: id = row.id except AttributeError: return None s3db = current.s3db atable = s3db.asset_asset stable = s3db[tablename] query = (atable.deleted != True) & \ (stable.id == id) & \ (atable.site_id == stable.site_id) asset = current.db(query).select(atable.id, limitby=(0, 1)).first() if asset: return True else: return False # ============================================================================= def org_site_has_inv(row, tablename="org_facility"): """ Whether a Site has Inventory """ if not settings.has_module("inv"): return False if hasattr(row, tablename): row = row[tablename] try: id = row.id except AttributeError: return None s3db = current.s3db itable = s3db.inv_inv_item stable = s3db[tablename] query = (itable.deleted != True) & \ (stable.id == id) & \ (itable.site_id == stable.site_id) & \ (itable.quantity > 0) inv = current.db(query).select(itable.id, limitby=(0, 1)).first() if inv: return True else: return False # ============================================================================= def org_site_top_req_priority(row, tablename="org_facility"): """ Highest priority of open requests for a site """ if not settings.has_module("req"): return None try: from req import REQ_STATUS_COMPLETE except ImportError: return None if hasattr(row, tablename): row = row[tablename] try: id = row.id except AttributeError: return None s3db = current.s3db rtable = s3db.req_req stable = s3db[tablename] query = (rtable.deleted != True) & \ (stable.id == id) & \ (rtable.site_id == stable.site_id) & \ (rtable.fulfil_status != REQ_STATUS_COMPLETE) & \ (rtable.is_template == False) req = current.db(query).select(rtable.id, rtable.priority, orderby=~rtable.priority, limitby=(0, 1)).first() if req: return req.priority else: return None # ============================================================================= def org_rheader(r, tabs=[]): """ Organisation/Office/Facility/Group page headers """ if r.representation != "html": # RHeaders only used in interactive views return None # Need to use this format as otherwise req_match?viewing=org_office.x # doesn't have an rheader tablename, record = s3_rheader_resource(r) if record is None: # List or Create form: rheader makes no sense here return None T = current.T s3db = current.s3db # These 2 needed for req_match r.record = record r.table = \ table = s3db[tablename] settings = current.deployment_settings if tablename == "org_organisation": # Tabs if not tabs: skip_branches = False # If a filter is being applied to the Organisations, amend the tabs accordingly type_filter = current.request.get_vars.get("organisation_type.name", None) if type_filter: if type_filter == "Supplier": skip_branches = True tabs = [(T("Basic Details"), None), (T("Offices"), "office"), (T("Warehouses"), "warehouse"), (T("Contacts"), "human_resource"), ] elif type_filter == "Academic,Bilateral,Government,Intergovernmental,NGO,UN agency": tabs = [(T("Basic Details"), None, {"native": 1}), (T("Offices"), "office"), (T("Warehouses"), "warehouse"), (T("Contacts"), "human_resource"), (T("Projects"), "project"), ] else: tabs = [(T("Basic Details"), None), (T("Offices"), "office"), (T("Warehouses"), "warehouse"), (T("Facilities"), "facility"), (T("Staff & Volunteers"), "human_resource"), (T("Assets"), "asset"), (T("Projects"), "project"), (T("User Roles"), "roles"), #(T("Tasks"), "task"), ] if settings.get_org_resources_tab(): tabs.insert(-1, (T("Resources"), "resource")) if settings.get_L10n_translate_org_organisation(): tabs.insert(1, (T("Local Names"), "name")) # Use branches? if settings.get_org_branches() and not skip_branches: if settings.get_org_branches_tree_view(): presentation = "hierarchy" else: presentation = "branch" tabs.insert(1, (T("Branches"), presentation)) rheader_tabs = s3_rheader_tabs(r, tabs) # @ToDo: Update for Component # if record.sector_id: # if settings.get_ui_label_cluster(): # sector_label = T("Cluster(s)") # else: # sector_label = T("Sector(s)") # sectors = TR(TH("%s: " % sector_label), # table.sector_id.represent(record.sector_id)) # else: # sectors = "" if record.website: website = TR(TH("%s: " % table.website.label), A(record.website, _href=record.website)) else: website = "" if record.root_organisation != record.id: btable = s3db.org_organisation_branch query = (btable.branch_id == record.id) & \ (btable.organisation_id == table.id) parent = current.db(query).select(table.id, table.name, limitby=(0, 1) ).first() if parent: parent = TR(TH("%s: " % T("Branch of")), A(parent.name, _href=URL(args=[parent.id, "read"]))) else: parent = "" else: parent = "" rheader = DIV() logo = org_organisation_logo(record) rData = TABLE(TR(TH("%s: " % table.name.label), record.name, ), parent, website, #sectors, ) if logo: rheader.append(TABLE(TR(TD(logo), TD(rData)))) else: rheader.append(rData) rheader.append(rheader_tabs) elif tablename in ("org_office", "org_facility"): tabs = [(T("Basic Details"), None), #(T("Contact Data"), "contact"), ] append = tabs.append if settings.has_module("hrm"): STAFF = settings.get_hrm_staff_label() tabs.append((STAFF, "human_resource")) permit = current.auth.s3_has_permission if permit("update", tablename, r.id) and \ permit("create", "hrm_human_resource_site"): tabs.append((T("Assign %(staff)s") % dict(staff=STAFF), "assign")) if settings.get_req_summary(): append((T("Needs"), "site_needs")) if settings.has_module("asset"): append((T("Assets"), "asset")) if settings.has_module("inv"): tabs = tabs + s3db.inv_tabs(r) if settings.has_module("req"): tabs = tabs + s3db.req_tabs(r) tabs.extend(((T("Attachments"), "document"), (T("User Roles"), "roles"), )) if tablename == "org_office": rheader_fields = [["name", "organisation_id", "email"], ["office_type_id", "location_id", "phone1"], ] else: def facility_type_lookup(record): db = current.db ltable = db.org_site_facility_type ttable = db.org_facility_type query = (ltable.site_id == record.site_id) & \ (ltable.facility_type_id == ttable.id) rows = db(query).select(ttable.name) if rows: return ", ".join([row.name for row in rows]) else: return current.messages["NONE"] rheader_fields = [["name", "organisation_id", "email"], [(T("Facility Type"), facility_type_lookup), "location_id", "phone1"], ] rheader_fields, rheader_tabs = S3ResourceHeader(rheader_fields, tabs)(r, as_div=True) # Inject logo logo = org_organisation_logo(record.organisation_id) if logo: rheader = DIV(TABLE(TR(TD(logo), TD(rheader_fields)))) else: rheader = DIV(rheader_fields) rheader.append(rheader_tabs) if settings.has_module("inv"): # Build footer s3db.inv_rfooter(r, record) elif tablename == "org_group": tabs = [(T("Basic Details"), None), (T("Member Organizations"), "organisation"), (T("Groups"), "pr_group"), (T("Documents"), "document"), ] if current.auth.s3_has_permission("create", "org_group_membership"): tabs.insert(2, (T("Add Organization"), "assign")) rheader_tabs = s3_rheader_tabs(r, tabs) rheader = DIV(TABLE(TR( TH("%s: " % table.name.label), record.name, )), rheader_tabs) elif tablename in ("org_organisation_type", "org_office_type"): tabs = [(T("Basic Details"), None), (T("Tags"), "tag"), ] rheader_tabs = s3_rheader_tabs(r, tabs) rheader = DIV(TABLE(TR( TH("%s: " % table.name.label), record.name, )), rheader_tabs) return rheader # ============================================================================= def org_organisation_controller(): """ Organisation Controller, defined in the model for use from multiple controllers for unified menus """ T = current.T db = current.db s3db = current.s3db s3 = current.response.s3 settings = current.deployment_settings # Pre-process def prep(r): # Location Filter s3db.gis_location_filter(r) if r.representation == "json": r.table.pe_id.readable = True list_fields = s3db.get_config(r.tablename, "list_fields") or [] s3db.configure(r.tablename, list_fields=list_fields + ["pe_id"]) elif r.interactive or r.representation == "aadata": gis = current.gis r.table.country.default = gis.get_default_country("code") method = r.method use_branches = settings.get_org_branches() if use_branches and not r.component and not r.record: # Filter out branches from multi-record views branch_filter = (FS("parent.id") == None) # Filter Locations lfilter = current.session.s3.location_filter if lfilter: # Include those whose parent is in a different country gtable = s3db.gis_location query = (gtable.id == lfilter) row = db(query).select(gtable.id, gtable.name, gtable.level, gtable.path, limitby=(0, 1)).first() if row and row.level: if row.level != "L0": code = gis.get_parent_country(row, key_type="code") else: ttable = s3db.gis_location_tag query = (ttable.tag == "ISO2") & \ (ttable.location_id == row.id) tag = db(query).select(ttable.value, limitby=(0, 1)).first() code = tag.value branch_filter |= (FS("parent.country") != code) | \ (FS("parent.country") == None) r.resource.add_filter(branch_filter) if not r.component or r.component_name == "branch": type_filter = r.get_vars.get("organisation_type.name", None) if type_filter: type_names = [name.lower().strip() for name in type_filter.split(",")] field = s3db.org_organisation_organisation_type.organisation_type_id field.comment = None # Don't want to create new types here if len(type_names) == 1: # Strip Type from list_fields list_fields = s3db.get_config("org_organisation", "list_fields") try: list_fields.remove("organisation_organisation_type.organisation_type_id") except ValueError: # Already removed pass if not method or method == "create": # Default the Type type_table = s3db.org_organisation_type query = (type_table.name == type_filter) row = db(query).select(type_table.id, limitby=(0, 1)).first() type_id = row and row.id if type_id: field.default = type_id field.writable = False crud_form = s3db.get_config("org_organisation", "crud_form") for e in crud_form.elements: if e.selector == "organisation_type": e.options.label = "" elif not method or method in ("create", "update"): # Limit the Type type_table = s3db.org_organisation_type fquery = (type_table.name.lower().belongs(type_names)) field.requires = IS_ONE_OF(db(fquery), "org_organisation_type.id", label=field.represent, error_message=T("Please choose a type"), sort=True) if r.component: cname = r.component_name if cname == "human_resource" and r.component_id: # Workaround until widget is fixed: htable = s3db.hrm_human_resource htable.person_id.widget = None htable.person_id.writable = False elif cname == "branch": # Branches default to the same type/country as the parent otable = r.table record = r.record otable.region_id.default = record.region_id otable.country.default = record.country ottable = s3db.org_organisation_organisation_type row = db(ottable.organisation_id == record.id).select(ottable.organisation_type_id, limitby=(0, 1), ).first() if row: ottable.organisation_type_id.default = row.organisation_type_id ostable = s3db.org_sector_organisation row = db(ostable.organisation_id == record.id).select(ostable.sector_id, limitby=(0, 1), ).first() if row: ostable.sector_id.default = row.sector_id # Represent orgs without the parent prefix as we have that context already branch_represent = org_OrganisationRepresent(parent=False, skip_dt_orderby=True, ) s3db.org_organisation_branch.branch_id.represent = branch_represent elif cname == "task" and \ method != "update" and method != "read": # Create or ListCreate ttable = r.component.table ttable.organisation_id.default = r.id ttable.status.writable = False ttable.status.readable = False elif cname == "asset": # Filter the Site field field = s3db.super_link("site_id", "org_site", empty = False, filterby="organisation_id", filter_opts=(r.id,), represent = s3db.org_site_represent, ) atable = s3db.asset_asset atable.site_id.requires = field.requires # Stay within Organisation tab s3db.configure("asset_asset", create_next = None, ) elif cname == "project" and r.link: # Hide/show host role after project selection in embed-widget tn = r.link.tablename s3db.configure(tn, post_process='''S3.hide_host_role($('#%s').val())''') s3.scripts.append("/%s/static/scripts/S3/s3.hide_host_role.js" % \ r.application) s3db.configure("project_project", create_next = None, ) return True s3.prep = prep # Post-process def postp(r, output): if r.interactive: cname = r.component_name if cname == "human_resource": # Modify action button to open staff instead of human_resource # (Delete not overridden to keep errors within Tab) read_url = URL(c="hrm", f="staff", args=["[id]"]) update_url = URL(c="hrm", f="staff", args=["[id]", "update"]) S3CRUD.action_buttons(r, read_url=read_url, update_url=update_url) return output s3.postp = postp output = current.rest_controller("org", "organisation", # Need to be explicit since can also come from Project controller csv_stylesheet = ("org", "organisation.xsl"), csv_template = ("org", "organisation"), # Don't allow components with components (such as document) to breakout from tabs native = False, rheader = org_rheader, ) return output # ============================================================================= def org_site_staff_config(r): """ Configure the Staff tab for Sites """ table = current.s3db.hrm_human_resource settings = current.deployment_settings if settings.has_module("vol"): if settings.get_hrm_show_staff(): if settings.get_org_site_volunteers(): # Show the type field field = table.type field.label = current.T("Type") field.readable = field.writable = True #else: # # Filter to just Staff # r.resource.add_filter(FS("human_resource.type") == 1) elif settings.get_org_site_volunteers(): # Default to Volunteers table.type.default = 2 # Cascade the organisation_id from the site to the staff field = table.organisation_id field.default = r.record.organisation_id field.writable = False field.comment = None # Filter out people which are already staff for this office # - this only works for an IS_ONE_OF dropdown # - @ToDo: Pass a flag to pr_search_ac via S3AddPersonWidget2 to do the same thing #site_id = record.site_id #try: # person_id_field = r.target()[2].person_id #except: # pass #else: # query = (htable.site_id == site_id) & \ # (htable.deleted == False) # staff = current.db(query).select(htable.person_id) # person_ids = [row.person_id for row in staff] # try: # person_id_field.requires.set_filter(not_filterby = "id", # not_filter_opts = person_ids) # except: # pass # ============================================================================= def org_office_controller(): """ Office Controller, defined in the model for use from multiple controllers for unified menus """ T = current.T s3db = current.s3db request = current.request s3 = current.response.s3 settings = current.deployment_settings # Get default organisation_id req_vars = request.vars organisation_id = req_vars["organisation_id"] if type(organisation_id) is list: req_vars["organisation_id"] = organisation_id[0] organisation_id = req_vars["organisation_id"] or \ current.session.s3.organisation_id or \ "" # Pre-processor def prep(r): # Location Filter s3db.gis_location_filter(r) table = r.table if organisation_id: table.organisation_id.default = organisation_id if r.representation == "plain": # Map popups want less clutter table.obsolete.readable = False if r.interactive: if r.component: cname = r.component_name if cname in ("inv_item", "recv", "send"): # Filter out items which are already in this inventory s3db.inv_prep(r) # Remove CRUD generated buttons in the tabs s3db.configure("inv_inv_item", create = False, deletable = False, editable = False, listadd = False, ) elif cname == "human_resource": org_site_staff_config(r) elif cname == "req" and r.method not in ("update", "read"): # Hide fields which don't make sense in a Create form # inc list_create (list_fields over-rides) s3db.req_create_form_mods() elif cname == "asset": # Default/Hide the Organisation & Site fields record = r.record atable = s3db.asset_asset field = atable.organisation_id field.default = record.organisation_id field.readable = field.writable = False field = atable.site_id field.default = record.site_id field.readable = field.writable = False # Stay within Office tab s3db.configure("asset_asset", create_next = None) elif r.method in ("create", "update"): if r.method == "update": table.obsolete.readable = table.obsolete.writable = True # Context from a Profile page?" org_id = request.get_vars.get("(organisation)", None) if org_id: field = table.organisation_id field.default = org_id field.readable = field.writable = False elif r.id: table.obsolete.readable = table.obsolete.writable = True elif r.representation == "geojson": marker_fn = s3db.get_config("org_office", marker_fn) if marker_fn: # Load these models now as they'll be needed when we encode mtable = s3db.gis_marker return True s3.prep = prep # Post-process def postp(r, output): if r.interactive: if not r.component and \ settings.get_org_summary(): # Insert fields to view/record the summary data # @ToDo: Re-implement using http://eden.sahanafoundation.org/wiki/S3SQLForm table = s3db.org_office_summary field1 = table.national_staff field2 = table.international_staff row = None if r.id: query = (table.office_id == r.id) row = current.db(query).select(field1, field2, limitby=(0, 1)).first() s3_formstyle = settings.get_ui_formstyle() if r.method == "read" and \ "item" in output: for field in [field1, field2]: if row: widget = row[field] else: widget = current.messages["NONE"] field_id = "%s_%s" % (table._tablename, field.name) label = field.label label = LABEL(label, _for=field_id, _id=field_id + SQLFORM.ID_LABEL_SUFFIX) row_id = field_id + SQLFORM.ID_ROW_SUFFIX comment = "" rows = s3_formstyle(row_id, label, widget, comment) try: # Insert Label row output["item"][0].insert(-2, rows[0]) except: pass try: # Insert Widget row output["item"][0].insert(-2, rows[1]) except: # A non-standard formstyle with just a single row pass elif r.method not in ("import", "map") and \ "form" in output: sep = ": " for field in [field1, field2]: if row: default = row[field] else: default = field.default widget = field.widget or SQLFORM.widgets.integer.widget(field, default) field_id = "%s_%s" % (table._tablename, field.name) label = field.label label = LABEL(label, label and sep, _for=field_id, _id=field_id + SQLFORM.ID_LABEL_SUFFIX) comment = field.comment or "" row_id = field_id + SQLFORM.ID_ROW_SUFFIX rows = s3_formstyle(row_id, label, widget, comment) try: # Insert Label row output["form"][0].insert(-4, rows[0]) except: pass try: # Insert Widget row output["form"][0].insert(-4, rows[1]) except: # A non-standard formstyle with just a single row pass else: cname = r.component_name if cname == "human_resource": # Modify action button to open staff instead of human_resource # (Delete not overridden to keep errors within Tab) read_url = URL(c="hrm", f="staff", args=["[id]"]) update_url = URL(c="hrm", f="staff", args=["[id]", "update"]) S3CRUD.action_buttons(r, read_url=read_url, update_url=update_url) return output s3.postp = postp output = current.rest_controller("org", "office", # Don't allow components with components (such as document) to breakout from tabs native = False, rheader = org_rheader, ) return output # ============================================================================= def org_facility_controller(): """ Facility Controller, defined in the model for use from multiple controllers for unified menus """ s3db = current.s3db s3 = current.response.s3 # Pre-processor def prep(r): # Location Filter s3db.gis_location_filter(r) if r.interactive: if r.component: cname = r.component_name if cname in ("inv_item", "recv", "send"): # Filter out items which are already in this inventory s3db.inv_prep(r) # remove CRUD-generated buttons in the tabs s3db.configure("inv_inv_item", create = False, deletable = False, editable = False, listadd = False, ) elif cname == "human_resource": org_site_staff_config(r) elif cname == "req" and r.method not in ("update", "read"): # Hide fields which don't make sense in a Create form # inc list_create (list_fields over-rides) s3db.req_create_form_mods() elif cname == "asset": # Default/Hide the Organisation & Site fields record = r.record atable = s3db.asset_asset field = atable.organisation_id field.default = record.organisation_id field.readable = field.writable = False field = atable.site_id field.default = record.site_id field.readable = field.writable = False # Stay within Facility tab s3db.configure("asset_asset", create_next = None) elif r.id: table = r.table field = table.obsolete field.readable = field.writable = True if r.method == "update" and \ r.representation == "popup" and \ r.get_vars.get("profile") == "org_organisation": # Coming from organisation profile # Don't allow change of organisation_id in this case field = table.organisation_id field.writable = False field.readable = False elif r.method == "create": table = r.table get_vars = r.get_vars name = get_vars.get("name") if name: table.name.default = name if r.representation == "popup" and \ get_vars.get("profile") == "org_organisation": # Coming from organisation profile organisation_id = None for k in ("~.organisation_id", "(organisation)", "~.(organisation)"): if k in get_vars: organisation_id = get_vars[k] break if organisation_id is not None: # Don't allow change of organisation_id in this case field = table.organisation_id field.default = organisation_id field.writable = False field.readable = False elif r.representation == "geojson": # Load these models now as they'll be needed when we encode mtable = s3db.gis_marker return True s3.prep = prep def postp(r, output): if r.representation == "plain": # Custom Map Popup T = current.T output = TABLE() append = output.append record = r.record # Edit button append(TR(TD(A(T("Edit"), _target="_blank", _id="edit-btn", _href=URL(args=[r.id, "update"]))))) # Name append(TR(TD(B("%s:" % T("Name"))), TD(record.name))) site_id = record.site_id # Type(s) db = current.db ttable = db.org_facility_type ltable = db.org_site_facility_type query = (ltable.site_id == site_id) & \ (ltable.facility_type_id == ttable.id) rows = db(query).select(ttable.name) if rows: append(TR(TD(B("%s:" % ltable.facility_type_id.label)), TD(", ".join([row.name for row in rows])))) ftable = r.table # Comments if record.comments: append(TR(TD(B("%s:" % ftable.comments.label)), TD(ftable.comments.represent(record.comments)))) # Organisation (better with just name rather than Represent) # @ToDo: Make this configurable - some users will only see # their staff so this is a meaningless field for them table = db.org_organisation org = db(table.id == record.organisation_id).select(table.name, limitby=(0, 1) ).first() if org: append(TR(TD(B("%s:" % ftable.organisation_id.label)), TD(org.name))) if current.deployment_settings.has_module("req"): # Open High/Medium priority Requests rtable = s3db.req_req query = (rtable.site_id == site_id) & \ (rtable.fulfil_status != 2) & \ (rtable.priority.belongs((2, 3))) reqs = db(query).select(rtable.id, rtable.req_ref, rtable.type, ) if reqs: append(TR(TD(B("%s:" % T("Requests"))))) req_types = {1: "req_item", 3: "req_skill", 8: "", 9: "", } vals = [A(req.req_ref, _href=URL(c="req", f="req", args=[req.id, req_types[req.type]])) for req in reqs] for val in vals: append(TR(TD(val, _colspan=2))) # Street address gtable = s3db.gis_location stable = s3db.org_site query = (gtable.id == stable.location_id) & \ (stable.id == site_id) location = db(query).select(gtable.addr_street, limitby=(0, 1)).first() if location.addr_street: append(TR(TD(B("%s:" % gtable.addr_street.label)), TD(location.addr_street))) # Opening Times opens = record.opening_times if opens: append(TR(TD(B("%s:" % ftable.opening_times.label)), TD(opens))) # Phone number contact = record.contact if contact: append(TR(TD(B("%s:" % ftable.contact.label)), TD(contact))) # Phone number phone1 = record.phone1 if phone1: append(TR(TD(B("%s:" % ftable.phone1.label)), TD(phone1))) # Email address (as hyperlink) email = record.email if email: append(TR(TD(B("%s:" % ftable.email.label)), TD(A(email, _href="mailto:%s" % email)))) # Website (as hyperlink) website = record.website if website: append(TR(TD(B("%s:" % ftable.website.label)), TD(A(website, _href=website)))) return output s3.postp = postp output = current.rest_controller("org", "facility", rheader = org_rheader, ) return output # ============================================================================= # Hierarchy Manipulation # ============================================================================= # def org_update_affiliations(table, record): """ Update OU affiliations related to this record @param table: the table @param record: the record """ if hasattr(table, "_tablename"): rtype = table._tablename else: rtype = table if rtype == "org_organisation_branch": ltable = current.s3db.org_organisation_branch if not isinstance(record, Row): record = current.db(ltable.id == record).select(ltable.ALL, limitby=(0, 1) ).first() if not record: return organisation_update_affiliations(record) elif rtype == "org_group_membership": mtable = current.s3db.org_group_membership if not isinstance(record, Row): record = current.db(mtable.id == record).select(mtable.ALL, limitby=(0, 1) ).first() if not record: return org_group_update_affiliations(record) elif rtype == "org_site" or rtype in current.auth.org_site_types: if "organisation_id" not in record: # Probably created on component tab, so form does not have the # organisation_id => reload record to get it rtable = current.s3db[rtype] try: query = (rtable._id == record[rtable._id.name]) except (KeyError, AttributeError): return record = current.db(query).select(rtable.ALL, limitby=(0, 1)).first() org_site_update_affiliations(record) # ============================================================================= def organisation_update_affiliations(record): """ Update affiliations for a branch organisation @param record: the org_organisation_branch record """ if record.deleted and record.deleted_fk: try: fk = json.loads(record.deleted_fk) branch_id = fk["branch_id"] except: return else: branch_id = record.branch_id from pr import OU BRANCHES = "Branches" db = current.db s3db = current.s3db otable = s3db.org_organisation btable = otable.with_alias("branch") ltable = db.org_organisation_branch etable = s3db.pr_pentity rtable = db.pr_role atable = db.pr_affiliation o = otable._tablename b = btable._tablename r = rtable._tablename # Get current memberships query = (ltable.branch_id == branch_id) & \ (ltable.deleted != True) left = [otable.on(ltable.organisation_id == otable.id), btable.on(ltable.branch_id == btable.id)] rows = db(query).select(otable.pe_id, btable.pe_id, left=left) current_memberships = [(row[o].pe_id, row[b].pe_id) for row in rows] # Get current affiliations query = (rtable.deleted != True) & \ (rtable.role == BRANCHES) & \ (rtable.pe_id == etable.pe_id) & \ (etable.instance_type == o) & \ (atable.deleted != True) & \ (atable.role_id == rtable.id) & \ (atable.pe_id == btable.pe_id) & \ (btable.id == branch_id) rows = db(query).select(rtable.pe_id, btable.pe_id) current_affiliations = [(row[r].pe_id, row[b].pe_id) for row in rows] # Remove all affiliations which are not current memberships remove_affiliation = s3db.pr_remove_affiliation for a in current_affiliations: org, branch = a if a not in current_memberships: remove_affiliation(org, branch, role=BRANCHES) else: current_memberships.remove(a) # Add affiliations for all new memberships add_affiliation = s3db.pr_add_affiliation for m in current_memberships: org, branch = m add_affiliation(org, branch, role=BRANCHES, role_type=OU) # ============================================================================= def org_group_update_affiliations(record): """ Update affiliations for organisation group memberships @param record: the org_group_membership record """ if record.deleted and record.deleted_fk: try: fk = json.loads(record.deleted_fk) organisation_id = fk["organisation_id"] except: return else: organisation_id = record.organisation_id MEMBER = 2 # role_type == "Member" MEMBERS = "Members" db = current.db s3db = current.s3db mtable = s3db.org_group_membership otable = db.org_organisation gtable = db.org_group etable = s3db.pr_pentity rtable = db.pr_role atable = db.pr_affiliation g = gtable._tablename r = rtable._tablename o = otable._tablename # Get current memberships query = (mtable.organisation_id == organisation_id) & \ (mtable.deleted != True) left = [otable.on(mtable.organisation_id == otable.id), gtable.on(mtable.group_id == gtable.id)] rows = db(query).select(otable.pe_id, gtable.pe_id, left=left) current_memberships = [(row[g].pe_id, row[o].pe_id) for row in rows] # Get current affiliations query = (rtable.deleted != True) & \ (rtable.role == MEMBERS) & \ (rtable.pe_id == etable.pe_id) & \ (etable.instance_type == g) & \ (atable.deleted != True) & \ (atable.role_id == rtable.id) & \ (atable.pe_id == otable.pe_id) & \ (otable.id == organisation_id) rows = db(query).select(otable.pe_id, rtable.pe_id) current_affiliations = [(row[r].pe_id, row[o].pe_id) for row in rows] # Remove all affiliations which are not current memberships remove_affiliation = s3db.pr_remove_affiliation for a in current_affiliations: group, org = a if a not in current_memberships: remove_affiliation(group, org, role=MEMBERS) else: current_memberships.remove(a) # Add affiliations for all new memberships add_affiliation = s3db.pr_add_affiliation for m in current_memberships: group, org = m add_affiliation(group, org, role=MEMBERS, role_type=MEMBER) # ============================================================================= def org_site_update_affiliations(record): """ Update the affiliations of an org_site instance @param record: the org_site instance record """ from pr import OU SITES = "Sites" db = current.db s3db = current.s3db stable = s3db.org_site otable = db.org_organisation ptable = s3db.pr_pentity rtable = db.pr_role atable = db.pr_affiliation o_pe_id = None s_pe_id = record.pe_id organisation_id = record.organisation_id if organisation_id: org = db(otable.id == organisation_id).select(otable.pe_id, limitby=(0, 1)).first() if org: o_pe_id = org.pe_id if s_pe_id: query = (atable.deleted != True) & \ (atable.pe_id == s_pe_id) & \ (rtable.deleted != True) & \ (rtable.id == atable.role_id) & \ (rtable.role == SITES) & \ (ptable.pe_id == rtable.pe_id) & \ (ptable.instance_type == str(otable)) rows = db(query).select(rtable.pe_id) seen = False remove_affiliation = s3db.pr_remove_affiliation for row in rows: if o_pe_id == None or o_pe_id != row.pe_id: remove_affiliation(row.pe_id, s_pe_id, role=SITES) elif o_pe_id == row.pe_id: seen = True if o_pe_id and not seen: s3db.pr_add_affiliation(o_pe_id, s_pe_id, role=SITES, role_type=OU) # ============================================================================= def org_update_root_organisation(organisation_id, root_org=None): """ Update the root organisation of an org_organisation @param organisation_id: the org_organisation record ID @param root_org: the root organisation record ID (for internal use in update cascade only) @return: the root organisation ID """ # @todo: make immune against circular references! db = current.db s3db = current.s3db otable = s3db.org_organisation ltable = s3db.org_organisation_branch if root_org is None: # Batch update (introspective) if isinstance(organisation_id, (list, tuple, set)): for organisation in organisation_id: org_update_root_organisation(organisation) return None # Get the parent organisation query = (ltable.branch_id == organisation_id) & \ (ltable.organisation_id == otable.id) parent_org = db(query).select(otable.id, otable.root_organisation, limitby=(0, 1)).first() if not parent_org: # No parent organisation? => this is the root organisation root_org = organisation_id else: # Use parent organisation's root_organisation root_org = parent_org.root_organisation if not root_org: # Not present? => update it root_org = org_update_root_organisation(parent_org.id) if root_org is not None: # Update the record(s) if isinstance(organisation_id, (list, tuple, set)): oquery = (otable.id.belongs(organisation_id)) bquery = (ltable.organisation_id.belongs(organisation_id)) else: oquery = (otable.id == organisation_id) bquery = (ltable.organisation_id == organisation_id) db(oquery).update(root_organisation=root_org) # Propagate to all branches (explicit batch update) branches = db(bquery).select(ltable.branch_id) if branches: branch_ids = set(branch.branch_id for branch in branches) org_update_root_organisation(branch_ids, root_org=root_org) return root_org # ============================================================================= class org_AssignMethod(S3Method): """ Custom Method to allow organisations to be assigned to something e.g. Organisation Group """ def __init__(self, component, types=None): """ @param component: the Component in which to create records """ self.component = component def apply_method(self, r, **attr): """ Apply method. @param r: the S3Request @param attr: controller options for this request """ component = self.component components = r.resource.components for c in components: if c == component: component = components[c] break try: if component.link: component = component.link except: current.log.error("Invalid Component!") raise tablename = component.tablename # Requires permission to create component authorised = current.auth.s3_has_permission("create", tablename) if not authorised: r.unauthorised() T = current.T s3db = current.s3db get_vars = r.get_vars response = current.response if r.http == "POST": added = 0 post_vars = r.post_vars if all([n in post_vars for n in ("assign", "selected", "mode")]): fkey = component.fkey record = r.record if fkey in record: # SuperKey record_id = r.record[fkey] else: record_id = r.id selected = post_vars.selected if selected: selected = selected.split(",") else: selected = [] db = current.db table = s3db[tablename] if selected: # Handle exclusion filter if post_vars.mode == "Exclusive": if "filterURL" in post_vars: filters = S3URLQuery.parse_url(post_vars.ajaxURL) else: filters = None query = ~(FS("id").belongs(selected)) hresource = s3db.resource("org_organisation", filter=query, vars=filters) rows = hresource.select(["id"], as_rows=True) selected = [str(row.id) for row in rows] query = (table.organisation_id.belongs(selected)) & \ (table[fkey] == record_id) & \ (table.deleted != True) rows = db(query).select(table.id) rows = dict((row.id, row) for row in rows) onaccept = component.get_config("create_onaccept", component.get_config("onaccept", None) ) for organisation_id in selected: try: org_id = int(organisation_id.strip()) except ValueError: continue if org_id not in rows: link = Storage(organisation_id = organisation_id) link[fkey] = record_id _id = table.insert(**link) if onaccept: link["id"] = _id form = Storage(vars=link) onaccept(form) added += 1 current.session.confirmation = T("%(number)s assigned") % \ dict(number=added) if added > 0: redirect(URL(args=[r.id, "organisation"], vars={})) else: redirect(URL(args=r.args, vars={})) elif r.http == "GET": # Filter widgets filter_widgets = [] # List fields list_fields = ["id", "name", ] # Data table resource = s3db.resource("org_organisation") totalrows = resource.count() if "pageLength" in get_vars: display_length = get_vars["pageLength"] if display_length == "None": display_length = None else: display_length = int(display_length) else: display_length = 25 if display_length: limit = 4 * display_length else: limit = None filter, orderby, left = resource.datatable_filter(list_fields, get_vars) resource.add_filter(filter) data = resource.select(list_fields, start=0, limit=limit, orderby=orderby, left=left, count=True, represent=True) filteredrows = data["numrows"] dt = S3DataTable(data["rfields"], data["rows"]) dt_id = "datatable" # Bulk actions dt_bulk_actions = [(T("Add"), "assign")] if r.representation == "html": # Page load resource.configure(deletable = False) profile_url = URL(c = "org", f = "organisation", args = ["[id]", "profile"]) S3CRUD.action_buttons(r, deletable = False, read_url = profile_url, update_url = profile_url) response.s3.no_formats = True # Data table (items) items = dt.html(totalrows, filteredrows, dt_id, dt_ajax_url=URL(args = r.args, extension="aadata", vars={}, ), dt_bulk_actions=dt_bulk_actions, dt_pageLength=display_length, dt_pagination="true", dt_searching="false", ) # Filter form if filter_widgets: # Where to retrieve filtered data from: _vars = resource.crud._remove_filters(r.get_vars) filter_submit_url = r.url(vars=_vars) # Where to retrieve updated filter options from: filter_ajax_url = URL(f="human_resource", args=["filter.options"], vars={}) get_config = resource.get_config filter_clear = get_config("filter_clear", True) filter_formstyle = get_config("filter_formstyle", None) filter_submit = get_config("filter_submit", True) filter_form = S3FilterForm(filter_widgets, clear=filter_clear, formstyle=filter_formstyle, submit=filter_submit, ajax=True, url=filter_submit_url, ajaxurl=filter_ajax_url, _class="filter-form", _id="datatable-filter-form", ) fresource = current.s3db.resource(resource.tablename) alias = resource.alias if r.component else None ff = filter_form.html(fresource, r.get_vars, target="datatable", alias=alias) else: ff = "" output = dict(items = items, title = T("Add Organization"), list_filter_form = ff) response.view = "list_filter.html" return output elif r.representation == "aadata": # Ajax refresh if "draw" in get_vars: echo = int(get_vars.draw) else: echo = None items = dt.json(totalrows, filteredrows, dt_id, echo, dt_bulk_actions=dt_bulk_actions) response.headers["Content-Type"] = "application/json" return items else: r.error(501, current.ERROR.BAD_FORMAT) else: r.error(405, current.ERROR.BAD_METHOD) # ============================================================================= def org_customise_org_resource_fields(method): """ Customize org_resource fields for Profile widgets and 'more' popups """ s3db = current.s3db table = s3db.org_resource table.location_id.represent = s3db.gis_LocationRepresent(sep=" | ") list_fields = ["organisation_id", "location_id", "parameter_id", "value", "comments", ] if method in ("datalist", "profile"): table.modified_by.represent = s3_auth_user_represent_name table.modified_on.represent = lambda dt: \ S3DateTime.datetime_represent(dt, utc=True) list_fields += ["modified_by", "modified_on", "organisation_id$logo", ] s3db.configure("org_resource", list_fields = list_fields, ) # ============================================================================= def org_organisation_list_layout(list_id, item_id, resource, rfields, record): """ Default dataList item renderer for Organisations on the Profile pages @param list_id: the HTML ID of the list @param item_id: the HTML ID of the item @param resource: the S3Resource to render @param rfields: the S3ResourceFields to render @param record: the record as dict """ record_id = record["org_organisation.id"] item_class = "thumbnail" # span6 for 2 cols raw = record._row name = record["org_organisation.name"] logo = raw["org_organisation.logo"] phone = raw["org_organisation.phone"] or "" website = raw["org_organisation.website"] or "" if website: website = A(website, _href=website) org_url = URL(c="org", f="organisation", args=[record_id, "profile"]) if logo: logo = A(IMG(_src=URL(c="default", f="download", args=[logo]), _class="media-object", ), _href=org_url, _class="pull-left", ) else: logo = DIV(IMG(_class="media-object"), _class="pull-left") db = current.db permit = current.auth.s3_has_permission table = db.org_organisation if permit("update", table, record_id=record_id): edit_btn = A(I(" ", _class="icon icon-edit"), _href=URL(c="org", f="organisation", args=[record_id, "update.popup"], vars={"refresh": list_id, "record": record_id}), _class="s3_modal dl-item-edit", _title=current.response.s3.crud_strings.org_organisation.title_update, ) else: edit_btn = "" if permit("delete", table, record_id=record_id): delete_btn = A(I(" ", _class="icon icon-trash"), _class="dl-item-delete", ) else: delete_btn = "" edit_bar = DIV(edit_btn, delete_btn, _class="edit-bar fright", ) # Render the item item = DIV(DIV(logo, DIV(SPAN(A(name, _href=org_url, _class="media-heading" ), ), edit_bar, _class="card-header-select", ), DIV(P(I(_class="icon icon-phone"), " ", phone, _class="card_1_line", ), P(I(_class="icon icon-map"), " ", website, _class="card_1_line", ), _class="media-body", ), _class="media", ), _class=item_class, _id=item_id, ) return item # ============================================================================= def org_resource_list_layout(list_id, item_id, resource, rfields, record): """ Default dataList item renderer for Resources on Profile pages @param list_id: the HTML ID of the list @param item_id: the HTML ID of the item @param resource: the S3Resource to render @param rfields: the S3ResourceFields to render @param record: the record as dict """ record_id = record["org_resource.id"] item_class = "thumbnail" raw = record._row author = record["org_resource.modified_by"] date = record["org_resource.modified_on"] quantity = record["org_resource.value"] resource_type = record["org_resource.parameter_id"] comments = raw["org_resource.comments"] organisation = record["org_resource.organisation_id"] organisation_id = raw["org_resource.organisation_id"] location = record["org_resource.location_id"] location_id = raw["org_resource.location_id"] location_url = URL(c="gis", f="location", args=[location_id, "profile"]) org_url = URL(c="org", f="organisation", args=[organisation_id, "profile"]) logo = raw["org_organisation.logo"] if logo: logo = A(IMG(_src=URL(c="default", f="download", args=[logo]), _class="media-object", ), _href=org_url, _class="pull-left", ) else: # @ToDo: use a dummy logo image logo = A(IMG(_class="media-object"), _href=org_url, _class="pull-left", ) # Edit Bar permit = current.auth.s3_has_permission table = current.db.org_resource if permit("update", table, record_id=record_id): vars = {"refresh": list_id, "record": record_id, } f = current.request.function if f == "organisation" and organisation_id: vars["(organisation)"] = organisation_id elif f == "location" and location_id: vars["(location)"] = location_id edit_btn = A(I(" ", _class="icon icon-edit"), _href=URL(c="org", f="resource", args=[record_id, "update.popup"], vars=vars), _class="s3_modal", _title=current.response.s3.crud_strings.org_resource.title_update, ) else: edit_btn = "" if permit("delete", table, record_id=record_id): delete_btn = A(I(" ", _class="icon icon-trash"), _class="dl-item-delete", ) else: delete_btn = "" edit_bar = DIV(edit_btn, delete_btn, _class="edit-bar fright", ) # Render the item avatar = logo item = DIV(DIV(SPAN("%s %s" % (quantity, current.T(resource_type)), _class="card-title"), SPAN(A(location, _href=location_url, ), _class="location-title", ), SPAN(date, _class="date-title", ), edit_bar, _class="card-header", ), DIV(avatar, DIV(DIV(comments, DIV(author or "" , " - ", A(organisation, _href=org_url, _class="card-organisation", ), _class="card-person", ), _class="media", ), _class="media-body", ), _class="media", ), #docs, _class=item_class, _id=item_id, ) return item # END =========================================================================
the-stack_106_13906
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.AssetResult import AssetResult class AntMerchantExpandAssetproduceCompleteSyncResponse(AlipayResponse): def __init__(self): super(AntMerchantExpandAssetproduceCompleteSyncResponse, self).__init__() self._asset_results = None @property def asset_results(self): return self._asset_results @asset_results.setter def asset_results(self, value): if isinstance(value, list): self._asset_results = list() for i in value: if isinstance(i, AssetResult): self._asset_results.append(i) else: self._asset_results.append(AssetResult.from_alipay_dict(i)) def parse_response_content(self, response_content): response = super(AntMerchantExpandAssetproduceCompleteSyncResponse, self).parse_response_content(response_content) if 'asset_results' in response: self.asset_results = response['asset_results']
the-stack_106_13908
# -*- coding: utf-8 -*- # File: backbone.py import numpy as np import tensorflow as tf from contextlib import ExitStack, contextmanager from tensorpack.models import BatchNorm, Conv2D, MaxPooling, layer_register from tensorpack.tfutils import argscope from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope from tensorpack.tfutils.varreplace import custom_getter_scope, freeze_variables from mot.object_detection.config import config as cfg @layer_register(log_shape=True) def GroupNorm(x, group=32, gamma_initializer=tf.constant_initializer(1.)): """ More code that reproduces the paper can be found at https://github.com/ppwwyyxx/GroupNorm-reproduce/. """ shape = x.get_shape().as_list() ndims = len(shape) assert ndims == 4, shape chan = shape[1] assert chan % group == 0, chan group_size = chan // group orig_shape = tf.shape(x) h, w = orig_shape[2], orig_shape[3] x = tf.reshape(x, tf.stack([-1, group, group_size, h, w])) mean, var = tf.nn.moments(x, [2, 3, 4], keep_dims=True) new_shape = [1, group, group_size, 1, 1] beta = tf.get_variable('beta', [chan], initializer=tf.constant_initializer()) beta = tf.reshape(beta, new_shape) gamma = tf.get_variable('gamma', [chan], initializer=gamma_initializer) gamma = tf.reshape(gamma, new_shape) out = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-5, name='output') return tf.reshape(out, orig_shape, name='output') def freeze_affine_getter(getter, *args, **kwargs): # custom getter to freeze affine params inside bn name = args[0] if len(args) else kwargs.get('name') if name.endswith('/gamma') or name.endswith('/beta'): kwargs['trainable'] = False ret = getter(*args, **kwargs) tf.add_to_collection(tf.GraphKeys.MODEL_VARIABLES, ret) else: ret = getter(*args, **kwargs) return ret def maybe_reverse_pad(topleft, bottomright): if cfg.BACKBONE.TF_PAD_MODE: return [topleft, bottomright] return [bottomright, topleft] @contextmanager def backbone_scope(freeze): """ Args: freeze (bool): whether to freeze all the variables under the scope """ def nonlin(x): x = get_norm()(x) return tf.nn.relu(x) with argscope([Conv2D, MaxPooling, BatchNorm], data_format='channels_first'), \ argscope(Conv2D, use_bias=False, activation=nonlin, kernel_initializer=tf.variance_scaling_initializer( scale=2.0, mode='fan_out')), \ ExitStack() as stack: if cfg.BACKBONE.NORM in ['FreezeBN', 'SyncBN']: if freeze or cfg.BACKBONE.NORM == 'FreezeBN': stack.enter_context(argscope(BatchNorm, training=False)) else: stack.enter_context(argscope( BatchNorm, sync_statistics='nccl' if cfg.TRAINER == 'replicated' else 'horovod')) if freeze: stack.enter_context(freeze_variables(stop_gradient=False, skip_collection=True)) else: # the layers are not completely freezed, but we may want to only freeze the affine if cfg.BACKBONE.FREEZE_AFFINE: stack.enter_context(custom_getter_scope(freeze_affine_getter)) yield def image_preprocess(image, bgr=True): with tf.name_scope('image_preprocess'): if image.dtype.base_dtype != tf.float32: image = tf.cast(image, tf.float32) mean = cfg.PREPROC.PIXEL_MEAN std = np.asarray(cfg.PREPROC.PIXEL_STD) if bgr: mean = mean[::-1] std = std[::-1] image_mean = tf.constant(mean, dtype=tf.float32) image_invstd = tf.constant(1.0 / std, dtype=tf.float32) image = (image - image_mean) * image_invstd return image def get_norm(zero_init=False): if cfg.BACKBONE.NORM == 'None': return lambda x: x if cfg.BACKBONE.NORM == 'GN': Norm = GroupNorm layer_name = 'gn' else: Norm = BatchNorm layer_name = 'bn' return lambda x: Norm(layer_name, x, gamma_initializer=tf.zeros_initializer() if zero_init else None) def resnet_shortcut(l, n_out, stride, activation=tf.identity): n_in = l.shape[1] if n_in != n_out: # change dimension when channel is not the same # TF's SAME mode output ceil(x/stride), which is NOT what we want when x is odd and stride is 2 # In FPN mode, the images are pre-padded already. if not cfg.MODE_FPN and stride == 2: l = l[:, :, :-1, :-1] return Conv2D('convshortcut', l, n_out, 1, strides=stride, activation=activation) else: return l def resnet_bottleneck(l, ch_out, stride): shortcut = l if cfg.BACKBONE.STRIDE_1X1: if stride == 2: l = l[:, :, :-1, :-1] l = Conv2D('conv1', l, ch_out, 1, strides=stride) l = Conv2D('conv2', l, ch_out, 3, strides=1) else: l = Conv2D('conv1', l, ch_out, 1, strides=1) if stride == 2: l = tf.pad(l, [[0, 0], [0, 0], maybe_reverse_pad(0, 1), maybe_reverse_pad(0, 1)]) l = Conv2D('conv2', l, ch_out, 3, strides=2, padding='VALID') else: l = Conv2D('conv2', l, ch_out, 3, strides=stride) if cfg.BACKBONE.NORM != 'None': l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_norm(zero_init=True)) else: l = Conv2D('conv3', l, ch_out * 4, 1, activation=tf.identity, kernel_initializer=tf.constant_initializer()) ret = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=get_norm(zero_init=False)) return tf.nn.relu(ret, name='output') def resnet_group(name, l, block_func, features, count, stride): with tf.variable_scope(name): for i in range(0, count): with tf.variable_scope('block{}'.format(i)): l = block_func(l, features, stride if i == 0 else 1) return l def resnet_c4_backbone(image, num_blocks): assert len(num_blocks) == 3 freeze_at = cfg.BACKBONE.FREEZE_AT with backbone_scope(freeze=freeze_at > 0): l = tf.pad(image, [[0, 0], [0, 0], maybe_reverse_pad(2, 3), maybe_reverse_pad(2, 3)]) l = Conv2D('conv0', l, 64, 7, strides=2, padding='VALID') l = tf.pad(l, [[0, 0], [0, 0], maybe_reverse_pad(0, 1), maybe_reverse_pad(0, 1)]) l = MaxPooling('pool0', l, 3, strides=2, padding='VALID') with backbone_scope(freeze=freeze_at > 1): c2 = resnet_group('group0', l, resnet_bottleneck, 64, num_blocks[0], 1) with backbone_scope(freeze=False): c3 = resnet_group('group1', c2, resnet_bottleneck, 128, num_blocks[1], 2) c4 = resnet_group('group2', c3, resnet_bottleneck, 256, num_blocks[2], 2) # 16x downsampling up to now return c4 @auto_reuse_variable_scope def resnet_conv5(image, num_block): with backbone_scope(freeze=False): l = resnet_group('group3', image, resnet_bottleneck, 512, num_block, 2) return l def resnet_fpn_backbone(image, num_blocks): freeze_at = cfg.BACKBONE.FREEZE_AT shape2d = tf.shape(image)[2:] mult = float(cfg.FPN.RESOLUTION_REQUIREMENT) new_shape2d = tf.cast(tf.ceil(tf.cast(shape2d, tf.float32) / mult) * mult, tf.int32) pad_shape2d = new_shape2d - shape2d assert len(num_blocks) == 4, num_blocks with backbone_scope(freeze=freeze_at > 0): chan = image.shape[1] pad_base = maybe_reverse_pad(2, 3) l = tf.pad(image, tf.stack( [[0, 0], [0, 0], [pad_base[0], pad_base[1] + pad_shape2d[0]], [pad_base[0], pad_base[1] + pad_shape2d[1]]])) l.set_shape([None, chan, None, None]) l = Conv2D('conv0', l, 64, 7, strides=2, padding='VALID') l = tf.pad(l, [[0, 0], [0, 0], maybe_reverse_pad(0, 1), maybe_reverse_pad(0, 1)]) l = MaxPooling('pool0', l, 3, strides=2, padding='VALID') with backbone_scope(freeze=freeze_at > 1): c2 = resnet_group('group0', l, resnet_bottleneck, 64, num_blocks[0], 1) with backbone_scope(freeze=False): c3 = resnet_group('group1', c2, resnet_bottleneck, 128, num_blocks[1], 2) c4 = resnet_group('group2', c3, resnet_bottleneck, 256, num_blocks[2], 2) c5 = resnet_group('group3', c4, resnet_bottleneck, 512, num_blocks[3], 2) # 32x downsampling up to now # size of c5: ceil(input/32) return c2, c3, c4, c5
the-stack_106_13910
# package for doing multi threading on specific apis from concurrent.futures import ThreadPoolExecutor from tsv_data_analytics import tsv from tsv_data_analytics import tsvutils from tsv_data_analytics import utils import math import time class MultiThreadTSV(tsv.TSV): def __init__(self, header, data, num_par = 1, status_check_interval_sec = 10, sleep_interval_sec = 0.01): super().__init__(header, data) self.num_par = num_par self.status_check_interval_sec = status_check_interval_sec self.sleep_interval_sec = sleep_interval_sec # check if num_par is more than number of rows if (self.num_rows() < self.num_par): utils.warn("MultiThreadTSV: num_rows: {} < num_par: {}. Adjusting the value".format(self.num_rows(), self.num_par)) self.num_par = self.num_rows() def parallelize(self, func, *args, **kwargs): # debug utils.debug("parallelize: func: {}, args: {}, kwargs: {}".format(func, *args, **kwargs)) # split the data into num_par partitions batch_size = int(math.ceil(self.num_rows() / self.num_par)) future_results = [] # take start_time ts_start = time.time() # check for single threaded if (self.num_par == 1): combined_result = __parallelize__(self, func, *args, **kwargs) else: # run thread pool with ThreadPoolExecutor(max_workers = self.num_par) as executor: # execute batches concurrently based on num_par and batch_size for i in range(self.num_par): batch_i = self.skip(batch_size * i).take(batch_size) future_results.append(executor.submit(__parallelize__, batch_i, func, *args, **kwargs)) # run while loop while True: done_count = 0 for f in future_results: if (f.done() == True): done_count = done_count + 1 # debug utils.debug("parallelize: done_count: {}, total: {}".format(done_count, len(future_results))) # check if all are done if (done_count < len(future_results)): # sleep for some additional time to allow notebook stop method to work utils.debug("parallelize: futures not completed yet. Sleeping for {} seconds".format(self.status_check_interval_sec)) time.sleep(self.status_check_interval_sec) else: break # combine the results results = [] for f in future_results: results.append(f.result()) # merge the tsvs using a common union. combined_result = tsvutils.merge(results, merge_def_vals = {}) # take end_time ts_end = time.time() utils.debug("parallelize: time taken: {} sec".format((ts_end - ts_start))) return combined_result def __parallelize__(xtsv, func, *args, **kwargs): return func(xtsv, *args, **kwargs)
the-stack_106_13911
# !/usr/bin/python # # Copyright 2018-2020 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List from polyaxon import logger from polyaxon.tracking.events.events_processors import metrics_dict_to_list try: import psutil except ImportError: psutil = None try: import pynvml except ImportError: pynvml = None def can_log_gpu_resources(): if pynvml is None: return False try: pynvml.nvmlInit() return True except pynvml.NVMLError: return False def query_gpu(handle: int) -> Dict: memory = pynvml.nvmlDeviceGetMemoryInfo(handle) # in Bytes utilization = pynvml.nvmlDeviceGetUtilizationRates(handle) return { "gpu_{}_memory_free".format(handle): int(memory.free), "gpu_{}_memory_used".format(handle): int(memory.used), "gpu_{}_utilization".format(handle): utilization.gpu, } def get_gpu_metrics() -> List: try: pynvml.nvmlInit() device_count = pynvml.nvmlDeviceGetCount() results = [] for i in range(device_count): handle = pynvml.nvmlDeviceGetHandleByIndex(i) results += metrics_dict_to_list(query_gpu(handle)) return results except pynvml.NVMLError: logger.debug("Failed to collect gpu resources", exc_info=True) return []
the-stack_106_13912
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn_scratch.py', '../_base_/datasets/cityscapes_detection_durand.py', '../_base_/default_runtime.py' ] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] evaluation = dict(interval=1, classwise=True) optimizer_config = dict(grad_clip=None) optimizer = dict( type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0)) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.1, step=[11]) runner = dict( type='EpochBasedRunner', max_epochs=13) log_config = dict( interval=100, hooks=[ dict(type='TensorboardLoggerHook'), dict(type='TextLoggerHook'), ] ) work_dir = "/home/ihakki/h3dr/experiments/faster_rcnn_optexp/run_scratch_8" gpu_ids = range(0, 1)
the-stack_106_13913
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ FILE: sample_convert_to_and_from_dict_async.py DESCRIPTION: This sample demonstrates how to convert models returned from an analyze operation to and from a dictionary. The dictionary in this sample is then converted to a JSON file, then the same dictionary is converted back to its original model. USAGE: python sample_convert_to_and_from_dict_async.py Set the environment variables with your own values before running the sample: 1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Cognitive Services resource. 2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key """ import os import json import asyncio async def convert_to_and_from_dict_async(): path_to_sample_documents = os.path.abspath( os.path.join( os.path.abspath(__file__), "..", "..", "..", "./sample_forms/forms/Form_1.jpg", ) ) from azure.core.serialization import AzureJSONEncoder from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import DocumentAnalysisClient from azure.ai.formrecognizer import AnalyzeResult endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) async with document_analysis_client: with open(path_to_sample_documents, "rb") as f: poller = await document_analysis_client.begin_analyze_document( "prebuilt-document", document=f ) result = await poller.result() # convert the received model to a dictionary analyze_result_dict = result.to_dict() # save the dictionary as JSON content in a JSON file, use the AzureJSONEncoder # to help make types, such as dates, JSON serializable # NOTE: AzureJSONEncoder is only available with azure.core>=1.18.0. with open('data.json', 'w') as f: json.dump(analyze_result_dict, f, cls=AzureJSONEncoder) # convert the dictionary back to the original model model = AnalyzeResult.from_dict(analyze_result_dict) # use the model as normal print("----Converted from dictionary AnalyzeResult----") print("Model ID: '{}'".format(model.model_id)) print("Number of pages analyzed {}".format(len(model.pages))) print("API version used: {}".format(model.api_version)) print("----------------------------------------") async def main(): await convert_to_and_from_dict_async() if __name__ == '__main__': asyncio.run(main())
the-stack_106_13914
# Encoding: UTF-8 u"""Automatic documentation generation for pokédex tables This adds a "dex-table" directive to Sphinx, which works like "autoclass", but documents Pokédex mapped classes. """ # XXX: This assumes all the tables are in pokedex.db.tables import functools import textwrap from docutils import nodes from docutils.statemachine import ViewList from sphinx.util.compat import Directive, make_admonition from sphinx.locale import _ from sphinx.domains.python import PyClasslike from sphinx.util.docfields import Field, GroupedField, TypedField from sphinx.ext.autodoc import ClassLevelDocumenter from sqlalchemy import types from sqlalchemy.orm.attributes import InstrumentedAttribute from sqlalchemy.orm.properties import RelationshipProperty from sqlalchemy.orm import Mapper, configure_mappers from sqlalchemy.ext.associationproxy import AssociationProxy from pokedex.db.markdown import MoveEffectPropertyMap, MoveEffectProperty from pokedex.db import tables, markdown # Make sure all the backrefs are in place configure_mappers() column_to_cls = {} for cls in tables.mapped_classes: for column in cls.__table__.c: column_to_cls[column] = cls class dextabledoc(nodes.Admonition, nodes.Element): pass def visit_todo_node(self, node): self.visit_admonition(node) def depart_todo_node(self, node): self.depart_admonition(node) def column_type_str(column): """Extract the type name from a SQLA column """ type_ = column.type # We're checking the specific type here: no issubclass if type(type_) in (types.Integer, types.SmallInteger): return 'int' if type(type_) == types.Boolean: return 'bool' if type(type_) == types.Unicode: return u'unicode – %s' % column.info['format'] if type(type_) == types.UnicodeText: return u'unicode – %s' % column.info['format'] if type(type_) == types.Enum: return 'enum: [%s]' % ', '.join(type_.enums) if type(type_) == markdown.MarkdownColumn: return 'markdown' raise ValueError(repr(type_)) common_columns = 'id identifier name'.split() def column_header(c, class_name=None, transl_name=None, show_type=True, relation=None, relation_name=None): """Return the column header for the given column""" result = [] if relation_name: name = relation_name else: name = c.name if class_name: result.append(u'%s.\ **%s**' % (class_name, name)) else: result.append(u'**%s**' % c.name) if c.foreign_keys: for fk in c.foreign_keys: if fk.column in column_to_cls: foreign_cls = column_to_cls[fk.column] if relation_name and relation_name + '_id' == c.name: result.append(u'(%s →' % c.name) elif relation_name: result.append(u'(**%s** →' % c.name) else: result.append(u'(→') result.append(u':class:`~pokedex.db.tables.%s`.%s)' % ( foreign_cls.__name__, fk.column.name )) break elif show_type: result.append(u'(*%s*)' % column_type_str(c)) if transl_name: result.append(u'via *%s*' % transl_name) return ' '.join(result) def with_header(header=None): """Decorator that adds a section header if there's a any output The decorated function should yield output lines; if there are any the header gets added. """ def wrap(func): @functools.wraps(func) def wrapped(cls, remaining_attrs): result = list(func(cls, remaining_attrs)) if result: # Sphinx/ReST doesn't allow "-----" just anywhere :( yield u'' yield u'.. raw:: html' yield u'' yield u' <hr>' yield u'' if header: yield header + u':' yield u'' for row in result: yield row return wrapped return wrap ### Section generation functions def generate_table_header(cls, remaining_attrs): first_line, sep, next_lines = unicode(cls.__doc__).partition(u'\n') yield first_line for line in textwrap.dedent(next_lines).split('\n'): yield line yield '' yield u'Table name: *%s*' % cls.__tablename__ try: yield u'(single: *%s*)' % cls.__singlename__ except AttributeError: pass yield u'' yield u'Primary key: %s.' % u', '.join( u'**%s**' % col.key for col in cls.__table__.primary_key.columns) yield u'' def generate_common(cls, remaining_attrs): common_col_headers = [] for c in cls.__table__.c: if c.name in common_columns: common_col_headers.append(column_header(c, show_type=False)) remaining_attrs.remove(c.name) for translation_class in cls.translation_classes: for c in translation_class.__table__.c: if c.name in common_columns: common_col_headers.append(column_header(c, None, translation_class.__table__.name, show_type=False)) remaining_attrs.remove(c.name) if common_col_headers: if len(common_col_headers) > 1: common_col_headers[-1] = 'and ' + common_col_headers[-1] if len(common_col_headers) > 2: separator = u', ' else: separator = u' ' yield u'Has' yield separator.join(common_col_headers) + '.' yield u'' @with_header(u'Columns') def generate_columns(cls, remaining_attrs): name = cls.__name__ for c in [c for c in cls.__table__.c if c.name not in common_columns]: remaining_attrs.remove(c.name) relation_name = c.name[:-3] if c.name.endswith('_id') and relation_name in remaining_attrs: relation = getattr(cls, relation_name) yield column_header(c, name, relation=relation, relation_name=relation_name) remaining_attrs.remove(relation_name) else: yield column_header(c, name) + ':' yield u'' if c.doc: yield u' ' + unicode(c.doc) yield u'' @with_header(u'Internationalized strings') def generate_strings(cls, remaining_attrs): for translation_class in cls.translation_classes: for c in translation_class.__table__.c: if 'format' in c.info: remaining_attrs.discard(c.name) remaining_attrs.discard(c.name + '_map') if c.name in common_columns: continue yield column_header(c, cls.__name__, translation_class.__table__.name) yield u'' if c.doc: yield u' ' + unicode(c.doc) yield u'' @with_header(u'Relationships') def generate_relationships(cls, remaining_attrs): def isrelationship(prop): return isinstance(prop, InstrumentedAttribute) and isinstance(prop.property, RelationshipProperty) for attr_name in sorted(remaining_attrs): prop = getattr(cls, attr_name) if not isrelationship(prop): continue rel = prop.property yield u'%s.\ **%s**' % (cls.__name__, attr_name) class_name = u':class:`~pokedex.db.tables.%s`' % rel.mapper.class_.__name__ if rel.uselist: class_name = u'[%s]' % class_name yield u'(→ %s)' % class_name if rel.doc: yield u'' yield u' ' + unicode(rel.doc) if rel.secondary is not None: yield u'' yield ' Association table: ``%s``' % rel.secondary #if rel.primaryjoin is not None: # yield u'' # yield ' Join condition: ``%s``' % rel.primaryjoin # if rel.secondaryjoin is not None: # yield ' , ``%s``' % rel.secondaryjoin if rel.order_by: yield u'' yield u' ' yield ' Ordered by: ' + u', '.join( u'``%s``' % o for o in rel.order_by) yield u'' remaining_attrs.remove(attr_name) @with_header(u'Association Proxies') def generate_associationproxies(cls, remaining_attrs): for attr_name in sorted(remaining_attrs): prop = getattr(cls, attr_name) if isinstance(prop, AssociationProxy): yield u'%s.\ **%s**:' % (cls.__name__, attr_name) yield '``{prop.remote_attr.key}`` of ``self.{prop.local_attr.key}``'.format( prop=prop) yield u'' remaining_attrs.remove(attr_name) @with_header(u'Undocumented') def generate_undocumented(cls, remaining_attrs): for c in sorted([c for c in remaining_attrs if isinstance(getattr(cls, c), (InstrumentedAttribute, AssociationProxy, MoveEffectPropertyMap, MoveEffectProperty))]): yield u'' yield u'%s.\ **%s**' % (cls.__name__, c) remaining_attrs.remove(c) @with_header(None) def generate_other(cls, remaining_attrs): for c in sorted(remaining_attrs): yield u'' member = getattr(cls, c) if callable(member): yield '.. automethod:: %s.%s' % (cls.__name__, c) else: yield '.. autoattribute:: %s.%s' % (cls.__name__, c) yield u'' remaining_attrs.clear() class DexTable(PyClasslike): """The actual Sphinx documentation generation whatchamacallit """ doc_field_types = [ TypedField('field', label='Fields', typerolename='obj', typenames=('fieldname', 'type')), ] def get_signature_prefix(self, sig): return '' #return u'mapped class ' def run(self): section = nodes.section() super_result = super(DexTable, self).run() title_text = self.names[0][0] section += nodes.title(text=title_text) section += super_result section['ids'] = ['dex-table-%s' % title_text.lower()] return [section] def before_content(self): name = self.names[0][0] for cls in tables.mapped_classes: if name == cls.__name__: break else: raise ValueError('Table %s not found' % name) table = cls.__table__ remaining_attrs = set(x for x in dir(cls) if not x.startswith('_')) remaining_attrs.difference_update(['metadata', 'translation_classes', 'add_relationships', 'summary_column']) for transl_class in cls.translation_classes: remaining_attrs.difference_update([ transl_class.relation_name, transl_class.relation_name + '_table', transl_class.relation_name + '_local', ]) generated_content = [] # Just a list of lines! generated_content.extend(generate_table_header(cls, remaining_attrs)) generated_content.extend(generate_common(cls, remaining_attrs)) generated_content.extend(generate_columns(cls, remaining_attrs)) generated_content.extend(generate_strings(cls, remaining_attrs)) generated_content.extend(generate_relationships(cls, remaining_attrs)) generated_content.extend(generate_associationproxies(cls, remaining_attrs)) generated_content.extend(generate_undocumented(cls, remaining_attrs)) generated_content.extend(generate_other(cls, remaining_attrs)) generated_content.append(u'') self.content = ViewList(generated_content + list(self.content)) return super(DexTable, self).before_content() def get_index_text(self, modname, name_cls): return '%s (mapped class)' % name_cls[0] def setup(app): app.add_directive('dex-table', DexTable) # XXX: Specify that this depends on pokedex.db.tables ...?
the-stack_106_13915
# encoding: utf-8 # This file contains commonly used parts of external libraries. The idea is # to help in removing helpers from being used as a dependency by many files # but at the same time making it easy to change for example the json lib # used. # # NOTE: This file is specificaly created for # from ckan.common import x, y, z to be allowed from __future__ import annotations import logging from collections.abc import MutableMapping from typing import ( Any, Iterable, Optional, TYPE_CHECKING, TypeVar, cast, overload, Container, Union) from typing_extensions import Literal import flask from werkzeug.local import Local, LocalProxy from flask_babel import (gettext as flask_ugettext, ngettext as flask_ungettext) import simplejson as json # type: ignore # noqa: re-export import ckan.lib.maintain as maintain from ckan.config.declaration import Declaration, Key if TYPE_CHECKING: # starting from python 3.7 the following line can be used without any # conditions after `annotation` import from `__future__` MutableMapping = MutableMapping[str, Any] log = logging.getLogger(__name__) current_app = flask.current_app @maintain.deprecated('All web requests are served by Flask', since="2.10.0") def is_flask_request(): u''' This function is deprecated. All CKAN requests are now served by Flask ''' return True def streaming_response(data: Iterable[Any], mimetype: str = u'application/octet-stream', with_context: bool = False) -> flask.Response: iter_data = iter(data) if with_context: iter_data = flask.stream_with_context(iter_data) resp = flask.Response(iter_data, mimetype=mimetype) return resp def ugettext(*args: Any, **kwargs: Any) -> str: return cast(str, flask_ugettext(*args, **kwargs)) _ = ugettext def ungettext(*args: Any, **kwargs: Any) -> str: return cast(str, flask_ungettext(*args, **kwargs)) class CKANConfig(MutableMapping): u'''Main CKAN configuration object This is a dict-like object that also proxies any changes to the Flask and Pylons configuration objects. The actual `config` instance in this module is initialized in the `load_environment` method with the values of the ini file or env vars. ''' store: dict[str, Any] def __init__(self, *args: Any, **kwargs: Any): self.store = dict() self.update(dict(*args, **kwargs)) def __getitem__(self, key: str): return self.store[key] def __iter__(self): return iter(self.store) def __len__(self): return len(self.store) def __repr__(self): return self.store.__repr__() def copy(self) -> dict[str, Any]: return self.store.copy() def clear(self) -> None: self.store.clear() try: flask.current_app.config.clear() except RuntimeError: pass def __setitem__(self, key: str, value: Any): self.store[key] = value try: flask.current_app.config[key] = value except RuntimeError: pass def __delitem__(self, key: str): del self.store[key] try: del flask.current_app.config[key] except RuntimeError: pass def get_value(self, key: str) -> Any: if self.get("config.mode") == "strict": return self[key] option = config_declaration.get(key) if not option: log.warning("Option %s is not declared", key) return self.get(key) value = self.get(key, option.default) return option._normalize(value) def subset( self, pattern: Key, exclude: Optional[Container[Union[str, Key]]] = None ) -> dict[str, Any]: subset = {} exclude = exclude or set() for k, v in self.store.items(): if k in exclude or pattern != k: continue subset[k] = v return subset def _get_request(): return flask.request class CKANRequest(LocalProxy): u'''Common request object This is just a wrapper around LocalProxy so we can handle some special cases for backwards compatibility. ''' @property @maintain.deprecated('Use `request.args` instead of `request.params`', since="2.10.0") def params(self): '''This property is deprecated. Special case as Pylons' request.params is used all over the place. All new code meant to be run just in Flask (eg views) should always use request.args ''' return cast(flask.Request, self).args def _get_c(): return flask.g def _get_session(): return flask.session def asbool(obj: Any) -> bool: if isinstance(obj, str): obj = obj.strip().lower() if obj in truthy: return True elif obj in falsy: return False else: raise ValueError(u"String is not true/false: {}".format(obj)) return bool(obj) def asint(obj: Any) -> int: try: return int(obj) except (TypeError, ValueError): raise ValueError(u"Bad integer value: {}".format(obj)) T = TypeVar('T') SequenceT = TypeVar('SequenceT', "list[Any]", "tuple[Any]") @overload def aslist(obj: str, sep: Optional[str] = None, strip: bool = True) -> list[str]: ... @overload def aslist(obj: list[T], sep: Optional[str] = None, strip: bool = True) -> list[T]: ... @overload def aslist(obj: tuple[T], sep: Optional[str] = None, strip: bool = True) -> tuple[T]: ... @overload def aslist(obj: SequenceT, sep: Optional[str] = None, strip: bool = True) -> SequenceT: ... @overload def aslist(obj: Literal[None], sep: Optional[str] = None, strip: bool = True) -> list[str]: ... def aslist(obj: Any, sep: Optional[str] = None, strip: bool = True) -> Any: if isinstance(obj, str): lst = obj.split(sep) if strip: lst = [v.strip() for v in lst] return lst elif isinstance(obj, (list, tuple)): return cast(Any, obj) elif obj is None: return [] else: return [obj] local = Local() # This a proxy to the bounded config object local(u'config') # Thread-local safe objects config = local.config = CKANConfig() local("config_declaration") config_declaration = local.config_declaration = Declaration() # Proxies to already thread-local safe objects request = cast(flask.Request, CKANRequest(_get_request)) # Provide a `c` alias for `g` for backwards compatibility g: Any = LocalProxy(_get_c) c = g session: Any = LocalProxy(_get_session) truthy = frozenset([u'true', u'yes', u'on', u'y', u't', u'1']) falsy = frozenset([u'false', u'no', u'off', u'n', u'f', u'0'])
the-stack_106_13916
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test seq-to-seq training.""" # pytype: disable=wrong-arg-count # pytype: disable=attribute-error import functools import os import random import sys from absl.testing import absltest from flax import jax_utils from flax import optim from flax.training import common_utils import jax import jax.numpy as jnp import numpy as np import tensorflow.compat.v2 as tf from latent_programmer import models from latent_programmer import train_lib from latent_programmer.tasks.robust_fill import dsl from latent_programmer.tasks.robust_fill import tokens as dsl_tokens from latent_programmer.tasks.robust_fill.dataset import input_pipeline gfile = tf.io.gfile sys.path.append('..') class TrainTest(absltest.TestCase): def test_train(self): tf.enable_v2_behavior() tf.random.set_seed(0) np.random.seed(0) random.seed(0) dataset_filepattern = os.path.join( os.path.dirname(__file__), 'tasks/robust_fill/dataset/test_dataset/program_tasks.tf_records-*') print('dataset_filepattern = {}'.format(dataset_filepattern)) batch_size = 4 num_strings_per_task = 4 max_characters = 10 max_program_length = 15 # Build token tables. id_char_table = {i+1: char for (i, char) in enumerate(dsl.CHARACTER)} char_id_table = {char: id for id, char in id_char_table.items()} _, token_id_table = dsl_tokens.build_token_tables() io_vocab_size = len(char_id_table) + 1 # For padding. program_vocab_size = len(token_id_table) + 1 bos_token = token_id_table[dsl.BOS] # Load dataset. dataset = input_pipeline.create_dataset_from_tf_record( dataset_filepattern, token_id_table, char_id_table) dataset = dataset.padded_batch( batch_size, padded_shapes=((num_strings_per_task, max_characters), (num_strings_per_task, max_characters), (max_program_length,)), drop_remainder=True) dataset_iter = dataset.repeat().as_numpy_iterator() train_config = models.TransformerConfig( vocab_size=io_vocab_size, output_vocab_size=program_vocab_size, shift=True, emb_dim=32, num_heads=4, num_layers=2, qkv_dim=32, mlp_dim=32, max_len=max(max_characters, max_program_length), deterministic=False, decode=False, bos_token=bos_token) eval_config = train_config.replace(deterministic=True) rng = jax.random.PRNGKey(0) rng, init_rng = jax.random.split(rng) m = models.ProgramTransformer(eval_config) initial_variables = jax.jit(m.init)( init_rng, jnp.ones((batch_size, num_strings_per_task, max_characters), jnp.float32), jnp.ones((batch_size, num_strings_per_task, max_characters), jnp.float32), jnp.ones((batch_size, max_program_length), jnp.float32)) optimizer_def = optim.Adam( 1e-2, beta1=0.9, beta2=0.98, eps=1e-9, weight_decay=0.1) optimizer = optimizer_def.create(initial_variables['params']) del initial_variables # Don't keep a copy of the initial model. optimizer = jax_utils.replicate(optimizer) learning_rate_fn = train_lib.create_learning_rate_scheduler( base_learning_rate=1e-2) p_train_step = jax.pmap( functools.partial( train_lib.train_step, learning_rate_fn=learning_rate_fn, config=train_config), axis_name='batch') p_eval_step = jax.pmap( functools.partial(train_lib.eval_step, config=eval_config), axis_name='batch') # Training loop. start_step = 0 rngs = jax.random.split(rng, jax.local_device_count()) del rng for _ in range(start_step, 1000): inputs, outputs, programs = common_utils.shard(next(dataset_iter)) optimizer, _, rngs = p_train_step( optimizer, inputs, outputs, programs, train_rng=rngs) # Evaluation. eval_metrics = [] for batches in dataset.as_numpy_iterator(): inputs, outputs, programs = common_utils.shard(batches) metrics = p_eval_step(optimizer.target, inputs, outputs, programs) eval_metrics.append(metrics) eval_metrics = common_utils.get_metrics(eval_metrics) eval_metrics_sums = jax.tree_map(jnp.sum, eval_metrics) eval_denominator = eval_metrics_sums.pop('denominator') eval_summary = jax.tree_map( lambda x: x / eval_denominator, # pylint: disable=cell-var-from-loop eval_metrics_sums) if jax.host_id() == 0: self.assertGreater(eval_summary['accuracy'], 0.1) if __name__ == '__main__': absltest.main()
the-stack_106_13917
from pathlib import Path import time import subprocess import os import stat from abc import ABC, abstractmethod import pypipegraph as ppg from .util import lazy_property, sort_versions _global_store = None def change_global_store(new_store): global _global_store _global_store = new_store def get_global_store(): return _global_store class DownloadDiscrepancyException(ValueError): pass def reproducible_tar(target_tar, folder, cwd): """Create tars that look the same every time.""" # see http://h2.jaguarpaw.co.uk/posts/reproducible-tar/ target_tar = str(target_tar) folder = str(folder) cmd = [ "tar", "--format=posix", "--pax-option=exthdr.name=%d/PaxHeaders/%f,delete=atime,delete=ctime,delete=mtime", "--mtime=1970-01-01 00:00:00Z", "--sort=name", "--numeric-owner", "--owner=0", "--group=0", "--mode=go+rwX,u+rwX", "-cvf", target_tar, folder, ] subprocess.check_call(cmd, cwd=cwd) class ExternalAlgorithm(ABC): """Together with an ExternalAlgorithmStore (or the global one), ExternalAlgorithm encapsulates a callable algorithm such as a high throughput aligner. """ def __init__(self, version="_last_used", store=None, **kwargs): """ Parameters ---------- version: str either one of the available versions from the store, _latest (always the latest!) or _last_used - the last used one, or the newes if this is the first time (stored '.mbf_external_versions' ) """ super().__init__(**kwargs) if store is None: store = _global_store self.store = store if version == "_last_used": actual_version = self._last_used_version if actual_version is None: actual_version = "_latest" else: actual_version = version if actual_version == "_latest": self.version = self.get_latest_version() self._fetch_and_check(self.version) elif actual_version == "_fetching": # pragma: no cover self.version = "_fetching" else: if actual_version in store.get_available_versions(self.name): self.version = actual_version else: self._fetch_and_check(actual_version) self.version = actual_version self._store_used_version() self.path = store.get_unpacked_path(self.name, self.version) @lazy_property def _last_used_version(self): try: lines = Path(".mbf_external_versions").read_text().strip().split("\n") for l in lines: if l.strip(): name, version = l.split("==") if name == self.name: return version except OSError: pass return None def _store_used_version(self): last_used = self._last_used_version if ( last_used is None or sort_versions([last_used, self.version])[0] == last_used ): try: p = Path(".mbf_external_versions") lines = p.read_text().strip().split("\n") lines = [x for x in lines if not x.startswith(self.name + "==")] except OSError: lines = [] lines.append(f"{self.name}=={self.version}") p.write_text("\n".join(lines) + "\n") @property @abstractmethod def name(self): pass # pragma: no cover @abstractmethod def build_cmd(self, output_directory, ncores, arguments): pass # pragma: no cover @property def multi_core(self): return False def run( self, output_directory, arguments=None, cwd=None, call_afterwards=None, additional_files_created=None, ): """Return a job that runs the algorithm and puts the results in output_directory. Note that assigning different ouput_directories to different versions is your problem. """ output_directory = Path(output_directory) output_directory.mkdir(parents=True, exist_ok=True) sentinel = output_directory / "sentinel.txt" filenames = [sentinel] if additional_files_created: if isinstance(additional_files_created, (str, Path)): additional_files_created = [additional_files_created] filenames.extend(additional_files_created) job = ppg.MultiFileGeneratingJob( filenames, self.get_run_func( output_directory, arguments, cwd=cwd, call_afterwards=call_afterwards ), ).depends_on( ppg.FileChecksumInvariant( self.store.get_zip_file_path(self.name, self.version) ), ppg.FunctionInvariant(str(sentinel) + "_call_afterwards", call_afterwards), ) job.ignore_code_changes() job.depends_on( ppg.FunctionInvariant( job.job_id + "_build_cmd_func", self.__class__.build_cmd ) ) if self.multi_core: job.cores_needed = -1 return job def get_run_func(self, output_directory, arguments, cwd=None, call_afterwards=None): def do_run(): self.store.unpack_version(self.name, self.version) sentinel = output_directory / "sentinel.txt" stdout = output_directory / "stdout.txt" stderr = output_directory / "stderr.txt" cmd_out = output_directory / "cmd.txt" op_stdout = open(stdout, "wb") op_stderr = open(stderr, "wb") cmd = [ str(x) for x in self.build_cmd( output_directory, ppg.util.global_pipegraph.rc.cores_available if self.multi_core else 1, arguments, ) ] cmd_out.write_text(repr(cmd)) start_time = time.time() print(" ".join(cmd)) p = subprocess.Popen(cmd, stdout=op_stdout, stderr=op_stderr, cwd=cwd) p.communicate() op_stdout.close() op_stderr.close() ok = self.check_success( p.returncode, stdout.read_bytes(), stderr.read_bytes() ) if ok is True: runtime = time.time() - start_time sentinel.write_text( f"run time: {runtime:.2f} seconds\nreturn code: {p.returncode}" ) if call_afterwards is not None: call_afterwards() else: raise ValueError( f"{self.name} run failed. Error was: {ok}. Cmd was: {cmd}" ) return do_run def check_success(self, return_code, stdout, stderr): if return_code == 0: return True else: return f"Return code != 0: {return_code}" def _fetch_and_check(self, version): if self.store.no_downloads: print("WARNING: Downloads disabled for this store") return target_filename = self.store.get_zip_file_path(self.name, version).absolute() if target_filename.exists(): return self.fetch_version(version, target_filename) try: checksum = ppg.util.checksum_file(target_filename) except OSError: # pragma: no cover raise ValueError("Algorithm did not download correctly") md5_file = target_filename.with_name(target_filename.name + ".md5sum") st = os.stat(target_filename) with open(md5_file, "wb") as op: op.write(checksum.encode("utf-8")) os.utime(md5_file, (st[stat.ST_MTIME], st[stat.ST_MTIME])) self._check_hash_against_others(target_filename, checksum) def _check_hash_against_others(self, target_filename, checksum): """See if another machine has downloaded the file and synced it's mbf_store. If so, look at it's hash. If it differs, throw an Exception""" search_path = self.store.zip_path.absolute().parent.parent.parent print(search_path) search_key = "**/" + self.store.zip_path.name + "/" + target_filename.name by_hash = {checksum: [target_filename]} for found in search_path.glob(search_key): print("found", found) if found != target_filename: cs = ppg.util.checksum_file(found) if not cs in by_hash: by_hash[cs] = [] by_hash[cs].append(found) if len(by_hash) > 1: import pprint pprint.pprint(by_hash) raise DownloadDiscrepancyException( f"Found multiple different {target_filename.name} with different md5sum. Investitage and fix (possibly using reproducible_tar), please." ) def fetch_version(self, version, target_filename): # pragma: no cover # overwrite this in the downstream algorithms raise NotImplementedError() pass class ExternalAlgorithmStore: def __init__(self, zip_path, unpack_path, no_downloads=False): self.zip_path = Path(zip_path) self.unpack_path = Path(unpack_path) self.no_downloads = no_downloads self._version_cache = {} def get_available_versions(self, algorithm_name): if ( not algorithm_name in self._version_cache or not self._version_cache[algorithm_name] ): glob = f"{algorithm_name}__*.tar.gz" matching = list(self.zip_path.glob(glob)) versions = [x.stem[x.stem.find("__") + 2 : -4] for x in matching] self._version_cache[algorithm_name] = sort_versions(versions) return self._version_cache[algorithm_name] def unpack_version(self, algorithm_name, version): if not version in self.get_available_versions(algorithm_name): raise ValueError("No such version") target_path = self.get_unpacked_path(algorithm_name, version) sentinel = target_path / "unpack_done.txt" if sentinel.exists(): return target_path.mkdir(parents=True, exist_ok=True) gzip_path = self.get_zip_file_path(algorithm_name, version) subprocess.check_call(["tar", "-xf", gzip_path], cwd=target_path) sentinel.write_text("Done") def get_unpacked_path(self, algorithm_name, version): return self.unpack_path / algorithm_name / version def get_zip_file_path(self, algorithm_name, version): return self.zip_path / (algorithm_name + "__" + version + ".tar.gz")
the-stack_106_13918
from __future__ import annotations from neo3 import contracts, storage, vm from neo3.network import payloads from neo3.core import types, cryptography, IInteroperable, serialization, to_script_hash from typing import Any, Dict, cast, List, Tuple, Type, Optional, Callable, Union import enum from dataclasses import dataclass from contextlib import suppress class ApplicationEngine(vm.ApplicationEngineCpp): #: Amount of free GAS added to the engine. GAS_FREE = 0 #: Maximum length of event names for "System.Runtime.Notify" SYSCALLs. MAX_EVENT_SIZE = 32 #: Maximum messasge length for "System.Runtime.Log" SYSCALLs. MAX_NOTIFICATION_SIZE = 1024 #: Maximum size of the smart contract script. MAX_CONTRACT_LENGTH = 1024 * 1024 def __init__(self, trigger: contracts.TriggerType, container: payloads.IVerifiable, snapshot: storage.Snapshot, gas: int, test_mode: bool = False ): # Do not use super() version, see # https://pybind11.readthedocs.io/en/master/advanced/classes.html#overriding-virtual-functions-in-python vm.ApplicationEngineCpp.__init__(self, test_mode) #: A ledger snapshot to use for syscalls such as "System.Blockchain.GetHeight". self.snapshot = snapshot #: The trigger to run the engine with. self.trigger = trigger #: A flag to toggle infinite gas self.is_test_mode = test_mode self.script_container = container #: Gas available for consumption by the engine while executing its script. self.gas_amount = self.GAS_FREE + gas self._invocation_counter: Dict[types.UInt160, int] = {} #: Notifications (Notify SYSCALLs) that occured while executing the script. self.notifications: List[Tuple[payloads.IVerifiable, types.UInt160, bytes, vm.ArrayStackItem]] = [] if self.snapshot is None or self.snapshot.persisting_block is None or self.snapshot.persisting_block.index == 0: self.exec_fee_factor = contracts.PolicyContract().DEFAULT_EXEC_FEE_FACTOR self.STORAGE_PRICE = contracts.PolicyContract().DEFAULT_STORAGE_PRICE else: self.exec_fee_factor = contracts.PolicyContract().get_exec_fee_factor(snapshot) self.STORAGE_PRICE = contracts.PolicyContract().get_storage_price(snapshot) self._context_state: Dict[vm.ExecutionContext, contracts.ContractState] = {} from neo3.contracts import interop self.interop = interop def checkwitness(self, hash_: types.UInt160) -> bool: """ Check if the hash is a valid witness for the engines script_container """ with suppress(ValueError): if hash_ == self.calling_scripthash: return True if isinstance(self.script_container, payloads.Transaction): tx = self.script_container response = tx.try_get_attribute(payloads.OracleResponse) if response is None: signers = tx.signers else: signers = [] request = contracts.OracleContract().get_request(self.snapshot, response.id) if request: tmp_tx = contracts.LedgerContract().get_tx_for_contract(self.snapshot, request.original_tx_id) if tmp_tx: signers = tmp_tx.signers for s in signers: if s.account == hash_: signer = s break else: return False if signer.scope == payloads.WitnessScope.GLOBAL: return True if payloads.WitnessScope.CALLED_BY_ENTRY in signer.scope: if self.calling_scripthash == self.entry_scripthash: return True if payloads.WitnessScope.CUSTOM_CONTRACTS in signer.scope: if self.current_scripthash in signer.allowed_contracts: return True if payloads.WitnessScope.CUSTOM_GROUPS in signer.scope: if contracts.CallFlags.READ_STATES not in \ contracts.CallFlags(self.current_context.call_flags): raise ValueError("Context requires callflags ALLOW_STATES") contract = contracts.ManagementContract().get_contract(self.snapshot, self.calling_scripthash) if contract is None: return False group_keys = set(map(lambda g: g.public_key, contract.manifest.groups)) if any(group_keys.intersection(signer.allowed_groups)): return True return False if contracts.CallFlags.READ_STATES not in \ contracts.CallFlags(self.current_context.call_flags): raise ValueError("Context requires callflags ALLOW_STATES") # for other IVerifiable types like Block hashes_for_verifying = self.script_container.get_script_hashes_for_verifying(self.snapshot) return hash_ in hashes_for_verifying def _stackitem_to_native(self, stack_item: vm.StackItem, target_type: Type[object]): # checks for type annotations like `List[bytes]` (similar to byte[][] in C#) if hasattr(target_type, '__origin__') and target_type.__origin__ == list: # type: ignore element_type = target_type.__args__[0] # type: ignore array = [] if isinstance(stack_item, vm.ArrayStackItem): for e in stack_item: array.append(self._convert(e, element_type)) else: count = stack_item.to_biginteger() if count > self.MAX_STACK_SIZE: raise ValueError # mypy bug: https://github.com/python/mypy/issues/9755 for e in range(count): # type: ignore array.append(self._convert(self.pop(), element_type)) return array else: try: return self._convert(stack_item, target_type) except ValueError: if isinstance(stack_item, vm.InteropStackItem): return stack_item.get_object() else: raise def _convert(self, stack_item: vm.StackItem, class_type: Type[object]) -> object: """ convert VM type to native """ if class_type in [vm.StackItem, vm.PointerStackItem, vm.ArrayStackItem, vm.InteropStackItem]: return stack_item elif class_type == int: return int(stack_item.to_biginteger()) elif class_type == vm.BigInteger: return stack_item.to_biginteger() # mypy bug? https://github.com/python/mypy/issues/9756 elif class_type in [bytes, bytearray]: # type: ignore return stack_item.to_array() elif class_type == bool: return stack_item.to_boolean() elif class_type == types.UInt160: return types.UInt160(data=stack_item.to_array()) elif class_type == types.UInt256: return types.UInt256(data=stack_item.to_array()) elif class_type == str: if stack_item == vm.NullStackItem(): return "" return stack_item.to_array().decode() elif class_type == cryptography.ECPoint: return cryptography.ECPoint.deserialize_from_bytes(stack_item.to_array()) elif issubclass(class_type, enum.Enum): if stack_item.get_type() == vm.StackItemType.INTEGER: stack_item = cast(vm.IntegerStackItem, stack_item) # mypy seems to have trouble understanding types that support __int__ return class_type(int(stack_item)) # type: ignore elif stack_item.get_type() == vm.StackItemType.BYTESTRING: stack_item = cast(vm.ByteStringStackItem, stack_item) return class_type(int(stack_item.to_biginteger())) # type: ignore raise ValueError(f"Unknown class type, don't know how to convert: {class_type}") def _native_to_stackitem(self, value, native_type) -> vm.StackItem: """ Convert native type to VM type Note: order of checking matters. e.g. a Transaction should be treated as IInteropable, while its also ISerializable """ if isinstance(value, vm.StackItem): return value elif value is None: return vm.NullStackItem() elif native_type in [int, vm.BigInteger]: return vm.IntegerStackItem(value) elif issubclass(native_type, IInteroperable): value_ = cast(IInteroperable, value) return value_.to_stack_item(self.reference_counter) elif issubclass(native_type, serialization.ISerializable): serializable_value = cast(serialization.ISerializable, value) return vm.ByteStringStackItem(serializable_value.to_array()) # mypy bug? https://github.com/python/mypy/issues/9756 elif native_type in [bytes, bytearray]: # type: ignore return vm.ByteStringStackItem(value) elif native_type == str: return vm.ByteStringStackItem(bytes(value, 'utf-8')) elif native_type == bool: return vm.BooleanStackItem(value) elif issubclass(native_type, (enum.IntFlag, enum.IntEnum)): return self._native_to_stackitem(value.value, int) elif hasattr(native_type, '__origin__') and native_type.__origin__ == Union: # type: ignore # handle typing.Optional[type], Optional is an alias for Union[x, None] # only support specifying 1 type if len(native_type.__args__) != 2: raise ValueError(f"Don't know how to convert native type {native_type} to stackitem") for i in native_type.__args__: if i is None: continue return self._native_to_stackitem(value, native_type) else: raise ValueError # shouldn't be possible, but silences mypy else: return vm.StackItem.from_interface(value) def on_syscall(self, method_id: int) -> Any: """ Handle interop syscalls. Args: method_id: unique syscall identifier. Raise: KeyError: if `method_id` is syscall that is not registered with the engine. ValueError: if the requested syscall handler is called with the wrong call flags. ValueError: if engine stack parameter to native type conversion fails Returns: The result of the syscall handler """ descriptor = self.interop.InteropService.get_descriptor(method_id) if descriptor is None: raise KeyError(f"Requested interop {method_id} is not valid") if descriptor.required_call_flags not in contracts.CallFlags(self.current_context.call_flags): raise ValueError(f"Cannot call {descriptor.method} with {self.current_context.call_flags}") self.add_gas(descriptor.price * self.exec_fee_factor) parameters = [] for target_type in descriptor.parameters: try: item = self.pop() parameters.append(self._stackitem_to_native(item, target_type)) except IndexError: raise ValueError("Failed to pop parameter from stack") except Exception: raise ValueError(f"Failed to convert parameter stack item '{item}' to type '{target_type}'") if len(parameters) > 0: return_value = descriptor.handler(self, *parameters) else: return_value = descriptor.handler(self) if descriptor.has_return_value: self.push(self._native_to_stackitem(return_value, type(return_value))) return return_value def invoke_syscall_by_name(self, method: str) -> Any: """ Helper function to call `on_syscall` using the syscall name. Args: method: full qualified syscall name. e.g. "System.Runtime.Platform" Returns: the result of the syscall handler. e.g. for "System.Runtime.Platform" returns "NEO" """ return self.on_syscall(contracts.syscall_name_to_int(method)) @property def current_scripthash(self) -> types.UInt160: """ Get the script hash of the current executing smart contract Note: a smart contract can call other smart contracts. """ if len(self.current_context.scripthash_bytes) == 0: return to_script_hash(self.current_context.script._value) return types.UInt160(self.current_context.scripthash_bytes) @property def calling_scripthash(self) -> types.UInt160: """ Get the script hash of the smart contract that called the current executing smart contract. Note: a smart contract can call other smart contracts. Raises: ValueError: if the current executing contract has not been called by another contract. """ if len(self.current_context.calling_scripthash_bytes) == 0: raise ValueError("Cannot retrieve calling script_hash - current context has not yet been called") return types.UInt160(self.current_context.calling_scripthash_bytes) @property def entry_scripthash(self) -> types.UInt160: """ Get the script hash of the first smart contract loaded into the engine Note: a smart contract can call other smart contracts. """ if len(self.entry_context.scripthash_bytes) == 0: return to_script_hash(self.entry_context.script._value) return types.UInt160(self.entry_context.scripthash_bytes) def get_invocation_counter(self) -> int: """ Get the number of times the current contract has been called during this execute() run. Note: the counter increases with every "System.Contract.Call" SYSCALL Raises: ValueError: if the contract has not been called. """ counter = self._invocation_counter.get(self.current_scripthash, None) if counter is None: self._invocation_counter.update({self.current_scripthash: 1}) counter = 1 return counter def load_script_with_callflags(self, script: vm.Script, call_flags: contracts.CallFlags, initial_position: int = 0, rvcount: int = -1, contract_state: Optional[contracts.ContractState] = None): context = super(ApplicationEngine, self).load_script(script, rvcount, initial_position) context.call_flags = int(call_flags) if contract_state is not None: self._context_state.update({context: contract_state}) return context def call_from_native(self, calling_scripthash: types.UInt160, hash_: types.UInt160, method: str, args: List[vm.StackItem]) -> None: ctx = self.current_context self._contract_call_internal(hash_, method, contracts.CallFlags.ALL, False, args) self.current_context.calling_scripthash_bytes = calling_scripthash.to_array() while self.current_context != ctx: self.step_out() def step_out(self) -> None: c = len(self.invocation_stack) while self.state != vm.VMState.HALT and self.state != vm.VMState.FAULT and len(self.invocation_stack) >= c: self._execute_next() if self.state == vm.VMState.FAULT: raise ValueError(f"Call from native contract failed: {self.exception_message}") def load_contract(self, contract: contracts.ContractState, method_descriptor: contracts.ContractMethodDescriptor, flags: contracts.CallFlags) -> Optional[vm.ExecutionContext]: rvcount = 0 if method_descriptor.return_type == contracts.ContractParameterType.VOID else 1 context = self.load_script_with_callflags(vm.Script(contract.script), flags, method_descriptor.offset, rvcount, contract) # configure state context.call_flags = int(flags) context.scripthash_bytes = contract.hash.to_array() init = contract.manifest.abi.get_method("_initialize", 0) if init is not None: self.load_context(context.clone(init.offset)) return context def load_token(self, token_id: int) -> vm.ExecutionContext: contract = self._context_state.get(self.current_context, None) if contract is None: raise ValueError("Current context has no contract state") if token_id >= len(contract.nef.tokens): raise ValueError("token_id exceeds available tokens") token = contract.nef.tokens[token_id] if token.parameters_count > len(self.current_context.evaluation_stack): raise ValueError("Token count exceeds available paremeters on evaluation stack") args: List[vm.StackItem] = [] for _ in range(token.parameters_count): args.append(self.pop()) return self._contract_call_internal(token.hash, token.method, token.call_flags, token.has_return_value, args) def call_native(self, name: str) -> None: contract = contracts.ManagementContract().get_contract_by_name(name) if contract is None or contract.active_block_index > self.snapshot.persisting_block.index: raise ValueError contract.invoke(self) def context_unloaded(self, context: vm.ExecutionContext) -> None: self._context_state.pop(context, None) def _contract_call_internal(self, contract_hash: types.UInt160, method: str, flags: contracts.CallFlags, has_return_value: bool, args: List[vm.StackItem]) -> vm.ExecutionContext: target_contract = contracts.ManagementContract().get_contract(self.snapshot, contract_hash) if target_contract is None: raise ValueError("[System.Contract.Call] Can't find target contract") method_descriptor = target_contract.manifest.abi.get_method(method, len(args)) if method_descriptor is None: raise ValueError(f"[System.Contract.Call] Method '{method}' with {len(args)} arguments does not exist on " f"target contract") return self._contract_call_internal2(target_contract, method_descriptor, flags, has_return_value, args) def load_context(self, context: vm.ExecutionContext) -> None: if len(context.scripthash_bytes) == 0: context.scripthash_bytes = to_script_hash(context.script._value).to_array() contract_hash = types.UInt160(data=context.scripthash_bytes) counter = self._invocation_counter.get(contract_hash, 0) self._invocation_counter.update({contract_hash: counter + 1}) super(ApplicationEngine, self).load_context(context) def _contract_call_internal2(self, target_contract: contracts.ContractState, method_descriptor: contracts.ContractMethodDescriptor, flags: contracts.CallFlags, has_return_value: bool, args: List[vm.StackItem]): if method_descriptor.safe: flags &= ~contracts.CallFlags.WRITE_STATES else: current_contract = contracts.ManagementContract().get_contract(self.snapshot, self.current_scripthash) if current_contract and not current_contract.can_call(target_contract, method_descriptor.name): raise ValueError( f"[System.Contract.Call] Not allowed to call target method '{method_descriptor.name}' according " f"to manifest") counter = self._invocation_counter.get(target_contract.hash, 0) self._invocation_counter.update({target_contract.hash: counter + 1}) state = self.current_context calling_script_hash_bytes = state.scripthash_bytes calling_flags = state.call_flags arg_len = len(args) expected_len = len(method_descriptor.parameters) if arg_len != expected_len: raise ValueError( f"[System.Contract.Call] Invalid number of contract arguments. Expected {expected_len} actual {arg_len}") # noqa if has_return_value ^ (method_descriptor.return_type != contracts.ContractParameterType.VOID): raise ValueError("Return value type does not match") context_new = self.load_contract(target_contract, method_descriptor, flags & calling_flags) if context_new is None: raise ValueError context_new.calling_scripthash_bytes = calling_script_hash_bytes for item in reversed(args): context_new.evaluation_stack.push(item) if contracts.NativeContract.is_native(target_contract.hash): context_new.evaluation_stack.push(vm.ByteStringStackItem(method_descriptor.name.encode('utf-8'))) return context_new
the-stack_106_13919
# Copyright 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.api.identity import base from tempest import config from tempest.lib.common.utils import data_utils from tempest.lib.common.utils import test_utils from tempest.lib import decorators from tempest.lib import exceptions as lib_exc from tempest import test CONF = config.CONF class RolesV3TestJSON(base.BaseIdentityV3AdminTest): @classmethod def resource_setup(cls): super(RolesV3TestJSON, cls).resource_setup() cls.roles = list() for _ in range(3): role_name = data_utils.rand_name(name='role') role = cls.roles_client.create_role(name=role_name)['role'] cls.roles.append(role) cls.fetched_role_ids = list() u_name = data_utils.rand_name('user') u_desc = '%s description' % u_name u_email = '%[email protected]' % u_name cls.u_password = data_utils.rand_password() cls.domain = cls.domains_client.create_domain( name=data_utils.rand_name('domain'), description=data_utils.rand_name('domain-desc'))['domain'] cls.project = cls.projects_client.create_project( data_utils.rand_name('project'), description=data_utils.rand_name('project-desc'), domain_id=cls.domain['id'])['project'] cls.group_body = cls.groups_client.create_group( name=data_utils.rand_name('Group'), project_id=cls.project['id'], domain_id=cls.domain['id'])['group'] cls.user_body = cls.users_client.create_user( name=u_name, description=u_desc, password=cls.u_password, email=u_email, project_id=cls.project['id'], domain_id=cls.domain['id'])['user'] cls.role = cls.roles_client.create_role( name=data_utils.rand_name('Role'))['role'] @classmethod def resource_cleanup(cls): cls.roles_client.delete_role(cls.role['id']) cls.groups_client.delete_group(cls.group_body['id']) cls.users_client.delete_user(cls.user_body['id']) cls.projects_client.delete_project(cls.project['id']) # NOTE(harika-vakadi): It is necessary to disable the domain # before deleting,or else it would result in unauthorized error cls.domains_client.update_domain(cls.domain['id'], enabled=False) cls.domains_client.delete_domain(cls.domain['id']) for role in cls.roles: cls.roles_client.delete_role(role['id']) super(RolesV3TestJSON, cls).resource_cleanup() def _list_assertions(self, body, fetched_role_ids, role_id): self.assertEqual(len(body), 1) self.assertIn(role_id, fetched_role_ids) @test.attr(type='smoke') @decorators.idempotent_id('18afc6c0-46cf-4911-824e-9989cc056c3a') def test_role_create_update_show_list(self): r_name = data_utils.rand_name('Role') role = self.roles_client.create_role(name=r_name)['role'] self.addCleanup(self.roles_client.delete_role, role['id']) self.assertIn('name', role) self.assertEqual(role['name'], r_name) new_name = data_utils.rand_name('NewRole') updated_role = self.roles_client.update_role(role['id'], name=new_name)['role'] self.assertIn('name', updated_role) self.assertIn('id', updated_role) self.assertIn('links', updated_role) self.assertNotEqual(r_name, updated_role['name']) new_role = self.roles_client.show_role(role['id'])['role'] self.assertEqual(new_name, new_role['name']) self.assertEqual(updated_role['id'], new_role['id']) roles = self.roles_client.list_roles()['roles'] self.assertIn(role['id'], [r['id'] for r in roles]) @decorators.idempotent_id('c6b80012-fe4a-498b-9ce8-eb391c05169f') def test_grant_list_revoke_role_to_user_on_project(self): self.roles_client.create_user_role_on_project(self.project['id'], self.user_body['id'], self.role['id']) roles = self.roles_client.list_user_roles_on_project( self.project['id'], self.user_body['id'])['roles'] for i in roles: self.fetched_role_ids.append(i['id']) self._list_assertions(roles, self.fetched_role_ids, self.role['id']) self.roles_client.check_user_role_existence_on_project( self.project['id'], self.user_body['id'], self.role['id']) self.roles_client.delete_role_from_user_on_project( self.project['id'], self.user_body['id'], self.role['id']) @decorators.idempotent_id('6c9a2940-3625-43a3-ac02-5dcec62ef3bd') def test_grant_list_revoke_role_to_user_on_domain(self): self.roles_client.create_user_role_on_domain( self.domain['id'], self.user_body['id'], self.role['id']) roles = self.roles_client.list_user_roles_on_domain( self.domain['id'], self.user_body['id'])['roles'] for i in roles: self.fetched_role_ids.append(i['id']) self._list_assertions(roles, self.fetched_role_ids, self.role['id']) self.roles_client.check_user_role_existence_on_domain( self.domain['id'], self.user_body['id'], self.role['id']) self.roles_client.delete_role_from_user_on_domain( self.domain['id'], self.user_body['id'], self.role['id']) @decorators.idempotent_id('cbf11737-1904-4690-9613-97bcbb3df1c4') def test_grant_list_revoke_role_to_group_on_project(self): # Grant role to group on project self.roles_client.create_group_role_on_project( self.project['id'], self.group_body['id'], self.role['id']) # List group roles on project roles = self.roles_client.list_group_roles_on_project( self.project['id'], self.group_body['id'])['roles'] for i in roles: self.fetched_role_ids.append(i['id']) self._list_assertions(roles, self.fetched_role_ids, self.role['id']) # Add user to group, and insure user has role on project self.groups_client.add_group_user(self.group_body['id'], self.user_body['id']) self.addCleanup(self.groups_client.delete_group_user, self.group_body['id'], self.user_body['id']) body = self.token.auth(user_id=self.user_body['id'], password=self.u_password, user_domain_name=self.domain['name'], project_name=self.project['name'], project_domain_name=self.domain['name']) roles = body['token']['roles'] self.assertEqual(len(roles), 1) self.assertEqual(roles[0]['id'], self.role['id']) self.roles_client.check_role_from_group_on_project_existence( self.project['id'], self.group_body['id'], self.role['id']) # Revoke role to group on project self.roles_client.delete_role_from_group_on_project( self.project['id'], self.group_body['id'], self.role['id']) @decorators.idempotent_id('4bf8a70b-e785-413a-ad53-9f91ce02faa7') def test_grant_list_revoke_role_to_group_on_domain(self): self.roles_client.create_group_role_on_domain( self.domain['id'], self.group_body['id'], self.role['id']) roles = self.roles_client.list_group_roles_on_domain( self.domain['id'], self.group_body['id'])['roles'] for i in roles: self.fetched_role_ids.append(i['id']) self._list_assertions(roles, self.fetched_role_ids, self.role['id']) self.roles_client.check_role_from_group_on_domain_existence( self.domain['id'], self.group_body['id'], self.role['id']) self.roles_client.delete_role_from_group_on_domain( self.domain['id'], self.group_body['id'], self.role['id']) @decorators.idempotent_id('f5654bcc-08c4-4f71-88fe-05d64e06de94') def test_list_roles(self): # Return a list of all roles body = self.roles_client.list_roles()['roles'] found = [role for role in body if role in self.roles] self.assertEqual(len(found), len(self.roles)) def _create_implied_role(self, prior_role_id, implies_role_id, ignore_not_found=False): self.roles_client.create_role_inference_rule( prior_role_id, implies_role_id) if ignore_not_found: self.addCleanup( test_utils.call_and_ignore_notfound_exc, self.roles_client.delete_role_inference_rule, prior_role_id, implies_role_id) else: self.addCleanup( self.roles_client.delete_role_inference_rule, prior_role_id, implies_role_id) @decorators.idempotent_id('c90c316c-d706-4728-bcba-eb1912081b69') def test_implied_roles_create_delete(self): prior_role_id = self.roles[0]['id'] implies_role_id = self.roles[1]['id'] # Create an inference rule from prior_role to implies_role self._create_implied_role(prior_role_id, implies_role_id, ignore_not_found=True) # Check if the inference rule exists self.roles_client.show_role_inference_rule( prior_role_id, implies_role_id) # Delete the inference rule self.roles_client.delete_role_inference_rule( prior_role_id, implies_role_id) # Check if the inference rule no longer exists self.assertRaises( lib_exc.NotFound, self.roles_client.show_role_inference_rule, prior_role_id, implies_role_id) @decorators.idempotent_id('dc6f5959-b74d-4e30-a9e5-a8255494ff00') def test_roles_hierarchy(self): # Create inference rule from "roles[0]" to "role[1]" self._create_implied_role( self.roles[0]['id'], self.roles[1]['id']) # Create inference rule from "roles[0]" to "role[2]" self._create_implied_role( self.roles[0]['id'], self.roles[2]['id']) # Create inference rule from "roles[2]" to "role" self._create_implied_role( self.roles[2]['id'], self.role['id']) # Listing inferences rules from "roles[2]" should only return "role" rules = self.roles_client.list_role_inferences_rules( self.roles[2]['id'])['role_inference'] self.assertEqual(1, len(rules['implies'])) self.assertEqual(self.role['id'], rules['implies'][0]['id']) # Listing inferences rules from "roles[0]" should return "roles[1]" and # "roles[2]" (only direct rules are listed) rules = self.roles_client.list_role_inferences_rules( self.roles[0]['id'])['role_inference'] implies_ids = [role['id'] for role in rules['implies']] self.assertEqual(2, len(implies_ids)) self.assertIn(self.roles[1]['id'], implies_ids) self.assertIn(self.roles[2]['id'], implies_ids) @decorators.idempotent_id('c8828027-df48-4021-95df-b65b92c7429e') def test_assignments_for_implied_roles_create_delete(self): # Create a grant using "roles[0]" self.roles_client.create_user_role_on_project( self.project['id'], self.user_body['id'], self.roles[0]['id']) self.addCleanup( self.roles_client.delete_role_from_user_on_project, self.project['id'], self.user_body['id'], self.roles[0]['id']) # Create an inference rule from "roles[0]" to "roles[1]" self._create_implied_role(self.roles[0]['id'], self.roles[1]['id'], ignore_not_found=True) # In the effective list of role assignments, both prior role and # implied role should be present. This means that a user can # authenticate using both roles (both roles will be present # in the token). params = {'scope.project.id': self.project['id'], 'user.id': self.user_body['id']} role_assignments = self.role_assignments.list_role_assignments( effective=True, **params)['role_assignments'] self.assertEqual(2, len(role_assignments)) roles_ids = [assignment['role']['id'] for assignment in role_assignments] self.assertIn(self.roles[0]['id'], roles_ids) self.assertIn(self.roles[1]['id'], roles_ids) # After deleting the implied role, only the assignment with "roles[0]" # should be present. self.roles_client.delete_role_inference_rule( self.roles[0]['id'], self.roles[1]['id']) role_assignments = self.role_assignments.list_role_assignments( effective=True, **params)['role_assignments'] self.assertEqual(1, len(role_assignments)) roles_ids = [assignment['role']['id'] for assignment in role_assignments] self.assertIn(self.roles[0]['id'], roles_ids) @decorators.idempotent_id('d92a41d2-5501-497a-84bb-6e294330e8f8') def test_domain_roles_create_delete(self): domain_role = self.roles_client.create_role( name=data_utils.rand_name('domain_role'), domain_id=self.domain['id'])['role'] self.addCleanup( test_utils.call_and_ignore_notfound_exc, self.roles_client.delete_role, domain_role['id']) domain_roles = self.roles_client.list_roles( domain_id=self.domain['id'])['roles'] self.assertEqual(1, len(domain_roles)) self.assertIn(domain_role, domain_roles) self.roles_client.delete_role(domain_role['id']) domain_roles = self.roles_client.list_roles( domain_id=self.domain['id'])['roles'] self.assertEmpty(domain_roles) @decorators.idempotent_id('eb1e1c24-1bc4-4d47-9748-e127a1852c82') def test_implied_domain_roles(self): # Create two roles in the same domain domain_role1 = self.setup_test_role(domain_id=self.domain['id']) domain_role2 = self.setup_test_role(domain_id=self.domain['id']) # Check if we can create an inference rule from roles in the same # domain self._create_implied_role(domain_role1['id'], domain_role2['id']) # Create another role in a different domain domain2 = self.setup_test_domain() domain_role3 = self.setup_test_role(domain_id=domain2['id']) # Check if we can create cross domain implied roles self._create_implied_role(domain_role1['id'], domain_role3['id']) # Finally, we also should be able to create an implied from a # domain role to a global one self._create_implied_role(domain_role1['id'], self.role['id']) if CONF.identity_feature_enabled.forbid_global_implied_dsr: # The contrary is not true: we can't create an inference rule # from a global role to a domain role self.assertRaises( lib_exc.Forbidden, self.roles_client.create_role_inference_rule, self.role['id'], domain_role1['id']) @decorators.idempotent_id('3859df7e-5b78-4e4d-b10e-214c8953842a') def test_assignments_for_domain_roles(self): domain_role = self.setup_test_role(domain_id=self.domain['id']) # Create a grant using "domain_role" self.roles_client.create_user_role_on_project( self.project['id'], self.user_body['id'], domain_role['id']) self.addCleanup( self.roles_client.delete_role_from_user_on_project, self.project['id'], self.user_body['id'], domain_role['id']) # NOTE(rodrigods): Regular roles would appear in the effective # list of role assignments (meaning the role would be returned in # a token) as a result from the grant above. This is not the case # for domain roles, they should not appear in the effective role # assignments list. params = {'scope.project.id': self.project['id'], 'user.id': self.user_body['id']} role_assignments = self.role_assignments.list_role_assignments( effective=True, **params)['role_assignments'] self.assertEmpty(role_assignments) @decorators.idempotent_id('3748c316-c18f-4b08-997b-c60567bc6235') def test_list_all_implied_roles(self): # Create inference rule from "roles[0]" to "roles[1]" self._create_implied_role( self.roles[0]['id'], self.roles[1]['id']) # Create inference rule from "roles[0]" to "roles[2]" self._create_implied_role( self.roles[0]['id'], self.roles[2]['id']) # Create inference rule from "roles[2]" to "role" self._create_implied_role( self.roles[2]['id'], self.role['id']) rules = self.roles_client.list_all_role_inference_rules()[ 'role_inferences'] # Sort the rules by the number of inferences, since there should be 1 # inference between "roles[2]" and "role" and 2 inferences for # "roles[0]": between "roles[1]" and "roles[2]". sorted_rules = sorted(rules, key=lambda r: len(r['implies'])) # Check that 2 sets of rules are returned. self.assertEqual(2, len(sorted_rules)) # Check that only 1 inference rule exists between "roles[2]" and "role" self.assertEqual(1, len(sorted_rules[0]['implies'])) # Check that 2 inference rules exist for "roles[0]": one between # "roles[1]" and one between "roles[2]". self.assertEqual(2, len(sorted_rules[1]['implies'])) # Check that "roles[2]" is the "prior_role" and that "role" is the # "implies" role. self.assertEqual(self.roles[2]['id'], sorted_rules[0]['prior_role']['id']) self.assertEqual(self.role['id'], sorted_rules[0]['implies'][0]['id']) # Check that "roles[0]" is the "prior_role" and that "roles[1]" and # "roles[2]" are the "implies" roles. self.assertEqual(self.roles[0]['id'], sorted_rules[1]['prior_role']['id']) implies_ids = [r['id'] for r in sorted_rules[1]['implies']] self.assertIn(self.roles[1]['id'], implies_ids) self.assertIn(self.roles[2]['id'], implies_ids)
the-stack_106_13925
# # This file is a command-module for Dragonfly. # (c) Copyright 2008 by Christo Butcher # Licensed under the LGPL, see <http://www.gnu.org/licenses/> # """ Command-module for **taskbar** and icon tray access =================================================== This file implements commands for controlling tasks on the taskbar and icons in the icon tray. Commands -------- Command: **"[open | switch to] task <number>"** Open the specified task on the taskbar. The *<number>* extra is a number (1, 2, ...) designating which task to activate. The application on the taskbar which is closest to the "Start" button is task *number 1*. The next is *number 2*, and so on. This works for both horizontal and vertical taskbars. Command: **"<action> task <number>"** Similar to the command above, but performs some action under specified task. The following actions are available: - **"(menu | pop up)"** -- show the pop-up menu of the task, as if a right-click was done on the taskbar. - **"(maximize | max)"** -- maximize the task. - **"(minimize | min)"** -- minimize the task. - **"restore"** -- restore the task. - **"close"** -- close the task. Command: **"[open] icon <number>"** Open the specified icon in the icon tray. The *<number>* extra is a number (1, 2, ...) designating which icon to activate. The numbering is similar to that explained above for tasks on the taskbar. Command: **"(menu | pop up) icon <number>"** Pop-up the menu for the specified icon in the icon tray. Usage examples -------------- Several concrete usage examples of the commands described above: - Say **"task 4"** to bring the fourth application on the taskbar to the foreground. - Say **"close task 2"** to close the second application on the taskbar. - Say **"icon 1"** to activate the first icon visible in the icon tray, as if it was double-clicked. - Say **"pop up icon 3"** to bring up the menu of the third icon visible in the icon tray, as if it was right-clicked. """ import pkg_resources pkg_resources.require("dragonfly >= 0.6.5beta1.dev-r76") from dragonfly import * #--------------------------------------------------------------------------- # This rule controls tasks on the taskbar. class TaskRule(MappingRule): mapping = { "[open | switch to] task <n>": Key("space"), "(menu | pop up) task <n>": Key("apps"), "close task <n>": Key("apps/10, c"), "restore task <n>": Key("apps/10, r"), "(minimize | min) task <n>": Key("apps/10, n"), "(maximize | max) task <n>": Key("apps/10, x"), } extras = [IntegerRef("n", 1, 12)] def _process_recognition(self, value, extras): count = extras["n"] - 1 action = Key("w-b/10, s-tab/10, right:%d/10" % count) + value action.execute() #--------------------------------------------------------------------------- # This rule controls icons in the icon tray. class IconRule(MappingRule): mapping = { "[open] icon <n>": Key("enter"), "(menu | pop up) icon <n>": Key("apps"), } extras = [IntegerRef("n", 1, 12)] def _process_recognition(self, value, extras): count = extras["n"] - 1 action = Key("w-b/10, right:%d/10" % count) + value action.execute() #--------------------------------------------------------------------------- # Load the grammar instance and define how to unload it. grammar = Grammar("taskbar") grammar.add_rule(TaskRule()) grammar.add_rule(IconRule()) grammar.load() # Unload function which will be called by natlink at unload time. def unload(): global grammar if grammar: grammar.unload() grammar = None
the-stack_106_13927
import re import logging import binascii import struct from . import register_backend, Backend from ..errors import CLEError l = logging.getLogger(name=__name__) __all__ = ('Hex',) intel_hex_re = re.compile(b":([0-9a-fA-F][0-9a-fA-F])([0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F])" b"([0-9a-fA-F][0-9a-fA-F])([0-9a-fA-F][0-9a-fA-F]+)*([0-9a-fA-F][0-9a-fA-F])") HEX_TYPE_DATA = 0x00 HEX_TYPE_EOF = 0x01 HEX_TYPE_EXTSEGADDR = 0x02 HEX_TYPE_STARTSEGADDR = 0x03 HEX_TYPE_EXTLINEARADDR = 0x04 HEX_TYPE_STARTLINEARADDR = 0x05 if bytes is not str: chh = lambda x: x else: chh = ord class Hex(Backend): """ A loader for Intel Hex Objects See https://en.wikipedia.org/wiki/Intel_HEX """ is_default = True # Tell CLE to automatically consider using the Hex backend @staticmethod def parse_record(line): m = intel_hex_re.match(line) if not m: raise CLEError("Invalid HEX record: " + line) my_cksum = 0 count, addr, rectype, data, cksum = m.groups() cksum = int(cksum, 16) for d in binascii.unhexlify(line[1:-2]): my_cksum = (my_cksum + chh(d)) % 256 my_cksum = ((my_cksum ^ 0xff) + 1) % 256 if my_cksum != cksum: raise CLEError("Invalid checksum: Computed %s, found %s" % (hex(my_cksum), hex(cksum))) count = int(count, 16) addr = int(addr, 16) rectype = int(rectype, 16) if data: data = binascii.unhexlify(data) if data and count != len(data): raise CLEError("Data length field does not match length of actual data: " + line) return rectype, addr, data @staticmethod def coalesce_regions(regions): # Lots of tiny memory regions is bad! # The greedy algorithm to smash them together: result = [] for addr, region in sorted(regions): if result and result[-1][0] + len(result[-1][1]) == addr: result[-1] = (result[-1][0], result[-1][1] + region) else: result.append((addr, region)) return result def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.arch is None: raise CLEError("To use the Hex binary backend, you need to specify an architecture in the loader options.") # Do the whole thing in one shot. self.os = 'unknown' got_base = False got_entry = False self._binary_stream.seek(0) string = self._binary_stream.read() recs = string.splitlines() regions = [] max_addr = 0 min_addr = 0xffffffffffffffff self._base_address = 0 for rec in recs: rectype, addr, data = Hex.parse_record(rec) if rectype == HEX_TYPE_DATA: addr += self._base_address #l.debug("Loading %d bytes at " % len(data) + hex(addr)) # Raw data. Put the bytes regions.append((addr, data)) # We have to be careful about the min and max addrs if addr < min_addr: min_addr = addr max_addr = max(max_addr, addr + len(data) - 1) elif rectype == HEX_TYPE_EOF: # EOF l.debug("Got EOF record.") break elif rectype == HEX_TYPE_EXTSEGADDR: # "Extended Mode" Segment address, take this value, multiply by 16, make the base self._base_address = struct.unpack('>H', data)[0] * 16 got_base = True l.debug("Loading a segment at %#x", self._base_address) elif rectype == HEX_TYPE_STARTSEGADDR: # Four bytes, the segment and the initial IP got_base = True got_entry = True self._initial_cs, self._initial_ip = struct.unpack('>HH', data) # The whole thing is the entry, as far as angr is concerned. self._entry = struct.unpack('>I', data)[0] l.debug("Got entry point at %#x", self._entry) elif rectype == HEX_TYPE_EXTLINEARADDR: got_base = True # Specifies the base for all future data bytes. self._base_address = struct.unpack('>H', data)[0] << 16 l.debug("Loading a segment at %#x", self._base_address) elif rectype == HEX_TYPE_STARTLINEARADDR: got_entry = True # The 32-bit EIP, really the same as STARTSEGADDR, but some compilers pick one over the other. self._entry = struct.unpack('>I', data)[0] l.debug("Found entry point at %#x", self._entry) self._initial_eip = self._entry else: raise CLEError("This HEX Object type is not implemented: " + hex(rectype)) if not got_base: l.warning("No base address was found in this HEX object file. It is assumed to be 0") if not got_entry: l.warning("No entry point was found in this HEX object file, and it is assumed to be 0. " "Specify one with `entry_point` to override.") # HEX specifies a ton of tiny little memory regions. We now smash them together to make things faster. new_regions = Hex.coalesce_regions(regions) for addr, data in new_regions: self.memory.add_backer(addr, data) self._max_addr = max_addr self._min_addr = min_addr @staticmethod def is_compatible(stream): stream.seek(0) s = stream.read(0x10) stream.seek(0) return s.startswith(b":") register_backend("hex", Hex)
the-stack_106_13929
from typing import Dict, List, Optional, Any, Union from pydantic import BaseModel, validator from tracardi.service.plugin.domain.register import Plugin, Spec, MetaData, Documentation, PortDoc from tracardi.service.plugin.domain.result import Result from tracardi.service.plugin.runner import ActionRunner from tracardi.domain.event import Event from tracardi.domain.profile import Profile from tracardi.domain.session import Session class Configuration(BaseModel): append: Optional[Dict[str, Any]] = {} remove: Optional[Dict[str, Union[Any, List[Any]]]] = {} @validator("remove") def validate_remove(cls, value, values): if 'append' not in values and 'remove' not in values: raise ValueError("Please define `append` or `remove` in config section.") return value def validate(config: dict): return Configuration(**config) class AppendTraitAction(ActionRunner): def __init__(self, **kwargs): self.config = validate(kwargs) async def run(self, payload: dict): dot = self._get_dot_accessor(payload if isinstance(payload, dict) else None) for destination, value in self.config.append.items(): value = dot[value] if destination in dot: if not isinstance(dot[destination], list): # Make it a list with original value dot[destination] = [dot[destination]] if value not in dot[destination]: dot[destination].append(value) else: dot[destination] = value for destination, value in self.config.remove.items(): value = dot[value] if destination in dot: if not isinstance(dot[destination], list): raise ValueError("Can not remove from non-list data.") if isinstance(value, list): for v in value: if v in dot[destination]: dot[destination].remove(v) elif value in dot[destination]: dot[destination].remove(value) if self.event.metadata.profile_less is False: if not isinstance(dot.profile['traits']['private'], dict): raise ValueError("Error when appending [email protected] to value `{}`. " "Private must have key:value pair. " "E.g. `name`: `{}`".format(dot.profile['traits']['private'], dot.profile['traits']['private'])) if not isinstance(dot.profile['traits']['public'], dict): raise ValueError( "Error when appending [email protected] to value `{}`. Public must have key:value pair. " "E.g. `name`: `{}`".format(dot.profile['traits']['public'], dot.profile['traits']['public'])) profile = Profile(**dot.profile) self.profile.replace(profile) else: if dot.profile: self.console.warning("Profile changes were discarded in node `Append/Remove Trait`. " "This event is profile less so there is no profile.") event = Event(**dot.event) self.event.replace(event) if 'id' in dot.session: session = Session(**dot.session) self.session.replace(session) return Result(port="payload", value=payload) def register() -> Plugin: return Plugin( start=False, spec=Spec( module='tracardi.process_engine.action.v1.traits.append_trait_action', className='AppendTraitAction', inputs=['payload'], outputs=["payload"], init={ "append": { "target1": "source1", "target2": "source2", }, "remove": { "target": ["item1", "item2"] } }, version='0.1', license="MIT", author="Risto Kowaczewski" ), metadata=MetaData( name='Append/Remove Trait', desc='Appends/Removes trait to/from existing profile trait.', icon='append', group=["Data processing"], documentation=Documentation( inputs={ "payload": PortDoc(desc="This port takes any JSON-like object.") }, outputs={ "payload": PortDoc(desc="This port returns given payload with traits appended or removed according" " to configuration.") } ) ) )
the-stack_106_13931
from setuptools import setup, find_packages from ftp_v5.version import version def requirements(): with open('requirements', 'rt') as fin: requirements = [line.strip() for line in fin] return requirements print(find_packages()) setup( name='cos-ftp-server-v5', version=version, author='COS team', author_email='[email protected]', maintainer='iainyu', maintainer_email='[email protected]', url='https://cloud.tencent.com/product/cos', license='MIT', description='The ftp gateway for cos service,supporting the multi bucket.', packages=find_packages(), install_requires=requirements(), include_package_data=True )
the-stack_106_13932
import json from django.core.urlresolvers import reverse from django.test import TestCase, Client from reddit.models import Submission, Comment, Vote from users.models import RedditUser from django.contrib.auth.models import User from django.utils.crypto import get_random_string from django.http import HttpResponseNotAllowed, HttpResponseBadRequest class TestViewingThreadComments(TestCase): def setUp(self): self.c = Client() self.credentials = {'username': 'username', 'password': 'password'} author = RedditUser.objects.create( user=User.objects.create_user(**self.credentials) ) submission = Submission.objects.create( id=1, score=1, title=get_random_string(length=12), author=author ) for _ in range(3): Comment.objects.create( author_name=author.user.username, author=author, submission=submission, html_comment="root comment" ) # Add some replies parent = Comment.objects.get(id=1) for _ in range(2): Comment.objects.create( author_name=author.user.username, author=author, submission=submission, parent=parent, html_comment="reply comment" ) # add upvote to one root comment, Vote.create( user=author, vote_object=Comment.objects.get(id=1), vote_value=1 ).save() # and downvote to one reply comment Vote.create( user=author, vote_object=Comment.objects.get(id=5), vote_value=-1 ).save() # add upvote to the submission Vote.create( user=author, vote_object=submission, vote_value=1 ).save() def test_valid_public_comment_view(self): self.c.logout() r = self.c.get(reverse('thread', args=(1,))) submission = Submission.objects.get(id=1) self.assertEqual(r.status_code, 200) self.assertEqual(r.context['submission'], submission) self.assertEqual(len(r.context['comments']), 5) self.assertContains(r, 'root comment', count=3) self.assertContains(r, 'reply comment', count=2) self.assertEqual(r.context['comment_votes'], {}) self.assertIsNone(r.context['sub_vote']) def test_comment_votes(self): self.c.login(**self.credentials) r = self.c.get(reverse('thread', args=(1,))) self.assertEqual(r.status_code, 200) self.assertEqual(r.context['sub_vote'], 1) self.assertEqual(r.context['comment_votes'], {1: 1, 5: -1}) self.assertContains(r, 'root comment', count=3) self.assertContains(r, 'reply comment', count=2) def test_invalid_thread_id(self): r = self.c.get(reverse('thread', args=(123,))) self.assertEqual(r.status_code, 404) class TestPostingComment(TestCase): def setUp(self): self.c = Client() self.credentials = {'username': 'commentposttest', 'password': 'password'} author = RedditUser.objects.create( user=User.objects.create_user(**self.credentials) ) Submission.objects.create( id=99, score=1, title=get_random_string(length=12), author=author ) def test_post_only(self): r = self.c.get(reverse('post_comment')) self.assertIsInstance(r, HttpResponseNotAllowed) def test_logged_out(self): r = self.c.post(reverse('post_comment')) self.assertEqual(r.status_code, 200) json_response = json.loads(r.content.decode("utf-8")) self.assertEqual(json_response['msg'], "You need to log in to post new comments.") def test_missing_type_or_id(self): self.c.login(**self.credentials) for key in ['parentType', 'parentId']: r = self.c.post(reverse('post_comment'), data={key: 'comment'}) self.assertIsInstance(r, HttpResponseBadRequest) r = self.c.post(reverse('post_comment'), data={'parentType': 'InvalidType', 'parentId': 1}) self.assertIsInstance(r, HttpResponseBadRequest) def test_no_comment_text(self): self.c.login(**self.credentials) test_data = { 'parentType': 'submission', 'parentId': 1, 'commentContent': '' } r = self.c.post(reverse('post_comment'), data=test_data) self.assertEqual(r.status_code, 200) json_response = json.loads(r.content.decode("utf-8")) self.assertEqual(json_response['msg'], 'You have to write something.') def test_invalid_or_wrong_parent_id(self): self.c.login(**self.credentials) test_data = { 'parentType': 'submission', 'parentId': 'invalid', 'commentContent': 'content' } r = self.c.post(reverse('post_comment'), data=test_data) self.assertIsInstance(r, HttpResponseBadRequest) test_data = { 'parentType': 'submission', 'parentId': 9999, 'commentContent': 'content' } r = self.c.post(reverse('post_comment'), data=test_data) self.assertIsInstance(r, HttpResponseBadRequest) test_data = { 'parentType': 'comment', 'parentId': 9999, 'commentContent': 'content' } r = self.c.post(reverse('post_comment'), data=test_data) self.assertIsInstance(r, HttpResponseBadRequest) def test_valid_comment_posting_thread(self): self.c.login(**self.credentials) test_data = { 'parentType': 'submission', 'parentId': 99, 'commentContent': 'thread root comment' } r = self.c.post(reverse('post_comment'), data=test_data) self.assertEqual(r.status_code, 200) json_r = json.loads(r.content.decode("utf-8")) self.assertEqual(json_r['msg'], 'Your comment has been posted.') all_comments = Comment.objects.filter( submission=Submission.objects.get(id=99) ) self.assertEqual(all_comments.count(), 1) comment = all_comments.first() self.assertEqual(comment.html_comment, '<p>thread root comment</p>\n') self.assertEqual(comment.author.user.username, self.credentials['username']) def test_valid_comment_posting_reply(self): self.c.login(**self.credentials) thread = Submission.objects.get(id=99) author = RedditUser.objects.get(user=User.objects.get( username=self.credentials['username'] )) comment = Comment.create(author, 'root comment', thread) comment.save() self.assertEqual(Comment.objects.filter(submission=thread).count(), 1) test_data = { 'parentType': 'comment', 'parentId': comment.id, 'commentContent': 'thread reply comment', 'comment_count': 5 } r = self.c.post(reverse('post_comment'), data=test_data) self.assertEqual(r.status_code, 200) json_r = json.loads(r.content.decode("utf-8")) self.assertEqual(json_r['msg'], 'Your comment has been posted.') self.assertEqual(Comment.objects.filter(submission=thread).count(), 2) comment = Comment.objects.filter(submission=thread, id=2).first() self.assertEqual(comment.html_comment, '<p>thread reply comment</p>\n')
the-stack_106_13933
from collections import defaultdict import json import logging import sys import time import ray from ray import gcs_utils from google.protobuf.json_format import MessageToDict from ray._private import services from ray.utils import (decode, binary_to_hex, hex_to_binary) from ray._raylet import GlobalStateAccessor logger = logging.getLogger(__name__) class GlobalState: """A class used to interface with the Ray control state. # TODO(zongheng): In the future move this to use Ray's redis module in the # backend to cut down on # of request RPCs. Attributes: redis_client: The Redis client used to query the primary redis server. redis_clients: Redis clients for each of the Redis shards. global_state_accessor: The client used to query gcs table from gcs server. """ def __init__(self): """Create a GlobalState object.""" # Args used for lazy init of this object. self.redis_address = None self.redis_password = None # The redis server storing metadata, such as function table, client # table, log files, event logs, workers/actions info. self.redis_client = None # Clients for the redis shards, storing the object table & task table. self.redis_clients = None self.global_state_accessor = None def _check_connected(self): """Ensure that the object has been initialized before it is used. This lazily initializes clients needed for state accessors. Raises: RuntimeError: An exception is raised if ray.init() has not been called yet. """ if self.redis_client is None and self.redis_address is not None: self._really_init_global_state() if (self.redis_client is None or self.redis_clients is None or self.global_state_accessor is None): raise ray.exceptions.RaySystemError( "Ray has not been started yet. You can start Ray with " "'ray.init()'.") def disconnect(self): """Disconnect global state from GCS.""" self.redis_client = None self.redis_clients = None self.redis_address = None self.redis_password = None if self.global_state_accessor is not None: self.global_state_accessor.disconnect() self.global_state_accessor = None def _initialize_global_state(self, redis_address, redis_password=None): """Set args for lazily initialization of the GlobalState object. It's possible that certain keys in Redis may not have been fully populated yet. In this case, we will retry this method until they have been populated or we exceed a timeout. Args: redis_address: The Redis address to connect. redis_password: The password of the redis server. """ # Save args for lazy init of global state. This avoids opening extra # redis connections from each worker until needed. self.redis_address = redis_address self.redis_password = redis_password def _really_init_global_state(self, timeout=20): self.redis_client = services.create_redis_client( self.redis_address, self.redis_password) self.global_state_accessor = GlobalStateAccessor( self.redis_address, self.redis_password, False) self.global_state_accessor.connect() start_time = time.time() num_redis_shards = None redis_shard_addresses = [] while time.time() - start_time < timeout: # Attempt to get the number of Redis shards. num_redis_shards = self.redis_client.get("NumRedisShards") if num_redis_shards is None: print("Waiting longer for NumRedisShards to be populated.") time.sleep(1) continue num_redis_shards = int(num_redis_shards) assert num_redis_shards >= 1, ( f"Expected at least one Redis shard, found {num_redis_shards}." ) # Attempt to get all of the Redis shards. redis_shard_addresses = self.redis_client.lrange( "RedisShards", start=0, end=-1) if len(redis_shard_addresses) != num_redis_shards: print("Waiting longer for RedisShards to be populated.") time.sleep(1) continue # If we got here then we successfully got all of the information. break # Check to see if we timed out. if time.time() - start_time >= timeout: raise TimeoutError("Timed out while attempting to initialize the " "global state. " f"num_redis_shards = {num_redis_shards}, " "redis_shard_addresses = " f"{redis_shard_addresses}") # Get the rest of the information. self.redis_clients = [] for shard_address in redis_shard_addresses: self.redis_clients.append( services.create_redis_client(shard_address.decode(), self.redis_password)) def _execute_command(self, key, *args): """Execute a Redis command on the appropriate Redis shard based on key. Args: key: The object ref or the task ID that the query is about. args: The command to run. Returns: The value returned by the Redis command. """ client = self.redis_clients[key.redis_shard_hash() % len( self.redis_clients)] return client.execute_command(*args) def _keys(self, pattern): """Execute the KEYS command on all Redis shards. Args: pattern: The KEYS pattern to query. Returns: The concatenated list of results from all shards. """ result = [] for client in self.redis_clients: result.extend(list(client.scan_iter(match=pattern))) return result def object_table(self, object_ref=None): """Fetch and parse the object table info for one or more object refs. Args: object_ref: An object ref to fetch information about. If this is None, then the entire object table is fetched. Returns: Information from the object table. """ self._check_connected() if object_ref is not None: object_ref = ray.ObjectRef(hex_to_binary(object_ref)) object_info = self.global_state_accessor.get_object_info( object_ref) if object_info is None: return {} else: object_location_info = gcs_utils.ObjectLocationInfo.FromString( object_info) return self._gen_object_info(object_location_info) else: object_table = self.global_state_accessor.get_object_table() results = {} for i in range(len(object_table)): object_location_info = gcs_utils.ObjectLocationInfo.FromString( object_table[i]) results[binary_to_hex(object_location_info.object_id)] = \ self._gen_object_info(object_location_info) return results def _gen_object_info(self, object_location_info): """Parse object location info. Returns: Information from object. """ locations = [] for location in object_location_info.locations: locations.append(ray.utils.binary_to_hex(location.manager)) object_info = { "ObjectRef": ray.utils.binary_to_hex( object_location_info.object_id), "Locations": locations, } return object_info def actor_table(self, actor_id): """Fetch and parse the actor table information for a single actor ID. Args: actor_id: A hex string of the actor ID to fetch information about. If this is None, then the actor table is fetched. Returns: Information from the actor table. """ self._check_connected() if actor_id is not None: actor_id = ray.ActorID(hex_to_binary(actor_id)) actor_info = self.global_state_accessor.get_actor_info(actor_id) if actor_info is None: return {} else: actor_table_data = gcs_utils.ActorTableData.FromString( actor_info) return self._gen_actor_info(actor_table_data) else: actor_table = self.global_state_accessor.get_actor_table() results = {} for i in range(len(actor_table)): actor_table_data = gcs_utils.ActorTableData.FromString( actor_table[i]) results[binary_to_hex(actor_table_data.actor_id)] = \ self._gen_actor_info(actor_table_data) return results def _gen_actor_info(self, actor_table_data): """Parse actor table data. Returns: Information from actor table. """ actor_info = { "ActorID": binary_to_hex(actor_table_data.actor_id), "Name": actor_table_data.name, "JobID": binary_to_hex(actor_table_data.job_id), "Address": { "IPAddress": actor_table_data.address.ip_address, "Port": actor_table_data.address.port, "NodeID": binary_to_hex(actor_table_data.address.raylet_id), }, "OwnerAddress": { "IPAddress": actor_table_data.owner_address.ip_address, "Port": actor_table_data.owner_address.port, "NodeID": binary_to_hex( actor_table_data.owner_address.raylet_id), }, "State": actor_table_data.state, "NumRestarts": actor_table_data.num_restarts, "Timestamp": actor_table_data.timestamp, } return actor_info def node_resource_table(self, node_id=None): """Fetch and parse the node resource table info for one. Args: node_id: An node ID to fetch information about. Returns: Information from the node resource table. """ self._check_connected() node_id = ray.NodeID(hex_to_binary(node_id)) node_resource_bytes = \ self.global_state_accessor.get_node_resource_info(node_id) if node_resource_bytes is None: return {} else: node_resource_info = gcs_utils.ResourceMap.FromString( node_resource_bytes) return { key: value.resource_capacity for key, value in node_resource_info.items.items() } def node_table(self): """Fetch and parse the Gcs node info table. Returns: Information about the node in the cluster. """ self._check_connected() node_table = self.global_state_accessor.get_node_table() results = [] for node_info_item in node_table: item = gcs_utils.GcsNodeInfo.FromString(node_info_item) node_info = { "NodeID": ray.utils.binary_to_hex(item.node_id), "Alive": item.state == gcs_utils.GcsNodeInfo.GcsNodeState.Value("ALIVE"), "NodeManagerAddress": item.node_manager_address, "NodeManagerHostname": item.node_manager_hostname, "NodeManagerPort": item.node_manager_port, "ObjectManagerPort": item.object_manager_port, "ObjectStoreSocketName": item.object_store_socket_name, "RayletSocketName": item.raylet_socket_name, "MetricsExportPort": item.metrics_export_port, } node_info["alive"] = node_info["Alive"] node_info["Resources"] = self.node_resource_table( node_info["NodeID"]) if node_info["Alive"] else {} results.append(node_info) return results def job_table(self): """Fetch and parse the Redis job table. Returns: Information about the Ray jobs in the cluster, namely a list of dicts with keys: - "JobID" (identifier for the job), - "DriverIPAddress" (IP address of the driver for this job), - "DriverPid" (process ID of the driver for this job), - "StartTime" (UNIX timestamp of the start time of this job), - "StopTime" (UNIX timestamp of the stop time of this job, if any) """ self._check_connected() job_table = self.global_state_accessor.get_job_table() results = [] for i in range(len(job_table)): entry = gcs_utils.JobTableData.FromString(job_table[i]) job_info = {} job_info["JobID"] = entry.job_id.hex() job_info["DriverIPAddress"] = entry.driver_ip_address job_info["DriverPid"] = entry.driver_pid if entry.is_dead: job_info["StopTime"] = entry.timestamp else: job_info["StartTime"] = entry.timestamp results.append(job_info) return results def profile_table(self): self._check_connected() result = defaultdict(list) profile_table = self.global_state_accessor.get_profile_table() for i in range(len(profile_table)): profile = gcs_utils.ProfileTableData.FromString(profile_table[i]) component_type = profile.component_type component_id = binary_to_hex(profile.component_id) node_ip_address = profile.node_ip_address for event in profile.profile_events: try: extra_data = json.loads(event.extra_data) except ValueError: extra_data = {} profile_event = { "event_type": event.event_type, "component_id": component_id, "node_ip_address": node_ip_address, "component_type": component_type, "start_time": event.start_time, "end_time": event.end_time, "extra_data": extra_data } result[component_id].append(profile_event) return dict(result) def placement_group_table(self, placement_group_id=None): self._check_connected() if placement_group_id is not None: placement_group_id = ray.PlacementGroupID( hex_to_binary(placement_group_id.hex())) placement_group_info = ( self.global_state_accessor.get_placement_group_info( placement_group_id)) if placement_group_info is None: return {} else: placement_group_info = (gcs_utils.PlacementGroupTableData. FromString(placement_group_info)) return self._gen_placement_group_info(placement_group_info) else: placement_group_table = self.global_state_accessor.\ get_placement_group_table() results = {} for placement_group_info in placement_group_table: placement_group_table_data = gcs_utils.\ PlacementGroupTableData.FromString(placement_group_info) placement_group_id = binary_to_hex( placement_group_table_data.placement_group_id) results[placement_group_id] = \ self._gen_placement_group_info(placement_group_table_data) return results def _gen_placement_group_info(self, placement_group_info): # This should be imported here, otherwise, it will error doc build. from ray.core.generated.common_pb2 import PlacementStrategy def get_state(state): if state == ray.gcs_utils.PlacementGroupTableData.PENDING: return "PENDING" elif state == ray.gcs_utils.PlacementGroupTableData.CREATED: return "CREATED" else: return "REMOVED" def get_strategy(strategy): if strategy == PlacementStrategy.PACK: return "PACK" elif strategy == PlacementStrategy.STRICT_PACK: return "STRICT_PACK" elif strategy == PlacementStrategy.STRICT_SPREAD: return "STRICT_SPREAD" elif strategy == PlacementStrategy.SPREAD: return "SPREAD" else: raise ValueError( f"Invalid strategy returned: {PlacementStrategy}") assert placement_group_info is not None return { "placement_group_id": binary_to_hex( placement_group_info.placement_group_id), "name": placement_group_info.name, "bundles": { # The value here is needs to be dictionarified # otherwise, the payload becomes unserializable. bundle.bundle_id.bundle_index: MessageToDict(bundle)["unitResources"] for bundle in placement_group_info.bundles }, "strategy": get_strategy(placement_group_info.strategy), "state": get_state(placement_group_info.state), } def _seconds_to_microseconds(self, time_in_seconds): """A helper function for converting seconds to microseconds.""" time_in_microseconds = 10**6 * time_in_seconds return time_in_microseconds # Colors are specified at # https://github.com/catapult-project/catapult/blob/master/tracing/tracing/base/color_scheme.html. # noqa: E501 _default_color_mapping = defaultdict( lambda: "generic_work", { "worker_idle": "cq_build_abandoned", "task": "rail_response", "task:deserialize_arguments": "rail_load", "task:execute": "rail_animation", "task:store_outputs": "rail_idle", "wait_for_function": "detailed_memory_dump", "ray.get": "good", "ray.put": "terrible", "ray.wait": "vsync_highlight_color", "submit_task": "background_memory_dump", "fetch_and_run_function": "detailed_memory_dump", "register_remote_function": "detailed_memory_dump", }) # These colors are for use in Chrome tracing. _chrome_tracing_colors = [ "thread_state_uninterruptible", "thread_state_iowait", "thread_state_running", "thread_state_runnable", "thread_state_sleeping", "thread_state_unknown", "background_memory_dump", "light_memory_dump", "detailed_memory_dump", "vsync_highlight_color", "generic_work", "good", "bad", "terrible", # "black", # "grey", # "white", "yellow", "olive", "rail_response", "rail_animation", "rail_idle", "rail_load", "startup", "heap_dump_stack_frame", "heap_dump_object_type", "heap_dump_child_node_arrow", "cq_build_running", "cq_build_passed", "cq_build_failed", "cq_build_abandoned", "cq_build_attempt_runnig", "cq_build_attempt_passed", "cq_build_attempt_failed", ] def chrome_tracing_dump(self, filename=None): """Return a list of profiling events that can viewed as a timeline. To view this information as a timeline, simply dump it as a json file by passing in "filename" or using using json.dump, and then load go to chrome://tracing in the Chrome web browser and load the dumped file. Make sure to enable "Flow events" in the "View Options" menu. Args: filename: If a filename is provided, the timeline is dumped to that file. Returns: If filename is not provided, this returns a list of profiling events. Each profile event is a dictionary. """ # TODO(rkn): Support including the task specification data in the # timeline. # TODO(rkn): This should support viewing just a window of time or a # limited number of events. self._check_connected() profile_table = self.profile_table() all_events = [] for component_id_hex, component_events in profile_table.items(): # Only consider workers and drivers. component_type = component_events[0]["component_type"] if component_type not in ["worker", "driver"]: continue for event in component_events: new_event = { # The category of the event. "cat": event["event_type"], # The string displayed on the event. "name": event["event_type"], # The identifier for the group of rows that the event # appears in. "pid": event["node_ip_address"], # The identifier for the row that the event appears in. "tid": event["component_type"] + ":" + event["component_id"], # The start time in microseconds. "ts": self._seconds_to_microseconds(event["start_time"]), # The duration in microseconds. "dur": self._seconds_to_microseconds(event["end_time"] - event["start_time"]), # What is this? "ph": "X", # This is the name of the color to display the box in. "cname": self._default_color_mapping[event["event_type"]], # The extra user-defined data. "args": event["extra_data"], } # Modify the json with the additional user-defined extra data. # This can be used to add fields or override existing fields. if "cname" in event["extra_data"]: new_event["cname"] = event["extra_data"]["cname"] if "name" in event["extra_data"]: new_event["name"] = event["extra_data"]["name"] all_events.append(new_event) if filename is not None: with open(filename, "w") as outfile: json.dump(all_events, outfile) else: return all_events def chrome_tracing_object_transfer_dump(self, filename=None): """Return a list of transfer events that can viewed as a timeline. To view this information as a timeline, simply dump it as a json file by passing in "filename" or using using json.dump, and then load go to chrome://tracing in the Chrome web browser and load the dumped file. Make sure to enable "Flow events" in the "View Options" menu. Args: filename: If a filename is provided, the timeline is dumped to that file. Returns: If filename is not provided, this returns a list of profiling events. Each profile event is a dictionary. """ self._check_connected() node_id_to_address = {} for node_info in self.node_table(): node_id_to_address[node_info["NodeID"]] = "{}:{}".format( node_info["NodeManagerAddress"], node_info["ObjectManagerPort"]) all_events = [] for key, items in self.profile_table().items(): # Only consider object manager events. if items[0]["component_type"] != "object_manager": continue for event in items: if event["event_type"] == "transfer_send": object_ref, remote_node_id, _, _ = event["extra_data"] elif event["event_type"] == "transfer_receive": object_ref, remote_node_id, _, _ = event["extra_data"] elif event["event_type"] == "receive_pull_request": object_ref, remote_node_id = event["extra_data"] else: assert False, "This should be unreachable." # Choose a color by reading the first couple of hex digits of # the object ref as an integer and turning that into a color. object_ref_int = int(object_ref[:2], 16) color = self._chrome_tracing_colors[object_ref_int % len( self._chrome_tracing_colors)] new_event = { # The category of the event. "cat": event["event_type"], # The string displayed on the event. "name": event["event_type"], # The identifier for the group of rows that the event # appears in. "pid": node_id_to_address[key], # The identifier for the row that the event appears in. "tid": node_id_to_address[remote_node_id], # The start time in microseconds. "ts": self._seconds_to_microseconds(event["start_time"]), # The duration in microseconds. "dur": self._seconds_to_microseconds(event["end_time"] - event["start_time"]), # What is this? "ph": "X", # This is the name of the color to display the box in. "cname": color, # The extra user-defined data. "args": event["extra_data"], } all_events.append(new_event) # Add another box with a color indicating whether it was a send # or a receive event. if event["event_type"] == "transfer_send": additional_event = new_event.copy() additional_event["cname"] = "black" all_events.append(additional_event) elif event["event_type"] == "transfer_receive": additional_event = new_event.copy() additional_event["cname"] = "grey" all_events.append(additional_event) else: pass if filename is not None: with open(filename, "w") as outfile: json.dump(all_events, outfile) else: return all_events def workers(self): """Get a dictionary mapping worker ID to worker information.""" self._check_connected() # Get all data in worker table worker_table = self.global_state_accessor.get_worker_table() workers_data = {} for i in range(len(worker_table)): worker_table_data = gcs_utils.WorkerTableData.FromString( worker_table[i]) if worker_table_data.is_alive and \ worker_table_data.worker_type == gcs_utils.WORKER: worker_id = binary_to_hex( worker_table_data.worker_address.worker_id) worker_info = worker_table_data.worker_info workers_data[worker_id] = { "node_ip_address": decode(worker_info[b"node_ip_address"]), "plasma_store_socket": decode( worker_info[b"plasma_store_socket"]) } if b"stderr_file" in worker_info: workers_data[worker_id]["stderr_file"] = decode( worker_info[b"stderr_file"]) if b"stdout_file" in worker_info: workers_data[worker_id]["stdout_file"] = decode( worker_info[b"stdout_file"]) return workers_data def add_worker(self, worker_id, worker_type, worker_info): """ Add a worker to the cluster. Args: worker_id: ID of this worker. Type is bytes. worker_type: Type of this worker. Value is ray.gcs_utils.DRIVER or ray.gcs_utils.WORKER. worker_info: Info of this worker. Type is dict{str: str}. Returns: Is operation success """ worker_data = ray.gcs_utils.WorkerTableData() worker_data.is_alive = True worker_data.worker_address.worker_id = worker_id worker_data.worker_type = worker_type for k, v in worker_info.items(): worker_data.worker_info[k] = bytes(v, encoding="utf-8") return self.global_state_accessor.add_worker_info( worker_data.SerializeToString()) def _job_length(self): event_log_sets = self.redis_client.keys("event_log*") overall_smallest = sys.maxsize overall_largest = 0 num_tasks = 0 for event_log_set in event_log_sets: fwd_range = self.redis_client.zrange( event_log_set, start=0, end=0, withscores=True) overall_smallest = min(overall_smallest, fwd_range[0][1]) rev_range = self.redis_client.zrevrange( event_log_set, start=0, end=0, withscores=True) overall_largest = max(overall_largest, rev_range[0][1]) num_tasks += self.redis_client.zcount( event_log_set, min=0, max=time.time()) if num_tasks == 0: return 0, 0, 0 return overall_smallest, overall_largest, num_tasks def cluster_resources(self): """Get the current total cluster resources. Note that this information can grow stale as nodes are added to or removed from the cluster. Returns: A dictionary mapping resource name to the total quantity of that resource in the cluster. """ self._check_connected() resources = defaultdict(int) clients = self.node_table() for client in clients: # Only count resources from latest entries of live clients. if client["Alive"]: for key, value in client["Resources"].items(): resources[key] += value return dict(resources) def _live_client_ids(self): """Returns a set of client IDs corresponding to clients still alive.""" return { client["NodeID"] for client in self.node_table() if (client["Alive"]) } def _available_resources_per_node(self): """Returns a dictionary mapping node id to avaiable resources.""" available_resources_by_id = {} all_available_resources = \ self.global_state_accessor.get_all_available_resources() for available_resource in all_available_resources: message = ray.gcs_utils.AvailableResources.FromString( available_resource) # Calculate available resources for this node. dynamic_resources = {} for resource_id, capacity in \ message.resources_available.items(): dynamic_resources[resource_id] = capacity # Update available resources for this node. node_id = ray.utils.binary_to_hex(message.node_id) available_resources_by_id[node_id] = dynamic_resources # Update nodes in cluster. node_ids = self._live_client_ids() # Remove disconnected nodes. for node_id in available_resources_by_id.keys(): if node_id not in node_ids: del available_resources_by_id[node_id] return available_resources_by_id def available_resources(self): """Get the current available cluster resources. This is different from `cluster_resources` in that this will return idle (available) resources rather than total resources. Note that this information can grow stale as tasks start and finish. Returns: A dictionary mapping resource name to the total quantity of that resource in the cluster. """ self._check_connected() available_resources_by_id = self._available_resources_per_node() # Calculate total available resources. total_available_resources = defaultdict(int) for available_resources in available_resources_by_id.values(): for resource_id, num_available in available_resources.items(): total_available_resources[resource_id] += num_available return dict(total_available_resources) def actor_checkpoint_info(self, actor_id): """Get checkpoint info for the given actor id. Args: actor_id: Actor's ID. Returns: A dictionary with information about the actor's checkpoint IDs and their timestamps. """ self._check_connected() message = self._execute_command( actor_id, "RAY.TABLE_LOOKUP", gcs_utils.TablePrefix.Value("ACTOR_CHECKPOINT_ID"), "", actor_id.binary(), ) if message is None: return None gcs_entry = gcs_utils.GcsEntry.FromString(message) entry = gcs_utils.ActorCheckpointIdData.FromString( gcs_entry.entries[0]) checkpoint_ids = [ ray.ActorCheckpointID(checkpoint_id) for checkpoint_id in entry.checkpoint_ids ] return { "ActorID": ray.utils.binary_to_hex(entry.actor_id), "CheckpointIds": checkpoint_ids, "Timestamps": list(entry.timestamps), } state = GlobalState() """A global object used to access the cluster's global state.""" def jobs(): """Get a list of the jobs in the cluster (for debugging only). Returns: Information from the job table, namely a list of dicts with keys: - "JobID" (identifier for the job), - "DriverIPAddress" (IP address of the driver for this job), - "DriverPid" (process ID of the driver for this job), - "StartTime" (UNIX timestamp of the start time of this job), - "StopTime" (UNIX timestamp of the stop time of this job, if any) """ return state.job_table() def nodes(): """Get a list of the nodes in the cluster (for debugging only). Returns: Information about the Ray clients in the cluster. """ return state.node_table() def workers(): """Get a list of the workers in the cluster. Returns: Information about the Ray workers in the cluster. """ return state.workers() def current_node_id(): """Return the node id of the current node. For example, "node:172.10.5.34". This can be used as a custom resource, e.g., {node_id: 1} to reserve the whole node, or {node_id: 0.001} to just force placement on the node. Returns: Id of the current node. """ return (ray.resource_spec.NODE_ID_PREFIX + ray._private.services.get_node_ip_address()) def node_ids(): """Get a list of the node ids in the cluster. For example, ["node:172.10.5.34", "node:172.42.3.77"]. These can be used as custom resources, e.g., {node_id: 1} to reserve the whole node, or {node_id: 0.001} to just force placement on the node. Returns: List of the node resource ids. """ node_ids = [] for node in nodes(): for k, v in node["Resources"].items(): if k.startswith(ray.resource_spec.NODE_ID_PREFIX): node_ids.append(k) return node_ids def actors(actor_id=None): """Fetch actor info for one or more actor IDs (for debugging only). Args: actor_id: A hex string of the actor ID to fetch information about. If this is None, then all actor information is fetched. Returns: Information about the actors. """ return state.actor_table(actor_id=actor_id) def objects(object_ref=None): """Fetch and parse the object table info for one or more object refs. Args: object_ref: An object ref to fetch information about. If this is None, then the entire object table is fetched. Returns: Information from the object table. """ return state.object_table(object_ref=object_ref) def timeline(filename=None): """Return a list of profiling events that can viewed as a timeline. To view this information as a timeline, simply dump it as a json file by passing in "filename" or using using json.dump, and then load go to chrome://tracing in the Chrome web browser and load the dumped file. Args: filename: If a filename is provided, the timeline is dumped to that file. Returns: If filename is not provided, this returns a list of profiling events. Each profile event is a dictionary. """ return state.chrome_tracing_dump(filename=filename) def object_transfer_timeline(filename=None): """Return a list of transfer events that can viewed as a timeline. To view this information as a timeline, simply dump it as a json file by passing in "filename" or using using json.dump, and then load go to chrome://tracing in the Chrome web browser and load the dumped file. Make sure to enable "Flow events" in the "View Options" menu. Args: filename: If a filename is provided, the timeline is dumped to that file. Returns: If filename is not provided, this returns a list of profiling events. Each profile event is a dictionary. """ return state.chrome_tracing_object_transfer_dump(filename=filename) def cluster_resources(): """Get the current total cluster resources. Note that this information can grow stale as nodes are added to or removed from the cluster. Returns: A dictionary mapping resource name to the total quantity of that resource in the cluster. """ return state.cluster_resources() def available_resources(): """Get the current available cluster resources. This is different from `cluster_resources` in that this will return idle (available) resources rather than total resources. Note that this information can grow stale as tasks start and finish. Returns: A dictionary mapping resource name to the total quantity of that resource in the cluster. """ return state.available_resources()
the-stack_106_13934
from enforce_typing import enforce_types import pytest from typing import Union from engine import AgentWallet, AgentBase from web3tools import web3util, web3wallet from web3tools.web3util import toBase18 from web3engine import bfactory, bpool, datatoken, dtfactory, globaltokens #alice: # 1. starts with an init OCEAN # 2. creates a DT, and mints an init amount # 3. creates a DT-OCEAN pool, and adds init liquidity _OCEAN_INIT = 1000.0 _OCEAN_STAKE = 200.0 _DT_INIT = 100.0 _DT_STAKE = 20.0 _POOL_WEIGHT_DT = 3.0 _POOL_WEIGHT_OCEAN = 7.0 @pytest.fixture def alice_info(): #only use this when there are >1 args into a test function and # we need addresses to line up. Otherwise, use a more specific function. return _alice_info() @pytest.fixture def alice_private_key() -> str: return _alice_info().private_key @pytest.fixture def alice_agent(): class MockAgent(AgentBase.AgentBase): def takeStep(self, state): pass agent = MockAgent("agent1",USD=0.0,OCEAN=0.0) agent._wallet = _alice_info().agent_wallet return agent @pytest.fixture def alice_agent_wallet() -> AgentWallet.AgentWallet: return _alice_info().agent_wallet @pytest.fixture def alice_web3wallet() -> web3wallet.Web3Wallet: return _alice_info().wallet @pytest.fixture def alice_DT() -> datatoken.Datatoken: return _alice_info().DT @pytest.fixture def alice_pool(): return _alice_info().pool @enforce_types def _alice_info(): return _make_info(private_key_name='TEST_PRIVATE_KEY1') @enforce_types def _make_info(private_key_name:str): class _Info: def __init__(self): self.private_key: Union[str, None] = None self.agent_wallet: Union[AgentWallet.AgentWallet, None] = None self.web3wallet: Union[web3wallet, None] = None self.DT: Union[datatoken, None] = None self.pool: Union[bool, None] = None info = _Info() network = web3util.get_network() info.private_key = web3util.confFileValue(network, private_key_name) info.agent_wallet = AgentWallet.AgentWallet( OCEAN=_OCEAN_INIT,private_key=info.private_key) info.web3wallet = info.agent_wallet._web3wallet info.DT = _createDT(info.web3wallet) info.pool = _createPool(DT=info.DT, web3_w=info.web3wallet) return info @enforce_types def _createDT(web3_w:web3wallet.Web3Wallet)-> datatoken.Datatoken: DT_address = dtfactory.DTFactory().createToken( 'foo', 'DT1', 'DT1', toBase18(_DT_INIT),from_wallet=web3_w) DT = datatoken.Datatoken(DT_address) DT.mint(web3_w.address, toBase18(_DT_INIT), from_wallet=web3_w) return DT @enforce_types def _createPool(DT:datatoken.Datatoken, web3_w:web3wallet.Web3Wallet): OCEAN = globaltokens.OCEANtoken() #Create OCEAN-DT pool p_address = bfactory.BFactory().newBPool(from_wallet=web3_w) pool = bpool.BPool(p_address) DT.approve(pool.address, toBase18(_DT_STAKE), from_wallet=web3_w) OCEAN.approve(pool.address, toBase18(_OCEAN_STAKE),from_wallet=web3_w) pool.bind(DT.address, toBase18(_DT_STAKE), toBase18(_POOL_WEIGHT_DT), from_wallet=web3_w) pool.bind(OCEAN.address, toBase18(_OCEAN_STAKE), toBase18(_POOL_WEIGHT_OCEAN), from_wallet=web3_w) pool.finalize(from_wallet=web3_w) return pool
the-stack_106_13938
# -*- coding: utf-8 -*- import argparse import json import os import re os.environ['PYWIKIBOT_DIR'] = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'protect-config') import pymysql import pywikibot from config import (database, # pylint: disable=E0611,W0614 protect_config_page_name) parser = argparse.ArgumentParser() parser.add_argument('lang', nargs='?', default='zh') parser.add_argument('wiki', nargs='?', default='wikipedia') parser.add_argument('dbwiki', nargs='?', default='zhwiki') args = parser.parse_args() os.environ['TZ'] = 'UTC' site = pywikibot.Site(args.lang, args.wiki) site.login() config_page = pywikibot.Page(site, protect_config_page_name[args.lang][args.wiki]) cfg = config_page.text cfg = json.loads(cfg) print(json.dumps(cfg, indent=4, ensure_ascii=False)) if not cfg['enable']: exit('disabled\n') db = pymysql.connect(host=database['host'], user=database['user'], passwd=database['passwd'], db=database['db'], charset=database['charset']) cur = db.cursor() cur.execute("""SELECT `title`, `count`, `protectedit`, `protectmove`, `redirect` FROM `MostTranscludedPages_page` WHERE `wiki` = %s AND `redirect` != 2 ORDER BY `title` ASC""", (args.dbwiki)) rows = cur.fetchall() def check_required_protection(title, count): if title.startswith('MediaWiki:'): return 0 if title.startswith('User:'): if title.endswith('.js') or title.endswith('.css') or title.endswith('.json'): return 0 if count >= cfg['template_full'] and cfg['template_full'] > 0: return 4 if count >= cfg['template_temp'] and cfg['template_temp'] > 0: return 3 if count >= cfg['template_semi'] and cfg['template_semi'] > 0: return 1 return 0 protection2number = { 'sysop': 4, 'templateeditor': 3, 'extendedconfirmed': 2, 'autoconfirmed': 1, '': 0, } number2protection = { 4: 'sysop', 3: 'templateeditor', 2: 'extendedconfirmed', 1: 'autoconfirmed', 0: '', } for row in rows: title = row[0] count = row[1] protectedit = row[2] protectmove = row[3] redirect = row[4] required_protection = check_required_protection(title, count) current_protection = protection2number[protectedit] if required_protection > current_protection: page = pywikibot.Page(site, title) if not page.exists(): print('{} is not exist'.format(title)) continue if 'exclude_regex' in cfg and cfg['exclude_regex'] != '' and re.search(cfg['exclude_regex'], title): print('Ignore {}'.format(title)) continue args = { 'reason': cfg['summary'].format(count), 'prompt': False, 'protections': { 'edit': number2protection[required_protection], 'move': number2protection[required_protection], }, } print(title, args) page.protect(**args)
the-stack_106_13940
# Copyright (c) The Diem Core Contributors # SPDX-License-Identifier: Apache-2.0 swagger_template = { "swagger": "", "openapi": "3.0.0", "components": { "securitySchemes": { "BearerAuth": { "type": "http", "scheme": "bearer", "bearerFormat": "JWT", } } }, "definitions": { "User": { "type": "object", "properties": { "username": {"type": "string"}, "first_name": {"type": "string"}, "last_name": {"type": "string"}, "dob": {"type": "string", "format": "date"}, "phone_number": {"type": "string"}, "country": {"type": "string"}, "state": {"type": "string"}, "city": {"type": "string"}, "address_1": {"type": "string"}, "address_2": {"type": "string"}, "zip": {"type": "string"}, }, "example": { "username": "sunmilee", "first_name": "Sunmi", "last_name": "Lee", "dob": "2020-05-07", "address": "1 Hacker Way", }, }, "DiemCurrencies": { "type": "string", "enum": ["Coin1"], }, "TransactionDirections": { "type": "string", "enum": ["received", "sent"], }, "Transaction": { "type": "object", "properties": { "id": {"type": "string"}, "amount": {"type": "integer"}, "currency": {"$ref": "#/definitions/DiemCurrencies"}, "direction": {"$ref": "#/definitions/TransactionDirections"}, "timestamp": {"type": "string", "format": "date-time"}, "source": {"$ref": "#/definitions/VaspAccountDetails"}, "destination": {"$ref": "#/definitions/VaspAccountDetails"}, "blockchain_tx": {"$ref": "#/definitions/BlockchainTransaction"}, }, }, "VaspAccountDetails": { "type": "object", "properties": { "vasp_name": {"type": "string"}, "user_id": {"type": "string"}, }, }, "BlockchainTransaction": { "type": "object", "properties": { "version": {"type": "integer"}, "status": {"type": "string"}, "expirationTime": {"type": "string"}, "source": {"type": "string"}, "destination": {"type": "string"}, "amount": {"type": "integer"}, "sequenceNumber": {"type": "integer"}, }, }, }, "security": [{"BearerAuth": []}], }
the-stack_106_13942
# !/usr/bin/env python # -*- coding: UTF-8 -*- """ >python tools/matcher.py data/schemas/npgcore_latest.ttl data/schemas/foaf.rdf Loaded 630 triples started scanning... ---------- Ontologies found: 1 Classes found...: 15 Properties found: 67 Annotation......: 7 Datatype........: 26 Object..........: 34 Loaded 3478 triples started scanning... ---------- Ontologies found: 1 Classes found...: 64 Properties found: 253 Annotation......: 36 Datatype........: 133 Object..........: 84 ---------- Matching... Person ==~== Term: npg:Person <Class *http://www.w3.org/2000/10/swap/pim/contact#Person*> ...<Class *http://ns.nature.com/terms/Person*> Document ==~== Term: npg:Document <Class *http://xmlns.com/foaf/0.1/Document*> ...<Class *http://ns.nature.com/terms/Document*> Document ==~== Term: npg:DocumentAsset <Class *http://xmlns.com/foaf/0.1/Document*> ...<Class *http://ns.nature.com/terms/DocumentAsset*> Organization ==~== Term: npg:Organization <Class *http://xmlns.com/foaf/0.1/Organization*> ...<Class *http://ns.nature.com/terms/Organization*> Person ==~== Term: npg:Person <Class *http://xmlns.com/foaf/0.1/Person*> ...<Class *http://ns.nature.com/terms/Person*> PersonalProfileDocument ==~== Term: npg:Document <Class *http://xmlns.com/foaf/0.1/PersonalProfileDocument*> ...<Class *http://ns.nature.com/terms/Document*> """ import csv import optparse import os import time from difflib import SequenceMatcher import rdflib from .. import main from ..core.utils import * USAGE = "ontospy-match foaf.rdf bibo.owl -o output.csv" MATCHER_VERSION = 0.2 # from ontospy import ontospy def similar(a, b): return SequenceMatcher(None, a, b).ratio() def matcher( graph1, graph2, confidence=0.5, output_file="matching_results.csv", class_or_prop="classes", verbose=False, ): """ takes two graphs and matches its classes based on qname, label etc.. @todo extend to properties and skos etc.. """ printDebug("----------\nNow matching...") f = open(output_file, "wt") counter = 0 try: writer = csv.writer(f, quoting=csv.QUOTE_NONNUMERIC) writer.writerow(("name 1", "name 2", "uri 1", "uri 2")) # a) match classes if class_or_prop == "classes": for x in graph1.all_classes: l1 = str(x.bestLabel(qname_allowed=True)) for y in graph2.all_classes: l2 = str(y.bestLabel(qname_allowed=True)) if similar(l1, l2) > confidence: counter += 1 row = [l1, l2, x.uri, y.uri] writer.writerow( [s.encode("utf8") if type(s) is str else s for s in row] ) if verbose: print(("%s ==~== %s" % (l1, l2))) # b) match properties elif class_or_prop == "properties": for x in graph1.all_properties: l1 = str(x.bestLabel(qname_allowed=True)) for y in graph2.all_properties: l2 = str(y.bestLabel(qname_allowed=True)) if similar(l1, l2) > confidence: counter += 1 row = [l1, l2, x.uri, y.uri] writer.writerow( [s.encode("utf8") if type(s) is str else s for s in row] ) if verbose: print(("%s ==~== %s" % (l1, l2))) finally: f.close() printDebug("%d candidates found." % counter) def parse_options(): """ parse_options() -> opts, args Parse any command-line options given returning both the parsed options and arguments. https://docs.python.org/2/library/optparse.html """ parser = optparse.OptionParser(usage=USAGE, version=ontospy.VERSION) parser.add_option( "-o", "--outputfile", action="store", type="string", default="", dest="outputfile", help="The name of the output csv file.", ) parser.add_option( "-v", "--verbose", action="store_true", default=False, dest="verbose", help="Verbose mode: prints results on screen too.", ) opts, args = parser.parse_args() return opts, args import click @click.command() @click.option('-o', '--outputfile', default="", help = "The name of the output csv file.") @click.option('-v', '--verbose', default=False, help="Verbose mode: prints results on screen too.") def _main(outputfile, verbose): pass def main(): """command line script""" print(("Ontospy " + ontospy.VERSION)) ontospy.get_or_create_home_repo() opts, args = parse_options() if len(args) < 2: printDebug("Please provide two arguments, or use -h for more options.") sys.exit(0) var = eval(input("Match classes or properties? [c|p, c=default]:")) if var == "c": class_or_prop = "classes" elif var == "p": class_or_prop = "properties" else: class_or_prop = "classes" print(class_or_prop) var = eval(input("Degree of confidence? [1-10, 5=default]: ")) try: confidence = int(var) if not (confidence <= 10 and confidence >= 1): confidence = 5 except: confidence = 5 print(confidence) confidence = confidence / (10 * 1.0) # transform in decimal sTime = time.time() # automatically name the file unless a name is provided with -o option if not opts.outputfile: try: opts.outputfile = "%s_%s_matching_%s.csv" % ( os.path.splitext(args[0])[0].split("/")[-1], os.path.splitext(args[1])[0].split("/")[-1], class_or_prop, ) except: opts.outputfile = f"ontospy_matching_{class_or_prop}.csv" g1 = ontospy.Ontospy(args[0]) g2 = ontospy.Ontospy(args[1]) matcher(g1, g2, confidence, opts.outputfile, class_or_prop, opts.verbose) # finally: # print(some stats....) eTime = time.time() tTime = eTime - sTime printDebug("-" * 10) printDebug("Time: %0.2fs" % tTime) if __name__ == "__main__": import sys try: main() sys.exit(0) except KeyboardInterrupt as e: # Ctrl-C raise e
the-stack_106_13946
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ log test """ import os import sys import time import re import shutil import logging def test_log_stdout(): # Clean up environment variables _rm_env_config() # print the logs without raising an exception. from mindspore import log as logger log_str = 'print informations' logger.error("1 test log message info :%s", log_str) logger.info("2 test log message info") logger.warning("3 test log message warning") logger.debug("4 test log message debug:%s", log_str) # Clean up _global_logger to avoid affecting for next usecase logger._global_logger = None def test_log_default(): _rm_env_config() from mindspore import log as logger configdict = logger.get_log_config() targetdict = {'GLOG_v': '2', 'GLOG_logtostderr': '1'} assert configdict == targetdict # Clean up _global_logger to avoid affecting for next usecase logger._global_logger = None def test_log_setlevel(): _rm_env_config() os.environ['GLOG_v'] = '0' from mindspore import log as logger #logger_instance = logger._get_logger() #del logger_instance loglevel = logger.get_level() log_str = 'print debug informations' logger.debug("5 test log message debug:%s", log_str) assert loglevel == '0' # Clean up _global_logger to avoid affecting for next usecase logger._global_logger = None def test_log_file(): """ test the log contect written in log file """ _rm_env_config() file_path = '/tmp/log/mindspore_test' os.environ['GLOG_v'] = '0' os.environ['GLOG_logtostderr'] = '0' os.environ['GLOG_log_dir'] = file_path from mindspore import log as logger filename = f'{file_path}/mindspore.log' if os.path.exists(file_path): shutil.rmtree(file_path) os.makedirs(file_path, exist_ok=True) # Clear test file if os.path.exists(filename): os.remove(filename) logger.warning("test log message warning") cmd = f'cat {filename}' result = os.popen(cmd).read() # pylint: disable=anomalous-backslash-in-string pattern = "\[WARNING\] ME\(.*[0-9]:.*[0-9]\,.*[a-zA-Z0-9]\):.* " \ "\[.*:.*[0-9]\] test log message warning" match_obj = re.match(pattern, result) #Clear test file if os.path.exists(file_path): shutil.rmtree(file_path) assert match_obj # Clean up _global_logger to avoid affecting for next usecase logger._global_logger = None def test_log_backup_count(): """ test backup count """ #logger.reset_log_config(level=logging.INFO, console=False, # filepath=file_path, maxBytes=1000, backupCount=10) _rm_env_config() file_path = '/tmp/log/mindspore_test' os.environ['GLOG_v'] = '1' os.environ['GLOG_logtostderr'] = '0' os.environ['GLOG_log_dir'] = file_path os.environ['logger_maxBytes'] = '1000' os.environ['logger_backupCount'] = '10' from mindspore import log as logger if os.path.exists(file_path): shutil.rmtree(file_path) os.makedirs(file_path, exist_ok=True) log_count = 100 for i in range(0, log_count, 1): logger.warning("test log message warning %r", i) cmd = f'cd {file_path};ls |wc -l' backup_count = '11' file_count = os.popen(cmd).read().strip() if os.path.exists(file_path): shutil.rmtree(file_path) assert file_count == backup_count # Clean up _global_logger to avoid affecting for next usecase logger._global_logger = None def test_log_verify_envconfig(): """ test reset config """ dictlist = [] from mindspore import log as logger file_path = '/tmp' # level is not a number _rm_env_config() os.environ['GLOG_v'] = 'test' verify_dict_0 = logger._get_env_config() # level is not in range _rm_env_config() os.environ['GLOG_v'] = '100' verify_dict_1 = logger._get_env_config() # console is not a number _rm_env_config() os.environ['GLOG_logtostderr'] = 'test' verify_dict_2 = logger._get_env_config() # console is not in range _rm_env_config() os.environ['GLOG_logtostderr'] = '6' verify_dict_3 = logger._get_env_config() # path does not exist _rm_env_config() os.environ['GLOG_logtostderr'] = '0' os.environ['GLOG_log_dir'] = '/test' verify_dict_4 = logger._get_env_config() # path is not configured _rm_env_config() os.environ['GLOG_logtostderr'] = '0' verify_dict_5 = logger._get_env_config() # logger_maxBytes is not a number _rm_env_config() os.environ['GLOG_logtostderr'] = '0' os.environ['GLOG_log_dir'] = '/tmp' os.environ['logger_maxBytes'] = 'test' os.environ['logger_backupCount'] = '10' verify_dict_6 = logger._get_env_config() # logger_maxBytes is a negative number _rm_env_config() os.environ['GLOG_logtostderr'] = '0' os.environ['GLOG_log_dir'] = '/tmp' os.environ['logger_maxBytes'] = '-1' os.environ['logger_backupCount'] = '10' verify_dict_7 = logger._get_env_config() # logger_backupCount is not a number _rm_env_config() os.environ['GLOG_logtostderr'] = '0' os.environ['GLOG_log_dir'] = '/tmp' os.environ['logger_maxBytes'] = '0' os.environ['logger_backupCount'] = 'test' verify_dict_8 = logger._get_env_config() # logger_backupCount is a negative number _rm_env_config() os.environ['GLOG_logtostderr'] = '0' os.environ['GLOG_log_dir'] = '/tmp' os.environ['logger_maxBytes'] = '0' os.environ['logger_backupCount'] = '-1' verify_dict_9 = logger._get_env_config() for i in range(0, 10, 1): variable_name = f'verify_dict_{i}' dictlist.append(locals()[variable_name]) for verify_dict in dictlist: try: logger._verify_config(verify_dict) except ValueError as ve: print(ve) assert True except TypeError as te: print(te) assert True else: assert False # Clean up _global_logger to avoid affecting for next usecase logger._global_logger = None def test_log_repeated_print(): """ test Log repeated printing # Print one log is right, otherwise error """ _rm_env_config() from mindspore import log as logger py_logging = logging.getLogger() handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) py_logging.addHandler(handler) logger.info("test log message info test ") # Clean up _global_logger to avoid affecting for next usecase logger._global_logger = None def test_log_getconfig(): _rm_env_config() os.environ['GLOG_v'] = '3' os.environ['GLOG_logtostderr'] = '0' os.environ['GLOG_log_dir'] = '/tmp/log/' os.environ['logger_maxBytes'] = '1000' os.environ['logger_backupCount'] = '10' from mindspore import log as logger logger.info("test log message info test ") configdict = logger.get_log_config() targetdict = {'GLOG_v': '3', 'GLOG_log_dir': '/tmp/log', 'GLOG_logtostderr': '0', 'logger_maxBytes': 1000, 'logger_backupCount': 10} assert configdict == targetdict # Clean up _global_logger to avoid affecting for next usecase logger._global_logger = None def test_log_perf(): """ Performance test with python logging """ _rm_env_config() os.environ['GLOG_v'] = '3' from mindspore import log as logger loglevel = logging.ERROR logging.basicConfig() py_logging = logging.getLogger() py_logging.setLevel(loglevel) log_count = 100000 print("logger level:", logger.get_level()) print("py_logging level:", py_logging.getEffectiveLevel()) # Calculate PY logging execution time start_time_py_logging = int(round(time.time() * 1000)) for i in range(0, log_count, 1): py_logging.info("test log message info :%r", i) end_time_py_logging = int(round(time.time() * 1000)) time_diff_py_logging = end_time_py_logging - start_time_py_logging # Calculate MS logger execution time start_time_logger = int(round(time.time() * 1000)) for i in range(0, log_count, 1): logger.info("test log message info :%r", i) end_time_logger = int(round(time.time() * 1000)) time_diff_logger = end_time_logger - start_time_logger # Calculate time difference time_diff = time_diff_logger - time_diff_py_logging strprint = f'time difference between MS logger ' \ f'and Python logging: {time_diff} ms' print(strprint) std_time = 2000 assert time_diff < std_time # Clean up _global_logger to avoid affecting for next usecase logger._global_logger = None def test_log_ms_import(): _rm_env_config() import mindspore as ms configdict = ms.get_log_config() targetdict = {'GLOG_v': '2', 'GLOG_logtostderr': '1'} level = ms.get_level() assert configdict == targetdict and level == '2' def _rm_env_config(): envlist = ['GLOG_v', 'GLOG_logtostderr', 'GLOG_log_dir', 'logger_maxBytes', 'logger_backupCount'] for env in envlist: if os.environ.get(env): del os.environ[env]
the-stack_106_13948
from seleniumbase import BaseCase import cv2 import time class ComponentsTest(BaseCase): def test_basic(self): # open the app and take a screenshot self.open("http://localhost:8501") time.sleep(10) # give leaflet time to load from web self.save_screenshot("current-screenshot.png") # automated visual regression testing # tests page has identical structure to baseline # https://github.com/seleniumbase/SeleniumBase/tree/master/examples/visual_testing # level 2 chosen, as id values dynamically generated on each page run self.check_window(name="first_test", level=2) # check folium app-specific parts # automated test level=2 only checks structure, not content self.assert_text("streamlit-folium") # test screenshots look exactly the same original = cv2.imread( "visual_baseline/test_package.test_basic/first_test/screenshot.png" ) duplicate = cv2.imread("current-screenshot.png") assert original.shape == duplicate.shape difference = cv2.subtract(original, duplicate) b, g, r = cv2.split(difference) assert cv2.countNonZero(b) == cv2.countNonZero(g) == cv2.countNonZero(r) == 0
the-stack_106_13949
import re import pytest from pandas._libs.tslibs import Timedelta, offsets, to_offset @pytest.mark.parametrize( "freq_input,expected", [ (to_offset("10us"), offsets.Micro(10)), (offsets.Hour(), offsets.Hour()), ((5, "T"), offsets.Minute(5)), ("2h30min", offsets.Minute(150)), ("2h 30min", offsets.Minute(150)), ("2h30min15s", offsets.Second(150 * 60 + 15)), ("2h 60min", offsets.Hour(3)), ("2h 20.5min", offsets.Second(8430)), ("1.5min", offsets.Second(90)), ("0.5S", offsets.Milli(500)), ("15l500u", offsets.Micro(15500)), ("10s75L", offsets.Milli(10075)), ("1s0.25ms", offsets.Micro(1000250)), ("1s0.25L", offsets.Micro(1000250)), ("2800N", offsets.Nano(2800)), ("2SM", offsets.SemiMonthEnd(2)), ("2SM-16", offsets.SemiMonthEnd(2, day_of_month=16)), ("2SMS-14", offsets.SemiMonthBegin(2, day_of_month=14)), ("2SMS-15", offsets.SemiMonthBegin(2)), ], ) def test_to_offset(freq_input, expected): result = to_offset(freq_input) assert result == expected @pytest.mark.parametrize( "freqstr,expected", [("-1S", -1), ("-2SM", -2), ("-1SMS", -1), ("-5min10s", -310)] ) def test_to_offset_negative(freqstr, expected): result = to_offset(freqstr) assert result.n == expected @pytest.mark.parametrize( "freqstr", [ "2h20m", "U1", "-U", "3U1", "-2-3U", "-2D:3H", "1.5.0S", "2SMS-15-15", "2SMS-15D", "100foo", # Invalid leading +/- signs. "+-1d", "-+1h", "+1", "-7", "+d", "-m", # Invalid shortcut anchors. "SM-0", "SM-28", "SM-29", "SM-FOO", "BSM", "SM--1", "SMS-1", "SMS-28", "SMS-30", "SMS-BAR", "SMS-BYR", "BSMS", "SMS--2", ], ) def test_to_offset_invalid(freqstr): # see gh-13930 # We escape string because some of our # inputs contain regex special characters. msg = re.escape(f"Invalid frequency: {freqstr}") with pytest.raises(ValueError, match=msg): to_offset(freqstr) def test_to_offset_no_evaluate(): with pytest.raises(ValueError, match="Could not evaluate"): to_offset(("", "")) @pytest.mark.parametrize( "freqstr,expected", [ ("2D 3H", offsets.Hour(51)), ("2 D3 H", offsets.Hour(51)), ("2 D 3 H", offsets.Hour(51)), (" 2 D 3 H ", offsets.Hour(51)), (" H ", offsets.Hour()), (" 3 H ", offsets.Hour(3)), ], ) def test_to_offset_whitespace(freqstr, expected): result = to_offset(freqstr) assert result == expected @pytest.mark.parametrize( "freqstr,expected", [("00H 00T 01S", 1), ("-00H 03T 14S", -194)] ) def test_to_offset_leading_zero(freqstr, expected): result = to_offset(freqstr) assert result.n == expected @pytest.mark.parametrize("freqstr,expected", [("+1d", 1), ("+2h30min", 150)]) def test_to_offset_leading_plus(freqstr, expected): result = to_offset(freqstr) assert result.n == expected @pytest.mark.parametrize( "kwargs,expected", [ (dict(days=1, seconds=1), offsets.Second(86401)), (dict(days=-1, seconds=1), offsets.Second(-86399)), (dict(hours=1, minutes=10), offsets.Minute(70)), (dict(hours=1, minutes=-10), offsets.Minute(50)), (dict(weeks=1), offsets.Day(7)), (dict(hours=1), offsets.Hour(1)), (dict(hours=1), to_offset("60min")), (dict(microseconds=1), offsets.Micro(1)), (dict(microseconds=0), offsets.Nano(0)), ], ) def test_to_offset_pd_timedelta(kwargs, expected): # see gh-9064 td = Timedelta(**kwargs) result = to_offset(td) assert result == expected @pytest.mark.parametrize( "shortcut,expected", [ ("W", offsets.Week(weekday=6)), ("W-SUN", offsets.Week(weekday=6)), ("Q", offsets.QuarterEnd(startingMonth=12)), ("Q-DEC", offsets.QuarterEnd(startingMonth=12)), ("Q-MAY", offsets.QuarterEnd(startingMonth=5)), ("SM", offsets.SemiMonthEnd(day_of_month=15)), ("SM-15", offsets.SemiMonthEnd(day_of_month=15)), ("SM-1", offsets.SemiMonthEnd(day_of_month=1)), ("SM-27", offsets.SemiMonthEnd(day_of_month=27)), ("SMS-2", offsets.SemiMonthBegin(day_of_month=2)), ("SMS-27", offsets.SemiMonthBegin(day_of_month=27)), ], ) def test_anchored_shortcuts(shortcut, expected): result = to_offset(shortcut) assert result == expected
the-stack_106_13952
import typing # noqa: F401 from kubernetes import client # noqa: F401 from kuber import kube_api as _kube_api # noqa: F401 from kuber import definitions as _kuber_definitions # noqa: F401 from kuber import _types # noqa: F401 from kuber.v1_20.meta_v1 import ListMeta # noqa: F401 from kuber.v1_20.meta_v1 import ObjectMeta # noqa: F401 from kuber.v1_20.core_v1 import Toleration # noqa: F401 class Overhead(_kuber_definitions.Definition): """ Overhead structure represents the resource overhead associated with running a pod. """ def __init__( self, pod_fixed: dict = None, ): """Create Overhead instance.""" super(Overhead, self).__init__(api_version="node/v1", kind="Overhead") self._properties = { "podFixed": pod_fixed if pod_fixed is not None else {}, } self._types = { "podFixed": (dict, None), } @property def pod_fixed(self) -> dict: """ PodFixed represents the fixed resource overhead associated with running a pod. """ return typing.cast( dict, self._properties.get("podFixed"), ) @pod_fixed.setter def pod_fixed(self, value: dict): """ PodFixed represents the fixed resource overhead associated with running a pod. """ self._properties["podFixed"] = value def __enter__(self) -> "Overhead": return self def __exit__(self, exc_type, exc_val, exc_tb): return False class RuntimeClass(_kuber_definitions.Resource): """ RuntimeClass defines a class of container runtime supported in the cluster. The RuntimeClass is used to determine which container runtime is used to run all containers in a pod. RuntimeClasses are manually defined by a user or cluster provisioner, and referenced in the PodSpec. The Kubelet is responsible for resolving the RuntimeClassName reference before running the pod. For more details, see https://kubernetes.io/docs/concepts/containers/runtime- class/ """ def __init__( self, handler: str = None, metadata: "ObjectMeta" = None, overhead: "Overhead" = None, scheduling: "Scheduling" = None, ): """Create RuntimeClass instance.""" super(RuntimeClass, self).__init__(api_version="node/v1", kind="RuntimeClass") self._properties = { "handler": handler if handler is not None else "", "metadata": metadata if metadata is not None else ObjectMeta(), "overhead": overhead if overhead is not None else Overhead(), "scheduling": scheduling if scheduling is not None else Scheduling(), } self._types = { "apiVersion": (str, None), "handler": (str, None), "kind": (str, None), "metadata": (ObjectMeta, None), "overhead": (Overhead, None), "scheduling": (Scheduling, None), } @property def handler(self) -> str: """ Handler specifies the underlying runtime and configuration that the CRI implementation will use to handle pods of this class. The possible values are specific to the node & CRI configuration. It is assumed that all handlers are available on every node, and handlers of the same name are equivalent on every node. For example, a handler called "runc" might specify that the runc OCI runtime (using native Linux containers) will be used to run the containers in a pod. The Handler must be lowercase, conform to the DNS Label (RFC 1123) requirements, and is immutable. """ return typing.cast( str, self._properties.get("handler"), ) @handler.setter def handler(self, value: str): """ Handler specifies the underlying runtime and configuration that the CRI implementation will use to handle pods of this class. The possible values are specific to the node & CRI configuration. It is assumed that all handlers are available on every node, and handlers of the same name are equivalent on every node. For example, a handler called "runc" might specify that the runc OCI runtime (using native Linux containers) will be used to run the containers in a pod. The Handler must be lowercase, conform to the DNS Label (RFC 1123) requirements, and is immutable. """ self._properties["handler"] = value @property def metadata(self) -> "ObjectMeta": """ More info: https://git.k8s.io/community/contributors/devel/sig- architecture/api-conventions.md#metadata """ return typing.cast( "ObjectMeta", self._properties.get("metadata"), ) @metadata.setter def metadata(self, value: typing.Union["ObjectMeta", dict]): """ More info: https://git.k8s.io/community/contributors/devel/sig- architecture/api-conventions.md#metadata """ if isinstance(value, dict): value = typing.cast( ObjectMeta, ObjectMeta().from_dict(value), ) self._properties["metadata"] = value @property def overhead(self) -> "Overhead": """ Overhead represents the resource overhead associated with running a pod for a given RuntimeClass. For more details, see https://kubernetes.io/docs/concepts/scheduling- eviction/pod-overhead/ This field is in beta starting v1.18 and is only honored by servers that enable the PodOverhead feature. """ return typing.cast( "Overhead", self._properties.get("overhead"), ) @overhead.setter def overhead(self, value: typing.Union["Overhead", dict]): """ Overhead represents the resource overhead associated with running a pod for a given RuntimeClass. For more details, see https://kubernetes.io/docs/concepts/scheduling- eviction/pod-overhead/ This field is in beta starting v1.18 and is only honored by servers that enable the PodOverhead feature. """ if isinstance(value, dict): value = typing.cast( Overhead, Overhead().from_dict(value), ) self._properties["overhead"] = value @property def scheduling(self) -> "Scheduling": """ Scheduling holds the scheduling constraints to ensure that pods running with this RuntimeClass are scheduled to nodes that support it. If scheduling is nil, this RuntimeClass is assumed to be supported by all nodes. """ return typing.cast( "Scheduling", self._properties.get("scheduling"), ) @scheduling.setter def scheduling(self, value: typing.Union["Scheduling", dict]): """ Scheduling holds the scheduling constraints to ensure that pods running with this RuntimeClass are scheduled to nodes that support it. If scheduling is nil, this RuntimeClass is assumed to be supported by all nodes. """ if isinstance(value, dict): value = typing.cast( Scheduling, Scheduling().from_dict(value), ) self._properties["scheduling"] = value def create_resource(self, namespace: "str" = None): """ Creates the RuntimeClass in the currently configured Kubernetes cluster. """ names = ["create_namespaced_runtime_class", "create_runtime_class"] _kube_api.execute( action="create", resource=self, names=names, namespace=namespace, api_client=None, api_args={"body": self.to_dict()}, ) def replace_resource(self, namespace: "str" = None): """ Replaces the RuntimeClass in the currently configured Kubernetes cluster. """ names = ["replace_namespaced_runtime_class", "replace_runtime_class"] _kube_api.execute( action="replace", resource=self, names=names, namespace=namespace, api_client=None, api_args={"body": self.to_dict(), "name": self.metadata.name}, ) def patch_resource(self, namespace: "str" = None): """ Patches the RuntimeClass in the currently configured Kubernetes cluster. """ names = ["patch_namespaced_runtime_class", "patch_runtime_class"] _kube_api.execute( action="patch", resource=self, names=names, namespace=namespace, api_client=None, api_args={"body": self.to_dict(), "name": self.metadata.name}, ) def get_resource_status(self, namespace: "str" = None): """This resource does not have a status.""" pass def read_resource(self, namespace: str = None): """ Reads the RuntimeClass from the currently configured Kubernetes cluster and returns the low-level definition object. """ names = [ "read_namespaced_runtime_class", "read_runtime_class", ] return _kube_api.execute( action="read", resource=self, names=names, namespace=namespace, api_client=None, api_args={"name": self.metadata.name}, ) def delete_resource( self, namespace: str = None, propagation_policy: str = "Foreground", grace_period_seconds: int = 10, ): """ Deletes the RuntimeClass from the currently configured Kubernetes cluster. """ names = [ "delete_namespaced_runtime_class", "delete_runtime_class", ] body = client.V1DeleteOptions( propagation_policy=propagation_policy, grace_period_seconds=grace_period_seconds, ) _kube_api.execute( action="delete", resource=self, names=names, namespace=namespace, api_client=None, api_args={"name": self.metadata.name, "body": body}, ) @staticmethod def get_resource_api( api_client: client.ApiClient = None, **kwargs ) -> "client.NodeV1Api": """ Returns an instance of the kubernetes API client associated with this object. """ if api_client: kwargs["apl_client"] = api_client return client.NodeV1Api(**kwargs) def __enter__(self) -> "RuntimeClass": return self def __exit__(self, exc_type, exc_val, exc_tb): return False class RuntimeClassList(_kuber_definitions.Collection): """ RuntimeClassList is a list of RuntimeClass objects. """ def __init__( self, items: typing.List["RuntimeClass"] = None, metadata: "ListMeta" = None, ): """Create RuntimeClassList instance.""" super(RuntimeClassList, self).__init__( api_version="node/v1", kind="RuntimeClassList" ) self._properties = { "items": items if items is not None else [], "metadata": metadata if metadata is not None else ListMeta(), } self._types = { "apiVersion": (str, None), "items": (list, RuntimeClass), "kind": (str, None), "metadata": (ListMeta, None), } @property def items(self) -> typing.List["RuntimeClass"]: """ Items is a list of schema objects. """ return typing.cast( typing.List["RuntimeClass"], self._properties.get("items"), ) @items.setter def items( self, value: typing.Union[typing.List["RuntimeClass"], typing.List[dict]] ): """ Items is a list of schema objects. """ cleaned: typing.List[RuntimeClass] = [] for item in value: if isinstance(item, dict): item = typing.cast( RuntimeClass, RuntimeClass().from_dict(item), ) cleaned.append(typing.cast(RuntimeClass, item)) self._properties["items"] = cleaned @property def metadata(self) -> "ListMeta": """ Standard list metadata. More info: https://git.k8s.io/community/contributors/devel/sig- architecture/api-conventions.md#metadata """ return typing.cast( "ListMeta", self._properties.get("metadata"), ) @metadata.setter def metadata(self, value: typing.Union["ListMeta", dict]): """ Standard list metadata. More info: https://git.k8s.io/community/contributors/devel/sig- architecture/api-conventions.md#metadata """ if isinstance(value, dict): value = typing.cast( ListMeta, ListMeta().from_dict(value), ) self._properties["metadata"] = value @staticmethod def get_resource_api( api_client: client.ApiClient = None, **kwargs ) -> "client.NodeV1Api": """ Returns an instance of the kubernetes API client associated with this object. """ if api_client: kwargs["apl_client"] = api_client return client.NodeV1Api(**kwargs) def __enter__(self) -> "RuntimeClassList": return self def __exit__(self, exc_type, exc_val, exc_tb): return False class Scheduling(_kuber_definitions.Definition): """ Scheduling specifies the scheduling constraints for nodes supporting a RuntimeClass. """ def __init__( self, node_selector: dict = None, tolerations: typing.List["Toleration"] = None, ): """Create Scheduling instance.""" super(Scheduling, self).__init__(api_version="node/v1", kind="Scheduling") self._properties = { "nodeSelector": node_selector if node_selector is not None else {}, "tolerations": tolerations if tolerations is not None else [], } self._types = { "nodeSelector": (dict, None), "tolerations": (list, Toleration), } @property def node_selector(self) -> dict: """ nodeSelector lists labels that must be present on nodes that support this RuntimeClass. Pods using this RuntimeClass can only be scheduled to a node matched by this selector. The RuntimeClass nodeSelector is merged with a pod's existing nodeSelector. Any conflicts will cause the pod to be rejected in admission. """ return typing.cast( dict, self._properties.get("nodeSelector"), ) @node_selector.setter def node_selector(self, value: dict): """ nodeSelector lists labels that must be present on nodes that support this RuntimeClass. Pods using this RuntimeClass can only be scheduled to a node matched by this selector. The RuntimeClass nodeSelector is merged with a pod's existing nodeSelector. Any conflicts will cause the pod to be rejected in admission. """ self._properties["nodeSelector"] = value @property def tolerations(self) -> typing.List["Toleration"]: """ tolerations are appended (excluding duplicates) to pods running with this RuntimeClass during admission, effectively unioning the set of nodes tolerated by the pod and the RuntimeClass. """ return typing.cast( typing.List["Toleration"], self._properties.get("tolerations"), ) @tolerations.setter def tolerations( self, value: typing.Union[typing.List["Toleration"], typing.List[dict]] ): """ tolerations are appended (excluding duplicates) to pods running with this RuntimeClass during admission, effectively unioning the set of nodes tolerated by the pod and the RuntimeClass. """ cleaned: typing.List[Toleration] = [] for item in value: if isinstance(item, dict): item = typing.cast( Toleration, Toleration().from_dict(item), ) cleaned.append(typing.cast(Toleration, item)) self._properties["tolerations"] = cleaned def __enter__(self) -> "Scheduling": return self def __exit__(self, exc_type, exc_val, exc_tb): return False
the-stack_106_13954
from abc import abstractmethod import numpy as np class Survival: """ The survival process is implemented inheriting from this class, which selects from a population only specific individuals to survive. """ def __init__(self, filter_infeasible) -> None: super().__init__() self.filter_infeasible = filter_infeasible def do(self, problem, pop, n_survive, **kwargs): # if the split should be done beforehand if split_by_feasibility and problem.n_constr > 0: feasible, infeasible = split_by_feasibility(pop, sort_infeasbible_by_cv=True) # finally the survivors to be returned survivors = pop.new() # if feasible solution do exist if len(feasible) > 0: survivors = self._do(pop[feasible], min(len(feasible), n_survive), **kwargs) # if infeasible solutions needs to be added if len(survivors) < n_survive: least_infeasible = infeasible[:n_survive - len(feasible)] survivors = survivors.merge(pop[least_infeasible]) else: survivors = self._do(pop, n_survive, **kwargs) return survivors @abstractmethod def _do(self, problem, pop, n_survive, **kwargs): pass def split_by_feasibility(pop, sort_infeasbible_by_cv=True): CV = pop.get("CV") b = (CV <= 0) feasible = np.where(b)[0] infeasible = np.where(np.logical_not(b))[0] if sort_infeasbible_by_cv: infeasible = infeasible[np.argsort(CV[infeasible,0])] return feasible, infeasible
the-stack_106_13956
#!/usr/bin/env python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import kfp.dsl as dsl import kfp.gcp as gcp import kfp.components as comp import datetime import json import os dataflow_python_op = comp.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/785d474699cffb7463986b9abc4b1fbe03796cb6/components/gcp/dataflow/launch_python/component.yaml') cloudml_train_op = comp.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/785d474699cffb7463986b9abc4b1fbe03796cb6/components/gcp/ml_engine/train/component.yaml') cloudml_deploy_op = comp.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/785d474699cffb7463986b9abc4b1fbe03796cb6/components/gcp/ml_engine/deploy/component.yaml') def resnet_preprocess_op(project_id: 'GcpProject', output: 'GcsUri', staging_dir: 'GcsUri', train_csv: 'GcsUri[text/csv]', validation_csv: 'GcsUri[text/csv]', labels, train_size: 'Integer', validation_size: 'Integer', step_name='preprocess'): return dataflow_python_op( python_file_path='gs://ml-pipeline-playground/samples/ml_engine/resnet-cmle/preprocess/preprocess.py', project_id=project_id, requirements_file_path='gs://ml-pipeline-playground/samples/ml_engine/resnet-cmle/preprocess/requirements.txt', staging_dir=staging_dir, args=json.dumps([ '--train_csv', str(train_csv), '--validation_csv', str(validation_csv), '--labels', str(labels), '--output_dir', str(output), '--train_size', str(train_size), '--validation_size', str(validation_size) ]) ) def resnet_train_op(project_id, data_dir, output: 'GcsUri', region: 'GcpRegion', depth: int, train_batch_size: int, eval_batch_size: int, steps_per_eval: int, train_steps: int, num_train_images: int, num_eval_images: int, num_label_classes: int, tf_version, step_name='train'): return cloudml_train_op( project_id=project_id, region='us-central1', python_module='trainer.resnet_main', package_uris=json.dumps( ['gs://ml-pipeline-playground/samples/ml_engine/resnet-cmle/trainer/trainer-1.0.tar.gz']), job_dir=output, args=json.dumps([ '--data_dir', str(data_dir), '--model_dir', str(output), '--use_tpu', 'True', '--resnet_depth', str(depth), '--train_batch_size', str(train_batch_size), '--eval_batch_size', str(eval_batch_size), '--steps_per_eval', str(steps_per_eval), '--train_steps', str(train_steps), '--num_train_images', str(num_train_images), '--num_eval_images', str(num_eval_images), '--num_label_classes', str(num_label_classes), '--export_dir', '{}/export'.format(str(output)) ]), runtime_version=tf_version, training_input=json.dumps({ 'scaleTier': 'BASIC_TPU' }) ) def resnet_deploy_op(model_dir, model, version, project_id: 'GcpProject', region: 'GcpRegion', tf_version, step_name='deploy'): # TODO(hongyes): add region to model payload. return cloudml_deploy_op( model_uri=model_dir, project_id=project_id, model_id=model, version_id=version, runtime_version=tf_version, replace_existing_version='True' ) @dsl.pipeline( name='ResNet_Train_Pipeline', description='Demonstrate the ResNet50 predict.' ) def resnet_train( project_id, output, region='us-central1', model='bolts', version='beta1', tf_version='1.12', train_csv='gs://bolts_image_dataset/bolt_images_train.csv', validation_csv='gs://bolts_image_dataset/bolt_images_validate.csv', labels='gs://bolts_image_dataset/labels.txt', depth=50, train_batch_size=1024, eval_batch_size=1024, steps_per_eval=250, train_steps=10000, num_train_images=218593, num_eval_images=54648, num_label_classes=10): output_dir = os.path.join(str(output), '{{workflow.name}}') preprocess_staging = os.path.join(output_dir, 'staging') preprocess_output = os.path.join(output_dir, 'preprocessed_output') train_output = os.path.join(output_dir, 'model') preprocess = resnet_preprocess_op(project_id, preprocess_output, preprocess_staging, train_csv, validation_csv, labels, train_batch_size, eval_batch_size).apply(gcp.use_gcp_secret()) train = resnet_train_op(project_id, preprocess_output, train_output, region, depth, train_batch_size, eval_batch_size, steps_per_eval, train_steps, num_train_images, num_eval_images, num_label_classes, tf_version).apply(gcp.use_gcp_secret()) train.after(preprocess) export_output = os.path.join(str(train.outputs['job_dir']), 'export') deploy = resnet_deploy_op(export_output, model, version, project_id, region, tf_version).apply(gcp.use_gcp_secret()) if __name__ == '__main__': import kfp.compiler as compiler compiler.Compiler().compile(resnet_train, __file__ + '.zip')
the-stack_106_13957
###################################################################################################################### # Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Amazon Software License (the "License"). You may not use this file except in compliance # # with the License. A copy of the License is located at # # # # http://aws.amazon.com/asl/ # # # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES # # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions # # and limitations under the License. # ###################################################################################################################### import boto3 from botocore.client import Config from xml.dom import minidom import os import logging import datetime, sys, json, urllib2, urllib, re log_level = str(os.environ.get('LOG_LEVEL')).upper() if log_level not in ['DEBUG', 'INFO','WARNING', 'ERROR','CRITICAL']: log_level = 'ERROR' log = logging.getLogger() log.setLevel(log_level) bucket_name=str(os.environ.get('BUCKET_NAME')) bucket_prefix=str(os.environ.get('BUCKET_PREFIX')) config_file=str(os.environ.get('CONFIG_FILE')) EIP=str(os.environ.get('EIP')) PIP=str(os.environ.get('PIP')) HUB_TAG=str(os.environ.get('HUB_TAG')) HUB_TAG_VALUE=str(os.environ.get('HUB_TAG_VALUE')) BGP_ASN=int(os.environ.get('BGP_ASN')) UUID='' LOG_LEVEL='INFO' #VGW tags come in the format of [{"Key": "Tag1", "Value":"Tag1value"},{"Key":"Tag2","Value":"Tag2value"}] #This function converts the array of Key/Value dicts to a single tag dictionary def getTags(vgwTags): tags = {} for subTag in vgwTags: tags[subTag['Key']] = subTag['Value'] return tags #This function adds a <transit_vpc_config /> block to an existing XML doc and returns the new XML def updateConfigXML(xml, vgwTags, account_id,spoke_subnet,csr_number): xmldoc=minidom.parseString(xml) #Create TransitVPC config xml block transitConfig= xmldoc.createElement("transit_vpc_config") #Create Account ID xml block newXml = xmldoc.createElement("account_id") newXml.appendChild(xmldoc.createTextNode(account_id)) transitConfig.appendChild(newXml) #Create VPN Endpoint xml block newXml = xmldoc.createElement("vpn_endpoint") newXml.appendChild(xmldoc.createTextNode(csr_number)) transitConfig.appendChild(newXml) #create VPN Spoke subnet xml block newXml = xmldoc.createElement("spoke_subnet") newXml.appendChild(xmldoc.createTextNode(spoke_subnet)) transitConfig.appendChild(newXml) #create Transit IPSec local INT xml block newXml = xmldoc.createElement("customer_local_ip") newXml.appendChild(xmldoc.createTextNode(PIP)) transitConfig.appendChild(newXml) #Create status xml block (create = tagged to create spoke, delete = tagged as spoke, but not with the correct spoke tag value) newXml = xmldoc.createElement("status") if vgwTags[HUB_TAG] == HUB_TAG_VALUE: newXml.appendChild(xmldoc.createTextNode("create")) else: newXml.appendChild(xmldoc.createTextNode("delete")) transitConfig.appendChild(newXml) #Add transit config to XML xmldoc.childNodes[0].appendChild(transitConfig) return str(xmldoc.toxml()) def lambda_handler(event, context): #Figure out the account number by parsing this function's ARN account_id = re.findall(':(\d+):', context.invoked_function_arn)[0] #Retrieve Transit VPC configuration from transit_vpn_config.txt s3=boto3.client('s3', config=Config(signature_version='s3v4')) log.info('Getting config file %s/%s%s',bucket_name, bucket_prefix) log.info('Retrieved IP of transit VPN gateways: %s, %s',EIP) # use this variable to determine if a VGW has been processed so we will only process one VGW per run (one per minute) processed_vgw = False #Get list of regions so poller can look for VGWs in all regions ec2=boto3.client('ec2',region_name='us-east-1') regions=ec2.describe_regions() for region in regions['Regions']: #Get region name for the current region region_id=region['RegionName'] log.debug('Checking region: %s',region_id) #Create EC2 connection to this region to get list of VGWs ec2=boto3.client('ec2',region_name=region_id) #Get list of all VGWs in the region vgws=ec2.describe_vpn_gateways(Filters=[ {'Name':'state','Values':['available', 'attached', 'detached']} ]) #Get list of Transit VPC tagged VPN connections in the region as well vpns=ec2.describe_vpn_connections(Filters=[ {'Name':'state','Values':['available','pending','deleting']}, {'Name':'tag:'+ HUB_TAG,'Values':[HUB_TAG_VALUE] } ]) #Process all the VGWs in the region for vgw in vgws['VpnGateways']: #Check to see if the VGW has tags, if not, then we should skip it if vgw.get('Tags', '') == '': continue #Put all of the VGW tags into a dict for easier processing vgwTags = getTags(vgw['Tags']) #Configure HUB_TAG if it is not set already (for untagged VGWs) vgwTags[HUB_TAG] = vgwTags.get( HUB_TAG, '') #Determine if VGW is tagged as a spoke spoke_vgw = False if vgwTags[HUB_TAG] == HUB_TAG_VALUE: spoke_vgw = True #Check to see if the VGW already has Transit VPC VPN Connections vpn_existing=False for vpn in vpns['VpnConnections']: if vpn['VpnGatewayId']==vgw['VpnGatewayId']: vpn_existing=True break #Need to create VPN connections if this is a spoke VGW and no VPN connections already exist if spoke_vgw and not vpn_existing: log.info('Found a new VGW (%s) which needs VPN connections.', vgw['VpnGatewayId']) #Create Customer Gateways (will create CGWs if they do not exist, otherwise, the API calls are ignored) log.debug('Creating Customer Gateways with IP %s, %s', EIP) cg1=ec2.create_customer_gateway(Type='ipsec.1',PublicIp=EIP,BgpAsn=BGP_ASN) ec2.create_tags(Resources=[cg1['CustomerGateway']['CustomerGatewayId']], Tags=[{'Key': 'Name','Value': 'Transit VPC Endpoint1' }]) log.info('Created Customer Gateways: %s, %s',cg1['CustomerGateway']['CustomerGatewayId']) #Create and tag first VPN connection vpn1=ec2.create_vpn_connection(Type='ipsec.1',CustomerGatewayId=cg1['CustomerGateway']['CustomerGatewayId'],VpnGatewayId=vgw['VpnGatewayId'],Options={'StaticRoutesOnly':True}) ec2.create_tags(Resources=[vpn1['VpnConnection']['VpnConnectionId']], Tags=[ {'Key': 'Name','Value': vgw['VpnGatewayId']+'-to-Transit-VPC CSR1' }, {'Key': HUB_TAG,'Value': HUB_TAG_VALUE }, {'Key': 'transitvpc:endpoint','Value': 'CSR1' } ]) log.info('Created VPN connections: %s, %s', vpn1['VpnConnection']['VpnConnectionId']) #Retrieve VPN configuration vpn_config1=ec2.describe_vpn_connections(VpnConnectionIds=[vpn1['VpnConnection']['VpnConnectionId']]) vpn_config1=vpn_config1['VpnConnections'][0]['CustomerGatewayConfiguration'] # Spoke subnet spoke_subnet=ec2.describe_vpcs(VpcIds=[vgw['VpcAttachments'][0]['VpcId']])['Vpcs'][0]['CidrBlock'] #Update VPN configuration XML with transit VPC specific configuration info for this connection vpn_config1=updateConfigXML(vpn_config1, vgwTags, account_id, spoke_subnet, 'CSR1') #Put CSR1 config in S3 s3.put_object( Body=str.encode(vpn_config1), Bucket=bucket_name, Key=bucket_prefix+'CSR1/'+region_id+'-'+vpn1['VpnConnection']['VpnConnectionId']+'.conf', ACL='bucket-owner-full-control', ) log.debug('Pushed VPN configurations to S3...') processed_vgw = True #Need to delete VPN connections if this is no longer a spoke VPC (tagged for spoke, but tag != spoke tag value) but Transit VPC connections exist if not spoke_vgw and vpn_existing: log.info('Found old VGW (%s) with VPN connections to remove.', vgw['VpnGatewayId']) #We need to go through the region's VPN connections to find the ones to delete for vpn in vpns['VpnConnections']: if vpn['VpnGatewayId']==vgw['VpnGatewayId']: #Put the VPN tags into a dict for easier processing vpnTags = getTags(vpn['Tags']) if vpnTags['transitvpc:endpoint'] == 'CSR1': csrNum = '1' else: csrNum = '2' #Need to get VPN configuration to remove from CSR vpn_config=vpn['CustomerGatewayConfiguration'] # Spoke subnet spoke_subnet=ec2.describe_vpcs(VpcIds=[vgw['VpcAttachments'][0]['VpcId']])['Vpcs'][0]['CidrBlock'] #Update VPN configuration XML with transit VPC specific configuration info for this connection vpn_config=updateConfigXML(vpn_config, vgwTags, account_id, spoke_subnet, vpnTags['transitvpc:endpoint']) s3.put_object( Body=str.encode(vpn_config), Bucket=bucket_name, Key=bucket_prefix+'CSR'+csrNum+'/'+region_id+'-'+vpn['VpnConnectionId']+'.conf', ACL='bucket-owner-full-control', ) log.debug('Pushed CSR%s configuration to S3.', csrNum) #now we need to delete the VPN connection ec2.delete_vpn_connection(VpnConnectionId=vpn['VpnConnectionId']) log.info('Deleted VPN connection (%s) to CSR%s', vpn['VpnConnectionId'], csrNum) #Attempt to clean up the CGW. This will only succeed if the CGW has no VPN connections are deleted try: ec2.delete_customer_gateway(CustomerGatewayId=vpn['CustomerGatewayId']) log.info("Cleaned up %s since it has no VPN connections left", vpn['CustomerGatewayId']) except: log.debug("%s still has existing VPN connections", vpn['CustomerGatewayId']) # if a VGW has been processed, then we need to break out of VGW processing if processed_vgw: break # if a VGW has been processed, then we need to break out of region processing if processed_vgw: break
the-stack_106_13958
import logging import sys import ply.lex from jsonpath_ng.exceptions import JsonPathLexerError logger = logging.getLogger(__name__) class JsonPathLexer(object): ''' A Lexical analyzer for JsonPath. ''' def __init__(self, debug=False): self.debug = debug if self.__doc__ == None: raise JsonPathLexerError( 'Docstrings have been removed! By design of PLY, jsonpath-rw requires docstrings. You must not use PYTHONOPTIMIZE=2 or python -OO.') def tokenize(self, string): ''' Maps a string to an iterator over tokens. In other words: [char] -> [token] ''' new_lexer = ply.lex.lex(module=self, debug=self.debug, errorlog=logger) new_lexer.latest_newline = 0 new_lexer.string_value = None new_lexer.input(string) while True: t = new_lexer.token() if t is None: break t.col = t.lexpos - new_lexer.latest_newline yield t if new_lexer.string_value is not None: raise JsonPathLexerError('Unexpected EOF in string literal or identifier') # ============== PLY Lexer specification ================== # # This probably should be private but: # - the parser requires access to `tokens` (perhaps they should be defined in a third, shared dependency) # - things like `literals` might be a legitimate part of the public interface. # # Anyhow, it is pythonic to give some rope to hang oneself with :-) literals = ['*', '.', '[', ']', '(', ')', '$', ',', ':', '|', '&', '~'] reserved_words = {'where': 'WHERE'} tokens = ['DOUBLEDOT', 'NUMBER', 'ID', 'NAMED_OPERATOR'] + list(reserved_words.values()) states = [('singlequote', 'exclusive'), ('doublequote', 'exclusive'), ('backquote', 'exclusive')] # Normal lexing, rather easy t_DOUBLEDOT = r'\.\.' t_ignore = ' \t' def t_ID(self, t): r'[a-zA-Z_@][a-zA-Z0-9_@\-]*' t.type = self.reserved_words.get(t.value, 'ID') return t def t_NUMBER(self, t): r'-?\d+' t.value = int(t.value) return t # Single-quoted strings t_singlequote_ignore = '' def t_singlequote(self, t): r"'" t.lexer.string_start = t.lexer.lexpos t.lexer.string_value = '' t.lexer.push_state('singlequote') def t_singlequote_content(self, t): r"[^'\\]+" t.lexer.string_value += t.value def t_singlequote_escape(self, t): r'\\.' t.lexer.string_value += t.value[1] def t_singlequote_end(self, t): r"'" t.value = t.lexer.string_value t.type = 'ID' t.lexer.string_value = None t.lexer.pop_state() return t def t_singlequote_error(self, t): raise JsonPathLexerError( 'Error on line %s, col %s while lexing singlequoted field: Unexpected character: %s ' % ( t.lexer.lineno, t.lexpos - t.lexer.latest_newline, t.value[0])) # Double-quoted strings t_doublequote_ignore = '' def t_doublequote(self, t): r'"' t.lexer.string_start = t.lexer.lexpos t.lexer.string_value = '' t.lexer.push_state('doublequote') def t_doublequote_content(self, t): r'[^"\\]+' t.lexer.string_value += t.value def t_doublequote_escape(self, t): r'\\.' t.lexer.string_value += t.value[1] def t_doublequote_end(self, t): r'"' t.value = t.lexer.string_value t.type = 'ID' t.lexer.string_value = None t.lexer.pop_state() return t def t_doublequote_error(self, t): raise JsonPathLexerError( 'Error on line %s, col %s while lexing doublequoted field: Unexpected character: %s ' % ( t.lexer.lineno, t.lexpos - t.lexer.latest_newline, t.value[0])) # Back-quoted "magic" operators t_backquote_ignore = '' def t_backquote(self, t): r'`' t.lexer.string_start = t.lexer.lexpos t.lexer.string_value = '' t.lexer.push_state('backquote') def t_backquote_escape(self, t): r'\\.' t.lexer.string_value += t.value[1] def t_backquote_content(self, t): r"[^`\\]+" t.lexer.string_value += t.value def t_backquote_end(self, t): r'`' t.value = t.lexer.string_value t.type = 'NAMED_OPERATOR' t.lexer.string_value = None t.lexer.pop_state() return t def t_backquote_error(self, t): raise JsonPathLexerError( 'Error on line %s, col %s while lexing backquoted operator: Unexpected character: %s ' % ( t.lexer.lineno, t.lexpos - t.lexer.latest_newline, t.value[0])) # Counting lines, handling errors def t_newline(self, t): r'\n' t.lexer.lineno += 1 t.lexer.latest_newline = t.lexpos def t_error(self, t): raise JsonPathLexerError('Error on line %s, col %s: Unexpected character: %s ' % ( t.lexer.lineno, t.lexpos - t.lexer.latest_newline, t.value[0])) if __name__ == '__main__': logging.basicConfig() lexer = JsonPathLexer(debug=True) for token in lexer.tokenize(sys.stdin.read()): print('%-20s%s' % (token.value, token.type))
the-stack_106_13959
""" ELF (Unix/BSD executable file format) parser. Author: Victor Stinner, Robert Xiao Creation date: 08 may 2006 """ from hachoir.parser import HachoirParser from hachoir.field import (RootSeekableFieldSet, FieldSet, Bit, NullBits, RawBits, UInt8, UInt16, UInt32, UInt64, Enum, String, RawBytes, Bytes) from hachoir.core.text_handler import textHandler, hexadecimal from hachoir.core.endian import LITTLE_ENDIAN, BIG_ENDIAN class ElfHeader(FieldSet): LITTLE_ENDIAN_ID = 1 BIG_ENDIAN_ID = 2 MACHINE_NAME = { # e_machine, EM_ defines 0: "No machine", 1: "AT&T WE 32100", 2: "SPARC", 3: "Intel 80386", 4: "Motorola 68000", 5: "Motorola 88000", 6: "Intel 80486", 7: "Intel 80860", 8: "MIPS I Architecture", 9: "Amdahl UTS on System/370", 10: "MIPS RS3000 Little-endian", 11: "IBM RS/6000 XXX reserved", 15: "Hewlett-Packard PA-RISC", 16: "NCube XXX reserved", 17: "Fujitsu VPP500", 18: "Enhanced instruction set SPARC", 19: "Intel 80960", 20: "PowerPC 32-bit", 21: "PowerPC 64-bit", 36: "NEC V800", 37: "Fujitsu FR20", 38: "TRW RH-32", 39: "Motorola RCE", 40: "Advanced RISC Machines (ARM)", 41: "DIGITAL Alpha", 42: "Hitachi Super-H", 43: "SPARC Version 9", 44: "Siemens Tricore", 45: "Argonaut RISC Core", 46: "Hitachi H8/300", 47: "Hitachi H8/300H", 48: "Hitachi H8S", 49: "Hitachi H8/500", 50: "Intel Merced (IA-64) Processor", 51: "Stanford MIPS-X", 52: "Motorola Coldfire", 53: "Motorola MC68HC12", 62: "Advanced Micro Devices x86-64", 75: "DIGITAL VAX", 36902: "used by NetBSD/alpha; obsolete", } CLASS_NAME = { # e_ident[EI_CLASS], ELFCLASS defines 1: "32 bits", 2: "64 bits" } TYPE_NAME = { # e_type, ET_ defines 0: "No file type", 1: "Relocatable file", 2: "Executable file", 3: "Shared object file", 4: "Core file", 0xFF00: "Processor-specific (0xFF00)", 0xFFFF: "Processor-specific (0xFFFF)", } OSABI_NAME = { # e_ident[EI_OSABI], ELFOSABI_ defines 0: "UNIX System V ABI", 1: "HP-UX operating system", 2: "NetBSD", 3: "GNU/Linux", 4: "GNU/Hurd", 5: "86Open common IA32 ABI", 6: "Solaris", 7: "Monterey", 8: "IRIX", 9: "FreeBSD", 10: "TRU64 UNIX", 11: "Novell Modesto", 12: "OpenBSD", 97: "ARM", 255: "Standalone (embedded) application", } ENDIAN_NAME = { # e_ident[EI_DATA], ELFDATA defines LITTLE_ENDIAN_ID: "Little endian", BIG_ENDIAN_ID: "Big endian", } def createFields(self): yield Bytes(self, "signature", 4, r'ELF signature ("\x7fELF")') yield Enum(UInt8(self, "class", "Class"), self.CLASS_NAME) if self["class"].value == 1: ElfLongWord = UInt32 else: ElfLongWord = UInt64 yield Enum(UInt8(self, "endian", "Endian"), self.ENDIAN_NAME) yield UInt8(self, "file_version", "File version") yield Enum(UInt8(self, "osabi_ident", "OS/syscall ABI identification"), self.OSABI_NAME) yield UInt8(self, "abi_version", "syscall ABI version") yield String(self, "pad", 7, "Pad") yield Enum(UInt16(self, "type", "File type"), self.TYPE_NAME) yield Enum(UInt16(self, "machine", "Machine type"), self.MACHINE_NAME) yield UInt32(self, "version", "ELF format version") yield textHandler(ElfLongWord(self, "entry", "Entry point"), hexadecimal) yield ElfLongWord(self, "phoff", "Program header file offset") yield ElfLongWord(self, "shoff", "Section header file offset") yield UInt32(self, "flags", "Architecture-specific flags") yield UInt16(self, "ehsize", "Elf header size (this header)") yield UInt16(self, "phentsize", "Program header entry size") yield UInt16(self, "phnum", "Program header entry count") yield UInt16(self, "shentsize", "Section header entry size") yield UInt16(self, "shnum", "Section header entry count") yield UInt16(self, "shstrndx", "Section header string table index") def isValid(self): if self["signature"].value != b"\x7FELF": return "Wrong ELF signature" if self["class"].value not in self.CLASS_NAME: return "Unknown class" if self["endian"].value not in self.ENDIAN_NAME: return "Unknown endian (%s)" % self["endian"].value return "" class SectionFlags(FieldSet): def createFields(self): if self.root.endian == BIG_ENDIAN: if self.root.is64bit: yield RawBits(self, "reserved[]", 32) yield RawBits(self, "processor_specific", 4, "Processor specific flags") yield NullBits(self, "reserved[]", 17) yield Bit(self, "is_tls", "Section contains TLS data?") yield NullBits(self, "reserved[]", 7) yield Bit(self, "is_exec", "Section contains executable instructions?") yield Bit(self, "is_alloc", "Section occupies memory?") yield Bit(self, "is_writable", "Section contains writable data?") else: yield Bit(self, "is_writable", "Section contains writable data?") yield Bit(self, "is_alloc", "Section occupies memory?") yield Bit(self, "is_exec", "Section contains executable instructions?") yield NullBits(self, "reserved[]", 7) yield Bit(self, "is_tls", "Section contains TLS data?") yield RawBits(self, "processor_specific", 4, "Processor specific flags") yield NullBits(self, "reserved[]", 17) if self.root.is64bit: yield RawBits(self, "reserved[]", 32) class SymbolStringTableOffset(UInt32): def createDisplay(self): section_index = self['/header/shstrndx'].value section = self['/section[' + str(section_index) + ']'] text = section.value[self.value:] return text.split('\0', 1)[0] class SectionHeader32(FieldSet): static_size = 40 * 8 TYPE_NAME = { # sh_type, SHT_ defines 0: "Inactive", 1: "Program defined information", 2: "Symbol table section", 3: "String table section", 4: "Relocation section with addends", 5: "Symbol hash table section", 6: "Dynamic section", 7: "Note section", 8: "Block started by symbol (BSS) or No space section", 9: "Relocation section without addends", 10: "Reserved - purpose unknown", 11: "Dynamic symbol table section", } def createFields(self): yield SymbolStringTableOffset(self, "name", "Section name (index into section header string table)") yield Enum(textHandler(UInt32(self, "type", "Section type"), hexadecimal), self.TYPE_NAME) yield SectionFlags(self, "flags", "Section flags") yield textHandler(UInt32(self, "VMA", "Virtual memory address"), hexadecimal) yield textHandler(UInt32(self, "LMA", "Logical memory address (offset in file)"), hexadecimal) yield textHandler(UInt32(self, "size", "Section size (bytes)"), hexadecimal) yield UInt32(self, "link", "Index of a related section") yield UInt32(self, "info", "Type-dependent information") yield UInt32(self, "addr_align", "Address alignment (bytes)") yield UInt32(self, "entry_size", "Size of each entry in section") def createDescription(self): return "Section header (name: %s, type: %s)" % \ (self["name"].display, self["type"].display) class SectionHeader64(SectionHeader32): static_size = 64 * 8 def createFields(self): yield SymbolStringTableOffset(self, "name", "Section name (index into section header string table)") yield Enum(textHandler(UInt32(self, "type", "Section type"), hexadecimal), self.TYPE_NAME) yield SectionFlags(self, "flags", "Section flags") yield textHandler(UInt64(self, "VMA", "Virtual memory address"), hexadecimal) yield textHandler(UInt64(self, "LMA", "Logical memory address (offset in file)"), hexadecimal) yield textHandler(UInt64(self, "size", "Section size (bytes)"), hexadecimal) yield UInt32(self, "link", "Index of a related section") yield UInt32(self, "info", "Type-dependent information") yield UInt64(self, "addr_align", "Address alignment (bytes)") yield UInt64(self, "entry_size", "Size of each entry in section") class ProgramFlags(FieldSet): static_size = 32 FLAGS = (('pf_r', 'readable'), ('pf_w', 'writable'), ('pf_x', 'executable')) def createFields(self): if self.root.endian == BIG_ENDIAN: yield NullBits(self, "padding[]", 29) for fld, desc in self.FLAGS: yield Bit(self, fld, "Segment is " + desc) else: for fld, desc in reversed(self.FLAGS): yield Bit(self, fld, "Segment is " + desc) yield NullBits(self, "padding[]", 29) def createDescription(self): attribs = [] for fld, desc in self.FLAGS: if self[fld].value: attribs.append(desc) return 'Segment is ' + ', '.join(attribs) class ProgramHeader32(FieldSet): TYPE_NAME = { # p_type, PT_ defines 0: "Unused program header table entry", 1: "Loadable program segment", 2: "Dynamic linking information", 3: "Program interpreter", 4: "Auxiliary information", 5: "Reserved, unspecified semantics", 6: "Entry for header table itself", 7: "Thread Local Storage segment", 0x70000000: "MIPS_REGINFO", } static_size = 32 * 8 def createFields(self): yield Enum(UInt32(self, "type", "Segment type"), ProgramHeader32.TYPE_NAME) yield UInt32(self, "offset", "Offset") yield textHandler(UInt32(self, "vaddr", "V. address"), hexadecimal) yield textHandler(UInt32(self, "paddr", "P. address"), hexadecimal) yield UInt32(self, "file_size", "File size") yield UInt32(self, "mem_size", "Memory size") yield ProgramFlags(self, "flags") yield UInt32(self, "align", "Alignment padding") def createDescription(self): return "Program Header (%s)" % self["type"].display class ProgramHeader64(ProgramHeader32): static_size = 56 * 8 def createFields(self): yield Enum(UInt32(self, "type", "Segment type"), ProgramHeader32.TYPE_NAME) yield ProgramFlags(self, "flags") yield UInt64(self, "offset", "Offset") yield textHandler(UInt64(self, "vaddr", "V. address"), hexadecimal) yield textHandler(UInt64(self, "paddr", "P. address"), hexadecimal) yield UInt64(self, "file_size", "File size") yield UInt64(self, "mem_size", "Memory size") yield UInt64(self, "align", "Alignment padding") class ElfFile(HachoirParser, RootSeekableFieldSet): MAGIC = b"\x7FELF" PARSER_TAGS = { "id": "elf", "category": "program", "file_ext": ("so", ""), "min_size": 52 * 8, # At least one program header "mime": ( "application/x-executable", "application/x-object", "application/x-sharedlib", "application/x-executable-file", "application/x-coredump"), "magic": ((b"\x7FELF", 0),), "description": "ELF Unix/BSD program/library" } endian = LITTLE_ENDIAN def __init__(self, stream, **args): RootSeekableFieldSet.__init__( self, None, "root", stream, None, stream.askSize(self)) HachoirParser.__init__(self, stream, **args) def validate(self): if self.stream.readBytes(0, len(self.MAGIC)) != self.MAGIC: return "Invalid magic" err = self["header"].isValid() if err: return err return True def createFields(self): # Choose the right endian depending on endian specified in header if self.stream.readBits(5 * 8, 8, BIG_ENDIAN) == ElfHeader.BIG_ENDIAN_ID: self.endian = BIG_ENDIAN else: self.endian = LITTLE_ENDIAN # Parse header and program headers yield ElfHeader(self, "header", "Header") self.is64bit = (self["header/class"].value == 2) for index in range(self["header/phnum"].value): if self.is64bit: yield ProgramHeader64(self, "prg_header[]") else: yield ProgramHeader32(self, "prg_header[]") self.seekByte(self["header/shoff"].value, relative=False) for index in range(self["header/shnum"].value): if self.is64bit: yield SectionHeader64(self, "section_header[]") else: yield SectionHeader32(self, "section_header[]") for index in range(self["header/shnum"].value): field = self["section_header[" + str(index) + "]"] if field['size'].value != 0: self.seekByte(field['LMA'].value, relative=False) yield RawBytes(self, "section[" + str(index) + "]", field['size'].value) def createDescription(self): return "ELF Unix/BSD program/library: %s" % ( self["header/class"].display)
the-stack_106_13960
import requests import sys from functools import wraps import inspect from json import loads class IEX(object): """ Base class for IEX API """ _IEX_API_URL = "https://api.iextrading.com/1.0" def __init__(self, retries=5): """ Initialize the class retries: Maximum amount of retries in case of faulty connection or server not able to answer the call. """ self.retries = retries def _retry(func): """ Decorator for retrying api calls func: The function to be retried """ @wraps(func) def _retry_wrapper(self, *args, **kwargs): error_message = "" for retry in range(self.retries + 1): try: return func(self, *args, **kwargs) except ValueError as err: error_message = str(err) raise ValueError(str(error_message)) return _retry_wrapper @classmethod def _get_args(cls, func): """ Get the args of the function func: The function to be used """ argspec = inspect.getargspec(func) try: defaults = dict(zip(argspec.args[pos:], argspec.defaults)) except: if argspec.args: # no default defaults = {} elif argspec.defaults: defaults = argspec.defaults return argspec, defaults @classmethod def _call_api_on_func(cls, func): argspec, defaults = cls._get_args(func) @wraps(func) def _call_wrapper(self, *args, **kwargs): function_names = func(self, *args, **kwargs) url = "{}/{}?".format(IEX._IEX_API_URL, '/'.join(function_names)) for idx, arg_name in enumerate(argspec.args[1:]): if arg_name in defaults: try: arg_value = kwargs[arg_name] except KeyError: arg_value = defaults[arg_name] if arg_value: if isinstance(arg_value, tuple) or isinstance(arg_value, list): arg_value = ','.join([str(v) for v in arg_value]) url = "{}{}={}&".format(url, arg_name, arg_value) url = url[:-1] return self._handle_api_call(url) return _call_wrapper @_retry def _handle_api_call(self, url): """ Handle the return call from the api and return a data object. It raises a ValueError on problems. url: The url of the service """ response = requests.get(url) return response.json()
the-stack_106_13961
from ..util import * import re def get_kmer_count_dict(dna, k, precision='exact', d=None): """ Creates a dictionary of counts for each k-mer in a string. :param dna: a string of DNA :param k: the length of each substring :param precision: how much precision is required in obtaining kmer_count exact: exact string matches mismatch: string matches with d or fewer differences reverse: string matches reverse complement as well loose: includes mismatch and reverse options :param d: optional param indicating maximum number of mismatches (Hamming distance) :return: a dictionary of each k-mer and the number of times it appears, the largest count """ k_mers = dict() largest_count = 0 # Run for all precision levels for i in range(0, len(dna) - k): seq = dna[i:i + k] if seq in k_mers: k_mers[seq] += 1 if k_mers[seq] > largest_count: largest_count = k_mers[seq] else: k_mers[seq] = 1 if precision == 'mismatch' or precision == 'loose': for k_mer in k_mers.keys(): indexes = find_approximate_match_indexes(dna, k_mer, d) k_mers[k_mer] = len(indexes) if k_mers[k_mer] > largest_count: largest_count = k_mers[k_mer] if precision == 'reverse' or precision == 'loose': new_kmers = dict() for k_mer in k_mers.keys(): rc_kmer = reverse_complement(k_mer) # Only add if reverse complement isn't already in new dictionary if rc_kmer not in new_kmers: # Determine if reverse complement is also present in the DNA if rc_kmer in k_mers: # Add reverse complement count to current count total_count = k_mers[k_mer] + k_mers[rc_kmer] else: total_count = k_mers[k_mer] # Add to new list of k-mers new_kmers[k_mer] = total_count if new_kmers[k_mer] > largest_count: largest_count = new_kmers[k_mer] k_mers = new_kmers # Return dictionary of existing k-mers and their counts return k_mers, largest_count def find_pattern_clumps(dna, k, L, t): """ Find all patterns forming (L, t)-clumps in a given sequence of DNA. :param dna: a string of DNA :param k: the length of each k-mer :param L: the size of the window determining clumps :param t: the number of required occurrences :return: a list of patterns that meet the clumping requirements """ # Create dictionary of k-mers k_mers = dict() for i in range(len(dna) - k): seq = dna[i:i + k] if seq in k_mers: k_mers[seq] += 1 else: k_mers[seq] = 1 # Get list of more common k_mers sequences = set() for sequence, frequency in k_mers.items(): if frequency >= t: sequences.add(sequence) # Create list of indexes for each common k_mer k_mer_indexes = dict() for pattern in sequences: pattern_lookup = '(?=' + pattern + ')' # to find overlapping matches indexes = [s.start() for s in re.finditer(pattern_lookup, dna)] k_mer_indexes[pattern] = indexes # Look for clumps sequences.clear() for pattern in k_mer_indexes: indexes = k_mer_indexes.get(pattern) for i in range(0, len(indexes) - t + 1): if indexes[i + t - 1] + k - indexes[i] <= L: # make sure it completely fits sequences.add(pattern) def find_minimum_skew(dna, save_skew=False, file_name=None): """ Generates a list of indexes with the minimum G - C skew. :param dna: a string of DNA :param save_skew: whether to save the skew list to a file :param file_name: the file to save the skew to :return: a list of DNA indexes with the lowest skew """ skew = list() current_skew = 0 lowest_skew = 0 skew.append(current_skew) # Find the skew for each position for i in range(len(dna)): if dna[i] == 'C': current_skew -= 1 elif dna[i] == 'G': current_skew += 1 skew.append(current_skew) if lowest_skew > current_skew: lowest_skew = current_skew if save_skew: # Save skew to file with open(file_name, 'w') as s: for value in skew: s.write("{},".format(value)) # Find the indexes with the lowest skew minimum_indexes = list() for i in range(len(skew)): if skew[i] == lowest_skew: minimum_indexes.append(i) return minimum_indexes
the-stack_106_13962
from models.tridentnet.builder import TridentFasterRcnn as Detector from models.tridentnet.builder_v2 import TridentResNetV1bC4 as Backbone from models.tridentnet.builder import TridentRpnHead as RpnHead from models.tridentnet.builder import process_branch_outputs, process_branch_rpn_outputs from symbol.builder import Neck from symbol.builder import RoiAlign as RoiExtractor from symbol.builder import BboxC5V1Head as BboxHead from mxnext.complicate import normalizer_factory def get_config(is_train): class General: log_frequency = 10 name = __name__.rsplit("/")[-1].rsplit(".")[-1] batch_image = 1 if is_train else 1 fp16 = False class Trident: num_branch = 3 if is_train else 1 train_scaleaware = False test_scaleaware = False branch_ids = range(num_branch) if is_train else [1] branch_dilates = [1, 2, 3] if is_train else [2] valid_ranges = [(0, -1), (0, -1), (0, -1)] if is_train else [(0, -1)] valid_ranges_on_origin = True branch_bn_shared = True branch_conv_shared = True branch_deform = False assert num_branch == len(branch_ids) assert num_branch == len(valid_ranges) class KvstoreParam: kvstore = "local" batch_image = General.batch_image gpus = [0, 1, 2, 3, 4, 5, 6, 7] fp16 = General.fp16 class NormalizeParam: # normalizer = normalizer_factory(type="syncbn", ndev=len(KvstoreParam.gpus)) normalizer = normalizer_factory(type="fixbn") class BackboneParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer depth = 152 num_branch = Trident.num_branch branch_ids = Trident.branch_ids branch_dilates = Trident.branch_dilates branch_bn_shared = Trident.branch_bn_shared branch_conv_shared = Trident.branch_conv_shared branch_deform = Trident.branch_deform class NeckParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer class RpnParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer batch_image = General.batch_image * Trident.num_branch class anchor_generate: scale = (2, 4, 8, 16, 32) ratio = (0.5, 1.0, 2.0) stride = 16 image_anchor = 256 class head: conv_channel = 512 mean = (0, 0, 0, 0) std = (1, 1, 1, 1) class proposal: pre_nms_top_n = 12000 if is_train else 6000 post_nms_top_n = 500 if is_train else 300 nms_thr = 0.7 min_bbox_side = 0 class subsample_proposal: proposal_wo_gt = True image_roi = 128 fg_fraction = 0.5 fg_thr = 0.5 bg_thr_hi = 0.5 bg_thr_lo = 0.0 class bbox_target: num_reg_class = 2 class_agnostic = True weight = (1.0, 1.0, 1.0, 1.0) mean = (0.0, 0.0, 0.0, 0.0) std = (0.1, 0.1, 0.2, 0.2) class BboxParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer num_class = 1 + 80 image_roi = 128 batch_image = General.batch_image * Trident.num_branch class regress_target: class_agnostic = True mean = (0.0, 0.0, 0.0, 0.0) std = (0.1, 0.1, 0.2, 0.2) class RoiParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer out_size = 7 stride = 16 class DatasetParam: if is_train: image_set = ("coco_train2014", "coco_valminusminival2014") else: image_set = ("coco_minival2014", ) backbone = Backbone(BackboneParam) neck = Neck(NeckParam) rpn_head = RpnHead(RpnParam) roi_extractor = RoiExtractor(RoiParam) bbox_head = BboxHead(BboxParam) detector = Detector() if is_train: train_sym = detector.get_train_symbol( backbone, neck, rpn_head, roi_extractor, bbox_head, num_branch=Trident.num_branch, scaleaware=Trident.train_scaleaware) rpn_test_sym = None test_sym = None else: train_sym = None rpn_test_sym = detector.get_rpn_test_symbol(backbone, neck, rpn_head, Trident.num_branch) test_sym = detector.get_test_symbol( backbone, neck, rpn_head, roi_extractor, bbox_head, num_branch=Trident.num_branch) class ModelParam: train_symbol = train_sym test_symbol = test_sym rpn_test_symbol = rpn_test_sym from_scratch = False random = True memonger = False memonger_until = "stage3_unit21_plus" class pretrain: prefix = "pretrain_model/resnet%s_v1b" % BackboneParam.depth epoch = 0 fixed_param = ["conv0", "stage1", "gamma", "beta"] class OptimizeParam: class optimizer: type = "sgd" lr = 0.01 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image momentum = 0.9 wd = 0.0001 clip_gradient = 5 class schedule: begin_epoch = 0 end_epoch = 12 lr_iter = [120000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 160000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)] class warmup: type = "gradual" lr = 0.0 iter = 3000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image) class TestParam: min_det_score = 0.001 max_det_per_image = 100 process_roidb = lambda x: x if Trident.test_scaleaware: process_output = lambda x, y: process_branch_outputs( x, Trident.num_branch, Trident.valid_ranges, Trident.valid_ranges_on_origin) else: process_output = lambda x, y: x process_rpn_output = lambda x, y: process_branch_rpn_outputs(x, Trident.num_branch) class model: prefix = "experiments/{}/checkpoint".format(General.name) epoch = OptimizeParam.schedule.end_epoch class nms: type = "nms" thr = 0.5 class coco: annotation = "data/coco/annotations/instances_minival2014.json" # data processing class NormParam: mean = tuple(i * 255 for i in (0.485, 0.456, 0.406)) # RGB order std = tuple(i * 255 for i in (0.229, 0.224, 0.225)) class ResizeParam: short = 800 long = 1200 if is_train else 2000 class PadParam: short = 800 long = 1200 if is_train else 2000 max_num_gt = 100 class ScaleRange: valid_ranges = Trident.valid_ranges cal_on_origin = Trident.valid_ranges_on_origin # True: valid_ranges on origin image scale / valid_ranges on resized image scale class AnchorTarget2DParam: class generate: short = 800 // 16 long = 1200 // 16 stride = 16 scales = (2, 4, 8, 16, 32) aspects = (0.5, 1.0, 2.0) class assign: allowed_border = 0 pos_thr = 0.7 neg_thr = 0.3 min_pos_thr = 0.0 class sample: image_anchor = 256 pos_fraction = 0.5 class trident: invalid_anchor_threshd = 0.3 class RenameParam: mapping = dict(image="data") from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \ ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \ RenameRecord, Norm2DImage from models.tridentnet.input import ScaleAwareRange, TridentAnchorTarget2D if is_train: transform = [ ReadRoiRecord(None), Norm2DImage(NormParam), Resize2DImageBbox(ResizeParam), Flip2DImageBbox(), Pad2DImageBbox(PadParam), ConvertImageFromHwcToChw(), ScaleAwareRange(ScaleRange), TridentAnchorTarget2D(AnchorTarget2DParam), RenameRecord(RenameParam.mapping) ] data_name = ["data", "im_info", "gt_bbox"] if Trident.train_scaleaware: data_name.append("valid_ranges") label_name = ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"] else: transform = [ ReadRoiRecord(None), Norm2DImage(NormParam), Resize2DImageBbox(ResizeParam), ConvertImageFromHwcToChw(), RenameRecord(RenameParam.mapping) ] data_name = ["data", "im_info", "im_id", "rec_id"] label_name = [] import core.detection_metric as metric rpn_acc_metric = metric.AccWithIgnore( "RpnAcc", ["rpn_cls_loss_output"], ["rpn_cls_label"] ) rpn_l1_metric = metric.L1( "RpnL1", ["rpn_reg_loss_output"], ["rpn_cls_label"] ) # for bbox, the label is generated in network so it is an output box_acc_metric = metric.AccWithIgnore( "RcnnAcc", ["bbox_cls_loss_output", "bbox_label_blockgrad_output"], [] ) box_l1_metric = metric.L1( "RcnnL1", ["bbox_reg_loss_output", "bbox_label_blockgrad_output"], [] ) metric_list = [rpn_acc_metric, rpn_l1_metric, box_acc_metric, box_l1_metric] return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \ ModelParam, OptimizeParam, TestParam, \ transform, data_name, label_name, metric_list
the-stack_106_13963
#!/usr/bin/env python """Tests and validates classes from :py:mod:`plastid.genomics.genome_array`, these being |GenomeArray|, |SparseGenomeArray| and |BAMGenomeArray|, using test data found in plastid.test.data. This module additionally contains utilites to generate other test datasets. To do, please see the documentation for :py:func:`create_dataset`. Note, this requires as external dependencies, Bowtie, Tophat, and Samtools. """ import copy import tempfile import os import subprocess import functools import re import unittest import warnings import pysam import numpy.random from pkg_resources import resource_filename, cleanup_resources from nose.plugins.attrib import attr from Bio import SeqIO import plastid.util.services.exceptions from plastid.readers.bed import BED_Reader from plastid.genomics.genome_array import ( GenomeArray, SparseGenomeArray, BigWigGenomeArray, BAMGenomeArray, ThreePrimeMapFactory, FivePrimeMapFactory, CenterMapFactory, five_prime_map, three_prime_map, center_map, ) from plastid.genomics.roitools import GenomicSegment, SegmentChain from plastid.genomics.seqtools import random_seq from plastid.util.io.openers import NullWriter from plastid.util.services.decorators import skip_if_abstract from plastid.util.services.mini2to3 import cStringIO #=============================================================================== # INDEX: annotations/data used in unit tests and in generation of test datasets #=============================================================================== # parameters to flesh out unit tests # these are used by AbstractGenomeArrayHelper.set_class_parameters below _GENOME_ARRAY_PARAMS = { "test_class": GenomeArray, "empty_regions": ["splice", "introns"], "native_format": "bowtie", } _SPARSE_GENOME_ARRAY_PARAMS = { "test_class": SparseGenomeArray, "empty_regions": ["splice", "introns"], "native_format": "bowtie", } _BIGWIG_GENOME_ARRAY_PARAMS = { "test_class": BigWigGenomeArray, "empty_regions": ["introns"], "native_format": "bigwig", } _BAM_GENOME_ARRAY_PARAMS = { "test_class": BAMGenomeArray, "empty_regions": ["introns"], "native_format": "BAM", } # descriptions of mapping configurations that we will use in test datasets _SAMPLE_PAT = re.compile(r"(center|fiveprime|threeprime)_([0-9]+)") _SAMPLE_BASES = [ 'center_0', 'center_12', 'fiveprime_0', 'fiveprime_15', 'threeprime_0', 'threeprime_15', ] _GA_MAP_FUNCTIONS = { "fiveprime": five_prime_map, "threeprime": three_prime_map, "center": center_map, } _BAM_MAP_RULES = { "fiveprime_0": FivePrimeMapFactory(), "threeprime_0": ThreePrimeMapFactory(), "center_0": CenterMapFactory(), "fiveprime_15": FivePrimeMapFactory(15), "threeprime_15": ThreePrimeMapFactory(15), "center_12": CenterMapFactory(12), } # constants/names of files in test datasets, to use in test cases # or to generate using methods below # # all filenames are relative to a base_folder that is passed to individual functions # these files will be created by create_test_dataset(), below _TEST_FILES = { "variable_step_fw": os.path.join("wig", "variable_step_fw.wig"), "variable_step_rc": os.path.join("wig", "variable_step_rc.wig"), "bedgraph_fw": os.path.join("wig", "bedgraph_fw.wig"), "bedgraph_rc": os.path.join("wig", "bedgraph_rc.wig"), "juncs": os.path.join("ebwt", "chrA.juncs"), "bowtie_index": os.path.join("ebwt", "chrA"), "bed": os.path.join("bed", "chrA.bed"), "reads": os.path.join("fasta", "chrA_reads.fa"), "bowtie": os.path.join("align", "chrA_unspliced.bowtie"), "bam": os.path.join("align", "chrA_tophat.bam"), "genome": os.path.join("fasta", "chrA.fa"), } # annotation data TEST_CHR_BED = """chrA 100 1100 unique_plus 0 + -1 -1 0,0,0 1 1000, 0, chrA 100 1100 unique_minus 0 - -1 -1 0,0,0 1 1000, 0, chrA 1200 2250 entire_repeat_region_plus 0 + -1 -1 0,0,0 1 1050, 0, chrA 1200 2250 entire_repeat_region_minus 0 - -1 -1 0,0,0 1 1050, 0, chrA 1200 1700 repeat_1_plus 0 + -1 -1 0,0,0 1 500, 0, chrA 1200 1700 repeat_1_minus 0 - -1 -1 0,0,0 1 500, 0, chrA 1750 2250 repeat_2_plus 0 + -1 -1 0,0,0 1 500, 0, chrA 1750 2250 repeat_2_minus 0 - -1 -1 0,0,0 1 500, 0, chrA 2350 2475 splice_plus 100 + -1 -1 0,0,0 2 25,25, 0,100, chrA 2350 2475 splice_minus 100 - -1 -1 0,0,0 2 25,25, 0,100, chrA 2375 2450 intron_plus 0 + -1 -1 0,0,0 1 75, 0, chrA 2375 2450 intron_minus 0 - -1 -1 0,0,0 1 75, 0,""".replace( " ", "\t" ) TEST_CHR_JUNCS = """chrA 2374 2450 + chrA 2374 2450 -""".replace(" ", "\t") # miscellaneous constants STRAND_KEYS = {"+": "fw", "-": "rc"} DEFAULT_READS_PER_REGION = 1000 DEFAULT_READ_LENGTH = 30 #=============================================================================== # INDEX: Helper functions for unit tests and test dataset creation methods below #=============================================================================== def tearDownModule(): """Remove test dataset files after unit tests are complete""" cleanup_resources() def fetch_regions(): """Parses test regions of interest for synthetic genomes Returns ------- list<SegmentChain> """ return list(BED_Reader(cStringIO.StringIO(TEST_CHR_BED), return_type=SegmentChain)) def _read_count_vectors(base_folder): """Read count vectors from a synthetic datasets generated by :py:method:`create_test_dataset` Parameters ---------- base_folder : str path to base folder passed to :py:method:`create_test_dataset` Returns ------- dict : dict of numpy.ndarrays of count data """ dtmp = {} for k in _SAMPLE_BASES: for strand_key in ("fw", "rc"): dtmp["%s_%s" % (k, strand_key)] = numpy.loadtxt( os.path.join(base_folder, "count_vectors", "%s_%s.txt" % (k, strand_key)) ) return dtmp def _read_bowtie_files_to_genome_arrays(base_folder, test_class=GenomeArray): """Construct |GenomeArray| s from bowtie files Parameters ---------- base_folder : str path to base folder passed to create_test_dataset() test_class : class Subclass of |MutableGenomeArray| (e.g. |GenomeArray| or |SparseGenomeArray| to test) Returns ------- dict : dict of |GenomeArray| s of mapped read alignments from bowtie """ gnds = {} for k in _SAMPLE_BASES: mapping, offset = _SAMPLE_PAT.search(k).groups() trans_key = "nibble" if mapping == "center" else "offset" trans_args = {trans_key: int(offset)} gnds[k] = test_class() with open(os.path.join(base_folder, _TEST_FILES["bowtie"])) as fh: gnds[k].add_from_bowtie(fh, _GA_MAP_FUNCTIONS[k.split("_")[0]], **trans_args) return gnds def _get_ivc_numpy_counts(ivc, count_vec): """Fetches appropriately-spliced counts at each position in an ROI from a numpy array Parameters ---------- ivc : |SegmentChain| SegmentChain describing region of interest count_vec : numpy.ndarray numpy.ndarray, in coordinates matching those of ivc Returns ------- numpy.ndarray : numpy.ndarray of counts each each position in ivc """ counts = [] for iv in ivc: counts.extend(count_vec[iv.start:iv.end]) if ivc.spanning_segment.strand == "-": counts = counts[::-1] return numpy.array(counts) #=============================================================================== # INDEX: unittest suites #=============================================================================== class AbstractGenomeArrayHelper(unittest.TestCase): """Abstract base class for various types of |AbstractGenomeArray| test cases""" set_up = False @staticmethod def set_class_parameters( cls, params, test_folder=resource_filename("plastid", "test/data/mini"), tol=1e-8 ): """Set class parameters on the creation of the first instance. This is a bit of a hack because we need to set class parameters. We can't do this in a ``setUpClass`` method, because ``setUpClass`` only accepts a single parameter (the class). We don't want to do this in ``__init__`` either, because unittest calls ``__init__`` once per test run, and these operations are expensive. So, instead we define this method, and call it from ``__init__`` if and only if ``cls.set_up == False`` Parameters ---------- cls : class class that is a subclass of :py:class:`unittest.TestCase`, to which parameters will be appended params : dict Parameters specific to the set-up of test suites for specific types of GenomeArrays test_folder : str or :py:class:`Resource` Real or virtual location of folder of test data tol : float Tolerance for numerical differences between expected and observed values in the various tests """ cls.test_folder = test_folder cls.tol = tol cls.test_class = params["test_class"] cls.native_format = params["native_format"] cls.count_vecs = _read_count_vectors(cls.test_folder) cls.regions = fetch_regions() cls.region_classes = { "unique": [X for X in cls.regions if "unique" in X.get_name()], "repeat": [X for X in cls.regions if "entire" not in X.get_name() and "repeat" in X.get_name()], "introns": [X for X in cls.regions if "intron" in X.get_name()], "splice": [X for X in cls.regions if "splice" in X.get_name()], "entire": [X for X in cls.regions if "entire" in X.get_name()], } cls.region_classes["empty"] = [] cls.empty_names = [] for k in params["empty_regions"]: my_regions = cls.region_classes[k] cls.region_classes["empty"].extend(my_regions) cls.empty_names.extend([X.get_name() for X in my_regions]) cls.expected_unnorm_sum = 0 #for region in set(cls.regions) - set(cls.region_classes["empty"]) - set(cls.region_classes["entire"]): read_regions = [ X for X in cls.regions if all([X.get_name() not in cls.empty_names, "entire" not in X.get_name()]) ] for region in read_regions: vec_key = "fw" if region.strand == "+" else "rc" cls.expected_unnorm_sum += _get_ivc_numpy_counts( region, cls.count_vecs["fiveprime_0_%s" % vec_key] ).sum() cls.set_up = True def __init__( self, methodName='runTest', params={}, test_folder=resource_filename("plastid", "test/data/mini"), tol=1e-8 ): """Initialize test case to run a single method. We override this method to make sure expensive operations are only run when the first instance is made, and then stored in class attributes Parameters ---------- methodName : str Name of method being run. Required by :py:class:`unittest.TestCase` params : dict Parameters specific to the set-up of test suites for specific |AbstractGenomeArray| subclasses. Don't change these test_folder : str or :py:class:`Resource` Real or virtual location of folder of test data tol : float Tolerance for numerical differences between expected and observed values in the various tests """ unittest.TestCase.__init__(self, methodName=methodName) # only do setup if __init__ is called by a subclass if "Abstract" not in self.__class__.__name__: if self.__class__.set_up == False: AbstractGenomeArrayHelper.set_class_parameters( self.__class__, params=params, test_folder=test_folder, tol=tol ) @skip_if_abstract def test_chroms(self): for v in self.gnds.values(): self.assertEqual(set(v.chroms()), set(["chrA"])) @skip_if_abstract def test_strands(self): possible_strands = set(["+", "-", "."]) for v in self.gnds.values(): self.assertGreaterEqual(len(set(v.strands()) & possible_strands), 0) @skip_if_abstract def test_test_class(self): # Assure all genome arrays tested are of correct subclass for k, v in self.gnds.items(): self.assertTrue( isinstance(v, self.test_class), "Test %s: instance is of wrong class (expected: %s, found %s)" % (k, self.test_class.__name__, v.__class__.__name__) ) @skip_if_abstract def test_native_import_positionwise_equality_unique_regions(self): for k in _SAMPLE_BASES: for region in self.region_classes["unique"]: strand_key = STRAND_KEYS[region.spanning_segment.strand] gnd_counts = numpy.array(region.get_counts(self.gnds[k])) self.assertGreater(gnd_counts.sum(), 0, "Region is empty in sample %s" % k) known_counts = _get_ivc_numpy_counts( region, self.count_vecs["%s_%s" % (k, strand_key)] ) max_err = max(abs(gnd_counts - known_counts)) msg1 = "Positionwise count difference (%s) exceeded tolerance (%s) for '%s' file import for sample test '%s'" % ( self.tol, max_err, self.native_format, k ) self.assertLessEqual(max_err, self.tol, msg1) sum_diff = abs(known_counts.sum() - gnd_counts.sum()) msg2 = "Error in difference of total counts (%s) exceeded tolerance (%s) for '%s' import for sample test %s" % ( sum_diff, self.tol, self.native_format, k ) self.assertLessEqual(sum_diff, self.tol, msg2) @skip_if_abstract def test_native_import_positionwise_equality_repeat_regions(self): # test sums of position-wise vectors for repeat regions plus_repeat = [X for X in self.region_classes["repeat"] if X.spanning_segment.strand == "+"] minus_repeat = [ X for X in self.region_classes["repeat"] if X.spanning_segment.strand == "-" ] lengths = set([X.length for X in plus_repeat + minus_repeat]) self.assertEqual(len(lengths), 1) for k in _SAMPLE_BASES: plus_vec = numpy.zeros(plus_repeat[0].length) minus_vec = numpy.zeros(plus_repeat[0].length) known_plus_vec = numpy.zeros(plus_repeat[0].length) known_minus_vec = numpy.zeros(plus_repeat[0].length) for region in plus_repeat: plus_vec += region.get_counts(self.gnds[k]) known_plus_vec += _get_ivc_numpy_counts( region, self.count_vecs["%s_%s" % (k, "fw")] ) for region in minus_repeat: minus_vec += region.get_counts(self.gnds[k]) known_minus_vec += _get_ivc_numpy_counts( region, self.count_vecs["%s_%s" % (k, "rc")] ) self.assertGreater(plus_vec.sum(), 0) self.assertGreater(minus_vec.sum(), 0) self.assertTrue( (abs(known_plus_vec - plus_vec) <= self.tol).all(), "Positionwise count difference exceeded tolerance %s for %s import on sample test %s on plus strand" % (self.tol, self.native_format, k) ) self.assertTrue( (abs(known_minus_vec - minus_vec) <= self.tol).all(), "Positionwise count difference exceeded tolerance %s for %s import for sample test %s on minus strand" % (self.tol, self.native_format, k) ) @skip_if_abstract def test_native_import_empty_regions(self): # test regions that should be empty (e.g. introns and splicing) for k in _SAMPLE_BASES: for region in self.region_classes["empty"]: self.assertEqual( sum(region.get_counts(self.gnds[k])), 0, "Found counts in region that should be empty for sample test %s" % k ) @skip_if_abstract def variablestep_and_bedgraph_export_helper( self, wiggle_type, export_function, input_class=None, **kwargs ): """Helper function to evaluate tests on variable step wiggle or BED export Parameters ---------- wiggle_type : str Type of wiggle file. "variable_step" or "bedgraph" export_function : function unbound method defining export type (e.g. GenomeArray.to_variable_step, BAMGenomeArray.to_bedgraph) input_class : subclass of |MutableAbstractGenomeArray| or None Class into which exported wiggle or bedgraph files will be read. If None, defaults to self.test_class kwargs : keyword arguments """ if input_class is None: input_class = self.test_class for k, v in self.gnds.items(): fw_out = tempfile.NamedTemporaryFile(mode="w", delete=False) rc_out = tempfile.NamedTemporaryFile(mode="w", delete=False) export_function(v, fw_out, "test", "+", **kwargs) export_function(v, rc_out, "test", "-", **kwargs) fw_out.close() rc_out.close() new_gnd = input_class() with open(fw_out.name) as fh: new_gnd.add_from_wiggle(fh, "+") with open(rc_out.name) as fh: new_gnd.add_from_wiggle(fh, "-") self.assertGreater(v.lengths()["chrA"], 0) self.assertGreater(new_gnd.lengths()["chrA"], 0) ivplus = GenomicSegment("chrA", 0, v.lengths()["chrA"], "+") ivminus = GenomicSegment("chrA", 0, v.lengths()["chrA"], "-") # test equality of what was exported with current state of GenomeArray self.assertTrue( abs(new_gnd[ivplus] - v[ivplus] <= self.tol).all(), "%s wiggle output on plus strand failed positionwise tolerance %s for test %s" % (wiggle_type, self.tol, k) ) self.assertGreater( new_gnd[ivplus].sum(), 0, "No counts found for %s reimport test %s" % (wiggle_type, k) ) self.assertTrue( abs(new_gnd[ivminus] - v[ivminus] <= self.tol).all(), "%s wiggle output on minus strand failed positionwise tolerance %s for test %s" % (wiggle_type, self.tol, k) ) self.assertGreater( new_gnd[ivminus].sum(), 0, "No counts found for %s reimport test %s" % (wiggle_type, k) ) # ground-truth test against numpy arrays for unique regions for region in self.region_classes["unique"]: strand_key = STRAND_KEYS[region.spanning_segment.strand] gnd_counts = numpy.array(region.get_counts(new_gnd)) self.assertGreater( gnd_counts.sum(), 0, "Reimported region is empty in sample %s" % k ) known_counts = _get_ivc_numpy_counts( region, self.count_vecs["%s_%s" % (k, strand_key)] ) max_err = max(abs(gnd_counts - known_counts)) self.assertLessEqual( max_err, self.tol, "Positionwise count difference (%s) exceeded tolerance (%s) for %s reimport after export from class '%s' for sample '%s'" % (self.tol, max_err, self.native_format, self.test_class, k) ) os.remove(fw_out.name) os.remove(rc_out.name) @skip_if_abstract def test_unnormalized_sum(self): for k, v in self.gnds.items(): v.set_normalize(False) found = v.sum() expected = self.expected_unnorm_sum err = abs(found - expected) err_msg = "Observed error (%s) in unnormalized sum (observed %s; expected %s) greater than tolerance (%s) for sample '%s'" % ( err, found, expected, self.tol, k ) self.assertLessEqual(err, self.tol, err_msg) @skip_if_abstract def test_normalize_not_change_sum(self): for k, v in self.gnds.items(): v.set_normalize(True) found_sum = v.sum() err_msg = "Normalize flag changed sum to %s from %s for sample '%s'" % ( found_sum, self.expected_unnorm_sum, k ) err = abs(found_sum - self.expected_unnorm_sum) self.assertLessEqual(err, self.tol, err_msg) v.set_normalize(False) @skip_if_abstract def test_set_and_reset_sum(self): expected_unnorm_sum2 = 50000 for k, v in self.gnds.items(): v.set_sum(expected_unnorm_sum2) v.set_normalize(False) found = v.sum() err = abs(found - expected_unnorm_sum2) err_msg = "Observed error (%s) in sample '%s' set unnormalized sum (observed %s; expected %s) greater than tolerance %s" % ( err, k, found, expected_unnorm_sum2, self.tol ) self.assertLessEqual(err, self.tol, err_msg) v.set_normalize(True) found = v.sum() err = abs(found - expected_unnorm_sum2) err_msg = "Observed error (%s) in sample '%s' set normalized sum (observed %s; expected %s) greater than tolerance %s" % ( err, k, found, expected_unnorm_sum2, self.tol ) self.assertLessEqual(err, self.tol, err_msg) v.set_normalize(False) v.reset_sum() found = v.sum() err = abs(found - self.expected_unnorm_sum) err_msg = "Observed error (%s) in sample '%s' reset sum (observed %s; expected %s) greater than tolerance %s" % ( err, k, found, self.expected_unnorm_sum, self.tol ) self.assertLessEqual(err, self.tol, err_msg) @skip_if_abstract def test_regionwise_normalize_and_sum(self): expected_unnorm_sum2 = 50000 for k, v in self.gnds.items(): v.set_normalize(False) v.reset_sum() # add an order of magnitude to account for summing tol = self.tol * 10 # exclude repeat regions, because those will align differently than they were generated # remove "empty" also, because this will include spliced regions for some tests, # as necessary nonrepeat_nonempty = [ X for X in self.regions if all(["repeat" not in X.get_name(), X.get_name() not in self.empty_names]) ] for region in nonrepeat_nonempty: #set(self.regions) - set(self.region_classes["repeat"]) - set(self.region_classes["empty"]): # Make sure baseline number is ok found_region_sum = sum(region.get_counts(v)) expected_region_unnorm = _get_ivc_numpy_counts( region, self.count_vecs["%s_%s" % (k, STRAND_KEYS[region.strand])] ).sum() err = abs(found_region_sum - expected_region_unnorm) self.assertLessEqual( err, tol, "Found unnormalized region sum %s different from expected %s more than error %s" % (found_region_sum, expected_region_unnorm, tol) ) # Test normalize v.set_normalize(True) expected_region_norm = float(expected_region_unnorm) / v.sum() * 10**6 found_region_sum = sum(region.get_counts(v)) err = abs(found_region_sum - expected_region_norm) self.assertLessEqual( err, tol, "Found normalized region sum (%s) different from expected (%s) more than error (observed %s; tolerance %s) for sample '%s'" % (found_region_sum, expected_region_norm, err, tol, k) ) # Test reversibility v.set_normalize(False) found_region_sum = sum(region.get_counts(v)) err = abs(found_region_sum - expected_region_unnorm) self.assertLessEqual( err, tol, "Found re-unnormalized region sum %s different from expected %s more than error %s" % (found_region_sum, expected_region_unnorm, tol) ) # Set sum, no normalization v.set_sum(expected_unnorm_sum2) found_region_sum = sum(region.get_counts(v)) err = abs(found_region_sum - expected_region_unnorm) self.assertLessEqual( err, tol, "Found post-global-sum-set unnormalized region sum %s different from expected %s more than error %s" % (found_region_sum, expected_region_unnorm, tol) ) # Add normalization on top of set sum v.set_normalize(True) expected_region_norm2 = float(expected_region_unnorm) / expected_unnorm_sum2 * 10**6 found_region_sum = sum(region.get_counts(v)) err = abs(found_region_sum - expected_region_norm2) self.assertLessEqual( err, tol, "Found post-global-sum-set normalized region sum %s different from expected %s more than error %s" % (found_region_sum, expected_region_norm2, tol) ) # Reset sum, keep normalization v.reset_sum() found_region_sum = sum(region.get_counts(v)) err = abs(found_region_sum - expected_region_norm) self.assertLessEqual( err, tol, "Found post-reset normalized region sum %s different from expected %s more than error %s" % (found_region_sum, expected_region_norm, tol) ) # Revert all v.set_normalize(False) found_region_sum = sum(region.get_counts(v)) err = abs(found_region_sum - expected_region_unnorm) self.assertLessEqual( err, tol, "Found unnormalized region sum %s different from expected %s more than error %s" % (found_region_sum, expected_region_unnorm, tol) ) @skip_if_abstract def test_get_genomicsegment_roi_order_false(self): k = _SAMPLE_BASES[0] for region in self.region_classes["unique"]: seg = region.spanning_segment strand_key = STRAND_KEYS[region.spanning_segment.strand] #gnd_counts = self.gnds[k].__getitem__(seg,roi_order=False) gnd_counts = self.gnds[k].get(seg, roi_order=False) known_counts = self.count_vecs["%s_%s" % (k, strand_key)][seg.start:seg.end] max_err = max(abs(gnd_counts - known_counts)) self.assertLessEqual( max_err, self.tol, "Positionwise count difference '%s' exceeded tolerance '%s' for %s __getitem__ with roi_order==False for sample test %s" % (self.tol, max_err, self.native_format, k) ) @skip_if_abstract def test_get_genomicsegment_roi_order_true(self): k = _SAMPLE_BASES[0] for region in self.region_classes["unique"]: seg = region.spanning_segment strand_key = STRAND_KEYS[region.spanning_segment.strand] gnd_counts = self.gnds[k].get(seg, roi_order=True) known_counts = self.count_vecs["%s_%s" % (k, strand_key)][seg.start:seg.end] if seg.strand == "-": known_counts = known_counts[::-1] max_err = max(abs(gnd_counts - known_counts)) self.assertLessEqual( max_err, self.tol, "Positionwise count difference '%s' exceeded tolerance '%s' for %s __getitem__ with roi_order==True for sample test %s" % (self.tol, max_err, self.native_format, k) ) @skip_if_abstract def test_getitem_genomicsegment(self): k = _SAMPLE_BASES[0] for region in self.region_classes["unique"]: seg = region.spanning_segment strand_key = STRAND_KEYS[region.spanning_segment.strand] gnd_counts = self.gnds[k].__getitem__(seg) known_counts = self.count_vecs["%s_%s" % (k, strand_key)][seg.start:seg.end] if seg.strand == "-": known_counts = known_counts[::-1] max_err = max(abs(gnd_counts - known_counts)) self.assertLessEqual( max_err, self.tol, "Positionwise count difference '%s' exceeded tolerance '%s' for %s __getitem__ with roi_order==True for sample test %s" % (self.tol, max_err, self.native_format, k) ) @skip_if_abstract def test_getitem_segmentchain(self): k = _SAMPLE_BASES[0] for region in self.region_classes["unique"]: strand_key = STRAND_KEYS[region.spanning_segment.strand] gnd_counts = self.gnds[k][region] # test self.assertGreater(gnd_counts.sum(), 0, "Region is empty in sample %s" % k) known_counts = _get_ivc_numpy_counts(region, self.count_vecs["%s_%s" % (k, strand_key)]) max_err = max(abs(gnd_counts - known_counts)) self.assertLessEqual( max_err, self.tol, "Positionwise count difference '%s' exceeded tolerance '%s' for %s import for sample test %s" % (self.tol, max_err, self.native_format, k) ) class AbstractExportableGenomeArrayHelper(AbstractGenomeArrayHelper): @skip_if_abstract def test_variablestep_export(self): self.variablestep_and_bedgraph_export_helper( "variable_step", self.test_class.to_variable_step ) @skip_if_abstract def test_bedgraph_export(self): self.variablestep_and_bedgraph_export_helper("bedgraph", self.test_class.to_bedgraph) @attr(test="unit") @attr(speed="slow") class TestGenomeArray(AbstractExportableGenomeArrayHelper): """Test case for :py:class:`GenomeArray`""" set_up = False has_gnds = False def __init__( self, methodName='runTest', params=_GENOME_ARRAY_PARAMS, test_folder=resource_filename("plastid", "test/data/mini"), tol=1e-8 ): """Initialize test case to run a single method. We override this method to make sure expensive operations are only run when the first instance is made, and then stored in class attributes Parameters ---------- methodName : str Name of method being run. Required by :py:class:`unittest.TestCase` params : dict Parameters specific to the set-up of test suites for specific |AbstractGenomeArray| subclasses. Don't change these test_folder : str or Resource Real or virtual location of folder of test data tol : float Tolerance for numerical differences between expected and observed values in the various tests """ AbstractGenomeArrayHelper.__init__( self, methodName=methodName, params=params, test_folder=test_folder, tol=tol ) if self.__class__.has_gnds == False: self.__class__.gnds = _read_bowtie_files_to_genome_arrays( self.test_folder, self.test_class ) self.__class__.has_gnds = True #TestGenomeArray.setUpClassOnlyOnce() def test_setitem_genomicsegment_scalar(self): ga = GenomeArray({"chrA": 2000}) segplus = GenomicSegment("chrA", 50, 100, "+") segminus = GenomicSegment("chrA", 50, 100, "-") # scalar set ga[segplus] = 52 ga[segminus] = 342 self.assertTrue( (ga._chroms["chrA"]["+"][50:100] == 52).all(), "%s failed scalar genomicsegment __setitem__ for plus strand." ) self.assertTrue( (ga._chroms["chrA"]["-"][50:100] == 342).all(), "%s failed scalar genomicsegment __setitem__ for minus strand." ) self.assertEqual(ga.sum(), 52 * len(segplus) + 342 * len(segminus)) def test_setitem_genomicsegment_vector(self): ga = GenomeArray({"chrA": 2000}) segplus = GenomicSegment("chrA", 50, 100, "+") segminus = GenomicSegment("chrA", 50, 100, "-") # vector set r1 = numpy.random.randint(0, high=242, size=50) r2 = numpy.random.randint(0, high=242, size=50) ga[segplus] = r1 ga[segminus] = r2 self.assertTrue( (ga._chroms["chrA"]["+"][50:100] == r1).all(), "%s failed vector genomicsegment __setitem__ for plus strand." ) self.assertTrue( (ga._chroms["chrA"]["-"][50:100] == r2[::-1]).all(), "%s failed vector genomicsegment __setitem__ for minus strand." ) self.assertEqual(ga.sum(), r1.sum() + r2.sum()) def test_setitem_segmentchain_scalar(self): ga = GenomeArray({"chrA": 2000}) pluschain = SegmentChain( GenomicSegment("chrA", 50, 100, "+"), GenomicSegment("chrA", 150, 732, "+"), GenomicSegment("chrA", 1800, 2500, "+"), ) minuschain = SegmentChain( GenomicSegment("chrA", 50, 100, "-"), GenomicSegment("chrA", 150, 732, "-"), GenomicSegment("chrA", 1800, 2500, "-"), ) ga[pluschain] = 31 ga[minuschain] = 424 for seg in pluschain: self.assertTrue((ga._chroms[seg.chrom][seg.strand][seg.start:seg.end] == 31).all()) for seg in minuschain: self.assertTrue((ga._chroms[seg.chrom][seg.strand][seg.start:seg.end] == 424).all()) self.assertEqual(ga.sum(), 31 * pluschain.length + 424 * minuschain.length) def test_setitem_segmentchain_vector(self): ga = GenomeArray({"chrA": 2000}) pluschain = SegmentChain( GenomicSegment("chrA", 50, 100, "+"), GenomicSegment("chrA", 150, 732, "+"), GenomicSegment("chrA", 1800, 2500, "+"), ) minuschain = SegmentChain( GenomicSegment("chrA", 50, 100, "-"), GenomicSegment("chrA", 150, 732, "-"), GenomicSegment("chrA", 1800, 2500, "-"), ) plusvec = numpy.random.randint(0, high=250, size=pluschain.length) minusvec = numpy.random.randint(0, high=250, size=minuschain.length) ga[pluschain] = plusvec ga[minuschain] = minusvec x = 0 for seg in pluschain: subvec = ga._chroms["chrA"]["+"][seg.start:seg.end] self.assertTrue((subvec == plusvec[x:x + len(subvec)]).all()) x += len(subvec) x = 0 for seg in minuschain: subvec = ga._chroms["chrA"]["-"][seg.start:seg.end][::-1] self.assertTrue( (subvec == minusvec[len(minusvec) - x - len(subvec):len(minusvec) - x]).all() ) x += len(subvec) self.assertEqual(ga.sum(), plusvec.sum() + minusvec.sum()) def variablestep_and_bed_import_helper(self, wiggle_type): """Helper function to evaluate tests on variable step wiggle or BEDgraph import Parameters ---------- wiggle_type : str Type of wiggle file. "variable_step" or "bedgraph" """ gnd = self.test_class() with open(os.path.join(self.test_folder, _TEST_FILES["%s_%s" % (wiggle_type, "fw")])) as fh: gnd.add_from_wiggle(fh, "+") with open(os.path.join(self.test_folder, _TEST_FILES["%s_%s" % (wiggle_type, "rc")])) as fh: gnd.add_from_wiggle(fh, "-") # Make sure imported counts are nonzero self.assertGreater(gnd.sum(), 0, "Import of %s yielded no counts!" % wiggle_type) chrA_len = gnd.lengths()["chrA"] for strand, trackstub, label in [("+", "fw", "plus"), ("-", "rc", "minus")]: my_vec = self.count_vecs["fiveprime_0_%s" % trackstub] vec_len = len(my_vec) empty_iv = GenomicSegment("chrA", vec_len, chrA_len, strand) nonempty_iv = GenomicSegment("chrA", 0, vec_len, strand) nonempty_vec = gnd.get(nonempty_iv, roi_order=False) # make sure count vector has requisite counts self.assertGreater(my_vec.sum(), 0) # make sure sums are equal self.assertEquals(my_vec.sum(), nonempty_vec.sum()) # make sure all regions after count vector are empty self.assertEquals( gnd[empty_iv].sum(), 0, "Found counts in region that should be empty." ) # make sure all positions in regions up to count vector are correct max_err = abs(my_vec - nonempty_vec).max() self.assertLessEqual( max_err, self.tol, "Positionwise count difference %s exceeded tolerance %s for wiggle import on %s strand" % (max_err, self.tol, label) ) def test_bedgraph_import(self): self.variablestep_and_bed_import_helper("bedgraph") def test_variablestep_import(self): self.variablestep_and_bed_import_helper("variable_step") def test_genome_wide_scalar_plus_equals_sum(self): chroms = {"chrA": 1000, "chrB": 10000} expected_length = 2 * sum(chroms.values()) gnd = self.test_class(chroms) self.assertEqual(len(gnd), expected_length) gnd += 5 self.assertEqual(gnd.sum(), 5 * expected_length) gnd -= 5 self.assertEqual(gnd.sum(), 0) def test_genome_wide_scalar_plus_equals_not_change_length(self): chroms = {"chrA": 1000, "chrB": 10000} expected_length = 2 * sum(chroms.values()) gnd = self.test_class(chroms) self.assertEqual(len(gnd), expected_length) gnd += 5 self.assertEqual(len(gnd), expected_length) def test_genome_wide_scalar_plus_sum(self): chroms = {"chrA": 1000, "chrB": 10000} expected_length = 2 * sum(chroms.values()) gnd = self.test_class(chroms) self.assertEqual(len(gnd), expected_length) # add scalar gnd2 = gnd + 5 self.assertEqual(gnd2.sum(), 5 * expected_length) self.assertEqual(gnd.sum(), 0) # add scalar to occupied gnd gnd3 = gnd2 + 1 self.assertEqual(gnd3.sum(), 6 * expected_length) def test_genome_scalar_times_equals_sum(self): chroms = {"chrA": 1000, "chrB": 10000} expected_length = 2 * sum(chroms.values()) gnd = self.test_class(chroms) self.assertEqual(len(gnd), expected_length) gnd *= 5 self.assertEqual(gnd.sum(), 0) gnd += 1 gnd *= 5 self.assertEqual(gnd.sum(), 5 * expected_length) def test_genome_wide_scalar_times_equals_not_change_length(self): chroms = {"chrA": 1000, "chrB": 10000} expected_length = 2 * sum(chroms.values()) gnd = self.test_class(chroms) self.assertEqual(len(gnd), expected_length) gnd *= 5 self.assertEqual(len(gnd), expected_length) def test_genome_wide_scalar_times(self): chroms = {"chrA": 1000, "chrB": 10000} expected_length = 2 * sum(chroms.values()) gnd = self.test_class(chroms) gnd += 1 self.assertEqual(gnd.sum(), expected_length) gnd2 = gnd * 2 self.assertEqual(gnd2.sum(), 2 * expected_length) self.assertEqual(gnd.sum(), expected_length) def test_genome_wide_array_add_same_size(self): chroms = {"chrA": 1000, "chrB": 10000} gnd1 = self.test_class(chroms) gnd2 = self.test_class(chroms) gnd1 += 1 gnd2 += 3 gnd3 = gnd1 + gnd2 self.assertEquals(gnd3.sum(), gnd2.sum() + gnd1.sum()) iv1plus = GenomicSegment("chrA", 0, 1000, "+") iv1minus = GenomicSegment("chrA", 0, 1000, "+") self.assertTrue((gnd3[iv1plus] == gnd2[iv1plus] + gnd1[iv1plus]).all()) self.assertTrue((gnd3[iv1minus] == gnd2[iv1minus] + gnd1[iv1minus]).all()) def test_genome_wide_array_multiply_same_size(self): chroms = {"chrA": 1000, "chrB": 10000} gnd1 = self.test_class(chroms) gnd2 = self.test_class(chroms) gnd1 += 2 gnd2 += 3 gnd3 = gnd1 * gnd2 iv1plus = GenomicSegment("chrA", 0, 1000, "+") iv1minus = GenomicSegment("chrA", 0, 1000, "+") self.assertTrue((gnd3[iv1plus] == gnd2[iv1plus] * gnd1[iv1plus]).all()) self.assertTrue((gnd3[iv1minus] == gnd2[iv1minus] * gnd1[iv1minus]).all()) def test_iadd_no_normalize(self): chroms = {"chrA": 1000, "chrB": 10000} gnd = self.test_class(chroms) gnd.set_normalize(False) self.assertEqual(0, gnd.sum()) iv1plus = GenomicSegment("chrA", 0, 1000, "+") iv2plus = GenomicSegment("chrA", 0, 500, "+") gnd[iv1plus] += 1 self.assertEqual(1000, gnd.sum()) gnd[iv1plus] += 1 self.assertEqual(2000, gnd.sum()) gnd[iv2plus] += 1 self.assertEqual(2500, gnd.sum()) def test_iadd_with_normalize_raises_warning(self): chroms = {"chrA": 1000, "chrB": 10000} gnd = self.test_class(chroms) gnd.set_normalize(True) def my_func(ga): ga.set_normalize(True) ga[GenomicSegment("chrA", 0, 1000, "+")] += 5 # manually reset registry before test plastid.util.services.exceptions.pl_once_registry = {} with warnings.catch_warnings(record=True) as warns: warnings.simplefilter("always") my_func(gnd) got_warning = False for w in warns: if "turning off normalization" in str(w.message): got_warning = True self.assertTrue(got_warning) def test_eq(self): chroms = {"chrA": 1000, "chrB": 10000} gnd1 = self.test_class(chroms) gnd2 = self.test_class(chroms) self.assertEqual(gnd1, gnd2) # diff chrom nonzero positions gnd2[GenomicSegment("chrC", 500, 1000, "-")] = 200 self.assertNotEqual(gnd1, gnd2) # same chroms, nonzero positions, and values gnd1[GenomicSegment("chrC", 500, 1000, "-")] = 200 self.assertEqual(gnd1, gnd2) # same chroms and nonzero positions, diff values gnd1[GenomicSegment("chrC", 500, 1000, "-")] += 200 self.assertNotEqual(gnd1, gnd2) def test_setters_and_getters(self): chroms = {"chrA": 1000, "chrB": 10000} gnd = self.test_class(chroms) #generate random read data set for chr_name, chr_len in chroms.items(): for strand in ("+", "-"): num_iters = numpy.random.randint(50, 100) #000) starts = numpy.random.randint(0, chr_len - 50, size=num_iters) ends = [X + numpy.random.randint(0, 50) for X in starts] vals = numpy.random.randint(0, 100, size=num_iters) for i in range(num_iters): iv = GenomicSegment(chr_name, int(starts[i]), int(ends[i]), strand) gnd[iv] = vals[i] self.assertEquals( len(gnd), 2 * sum(chroms.values()), "Chromosome lengths incorrect: %s vs %s" % (len(gnd), 2 * sum(chroms.values())) ) # auto-grow iv1 = GenomicSegment("chrA", 10000, 11000, "+") iv2 = GenomicSegment("chrA", 10500, 11000, "+") iv3 = GenomicSegment("chrA", int(5 * 1e5) + 10500, int(5 * 1e5) + 11000, "+") iv4 = GenomicSegment("chrB", int(5 * 1e5) + 10500, int(5 * 1e5) + 11000, "+") gnd[iv1] = 1 self.assertEquals(sum(gnd[iv1]), 1000, "Auto-grow failed during set") gnd[iv2] += 1 self.assertEquals(sum(gnd[iv1]), 1500, "+= failed during set") self.assertEquals(sum(gnd[iv2]), 1000) self.assertGreater(gnd.lengths()["chrA"], 1000, "Auto-grow failed chrA") gnd[iv3] += 1 self.assertEqual(sum(gnd[iv3]), 500, "+= failed during set") self.assertEqual(sum(gnd[iv4]), 0, "Counts where not expected") # setters & getters iv1 = GenomicSegment("chrA", 200, 500, "+") oldvals = copy.deepcopy(gnd[iv1]) gnd[iv1] = 5 newvals = copy.deepcopy(gnd[iv1]) self.assertTrue((oldvals != newvals).any(), "Set failed") self.assertEqual(newvals.sum(), 5 * len(newvals)) self.assertEqual(newvals.sum(), 5 * len(iv1)) newvals2 = copy.deepcopy(gnd[iv1]) self.assertTrue((newvals2 == newvals).all(), "Set failed") newvals = newvals2 = None gnd[iv1] = oldvals new_old = gnd[iv1] self.assertTrue((new_old == oldvals).all(), "Set valed") # scalar add gnd_plus5 = gnd + 5 for iv in (iv1, iv2, iv3, iv4): self.assertTrue( (gnd_plus5[iv] == (gnd[iv] + 5)).all(), "Scalar addition globally failed interval test" ) # FIXME- what is len of a sparse array? diff = abs(gnd_plus5.sum() - (gnd.sum() + 5 * len(gnd))) self.assertLess( diff, self.tol, "Error in genome-wide scalar addition (%s) exceeded tolerance %s. Raw vals: %s vs %s " % (diff, self.tol, gnd_plus5.sum(), gnd.sum() + 5 * len(gnd)) ) # scalar multiply gnd3 = gnd * 3 for iv in (iv1, iv2, iv3, iv4): self.assertTrue( (gnd3[iv] == (gnd[iv] * 3)).all(), "Scalar multip.lication globally failed interal test" ) quotient = 1.0 - (gnd3.sum() / 3 * gnd.sum()) self.assertLess( quotient, self.tol, "Error in scalar multiplication (%s) exceeded tolerance %s" % (diff, self.tol) ) # genome-wide multiply gnd4 = gnd + gnd3 gndmul = gnd3 * gnd4 for iv in (iv1, iv2, iv3, iv4): self.assertTrue( (gndmul[iv] - (gnd3[iv] * gnd4[iv]) <= self.tol).all(), "Error in genome-wide multiply failed exceeded tolerance %s" % self.tol ) # genome-wide add is_ok = True for iv in (iv1, iv2, iv3): is_ok &= sum(gnd4[iv]) > 0 self.assertTrue( (gnd4[iv] == gnd[iv] + gnd3[iv]).all(), "Error in genome-wide addition exceeded tolerance %s" % self.tol ) self.assertGreater(sum(gnd4[iv]), 0) def test_nonzero(self): excluded_set = set([]) for region in self.region_classes["repeat"] + self.region_classes["splice"]: excluded_set |= region.get_position_set() for k, v in self.gnds.items(): nz_dict = v.nonzero() for strand in v.strands(): strand_key = STRAND_KEYS[strand] expected = self.count_vecs["%s_%s" % (k, strand_key)].nonzero()[0] found = nz_dict["chrA"][strand] self.assertEqual(set(expected) - excluded_set, set(found) - excluded_set) @attr(test="unit") @attr(speed="slow") class TestSparseGenomeArray(TestGenomeArray): """Test suite for |SparseGenomeArray|""" set_up = False has_gnds = False def __init__( self, methodName='runTest', params=_SPARSE_GENOME_ARRAY_PARAMS, test_folder=resource_filename("plastid", "test/data/mini"), tol=1e-8 ): """Initialize test case to run a single method. We override this method to make sure expensive operations are only run when the first instance is made, and then stored in class attributes Parameters ---------- methodName : str Name of method being run. Required by :py:class:`unittest.TestCase` params : dict Parameters specific to the set-up of test suites for specific AbstractgenomeArray subclasses. Don't change these test_folder : str or Resource Real or virtual location of folder of test data tol : float Tolerance for numerical differences between expected and observed values in the various tests """ TestGenomeArray.__init__( self, methodName=methodName, params=params, test_folder=test_folder, tol=tol ) @attr(test="unit") @attr(speed="slow") class TestBigWigGenomeArray(AbstractGenomeArrayHelper): """Test suite for |SparseGenomeArray|""" set_up = False has_gnds = False def __init__( self, methodName='runTest', params=_BIGWIG_GENOME_ARRAY_PARAMS, test_folder=resource_filename("plastid", "test/data/mini"), tol=1e-3 ): """Initialize test case to run a single method. We override this method to make sure expensive operations are only run when the first instance is made, and then stored in class attributes Parameters ---------- methodName : str Name of method being run. Required by :py:class:`unittest.TestCase` params : dict Parameters specific to the set-up of test suites for specific AbstractgenomeArray subclasses. Don't change these test_folder : str or Resource Real or virtual location of folder of test data tol : float Tolerance for numerical differences between expected and observed values in the various tests """ AbstractGenomeArrayHelper.__init__( self, methodName=methodName, params=params, test_folder=test_folder, tol=tol ) if self.__class__.has_gnds == False: TestBigWigGenomeArray.gnds = TestBigWigGenomeArray.read_bigwig_files() self.__class__.has_gnds = True @staticmethod def read_bigwig_files(): """Read bigwig files into a dictionary """ dtmp = {} for k in _SAMPLE_BASES: dtmp[k] = ga = BigWigGenomeArray(fill=0) fw = os.path.join(TestBigWigGenomeArray.test_folder, "wig", "bw_%s_fw.bw" % k) rc = os.path.join(TestBigWigGenomeArray.test_folder, "wig", "bw_%s_rc.bw" % k) ga.add_from_bigwig(fw, "+") ga.add_from_bigwig(rc, "-") return dtmp def test_multiple_same_strand_sum(self): # should see sum double bigwigfile = os.path.join(TestBigWigGenomeArray.test_folder, "wig", "bw_center_12_fw.bw") bw = BigWigGenomeArray(fill=0) bw.add_from_bigwig(bigwigfile, "+") self.assertLessEqual(abs(bw.sum() - 4000), self.tol) bw.add_from_bigwig(bigwigfile, "+") self.assertLessEqual(abs(bw.sum() - 8000), self.tol) bw.add_from_bigwig(bigwigfile, "+") self.assertLessEqual(abs(bw.sum() - 12000), self.tol) def test_multiple_same_strand_fetch(self): bigwigfw = os.path.join(TestBigWigGenomeArray.test_folder, "wig", "bw_center_12_fw.bw") bigwigrc = os.path.join(TestBigWigGenomeArray.test_folder, "wig", "bw_center_12_rc.bw") wigfw = os.path.join(TestBigWigGenomeArray.test_folder, "wig", "bw_center_12_fw.wig") wigrc = os.path.join(TestBigWigGenomeArray.test_folder, "wig", "bw_center_12_rc.wig") bw = BigWigGenomeArray(fill=0) bw.add_from_bigwig(bigwigfw, "+") bw.add_from_bigwig(bigwigfw, "+") bw.add_from_bigwig(bigwigrc, "-") bw.add_from_bigwig(bigwigrc, "-") ga = GenomeArray(bw.lengths()) with open(wigfw) as fh: ga.add_from_wiggle(fh, "+") with open(wigrc) as fh: ga.add_from_wiggle(fh, "-") for chrom, length in bw.lengths().items(): for strand in bw.strands(): seg = GenomicSegment(chrom, 0, length, strand) maxdiff = abs(bw[seg] - 2 * ga[seg]).max() msg = "Maximum difference for multiple_strand_fetch (%s) exceeds tolerance (%s)" % ( maxdiff, self.tol ) self.assertLessEqual(maxdiff, self.tol, msg) def test_to_genome_array(self): for test, orig in self.gnds.items(): fw = os.path.join(TestBigWigGenomeArray.test_folder, "wig", "bw_%s_fw.wig" % test) rc = os.path.join(TestBigWigGenomeArray.test_folder, "wig", "bw_%s_rc.wig" % test) expected = GenomeArray() with open(fw) as fh: expected.add_from_wiggle(fh, "+") with open(rc) as fh: expected.add_from_wiggle(fh, "-") found = orig.to_genome_array() for chrom, length in expected.lengths().items(): for strand in ("+", "-"): seg = GenomicSegment(chrom, 0, length, strand) diffvec = abs(orig[seg] - found[seg]) diffmax = diffvec.max() msg1 = "Maximum difference between exported GenomeArray and BigWigGenomeArray (%s) exceeds tolerance (%s) for test '%s' strand '%s'" % ( diffmax, self.tol, test, strand ) self.assertLessEqual(diffmax, self.tol, msg1) for chrom, length in expected.lengths().items(): for strand in ("+", "-"): seg = GenomicSegment(chrom, 0, length, strand) diffvec = abs(expected[seg] - found[seg]) diffmax = diffvec.max() msg1 = "Maximum difference between exported GenomeArray and wiggle-imported array (%s) exceeds tolerance (%s) for test '%s' strand '%s'" % ( diffmax, self.tol, test, strand ) self.assertLessEqual(diffmax, self.tol, msg1) class FakeDict(object): """Creates a dictionary-like object that provies dictionary-like access to a BAMGenomeArray under various mapping rules, as if it were a collection of separate GenomeArrays. This is only a convenience class to allow us to re-use functions in the |AbstractGenomeArrayHelper| test suite in |TestBAMGenomeArray| """ def __init__(self, bga, map_functions=_BAM_MAP_RULES): """Create a FakeDict Parameters ---------- bga : |BAMGenomeArray| map_functions : dict Dictionary mapping descriptive names to mapping functions, such as those made by :py:func:`plastid.genomics.genome_array.FivePrimeMapFactory` """ self.bga = bga self.map_functions = map_functions def __getitem__(self, key): self.bga.set_mapping(self.map_functions[key]) return self.bga def items(self): for k in self.map_functions: yield (k, self[k]) def values(self): # must use key, to trigger map setting in __getitem__ for k in self.map_functions: yield self[k] @attr(test="unit") @attr(speed="slow") class TestBAMGenomeArray(AbstractExportableGenomeArrayHelper): set_up = False has_gnds = False def __init__( self, methodName='runTest', params=_BAM_GENOME_ARRAY_PARAMS, test_folder=resource_filename("plastid", "test/data/mini"), tol=1e-8 ): """Initialize test case to run a single method. We override this method to make sure expensive operations are only run when the first instance is made, and then stored in class attributes Parameters ---------- methodName : str Name of method being run. Required by py:class:`unittest.TestCase` params : dict Parameters specific to the set-up of test suites for specific AbstractgenomeArray subclasses. Don't change these test_folder : str or Resource Real or virtual location of folder of test data tol : float Tolerance for numerical differences between expected and observed values in the various tests """ AbstractGenomeArrayHelper.__init__( self, methodName=methodName, params=params, test_folder=test_folder, tol=tol ) if self.__class__.has_gnds == False: bga = BAMGenomeArray( [pysam.Samfile(os.path.join(self.test_folder, _TEST_FILES["bam"]), "rb")] ) TestBAMGenomeArray.gnds = FakeDict(bga) TestBAMGenomeArray.bga = bga self.__class__.has_gnds = True def test_open_str_filename(self): z = BAMGenomeArray(os.path.join(self.test_folder, _TEST_FILES["bam"])) self.assertEqual(z.sum(), self.bga.sum()) def test_open_multi_list(self): v = [os.path.join(self.test_folder, _TEST_FILES["bam"])] * 2 z = BAMGenomeArray(v) self.assertEqual(z.sum(), 2 * self.bga.sum()) def test_open_multi_filename(self): f = os.path.join(self.test_folder, _TEST_FILES["bam"]) z = BAMGenomeArray(f, f) self.assertEqual(z.sum(), 2 * self.bga.sum()) def mutable_conversion_helper(self, new_class): """Helper function to test conversion of |BAMGenomeArray| to various |MutableAbstractGenomeArray| types Parameters ---------- new_class : class Non-abstract subclass of |MutableAbstractGenomeArray| """ ivplus = GenomicSegment("chrA", 0, self.bga.lengths()["chrA"], "+") ivminus = GenomicSegment("chrA", 0, self.bga.lengths()["chrA"], "-") for k, v in self.gnds.items(): new_gnd = v.to_genome_array(array_type=new_class) for iv in (ivplus, ivminus): self.assertGreater(v[iv].sum(), 0) self.assertGreater(new_gnd[iv].sum(), 0) max_err = max(abs(v[iv] - new_gnd[iv])) err_message = "%s BAMGenomeArray conversion to %s error %s exceeded tolerance %s." % ( k, new_class.__name__, max_err, self.tol ) self.assertLess(max_err, self.tol, err_message) def test_to_genome_array(self): self.mutable_conversion_helper(GenomeArray) def test_to_sparse_genome_array(self): self.mutable_conversion_helper(SparseGenomeArray) def variablestep_and_bedgraph_export_helper(self, wiggle_type, export_function): # override function so we can test window size parameters in export for window_size in (1, 2, 5, 10, 25, 100, 500, 1000, 10000): AbstractGenomeArrayHelper.variablestep_and_bedgraph_export_helper( self, wiggle_type, export_function, input_class=GenomeArray, window_size=window_size ) def test_add_remove_filter(self): # add a plus-strand filter and require minus strand regions be zero # then remove and watch it come back bga = self.bga def minus_only_filter(read): return read.is_reverse entire_iv_plus = GenomicSegment("chrA", 0, bga.lengths()["chrA"], "+") entire_iv_minus = GenomicSegment("chrA", 0, bga.lengths()["chrA"], "-") # fetch counts & check pre_plus = bga[entire_iv_plus] self.assertGreater(pre_plus.sum(), 0) pre_minus = bga[entire_iv_minus] self.assertGreater(pre_minus.sum(), 0) # add filter, re-fetch bga.add_filter("minus_only", minus_only_filter) post_plus = bga[entire_iv_plus] post_minus = bga[entire_iv_minus] self.assertEqual(post_plus.sum(), 0) self.assertFalse((post_plus == pre_plus).all()) self.assertEqual(post_minus.sum(), pre_minus.sum()) self.assertTrue((post_minus == pre_minus).all()) # remove_filter, re_fetch bga.remove_filter("minus_only") post_post_plus = bga[entire_iv_plus] post_post_minus = bga[entire_iv_minus] self.assertEqual(post_post_plus.sum(), pre_plus.sum()) self.assertTrue((post_post_plus == pre_plus).all()) self.assertEqual(post_post_minus.sum(), pre_minus.sum()) self.assertTrue((post_post_minus == pre_minus).all()) #=============================================================================== # INDEX: tools for generating test datasets with known results #=============================================================================== def _detect_or_create_folders(base_folder): """Creates and tests folder hierarchy needed for unit/integrative tests below. Parameters ---------- base_folder : str path to base folder in which test data will be created """ sub_folders = ["fasta", "ebwt", "count_vectors", "align", "wig", "bed"] if not os.path.isdir(base_folder): os.mkdir(base_folder) for name in sub_folders: sf = os.path.join(base_folder, name) if not os.path.isdir(sf): os.mkdir(sf) # BED file for use later with open(os.path.join(base_folder, _TEST_FILES["bed"]), "w") as fout: fout.write(TEST_CHR_BED) fout.close() # .juncs file for tophat with open(os.path.join(base_folder, _TEST_FILES["juncs"]), "w") as fout: fout.write(TEST_CHR_JUNCS) fout.close() def detect_base_folder(func): """Decorator function to ensure that folders required by functions below exist. For this decorator to work, the function it wraps MUST require base_folder as its first parameter. Parameters ---------- func : Function Function to decorate Returns ------- Function : wrapped function """ @functools.wraps(func) def new_func(*args, **kwargs): _detect_or_create_folders(args[0]) return func(*args, **kwargs) return new_func @detect_base_folder def create_synthetic_genome(base_folder): """Create a synthetic genome with unique and multimapping regions annotated as in TEST_CHR_BED Parameters ---------- base_folder : str path to base folder in which test data will be created Genome will base saved as base_folder/fasta/chrA.fa Returns ------- str : synthetic genome sequence """ ustart = 100 ulength = 1000 spacer_length = 100 #uend = ustart + ulength #dstart = uend + spacer_length dlength = 500 dspacer = 50 #dstart = uend + spacer_length #dend = dstart + dlength + dspacer + dlength #splice_start = dend + spacer_length splice_flank_length = 25 splice_spacer = 75 # generate sequence unique_region = random_seq(ulength) duplicated_repeat = random_seq(dlength) duplicated_region = duplicated_repeat + ("N" * dspacer) + duplicated_repeat splice_region = random_seq(splice_flank_length) + ("N" * splice_spacer ) + random_seq(splice_flank_length) # write to FASTA total_genome = ( "N" * ustart ) + unique_region + "N" * spacer_length + duplicated_region + "N" * spacer_length + splice_region + "N" * 100 with open(os.path.join(base_folder, _TEST_FILES["genome"]), "w") as fh: fh.write(">%s\n%s\n" % ("chrA", total_genome)) fh.close() return total_genome @detect_base_folder def create_bowtie_index( base_folder, bowtie_location=os.path.join(os.path.sep, "usr", "local", "bin") ): """Build bowtie indices to enable alignments in bowtie and tophat against synthetic genome. Creates bowtie indices in base_folder/ebwt. Requires a FASTA file of the synthetic genome in base_folder/fasta/chrA.fa, so run create_synthetic_genome() first Parameters ---------- base_folder : str path to base folder in which test data will be created bowtie_location : str path to folder containing bowtie-build Returns ------- int : exit status of bowtie-build """ unspliced_args = [ os.path.join(bowtie_location, "bowtie-build"), os.path.join(base_folder, _TEST_FILES["genome"]), os.path.join(base_folder, _TEST_FILES["bowtie_index"]) ] unspliced_exit = subprocess.call(unspliced_args) return unspliced_exit #| spliced_exit def _ndarray_to_variable_step(count_vec, fh, name): """Write a numpy.ndarray to a variableStep wiggle file Parameters ---------- count_vec : numpy.ndarray vector of counts fh : file-like open filehandle name : str Track name """ fh.write("track type=wiggle_0 name=%s\n" % name) fh.write("variableStep chrom=chrA span=1\n") for i in count_vec.nonzero()[0]: val = count_vec[i] fh.write("%s\t%s\n" % (i + 1, val)) def _ndarray_to_bedgraph(count_vec, fh, name): """Write a numpy.ndarray to a BEDGraph file Parameters ---------- count_vec : numpy.ndarray vector of counts fh : file-like open filehandle name : str Track name """ fh.write("track type=bedGraph name=%s\n" % name) last_val = count_vec[0] start_i = 0 for i, val in enumerate(count_vec): if val != last_val: fh.write("%s\t%s\t%s\t%s\n" % ("chrA", start_i, i, last_val)) start_i = i last_val = val fh.write("%s\t%s\t%s\t%s\n" % ("chrA", start_i, i + 1, last_val)) @detect_base_folder def generate_reads( base_folder, reads_per_region=DEFAULT_READS_PER_REGION, read_length=DEFAULT_READ_LENGTH ): """Generates 30-nucleotide reads from a genome created by create_synthetic_genome, choosing from uniquely-mapping and multimapping regions annotated in TEST_CHR_BED. 10000 reads are generated for each region type. Reads are returned in FASTA format. Also saves a numpy array of how many reads are expected to align to each nucleotide position in the synthetic genome, if reads are mapped at their 5' ends. Parameters ---------- base_folder : str path to base folder in which test data will be created. Reads will base saved as base_folder/fasta/chrA_reads.fa. Count vectors will base saved as various text files in base_folder/count_vectors reads_per_region : int Number of reads to generate in each region read_length : int Length of reads to generate Returns ------- dict : dictionary of numpy.ndarrays corresponding to expected number of counts at each genomic position, under various read alignment mapping rules """ with open(os.path.join(base_folder, "fasta", "chrA.fa")) as fh: genome = SeqIO.to_dict(SeqIO.parse(fh), "fasta") len_A = len(genome["chrA"]) # TODO : align count_vectors = { "fiveprime_0_fw": numpy.zeros(len_A).astype(int), "fiveprime_15_fw": numpy.zeros(len_A).astype(int), "threeprime_0_fw": numpy.zeros(len_A).astype(int), "threeprime_15_fw": numpy.zeros(len_A).astype(int), "center_0_fw": numpy.zeros(len_A), "center_12_fw": numpy.zeros(len_A), "fiveprime_0_rc": numpy.zeros(len_A).astype(int), "fiveprime_15_rc": numpy.zeros(len_A).astype(int), "threeprime_0_rc": numpy.zeros(len_A).astype(int), "threeprime_15_rc": numpy.zeros(len_A).astype(int), "center_0_rc": numpy.zeros(len_A), "center_12_rc": numpy.zeros(len_A), } # yapf: disable with open(os.path.join(base_folder, _TEST_FILES["reads"]), "w") as read_fh: regions = filter(lambda x: "intron" not in x.get_name()\ and "entire" not in x.get_name(), fetch_regions()) for region in regions: strand_key = STRAND_KEYS[region.spanning_segment.strand] my_seq = region.get_sequence(genome) # choose 5' read locations read_locs = numpy.random.randint( 0, high=len(my_seq) - read_length + 1, size=reads_per_region ) # generate FASTA File # and save read positions to count vectors under various alignment mapping rules for n, loc in enumerate(read_locs): # write reads read_fh.write( ">%s_%s\n%s\n" % (region.get_name(), n, my_seq[loc:loc + read_length]) ) _, position, _ = region.get_genomic_coordinate(loc) # populate 5' and 3' mapped count vectors for offset in (0, 15): _, position, _ = region.get_genomic_coordinate(loc + offset) count_vectors["fiveprime_%s_%s" % (offset, strand_key)][position] += 1 _, position, _ = region.get_genomic_coordinate(loc + read_length - offset - 1) count_vectors["threeprime_%s_%s" % (offset, strand_key)][position] += 1 # populate center-mapped count vectors read_positions = region.get_subchain(loc, loc + read_length).get_position_list() assert len(read_positions) == read_length for pos in read_positions: count_vectors["center_0_%s" % strand_key][pos] += 1.0 / len(read_positions) assert len(read_positions[12:-12]) == read_length - 24 for pos in read_positions[12:-12]: count_vectors["center_12_%s" % strand_key][pos] += 1.0 / ( len(read_positions) - 24 ) for k, v in count_vectors.items(): numpy.savetxt(os.path.join(base_folder, "count_vectors", "%s.txt" % k), v) # export 5' mapped BEDGraph files with open(os.path.join(base_folder, _TEST_FILES["bedgraph_fw"]), "w") as bedgraph_fw: _ndarray_to_bedgraph(count_vectors["fiveprime_0_fw"], bedgraph_fw, base_folder) with open(os.path.join(base_folder, _TEST_FILES["bedgraph_rc"]), "w") as bedgraph_rc: _ndarray_to_bedgraph(count_vectors["fiveprime_0_rc"], bedgraph_rc, base_folder) # export 5' mapped variableStep wiggle files with open(os.path.join(base_folder, _TEST_FILES["variable_step_fw"]), "w") as vs_fw: _ndarray_to_variable_step(count_vectors["fiveprime_0_fw"], vs_fw, base_folder) with open(os.path.join(base_folder, _TEST_FILES["variable_step_rc"]), "w") as vs_rc: _ndarray_to_variable_step(count_vectors["fiveprime_0_rc"], vs_rc, base_folder) return count_vectors @detect_base_folder def perform_alignments( base_folder, bowtie_location=os.path.join(os.path.sep, "usr", "local", "bin"), tophat_location=os.path.join(os.path.sep, "usr", "local", "bin"), samtools_location=os.path.join(os.path.sep, "usr", "local", "bin"), ): """Perform alignments of generated reads against synthetic genome, in both Tophat and Bowtie so that both BAM and bowtie input may be tested. Note: spliced reads will not align in bowtie. Read alignments will be placed in base_folder/align Requires a bowtie index of the synthetic genome in base_folder/ebwt, and syntheti reads to align in base_folder/fasta/chrA_reads.fa so run build_bowtie_index() and generate_reads() first. Parameters ---------- base_folder : str path to base folder in which test data will be created. bowtie_location : str path to folder containing bowtie executable tophat_location : str path to folder containing tophat executable samtools_location : str path to folder containing samtools executable Returns ------- int : ORed exit status of bowtie and tophat (0 if both successful; 1 otherwise) """ # align with no mismatches, choosing 1 random alignment from repeat regions bowtie_args = [ os.path.join(bowtie_location, "bowtie"), "-v0", "-k1", "--best", "-f", "--un", os.path.join(base_folder, "align", "chrA_unspliced_unaligned.fa"), os.path.join(base_folder, _TEST_FILES["bowtie_index"]), os.path.join(base_folder, _TEST_FILES["reads"]), os.path.join(base_folder, _TEST_FILES["bowtie"]) ] # align with no mismatches, choosing 1 random alignment from repeat regions tophat_args = [ os.path.join(bowtie_location, "tophat"), "--bowtie1", "--read-mismatches=0", "--min-intron-length=20", "--library-type=fr-firststrand", "--raw-juncs", os.path.join(base_folder, _TEST_FILES["juncs"]), "--no-novel-juncs", "-o", os.path.join(base_folder, "align", "tophat"), os.path.join(base_folder, _TEST_FILES["bowtie_index"]), os.path.join(base_folder, _TEST_FILES["reads"]), ] samtools_multi_args = [ os.path.join(samtools_location, "samtools"), "view", "-F", "256", os.path.join(base_folder, "align", "tophat", "accepted_hits.bam"), "-b", "-o", os.path.join(base_folder, "align", "chrA_tophat.bam") ] samtools_index_args = [ os.path.join(samtools_location, "samtools"), "index", os.path.join(base_folder, "align", "chrA_tophat.bam") ] bowtie_exit = subprocess.call(bowtie_args) tophat_exit = subprocess.call(tophat_args) samtools_exit_1 = subprocess.call(samtools_multi_args) samtools_exit_2 = subprocess.call(samtools_index_args) return bowtie_exit | tophat_exit | samtools_exit_1 | samtools_exit_2 def create_dataset( base_folder, bowtie_location=os.path.join(os.path.sep, "usr", "local", "bin"), tophat_location=os.path.join(os.path.sep, "usr", "local", "bin"), samtools_location=os.path.join(os.path.sep, "usr", "local", "bin"), ): """Create a ground-truth dataset for testing |GenomeArray| This dataset includes a synthetic genome of random sequence, containing uniquely-mapping and multimapping regions; short sequence reads generated from these regions; alignments of these reads made in bowtie and tophat; and saved numpy tables indicating how many counts should appear at each genomic position under various mapping rules and offsets. Parameters ---------- base_folder : str path to base folder in which test data will be created. bowtie_location : str path to folder containing bowtie executable tophat_location : str path to folder containing tophat executable samtools_location : str path to folder containing samtools executable Returns ------- dict: dictionary containing the genome sequence, count vectors, and alignment status """ dtmp = {} dtmp["base_folder"] = base_folder dtmp["genome_str"] = create_synthetic_genome(base_folder) dtmp["aligned"] = False if create_bowtie_index(base_folder, bowtie_location=bowtie_location) == 0: dtmp.update(generate_reads(base_folder)) if perform_alignments(base_folder, bowtie_location=bowtie_location, tophat_location=tophat_location, samtools_location=samtools_location) == 0: dtmp["aligned"] = True return dtmp return dtmp
the-stack_106_13964
""" ------------------------------------------------------------------------- Example script for feature extraction and comparison of features ------------------------------------------------------------------------- Here we show the results of different features calculated from the particle positions or the images itself. This is to give an initial idea of what the different features mean to us and how we can use them. .. moduleauthor:: Michael Barbier <[email protected]> """ # ------------------------------------------------------------------------- # Import libraries # ------------------------------------------------------------------------- import cv2 as cv import os import numpy as np import matplotlib.pyplot as plt import pandas as pd from matplotlib.ticker import NullFormatter from sklearn import manifold, datasets from scipy.spatial import Voronoi, voronoi_plot_2d from scipy.spatial import Delaunay from time import time import argparse # Personal modules from mlpy import util, detection, mio, plots, patterns as pr # Reload personal modules (see: https://docs.python.org/3.8/tutorial/modules.html) import importlib importlib.reload(util) importlib.reload(mio) importlib.reload(plots) importlib.reload(detection) importlib.reload(pr) # Print the OpenCV version for debugging print(cv.__version__) # ------------------------------------------------------------------------- """ # ------------------------------------------------------------------------- # Script # ------------------------------------------------------------------------- """ util.my_comment('Load image with crystal (hexagonal) and gaseous state') data_folder = '../data/phase_states' mask_folder = '../data/phase_states/mask' image_name = 'quasi_1.png' #image_name = 'hexa_gaseous.png' im = cv.imread(os.path.join(data_folder, image_name), 0) mask_gt = cv.imread(os.path.join(mask_folder, image_name), 0) util.my_comment('Detection of the particles in the image') saturation_perc = 0.1 radius = 2 is_dark = 0 circle_list, im_gray, im_norm, im_blur = detection.detection(im, "Laplace", saturation_perc, radius, is_dark) im_circles = np.copy(im_gray) radius_show = 4 plots.draw_circles(circle_list, im_circles, radius=radius_show) # Plot the detected particles plt.subplot(121), plt.imshow(im, cmap='gray') plt.title('Original image'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(im_circles) plt.title('Detection'), plt.xticks([]), plt.yticks([]) #plt.show() util.my_comment('Calculation of features') util.my_sub_comment('Lindemann features') lindemann_list_5 = pr.compute_lindemann_parameter(circle_list, 5*radius) lindemann_list_10 = pr.compute_lindemann_parameter(circle_list, 10*radius) lindemann_list_20 = pr.compute_lindemann_parameter(circle_list, 20*radius) util.my_sub_comment('Voronoi diagram features') circle_list_array = np.array(circle_list) centers = circle_list_array[:, 0:2] n_centers = centers.shape[0] vor = pr.compute_voronoi_diagram(centers) #print(vor.point_region) max_area = 1000.0 min_length_ratio = 0.01 [point_list, vertices_list, inside_point_list, areas_list, n_neighbors_list] = pr.features_voronoi(im, vor, n_centers, max_area) norm_vv_list, n_neighbors_norm_list = pr.normalized_sides_voronoi(vertices_list, min_length_ratio) """ ax1 = plt.subplot(111) plt.imshow(im, cmap='gray') plots.plot_polygons(vertices_list, areas_list, ax=ax1, alpha=0.2, linewidth=0.7) ax2 = plt.subplot(111) plt.imshow(im, cmap='gray') plots.plot_polygons(vertices_list, n_neighbors_list, ax=ax2, alpha=0.2, linewidth=0.7) ax3 = plt.subplot(111) plt.imshow(im, cmap='gray') plots.plot_polygons(vertices_list, inside_point_list, ax=ax3, alpha=0.2, linewidth=0.7) ax4 = plt.subplot(111) plt.imshow(im, cmap='gray') plots.plot_polygons(vertices_list, n_neighbors_norm_list, ax=ax4, alpha=0.2, linewidth=0.7) """ #fig = voronoi_plot_2d(vor, show_points=True, show_vertices=True, s=4) #plt.show() util.my_sub_comment('Delaunay triangulation features') neighbors_list, dd_list, dd_mean, dd_std, aa_list, aa_mean, aa_std = pr.features_delaunay(centers) df = pd.DataFrame( { 'index': pd.Series(range(len(centers))), 'center_x': pd.Series(centers[:, 0], dtype='float32'), 'center_y': pd.Series(centers[:, 1], dtype='float32'), 'valid_point': pd.Series(inside_point_list), 'area': pd.Series(areas_list, dtype='float32'), 'n_norm_NN': pd.Series(n_neighbors_norm_list), 'n_NN': pd.Series(n_neighbors_list), 'NN_distance_mean': pd.Series(dd_mean, dtype='float32'), 'NN_distance_std': pd.Series(dd_std, dtype='float32'), 'NN_angle_mean': pd.Series(aa_mean, dtype='float32'), 'NN_angle_std': pd.Series(aa_std, dtype='float32'), 'Lindemann_5': pd.Series(lindemann_list_5, dtype='float32'), 'Lindemann_10': pd.Series(lindemann_list_10, dtype='float32'), 'Lindemann_20': pd.Series(lindemann_list_20, dtype='float32'), }) #def intensity_points(im, centers): centers_int = np.array(centers, np.int32) intensity_list = mask_gt[centers_int[:, 1], centers_int[:, 0]] # return intensity_list #plt.figure() #df.plot() #plt.legend(loc='best') #plt.show() a = 34 b = 45 """ fig2 = plt.imshow(im, cmap='gray') k = 100 #plt.triplot(centers[:, 0], centers[:, 1], tri.simplices) plt.plot(centers[:, 0], centers[:, 1], 'o') plt.plot(centers[k, 0], centers[k, 1], '*') for nn in neighbors_list[k]: plt.plot(centers[nn, 0], centers[nn, 1], '*') plt.show() """
the-stack_106_13967
import discord import random import utils from discord.ext import commands from unsplash import Unsplash, Photo, UnsplashException from typing import Optional, List from aiohttp import ClientError utm_params = '?utm_source=discord_bot_doggie_bot&utm_medium=referral' async def get_pic(url: str, ctx: utils.CustomContext, key: str) -> str: async with ctx.bot.session.get(url) as resp: data = await resp.json() return data[key] async def furry_image(ctx, user: Optional[discord.User], endpoint: str, action: str, a2: str = None): if not user or user == ctx.author: msg = f'{ctx.author.mention} has no one to {action} :(' elif user.bot: msg = f'{ctx.author.mention} tries to {action} a bot... sad :(' else: msg = f'{ctx.author.mention} {action + "s" if not a2 else a2} {user.mention}!' url = await get_pic(f'https://v2.yiff.rest/furry/{endpoint}', ctx, key='images') return utils.create_embed(ctx.author, title=f'Furry {action}!', description=msg, image=url[0]['url']) def check_unsplash(): def predicate(ctx): if ctx.bot.config['unsplash_api_key']: return True raise utils.MissingAPIKey( 'The Unsplash API key is missing!' 'The owner of this bot can add an API key in `config.yaml`' ) return commands.check(predicate) class Random(commands.Cog): """Commands to get something random, like colors or images!""" def __init__(self, bot): self.bot: utils.CustomBot = bot if bot.config['unsplash_api_key']: self.unsplash = Unsplash(bot.config['unsplash_api_key']) else: self.unsplash = None self.cached_random_photos: List[Photo] = [] @commands.group(invoke_without_command=True) async def random(self, ctx: utils.CustomContext): await ctx.send_help(ctx.command) @random.command(aliases=['user']) async def member(self, ctx: utils.CustomContext, include_bots=False): """Shows a random member from this server!""" member = random.choice([m for m in ctx.guild.members if not m.bot or m.bot == include_bots]) embed = utils.create_embed( ctx.author, title='Random member from server!', description=f'{member.mention} - (ID: {member.id})', thumbnail=member.display_avatar ) await ctx.send(embed=embed) @random.command(aliases=['colour']) async def color(self, ctx: utils.CustomContext): """Shows a random color!""" alias = ctx.invoked_with.lower() color = discord.Color.random() buffer = await self.bot.loop.run_in_executor(None, utils.solid_color_image, color.to_rgb()) file = discord.File(filename="color.png", fp=buffer) embed = utils.create_embed( ctx.author, title=f'Showing random {alias}:', color=color, thumbnail="attachment://color.png" ) embed.add_field(name='Hex:', value=f'`{color}`') embed.add_field(name='Int:', value=f'`{str(color.value).zfill(8)}`') embed.add_field(name='RGB:', value=f'`{color.to_rgb()}`') await ctx.send(file=file, embed=embed) @commands.group(invoke_without_command=True) async def unsplash(self, ctx: utils.CustomContext): await ctx.send_help(ctx.command) @check_unsplash() @unsplash.command(name='random', aliases=['rdm']) @commands.cooldown(10, 60, commands.BucketType.user) async def rdm(self, ctx: utils.CustomContext): """Gets a random photo from the Unsplash API!""" if not self.cached_random_photos: self.cached_random_photos = await self.unsplash.random(content_filter='high', count=30) image: Photo = self.cached_random_photos.pop(0) description = f'"{image.description or image.alt_description}"\n\n' \ f'*Photo by [{image.user.name}](https://unsplash.com/@{image.user.username}{utm_params}) on ' \ f'[Unsplash](https://unsplash.com/{utm_params})*' embed = utils.create_embed( ctx.author, title='Unsplash Image', description=description, image=image.urls.regular, color=image.color, timestamp=image.created_at ) await ctx.send(embed=embed) @commands.command() @commands.cooldown(10, 60, commands.BucketType.user) async def fox(self, ctx: utils.CustomContext): """Gets a random fox from randomfox.ca""" url = await get_pic('https://randomfox.ca/floof/', ctx, key='image') embed = utils.create_embed(ctx.author, title=f'Random fox picture!:', image=url) await ctx.send(embed=embed) @commands.command() @commands.cooldown(10, 60, commands.BucketType.user) async def duck(self, ctx: utils.CustomContext): """Gets a random duck from random-d.uk""" url = await get_pic('https://random-d.uk/api/v2/quack', ctx, key='url') embed = utils.create_embed(ctx.author, title=f'Random duck picture!:', image=url) await ctx.send(embed=embed) @commands.command() @commands.cooldown(10, 60, commands.BucketType.user) async def dog(self, ctx: utils.CustomContext): """Gets a random dog from random.dog""" url = await get_pic('https://random.dog/woof.json?filter=mp4', ctx, key='url') embed = utils.create_embed(ctx.author, title=f'Random dog picture!:', image=url) await ctx.send(embed=embed) @commands.command() @commands.cooldown(10, 60, commands.BucketType.user) async def hug(self, ctx: utils.CustomContext, *, user: Optional[discord.User]): """Get picture of furries hugging, because why not?""" embed = await furry_image(ctx, user, 'hug', 'hug') await ctx.send(embed=embed) @commands.command() @commands.cooldown(10, 60, commands.BucketType.user) async def boop(self, ctx: utils.CustomContext, *, user: Optional[discord.User]): """Get picture of furries booping eachother, because why not?""" embed = await furry_image(ctx, user, 'boop', 'boop') await ctx.send(embed=embed) @commands.command() @commands.cooldown(10, 60, commands.BucketType.user) async def hold(self, ctx: utils.CustomContext, *, user: Optional[discord.User]): """Get picture of furries holding eachother, because why not?""" embed = await furry_image(ctx, user, 'hold', 'hold') await ctx.send(embed=embed) @commands.command() @commands.cooldown(10, 60, commands.BucketType.user) async def kiss(self, ctx: utils.CustomContext, *, user: Optional[discord.User]): """Get picture of furries kissing, because why not?""" embed = await furry_image(ctx, user, 'kiss', 'kiss', 'kisses') await ctx.send(embed=embed) @commands.command(aliases=['licc']) @commands.cooldown(10, 60, commands.BucketType.user) async def lick(self, ctx: utils.CustomContext, *, user: Optional[discord.User]): """Get picture of furries licking eachother, because why not?""" embed = await furry_image(ctx, user, 'lick', 'lick') await ctx.send(embed=embed) async def cog_command_error(self, ctx: utils.CustomContext, error: Exception) -> None: embed = None if isinstance(error, commands.CommandInvokeError): error = error.original if isinstance(error, utils.MissingAPIKey): embed = utils.create_embed( ctx.author, title='Bot missing API key!', description=str(error), color=discord.Color.red() ) if isinstance(error, (UnsplashException, ClientError)): embed = utils.create_embed( ctx.author, title='Error while using api!', description='For some reason an error happened, maybe the API is down?', color=discord.Color.red() ) if embed: return await ctx.send(embed=embed) ctx.uncaught_error = True def setup(bot): bot.add_cog(Random(bot))
the-stack_106_13969
from rdflib import URIRef, Graph, Literal, BNode from shexer.model.graph.abstract_sgraph import SGraph from shexer.utils.triple_yielders import tune_token, tune_prop, tune_subj from shexer.utils.uri import add_corners_if_it_is_an_uri, remove_corners from shexer.core.instances.pconsts import _S, _P, _O from shexer.model.IRI import IRI as ModelIRI from shexer.model.property import Property as ModelProperty from shexer.model.Literal import Literal as ModelLiteral from shexer.model.bnode import BNode as ModelBnode class RdflibSgraph(SGraph): def __init__(self, rdflib_graph=None, source_file=None, raw_graph=None, format="turtle"): """ Pass an rdflib.Graph object or the params source_file and format to parse a local rdf :param rdflib_graph: :param source_file: :param format: """ super().__init__() self._rdflib_graph = rdflib_graph if rdflib_graph is not None else self._build_rdflib_graph(source=source_file, raw_graph=raw_graph, format=format) def query_single_variable(self, str_query, variable_id): rows_res = self._rdflib_graph.query(str_query) return [str(a_row[0]) for a_row in rows_res] def serialize(self, path, format): self._rdflib_graph.serialize(destination=path, format=format) def yield_p_o_triples_of_an_s(self, target_node): for s, p ,o in self._rdflib_graph.triples((URIRef(remove_corners(a_uri=target_node, raise_error_if_no_corners=False)), None, None)): yield str(s), str(p), self._add_lang_if_needed(o) def yield_class_triples_of_an_s(self, target_node, instantiation_property): for s ,p, o in self._rdflib_graph.triples((URIRef(remove_corners(a_uri=target_node, raise_error_if_no_corners=False)), URIRef(remove_corners(a_uri=instantiation_property, raise_error_if_no_corners=False)), None)): yield str(s), str(p), self._add_lang_if_needed(o) def add_triple(self, a_triple): """ It receives a tuple of 3 string elements. It adds it to the local rdflib graph :param a_triple: :return: """ subj = tune_subj(add_corners_if_it_is_an_uri(a_triple[_S]), raise_error_if_no_corners=False) prop = tune_prop(add_corners_if_it_is_an_uri(a_triple[_P]), raise_error_if_no_corners=False) obj = tune_token(add_corners_if_it_is_an_uri(a_triple[_O]), raise_error_if_no_corners=False) self._rdflib_graph.add((self._turn_obj_into_rdflib_element(subj), self._turn_obj_into_rdflib_element(prop), self._turn_obj_into_rdflib_element(obj))) def _turn_obj_into_rdflib_element(self, model_elem): if type(model_elem) == ModelIRI or type(model_elem) == ModelProperty: return URIRef(model_elem.iri) elif type(model_elem) == ModelLiteral: return Literal(lexical_or_value=str(model_elem), datatype=model_elem.elem_type) elif type(model_elem) == ModelBnode: return BNode(value=str(model_elem)) else: raise ValueError("Unexpected type of element. " + str(model_elem) + ": " + str(type(model_elem))) def _build_rdflib_graph(self, source, raw_graph, format): result = Graph() if source is not None: result.parse(source=source, format=format) else: result.parse(data=raw_graph, format=format) return result def _add_lang_if_needed(self, rdflib_obj): """ It return a string representation with lang if it is a langString :param rdflib_obj: :return: """ result = str(rdflib_obj) if type(rdflib_obj) == Literal and rdflib_obj.language is not None: result = '"' + result + '"@' + rdflib_obj.language return result
the-stack_106_13970
import glob import math import os import random import shutil from pathlib import Path from PIL import Image # import matplotlib.pyplot as plt from tqdm import tqdm import cv2 import numpy as np import torch from torch.utils.data import Dataset from torch.utils.data import DataLoader # try: # from utils.utils import xyxy2xywh, xywh2xyxy # except: # from utils import xyxy2xywh, xywh2xyxy def xyxy2xywh(x): # Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h] y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 y[:, 1] = (x[:, 1] + x[:, 3]) / 2 y[:, 2] = x[:, 2] - x[:, 0] y[:, 3] = x[:, 3] - x[:, 1] return y def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2] y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 return y class LoadImages: # for inference def __init__(self, path, img_size=416): self.height = img_size img_formats = ['.jpg', '.jpeg', '.png', '.tif'] vid_formats = ['.mov', '.avi', '.mp4'] files = [] if os.path.isdir(path): files = sorted(glob.glob('%s/*.*' % path)) elif os.path.isfile(path): files = [path] images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats] videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats] nI, nV = len(images), len(videos) self.files = images + videos self.nF = nI + nV # number of files self.video_flag = [False] * nI + [True] * nV self.mode = 'images' if any(videos): self.new_video(videos[0]) # new video else: self.cap = None assert self.nF > 0, 'No images or videos found in ' + path def __iter__(self): self.count = 0 return self def __next__(self): if self.count == self.nF: raise StopIteration path = self.files[self.count] if self.video_flag[self.count]: # Read video self.mode = 'video' ret_val, img0 = self.cap.read() if not ret_val: self.count += 1 self.cap.release() if self.count == self.nF: # last video raise StopIteration else: path = self.files[self.count] self.new_video(path) ret_val, img0 = self.cap.read() self.frame += 1 print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='') else: # Read image self.count += 1 img0 = cv2.imread(path) # BGR assert img0 is not None, 'File Not Found ' + path print('image %g/%g %s: ' % (self.count, self.nF, path), end='') # Padded resize img, _, _, _ = letterbox(img0, height=self.height) # Normalize RGB img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 # cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image return path, img, img0, self.cap def new_video(self, path): self.frame = 0 self.cap = cv2.VideoCapture(path) self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) def __len__(self): return self.nF # number of files class LoadWebcam: # for inference def __init__(self, img_size=416): self.cam = cv2.VideoCapture(0) self.height = img_size def __iter__(self): self.count = -1 return self def __next__(self): self.count += 1 if cv2.waitKey(1) == 27: # esc to quit cv2.destroyAllWindows() raise StopIteration # Read image ret_val, img0 = self.cam.read() assert ret_val, 'Webcam Error' img_path = 'webcam_%g.jpg' % self.count img0 = cv2.flip(img0, 1) # flip left-right # Padded resize img, _, _, _ = letterbox(img0, height=self.height) # Normalize RGB img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 return img_path, img, img0, self.cam def __len__(self): return 0 class LoadImagesAndLabels(Dataset): # for training/testing def __init__(self, path, batch_size, img_size=416, augment=True, multi_scale=False): print('LoadImagesAndLabels init : ',path) with open(path, 'r') as file: img_files = file.read().splitlines() img_files = list(filter(lambda x: len(x) > 0, img_files)) np.random.shuffle(img_files) # shuffle img_list print("shuffle image...") self.img_files = img_files assert len(self.img_files) > 0, 'No images found in %s' % path self.img_size = img_size self.batch_size = batch_size self.multi_scale = multi_scale self.augment = augment self.scale_index = 0 if self.multi_scale: self.img_size = 608 # initiate with maximum multi_scale size, in case of out of memory print("Multi scale images training, init img_size", self.img_size) else: print("Fixed scale images, img_size", self.img_size) self.label_files = [ x.replace('images', 'labels').replace("JPEGImages", 'labels').replace('.bmp', '.txt').replace('.jpg', '.txt').replace('.png', '.txt') for x in self.img_files] # print('self.img_files : ',self.img_files[1]) # print('self.label_files : ',self.label_files[1]) def __len__(self): return len(self.img_files) def __getitem__(self, index): # if self.multi_scale and (index % self.batch_size == 0) and index != 0: if self.multi_scale and (self.scale_index % self.batch_size == 0)and self.scale_index != 0: self.img_size = random.choice(range(11, 16)) * 32 # print("++++++ change img_size, index:", self.img_size, index) if self.multi_scale: self.scale_index += 1 if self.scale_index >= (100*self.batch_size): self.scale_index = 0 img_path = self.img_files[index] label_path = self.label_files[index] img = cv2.imread(img_path) # BGR assert img is not None, 'File Not Found ' + img_path augment_hsv = random.random() < 0.5 # hsv_aug prob = 0.5 if self.augment and augment_hsv: # SV augmentation by 50% fraction = 0.50 # must be < 1.0 img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) S = img_hsv[:, :, 1].astype(np.float32) V = img_hsv[:, :, 2].astype(np.float32) a = (random.random() * 2 - 1) * fraction + 1 # a in [-0,5, 1.5] S *= a if a > 1: np.clip(S, None, 255, out=S) a = (random.random() * 2 - 1) * fraction + 1 V *= a if a > 1: np.clip(V, None, 255, out=V) img_hsv[:, :, 1] = S # .astype(np.uint8) img_hsv[:, :, 2] = V # .astype(np.uint8) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) h, w, _ = img.shape img, ratio, padw, padh = letterbox(img, height=self.img_size, augment=self.augment) # Load labels labels = [] if os.path.isfile(label_path): with open(label_path, 'r') as file: lines = file.read().splitlines() x = np.array([x.split() for x in lines], dtype=np.float32) if x.size > 0: # Normalized xywh to pixel xyxy format labels = x.copy() labels[:, 1] = ratio * w * (x[:, 1] - x[:, 3] / 2) + padw labels[:, 2] = ratio * h * (x[:, 2] - x[:, 4] / 2) + padh labels[:, 3] = ratio * w * (x[:, 1] + x[:, 3] / 2) + padw labels[:, 4] = ratio * h * (x[:, 2] + x[:, 4] / 2) + padh # Augment image and labels if self.augment: img, labels = random_affine(img, labels, degrees=(-10, 10), translate=(0.10, 0.10), scale=(0.9, 1.1)) nL = len(labels) # number of labels if nL: # convert xyxy to xywh labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) / self.img_size # 转化 格式 ,且 归一化 if self.augment: # random left-right flip lr_flip = True if lr_flip and random.random() > 0.5: img = np.fliplr(img) if nL: labels[:, 1] = 1 - labels[:, 1] # random up-down flip ud_flip = False if ud_flip and random.random() > 0.5: img = np.flipud(img) if nL: labels[:, 2] = 1 - labels[:, 2] labels_out = torch.zeros((nL, 6))# 加了 一个 batch size if nL: labels_out[:, 1:] = torch.from_numpy(labels) # Normalize img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 return torch.from_numpy(img), labels_out, img_path, (h, w) @staticmethod def collate_fn(batch): img, label, path, hw = list(zip(*batch)) # transposed for i, l in enumerate(label): l[:, 0] = i # 获取 物体的 归属于 图片 的 index return torch.stack(img, 0), torch.cat(label, 0), path, hw def letterbox(img, height=416, augment=False, color=(127.5, 127.5, 127.5)): # Resize a rectangular image to a padded square shape = img.shape[:2] # shape = [height, width] ratio = float(height) / max(shape) # ratio = old / new new_shape = (round(shape[1] * ratio), round(shape[0] * ratio)) dw = (height - new_shape[0]) / 2 # width padding dh = (height - new_shape[1]) / 2 # height padding top, bottom = round(dh - 0.1), round(dh + 0.1) left, right = round(dw - 0.1), round(dw + 0.1) # resize img if augment: interpolation = np.random.choice([None, cv2.INTER_NEAREST, cv2.INTER_LINEAR, None, cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]) if interpolation is None: img = cv2.resize(img, new_shape) else: img = cv2.resize(img, new_shape, interpolation=interpolation) else: img = cv2.resize(img, new_shape, interpolation=cv2.INTER_NEAREST) # print("resize time:",time.time()-s1) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # padded square return img, ratio, dw, dh def random_affine(img, targets=(), degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-2, 2), borderValue=(127.5, 127.5, 127.5)): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4 if targets is None: targets = [] border = 0 # width of added border (optional) height = max(img.shape[0], img.shape[1]) + border * 2 # Rotation and Scale R = np.eye(3) a = random.random() * (degrees[1] - degrees[0]) + degrees[0] # a += random.choice([-180, -90, 0, 90]) # 90deg rotations added to small rotations s = random.random() * (scale[1] - scale[0]) + scale[0] R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s) # Translation T = np.eye(3) T[0, 2] = (random.random() * 2 - 1) * translate[0] * img.shape[0] + border # x translation (pixels) T[1, 2] = (random.random() * 2 - 1) * translate[1] * img.shape[1] + border # y translation (pixels) # Shear S = np.eye(3) S[0, 1] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # y shear (deg) M = S @ T @ R # Combined rotation matrix. ORDER IS IMPORTANT HERE!! imw = cv2.warpPerspective(img, M, dsize=(height, height), flags=cv2.INTER_LINEAR, borderValue=borderValue) # BGR order borderValue # Return warped points also if len(targets) > 0: n = targets.shape[0] points = targets[:, 1:5].copy() area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1]) # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = (xy @ M.T)[:, :2].reshape(n, 8) # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # apply angle-based reduction of bounding boxes radians = a * math.pi / 180 reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5 x = (xy[:, 2] + xy[:, 0]) / 2 y = (xy[:, 3] + xy[:, 1]) / 2 w = (xy[:, 2] - xy[:, 0]) * reduction h = (xy[:, 3] - xy[:, 1]) * reduction xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T # reject warped points outside of image np.clip(xy, 0, height, out=xy) w = xy[:, 2] - xy[:, 0] h = xy[:, 3] - xy[:, 1] area = w * h ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) i = (w > 4) & (h > 4) & (area / (area0 + 1e-16) > 0.1) & (ar < 10) targets = targets[i] targets[:, 1:5] = xy[i] return imw, targets def convert_images2bmp(): # cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s for path in ['../coco/images/val2014/', '../coco/images/train2014/']: folder = os.sep + Path(path).name output = path.replace(folder, folder + 'bmp') if os.path.exists(output): shutil.rmtree(output) # delete output folder os.makedirs(output) # make new output folder for f in tqdm(glob.glob('%s*.jpg' % path)): save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp') cv2.imwrite(save_name, cv2.imread(f)) for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']: with open(label_path, 'r') as file: lines = file.read() lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace( '/Users/glennjocher/PycharmProjects/', '../') with open(label_path.replace('5k', '5k_bmp'), 'w') as file: file.write(lines)
the-stack_106_13971
from ..schema import EBMLDocument, UnknownElement, CONTAINER, BINARY def dump_element(element, indent=0): if isinstance(element, UnknownElement): print(('\t' * indent) + ('<Unknown id=\'%s\' bytes=\'%i\' />' % (hex(element.id), element.body_size))) else: sargs = { 'name': element.name, 'bytes': element.body_size, 'value': element.value } def print_indented(foo): print(('\t' * indent) + foo) if element.type == CONTAINER: print_indented('<%(name)s>' % sargs) for sub_el in element.value: dump_element(sub_el, indent + 1) print_indented('</%(name)s>' % sargs) elif element.type == BINARY: print_indented('<%(name)s bytes=\'%(bytes)i\' />' % sargs) else: print_indented('<%(name)s>%(value)s</%(name)s>' % sargs) def dump_document(document): for el in document.roots: dump_element(el) if __name__ == '__main__': import sys from optparse import OptionParser parser = OptionParser(usage='Usage: %prog [OPTION] FILE') parser.add_option('--document-class', dest='document_class', help='the document class to use', metavar='CLASS') options, args = parser.parse_args() if options.document_class is None: class doc_cls(EBMLDocument): type = None version = None else: mod_name, _, cls_name = options.document_class.rpartition('.') try: doc_mod = __import__(mod_name, fromlist=[cls_name]) doc_cls = getattr(doc_mod, cls_name) except ImportError: parser.error('unable to import module %s' % mod_name) except AttributeError: parser.error('unable to import class %s from %s' % (cls_name, mod_name)) if not args: parser.error('no file provided') elif len(args) > 1: parser.error('more than one file provided') with open(args[0], 'rb') as stream: doc = doc_cls(stream) dump_document(doc)
the-stack_106_13973
listanum = [[],[]] #Primeiro colchete numeros pares e segundo colchete numeros impares valor = 0 for cont in range(1,8): valor = int(input("Digite um valor: ")) if valor % 2 ==0: listanum[0].append(valor) else: listanum[1].append(valor) listanum[0].sort() listanum[1].sort() print(f"Os numeros pares digitados foram {listanum[0]}") print(f"Os numeros impares digitados foram {listanum[1]}")
the-stack_106_13975
import numpy as np import pytest from aesara import shared @pytest.mark.parametrize( "rng", [np.random.RandomState(123), np.random.default_rng(123)] ) def test_GeneratorSharedVariable(rng): s_rng_default = shared(rng) s_rng_True = shared(rng, borrow=True) s_rng_False = shared(rng, borrow=False) # test borrow contract: that False means a copy must have been made assert s_rng_default.container.storage[0] is not rng assert s_rng_False.container.storage[0] is not rng # test current implementation: that True means a copy was not made assert s_rng_True.container.storage[0] is rng # ensure that all the random number generators are in the same state if hasattr(rng, "randn"): v = rng.randn() v0 = s_rng_default.container.storage[0].randn() v1 = s_rng_False.container.storage[0].randn() else: v = rng.standard_normal() v0 = s_rng_default.container.storage[0].standard_normal() v1 = s_rng_False.container.storage[0].standard_normal() assert v == v0 == v1 @pytest.mark.parametrize( "rng", [np.random.RandomState(123), np.random.default_rng(123)] ) def test_get_value_borrow(rng): s_rng = shared(rng) r_ = s_rng.container.storage[0] r_T = s_rng.get_value(borrow=True) r_F = s_rng.get_value(borrow=False) # the contract requires that borrow=False returns a copy assert r_ is not r_F # the current implementation allows for True to return the real thing assert r_ is r_T # either way, the rngs should all be in the same state if hasattr(rng, "rand"): assert r_.rand() == r_F.rand() else: assert r_.standard_normal() == r_F.standard_normal() @pytest.mark.parametrize( "rng", [np.random.RandomState(123), np.random.default_rng(123)] ) def test_get_value_internal_type(rng): s_rng = shared(rng) # there is no special behaviour required of return_internal_type # this test just ensures that the flag doesn't screw anything up # by repeating the get_value_borrow test. r_ = s_rng.container.storage[0] r_T = s_rng.get_value(borrow=True, return_internal_type=True) r_F = s_rng.get_value(borrow=False, return_internal_type=True) # the contract requires that borrow=False returns a copy assert r_ is not r_F # the current implementation allows for True to return the real thing assert r_ is r_T # either way, the rngs should all be in the same state if hasattr(rng, "rand"): assert r_.rand() == r_F.rand() else: assert r_.standard_normal() == r_F.standard_normal() @pytest.mark.parametrize("rng_ctor", [np.random.RandomState, np.random.default_rng]) def test_set_value_borrow(rng_ctor): s_rng = shared(rng_ctor(123)) new_rng = rng_ctor(234234) # Test the borrow contract is respected: # assigning with borrow=False makes a copy s_rng.set_value(new_rng, borrow=False) assert new_rng is not s_rng.container.storage[0] if hasattr(new_rng, "randn"): assert new_rng.randn() == s_rng.container.storage[0].randn() else: assert new_rng.standard_normal() == s_rng.container.storage[0].standard_normal() # Test that the current implementation is actually borrowing when it can. rr = rng_ctor(33) s_rng.set_value(rr, borrow=True) assert rr is s_rng.container.storage[0]
the-stack_106_13977
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Created on Oct 24, 2014 @author: Javier Garcia, [email protected] ''' import sqlite3 import pandas as pd import sqlalchemy import matplotlib.pyplot as plt #!/usr/bin/python # -*- coding: utf-8 -*- ''' Created on 14/08/2014 @author: Javier Garcia, [email protected] ''' import os import pandas as pd import numpy as np from data import DataHandler from event import MarketEvent from pprint import pprint # pylint: disable=too-many-instance-attributes # Eight is reasonable in this case. class HistoricSQLiteDataHandler(DataHandler): """ HistoricSQLiteDataHandler is designed to read a SQLite database for each requested symbol from disk and provide an interface to obtain the "latest" bar in a manner identical to a live trading interface. ARG: database_path: the system path where the SQLite database is stored. symbol_list: list containing the name of the symbols to read in the database. The SQL consult is expected to have the following structure: [date-time, open, high, low, close, volume, adjusted_close] IMPORTANT: for different symbols in differents time-zones you must assure the data is correctly syncronized. Athena does not check this. """ def __init__(self, events, database, symbol_list): """ Initialises the historic data handler by requesting the location of the database and a list of symbols. It will be assumed that all price data is in a table called 'symbols', where the field 'symbol' is a string in the list. Parameters: events - The Event Queue. csv_dir - Absolute directory path to the database symbol_list - A list of symbol strings. """ self.events = events self.database = database self.symbol_list = symbol_list self.symbol_data = {} self.latest_symbol_data = {} self.continue_backtest = True self.bar_index = 0 self.all_data_dic = {} # access data in list form for testing self._open_convert_database_data() def _connect_to_database(self, database, flavor='sqlite3'): """ Connect to the database .... :param database: full path to SQLite3 database to connect """ if flavor == 'sqlite3': try: connection = sqlite3.connect(database, detect_types=sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES) return connection except sqlite3.Error as err: print('Error connecting database', err.args[0]) # TODO: this leg is not finished elif flavor == 'SQLAlchemy': try: engine = sqlalchemy.create_engine('sqlite://'+database) return engine except sqlalchemy.exc as err: print('Error connecting database', err) def _get_prices(self, conn, symbol, cols): """ Query the database and returns a dataframe with the chosen 7 columns. :param conn: :param symbol: :param cols: """ values_qry = '''SELECT {},{},{},{},{},{},{} FROM prices WHERE symbol="{}"'''.format(cols[0], cols[1], cols[2], cols[3], cols[4], cols[5], cols[6], symbol) return pd.read_sql(values_qry, conn, index_col='price_date') def _open_convert_database_data(self): """ Opens the CSV files from the data directory, converting them into pandas DataFrames within a symbol dictionary. For this handler it will be assumed that the data is taken from DTN IQFeed. Thus its format will be respected. """ comb_index = None columns = ['price_date', 'open_price', 'high_price', 'low_price', 'close_price', 'volume', 'adjusted_price'] connection = self._connect_to_database(self.database) for symbol in self.symbol_list: self.symbol_data[symbol] = self._get_prices(connection, symbol, columns) # Combine the index to pad forward values if comb_index is None: comb_index = self.symbol_data[symbol].index else: comb_index.union(self.symbol_data[symbol].index) # Set the latest symbol_data to None self.latest_symbol_data[symbol] = [] # Reindex the dataframes for symbol in self.symbol_list: self.all_data_dic[symbol] = self.symbol_data[symbol].\ reindex(index=comb_index, method=None) self.symbol_data[symbol] = self.symbol_data[symbol].\ reindex(index=comb_index, method=None).iterrows() def _get_new_bar(self, symbol): """ Returns the latest bar from the data feed. """ for symbol_gen in self.symbol_data[symbol]: yield symbol_gen def get_latest_bar(self, symbol): """ Returns the last bar from the latest_symbol list. """ try: bars_list = self.latest_symbol_data[symbol] except KeyError: raise KeyError("Symbol is not available in the data set.") else: if not bars_list: raise KeyError('latest_symbol_data has not been initialized.') else: return bars_list[-1] def get_latest_bars(self, symbol, bars=1): """ Returns the last N bars from the latest_symbol list, or N-k if less available. """ try: bars_list = self.latest_symbol_data[symbol] except KeyError: raise KeyError("Symbol is not available in the data set.") else: if not bars_list: raise KeyError('latest_symbol_data has not been initialized.') else: return bars_list[-bars:] def get_latest_bar_datetime(self, symbol): """ Returns a Python datetime object for the last bar. """ try: bars_list = self.latest_symbol_data[symbol] except KeyError: raise KeyError("Symbol is not available in the data set.") else: if not bars_list: raise KeyError ('latest_symbol_data has not been initialized.') else: return bars_list[-1][0] def get_latest_bar_value(self, symbol, val_type): """ Returns one of the Open, High, Low, Close, Volume or OI values from the pandas Bar series object. """ try: bars_list = self.latest_symbol_data[symbol] except KeyError: raise KeyError("Symbol is not available in the data set.") else: if not bars_list: raise KeyError ('latest_symbol_data has not been initialized.') else: return getattr(bars_list[-1][1], val_type) def get_latest_bars_values(self, symbol, val_type, bars=1): """ Returns the last N bar values from the latest_symbol list, or N-k if less available. """ try: bars_list = self.get_latest_bars(symbol, bars) except KeyError: raise KeyError("Symbol is not available in the data set.") else: if not bars_list: raise KeyError ('latest_symbol_data has not been initialized.') else: return np.array([getattr(b[1], val_type) for b in bars_list]) def update_bars(self): """ Pushes the latest bar to the latest_symbol_data structure for all symbols in the symbol list. """ for symbol in self.symbol_list: try: bars = self._get_new_bar(symbol).__next__() except StopIteration: self.continue_backtest = False else: if bars is not None: self.latest_symbol_data[symbol].append(bars) self.events.put(MarketEvent()) # # # # import queue # if __name__ == '__main__': # from_location = 'PC' # if from_location == 'PC': # DATABASE = 'C:/Users/javgar119/Documents/Dropbox/SEC_MASTER/securities_master.SQLITE' # elif from_location == 'MAC': # DATABASE = '//Users/Javi/Dropbox/MarketDB/securities_master.SQLITE' # # LIST_OF_SYMBOLS = ['SPY_QL', 'EWA_QL'] # EVENT = queue.Queue() # STORE = HistoricSQLiteDataHandler(EVENT, DATABASE, LIST_OF_SYMBOLS) # # print(type(STORE)) # # # # for dummy in range(5483): # STORE.update_bars() # # DATETIME1 = STORE.get_latest_bar_datetime('SPY_QL') # # SPY = STORE.get_latest_bar_value('SPY_QL', val_type='close_price') # bar_value = STORE.get_latest_bar('SPY_QL') # # DATETIME2 = STORE.get_latest_bar_datetime('EWA_QL') # # EWA = STORE.get_latest_bar_value('EWA_QL', val_type='close_price') # print(bar_value) # # print(DATETIME1, SPY, ' - ', DATETIME2, EWA) # # # # # def _get_prices(conn, symbols, cols): # """ # # :param conn: # :param symbol: # :param cols: # """ # symbol_data = dict() # for each_symbol in symbols: # values_qry = '''SELECT {},{},{},{},{},{},{} # FROM prices WHERE symbol="{}"'''.format(cols[0], # cols[1], # cols[2], # cols[3], # cols[4], # cols[5], # cols[6], # each_symbol) # symbol_data[each_symbol] = pd.read_sql(values_qry, # conn, # index_col='price_date') # return symbol_data # # # def _connect_to_database(database, flavor='sqlite3'): # """ # Connect to the database .... # :param database: full path to SQLite3 database to connect # """ # if flavor == 'sqlite3': # try: # connection = sqlite3.connect(database, detect_types=sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES) # return connection # except sqlite3.Error as err: # print('Error connecting database', err.args[0]) # # TODO: this leg is not finished # elif flavor == 'SQLAlchemy': # try: # engine = sqlalchemy.create_engine('sqlite://' + database) # return engine # except sqlalchemy.exc as err: # print('Error connecting database', err) # # # # # # if __name__ == '__main__': # from_location = 'PC' # if from_location == 'PC': # database = 'C:/Users/javgar119/Documents/Dropbox/SEC_MASTER/securities_master.SQLITE' # elif from_location == 'MAC': # database = '//Users/Javi/Dropbox/MarketDB/securities_master.SQLITE' # # conn = _connect_to_database(database) # # symbols = ['SP500_QL', 'USO_QL'] # columns = ['price_date', 'open_price', 'high_price', 'low_price', 'close_price', 'volume', 'adjusted_price'] # symbol_data = _get_prices(conn, symbols, columns)
the-stack_106_13978
import datetime from cryptography import x509 from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import ec from cryptography.x509.oid import NameOID ec_key = ec.generate_private_key(ec.SECP256K1, default_backend()) subject = issuer = x509.Name([ x509.NameAttribute(NameOID.COMMON_NAME, u"hendrix-tls-example"), ]) cert = x509.CertificateBuilder().subject_name( subject ).issuer_name( issuer ).public_key( ec_key.public_key() ).serial_number( x509.random_serial_number() ).not_valid_before( datetime.datetime.utcnow() ).not_valid_after( datetime.datetime.utcnow() + datetime.timedelta(days=10) ).add_extension( x509.SubjectAlternativeName([x509.DNSName(u"localhost")]), critical=False, ).sign(ec_key, hashes.SHA256(), default_backend()) with open("ec-key.pem", "wb") as f: f.write(ec_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.TraditionalOpenSSL, encryption_algorithm=serialization.NoEncryption(), )) with open("ec-certificate.pem", "wb") as f: f.write(cert.public_bytes(serialization.Encoding.PEM))
the-stack_106_13979
# -*- coding: utf-8 -*- from datetime import timedelta from django.conf import settings from django.core.cache import cache from django.core.exceptions import ValidationError from django.db import models from django.utils.text import slugify from django.utils import timezone from django.utils.text import format_lazy from django.utils.translation import gettext_lazy as _ def validate_date(date, field_name): """ Confirm that a date is not in the future. :param date: a timezone aware date instance. :param field_name: the name of the field being checked. :return: """ if date and date > timezone.localdate(): raise ValidationError( {field_name: _('Date can not be in the future.')}, code='date_invalid') def validate_duration(model, max_duration=timedelta(hours=24)): """ Basic sanity checks for models with a duration :param model: a model instance with 'start' and 'end' attributes :param max_duration: maximum allowed duration between start and end time :return: """ if model.start and model.end: if model.start > model.end: raise ValidationError( _('Start time must come before end time.'), code='end_before_start') if model.end - model.start > max_duration: raise ValidationError(_('Duration too long.'), code='max_duration') def validate_unique_period(queryset, model): """ Confirm that model's start and end date do not intersect with other instances. :param queryset: a queryset of instances to check against. :param model: a model instance with 'start' and 'end' attributes :return: """ if model.id: queryset = queryset.exclude(id=model.id) if model.start and model.end: if queryset.filter(start__lt=model.end, end__gt=model.start): raise ValidationError( _('Another entry intersects the specified time period.'), code='period_intersection') def validate_time(time, field_name): """ Confirm that a time is not in the future. :param time: a timezone aware datetime instance. :param field_name: the name of the field being checked. :return: """ if time and time > timezone.localtime(): raise ValidationError( {field_name: _('Date/time can not be in the future.')}, code='time_invalid') class Child(models.Model): model_name = 'child' first_name = models.CharField(max_length=255, verbose_name=_('First name')) last_name = models.CharField(max_length=255, verbose_name=_('Last name')) birth_date = models.DateField( blank=False, null=False, verbose_name=_('Birth date') ) slug = models.SlugField( allow_unicode=True, blank=False, editable=False, max_length=100, unique=True, verbose_name=_('Slug') ) picture = models.ImageField( blank=True, null=True, upload_to='child/picture/', verbose_name=_('Picture') ) objects = models.Manager() cache_key_count = 'core.child.count' class Meta: default_permissions = ('view', 'add', 'change', 'delete') ordering = ['last_name', 'first_name'] verbose_name = _('Child') verbose_name_plural = _('Children') def __str__(self): return '{} {}'.format(self.first_name, self.last_name) def save(self, *args, **kwargs): self.slug = slugify(self, allow_unicode=True) super(Child, self).save(*args, **kwargs) cache.set(self.cache_key_count, Child.objects.count(), None) def delete(self, using=None, keep_parents=False): super(Child, self).delete(using, keep_parents) cache.set(self.cache_key_count, Child.objects.count(), None) def name(self, reverse=False): if reverse: return '{}, {}'.format(self.last_name, self.first_name) return '{} {}'.format(self.first_name, self.last_name) @classmethod def count(cls): """ Get a (cached) count of total number of Child instances. """ return cache.get_or_set(cls.cache_key_count, Child.objects.count, None) class DiaperChange(models.Model): model_name = 'diaperchange' child = models.ForeignKey( 'Child', on_delete=models.CASCADE, related_name='diaper_change', verbose_name=_('Child') ) time = models.DateTimeField( blank=False, null=False, verbose_name=_('Time') ) wet = models.BooleanField(verbose_name=_('Wet')) solid = models.BooleanField(verbose_name=_('Solid')) color = models.CharField( blank=True, choices=[ ('black', _('Black')), ('brown', _('Brown')), ('green', _('Green')), ('yellow', _('Yellow')), ], max_length=255, verbose_name=_('Color') ) amount = models.FloatField(blank=True, null=True, verbose_name=_('Amount')) notes = models.TextField(blank=True, null=True, verbose_name=_('Notes')) objects = models.Manager() class Meta: default_permissions = ('view', 'add', 'change', 'delete') ordering = ['-time'] verbose_name = _('Diaper Change') verbose_name_plural = _('Diaper Changes') def __str__(self): return str(_('Diaper Change')) def attributes(self): attributes = [] if self.wet: attributes.append(self._meta.get_field('wet').verbose_name) if self.solid: attributes.append(self._meta.get_field('solid').verbose_name) if self.color: attributes.append(self.get_color_display()) return attributes def clean(self): validate_time(self.time, 'time') # One or both of Wet and Solid is required. if not self.wet and not self.solid: raise ValidationError( _('Wet and/or solid is required.'), code='wet_or_solid') class Feeding(models.Model): model_name = 'feeding' child = models.ForeignKey( 'Child', on_delete=models.CASCADE, related_name='feeding', verbose_name=_('Child') ) start = models.DateTimeField( blank=False, null=False, verbose_name=_('Start time') ) end = models.DateTimeField( blank=False, null=False, verbose_name=_('End time') ) duration = models.DurationField( editable=False, null=True, verbose_name=_('Duration') ) type = models.CharField( choices=[ ('breast milk', _('Breast milk')), ('formula', _('Formula')), ('fortified breast milk', _('Fortified breast milk')), ('solid food', _('Solid food')), ], max_length=255, verbose_name=_('Type') ) method = models.CharField( choices=[ ('bottle', _('Bottle')), ('left breast', _('Left breast')), ('right breast', _('Right breast')), ('both breasts', _('Both breasts')), ('parent fed', _('Parent fed')), ('self fed', _('Self fed')), ], max_length=255, verbose_name=_('Method') ) amount = models.FloatField(blank=True, null=True, verbose_name=_('Amount')) notes = models.TextField(blank=True, null=True, verbose_name=_('Notes')) objects = models.Manager() class Meta: default_permissions = ('view', 'add', 'change', 'delete') ordering = ['-start'] verbose_name = _('Feeding') verbose_name_plural = _('Feedings') def __str__(self): return str(_('Feeding')) def save(self, *args, **kwargs): if self.start and self.end: self.duration = self.end - self.start super(Feeding, self).save(*args, **kwargs) def clean(self): validate_time(self.start, 'start') validate_time(self.end, 'end') validate_duration(self) validate_unique_period(Feeding.objects.filter(child=self.child), self) class Note(models.Model): model_name = 'note' child = models.ForeignKey( 'Child', on_delete=models.CASCADE, related_name='note', verbose_name=_('Child') ) note = models.TextField(verbose_name=_('Note')) time = models.DateTimeField( default=timezone.now, blank=False, verbose_name=_('Time') ) objects = models.Manager() class Meta: default_permissions = ('view', 'add', 'change', 'delete') ordering = ['-time'] verbose_name = _('Note') verbose_name_plural = _('Notes') def __str__(self): return str(_('Note')) class NapsManager(models.Manager): def get_queryset(self): qs = super(NapsManager, self).get_queryset() return qs.filter(id__in=[obj.id for obj in qs if obj.nap]) class Sleep(models.Model): model_name = 'sleep' child = models.ForeignKey( 'Child', on_delete=models.CASCADE, related_name='sleep', verbose_name=_('Child') ) napping = models.BooleanField( editable=False, null=True, verbose_name=_('Napping') ) start = models.DateTimeField( blank=False, null=False, verbose_name=_('Start time') ) end = models.DateTimeField( blank=False, null=False, verbose_name=_('End time') ) duration = models.DurationField( editable=False, null=True, verbose_name=_('Duration') ) notes = models.TextField(blank=True, null=True, verbose_name=_('Notes')) objects = models.Manager() naps = NapsManager() class Meta: default_permissions = ('view', 'add', 'change', 'delete') ordering = ['-start'] verbose_name = _('Sleep') verbose_name_plural = _('Sleep') def __str__(self): return str(_('Sleep')) @property def nap(self): nap_start_min = timezone.datetime.strptime( settings.BABY_BUDDY['NAP_START_MIN'], '%H:%M').time() nap_start_max = timezone.datetime.strptime( settings.BABY_BUDDY['NAP_START_MAX'], '%H:%M').time() local_start_time = timezone.localtime(self.start).time() return nap_start_min <= local_start_time <= nap_start_max def save(self, *args, **kwargs): if self.start and self.end: self.duration = self.end - self.start self.napping = self.nap super(Sleep, self).save(*args, **kwargs) def clean(self): validate_time(self.start, 'start') validate_time(self.end, 'end') validate_duration(self) validate_unique_period(Sleep.objects.filter(child=self.child), self) class Temperature(models.Model): model_name = 'temperature' child = models.ForeignKey( 'Child', on_delete=models.CASCADE, related_name='temperature', verbose_name=_('Child') ) temperature = models.FloatField( blank=False, null=False, verbose_name=_('Temperature') ) time = models.DateTimeField( blank=False, null=False, verbose_name=_('Time') ) notes = models.TextField(blank=True, null=True, verbose_name=_('Notes')) objects = models.Manager() class Meta: default_permissions = ('view', 'add', 'change', 'delete') ordering = ['-time'] verbose_name = _('Temperature') verbose_name_plural = _('Temperature') def __str__(self): return str(_('Temperature')) def clean(self): validate_time(self.time, 'time') class Timer(models.Model): model_name = 'timer' child = models.ForeignKey( 'Child', blank=True, null=True, on_delete=models.CASCADE, related_name='timers', verbose_name=_('Child') ) name = models.CharField( blank=True, max_length=255, null=True, verbose_name=_('Name') ) start = models.DateTimeField( default=timezone.now, blank=False, verbose_name=_('Start time') ) end = models.DateTimeField( blank=True, editable=False, null=True, verbose_name=_('End time') ) duration = models.DurationField( editable=False, null=True, verbose_name=_('Duration') ) active = models.BooleanField( default=True, editable=False, verbose_name=_('Active') ) user = models.ForeignKey( 'auth.User', on_delete=models.CASCADE, related_name='timers', verbose_name=_('User') ) objects = models.Manager() class Meta: default_permissions = ('view', 'add', 'change', 'delete') ordering = ['-active', '-start', '-end'] verbose_name = _('Timer') verbose_name_plural = _('Timers') def __str__(self): return self.name or str(format_lazy(_('Timer #{id}'), id=self.id)) @property def title_with_child(self): """ Get Timer title with child name in parenthesis. """ title = str(self) # Only actually add the name if there is more than one Child instance. if title and self.child and Child.count() > 1: title = format_lazy('{title} ({child})', title=title, child=self.child) return title @property def user_username(self): """ Get Timer user's name with a preference for the full name. """ if self.user.get_full_name(): return self.user.get_full_name() return self.user.get_username() @classmethod def from_db(cls, db, field_names, values): instance = super(Timer, cls).from_db(db, field_names, values) if not instance.duration: instance.duration = timezone.now() - instance.start return instance def restart(self): """Restart the timer.""" self.start = timezone.now() self.end = None self.duration = None self.active = True self.save() def stop(self, end=None): """Stop the timer.""" if not end: end = timezone.now() self.end = end self.save() def save(self, *args, **kwargs): self.active = self.end is None self.name = self.name or None if self.start and self.end: self.duration = self.end - self.start else: self.duration = None super(Timer, self).save(*args, **kwargs) def clean(self): validate_time(self.start, 'start') if self.end: validate_time(self.end, 'end') validate_duration(self) class TummyTime(models.Model): model_name = 'tummytime' child = models.ForeignKey( 'Child', on_delete=models.CASCADE, related_name='tummy_time', verbose_name=_('Child') ) start = models.DateTimeField( blank=False, null=False, verbose_name=_('Start time') ) end = models.DateTimeField( blank=False, null=False, verbose_name=_('End time') ) duration = models.DurationField( editable=False, null=True, verbose_name=_('Duration') ) milestone = models.CharField( blank=True, max_length=255, verbose_name=_('Milestone') ) objects = models.Manager() class Meta: default_permissions = ('view', 'add', 'change', 'delete') ordering = ['-start'] verbose_name = _('Tummy Time') verbose_name_plural = _('Tummy Time') def __str__(self): return str(_('Tummy Time')) def save(self, *args, **kwargs): if self.start and self.end: self.duration = self.end - self.start super(TummyTime, self).save(*args, **kwargs) def clean(self): validate_time(self.start, 'start') validate_time(self.end, 'end') validate_duration(self) validate_unique_period( TummyTime.objects.filter(child=self.child), self) class Weight(models.Model): model_name = 'weight' child = models.ForeignKey( 'Child', on_delete=models.CASCADE, related_name='weight', verbose_name=_('Child') ) weight = models.FloatField( blank=False, null=False, verbose_name=_('Weight') ) date = models.DateField( blank=False, null=False, verbose_name=_('Date') ) notes = models.TextField(blank=True, null=True, verbose_name=_('Notes')) objects = models.Manager() class Meta: default_permissions = ('view', 'add', 'change', 'delete') ordering = ['-date'] verbose_name = _('Weight') verbose_name_plural = _('Weight') def __str__(self): return str(_('Weight')) def clean(self): validate_date(self.date, 'date')
the-stack_106_13980
from inspect_wikidump import init_inspect from utils import common import config import json from tqdm import tqdm import spacy import spacy.tokens from sqlitedict import SqliteDict import numpy as np # We only need documents. nlp = spacy.load('en') nlp.remove_pipe('parser') nlp.remove_pipe('ner') def spacy_get_pos(tokens): doc = spacy.tokens.doc.Doc( nlp.vocab, words=tokens) for name, proc in nlp.pipeline: proc(doc) return [token.pos_ for token in doc] def get_sentence_tokens(texts, charoffsets): whole_text = "".join(texts) tokens = [] sentence_offsets = [] start_t = 0 end_t = 0 for offset_list in charoffsets: end_t = start_t for start, end in offset_list: cur_token = whole_text[start:end] if len(cur_token) > 0: tokens.append(cur_token) end_t += 1 sentence_offsets.append((start_t, end_t)) start_t = end_t return tokens, sentence_offsets def iterative_abs(debug_num=None): total_doc_num = init_inspect.TOTAL_NUM_DOC if debug_num is None else debug_num cur_count = 0 with open(config.ABS_WIKI_FILE, 'rb') as abs_file: for line in tqdm(abs_file, total=total_doc_num): item = json.loads(line) # print(item.keys()) # print() tokens, sent_offset = get_sentence_tokens(item['text'], item['charoffset']) poss = spacy_get_pos(tokens) assert len(tokens) == len(poss) print(tokens) print(sent_offset) # print(poss) def iterative_abs_save_info(debug_num=None): total_doc_num = init_inspect.TOTAL_NUM_DOC if debug_num is None else debug_num cur_count = 0 with open(config.ABS_WIKI_FILE, 'rb') as abs_file: with SqliteDict(str(config.ABS_PROCESS_FOR_RINDEX_DB), encode=json.dumps, decode=json.loads) as abs_rindex_db: for line in tqdm(abs_file, total=total_doc_num): item = json.loads(line) # print(item.keys()) # print() if item['title'] in abs_rindex_db: continue tokens, sent_offset = get_sentence_tokens(item['text'], item['charoffset']) poss = spacy_get_pos(tokens) assert len(tokens) == len(poss) # print(tokens) # print(sent_offset) abs_rindex_db[item['title']] = { 'tokens': tokens, 'poss': poss, 'sentence_offset': sent_offset } cur_count += 1 if cur_count % 5000 == 0: abs_rindex_db.commit() abs_rindex_db.commit() abs_rindex_db.close() def iterative_abs_save_random_batching(batch_size=10000): total_doc_num = init_inspect.TOTAL_NUM_DOC with open(config.ABS_WIKI_FILE, 'rb') as abs_file: lines = [] for line in tqdm(abs_file, total=total_doc_num): lines.append(line) # if len(lines) == 100000: # break random_per = range(len(lines)) # random_per = np.random.permutation(len(lines)) # random.shuffle(lines) # existing_title_set = set() batch_list = [] with SqliteDict(str(config.ABS_PROCESS_FOR_RINDEX_DB), encode=json.dumps, decode=json.loads) as abs_rindex_db: for index in tqdm(random_per): item = json.loads(lines[index]) # print(item.keys()) # print() if item['title'] in abs_rindex_db: continue tokens, sent_offset = get_sentence_tokens(item['text'], item['charoffset']) poss = spacy_get_pos(tokens) assert len(tokens) == len(poss) # print(tokens) # print(sent_offset) rindex_item = { 'tokens': tokens, 'poss': poss, 'sentence_offset': sent_offset } batch_list.append((item['title'], rindex_item)) if len(batch_list) == batch_size: for title, rindex_item in batch_list: abs_rindex_db[title] = rindex_item abs_rindex_db.commit() batch_list = [] # Commit last one for title, rindex_item in batch_list: abs_rindex_db[title] = rindex_item abs_rindex_db.commit() abs_rindex_db.close() if __name__ == '__main__': # iterative_abs() # iterative_abs_save_info() iterative_abs_save_random_batching()
the-stack_106_13986
#!/usr/bin/python2.4 # encoding: utf-8 """ help.py Help functionality for the ddG database. Created by Shane O'Connor 2012. Copyright (c) 2012 __UCSF__. All rights reserved. """ import sys import re from string import join from kddg.api.dbi import StdCursor, ddGDatabase # FieldNames from klab import colortext import ddglib from ddglib.filter import * import inspect #dbfields = FieldNames() def _get_ResultSetFilter_data(): s_module = "ddglib.ddgfilters" #clsmembers = inspect.getmembers(sys.modules[s_module], lambda member: member.__module__ == s_module and inspect.isclass) #clsmembers = inspect.getmembers(sys.modules[s_module], lambda member: member.inspect.isclass(member)) m_filters = [] m_resultsets = [] d_filters = {} s_module = "ddglib.ddgfilters" for m in inspect.getmembers(sys.modules[s_module]): o = m[1] if inspect.isclass(o) and o.__module__ == s_module: classnm = m[0] if classnm.find("Filter") != -1: d = {"name" : classnm, "class" : o} m_filters.append(d) d_filters[classnm] = d elif classnm.find("ResultSet") != -1: e_Filter = "%sFilter" % classnm[:classnm.find("ResultSet")] e_Filter = o.allowed_filters #"%sFilter" % classnm[:classnm.find("ResultSet")] m_resultsets.append({"name" : classnm, "class" : o, "filter" : e_Filter}) else: colortext.error("Unknown class '%s' found." % classnm) return m_filters, m_resultsets, d_filters def _print_lines(helplines): for linepair in helplines: colortext.printf(linepair[0], color=linepair[1]) def ShowDatabaseStructure(): '''Extracts the database structure from the MySQL database and prints it out.''' help = [] ddGdb = ddGDatabase() procregex = re.compile(".*?PROCEDURE `.*?`[(](.*?)[)] BEGIN.*") help.append(("\n* Database structure *", "white")) help.append(("The tables of the database are as follows (orange = primary key, blue = foreign key):\n", "silver")) tablenames = sorted([r[0] for r in (ddGdb.execute_select_StdCursor("SHOW TABLES"))]) for tbl in tablenames: help.append((tbl, "green")) fieldnames = ddGdb.execute("SHOW COLUMNS FROM %s" % tbl) for fld in fieldnames: fname = fld["Field"] ftype = fld["Type"] fdefault = fld["Default"] fextra = fld["Extra"] fkey = fld["Key"] fCanBeNull = fld["Null"] padding = " " * (32 - len(fname)) str = "\t%s%s%s" % (fname, padding, ftype) if fkey == "PRI": help.append((str, "orange")) elif fkey == "MUL": help.append((str, "lightblue")) else: help.append((str, "yellow")) help.append(("\n* Database stored procedures *", "white")) help.append(("The stored procedures defined in the database are as follows:\n", "silver")) sprocs = sorted([r[0] for r in ddGdb.execute_select_StdCursor("SELECT ROUTINE_NAME FROM INFORMATION_SCHEMA.ROUTINES WHERE ROUTINE_SCHEMA = 'ddG' AND ROUTINE_TYPE = 'PROCEDURE'")]) for sproc in sprocs: defn = ddGdb.execute("SHOW CREATE PROCEDURE %s" % sproc)[0] mtchs = procregex.match((defn["Create Procedure"] or "").replace("\n", " ")) if mtchs: help.append(("\t%s( %s )" % (defn["Procedure"], mtchs.group(1)), "green")) else: help.append(("\t%s" % defn["Procedure"], "green")) _print_lines(help) def ShowResultSet(): '''Explains how to extract sets of data from the database.''' help = [] m_filters, m_resultsets, d_filters = _get_ResultSetFilter_data() help.append((''' * ResultSets *''', "white")) help.append((''' ResultSets are used to store data retrieved from the database. They are the result of an SQL query or stored procedure call. To create a ResultSet, use the following format:''', 'silver')) help.append((''' SomeResultSet(db, <string:SQL>, <tuple:parameters>, <list:AdditionalIDs>)''', "lightblue")) help.append(('''The argument db is a datbase connection retrieved from calling kddg.api.dbi.ddGDatabase(). The SQL string and associated parameters are optional. If they are not supplied and neither is AdditionalIDs then all records will be returned. If only AdditionalIDs is supplied then only records with those primary keys in the list are returned. If an SQL string is supplied then that query will be run instead with any associated parameters. If AdditionalIDs is also supplied then the associated records are included in the result set. Examples: 1. Return all structures:''', "silver")) help.append((''' sr = StructureResultSet(ddGdb)''', "lightblue")) help.append(('''2. Get four specific structures:''', "silver")) help.append((''' sr = StructureResultSet(ddGdb, AdditionalIDs = ['2BQC', '1LAW', '1LHH', '1LHI'])''', "lightblue")) help.append(('''3. Get all predictions with IDs >= 12395 from the 'testrun' prediction set:''', "silver")) help.append((''' pr = PredictionResultSet(ddGdb, SQL = "WHERE PredictionSet=%s AND ID>=%s", parameters = ("testrun", 12595))''', "lightblue")) help.append((''' Note in the last example that the arguments to the SQL string are placed in the parameters tuple and %s is used for both strings and numbers. This is the recommended approach as it avoids any manual mistakes made from badly formatting the SQL strings. An alternative method of narrowing down results is by using Filters. Each ResultSet has associated Filters that may be applied to return a filtered set of results. This approach is no more powerful than using SQL (and the implementation is typically slower) but it is hopefully easier to use. It also abstracts away the database structure so will hopefully survive any changes made to the database design. Filters are explained below.''', "silver")) help.append((''' The following ResultSet classes and associated filters are available:\n''', "silver")) for rs in sorted(m_resultsets): help.append(("\t%s" % rs["name"], "green")) if rs["filter"]: avail_f = [d_filters[rs_f.__name__]["name"] for rs_f in rs["filter"] if d_filters.get(rs_f.__name__)] help.append(("\t\t%s" % join(avail_f, ", "), "orange")) _print_lines(help) def ShowFilter(): '''Explains how to filter sets of data extracted from the database (ResultSets).''' help = [] m_filters, m_resultsets, d_filters = _get_ResultSetFilter_data() help.append((''' * Filters *''', "white")) help.append((''' Database records can be retrieved by SQL queries or stored procedures but also through the use of filters. --- sr = StructureResultSet(ddGdb, AdditionalIDs = ['2BQC', '1LAW', '1LHH', '1LHI']) sr.addFilter(StructureFilter.TotalBFactors(0,16) | StructureFilter.WithNullResolution(True)) results = sr.getFilteredResults() We run an SQL query if the SQL parameter has been specified or if AdditionalIDs is empty. # If AdditionalIDs is not empty and the SQL is blank then we do NOT run the SQL query and # instead use AdditionalIDs as the record keys. Note that it is less efficient to use union filters than to set the properties using the set methods. However, speed may not be an issue and they are quicker to write. Filters are used to narrow to --- The following Filters are available:\n''', "silver")) for filter in sorted(m_filters): help.append(("%s" % filter["name"], "green")) c = filter["class"] class_members = c.getMembers() help.append(("\tAttributes", "orange")) for x in sorted(class_members["attributes"]): help.append(("\t\t%s" % x[0], "silver")) help.append(("\tMethods", "orange")) for x in sorted(class_members["methods"]): arglist = join(inspect.getargspec(x[1])[0][1:], ", ") help.append(("\t\t%s(%s)" % (x[0], arglist), "silver")) help.append(("\tFunctions", "orange")) for x in sorted(class_members["functions"]): arglist = join(inspect.getargspec(x[1])[0], ", ") help.append(("\t\t%s(%s)" % (x[0], arglist), "silver")) _print_lines(help) def help(): '''This help function.''' help = [] help.append(("\nThe following help functions are available. To use them, import help and call the functions by name e.g.", "white")) help.append((" ddglib.help.help()", "lightblue")) s_module = sys.modules[__name__] hfns = [] for m in inspect.getmembers(s_module): o = m[1] if inspect.isroutine(o) and o.__module__ == "ddglib.help": if m[0][0] != "_": hfns.append((m[0], m[1].__doc__)) if hfns: help.append((" ddglib.help.%s()" % sorted(hfns)[0][0], "lightblue")) help.append(("", "silver")) for fn in sorted(hfns): help.append(("\t%s" % fn[0], "green")) help.append(("\t %s" % fn[1], "silver")) _print_lines(help)
the-stack_106_13987
import itertools import pathlib from pathlib import Path from typing import Union import gdspy from gdsfactory.component import Component from gdsfactory.import_gds import import_gds COUNTER = itertools.count() def xor_polygons(A: Component, B: Component, hash_geometry: bool = True): """Given two devices A and B, performs a layer-by-layer XOR diff between A and B, and returns polygons representing the differences between A and B. Adapted from lytest/kdb_xor.py """ # first do a geometry hash to vastly speed up if they are equal if hash_geometry and (A.hash_geometry() == B.hash_geometry()): return Component() D = Component() A_polys = A.get_polygons(by_spec=True) B_polys = B.get_polygons(by_spec=True) A_layers = A_polys.keys() B_layers = B_polys.keys() all_layers = set() all_layers.update(A_layers) all_layers.update(B_layers) for layer in all_layers: if (layer in A_layers) and (layer in B_layers): p = gdspy.fast_boolean( A_polys[layer], B_polys[layer], operation="xor", precision=0.001, max_points=4000, layer=layer[0], datatype=layer[1], ) elif layer in A_layers: p = A_polys[layer] elif layer in B_layers: p = B_polys[layer] if p is not None: D.add_polygon(p, layer=layer) return D def gdsdiff( component1: Union[Path, Component, str], component2: Union[Path, Component, str], name: str = "TOP", xor: bool = True, ) -> Component: """Compare two Components. Args: component1: Component or path to gds file component2: Component or path to gds file name: name of the top cell xor: makes boolean operation Returns: Component with both cells (xor, common and diffs) """ if isinstance(component1, pathlib.Path): component1 = str(component1) if isinstance(component2, pathlib.Path): component2 = str(component2) if isinstance(component1, str): component1 = import_gds(component1, flatten=True) if isinstance(component2, str): component2 = import_gds(component2, flatten=True) top = Component(name=f"{name}_diffs") if component1.name.startswith("Unnamed"): component1.name = f"{name}_old" if component2.name.startswith("Unnamed"): component2.name = f"{name}_new" ref1 = top << component1 ref2 = top << component2 ref1.xmin = 0 ref1.ymin = 0 ref2.xmin = 0 ref2.ymin = 0 if xor: diff = xor_polygons(ref1, ref2, hash_geometry=False) diff.name = f"{name}_xor" top.add_ref(diff) return top if __name__ == "__main__": import sys if len(sys.argv) != 3: print("Usage: gdsdiff <mask_v1.gds> <mask_v2.gds>") print("Note that you need to have KLayout opened with klive running") sys.exit() c = gdsdiff(sys.argv[1], sys.argv[2]) c.show()
the-stack_106_13990
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: viz.py # Credit: zxytim import numpy as np import os import sys import io import cv2 from .fs import mkdir_p from .argtools import shape2d try: import matplotlib.pyplot as plt except ImportError: pass __all__ = ['pyplot2img', 'interactive_imshow', 'stack_patches', 'gen_stack_patches', 'dump_dataflow_images', 'intensity_to_rgb'] def pyplot2img(plt): """ Convert a pyplot instance to image """ buf = io.BytesIO() plt.axis('off') plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0) buf.seek(0) rawbuf = np.frombuffer(buf.getvalue(), dtype='uint8') im = cv2.imdecode(rawbuf, cv2.IMREAD_COLOR) buf.close() return im def interactive_imshow(img, lclick_cb=None, rclick_cb=None, **kwargs): """ Args: img (np.ndarray): an image (expect BGR) to show. lclick_cb, rclick_cb: a callback ``func(img, x, y)`` for left/right click event. kwargs: can be {key_cb_a: callback_img, key_cb_b: callback_img}, to specify a callback ``func(img)`` for keypress. Some existing keypress event handler: * q: destroy the current window * x: execute ``sys.exit()`` * s: save image to "out.png" """ name = 'tensorpack_viz_window' cv2.imshow(name, img) def mouse_cb(event, x, y, *args): if event == cv2.EVENT_LBUTTONUP and lclick_cb is not None: lclick_cb(img, x, y) elif event == cv2.EVENT_RBUTTONUP and rclick_cb is not None: rclick_cb(img, x, y) cv2.setMouseCallback(name, mouse_cb) key = chr(cv2.waitKey(-1) & 0xff) cb_name = 'key_cb_' + key if cb_name in kwargs: kwargs[cb_name](img) elif key == 'q': cv2.destroyWindow(name) elif key == 'x': sys.exit() elif key == 's': cv2.imwrite('out.png', img) def _preproecss_patch_list(plist): plist = np.asarray(plist) if plist.ndim == 3: plist = plist[:, :, :, np.newaxis] assert plist.ndim == 4 and plist.shape[3] in [1, 3], plist.shape return plist def _pad_patch_list(plist, bgcolor): if isinstance(bgcolor, int): bgcolor = (bgcolor, bgcolor, bgcolor) def _pad_channel(plist): ret = [] for p in plist: if len(p.shape) == 2: p = p[:, :, np.newaxis] if p.shape[2] == 1: p = np.repeat(p, 3, 2) ret.append(p) return ret plist = _pad_channel(plist) shapes = [x.shape for x in plist] ph = max([s[0] for s in shapes]) pw = max([s[1] for s in shapes]) ret = np.zeros((len(plist), ph, pw, 3), dtype=plist[0].dtype) ret[:, :, :] = bgcolor for idx, p in enumerate(plist): s = p.shape sh = (ph - s[0]) / 2 sw = (pw - s[1]) / 2 ret[idx, sh:sh + s[0], sw:sw + s[1], :] = p return ret class Canvas(object): def __init__(self, ph, pw, nr_row, nr_col, channel, border, bgcolor): self.ph = ph self.pw = pw self.nr_row = nr_row self.nr_col = nr_col if border is None: border = int(0.1 * min(ph, pw)) self.border = border if isinstance(bgcolor, int): bgchannel = 1 else: bgchannel = 3 self.bgcolor = bgcolor self.channel = max(channel, bgchannel) self.canvas = np.zeros((nr_row * (ph + border) - border, nr_col * (pw + border) - border, self.channel), dtype='uint8') def draw_patches(self, plist): assert self.nr_row * self.nr_col == len(plist), \ "{}*{} != {}".format(self.nr_row, self.nr_col, len(plist)) if self.channel == 3 and plist.shape[3] == 1: plist = np.repeat(plist, 3, axis=3) cur_row, cur_col = 0, 0 if self.channel == 1: self.canvas.fill(self.bgcolor) else: self.canvas[:, :, :] = self.bgcolor for patch in plist: r0 = cur_row * (self.ph + self.border) c0 = cur_col * (self.pw + self.border) self.canvas[r0:r0 + self.ph, c0:c0 + self.pw] = patch cur_col += 1 if cur_col == self.nr_col: cur_col = 0 cur_row += 1 def get_patchid_from_coord(self, x, y): x = x // (self.pw + self.border) y = y // (self.pw + self.border) idx = y * self.nr_col + x return idx def stack_patches( patch_list, nr_row, nr_col, border=None, pad=False, bgcolor=255, viz=False, lclick_cb=None): """ Stacked patches into grid, to produce visualizations like the following: .. image:: https://github.com/ppwwyyxx/tensorpack/raw/master/examples/GAN/demo/CelebA-samples.jpg Args: patch_list(list[ndarray] or ndarray): NHW or NHWC images in [0,255]. nr_row(int), nr_col(int): rows and cols of the grid. ``nr_col * nr_row`` must be equal to ``len(patch_list)``. border(int): border length between images. Defaults to ``0.1 * min(patch_width, patch_height)``. pad (boolean): when `patch_list` is a list, pad all patches to the maximum height and width. This option allows stacking patches of different shapes together. bgcolor(int or 3-tuple): background color in [0, 255]. Either an int or a BGR tuple. viz(bool): whether to use :func:`interactive_imshow` to visualize the results. lclick_cb: A callback function ``f(patch, patch index in patch_list)`` to get called when a patch get clicked in imshow. Returns: np.ndarray: the stacked image. """ if pad: patch_list = _pad_patch_list(patch_list) patch_list = _preproecss_patch_list(patch_list) if lclick_cb is not None: viz = True ph, pw = patch_list.shape[1:3] canvas = Canvas(ph, pw, nr_row, nr_col, patch_list.shape[-1], border, bgcolor) if lclick_cb is not None: def lclick_callback(img, x, y): idx = canvas.get_patchid_from_coord(x, y) lclick_cb(patch_list[idx], idx) else: lclick_callback = None canvas.draw_patches(patch_list) if viz: interactive_imshow(canvas.canvas, lclick_cb=lclick_callback) return canvas.canvas def gen_stack_patches(patch_list, nr_row=None, nr_col=None, border=None, max_width=1000, max_height=1000, bgcolor=255, viz=False, lclick_cb=None): """ Similar to :func:`stack_patches` but with a generator interface. It takes a much-longer list and yields stacked results one by one. For example, if ``patch_list`` contains 1000 images and ``nr_row==nr_col==10``, this generator yields 10 stacked images. Args: nr_row(int), nr_col(int): rows and cols of each result. max_width(int), max_height(int): Maximum allowed size of the stacked image. If ``nr_row/nr_col`` are None, this number will be used to infer the rows and cols. Otherwise the option is ignored. patch_list, border, viz, lclick_cb: same as in :func:`stack_patches`. Yields: np.ndarray: the stacked image. """ # setup parameters patch_list = _preproecss_patch_list(patch_list) if lclick_cb is not None: viz = True ph, pw = patch_list.shape[1:3] if border is None: border = int(0.1 * min(ph, pw)) if nr_row is None: nr_row = int(max_height / (ph + border)) if nr_col is None: nr_col = int(max_width / (pw + border)) canvas = Canvas(ph, pw, nr_row, nr_col, patch_list.shape[-1], border, bgcolor) nr_patch = nr_row * nr_col start = 0 if lclick_cb is not None: def lclick_callback(img, x, y): idx = canvas.get_patchid_from_coord(x, y) idx = idx + start if idx < end: lclick_cb(patch_list[idx], idx) else: lclick_callback = None while True: end = start + nr_patch cur_list = patch_list[start:end] if not len(cur_list): return canvas.draw_patches(cur_list) if viz: interactive_imshow(canvas.canvas, lclick_cb=lclick_callback) yield canvas.canvas start = end def dump_dataflow_images(df, index=0, batched=True, number=1000, output_dir=None, scale=1, resize=None, viz=None, flipRGB=False): """ Dump or visualize images of a :class:`DataFlow`. Args: df (DataFlow): the DataFlow. index (int): the index of the image component. batched (bool): whether the component contains batched images (NHW or NHWC) or not (HW or HWC). number (int): how many datapoint to take from the DataFlow. output_dir (str): output directory to save images, default to not save. scale (float): scale the value, usually either 1 or 255. resize (tuple or None): tuple of (h, w) to resize the images to. viz (tuple or None): tuple of (h, w) determining the grid size to use with :func:`gen_stack_patches` for visualization. No visualization will happen by default. flipRGB (bool): apply a RGB<->BGR conversion or not. """ if output_dir: mkdir_p(output_dir) if viz is not None: viz = shape2d(viz) vizsize = viz[0] * viz[1] if resize is not None: resize = tuple(shape2d(resize)) vizlist = [] df.reset_state() cnt = 0 while True: for dp in df.get_data(): if not batched: imgbatch = [dp[index]] else: imgbatch = dp[index] for img in imgbatch: cnt += 1 if cnt == number: return if scale != 1: img = img * scale if resize is not None: img = cv2.resize(img, resize) if flipRGB: img = img[:, :, ::-1] if output_dir: fname = os.path.join(output_dir, '{:03d}.jpg'.format(cnt)) cv2.imwrite(fname, img) if viz is not None: vizlist.append(img) if viz is not None and len(vizlist) >= vizsize: stack_patches( vizlist[:vizsize], nr_row=viz[0], nr_col=viz[1], viz=True) vizlist = vizlist[vizsize:] def intensity_to_rgb(intensity, cmap='cubehelix', normalize=False): """ Convert a 1-channel matrix of intensities to an RGB image employing a colormap. This function requires matplotlib. See `matplotlib colormaps <http://matplotlib.org/examples/color/colormaps_reference.html>`_ for a list of available colormap. Args: intensity (np.ndarray): array of intensities such as saliency. cmap (str): name of the colormap to use. normalize (bool): if True, will normalize the intensity so that it has minimum 0 and maximum 1. Returns: np.ndarray: an RGB float32 image in range [0, 255], a colored heatmap. """ assert intensity.ndim == 2, intensity.shape intensity = intensity.astype("float") if normalize: intensity -= intensity.min() intensity /= intensity.max() cmap = plt.get_cmap(cmap) intensity = cmap(intensity)[..., :3] return intensity.astype('float32') * 255.0 if __name__ == '__main__': if False: imglist = [] for i in range(100): fname = "{:03d}.png".format(i) imglist.append(cv2.imread(fname)) for idx, patch in enumerate(gen_stack_patches( imglist, max_width=500, max_height=200)): of = "patch{:02d}.png".format(idx) cv2.imwrite(of, patch) else: imglist = [] img = cv2.imread('out.png') img2 = cv2.resize(img, (300, 300)) viz = stack_patches([img, img2], 1, 2, pad=True, viz=True)
the-stack_106_13991
#!/usr/bin/env python # coding: utf-8 from owlready2 import * import csv # import and parse the OWL ontology onto = get_ontology("working_copy/eu-cm-ontology.owl").load() # get classes, object properties and data properties classes = list(onto.classes()) object_properties = list(onto.object_properties()) data_properties = list(onto.data_properties()) # gather classes and properties into one set of entities entities = [] entities.extend(classes) entities.extend(object_properties) entities.extend(data_properties) # write flat list of ontology entities to file - with prefix abbreviation "cbcm:" with open("working_copy/cbcm_ontology_terms_flatlist.csv", 'w', newline='') as flatlistfile: writer = csv.writer(flatlistfile) for entity in entities: entityNameParts = str(entity).split(".") entityName = "cbcm:" + entityNameParts[1] writer.writerow([entityName]) # write mapping file of ontology entities to human-readable labels and human-readable definitions (candidates for tooltip texts) with open("working_copy/cbcm_ontology_terms_tooltip_texts.csv", 'w', newline='') as tooltipsfile: writer = csv.writer(tooltipsfile, quotechar='"', quoting=csv.QUOTE_ALL) writer.writerow(["ontology_term","ontology_term_label","ontology_term_definition"]) for entity in entities: entityNameParts = str(entity).split(".") entityName = "cbcm:" + entityNameParts[1] entityComment = "None" entityLabel = "None" if (len(entity.comment) > 0): entityComment = entity.comment[0] if (len(entity.label) > 0): entityLabel = entity.label[0] writer.writerow([entityName,entityLabel,entityComment])
the-stack_106_13992
# coding=utf-8 from atlassian import Jira jira = Jira(url="http://localhost:8080", username="admin", password="admin") def get_all_users(group, include_inactive=True): """ Get all users for group. If there more, than 50 users in group: go through the pages and append other users to the list :param group: :param include_inactive: :return: """ start = 0 users = jira.get_all_users_from_group( group, include_inactive_users=include_inactive, start=start ) processed_data = { "group_name": group, "total": users["total"], "users": [ {"name": user["name"], "active": user["active"]} for user in users["values"] ], } while "nextPage" in users: start += 50 users = jira.get_all_users_from_group( group, include_inactive_users=include_inactive, start=start ) user_list = [ {"name": user["name"], "active": user["active"]} for user in users["values"] ] processed_data["users"] = processed_data["users"] + user_list return processed_data def sort_users_in_group(group): """ Take group, sort users by the name and return group with sorted users """ group["users"] = [ sorted_group for sorted_group in sorted(group["users"], key=lambda k: k["name"]) ] return group def get_groups_data(): """ Get all groups, get all users for each group and sort groups by users :return: """ groups = [group["name"] for group in jira.get_groups(limit=200)["groups"]] groups_and_users = [get_all_users(group) for group in groups] groups_and_users = [sort_users_in_group(group) for group in groups_and_users] return groups_and_users def get_inactive_users(groups): """ Take group list and return groups only with inactive users :param groups: :return: """ inactive_users_list = [] for group in groups: inactive_users = { "group_name": group["group_name"], "users": [ {"name": user["name"], "active": user["active"]} for user in group["users"] if not user["active"] ], } inactive_users_list.append(inactive_users) return inactive_users_list def exclude_inactive_users(groups): """ Excluding inactive users from groups. :param groups: :return: """ for group in groups: for user in group["users"]: print(f'Trying to delete {user["name"]} from group {group["group_name"]}') jira.remove_user_from_group(user["name"], group["group_name"]) return True def filter_groups_by_members(groups, quantity=1): """ Take groups list and return empty groups :param groups: :param quantity: :return: """ return [x for x in groups if int(x["total"]) < quantity] def find_group(groups, group_name): """ Take groups list and find group by the group name :param groups: :param group_name: :return: """ for group in groups: if group["group_name"] == group_name: return group else: return f"Group {group_name} not in list"
the-stack_106_13994
from __future__ import absolute_import from __future__ import division import socket import socks from pwnlib.log import getLogger from pwnlib.timeout import Timeout from pwnlib.tubes.sock import sock log = getLogger(__name__) class remote(sock): r"""Creates a TCP or UDP-connection to a remote host. It supports both IPv4 and IPv6. The returned object supports all the methods from :class:`pwnlib.tubes.sock` and :class:`pwnlib.tubes.tube`. Arguments: host(str): The host to connect to. port(int): The port to connect to. fam: The string "any", "ipv4" or "ipv6" or an integer to pass to :func:`socket.getaddrinfo`. typ: The string "tcp" or "udp" or an integer to pass to :func:`socket.getaddrinfo`. timeout: A positive number, None or the string "default". ssl(bool): Wrap the socket with SSL ssl_context(ssl.SSLContext): Specify SSLContext used to wrap the socket. sni: Set 'server_hostname' in ssl_args based on the host parameter. sock(socket.socket): Socket to inherit, rather than connecting ssl_args(dict): Pass ssl.wrap_socket named arguments in a dictionary. Examples: >>> r = remote('google.com', 443, ssl=True) >>> r.send(b'GET /\r\n\r\n') >>> r.recvn(4) b'HTTP' If a connection cannot be made, an exception is raised. >>> r = remote('127.0.0.1', 1) Traceback (most recent call last): ... PwnlibException: Could not connect to 127.0.0.1 on port 1 You can also use :meth:`.remote.fromsocket` to wrap an existing socket. >>> import socket >>> s = socket.socket() >>> s.connect(('google.com', 80)) >>> s.send(b'GET /' + b'\r\n'*2) 9 >>> r = remote.fromsocket(s) >>> r.recvn(4) b'HTTP' """ def __init__(self, host, port, fam = "any", typ = "tcp", ssl=False, sock=None, ssl_context=None, ssl_args=None, sni=True, *args, **kwargs): super(remote, self).__init__(*args, **kwargs) self.rport = port self.rhost = host if sock: self.family = sock.family self.type = sock.type self.proto = sock.proto self.sock = sock else: typ = self._get_type(typ) fam = self._get_family(fam) try: self.sock = self._connect(fam, typ) except socket.gaierror as e: if e.errno != socket.EAI_NONAME: raise self.error('Could not resolve hostname: %r', host) if self.sock: self.settimeout(self.timeout) self.lhost, self.lport = self.sock.getsockname()[:2] if ssl: # Deferred import to save startup time import ssl as _ssl ssl_args = ssl_args or {} ssl_context = ssl_context or _ssl.SSLContext(_ssl.PROTOCOL_TLSv1_2) if isinstance(sni, str): ssl_args["server_hostname"] = sni elif sni: ssl_args["server_hostname"] = host self.sock = ssl_context.wrap_socket(self.sock,**ssl_args) def _connect(self, fam, typ): sock = None timeout = self.timeout with self.waitfor('Opening connection to %s on port %s' % (self.rhost, self.rport)) as h: for res in socket.getaddrinfo(self.rhost, self.rport, fam, typ, 0, socket.AI_PASSIVE): self.family, self.type, self.proto, _canonname, sockaddr = res if self.type not in [socket.SOCK_STREAM, socket.SOCK_DGRAM]: continue h.status("Trying %s", sockaddr[0]) sock = socket.socket(self.family, self.type, self.proto) if timeout is not None and timeout <= 0: sock.setblocking(0) else: sock.setblocking(1) sock.settimeout(timeout) try: sock.connect(sockaddr) return sock except socks.ProxyError: raise except socket.error: pass self.error("Could not connect to %s on port %s", self.rhost, self.rport) @classmethod def fromsocket(cls, socket): """ Helper method to wrap a standard python socket.socket with the tube APIs. Arguments: socket: Instance of socket.socket Returns: Instance of pwnlib.tubes.remote.remote. """ s = socket host, port = s.getpeername() return remote(host, port, fam=s.family, typ=s.type, sock=s) class tcp(remote): __doc__ = remote.__doc__ def __init__(self, host, port, *a, **kw): return super(tcp, self).__init__(host, port, typ="tcp", *a, **kw) class udp(remote): __doc__ = remote.__doc__ def __init__(self, host, port, *a, **kw): return super(udp, self).__init__(host, port, typ="udp", *a, **kw) class connect(remote): __doc__ = remote.__doc__
the-stack_106_14000
#!/usr/bin/env python3 """ Executable for game of life """ import game_of_life SIZE_X, SIZE_Y = 80, 30 def main(): """ Main function """ game = game_of_life.CursesGame(size_x=SIZE_X, size_y=SIZE_Y, max_size=True) game.print_world() while True: user_command = game.get_command_from_user() game.handle_command(user_command) game.print_world() if __name__ == "__main__": main()
the-stack_106_14002
#!/usr/bin/env python3 from threading import Timer from datetime import datetime import subprocess import os import sys sys.path.append("../lib/") import json import json_parser import pos import pos_util import cli import pos_constant import time POS_ROOT = '../../../' ARRAYNAME = "POSArray" #SECONDS FOR A MINUTE #SET 60 FOR REALTIME TESTING SECONDS_PER_MINUTE = 60 #MINUTES FOR AN HOUR #SET 60 FOR REALTIME TESTING MINUTES_PER_HOUR = 60 TESTTIME_IN_HOUR = 72 ELAPSED_MIN = 0 ELAPSED_HOUR = 0 RC = True #for PM # DATA = "unvme-ns-0,unvme-ns-1,unvme-ns-2,unvme-ns-3,unvme-ns-4" # SPARE_1 = "unvme-ns-5" # SPARE_2 = "unvme-ns-6" # SPARE_3 = "unvme-ns-7" # DETACH_1 = "unvme-ns-0" # DETACH_2 = "unvme-ns-1" #VOL_SIZE = 2 * pos_constant.SIZE_1GB DEV_1 = "unvme-ns-0" DEV_2 = "unvme-ns-1" DEV_3 = "unvme-ns-2" DEV_4 = "unvme-ns-3" DEV_1_RECYCLED = "unvme-ns-4" DEV_2_RECYCLED = "unvme-ns-5" DEV_3_RECYCLED = "unvme-ns-6" DEV_4_RECYCLED = "unvme-ns-7" VOL_SIZE = 10 * pos_constant.SIZE_1GB #MAX VOLUME COUNT FOR A TEST #DO NOT SET GREATER THAN 24 #In the VM environment recommends up to 12 or less MAX_VOL_CNT = 2 VOL_NAME_PREFIX = "vol" VOL_CNT = 0 class TestTimer(): def __init__(self, seconds, target): self._should_continue = False self.is_running = False self.seconds = seconds self.target = target self.thread = None def _handle_target(self): self.is_running = True self.target() self.is_running = False if (RC == False): self.cancel() elif (ELAPSED_HOUR == TESTTIME_IN_HOUR): self.cancel() else: self._start_timer() def _start_timer(self): if self._should_continue: # Code could have been running when cancel was called. self.thread = Timer(self.seconds, self._handle_target) self.thread.start() def start(self): if not self._should_continue and not self.is_running: self._should_continue = True self._start_timer() else: write_log("Timer already started or running, please wait if you're restarting.") def cancel(self): if self.thread is not None: self._should_continue = False # Just in case thread is running and cancel fails. self.thread.cancel() else: write_log("Timer never started or failed to initialize.") def join(self): while self._should_continue == True: time.sleep(1) class FIO(): def __init__(self): self._list = {} def start_fio(self, vol_id): key = VOL_NAME_PREFIX + str(vol_id) if key in self._list.keys(): write_log ("fio id: " + key + " is already running") return False else: ip_addr = pos.TR_ADDR ns_id = str(vol_id + 1) test_name = key file_name = "trtype=tcp adrfam=IPv4 traddr=" + ip_addr + \ " trsvcid=1158 subnqn=nqn.2019-04.pos\:subsystem1 ns= " + ns_id remainig_min = (TESTTIME_IN_HOUR - ELAPSED_HOUR) * MINUTES_PER_HOUR - ELAPSED_MIN runtime_sec = remainig_min * SECONDS_PER_MINUTE write_log ("runtime_in_sec: " + str(runtime_sec)) ioengine_path = POS_ROOT + "lib/spdk/examples/nvme/fio_plugin/fio_plugin" fio_proc = subprocess.Popen(["fio", "--ioengine=" + ioengine_path,\ "--runtime=" + str(runtime_sec), \ "--bs=4096", \ "--iodepth=128",\ "--readwrite=write",\ "--offset=0",\ "--bs_unaligned=1",\ "--bs=4096",\ "--verify=md5",\ "--serialize_overlap=1",\ "--time_based",\ "--numjobs=1",\ "--thread=1",\ "--group_reporting=1",\ "--direct=1",\ "--name=" + test_name, \ "--filename=" + file_name]\ ) self._list[key] = fio_proc write_log ("fio id: " + key + " has been started") return True def stop_fio(self, key): if key in self._list.keys(): fio_proc = self._list[key] if fio_proc.poll() is None: fio_proc.kill() fio_proc.wait() write_log ("fio id: " + key + " has been terminated") else: write_log ("fio id: " + key + " already been terminated") def dispose(self): write_log ("fio dispose, dict len: " + str(len(self._list))) for key in self._list: write_log ("stop_fio target: " + key) self.stop_fio(key) self._list.clear() fio_util = FIO() def timer_tick(): global ELAPSED_MIN ELAPSED_MIN = ELAPSED_MIN + 1 if (ELAPSED_MIN == MINUTES_PER_HOUR): global ELAPSED_HOUR ELAPSED_HOUR = ELAPSED_HOUR + 1 ELAPSED_MIN = 0 write_log ("") write_log ("") print_time() if (ELAPSED_MIN == 0): tick_hour() def print_time(): curr = datetime.now() timelog = '[' + curr.strftime("%H:%M:%S") + '] Time elapsed ' + str(ELAPSED_HOUR).zfill(2) + ":" + str(ELAPSED_MIN).zfill(2) write_log(timelog) def write_log(_log): print(_log) with open("72hour_test_log", "a") as result_file: result_file.write(_log+"\n") def start_pos(): write_log ("starting pos...") ret = pos.start_pos() if ret is False: write_log("faild to start pos") return False write_log ("pos is running") return True def exit_pos(): write_log ("exiting pos...") state = get_state() if state == "NORMAL" or state == "BUSY": ret = unmount_pos() if ret == False: write_log("pos unmounting failed") return False fio_util.dispose() pos.exit_pos() write_log ("pos has been terminated") return True def abort_pos(): write_log ("abort pos for dump...") fio_util.dispose() pos_util.abort_process("pos") write_log ("pos has been terminated") def restart_pos(): ret = exit_pos() if ret == False: write_log("pos restarting failed while exiting") return False ret = start_pos() if ret is False: write_log("pos restarting failed while starting") return False write_log("pos has been restarted") return True def scan_dev(): write_log ("scan_dev begin") pos_util.pci_rescan() time.sleep(2) cli.scan_device() cli.list_device() write_log ("scan_dev done") def create_array(): DATA = DEV_1 + "," + DEV_2 + "," + DEV_3 out = cli.create_array("uram0", DATA, "", ARRAYNAME, "") code = json_parser.get_response_code(out) if code == 0: write_log ("array created successfully") return True else: write_log ("array creation failed, code: " + str(code)) return False def mount_pos(): out = cli.mount_array(ARRAYNAME) code = json_parser.get_response_code(out) if code == 0: write_log ("array mounted successfully") return True else: write_log ("array mounting failed code: " + str(code)) return False def unmount_pos(): out = cli.unmount_array(ARRAYNAME) code = json_parser.get_response_code(out) if code == 0: write_log ("array unmounted successfully") return True else: write_log ("array unmounting failed code: " + str(code)) return False def create_and_mount_vol(): global VOL_CNT vol_name = VOL_NAME_PREFIX + str(VOL_CNT) write_log ("try to create volume, name: " + vol_name + ", size: " + str(VOL_SIZE)) out = cli.create_volume(vol_name, str(VOL_SIZE), "", "", ARRAYNAME) code = json_parser.get_response_code(out) if code == 0: VOL_CNT = VOL_CNT + 1 write_log ("volume: " + vol_name + " created successfully, vol_cnt: " + str(VOL_CNT)) return mount_vol(vol_name) else: write_log ("volume: " + vol_name + " creation failed, code: " + str(code)) return False def mount_vol(vol_name): out = cli.mount_volume(vol_name, ARRAYNAME, "") code = json_parser.get_response_code(out) if code == 0: write_log ("volume: " + vol_name + " mounted successfully") return True else: write_log ("volume: " + vol_name + " mounting failed, code: " + str(code)) return False def detach_data(target): pos_util.pci_detach_and_attach(target) time.sleep(0.1) def add_spare(spare): out = cli.add_device(spare, ARRAYNAME) code = json_parser.get_response_code(out) if code == 0: write_log ("Spare device: " + spare + " has been added successfully") return True else: write_log ("Spare device: " + spare + " adding failed, code: " + str(code)) return False def mbr_reset(): cli.mbr_reset() def tick_hour(): global RC RC = do_event(ELAPSED_HOUR) def init_test(): # pos_util.kill_process("poseidonos") ret = start_pos() if ret is False: return False scan_dev() mbr_reset() create_array() ret = mount_pos() return ret def add_new_vol_and_do_io(cnt = 1): for i in range(cnt): ret = create_and_mount_vol() if ret == False: write_log ("failed to add volume") return False fio_util.start_fio(VOL_CNT - 1) write_log (VOL_NAME_PREFIX + str(VOL_CNT - 1) + " volume is newly created and I/O is being performed there") return True def get_state(): out = cli.array_info(ARRAYNAME) state = json_parser.get_state(out) return state def check_state(state_expected): state = get_state() if state == state_expected: write_log ("current state is " + state) return True write_log ("current state is " + state + " but we expected " + state_expected) return False def get_situation(): out = cli.array_info(ARRAYNAME) situ = json_parser.get_situation(out) return situ def check_situation(situ_expected): situ = get_situation() if situ == situ_expected: write_log ("current situation is " + situ) return True write_log ("current situation is " + situ + " but we expected " + situ_expected) return False def do_event(elapsed_hour): if elapsed_hour == 0: ret = init_test() if ret == True: if add_new_vol_and_do_io() == True: return check_situation("NORMAL") return False elif elapsed_hour >= 1 and elapsed_hour <= 11: if (VOL_CNT >= MAX_VOL_CNT // 2): return check_situation("NORMAL") if add_new_vol_and_do_io() == True: return check_situation("NORMAL") return False elif elapsed_hour == 12: ret = restart_pos() if ret == True: scan_dev() if mount_pos() == True: for i in range(MAX_VOL_CNT // 2): mnt_res = mount_vol(VOL_NAME_PREFIX + str(i)) if mnt_res == False: return False fio_util.start_fio(i) for i in range(MAX_VOL_CNT - (MAX_VOL_CNT// 2)): add_new_vol_and_do_io() return check_situation("NORMAL") return False # for i in range(MAX_VOL_CNT - (MAX_VOL_CNT// 2)): # add_new_vol_and_do_io() # return check_situation("NORMAL") elif elapsed_hour == 13: return check_situation("NORMAL") elif elapsed_hour == 14: detach_data(DEV_1) time.sleep(10) return check_situation("DEGRADED") elif elapsed_hour >= 15 and elapsed_hour <= 35: return check_situation("DEGRADED") elif elapsed_hour == 36: ret = add_spare(DEV_4) time.sleep(10) if ret == True: return check_situation("REBUILDING") return False elif elapsed_hour >= 37 and elapsed_hour <= 39: return check_situation("NORMAL") or check_situation("REBUILDING") elif elapsed_hour == 40: detach_data(DEV_2) time.sleep(10) return check_situation("DEGRADED") elif elapsed_hour >= 41 and elapsed_hour <= 43: return check_situation("DEGRADED") elif elapsed_hour == 44: ret = add_spare(DEV_1_RECYCLED) time.sleep(10) if ret == True: return check_situation("REBUILDING") return False elif elapsed_hour >= 45 and elapsed_hour <= 47: return check_situation("NORMAL") or check_situation("REBUILDING") elif elapsed_hour == 48: detach_data(DEV_3) time.sleep(10) return check_situation("DEGRADED") elif elapsed_hour >= 49 and elapsed_hour <= 51: return check_situation("DEGRADED") elif elapsed_hour == 52: ret = add_spare(DEV_2_RECYCLED) time.sleep(10) if ret == True: return check_situation("REBUILDING") return False elif elapsed_hour >= 53 and elapsed_hour <= 55: return check_situation("NORMAL") or check_situation("REBUILDING") elif elapsed_hour == 56: detach_data(DEV_4) time.sleep(10) return check_situation("DEGRADED") elif elapsed_hour >= 57 and elapsed_hour <= 59: return check_situation("DEGRADED") elif elapsed_hour == 60: ret = add_spare(DEV_3_RECYCLED) time.sleep(10) if ret == True: return check_situation("REBUILDING") return False elif elapsed_hour >= 61 and elapsed_hour <= 71: return check_situation("NORMAL") or check_situation("REBUILDING") elif elapsed_hour == TESTTIME_IN_HOUR: return True else: write_log ("unaddressed timing") return False def main(ip_addr): pos.set_addr(ip_addr) write_log("IPADDRESS: " + pos.TR_ADDR) print_time() global RC RC = do_event(0) if RC == True: t = TestTimer(SECONDS_PER_MINUTE, timer_tick) t.start() write_log ("TEST STARTED") t.join() write_log ("thread joined") if RC == False: write_log("TEST FAILED AFTER " + str(ELAPSED_HOUR) +"h") abort_pos() exit(-1) else: write_log("TEST SUCCESS") if exit_pos() == False: abort_pos() exit(0) if __name__ == "__main__": write_log("============== START 72 HOUR TEST ==============") write_log("SECONDS PER MIN: " + str(SECONDS_PER_MINUTE)) write_log("MINUTES PER HOUR: " + str(MINUTES_PER_HOUR)) main(sys.argv[1])
the-stack_106_14003
""" Contains library functions """ import json import logging import os.path from typing import Optional from markupsafe import escape from galaxy import util from galaxy.exceptions import ( AdminRequiredException, ConfigDoesNotAllowException, ItemAccessibilityException, ObjectNotFound, RequestParameterInvalidException, ) from galaxy.model import LibraryDataset from galaxy.tools.actions import upload_common from galaxy.tools.parameters import populate_state from galaxy.util.path import ( safe_contains, safe_relpath, unsafe_walk ) log = logging.getLogger(__name__) def validate_server_directory_upload(trans, server_dir): if server_dir in [None, 'None', '']: raise RequestParameterInvalidException("Invalid or unspecified server_dir parameter") if trans.user_is_admin: import_dir = trans.app.config.library_import_dir import_dir_desc = 'library_import_dir' if not import_dir: raise ConfigDoesNotAllowException('"library_import_dir" is not set in the Galaxy configuration') else: import_dir = trans.app.config.user_library_import_dir if not import_dir: raise ConfigDoesNotAllowException('"user_library_import_dir" is not set in the Galaxy configuration') if server_dir != trans.user.email: import_dir = os.path.join(import_dir, trans.user.email) import_dir_desc = 'user_library_import_dir' full_dir = os.path.join(import_dir, server_dir) unsafe = None if safe_relpath(server_dir): username = trans.user.username if trans.app.config.user_library_import_check_permissions else None if import_dir_desc == 'user_library_import_dir' and safe_contains(import_dir, full_dir, allowlist=trans.app.config.user_library_import_symlink_allowlist): for unsafe in unsafe_walk(full_dir, allowlist=[import_dir] + trans.app.config.user_library_import_symlink_allowlist, username=username): log.error('User attempted to import a path that resolves to a path outside of their import dir: %s -> %s', unsafe, os.path.realpath(unsafe)) else: log.error('User attempted to import a directory path that resolves to a path outside of their import dir: %s -> %s', server_dir, os.path.realpath(full_dir)) unsafe = True if unsafe: raise RequestParameterInvalidException("Invalid server_dir specified") return full_dir, import_dir_desc def validate_path_upload(trans): if not trans.app.config.allow_library_path_paste: raise ConfigDoesNotAllowException('"allow_path_paste" is not set to True in the Galaxy configuration file') if not trans.user_is_admin: raise AdminRequiredException('Uploading files via filesystem paths can only be performed by administrators') class LibraryActions: """ Mixin for controllers that provide library functionality. """ def _upload_dataset(self, trans, folder_id: str, replace_dataset: Optional[LibraryDataset] = None, **kwd): # Set up the traditional tool state/params cntrller = 'api' tool_id = 'upload1' message = None file_type = kwd.get('file_type') try: upload_common.validate_datatype_extension(datatypes_registry=trans.app.datatypes_registry, ext=file_type) except RequestParameterInvalidException as e: return (400, util.unicodify(e)) tool = trans.app.toolbox.get_tool(tool_id) state = tool.new_state(trans) populate_state(trans, tool.inputs, kwd, state.inputs) tool_params = state.inputs dataset_upload_inputs = [] for input in tool.inputs.values(): if input.type == "upload_dataset": dataset_upload_inputs.append(input) # Library-specific params server_dir = kwd.get('server_dir', '') upload_option = kwd.get('upload_option', 'upload_file') response_code = 200 if upload_option == 'upload_directory': full_dir, import_dir_desc = validate_server_directory_upload(trans, server_dir) message = 'Select a directory' elif upload_option == 'upload_paths': # Library API already checked this - following check isn't actually needed. validate_path_upload(trans) # Some error handling should be added to this method. try: # FIXME: instead of passing params here ( which have been processed by util.Params(), the original kwd # should be passed so that complex objects that may have been included in the initial request remain. library_bunch = upload_common.handle_library_params(trans, kwd, folder_id, replace_dataset) except Exception: response_code = 500 message = "Unable to parse upload parameters, please report this error." # Proceed with (mostly) regular upload processing if we're still errorless if response_code == 200: if upload_option == 'upload_file': tool_params = upload_common.persist_uploads(tool_params, trans) uploaded_datasets = upload_common.get_uploaded_datasets(trans, cntrller, tool_params, dataset_upload_inputs, library_bunch=library_bunch) elif upload_option == 'upload_directory': uploaded_datasets, response_code, message = self._get_server_dir_uploaded_datasets(trans, kwd, full_dir, import_dir_desc, library_bunch, response_code, message) elif upload_option == 'upload_paths': uploaded_datasets, response_code, message = self._get_path_paste_uploaded_datasets(trans, kwd, library_bunch, response_code, message) if upload_option == 'upload_file' and not uploaded_datasets: response_code = 400 message = 'Select a file, enter a URL or enter text' if response_code != 200: return (response_code, message) json_file_path = upload_common.create_paramfile(trans, uploaded_datasets) data_list = [ud.data for ud in uploaded_datasets] job_params = {} job_params['link_data_only'] = json.dumps(kwd.get('link_data_only', 'copy_files')) job_params['uuid'] = json.dumps(kwd.get('uuid', None)) job, output = upload_common.create_job(trans, tool_params, tool, json_file_path, data_list, folder=library_bunch.folder, job_params=job_params) trans.app.job_manager.enqueue(job, tool=tool) return output def _get_server_dir_uploaded_datasets(self, trans, params, full_dir, import_dir_desc, library_bunch, response_code, message): dir_response = self._get_server_dir_files(params, full_dir, import_dir_desc) files = dir_response[0] if not files: return dir_response uploaded_datasets = [] for file in files: name = os.path.basename(file) uploaded_datasets.append(self._make_library_uploaded_dataset(trans, params, name, file, 'server_dir', library_bunch)) return uploaded_datasets, 200, None def _get_server_dir_files(self, params, full_dir, import_dir_desc): files = [] try: for entry in os.listdir(full_dir): # Only import regular files path = os.path.join(full_dir, entry) link_data_only = params.get('link_data_only', 'copy_files') if os.path.islink(full_dir) and link_data_only == 'link_to_files': # If we're linking instead of copying and the # sub-"directory" in the import dir is actually a symlink, # dereference the symlink, but not any of its contents. link_path = os.readlink(full_dir) if os.path.isabs(link_path): path = os.path.join(link_path, entry) else: path = os.path.abspath(os.path.join(link_path, entry)) elif os.path.islink(path) and os.path.isfile(path) and link_data_only == 'link_to_files': # If we're linking instead of copying and the "file" in the # sub-directory of the import dir is actually a symlink, # dereference the symlink (one dereference only, Vasili). link_path = os.readlink(path) if os.path.isabs(link_path): path = link_path else: path = os.path.abspath(os.path.join(os.path.dirname(path), link_path)) if os.path.isfile(path): files.append(path) except Exception as e: message = f"Unable to get file list for configured {import_dir_desc}, error: {util.unicodify(e)}" response_code = 500 return None, response_code, message if not files: message = f"The directory '{full_dir}' contains no valid files" response_code = 400 return None, response_code, message return files, None, None def _get_path_paste_uploaded_datasets(self, trans, params, library_bunch, response_code, message): preserve_dirs = util.string_as_bool(params.get('preserve_dirs', False)) uploaded_datasets = [] (files_and_folders, _response_code, _message) = self._get_path_files_and_folders(params, preserve_dirs) if _response_code: return (uploaded_datasets, _response_code, _message) for (path, name, folder) in files_and_folders: uploaded_datasets.append(self._make_library_uploaded_dataset(trans, params, name, path, 'path_paste', library_bunch, folder)) return uploaded_datasets, 200, None def _get_path_files_and_folders(self, params, preserve_dirs): problem_response = self._check_path_paste_params(params) if problem_response: return problem_response files_and_folders = [] for (line, path) in self._paths_list(params): line_files_and_folders = self._get_single_path_files_and_folders(line, path, preserve_dirs) files_and_folders.extend(line_files_and_folders) return files_and_folders, None, None def _get_single_path_files_and_folders(self, line, path, preserve_dirs): files_and_folders = [] if os.path.isfile(path): name = os.path.basename(path) files_and_folders.append((path, name, None)) for basedir, _dirs, files in os.walk(line): for file in files: file_path = os.path.abspath(os.path.join(basedir, file)) if preserve_dirs: in_folder = os.path.dirname(file_path.replace(path, '', 1).lstrip('/')) else: in_folder = None files_and_folders.append((file_path, file, in_folder)) return files_and_folders def _paths_list(self, params): return [(line.strip(), os.path.abspath(line.strip())) for line in params.get('filesystem_paths', '').splitlines() if line.strip()] def _check_path_paste_params(self, params): if params.get('filesystem_paths', '') == '': message = "No paths entered in the upload form" response_code = 400 return None, response_code, message bad_paths = [] for (_, path) in self._paths_list(params): if not os.path.exists(path): bad_paths.append(path) if bad_paths: message = 'Invalid paths: "%s".' % '", "'.join(bad_paths) response_code = 400 return None, response_code, message return None def _make_library_uploaded_dataset(self, trans, params, name, path, type, library_bunch, in_folder=None): link_data_only = params.get('link_data_only', 'copy_files') uuid_str = params.get('uuid', None) file_type = params.get('file_type', None) library_bunch.replace_dataset = None # not valid for these types of upload uploaded_dataset = util.bunch.Bunch() new_name = name # Remove compressed file extensions, if any, but only if # we're copying files into Galaxy's file space. if link_data_only == 'copy_files': if new_name.endswith('.gz'): new_name = new_name.rstrip('.gz') elif new_name.endswith('.zip'): new_name = new_name.rstrip('.zip') uploaded_dataset.name = new_name uploaded_dataset.path = path uploaded_dataset.type = type uploaded_dataset.ext = None uploaded_dataset.file_type = file_type uploaded_dataset.dbkey = params.get('dbkey', None) uploaded_dataset.to_posix_lines = params.get('to_posix_lines', None) uploaded_dataset.space_to_tab = params.get('space_to_tab', None) uploaded_dataset.tag_using_filenames = params.get('tag_using_filenames', False) uploaded_dataset.tags = params.get('tags', None) uploaded_dataset.purge_source = getattr(trans.app.config, 'ftp_upload_purge', True) if in_folder: uploaded_dataset.in_folder = in_folder uploaded_dataset.data = upload_common.new_upload(trans, 'api', uploaded_dataset, library_bunch) uploaded_dataset.link_data_only = link_data_only uploaded_dataset.uuid = uuid_str if link_data_only == 'link_to_files': uploaded_dataset.data.link_to(path) trans.sa_session.add_all((uploaded_dataset.data, uploaded_dataset.data.dataset)) trans.sa_session.flush() return uploaded_dataset def _create_folder(self, trans, parent_id, library_id, **kwd): is_admin = trans.user_is_admin current_user_roles = trans.get_current_user_roles() try: parent_folder = trans.sa_session.query(trans.app.model.LibraryFolder).get(trans.security.decode_id(parent_id)) except Exception: parent_folder = None # Check the library which actually contains the user-supplied parent folder, not the user-supplied # library, which could be anything. self._check_access(trans, is_admin, parent_folder, current_user_roles) self._check_add(trans, is_admin, parent_folder, current_user_roles) new_folder = trans.app.model.LibraryFolder(name=kwd.get('name', ''), description=kwd.get('description', '')) # We are associating the last used genome build with folders, so we will always # initialize a new folder with the first dbkey in genome builds list which is currently # ? unspecified (?) new_folder.genome_build = trans.app.genome_builds.default_value parent_folder.add_folder(new_folder) trans.sa_session.add(new_folder) trans.sa_session.flush() # New folders default to having the same permissions as their parent folder trans.app.security_agent.copy_library_permissions(trans, parent_folder, new_folder) return 200, dict(created=new_folder) def _check_access(self, trans, is_admin, item, current_user_roles): if isinstance(item, trans.model.HistoryDatasetAssociation): # Make sure the user has the DATASET_ACCESS permission on the history_dataset_association. if not item: message = f"Invalid history dataset ({escape(str(item))}) specified." raise ObjectNotFound(message) elif not trans.app.security_agent.can_access_dataset(current_user_roles, item.dataset) and item.history.user == trans.user: message = f"You do not have permission to access the history dataset with id ({str(item.id)})." raise ItemAccessibilityException(message) else: # Make sure the user has the LIBRARY_ACCESS permission on the library item. if not item: message = f"Invalid library item ({escape(str(item))}) specified." raise ObjectNotFound(message) elif not (is_admin or trans.app.security_agent.can_access_library_item(current_user_roles, item, trans.user)): if isinstance(item, trans.model.Library): item_type = 'data library' elif isinstance(item, trans.model.LibraryFolder): item_type = 'folder' else: item_type = '(unknown item type)' message = f"You do not have permission to access the {escape(item_type)} with id ({str(item.id)})." raise ItemAccessibilityException(message) def _check_add(self, trans, is_admin, item, current_user_roles): # Deny access if the user is not an admin and does not have the LIBRARY_ADD permission. if not (is_admin or trans.app.security_agent.can_add_library_item(current_user_roles, item)): message = f"You are not authorized to add an item to ({escape(item.name)})." raise ItemAccessibilityException(message)
the-stack_106_14005
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf class BatchMatrixDiagTest(tf.test.TestCase): _use_gpu = False def testVector(self): with self.test_session(use_gpu=self._use_gpu): v = np.array([1.0, 2.0, 3.0]) mat = np.diag(v) v_diag = tf.batch_matrix_diag(v) self.assertEqual((3, 3), v_diag.get_shape()) self.assertAllEqual(v_diag.eval(), mat) def testBatchVector(self): with self.test_session(use_gpu=self._use_gpu): v_batch = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) mat_batch = np.array( [[[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]], [[4.0, 0.0, 0.0], [0.0, 5.0, 0.0], [0.0, 0.0, 6.0]]]) v_batch_diag = tf.batch_matrix_diag(v_batch) self.assertEqual((2, 3, 3), v_batch_diag.get_shape()) self.assertAllEqual(v_batch_diag.eval(), mat_batch) def testInvalidShape(self): with self.assertRaisesRegexp(ValueError, "must have rank at least 1"): tf.batch_matrix_diag(0) def testInvalidShapeAtEval(self): with self.test_session(use_gpu=self._use_gpu): v = tf.placeholder(dtype=tf.float32) with self.assertRaisesOpError("input must be at least 1-dim"): tf.batch_matrix_diag(v).eval(feed_dict={v: 0.0}) def testGrad(self): shapes = ((3,), (7, 4)) with self.test_session(use_gpu=self._use_gpu): for shape in shapes: x = tf.constant(np.random.rand(*shape), np.float32) y = tf.batch_matrix_diag(x) error = tf.test.compute_gradient_error(x, x.get_shape().as_list(), y, y.get_shape().as_list()) self.assertLess(error, 1e-4) class BatchMatrixDiagGpuTest(BatchMatrixDiagTest): _use_gpu = True class BatchMatrixDiagPartTest(tf.test.TestCase): _use_gpu = False def testMatrix(self): with self.test_session(use_gpu=self._use_gpu): v = np.array([1.0, 2.0, 3.0]) mat = np.diag(v) mat_diag = tf.batch_matrix_diag_part(mat) self.assertEqual((3,), mat_diag.get_shape()) self.assertAllEqual(mat_diag.eval(), v) def testBatchMatrix(self): with self.test_session(use_gpu=self._use_gpu): v_batch = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) mat_batch = np.array( [[[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]], [[4.0, 0.0, 0.0], [0.0, 5.0, 0.0], [0.0, 0.0, 6.0]]]) self.assertEqual(mat_batch.shape, (2, 3, 3)) mat_batch_diag = tf.batch_matrix_diag_part(mat_batch) self.assertEqual((2, 3), mat_batch_diag.get_shape()) self.assertAllEqual(mat_batch_diag.eval(), v_batch) def testInvalidShape(self): with self.assertRaisesRegexp(ValueError, "must have rank at least 2"): tf.batch_matrix_diag_part(0) with self.assertRaisesRegexp(ValueError, r"Dimensions .* not compatible"): tf.batch_matrix_diag_part([[0, 1], [1, 0], [0, 0]]) def testInvalidShapeAtEval(self): with self.test_session(use_gpu=self._use_gpu): v = tf.placeholder(dtype=tf.float32) with self.assertRaisesOpError("input must be at least 2-dim"): tf.batch_matrix_diag_part(v).eval(feed_dict={v: 0.0}) with self.assertRaisesOpError("last two dimensions must be equal"): tf.batch_matrix_diag_part(v).eval( feed_dict={v: [[0, 1], [1, 0], [0, 0]]}) def testGrad(self): shapes = ((3, 3), (5, 3, 3)) with self.test_session(use_gpu=self._use_gpu): for shape in shapes: x = tf.constant(np.random.rand(*shape), dtype=np.float32) y = tf.batch_matrix_diag_part(x) error = tf.test.compute_gradient_error(x, x.get_shape().as_list(), y, y.get_shape().as_list()) self.assertLess(error, 1e-4) class BatchMatrixDiagPartGpuTest(BatchMatrixDiagPartTest): _use_gpu = True class DiagTest(tf.test.TestCase): def diagOp(self, diag, dtype, expected_ans, use_gpu=False): with self.test_session(use_gpu=use_gpu): tf_ans = tf.diag(tf.convert_to_tensor(diag.astype(dtype))) out = tf_ans.eval() tf_ans_inv = tf.diag_part(expected_ans) inv_out = tf_ans_inv.eval() self.assertAllClose(out, expected_ans) self.assertAllClose(inv_out, diag) self.assertShapeEqual(expected_ans, tf_ans) self.assertShapeEqual(diag, tf_ans_inv) def testEmptyTensor(self): x = np.array([]) expected_ans = np.empty([0, 0]) self.diagOp(x, np.int32, expected_ans) def testRankOneIntTensor(self): x = np.array([1, 2, 3]) expected_ans = np.array( [[1, 0, 0], [0, 2, 0], [0, 0, 3]]) self.diagOp(x, np.int32, expected_ans) self.diagOp(x, np.int64, expected_ans) def testRankOneFloatTensor(self): x = np.array([1.1, 2.2, 3.3]) expected_ans = np.array( [[1.1, 0, 0], [0, 2.2, 0], [0, 0, 3.3]]) self.diagOp(x, np.float32, expected_ans) self.diagOp(x, np.float64, expected_ans) def testRankTwoIntTensor(self): x = np.array([[1, 2, 3], [4, 5, 6]]) expected_ans = np.array( [[[[1, 0, 0], [0, 0, 0]], [[0, 2, 0], [0, 0, 0]], [[0, 0, 3], [0, 0, 0]]], [[[0, 0, 0], [4, 0, 0]], [[0, 0, 0], [0, 5, 0]], [[0, 0, 0], [0, 0, 6]]]]) self.diagOp(x, np.int32, expected_ans) self.diagOp(x, np.int64, expected_ans) def testRankTwoFloatTensor(self): x = np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]]) expected_ans = np.array( [[[[1.1, 0, 0], [0, 0, 0]], [[0, 2.2, 0], [0, 0, 0]], [[0, 0, 3.3], [0, 0, 0]]], [[[0, 0, 0], [4.4, 0, 0]], [[0, 0, 0], [0, 5.5, 0]], [[0, 0, 0], [0, 0, 6.6]]]]) self.diagOp(x, np.float32, expected_ans) self.diagOp(x, np.float64, expected_ans) def testRankThreeFloatTensor(self): x = np.array([[[1.1, 2.2], [3.3, 4.4]], [[5.5, 6.6], [7.7, 8.8]]]) expected_ans = np.array( [[[[[[1.1, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 2.2], [0, 0]], [[0, 0], [0, 0]]]], [[[[0, 0], [3.3, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 4.4]], [[0, 0], [0, 0]]]]], [[[[[0, 0], [0, 0]], [[5.5, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 6.6], [0, 0]]]], [[[[0, 0], [0, 0]], [[0, 0], [7.7, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 8.8]]]]]]) self.diagOp(x, np.float32, expected_ans) self.diagOp(x, np.float64, expected_ans) class DiagPartOpTest(tf.test.TestCase): def setUp(self): np.random.seed(0) def diagPartOp(self, tensor, dtype, expected_ans, use_gpu=False): with self.test_session(use_gpu=use_gpu): tensor = tf.convert_to_tensor(tensor.astype(dtype)) tf_ans_inv = tf.diag_part(tensor) inv_out = tf_ans_inv.eval() self.assertAllClose(inv_out, expected_ans) self.assertShapeEqual(expected_ans, tf_ans_inv) def testRankTwoFloatTensor(self): x = np.random.rand(3, 3) i = np.arange(3) expected_ans = x[i, i] self.diagPartOp(x, np.float32, expected_ans) self.diagPartOp(x, np.float64, expected_ans) def testRankFourFloatTensorUnknownShape(self): x = np.random.rand(3, 3) i = np.arange(3) expected_ans = x[i, i] for shape in None, (None, 3), (3, None): with self.test_session(use_gpu=False): t = tf.convert_to_tensor(x.astype(np.float32)) t.set_shape(shape) tf_ans = tf.diag_part(t) out = tf_ans.eval() self.assertAllClose(out, expected_ans) self.assertShapeEqual(expected_ans, tf_ans) def testRankFourFloatTensor(self): x = np.random.rand(2, 3, 2, 3) i = np.arange(2)[:, None] j = np.arange(3) expected_ans = x[i, j, i, j] self.diagPartOp(x, np.float32, expected_ans) self.diagPartOp(x, np.float64, expected_ans) def testRankSixFloatTensor(self): x = np.random.rand(2, 2, 2, 2, 2, 2) i = np.arange(2)[:, None, None] j = np.arange(2)[:, None] k = np.arange(2) expected_ans = x[i, j, k, i, j, k] self.diagPartOp(x, np.float32, expected_ans) self.diagPartOp(x, np.float64, expected_ans) def testOddRank(self): w = np.random.rand(2) x = np.random.rand(2, 2, 2) self.assertRaises(ValueError, self.diagPartOp, w, np.float32, 0) self.assertRaises(ValueError, self.diagPartOp, x, np.float32, 0) def testUnevenDimensions(self): w = np.random.rand(2, 5) x = np.random.rand(2, 1, 2, 3) self.assertRaises(ValueError, self.diagPartOp, w, np.float32, 0) self.assertRaises(ValueError, self.diagPartOp, x, np.float32, 0) class DiagGradOpTest(tf.test.TestCase): def testDiagGrad(self): np.random.seed(0) shapes = ((3,), (3,3), (3,3,3)) dtypes = (tf.float32, tf.float64) with self.test_session(use_gpu=False): errors = [] for shape in shapes: for dtype in dtypes: x1 = tf.constant(np.random.rand(*shape), dtype=dtype) y = tf.diag(x1) error = tf.test.compute_gradient_error(x1, x1.get_shape().as_list(), y, y.get_shape().as_list()) tf.logging.info("error = %f", error) self.assertLess(error, 1e-4) class DiagGradPartOpTest(tf.test.TestCase): def testDiagPartGrad(self): np.random.seed(0) shapes = ((3,3), (3,3,3,3)) dtypes = (tf.float32, tf.float64) with self.test_session(use_gpu=False): errors = [] for shape in shapes: for dtype in dtypes: x1 = tf.constant(np.random.rand(*shape), dtype=dtype) y = tf.diag_part(x1) error = tf.test.compute_gradient_error(x1, x1.get_shape().as_list(), y, y.get_shape().as_list()) tf.logging.info("error = %f", error) self.assertLess(error, 1e-4) if __name__ == "__main__": tf.test.main()
the-stack_106_14006
import math import random from typing import Optional, List, Iterator import torch from allennlp.common.util import lazy_groups_of from allennlp.common.tqdm import Tqdm from allennlp.data.data_loaders.data_loader import DataLoader, TensorDict from allennlp.data.data_loaders.data_collator import DefaultDataCollator from allennlp.data.dataset_readers import DatasetReader from allennlp.data.instance import Instance from allennlp.data.vocabulary import Vocabulary import allennlp.nn.util as nn_util @DataLoader.register("simple", constructor="from_dataset_reader") class SimpleDataLoader(DataLoader): """ A very simple `DataLoader` that is mostly used for testing. """ def __init__( self, instances: List[Instance], batch_size: int, *, shuffle: bool = False, batches_per_epoch: Optional[int] = None, vocab: Optional[Vocabulary] = None, ) -> None: self.instances = instances self.batch_size = batch_size self.shuffle = shuffle self.batches_per_epoch = batches_per_epoch self.vocab = vocab self.cuda_device: Optional[torch.device] = None self._batch_generator: Optional[Iterator[TensorDict]] = None self.collate_fn = DefaultDataCollator() def __len__(self) -> int: if self.batches_per_epoch is not None: return self.batches_per_epoch return math.ceil(len(self.instances) / self.batch_size) def __iter__(self) -> Iterator[TensorDict]: if self.batches_per_epoch is None: yield from self._iter_batches() else: if self._batch_generator is None: self._batch_generator = self._iter_batches() for i in range(self.batches_per_epoch): try: yield next(self._batch_generator) except StopIteration: # data_generator is exhausted self._batch_generator = self._iter_batches() # so refresh it yield next(self._batch_generator) def _iter_batches(self) -> Iterator[TensorDict]: if self.shuffle: random.shuffle(self.instances) for batch in lazy_groups_of(self.iter_instances(), self.batch_size): tensor_dict = self.collate_fn(batch) if self.cuda_device is not None: tensor_dict = nn_util.move_to_device(tensor_dict, self.cuda_device) yield tensor_dict def iter_instances(self) -> Iterator[Instance]: for instance in self.instances: if self.vocab is not None: instance.index_fields(self.vocab) yield instance def index_with(self, vocab: Vocabulary) -> None: self.vocab = vocab for instance in self.instances: instance.index_fields(self.vocab) def set_target_device(self, device: torch.device) -> None: self.cuda_device = device @classmethod def from_dataset_reader( cls, reader: DatasetReader, data_path: str, batch_size: int, shuffle: bool = False, batches_per_epoch: Optional[int] = None, quiet: bool = False, ) -> "SimpleDataLoader": instance_iter = reader.read(data_path) if not quiet: instance_iter = Tqdm.tqdm(instance_iter, desc="loading instances") instances = list(instance_iter) return cls(instances, batch_size, shuffle=shuffle, batches_per_epoch=batches_per_epoch)
the-stack_106_14010
# Script Name : fileinfo.py # Author : Not sure where I got this from # Created : 28th November 2011 # Last Modified : # Version : 1.0 # Modifications : # Description : Show file information for a given file # get file information using os.stat() # tested with Python24 vegsaeat 25sep2006 from __future__ import print_function import os import sys import stat # index constants for os.stat() import time if sys.version_info >= (3, 0): raw_input = input try_count = 16 while try_count: file_name = raw_input("Enter a file name: ") # pick a file you have fhand = open(file_name) count = 0 for lines in fhand: count = count + 1 fhand = open(file_name) inp = fhand.read() t_char = len(inp) try_count >>= 1 try: file_stats = os.stat(file_name) print ("This is os.stat",file_stats) break except OSError: print ("\nNameError : [%s] No such file or directory\n", file_name) if try_count == 0: print ("Trial limit exceeded \nExiting program") sys.exit() # create a dictionary to hold file info file_info = { 'fname': file_name, 'fsize': file_stats[stat.ST_SIZE], 'f_lm' : time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(file_stats[stat.ST_MTIME])), 'f_la' : time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(file_stats[stat.ST_ATIME])), 'f_ct' : time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(file_stats[stat.ST_CTIME])), 'no_of_lines':count, 't_char':t_char } print ("\nfile name =", file_info['fname']) print ("file size =", file_info['fsize'] , "bytes") print ("last modified =", file_info['f_lm']) print ("last accessed =", file_info['f_la']) print ("creation time =", file_info['f_ct']) print ("Total number of lines are =", file_info['no_of_lines']) print ("Total number of characters are =", file_info['t_char']) if stat.S_ISDIR(file_stats[stat.ST_MODE]): print ("This a directory") else: print ("This is not a directory\n") print ("A closer look at the os.stat(%s) tuple:" % file_name) print (file_stats) print ("\nThe above tuple has the following sequence: ") print ("""st_mode (protection bits), st_ino (inode number), st_dev (device), st_nlink (number of hard links), st_uid (user ID of owner), st_gid (group ID of owner), st_size (file size, bytes), st_atime (last access time, seconds since epoch), st_mtime (last modification time), st_ctime (time of creation, Windows)""" )
the-stack_106_14011
from typing import (Any, List, Tuple) from hypothesis import strategies from tests.utils import (BoundPortedSetsPair, Strategy, to_bound_ported_sets_pair) objects = strategies.integers() empty_lists = strategies.builds(list) objects_lists = strategies.lists(objects) non_empty_objects_lists = strategies.lists(objects, min_size=1) sets_pairs = strategies.builds(to_bound_ported_sets_pair, objects_lists) empty_sets_pairs = strategies.builds(to_bound_ported_sets_pair, empty_lists) non_empty_sets_pairs = strategies.builds(to_bound_ported_sets_pair, non_empty_objects_lists) def to_non_empty_sets_pairs_with_their_elements( values: List[Any]) -> Strategy[Tuple[BoundPortedSetsPair, Any]]: pair = to_bound_ported_sets_pair(values) return strategies.tuples(strategies.just(pair), strategies.sampled_from(values)) non_empty_sets_pairs_with_their_elements = non_empty_objects_lists.flatmap( to_non_empty_sets_pairs_with_their_elements) def to_sets_pairs_with_non_their_elements( values: List[Any]) -> Strategy[Tuple[BoundPortedSetsPair, Any]]: pair = to_bound_ported_sets_pair(values) return strategies.tuples(strategies.just(pair), objects.filter(lambda candidate : candidate not in values) if values else objects) sets_pairs_with_non_their_elements = ( objects_lists.flatmap(to_sets_pairs_with_non_their_elements))
the-stack_106_14012
from typing import Dict from ..base_category import BaseCategory # 皮革羽毛 leather-and-feather class LeatherAndFeather(object): def leather_and_feather() -> Dict[str, Dict[str, str]]: list = {} list['name'] = '皮革羽毛' list['id'] = 'leather-and-feather' leather_and_feather = {} leather_and_feather['leather-fur'] = '皮革、毛皮' leather_and_feather['feather-products'] = '羽毛' list['sub'] = leather_and_feather return list # 林業及林產品 forest-products class ForestProducts(object): def forest_products() -> Dict[str, Dict[str, str]]: list = {} list['name'] = '林業及林產品' list['id'] = 'forest-products' forest_products = {} forest_products['wood'] = '木材' forest_products['wooden-case-pallet'] = '木箱、棧板' forest_products['bamboo-rattan'] = '竹材、籐材' forest_products['charcoal'] = '木炭、木柴' list['sub'] = forest_products return list # 畜牧業及產品 livestock-and-products class LivestockAndProducts(object): def livestock_and_products() -> Dict[str, Dict[str, str]]: list = {} list['name'] = '畜牧業及產品' list['id'] = 'livestock-and-products' livestock_and_products = {} livestock_and_products['farm-equip'] = '畜產設備' livestock_and_products['farms'] = '畜牧場' livestock_and_products['slaughterhouse'] = '屠宰場' livestock_and_products['feeds'] = '飼料' list['sub'] = livestock_and_products return list # 農事服務業 agricultural-services class AgriculturalServices(object): def agricultural_services() -> Dict[str, Dict[str, str]]: list = {} list['name'] = '農事服務業' list['id'] = 'agricultural-services' agricultural_services = {} agricultural_services['agriculture-service'] = '農事服務' list['sub'] = agricultural_services return list # 農業 agriculture class Agriculture(object): def agriculture() -> Dict[str, Dict[str, str]]: list = {} list['name'] = '農業' list['id'] = 'agriculture' agriculture = {} agriculture['orchards-farms'] = '果園、農場' agriculture['fertilizer'] = '肥料' agriculture['agriculture-equip'] = '農耕設備' agriculture['seeds'] = '種子' list['sub'] = agriculture return list # 漁業及漁產品 fisheries-and-products class FisheriesAndProducts(object): def fisheries_and_products() -> Dict[str, Dict[str, str]]: list = {} list['name'] = '漁業及漁產品' list['id'] = 'fisheries-and-products' fisheries_and_products = {} fisheries_and_products['aquaculture'] = '水產養殖' fisheries_and_products['aquaculture-equipment'] = '水產養殖用品' fisheries_and_products['fishery'] = '漁產捕撈' list['sub'] = fisheries_and_products return list # 礦業及礦產品 mining-and-minerals class MiningAndMinerals(object): def mining_and_minerals() -> Dict[str, Dict[str, str]]: list = {} list['name'] = '礦業及礦產品' list['id'] = 'mining-and-minerals' mining_and_minerals = {} mining_and_minerals['quarry'] = '石礦' mining_and_minerals['coal'] = '煤礦、煤炭' mining_and_minerals['mining'] = '採礦' mining_and_minerals['mineral'] = '礦物' list['sub'] = mining_and_minerals return list # 農林漁牧 agriculture class Agriculture(BaseCategory, LeatherAndFeather, ForestProducts, LivestockAndProducts, AgriculturalServices, Agriculture, FisheriesAndProducts, MiningAndMinerals): category_name = '農林漁牧' category_id = 'agriculture'