filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_19420
from typing import Optional from rlbot.agents.base_agent import SimpleControllerState from rlbot.messages.flat import GameTickPacket, FieldInfo from rlbot.utils.structures.quick_chats import QuickChats from tmcp import TMCPMessage, ActionType from strategy.objective import Objective from utility.easing import lin_fall from utility.rlmath import clip from utility.vec import Vec3, Mat33, euler_to_rotation, angle_between, norm MAX_SPEED = 2300 BOOST_ACCEL = 1060 THROTTLE_AIR_ACCEL = 66 BOOST_PR_SEC = 33 GRAVITY = Vec3(z=-650) JUMP_SPEED = 291.667 JUMP_ACCEL = 1458.3333 JUMP_MIN_DUR = 0.025 JUMP_MAX_DUR = 0.2 class Field: WIDTH = 8192 WIDTH2 = WIDTH / 2 LENGTH = 10240 LENGTH2 = LENGTH / 2 HEIGHT = 2044 class Ball: RADIUS = 92 def __init__(self, pos=Vec3(), vel=Vec3(), ang_vel=Vec3(), time=0.0): self.pos = pos self.vel = vel self.ang_vel = ang_vel self.time = time # self.last_touch # TODO # self.last_bounce # TODO class Car: def __init__(self, index=-1, name="Unknown", team=0, pos=Vec3(), vel=Vec3(), ang_vel=Vec3(), rot=Mat33(), time=0.0): self.id = index self.name = name self.team = team self.team_sign = -1 if team == 0 else 1 self.pos = pos self.vel = vel self.rot = rot self.ang_vel = ang_vel self.time = time self.is_demolished = False self.jumped = False self.double_jumped = False self.on_ground = True self.supersonic = False self.last_quick_chat = None self.last_expected_time_till_reach_ball = 3 self.last_input = SimpleControllerState() # Analytic info self.effective_pos = pos # A point a bit in front of them self.objective = Objective.UNKNOWN self.possession = 0 self.onsite = False self.reach_ball_time = 0 @property def forward(self) -> Vec3: return self.rot.col(0) @property def left(self) -> Vec3: return self.rot.col(1) @property def up(self) -> Vec3: return self.rot.col(2) def got_it_according_to_quick_chat_01(self, time) -> float: if self.last_quick_chat is None: return 1.0 if self.last_quick_chat.message in QuickChat.I_GOT_IT_MESSAGES: return 1.0 + QuickChat.RELEVANCE * lin_fall(time - self.last_quick_chat.time, QuickChat.RELEVANCE_DURATION) if self.last_quick_chat.message in QuickChat.YOU_GOT_IT_MESSAGES: return 1.0 - QuickChat.RELEVANCE * lin_fall(time - self.last_quick_chat.time, QuickChat.RELEVANCE_DURATION) return 1.0 def is_following_up_according_to_quick_chat_01(self, time) -> float: if self.last_quick_chat is None: return 1.0 if self.last_quick_chat.message in QuickChat.WONT_FOLLOW_UP_MESSAGES: return 1.0 - QuickChat.RELEVANCE * lin_fall(time - self.last_quick_chat.time, QuickChat.RELEVANCE_DURATION) return 1.0 class QuickChat: I_GOT_IT_MESSAGES = [ QuickChats.Information_IGotIt ] YOU_GOT_IT_MESSAGES = [ QuickChats.Information_NeedBoost, QuickChats.Information_TakeTheShot, QuickChats.Information_Defending, QuickChats.Information_GoForIt, QuickChats.Information_AllYours, ] WONT_FOLLOW_UP_MESSAGES = [ QuickChats.Information_NeedBoost, QuickChats.Information_Defending ] RELEVANCE_DURATION = 2.5 # RL is a fast game RELEVANCE = 0.3 # Percentage def __init__(self, sender, sender_team, message, time): self.sender = sender self.sender_team = sender_team self.message = message self.time = time class BoostPad: def __init__(self, index, pos, is_big, is_active, timer): self.index = index self.pos = pos self.is_active = is_active self.timer = timer self.is_big = is_big class Goal: WIDTH = 1900 WIDTH2 = 1900 / 2 HEIGHT = 640 DEPTH = 880 def __init__(self, team: int): team_sign = -1 if team == 0 else 1 self.pos = Vec3(0, team_sign * Field.LENGTH2, 0) self.right_post = Vec3(-(Goal.WIDTH2 - 30) * team_sign, team_sign * Field.LENGTH2, 0) self.left_post = Vec3((Goal.WIDTH2 - 30) * team_sign, team_sign * Field.LENGTH2, 0) self.front = self.pos * 0.86 # A spot in front the goal class GameInfo: def __init__(self, index, team): self.team = team self.index = index self.team_sign = -1 if team == 0 else 1 self.dt = 0.016666 self.time = 0 self.is_kickoff = False self.last_kickoff_end_time = 0 self.time_since_last_kickoff = 0 self.ball = Ball() self.boost_pads = [] self.small_boost_pads = [] self.big_boost_pads = [] self.convenient_boost_pad = None self.convenient_boost_pad_score = 0 self.my_car = Car() self.cars = [] self.teammates = [] self.team_cars = [] # Includes us self.opponents = [] self.goals = [Goal(0), Goal(1)] self.own_goal = self.goals[team] self.opp_goal = self.goals[not team] self.field_info_loaded = False def read_field_info(self, field_info: FieldInfo): if field_info is None or field_info.num_boosts == 0: return self.boost_pads = [] self.small_boost_pads = [] self.big_boost_pads = [] for i in range(field_info.num_boosts): pad = field_info.boost_pads[i] pos = Vec3(pad.location) pad = BoostPad(i, pos, pad.is_full_boost, True, 0.0) self.boost_pads.append(pad) if pad.is_big: self.big_boost_pads.append(pad) else: self.small_boost_pads.append(pad) self.convenient_boost_pad = self.boost_pads[0] self.convenient_boost_pad_score = 0 self.field_info_loaded = True def read_packet(self, packet: GameTickPacket): # Game state self.dt = packet.game_info.seconds_elapsed - self.time self.time = packet.game_info.seconds_elapsed self.is_kickoff = packet.game_info.is_kickoff_pause if self.is_kickoff: self.last_kickoff_end_time = self.time self.time_since_last_kickoff = self.time - self.last_kickoff_end_time # Read ball ball_phy = packet.game_ball.physics self.ball.pos = Vec3(ball_phy.location) self.ball.vel = Vec3(ball_phy.velocity) self.ball.ang_vel = Vec3(ball_phy.angular_velocity) self.ball.t = self.time # self.ball.step(dt) # Read cars for i in range(0, packet.num_cars): game_car = packet.game_cars[i] car_phy = game_car.physics car = self.cars[i] if i < len(self.cars) else Car() car.pos = Vec3(car_phy.location) car.vel = Vec3(car_phy.velocity) car.ang_vel = Vec3(car_phy.angular_velocity) car.rot = euler_to_rotation(Vec3(car_phy.rotation.pitch, car_phy.rotation.yaw, car_phy.rotation.roll)) car.is_demolished = game_car.is_demolished car.on_ground = game_car.has_wheel_contact car.supersonic = game_car.is_super_sonic car.jumped = game_car.jumped car.double_jumped = game_car.double_jumped car.boost = game_car.boost car.time = self.time # car.extrapolate(dt) if len(self.cars) <= i: # First time we see this car car.index = i car.team = game_car.team car.name = game_car.name self.cars.append(car) if game_car.team == self.team: if i == self.index: self.my_car = car else: self.teammates.append(car) self.team_cars.append(car) else: self.opponents.append(car) # Read boost pads for i in range(0, len(self.boost_pads)): boost_pad = packet.game_boosts[i] self.boost_pads[i].is_active = boost_pad.is_active self.boost_pads[i].timer = boost_pad.timer self.convenient_boost_pad_score = 0 for pad in self.boost_pads: pad_state = packet.game_boosts[pad.index] pad.is_active = pad_state.is_active pad.timer = pad_state.timer score = self.get_boost_pad_convenience_score(pad) if score > self.convenient_boost_pad_score: self.convenient_boost_pad = pad # self.time += dt def get_boost_pad_convenience_score(self, pad): if not pad.is_active: return 0 car_to_pad = pad.pos - self.my_car.pos angle = angle_between(self.my_car.forward, car_to_pad) # Pads behind the car is bad if abs(angle) > 1.3: return 0 dist = norm(car_to_pad) dist_score = 1 - clip((abs(dist) / 2500)**2, 0, 1) angle_score = 1 - clip((abs(angle) / 3), 0, 1) return dist_score * angle_score * (0.8, 1)[pad.is_big] def closest_enemy(self, pos: Vec3): enemy = None dist = -1 for e in self.opponents: d = norm(e.pos - pos) if enemy is None or d < dist: enemy = e dist = d return enemy, dist def handle_quick_chat(self, sender, sender_team, message): if 0 <= sender < len(self.cars): car = self.cars[sender] car.last_quick_chat = QuickChat(sender, sender_team, message, self.time) def handle_tmcp_message(self, message: TMCPMessage): if 0 <= message.index < len(self.cars): # We transform the message into a quick chat message mapping = { ActionType.BALL: QuickChats.Information_IGotIt, ActionType.READY: QuickChats.Information_AllYours, ActionType.BOOST: QuickChats.Information_NeedBoost, ActionType.DEMO: QuickChats.Information_TakeTheShot, ActionType.DEFEND: QuickChats.Information_Defending } quickchat_version = mapping[message.action_type] car = self.cars[message.index] car.last_quick_chat = QuickChat(message.index, car.team, quickchat_version, self.time - 0.008333) def tcmp_to_quick_chat(tmcp: ActionType): return { ActionType.BALL: QuickChats.Information_IGotIt, ActionType.READY: QuickChats.Information_AllYours, ActionType.BOOST: QuickChats.Information_NeedBoost, ActionType.DEMO: QuickChats.Information_TakeTheShot, ActionType.DEFEND: QuickChats.Information_Defending }[tmcp] def quick_chat_to_tcmp(qc_msg) -> Optional[ActionType]: mapping = { QuickChats.Information_IGotIt: ActionType.BALL, QuickChats.Information_AllYours: ActionType.WAIT, QuickChats.Information_NeedBoost: ActionType.BOOST, QuickChats.Information_TakeTheShot: ActionType.DEMO, QuickChats.Information_Defending: ActionType.DEFEND } return mapping[qc_msg] if qc_msg in mapping else None def is_near_wall(point: Vec3, offset: float=110) -> bool: return abs(point.x) > Field.WIDTH - offset or abs(point.y) > Field.LENGTH - offset # TODO Add diagonal walls
the-stack_0_19421
"""This module contains the general information for VnicIScsiBootParams ManagedObject.""" from ...ucscentralmo import ManagedObject from ...ucscentralcoremeta import UcsCentralVersion, MoPropertyMeta, MoMeta from ...ucscentralmeta import VersionMeta class VnicIScsiBootParamsConsts(): INT_ID_NONE = "none" OWNER_MANAGEMENT = "management" OWNER_PHYSICAL_DEFAULT_CONFIG = "physical-default-config" OWNER_PHYSICAL_INHERIT = "physical-inherit" OWNER_POLICY = "policy" OWNER_SYSTEM = "system" OWNER_TIER = "tier" POLICY_OWNER_LOCAL = "local" POLICY_OWNER_PENDING_POLICY = "pending-policy" POLICY_OWNER_POLICY = "policy" POLICY_OWNER_UNSPECIFIED = "unspecified" class VnicIScsiBootParams(ManagedObject): """This is VnicIScsiBootParams class.""" consts = VnicIScsiBootParamsConsts() naming_props = set([]) mo_meta = MoMeta("VnicIScsiBootParams", "vnicIScsiBootParams", "iscsi-boot-params", VersionMeta.Version111a, "InputOutput", 0x1f, [], ["admin", "ls-compute", "ls-config", "ls-network", "ls-server", "ls-storage"], [u'lsServer'], [u'vnicIScsiBootVnic'], ["Add", "Get", "Remove", "Set"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version111a, MoPropertyMeta.INTERNAL, None, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "descr": MoPropertyMeta("descr", "descr", "string", VersionMeta.Version111a, MoPropertyMeta.READ_WRITE, 0x2, None, None, r"""[ !#$%&\(\)\*\+,\-\./:;\?@\[\]_\{\|\}~a-zA-Z0-9]{0,256}""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version111a, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "int_id": MoPropertyMeta("int_id", "intId", "string", VersionMeta.Version111a, MoPropertyMeta.INTERNAL, None, None, None, None, ["none"], ["0-4294967295"]), "name": MoPropertyMeta("name", "name", "string", VersionMeta.Version111a, MoPropertyMeta.READ_ONLY, None, None, None, r"""[\-\.:_a-zA-Z0-9]{0,16}""", [], []), "owner": MoPropertyMeta("owner", "owner", "string", VersionMeta.Version131a, MoPropertyMeta.READ_ONLY, None, None, None, None, ["management", "physical-default-config", "physical-inherit", "policy", "system", "tier"], []), "policy_level": MoPropertyMeta("policy_level", "policyLevel", "uint", VersionMeta.Version111a, MoPropertyMeta.READ_ONLY, None, None, None, None, [], []), "policy_owner": MoPropertyMeta("policy_owner", "policyOwner", "string", VersionMeta.Version111a, MoPropertyMeta.READ_ONLY, None, None, None, None, ["local", "pending-policy", "policy", "unspecified"], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version111a, MoPropertyMeta.READ_ONLY, 0x8, 0, 256, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version111a, MoPropertyMeta.READ_WRITE, 0x10, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), } prop_map = { "childAction": "child_action", "descr": "descr", "dn": "dn", "intId": "int_id", "name": "name", "owner": "owner", "policyLevel": "policy_level", "policyOwner": "policy_owner", "rn": "rn", "status": "status", } def __init__(self, parent_mo_or_dn, **kwargs): self._dirty_mask = 0 self.child_action = None self.descr = None self.int_id = None self.name = None self.owner = None self.policy_level = None self.policy_owner = None self.status = None ManagedObject.__init__(self, "VnicIScsiBootParams", parent_mo_or_dn, **kwargs)
the-stack_0_19422
# Copyright 2020 Florian Wagner <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from asn1crypto import x509,pem from base64 import b64decode from urllib.parse import unquote_to_bytes BEGIN_LEN = 27 END_LEN = 25 def decode_header(hdr): if hdr.startswith(b'-----BEGIN'): if hdr[10:13] == b'%20': return unquote_to_bytes(hdr) return ( hdr[:BEGIN_LEN] + hdr[BEGIN_LEN:-END_LEN].replace(b' ', b'\n') + hdr[-END_LEN:] ) try: return b64decode(hdr, validate=True) except: return None def load_certificate(data): try: _,_,data = pem.unarmor(data) finally: try: return x509.Certificate.load(data) except: return None
the-stack_0_19423
from . import db class BaseModel(db.Model): __abstract__ = True __schemaname__ = '' __table_args__ = {'autoload': True, 'autoload_with': db.engine, 'extend_existing': True} @classmethod def get_schema(cls): from api import schemas return getattr(schemas, cls.__schemaname__)
the-stack_0_19424
# -*- coding: utf-8 -*- ''' Management of OpenStack Neutron Security Groups =============================================== .. versionadded:: 2018.3.0 :depends: shade :configuration: see :py:mod:`salt.modules.neutronng` for setup instructions Example States .. code-block:: yaml create security group; neutron_secgroup.present: - name: security_group1 - description: "Very Secure Security Group" delete security group: neutron_secgroup.absent: - name_or_id: security_group1 - project_name: Project1 create security group with optional params: neutron_secgroup.present: - name: security_group1 - description: "Very Secure Security Group" - project_id: 1dcac318a83b4610b7a7f7ba01465548 create security group with optional params: neutron_secgroup.present: - name: security_group1 - description: "Very Secure Security Group" - project_name: Project1 ''' from __future__ import absolute_import, print_function, unicode_literals __virtualname__ = 'neutron_secgroup' def __virtual__(): if 'neutronng.list_subnets' in __salt__: return __virtualname__ return (False, 'The neutronng execution module failed to load:\ shade python module is not available') def present(name, auth=None, **kwargs): ''' Ensure a security group exists. You can supply either project_name or project_id. Creating a default security group will not show up as a change; it gets created through the lookup process. name Name of the security group description Description of the security group project_name Name of Project project_id ID of Project ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} kwargs = __utils__['args.clean_kwargs'](**kwargs) __salt__['neutronng.setup_clouds'](auth) if 'project_name' in kwargs: kwargs['project_id'] = kwargs['project_name'] del kwargs['project_name'] project = __salt__['keystoneng.project_get']( name=kwargs['project_id']) if project is None: ret['result'] = False ret['comment'] = "project does not exist" return ret secgroup = __salt__['neutronng.security_group_get']( name=name, filters={'tenant_id': project.id}) if secgroup is None: if __opts__['test'] is True: ret['result'] = None ret['changes'] = kwargs ret['comment'] = 'Security Group will be created.' return ret secgroup = __salt__['neutronng.security_group_create'](**kwargs) ret['changes'] = secgroup ret['comment'] = 'Created security group' return ret changes = __salt__['neutronng.compare_changes'](secgroup, **kwargs) if changes: if __opts__['test'] is True: ret['result'] = None ret['changes'] = changes ret['comment'] = 'Security Group will be updated.' return ret __salt__['neutronng.security_group_update'](secgroup=secgroup, **changes) ret['changes'].update(changes) ret['comment'] = 'Updated security group' return ret def absent(name, auth=None, **kwargs): ''' Ensure a security group does not exist name Name of the security group ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} kwargs = __utils__['args.clean_kwargs'](**kwargs) __salt__['neutronng.setup_clouds'](auth) kwargs['project_id'] = __salt__['keystoneng.project_get']( name=kwargs['project_name']) secgroup = __salt__['neutronng.security_group_get']( name=name, filters={'project_id': kwargs['project_id']} ) if secgroup: if __opts__['test'] is True: ret['result'] = None ret['changes'] = {'id': secgroup.id} ret['comment'] = 'Security group will be deleted.' return ret __salt__['neutronng.security_group_delete'](name=secgroup) ret['changes']['id'] = name ret['comment'] = 'Deleted security group' return ret
the-stack_0_19426
from ansible.module_utils.basic import AnsibleModule import os import string import pymysql import io import configparser def main(): module = AnsibleModule( argument_spec = dict( mysql_dbname = dict(type='str', default='_dbispconfig'), mysql_user = dict(type='str', default='_ispconfig'), mysql_pass = dict(required=True, type='str', no_log=True), server = dict(required=True, type="str"), ini_group = dict(required=True, type="str"), ini_option = dict(required=True, type='str'), ini_value = dict(type='str', default="") ) ) c = pymysql.connect( host='localhost', user=module.params['mysql_user'], password=module.params['mysql_pass'], db=module.params['mysql_dbname'], charset='utf8', cursorclass=pymysql.cursors.DictCursor ) cursor = c.cursor() sql = 'SELECT config FROM sys_ini WHERE sysini_id = 1' cursor.execute(sql) raw_ini = cursor.fetchone()['config'] ini = configparser.ConfigParser() ini.read_string(raw_ini) changed = False ini_group = module.params['ini_group'] ini_option = module.params['ini_option'] ini_value = module.params['ini_value'] try: current_value = ini[ini_group][ini_option] except: current_value = None if current_value != ini_value: changed = True ini[ini_group][ini_option] = ini_value stream = io.StringIO() ini.write(stream, space_around_delimiters=False) raw_ini = stream.getvalue().replace("\'", '\\\'').replace("\"", "\\\"") sql = 'UPDATE sys_ini SET config = "%s" WHERE sysini_id = 1' % raw_ini cursor.execute(sql) c.commit() cursor.close() c.close() if changed is None: raise module.fail_json(msg='bug: no changed value was set') module.exit_json(changed=changed) if __name__ == '__main__': main()
the-stack_0_19427
from abc import ABC, abstractmethod from typing import Generic, Optional from .state import State from .typing import TReturn class ProcessAPI(ABC, Generic[TReturn]): # # State # @property @abstractmethod def state(self) -> State: ... @state.setter def state(self, value: State) -> State: raise NotImplementedError @abstractmethod async def wait_for_state(self, state: State) -> None: ... # # PID # @property @abstractmethod def pid(self) -> int: ... @pid.setter def pid(self, value: int) -> None: raise NotImplementedError @abstractmethod async def wait_pid(self) -> int: ... # # Return Value # @property @abstractmethod def return_value(self) -> TReturn: ... @return_value.setter def return_value(self, value: TReturn) -> None: raise NotImplementedError @abstractmethod async def wait_return_value(self) -> TReturn: ... # # Return Code # @property @abstractmethod def returncode(self) -> int: ... @returncode.setter def returncode(self, value: int) -> None: raise NotImplementedError @abstractmethod async def wait_returncode(self) -> int: ... # # Error # @property @abstractmethod def error(self) -> Optional[BaseException]: ... @error.setter def error(self, value: BaseException) -> None: raise NotImplementedError @abstractmethod async def wait_error(self) -> Optional[BaseException]: ... # # Result # @property @abstractmethod def result(self) -> TReturn: ... @abstractmethod async def wait_result(self) -> TReturn: ... # # Lifecycle management APIs # @abstractmethod async def wait(self) -> None: ... @abstractmethod def poll(self) -> Optional[int]: ... @abstractmethod def kill(self) -> None: ... @abstractmethod def terminate(self) -> None: ... @abstractmethod def send_signal(self, sig: int) -> None: ...
the-stack_0_19428
import csv import itertools import operator import numpy as np import nltk import os from rdkit import Chem from rdkit.Chem import Draw from IPython import display ##import matplotlib.pyplot as plt from rdkit.Chem import Descriptors def zinc_data_with_bracket(): sen_space=[] #f = open('/Users/yang/smiles.csv', 'rb') #f = open('/Users/yang/LSTM-chemical-project/smile_trainning.csv', 'rb') f = open('/home/yang/LSTM-chemical-project/data/250k_rndm_zinc_drugs_clean.smi', 'rb') reader = csv.reader(f) for row in reader: #word_space[row].append(reader[row]) #print word_sapce sen_space.append(row) #print sen_space f.close() word1=sen_space[0] word_space=list(word1[0]) end="\n" zinc_processed=[] organic_smile=[] t=0 for i in range(len(sen_space)): word1=sen_space[i] m = Chem.MolFromSmiles(word1[0]) Chem.Kekulize(m) s=Chem.MolToSmiles(m,kekuleSmiles=True) zinc_processed.append(s) #word_space=list(word1[0]) #print len(zinc_processed) while t <len(zinc_processed): #print t word2=zinc_processed[t] word_space=list(word2) word=[] organic_smile.append(word_space) t=t+1 #print len(organic_smile) #print organic_smile return organic_smile def zinc_processed_with_bracket(sen_space): #print sen_space all_smile=[] length=[] end="\n" element_table=["C","N","B","O","P","S","F","Cl","Br","I","(",")","=","#"] ring=["1","2","3","4","5","6","7","8","9","10"] for i in range(len(sen_space)): #word1=sen_space[i] word_space=sen_space[i] word=[] #word_space.insert(0,end) j=0 while j<len(word_space): word_space1=[] #word_space1.append(word_space[j]) if word_space[j]=="[": word_space1.append(word_space[j]) j=j+1 while word_space[j]!="]": word_space1.append(word_space[j]) j=j+1 word_space1.append(word_space[j]) word_space2=''.join(word_space1) word.append(word_space2) j=j+1 else: word_space1.append(word_space[j]) if j+1<len(word_space): word_space1.append(word_space[j+1]) word_space2=''.join(word_space1) else: word_space1.insert(0,word_space[j-1]) word_space2=''.join(word_space1) if word_space2 not in element_table: word.append(word_space[j]) j=j+1 else: word.append(word_space2) j=j+2 word.append(end) word.insert(0,"&") len1=len(word) length.append(len1) all_smile.append(list(word)) #print all_smile val=["\n"] for i in range(len(all_smile)): for j in range(len(all_smile[i])): if all_smile[i][j] not in val: val.append(all_smile[i][j]) #print val #val.remove("\n") #val.insert(0,"\n") #print val #print all_smile[0] #print all_smile[1] #print all_smile[2] #print len(all_smile) #print max(length) #print len(val) return val, all_smile def zinc_logp(smile): logp_value=[] compound=[] for i in range(len(smile)): middle=[] for j in range(len(smile[i])): middle.append(smile[i][j]) com=''.join(middle) compound.append(com) for i in range(len(compound)): m = Chem.MolFromSmiles(compound[i]) logp=Descriptors.MolLogP(m) logp_value.append(logp) ma=6.66134 print(max(logp_value)) print(logp_value) def zinc_data_with_bracket_original(): sen_space=[] #f = open('/Users/yang/smiles.csv', 'rb') #f = open('/Users/yang/LSTM-chemical-project/smile_trainning.csv', 'rb') f = open('../data/250k_rndm_zinc_drugs_clean.smi', 'rt') reader = csv.reader(f) for row in reader: #word_space[row].append(reader[row]) #print word_sapce sen_space.append(row) #print sen_space f.close() word1=sen_space[0] word_space=list(word1[0]) end="\n" zinc_processed=[] organic_smile=[] t=0 for i in range(len(sen_space)): word1=sen_space[i] #m = Chem.MolFromSmiles(word1[0]) #Chem.Kekulize(m) #s=Chem.MolToSmiles(m,kekuleSmiles=True) zinc_processed.append(word1[0]) #word_space=list(word1[0]) #print len(zinc_processed) #while t <len(zinc_processed): # #print t # word2=zinc_processed[t] # word_space=list(word2) # word=[] # organic_smile.append(word_space) # t=t+1 #print len(organic_smile) #print organic_smile #print zinc_processed[0] return zinc_processed #hi=organic() #organic_logp(hi) #hi=zinc_data_with_bracket_original() #zinc_logp(hi) #zinc_processed_with_bracket(hi)
the-stack_0_19429
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 22 11:05:20 2020 @author: ravi """ for t in range(int(input())): s = input() print(s == s[::-1] and "YES" or "NO")
the-stack_0_19430
"""Pavilion Test configurations, like the base Pavilion configuration, utilize the YamlConfig library to define the config structure. Because of the dynamic nature of test configs, there are a few extra complications this module handles that are documented below. """ from collections import OrderedDict import re import yaml_config as yc class TestConfigError(ValueError): """An exception specific to errors in configuration.""" TEST_NAME_RE_STR = r'^[a-zA-Z_][a-zA-Z0-9_-]*$' TEST_NAME_RE = re.compile(TEST_NAME_RE_STR) KEY_NAME_RE = re.compile(r'^[a-zA-Z][a-zA-Z0-9_-]*$') VAR_KEY_NAME_RE = re.compile(r'^[a-zA-Z][a-zA-Z0-9_]*$') VAR_NAME_RE = re.compile(r'^[a-zA-Z][a-zA-Z0-9_]*[?+]?$') class PathCategoryElem(yc.CategoryElem): """This is for category elements that need a valid unix path regex.""" _NAME_RE = re.compile(r".+$") class VariableElem(yc.CategoryElem): """This is for values in the 'variables' section of a test config. A variable entry can be either a single string value or an arbitrary dictionary of strings. If we get a single value, we'll return it instead of a dict. Pavilion's variable handling code handles the normalization of these values. """ _NAME_RE = VAR_KEY_NAME_RE def __init__(self, name=None, **kwargs): """Just like a CategoryElem, but the sub_elem must be a StrElem and it can't have defaults.""" super(VariableElem, self).__init__(name=name, sub_elem=yc.StrElem(), defaults=None, **kwargs) def normalize(self, value): """Normalize to either a dict of strings or just a string.""" if not isinstance(value, dict): return yc.StrElem().normalize(value) return super().normalize(value) def validate(self, value, partial=False): """Check for a single item and return it, otherwise return a dict.""" if isinstance(value, str): return value return super().validate(value, partial=partial) class CondCategoryElem(yc.CategoryElem): """Allow any key. They'll be validated later.""" _NAME_RE = re.compile(r'^.*$') class EvalCategoryElem(yc.CategoryElem): """Allow keys that start with underscore. Lowercase only.""" _NAME_RE = re.compile(r'[a-z_][a-z0-9_]*') class VarKeyCategoryElem(yc.CategoryElem): """Allow Pavilion variable name like keys.""" # Allow names that have multiple, dot separated components, potentially # including a '*'. _NAME_RE = re.compile(r'^(?:[a-zA-Z][a-zA-Z0-9_-]*)' r'(?:\.|[a-zA-Z][a-zA-Z0-9_-]*)*') class ResultParserCatElem(yc.CategoryElem): _NAME_RE = re.compile( r'^[a-zA-Z_]\w*(\s*,\s*[a-zA-Z_]\w*)*$' ) class VarCatElem(yc.CategoryElem): """For describing how the variables section itself works. Just like a regular category elem (any conforming key, but values must be the same type), but with some special magic when merging values. :cvar _NAME_RE: Unlike normal categoryElem keys, these can have dashes. """ _NAME_RE = VAR_NAME_RE def merge(self, old, new): """Merge, but allow for special keys that change our merge behavior. 'key?: value' Allows values from lower levels in the config stack to override this one. The value is only used if no other value is given. 'key+: value/s' The values are appended to the list of whatever is given by lower levels of the config stack. """ base = old.copy() for key, value in new.items(): # Handle special key properties if key[-1] in '?+': bkey = key[:-1] new_vals = new[key] if key.endswith('?'): if new_vals is None: raise TestConfigError( "Key '{key}' in variables section must have a " "value, either set as the default at this level or " "provided by an underlying host or mode config." .format(key=key) ) # Use the new value only if there isn't an old one. base[bkey] = base.get(bkey, new[key]) elif key.endswith('+'): if new_vals is None: raise TestConfigError( "Key '{key}' in variables section is in extend " "mode, but provided no values." .format(key=key)) # Appending the additional (unique) values base[bkey] = base.get(bkey, self._sub_elem.type()) for item in new_vals: if item not in base[bkey]: base[bkey].append(item) elif key in old: base[key] = self._sub_elem.merge(old[key], new[key]) else: base[key] = new[key] return base class EnvCatElem(yc.CategoryElem): """A category element that ensures environment variables retain their order.""" _NAME_RE = re.compile(r'^[a-zA-Z][a-zA-Z0-9_]*$') type = OrderedDict class TestConfigLoader(yc.YamlConfigLoader): """This class describes a test section in a Pavilion config file. It is expected to be added to by various plugins. :cvar list(yc.YamlConfig) ELEMENTS: Each YamlConfig instance in this list defines a key for the test config. - Each element must result in a string (which is why you see a lot of StrElem below), or a structure that contains only strings at the lowest layer. - So lists of dicts of strings are fine, etc. - yc.RegexElem also produces a string. - Everything should have a sensible default. - An empty config should be a valid test. - For bool values, accept ['true', 'false', 'True', 'False']. - They should be checked with val.lower() == 'true', etc. - Every element must have a useful 'help_text'. """ ELEMENTS = [ yc.StrElem( 'name', hidden=True, default='<unnamed>', help_text="The base name of the test. Value added automatically."), yc.StrElem( 'suite', hidden=True, default='<no_suite>', help_text="The name of the suite. Value added automatically."), yc.StrElem( 'suite_path', hidden=True, default='<no_suite>', help_text="Path to the suite file. Value added automatically."), yc.StrElem( 'host', hidden=True, default='<unknown>', help_text="Host (typically sys.sys_name) for which this test was " "created. Value added automatically." ), yc.ListElem( 'modes', hidden=True, sub_elem=yc.StrElem(), help_text="Modes used in the creation of this test. Value is added " "automatically." ), yc.RegexElem( 'inherits_from', regex=TEST_NAME_RE_STR, help_text="Inherit from the given test section, and override " "parameters those specified in this one. Lists are " "overridden entirely"), yc.StrElem( 'subtitle', help_text="An extended title for this test. Required for " "permuted tests."), yc.StrElem( 'group', default=None, help_text="The group under which to build and run tests. " "Defaults to the group specified in pavilion.yaml." ), yc.RegexElem( 'umask', regex=r'[0-7]{3}', default=None, help_text="The octal umask to apply to files created during the " "build and run processes. Defaults to the umask in " "pavilion.yaml." ), yc.KeyedElem( 'maintainer', help_text="Information about who maintains this test.", elements=[ yc.StrElem('name', default='unknown', help_text="Name or organization of the maintainer."), yc.StrElem('email', help_text="Email address of the test maintainer."), ] ), yc.StrElem( 'summary', help_text="Summary of the purpose of this test." ), yc.StrElem( 'doc', help_text="Detailed documentation string for this test." ), yc.ListElem( 'permute_on', sub_elem=yc.StrElem(), help_text="List of permuted variables. For every permutation of " "the values of these variables, a new virtual test will " "be generated." ), VarCatElem( 'variables', sub_elem=yc.ListElem(sub_elem=VariableElem()), help_text="Variables for this test section. These can be " "inserted strings anywhere else in the config through " "the string syntax. They keys 'var', 'per', 'pav', " "'sys' and 'sched' reserved. Each value may be a " "single or list of strings key/string pairs."), yc.RegexElem('scheduler', regex=r'\w+', default="raw", help_text="The scheduler class to use to run this test."), CondCategoryElem( 'only_if', sub_elem=yc.ListElem(sub_elem=yc.StrElem()), key_case=EnvCatElem.KC_MIXED, help_text="Only run this test if each of the clauses in this " "section evaluate to true. Each clause consists of " "a mapping key (that can contain Pavilion variable " "references, like '{{pav.user}}' or '{{sys.sys_arch}}'" ") and one or more regex values" "(that much match the whole key). A clause is true " "if the value of the Pavilion variable matches one or" " more of the values. " ), CondCategoryElem( 'not_if', sub_elem=yc.ListElem(sub_elem=yc.StrElem()), key_case=EnvCatElem.KC_MIXED, help_text="Will NOT run this test if at least one of the " "clauses evaluates to true. Each clause consists of " "a mapping key (that can contain Pavilion variable " "references, like '{{pav.user}}' or " "'{{sys.sys_arch}}') and one or more " "regex values (that much match the whole key)." "A clause is true if the value of " "the Pavilion variable matches one or more of the " " values." ), yc.StrElem( 'compatible_pav_versions', default='', help_text="Specify compatibile pavilion versions for this " "specific test. Can be represented as a single " "version, ex: 1, 1.2, 1.2.3, or a range, " "ex: 1.2-1.3.4, etc." ), yc.StrElem( 'test_version', default='0.0', help_text="Documented test version." ), yc.KeyedElem( 'build', elements=[ yc.ListElem( 'cmds', sub_elem=yc.StrElem(), help_text='The sequence of commands to run to perform ' 'the build.'), yc.ListElem( 'prepend_cmds', sub_elem=yc.StrElem(), help_text='Commands to run before inherited build ' 'commands.'), yc.ListElem( 'append_cmds', sub_elem=yc.StrElem(), help_text='Commands to run after inherited build ' 'commands.'), yc.ListElem( 'copy_files', sub_elem=yc.StrElem(), help_text="When attaching the build to a test run, copy " "these files instead of creating a symlink." "They may include path glob wildcards, " "including the recursive '**'."), PathCategoryElem( 'create_files', key_case=PathCategoryElem.KC_MIXED, sub_elem=yc.ListElem(sub_elem=yc.StrElem()), help_text="File(s) to create at path relative to the test's" "test source directory"), EnvCatElem( 'env', sub_elem=yc.StrElem(), key_case=EnvCatElem.KC_MIXED, help_text="Environment variables to set in the build " "environment."), yc.ListElem( 'extra_files', sub_elem=yc.StrElem(), help_text='File(s) to copy into the build environment. ' 'Relative paths searched for in ~/.pavilion, ' '$PAV_CONFIG. Absolute paths are ok, ' 'but not recommended.'), yc.ListElem( 'modules', sub_elem=yc.StrElem(), help_text="Modules to load into the build environment."), yc.StrElem( 'on_nodes', default='False', choices=['true', 'false', 'True', 'False'], help_text="Whether to build on or off of the test " "allocation."), yc.ListElem( 'preamble', sub_elem=yc.StrElem(), help_text="Setup commands for the beginning of the build " "script. Added to the beginning of the run " "script. These are generally expected to " "be host rather than test specific."), yc.StrElem( 'source_path', help_text="Path to the test source. It may be a directory, " "compressed file, compressed or " "uncompressed archive (zip/tar), and is handled " "according to the internal (file-magic) type. " "For relative paths Pavilion looks in the " "test_src directory " "within all known config directories. If this " "is left blank, Pavilion will always assume " "there is no source to build."), yc.StrElem( 'source_url', help_text='Where to find the source on the internet. By ' 'default, Pavilion will try to download the ' 'source from the given URL if the source file ' 'can\'t otherwise be found. You must give a ' 'source path so Pavilion knows where to store ' 'the file (relative paths will be stored ' 'relative to the local test_src directory.'), yc.StrElem( 'source_download', choices=['never', 'missing', 'latest'], default='missing', help_text="When to attempt to download the test source.\n" " never - The url is for reference only.\n" " missing - (default) Download if the source " "can't be found.\n" " latest - Always try to fetch the latest " "source, tracking changes by " "file size/timestamp/hash." ), yc.StrElem( 'specificity', default='', help_text="Use this string, along with variables, to " "differentiate builds. A common example would be " "to make per-host specific by using the " "sys.sys_name variable. Note _deferred_ system " "variables aren't a good idea hereas configs are " "compiled on the host that launches the test."), yc.StrElem( 'timeout', default='30', help_text="Time (in seconds) that a build can continue " "without generating new output before it is " "cancelled. Can be left empty for no timeout."), yc.StrElem( 'verbose', choices=['true', 'True', 'False', 'false'], default='False', help_text="Echo commands (including sourced files) in the" " build log, and print the modules loaded and " "environment before the cmds run."), yc.StrElem( 'timeout_file', default=None, help_text='Specify a different file to follow for build ' 'timeouts.'), ], help_text="The test build configuration. This will be " "used to dynamically generate a build script for " "building the test."), yc.KeyedElem( 'run', elements=[ yc.ListElem('cmds', sub_elem=yc.StrElem(), help_text='The sequence of commands to run to run ' 'the test.'), yc.ListElem( 'prepend_cmds', sub_elem=yc.StrElem(), help_text='Commands to run before inherited build ' 'commands.'), yc.ListElem( 'append_cmds', sub_elem=yc.StrElem(), help_text='Commands to run after inherited build ' 'commands.'), PathCategoryElem( 'create_files', key_case=PathCategoryElem.KC_MIXED, sub_elem=yc.ListElem(sub_elem=yc.StrElem()), help_text="File(s) to create at path relative to the test's" "test source directory"), EnvCatElem( 'env', sub_elem=yc.StrElem(), key_case=EnvCatElem.KC_MIXED, help_text="Environment variables to set in the run " "environment."), yc.ListElem( 'modules', sub_elem=yc.StrElem(), help_text="Modules to load into the run environment."), yc.ListElem( 'preamble', sub_elem=yc.StrElem(), help_text="Setup commands for the beginning of the build " "script. Added to the beginning of the run " "script. These are generally expected to " "be host rather than test specific."), yc.StrElem( 'timeout', default='300', help_text="Time that a build can continue without " "generating new output before it is cancelled. " "Can be left empty for no timeout."), yc.StrElem( 'verbose', choices=['true', 'True', 'False', 'false'], default='False', help_text="Echo commands (including sourced files) in the " "build log, and print the modules loaded and " "environment before the cmds run."), yc.StrElem( 'timeout_file', default=None, help_text='Specify a different file to follow for run ' 'timeouts.'), ], help_text="The test run configuration. This will be used " "to dynamically generate a run script for the " "test."), EvalCategoryElem( 'result_evaluate', sub_elem=yc.StrElem(), help_text="The keys and values in this section will also " "be added to the result json. The values are " "expressions (like in {{<expr>}} in normal Pavilion " "strings). Other result values (including those " "from result parsers and other evaluations are " "available to reference as variables."), ] # We'll append the result parsers separately, to have an easy way to # access it. _RESULT_PARSERS = yc.KeyedElem( 'result_parse', elements=[], help_text="Result parser configurations go here. Each parser config " "can occur by itself or as a list of configs, in which " "case the parser will run once for each config given. The " "output of these parsers will be added to the final " "result json data.") ELEMENTS.append(_RESULT_PARSERS) @classmethod def add_subsection(cls, subsection): """Use this method to add additional sub-sections to the config. :param yc.ConfigElem subsection: A yaml config element to add. Keyed elements are expected, though any ConfigElem based instance (whose leave elements are StrElems) should work. """ if not isinstance(subsection, yc.ConfigElement): raise ValueError("Tried to add a subsection to the config, but it " "wasn't a yaml_config ConfigElement instance (or " "an instance of a ConfigElement child " "class).") name = subsection.name names = [el.name for el in cls.ELEMENTS] if name in names: raise ValueError("Tried to add a subsection to the config called " "{0}, but one already exists.".format(name)) try: cls.check_leaves(subsection) except ValueError as err: raise ValueError("Tried to add result parser named '{}', but " "leaf element '{}' was not string based." .format(name, err.args[0])) cls.ELEMENTS.append(subsection) @classmethod def remove_subsection(cls, subsection_name): """Remove a subsection from the config. This is really only for use in plugin deactivate methods.""" for section in list(cls.ELEMENTS): if subsection_name == section.name: cls.ELEMENTS.remove(section) return @classmethod def add_result_parser_config(cls, name, config_items): """Add the given list of config items as a result parser configuration named 'name'. Throws errors for invalid configuraitons. """ # Validate the config. required_keys = { 'files': False, 'action': False, 'per_file': False, } for item in config_items: for req_key in required_keys.keys(): if item.name == req_key: required_keys[req_key] = True for req_key, found in required_keys.items(): if not found: raise TestConfigError( "Result parser '{}' must have a required config " "element named '{}'".format(name, req_key)) config = yc.KeyedElem( 'result_parser_{}'.format(name), elements=config_items ) list_elem = ResultParserCatElem(name, sub_elem=config) if name in [e.name for e in cls._RESULT_PARSERS.config_elems.values()]: raise ValueError("Tried to add result parser with name '{}'" "to the config, but one already exists." .format(name)) try: cls.check_leaves(config) except ValueError as err: raise ValueError("Tried to add result parser named '{}', but " "leaf element '{}' was not string based." .format(name, err.args[0])) cls._RESULT_PARSERS.config_elems[name] = list_elem @classmethod def remove_result_parser_config(cls, name): """Remove the given result parser from the result parser configuration section. :param str name: The name of the parser to remove. """ for section in list(cls._RESULT_PARSERS.config_elems.values()): if section.name == name: del cls._RESULT_PARSERS.config_elems[section.name] return @classmethod def check_leaves(cls, elem): """Make sure all of the config elements have a string element or equivalent as the final node. :param yc.ConfigElement elem: """ # pylint: disable=protected-access if hasattr(elem, 'config_elems'): for sub_elem in elem.config_elems.values(): cls.check_leaves(sub_elem) elif hasattr(elem, '_sub_elem') and elem._sub_elem is not None: cls.check_leaves(elem._sub_elem) elif issubclass(elem.type, str): return else: raise ValueError(elem) def TestSuiteLoader(): # pylint: disable=invalid-name """Create a new test suite loader instance. This is a function masquerading as a constructor because the class has to be defined dynamically after plugins have modified the test config. """ class _TestSuiteLoader(yc.CatYamlConfigLoader): """An actual test config file consists of multiple config sections.""" _NAME_RE = TEST_NAME_RE # We use the list of ELEMENTS from TestConfigLoader. since this is the # same object, subsections added to TestConfigLoader will get picked up # here too. BASE = yc.KeyedElem(elements=TestConfigLoader.ELEMENTS) return _TestSuiteLoader()
the-stack_0_19432
import torch from tfrecord.torch.dataset import MultiTFRecordDataset from tfrecord.tools.tfrecord2idx import create_index import tensorflow as tf import webdataset as wds from pathlib import Path import argparse import timeit import os parser = argparse.ArgumentParser("""Generate sharded dataset from tfrecord-files.""") parser.add_argument("--maxsize", type=float, default=1e9) parser.add_argument("--maxcount", type=float, default=100000) parser.add_argument( "--compression", dest="compression", action="store_true", help="Creates compressed .tar.gz files instead of uncompressed .tar files." ) parser.add_argument( "--keep_keys", type=str, default="", help="Only keep the columns from the comma separated keys from that argument." ) parser.add_argument( "--report_every", type=int, default="1000", help="Report every n iterations." ) parser.add_argument( "--shards", default="./shards", help="directory where shards are written" ) parser.add_argument( "--shard_prefix", default="ds_", help="prefix of shards' filenames created in the shards-folder" ) parser.add_argument( "--data", default="./tfr", help="directory path containing tfrecord files", ) args = parser.parse_args() KEEP_KEYS = [] if args.keep_keys != '': KEEP_KEYS = args.keep_keys.split(',') assert args.maxsize > 10000000 assert args.maxcount < 1000000 assert os.path.isdir(os.path.join(args.data)), '{} does not exist.'.format(args.data) os.makedirs(Path(args.shards), exist_ok=True) index_path = args.data tfrecord_pattern = args.data + '/{}.tfrecord' index_pattern = index_path + '/{}.index' os.makedirs(index_path, exist_ok=True) tfrecord_files = [x[:-9] for x in os.listdir(args.data) if x.split('.')[-1] == 'tfrecord'] total_files = len(tfrecord_files) splits = {k: 1/total_files for k in tfrecord_files} tfrecord_index_files = [x[:-6] for x in os.listdir(index_path) if x.split('.')[-1] == 'index'] total_index_files = len(tfrecord_index_files) TFR_MATCH_INDEX = True if len([x for x in tfrecord_files if x not in tfrecord_index_files]) == 0 else False if not TFR_MATCH_INDEX: print('Index files must be provided when using multiple workers, otherwise the loader may return duplicate records.') print('Generating index files in {}...'.format(index_path)) for tfrecord_file in tfrecord_files: create_index(args.data + '/' + tfrecord_file + '.tfrecord', index_path + '/' + tfrecord_file + '.index') print('Finished generating index files!') else: print('Found matching number of index and tfrecord files.') raw_dataset = tf.data.TFRecordDataset(args.data + '/' + [x for x in os.listdir(args.data) if x.split('.')[-1] == 'tfrecord'][0]) keys = {} for raw_record in raw_dataset.take(1): example = tf.train.Example() example.ParseFromString(raw_record.numpy()) for key, value in example.features.feature.items(): keys[key] = True if value.WhichOneof('kind') == 'bytes_list' else False if len(KEEP_KEYS) > 0: keys = {k: v for k, v in keys.items() if k in KEEP_KEYS} assert len(keys.items()) > 0, 'No keys left to convert to WebDataset.' def _parse_example(example_proto): """Return the example_proto as a tuple of the image and its label.""" return {key: example_proto[key].tobytes() for key in keys} # return {key: example_proto[key].tobytes() if keys[key] else example_proto[key] for key in keys} def _collate_fn(batch): return batch[0] dataset = MultiTFRecordDataset(tfrecord_pattern, index_pattern, splits, transform=_parse_example, infinite=False) loader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=_collate_fn, drop_last=False) # This is the output pattern under which we write shards. pattern = os.path.join(args.shards, args.shard_prefix + f"%06d.tar" + (".gz" if args.compression else '')) count = 0 start = timeit.default_timer() with wds.ShardWriter(pattern, maxsize=int(args.maxsize), maxcount=int(args.maxcount)) as sink: for i, item in enumerate(iter(loader)): count = i ds_key = "%09d" % i sample = { "__key__": ds_key, } for key in keys: sample[key] = item[key] sink.write(sample) if count % args.report_every == 0: print(' {:,}'.format(count), end='\r') stop = timeit.default_timer() print('###################################################################') print('Finished converting {:,} samples from tfrecord files to webdataset.'.format(count)) print('Process took {:.2f} seconds to finish.'.format(stop - start)) print('###################################################################')
the-stack_0_19436
from flask import render_template from flask_cors import CORS import connexion # Create the application instance app = connexion.App(__name__, specification_dir='./') # Read the swagger.yml file to configure the endpoints app.add_api('swagger.yml') CORS(app.app) @app.route('/') def home(): """ This function just responds to the browser ULR localhost:5000/ :return: the rendered template 'home.html' """ return render_template('home.html') if __name__ == '__main__': app.run(host='0.0.0.0', port=5002, debug=True)
the-stack_0_19440
import unittest import os import requests_mock import tableauserverclient as TSC import xml.etree.ElementTree as ET from tableauserverclient.datetime_helpers import format_datetime from tableauserverclient.server.endpoint.exceptions import InternalServerError from tableauserverclient.server.request_factory import RequestFactory from tableauserverclient.models.permissions_item import PermissionsRule from tableauserverclient.models.user_item import UserItem from tableauserverclient.models.group_item import GroupItem from ._utils import asset TEST_ASSET_DIR = os.path.join(os.path.dirname(__file__), 'assets') ADD_TAGS_XML = os.path.join(TEST_ASSET_DIR, 'workbook_add_tags.xml') GET_BY_ID_XML = os.path.join(TEST_ASSET_DIR, 'workbook_get_by_id.xml') GET_EMPTY_XML = os.path.join(TEST_ASSET_DIR, 'workbook_get_empty.xml') GET_XML = os.path.join(TEST_ASSET_DIR, 'workbook_get.xml') POPULATE_CONNECTIONS_XML = os.path.join(TEST_ASSET_DIR, 'workbook_populate_connections.xml') POPULATE_PDF = os.path.join(TEST_ASSET_DIR, 'populate_pdf.pdf') POPULATE_PERMISSIONS_XML = os.path.join(TEST_ASSET_DIR, 'workbook_populate_permissions.xml') POPULATE_PREVIEW_IMAGE = os.path.join(TEST_ASSET_DIR, 'RESTAPISample Image.png') POPULATE_VIEWS_XML = os.path.join(TEST_ASSET_DIR, 'workbook_populate_views.xml') POPULATE_VIEWS_USAGE_XML = os.path.join(TEST_ASSET_DIR, 'workbook_populate_views_usage.xml') PUBLISH_XML = os.path.join(TEST_ASSET_DIR, 'workbook_publish.xml') PUBLISH_ASYNC_XML = os.path.join(TEST_ASSET_DIR, 'workbook_publish_async.xml') REFRESH_XML = os.path.join(TEST_ASSET_DIR, 'workbook_refresh.xml') UPDATE_XML = os.path.join(TEST_ASSET_DIR, 'workbook_update.xml') UPDATE_PERMISSIONS = os.path.join(TEST_ASSET_DIR, 'workbook_update_permissions.xml') class WorkbookTests(unittest.TestCase): def setUp(self): self.server = TSC.Server('http://test') # Fake sign in self.server._site_id = 'dad65087-b08b-4603-af4e-2887b8aafc67' self.server._auth_token = 'j80k54ll2lfMZ0tv97mlPvvSCRyD0DOM' self.baseurl = self.server.workbooks.baseurl def test_get(self): with open(GET_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.get(self.baseurl, text=response_xml) all_workbooks, pagination_item = self.server.workbooks.get() self.assertEqual(2, pagination_item.total_available) self.assertEqual('6d13b0ca-043d-4d42-8c9d-3f3313ea3a00', all_workbooks[0].id) self.assertEqual('Superstore', all_workbooks[0].name) self.assertEqual('Superstore', all_workbooks[0].content_url) self.assertEqual(False, all_workbooks[0].show_tabs) self.assertEqual(1, all_workbooks[0].size) self.assertEqual('2016-08-03T20:34:04Z', format_datetime(all_workbooks[0].created_at)) self.assertEqual('description for Superstore', all_workbooks[0].description) self.assertEqual('2016-08-04T17:56:41Z', format_datetime(all_workbooks[0].updated_at)) self.assertEqual('ee8c6e70-43b6-11e6-af4f-f7b0d8e20760', all_workbooks[0].project_id) self.assertEqual('default', all_workbooks[0].project_name) self.assertEqual('5de011f8-5aa9-4d5b-b991-f462c8dd6bb7', all_workbooks[0].owner_id) self.assertEqual('3cc6cd06-89ce-4fdc-b935-5294135d6d42', all_workbooks[1].id) self.assertEqual('SafariSample', all_workbooks[1].name) self.assertEqual('SafariSample', all_workbooks[1].content_url) self.assertEqual(False, all_workbooks[1].show_tabs) self.assertEqual(26, all_workbooks[1].size) self.assertEqual('2016-07-26T20:34:56Z', format_datetime(all_workbooks[1].created_at)) self.assertEqual('description for SafariSample', all_workbooks[1].description) self.assertEqual('2016-07-26T20:35:05Z', format_datetime(all_workbooks[1].updated_at)) self.assertEqual('ee8c6e70-43b6-11e6-af4f-f7b0d8e20760', all_workbooks[1].project_id) self.assertEqual('default', all_workbooks[1].project_name) self.assertEqual('5de011f8-5aa9-4d5b-b991-f462c8dd6bb7', all_workbooks[1].owner_id) self.assertEqual(set(['Safari', 'Sample']), all_workbooks[1].tags) def test_get_before_signin(self): self.server._auth_token = None self.assertRaises(TSC.NotSignedInError, self.server.workbooks.get) def test_get_empty(self): with open(GET_EMPTY_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.get(self.baseurl, text=response_xml) all_workbooks, pagination_item = self.server.workbooks.get() self.assertEqual(0, pagination_item.total_available) self.assertEqual([], all_workbooks) def test_get_by_id(self): with open(GET_BY_ID_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.get(self.baseurl + '/3cc6cd06-89ce-4fdc-b935-5294135d6d42', text=response_xml) single_workbook = self.server.workbooks.get_by_id('3cc6cd06-89ce-4fdc-b935-5294135d6d42') self.assertEqual('3cc6cd06-89ce-4fdc-b935-5294135d6d42', single_workbook.id) self.assertEqual('SafariSample', single_workbook.name) self.assertEqual('SafariSample', single_workbook.content_url) self.assertEqual(False, single_workbook.show_tabs) self.assertEqual(26, single_workbook.size) self.assertEqual('2016-07-26T20:34:56Z', format_datetime(single_workbook.created_at)) self.assertEqual('description for SafariSample', single_workbook.description) self.assertEqual('2016-07-26T20:35:05Z', format_datetime(single_workbook.updated_at)) self.assertEqual('ee8c6e70-43b6-11e6-af4f-f7b0d8e20760', single_workbook.project_id) self.assertEqual('default', single_workbook.project_name) self.assertEqual('5de011f8-5aa9-4d5b-b991-f462c8dd6bb7', single_workbook.owner_id) self.assertEqual(set(['Safari', 'Sample']), single_workbook.tags) self.assertEqual('d79634e1-6063-4ec9-95ff-50acbf609ff5', single_workbook.views[0].id) self.assertEqual('ENDANGERED SAFARI', single_workbook.views[0].name) self.assertEqual('SafariSample/sheets/ENDANGEREDSAFARI', single_workbook.views[0].content_url) def test_get_by_id_missing_id(self): self.assertRaises(ValueError, self.server.workbooks.get_by_id, '') def test_refresh_id(self): self.server.version = '2.8' self.baseurl = self.server.workbooks.baseurl with open(REFRESH_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(self.baseurl + '/3cc6cd06-89ce-4fdc-b935-5294135d6d42/refresh', status_code=202, text=response_xml) self.server.workbooks.refresh('3cc6cd06-89ce-4fdc-b935-5294135d6d42') def test_refresh_object(self): self.server.version = '2.8' self.baseurl = self.server.workbooks.baseurl workbook = TSC.WorkbookItem('') workbook._id = '3cc6cd06-89ce-4fdc-b935-5294135d6d42' with open(REFRESH_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(self.baseurl + '/3cc6cd06-89ce-4fdc-b935-5294135d6d42/refresh', status_code=202, text=response_xml) self.server.workbooks.refresh(workbook) def test_delete(self): with requests_mock.mock() as m: m.delete(self.baseurl + '/3cc6cd06-89ce-4fdc-b935-5294135d6d42', status_code=204) self.server.workbooks.delete('3cc6cd06-89ce-4fdc-b935-5294135d6d42') def test_delete_missing_id(self): self.assertRaises(ValueError, self.server.workbooks.delete, '') def test_update(self): with open(UPDATE_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.put(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2', text=response_xml) single_workbook = TSC.WorkbookItem('1d0304cd-3796-429f-b815-7258370b9b74', show_tabs=True) single_workbook._id = '1f951daf-4061-451a-9df1-69a8062664f2' single_workbook.owner_id = 'dd2239f6-ddf1-4107-981a-4cf94e415794' single_workbook.name = 'renamedWorkbook' single_workbook.data_acceleration_config = {'acceleration_enabled': True, 'accelerate_now': False, 'last_updated_at': None, 'acceleration_status': None} single_workbook = self.server.workbooks.update(single_workbook) self.assertEqual('1f951daf-4061-451a-9df1-69a8062664f2', single_workbook.id) self.assertEqual(True, single_workbook.show_tabs) self.assertEqual('1d0304cd-3796-429f-b815-7258370b9b74', single_workbook.project_id) self.assertEqual('dd2239f6-ddf1-4107-981a-4cf94e415794', single_workbook.owner_id) self.assertEqual('renamedWorkbook', single_workbook.name) self.assertEqual(True, single_workbook.data_acceleration_config['acceleration_enabled']) self.assertEqual(False, single_workbook.data_acceleration_config['accelerate_now']) def test_update_missing_id(self): single_workbook = TSC.WorkbookItem('test') self.assertRaises(TSC.MissingRequiredFieldError, self.server.workbooks.update, single_workbook) def test_update_copy_fields(self): with open(POPULATE_CONNECTIONS_XML, 'rb') as f: connection_xml = f.read().decode('utf-8') with open(UPDATE_XML, 'rb') as f: update_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.get(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/connections', text=connection_xml) m.put(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2', text=update_xml) single_workbook = TSC.WorkbookItem('1d0304cd-3796-429f-b815-7258370b9b74') single_workbook._id = '1f951daf-4061-451a-9df1-69a8062664f2' self.server.workbooks.populate_connections(single_workbook) updated_workbook = self.server.workbooks.update(single_workbook) self.assertEqual(single_workbook._connections, updated_workbook._connections) self.assertEqual(single_workbook._views, updated_workbook._views) self.assertEqual(single_workbook.tags, updated_workbook.tags) self.assertEqual(single_workbook._initial_tags, updated_workbook._initial_tags) self.assertEqual(single_workbook._preview_image, updated_workbook._preview_image) def test_update_tags(self): with open(ADD_TAGS_XML, 'rb') as f: add_tags_xml = f.read().decode('utf-8') with open(UPDATE_XML, 'rb') as f: update_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.put(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/tags', text=add_tags_xml) m.delete(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/tags/b', status_code=204) m.delete(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/tags/d', status_code=204) m.put(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2', text=update_xml) single_workbook = TSC.WorkbookItem('1d0304cd-3796-429f-b815-7258370b9b74') single_workbook._id = '1f951daf-4061-451a-9df1-69a8062664f2' single_workbook._initial_tags.update(['a', 'b', 'c', 'd']) single_workbook.tags.update(['a', 'c', 'e']) updated_workbook = self.server.workbooks.update(single_workbook) self.assertEqual(single_workbook.tags, updated_workbook.tags) self.assertEqual(single_workbook._initial_tags, updated_workbook._initial_tags) def test_download(self): with requests_mock.mock() as m: m.get(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/content', headers={'Content-Disposition': 'name="tableau_workbook"; filename="RESTAPISample.twbx"'}) file_path = self.server.workbooks.download('1f951daf-4061-451a-9df1-69a8062664f2') self.assertTrue(os.path.exists(file_path)) os.remove(file_path) def test_download_sanitizes_name(self): filename = "Name,With,Commas.twbx" disposition = 'name="tableau_workbook"; filename="{}"'.format(filename) with requests_mock.mock() as m: m.get(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/content', headers={'Content-Disposition': disposition}) file_path = self.server.workbooks.download('1f951daf-4061-451a-9df1-69a8062664f2') self.assertEqual(os.path.basename(file_path), "NameWithCommas.twbx") self.assertTrue(os.path.exists(file_path)) os.remove(file_path) def test_download_extract_only(self): # Pretend we're 2.5 for 'extract_only' self.server.version = "2.5" self.baseurl = self.server.workbooks.baseurl with requests_mock.mock() as m: m.get(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/content?includeExtract=False', headers={'Content-Disposition': 'name="tableau_workbook"; filename="RESTAPISample.twbx"'}, complete_qs=True) # Technically this shouldn't download a twbx, but we are interested in the qs, not the file file_path = self.server.workbooks.download('1f951daf-4061-451a-9df1-69a8062664f2', include_extract=False) self.assertTrue(os.path.exists(file_path)) os.remove(file_path) def test_download_missing_id(self): self.assertRaises(ValueError, self.server.workbooks.download, '') def test_populate_views(self): with open(POPULATE_VIEWS_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.get(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/views', text=response_xml) single_workbook = TSC.WorkbookItem('test') single_workbook._id = '1f951daf-4061-451a-9df1-69a8062664f2' self.server.workbooks.populate_views(single_workbook) views_list = single_workbook.views self.assertEqual('097dbe13-de89-445f-b2c3-02f28bd010c1', views_list[0].id) self.assertEqual('GDP per capita', views_list[0].name) self.assertEqual('RESTAPISample/sheets/GDPpercapita', views_list[0].content_url) self.assertEqual('2c1ab9d7-8d64-4cc6-b495-52e40c60c330', views_list[1].id) self.assertEqual('Country ranks', views_list[1].name) self.assertEqual('RESTAPISample/sheets/Countryranks', views_list[1].content_url) self.assertEqual('0599c28c-6d82-457e-a453-e52c1bdb00f5', views_list[2].id) self.assertEqual('Interest rates', views_list[2].name) self.assertEqual('RESTAPISample/sheets/Interestrates', views_list[2].content_url) def test_populate_views_with_usage(self): with open(POPULATE_VIEWS_USAGE_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.get(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/views?includeUsageStatistics=true', text=response_xml) single_workbook = TSC.WorkbookItem('test') single_workbook._id = '1f951daf-4061-451a-9df1-69a8062664f2' self.server.workbooks.populate_views(single_workbook, usage=True) views_list = single_workbook.views self.assertEqual('097dbe13-de89-445f-b2c3-02f28bd010c1', views_list[0].id) self.assertEqual(2, views_list[0].total_views) self.assertEqual('2c1ab9d7-8d64-4cc6-b495-52e40c60c330', views_list[1].id) self.assertEqual(37, views_list[1].total_views) self.assertEqual('0599c28c-6d82-457e-a453-e52c1bdb00f5', views_list[2].id) self.assertEqual(0, views_list[2].total_views) def test_populate_views_missing_id(self): single_workbook = TSC.WorkbookItem('test') self.assertRaises(TSC.MissingRequiredFieldError, self.server.workbooks.populate_views, single_workbook) def test_populate_connections(self): with open(POPULATE_CONNECTIONS_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.get(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/connections', text=response_xml) single_workbook = TSC.WorkbookItem('test') single_workbook._id = '1f951daf-4061-451a-9df1-69a8062664f2' self.server.workbooks.populate_connections(single_workbook) self.assertEqual('37ca6ced-58d7-4dcf-99dc-f0a85223cbef', single_workbook.connections[0].id) self.assertEqual('dataengine', single_workbook.connections[0].connection_type) self.assertEqual('4506225a-0d32-4ab1-82d3-c24e85f7afba', single_workbook.connections[0].datasource_id) self.assertEqual('World Indicators', single_workbook.connections[0].datasource_name) def test_populate_permissions(self): with open(POPULATE_PERMISSIONS_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.get(self.baseurl + '/21778de4-b7b9-44bc-a599-1506a2639ace/permissions', text=response_xml) single_workbook = TSC.WorkbookItem('test') single_workbook._id = '21778de4-b7b9-44bc-a599-1506a2639ace' self.server.workbooks.populate_permissions(single_workbook) permissions = single_workbook.permissions self.assertEqual(permissions[0].grantee.tag_name, 'group') self.assertEqual(permissions[0].grantee.id, '5e5e1978-71fa-11e4-87dd-7382f5c437af') self.assertDictEqual(permissions[0].capabilities, { TSC.Permission.Capability.WebAuthoring: TSC.Permission.Mode.Allow, TSC.Permission.Capability.Read: TSC.Permission.Mode.Allow, TSC.Permission.Capability.Filter: TSC.Permission.Mode.Allow, TSC.Permission.Capability.AddComment: TSC.Permission.Mode.Allow }) self.assertEqual(permissions[1].grantee.tag_name, 'user') self.assertEqual(permissions[1].grantee.id, '7c37ee24-c4b1-42b6-a154-eaeab7ee330a') self.assertDictEqual(permissions[1].capabilities, { TSC.Permission.Capability.ExportImage: TSC.Permission.Mode.Allow, TSC.Permission.Capability.ShareView: TSC.Permission.Mode.Allow, TSC.Permission.Capability.ExportData: TSC.Permission.Mode.Deny, TSC.Permission.Capability.ViewComments: TSC.Permission.Mode.Deny }) def test_add_permissions(self): with open(UPDATE_PERMISSIONS, 'rb') as f: response_xml = f.read().decode('utf-8') single_workbook = TSC.WorkbookItem('test') single_workbook._id = '21778de4-b7b9-44bc-a599-1506a2639ace' bob = UserItem.as_reference("7c37ee24-c4b1-42b6-a154-eaeab7ee330a") group_of_people = GroupItem.as_reference("5e5e1978-71fa-11e4-87dd-7382f5c437af") new_permissions = [ PermissionsRule(bob, {'Write': 'Allow'}), PermissionsRule(group_of_people, {'Read': 'Deny'}) ] with requests_mock.mock() as m: m.put(self.baseurl + "/21778de4-b7b9-44bc-a599-1506a2639ace/permissions", text=response_xml) permissions = self.server.workbooks.update_permissions(single_workbook, new_permissions) self.assertEqual(permissions[0].grantee.tag_name, 'group') self.assertEqual(permissions[0].grantee.id, '5e5e1978-71fa-11e4-87dd-7382f5c437af') self.assertDictEqual(permissions[0].capabilities, { TSC.Permission.Capability.Read: TSC.Permission.Mode.Deny }) self.assertEqual(permissions[1].grantee.tag_name, 'user') self.assertEqual(permissions[1].grantee.id, '7c37ee24-c4b1-42b6-a154-eaeab7ee330a') self.assertDictEqual(permissions[1].capabilities, { TSC.Permission.Capability.Write: TSC.Permission.Mode.Allow }) def test_populate_connections_missing_id(self): single_workbook = TSC.WorkbookItem('test') self.assertRaises(TSC.MissingRequiredFieldError, self.server.workbooks.populate_connections, single_workbook) def test_populate_pdf(self): self.server.version = "3.4" self.baseurl = self.server.workbooks.baseurl with open(POPULATE_PDF, "rb") as f: response = f.read() with requests_mock.mock() as m: m.get(self.baseurl + "/1f951daf-4061-451a-9df1-69a8062664f2/pdf?type=a5&orientation=landscape", content=response) single_workbook = TSC.WorkbookItem('test') single_workbook._id = '1f951daf-4061-451a-9df1-69a8062664f2' type = TSC.PDFRequestOptions.PageType.A5 orientation = TSC.PDFRequestOptions.Orientation.Landscape req_option = TSC.PDFRequestOptions(type, orientation) self.server.workbooks.populate_pdf(single_workbook, req_option) self.assertEqual(response, single_workbook.pdf) def test_populate_preview_image(self): with open(POPULATE_PREVIEW_IMAGE, 'rb') as f: response = f.read() with requests_mock.mock() as m: m.get(self.baseurl + '/1f951daf-4061-451a-9df1-69a8062664f2/previewImage', content=response) single_workbook = TSC.WorkbookItem('test') single_workbook._id = '1f951daf-4061-451a-9df1-69a8062664f2' self.server.workbooks.populate_preview_image(single_workbook) self.assertEqual(response, single_workbook.preview_image) def test_populate_preview_image_missing_id(self): single_workbook = TSC.WorkbookItem('test') self.assertRaises(TSC.MissingRequiredFieldError, self.server.workbooks.populate_preview_image, single_workbook) def test_publish(self): with open(PUBLISH_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(self.baseurl, text=response_xml) new_workbook = TSC.WorkbookItem(name='Sample', show_tabs=False, project_id='ee8c6e70-43b6-11e6-af4f-f7b0d8e20760') sample_workbook = os.path.join(TEST_ASSET_DIR, 'SampleWB.twbx') publish_mode = self.server.PublishMode.CreateNew new_workbook = self.server.workbooks.publish(new_workbook, sample_workbook, publish_mode) self.assertEqual('a8076ca1-e9d8-495e-bae6-c684dbb55836', new_workbook.id) self.assertEqual('RESTAPISample', new_workbook.name) self.assertEqual('RESTAPISample_0', new_workbook.content_url) self.assertEqual(False, new_workbook.show_tabs) self.assertEqual(1, new_workbook.size) self.assertEqual('2016-08-18T18:33:24Z', format_datetime(new_workbook.created_at)) self.assertEqual('2016-08-18T20:31:34Z', format_datetime(new_workbook.updated_at)) self.assertEqual('ee8c6e70-43b6-11e6-af4f-f7b0d8e20760', new_workbook.project_id) self.assertEqual('default', new_workbook.project_name) self.assertEqual('5de011f8-5aa9-4d5b-b991-f462c8dd6bb7', new_workbook.owner_id) self.assertEqual('fe0b4e89-73f4-435e-952d-3a263fbfa56c', new_workbook.views[0].id) self.assertEqual('GDP per capita', new_workbook.views[0].name) self.assertEqual('RESTAPISample_0/sheets/GDPpercapita', new_workbook.views[0].content_url) def test_publish_async(self): self.server.version = '3.0' baseurl = self.server.workbooks.baseurl with open(PUBLISH_ASYNC_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(baseurl, text=response_xml) new_workbook = TSC.WorkbookItem(name='Sample', show_tabs=False, project_id='ee8c6e70-43b6-11e6-af4f-f7b0d8e20760') sample_workbook = os.path.join(TEST_ASSET_DIR, 'SampleWB.twbx') publish_mode = self.server.PublishMode.CreateNew new_job = self.server.workbooks.publish(new_workbook, sample_workbook, publish_mode, as_job=True) self.assertEqual('7c3d599e-949f-44c3-94a1-f30ba85757e4', new_job.id) self.assertEqual('PublishWorkbook', new_job.type) self.assertEqual('0', new_job.progress) self.assertEqual('2018-06-29T23:22:32Z', format_datetime(new_job.created_at)) self.assertEqual('1', new_job.finish_code) def test_publish_invalid_file(self): new_workbook = TSC.WorkbookItem('test', 'ee8c6e70-43b6-11e6-af4f-f7b0d8e20760') self.assertRaises(IOError, self.server.workbooks.publish, new_workbook, '.', self.server.PublishMode.CreateNew) def test_publish_invalid_file_type(self): new_workbook = TSC.WorkbookItem('test', 'ee8c6e70-43b6-11e6-af4f-f7b0d8e20760') self.assertRaises(ValueError, self.server.workbooks.publish, new_workbook, os.path.join(TEST_ASSET_DIR, 'SampleDS.tds'), self.server.PublishMode.CreateNew) def test_publish_multi_connection(self): new_workbook = TSC.WorkbookItem(name='Sample', show_tabs=False, project_id='ee8c6e70-43b6-11e6-af4f-f7b0d8e20760') connection1 = TSC.ConnectionItem() connection1.server_address = 'mysql.test.com' connection1.connection_credentials = TSC.ConnectionCredentials('test', 'secret', True) connection2 = TSC.ConnectionItem() connection2.server_address = 'pgsql.test.com' connection2.connection_credentials = TSC.ConnectionCredentials('test', 'secret', True) response = RequestFactory.Workbook._generate_xml(new_workbook, connections=[connection1, connection2]) # Can't use ConnectionItem parser due to xml namespace problems connection_results = ET.fromstring(response).findall('.//connection') self.assertEqual(connection_results[0].get('serverAddress', None), 'mysql.test.com') self.assertEqual(connection_results[0].find('connectionCredentials').get('name', None), 'test') self.assertEqual(connection_results[1].get('serverAddress', None), 'pgsql.test.com') self.assertEqual(connection_results[1].find('connectionCredentials').get('password', None), 'secret') def test_publish_single_connection(self): new_workbook = TSC.WorkbookItem(name='Sample', show_tabs=False, project_id='ee8c6e70-43b6-11e6-af4f-f7b0d8e20760') connection_creds = TSC.ConnectionCredentials('test', 'secret', True) response = RequestFactory.Workbook._generate_xml(new_workbook, connection_credentials=connection_creds) # Can't use ConnectionItem parser due to xml namespace problems credentials = ET.fromstring(response).findall('.//connectionCredentials') self.assertEqual(len(credentials), 1) self.assertEqual(credentials[0].get('name', None), 'test') self.assertEqual(credentials[0].get('password', None), 'secret') self.assertEqual(credentials[0].get('embed', None), 'true') def test_credentials_and_multi_connect_raises_exception(self): new_workbook = TSC.WorkbookItem(name='Sample', show_tabs=False, project_id='ee8c6e70-43b6-11e6-af4f-f7b0d8e20760') connection_creds = TSC.ConnectionCredentials('test', 'secret', True) connection1 = TSC.ConnectionItem() connection1.server_address = 'mysql.test.com' connection1.connection_credentials = TSC.ConnectionCredentials('test', 'secret', True) with self.assertRaises(RuntimeError): response = RequestFactory.Workbook._generate_xml(new_workbook, connection_credentials=connection_creds, connections=[connection1]) def test_synchronous_publish_timeout_error(self): with requests_mock.mock() as m: m.register_uri('POST', self.baseurl, status_code=504) new_workbook = TSC.WorkbookItem(project_id='') publish_mode = self.server.PublishMode.CreateNew self.assertRaisesRegex(InternalServerError, 'Please use asynchronous publishing to avoid timeouts', self.server.workbooks.publish, new_workbook, asset('SampleWB.twbx'), publish_mode)
the-stack_0_19441
from poetry.toml import dumps from poetry.toml import loads from poetry.utils.helpers import module_name TESTS_DEFAULT = u"""from {package_name} import __version__ def test_version(): assert __version__ == '{version}' """ POETRY_DEFAULT = """\ [tool.poetry] name = "" version = "" description = "" authors = [] [tool.poetry.dependencies] [tool.poetry.dev-dependencies] """ POETRY_WITH_LICENSE = """\ [tool.poetry] name = "" version = "" description = "" authors = [] license = "" [tool.poetry.dependencies] [tool.poetry.dev-dependencies] """ class Layout(object): def __init__( self, project, version="0.1.0", description="", readme_format="md", author=None, license=None, python="*", dependencies=None, dev_dependencies=None, ): self._project = project self._package_name = module_name(project) self._version = version self._description = description self._readme_format = readme_format self._license = license self._python = python self._dependencies = dependencies or {} self._dev_dependencies = dev_dependencies or {"pytest": "^3.5"} if not author: author = "Your Name <[email protected]>" self._author = author def create(self, path, with_tests=True): path.mkdir(parents=True, exist_ok=True) self._create_default(path) self._create_readme(path) if with_tests: self._create_tests(path) self._write_poetry(path) def generate_poetry_content(self): template = POETRY_DEFAULT if self._license: template = POETRY_WITH_LICENSE content = loads(template) poetry_content = content["tool"]["poetry"] poetry_content["name"] = self._project poetry_content["version"] = self._version poetry_content["description"] = self._description poetry_content["authors"].append(self._author) if self._license: poetry_content["license"] = self._license poetry_content["dependencies"]["python"] = self._python for dep_name, dep_constraint in self._dependencies.items(): poetry_content["dependencies"][dep_name] = dep_constraint for dep_name, dep_constraint in self._dev_dependencies.items(): poetry_content["dev-dependencies"][dep_name] = dep_constraint return dumps(content) def _create_default(self, path, src=True): raise NotImplementedError() def _create_readme(self, path): if self._readme_format == "rst": readme_file = path / "README.rst" else: readme_file = path / "README.md" readme_file.touch() def _create_tests(self, path): self._dev_dependencies["pytest"] = "^3.0" tests = path / "tests" tests_init = tests / "__init__.py" tests_default = tests / "test_{}.py".format(self._package_name) tests.mkdir() tests_init.touch(exist_ok=False) with tests_default.open("w") as f: f.write( TESTS_DEFAULT.format( package_name=self._package_name, version=self._version ) ) def _write_poetry(self, path): content = self.generate_poetry_content() poetry = path / "pyproject.toml" with poetry.open("w") as f: f.write(content)
the-stack_0_19442
from hashlib import sha256 from django.conf import settings from django.core.mail import send_mail from django.template import loader from django.urls import reverse def send_activation_email(request, username, email): template = loader.get_template('profiles/activation_email.html') activation_url = reverse('profiles:activate', kwargs={'username': username}) + \ '?hash=' + get_activation_hash(username) context = { 'url': request.build_absolute_uri(activation_url), 'username': username, } send_mail('University forum: activating account', template.render(context), settings.SERVICE_EMAIL, [email]) def get_activation_hash(username): return sha256(('activation:' + username + ':' + settings.SECRET_KEY).encode()).hexdigest()
the-stack_0_19445
import pathlib import pandas as pd project = None def load_VISSIM_file(path=None, columns=None, use_cols=None, skiprows=0, nrows=None, index_col=False, sep="\s+", skipfooter=0, header=None): """ Function to load data from the VISSIM data files format. Parameters: path (Path): File location. columns (list): Column names. use_cols (list): Columns to be used. skiprows (int): Rows to skip from the top when reading DataFrame. nrows (int): Number of rows to include. index_col (Bool): Boolean, informs whether to treat first column as the index column. sep (regEx): custom delimiter to define the separator(s) between useful data. skipfooter (int): Rows to skip form the bottom when reading DataFrame. Returns: raw_data: A pandas DataFrame. """ raw_data = pd.read_csv(filepath_or_buffer=path, sep=sep, names=columns, header=header, engine="python", skiprows=skiprows, skipfooter=skipfooter, usecols=use_cols, index_col=index_col, nrows=nrows) return raw_data def get_project_name(path): """ Function used to get the name of the data set from the loaded DatFrame; it is used to name the output file. Parameters: path (Path): File path object. Returns: file_name: a string containing the name of the project. """ df = load_VISSIM_file(path=path, columns=None, use_cols=None, skiprows=4, nrows=1, index_col=False, sep="\s|:") df = df.values.tolist()[0] file_name = [element for element in df if element != "Comment" and type(element) == str] file_name = " ".join(file_name) return file_name def df_writer(project_name, analysis, data_directory): """ Function returns full file path and name of the save location. Parameters: project_name (str): The returned string from get_project_name() analysis (str): The analysis type being performed; it is used to inform the filename. data_directory: The directory path gathered from the ask dialogue in gui.py Returns: writer: a Pandas Excel writer object containing the file path of the project and where to save. """ save_filename = f"{analysis}_{project_name}.xlsx" writer = pathlib.Path(data_directory).joinpath(save_filename) return writer def check_project_name(project, path): """"" Checks whether a project name exist, and if not, returns it using get_project_name()""" if project is None: project = 1 return get_project_name(path) def df_to_numeric(columns, *dfs): """ Converts any number of DataFrames with data as Python Objects to numerical data. """ for df in dfs: for col in columns: try: df[col] = pd.to_numeric(df[col], errors="coerce") except KeyError: continue
the-stack_0_19446
import csv, sys from apiRequester import ApiRequester class WeatherReporter: """ Class used to represent an weather reporter program ... Attributes ---------- citiesCoordinates : dict Dictionary with city code as key, and a tuple (latitude,longitude) as value citiesTemperature : dict Dictionary with city code as key, and city current temperature as value destinationOriginForFlights : list List of lists of the format [origin_city, destination_city], associated to each flight of the input numberOfApiCalls : int Counter used to keep track of how much calls are made in total to the OpenWeather API """ def __init__(self, apiRequester): """ Parameters ---------- apiRequester : ApiRequester Api requester object used to fetch the temperature for an specific city """ self.apiRequester = apiRequester self.citiesCoordinates = {} self.citiesTemperature = {} self.destinationOriginForFlights = [] self.numberOfApiCalls = 0 def readCsv(self, filename): """ Extract cities coordinates and flights information from the input csv file ... Saves the coordinates of each city into the citiesCoordinates dictionary with city code as key, and a tuple (latitude, longitude) as value Then, adds a list of the format [origin_city, destination_city] for each flight corresponding to each row into the destinationOriginForFlights list. Parameters ---------- filename : str The input csv filename Raises ------- FileNotFoundError: If could not found the specified file OSError: If an I/O error ocurred when trying to read file """ try: file = open(filename) except FileNotFoundError: print("File not found") sys.exit(1) except OSError: print(f"Error occurred when trying to open {filename}") sys.exit(1) else: with file: csvreader = csv.reader(file) next(csvreader, None) for row in csvreader: for i in range(2): currCity = row[i] if currCity not in self.citiesCoordinates: currCityLatitude = row[(i * 2) + 2] currCityLongitude = row[(i * 2) + 3] self.citiesCoordinates[currCity] = (currCityLatitude, currCityLongitude) self.destinationOriginForFlights.append([row[0], row[1]]) finally: file.close() def getTemperature(self, cityCode): """ Fetch a city temperature Set the request url for the apiRequester object, using the city latitude and longitude values as parameters, then makes the request Parameters ---------- cityCode : str A 3 characters city code for the city we want to get it's temperature Returns ------- A string containing the temperature for this city. N/A if could not fetch temperature value from OpenWeather API """ temperature = "N/A" currCityCoordinates = self.citiesCoordinates[cityCode] self.apiRequester.setRequestUrl(currCityCoordinates[0], currCityCoordinates[1]) responseData = self.apiRequester.makeRequest() if responseData != None: temperature = responseData['main']['temp'] return temperature def updateTemperatureRecords(self): """ Fetch every city temperature (if this city temperature isn't available) and saves it into the citiesTemperature dictionary used as cache Also, update the numberOfApiCalls counter on each request to the API. """ for city in self.citiesCoordinates: if city not in self.citiesTemperature: self.citiesTemperature[city] = self.getTemperature(city) self.numberOfApiCalls+=1 def writeOutputCsv(self, output): """ To each list [origin_city, destination_city] asocciated with each flight information inside destinationOriginForFlights appends the current temperature of both cities obtained from OpenWeather Finally, writes this modified list of lists, into a csv file Raises ------- OSError: If an I/O error ocurred when trying to open file """ for i in range(len(self.destinationOriginForFlights)): destinationOriginList = self.destinationOriginForFlights[i] destinationOriginList+= [str(self.citiesTemperature[destinationOriginList[0]]) + "°C", str(self.citiesTemperature[destinationOriginList[1]]) + "°C"] try: with open(output, "w", newline="") as outputCsv: writer = csv.writer(outputCsv) writer.writerows(self.destinationOriginForFlights) except OSError: print(f"Error occurred when trying to open {output}") sys.exit(1) def main(): apiRequester = ApiRequester() weatherReporter = WeatherReporter(apiRequester) weatherReporter.readCsv("../data/dataset1.csv") print("Input csv read. Fetching temperature info for each city ...") weatherReporter.updateTemperatureRecords() print("Number of calls to OperWeather API", weatherReporter.numberOfApiCalls) weatherReporter.writeOutputCsv("out.csv") print("Results written in out.csv file in current folder") if __name__ == "__main__": main()
the-stack_0_19447
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """ Config files parser """ import argparse import yaml from geneva.utils.logger import Logger # Global Keys with open('geneva/config.yml', 'r') as f: keys = yaml.load(f) # Experiment Configurations (Sorted by type then alphabetically) def parse_config(): parser = argparse.ArgumentParser(fromfile_prefix_chars='@') # Integers parser.add_argument('--batch_size', type=int, default=64, help="Batch size used in training. Default: 64") parser.add_argument('--conditioning_dim', type=int, default=128, help='Dimensionality of the projected text \ representation after the conditional augmentation. \ Default: 128') parser.add_argument('--disc_cond_channels', type=int, default=256, help='For `conditioning` == concat, this flag' 'decides the number of channels to be concatenated' 'Default: 256') parser.add_argument('--embedding_dim', type=int, default=1024, help='The dimensionality of the text representation. \ Default: 1024') parser.add_argument('--epochs', type=int, default=300, help='Number of epochs for the experiment.\ Default: 300') parser.add_argument('--hidden_dim', type=int, default=256, help='Dimensionality of the RNN hidden state which is' 'used as condition for the generator. Default: 256') parser.add_argument('--img_size', type=int, default=128, help='Image size to use for training. \ Options = {128}') parser.add_argument('--image_feat_dim', type=int, default=512, help='image encoding number of channels for the' 'recurrent setup. Default: 512') parser.add_argument('--input_dim', type=int, default=1024, help='RNN condition dimension, the dimensionality of' 'the image encoder and question projector as well.') parser.add_argument('--inception_count', type=int, default=5000, help='Number of images to use for inception score.') parser.add_argument('--noise_dim', type=int, default=100, help="Dimensionality of the noise vector that is used\ as input to the generator: Default: 100") parser.add_argument('--num_workers', type=int, default=8, help="Degree of parallelism to use. Default: 8") parser.add_argument('--num_objects', type=int, default=58, help='Number of object the auxiliary objective of ' 'object detection is trained on') parser.add_argument('--projected_text_dim', type=int, default=1024, help='Pre-fusion text projection dimension for the' 'recurrent setup. Default: 1024') parser.add_argument('--save_rate', type=int, default=5000, help='Number of iterations between saving current\ model sample generations. Default: 5000') parser.add_argument('--sentence_embedding_dim', type=int, default=1024, help='Dimensionality of the sentence encoding training' 'on top of glove word embedding. Default: 1024') parser.add_argument('--vis_rate', type=int, default=20, help='Number of iterations between each visualization.\ Default: 20') # Floats parser.add_argument('--aux_reg', type=float, default=5, help='Weighting factor for the aux loss. Default: 5') parser.add_argument('--cond_kl_reg', type=float, default=None, help='CA Net KL penalty regularization weighting' 'factor. Default: None, means no regularization.') parser.add_argument('--discriminator_lr', type=float, default=0.0004, help="Learning rate used for optimizing the \ discriminator. Default = 0.0004") parser.add_argument('--discriminator_beta1', type=float, default=0, help="Beta1 value for Adam optimizers. Default = 0") parser.add_argument('--discriminator_beta2', type=float, default=0.9, help="Beta2 value for Adam optimizer. Default = 0.9") parser.add_argument('--discriminator_weight_decay', type=float, default=0, help='Weight decay for the discriminator. Default= 0') parser.add_argument('--feature_encoder_lr', type=float, default=2e-3, help='Learning rate for image encoder and condition' 'encoder. Default= 2e-3') parser.add_argument('--generator_lr', type=float, default=0.0001, help="Learning rate used for optimizing the generator \ Default = 0.0001") parser.add_argument('--generator_beta1', type=float, default=0, help="Beta1 value for Adam optimizers. Default = 0") parser.add_argument('--generator_beta2', type=float, default=0.9, help="Beta2 value for Adam optimizer. Default = 0.9") parser.add_argument('--generator_weight_decay', type=float, default=0, help='Weight decay for the generator. Default= 0') parser.add_argument('--gp_reg', type=float, default=None, help='Gradient penalty regularization weighting' 'factor. Default: None, means no regularization.') parser.add_argument('--grad_clip', type=float, default=4, help='Gradient clipping threshold for RNN and GRU.' 'Default: 4') parser.add_argument('--gru_lr', type=float, default=0.0001, help='Sentence encoder optimizer learning rate') parser.add_argument('--rnn_lr', type=float, default=0.0005, help='RNN optimizer learning rate') parser.add_argument('--wrong_fake_ratio', type=float, default=0.5, help='Ratio of wrong:fake losses.' 'Default: 0.5') # Strings parser.add_argument('--activation', type=str, default='relu', help='Activation function to use.' 'Options = [relu, leaky_relu, selu]') parser.add_argument('--arch', type=str, default='resblocks', help='Network Architecture to use. Two options are' 'available {resblocks}') parser.add_argument('--conditioning', type=str, default=None, help='Method of Conditioning text. Default is None.' 'Options: {concat, projection}') parser.add_argument('--condition_encoder_optimizer', type=str, default='adam', help='Image encoder and text projection optimizer') parser.add_argument('--criterion', type=str, default='hinge', help='Loss function to use. Options:' '{classical, hinge} Default: hinge') parser.add_argument('--dataset', type=str, default='codraw', help='Dataset to use for training. \ Options = {codraw, iclevr}') parser.add_argument('--discriminator_optimizer', type=str, default='adam', help="Optimizer used while training the discriminator. \ Default: Adam") parser.add_argument('--disc_img_conditioning', type=str, default='subtract', help='Image conditioning for discriminator, either' 'channel subtraction or concatenation.' 'Options = {concat, subtract}' 'Default: subtract') parser.add_argument('--exp_name', type=str, default='TellDrawRepeat', help='Experiment name that will be used for' 'visualization and Logging. Default: TellDrawRepeat') parser.add_argument('--embedding_type', type=str, default='gru', help='Type of sentence encoding. Train a GRU' 'over word embedding with \'gru\' option.' 'Default: gru') parser.add_argument('--gan_type', type=str, default='recurrent_gan', help='Gan type: recurrent. Options:' '[recurrent_gan]. Default: recurrent_gan') parser.add_argument('--generator_optimizer', type=str, default='adam', help="Optimizer used while training the generator. \ Default: Adam") parser.add_argument('--gen_fusion', type=str, default='concat', help='Method to use when fusing the image features in' 'the generator. options = [concat, gate]') parser.add_argument('--gru_optimizer', type=str, default='rmsprop', help='Sentence encoder optimizer type') parser.add_argument('--img_encoder_type', type=str, default='res_blocks', help='Building blocks of the image encoder.' ' Default: res_blocks') parser.add_argument('--load_snapshot', type=str, default=None, help='Snapshot file to load model and optimizer' 'state from') parser.add_argument('--log_path', type=str, default='logs', help='Path where to save logs and image generations.') parser.add_argument('--results_path', type=str, default='results/', help='Path where to save the generated samples') parser.add_argument('--rnn_optimizer', type=str, default='rmsprop', help='Optimizer to use for RNN') parser.add_argument('--test_dataset', type=str, help='Test dataset path key.') parser.add_argument('--val_dataset', type=str, help='Validation dataset path key.') parser.add_argument('--vis_server', type=str, default='http://localhost', help='Visdom server address') # Boolean parser.add_argument('-debug', action='store_true', help='Debugging flag.(e.g, Do not save weights)') parser.add_argument('-disc_sn', action='store_true', help='A flag that decides whether to use spectral norm' 'in the discriminator') parser.add_argument('-generator_sn', action='store_true', help='A flag that decides whether to use' 'spectral norm in the generator.') parser.add_argument('-generator_optim_image', action='store_true', help='A flag of whether to optimize the image encoder' 'w.r.t the generator.') parser.add_argument('-inference_save_last_only', action='store_true', help='A flag that decides whether to only' 'save the last image for each dialogue.') parser.add_argument('-metric_inception_objects', action='store_true', help='A flag that decides whether to evaluate & report' 'object detection accuracy') parser.add_argument('-teacher_forcing', action='store_true', help='a flag to indicate to whether to train using' 'teacher_forcing. NOTE: With teacher_forcing=False' 'more GPU memory will be used.') parser.add_argument('-self_attention', action='store_true', help='A flag that decides whether to use' 'self-attention layers.') parser.add_argument('-skip_connect', action='store_true', help='A flag that decides whether to have a skip' 'connection between the GRU output and the LSTM input') parser.add_argument('-use_fd', action='store_true', help='a flag which decide whether to use image' 'features conditioning in the discriminator.') parser.add_argument('-use_fg', action='store_true', help='a flag which decide whether to use image' 'features conditioning in the generator.') args = parser.parse_args() logger = Logger(args.log_path, args.exp_name) logger.write_config(str(args)) return args
the-stack_0_19449
# Copyright 2021 Garena Online Private Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """EnvPool meta class for dm_env API.""" from abc import ABC, ABCMeta from typing import Any, Dict, List, Tuple, Union, no_type_check import dm_env import numpy as np import tree from dm_env import TimeStep from .data import dm_structure from .envpool import EnvPoolMixin from .utils import check_key_duplication class DMEnvPoolMixin(ABC): """Special treatment for dm_env API.""" def observation_spec(self: Any) -> Tuple: """Observation spec from EnvSpec.""" return self.spec.observation_spec() def action_spec(self: Any) -> Union[dm_env.specs.Array, Tuple]: """Action spec from EnvSpec.""" return self.spec.action_spec() class DMEnvPoolMeta(ABCMeta): """Additional wrapper for EnvPool dm_env API.""" def __new__(cls: Any, name: str, parents: Tuple, attrs: Dict) -> Any: """Check internal config and initialize data format convertion.""" base = parents[0] parents = (base, DMEnvPoolMixin, EnvPoolMixin, dm_env.Environment) state_keys = base._state_keys action_keys = base._action_keys check_key_duplication(name, "state", state_keys) check_key_duplication(name, "action", action_keys) state_structure, state_idx = dm_structure("State", state_keys) def _to_dm( self: Any, state_values: List[np.ndarray], reset: bool, return_info: bool, ) -> TimeStep: state = tree.unflatten_as( state_structure, [state_values[i] for i in state_idx] ) done = state.done elapse = state.elapsed_step discount = getattr(state, "discount", (1.0 - done).astype(np.float32)) step_type = np.full(done.shape, dm_env.StepType.MID) step_type[(elapse == 0)] = dm_env.StepType.FIRST step_type[done] = dm_env.StepType.LAST timestep = TimeStep( step_type=step_type, observation=state.State, reward=state.reward, discount=discount, ) return timestep attrs["_to"] = _to_dm subcls = super().__new__(cls, name, parents, attrs) @no_type_check def init(self: Any, spec: Any) -> None: """Set self.spec to EnvSpecMeta.""" super(subcls, self).__init__(spec) self.spec = spec setattr(subcls, "__init__", init) # noqa: B010 return subcls
the-stack_0_19451
from gameskit.ui_elements import * pygame.font.init() class HUDLabel(UIElement): def update_appearance(self): brush = UIBrush(self._surface) self._surface.fill((20, 150, 255)) font_surface = self.__font.render(self.__text, 1, self.__font_colour) brush.draw_image((0.5, 0.5), (1, 1), font_surface, scaled_mode=True) def __init__(self, position, size, text, font, font_colour): UIElement.__init__(self, position, size) self.__text = text self.__font = font self.__font_colour = font_colour self.update_appearance() def set_text(self, text): self.__text = text
the-stack_0_19453
#!/usr/bin/env python # # Copyright (c) 2001 - 2016 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "test/Java/JARFLAGS.py rel_2.5.1:3735:9dc6cee5c168 2016/11/03 14:02:02 bdbaddog" import os import TestSCons test = TestSCons.TestSCons() test.subdir('src') where_javac, java_version = test.java_where_javac() where_jar = test.java_where_jar() test.write('SConstruct', """ env = Environment(tools = ['javac', 'jar'], JAVAC = r'%(where_javac)s', JAR = r'%(where_jar)s', JARFLAGS = 'cvf') env['JARFLAGS'] = 'cvf' class_files = env.Java(target = 'classes', source = 'src') env.Jar(target = 'test.jar', source = class_files) """ % locals()) test.write(['src', 'Example1.java'], """\ package src; public class Example1 { public static void main(String[] args) { } } """) expect = test.wrap_stdout("""\ %(where_javac)s -d classes -sourcepath src src/Example1\.java %(where_jar)s cvf test.jar -C classes src/Example1\.class .* adding: src/Example1\.class.* """ % locals()) expect = expect.replace('/', os.sep) test.run(arguments = '.', match=TestSCons.match_re_dotall, stdout = expect) test.must_exist('test.jar') test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
the-stack_0_19455
""" Tasks for conda world """ # TODO: must have already said this somewhere, but the parameter # handling is a nightmare. For so many reasons. Like when chaining # tasks, all must support the same parameters. # TODO: conda env file/package generation: sort within each section (e.g. run dependencies, build dependencies) # TODO: pkg name addition needs to support multiple packages e.g. gv gv-core # TODO: pkg name addition needs to support existing recipe if present # TODO: clean up list v. string form for _pin # TODO: be able to generate env file (not just env) # TODO: no support for pin deps etc in pip # pip can install an "env" from remote file; what about conda? # note: conda's api at https://github.com/conda/conda/issues/7059 # TODO: move tasks to conda.py and leave hacks here. import platform import os import glob import json import re import sys import warnings try: from urllib.request import urlretrieve except ImportError: from urllib import urlretrieve # TODO: Some conda stuff not imported until later because this file # should be importable even without conda. Will deal with that in the # future. try: import yaml except ImportError: yaml = None from doit.action import CmdAction from .util import _options_param,_options_param2, test_python, test_group, test_requires, get_tox_deps, get_tox_cmds, get_tox_python, get_env, pkg_tests, test_matrix, echo, get_buildreqs, read_pins, read_conda_packages,_all_extras_param, read_conda_namespace_map, _get_setup_metadata2 # TODO: for caching env on travis, what about links? option to copy? try: from conda.models.match_spec import MatchSpec except ImportError: pass # TODO: things will go wrong later... ########## UTIL/CONFIG ########## ## TODO: rename, plus link to hack about parameter sharing :( name = { 'name':'name', 'long':'name', 'type':str, 'default':'test-environment'} env_name = { 'name':'env_name', 'long':'env-name', 'type':str, 'default':'test-environment'} env_name_again = { 'name':'env_name_again', 'long':'env-name-again', 'type':str, 'default':''} ## # this is about selecting groups of optional extras package_name = {'name':'package_name', 'long':'package-name', 'type':str, 'default':'' } _channel_param = { 'name':'channel', 'long':'channel', 'short': 'c', 'type':list, 'default':[] # note: no channel means user's defaults (currently # typically what comes with ana/miniconda)...is that # what we want? } # TODO: pinning not supported for pip world yet no_pin_deps = { 'name':'no_pin_deps', 'long':'no-pin-deps', 'type':bool, 'default':True, 'inverse':'pin-deps' } # hack around envs inside envs etc CONDA_ROOT_EXE = os.environ.get('CONDA_EXE','conda') # TODO should at least warn if conda_exe not there; will be fixed as part of 0.7 # TODO: not sure what conda-using developers do/prefer... # pip develop and don't install missing install deps or any build deps python_develop = "pip install --no-deps --no-build-isolation -e ." # pip develop and pip install missing deps # python_develop = "pip install -e ." # setuptools develop and don't install missing deps # python_develop = "python setup.py develop --no-deps" # setuptools develop and easy_install missing deps: # python_develop = "python setup.py develop" from .util import _get_dependencies def _conda_build_deps(channel): buildreqs = get_buildreqs() deps = " ".join('"%s"'%_join_the_club(dep) for dep in buildreqs) if len(buildreqs)>0: return "conda install -y %s %s"%(" ".join(['-c %s'%c for c in channel]),deps) else: return echo("Skipping conda install (no build dependencies)") def _pin(deps): pins = read_pins('setup.cfg') pins = { _join_the_club(d):pins[d] for d in pins } if len(pins)==0: warnings.warn("Pins requested, but no pins in setup.cfg") return deps deps = [_join_the_club(d) for d in deps] pinned_but_missing = set(pins).difference(set([MatchSpec(d).name for d in deps])) if len(pinned_but_missing)!=0: raise ValueError("Pins specified for non-existent dependencies %s"%pinned_but_missing) pinneddeps = [] for d in deps: dname = MatchSpec(d).name if dname in pins: pinneddeps.append("%s ==%s"%(dname,pins[dname])) else: pinneddeps.append("%s"%dname) return pinneddeps def _conda_install_with_options(options,channel,env_name_again,no_pin_deps,all_extras): # TODO: list v string form for _pin deps = _get_dependencies(['install_requires']+options,all_extras=all_extras) deps = [_join_the_club(d) for d in deps] if len(deps)>0: deps = _pin(deps) if no_pin_deps is False else deps deps = " ".join('"%s"'%dep for dep in deps) # TODO and join the club? e = '' if env_name_again=='' else '-n %s'%env_name_again return "conda install -y " + e + " %s %s"%(" ".join(['-c %s'%c for c in channel]),deps) else: return echo("Skipping conda install (no dependencies)") # TODO: another parameter workaround def _conda_install_with_options_hacked(options,channel,no_pin_deps,all_extras): return _conda_install_with_options(options,channel,'',no_pin_deps,all_extras) ############################################################ # TASKS... ########## MISC ########## def task_env_capture(): """Report all information required to recreate current conda environment""" return {'actions':["conda info","conda list","conda env export"]} def task_env_export2(): # TODO: support channel pins too maybe. Either as a separate thing that can # also be requested (like version pins), or maybe just use channel::pkg in # pins? # TODO: required, rename, friendlier env_file = { 'name':'env_file', 'long':'env-file', 'type':str, 'default':''} no_advert = { 'name':'no_advert', 'long':'no-advert', 'type':bool, 'default':False, 'inverse':'advert' } def x(no_pin_deps,package_name,options2,channel,all_extras,env_file,env_name_again,no_advert): from conda_env.env import Environment options = set(options2).union(set(read_conda_packages('setup.cfg',package_name))) deps = [d for d in _get_dependencies(['install_requires']+list(options),all_extras=all_extras)] if no_pin_deps is False: deps = _pin(deps) deps = [_join_the_club(d) for d in deps] e = Environment( name=env_name_again, channels=channel, filename = env_file, dependencies=sorted(deps)) e.save() if not no_advert: # hack in link back with open(env_file,'r+') as f: content = f.read() f.seek(0) # probably more useful info could be put here f.write("# file created by pyctdev:\n# " + " ".join(sys.argv) + "\n\n" + content) return {'actions':[x], 'params': [_options_param2,_channel_param,_all_extras_param,no_pin_deps,package_name,env_file,env_name_again,no_advert] } def task_env_export(): """ Generate a pinned environment.yaml from specified env, filtering against specified groups of deps. If env does not exist, will be created first. Pretty awkward right now! Have to run something like this... doit ecosystem=conda env_export --env-name [ENV_NAME] --env-file [SOME_FILE.yaml] --env-name-again [ENV_NAME] env_create --name [ENV_NAME] e.g. doit ecosystem=conda env_export --env-name _pyctdev_test_one --env-file pyctdev_test_one.yaml --env-name-again _pyctdev_test_one --options examples env_create --name _pyctdev_test_one """ # TODO: required, rename, friendlier env_file = { 'name':'env_file', 'long':'env-file', 'type':str, 'default':''} def x(env_name,options,env_file,all_extras): import collections from conda_env.env import from_environment from conda.cli.python_api import Commands, run_command env_names = [(os.path.basename(e),e) for e in json.loads(run_command(Commands.INFO,"--json")[0])['envs']] counts = collections.Counter([x[0] for x in env_names]) assert counts[env_name]==1 # would need more than name to be sure... prefix = dict(env_names)[env_name] E = from_environment(env_name, prefix, no_builds=True, ignore_channels=False) deps = [_join_the_club(d) for d in _get_dependencies(['install_requires']+options,all_extras=all_extras)] deps = set([MatchSpec(d).name for d in deps]) for what in E.dependencies: E.dependencies[what] = [d for d in E.dependencies[what] if MatchSpec(d).name in deps] # fix up conda channels TODO: should probably just use non-env # commands all along instead of conda env if 'conda' in E.dependencies: packages = {package['name']:package for package in json.loads(run_command(Commands.LIST,"-p", prefix, "--json")[0])} E.dependencies['conda'] = ["%s%s"%( (packages[MatchSpec(x).name]['channel']+"::" if packages[MatchSpec(x).name]['channel']!="defaults" else '') ,x) for x in E.dependencies['conda']] E.channels = ["defaults"] # what could go wrong? E.dependencies.raw = [] if len(E.dependencies.get('conda',[]))>0: E.dependencies.raw += E.dependencies['conda'] if len(E.dependencies.get('pip',[]))>0: E.dependencies.raw += [{'pip':E.dependencies['pip']}] # TODO: add python_requires to conda deps? E.prefix = None # TODO: win/unicode with open(env_file,'w') as f: f.write(E.to_yaml()) return {'actions':[ CmdAction(_hacked_conda_install_with_options), x], 'task_dep': ['env_create'], 'params': [env_name, _options_param, env_file, env_name_again,_options_param,_channel_param,_all_extras_param, no_pin_deps]} # because of default options value...removing 'tests' def _hacked_conda_install_with_options(task,options,channel,env_name_again,no_pin_deps,all_extras): if 'tests' in task.options.get('options',[]): task.options['options'].remove('tests') return _conda_install_with_options(options,channel,env_name_again,no_pin_deps,all_extras) miniconda_url = { "Windows": "https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe", "Linux": "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh", "Darwin": "https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh" } # Download & install miniconda...Requires python already, so it might # seem odd to have this. But many systems (including generic # (non-python) travis and appveyor images) now include at least some # system python, in which case this command can be used. But generally # people will have installed python themselves, so the download and # install miniconda tasks can be ignored. def task_miniconda_download(): """Download Miniconda3-latest""" url = miniconda_url[platform.system()] miniconda_installer = url.split('/')[-1] def download_miniconda(targets): urlretrieve(url,miniconda_installer) return {'targets': [miniconda_installer], 'uptodate': [True], # (as has no deps) 'actions': [download_miniconda]} def task_miniconda_install(): """Install Miniconda3-latest to location if not already present""" # NOTE: if caching on CI, will result in no new mc being installed # ever until cache is cleared location = { 'name':'location', 'long':'location', 'short':'l', 'type':str, 'default':os.path.abspath(os.path.expanduser('~/miniconda'))} miniconda_installer = miniconda_url[platform.system()].split('/')[-1] return { 'file_dep': [miniconda_installer], 'uptodate': [_mc_installed], 'params': [location], 'actions': # TODO: check windows situation with update ['START /WAIT %s'%miniconda_installer + " /S /AddToPath=0 /D=%(location)s"] if platform.system() == "Windows" else ["bash %s"%miniconda_installer + " -b -u -p %(location)s"] } # TODO: this is another doit param hack :( def _mc_installed(task,values): if task.options is not None: return os.path.exists(task.options['location']) else: for p in task.params: if p['name']=='location': return os.path.exists(p['default']) return False def task_ecosystem_setup(): """Common conda setup (must be run in base env). Updates to latest conda, and anaconda-client (cb is pinned) """ def thing1(channel): return "conda update -y %s conda"%" ".join(['-c %s'%c for c in channel]) def thing2(channel): # TODO: beware pin here and in setup.py! return 'conda install -y %s anaconda-client conda-build'%" ".join(['-c %s'%c for c in channel]) return { 'actions': [ CmdAction(thing1), CmdAction(thing2) ], 'params': [_channel_param]} ########## PACKAGING ########## recipe_param = { 'name':'recipe', 'long':'recipe', 'type':str, 'default':'' } # TODO: python2conda or something, and would be nice to use param ;) def _join_the_club(dep): # note: using conda's matchspec to read python package spec; should use # fn from python packaging instead # cb at least at 3.10.1 interprets square brackets as selectors # even if not after a # and then silently drops...not sure what's # accidental and what's deliberate difference between cb and # conda. Meanwhile, I've been using the fact that e.g. conda # install "dask[complete]" results in installing "dask" to # implement the convention that conda packages contain everything # i.e. any pip install x[option1,option2,...] is covered by conda # install x. see https://github.com/pyviz/pyct/issues/42 new = re.sub(r'\[.*?\]','',dep) # not much point warning only here, since it happens in other places too #if new!=dep:warnings.warn("Changed your dep from %s to %s"%(dep,new)) # should be read just once rather than for each dep! nsmap = read_conda_namespace_map('setup.cfg') ms = MatchSpec(new) out = "%s"%nsmap.get(ms.name,ms.name) if ms.version is not None: # why it doesn't include == already? if '==' in new: assert "===" not in new # sorry out+= " ==" else: out+= " " out+= "%s"%ms.version return out # TODO: (almost) duplicates some bits of package_build # TODO: missing from pip version def task_package_test(): """Test existing package Specify a "test matrix" (kind of) via repeated --test-python, --test-group, and --test-requires. """ def thing(channel,recipe): cmd = "conda build %s conda.recipe/%s"%(" ".join(['-c %s'%c for c in channel]), "%(recipe)s") return cmd def thing2(channel,pkg_tests,test_python,test_group,test_requires,recipe): cmds = [] if pkg_tests: # TODO: should test groups just be applied across others rather than product? # It's about test isolation vs speed of running tests... for (p,g,r,w) in test_matrix(test_python,test_group,test_requires,['pkg']): cmds.append( thing(channel,recipe)+" -t --append-file conda.recipe/%s/recipe_append--%s-%s-%s-%s.yaml"%("%(recipe)s",p,g,r,w) ) cmds.append("conda build purge") # remove test/work intermediates (see same comment below) # hack again for returning variable number of commands... return " && ".join(cmds) def create_recipe_append(recipe,test_python,test_group,test_requires,pkg_tests): if not pkg_tests: return if yaml is None: raise ValueError("Install pyyaml or equivalent; see extras_require['ecosystem_conda'].") for (p,g,r,w) in test_matrix(test_python,test_group,test_requires,['pkg']): environment = get_env(p,g,r,w) deps = get_tox_deps(environment,hack_one=True) # note the hack_one, which is different from package_build deps = [_join_the_club(d) for d in deps] cmds = get_tox_cmds(environment) py = get_tox_python(environment) # deps and cmds are appended # # TODO: will overwrite recipe_append--... if someone # already happens to use it... # # would maybe like to do something more like conda build # conda.recipe -t existing_pkg --extra-command ... --extra-deps ... with open("conda.recipe/%s/recipe_append--%s-%s-%s-%s.yaml"%(recipe,p,g,r,w),'w') as f: f.write(yaml.dump( { 'test':{ 'requires':['python =%s'%py]+deps, 'commands':cmds, # still undecided about which config files to use 'source_files': ['tox.ini'] }},default_flow_style=False)) def remove_recipe_append_and_clobber(recipe,pkg_tests,test_python,test_group,test_requires): try: p = os.path.join("conda.recipe",recipe,"_pyctdev_recipe_clobber.yaml") os.remove(p) except: pass if not pkg_tests: return for (p,g,r,w) in test_matrix(test_python,test_group,test_requires,['pkg']): try: p = os.path.join("conda.recipe",recipe,"recipe_append--%s-%s-%s-%s.yaml"%(p,g,r,w)) os.remove(p) except: pass return {'actions': [ # then test it... # (if test commands overlap what's in recipe, will be some # repetition...they ran above, and they will run again...) create_recipe_append, CmdAction(thing2), ], 'teardown': [remove_recipe_append_and_clobber], 'params': [_channel_param, recipe_param, test_python, test_group, test_requires, pkg_tests]} def task_package_build(): """Build and then test conda.recipe/ (or specified alternative). Specify --no-pkg-tests to avoid running any tests other than those defined explicitly in the recipe (i.e. to run only vanilla conda build, without any modifications). Specify a "test matrix" (kind of) via repeated --test-python, --test-group, and --test-requires. Note that whatever channels you supply at build time must be supplied by users of the package at install time for users to get the same(ish) dependencies as used at build time. (TODO: will be able to improve this with conda 4.4.) """ # TODO: conda.recipe path hardcoded/repeated # hacks to get a quick version of # https://github.com/conda/conda-build/issues/2648 pin_deps_as_env = { 'name':'pin_deps_as_env', 'long':'pin-deps-as-env', 'type':str, 'default':''} force = { 'name':'force', 'long':'force', 'type':bool, 'default':False} def create_base_recipe(package_name,force): # TODO: need to replace this with checking for existing recipe and using that. # and fall back to package name in normal setup.cfg if os.path.exists("conda.recipe/meta.yaml") and not force: print("conda.recipe/meta.yaml exists; not overwriting without --force") return package_name_supplied = True if package_name == '': package_name_supplied = False try: package_name = _get_setup_metadata2('name') except KeyError: raise ValueError("--package-name not supplied and not found in setup.cfg/setup.py") # read from setup.cfg (not supporting doing it in setup.py) try: extras = str(read_conda_packages('setup.cfg',package_name)) except KeyError: if package_name_supplied: raise ValueError("You requested package name %s but no entry found in setup.cfg; omit --package-name or ensure you have defined conda package(s) in setup.cfg"%package_name) extras = '[]' r = open(os.path.join(os.path.dirname(__file__),"condatemplate.yaml")).read() # hack https://github.com/conda/conda-build/issues/2475 r = r.replace(r"{{ pname }}",package_name) if not os.path.exists("conda.recipe"): # could do better/race os.makedirs("conda.recipe") with open("conda.recipe/meta.yaml",'w') as f: f.write("{%% set pname = %s %%}\n"%package_name) f.write("{%% set extras = %s %%}\n"%extras) buildreqs = get_buildreqs() buildeps = "["+ ",".join('"%s"'%_join_the_club(dep) for dep in buildreqs) + "]" f.write("{%% set builddeps = %s %%}\n"%buildeps) f.write(r) def create_recipe_clobber(recipe,pin_deps_as_env,no_pin_deps,package_name): if pin_deps_as_env == '' and no_pin_deps is True: return else: extras = read_conda_packages('setup.cfg',package_name) deps = _get_dependencies(['install_requires']+extras) deps = [_join_the_club(d) for d in deps] if pin_deps_as_env != '': assert no_pin_deps is True # TODO: unify with conda in env_export env_name = pin_deps_as_env import collections from conda.cli.python_api import Commands, run_command env_names = [(os.path.basename(e),e) for e in json.loads(run_command(Commands.INFO,"--json")[0])['envs']] counts = collections.Counter([x[0] for x in env_names]) assert counts[env_name]==1 # would need more than name to be sure... prefix = dict(env_names)[env_name] packages = json.loads(run_command(Commands.LIST,"-p %s --json"%prefix)[0]) packagesd = {package['name']:package for package in packages} # TODO: could add channel to the pin... requirements_run = ["%s ==%s"%(MatchSpec(d).name,packagesd[MatchSpec(d).name]['version']) for d in deps] else: requirements_run = _pin(deps) with open("conda.recipe/%s/_pyctdev_recipe_clobber.yaml"%recipe,'w') as f: f.write(yaml.dump( { 'requirements':{ 'run': requirements_run } },default_flow_style=False)) # TODO: this should be requested by flag! like for pip def thing0(channel): buildreqs = get_buildreqs() if len(buildreqs)>0: deps = " ".join('"%s"'%_join_the_club(dep) for dep in buildreqs) return "conda install -y %s %s"%(" ".join(['-c %s'%c for c in channel]),deps) else: return 'echo "no build reqs"' def thing(channel,pin_deps_as_env,recipe,no_pin_deps): cmd = "conda build %s conda.recipe/%s"%(" ".join(['-c %s'%c for c in channel]), "%(recipe)s") if pin_deps_as_env != '' or no_pin_deps is False: cmd += " --clobber-file conda.recipe/%s/_pyctdev_recipe_clobber.yaml"%recipe return cmd def thing2(channel,pkg_tests,test_python,test_group,test_requires,recipe,pin_deps_as_env,no_pin_deps): cmds = [] if pkg_tests: # TODO: should test groups just be applied across others rather than product? # It's about test isolation vs speed of running tests... for (p,g,r,w) in test_matrix(test_python,test_group,test_requires,['pkg']): cmds.append( thing(channel,pin_deps_as_env,recipe,no_pin_deps)+" -t --append-file conda.recipe/%s/recipe_append--%s-%s-%s-%s.yaml"%("%(recipe)s",p,g,r,w) ) cmds.append("conda build purge") # remove test/work intermediates (see same comment below) # hack again for returning variable number of commands... return " && ".join(cmds) def create_recipe_append(recipe,test_python,test_group,test_requires,pkg_tests): if not pkg_tests: return if yaml is None: raise ValueError("Install pyyaml or equivalent; see extras_require['ecosystem_conda'].") for (p,g,r,w) in test_matrix(test_python,test_group,test_requires,['pkg']): environment = get_env(p,g,r,w) deps = [_join_the_club(d) for d in get_tox_deps(environment)] cmds = get_tox_cmds(environment) py = get_tox_python(environment) # deps and cmds are appended # # TODO: will overwrite recipe_append--... if someone # already happens to use it... # # would maybe like to do something more like conda build # conda.recipe -t existing_pkg --extra-command ... --extra-deps ... with open("conda.recipe/%s/recipe_append--%s-%s-%s-%s.yaml"%(recipe,p,g,r,w),'w') as f: f.write(yaml.dump( { 'test':{ 'requires':['python =%s'%py]+deps, 'commands':cmds, # still undecided about which config files to use 'source_files': ['tox.ini'] }},default_flow_style=False)) def remove_recipe_append_and_clobber(recipe,pkg_tests,test_python,test_group,test_requires): try: p = os.path.join("conda.recipe",recipe,"_pyctdev_recipe_clobber.yaml") os.remove(p) except: pass if not pkg_tests: return for (p,g,r,w) in test_matrix(test_python,test_group,test_requires,['pkg']): try: p = os.path.join("conda.recipe",recipe,"recipe_append--%s-%s-%s-%s.yaml"%(p,g,r,w)) os.remove(p) except: pass return {'actions': [ # 0. install build requirements (conda build doesn't support pyproject.toml/PEP518 CmdAction(thing0), create_base_recipe, create_recipe_clobber, # first build the package... CmdAction(thing), "conda build purge", # remove test/work intermediates (disk space on travis...but could potentially annoy someone as it'll remove other test/work intermediates too...) # then test it... # (if test commands overlap what's in recipe, will be some # repetition...they ran above, and they will run again...) create_recipe_append, CmdAction(thing2), ], 'teardown': [remove_recipe_append_and_clobber], 'params': [_channel_param, recipe_param, test_python, test_group, test_requires, pkg_tests, pin_deps_as_env,no_pin_deps,package_name, force]} def task_package_upload(): """Upload package built from conda.recipe/ (or specified alternative).""" # TODO: need to upload only if package doesn't exist (as # e.g. there are cron builds) def thing(label): # TODO: fix backticks hack/windows return 'anaconda --token %(token)s upload --user %(user)s ' + ' '.join(['--label %s'%l for l in label]) + ' `conda build --output conda.recipe/%(recipe)s`' label_param = { 'name':'label', 'long':'label', 'short':'l', 'type':list, 'default':[]} # should be required, when I figure out params token_param = { 'name':'token', 'long':'token', 'type':str, 'default':''} # should be required, when I figure out params user_param = { 'name':'user', 'long':'user', 'type':str, 'default':'pyviz'} return {'actions': [CmdAction(thing)], 'params': [label_param,token_param,recipe_param,user_param]} ########## TESTING ########## # TODO ########## DOCS ########## # TODO ########## FOR DEVELOPERS ########## # TODO: not sure this task buys much (but allows to call create_env # even if env already exists, for updating). def task_env_create(): """Create named environment if it doesn't already exist Environment will include pyctdev. """ python = { 'name':'python', 'long':'python', 'type':str, 'default':'3.6'} # TODO: improve messages about missing deps try: from conda.cli.python_api import Commands, run_command # noqa: hack uptodate = _env_exists except: uptodate = False def _morex(channel): return CONDA_ROOT_EXE + " create -y %s"%(" ".join(['-c %s'%c for c in channel])) + " --name %(name)s python=%(python)s" def _morexx(): # when installing selfi nto environment, get from appropriate channel # (doing this is a hack anyway/depends how env stacking ends up going) from . import __version__ from setuptools._vendor.packaging.version import Version selfchan = "pyviz" if Version(__version__).is_prerelease: selfchan+="/label/dev" if "PYCTDEV_SELF_CHANNEL" in os.environ: selfchan=os.environ["PYCTDEV_SELF_CHANNEL"] if selfchan!="": selfchan = " -c " + selfchan return CONDA_ROOT_EXE + " install -y --name %(name)s " + selfchan + " pyctdev" return { 'params': [python,name,_channel_param], 'uptodate': [uptodate], # TODO: Wouldn't need to check for env if conda create --force # would overwrite/update existing env. # TODO: note: pyctdev when testing itself will use previous pyctdev # but not yet testing this command... 'actions': [CmdAction(_morex),CmdAction(_morexx)]} # TODO: this is another doit param hack :( # need to file issue. meanwhile probably decorate uptodate fns def _env_exists(task,values): name = None if task.options is not None: name = task.options['name'] else: for p in task.params: if p['name']=='name': name = p['default'] if name is None: return False else: from conda.cli.python_api import Commands, run_command return name in [os.path.basename(e) for e in json.loads(run_command(Commands.INFO,"--json")[0])['envs']] # TODO: doit - how to share parameters with dependencies? Lots of # awkwardness here to work around that... # conda installs are independent tasks for speed (so conda gets all # deps to think about at once) # TODO: should be one command with --options param def task_develop_install(): """python develop install, with specified optional groups of dependencies (installed by conda only). Typically ``conda install "test dependencies" && pip install -e . --no-deps``. Pass --options multiple times to specify other optional groups (see project's setup.py for available options). E.g. ``doit develop_install -o examples -o tests`` ``doit develop_install -o all`` """ return {'actions': [ CmdAction(_conda_build_deps), CmdAction(_conda_install_with_options_hacked), python_develop], 'params': [_options_param,_channel_param,no_pin_deps,_all_extras_param]} def task_env_dependency_graph(): """Write out dependency graph of named environment.""" def _x(env_name): ##### find the environment # (todo copied from earlier in file!) import collections from conda.cli.python_api import Commands, run_command env_names = [(os.path.basename(e),e) for e in json.loads(run_command(Commands.INFO,"--json")[0])['envs']] counts = collections.Counter([x[0] for x in env_names]) assert counts[env_name]==1 # would need more than name to be sure... prefix = dict(env_names)[env_name] ###### build graph from packages' metadata nodes = set() edges = set() for pkgmetafile in glob.glob(os.path.join(prefix,'conda-meta','*.json')): pkgmeta = json.load(open(pkgmetafile)) pkgname = pkgmeta['name'] nodes.add(pkgname) for d in pkgmeta.get('depends', []): edges.add( (pkgname, MatchSpec(d).name) ) ###### write out the graph try: import graphviz except ImportError: graphviz = None if graphviz: G = graphviz.Digraph(filename=env_name,format='svg') # can open in browser, can search text for n in nodes: G.node(n) for e in edges: G.edge(*e) G.render() print("wrote %s.svg"%env_name) else: # should replace this made up format with something else with open(env_name+".txt",'w') as f: f.write("***** packages *****\n") for n in nodes: f.write("%s\n"%n) f.write("\n***** dependencies *****\n") for e in edges: f.write("%s -> %s\n"%e) print("wrote %s.txt (install graphviz for svg)"%env_name) return {'actions': [_x,], 'params':[env_name,]}
the-stack_0_19456
from typing import ( List, Optional, Tuple, ) import base64 from collections import deque import pathlib from IPython import display as ipydisplay import numpy as np from PIL import Image import torch from vendor.atari_wrappers import make_atari, wrap_deepmind from utils_types import ( GymImg, GymObs, TensorObs, TensorStack4, TensorStack5, TorchDevice, ) from utils_drl import Agent # HTML_TEMPLATE is a template element for displaying an mp4 video HTML_TEMPLATE = """<video alt="{alt}" autoplay loop controls style="height: 400px;"> <source src="data:video/mp4;base64,{data}" type="video/mp4" /> </video>""" class MyEnv(object): def __init__(self, device: TorchDevice) -> None: env_raw = make_atari('BreakoutNoFrameskip-v4') self.__env_train = wrap_deepmind(env_raw, episode_life=True) env_raw = make_atari('BreakoutNoFrameskip-v4') self.__env_eval = wrap_deepmind(env_raw, episode_life=True) self.__env = self.__env_train self.__device = device def reset( self, render: bool = False, ) -> Tuple[List[TensorObs], float, List[GymImg]]: """reset resets and initializes the underlying gym environment.""" self.__env.reset() init_reward = 0. observations = [] frames = [] for _ in range(5): # no-op obs, reward, done = self.step(0) observations.append(obs) init_reward += reward if done: return self.reset(render) if render: frames.append(self.get_frame()) return observations, init_reward, frames def step(self, action: int) -> Tuple[TensorObs, int, bool]: """step forwards an action to the environment and returns the newest observation, the reward, and an bool value indicating whether the episode is terminated.""" action = action + 1 if not action == 0 else 0 obs, reward, done, _ = self.__env.step(action) return self.to_tensor(obs), reward, done def get_frame(self) -> GymImg: """get_frame renders the current game frame.""" return Image.fromarray(self.__env.render(mode="rgb_array")) @staticmethod def to_tensor(obs: GymObs) -> TensorObs: """to_tensor converts an observation to a torch tensor.""" return torch.from_numpy(obs).view(1, 84, 84) @staticmethod def get_action_dim() -> int: """get_action_dim returns the reduced number of actions.""" return 3 @staticmethod def get_action_meanings() -> List[str]: """get_action_meanings returns the actual meanings of the reduced actions.""" return ["NOOP", "RIGHT", "LEFT"] @staticmethod def get_eval_lives() -> int: """get_eval_lives returns the number of lives to consume in an evaluation round.""" return 5 @staticmethod def make_state(obs_queue: deque) -> TensorStack4: """make_state makes up a state given an obs queue.""" return torch.cat(list(obs_queue)[1:]).unsqueeze(0) @staticmethod def make_folded_state(obs_queue: deque) -> TensorStack5: """make_folded_state makes up an n_state given an obs queue.""" return torch.cat(list(obs_queue)).unsqueeze(0) @staticmethod def show_video(path_to_mp4: str) -> None: """show_video creates an HTML element to display the given mp4 video in IPython.""" mp4 = pathlib.Path(path_to_mp4) video_b64 = base64.b64encode(mp4.read_bytes()) html = HTML_TEMPLATE.format(alt=mp4, data=video_b64.decode("ascii")) ipydisplay.display(ipydisplay.HTML(data=html)) def evaluate( self, obs_queue: deque, agent: Agent, num_episode: int = 3, render: bool = False, ) -> Tuple[ float, List[GymImg], ]: """evaluate uses the given agent to run the game for a few episodes and returns the average reward and the captured frames.""" self.__env = self.__env_eval ep_rewards = [] frames = [] for _ in range(self.get_eval_lives() * num_episode): observations, ep_reward, _frames = self.reset(render=render) for obs in observations: obs_queue.append(obs) if render: frames.extend(_frames) done = False while not done: state = self.make_state(obs_queue).to(self.__device).float() action = agent.run(state) obs, reward, done = self.step(action) ep_reward += reward obs_queue.append(obs) if render: frames.append(self.get_frame()) ep_rewards.append(ep_reward) self.__env = self.__env_train return np.sum(ep_rewards) / num_episode, frames
the-stack_0_19458
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import time import os import sys import math import torch import torch.nn as nn import torch.nn.functional as F from ..attack import Attack DEFAULT_EPS_DICT_BY_NORM = {'Linf': .3, 'L2': 1., 'L1': 5.0} class Square(Attack): r""" Square Attack in the paper 'Square Attack: a query-efficient black-box adversarial attack via random search' [https://arxiv.org/abs/1912.00049] [https://github.com/fra31/auto-attack] Distance Measure : Linf, L2 Arguments: model (nn.Module): model to attack. norm (str): Lp-norm of the attack. ('Linf', 'L2' supported, DEFAULT: 'Linf') eps (float): maximum perturbation. (DEFALUT: None) n_queries (int): max number of queries (each restart). (DEFALUT: 5000) n_restarts (int): number of random restarts. (DEFALUT: 1) p_init (float): parameter to control size of squares. (DEFALUT: 0.8) loss (str): loss function optimized ('margin', 'ce' supported, DEFALUT: 'margin') resc_schedule (bool): adapt schedule of p to n_queries (DEFAULT: True) seed (int): random seed for the starting point. (DEFAULT: 0) verbose (bool): print progress. (DEFAULT: False) targeted (bool): targeted. (DEFAULT: False) Shape: - images: :math:`(N, C, H, W)` where `N = number of batches`, `C = number of channels`, `H = height` and `W = width`. It must have a range [0, 1]. - labels: :math:`(N)` where each value :math:`y_i` is :math:`0 \leq y_i \leq` `number of labels`. - output: :math:`(N, C, H, W)`. Examples:: >>> attack = torchattacks.Square(model, model, norm='Linf', n_queries=5000, n_restarts=1, eps=None, p_init=.8, seed=0, verbose=False, targeted=False, loss='margin', resc_schedule=True) >>> adv_images = attack(images, labels) """ def __init__(self, model, norm='Linf', eps=None, n_queries=5000, n_restarts=1, p_init=.8, loss='margin', resc_schedule=True, seed=0, verbose=False, targeted=False): super(Square, self).__init__("Square", model) self.norm = norm self.n_queries = n_queries self.eps = eps self.p_init = p_init self.n_restarts = n_restarts self.seed = seed self.verbose = verbose self.targeted = targeted self.loss = loss self.rescale_schedule = resc_schedule self._attack_mode = 'only_default' def forward(self, images, labels): r""" Overridden. """ images = images.clone().detach().to(self.device) labels = labels.clone().detach().to(self.device) adv_images = self.perturb(images, labels) return adv_images def margin_and_loss(self, x, y): """ :param y: correct labels if untargeted else target labels """ logits = self.model(x) xent = F.cross_entropy(logits, y, reduction='none') u = torch.arange(x.shape[0]) y_corr = logits[u, y].clone() logits[u, y] = -float('inf') y_others = logits.max(dim=-1)[0] if not self.targeted: if self.loss == 'ce': return y_corr - y_others, -1. * xent elif self.loss == 'margin': return y_corr - y_others, y_corr - y_others else: return y_others - y_corr, xent def init_hyperparam(self, x): assert self.norm in ['Linf', 'L2'] assert not self.eps is None assert self.loss in ['ce', 'margin'] if self.device is None: self.device = x.device self.orig_dim = list(x.shape[1:]) self.ndims = len(self.orig_dim) if self.seed is None: self.seed = time.time() def random_target_classes(self, y_pred, n_classes): y = torch.zeros_like(y_pred) for counter in range(y_pred.shape[0]): l = list(range(n_classes)) l.remove(y_pred[counter]) t = self.random_int(0, len(l)) y[counter] = l[t] return y.long().to(self.device) def check_shape(self, x): return x if len(x.shape) == (self.ndims + 1) else x.unsqueeze(0) def random_choice(self, shape): t = 2 * torch.rand(shape).to(self.device) - 1 return torch.sign(t) def random_int(self, low=0, high=1, shape=[1]): t = low + (high - low) * torch.rand(shape).to(self.device) return t.long() def normalize(self, x): if self.norm == 'Linf': t = x.abs().view(x.shape[0], -1).max(1)[0] return x / (t.view(-1, *([1] * self.ndims)) + 1e-12) elif self.norm == 'L2': t = (x ** 2).view(x.shape[0], -1).sum(-1).sqrt() return x / (t.view(-1, *([1] * self.ndims)) + 1e-12) def lp_norm(self, x): if self.norm == 'L2': t = (x ** 2).view(x.shape[0], -1).sum(-1).sqrt() return t.view(-1, *([1] * self.ndims)) def eta_rectangles(self, x, y): delta = torch.zeros([x, y]).to(self.device) x_c, y_c = x // 2 + 1, y // 2 + 1 counter2 = [x_c - 1, y_c - 1] for counter in range(0, max(x_c, y_c)): delta[max(counter2[0], 0):min(counter2[0] + (2*counter + 1), x), max(0, counter2[1]):min(counter2[1] + (2*counter + 1), y) ] += 1.0/(torch.Tensor([counter + 1]).view(1, 1).to( self.device) ** 2) counter2[0] -= 1 counter2[1] -= 1 delta /= (delta ** 2).sum(dim=(0,1), keepdim=True).sqrt() return delta def eta(self, s): delta = torch.zeros([s, s]).to(self.device) delta[:s // 2] = self.eta_rectangles(s // 2, s) delta[s // 2:] = -1. * self.eta_rectangles(s - s // 2, s) delta /= (delta ** 2).sum(dim=(0, 1), keepdim=True).sqrt() if torch.rand([1]) > 0.5: delta = delta.permute([1, 0]) return delta def p_selection(self, it): """ schedule to decrease the parameter p """ if self.rescale_schedule: it = int(it / self.n_queries * 10000) if 10 < it <= 50: p = self.p_init / 2 elif 50 < it <= 200: p = self.p_init / 4 elif 200 < it <= 500: p = self.p_init / 8 elif 500 < it <= 1000: p = self.p_init / 16 elif 1000 < it <= 2000: p = self.p_init / 32 elif 2000 < it <= 4000: p = self.p_init / 64 elif 4000 < it <= 6000: p = self.p_init / 128 elif 6000 < it <= 8000: p = self.p_init / 256 elif 8000 < it: p = self.p_init / 512 else: p = self.p_init return p def attack_single_run(self, x, y): with torch.no_grad(): adv = x.clone() c, h, w = x.shape[1:] n_features = c * h * w n_ex_total = x.shape[0] if self.norm == 'Linf': x_best = torch.clamp(x + self.eps * self.random_choice( [x.shape[0], c, 1, w]), 0., 1.) margin_min, loss_min = self.margin_and_loss(x_best, y) n_queries = torch.ones(x.shape[0]).to(self.device) s_init = int(math.sqrt(self.p_init * n_features / c)) for i_iter in range(self.n_queries): idx_to_fool = (margin_min > 0.0).nonzero().squeeze() x_curr = self.check_shape(x[idx_to_fool]) x_best_curr = self.check_shape(x_best[idx_to_fool]) y_curr = y[idx_to_fool] if len(y_curr.shape) == 0: y_curr = y_curr.unsqueeze(0) margin_min_curr = margin_min[idx_to_fool] loss_min_curr = loss_min[idx_to_fool] p = self.p_selection(i_iter) s = max(int(round(math.sqrt(p * n_features / c))), 1) vh = self.random_int(0, h - s) vw = self.random_int(0, w - s) new_deltas = torch.zeros([c, h, w]).to(self.device) new_deltas[:, vh:vh + s, vw:vw + s ] = 2. * self.eps * self.random_choice([c, 1, 1]) x_new = x_best_curr + new_deltas x_new = torch.min(torch.max(x_new, x_curr - self.eps), x_curr + self.eps) x_new = torch.clamp(x_new, 0., 1.) x_new = self.check_shape(x_new) margin, loss = self.margin_and_loss(x_new, y_curr) # update loss if new loss is better idx_improved = (loss < loss_min_curr).float() loss_min[idx_to_fool] = idx_improved * loss + ( 1. - idx_improved) * loss_min_curr # update margin and x_best if new loss is better # or misclassification idx_miscl = (margin <= 0.).float() idx_improved = torch.max(idx_improved, idx_miscl) margin_min[idx_to_fool] = idx_improved * margin + ( 1. - idx_improved) * margin_min_curr idx_improved = idx_improved.reshape([-1, *[1]*len(x.shape[:-1])]) x_best[idx_to_fool] = idx_improved * x_new + ( 1. - idx_improved) * x_best_curr n_queries[idx_to_fool] += 1. ind_succ = (margin_min <= 0.).nonzero().squeeze() if self.verbose and ind_succ.numel() != 0: print('{}'.format(i_iter + 1), '- success rate={}/{} ({:.2%})'.format( ind_succ.numel(), n_ex_total, float(ind_succ.numel()) / n_ex_total), '- avg # queries={:.1f}'.format( n_queries[ind_succ].mean().item()), '- med # queries={:.1f}'.format( n_queries[ind_succ].median().item()), '- loss={:.3f}'.format(loss_min.mean())) if ind_succ.numel() == n_ex_total: break elif self.norm == 'L2': delta_init = torch.zeros_like(x) s = h // 5 sp_init = (h - s * 5) // 2 vh = sp_init + 0 for _ in range(h // s): vw = sp_init + 0 for _ in range(w // s): delta_init[:, :, vh:vh + s, vw:vw + s] += self.eta( s).view(1, 1, s, s) * self.random_choice( [x.shape[0], c, 1, 1]) vw += s vh += s x_best = torch.clamp(x + self.normalize(delta_init ) * self.eps, 0., 1.) margin_min, loss_min = self.margin_and_loss(x_best, y) n_queries = torch.ones(x.shape[0]).to(self.device) s_init = int(math.sqrt(self.p_init * n_features / c)) for i_iter in range(self.n_queries): idx_to_fool = (margin_min > 0.0).nonzero().squeeze() x_curr = self.check_shape(x[idx_to_fool]) x_best_curr = self.check_shape(x_best[idx_to_fool]) y_curr = y[idx_to_fool] if len(y_curr.shape) == 0: y_curr = y_curr.unsqueeze(0) margin_min_curr = margin_min[idx_to_fool] loss_min_curr = loss_min[idx_to_fool] delta_curr = x_best_curr - x_curr p = self.p_selection(i_iter) s = max(int(round(math.sqrt(p * n_features / c))), 3) if s % 2 == 0: s += 1 vh = self.random_int(0, h - s) vw = self.random_int(0, w - s) new_deltas_mask = torch.zeros_like(x_curr) new_deltas_mask[:, :, vh:vh + s, vw:vw + s] = 1.0 norms_window_1 = (delta_curr[:, :, vh:vh + s, vw:vw + s ] ** 2).sum(dim=(-2, -1), keepdim=True).sqrt() vh2 = self.random_int(0, h - s) vw2 = self.random_int(0, w - s) new_deltas_mask_2 = torch.zeros_like(x_curr) new_deltas_mask_2[:, :, vh2:vh2 + s, vw2:vw2 + s] = 1. norms_image = self.lp_norm(x_best_curr - x_curr) mask_image = torch.max(new_deltas_mask, new_deltas_mask_2) norms_windows = self.lp_norm(delta_curr * mask_image) new_deltas = torch.ones([x_curr.shape[0], c, s, s] ).to(self.device) new_deltas *= (self.eta(s).view(1, 1, s, s) * self.random_choice([x_curr.shape[0], c, 1, 1])) old_deltas = delta_curr[:, :, vh:vh + s, vw:vw + s] / ( 1e-12 + norms_window_1) new_deltas += old_deltas new_deltas = new_deltas / (1e-12 + (new_deltas ** 2).sum( dim=(-2, -1), keepdim=True).sqrt()) * (torch.max( (self.eps * torch.ones_like(new_deltas)) ** 2 - norms_image ** 2, torch.zeros_like(new_deltas)) / c + norms_windows ** 2).sqrt() delta_curr[:, :, vh2:vh2 + s, vw2:vw2 + s] = 0. delta_curr[:, :, vh:vh + s, vw:vw + s] = new_deltas + 0 x_new = torch.clamp(x_curr + self.normalize(delta_curr ) * self.eps, 0. ,1.) x_new = self.check_shape(x_new) norms_image = self.lp_norm(x_new - x_curr) margin, loss = self.margin_and_loss(x_new, y_curr) # update loss if new loss is better idx_improved = (loss < loss_min_curr).float() loss_min[idx_to_fool] = idx_improved * loss + ( 1. - idx_improved) * loss_min_curr # update margin and x_best if new loss is better # or misclassification idx_miscl = (margin <= 0.).float() idx_improved = torch.max(idx_improved, idx_miscl) margin_min[idx_to_fool] = idx_improved * margin + ( 1. - idx_improved) * margin_min_curr idx_improved = idx_improved.reshape([-1, *[1]*len(x.shape[:-1])]) x_best[idx_to_fool] = idx_improved * x_new + ( 1. - idx_improved) * x_best_curr n_queries[idx_to_fool] += 1. ind_succ = (margin_min <= 0.).nonzero().squeeze() if self.verbose and ind_succ.numel() != 0: print('{}'.format(i_iter + 1), '- success rate={}/{} ({:.2%})'.format( ind_succ.numel(), n_ex_total, float( ind_succ.numel()) / n_ex_total), '- avg # queries={:.1f}'.format( n_queries[ind_succ].mean().item()), '- med # queries={:.1f}'.format( n_queries[ind_succ].median().item()), '- loss={:.3f}'.format(loss_min.mean())) assert (x_new != x_new).sum() == 0 assert (x_best != x_best).sum() == 0 if ind_succ.numel() == n_ex_total: break return n_queries, x_best def perturb(self, x, y=None): """ :param x: clean images :param y: untargeted attack -> clean labels, if None we use the predicted labels targeted attack -> target labels, if None random classes, different from the predicted ones, are sampled """ self.init_hyperparam(x) adv = x.clone() if y is None: if not self.targeted: with torch.no_grad(): output = self.model(x) y_pred = output.max(1)[1] y = y_pred.detach().clone().long().to(self.device) else: with torch.no_grad(): output = self.model(x) n_classes = output.shape[-1] y_pred = output.max(1)[1] y = self.random_target_classes(y_pred, n_classes) else: y = y.detach().clone().long().to(self.device) if not self.targeted: acc = self.model(x).max(1)[1] == y else: acc = self.model(x).max(1)[1] != y startt = time.time() torch.random.manual_seed(self.seed) torch.cuda.random.manual_seed(self.seed) for counter in range(self.n_restarts): ind_to_fool = acc.nonzero().squeeze() if len(ind_to_fool.shape) == 0: ind_to_fool = ind_to_fool.unsqueeze(0) if ind_to_fool.numel() != 0: x_to_fool = x[ind_to_fool].clone() y_to_fool = y[ind_to_fool].clone() _, adv_curr = self.attack_single_run(x_to_fool, y_to_fool) output_curr = self.model(adv_curr) if not self.targeted: acc_curr = output_curr.max(1)[1] == y_to_fool else: acc_curr = output_curr.max(1)[1] != y_to_fool ind_curr = (acc_curr == 0).nonzero().squeeze() acc[ind_to_fool[ind_curr]] = 0 adv[ind_to_fool[ind_curr]] = adv_curr[ind_curr].clone() if self.verbose: print('restart {} - robust accuracy: {:.2%}'.format( counter, acc.float().mean()), '- cum. time: {:.1f} s'.format( time.time() - startt)) return adv
the-stack_0_19460
""" Userbot module containing hash and encode/decode commands. """ from subprocess import PIPE from subprocess import run as runapp import pybase64 from userbot import CMD_HELP from userbot.events import register, errors_handler @register(outgoing=True, pattern="^.hash (.*)") @errors_handler async def gethash(hash_q): """ For .hash command, find the md5, sha1, sha256, sha512 of the string. """ hashtxt_ = hash_q.pattern_match.group(1) hashtxt = open("hashdis.txt", "w+") hashtxt.write(hashtxt_) hashtxt.close() md5 = runapp(["md5sum", "hashdis.txt"], stdout=PIPE) md5 = md5.stdout.decode() sha1 = runapp(["sha1sum", "hashdis.txt"], stdout=PIPE) sha1 = sha1.stdout.decode() sha256 = runapp(["sha256sum", "hashdis.txt"], stdout=PIPE) sha256 = sha256.stdout.decode() sha512 = runapp(["sha512sum", "hashdis.txt"], stdout=PIPE) runapp(["rm", "hashdis.txt"], stdout=PIPE) sha512 = sha512.stdout.decode() ans = ("Text: `" + hashtxt_ + "`\nMD5: `" + md5 + "`SHA1: `" + sha1 + "`SHA256: `" + sha256 + "`SHA512: `" + sha512[:-1] + "`") if len(ans) > 4096: hashfile = open("hashes.txt", "w+") hashfile.write(ans) hashfile.close() await hash_q.client.send_file( hash_q.chat_id, "hashes.txt", reply_to=hash_q.id, caption="`It's too big, sending a text file instead. `") runapp(["rm", "hashes.txt"], stdout=PIPE) else: await hash_q.reply(ans) @register(outgoing=True, pattern="^.hbase (en|de) (.*)") @errors_handler async def endecrypt(query): """ For .base64 command, find the base64 encoding of the given string. """ if query.pattern_match.group(1) == "en": lething = str( pybase64.b64encode(bytes(query.pattern_match.group(2), "utf-8")))[2:] await query.reply("Shhh! It's Encoded: `" + lething[:-1] + "`") else: lething = str( pybase64.b64decode(bytes(query.pattern_match.group(2), "utf-8"), validate=True))[2:] await query.reply("Decoded: `" + lething[:-1] + "`") CMD_HELP.update({"base64": "Find the base64 encoding of the given string"}) CMD_HELP.update({ "hash": "Find the md5, sha1, sha256, sha512 of the string when written into a txt file." })
the-stack_0_19462
import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import hsv_to_rgb data = np.genfromtxt(open("colours.txt","rb"),delimiter="\t") hue = data[:,0] count = data[:,1] hsv = np.dstack((hue/180.0,np.ones(180),np.ones(180))) rgb = hsv_to_rgb(hsv) colours=['#%02x%02x%02x' % tuple(c*255) for c in rgb[0]] plt.bar(hue,count,color=colours,edgecolor=colours) plt.xlim(0,180) plt.xlabel('Hue') plt.ylabel('Total Pixel Count') plt.show()
the-stack_0_19463
import typing import inspect try: from pydantic import create_model from pydantic import BaseModel except ImportError: def create_model(*args, **kwargs): # type: ignore raise NotImplementedError() BaseModel = None # type: ignore Callable = typing.TypeVar("Callable", bound=typing.Callable) def set_type_model(func: Callable) -> Callable: """ try generate request body model from type hint and default value """ sig = inspect.signature(func) field_definitions = {} for name, parameter in sig.parameters.items(): if ( parameter.annotation == parameter.empty and parameter.default == parameter.empty ): # raise ValueError( # f"You must specify the type for the parameter {func.__name__}:{name}." # ) return func # Maybe the type hint should be mandatory? I'm not sure. if parameter.annotation == parameter.empty: field_definitions[name] = parameter.default elif parameter.default == parameter.empty: field_definitions[name] = (parameter.annotation, ...) else: field_definitions[name] = (parameter.annotation, parameter.default) if field_definitions: body_model = create_model(func.__name__, **field_definitions) setattr(func, "__body_model__", body_model) return func TEMPLATE = """<!DOCTYPE html> <html> <head> <title>OpenAPI power by rpc.py</title> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1"> <style> * { font-family: Menlo, Consolas, "Source Code Pro", Inconsolata, Monaco, "Courier New", 'Segoe UI', Helvetica, Arial, sans-serif !important; } h1, h2 { font-family: 'Segoe UI', Helvetica, Arial, sans-serif !important; } body { margin: 0; padding: 0; } </style> </head> <body> <redoc spec-url='get-openapi-docs'></redoc> <script src="https://cdn.jsdelivr.net/npm/redoc@next/bundles/redoc.standalone.js"> </script> </body> </html> """
the-stack_0_19464
from abc import ABC from distutils.cmd import Command from distutils.errors import DistutilsOptionError from pathlib import Path from typing import Optional, List PathList = Optional[List[Path]] class PathCommand(Command, ABC): def ensure_path_list(self, option): val = getattr(self, option) if val is None: return if not isinstance(val, list) or not all(isinstance(o, Path) for o in val): self.ensure_string_list(option) val = [Path(s) for s in getattr(self, option)] not_exist = [p for p in val if not p.exists()] if any(not_exist): raise DistutilsOptionError(f"Paths {', '.join(str(o.absolute()) for o in not_exist)} don't exist.") setattr(self, option, val) def ensure_dir_list(self, option): self.ensure_path_list(option) val = getattr(self, option) if val is None: return not_dir = [p for p in val if not p.is_dir()] if any(not_dir): raise DistutilsOptionError(f"Paths {', '.join(str(o.absolute()) for o in not_dir)} are not directories.")
the-stack_0_19465
""" pretrain a word2vec on the corpus""" import argparse import json import logging import os from os.path import join, exists from time import time from datetime import timedelta from cytoolz import concatv import gensim from utils import count_data try: DATA_DIR = os.environ['DATA'] except KeyError: print('please use environment variable to specify data directories') class Sentences(object): """ needed for gensim word2vec training""" def __init__(self): self._path = join(DATA_DIR, 'train') self._n_data = count_data(self._path) def __iter__(self): for i in range(self._n_data): with open(join(self._path, '{}.json'.format(i))) as f: data = json.loads(f.read()) for s in concatv(data['article'], data['abstract']): yield ['<s>'] + s.lower().split() + [r'<\s>'] def main(args): logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) start = time() save_dir = args.path if not exists(save_dir): os.makedirs(save_dir) sentences = Sentences() model = gensim.models.Word2Vec( size=args.dim, min_count=5, workers=16, sg=1) model.build_vocab(sentences) print('vocab built in {}'.format(timedelta(seconds=time()-start))) model.train(sentences, total_examples=model.corpus_count, epochs=model.iter) model.save(join(save_dir, 'word2vec.{}d.{}k.bin'.format( args.dim, len(model.wv.vocab)//1000))) model.wv.save_word2vec_format(join( save_dir, 'word2vec.{}d.{}k.w2v'.format(args.dim, len(model.wv.vocab)//1000) )) print('word2vec trained in {}'.format(timedelta(seconds=time()-start))) if __name__ == '__main__': parser = argparse.ArgumentParser( description='train word2vec embedding used for model initialization' ) parser.add_argument('--path', required=True, help='root of the model') parser.add_argument('--dim', action='store', type=int, default=128) args = parser.parse_args() main(args)
the-stack_0_19466
from typing import Dict, List, Optional, Sequence, Any, Union from functools import partial import numpy as np import logging log = logging.getLogger(__name__) import time import matplotlib.pyplot as plt import numpy as np import zhinst.utils import qcodes as qc from qcodes.instrument.base import Instrument import qcodes.utils.validators as vals from qcodes.instrument.parameter import ParameterWithSetpoints, Parameter from qcodes.dataset.measurements import Measurement, res_type, DataSaver from qcodes.instrument.specialized_parameters import ElapsedTimeParameter class HF2LI(Instrument): """Qcodes driver for Zurich Instruments HF2LI lockin amplifier. This driver is meant to emulate a single-channel lockin amplifier, so one instance has a single demodulator, a single sigout channel, and multiple auxout channels (for X, Y, R, Theta, or an arbitrary manual value). Multiple instances can be run simultaneously as independent lockin amplifiers. This instrument has a great deal of additional functionality that is not currently supported by this driver. Args: name: Name of instrument. device: Device name, e.g. "dev204", used to create zhinst API session. demod: Index of the demodulator to use. sigout: Index of the sigout channel to use as excitation source. auxouts: Dict of the form {output: index}, where output is a key of HF2LI.OUTPUT_MAPPING, for example {"X": 0, "Y": 3} to use the instrument as a lockin amplifier in X-Y mode with auxout channels 0 and 3. num_sigout_mixer_channels: Number of mixer channels to enable on the sigouts. Default: 1. """ OUTPUT_MAPPING = {-1: 'manual', 0: 'X', 1: 'Y', 2: 'R', 3: 'Theta'} def __init__(self, name: str, device: str, demod: int, sigout: int, auxouts: Dict[str, int], num_sigout_mixer_channels: int=1, **kwargs) -> None: super().__init__(name, **kwargs) instr = zhinst.utils.create_api_session(device, 1, required_devtype='HF2LI') #initializes the instrument self.daq, self.dev_id, self.props = instr self.demod = demod self.sigout = sigout self.auxouts = auxouts log.info(f'Successfully connected to {name}.') for ch in self.auxouts: self.add_parameter( name=ch, label=f'Scaled {ch} output value', unit='V', get_cmd=lambda channel=ch: self._get_output_value(channel), get_parser=float, docstring=f'Scaled and demodulated {ch} value.' ) self.add_parameter( name=f'gain_{ch}', label=f'{ch} output gain', unit='V/Vrms', get_cmd=lambda channel=ch: self._get_gain(channel), get_parser=float, set_cmd=lambda gain, channel=ch: self._set_gain(gain, channel), vals=vals.Numbers(), docstring=f'Gain factor for {ch}.' ) self.add_parameter( name=f'offset_{ch}', label=f'{ch} output offset', unit='V', get_cmd=lambda channel=ch: self._get_offset(channel), get_parser=float, set_cmd=lambda offset, channel=ch: self._set_offset(offset, channel), vals=vals.Numbers(-2560, 2560), docstring=f'Manual offset for {ch}, applied after scaling.' ) self.add_parameter( name=f'output_{ch}', label=f'{ch} outptut select', get_cmd=lambda channel=ch: self._get_output_select(channel), get_parser=str ) # Making output select only gettable, since we are # explicitly mapping auxouts to X, Y, R, Theta, etc. self._set_output_select(ch) self.add_parameter( name='phase', label='Phase', unit='deg', get_cmd=self._get_phase, get_parser=float, set_cmd=self._set_phase, vals=vals.Numbers(-180,180) ) self.add_parameter( name='time_constant', label='Time constant', unit='s', get_cmd=self._get_time_constant, get_parser=float, set_cmd=self._set_time_constant, vals=vals.Numbers() ) self.add_parameter( name='frequency', label='Frequency', unit='Hz', get_cmd=self._get_frequency, set_cmd=self._set_frequency, get_parser=float ) self.add_parameter( name='sigout_range', label='Signal output range', unit='V', get_cmd=self._get_sigout_range, get_parser=float, set_cmd=self._set_sigout_range, vals=vals.Enum(0.01, 0.1, 1, 10) ) self.add_parameter( name='sigout_offset', label='Signal output offset', unit='V', get_cmd=self._get_sigout_offset, get_parser=float, set_cmd=self._set_sigout_offset, vals=vals.Numbers(-1, 1), docstring='Multiply by sigout_range to get actual offset voltage.' ) single_values = (('x', 'Demodulated x', 'V'), ('y', 'Demodulated y', 'V') ) for name, unit, label in single_values : self.add_parameter( f'demod{self.demod}_{name}', unit=unit, label=label, get_cmd = partial( self._single_get, name ) ) self.add_parameter( name=f'demod{self.demod}_theta', label=f'Demodulated theta'+ str(self.demod), unit='deg', get_cmd= self._get_theta, get_parser=float ) #### Parameters for sweeping sweeper = self.daq.sweep() sweeper.set("device", self.dev_id) ### different ones?! sweeper.set("gridnode", f"oscs/{self.sigout}/freq") ### Set the sweeping parameter self.sweeper = sweeper # do an initial trigger for snapshot sweeper_params = ( ( 'samplecount', '', 'Points' ), ( 'start', 'Hz', 'Start frequency' ), ('stop', 'Hz', 'Stop frequency' ), ('xmapping', '', 'X scale as log or linear'), ('bandwidthoverlap', '', 'Bandwidth Overlap') ) for namex, unit, label in sweeper_params : self.add_parameter( f'sweeper_{namex}', unit=unit, label=label, set_cmd = partial( self.sweeper.set, namex ), get_cmd = partial( self._sweeper_get, namex ) ) self.add_parameter( 'trace_frequency', unit='Hz', label= 'Frequency', snapshot_value=False, get_cmd= lambda : self.sweeper_samples['frequency'], vals=vals.Arrays(shape=(self.sweeper_samplecount,)) ) self.add_parameter( 'averaging', unit='npts', label= 'Averaging', set_cmd = partial( self.sweeper.set, 'averaging/sample' ), get_cmd = partial( self._sweeper_get, 'averaging/sample' ) ) self.auto_trigger = False for p, units in ( ('r', 'dB'), ('x','dB'), ('y','dB'),('phase', 'rad') ) : self.add_parameter( f'trace_{p}', unit= units, label= p, parameter_class = ParameterWithSetpoints, setpoints = ( self.trace_frequency,), get_cmd= partial(self._get_sweep_param, p ), vals=vals.Arrays(shape=(self.sweeper_samplecount,)) ) for i in range(6, num_sigout_mixer_channels): self.add_parameter( name=f'sigout_enable{i}', label=f'Signal output mixer {i} enable', get_cmd=lambda mixer_channel=i: self._get_sigout_enable(mixer_channel), get_parser=float, set_cmd=lambda amp, mixer_channel=i: self._set_sigout_enable(mixer_channel, amp), vals=vals.Enum(0,1,2,3), docstring="""\ 0: Channel off (unconditionally) 1: Channel on (unconditionally) 2: Channel off (will be turned off on next change of sign from negative to positive) 3: Channel on (will be turned on on next change of sign from negative to positive) """ ) self.add_parameter( name=f'sigout_amplitude{i}', label=f'Signal output mixer {i} amplitude', unit='Gain', get_cmd=lambda mixer_channel=i: self._get_sigout_amplitude(mixer_channel), get_parser=float, set_cmd=lambda amp, mixer_channel=i: self._set_sigout_amplitude(mixer_channel, amp), vals=vals.Numbers(-1, 1), docstring='Multiply by sigout_range to get actual output voltage.' ) def _sweeper_get( self, name ) : """ wrap zi sweeper.get """ return self.sweeper.get( name )[name][0] def _single_get(self, name): path = f'/{self.dev_id}/demods/{self.demod}/sample/' return self.daq.getSample(path)[name][0] def _get_sweep_param(self, param, fr=True): if self.auto_trigger : self.trigger_sweep() if param is 'phase' : values = self.sweeper_samples[param] else : # detect which node we are sweeping with amplitude = self._get_sigout_amplitude(self.sigout+6) / ( 2 * np.sqrt(2) ) # normalization factor for vpp 2x fudge values = 20 * np.log10( self.sweeper_samples[param]/amplitude ) return values def _get_theta(self): path = f'/{self.dev_id}/demods/{self.demod}/sample/' theta = np.arctan(self.daq.getSample(path)['y']/self.daq.getSample(path)['x'])*180/np.pi return theta def trigger_sweep(self): sweeper = self.daq.sweep() #sweeper = self.sweeper sweeper.set('scan', 0) ### Sequenctial sweep sweeper.set("bandwidthcontrol", 2) ### Bandwidth control: Auto sweeper.set('maxbandwidth', 100) ### Max demodulation bandwidth path = f"/{self.dev_id}/demods/{self.demod}/sample" sweeper.set("start", self.sweeper_start()) sweeper.set("stop", self.sweeper_stop()) sweeper.set("samplecount", self.sweeper_samplecount()) #sweeper.set() sweeper.subscribe(path) sweeper.execute() ### Wait until measurement is done start_t = time.time() timeout = 60 # [s] while not sweeper.finished(): # Wait until the sweep is complete, with timeout. time.sleep(1) progress = sweeper.progress() if (time.time() - start_t) > timeout: print("\nSweep still not finished, forcing finish...") sweeper.finish() print("") data = sweeper.read(True) self.sweeper_samples = data[path][0][0] sweeper.unsubscribe(path) ### Unsubscribe from the signal path def _get_data(self, poll_length=0.1) -> float: path = f'/{self.dev_id}/demods/{self.demod}/sample' self.daq.unsubscribe("*") poll_timeout = 500 # [ms] poll_flags = 0 poll_return_flat_dict = True self.daq.sync() self.daq.subscribe(path) data = self.daq.poll(poll_length, poll_timeout, poll_flags, poll_return_flat_dict) self.daq.unsubscribe("*") return data def readout(self): path = f'/{self.dev_id}/demods/{self.demod}/sample' data = self._get_data() sample = data[path] X = sample['x'] Y = sample['y'] clockbase = float(self.daq.getInt(f'/{self.dev_id}/clockbase')) t = (sample['timestamp'] - sample['timestamp'][0]) / clockbase return (X, Y, t) def _get_phase(self) -> float: path = f'/{self.dev_id}/demods/{self.demod}/phaseshift/' return self.daq.getDouble(path) def _set_phase(self, phase: float) -> None: path = f'/{self.dev_id}/demods/{self.demod}/phaseshift/' self.daq.setDouble(path, phase) def _get_gain(self, channel: str) -> float: path = f'/{self.dev_id}/auxouts/{self.auxouts[channel]}/scale/' return self.daq.getDouble(path) def _set_gain(self, gain: float, channel: str) -> None: path = f'/{self.dev_id}/auxouts/{self.auxouts[channel]}/scale/' self.daq.setDouble(path, gain) def _get_offset(self, channel: str) -> float: path = f'/{self.dev_id}/auxouts/{self.auxouts[channel]}/offset/' return self.daq.getDouble(path) def _set_offset(self, offset: float, channel: str) -> None: path = f'/{self.dev_id}/auxouts/{self.auxouts[channel]}/offset/' self.daq.setDouble(path, offset) def _get_output_value(self, channel: str) -> float: path = f'/{self.dev_id}/auxouts/{self.auxouts[channel]}/value/' return self.daq.getDouble(path) def _get_output_select(self, channel: str) -> str: path = f'/{self.dev_id}/auxouts/{self.auxouts[channel]}/outputselect/' idx = self.daq.getInt(path) return self.OUTPUT_MAPPING[idx] def _set_output_select(self, channel: str) -> None: path = f'/{self.dev_id}/auxouts/{self.auxouts[channel]}/outputselect/' keys = list(self.OUTPUT_MAPPING.keys()) idx = keys[list(self.OUTPUT_MAPPING.values()).index(channel)] self.daq.setInt(path, idx) def _get_time_constant(self) -> float: path = f'/{self.dev_id}/demods/{self.demod}/timeconstant/' return self.daq.getDouble(path) def _set_time_constant(self, tc: float) -> None: path = f'/{self.dev_id}/demods/{self.demod}/timeconstant/' self.daq.setDouble(path, tc) def _get_sigout_range(self) -> float: path = f'/{self.dev_id}/sigouts/{self.sigout}/range/' return self.daq.getDouble(path) def _set_sigout_range(self, rng: float) -> None: path = f'/{self.dev_id}/sigouts/{self.sigout}/range/' self.daq.setDouble(path, rng) def _get_sigout_offset(self) -> float: path = f'/{self.dev_id}/sigouts/{self.sigout}/offset/' range = self._get_sigout_range() return self.daq.getDouble(path)*range def _set_sigout_offset(self, offset: float) -> None: path = f'/{self.dev_id}/sigouts/{self.sigout}/offset/' range = self._get_sigout_range() return self.daq.setDouble(path, offset/range) def _get_sigout_amplitude(self, mixer_channel: int) -> float: path = f'/{self.dev_id}/sigouts/{self.sigout}/amplitudes/{mixer_channel}/' range = self._get_sigout_range() return self.daq.getDouble(path)*range def _set_sigout_amplitude(self, mixer_channel: int, amp: float) -> None: path = f'/{self.dev_id}/sigouts/{self.sigout}/amplitudes/{mixer_channel}/' range = self._get_sigout_range() return self.daq.setDouble(path, amp/range) def _get_sigout_enable(self, mixer_channel: int) -> int: path = f'/{self.dev_id}/sigouts/{self.sigout}/enables/{mixer_channel}/' return self.daq.getInt(path) def _set_sigout_enable(self, mixer_channel: int, val: int) -> None: path = f'/{self.dev_id}/sigouts/{self.sigout}/enables/{mixer_channel}/' self.daq.setInt(path, val) def _get_frequency(self) -> float: path = f'/{self.dev_id}/demods/{self.demod}/freq/' return self.daq.getDouble(path) def _set_frequency(self, freq) -> float: osc_index = 0 return self.daq.set([["/%s/oscs/%d/freq" % (self.dev_id, osc_index), freq]]) def sample(self) -> dict: path = f'/{self.dev_id}/demods/{self.demod}/sample/' return self.daq.getSample(path) """ def trigger_sweep(self): sweeper = self.daq.sweep() # sweeper.set("device", self.dev_id) # ### different ones?! # sweeper.set("gridnode", f"oscs/{0}/freq") ### Set the sweeping parameter sweeper = self.sweeper # sweeper.set("start", self.sweeper_start() ) # sweeper.set("stop", self.sweeper_stop() ) # sweeper.set('samplecount', self.sweeper_samplecount() ) # sweeper.set("xmapping", 1) ### Logarithmic sweep sweeper.set('scan', 0) ### Sequenctial sweep sweeper.set("bandwidthcontrol", 2) ### Bandwidth control: Auto sweeper.set('maxbandwidth', 100) ### Max demodulation bandwidth #sweeper.set('bandwidthoverlap', 0) ### No bandwidth overlap # ### Number of averaging for each sweep point # sweeper.set('averaging/sample', 20) path = f"/{self.dev_id}/demods/{self.demod}/sample" sweeper.subscribe(path) ### Start measurement sweeper.execute() ### Wait until measurement is done start_t = time.time() timeout = 60 # [s] #print("Will measure", self.sweeper_samplecount.get_latest(), "sweep pointss...") while not sweeper.finished(): # Wait until the sweep is complete, with timeout. time.sleep(1) progress = sweeper.progress() #print(f"Sweep progress: {progress[0]:.2%}.", end="\n") if (time.time() - start_t) > timeout: print("\nSweep still not finished, forcing finish...") sweeper.finish() print("") data = sweeper.read(True) self.samples = data[path][0][0] sweeper.unsubscribe(path) ### Unsubscribe from the signal path # sweeper.finish() ### Finish the nodule # sweeper.clear() ### Delete the module #frequency = samples['frequency'] #amplitude = samples['r'] #phase = samples['phase'] """
the-stack_0_19467
# Copyright 2020, A10 Networks # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import imp try: from unittest import mock except ImportError: import mock from oslo_config import cfg from oslo_config import fixture as oslo_fixture from octavia.common import constants as o_constants from octavia.common import data_models as o_data_models from a10_octavia.common.config_options import A10_SERVICE_GROUP_OPTS from a10_octavia.common.data_models import VThunder import a10_octavia.controller.worker.tasks.service_group_tasks as task from a10_octavia.controller.worker.tasks import utils from a10_octavia.tests.common import a10constants from a10_octavia.tests.unit.base import BaseTaskTestCase VTHUNDER = VThunder() POOL = o_data_models.Pool(id=a10constants.MOCK_POOL_ID) AXAPI_ARGS = {'service_group': utils.meta(POOL, 'service_group', {})} class TestHandlerServiceGroupTasks(BaseTaskTestCase): def setUp(self): super(TestHandlerServiceGroupTasks, self).setUp() imp.reload(task) self.client_mock = mock.Mock() self.conf = self.useFixture(oslo_fixture.Config(cfg.CONF)) self.conf.register_opts(A10_SERVICE_GROUP_OPTS, group=a10constants.SERVICE_GROUP_CONF_SECTION) def tearDown(self): super(TestHandlerServiceGroupTasks, self).tearDown() self.conf.reset() def test_revert_pool_create_task(self): mock_pool = task.PoolCreate() mock_pool.axapi_client = self.client_mock mock_pool.revert(POOL, VTHUNDER) self.client_mock.slb.service_group.delete.assert_called_with(POOL.id) def test_create_lb_algorithm_source_ip_hash_only(self): mock_pool = task.PoolCreate() mock_pool.axapi_client = self.client_mock mock_pool.CONF = self.conf pool = o_data_models.Pool(id=a10constants.MOCK_POOL_ID, protocol=o_constants.PROTOCOL_HTTP, lb_algorithm=o_constants.LB_ALGORITHM_SOURCE_IP) mock_pool.execute(pool, VTHUNDER) self.client_mock.slb.service_group.create.assert_called_with( a10constants.MOCK_POOL_ID, protocol=mock.ANY, lb_method=mock_pool.axapi_client.slb.service_group.SOURCE_IP_HASH_ONLY, service_group_templates=mock.ANY, axapi_args=AXAPI_ARGS)
the-stack_0_19468
# coding: utf-8 # /*########################################################################## # # Copyright (c) 2016-2019 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __authors__ = ["V. Valls"] __license__ = "MIT" __date__ = "12/12/2017" import unittest import shutil import tempfile import numpy import six from silx.gui.utils.testutils import TestCaseQt from silx.gui.utils.testutils import SignalListener from ..TextFormatter import TextFormatter import h5py class TestTextFormatter(TestCaseQt): def test_copy(self): formatter = TextFormatter() copy = TextFormatter(formatter=formatter) self.assertIsNot(formatter, copy) copy.setFloatFormat("%.3f") self.assertEqual(formatter.integerFormat(), copy.integerFormat()) self.assertNotEqual(formatter.floatFormat(), copy.floatFormat()) self.assertEqual(formatter.useQuoteForText(), copy.useQuoteForText()) self.assertEqual(formatter.imaginaryUnit(), copy.imaginaryUnit()) def test_event(self): listener = SignalListener() formatter = TextFormatter() formatter.formatChanged.connect(listener) formatter.setFloatFormat("%.3f") formatter.setIntegerFormat("%03i") formatter.setUseQuoteForText(False) formatter.setImaginaryUnit("z") self.assertEqual(listener.callCount(), 4) def test_int(self): formatter = TextFormatter() formatter.setIntegerFormat("%05i") result = formatter.toString(512) self.assertEqual(result, "00512") def test_float(self): formatter = TextFormatter() formatter.setFloatFormat("%.3f") result = formatter.toString(1.3) self.assertEqual(result, "1.300") def test_complex(self): formatter = TextFormatter() formatter.setFloatFormat("%.1f") formatter.setImaginaryUnit("i") result = formatter.toString(1.0 + 5j) result = result.replace(" ", "") self.assertEqual(result, "1.0+5.0i") def test_string(self): formatter = TextFormatter() formatter.setIntegerFormat("%.1f") formatter.setImaginaryUnit("z") result = formatter.toString("toto") self.assertEqual(result, '"toto"') def test_numpy_void(self): formatter = TextFormatter() result = formatter.toString(numpy.void(b"\xFF")) self.assertEqual(result, 'b"\\xFF"') def test_char_cp1252(self): # degree character in cp1252 formatter = TextFormatter() result = formatter.toString(numpy.bytes_(b"\xB0")) self.assertEqual(result, u'"\u00B0"') class TestTextFormatterWithH5py(TestCaseQt): @classmethod def setUpClass(cls): super(TestTextFormatterWithH5py, cls).setUpClass() cls.tmpDirectory = tempfile.mkdtemp() cls.h5File = h5py.File("%s/formatter.h5" % cls.tmpDirectory, mode="w") cls.formatter = TextFormatter() @classmethod def tearDownClass(cls): super(TestTextFormatterWithH5py, cls).tearDownClass() cls.h5File.close() cls.h5File = None shutil.rmtree(cls.tmpDirectory) def create_dataset(self, data, dtype=None): testName = "%s" % self.id() dataset = self.h5File.create_dataset(testName, data=data, dtype=dtype) return dataset def testAscii(self): d = self.create_dataset(data=b"abc") result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(result, '"abc"') def testUnicode(self): d = self.create_dataset(data=u"i\u2661cookies") result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(len(result), 11) self.assertEqual(result, u'"i\u2661cookies"') def testBadAscii(self): d = self.create_dataset(data=b"\xF0\x9F\x92\x94") result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(result, 'b"\\xF0\\x9F\\x92\\x94"') def testVoid(self): d = self.create_dataset(data=numpy.void(b"abc\xF0")) result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(result, 'b"\\x61\\x62\\x63\\xF0"') def testEnum(self): dtype = h5py.special_dtype(enum=('i', {"RED": 0, "GREEN": 1, "BLUE": 42})) d = numpy.array(42, dtype=dtype) d = self.create_dataset(data=d) result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(result, 'BLUE(42)') def testRef(self): dtype = h5py.special_dtype(ref=h5py.Reference) d = numpy.array(self.h5File.ref, dtype=dtype) d = self.create_dataset(data=d) result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(result, 'REF') def testArrayAscii(self): d = self.create_dataset(data=[b"abc"]) result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(result, '["abc"]') def testArrayUnicode(self): dtype = h5py.special_dtype(vlen=six.text_type) d = numpy.array([u"i\u2661cookies"], dtype=dtype) d = self.create_dataset(data=d) result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(len(result), 13) self.assertEqual(result, u'["i\u2661cookies"]') def testArrayBadAscii(self): d = self.create_dataset(data=[b"\xF0\x9F\x92\x94"]) result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(result, '[b"\\xF0\\x9F\\x92\\x94"]') def testArrayVoid(self): d = self.create_dataset(data=numpy.void([b"abc\xF0"])) result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(result, '[b"\\x61\\x62\\x63\\xF0"]') def testArrayEnum(self): dtype = h5py.special_dtype(enum=('i', {"RED": 0, "GREEN": 1, "BLUE": 42})) d = numpy.array([42, 1, 100], dtype=dtype) d = self.create_dataset(data=d) result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(result, '[BLUE(42) GREEN(1) 100]') def testArrayRef(self): dtype = h5py.special_dtype(ref=h5py.Reference) d = numpy.array([self.h5File.ref, None], dtype=dtype) d = self.create_dataset(data=d) result = self.formatter.toString(d[()], dtype=d.dtype) self.assertEqual(result, '[REF NULL_REF]') def suite(): loadTests = unittest.defaultTestLoader.loadTestsFromTestCase test_suite = unittest.TestSuite() test_suite.addTest(loadTests(TestTextFormatter)) test_suite.addTest(loadTests(TestTextFormatterWithH5py)) return test_suite if __name__ == '__main__': unittest.main(defaultTest='suite')
the-stack_0_19469
""" The read4 API is already defined for you. @param buf4, a list of characters @return an integer def read4(buf4): # Below is an example of how the read4 API can be called. file = File("abcdefghijk") # File is "abcdefghijk", initially file pointer (fp) points to 'a' buf4 = [' '] * 4 # Create buffer with enough space to store characters read4(buf4) # read4 returns 4. Now buf = ['a','b','c','d'], fp points to 'e' read4(buf4) # read4 returns 4. Now buf = ['e','f','g','h'], fp points to 'i' read4(buf4) # read4 returns 3. Now buf = ['i','j','k',...], fp points to end of file """ class Solution: def read(self, buf, n): """ :type buf: Destination buffer (List[str]) :type n: Number of characters to read (int) :rtype: The number of actual characters read (int) """ idx = 0 while n > 0: # read file to buf4 buf4 = [""]*4 l = read4(buf4) # if no more char in file, return if not l: return idx # write buf4 into buf directly for i in range(min(l, n)): buf[idx] = buf4[i] idx += 1 n -= 1 return idx # Time: O(N) # Space:O(N)
the-stack_0_19470
from trabant import * from trabant.gameapi import waitload from trabant.mesh import mesh_union from trabant.objects import * from trabant.objgen import createcapsule from types import MethodType body = r''' /XX\ <XXXXXXXXX\ ´XXXXXXXXX> ''' template_tank = None def _add_canon(orientation,gfx,phys): canon = createcapsule(0.4, 6, 2, 4)[0] gfx.vertices,gfx.indices = mesh_union(gfx.vertices, gfx.indices, canon.vertices, canon.indices, quat().rotate_y(pi/2), vec3(-4,-2,0)) return orientation,gfx,phys def init_tank_obj(): global template_tank preprocess_tank = process_chain(orthoscale((1,1.6,6)), process_rot((0,0,-pi/2)), _add_canon) template_tank = create_ascii_object(body, pos=vec3(1000,1000,1000), static=True, process=preprocess_tank) def update_tank(self, vel): vel = vel.with_z(0) if vel.length() > 0.5: direction = vel.normalize() yaw = -atan2(direction.x, direction.y) self.orientation(quat().rotate_z(yaw)) self.avel(vec3()) def create_tank_obj(pos, col, vel=None): obj = create_clones(template_tank, [(pos,quat())])[0] gameapi.waitload(obj.id) obj.vel(vel) obj.col(col) obj.update_tank = MethodType(update_tank, obj) return obj def process_tank_floor(orientation, gfx, phys): top = max(gfx.vertices, key=lambda v:v.z).z bottom = top-30 for v in gfx.vertices: v.z = max(v.z,bottom) return orientation,gfx,phys
the-stack_0_19471
import time import math import random import board import adafruit_dotstar as dotstar from os import listdir from os.path import isfile, join, splitext from PIL import Image, ImageOps from datetime import datetime panelWidth = 40 panelHeight = 10 dotCount = panelWidth * panelHeight asciiDir = './ascii' FILENAME = asciiDir + '/' + '48.png' asciiDict = {} dots = dotstar.DotStar( board.SCK, board.MOSI, dotCount, auto_write=False, brightness=0.05 ) def loadImage(filename): imageRaw = Image.open(filename).convert("RGB") imageInvert = ImageOps.invert(imageRaw) imagePixels = imageInvert.load() imageWidth = imageInvert.size[0] imageHeight = imageInvert.size[1] print("%dx%d pixels" % imageInvert.size) print("Allocating...") imageColumns = [0 for x in range(imageWidth)] for x in range(imageWidth): imageColumns[x] = [[0, 0, 0, 0] for _ in range(imageHeight)] print("Converting...") for x in range(imageWidth): # For each column of image for y in range(imageHeight): # For each pixel in column value = imagePixels[x, y] # Read RGB pixel in image imageColumns[x][y][0] = value[0] # Gamma-corrected R imageColumns[x][y][1] = value[1] # Gamma-corrected G imageColumns[x][y][2] = value[2] # Gamma-corrected B imageColumns[x][y][3] = 1.0 # Brightness #print ('X ' + str(x) + ' Y ' + str(y) + ' value: ' + str(value[0])) return imageColumns asciiFiles = [f for f in listdir(asciiDir) if isfile(join(asciiDir, f))] for asciiFile in asciiFiles: parts = splitext(asciiFile) print('Loading ASCII #' + parts[0]) asciiDict[parts[0]] = loadImage(asciiDir + '/' + asciiFile) # a random color 0 -> 192 def random_color(): return random.randrange(0, 7) * 32 # # Draw a given image matrix at a given offset # def showImage(img, xOffset, yOffset): for x in range(len(img)): # For each column of image for y in range(len(img[0])): # For each pixel in column b = 0.1 value = img[x][y] # Read RGB pixel in image pixel = getPixel(xOffset + x,yOffset + y) dots[pixel] = [int(value[0] * b), int(value[1] * b), int(value[2] * b)] return xOffset + len(img) def showText(text, xOffset, yOffset): x = xOffset for char in text: asciiNum = ord(char) asciiImage = asciiDict[str(asciiNum)] x = showImage(asciiImage, x, yOffset) + 1 def getPixel(col, row): baseCount = (row) * panelWidth # If we are an even row, count lef to right if (row % 2) == 0: pixel = baseCount + col else: pixel = baseCount + (panelWidth - col) -1 #print('col %d row %d baseCount %d pixel %d even %d' % (col, row, baseCount, pixel, row%2)) return pixel def clearScreen(): for x in range(0, dotCount): dots[x] = (0, 0, 0) while True: clearScreen() now = datetime.now() currentTime = now.strftime("%-I:%M") showText(currentTime, 0, 0) dots.show() time.sleep(1.0)
the-stack_0_19474
import streamlit as st #import sim_pseudo_code as spc #import Team_Class as tc import pandas as pd import plotly.graph_objects as go import numpy as np #add in seed @st.cache def load_data(): win_probs = pd.read_csv('dash_data4.csv') return win_probs df = load_data() data = df.reindex(columns=['sim_prob','rf_model','nn_model','elo_pred','seed_pred','Pred']) df_t_seed = df.reindex(columns=['Team_Name_1','Team_Name_2','Seed1','Seed2']) df_t_seed['Team_Name_1'] = df_t_seed.apply(lambda x: str(x.Team_Name_1) + ' ('+str(x.Seed1)+')', axis=1) df_t_seed['Team_Name_2'] = df_t_seed.apply(lambda x: str(x.Team_Name_2) + ' ('+str(x.Seed2)+')', axis=1) teams = df_t_seed.reindex(columns= ['Team_Name_1','Team_Name_2']) data_inverse = 1- data.copy() data['Team1'] = teams.Team_Name_1 data['Team2'] = teams.Team_Name_2 data_inverse['Team1'] = teams.Team_Name_2 data_inverse['Team2'] = teams.Team_Name_1 df_fin = pd.concat([data,data_inverse]) st.title('Win Probability By Model 2021') t1 = st.selectbox('Team 1:', df_fin.Team1.unique()) t2 = st.selectbox('Team 2:', df_fin.Team2.unique()) d_out = df_fin[(df_fin['Team1']== t1) & (df_fin['Team2'] == t2)].round(2) values = [d_out.iloc[0]['Pred'],d_out.iloc[0]['elo_pred'], d_out.iloc[0]['seed_pred'], d_out.iloc[0]['sim_prob'], d_out.iloc[0]['rf_model'], d_out.iloc[0]['nn_model']] values2 = [1-d_out.iloc[0]['Pred'],1-d_out.iloc[0]['elo_pred'],1- d_out.iloc[0]['seed_pred'],1- d_out.iloc[0]['sim_prob'], 1-d_out.iloc[0]['rf_model'], 1-d_out.iloc[0]['nn_model']] #st.dataframe(d_out) def create_fig(d_out,values): fig = go.Figure() fig.add_trace(go.Bar( y=['AGGREGATE', 'elo', 'seed','sim','rf_model','nn_model'], #x=[d_out['aggregate'][0],d_out['elo_pred'][0], d_out['seed_pred'][0], d_out['sim_prob'][0], d_out['rf_model'][0], d_out['nn_model'][0]], x =values, name=d_out.iloc[0]['Team1'], orientation='h', text=values, textposition='auto', marker=dict( color='rgba(246, 78, 139, 0.6)', line=dict(color='rgba(246, 78, 139, 1.0)', width=3) ) )) fig.add_trace(go.Bar( y=['AGGREGATE', 'elo', 'seed','sim','rf_model','nn_model'], x=values2, name=d_out.iloc[0]['Team2'], orientation='h', marker=dict( color='rgba(58, 71, 80, 0.6)', line=dict(color='rgba(58, 71, 80, 1.0)', width=3) ) )) fig.update_layout(barmode='stack') return fig f_out = create_fig(d_out,values) st.plotly_chart(f_out) #st.dataframe(d_out)
the-stack_0_19475
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # Copyright (c) 2008-2021 pyglet contributors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- """Abstract classes used by pyglet.font implementations. These classes should not be constructed directly. Instead, use the functions in `pyglet.font` to obtain platform-specific instances. You can use these classes as a documented interface to the concrete classes. """ import unicodedata from pyglet.gl import * from pyglet import image _other_grapheme_extend = list(map(chr, [0x09be, 0x09d7, 0x0be3, 0x0b57, 0x0bbe, 0x0bd7, 0x0cc2, 0x0cd5, 0x0cd6, 0x0d3e, 0x0d57, 0x0dcf, 0x0ddf, 0x200c, 0x200d, 0xff9e, 0xff9f])) # skip codepoints above U+10000 _logical_order_exception = list(map(chr, list(range(0xe40, 0xe45)) + list(range(0xec0, 0xec4)))) _grapheme_extend = lambda c, cc: cc in ('Me', 'Mn') or c in _other_grapheme_extend _CR = u'\u000d' _LF = u'\u000a' _control = lambda c, cc: cc in ('ZI', 'Zp', 'Cc', 'Cf') and not \ c in list(map(chr, [0x000d, 0x000a, 0x200c, 0x200d])) _extend = lambda c, cc: _grapheme_extend(c, cc) or \ c in list(map(chr, [0xe30, 0xe32, 0xe33, 0xe45, 0xeb0, 0xeb2, 0xeb3])) _prepend = lambda c, cc: c in _logical_order_exception _spacing_mark = lambda c, cc: cc == 'Mc' and c not in _other_grapheme_extend def _grapheme_break(left, right): # GB1 if left is None: return True # GB2 not required, see end of get_grapheme_clusters # GB3 if left == _CR and right == _LF: return False left_cc = unicodedata.category(left) # GB4 if _control(left, left_cc): return True right_cc = unicodedata.category(right) # GB5 if _control(right, right_cc): return True # GB6, GB7, GB8 not implemented # GB9 if _extend(right, right_cc): return False # GB9a if _spacing_mark(right, right_cc): return False # GB9b if _prepend(left, left_cc): return False # GB10 return True def get_grapheme_clusters(text): """Implements Table 2 of UAX #29: Grapheme Cluster Boundaries. Does not currently implement Hangul syllable rules. :Parameters: `text` : unicode String to cluster. .. versionadded:: 1.1.2 :rtype: List of `unicode` :return: List of Unicode grapheme clusters """ clusters = [] cluster = '' left = None for right in text: if cluster and _grapheme_break(left, right): clusters.append(cluster) cluster = '' elif cluster: # Add a zero-width space to keep len(clusters) == len(text) clusters.append(u'\u200b') cluster += right left = right # GB2 if cluster: clusters.append(cluster) return clusters class Glyph(image.TextureRegion): """A single glyph located within a larger texture. Glyphs are drawn most efficiently using the higher level APIs, for example `GlyphString`. :Ivariables: `advance` : int The horizontal advance of this glyph, in pixels. `vertices` : (int, int, int, int) The vertices of this glyph, with (0,0) originating at the left-side bearing at the baseline. """ baseline = 0 lsb = 0 advance = 0 vertices = (0, 0, 0, 0) def set_bearings(self, baseline, left_side_bearing, advance, x_offset=0, y_offset=0): """Set metrics for this glyph. :Parameters: `baseline` : int Distance from the bottom of the glyph to its baseline; typically negative. `left_side_bearing` : int Distance to add to the left edge of the glyph. `advance` : int Distance to move the horizontal advance to the next glyph. `offset_x` : int Distance to move the glyph horizontally from it's default position. `offset_y` : int Distance to move the glyph vertically from it's default position. """ self.baseline = baseline self.lsb = left_side_bearing self.advance = advance self.vertices = ( left_side_bearing + x_offset, -baseline + y_offset, left_side_bearing + self.width + x_offset, -baseline + self.height + y_offset) def draw(self): """Debug method. Use the higher level APIs for performance and kerning. """ glBindTexture(GL_TEXTURE_2D, self.owner.id) glBegin(GL_QUADS) self.draw_quad_vertices() glEnd() def draw_quad_vertices(self): """Debug method. Use the higher level APIs for performance and kerning. """ glTexCoord3f(*self.tex_coords[:3]) glVertex2f(self.vertices[0], self.vertices[1]) glTexCoord3f(*self.tex_coords[3:6]) glVertex2f(self.vertices[2], self.vertices[1]) glTexCoord3f(*self.tex_coords[6:9]) glVertex2f(self.vertices[2], self.vertices[3]) glTexCoord3f(*self.tex_coords[9:12]) glVertex2f(self.vertices[0], self.vertices[3]) def get_kerning_pair(self, right_glyph): """Not implemented. """ return 0 class GlyphTextureAtlas(image.Texture): """A texture within which glyphs can be drawn. """ region_class = Glyph x = 0 y = 0 line_height = 0 def apply_blend_state(self): """Set the OpenGL blend state for the glyphs in this texture. """ glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glEnable(GL_BLEND) def fit(self, image): """Place `image` within this texture. :Parameters: `image` : `pyglet.image.AbstractImage` Image to place within the texture. :rtype: `Glyph` :return: The glyph representing the image from this texture, or None if the image doesn't fit. """ if image.width > self.width or image.height > self.height: return None if self.x + image.width > self.width: self.x = 0 self.y += self.line_height + 1 self.line_height = 0 if self.y + image.height > self.height: return None self.line_height = max(self.line_height, image.height) region = self.get_region( self.x, self.y, image.width, image.height) if image.width > 0: region.blit_into(image, 0, 0, 0) self.x += image.width + 1 return region class GlyphRenderer: """Abstract class for creating glyph images. """ def __init__(self, font): pass def render(self, text): raise NotImplementedError('Subclass must override') class FontException(Exception): """Generic exception related to errors from the font module. Typically these relate to invalid font data.""" pass class Font: """Abstract font class able to produce glyphs. To construct a font, use :py:func:`pyglet.font.load`, which will instantiate the platform-specific font class. Internally, this class is used by the platform classes to manage the set of textures into which glyphs are written. :Ivariables: `ascent` : int Maximum ascent above the baseline, in pixels. `descent` : int Maximum descent below the baseline, in pixels. Usually negative. """ texture_width = 256 texture_height = 256 texture_internalformat = GL_ALPHA texture_min_filter = GL_LINEAR texture_mag_filter = GL_LINEAR # These should also be set by subclass when known ascent = 0 descent = 0 glyph_renderer_class = GlyphRenderer texture_class = GlyphTextureAtlas def __init__(self): self.textures = [] self.glyphs = {} @property def name(self): """Return the Family Name of the font as a string.""" raise NotImplementedError @classmethod def add_font_data(cls, data): """Add font data to the font loader. This is a class method and affects all fonts loaded. Data must be some byte string of data, for example, the contents of a TrueType font file. Subclasses can override this method to add the font data into the font registry. There is no way to instantiate a font given the data directly, you must use :py:func:`pyglet.font.load` specifying the font name. """ pass @classmethod def have_font(cls, name): """Determine if a font with the given name is installed. :Parameters: `name` : str Name of a font to search for :rtype: bool """ return True def create_glyph(self, image): """Create a glyph using the given image. This is used internally by `Font` subclasses to add glyph data to the font. Glyphs are packed within large textures maintained by `Font`. This method inserts the image into a font texture and returns a glyph reference; it is up to the subclass to add metadata to the glyph. Applications should not use this method directly. :Parameters: `image` : `pyglet.image.AbstractImage` The image to write to the font texture. :rtype: `Glyph` """ glyph = None self._adapt_texture_size(image) for texture in self.textures: glyph = texture.fit(image) if glyph: break if not glyph: texture = self.texture_class.create_for_size(GL_TEXTURE_2D, self.texture_width, self.texture_height, self.texture_internalformat, self.texture_min_filter, self.texture_mag_filter) self.textures.insert(0, texture) glyph = texture.fit(image) return glyph def _adapt_texture_size(self, image): if image.width > self.texture_width or image.height > self.texture_height: largest_dimension = max(image.width, image.height) self.texture_height = self.texture_width = largest_dimension * 4 def get_glyphs(self, text): """Create and return a list of Glyphs for `text`. If any characters do not have a known glyph representation in this font, a substitution will be made. :Parameters: `text` : str or unicode Text to render. :rtype: list of `Glyph` """ glyph_renderer = None glyphs = [] # glyphs that are committed. for c in get_grapheme_clusters(str(text)): # Get the glyph for 'c'. Hide tabs (Windows and Linux render # boxes) if c == '\t': c = ' ' if c not in self.glyphs: if not glyph_renderer: glyph_renderer = self.glyph_renderer_class(self) self.glyphs[c] = glyph_renderer.render(c) glyphs.append(self.glyphs[c]) return glyphs def get_glyphs_for_width(self, text, width): """Return a list of glyphs for `text` that fit within the given width. If the entire text is larger than 'width', as much as possible will be used while breaking after a space or zero-width space character. If a newline is encountered in text, only text up to that newline will be used. If no break opportunities (newlines or spaces) occur within `width`, the text up to the first break opportunity will be used (this will exceed `width`). If there are no break opportunities, the entire text will be used. You can assume that each character of the text is represented by exactly one glyph; so the amount of text "used up" can be determined by examining the length of the returned glyph list. :Parameters: `text` : str or unicode Text to render. `width` : int Maximum width of returned glyphs. :rtype: list of `Glyph` :see: `GlyphString` """ glyph_renderer = None glyph_buffer = [] # next glyphs to be added, as soon as a BP is found glyphs = [] # glyphs that are committed. for c in text: if c == '\n': glyphs += glyph_buffer break # Get the glyph for 'c' if c not in self.glyphs: if not glyph_renderer: glyph_renderer = self.glyph_renderer_class(self) self.glyphs[c] = glyph_renderer.render(c) glyph = self.glyphs[c] # Add to holding buffer and measure glyph_buffer.append(glyph) width -= glyph.advance # If over width and have some committed glyphs, finish. if width <= 0 and len(glyphs) > 0: break # If a valid breakpoint, commit holding buffer if c in u'\u0020\u200b': glyphs += glyph_buffer glyph_buffer = [] # If nothing was committed, commit everything (no breakpoints found). if len(glyphs) == 0: glyphs = glyph_buffer return glyphs
the-stack_0_19476
""" Facebook Prophet ---------------- """ from typing import Optional, Union, List import re import logging import prophet import numpy as np import pandas as pd from darts.timeseries import TimeSeries from darts.models.forecasting.forecasting_model import DualCovariatesForecastingModel from darts.logging import get_logger, execute_and_suppress_output, raise_if logger = get_logger(__name__) logger.level = logging.WARNING # set to warning to suppress prophet logs class Prophet(DualCovariatesForecastingModel): def __init__( self, add_seasonalities: Optional[Union[dict, List[dict]]] = None, country_holidays: Optional[str] = None, **prophet_kwargs, ): """Facebook Prophet This class provides a basic wrapper around `Facebook Prophet <https://github.com/facebook/prophet>`_. It supports adding country holidays as well as custom seasonalities and adds support for stochastic forecasting and future covariates. Parameters ---------- add_seasonalities Optionally, a dict or list of dicts with custom seasonality/ies to add to the model. Each dict takes the following mandatory and optional data: .. highlight:: python .. code-block:: python dict({ 'name': str # (name of the seasonality component), 'seasonal_periods': int # (nr of steps composing a season), 'fourier_order': int # (number of Fourier components to use), 'prior_scale': Optional[float] # (a prior scale for this component), 'mode': Optional[str] # ('additive' or 'multiplicative') }) .. An example for `seasonal_periods`: If you have hourly data (frequency='H') and your seasonal cycle repeats after 48 hours then set `seasonal_periods=48`. Apart from `seasonal_periods`, this is very similar to how you would call Facebook Prophet's `add_seasonality()` method. Alternatively, you can add seasonalities after model creation and before fitting with :meth:`add_seasonality() <Prophet.add_seasonality()>`. country_holidays An optional country code, for which holidays can be taken into account by Prophet. See: https://github.com/dr-prodigy/python-holidays In addition to those countries, Prophet includes holidays for these countries: Brazil (BR), Indonesia (ID), India (IN), Malaysia (MY), Vietnam (VN), Thailand (TH), Philippines (PH), Turkey (TU), Pakistan (PK), Bangladesh (BD), Egypt (EG), China (CN), and Russia (RU). prophet_kwargs Some optional keyword arguments for Prophet. For information about the parameters see: `The Prophet source code <https://github.com/facebook/prophet/blob/master/python/prophet/forecaster.py>`_. """ super().__init__() self._auto_seasonalities = self._extract_auto_seasonality(prophet_kwargs) self._add_seasonalities = dict() add_seasonality_calls = ( add_seasonalities if isinstance(add_seasonalities, list) else [add_seasonalities] ) for call in add_seasonality_calls: self._store_add_seasonality_call(seasonality_call=call) self.country_holidays = country_holidays self.prophet_kwargs = prophet_kwargs self.model = None def __str__(self): return "Prophet" def _fit(self, series: TimeSeries, future_covariates: Optional[TimeSeries] = None): super()._fit(series, future_covariates) series = self.training_series fit_df = pd.DataFrame( data={"ds": series.time_index, "y": series.univariate_values()} ) self.model = prophet.Prophet(**self.prophet_kwargs) # add user defined seasonalities (from model creation and/or pre-fit self.add_seasonalities()) interval_length = self._freq_to_days(series.freq_str) for seasonality_name, attributes in self._add_seasonalities.items(): self.model.add_seasonality( name=seasonality_name, period=attributes["seasonal_periods"] * interval_length, fourier_order=attributes["fourier_order"], ) # add covariates if future_covariates is not None: fit_df = fit_df.merge( future_covariates.pd_dataframe(), left_on="ds", right_index=True, how="left", ) for covariate in future_covariates.columns: self.model.add_regressor(covariate) # add built-in country holidays if self.country_holidays is not None: self.model.add_country_holidays(self.country_holidays) execute_and_suppress_output(self.model.fit, logger, logging.WARNING, fit_df) return self def _predict( self, n: int, future_covariates: Optional[TimeSeries] = None, num_samples: int = 1, ) -> TimeSeries: super()._predict(n, future_covariates, num_samples) predict_df = self._generate_predict_df(n=n, future_covariates=future_covariates) if num_samples == 1: forecast = self.model.predict(predict_df)["yhat"].values else: forecast = np.expand_dims( self._stochastic_samples(predict_df, n_samples=num_samples), axis=1 ) return self._build_forecast_series(forecast) def _generate_predict_df( self, n: int, future_covariates: Optional[TimeSeries] = None ) -> pd.DataFrame: """Returns a pandas DataFrame in the format required for Prophet.predict() with `n` dates after the end of the fitted TimeSeries""" predict_df = pd.DataFrame(data={"ds": self._generate_new_dates(n)}) if future_covariates is not None: predict_df = predict_df.merge( future_covariates.pd_dataframe(), left_on="ds", right_index=True, how="left", ) return predict_df def _is_probabilistic(self) -> bool: return True def _stochastic_samples(self, predict_df, n_samples) -> np.ndarray: """Returns stochastic forecast of `n_samples` samples. This method is a replicate of Prophet.predict() which suspends simplification of stochastic samples to deterministic target values.""" # save default number of uncertainty_samples and set user-defined n_samples n_samples_default = self.model.uncertainty_samples self.model.uncertainty_samples = n_samples if self.model.history is None: raise ValueError("Model has not been fit.") if predict_df is None: predict_df = self.model.history.copy() else: if predict_df.shape[0] == 0: raise ValueError("Dataframe has no rows.") predict_df = self.model.setup_dataframe(predict_df.copy()) predict_df["trend"] = self.model.predict_trend(predict_df) forecast = self.model.sample_posterior_predictive(predict_df) # reset default number of uncertainty_samples self.model.uncertainty_samples = n_samples_default return forecast["yhat"] def predict_raw( self, n: int, future_covariates: Optional[TimeSeries] = None ) -> pd.DataFrame: """Returns the output of the base Facebook Prophet model in form of a pandas DataFrame. Note however, that the output of this method is not supported for further processing with the Darts API. Methods of the base Prophet model can be accessed with self.model.method() (i.e. self.model.plot_components()) """ super().predict(n, future_covariates, num_samples=1) predict_df = self._generate_predict_df(n=n, future_covariates=future_covariates) return self.model.predict(predict_df) def add_seasonality( self, name: str, seasonal_periods: int, fourier_order: int, prior_scale: Optional[float] = None, mode: Optional[str] = None, ) -> None: """Adds a custom seasonality to the model that reapeats after every n `seasonal_periods` timesteps. An example for `seasonal_periods`: If you have hourly data (frequency='H') and your seasonal cycle repeats after 48 hours -> `seasonal_periods=48`. Apart from `seasonal_periods`, this is very similar to how you would call Facebook Prophet's `add_seasonality()` method. For information about the parameters see: `The Prophet source code <https://github.com/facebook/prophet/blob/master/python/prophet/forecaster.py>`_. Parameters ---------- name name of the seasonality component seasonal_periods number of timesteps after which the seasonal cycle repeats fourier_order number of Fourier components to use prior_scale optionally, a prior scale for this component mode optionally, 'additive' or 'multiplicative' """ function_call = { "name": name, "seasonal_periods": seasonal_periods, "fourier_order": fourier_order, "prior_scale": prior_scale, "mode": mode, } self._store_add_seasonality_call(seasonality_call=function_call) def _store_add_seasonality_call( self, seasonality_call: Optional[dict] = None ) -> None: """Checks the validity of an add_seasonality() call and stores valid calls. As the actual model is only created at fitting time, and seasonalities are added pre-fit, the add_seasonality calls must be stored and checked on Darts' side. Raises ---------- ValueError if `seasonality_call` has missing or empty mandatory keys/arguments if `seasonality_call` with `name` already exists. if `seasonality_call` has invalid keys/arguments if `seasonality_call` has invalid dtypes """ if seasonality_call is None: return seasonality_properties = { "name": {"default": None, "dtype": str}, "seasonal_periods": {"default": None, "dtype": int}, "fourier_order": {"default": None, "dtype": int}, "prior_scale": {"default": None, "dtype": float}, "mode": {"default": None, "dtype": str}, } seasonality_default = { kw: seasonality_properties[kw]["default"] for kw in seasonality_properties } mandatory_keywords = ["name", "seasonal_periods", "fourier_order"] add_seasonality_call = dict(seasonality_default, **seasonality_call) missing_kws = [ kw for kw in mandatory_keywords if add_seasonality_call[kw] is None ] raise_if( len(missing_kws) > 0, f'Seasonality `{add_seasonality_call["name"]}` has missing mandatory keywords or empty arguments: ' f"{missing_kws}.", logger, ) seasonality_name = add_seasonality_call["name"] raise_if( seasonality_name in self._auto_seasonalities or seasonality_name in self._add_seasonalities, f"Adding seasonality with `name={seasonality_name}` failed. A seasonality with this name already " f"exists.", ) invalid_kws = [ kw for kw in add_seasonality_call if kw not in seasonality_default ] raise_if( len(invalid_kws) > 0, f'Seasonality `{add_seasonality_call["name"]}` has invalid keywords: {invalid_kws}. Only the ' f"following arguments are supported: {list(seasonality_default)}", logger, ) invalid_types = [ kw for kw, value in add_seasonality_call.items() if not isinstance(value, seasonality_properties[kw]["dtype"]) and value is not None ] raise_if( len(invalid_types) > 0, f'Seasonality `{add_seasonality_call["name"]}` has invalid value dtypes: {invalid_types} must be ' f'of type {[seasonality_properties[kw]["dtype"] for kw in invalid_types]}.', logger, ) self._add_seasonalities[seasonality_name] = add_seasonality_call @staticmethod def _extract_auto_seasonality(prophet_kwargs: dict) -> list: """Returns the automatically added seasonalities by Prophet's base model based on kwargs of model creation""" auto_seasonalities = [] for auto_seasonality in ["daily", "weekly", "yearly"]: s_name = auto_seasonality + "_seasonality" if not (s_name in prophet_kwargs and not prophet_kwargs[s_name]): auto_seasonalities.append(auto_seasonality) return auto_seasonalities @staticmethod def _freq_to_days(freq: str) -> float: """Converts a frequency to number of days required by Facebook Prophet Parameters ---------- freq frequency string of the underlying TimeSeries's time index (pd.DateTimeIndex.freq_str) """ # this regex extracts all digits from `freq`: exp: '30S' -> 30 freq_times = re.findall(r"\d+", freq) freq_times = 1 if not freq_times else int(freq_times[0]) # this regex extracts all characters and '-' from `freq` and then extracts left string from '-' # exp: 'W-SUN' -> 'W', '30S' -> 'S' freq = "".join(re.split("[^a-zA-Z-]*", freq)).split("-")[0] seconds_per_day = 86400 if freq in ["A", "BA", "Y", "BY", "RE"] or freq.startswith( ("A", "BA", "Y", "BY", "RE") ): # year days = 365.25 elif freq in ["Q", "BQ", "REQ"] or freq.startswith( ("Q", "BQ", "REQ") ): # quarter days = 3 * 30.4375 elif freq in ["M", "BM", "CBM", "SM"] or freq.startswith( ("M", "BM", "BS", "CBM", "SM") ): # month days = 30.4375 elif freq in ["W"]: # week days = 7.0 elif freq in ["B", "C"]: # business day days = 1 * 7 / 5 elif freq in ["D"]: # day days = 1.0 elif freq in ["H", "BH", "CBH"]: # hour days = 1 / 24 elif freq in ["T", "min"]: # minute days = 1 / (24 * 60) elif freq in ["S"]: # second days = 1 / seconds_per_day elif freq in ["L", "ms"]: # millisecond days = 1 / (seconds_per_day * 10 ** 3) elif freq in ["U", "us"]: # microsecond days = 1 / (seconds_per_day * 10 ** 6) elif freq in ["N"]: # nanosecond days = 1 / (seconds_per_day * 10 ** 9) else: raise ValueError( "freq {} not understood. Please report if you think this is in error.".format( freq ) ) return freq_times * days def _supports_range_index(self) -> bool: """Prophet does not support integer range index.""" raise_if( True, "Prophet does not support integer range index. The index of the TimeSeries must be of type " "pandas.DatetimeIndex", logger, ) return False
the-stack_0_19477
# encoding=utf-8 # Author: Yu-Lun Chiang # Description: Test NewsCrawler import logging import pytest from collections import namedtuple from src.crawler.media import ettoday from src.utils.struct import NewsStruct logger = logging.getLogger(__name__) TEST_DATA = namedtuple( typename="TEST_DATA", field_names=[ "name", "link", "expected_output", ], ) TEST_DATA_1 = TEST_DATA( name="ETtoday新聞雲_1", link="https://www.ettoday.net/news/20210720/2035771.htm", expected_output=NewsStruct( title="東元股東會前夕再出招 黃育仁旗下兩公司光菱、東友明停牌", content="\n▲菱光董座黃育仁。(圖/記者陳心怡攝)\n記者陳心怡/台北報導\n光菱 (8032) 與東友 (5438) 今 (20) 日傍晚同步公告,因有重大事項待公布,經櫃買中心同意明 (21) 日暫停交易。由於兩家公司大股東均為菱光,也是東元集團會長黃茂雄兒子黃育仁主導的公司,兩家公司是否進行換股、策略合作,引發外界關注,同時也被視為可能是黃育仁的反撲。\n東元電機(1504)股東會23日登場前,東元黃家黃茂雄、黃育仁父子之爭越演越烈。黃育仁旗下的3家公司,包括上市的菱光科技,上櫃的東友科技和光菱電子,黃茂雄先前結合創投達勝伍成立鈺叡,要收購菱光過半股權;7月初,黃茂雄主導成立的安富國際投宣布要以6.14億元,公開收購東友30%股權。\n不過黃育仁近期頻出招,更讓兩家公司明天同時停牌,外界預料黃育仁可能再出招,確保在兩家公司的掌控能力,對抗東元勢力。", keywords=["東元", "黃育仁", "黃茂雄"], category="財經", media="ETtoday新聞雲", datetime="2021-07-20T20:21:00+08:00", link="https://www.ettoday.net/news/20210720/2035771.htm", ), ) TEST_DATA_2 = TEST_DATA( name="ETtoday財經雲_1", link="https://finance.ettoday.net/news/1929335", expected_output=NewsStruct( title="外資上周賣超938億元 聯電、台積電淪提款機", content="\n▲聯電、台積電上週成為外資提款機。(圖/路透社)\n記者陳心怡/台北報導\n根據證交所公布上周外資買賣超狀況,上周外資賣超938.45億元,今年以來累計賣超為1,931億元,外資總持有股票市值為22兆2,981.33億元新台幣,占全體上市股票市值的45.88%,較2月19日的23兆4,521.50億元新台幣,減少11,540.17億元。\n就個股比較部分,外資外資賣超前三名則為聯電(2303)16萬5910張,台積電(2330)8萬8182張,新光金(2888)5萬3488張。\n賣超四到十名分別為,佳格(1227)3萬4063張、長榮航(2618)3萬3858張、和碩(4938)2萬8592張、兆豐金(2886)2萬5131張、鴻海(2317)2萬4052張、精英(2331)1萬8523張、旺宏(2337)1萬8322張。\n另外,外資買超前三名分別是華航(2610)、友達(2409)、華邦電(2344),華航買超6萬7486張,友達買超5萬5519張,華邦電則是買超5萬4734張。\n買超四到十名分別為,中信金(2891)4萬1761張、陽明(2609)2萬9584張、遠東新(1402)2萬2187張、榮成(1909)1萬7634張、永豐金(2890)1萬5470張、華南金(2880)1萬2961張、台塑(1301)1萬2933張。", keywords=[], category="財經", media="ETtoday財經雲", datetime="2021-03-02T15:52:00+08:00", link="https://finance.ettoday.net/news/1929335", ), ) TEST_DATA_LIST = [TEST_DATA_1, TEST_DATA_2] @pytest.fixture(scope="module") def newsCrawler(): logger.warning("Init News Crawler ...") return ettoday.ETtodayNewsCrawler() @pytest.mark.parametrize( argnames="name, link, expected_output", argvalues=[tuple(t) for t in TEST_DATA_LIST], ids=[ f"{t.name}, {t.link[:50]+'...' if len(t.link) > 50 else t.link}" for t in TEST_DATA_LIST ], ) def test_get_info( newsCrawler, name, link, expected_output, ): output = newsCrawler.getInfo(link=link) assert NewsStruct.__2dict__(output) == NewsStruct.__2dict__(expected_output)
the-stack_0_19479
import asyncio import os import sys from functools import wraps from pathlib import Path from typing import Optional import click import tomlkit from ptpython.repl import embed from tortoise import Tortoise from tortoise_cli import __version__, utils def coro(f): @wraps(f) def wrapper(*args, **kwargs): loop = asyncio.get_event_loop() try: loop.run_until_complete(f(*args, **kwargs)) finally: if f.__name__ != "cli": loop.run_until_complete(Tortoise.close_connections()) return wrapper @click.group(context_settings={"help_option_names": ["-h", "--help"]}) @click.version_option(__version__, "-V", "--version") @click.option( "-c", "--config", help="TortoiseORM config dictionary path, like settings.TORTOISE_ORM", ) @click.pass_context @coro async def cli(ctx: click.Context, config: Optional[str]): if not config: config = os.getenv("TORTOISE_ORM") if not config: file = "pyproject.toml" if Path(file).exists(): with open(file, "r") as f: content = f.read() doc = tomlkit.parse(content) config = doc.get("tool", {}).get("aerich", {}).get("tortoise_orm") # type:ignore if not config: raise click.UsageError( "You must specify TORTOISE_ORM in option or env, or config file pyproject.toml from config of aerich", ctx=ctx, ) tortoise_config = utils.get_tortoise_config(ctx, config) await Tortoise.init(config=tortoise_config) await Tortoise.generate_schemas(safe=True) @cli.command(help="Start a interactive shell.") @click.pass_context @coro async def shell(ctx: click.Context): try: await embed( globals=globals(), title="Tortoise Shell", vi_mode=True, return_asyncio_coroutine=True, patch_stdout=True, ) except (EOFError, ValueError): pass def main(): sys.path.insert(0, ".") cli() if __name__ == "__main__": main()
the-stack_0_19480
# coding=utf-8 import pygame.font class Button(): def __init__(self, ai_settings, screen, msg): """初始化按钮的属性""" self.screen = screen self.screen_rect = screen.get_rect() # 设置按钮的尺寸和其他属性 self.width, self.height = 200, 50 self.button_color = (0, 255, 0) self.text_color = (255, 255, 255) self.font = pygame.font.SysFont(None, 48) # 创建按钮的rect对象,并使其居中 self.rect = pygame.Rect(0, 0, self.width, self.height) self.rect.center = self.screen_rect.center # 按钮的标签只需创建一次 self.prep_msg(msg) def prep_msg(self, msg): """将msg渲染为图像, 并使其在按钮上居中""" self.msg_image = self.font.render(msg, True, self.text_color, self.button_color) self.msg_image_rect = self.msg_image.get_rect() self.msg_image_rect.center = self.rect.center def draw_button(self): # 绘制一个用颜色填充的按钮,再绘制文本 self.screen.fill(self.button_color, self.rect) self.screen.blit(self.msg_image, self.msg_image_rect)
the-stack_0_19481
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import os from aws_cdk import ( core, aws_lambda as _lambda, aws_logs as logs, aws_iam as iam, aws_iot as iot ) class IoTStack(core.Construct): def __init__(self, scope: core.Construct, id: str, project_prefix_obj, time_zone_obj, dynamoTable_obj, **kwargs): super().__init__(scope, id, **kwargs) prefix_project_string = str(project_prefix_obj) + "-" time_zone_string = time_zone_obj update_dynamo_table_lambda = _lambda.Function(self, "IoTUpdatePatientTable", runtime=_lambda.Runtime.PYTHON_3_8, handler="lambda_function.lambda_handler", function_name=prefix_project_string + 'iot-update-patient-table', environment={"TableName": dynamoTable_obj.table_name, "time_zone": time_zone_string}, timeout=core.Duration.minutes(2), code=_lambda.Code.asset('iot_resources/_lambda') ) # grant permission to dynamodb dynamoTable_obj.grant_read_write_data(update_dynamo_table_lambda) # Creating the IoT Topic iot_topic_sub_rule_action_property = iot.CfnTopicRule.LambdaActionProperty( function_arn=update_dynamo_table_lambda.function_arn) iot_topic_sub_rule_action = iot.CfnTopicRule.ActionProperty(lambda_=iot_topic_sub_rule_action_property) iot_topic_sub_rule_payload = iot.CfnTopicRule.TopicRulePayloadProperty(actions=[iot_topic_sub_rule_action], sql="SELECT * FROM 'esp32/pub'", error_action=iot_topic_sub_rule_action, rule_disabled=False,aws_iot_sql_version='2016-03-23') iot_topic_sub = iot.CfnTopicRule(self, 'iotTopic', topic_rule_payload=iot_topic_sub_rule_payload)
the-stack_0_19482
from Utils.util import * from Utils.errors import * ##North-West algorithm def nw_algorithm_path_calculation(cost,toSend,toReceive): if (isMatrix(cost)): path = [] toReceiveCounter = 0 toSendCounter = 0 while (toSendCounter!=len(cost[0]) and toReceiveCounter!=len(cost)): #If there is less to send than to receive, we send everything and go to the next sender while staying with the same receiver with less to receive (former receiver value minus sender value) if (toSend[toSendCounter] < toReceive[toReceiveCounter]): path.append({ 'from':toSendCounter, 'to':toReceiveCounter, 'amount':toSend[toSendCounter] }) toReceive[toReceiveCounter] -= toSend[toSendCounter] toSend[toSendCounter] = 0 toSendCounter += 1 #If there is as much to send than to receive, we send everything and can change both the sender and the receiver elif (toSend[toSendCounter] == toReceive[toReceiveCounter]): path.append({ 'from':toSendCounter, 'to':toReceiveCounter, 'amount':toSend[toSendCounter] }) toReceive[toReceiveCounter] = 0 toSend[toSendCounter] = 0 toSendCounter += 1 toReceiveCounter += 1 #If there is more to send than to receive, we send everything and go to the next receiver while staying with the same sender with less to send (former sender value minus receiver value) else: path.append({ 'from':toSendCounter, 'to':toReceiveCounter, 'amount':toReceive[toReceiveCounter] }) toSend[toSendCounter] -= toReceive[toReceiveCounter] toReceive[toReceiveCounter] = 0 toReceiveCounter += 1 return path else: raise InputError('NotAMatrix','The provided input is not a correct matrix') def nw_algorithm_cost_calculation(cost,path): #Once we have found the path, we just have to evaluate it val = 0 for item in path: val += cost[item['to']][item['from']]*item['amount'] return val ##Balas-Hammer Algorithm #This method evaluates the regrets of the sent and received values that may use the formerRegrets parameter def bh_algorithm_evaluation_of_regrets_difference(cost,toSend,toReceive): toSendRegretsDifference = [] toReceiveRegretsDifference = [] #We, firstly, will evaluate the minimum of each row (i.e for the receiver) for i in range(len(cost)): # if (listOfMaxRegret != None and i in listOfMaxRegret['toReceive'] and toReceive[i] == 0): if (toReceive[i] == 0): toReceiveRegretsDifference.append(-1) else: row_copy = deepcopy(cost[i]) row_copy.sort() if (row_copy[1] == float('inf')): row_copy[1] = row_copy[0] row_copy[0] = 0 toReceiveRegretsDifference.append(row_copy[1]-row_copy[0]) for j in range(len(cost[0])): #if (listOfMaxRegret != None and j in listOfMaxRegret['toSend']): if (toSend[j] == 0): toSendRegretsDifference.append(-1) else: column = [] for i in range(len(cost)): column.append(cost[i][j]) column.sort() if (column[1] == float('inf')): column[1] = column[0] column[0] = 0 toSendRegretsDifference.append(column[1]-column[0]) return { 'toSendRegretsDifference':toSendRegretsDifference, 'toReceiveRegretsDifference':toReceiveRegretsDifference } #Method selecting the maximum regrets from the lists of regrets generated by the "bh_algorithm_evaluation_of_regrets_differences" function def select_maximum_regret_from_regrets_difference(regretsDifferences): max = 0 index = 0 isToSend = True for sindex in range(len(regretsDifferences['toSendRegretsDifference'])): value = regretsDifferences['toSendRegretsDifference'][sindex] if (value > max): index = sindex max = value for rindex in range(len(regretsDifferences['toReceiveRegretsDifference'])): value = regretsDifferences['toReceiveRegretsDifference'][rindex] if (value > max): index = rindex max = value isToSend = False #When the max is evaluated, we no longer need its value, therefore setting it to -1 # if (isToSend): # regretsDifferences['toSendRegretsDifference'][index] = 0 # else: # regretsDifferences['toReceiveRegretsDifference'][index] = 0 return { 'max' : max, 'isToSend' : isToSend, 'index' : index } #init a matrix full of zeros from the size of cost def init_result_matrix(cost): return np.zeros((len(cost),len(cost[0])), dtype=int) #Method used to apply the maximum regret found on the correct column or line def transport_using_max_regret(maxRegret,cost,toSend,toReceive,resultMatrix): if (isMatrix(cost)): indexMaxRegret = maxRegret['index'] #If the maximum regret was found in the toSend array if (maxRegret['isToSend']): min = cost[0][indexMaxRegret] indexMin = 0 for index in range(len(cost)): if (min > cost[index][indexMaxRegret]): min = cost[index][indexMaxRegret] indexMin = index #We change the toReceive value, substracting the due merchandise if (toReceive[indexMin] >= toSend[indexMaxRegret]): toReceive[indexMin] -= toSend[indexMaxRegret] #Once we have found the receiver to send the merchandise to, we establish this using the resultMatrix (same size as cost matrix, filled with zeros) resultMatrix[indexMin][indexMaxRegret] = toSend[indexMaxRegret] #We update toSend, setting to 0 as the merchandise has been sent toSend[indexMaxRegret] = 0 #And we set all the value of the column of cost matrix at inf for index in range(len(cost)): cost[index][indexMaxRegret] = float("inf") else: toSend[indexMaxRegret] -= toReceive[indexMin] resultMatrix[indexMin][indexMaxRegret] = toReceive[indexMin] toReceive[indexMin] = 0 #And we set all the value of the column of cost matrix at inf for index in range(len(cost[indexMin])): cost[indexMin][index] = float("inf") else: min = cost[indexMaxRegret][0] indexMin = 0 for index in range(len(cost[indexMaxRegret])): if (min > cost[indexMaxRegret][index]): min = cost[indexMaxRegret][index] indexMin = index #We change the toReceive value, substracting the due merchandise if (toSend[indexMin] >= toReceive[indexMaxRegret]): toSend[indexMin] -= toReceive[indexMaxRegret] #Once we have found the receiver to send the merchandise to, we establish this using the resultMatrix (same size as cost matrix, filled with zeros) resultMatrix[indexMaxRegret][indexMin] = toReceive[indexMaxRegret] #We update toSend, setting to 0 as the merchandise has been sent toReceive[indexMaxRegret] = 0 #And we set all the value of the row of cost matrix at inf for index in range(len(cost[indexMaxRegret])): cost[indexMaxRegret][index] = float("inf") else: toReceive[indexMaxRegret] -= toSend[indexMin] resultMatrix[indexMaxRegret][indexMin] = toSend[indexMin] toSend[indexMin] = 0 #And we set all the value of the column of cost matrix at inf for index in range(len(cost)): cost[index][indexMin] = float("inf") else: raise InputError('NotAMatrix','The provided input is not a matrix') #This method evaluates the total cost of the transport algorithm def cost_calculation(cost,resMatrix): res = 0 for i in range(len(cost)): for j in range(len(cost[0])): res += cost[i][j]*resMatrix[i][j] return res def transport(cost,toSend,toReceive): #At first, we evaluate the regrets regrets = bh_algorithm_evaluation_of_regrets_difference(cost,toSend,toReceive) #We initialize the result matrix res_matrix = init_result_matrix(cost) #We setup a deepcopy of the cost values as they will be set to infinity to block the use of the column/row formerly emptied or fullfilled cost_copy = deepcopy(cost) #While we have not set every formerly evaluated regrets at -1 (i.e not every merchandise has been fully sent and received), we select the one that will cost us the less amount of regret while ((isMatrixFilledWithValue(cost_copy,float('inf')) == False)): #We select the maximum of them all to know which column/line we will work on max_regret = select_maximum_regret_from_regrets_difference(regrets) #Depending on if the toSend attribute is true or not, we will evaluate if the regret we found was for a stock to be emptied or for a demand to be fullfilled and apply the correct algorithm for the situation transport_using_max_regret(max_regret,cost_copy,toSend,toReceive, res_matrix) regrets = bh_algorithm_evaluation_of_regrets_difference(cost_copy,toSend,toReceive) print(cost_copy) print("Result matrix :") print(res_matrix) print("Total cost : ",cost_calculation(cost,res_matrix)) return { "resMatrix":res_matrix, "totalCost":cost_calculation(cost,res_matrix) } ##EXECUTION ###Test variables test_matrix_cost = [[21,11,84,49,13], [27,52,43,29,42], [11,47,14,80,93], [52,94,76,74,54]] test_toSend_quantities = [800,439,50,790,1470] test_toReceive_quantities = [896, 782, 943, 928] ###North-West Algorithm path = nw_algorithm_path_calculation(deepcopy(test_matrix_cost),deepcopy(test_toSend_quantities),deepcopy(test_toReceive_quantities)) cost = nw_algorithm_cost_calculation(deepcopy(test_matrix_cost),path) #print(path,"\ncost = ",cost) ###Balas Hammer Algorithm #At first, we evaluate the regrets #print(bh_algorithm_evaluation_of_regrets_difference(test_matrix_cost,test_toSend_quantities,test_toReceive_quantities)) regrets = bh_algorithm_evaluation_of_regrets_difference(test_matrix_cost,test_toSend_quantities,test_toReceive_quantities) #Then we select the maximum of them all to know which column/line we will work on max_regret = select_maximum_regret_from_regrets_difference(regrets) #We initialize the result matrix res_matrix = init_result_matrix(test_matrix_cost) #print(res_matrix) transport(test_matrix_cost,test_toSend_quantities,test_toReceive_quantities)
the-stack_0_19483
from jumpscale import j """ Provides the Params object and the ParamsFactory that is used in the Q-Tree """ class ParamsFactory: """ This factory can create new Params objects """ def __init__(self): self.__jslocation__ = "j.data.params" def get(self, dictObject={}): """ Create and return a new Params object @param dictObject when dict given then dict will be converted into params @return: a new Params object @rtype: Params """ return Params(dictObject) def isParams(self, p): """ Return if the argument object is an instance of Params @param p: object to check @type p: object @return: Whether or not `p` is a Params instance @rtype: boolean """ return isinstance(p, Params) class Params: def __init__(self, dictObject=None): if dictObject is not None: self.__dict__ = dictObject def merge(self, otherParams): self.__dict__.update(otherParams.__dict__) def get(self, key, defaultvalue=None): return self.__dict__.get(key, defaultvalue) def __contains__(self, key): return key in self.__dict__ def __getitem__(self, key): return self.__dict__[key] def expandParamsAsDict(self, **kwargs): """ adds paramsExtra, tags & params from requestContext if it exists return as dict for each item given as named argument check it is already in dict and if not add e.g. args=self.expandParamsAsDict(id=1,name="test") will return a dict with id & name and these values unless if they were set in the params already can further use it as follows: params.result=infomgr.getInfoWithHeaders(**args) full example: ############# args=params.expandParamsAsDict(maxvalues=100,id=None,start="-3d",stop=None) args["start"]=j.data.time.getEpochAgo(args["start"]) args["stop"]=j.data.time.getEpochFuture(args["stop"]) params.result=j.apps.system.infomgr.extensions.infomgr.addInfo(**args) """ params = self params2 = params.getDict() if "paramsExtra" in params and params.paramsExtra is not None: params2.update(params.paramsExtra) if "requestContext" in params and params.requestContext is not None: params2.update(params.requestContext.params) if "tags" in params and params2["tags"] != "": params2.update(params2["tags"].getDict()) for item in ["requestContext", "tags", "paramsExtra"]: if item in params: params2.pop(item) if len(kwargs) == 0: return params2 result = {} for key in list(kwargs.keys()): if key in params2: result[key] = params2[key] return result def expandParams(self, **kwargs): """ adds paramsExtra, tags & params from requestContext if it exists returns params but not needed because params just get modified to have all these extra arguments/params as properties set default as params to this method e.g. expandParams(id=10,hight=100) """ def getArgs(d): r = {} reserved = ["name", "doc", "macro", "macrostr", "cmdstr", "page", "tags"] for key in list(d.keys()): if key in reserved: r["arg_%s" % key] = d[key] else: r[key] = d[key] return r if "paramsExtra" in self and self.paramsExtra is not None: self.setDict(getArgs(self.paramsExtra)) # self.pop("paramsExtra") if "requestContext" in self and self.requestContext is not None: self.setDict(getArgs(self.requestContext.params)) # self.pop("requestContext") if "tags" in self and self.tags != "": self.setDict(getArgs(self.tags.getDict())) # self.pop("tags") for argname in list(kwargs.keys()): if argname not in self.__dict__: self.__dict__[argname] = kwargs[argname] return self def getTag(self, name, default=None): tags = getattr(self, 'tags', None) if not tags: return default tags = tags.getDict() tag = tags.get(name) if tag and j.data.text.toStr(tag).startswith('$$'): return default if not tag: return default return tag def pop(self, key): if key in self: self.__dict__.pop(key) def has_key(self, key): return key in self.__dict__ def getDict(self): return self.__dict__ def setDict(self, dictObject): self.__dict__.update(dictObject) def extend(self, params): """ Update this Params object with the contents of the argument Params object @param params: the Params or dict object to update from @type params: dict or Params @raise TypeError: if the argument is not a dict or Params object """ if isinstance(params, Params): d = params.__dict__ elif isinstance(params, dict): d = params else: raise TypeError("Argument params is of an unknown type %s" % type(params)) self.__dict__.update(d) # def __dir__(self): # return sorted(dir(super(Params, self)) + self.__dict__.keys()) def __repr__(self): parts = ["PARAMS:"] for key, value in list(self.__dict__.items()): parts.append(" %s:%s" % (key, value)) return "\n".join(parts) def __str__(self): return self.__repr__()
the-stack_0_19484
import random top_of_range = input ("Type a number: ") if top_of_range.isdigit(): top_of_range = int(top_of_range) if top_of_range <= 0: print("Please type a number larger than 0 next time...") quit() else: print("Please type a number next time...") quit() random_number = random.randint(0, top_of_range) guesses = 0 while True: guesses += 1 user_guess = input("Make a guess: ") if user_guess.digit(): user_guess = int(user_guess) else: print("Please type a number next time...") continue if user_guess == random_number: print("You got it!") break elif user_guess > random_number: print("You were above the number!") else: print("You were below the number!") print("You got it in ", guesses, "guesses")
the-stack_0_19485
"""Some basic shell utilities, used for ExternalCodeComp mostly.""" import os import signal import subprocess import sys import time PIPE = subprocess.PIPE STDOUT = subprocess.STDOUT DEV_NULL = 'nul:' if sys.platform == 'win32' else '/dev/null' class CalledProcessError(subprocess.CalledProcessError): """ :class:`subprocess.CalledProcessError` plus `errormsg` attribute. Attributes ---------- errormsg : str Error message saved for string access. """ def __init__(self, returncode, cmd, errormsg): """ Initialize. Parameters ---------- returncode : int Error code for this error. cmd : str or list If a string, then this is the command line to execute, and the :class:`subprocess.Popen` ``shell`` argument is set True. Otherwise, this is a list of arguments; the first is the command to execute. errormsg : str Error message for this error. """ super(CalledProcessError, self).__init__(returncode, cmd) self.errormsg = errormsg def __str__(self): """ Return string of error message. Returns ------- str Error message. """ return 'Command %r returned non-zero exit status %d: %s' % (self.cmd, self.returncode, self.errormsg) class ShellProc(subprocess.Popen): """ A slight modification to :class:`subprocess.Popen`. If `args` is a string, then the ``shell`` argument is set True. Updates a copy of ``os.environ`` with `env` and opens files for any stream which is a :class:`str`. Attributes ---------- _stdin_arg : str, file, or int Save handle to make closing easier. _stdout_arg : str, file, or int Save handle to make closing easier. _stderr_arg : str, file, or int Save handle to make closing easier. _inp : str, file, or int Save handle to make closing easier. _out : str, file, or int Save handle to make closing easier. _err : str, file, or int Save handle to make closing easier. """ def __init__(self, args, stdin=None, stdout=None, stderr=None, env=None, universal_newlines=False): """ Initialize. Parameters ---------- args : str or list If a string, then this is the command line to execute and the :class:`subprocess.Popen` ``shell`` argument is set True. Otherwise, this is a list of arguments; the first is the command to execute. stdin : str, file, or int Specify handling of stdin stream. If a string, a file of that name is opened. Otherwise, see the :mod:`subprocess` documentation. stdout : str, file, or int Specify handling of stdout stream. If a string, a file of that name is opened. Otherwise, see the :mod:`subprocess` documentation. stderr : str, file, or int Specify handling of stderr stream. If a string, a file of that name is opened. Otherwise, see the :mod:`subprocess` documentation. env : dict Environment variables for the command. universal_newlines : bool Set to True to turn on universal newlines. """ environ = os.environ.copy() if env: environ.update(env) self._stdin_arg = stdin self._stdout_arg = stdout self._stderr_arg = stderr if isinstance(stdin, str): self._inp = open(stdin, 'r') else: self._inp = stdin if isinstance(stdout, str): self._out = open(stdout, 'w') else: self._out = stdout if isinstance(stderr, str): self._err = open(stderr, 'w') else: self._err = stderr shell = isinstance(args, str) try: if sys.platform == 'win32': subprocess.Popen.__init__(self, args, stdin=self._inp, stdout=self._out, stderr=self._err, shell=shell, env=environ, universal_newlines=universal_newlines) else: subprocess.Popen.__init__(self, args, stdin=self._inp, stdout=self._out, stderr=self._err, shell=shell, env=environ, universal_newlines=universal_newlines, # setsid to put this and any children in # same process group so we can kill them # all if necessary preexec_fn=os.setsid) except Exception: self.close_files() raise def close_files(self): """ Close files that were implicitly opened. """ if isinstance(self._stdin_arg, str): self._inp.close() if isinstance(self._stdout_arg, str): self._out.close() if isinstance(self._stderr_arg, str): self._err.close() def terminate(self, timeout=None): """ Stop child process. If `timeout` is specified, then :meth:`wait` will be called to wait for the process to terminate. Parameters ---------- timeout : float (seconds) Maximum time to wait for the process to stop. A value of zero implies an infinite maximum wait. Returns ------- int Return Code str Error Message """ if sys.platform == 'win32': subprocess.Popen("TASKKILL /F /PID {pid} /T".format(pid=self.pid)) else: os.killpg(os.getpgid(self.pid), signal.SIGTERM) if timeout is not None: return self.wait(timeout=timeout) def wait(self, poll_delay=0., timeout=0.): """ Poll for command completion or timeout. Closes any files implicitly opened. Parameters ---------- poll_delay : float (seconds) Time to delay between polling for command completion. A value of zero uses an internal default. timeout : float (seconds) Maximum time to wait for command completion. A value of zero implies an infinite maximum wait. Returns ------- int Return Code str Error Message """ return_code = None try: if poll_delay <= 0: poll_delay = max(0.1, timeout / 100.) poll_delay = min(10., poll_delay) npolls = int(timeout / poll_delay) + 1 time.sleep(poll_delay) return_code = self.poll() while return_code is None: npolls -= 1 if (timeout > 0) and (npolls < 0): self.terminate() break time.sleep(poll_delay) return_code = self.poll() finally: self.close_files() # self.returncode set by self.poll(). if return_code is not None: self.errormsg = self.error_message(return_code) else: self.errormsg = 'Timed out' return (return_code, self.errormsg) def error_message(self, return_code): """ Return error message for `return_code`. The error messages are derived from the operating system definitions. Some programs don't necessarily return exit codes conforming to these definitions. Parameters ---------- return_code : int Return code from :meth:`poll`. Returns ------- str Error Message string. """ error_msg = '' if return_code: if return_code > 0: try: err_msg = os.strerror(return_code) except OverflowError: err_msg = "Process exited with unknown return code {}".format(return_code) elif sys.platform != 'win32': sig = -return_code if sig < signal.NSIG: for item in signal.__dict__.keys(): if item.startswith('SIG'): if getattr(signal, item) == sig: error_msg = ': %s' % item break return error_msg def call(args, stdin=None, stdout=None, stderr=None, env=None, poll_delay=0., timeout=0.): """ Run command with arguments. Parameters ---------- args : str or list If a string, then this is the command line to execute and the :class:`subprocess.Popen` ``shell`` argument is set True. Otherwise, this is a list of arguments; the first is the command to execute. stdin : str, file, or int Specify handling of stdin stream. If a string, a file of that name is opened. Otherwise, see the :mod:`subprocess` documentation. stdout : str, file, or int Specify handling of stdout stream. If a string, a file of that name is opened. Otherwise, see the :mod:`subprocess` documentation. stderr : str, file, or int Specify handling of stderr stream. If a string, a file of that name is opened. Otherwise, see the :mod:`subprocess` documentation. env : dict Environment variables for the command. poll_delay : float (seconds) Time to delay between polling for command completion. A value of zero uses an internal default. timeout : float (seconds) Maximum time to wait for command completion. A value of zero implies an infinite maximum wait. Returns ------- int Return Code str Error Message """ process = ShellProc(args, stdin, stdout, stderr, env) return process.wait(poll_delay, timeout) def check_call(args, stdin=None, stdout=None, stderr=None, env=None, poll_delay=0., timeout=0.): """ Run command with arguments. Raises :class:`CalledProcessError` if process returns an error code. Parameters ---------- args : str or list If a string, then this is the command line to execute, and the :class:`subprocess.Popen` ``shell`` argument is set True. Otherwise, this is a list of arguments; the first is the command to execute. stdin : str, file, or int Specify handling of stdin stream. If a string, a file of that name is opened. Otherwise, see the :mod:`subprocess` documentation. stdout : str, file, or int Specify handling of stdout stream. If a string, a file of that name is opened. Otherwise, see the :mod:`subprocess` documentation. stderr : str, file, or int Specify handling of stderr stream. If a string, a file of that name is opened. Otherwise, see the :mod:`subprocess` documentation. env : dict Environment variables for the command. poll_delay : float (seconds) Time to delay between polling for command completion. A value of zero uses an internal default. timeout : float (seconds) Maximum time to wait for command completion. A value of zero implies an infinite maximum wait. """ process = ShellProc(args, stdin, stdout, stderr, env) return_code, error_msg = process.wait(poll_delay, timeout) if return_code: raise CalledProcessError(return_code, args, error_msg)
the-stack_0_19486
from sermar.models import Locality, Collection, Occurrence from rest_framework import serializers class LocalitySerializer(serializers.ModelSerializer): """ JSON serializer for Locality class in sermar.models.py. This class controls data exposed through the API endpoint at https://paleocore.org/sermar/api/localities """ class Meta: model = Locality fields = ['name', 'roost_id', 'in_park', 'owls', 'owl_species', 'pellets', 'pellet_species', 'bones', 'sample_size', 'landmark', 'roost_type', 'analysis', 'accumulating_agent', 'protected_area', 'geom'] class CollectionSerializer(serializers.ModelSerializer): """ JSON serializer for Collection class in sermar.models.py. This class controls data exposed through the API endpoint at https://paleocore.org/sermar/api/collections """ # Two fields need special treatment because they are foreign key fields. The two approaches essentially produce # the same result -- a string representation of the related object -- but with different methods. # For the type_specimen field we retrieve the string representation of the type specimen object using the # StringRelatedField class of the serializer library. # For the taxon_rank field we specify calling the taxon_rank_label method of the Nomen class # which gets a string representation of the taxon rank, but one that is slightly different than the standard # string representation generated by the __str__ method of the TaxonRank class. locality = serializers.StringRelatedField() #taxon_rank = serializers.CharField(source='taxon_rank_label') class Meta: model = Collection fields = ['name', 'collection_code', 'roost_id', 'locality', 'date', 'specimen_loc', 'disposition', 'spec_start', 'spec_end', 'sample_size', 'source', 'status', 'comments', 'bags', 'weight', 'accumulating_agent'] class SpecimenSerializer(serializers.ModelSerializer): """ JSON serializer for Specimen/Occurrence class in sermar.models.py This class controls data accessible through API endpoint at https://paleocore.org/sermar/api/specimens """
the-stack_0_19488
class Solution: """ @param nums: An integer array sorted in ascending order @param target: An integer @return: An integer """ def lastPosition(self, nums, target): # write your code here if nums is None or len(nums) == 0: return -1 start, end = 0, len(nums) - 1 while start + 1 < end: mid = start + (end - start) // 2 if nums[mid] == target: start = mid elif nums[mid] < target: start = mid else: end = mid if nums[end] == target: return end if nums[start] == target: return start return -1
the-stack_0_19491
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import mindspore.nn as nn from mindspore.common.initializer import TruncatedNormal def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): """weight initial for conv layer""" weight = weight_variable() return nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid", ) def fc_with_initialize(input_channels, out_channels): """weight initial for fc layer""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): """weight initial""" return TruncatedNormal(0.02) class LeNet5(nn.Cell): def __init__(self, num_class=10, channel=3): super(LeNet5, self).__init__() self.num_class = num_class self.conv1 = conv(channel, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, self.num_class) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x
the-stack_0_19493
from __future__ import absolute_import, print_function, division, unicode_literals import imp import sys import os import hashlib import json import numpy as np from sqlalchemy import create_engine from sqlalchemy.orm import Session from six import exec_, iteritems from sklearn import datasets from sklearn import model_selection from xcessiv import app, exceptions def hash_file(path, block_size=65536): """Returns SHA256 checksum of a file Args: path (string): Absolute file path of file to hash block_size (int, optional): Number of bytes to read per block """ sha256 = hashlib.sha256() with open(path, 'rb') as f: for block in iter(lambda: f.read(block_size), b''): sha256.update(block) return sha256.hexdigest() def hash_string(string): """Hashes an input string using SHA256""" return hashlib.sha256(string).hexdigest() def import_object_from_path(path, object): """Used to import an object from an absolute path. This function takes an absolute path and imports it as a Python module. It then returns the object with name `object` from the imported module. Args: path (string): Absolute file path of .py file to import object (string): Name of object to extract from imported module """ with open(path) as f: return import_object_from_string_code(f.read(), object) def import_object_from_string_code(code, object): """Used to import an object from arbitrary passed code. Passed in code is treated as a module and is imported and added to `sys.modules` with its SHA256 hash as key. Args: code (string): Python code to import as module object (string): Name of object to extract from imported module """ sha256 = hashlib.sha256(code.encode('UTF-8')).hexdigest() module = imp.new_module(sha256) try: exec_(code, module.__dict__) except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) sys.modules[sha256] = module try: return getattr(module, object) except AttributeError: raise exceptions.UserError("{} not found in code".format(object)) def import_string_code_as_module(code): """Used to run arbitrary passed code as a module Args: code (string): Python code to import as module Returns: module: Python module """ sha256 = hashlib.sha256(code.encode('UTF-8')).hexdigest() module = imp.new_module(sha256) try: exec_(code, module.__dict__) except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) sys.modules[sha256] = module return module def verify_dataset(X, y): """Verifies if a dataset is valid for use i.e. scikit-learn format Used to verify a dataset by returning shape and basic statistics of returned data. This will also provide quick and dirty check on capability of host machine to process the data. Args: X (array-like): Features array y (array-like): Label array Returns: X_shape (2-tuple of int): Shape of X returned y_shape (1-tuple of int): Shape of y returned Raises: AssertionError: `X_shape` must be of length 2 and `y_shape` must be of length 1. `X` must have the same number of elements as `y` i.e. X_shape[0] == y_shape[0]. If any of these conditions are not met, an AssertionError is raised. """ X_shape, y_shape = np.array(X).shape, np.array(y).shape if len(X_shape) != 2: raise exceptions.UserError("X must be 2-dimensional array") if len(y_shape) != 1: raise exceptions.UserError("y must be 1-dimensional array") if X_shape[0] != y_shape[0]: raise exceptions.UserError("X must have same number of elements as y") return dict( features_shape=X_shape, labels_shape=y_shape ) def is_valid_json(x): """Returns true if x can be JSON serialized Args: x: Object to test """ try: json.dumps(x) return True except TypeError: return False def make_serializable(json): """This function ensures that the dictionary is JSON serializable. If not, keys with non-serializable values are removed from the return value. Args: json (dict): Dictionary to convert to serializable Returns: new_dict (dict): New dictionary with non JSON serializable values removed """ new_dict = dict() for key, value in iteritems(json): if is_valid_json(value): new_dict[key] = value return new_dict def get_sample_dataset(dataset_properties): """Returns sample dataset Args: dataset_properties (dict): Dictionary corresponding to the properties of the dataset used to verify the estimator and metric generators. Returns: X (array-like): Features array y (array-like): Labels array splits (iterator): This is an iterator that returns train test splits for cross-validation purposes on ``X`` and ``y``. """ kwargs = dataset_properties.copy() data_type = kwargs.pop('type') if data_type == 'multiclass': try: X, y = datasets.make_classification(random_state=8, **kwargs) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) except Exception as e: raise exceptions.UserError(repr(e)) elif data_type == 'iris': X, y = datasets.load_iris(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'mnist': X, y = datasets.load_digits(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'breast_cancer': X, y = datasets.load_breast_cancer(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'boston': X, y = datasets.load_boston(return_X_y=True) splits = model_selection.KFold(n_splits=2, random_state=8).split(X) elif data_type == 'diabetes': X, y = datasets.load_diabetes(return_X_y=True) splits = model_selection.KFold(n_splits=2, random_state=8).split(X) else: raise exceptions.UserError('Unknown dataset type {}'.format(dataset_properties['type'])) return X, y, splits def verify_estimator_class(est, meta_feature_generator, metric_generators, dataset_properties): """Verify if estimator object is valid for use i.e. scikit-learn format Verifies if an estimator is fit for use by testing for existence of methods such as `get_params` and `set_params`. Must also be able to properly fit on and predict a sample iris dataset. Args: est: Estimator object with `fit`, `predict`/`predict_proba`, `get_params`, and `set_params` methods. meta_feature_generator (str, unicode): Name of the method used by the estimator to generate meta-features on a set of data. metric_generators (dict): Dictionary of key value pairs where the key signifies the name of the metric calculated and the value is a list of strings, when concatenated, form Python code containing the function used to calculate the metric from true values and the meta-features generated. dataset_properties (dict): Dictionary corresponding to the properties of the dataset used to verify the estimator and metric generators. Returns: performance_dict (mapping): Mapping from performance metric name to performance metric value e.g. "Accuracy": 0.963 hyperparameters (mapping): Mapping from the estimator's hyperparameters to their default values e.g. "n_estimators": 10 """ X, y, splits = get_sample_dataset(dataset_properties) if not hasattr(est, "get_params"): raise exceptions.UserError('Estimator does not have get_params method') if not hasattr(est, "set_params"): raise exceptions.UserError('Estimator does not have set_params method') if not hasattr(est, meta_feature_generator): raise exceptions.UserError('Estimator does not have meta-feature generator' ' {}'.format(meta_feature_generator)) performance_dict = dict() true_labels = [] preds = [] try: for train_index, test_index in splits: X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] est.fit(X_train, y_train) true_labels.append(y_test) preds.append(getattr(est, meta_feature_generator)(X_test)) true_labels = np.concatenate(true_labels) preds = np.concatenate(preds, axis=0) except Exception as e: raise exceptions.UserError(repr(e)) if preds.shape[0] != true_labels.shape[0]: raise exceptions.UserError('Estimator\'s meta-feature generator ' 'does not produce valid shape') for key in metric_generators: metric_generator = import_object_from_string_code( metric_generators[key], 'metric_generator' ) try: performance_dict[key] = metric_generator(true_labels, preds) except Exception as e: raise exceptions.UserError(repr(e)) return performance_dict, make_serializable(est.get_params()) def get_path_from_query_string(req): """Gets path from query string Args: req (flask.request): Request object from Flask Returns: path (str): Value of "path" parameter from query string Raises: exceptions.UserError: If "path" is not found in query string """ if req.args.get('path') is None: raise exceptions.UserError('Path not found in query string') return req.args.get('path') class DBContextManager(): """Use this context manager to automatically start and close a database session Examples: >>> with DBContextManager('ProjectFolder') as session: >>> # Do stuff with session """ def __init__(self, path): """Initialize context manager Args: path (str, unicode): Path to project folder """ self.path = os.path.join(path, app.config['XCESSIV_NOTEBOOK_NAME']) def __enter__(self): if not os.path.exists(self.path): raise exceptions.UserError('{} does not exist'.format(self.path)) sqlite_url = 'sqlite:///{}'.format(self.path) engine = create_engine(sqlite_url) self.session = Session(bind=engine) return self.session def __exit__(self, exc_type, exc_val, exc_tb): if hasattr(self, 'session'): if exc_type is not None: self.session.rollback() self.session.close() return False # re-raise any exception
the-stack_0_19494
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Visualize detections made by tensorflow. License_info: # ============================================================================== # ISC License (ISC) # Copyright 2021 Christian Doppler Laboratory for Embedded Machine Learning # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH # REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, # INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM # LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE # OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR # PERFORMANCE OF THIS SOFTWARE. # The following is a slightly modified version from the following script # Source: """ # Futures # from __future__ import print_function # Built-in/Generic Imports import glob import json import os import argparse import time import re import pickle # Libs from tqdm import tqdm from xmltodict import unparse import xml.etree.ElementTree as ET import sys import numpy as np import pandas as pd from multiprocessing import Pool import matplotlib # If you get _tkinter.TclError: no display name and no $DISPLAY environment variable use # matplotlib.use('Agg') instead matplotlib.use('TkAgg') from six import BytesIO import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as viz_utils # Own modules import bbox_utils as bbox import image_utils as im from datetime import datetime __author__ = 'Alexander Wendt' __copyright__ = 'Copyright 2021, Christian Doppler Laboratory for ' \ 'Embedded Machine Learning' __credits__ = [''] __license__ = 'ISC' __version__ = '0.1.0' __maintainer__ = 'Alexander Wendt' __email__ = '[email protected]' __status__ = 'Experimental' parser = argparse.ArgumentParser(description='Google Tensorflow Detection API 2.0 Inferrer') # parser.add_argument("-p", '--model_path', default='pre-trained-models/efficientdet_d5_coco17_tpu-32/saved_model/', # help='Saved model path', required=False) parser.add_argument("-i", '--image_dir', default='images/inference', help='Image directory', required=False) parser.add_argument("-l", '--labelmap', default='annotations/mscoco_label_map.pbtxt.txt', help='Labelmap path', required=False) parser.add_argument("-d", '--detections_file', default='detections.csv', help='TF2 Object Detection API saved inference file as csv.', required=False) parser.add_argument("-s", '--min_score', default=0.5, type=float, help='Max score of detection box to save the image.', required=False) # parser.add_argument("-r", '--run_detection', default=False, # help='Run detection or load saved detection model', required=False, type=bool) # parser.add_argument("-x", '--xml_dir', default=None, # help='Source of XML files. ' # 'If run_detection is True, xml files are saved here. ' # 'If run detection is False, XML files are loaded from here. ' # 'If run_detection is True and value is None, no XMLs are saved.', required=False, type=str) # parser.add_argument("-vis", '--run_visualization', default=False, # help='Run image visualization', required=False, type=bool) parser.add_argument("-o", '--output_dir', default="detection_images", help='Result directory for images. ', required=False) # parser.add_argument("-lat", '--latency_out', default="latency.csv", help='Output path for latencies file, which is ' # 'appended or created new. ', # required=False) # parser.add_argument("-m", '--model_name', default="Model", type=str, # help='Model name for collecting model data.', required=False) # parser.add_argument("-hw", '--hardware_name', default="Hardware", type=str, # help='Hardware name collecting statistical data.', required=False) args = parser.parse_args() def load_model(model_path): ''' Load tensorflow model :param model_path: :return: ''' print("Start model loading from path ", model_path) tf.keras.backend.clear_session() start_time = time.time() detect_fn = tf.saved_model.load(model_path) end_time = time.time() elapsed_time = end_time - start_time print('Finished. Elapsed time: {:.0f}s'.format(elapsed_time)) return detect_fn def create_single_imagedict(source, image_name): ''' :type ''' image_dict = {} image_path = os.path.join(source, image_name) image_np = bbox.load_image_into_numpy_array(image_path) input_tensor = np.expand_dims(image_np, 0) image_dict[image_name] = (image_np, input_tensor) return image_dict def detect_image(detect_fn, image_path, min_score): ''' :param detect_fn: :param image_dict: :return: ''' elapsed = [] detection_dict = dict() # print("Start detection") # for image_name in image_list: # Load image # image_path = os.path.join(image_dir, image_name) # Convert image to array print("Process ", image_path) image_np = im.load_image_into_numpy_array(image_path) # Make image tensor of it input_tensor = np.expand_dims(image_np, 0) # Infer start_time = time.time() detections = detect_fn(input_tensor) end_time = time.time() latency = end_time - start_time # elapsed.append(latency) image_filename = os.path.basename(image_path) print("Inference time {} : {}s".format(image_filename, latency)) # Process detections boxes = detections['detection_boxes'][0].numpy() classes = detections['detection_classes'][0].numpy().astype(np.int32) scores = detections['detection_scores'][0].numpy() return image_filename, image_np, boxes, classes, scores, latency def convert_reduced_detections_to_df(image_filename, image_np, boxes, classes, scores, min_score=0.8): image_width = image_np.shape[1] image_height = image_np.shape[0] column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax', 'score'] xml_df = pd.DataFrame(columns=column_name) for i in range(scores.shape[0]): if min_score <= scores[i]: ymin, xmin, ymax, xmax = tuple(boxes[i].tolist()) content = [image_filename, image_width, image_height, classes[i], xmin, ymin, xmax, ymax, scores[i]] xml_df = xml_df.append(pd.DataFrame([content], columns=column_name)) return xml_df def plot_image(image, title=None): ax = plt.subplot(111) ax.tick_params(labelbottom=False, labelleft=False) if title: plt.title(title, fontsize=40) plt.imshow(image) plt.axis('off') plt.tight_layout() return plt.gcf() def infer_images(detections_file, image_dir, labelmap, min_score, output_dir): ''' ''' if not os.path.isdir(output_dir): os.makedirs(output_dir) print("Created ", output_dir) # Load inference images print("Loading images from ", image_dir) image_list = im.get_images_name(image_dir) # Load label path print("Loading labelmap from ", labelmap) category_index = label_map_util.create_category_index_from_labelmap(os.path.abspath(labelmap)) # Load stored XML Files print("Loading saved Detections files from ealier inferences from ", detections_file) data = pd.read_csv(detections_file, sep=';').set_index('filename') # Define scores and latencies # detection_scores = pd.DataFrame(columns=['filename', 'width', 'height', 'class', 'xmin', # # 'ymin', 'xmax', 'ymax', 'score']) # Process each image for image_name in image_list: print("Load xml data for ", image_name) if isinstance(data.loc[image_name], pd.Series): subdata = pd.DataFrame([data.loc[image_name]]) else: subdata = data.loc[image_name] #classes = np.array(data.loc[image_name].shape[0]) boxes = np.zeros([subdata.shape[0], 4]) classes = np.zeros([subdata.shape[0]]).astype('int') if 'score' in subdata.columns and subdata['score'][0] is not None: scores = np.zeros([subdata.shape[0]]) else: scores = None for i in range(subdata.shape[0]): boxes[i][0] = subdata['ymin'][i] boxes[i][1] = subdata['xmin'][i] boxes[i][2] = subdata['ymax'][i] boxes[i][3] = subdata['xmax'][i] if 'score' in data.columns and subdata['score'][i] is not None: scores[i] = subdata['score'][i] #class_index = [category_index[j + 1].get('id') for j in range(len(category_index)) if # category_index[j + 1].get('name') == subdata['class'][i]][0] classes[i] = subdata['class'][i] #if classes.size == 1: # If only one detection # classes = classes.reshape(-1) # np.vstack(classes, 1) #scores = np.array(data.loc[image_name]['score']) #if scores.size == 1: # If only one detection # scores = scores.reshape(-1) # np.vstack(scores, 0) #boxes = np.array(data.loc[image_name][['ymin', 'xmin', 'ymax', 'xmax']]) #if boxes.size==4: # boxes = boxes.reshape(1, -1) # np.vstack(boxes, [0, 0, 0, 0]) image_filename = image_name image_np = im.load_image_into_numpy_array(os.path.join(image_dir, image_name)) # If output directory is provided, visualize and save image image = bbox.visualize_image(image_name, image_np, scores, boxes, classes, category_index, min_score=min_score) plt.gcf() new_image_path = os.path.join(output_dir, os.path.splitext(image_filename)[0] + "_det" + ".png") print("Save image {} to {}".format(image_filename, new_image_path)) fig = plot_image(image) plt.savefig(new_image_path) if __name__ == "__main__": infer_images(args.detections_file, args.image_dir, args.labelmap, args.min_score, args.output_dir) print("=== Program end ===")
the-stack_0_19496
result = 0 hp = "hp" damage = "damage" armour = "armour" cost = "cost" boss = { hp: 103, damage: 9, armour: 2 } def calcDamage(d, a): return max(d-a, 1) player = { hp: 100 } weapons = [ {cost: 8, damage: 4, armour: 0}, {cost: 10, damage: 5, armour: 0}, {cost: 25, damage: 6, armour: 0}, {cost: 40, damage: 7, armour: 0}, {cost: 74, damage: 8, armour: 0} ] mails = [ {cost: 0, damage: 0, armour: 0}, {cost: 13, damage: 0, armour: 1}, {cost: 31, damage: 0, armour: 2}, {cost: 53, damage: 0, armour: 3}, {cost: 75, damage: 0, armour: 4}, {cost: 102, damage: 0, armour: 5} ] rings = [ {cost: 0, damage: 0, armour: 0, "id": 0}, {cost: 20, damage: 0, armour: 1}, {cost: 25, damage: 1, armour: 0}, {cost: 40, damage: 0, armour: 2}, {cost: 50, damage: 2, armour: 0}, {cost: 80, damage: 0, armour: 3}, {cost: 100, damage: 3, armour: 0} ] stats = [] for w in weapons: for m in mails: for (i, r1) in enumerate(rings[:-1]): j = i + 1 if i else i for r2 in rings[j:]: stats.append({ p: sum([o[p] for o in [w,m,r1,r2]]) for p in [cost, damage, armour] }) stats.sort(reverse=True, key=lambda x: x[cost]) def combat(stat): bossHP = boss[hp] playerHP = player[hp] turn = 0 while bossHP > 0 and playerHP > 0: if turn == 0: bossHP -= calcDamage(stat[damage], boss[armour]) else: playerHP -= calcDamage(boss[damage], stat[armour]) turn = 1 - turn return bossHP <= 0 for stat in stats: victory = combat(stat) if not victory: result = stat[cost] break with open("output2.txt", "w") as output: output.write(str(result)) print(str(result))
the-stack_0_19497
# -*- coding: utf-8 -*- ''' Created on 2015/01/25 @author: samuraitaiga ''' import logging import os from mt4 import get_mt4 from mt4 import DEFAULT_MT4_NAME from __builtin__ import str class BackTest(object): """ Attributes: ea_name(string): ea name param(dict): ea parameter symbol(string): currency symbol. e.g.: USDJPY from_date(datetime.datetime): backtest from date to_date(datetime.datetime): backtest to date model(int): backtest model 0: Every tick 1: Control points 2: Open prices only spread(int): spread optimization(bool): optimization flag. optimization is enabled if True replace_report(bool): replace report flag. replace report is enabled if True """ def __init__(self, ea_name, param, symbol, period, from_date, to_date, model=0, spread=5, replace_repot=True): self.ea_name = ea_name self.param = param self.symbol = symbol self.period = period self.from_date = from_date self.to_date = to_date self.model = model self.spread = spread self.replace_report = replace_repot def _prepare(self, alias=DEFAULT_MT4_NAME): """ Notes: create backtest config file and parameter file """ self._create_conf(alias=alias) self._create_param(alias=alias) def _create_conf(self, alias=DEFAULT_MT4_NAME): """ Notes: create config file(.conf) which is used parameter of terminal.exe in %APPDATA%\\MetaQuotes\\Terminal\\<UUID>\\tester file contents goes to TestExpert=SampleEA TestExpertParameters=SampleEA.set TestSymbol=USDJPY TestPeriod=M5 TestModel=0 TestSpread=5 TestOptimization=true TestDateEnable=true TestFromDate=2014.09.01 TestToDate=2015.01.05 TestReport=SampleEA TestReplaceReport=false TestShutdownTerminal=true """ mt4 = get_mt4(alias=alias) conf_file = os.path.join(mt4.appdata_path, 'tester', '%s.conf' % self.ea_name) # shutdown_terminal must be True. # If false, popen don't end and backtest report analyze don't start. shutdown_terminal = True with open(conf_file, 'w') as fp: fp.write('TestExpert=%s\n' % self.ea_name) fp.write('TestExpertParameters=%s.set\n' % self.ea_name) fp.write('TestSymbol=%s\n' % self.symbol) fp.write('TestModel=%s\n' % self.model) fp.write('TestPeriod=%s\n' % self.period) fp.write('TestSpread=%s\n' % self.spread) fp.write('TestOptimization=%s\n' % str(self.optimization).lower()) fp.write('TestDateEnable=true\n') fp.write('TestFromDate=%s\n' % self.from_date.strftime('%Y.%m.%d')) fp.write('TestToDate=%s\n' % self.to_date.strftime('%Y.%m.%d')) fp.write('TestReport=%s\n' % self.ea_name) fp.write('TestReplaceReport=%s\n' % str(self.replace_report).lower()) fp.write('TestShutdownTerminal=%s\n' % str(shutdown_terminal).lower()) def _create_param(self, alias=DEFAULT_MT4_NAME): """ Notes: create ea parameter file(.set) in %APPDATA%\\MetaQuotes\\Terminal\\<UUID>\\tester Args: ea_name(string): ea name """ mt4 = get_mt4(alias=alias) param_file = os.path.join(mt4.appdata_path, 'tester', '%s.set' % self.ea_name) with open(param_file, 'w') as fp: for k in self.param: values = self.param[k].copy() value = values.pop('value') fp.write('%s=%s\n' % (k, value)) if self.optimization: if values.has_key('max') and values.has_key('interval'): fp.write('%s,F=1\n' % k) fp.write('%s,1=%s\n' % (k, value)) interval = values.pop('interval') fp.write('%s,2=%s\n' % (k,interval)) maximum = values.pop('max') fp.write('%s,3=%s\n' % (k,maximum)) else: # if this value won't be optimized, write unused dummy data for same format. fp.write('%s,F=0\n' % k) fp.write('%s,1=0\n' % k) fp.write('%s,2=0\n' % k) fp.write('%s,3=0\n' % k) else: if type(value) == str: # this ea arg is string. then don't write F,1,2,3 section in config pass else: # write unused dummy data for same format. fp.write('%s,F=0\n' % k) fp.write('%s,1=0\n' % k) fp.write('%s,2=0\n' % k) fp.write('%s,3=0\n' % k) def _get_conf_abs_path(self, alias=DEFAULT_MT4_NAME): mt4 = get_mt4(alias=alias) conf_file = os.path.join(mt4.appdata_path, 'tester', '%s.conf' % self.ea_name) return conf_file def run(self, alias=DEFAULT_MT4_NAME): """ Notes: run backtest """ from report import BacktestReport self.optimization = False self._prepare(alias=alias) bt_conf = self._get_conf_abs_path(alias=alias) mt4 = get_mt4(alias=alias) mt4.run(self.ea_name, conf=bt_conf) ret = BacktestReport(self) return ret def optimize(self, alias=DEFAULT_MT4_NAME): """ """ from report import OptimizationReport self.optimization = True self._prepare(alias=alias) bt_conf = self._get_conf_abs_path(alias=alias) mt4 = get_mt4(alias=alias) mt4.run(self.ea_name, conf=bt_conf) ret = OptimizationReport(self) return ret def load_from_file(dsl_file): pass
the-stack_0_19503
import json from datetime import datetime from inflection import tableize import inspect from ..query import QueryBuilder from ..collection import Collection from ..connections import ConnectionFactory, ConnectionResolver from ..query.grammars import MySQLGrammar from ..observers import ObservesEvents from ..scopes import BaseScope, SoftDeleteScope, SoftDeletesMixin, TimeStampsMixin """This is a magic class that will help using models like User.first() instead of having to instatiate a class like User().first() """ class ModelMeta(type): def __getattr__(self, attribute, *args, **kwargs): """This method is called between a Model and accessing a property. This is a quick and easy way to instantiate a class before the first method is called. This is to avoid needing to do this: User().where(..) and instead, with this class inherited as a meta class, we can do this: User.where(...) This class (potentially magically) instantiates the class even though we really didn't instantiate it. Args: attribute (string): The name of the attribute Returns: Model|mixed: An instantiated model's attribute """ instantiated = self() return getattr(instantiated, attribute) class BoolCast: """Casts a value to a boolean""" def get(self, value): return bool(value) class JsonCast: """Casts a value to JSON""" def get(self, value): return json.dumps(value) class Model(TimeStampsMixin, ObservesEvents, metaclass=ModelMeta): """The ORM Model class Base Classes: TimeStampsMixin (TimeStampsMixin): Adds scopes to add timestamps when something is inserted metaclass (ModelMeta, optional): Helps instantiate a class when it hasn't been instantiated. Defaults to ModelMeta. """ __fillable__ = ["*"] __guarded__ = ["*"] __dry__ = False __table__ = None __connection__ = "default" __resolved_connection__ = None __observers__ = [] _booted = False _scopes = {} __primary_key__ = "id" __casts__ = {} __dates__ = [] __hidden__ = [] __timestamps__ = True __with__ = () date_created_at = "created_at" date_updated_at = "updated_at" """Pass through will pass any method calls to the model directly through to the query builder. Anytime one of these methods are called on the model it will actually be called on the query builder class. """ __passthrough__ = [ "all", "first", "last", "find_or_fail", "first_or_fail", "find_or_404", "get", "has", "delete", "limit", "order_by", "select", "set_global_scope", "simple_paginate", "paginate", "where_has", "chunk", "where_in", "where", "with_", "update", ] __cast_map__ = {} __internal_cast_map__ = {"bool": BoolCast, "json": JsonCast} def __init__(self): self.__attributes__ = {} self.__dirty_attributes__ = {} if not hasattr(self, "__appends__"): self.__appends__ = [] self._relationships = {} self._global_scopes = {} self.get_builder() self.boot() @classmethod def get_primary_key(self): """Gets the primary key column Returns: mixed """ return self.__primary_key__ def get_primary_key_value(self): """Gets the primary key value. Raises: AttributeError: Raises attribute error if the model does not have an attribute with the primary key. Returns: str|int """ try: return getattr(self, self.get_primary_key()) except AttributeError: name = self.__class__.__name__ raise AttributeError( f"class '{name}' has no attribute {self.get_primary_key()}. Did you set the primary key correctly on the model using the __primary_key__ attribute?" ) def query(self): return self.builder def get_builder(self): from config.database import DB connection = self.__connection__ if connection == "default": connection = DB.get_connection_details().get("default") connection_driver = ( DB.get_connection_details().get(connection, {}).get("driver") ) self.__resolved_connection__ = DB.connection_factory.make(connection_driver) self.builder = QueryBuilder( # grammar=self.__resolved_connection__.get_default_query_grammar(), connection=self.__connection__, # connection_class=self.__resolved_connection__, table=self.get_table_name(), connection_details=self.get_connection_details(), model=self, # connection_driver=connection_driver, scopes=self._scopes, dry=self.__dry__, ) return self.builder def get_connection_details(self): from config.database import ConnectionResolver return ConnectionResolver().get_connection_details() def boot(self): if not self._booted: self.observe_events(self, "booting") for base_class in inspect.getmro(self.__class__): class_name = base_class.__name__ if class_name.endswith("Mixin"): getattr(base_class(), "boot_" + class_name)(self.builder) self._booted = True self.observe_events(self, "booted") @classmethod def get_table_name(cls): """Gets the table name. Returns: str """ return cls.__table__ or tableize(cls.__name__) @classmethod def find(cls, record_id, query=False): """Finds a row by the primary key ID. Arguments: record_id {int} -- The ID of the primary key to fetch. Returns: Model """ if isinstance(record_id, (list, tuple)): builder = cls().where_in(cls.get_primary_key(), record_id) else: builder = cls().where(cls.get_primary_key(), record_id) if query: return builder.to_sql() else: return builder.get() def first_or_new(self): pass def first_or_create(self): pass def is_loaded(self): return bool(self.__attributes__) def is_created(self): return self.get_primary_key() in self.__attributes__ def add_relation(self, relations): self._relationships.update(relations) return self @classmethod def hydrate(cls, result, relations=None): """Takes a result and loads it into a model Args: result ([type]): [description] relations (dict, optional): [description]. Defaults to {}. Returns: [type]: [description] """ relations = relations or {} if result is None: return None if isinstance(result, (list, tuple)): response = [] for element in result: response.append(cls.hydrate(element)) return cls.new_collection(response) elif isinstance(result, dict): model = cls() dic = {} for key, value in result.items(): if key in model.get_dates() and value: value = model.get_new_date(value) dic.update({key: value}) model.observe_events(model, "hydrating") model.__attributes__.update(dic or {}) model.add_relation(relations) model.observe_events(model, "hydrated") return model elif hasattr(result, "serialize"): model = cls() model.__attributes__.update(result.serialize()) return model else: model = cls() model.observe_events(model, "hydrating") model.__attributes__.update(dict(result)) model.observe_events(model, "hydrated") return model def fill(self, attributes): self.__attributes__.update(attributes) return self @classmethod def new_collection(cls, data): """Takes a result and puts it into a new collection. This is designed to be able to be overidden by the user. Args: data (list|dict): Could be any data type but will be loaded directly into a collection. Returns: Collection """ return Collection(data) @classmethod def create(cls, dictionary=None, query=False, **kwargs): """Creates new records based off of a dictionary as well as data set on the model such as fillable values. Args: dictionary (dict, optional): [description]. Defaults to {}. query (bool, optional): [description]. Defaults to False. Returns: self: A hydrated version of a model """ if not dictionary: dictionary = kwargs if cls.__fillable__ != ["*"]: dictionary = {x: dictionary[x] for x in cls.__fillable__} if cls.__guarded__ != ["*"]: for x in cls.__guarded__: dictionary.pop(x) if query: return cls.builder.create(dictionary, query=True).to_sql() return cls.builder.create(dictionary) def serialize(self, serialized_dictionary=None): """Takes the data as a model and converts it into a dictionary Args: serialized_dictionary (dict, optional): A dictionary to start from. If not specified then the models attributes will be used. Defaults to {}. Returns: dict """ if not serialized_dictionary: serialized_dictionary = self.__attributes__ for key in self.__hidden__: if key in serialized_dictionary: serialized_dictionary.pop(key) for date_column in self.get_dates(): if ( date_column in serialized_dictionary and serialized_dictionary[date_column] ): serialized_dictionary[date_column] = self.get_new_serialized_date( serialized_dictionary[date_column] ) serialized_dictionary.update(self.__dirty_attributes__) # The builder is inside the attributes but should not be serialized if "builder" in serialized_dictionary: serialized_dictionary.pop("builder") # Serialize relationships as well serialized_dictionary.update(self.relations_to_dict()) for append in self.__appends__: serialized_dictionary.update({append: getattr(self, append)}) for key, value in serialized_dictionary.items(): if isinstance(value, datetime): value = self.get_new_serialized_date(value) serialized_dictionary.update({key: value}) return serialized_dictionary def to_json(self): """Converts a model to JSON Returns: string """ return json.dumps(self.serialize()) def update_or_create(self): pass def relations_to_dict(self): """Converts a models relationships to a dictionary Returns: [type]: [description] """ new_dic = {} for key, value in self._relationships.items(): if value == {}: new_dic.update({key: {}}) else: if value is None: new_dic.update({key: {}}) continue new_dic.update({key: value.serialize()}) return new_dic def touch(self, date=None, query=True): """Updates the current timestamps on the model""" if not self.__timestamps__: return False self._update_timestamps(date=date) return self.save(query=query) def _update_timestamps(self, date=None): """Sets the updated at date to the current time or a specified date Args: date (datetime.datetime, optional): a date. If none is specified then it will use the current date Defaults to None. """ self.updated_at = date or self._current_timestamp() def _current_timestamp(self): return datetime.now() @staticmethod def set_connection_resolver(self): pass def __getattr__(self, attribute): """Magic method that is called when an attribute does not exist on the model. Args: attribute (string): the name of the attribute being accessed or called. Returns: mixed: Could be anything that a method can return. """ if attribute in self.__passthrough__: def method(*args, **kwargs): return getattr(self.builder, attribute)(*args, **kwargs) return method new_name_accessor = "get_" + attribute + "_attribute" if (new_name_accessor) in self.__class__.__dict__: return self.__class__.__dict__.get(new_name_accessor)(self) if ( "__attributes__" in self.__dict__ and attribute in self.__dict__["__attributes__"] ): if attribute in self.get_dates(): return ( self.get_new_date(self.get_value(attribute)) if self.get_value(attribute) else None ) return self.get_value(attribute) if ( "__dirty_attributes__" in self.__dict__ and attribute in self.__dict__["__dirty_attributes__"] ): return self.get_dirty_value(attribute) if attribute in self.__dict__.get("_relationships", {}): return self.__dict__["_relationships"][attribute] if attribute not in self.__dict__: name = self.__class__.__name__ raise AttributeError(f"class model '{name}' has no attribute {attribute}") return None def __setattr__(self, attribute, value): if hasattr(self, "set_" + attribute + "_attribute"): method = getattr(self, "set_" + attribute + "_attribute") value = method(value) try: if not attribute.startswith("_"): self.__dict__["__dirty_attributes__"].update({attribute: value}) else: self.__dict__[attribute] = value except KeyError: pass def get_raw_attribute(self, attribute): """Gets an attribute without having to call the models magic methods. Gets around infinite recursion loops. Args: attribute (string): The attribute to fetch Returns: mixed: Any value an attribute can be. """ return self.__attributes__.get(attribute) def save(self, query=False): builder = self.builder self.__dirty_attributes__.pop("builder") self.observe_events(self, "saving") if not query: result = builder.update(self.__dirty_attributes__) self.observe_events(self, "saved") return result return builder.update(self.__dirty_attributes__, dry=True).to_sql() def get_value(self, attribute): if attribute in self.__casts__: return self._cast_attribute(attribute) return self.__attributes__[attribute] def get_dirty_value(self, attribute): if attribute in self.__casts__: return self._cast_attribute(attribute) return self.__dirty_attributes__[attribute] def all_attributes(self): attributes = self.__attributes__ attributes.update(self.get_dirty_attributes()) for key, value in attributes.items(): if key in self.__casts__: attributes.update({key: self._cast_attribute(key)}) return attributes def get_dirty_attributes(self): if "builder" in self.__dirty_attributes__: self.__dirty_attributes__.pop("builder") return self.__dirty_attributes__ or {} def get_cast_map(self): cast_map = self.__internal_cast_map__ cast_map.update(self.__cast_map__) return cast_map def _cast_attribute(self, attribute): cast_method = self.__casts__[attribute] cast_map = self.get_cast_map() if isinstance(cast_method, str): return cast_map[cast_method]().get(attribute) return cast_method(attribute) @classmethod def load(cls, *loads): cls.boot() cls._loads += loads return cls.builder def __getitem__(self, attribute): return getattr(self, attribute) def get_dates(self): """ Get the attributes that should be converted to dates. :rtype: list """ defaults = [self.date_created_at, self.date_updated_at] return self.__dates__ + defaults def get_new_date(self, datetime=None): """ Get the attributes that should be converted to dates. :rtype: list """ import pendulum if not datetime: return pendulum.now() if isinstance(datetime, str): return pendulum.parse(datetime) return pendulum.instance(datetime) def get_new_serialized_date(self, datetime): """ Get the attributes that should be converted to dates. :rtype: list """ return self.get_new_date(datetime).isoformat() def set_appends(self, appends): """ Get the attributes that should be converted to dates. :rtype: list """ self.__appends__ += appends return self def save_many(self, relation, relating_records): related = getattr(self.__class__, relation) for related_record in relating_records: setattr( related_record, related.foreign_key, self.__attributes__[related.local_key], ) if not related_record.is_created(): related_record.create(related_record.all_attributes()) else: related_record.save() def related(self, relation): related = getattr(self.__class__, relation) return related.where(related.foreign_key, self.get_primary_key_value()) def get_related(self, relation): related = getattr(self.__class__, relation) return related def attach(self, relation, related_record): related = getattr(self.__class__, relation) setattr( related_record, related.foreign_key, self.__attributes__[related.local_key] ) if not related_record.is_created(): related_record.create(related_record.all_attributes()) else: related_record.save() @classmethod def on(cls, connection): cls.__connection__ = connection return cls
the-stack_0_19505
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import scipy.optimize as opt import cmath import sys import warnings from statistics import jackknifeMean from statistics import jackknifeCreutz from statistics import autocorrTime warnings.simplefilter(action='ignore', category=FutureWarning) L = int(sys.argv[1]) # lattice size print("L: %d" % (L)) Lz = int(sys.argv[2]) print("Lz: %d" % (Lz)) beta = float(sys.argv[3]) print("beta: %f" % (beta)) eps3 = float(sys.argv[4]) print("eps3: %f" % (eps3)) m_fermion = float(sys.argv[5]) print("m_fermion: %f" % (m_fermion)) m_sign = "p" if m_fermion < 0.0: m_sign = "m" if (Lz == 1): id = "%d_%d_%s%d" % (L, round(beta * 1000), m_sign, round(abs(m_fermion) * 1000)) path = "../jobs/2D/%s" % id else: id = "%d_%d_%d_%d_%s%d" % (L, Lz, round(beta * 1000), round(eps3 * 1000), \ m_sign, round(abs(m_fermion) * 1000)) path = "../jobs/3D/%s" % id print("id: %s" % (id)) first_id = int(sys.argv[6]) print("first_id: %d" % (first_id)) last_id = int(sys.argv[7]) print("last_id: %d" % (last_id)) id_inc = int(sys.argv[8]) print("id_inc: %d" % (id_inc)) t_max = float(sys.argv[9]) print("t_max: %f" % (t_max)) dt = float(sys.argv[10]) print("dt: %f" % (dt)) # r_min = int(sys.argv[11]) - 2 # print("r_min: %d" % (r_min + 2)) # # r_max = int(sys.argv[12]) - 2 # print("r_max: %d" % (r_max + 2)) # maximum wilson loop size loopMax = L / 2 # number of wilson loop values nLoops = loopMax * 3 - 2 # number of trajectories n_traj = (last_id - first_id) / id_inc + 1 print("n_traj = %d" % (n_traj)) # number of wilson flow values n_wf = int(t_max / dt + 1) # first index is wilson flow time # second index is wilson loop size # third index is trajectory id wilsonLoops = np.zeros((n_wf, nLoops, n_traj)) def readWilsonLoops(file, n): lines = file.readlines() for (l, line) in enumerate(lines): tokens = line.split() for (t, token) in enumerate(tokens): if (t == 0): continue wilsonLoops[l, t - 1, n] = float(token) return print("\nReading data files...") nWilsonLoops = 0; # number of field strength values for i in range(first_id, last_id + 1, id_inc): file = open("%s/wf/wilson_loops.%d" % (path, i), "r") readWilsonLoops(file, nWilsonLoops) nWilsonLoops += 1 file.close() # write wilson loop statistics to data file file = open("%s/wilson_loops.dat" % (path), "w") for i in range(0, n_wf): file.write("%.3f" % (i * dt)) for w in range(0, nLoops): value = jackknifeMean(wilsonLoops[i,w,:]) tau = autocorrTime(wilsonLoops[i,w,:]) file.write(" %.12e %.12e %.12e" % (value[0], value[1], tau)) file.write("\n") file.close(); print("\nCalculating Creutz Ratios (smeared/raw)...") # wilson loops are in this order # (1,1), (1,2) # (2,1), (2,2), (2,3) # (3,2), (3,3), (3,4) ... # write creutz ratios to file file = open("%s/creutz.dat" % (path), "w") for i in range(0, n_wf): file.write("%.3f" % (i * dt)) for r in range(0, loopMax - 1): # measure smeared (with wilson flow) w00 = wilsonLoops[i, r * 3] w01 = wilsonLoops[i, r * 3 + 1] w10 = wilsonLoops[i, r * 3 + 2] w11 = wilsonLoops[i, r * 3 + 3] value = jackknifeCreutz(w00, w01, w10, w11) file.write(" %.12e %.12e" % (value[0], value[1])) file.write("\n") file.close();
the-stack_0_19506
from emoji import emojize from telegram import InlineKeyboardButton, InlineKeyboardMarkup, ParseMode from foodshare.bdd.database_communication import get_user_from_chat_id from .digit_list import digit_buttons # Hour keyboard user_buttons = digit_buttons.copy() user_buttons.append( [ InlineKeyboardButton(emojize(':keycap_0: '), callback_data=str(0)), InlineKeyboardButton( emojize(':left_arrow:'), callback_data='left_arrow' ), ] ) user_buttons.append( [ InlineKeyboardButton( emojize(':reverse_button:'), callback_data='backward_page' ), InlineKeyboardButton( emojize(':play_button:'), callback_data='forward_page' ), ] ) user_buttons.append( [InlineKeyboardButton(emojize('Back'), callback_data='back')] ) user_keyboard = InlineKeyboardMarkup(user_buttons) confirm_buttons = user_buttons.copy() confirm_buttons.append( [InlineKeyboardButton('Confirm', callback_data='confirm')] ) confirm_keyboard = InlineKeyboardMarkup(confirm_buttons) pos = [0, 5, 11, 17] def process_user_selection(update, context): ud = context.user_data money = ud['money_or_meal'] callback_data = update.callback_query.data chat_id = update.effective_chat.id user = get_user_from_chat_id(chat_id) members = [ member for member in user.community.members if member is not user ] # initialize some variables in `context.user_data` when the keyboard is # first called if '_number' not in ud: number = '' ud['_number'] = '' else: number = ud.get('_number') if '_page' not in ud: page = 0 ud['_page'] = 0 else: page = ud.get('_page') # process the keyboard callback data if callback_data == 'forward_page': page += 1 elif callback_data == 'backward_page': page -= 1 elif callback_data == 'back': ud.pop('_number') ud.pop('_page') return False, True, -1 elif callback_data == 'confirm': user_chosed = members[int(number) - 1] ud.pop('_number') ud.pop('_page') return True, False, user_chosed else: number = callback_data # store number for next callback ud['_number'] = number ud['_page'] = page if number == '': message = 'Please select a user to make the transaction with' else: user_chosed = members[int(number) - 1] message = ( f'You chosed *' f' {user_chosed.name}.* \n Press ' f'confirm to continue. \n' ) # choose keyboard with a confirm button if a valid number was selected keyboard = construct_keyboard(user, money, number != '', page) update.callback_query.edit_message_text( text=message, reply_markup=keyboard, parse_mode=ParseMode.MARKDOWN, ) return False, False, -1 def construct_keyboard(user, money, confirm, page=0, number_per_page=5): members = [ member for member in user.community.members if member is not user ] number_of_pages = len(members) // number_per_page + ( len(members) % number_per_page > 0 ) page = page % (number_of_pages) members_to_show = members[ number_per_page * page : number_per_page * page + number_per_page ] i = page + 1 buttons = [] for j, member in enumerate(members_to_show): balance = ( str(member.money_balance) + '€' if money else str(member.meal_balance) + ' meals' ) member_message = f'' f'{member.name}' f', balance :' f' {balance}' buttons.append( [InlineKeyboardButton(member_message, callback_data=str(i + j))] ) buttons.append( [ InlineKeyboardButton( emojize(':reverse_button:'), callback_data='backward_page' ), InlineKeyboardButton(emojize('Back'), callback_data='back'), InlineKeyboardButton( emojize(':play_button:'), callback_data='forward_page' ), ] ) if confirm: buttons.append( [InlineKeyboardButton('Confirm', callback_data='confirm')] ) return InlineKeyboardMarkup(buttons)
the-stack_0_19509
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import math import warnings from distutils.version import LooseVersion import numpy as np import pandas as pd from tlz import partition_all import dask import dask.dataframe.optimize from dask import dataframe as dd from dask.base import normalize_token, tokenize from dask.dataframe.core import ( Scalar, finalize, handle_out, make_meta as dask_make_meta, map_partitions, ) from dask.dataframe.utils import raise_on_meta_error from dask.highlevelgraph import HighLevelGraph from dask.utils import M, OperatorMethodMixin, apply, derived_from, funcname import cudf from cudf import _lib as libcudf from dask_cudf import sorting from dask_cudf.accessors import ListMethods DASK_VERSION = LooseVersion(dask.__version__) class _Frame(dd.core._Frame, OperatorMethodMixin): """ Superclass for DataFrame and Series Parameters ---------- dsk : dict The dask graph to compute this DataFrame name : str The key prefix that specifies which keys in the dask comprise this particular DataFrame / Series meta : cudf.DataFrame, cudf.Series, or cudf.Index An empty cudf object with names, dtypes, and indices matching the expected output. divisions : tuple of index values Values along which we partition our blocks on the index """ __dask_scheduler__ = staticmethod(dask.get) def __dask_postcompute__(self): return finalize, () def __dask_postpersist__(self): return type(self), (self._name, self._meta, self.divisions) def __init__(self, dsk, name, meta, divisions): if not isinstance(dsk, HighLevelGraph): dsk = HighLevelGraph.from_collections(name, dsk, dependencies=[]) self.dask = dsk self._name = name meta = dask_make_meta(meta) if not isinstance(meta, self._partition_type): raise TypeError( f"Expected meta to specify type " f"{self._partition_type.__name__}, got type " f"{type(meta).__name__}" ) self._meta = meta self.divisions = tuple(divisions) def __getstate__(self): return (self.dask, self._name, self._meta, self.divisions) def __setstate__(self, state): self.dask, self._name, self._meta, self.divisions = state def __repr__(self): s = "<dask_cudf.%s | %d tasks | %d npartitions>" return s % (type(self).__name__, len(self.dask), self.npartitions) def to_dask_dataframe(self, **kwargs): """Create a dask.dataframe object from a dask_cudf object""" nullable_pd_dtype = kwargs.get("nullable_pd_dtype", False) return self.map_partitions( M.to_pandas, nullable_pd_dtype=nullable_pd_dtype ) concat = dd.concat normalize_token.register(_Frame, lambda a: a._name) class DataFrame(_Frame, dd.core.DataFrame): _partition_type = cudf.DataFrame def _assign_column(self, k, v): def assigner(df, k, v): out = df.copy() out[k] = v return out meta = assigner(self._meta, k, dask_make_meta(v)) return self.map_partitions(assigner, k, v, meta=meta) def apply_rows(self, func, incols, outcols, kwargs=None, cache_key=None): import uuid if kwargs is None: kwargs = {} if cache_key is None: cache_key = uuid.uuid4() def do_apply_rows(df, func, incols, outcols, kwargs): return df.apply_rows( func, incols, outcols, kwargs, cache_key=cache_key ) meta = do_apply_rows(self._meta, func, incols, outcols, kwargs) return self.map_partitions( do_apply_rows, func, incols, outcols, kwargs, meta=meta ) def merge(self, other, **kwargs): if kwargs.pop("shuffle", "tasks") != "tasks": raise ValueError( "Dask-cudf only supports task based shuffling, got %s" % kwargs["shuffle"] ) on = kwargs.pop("on", None) if isinstance(on, tuple): on = list(on) return super().merge(other, on=on, shuffle="tasks", **kwargs) def join(self, other, **kwargs): if kwargs.pop("shuffle", "tasks") != "tasks": raise ValueError( "Dask-cudf only supports task based shuffling, got %s" % kwargs["shuffle"] ) # CuDF doesn't support "right" join yet how = kwargs.pop("how", "left") if how == "right": return other.join(other=self, how="left", **kwargs) on = kwargs.pop("on", None) if isinstance(on, tuple): on = list(on) return super().join(other, how=how, on=on, shuffle="tasks", **kwargs) def set_index(self, other, sorted=False, divisions=None, **kwargs): if kwargs.pop("shuffle", "tasks") != "tasks": raise ValueError( "Dask-cudf only supports task based shuffling, got %s" % kwargs["shuffle"] ) pre_sorted = sorted del sorted if ( divisions == "quantile" or isinstance(divisions, (cudf.DataFrame, cudf.Series)) or ( isinstance(other, str) and cudf.utils.dtypes.is_string_dtype(self[other].dtype) ) ): # Let upstream-dask handle "pre-sorted" case if pre_sorted: return dd.shuffle.set_sorted_index( self, other, divisions=divisions, **kwargs ) by = other if not isinstance(other, list): by = [by] if len(by) > 1: raise ValueError("Dask does not support MultiIndex (yet).") if divisions == "quantile": divisions = None # Use dask_cudf's sort_values # TODO: Handle `sorted=True` df = self.sort_values( by, max_branch=kwargs.get("max_branch", None), divisions=divisions, set_divisions=True, ignore_index=True, ) # Ignore divisions if its a dataframe if isinstance(divisions, cudf.DataFrame): divisions = None # Set index and repartition df2 = df.map_partitions( sorting.set_index_post, index_name=other, drop=kwargs.get("drop", True), column_dtype=df.columns.dtype, ) npartitions = kwargs.get("npartitions", self.npartitions) partition_size = kwargs.get("partition_size", None) if partition_size: return df2.repartition(partition_size=partition_size) if not divisions and df2.npartitions != npartitions: return df2.repartition(npartitions=npartitions) if divisions and df2.npartitions != len(divisions) - 1: return df2.repartition(divisions=divisions) return df2 return super().set_index( other, sorted=pre_sorted, shuffle="tasks", divisions=divisions, **kwargs, ) def sort_values( self, by, ignore_index=False, max_branch=None, divisions=None, set_divisions=False, **kwargs, ): if kwargs: raise ValueError( f"Unsupported input arguments passed : {list(kwargs.keys())}" ) if self.npartitions == 1: df = self.map_partitions(M.sort_values, by) else: df = sorting.sort_values( self, by, max_branch=max_branch, divisions=divisions, set_divisions=set_divisions, ignore_index=ignore_index, ) if ignore_index: return df.reset_index(drop=True) return df def to_parquet(self, path, *args, **kwargs): """ Calls dask.dataframe.io.to_parquet with CudfEngine backend """ from dask_cudf.io import to_parquet return to_parquet(self, path, *args, **kwargs) def to_orc(self, path, **kwargs): """ Calls dask_cudf.io.to_orc """ from dask_cudf.io import to_orc return to_orc(self, path, **kwargs) @derived_from(pd.DataFrame) def var( self, axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None, naive=False, ): axis = self._validate_axis(axis) meta = self._meta_nonempty.var(axis=axis, skipna=skipna) if axis == 1: result = map_partitions( M.var, self, meta=meta, token=self._token_prefix + "var", axis=axis, skipna=skipna, ddof=ddof, ) return handle_out(out, result) elif naive: return _naive_var(self, meta, skipna, ddof, split_every, out) else: return _parallel_var(self, meta, skipna, split_every, out) def repartition(self, *args, **kwargs): """ Wraps dask.dataframe DataFrame.repartition method. Uses DataFrame.shuffle if `columns=` is specified. """ # TODO: Remove this function in future(0.17 release) columns = kwargs.pop("columns", None) if columns: warnings.warn( "The column argument will be removed from repartition in " " future versions of dask_cudf. Use DataFrame.shuffle().", DeprecationWarning, ) warnings.warn( "Rearranging data by column hash. Divisions will lost. " "Set ignore_index=False to preserve Index values." ) ignore_index = kwargs.pop("ignore_index", True) return self.shuffle( on=columns, ignore_index=ignore_index, **kwargs ) return super().repartition(*args, **kwargs) def shuffle(self, *args, **kwargs): """ Wraps dask.dataframe DataFrame.shuffle method """ shuffle_arg = kwargs.pop("shuffle", None) if shuffle_arg and shuffle_arg != "tasks": raise ValueError("dask_cudf does not support disk-based shuffle.") return super().shuffle(*args, shuffle="tasks", **kwargs) def groupby(self, by=None, **kwargs): from .groupby import CudfDataFrameGroupBy return CudfDataFrameGroupBy(self, by=by, **kwargs) def sum_of_squares(x): x = x.astype("f8")._column outcol = libcudf.reduce.reduce("sum_of_squares", x) return cudf.Series(outcol) def var_aggregate(x2, x, n, ddof): try: with warnings.catch_warnings(record=True): warnings.simplefilter("always") result = (x2 / n) - (x / n) ** 2 if ddof != 0: result = result * n / (n - ddof) return result except ZeroDivisionError: return np.float64(np.nan) def nlargest_agg(x, **kwargs): return cudf.concat(x).nlargest(**kwargs) def nsmallest_agg(x, **kwargs): return cudf.concat(x).nsmallest(**kwargs) class Series(_Frame, dd.core.Series): _partition_type = cudf.Series def count(self, split_every=False): return reduction( [self], chunk=M.count, aggregate=np.sum, split_every=split_every, meta="i8", ) def mean(self, split_every=False): sum = self.sum(split_every=split_every) n = self.count(split_every=split_every) return sum / n @derived_from(pd.DataFrame) def var( self, axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None, naive=False, ): axis = self._validate_axis(axis) meta = self._meta_nonempty.var(axis=axis, skipna=skipna) if axis == 1: result = map_partitions( M.var, self, meta=meta, token=self._token_prefix + "var", axis=axis, skipna=skipna, ddof=ddof, ) return handle_out(out, result) elif naive: return _naive_var(self, meta, skipna, ddof, split_every, out) else: return _parallel_var(self, meta, skipna, split_every, out) def groupby(self, *args, **kwargs): from .groupby import CudfSeriesGroupBy return CudfSeriesGroupBy(self, *args, **kwargs) @property def list(self): return ListMethods(self) class Index(Series, dd.core.Index): _partition_type = cudf.Index def _naive_var(ddf, meta, skipna, ddof, split_every, out): num = ddf._get_numeric_data() x = 1.0 * num.sum(skipna=skipna, split_every=split_every) x2 = 1.0 * (num ** 2).sum(skipna=skipna, split_every=split_every) n = num.count(split_every=split_every) name = ddf._token_prefix + "var" result = map_partitions( var_aggregate, x2, x, n, token=name, meta=meta, ddof=ddof ) if isinstance(ddf, DataFrame): result.divisions = (min(ddf.columns), max(ddf.columns)) return handle_out(out, result) def _parallel_var(ddf, meta, skipna, split_every, out): def _local_var(x, skipna): if skipna: n = x.count(skipna=skipna) avg = x.mean(skipna=skipna) else: # Not skipping nulls, so might as well # avoid the full `count` operation n = len(x) avg = x.sum(skipna=skipna) / n m2 = ((x - avg) ** 2).sum(skipna=skipna) return n, avg, m2 def _aggregate_var(parts): n, avg, m2 = parts[0] for i in range(1, len(parts)): n_a, avg_a, m2_a = n, avg, m2 n_b, avg_b, m2_b = parts[i] n = n_a + n_b avg = (n_a * avg_a + n_b * avg_b) / n delta = avg_b - avg_a m2 = m2_a + m2_b + delta ** 2 * n_a * n_b / n return n, avg, m2 def _finalize_var(vals): n, _, m2 = vals return m2 / (n - 1) # Build graph nparts = ddf.npartitions if not split_every: split_every = nparts name = "var-" + tokenize(skipna, split_every, out) local_name = "local-" + name num = ddf._get_numeric_data() dsk = { (local_name, n, 0): (_local_var, (num._name, n), skipna) for n in range(nparts) } # Use reduction tree widths = [nparts] while nparts > 1: nparts = math.ceil(nparts / split_every) widths.append(nparts) height = len(widths) for depth in range(1, height): for group in range(widths[depth]): p_max = widths[depth - 1] lstart = split_every * group lstop = min(lstart + split_every, p_max) node_list = [ (local_name, p, depth - 1) for p in range(lstart, lstop) ] dsk[(local_name, group, depth)] = (_aggregate_var, node_list) if height == 1: group = depth = 0 dsk[(name, 0)] = (_finalize_var, (local_name, group, depth)) graph = HighLevelGraph.from_collections(name, dsk, dependencies=[num, ddf]) result = dd.core.new_dd_object(graph, name, meta, (None, None)) if isinstance(ddf, DataFrame): result.divisions = (min(ddf.columns), max(ddf.columns)) return handle_out(out, result) def _extract_meta(x): """ Extract internal cache data (``_meta``) from dask_cudf objects """ if isinstance(x, (Scalar, _Frame)): return x._meta elif isinstance(x, list): return [_extract_meta(_x) for _x in x] elif isinstance(x, tuple): return tuple([_extract_meta(_x) for _x in x]) elif isinstance(x, dict): return {k: _extract_meta(v) for k, v in x.items()} return x def _emulate(func, *args, **kwargs): """ Apply a function using args / kwargs. If arguments contain dd.DataFrame / dd.Series, using internal cache (``_meta``) for calculation """ with raise_on_meta_error(funcname(func)): return func(*_extract_meta(args), **_extract_meta(kwargs)) def align_partitions(args): """Align partitions between dask_cudf objects. Note that if all divisions are unknown, but have equal npartitions, then they will be passed through unchanged.""" dfs = [df for df in args if isinstance(df, _Frame)] if not dfs: return args divisions = dfs[0].divisions if not all(df.divisions == divisions for df in dfs): raise NotImplementedError("Aligning mismatched partitions") return args def reduction( args, chunk=None, aggregate=None, combine=None, meta=None, token=None, chunk_kwargs=None, aggregate_kwargs=None, combine_kwargs=None, split_every=None, **kwargs, ): """Generic tree reduction operation. Parameters ---------- args : Positional arguments for the `chunk` function. All `dask.dataframe` objects should be partitioned and indexed equivalently. chunk : function [block-per-arg] -> block Function to operate on each block of data aggregate : function list-of-blocks -> block Function to operate on the list of results of chunk combine : function list-of-blocks -> block, optional Function to operate on intermediate lists of results of chunk in a tree-reduction. If not provided, defaults to aggregate. $META token : str, optional The name to use for the output keys. chunk_kwargs : dict, optional Keywords for the chunk function only. aggregate_kwargs : dict, optional Keywords for the aggregate function only. combine_kwargs : dict, optional Keywords for the combine function only. split_every : int, optional Group partitions into groups of this size while performing a tree-reduction. If set to False, no tree-reduction will be used, and all intermediates will be concatenated and passed to ``aggregate``. Default is 8. kwargs : All remaining keywords will be passed to ``chunk``, ``aggregate``, and ``combine``. """ if chunk_kwargs is None: chunk_kwargs = dict() if aggregate_kwargs is None: aggregate_kwargs = dict() chunk_kwargs.update(kwargs) aggregate_kwargs.update(kwargs) if combine is None: if combine_kwargs: raise ValueError("`combine_kwargs` provided with no `combine`") combine = aggregate combine_kwargs = aggregate_kwargs else: if combine_kwargs is None: combine_kwargs = dict() combine_kwargs.update(kwargs) if not isinstance(args, (tuple, list)): args = [args] npartitions = set( arg.npartitions for arg in args if isinstance(arg, _Frame) ) if len(npartitions) > 1: raise ValueError("All arguments must have same number of partitions") npartitions = npartitions.pop() if split_every is None: split_every = 8 elif split_every is False: split_every = npartitions elif split_every < 2 or not isinstance(split_every, int): raise ValueError("split_every must be an integer >= 2") token_key = tokenize( token or (chunk, aggregate), meta, args, chunk_kwargs, aggregate_kwargs, combine_kwargs, split_every, ) # Chunk a = "{0}-chunk-{1}".format(token or funcname(chunk), token_key) if len(args) == 1 and isinstance(args[0], _Frame) and not chunk_kwargs: dsk = { (a, 0, i): (chunk, key) for i, key in enumerate(args[0].__dask_keys__()) } else: dsk = { (a, 0, i): ( apply, chunk, [(x._name, i) if isinstance(x, _Frame) else x for x in args], chunk_kwargs, ) for i in range(args[0].npartitions) } # Combine b = "{0}-combine-{1}".format(token or funcname(combine), token_key) k = npartitions depth = 0 while k > split_every: for part_i, inds in enumerate(partition_all(split_every, range(k))): conc = (list, [(a, depth, i) for i in inds]) dsk[(b, depth + 1, part_i)] = ( (apply, combine, [conc], combine_kwargs) if combine_kwargs else (combine, conc) ) k = part_i + 1 a = b depth += 1 # Aggregate b = "{0}-agg-{1}".format(token or funcname(aggregate), token_key) conc = (list, [(a, depth, i) for i in range(k)]) if aggregate_kwargs: dsk[(b, 0)] = (apply, aggregate, [conc], aggregate_kwargs) else: dsk[(b, 0)] = (aggregate, conc) if meta is None: meta_chunk = _emulate(apply, chunk, args, chunk_kwargs) meta = _emulate(apply, aggregate, [[meta_chunk]], aggregate_kwargs) meta = dask_make_meta(meta) graph = HighLevelGraph.from_collections(b, dsk, dependencies=args) return dd.core.new_dd_object(graph, b, meta, (None, None)) def from_cudf(data, npartitions=None, chunksize=None, sort=True, name=None): if isinstance(getattr(data, "index", None), cudf.MultiIndex): raise NotImplementedError( "dask_cudf does not support MultiIndex Dataframes." ) name = name or ("from_cudf-" + tokenize(data, npartitions or chunksize)) return dd.from_pandas( data, npartitions=npartitions, chunksize=chunksize, sort=sort, name=name, ) from_cudf.__doc__ = ( "Wraps main-line Dask from_pandas...\n" + dd.from_pandas.__doc__ ) def from_dask_dataframe(df): return df.map_partitions(cudf.from_pandas) for name in [ "add", "sub", "mul", "truediv", "floordiv", "mod", "pow", "radd", "rsub", "rmul", "rtruediv", "rfloordiv", "rmod", "rpow", ]: meth = getattr(cudf.DataFrame, name) kwargs = {"original": cudf.DataFrame} if DASK_VERSION >= "2.11.1" else {} DataFrame._bind_operator_method(name, meth, **kwargs) meth = getattr(cudf.Series, name) kwargs = {"original": cudf.Series} if DASK_VERSION >= "2.11.1" else {} Series._bind_operator_method(name, meth, **kwargs) for name in ["lt", "gt", "le", "ge", "ne", "eq"]: meth = getattr(cudf.Series, name) kwargs = {"original": cudf.Series} if DASK_VERSION >= "2.11.1" else {} Series._bind_comparison_method(name, meth, **kwargs)
the-stack_0_19510
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for third_party.py.mesh_tensorflow.experimental.input_reader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import mesh_tensorflow as mtf import mesh_tensorflow.experimental.input_reader as input_reader import numpy as np import tensorflow.compat.v1 as tf # pylint: disable=g-direct-tensorflow-import from tensorflow.core.protobuf.tpu import topology_pb2 from tensorflow.python.tpu import device_assignment from tensorflow.python.tpu import tpu class MtfInputReaderTest(parameterized.TestCase, tf.test.TestCase): def initialize_system(self, sess): """Run tpu.initialize_system and return the number of TPU devices.""" topology_object = topology_pb2.TopologyProto() topology = sess.run(tf.tpu.initialize_system()) topology_object.ParseFromString(topology) num_cores = topology_object.num_tasks * ( topology_object.num_tpu_devices_per_task) return topology, num_cores @parameterized.parameters((True,), (False,)) def test_get_laidout_tensors(self, is_eval_mode): mesh_shape = "mesh_x:2, mesh_y:1" layout = "batch:mesh_x, io:mesh_y" batch_io_dim = 4 with tf.Session() as sess: topology, num_cores = self.initialize_system(sess) # Get a device_assignment object for mtf. d_assignment = device_assignment.device_assignment( topology, computation_shape=[1,] * mtf.utils.topology_rank(topology), num_replicas=num_cores) # Hacked dataset creator: creates different datasets for the first and # second call, in order to test SimdMeshImplInputReader. self.sub_batch_created_times = 0 def stateful_ds_creator(): whole_batch = tf.eye(batch_io_dim, dtype=tf.float32) sub_batch = tf.slice(whole_batch, [self.sub_batch_created_times * 2, 0], [2, 4]) self.sub_batch_created_times += 1 return tf.data.Dataset.from_tensors(sub_batch).repeat().unbatch() batch_dim = mtf.Dimension("batch", batch_io_dim) io_dim = mtf.Dimension("io", batch_io_dim) mtf_input_shapes = [mtf.Shape([batch_dim, io_dim])] # Get mesh_impl. mesh_shape = mtf.convert_to_shape(mesh_shape) layout_rules = mtf.convert_to_layout_rules(layout) mesh_impl = mtf.simd_mesh_impl.SimdMeshImpl( mesh_shape, layout_rules, None, d_assignment) simd_input_reader = input_reader.SimdMeshImplInputReader( mesh_impl, stateful_ds_creator, mtf_input_shapes, external_worker=False, is_eval_mode=is_eval_mode) def model_fn(features): return features replicated_computation = tpu.replicate( computation=model_fn, inputs=[[]] * num_cores, infeed_queue=simd_input_reader.infeed_queue, device_assignment=d_assignment) simd_input_reader.start_infeed_thread(sess, 1) results = sess.run(replicated_computation) print("results: {}".format(results)) core_0_data = results[0][0] core_1_data = results[1][0] print("core_0_data: {}".format(core_0_data)) print("core_1_data: {}".format(core_1_data)) if is_eval_mode: # If there is only one dataset object, then the stateful_ds_creator() # should be called only once. self.assertAllClose( np.array([[1, 0, 0, 0], [0, 1, 0, 0]], dtype=np.float32), core_0_data) self.assertAllClose( np.array([[1, 0, 0, 0], [0, 1, 0, 0]], dtype=np.float32), core_1_data) else: # If there are two dataset objects, then the stateful_ds_creator() # should be called twice. self.assertAllClose( np.array([[1, 0, 0, 0], [0, 1, 0, 0]], dtype=np.float32), core_0_data) self.assertAllClose( np.array([[0, 0, 1, 0], [0, 0, 0, 1]], dtype=np.float32), core_1_data) sess.run(tf.tpu.shutdown_system()) if __name__ == "__main__": tf.test.main()
the-stack_0_19512
"""santosh_plat_5499_m_2 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "santosh-plat-5499-m" admin.site.site_title = "santosh-plat-5499-m Admin Portal" admin.site.index_title = "santosh-plat-5499-m Admin" # swagger api_info = openapi.Info( title="santosh-plat-5499-m API", default_version="v1", description="API documentation for santosh-plat-5499-m App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ] urlpatterns += [path("", TemplateView.as_view(template_name='index.html'))] urlpatterns += [re_path(r"^(?:.*)/?$", TemplateView.as_view(template_name='index.html'))]
the-stack_0_19515
from otree.api import ( models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer, Currency as c, currency_range ) from itertools import cycle from random import choice author = 'Santiago Sequeda & Mayra Riascos & Edgar Rangel' doc = """ Your app description """ class Constants(BaseConstants): name_in_url = 'malversacion' players_per_group = 5 num_rounds = 10 dotacion = c(3000) multiplicador = 2 class Subsession(BaseSubsession): def creating_session(self): tipos_grupo = cycle([1,2,3]) for grupo in self.get_groups(): grupo.id_grupo = next(tipos_grupo) class Group(BaseGroup): id_grupo = models.IntegerField(doc="""Identificador del tipo de grupo de los integrantes. 1 - Presidente al azar 2 - Presidente por competencia 3 - Presidente por votacion""") orden_llegada = models.StringField(doc="""Sera un array de letras que contendra el orden de llegada de los jugadores en las diferentes rondas: Ej: 'id_jugador_xid_jugador_y' o '231...' """) BolsaPublica = models.CurrencyField(min=0,max=Constants.dotacion) CuentaPrivadaPresidente = models.CurrencyField(min=0,max=Constants.dotacion) contador = models.IntegerField() def inicializar_orden_llegada(self): self.orden_llegada = "" def contador_jugadores(self): contador = 5 for id in self.orden_llegada: if int(id) in [1,2,3,4,5]: contador = contador - 1 return contador def get_jugadores_aceptaron(self): jugadores = [] for j in self.get_players(): if (j.in_round(1).consentimiento): jugadores.append(j) return jugadores def set_presidente(self,presidente): presidente.es_presidente = True for otros in presidente.get_others_in_group(): otros.es_presidente = False def set_Presidente_Azar(self): jugadores = self.get_jugadores_aceptaron() presidente = choice(jugadores) self.set_presidente(presidente) def set_presidente_competencia(self): jugadores = self.get_jugadores_aceptaron() puntajes = [j.puntaje for j in jugadores] for jugador in jugadores: if (jugador.puntaje == max(puntajes)): presidente = jugador self.set_presidente(presidente) def agregar_jugador(self, jugador): extra = self.contador_jugadores() jugador.puntaje = jugador.puntaje + extra self.orden_llegada = self.orden_llegada + str(jugador.id_in_group) def set_presidente_votacion(self): jugadores = self.get_jugadores_aceptaron() votos = [p.voto for p in jugadores] contador = 0 for i in jugadores: if votos.count( 'Jugador ' + str( i.id_in_group)) >= int(len(jugadores)/2) +1 : presidente = i break else: contador = contador + 1 if contador == len(jugadores): return False else: self.set_presidente(presidente) return True def set_presidente_votacion_azar(self): jugadores = self.get_jugadores_aceptaron() votos = [p.voto for p in jugadores] numero_votos = [votos.count('Jugador ' + str(j.id_in_group)) for j in jugadores] posibles_presidentes =[] for i,cantidad in enumerate(numero_votos): if cantidad == max(numero_votos): posibles_presidentes.append(i+1) id_presidente = choice(posibles_presidentes) presidente = self.get_player_by_id(id_presidente) self.set_presidente(presidente) def calcularGananciasJugadores(self): jugadores = self.get_jugadores_aceptaron() rentabilidad = (self.BolsaPublica * Constants.multiplicador)/len(jugadores) for j in jugadores: if j.es_presidente == True: j.cuenta = rentabilidad + self.CuentaPrivadaPresidente else: j.cuenta = rentabilidad j.payoff = j.cuenta class Player(BasePlayer): propuesta = models.LongStringField(max_length=140) cuenta = models.CurrencyField() es_presidente = models.BooleanField() puntaje = models.IntegerField() voto = models.StringField() opinion = models.BooleanField(choices=[[True, 'Si' ], [False, 'No']]) nombre= models.StringField() celular= models.IntegerField() correo= models.StringField() genero = models.StringField(choices=['Femenino','Masculino']) edad = models.IntegerField() semestre = models.IntegerField() participacion = models.BooleanField(choices=[[True, 'Si' ], [False, 'No']]) estudiante = models.BooleanField(choices=[[True, 'Si' ], [False, 'No']]) carrera= models.StringField(blank=True) universidad= models.StringField(blank=True) consentimiento = models.BooleanField(choices=[[True, 'Si autorizo'], [False, 'No autorizo']]) profesion = models.StringField(blank=True)
the-stack_0_19516
import os import numpy as np import pybullet as p from .robot import Robot class Panda(Robot): def __init__(self, controllable_joints='right'): right_arm_joint_indices = [0, 1, 2, 3, 4, 5, 6] # Controllable arm joints left_arm_joint_indices = right_arm_joint_indices # Controllable arm joints wheel_joint_indices = [] right_end_effector = 11 # Used to get the pose of the end effector left_end_effector = right_end_effector # Used to get the pose of the end effector right_gripper_indices = [9, 10] # Gripper actuated joints left_gripper_indices = right_gripper_indices # Gripper actuated joints right_tool_joint = 11 # Joint that tools are attached to left_tool_joint = right_tool_joint # Joint that tools are attached to right_gripper_collision_indices = [7, 8, 9, 10, 11] # Used to disable collision between gripper and tools left_gripper_collision_indices = right_gripper_collision_indices # Used to disable collision between gripper and tools gripper_pos = {'scratch_itch': [0.02]*2, # Gripper open position for holding tools, in [0, 0.04] 'feeding': [0.001]*2, 'drinking': [0.035]*2, 'bed_bathing': [0.02]*2, 'dressing': [0.001]*2, 'arm_manipulation': [0.02]*2} tool_pos_offset = {'scratch_itch': [0, 0, 0], # Position offset between tool and robot tool joint 'feeding': [-0.11, 0.0175, 0], 'drinking': [0.05, 0, 0.01], 'bed_bathing': [0, 0, 0], 'arm_manipulation': [0.075, 0, 0.12]} tool_orient_offset = {'scratch_itch': [0, -np.pi/2.0, 0], # RPY orientation offset between tool and robot tool joint 'feeding': [-0.1, -np.pi/2.0, np.pi], 'drinking': [0, -np.pi/2.0, np.pi/2.0], 'bed_bathing': [0, -np.pi/2.0, 0], 'arm_manipulation': [np.pi/2.0, -np.pi/2.0, 0]} pos = [-0.4, -0.35, 0.2] toc_base_pos_offset = {'scratch_itch': pos, # Robot base offset before TOC base pose optimization 'feeding': pos, 'drinking': pos, 'bed_bathing': [-0.05, 1.05, 0.67], 'dressing': [0.35, -0.35, 0.2], 'arm_manipulation': [-0.25, 1.15, 0.67]} toc_ee_orient_rpy = {'scratch_itch': [0, np.pi/2.0, 0], # Initial end effector orientation 'feeding': [-np.pi/2.0, 0, -np.pi/2.0], 'drinking': [0, np.pi/2.0, 0], 'bed_bathing': [0, np.pi/2.0, 0], 'dressing': [[0, -np.pi/2.0, 0]], 'arm_manipulation': [0, np.pi/2.0, 0]} wheelchair_mounted = True super(Panda, self).__init__(controllable_joints, right_arm_joint_indices, left_arm_joint_indices, wheel_joint_indices, right_end_effector, left_end_effector, right_gripper_indices, left_gripper_indices, gripper_pos, right_tool_joint, left_tool_joint, tool_pos_offset, tool_orient_offset, right_gripper_collision_indices, left_gripper_collision_indices, toc_base_pos_offset, toc_ee_orient_rpy, wheelchair_mounted, half_range=False) def init(self, directory, id, np_random, fixed_base=True): self.body = p.loadURDF(os.path.join(directory, 'panda', 'panda.urdf'), useFixedBase=fixed_base, basePosition=[-1, -1, 0.5], flags=p.URDF_USE_SELF_COLLISION, physicsClientId=id) super(Panda, self).init(self.body, id, np_random)
the-stack_0_19517
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import os import numpy as np import tensorflow.compat.v1 as tf from absl import app from absl import flags from cta.cta_remixmatch import CTAReMixMatch from libml import data, utils FLAGS = flags.FLAGS class AB_FixMatch_Momentum(CTAReMixMatch): def model(self, batch, lr, wd, wu, confidence, uratio, use_nesterov, momentum, ema=0.999, **kwargs): hwc = [self.dataset.height, self.dataset.width, self.dataset.colors] xt_in = tf.placeholder(tf.float32, [batch] + hwc, 'xt') # Training labeled x_in = tf.placeholder(tf.float32, [None] + hwc, 'x') # Eval images y_in = tf.placeholder(tf.float32, [batch * uratio, 2] + hwc, 'y') # Training unlabeled (weak, strong) l_in = tf.placeholder(tf.int32, [batch], 'labels') # Labels lrate = tf.clip_by_value(tf.to_float(self.step) / (FLAGS.train_kimg << 10), 0, 1) lr *= tf.cos(lrate * (7 * np.pi) / (2 * 8)) tf.summary.scalar('monitors/lr', lr) # Compute logits for xt_in and y_in classifier = lambda x, **kw: self.classifier(x, **kw, **kwargs).logits skip_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) x = utils.interleave(tf.concat([xt_in, y_in[:, 0], y_in[:, 1]], 0), 2 * uratio + 1) logits = utils.para_cat(lambda x: classifier(x, training=True), x) logits = utils.de_interleave(logits, 2 * uratio+1) post_ops = [v for v in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if v not in skip_ops] logits_x = logits[:batch] logits_weak, logits_strong = tf.split(logits[batch:], 2) del logits, skip_ops # Labeled cross-entropy loss_xe = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=l_in, logits=logits_x) loss_xe = tf.reduce_mean(loss_xe) tf.summary.scalar('losses/xe', loss_xe) # Pseudo-label cross entropy for unlabeled data pseudo_labels = tf.stop_gradient(tf.nn.softmax(logits_weak)) loss_xeu = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(pseudo_labels, axis=1), logits=logits_strong) pseudo_mask = tf.to_float(tf.reduce_max(pseudo_labels, axis=1) >= confidence) tf.summary.scalar('monitors/mask', tf.reduce_mean(pseudo_mask)) loss_xeu = tf.reduce_mean(loss_xeu * pseudo_mask) tf.summary.scalar('losses/xeu', loss_xeu) # L2 regularization loss_wd = sum(tf.nn.l2_loss(v) for v in utils.model_vars('classify') if 'kernel' in v.name) tf.summary.scalar('losses/wd', loss_wd) ema = tf.train.ExponentialMovingAverage(decay=ema) ema_op = ema.apply(utils.model_vars()) ema_getter = functools.partial(utils.getter_ema, ema) post_ops.append(ema_op) train_op = tf.train.MomentumOptimizer(lr, momentum, use_nesterov=use_nesterov).minimize( loss_xe + wu * loss_xeu + wd * loss_wd, colocate_gradients_with_ops=True) with tf.control_dependencies([train_op]): train_op = tf.group(*post_ops) return utils.EasyDict( xt=xt_in, x=x_in, y=y_in, label=l_in, train_op=train_op, classify_raw=tf.nn.softmax(classifier(x_in, training=False)), # No EMA, for debugging. classify_op=tf.nn.softmax(classifier(x_in, getter=ema_getter, training=False))) def main(argv): utils.setup_main() del argv # Unused. dataset = data.PAIR_DATASETS()[FLAGS.dataset]() log_width = utils.ilog2(dataset.width) model = AB_FixMatch_Momentum( os.path.join(FLAGS.train_dir, dataset.name, AB_FixMatch_Momentum.cta_name()), dataset, lr=FLAGS.lr, wd=FLAGS.wd, arch=FLAGS.arch, batch=FLAGS.batch, nclass=dataset.nclass, wu=FLAGS.wu, confidence=FLAGS.confidence, uratio=FLAGS.uratio, scales=FLAGS.scales or (log_width - 2), filters=FLAGS.filters, repeat=FLAGS.repeat, use_nesterov=FLAGS.nesterov, momentum=FLAGS.momentum) model.train(FLAGS.train_kimg << 10, FLAGS.report_kimg << 10) if __name__ == '__main__': utils.setup_tf() flags.DEFINE_float('confidence', 0.95, 'Confidence threshold.') flags.DEFINE_float('wd', 0.0005, 'Weight decay.') flags.DEFINE_float('wu', 1, 'Pseudo label loss weight.') flags.DEFINE_integer('filters', 32, 'Filter size of convolutions.') flags.DEFINE_integer('repeat', 4, 'Number of residual layers per stage.') flags.DEFINE_integer('scales', 0, 'Number of 2x2 downscalings in the classifier.') flags.DEFINE_integer('uratio', 7, 'Unlabeled batch size ratio.') flags.DEFINE_boolean('nesterov', True, 'Use Nesterov in the optimizer or not') flags.DEFINE_float('momentum', 0.9, 'Momentum of SGD optimizer') FLAGS.set_default('augment', 'd.d.d') FLAGS.set_default('dataset', 'cifar10.3@250-1') FLAGS.set_default('batch', 64) FLAGS.set_default('lr', 0.03) FLAGS.set_default('train_kimg', 1 << 16) app.run(main)
the-stack_0_19521
# -*- coding: utf-8 -*- """ S3 Pivot Table Reports Method @copyright: 2011-2021 (c) Sahana Software Foundation @license: MIT @requires: U{B{I{Python 2.6}} <http://www.python.org>} Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __all__ = ("S3Report", "S3PivotTable", "S3ReportRepresent", ) import datetime import json import os import re import sys from itertools import product from gluon import current from gluon.contenttype import contenttype from gluon.html import BUTTON, DIV, FIELDSET, FORM, INPUT, LABEL, LEGEND, TAG, XML from gluon.languages import regex_translate from gluon.sqlhtml import OptionsWidget from gluon.storage import Storage from gluon.validators import IS_IN_SET, IS_EMPTY_OR from s3compat import INTEGER_TYPES, basestring, xrange from .s3query import FS from .s3rest import S3Method from .s3utils import s3_flatlist, s3_has_foreign_key, s3_str, S3MarkupStripper, s3_represent_value from .s3xml import S3XMLFormat from .s3validators import IS_NUMBER, JSONERRORS # Compact JSON encoding DEFAULT = lambda: None SEPARATORS = (",", ":") LAYER = re.compile(r"([a-zA-Z]+)\((.*)\)\Z") FACT = re.compile(r"([a-zA-Z]+)\(([a-zA-Z0-9_.$:\,~]+)\),*(.*)\Z") SELECTOR = re.compile(r"^[a-zA-Z0-9_.$:\~]+\Z") # ============================================================================= class S3Report(S3Method): """ RESTful method for pivot table reports """ # ------------------------------------------------------------------------- def apply_method(self, r, **attr): """ Page-render entry point for REST interface. @param r: the S3Request instance @param attr: controller attributes for the request """ if r.http == "GET": if r.representation == "geojson": output = self.geojson(r, **attr) else: output = self.report(r, **attr) elif r.http == "POST": if r.representation == "json": # NB can additionally check for ?explore=1 to # distinguish from other POSTs (if necessary) output = self.explore(r, **attr) else: r.error(415, current.ERROR.BAD_FORMAT) else: r.error(405, current.ERROR.BAD_METHOD) return output # ------------------------------------------------------------------------- def report(self, r, **attr): """ Pivot table report page @param r: the S3Request instance @param attr: controller attributes for the request """ output = {} resource = self.resource get_config = resource.get_config show_filter_form = False if r.representation in ("html", "iframe"): filter_widgets = get_config("filter_widgets", None) if filter_widgets and not self.hide_filter: # Apply filter defaults (before rendering the data!) from .s3filter import S3FilterForm show_filter_form = True S3FilterForm.apply_filter_defaults(r, resource) widget_id = "pivottable" # @todo: make configurable: maxrows = 20 maxcols = 20 # Extract the relevant GET vars report_vars = ("rows", "cols", "fact", "totals") get_vars = {k: v for k, v in r.get_vars.items() if k in report_vars} # Fall back to report options defaults report_options = get_config("report_options", {}) defaults = report_options.get("defaults", {}) if not any (k in get_vars for k in ("rows", "cols", "fact")): get_vars = defaults get_vars["chart"] = r.get_vars.get("chart", defaults.get("chart", None)) get_vars["table"] = r.get_vars.get("table", defaults.get("table", None)) # Generate the pivot table if get_vars: rows = get_vars.get("rows", None) if type(rows) is list: rows = rows[-1] cols = get_vars.get("cols", None) if type(cols) is list: cols = cols[-1] layer = get_vars.get("fact", "id") try: facts = S3PivotTableFact.parse(layer) except SyntaxError: current.log.error(sys.exc_info()[1]) facts = None if not facts or not any([rows, cols]): pivottable = None else: prefix = resource.prefix_selector get_vars["rows"] = prefix(rows) if rows else None get_vars["cols"] = prefix(cols) if cols else None get_vars["fact"] = ",".join("%s(%s)" % (fact.method, fact.selector) for fact in facts) pivottable = S3PivotTable(resource, rows, cols, facts, precision = report_options.get("precision"), ) else: pivottable = None representation = r.representation if representation in ("html", "iframe", "json"): # Generate JSON-serializable dict if pivottable is not None: pivotdata = pivottable.json(maxrows=maxrows, maxcols=maxcols) else: pivotdata = None if r.representation in ("html", "iframe"): tablename = resource.tablename # Filter widgets if show_filter_form: advanced = False for widget in filter_widgets: if not widget: continue if "hidden" in widget.opts and widget.opts.hidden: advanced = resource.get_config("report_advanced", True) break filter_formstyle = get_config("filter_formstyle", None) filter_form = S3FilterForm(filter_widgets, formstyle = filter_formstyle, advanced = advanced, submit = False, _class = "filter-form", _id = "%s-filter-form" % widget_id, ) fresource = current.s3db.resource(tablename) alias = resource.alias if r.component else None filter_widgets = filter_form.fields(fresource, r.get_vars, alias = alias, ) else: # Render as empty string to avoid the exception in the view filter_widgets = None # Generate the report form ajax_vars = Storage(r.get_vars) ajax_vars.update(get_vars) filter_url = r.url(method = "", representation = "", vars = ajax_vars.fromkeys((k for k in ajax_vars if k not in report_vars))) ajaxurl = attr.get("ajaxurl", r.url(method = "report", representation = "json", vars = ajax_vars, )) output = S3ReportForm(resource).html(pivotdata, get_vars = get_vars, filter_widgets = filter_widgets, ajaxurl = ajaxurl, filter_url = filter_url, widget_id = widget_id, ) output["title"] = self.crud_string(tablename, "title_report") output["report_type"] = "pivottable" # Detect and store theme-specific inner layout self._view(r, "pivottable.html") # View current.response.view = self._view(r, "report.html") elif r.representation == "json": output = json.dumps(pivotdata, separators=SEPARATORS) elif r.representation == "xls": if pivottable: # Report title title = self.crud_string(r.tablename, "title_report") if title is None: title = current.T("Report") # TODO: include current date? filename = "%s_%s.xls" % (r.env.server_name, s3_str(title).replace(" ", "_"), ) disposition = "attachment; filename=\"%s\"" % filename # Response headers response = current.response response.headers["Content-Type"] = contenttype(".xls") response.headers["Content-disposition"] = disposition # Convert pivot table to XLS stream = pivottable.xls(title) #stream.seek(0) # already done in encoder output = stream.read() else: r.error(400, "No report parameters specified") else: r.error(415, current.ERROR.BAD_FORMAT) return output # ------------------------------------------------------------------------- def geojson(self, r, **attr): """ Render the pivot table data as a dict ready to be exported as GeoJSON for display on a Map. @param r: the S3Request instance @param attr: controller attributes for the request """ resource = self.resource response = current.response s3 = response.s3 # Set response headers response.headers["Content-Type"] = s3.content_type.get("geojson", "application/json") if not resource.count(): # No Data return json.dumps({}) # Extract the relevant GET vars get_vars = r.get_vars layer_id = r.get_vars.get("layer", None) level = get_vars.get("level", "L0") # Fall back to report options defaults get_config = resource.get_config report_options = get_config("report_options", {}) defaults = report_options.get("defaults", {}) # The rows dimension context = get_config("context") if context and "location" in context: # @ToDo: We can add sanity-checking using resource.parse_bbox_query() as a guide if-desired rows = "(location)$%s" % level else: # Fallback to location_id rows = "location_id$%s" % level # Fallback we can add if-required #rows = "site_id$location_id$%s" % level # Filter out null values resource.add_filter(FS(rows) != None) # Set XSLT stylesheet stylesheet = os.path.join(r.folder, r.XSLT_PATH, "geojson", "export.xsl") # Do we have any data at this level of aggregation? fallback_to_points = True # @ToDo: deployment_setting? output = None if fallback_to_points: if resource.count() == 0: # Show Points resource.clear_query() # Apply URL filters (especially BBOX) resource.build_query(filter=s3.filter, vars=get_vars) # Extract the Location Data xmlformat = S3XMLFormat(stylesheet) include, exclude = xmlformat.get_fields(resource.tablename) resource.load(fields=include, skip=exclude, start=0, limit=None, orderby=None, virtual=False, cacheable=True) gis = current.gis attr_fields = [] style = gis.get_style(layer_id=layer_id, aggregate=False) popup_format = style.popup_format if popup_format: if "T(" in popup_format: # i18n T = current.T items = regex_translate.findall(popup_format) for item in items: titem = str(T(item[1:-1])) popup_format = popup_format.replace("T(%s)" % item, titem) style.popup_format = popup_format # Extract the attr_fields parts = popup_format.split("{") # Skip the first part parts = parts[1:] for part in parts: attribute = part.split("}")[0] attr_fields.append(attribute) attr_fields = ",".join(attr_fields) location_data = gis.get_location_data(resource, attr_fields=attr_fields) # Export as GeoJSON current.xml.show_ids = True output = resource.export_xml(fields = include, mcomponents = None, references = [], stylesheet = stylesheet, as_json = True, location_data = location_data, map_data = {"style": style}, ) # Transformation error? if not output: r.error(400, "XSLT Transformation Error: %s " % current.xml.error) else: while resource.count() == 0: # Try a lower level of aggregation level = int(level[1:]) if level == 0: # Nothing we can display return json.dumps({}) resource.clear_query() # Apply URL filters (especially BBOX) resource.build_query(filter=s3.filter, vars=get_vars) level = "L%s" % (level - 1) if context and "location" in context: # @ToDo: We can add sanity-checking using resource.parse_bbox_query() as a guide if-desired rows = "(location)$%s" % level else: # Fallback to location_id rows = "location_id$%s" % level # Fallback we can add if-required #rows = "site_id$location_id$%s" % level resource.add_filter(FS(rows) != None) if not output: # Build the Pivot Table cols = None layer = get_vars.get("fact", defaults.get("fact", "count(id)")) facts = S3PivotTableFact.parse(layer)[:1] pivottable = S3PivotTable(resource, rows, cols, facts, precision = report_options.get("precision"), ) # Extract the Location Data #attr_fields = [] style = current.gis.get_style(layer_id=layer_id, aggregate=True) popup_format = style.popup_format if popup_format: if"T(" in popup_format: # i18n T = current.T items = regex_translate.findall(popup_format) for item in items: titem = str(T(item[1:-1])) popup_format = popup_format.replace("T(%s)" % item, titem) style.popup_format = popup_format # Extract the attr_fields # No need as defaulted inside S3PivotTable.geojson() #parts = popup_format.split("{") ## Skip the first part #parts = parts[1:] #for part in parts: # attribute = part.split("}")[0] # attr_fields.append(attribute) #attr_fields = ",".join(attr_fields) ids, location_data = pivottable.geojson(fact=facts[0], level=level) # Export as GeoJSON current.xml.show_ids = True gresource = current.s3db.resource("gis_location", id=ids) output = gresource.export_xml(fields = [], mcomponents = None, references = [], stylesheet = stylesheet, as_json = True, location_data = location_data, # Tell the client that we are # displaying aggregated data and # the level it is aggregated at map_data = {"level": int(level[1:]), "style": style, }, ) # Transformation error? if not output: r.error(400, "XSLT Transformation Error: %s " % current.xml.error) return output # ------------------------------------------------------------------------- def widget(self, r, method=None, widget_id=None, visible=True, **attr): """ Pivot table report widget @param r: the S3Request @param method: the widget method @param widget_id: the widget ID @param visible: whether the widget is initially visible @param attr: controller attributes """ output = {} resource = self.resource get_config = resource.get_config # @todo: make configurable: maxrows = 20 maxcols = 20 # Extract the relevant GET vars report_vars = ("rows", "cols", "fact", "totals") get_vars = {k: v for k, v in r.get_vars.items() if k in report_vars} # Fall back to report options defaults report_options = get_config("report_options", {}) defaults = report_options.get("defaults", {}) if not any (k in get_vars for k in ("rows", "cols", "fact")): get_vars = defaults get_vars["chart"] = r.get_vars.get("chart", defaults.get("chart", None)) get_vars["table"] = r.get_vars.get("table", defaults.get("table", None)) # Generate the pivot table if get_vars: rows = get_vars.get("rows", None) cols = get_vars.get("cols", None) layer = get_vars.get("fact", "id") try: facts = S3PivotTableFact.parse(layer) except SyntaxError: current.log.error(sys.exc_info()[1]) facts = None if not facts or not any([rows, cols]): pivottable = None else: prefix = resource.prefix_selector get_vars["rows"] = prefix(rows) if rows else None get_vars["cols"] = prefix(cols) if cols else None get_vars["fact"] = ",".join("%s(%s)" % (fact.method, fact.selector) for fact in facts) if visible: pivottable = S3PivotTable(resource, rows, cols, facts, precision = report_options.get("precision"), ) else: pivottable = None else: pivottable = None # Render as JSON-serializable dict if pivottable is not None: pivotdata = pivottable.json(maxrows=maxrows, maxcols=maxcols) else: pivotdata = None if r.representation in ("html", "iframe"): # Generate the report form ajax_vars = Storage(r.get_vars) ajax_vars.update(get_vars) filter_form = attr.get("filter_form", None) filter_tab = attr.get("filter_tab", None) filter_url = r.url(method="", representation="", vars=ajax_vars.fromkeys((k for k in ajax_vars if k not in report_vars)), ) ajaxurl = attr.get("ajaxurl", r.url(method="report", representation="json", vars=ajax_vars)) output = S3ReportForm(resource).html(pivotdata, get_vars = get_vars, filter_widgets = None, ajaxurl = ajaxurl, filter_url = filter_url, filter_form = filter_form, filter_tab = filter_tab, widget_id = widget_id) # Detect and store theme-specific inner layout view = self._view(r, "pivottable.html") # Render inner layout (outer page layout is set by S3Summary) output["title"] = None output = XML(current.response.render(view, output)) else: r.error(415, current.ERROR.BAD_FORMAT) return output # ------------------------------------------------------------------------- def explore(self, r, **attr): """ Ajax-lookup of representations for items contributing to the aggregate value in a pivot table cell (cell explore) - called with a body JSON containing the record IDs to represent, and the URL params for the pivot table (rows, cols, fact) @param r: the S3Request instance @param attr: controller attributes for the request """ # Read+parse body JSON s = r.body s.seek(0) try: record_ids = json.load(s) except JSONERRORS: record_ids = None # Must be a list of record IDs if not isinstance(record_ids, list): r.error(404, current.ERROR.BAD_RECORD) # Create filtered resource resource = current.s3db.resource(self.tablename, id=record_ids) prefix = resource.prefix_selector pkey = prefix(resource._id.name) pkey_colname = str(resource._id) # Parse the facts get_vars = r.get_vars facts = S3PivotTableFact.parse(get_vars.get("fact")) selectors = set() # all fact selectors other than "id" ofacts = [] # all facts other than "count(id)" for fact in facts: selector = prefix(fact.selector) is_pkey = selector == pkey if not is_pkey: selectors.add(selector) if not is_pkey or fact.method != "count": ofacts.append(fact) # Extract the data if len(selectors): selectors.add(pkey) records = resource.select(selectors, raw_data = True, represent = True, limit = None, ).rows else: # All we need is the record IDs, so skip the select and # construct some pseudo-rows records = [] for record_id in record_ids: record = Storage({pkey_colname: record_id}) record._row = record records.append(record) # Get the record representation method and initialize it with the # report context (rows, cols, facts) represent = resource.get_config("report_represent", S3ReportRepresent) if represent: rows = get_vars.get("rows") cols = get_vars.get("cols") represent = represent(resource, rows=rows, cols=cols, facts=facts) # Determine what the items list should contain rfields = {} # resolved fact selectors key = None aggregate = True if len(ofacts) == 1: fact = ofacts[0] if fact.method == "count": # When counting foreign keys in the master record, then # show a list of all unique values of that foreign key # rather than the number of unique values per master # record (as that would always be 1) selector = prefix(fact.selector) rfield = resource.resolve_selector(selector) field = rfield.field if field and s3_has_foreign_key(field): multiple = True if rfield.tname == resource.tablename or \ selector[:2] == "~." and "." not in selector[2:]: multiple = False else: # Get the component prefix alias = selector.split("$", 1)[0].split(".", 1)[0] component = resource.components.get(alias) if component: multiple = component.multiple if not multiple: represent = None key = rfield.colname aggregate = False rfields[selector] = rfield # Get the record representations records_repr = represent(record_ids) if represent else None # Build the output items (as dict, will be alpha-sorted on client-side) output = {} UNKNOWN_OPT = current.messages.UNKNOWN_OPT for record in records: raw = record._row record_id = raw[pkey_colname] values = [] for fact in ofacts: # Resolve the selector selector = prefix(fact.selector) rfield = rfields.get(selector) if not rfield: rfield = rfields[selector] = resource.resolve_selector(selector) # Get the value, sub-aggregate if aggregate: value = raw[rfield.colname] if type(value) is list: value = fact.compute(value) else: value = fact.compute([value]) if fact.method != "count": field = rfield.field if field and field.represent: value = field.represent(value) else: value = record[rfield.colname] # Extend values list if len(values): values.extend([" / ", value]) else: values.append(value) repr_items = [TAG[""](values)] if values else [] # Add the record representation if records_repr is not None: repr_items.insert(0, records_repr.get(record_id, UNKNOWN_OPT)) if len(repr_items) == 2: repr_items.insert(1, ": ") # Build output item # - using TAG not str.join() to allow representations to contain # XML helpers like A, SPAN or DIV repr_str = s3_str(TAG[""](repr_items).xml()) if key: # Include raw field value for client-side de-duplication output[record_id] = [repr_str, s3_str(raw[key])] else: output[record_id] = repr_str current.response.headers["Content-Type"] = "application/json" return json.dumps(output, separators=SEPARATORS) # ------------------------------------------------------------------------- @staticmethod def inject_d3(): """ Re-usable helper function to inject D3/NVD3 scripts into the current page """ appname = current.request.application s3 = current.response.s3 scripts_append = s3.scripts.append if s3.debug: if s3.cdn: scripts_append("https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.17/d3.js") # We use a patched v1.8.5 currently, so can't use the CDN version #scripts_append("https://cdnjs.cloudflare.com/ajax/libs/nvd3/1.8.5/nv.d3.js") else: scripts_append("/%s/static/scripts/d3/d3.js" % appname) scripts_append("/%s/static/scripts/d3/nv.d3.js" % appname) else: if s3.cdn: scripts_append("https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.17/d3.min.js") # We use a patched v1.8.5 currently, so can't use the CDN version #scripts_append("https://cdnjs.cloudflare.com/ajax/libs/nvd3/1.8.5/nv.d3.min.js") else: scripts_append("/%s/static/scripts/d3/d3.min.js" % appname) scripts_append("/%s/static/scripts/d3/nv.d3.min.js" % appname) # ============================================================================= class S3ReportForm(object): """ Helper class to render a report form """ def __init__(self, resource): self.resource = resource self.show_totals = True # ------------------------------------------------------------------------- def html(self, pivotdata, filter_widgets=None, get_vars=None, ajaxurl=None, filter_url=None, filter_form=None, filter_tab=None, widget_id=None): """ Render the form for the report @param get_vars: the GET vars if the request (as dict) @param widget_id: the HTML element base ID for the widgets """ T = current.T appname = current.request.application # Report options report_options = self.report_options(get_vars = get_vars, widget_id = widget_id, ) # Pivot data hidden = {"pivotdata": json.dumps(pivotdata, separators=SEPARATORS)} empty = T("No report specified.") hide = T("Hide Table") show = T("Show Table") throbber = "/%s/static/img/indicator.gif" % appname # Filter options if filter_widgets is not None: filter_options = self._fieldset(T("Filter Options"), filter_widgets, _id="%s-filters" % widget_id, _class="filter-form") else: filter_options = "" # Report form submit element resource = self.resource submit = resource.get_config("report_submit", True) if submit: _class = "pt-submit" if submit is True: label = T("Update Report") elif isinstance(submit, (list, tuple)): label = submit[0] _class = "%s %s" % (submit[1], _class) else: label = submit submit = TAG[""]( INPUT(_type="button", _value=label, _class=_class)) else: submit = "" # Form form = FORM(filter_options, report_options, submit, hidden = hidden, _class = "pt-form", _id = "%s-pt-form" % widget_id, ) # View variables output = {"form": form, "throbber": throbber, "hide": hide, "show": show, "empty": empty, "widget_id": widget_id, } # Script options settings = current.deployment_settings opts = { #"renderFilter": True, #"collapseFilter": False, #"renderOptions": True, "collapseOptions": settings.get_ui_hide_report_options(), "renderTable": True, "collapseTable": False, "showTotals": self.show_totals, "ajaxURL": ajaxurl, "renderChart": True, "collapseChart": True, "defaultChart": None, "exploreChart": True, "filterURL": filter_url, "filterTab": filter_tab, "filterForm": filter_form, "autoSubmit": settings.get_ui_report_auto_submit(), "timeout": settings.get_ui_report_timeout(), "thousandSeparator": settings.get_L10n_thousands_separator(), "thousandGrouping": settings.get_L10n_thousands_grouping(), "textAll": str(T("All")), "textRecords": str(T("Records")), } chart_opt = get_vars["chart"] if chart_opt is not None: if str(chart_opt).lower() in ("0", "off", "false"): opts["renderChart"] = False elif ":" in chart_opt: opts["collapseChart"] = False ctype, caxis = chart_opt.split(":", 1) opts["defaultChart"] = {"type": ctype, "axis": caxis} table_opt = get_vars["table"] if table_opt is not None: table_opt = str(table_opt).lower() if table_opt in ("0", "off", "false"): opts["renderTable"] = False elif table_opt == "collapse": opts["collapseTable"] = True # Scripts S3Report.inject_d3() s3 = current.response.s3 scripts = s3.scripts if s3.debug: script = "/%s/static/scripts/S3/s3.ui.pivottable.js" % appname if script not in scripts: scripts.append(script) else: script = "/%s/static/scripts/S3/s3.ui.pivottable.min.js" % appname if script not in scripts: scripts.append(script) # Instantiate widget script = '''$('#%(widget_id)s').pivottable(%(opts)s)''' % \ {"widget_id": widget_id, "opts": json.dumps(opts, separators=SEPARATORS, ), } s3.jquery_ready.append(script) return output # ------------------------------------------------------------------------- def report_options(self, get_vars=None, widget_id="pivottable"): """ Render the widgets for the report options form @param get_vars: the GET vars if the request (as dict) @param widget_id: the HTML element base ID for the widgets """ T = current.T SHOW_TOTALS = T("Show totals") REPORT = T("Report of") ROWS = T("Grouped by") COLS = T("and") resource = self.resource get_config = resource.get_config options = get_config("report_options") # Specific formstyle? settings = current.deployment_settings formstyle = settings.get_ui_report_formstyle() # Fall back to inline-variant of current formstyle if formstyle is None: formstyle = settings.get_ui_inline_formstyle() # Helper for labels label = lambda s, **attr: LABEL("%s:" % s, **attr) formfields = [] # Layer selector layer_id = "%s-fact" % widget_id layer_widget = self.layer_options(options=options, get_vars=get_vars, widget_id=layer_id) formfields.append((layer_id + "-row", label(REPORT, _for=layer_id), layer_widget, "", )) # Rows/Columns selectors axis_options = self.axis_options rows_id = "%s-rows" % widget_id cols_id = "%s-cols" % widget_id rows_options = axis_options("rows", options=options, get_vars=get_vars, widget_id=rows_id) cols_options = axis_options("cols", options=options, get_vars=get_vars, widget_id=cols_id) axis_widget = DIV(rows_options, label(COLS, _for=cols_id), cols_options, _class="pt-axis-options", ) formfields.append(("%s-axis-row" % widget_id, label(ROWS, _for=rows_id), axis_widget, "", )) # Show Totals switch show_totals = True if get_vars and "totals" in get_vars and \ str(get_vars["totals"]).lower() in ("0", "false", "off"): show_totals = False self.show_totals = show_totals show_totals_id = "%s-totals" % widget_id totals_widget = INPUT(_type="checkbox", _id=show_totals_id, _name="totals", _class="pt-totals", value=show_totals ) formfields.append(("%s-show-totals-row" % widget_id, label(SHOW_TOTALS, _for=show_totals_id), totals_widget, "", )) try: widgets = formstyle(FIELDSET(), formfields) except: # Old style (should be avoided) widgets = TAG[""]([formstyle(*formfield) for formfield in formfields]) # Render fieldset fieldset = self._fieldset(T("Report Options"), widgets, _id="%s-options" % widget_id, _class="report-options") return fieldset # ------------------------------------------------------------------------- def axis_options(self, axis, options=None, get_vars=None, widget_id=None): """ Construct an OptionsWidget for rows or cols axis @param axis: "rows" or "cols" @param options: the report options @param get_vars: the GET vars if the request (as dict) @param widget_id: the HTML element ID for the widget """ resource = self.resource prefix = resource.prefix_selector # Get all selectors if options and axis in options: fields = options[axis] else: fields = resource.get_config("list_fields") if not fields: fields = [f.name for f in resource.readable_fields()] # Resolve the selectors pkey = str(resource._id) resolve_selector = resource.resolve_selector rfields = [] append = rfields.append for f in fields: if not f: continue elif isinstance(f, (tuple, list)): label, selector = f[:2] else: label, selector = None, f rfield = resolve_selector(selector) if rfield.colname == pkey: continue if label: rfield.label = label append(rfield) # Get current value if get_vars and axis in get_vars: value = get_vars[axis] else: value = "" if value: value = prefix(value) # Dummy field opts = [(prefix(rfield.selector), rfield.label) for rfield in rfields] dummy_field = Storage(name=axis, requires=IS_IN_SET(opts)) # Construct widget return OptionsWidget.widget(dummy_field, value, _id=widget_id, _name=axis, _class="pt-%s" % axis) # ------------------------------------------------------------------------- def layer_options(self, options=None, get_vars=None, widget_id=None): """ Construct an OptionsWidget for the fact layer @param options: the report options @param get_vars: the GET vars if the request (as dict) @param widget_id: the HTML element ID for the widget """ resource = self.resource all_methods = S3PivotTableFact.METHODS # Get all layers layers = None methods = None if options: if "methods" in options: methods = options["methods"] if "fact" in options: layers = options["fact"] if not layers: layers = resource.get_config("list_fields") if not layers: layers = [f.name for f in resource.readable_fields()] if not methods: methods = all_methods # Resolve layer options T = current.T RECORDS = T("Records") mname = S3PivotTableFact._get_method_label def layer_label(rfield, method): """ Helper to construct a layer label """ mlabel = mname(method) flabel = rfield.label if rfield.label != "Id" else RECORDS # @ToDo: Exclude this string from admin/translate exports return T("%s (%s)") % (flabel, mlabel) prefix = resource.prefix_selector layer_opts = [] for option in layers: if not option: continue elif isinstance(option, tuple): title, layer = option else: title, layer = None, option try: facts = S3PivotTableFact.parse(layer) except SyntaxError: continue if len(facts) > 1: # Multi-fact layer labels = [] expressions = [] for fact in facts: if not title: rfield = resource.resolve_selector(fact.selector) labels.append(fact.get_label(rfield, layers)) expressions.append("%s(%s)" % (fact.method, fact.selector)) if not title: title = " / ".join(labels) layer_opts.append((",".join(expressions), title)) continue else: fact = facts[0] label = fact.label or title if fact.default_method: s, m = fact.selector, None else: s, m = fact.selector, fact.method # Resolve the selector selector = prefix(s) rfield = resource.resolve_selector(selector) if not rfield.field and not rfield.virtual: continue if m is None and label: rfield.label = label if m is None: # Only field given -> auto-detect aggregation methods is_amount = None ftype = rfield.ftype if ftype == "integer": is_amount = True requires = rfield.requires if not isinstance(requires, (list, tuple)): requires = [requires] for r in requires: if isinstance(r, IS_IN_SET) or \ isinstance(r, IS_EMPTY_OR) and \ isinstance(r.other, IS_IN_SET): is_amount = False elif ftype == "double": is_amount = True elif ftype[:9] == "reference" or \ ftype[:5] == "list:" or \ ftype in ("id", "string", "text"): is_amount = False if ftype in ("datetime", "date", "time"): mopts = ["min", "max", "list"] elif is_amount is None: mopts = ["sum", "min", "max", "avg", "count", "list"] elif is_amount: mopts = ["sum", "min", "max", "avg"] else: mopts = ["count", "list"] for method in mopts: if method in methods: label = layer_label(rfield, method) layer_opts.append(("%s(%s)" % (method, selector), label)) else: # Explicit method specified if label is None: label = layer_label(rfield, m) layer_opts.append(("%s(%s)" % (m, selector), label)) # Get current value if get_vars and "fact" in get_vars: layer = get_vars["fact"] else: layer = "" if layer: match = LAYER.match(layer) if match is None: layer = "" else: selector, method = match.group(2), match.group(1) selector = prefix(selector) layer = "%s(%s)" % (method, selector) if len(layer_opts) == 1: # Field is read-only if there is only 1 option default = layer_opts[0] widget = TAG[""](default[1], INPUT(_type="hidden", _id=widget_id, _name=widget_id, _value=default[0], _class="pt-fact-single-option")) else: # Render Selector dummy_field = Storage(name="fact", requires=IS_IN_SET(layer_opts)) widget = OptionsWidget.widget(dummy_field, layer, _id=widget_id, _name="fact", _class="pt-fact") return widget # ------------------------------------------------------------------------- @staticmethod def _fieldset(title, widgets, **attr): """ Helper method to wrap widgets in a FIELDSET container with show/hide option @param title: the title for the field set @param widgets: the widgets @param attr: HTML attributes for the field set """ T = current.T SHOW = T("Show") HIDE = T("Hide") return FIELDSET(LEGEND(title, BUTTON(SHOW, _type="button", _class="toggle-text", ), BUTTON(HIDE, _type="button", _class="toggle-text", ) ), widgets, **attr) # ============================================================================= class S3ReportRepresent(object): """ Method to represent the contributing records in a pivot table cell (cell explore) The cell-explore record list will typically look like: - <record representation>: <fact value(s)> - ... This method controls the first part of each entry. For customization, configure for the table as: report_represent = <subclass> """ def __init__(self, resource, rows=None, cols=None, facts=None): """ Constructor, initializes the method with the report context to allow it to adapt the representation (e.g. it may often be desirable to not repeat the report axes in the record list) @param resource: the resource of the report @param rows: the rows-selector (can be None) @param cols: the columns-selector (can be None) @param facts: the list of S3PivotTableFacts showing in the pivot table """ self.resource = resource self.rows = rows self.cols = cols self.facts = facts # ------------------------------------------------------------------------- def __call__(self, record_ids): """ Represent record IDs, can be overloaded in subclasses @param record_ids: list of record IDs @returns: a JSON-serializable dict {recordID: representation}, or None to suppress recordID representation in the cell explorer NB default behavior is not sensitive for report axes """ # Take a list of record ids resource = self.resource table = resource.table represent = self.repr_method() if represent: if hasattr(represent, "bulk"): # Bulk-represent the record IDs output = represent.bulk(record_ids) else: # Represent the record IDs one by one output = {record_id: represent(record_id) for record_id in record_ids} elif "name" in table.fields: # Extract the names and return dict {id: name} query = table._id.belongs(record_ids) rows = current.db(query).select(table._id, table.name) output = {} UNKNOWN_OPT = current.messages.UNKNOWN_OPT for row in rows: name = row.name if not name: name = UNKNOWN_OPT output[row[table._id]] = s3_str(row.name) else: # No reasonable default # Render as record IDs (just as useful as nothing): #output = {record_id: s3_str(record_id) for record_id in record_ids} # Return None to reduces the list to the fact values # NB if fact is ID, this will suppress the record list # altogether and show the number of records instead output = None return output # ------------------------------------------------------------------------- def repr_method(self): """ Return a representation method for the id-field of self.resource, can be overloaded in subclasses (simpler than implementing __call__ if producing a representation method is sufficient) @returns: a representation method (preferrably a S3Represent) """ s3db = current.s3db resource = self.resource pkey = resource._id represent = pkey.represent if not represent: # Standard representation methods can be listed here # (if they don't normally depend on the report context) if resource.tablename == "pr_person": represent = s3db.pr_PersonRepresent() return represent # ============================================================================= class S3PivotTableFact(object): """ Class representing a fact layer """ #: Supported aggregation methods METHODS = {"list": "List", "count": "Count", "min": "Minimum", "max": "Maximum", "sum": "Total", "avg": "Average", #"std": "Standard Deviation" } def __init__(self, method, selector, label=None, default_method=True): """ Constructor @param method: the aggregation method @param selector: the field selector @param label: the fact label @param default_method: using default method (used by parser) """ if method is None: method = "count" default_method = True if method not in self.METHODS: raise SyntaxError("Unsupported aggregation function: %s" % method) self.method = method self.selector = selector self._layer = None self.label = label self.resource = None self.rfield = None self.column = selector self.default_method = default_method # ------------------------------------------------------------------------- @property def layer(self): """ @todo: docstring """ layer = self._layer if not layer: layer = self._layer = (self.selector, self.method) return layer # ------------------------------------------------------------------------- def compute(self, values, method=DEFAULT, totals=False, precision=None): """ Aggregate a list of values. @param values: iterable of values @param method: the aggregation method @param totals: this call is computing row/column/grand totals @param precision: limit the precision of the computation to this number of decimals (@todo: consider a default of 6) """ if values is None: return None if method is DEFAULT: method = self.method if totals and method == "list": method = "count" if method is None or method == "list": return values if values else None if method == "count": # Count all non-null values return len([v for v in values if v is not None]) else: # Numeric values required - some virtual fields # return '-' for None, so must type-check here: values = [v for v in values if isinstance(v, INTEGER_TYPES + (float,))] if method == "min": try: result = min(values) except (TypeError, ValueError): return None elif method == "max": try: result = max(values) except (TypeError, ValueError): return None elif method == "sum": try: result = sum(values) except (TypeError, ValueError): return None elif method == "avg": try: number = len(values) if number: result = sum(values) / float(number) else: return 0.0 except (TypeError, ValueError): return None #elif method == "std": #import numpy #if not values: #return 0.0 #try: #result = numpy.std(values) #except (TypeError, ValueError): #return None if type(result) is float and precision is not None: return round(result, precision) else: return result return None # ------------------------------------------------------------------------- def aggregate_totals(self, totals): """ Aggregate totals for this fact (hyper-aggregation) @param totals: iterable of totals """ if self.method in ("list", "count"): total = self.compute(totals, method="sum") else: total = self.compute(totals) return total # ------------------------------------------------------------------------- @classmethod def parse(cls, fact): """ Parse fact expression @param fact: the fact expression """ if isinstance(fact, tuple): label, fact = fact else: label = None if isinstance(fact, list): facts = [] for f in fact: facts.extend(cls.parse(f)) if not facts: raise SyntaxError("Invalid fact expression: %s" % fact) return facts # Parse the fact other = None default_method = False if not fact: method, parameters = "count", "id" else: match = FACT.match(fact) if match: method, parameters, other = match.groups() if other: other = cls.parse((label, other) if label else other) elif SELECTOR.match(fact): method, parameters, other = "count", fact, None default_method = True else: raise SyntaxError("Invalid fact expression: %s" % fact) # Validate method if method not in cls.METHODS: raise SyntaxError("Unsupported aggregation method: %s" % method) # Extract parameters parameters = parameters.split(",") selector = parameters[0] facts = [cls(method, selector, label=label, default_method=default_method, ), ] if other: facts.extend(other) return facts # ------------------------------------------------------------------------- @classmethod def _get_method_label(cls, code): """ Get a label for a method @param code: the method code @return: the label (lazyT), or None for unsupported methods """ methods = cls.METHODS if code is None: code = "list" if code in methods: return current.T(methods[code]) else: return None # ------------------------------------------------------------------------- @staticmethod def _get_field_label(rfield, fact_options=None): """ Get the label for a field @param rfield: the S3ResourceField @param fact_options: the corresponding subset of the report options ("fact", "rows" or "cols") """ label = None if not rfield: return "" resource = rfield.resource fields = list(fact_options) if fact_options else [] list_fields = resource.get_config("list_fields") if list_fields: fields.extend(list_fields) prefix = resource.prefix_selector # Search through the field labels in report options selector = prefix(rfield.selector) for f in fields: if type(f) is tuple and \ isinstance(f[1], basestring) and \ prefix(f[1]) == selector: label = f[0] break if not label and rfield: if rfield.ftype == "id": label = current.T("Records") else: label = rfield.label return label if label else "" # ------------------------------------------------------------------------- def get_label(self, rfield, fact_options=None): """ Get a label for this fact @param rfield: the S3ResourceField @param fact_options: the "fact" list of the report options """ label = self.label if label: # Already set return label if fact_options: # Lookup the label from the fact options prefix = rfield.resource.prefix_selector for fact_option in fact_options: facts = self.parse(fact_option) for fact in facts: if fact.method == self.method and \ prefix(fact.selector) == prefix(self.selector): label = fact.label break if label: break if not label: # Construct a label from the field label and the method name field_label = self._get_field_label(rfield, fact_options) method_label = self._get_method_label(self.method) label = "%s (%s)" % (field_label, method_label) self.label = label return label # ============================================================================= class S3PivotTable(object): """ Class representing a pivot table of a resource """ def __init__(self, resource, rows, cols, facts, strict=True, precision=None): """ Constructor - extracts all unique records, generates a pivot table from them with the given dimensions and computes the aggregated values for each cell. @param resource: the S3Resource @param rows: field selector for the rows dimension @param cols: field selector for the columns dimension @param facts: list of S3PivotTableFacts to compute @param strict: filter out dimension values which don't match the resource filter @param precision: maximum precision of aggregate computations, a dict {selector:number_of_decimals} """ # Initialize ---------------------------------------------------------- # if not rows and not cols: raise SyntaxError("No rows or columns specified for pivot table") self.resource = resource self.lfields = None self.dfields = None self.rfields = None self.rows = rows self.cols = cols self.facts = facts self.precision = precision if isinstance(precision, dict) else {} # API variables ------------------------------------------------------- # self.records = None """ All records in the pivot table as a Storage like: { <record_id>: <Row> } """ self.empty = False """ Empty-flag (True if no records could be found) """ self.numrows = None """ The number of rows in the pivot table """ self.numcols = None """ The number of columns in the pivot table """ self.cell = None """ Array of pivot table cells in [rows[columns]]-order, each cell is a Storage like: { records: <list_of_record_ids>, (<fact>, <method>): <aggregated_value>, ...per layer } """ self.row = None """ List of row headers, each header is a Storage like: { value: <dimension value>, records: <list_of_record_ids>, (<fact>, <method>): <total value>, ...per layer } """ self.col = None """ List of column headers, each header is a Storage like: { value: <dimension value>, records: <list_of_record_ids>, (<fact>, <method>): <total value>, ...per layer } """ self.totals = Storage() """ The grand total values for each layer, as a Storage like: { (<fact>, <method): <total value>, ...per layer } """ self.values = {} # Get the fields ------------------------------------------------------ # tablename = resource.tablename # The "report_fields" table setting defines which additional # fields shall be included in the report base layer. This is # useful to provide easy access to the record data behind a # pivot table cell. fields = current.s3db.get_config(tablename, "report_fields", []) self._get_fields(fields=fields) rows = self.rows cols = self.cols # Exclude records with empty axis values ------------------------------ # exclude_empty = current.s3db.get_config(tablename, "report_exclude_empty") if exclude_empty is True: # Exclude empty axis values for all fields query = (FS(rows) != None) & (FS(cols) != None) resource.add_filter(query) elif type(exclude_empty) is tuple: # Exclude empty axis values for some fields for axis in (cols, rows): if axis in exclude_empty: resource.add_filter(FS(axis) != None) # Retrieve the records ------------------------------------------------ # data = resource.select(list(self.rfields.keys()), limit=None) drows = data["rows"] if drows: key = str(resource.table._id) records = Storage([(i[key], i) for i in drows]) # Generate the data frame ----------------------------------------- # gfields = self.gfields pkey_colname = gfields[self.pkey] rows_colname = gfields[rows] cols_colname = gfields[cols] if strict: rfields = self.rfields axes = (rfield for rfield in (rfields[rows], rfields[cols]) if rfield != None) axisfilter = resource.axisfilter(axes) else: axisfilter = None dataframe = [] extend = dataframe.extend expand = self._expand for _id in records: row = records[_id] item = {key: _id} if rows_colname: item[rows_colname] = row[rows_colname] if cols_colname: item[cols_colname] = row[cols_colname] extend(expand(item, axisfilter=axisfilter)) self.records = records # Group the records ----------------------------------------------- # matrix, rnames, cnames = self._pivot(dataframe, pkey_colname, rows_colname, cols_colname) # Initialize columns and rows ------------------------------------- # if cols: self.col = [Storage({"value": v}) for v in cnames] self.numcols = len(self.col) else: self.col = [Storage({"value": None})] self.numcols = 1 if rows: self.row = [Storage({"value": v}) for v in rnames] self.numrows = len(self.row) else: self.row = [Storage({"value": None})] self.numrows = 1 # Add the layers -------------------------------------------------- # add_layer = self._add_layer for fact in self.facts: add_layer(matrix, fact) else: # No items to report on ------------------------------------------- # self.empty = True # ------------------------------------------------------------------------- # API methods # ------------------------------------------------------------------------- def __len__(self): """ Total number of records in the report """ items = self.records if items is None: return 0 else: return len(self.records) # ------------------------------------------------------------------------- def geojson(self, fact=None, level="L0"): """ Render the pivot table data as a dict ready to be exported as GeoJSON for display on a Map. Called by S3Report.geojson() @param layer: the layer. e.g. ("id", "count") - we only support methods "count" & "sum" - @ToDo: Support density: 'per sqkm' and 'per population' @param level: the aggregation level (defaults to Country) """ if fact is None: fact = self.facts[0] layer = fact.layer # The rows dimension # @ToDo: We can add sanity-checking using resource.parse_bbox_query() if-desired context = self.resource.get_config("context") if context and "location" in context: rows_dim = "(location)$%s" % level else: # Fallback to location_id rows_dim = "location_id$%s" % level # Fallback we can add if-required #rows_dim = "site_id$location_id$%s" % level # The data attributes = {} geojsons = {} if self.empty: location_ids = [] else: numeric = lambda x: isinstance(x, INTEGER_TYPES + (float,)) row_repr = s3_str ids = {} irows = self.row rows = [] # Group and sort the rows is_numeric = None for i in xrange(self.numrows): irow = irows[i] total = irow[layer] if is_numeric is None: is_numeric = numeric(total) if not is_numeric: total = len(irow.records) header = Storage(value = irow.value, text = irow.text if "text" in irow else row_repr(irow.value)) rows.append((i, total, header)) self._sortdim(rows, self.rfields[rows_dim]) # Aggregate the grouped values db = current.db gtable = current.s3db.gis_location query = (gtable.level == level) & (gtable.deleted == False) for _, rtotal, rtitle in rows: rval = rtitle.value if rval: # @ToDo: Handle duplicate names ;) if rval in ids: _id = ids[rval] else: q = query & (gtable.name == rval) row = db(q).select(gtable.id, gtable.parent, limitby=(0, 1) ).first() try: _id = row.id except AttributeError: continue # Cache ids[rval] = _id attribute = dict(name=s3_str(rval), value=rtotal) attributes[_id] = attribute location_ids = [ids[r] for r in ids] query = (gtable.id.belongs(location_ids)) geojsons = current.gis.get_locations(gtable, query, join=False, geojson=True) # Prepare for export via xml.gis_encode() and geojson/export.xsl location_data = {} geojsons = dict(gis_location = geojsons) location_data["geojsons"] = geojsons attributes = dict(gis_location = attributes) location_data["attributes"] = attributes return location_ids, location_data # ------------------------------------------------------------------------- def json(self, maxrows=None, maxcols=None): """ Render the pivot table data as JSON-serializable dict @param layer: the layer @param maxrows: maximum number of rows (None for all) @param maxcols: maximum number of columns (None for all) @param least: render the least n rows/columns rather than the top n (with maxrows/maxcols) { labels: { layer: rows: cols: total: }, method: <aggregation method>, cells: [rows[cols]], rows: [rows[index, value, label, total]], cols: [cols[index, value, label, total]], total: <grand total>, filter: [rows selector, cols selector] } """ rfields = self.rfields resource = self.resource T = current.T OTHER = "__other__" rows_dim = self.rows cols_dim = self.cols # The output data orows = [] rappend = orows.append ocols = [] cappend = ocols.append ocells = [] lookups = {} facts = self.facts if not self.empty: # Representation methods for row and column keys row_repr = self._represent_method(rows_dim) col_repr = self._represent_method(cols_dim) # Label for the "Others" row/columns others = s3_str(T("Others")) # Get the layers (fact.selector, fact.method), # => used as keys to access the pivot data layers = [fact.layer for fact in facts] least = facts[0].method == "min" # Group and sort the rows (grouping = determine "others") irows = self.row rows = [] rtail = (None, None) for i in xrange(self.numrows): irow = irows[i] totals = [irow[layer] for layer in layers] sort_total = totals[0] header = {"value": irow.value, "text": irow.text if "text" in irow else row_repr(irow.value), } rows.append((i, sort_total, totals, header)) if maxrows is not None: rtail = self._tail(rows, maxrows, least=least, facts=facts) self._sortdim(rows, rfields[rows_dim]) if rtail[1] is not None: values = [irows[i]["value"] for i in rtail[0]] rows.append((OTHER, rtail[1], rtail[2], {"value": values, "text":others}, )) # Group and sort the cols (grouping = determine "others") icols = self.col cols = [] ctail = (None, None) for i in xrange(self.numcols): icol = icols[i] totals = [icol[layer] for layer in layers] sort_total = totals[0] header = {"value": icol.value, "text": icol.text if "text" in icol else col_repr(icol.value), } cols.append((i, sort_total, totals, header)) if maxcols is not None: ctail = self._tail(cols, maxcols, least=least, facts=facts) self._sortdim(cols, rfields[cols_dim]) if ctail[1] is not None: values = [icols[i]["value"] for i in ctail[0]] cols.append((OTHER, ctail[1], ctail[2], {"value": values, "text": others}, )) rothers = rtail[0] or set() cothers = ctail[0] or set() # Group and sort the cells accordingly # @todo: break up into subfunctions icell = self.cell cells = {} for i in xrange(self.numrows): irow = icell[i] ridx = (i, OTHER) if rothers and i in rothers else (i,) for j in xrange(self.numcols): cell = irow[j] cidx = (j, OTHER) if cothers and j in cothers else (j,) cell_records = cell["records"] for layer_index, layer in enumerate(layers): # Get cell items for the layer # => items can be a single numeric value, or a list items = cell[layer] # Get cell value for the layer if isinstance(items, list): value = len(items) else: value = items for ri in ridx: if ri not in cells: orow = cells[ri] = {} else: orow = cells[ri] for ci in cidx: if ci not in orow: # Create a new output cell ocell = orow[ci] = {"values": [], "items": [], "records": [], } else: ocell = orow[ci] if layer_index == 0: # Extend the list of records ocell["records"].extend(cell_records) value_array = ocell["values"] items_array = ocell["items"] if len(value_array) <= layer_index: value_array.append(value) items_array.append(items) else: ovalue = value_array[layer_index] oitems = items_array[layer_index] if isinstance(ovalue, list): ovalue.append(value) oitems.append(items) else: value_array[layer_index] = [ovalue, value] items_array[layer_index] = [oitems, items] # Get field representation methods represents = self._represents(layers) # Aggregate the grouped values add_columns = True # do this only once for rindex, rtotal, rtotals, rtitle in rows: orow = [] # Row value for filter construction rval = rtitle["value"] if rindex == OTHER and isinstance(rval, list): rval = ",".join(s3_str(v) for v in rval) elif rval is not None: rval = s3_str(rval) # The output row summary rappend((rindex, rindex in rothers, rtotals, rval, rtitle["text"], )) for cindex, ctotal, ctotals, ctitle in cols: # Get the corresponding cell cell = cells[rindex][cindex] value_array = cell["values"] items_array = cell["items"] # Initialize the output cell ocell = {"i": [], "v": []} okeys = None for layer_index, fact in enumerate(facts): selector, method = fact.layer # The value(s) to render in this cell items = items_array[layer_index] # The cell total for this layer (for charts) value = value_array[layer_index] if type(value) is list: # "Others" cell with multiple totals value = fact.aggregate_totals(value) ocell["v"].append(value) rfield = self.rfields[selector] if method == "list": # Build a look-up table with field value representations if selector not in lookups: lookup = lookups[selector] = {} else: lookup = lookups[selector] represent = represents[selector] keys = [] for record_id in cell["records"]: record = self.records[record_id] try: fvalue = record[rfield.colname] except AttributeError: continue if fvalue is None: continue if type(fvalue) is not list: fvalue = [fvalue] for v in fvalue: if v is None: continue if v not in keys: keys.append(v) if v not in lookup: lookup[v] = represent(v) # Sort the keys by their representations keys.sort(key=lambda i: lookup[i]) items = [lookup[key] for key in keys if key in lookup] elif method in ("sum", "count") and okeys is None: # Include only cell records in okeys which actually # contribute to the aggregate okeys = [] for record_id in cell["records"]: record = self.records[record_id] try: fvalue = record[rfield.colname] except AttributeError: continue if method == "sum" and \ isinstance(fvalue, INTEGER_TYPES + (float,)) and fvalue: okeys.append(record_id) elif method == "count" and \ fvalue is not None: okeys.append(record_id) else: # Include all cell records in okeys okeys = cell["records"] ocell["i"].append(items) if okeys: ocell["k"] = okeys orow.append(ocell) if add_columns: # Column value for filter construction cval = ctitle["value"] if cindex == OTHER and isinstance(cval, list): cval = ",".join(s3_str(v) for v in cval) elif cval is not None: cval = s3_str(cval) # The output column summary cappend((cindex, cindex in cothers, ctotals, cval, ctitle["text"], )) add_columns = False ocells.append(orow) # Lookup labels report_options = resource.get_config("report_options", {}) if report_options: fact_options = report_options.get("fact") else: fact_options = () # @todo: lookup report title before constructing from fact labels fact_data = [] fact_labels = [] for fact in facts: rfield = rfields[fact.selector] fact_label = str(fact.get_label(rfield, fact_options)) fact_data.append((fact.selector, fact.method, fact_label)) fact_labels.append(fact_label) get_label = S3PivotTableFact._get_field_label if rows_dim: rows_label = str(get_label(rfields[rows_dim], report_options.get("rows"))) else: rows_label = "" if cols_dim: cols_label = str(get_label(rfields[cols_dim], report_options.get("cols"))) else: cols_label = "" labels = {"total": str(T("Total")), "none": str(current.messages["NONE"]), "per": str(T("per")), "breakdown": str(T("Breakdown")), # @todo: use report title: "layer": " / ".join(fact_labels), "rows": rows_label, "cols": cols_label, } # Compile the output dict output = {"rows": orows, "cols": ocols, "facts": fact_data, "cells": ocells, "total": self._totals(self.totals, [fact]), "nodata": None if not self.empty else str(T("No data available")), "labels": labels, } # Add axis selectors for filter-URL construction prefix = resource.prefix_selector output["filter"] = (prefix(rows_dim) if rows_dim else None, prefix(cols_dim) if cols_dim else None, ) return output # ------------------------------------------------------------------------- def xls(self, title): """ Convert this pivot table into an XLS file @param title: the title of the report @returns: the XLS file as stream """ from .s3codec import S3Codec exporter = S3Codec.get_codec("xls") return exporter.encode_pt(self, title) # ------------------------------------------------------------------------- def _represents(self, layers): """ Get the representation functions per fact field @param layers: the list of layers, tuples (selector, method) """ rfields = self.rfields represents = {} values = self.values for selector, method in layers: if selector in represents: continue # Get the field rfield = rfields[selector] f = rfield.field # Utilize bulk-representation for field values if method == "list" and \ f is not None and hasattr(f.represent, "bulk"): all_values = values[(selector, method)] if all_values: f.represent.bulk(list(s3_flatlist(all_values))) # Get the representation method has_fk = f is not None and s3_has_foreign_key(f) if has_fk: represent = lambda v, f=f: s3_str(f.represent(v)) else: m = self._represent_method(selector) represent = lambda v, m=m: s3_str(m(v)) represents[selector] = represent return represents # ------------------------------------------------------------------------- @staticmethod def _sortdim(items, rfield, index=3): """ Sort a dimension (sorts items in-place) @param items: the items as list of tuples (index, sort-total, totals, header) @param rfield: the dimension (S3ResourceField) @param index: alternative index of the value/text dict within each item """ if not rfield: return ftype = rfield.ftype sortby = "value" if ftype in ("integer", "string"): # Sort option keys by their representation requires = rfield.requires if requires: if isinstance(requires, (tuple, list)): requires = requires[0] if isinstance(requires, IS_EMPTY_OR): requires = requires.other if isinstance(requires, IS_IN_SET): sortby = "text" elif ftype[:9] == "reference" or ftype[:8] == "list:ref": # Sort foreign keys by their representation sortby = "text" # Replacements for None when sorting minnum = -float('inf') minval = {"integer": minnum, "float": minnum, "string": "", "date": datetime.date.min, "datetime": datetime.datetime.min, "boolean": 1, "id": minnum, } # Sorting key function def key(item): value = item[index][sortby] if value is None: return "" if sortby == "text" else minval.get(ftype) elif ftype == "boolean": return -int(value) else: return value items.sort(key=key) # ------------------------------------------------------------------------- @classmethod def _tail(cls, items, length=10, least=False, facts=None): """ Find the top/least <length> items (by total) @param items: the items as list of tuples (index, sort-total, totals, header) @param length: the maximum number of items @param least: find least rather than top @param facts: the facts to aggregate the tail totals """ try: if len(items) > length: l = list(items) l.sort(lambda x, y: int(y[1]-x[1])) if least: l.reverse() keys = [item[0] for item in l[length-1:]] totals = [] for i, fact in enumerate(facts): subtotals = [item[2][i] for item in l[length-1:]] totals.append(fact.aggregate_totals(subtotals)) return (keys, totals[0], totals) except (TypeError, ValueError): pass return (None, None) # ------------------------------------------------------------------------- @staticmethod def _totals(values, facts, append=None): """ Get the totals of a row/column/report @param values: the values dictionary @param facts: the facts @param append: callback to collect the totals for JSON data (currently only collects the first layer) """ totals = [] number_represent = IS_NUMBER.represent for fact in facts: value = values[fact.layer] #if fact.method == "list": #value = value and len(value) or 0 if not len(totals) and append is not None: append(value) totals.append(s3_str(number_represent(value))) totals = " / ".join(totals) return totals # ------------------------------------------------------------------------- # Internal methods # ------------------------------------------------------------------------- @staticmethod def _pivot(items, pkey_colname, rows_colname, cols_colname): """ 2-dimensional pivoting of a list of unique items @param items: list of unique items as dicts @param pkey_colname: column name of the primary key @param rows_colname: column name of the row dimension @param cols_colname: column name of the column dimension @return: tuple of (cell matrix, row headers, column headers), where cell matrix is a 2-dimensional array [rows[columns]] and row headers and column headers each are lists (in the same order as the cell matrix) """ rvalues = Storage() cvalues = Storage() cells = Storage() # All unique rows values rindex = 0 cindex = 0 for item in items: rvalue = item[rows_colname] if rows_colname else None cvalue = item[cols_colname] if cols_colname else None if rvalue not in rvalues: r = rvalues[rvalue] = rindex rindex += 1 else: r = rvalues[rvalue] if cvalue not in cvalues: c = cvalues[cvalue] = cindex cindex += 1 else: c = cvalues[cvalue] if (r, c) not in cells: cells[(r, c)] = [item[pkey_colname]] else: cells[(r, c)].append(item[pkey_colname]) matrix = [] for r in xrange(len(rvalues)): row = [] for c in xrange(len(cvalues)): row.append(cells[(r, c)]) matrix.append(row) rnames = [None] * len(rvalues) for k, v in rvalues.items(): rnames[v] = k cnames = [None] * len(cvalues) for k, v in cvalues.items(): cnames[v] = k return matrix, rnames, cnames # ------------------------------------------------------------------------- def _add_layer(self, matrix, fact): """ Compute an aggregation layer, updates: - self.cell: the aggregated values per cell - self.row: the totals per row - self.col: the totals per column - self.totals: the overall totals per layer @param matrix: the cell matrix @param fact: the fact field @param method: the aggregation method """ rows = self.row cols = self.col records = self.records extract = self._extract resource = self.resource RECORDS = "records" VALUES = "values" table = resource.table pkey = table._id.name layer = fact.layer precision = self.precision.get(fact.selector) numcols = len(self.col) numrows = len(self.row) # Initialize cells if self.cell is None: self.cell = [[Storage() for i in xrange(numcols)] for j in xrange(numrows)] cells = self.cell all_values = [] for r in xrange(numrows): # Initialize row header row = rows[r] row[RECORDS] = [] row[VALUES] = [] row_records = row[RECORDS] row_values = row[VALUES] for c in xrange(numcols): # Initialize column header col = cols[c] if RECORDS not in col: col[RECORDS] = [] col_records = col[RECORDS] if VALUES not in col: col[VALUES] = [] col_values = col[VALUES] # Get the records cell = cells[r][c] if RECORDS in cell and cell[RECORDS] is not None: ids = cell[RECORDS] else: data = matrix[r][c] if data: remove = data.remove while None in data: remove(None) ids = data else: ids = [] cell[RECORDS] = ids row_records.extend(ids) col_records.extend(ids) # Get the values if fact.selector is None: fact.selector = pkey values = ids row_values = row_records col_values = row_records all_values = list(records.keys()) else: values = [] append = values.append for i in ids: value = extract(records[i], fact.selector) if value is None: continue append(value) values = list(s3_flatlist(values)) if fact.method in ("list", "count"): values = list(set(values)) row_values.extend(values) col_values.extend(values) all_values.extend(values) # Aggregate values value = fact.compute(values, precision=precision) cell[layer] = value # Compute row total row[layer] = fact.compute(row_values, totals = True, precision = precision, ) del row[VALUES] # Compute column total for c in xrange(numcols): col = cols[c] col[layer] = fact.compute(col[VALUES], totals = True, precision = precision, ) del col[VALUES] # Compute overall total self.totals[layer] = fact.compute(all_values, totals = True, precision = precision, ) self.values[layer] = all_values # ------------------------------------------------------------------------- def _get_fields(self, fields=None): """ Determine the fields needed to generate the report @param fields: fields to include in the report (all fields) """ resource = self.resource table = resource.table # Lambda to prefix all field selectors alias = resource.alias def prefix(s): if isinstance(s, (tuple, list)): return prefix(s[-1]) if "." not in s.split("$", 1)[0]: return "%s.%s" % (alias, s) elif s[:2] == "~.": return "%s.%s" % (alias, s[2:]) else: return s self.pkey = pkey = prefix(table._id.name) self.rows = rows = prefix(self.rows) if self.rows else None self.cols = cols = prefix(self.cols) if self.cols else None if not fields: fields = () # dfields (data-fields): fields to generate the layers dfields = [prefix(s) for s in fields] if rows and rows not in dfields: dfields.append(rows) if cols and cols not in dfields: dfields.append(cols) if pkey not in dfields: dfields.append(pkey) # Normalize fact selectors for fact in self.facts: fact.selector = selector = prefix(fact.selector) if selector not in dfields: dfields.append(selector) self.dfields = dfields # Normalize precision selectors precision = {} for selector, decimals in self.precision.items(): precision[prefix(selector)] = decimals self.precision = precision # rfields (resource-fields): dfields resolved into a ResourceFields map rfields = resource.resolve_selectors(dfields)[0] rfields = Storage([(f.selector.replace("~", alias), f) for f in rfields]) self.rfields = rfields # gfields (grouping-fields): fields to group the records by self.gfields = {pkey: rfields[pkey].colname, rows: rfields[rows].colname if rows and rows in rfields else None, cols: rfields[cols].colname if cols and cols in rfields else None, } # ------------------------------------------------------------------------- def _represent_method(self, field): """ Get the representation method for a field in the report @param field: the field selector """ rfields = self.rfields default = lambda value: None if field and field in rfields: rfield = rfields[field] if rfield.field: def repr_method(value): return s3_represent_value(rfield.field, value, strip_markup = True, ) elif rfield.virtual: # If rfield defines a represent, use it represent = rfield.represent if not represent: represent = s3_str # Wrap with markup stripper stripper = S3MarkupStripper() def repr_method(val): if val is None: return "-" text = represent(val) if "<" in text: stripper.feed(text) return stripper.stripped() else: return text else: repr_method = default else: repr_method = default return repr_method # ------------------------------------------------------------------------- def _extract(self, row, field): """ Extract a field value from a DAL row @param row: the row @param field: the fieldname (list_fields syntax) """ rfields = self.rfields if field not in rfields: raise KeyError("Invalid field name: %s" % field) rfield = rfields[field] try: return rfield.extract(row) except AttributeError: return None # ------------------------------------------------------------------------- def _expand(self, row, axisfilter=None): """ Expand a data frame row into a list of rows for list:type values @param row: the row @param field: the field to expand (None for all fields) @param axisfilter: dict of filtered field values by column names """ pairs = [] append = pairs.append for colname in self.gfields.values(): if not colname: continue value = row[colname] if type(value) is list: if not value: value = [None] if axisfilter and colname in axisfilter: p = [(colname, v) for v in value if v in axisfilter[colname]] if not p: raise RuntimeError("record does not match query") else: append(p) else: append([(colname, v) for v in value]) else: append([(colname, value)]) result = [dict(i) for i in product(*pairs)] return result # END =========================================================================
the-stack_0_19522
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = True # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env('DJANGO_SECRET_KEY', default='R2FM4T2mYA6XNuu0lTs8IJ4Ctiqc9i9A8KcSBh2t1kP7nAOmNE6OeLSxnFrC73MC') # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = [ "localhost", "0.0.0.0", "127.0.0.1", ] # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': '' } } # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES[0]['OPTIONS']['debug'] = DEBUG # noqa F405 # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env('DJANGO_EMAIL_BACKEND', default='django.core.mail.backends.console.EmailBackend') # https://docs.djangoproject.com/en/dev/ref/settings/#email-host EMAIL_HOST = 'localhost' # https://docs.djangoproject.com/en/dev/ref/settings/#email-port EMAIL_PORT = 1025 # django-debug-toolbar # ------------------------------------------------------------------------------ # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites INSTALLED_APPS += ['debug_toolbar'] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware MIDDLEWARE += ['debug_toolbar.middleware.DebugToolbarMiddleware'] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config DEBUG_TOOLBAR_CONFIG = { 'DISABLE_PANELS': [ 'debug_toolbar.panels.redirects.RedirectsPanel', ], 'SHOW_TEMPLATE_CONTEXT': True, } # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips INTERNAL_IPS = ['127.0.0.1', '10.0.2.2'] # django-extensions # ------------------------------------------------------------------------------ # https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration INSTALLED_APPS += ['django_extensions'] # noqa F405 # Your stuff... # ------------------------------------------------------------------------------
the-stack_0_19524
''' Evaluate script before submit ''' import zip import os import zipfile import numpy as np import pandas as pd from PIL import Image import argparse from skimage.measure import compare_ssim from tqdm import tqdm import MCS2018 from torchvision import transforms #import MCS2018_CPU as MCS2018 if you are using only CPU black-box model import shutil SSIM_THR = 0.95 MEAN = [0.485, 0.456, 0.406] STD = [0.229, 0.224, 0.225] parser = argparse.ArgumentParser(description='pre-submit evaluate') parser.add_argument('--original_root', type=str, help='original data root path', default='../data/imgs/') parser.add_argument('--attack_root', required=True, type=str, help='changed data root path') parser.add_argument('--submit_list', type=str, help='path of datalist', default='../data/submit_list.csv') parser.add_argument('--target_dscr', required=True, type=str, help="target descriptors path (.npy),"\ " will be created if file doesn't exist") parser.add_argument('--submit_name', required=True, type=str) parser.add_argument('--gpu_id', type=int, help='GPU ID for black box, default = -1 (CPU)', default=-1) parser.add_argument('--pairs_list', type=str, help='attack pairs list', default='../data/pairs_list.csv') args = parser.parse_args() def save_submit_file(img_list, descriptor_path): submit_directory = './submits' if not os.path.isdir(submit_directory): os.makedirs(submit_directory) submit_file = os.path.join(submit_directory, args.submit_name + '.zip') with zipfile.ZipFile(submit_file,'w') as myzip: for img_name in tqdm(img_list.path.values, desc='archive images'): img_path = os.path.join(args.attack_root, img_name) myzip.write(img_path, arcname=img_name) myzip.write(descriptor_path, arcname='descriptors.npy') def euclid_dist(x,y, axis=1): return np.sqrt(((x - y) ** 2).sum(axis=axis)) def main(args): # loading black-box model net = MCS2018.Predictor(args.gpu_id) img_list = pd.read_csv(args.submit_list) descriptors = np.ones((len(img_list), 512)) cropping = transforms.Compose([transforms.CenterCrop(224), transforms.Scale(112)]) cropped_img_preprocessing = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD) ]) # SSIM checking error=False for idx, img_name in tqdm(enumerate(img_list.path.values), total=len(img_list.path.values), desc='SSIM'): img = Image.open(os.path.join(args.attack_root, img_name)) org_img = Image.open(os.path.join(args.original_root, img_name.replace('.png', '.jpg'))) org_img = cropping(org_img) ssim = compare_ssim(np.array(img), np.array(org_img), multichannel=True) if idx%100==0: print(ssim) if ssim < SSIM_THR: error=True os.remove(os.path.join(args.attack_root, img_name)) continue # assert ssim >= SSIM_THR, '{0}\n ssim < {1}'.format(img_name,SSIM_THR) # Creating batch with one element batch_from_one_img = np.array(cropped_img_preprocessing(img).unsqueeze(0), dtype=np.float32) # Getting batch result from black-box res = net.submit(batch_from_one_img).squeeze() descriptors[idx] = res assert error==False # Saving descriptors for submit descriptor_path = os.path.join(args.attack_root, 'descriptors.npy') np.save(descriptor_path, descriptors) # axis 0 - number of imgs for each class # axis 1 - number of classes # axis 2 - descriptor size descriptors = descriptors.reshape((5,1000,512), order='F') if not os.path.isfile(args.target_dscr): pairs_list = pd.read_csv(args.pairs_list) preprocessing = transforms.Compose([ transforms.CenterCrop(224), transforms.Scale(112), transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD), ]) val_img_list = [] for target_imgs in pairs_list.target_imgs.values: for img_name in target_imgs.split('|'): img_name = os.path.join(args.original_root, img_name) val_img_list.append(img_name) target_descriptors = np.ones((5000, 512), dtype=np.float32) for idx, img_name in tqdm(enumerate(val_img_list), total=len(val_img_list), desc='get descriptors'): img = Image.open(img_name) img_arr = preprocessing(img).unsqueeze(0).numpy() res = net.submit(img_arr).squeeze() target_descriptors[idx] = res target_descriptors = target_descriptors.reshape((5,1000,512), order='F') np.save(args.target_dscr, target_descriptors) #target descriptors shape: (5,1000,512) target_descriptors = np.load(args.target_dscr) # axis 0 - img number for source class # axis 1 - img number for target class # axis 2 - number of classes dist_all = np.zeros((5,5,1000)) for idx, dscr_row in enumerate(descriptors): for jdx, target_dscr_row in enumerate(target_descriptors): assert(dscr_row.shape == target_dscr_row.shape) dist = euclid_dist(target_dscr_row, dscr_row) dist_all[idx][jdx] = dist score_value = dist_all.mean(axis=1).mean(axis=0).mean() print ('Validation score: {0:.3f}'.format(score_value)) submit_file = os.path.join('./submit', args.submit_name + '.zip') with zipfile.ZipFile(submit_file, 'w') as myzip: for img_name in tqdm(img_list.path.values, desc='archive images'): img_path = os.path.join(args.attack_root, img_name) myzip.write(img_path, arcname=img_name) myzip.write(descriptor_path, arcname='descriptors.npy') if __name__ == '__main__': main(args)
the-stack_0_19525
# Once for All: Train One Network and Specialize it for Efficient Deployment # Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han # International Conference on Learning Representations (ICLR), 2020. import torch import torch.nn as nn __all__ = ['profile'] def count_convNd(m, _, y): cin = m.in_channels kernel_ops = m.weight.size()[2] * m.weight.size()[3] ops_per_element = kernel_ops output_elements = y.nelement() # cout x oW x oH total_ops = cin * output_elements * ops_per_element // m.groups m.total_ops = torch.zeros(1).fill_(total_ops) def count_linear(m, _, __): total_ops = m.in_features * m.out_features m.total_ops = torch.zeros(1).fill_(total_ops) register_hooks = { nn.Conv1d: count_convNd, nn.Conv2d: count_convNd, nn.Conv3d: count_convNd, ###################################### nn.Linear: count_linear, ###################################### nn.Dropout: None, nn.Dropout2d: None, nn.Dropout3d: None, nn.BatchNorm2d: None, } def profile(model, input_size, custom_ops=None): handler_collection = [] custom_ops = {} if custom_ops is None else custom_ops def add_hooks(m_): if len(list(m_.children())) > 0: return m_.register_buffer('total_ops', torch.zeros(1)) m_.register_buffer('total_params', torch.zeros(1)) for p in m_.parameters(): m_.total_params += torch.zeros(1).fill_(p.numel()) m_type = type(m_) fn = None if m_type in custom_ops: fn = custom_ops[m_type] elif m_type in register_hooks: fn = register_hooks[m_type] if fn is not None: _handler = m_.register_forward_hook(fn) handler_collection.append(_handler) original_device = model.parameters().__next__().device training = model.training model.eval() model.apply(add_hooks) #input_size[0] *= 2 #print(input_size) #x = [torch.zeros(input_s).unsqueeze(0).to(original_device) for input_s in input_size] x = torch.zeros([1, 6, 576, 960]).to(original_device) with torch.no_grad(): model(x) total_ops = 0 total_params = 0 for m in model.modules(): if len(list(m.children())) > 0: # skip for non-leaf module continue total_ops += m.total_ops total_params += m.total_params total_ops = total_ops.item() total_params = total_params.item() model.train(training).to(original_device) for handler in handler_collection: handler.remove() return total_ops, total_params
the-stack_0_19526
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright © 2017 Matthew Stone <[email protected]> # Distributed under terms of the MIT license. """ Classification of reciprocal translocations. """ def classify_insertion(plus, minus, mh_buffer=50): plus_A = plus.pos minus_A = minus.pos plus_B = plus.stop minus_B = minus.stop # Buffer comparisons def _greater(p1, p2): return p1 > p2 - mh_buffer if _greater(minus_A, plus_A) and _greater(minus_B, plus_B): return 'INS_B2A' elif _greater(plus_A, minus_A) and _greater(plus_B, minus_B): return 'INS_A2B' else: return 'INS_UNCLASSIFIED' def classify_simple_translocation(plus, minus, mh_buffer=10): """ Resolve a pair of interchromosomal breakends. Parameters ---------- FF : pysam.VariantRecord FF inversion breakpoint. RR : pysam.VariantRecord RR inversion breakpoint. cnvs : list of pysam.VariantRecord List of overlapping CNVs. Returns ------- svtype : str Complex SV class. """ # plus refers to breakend whose strand begins with '+' if plus.chrom != minus.chrom or plus.info['CHR2'] != minus.info['CHR2']: return 'TLOC_MISMATCH_CHROM' # Reference chromosomes are labeled A and B # Breakpoints/Derivative chromosomes are labeled plus and minus, based on # ref chromosome A's strandedness on each breakpoint # plus_A = the breakend of ref chrom A on derivative chrom where A is # forward-stranded # get positions plus_A = plus.pos minus_A = minus.pos plus_B = plus.stop minus_B = minus.stop plus_strands = plus.info['STRANDS'] # Buffer comparisons def _greater(p1, p2): return p1 > p2 - mh_buffer # Check for PE evidence def _hasPE(recA, recB): if 'EVIDENCE' in recA.info.keys() \ and 'EVIDENCE' in recB.info.keys(): if 'PE' in recA.info['EVIDENCE'] \ and 'PE' in recB.info['EVIDENCE']: return True else: return False else: return False if plus_strands == '+-': if _greater(minus_A, plus_A) and _greater(plus_B, minus_B): if _hasPE(plus, minus): return 'CTX_PP/QQ' else: return 'CTX_UNR' if _greater(minus_A, plus_A) and _greater(minus_B, plus_B): return 'CTX_INS_B2A' if _greater(plus_A, minus_A) and _greater(plus_B, minus_B): return 'CTX_INS_A2B' else: if _greater(minus_A, plus_A) and _greater(minus_B, plus_B): if _hasPE(plus, minus): return 'CTX_PQ/QP' else: return 'CTX_UNR' if _greater(minus_A, plus_A) and _greater(plus_B, minus_B): return 'CTX_INV_INS_B2A' if _greater(plus_A, minus_A) and _greater(minus_B, plus_B): return 'CTX_INV_INS_A2B' return 'CTX_UNR'
the-stack_0_19529
# -*- coding: utf-8 -*- """ Created on Tue Jul 23 11:25:33 2019 @author: ntr002 """ import WaPOR from datetime import datetime import requests import os from WaPOR import GIS_functions as gis def main(Dir, data='AETI',Startdate='2009-01-01', Enddate='2018-12-31', latlim=[-40.05, 40.05], lonlim=[-30.5, 65.05],level=1, version = 2, Waitbar = 1,cached_catalog=True): """ This function downloads yearly WAPOR LCC data Keyword arguments: Dir -- 'C:/file/to/path/' Startdate -- 'yyyy-mm-dd' Enddate -- 'yyyy-mm-dd' latlim -- [ymin, ymax] (values must be between -40.05 and 40.05) lonlim -- [xmin, xmax] (values must be between -30.05 and 65.05) cached_catalog -- True Use a cached catalog. False Load a new catalog from the database """ print(f'\nDownload WaPOR Level {level} yearly {data} data for the period {Startdate} till {Enddate}') # Download data WaPOR.API.version=version bbox=[lonlim[0],latlim[0],lonlim[1],latlim[1]] catalog=WaPOR.API.getCatalog(cached=cached_catalog) if level==1: cube_code=f"L1_{data}_A" elif level==2: cube_code=f'L2_{data}_A' elif level==3: print('Level 3 data only available in some areas with specific data cube code below: ') for i,row in catalog.iterrows(): if (f'L3' in row['code'])&(f'{data}' in row['code'])&(row['code'][-1]=='A'): print('%s: %s'%(row['caption'],row['code'])) cube_code=input('Insert Level 3 cube code for the selected area: ') else: print('Invalid Level') try: cube_info=WaPOR.API.getCubeInfo(cube_code) multiplier=cube_info['measure']['multiplier'] except: print('ERROR: Cannot get cube info. Check if WaPOR version has cube %s'%(cube_code)) return None time_range='{0},{1}'.format(Startdate,Enddate) try: df_avail=WaPOR.API.getAvailData(cube_code,time_range=time_range) except: print('ERROR: cannot get list of available data') return None if Waitbar == 1: import WaPOR.WaitbarConsole as WaitbarConsole total_amount = len(df_avail) amount = 0 WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50) Dir=os.path.join(Dir,'WAPOR.v%s_yearly_%s' %(version,cube_code)) if not os.path.exists(Dir): os.makedirs(Dir) for index,row in df_avail.iterrows(): download_url=WaPOR.API.getCropRasterURL(bbox,cube_code, row['time_code'], row['raster_id'], WaPOR.API.Token, print_job=False) filename='{0}.tif'.format(row['raster_id']) outfilename=os.path.join(Dir,filename) download_file=os.path.join(Dir,'raw_{0}.tif'.format(row['raster_id'])) #Download raster file resp=requests.get(download_url) open(download_file,'wb').write(resp.content) driver, NDV, xsize, ysize, GeoT, Projection= gis.GetGeoInfo(download_file) Array = gis.OpenAsArray(download_file,nan_values=True) CorrectedArray=Array*multiplier gis.CreateGeoTiff(outfilename,CorrectedArray, driver, NDV, xsize, ysize, GeoT, Projection) os.remove(download_file) if Waitbar == 1: amount += 1 WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50) return Dir
the-stack_0_19532
import csv from urllib import request ''' Usamos o Request para fazer o download de algum arquivo. ''' def read(url): with request.urlopen(url) as entrada: ''' Fazemos o request do csv. ''' print('Baixando Arquivos CSV ...') dados = entrada.read().decode('latin1')# Fazemos a leitura e decoficamos o arquivo... print('Download Completo!!!') for cidade in csv.reader(dados.splitlines()): print(f'{cidade[8]} : {cidade[3]}') if entrada.close: print('Arquivo fechado com sucesso') if __name__ == "__main__": read(r'http://files.cod3r.com.br/curso-python/desafio-ibge.csv')
the-stack_0_19536
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Copyright (c) DeFi Blockchain Developers # Distributed under the MIT software license, see the accompanying # file LICENSE or http://www.opensource.org/licenses/mit-license.php. """Test Loan - setcollateraltoken.""" from test_framework.test_framework import DefiTestFramework from test_framework.authproxy import JSONRPCException from test_framework.util import assert_equal, assert_raises_rpc_error from decimal import Decimal import calendar import time class LoanSetCollateralTokenTest (DefiTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.extra_args = [ ['-txnotokens=0', '-amkheight=50', '-bayfrontheight=50', '-eunosheight=50', '-fortcanningheight=50', '-fortcanninghillheight=50', '-fortcanningcrunchheight=150', '-txindex=1']] def run_test(self): assert_equal(len(self.nodes[0].listtokens()), 1) # only one token == DFI print("Generating initial chain...") self.nodes[0].generate(101) symbolDFI = "DFI" symbolBTC = "BTC" symbolGOOGL = "GOOGL" self.nodes[0].createtoken({ "symbol": symbolBTC, "name": symbolBTC, "isDAT": True, "collateralAddress": self.nodes[0].get_genesis_keys().ownerAuthAddress }) self.nodes[0].generate(1) self.nodes[0].createtoken({ "symbol": symbolGOOGL, "name": symbolGOOGL, "isDAT": True, "collateralAddress": self.nodes[0].get_genesis_keys().ownerAuthAddress }) self.nodes[0].generate(1) idDFI = list(self.nodes[0].gettoken(symbolDFI).keys())[0] idBTC = list(self.nodes[0].gettoken(symbolBTC).keys())[0] idGOOGL = list(self.nodes[0].gettoken(symbolGOOGL).keys())[0] try: self.nodes[0].setcollateraltoken({ 'token': "DOGE", 'factor': 1, 'fixedIntervalPriceId': "DFI/USD"}) except JSONRPCException as e: errorString = e.error['message'] assert("Token DOGE does not exist" in errorString) try: self.nodes[0].setcollateraltoken({ 'token': idDFI, 'factor': 1, 'fixedIntervalPriceId': "DFI/USD"}) except JSONRPCException as e: errorString = e.error['message'] assert("Price feed DFI/USD does not belong to any oracle" in errorString) oracle_address1 = self.nodes[0].getnewaddress("", "legacy") price_feeds1 = [ {"currency": "USD", "token": symbolDFI}, {"currency": "USD", "token": symbolBTC}, {"currency": "USD", "token": symbolGOOGL}, ] oracle_id1 = self.nodes[0].appointoracle(oracle_address1, price_feeds1, 10) self.nodes[0].generate(1) try: self.nodes[0].setcollateraltoken({ 'token': idDFI, 'factor': 1, 'fixedIntervalPriceId': "DFI/USD"}) except JSONRPCException as e: errorString = e.error['message'] assert("no live oracles for specified request" in errorString) oracle1_prices = [ {"currency": "USD", "tokenAmount": f'1@{symbolDFI}'}, {"currency": "USD", "tokenAmount": f'1@{symbolBTC}'}, {"currency": "USD", "tokenAmount": f'1@{symbolGOOGL}'}, ] timestamp = calendar.timegm(time.gmtime()) self.nodes[0].setoracledata(oracle_id1, timestamp, oracle1_prices) self.nodes[0].generate(1) assert_raises_rpc_error(-32600, "setCollateralToken factor must be lower or equal than 1", self.nodes[0].setcollateraltoken, { 'token': idDFI, 'factor': 2, 'fixedIntervalPriceId': "DFI/USD"}) try: self.nodes[0].setcollateraltoken({ 'token': idDFI, 'factor': -1, 'fixedIntervalPriceId': "DFI/USD"}) except JSONRPCException as e: errorString = e.error['message'] assert("Amount out of range" in errorString) try: self.nodes[0].setcollateraltoken({ 'token': idDFI, 'factor': 1, 'fixedIntervalPriceId': "Blabla"}) except JSONRPCException as e: errorString = e.error['message'] assert("price feed not in valid format - token/currency" in errorString) collTokenTx1 = self.nodes[0].setcollateraltoken({ 'token': idDFI, 'factor': 0.5, 'fixedIntervalPriceId': "DFI/USD"}) collTokenTx3 = self.nodes[0].setcollateraltoken({ 'token': idDFI, 'factor': 1, 'fixedIntervalPriceId': "DFI/USD", 'activateAfterBlock': 135}) self.nodes[0].generate(1) dfi_activation_height = self.nodes[0].getblockcount() collTokens = self.nodes[0].listcollateraltokens() assert_equal(len(collTokens), 2) collToken1 = [token for token in collTokens if token["tokenId"] == collTokenTx1][0] assert_equal(collToken1["token"], symbolDFI) assert_equal(collToken1["factor"], Decimal('0.5')) assert_equal(collToken1["fixedIntervalPriceId"], "DFI/USD") collTokenTx2 = self.nodes[0].setcollateraltoken({ 'token': idBTC, 'factor': 0.9, 'fixedIntervalPriceId': "BTC/USD"}) self.nodes[0].generate(1) btc_activation_height = self.nodes[0].getblockcount() collTokens = self.nodes[0].listcollateraltokens() assert_equal(len(collTokens), 3) collToken2 = [token for token in collTokens if token["tokenId"] == collTokenTx2][0] assert_equal(collToken2["token"], symbolBTC) assert_equal(collToken2["factor"], Decimal('0.9')) assert_equal(collToken2["fixedIntervalPriceId"], "BTC/USD") self.nodes[0].generate(1) collTokens = self.nodes[0].listcollateraltokens() assert_equal(len(collTokens), 3) collToken3 = [token for token in collTokens if token["tokenId"] == collTokenTx3][0] assert_equal(collToken3["token"], symbolDFI) assert_equal(collToken3["factor"], Decimal('1')) collTokens = self.nodes[0].getcollateraltoken(idDFI) assert_equal(collTokens["token"], symbolDFI) assert_equal(collTokens["factor"], Decimal('0.5')) assert_equal(collTokens["activateAfterBlock"], dfi_activation_height) collTokens = self.nodes[0].getcollateraltoken(idBTC) assert_equal(collTokens["token"], symbolBTC) assert_equal(collTokens["factor"], Decimal('0.9')) assert_equal(collTokens["activateAfterBlock"], btc_activation_height) self.nodes[0].generate(30) collTokens = self.nodes[0].getcollateraltoken(idDFI) assert_equal(collTokens["token"], symbolDFI) assert_equal(collTokens["factor"], Decimal('1')) assert_equal(collTokens["activateAfterBlock"], 135) collTokens = self.nodes[0].getcollateraltoken(idBTC) assert_equal(collTokens["token"], symbolBTC) assert_equal(collTokens["factor"], Decimal('0.9')) assert_equal(collTokens["activateAfterBlock"], btc_activation_height) self.nodes[0].setcollateraltoken({ 'token': idBTC, 'factor': 0, 'fixedIntervalPriceId': "BTC/USD"}) self.nodes[0].generate(1) collTokens = self.nodes[0].listcollateraltokens() assert_equal(len(collTokens), 4) # Move to fork height self.nodes[0].generate(150 - self.nodes[0].getblockcount()) # Check errors on FCC assert_raises_rpc_error(-32600, "setCollateralToken factor must be lower or equal than 1.00000000", self.nodes[0].setcollateraltoken, { 'token': idDFI, 'factor': 1.01, 'fixedIntervalPriceId': "DFI/USD"}) self.nodes[0].generate(1) # Check errors assert_raises_rpc_error(-32600, "Percentage exceeds 100%", self.nodes[0].setcollateraltoken, { 'token': idDFI, 'factor': 1.01, 'fixedIntervalPriceId': "DFI/USD"}) # Create collateral token self.nodes[0].setcollateraltoken({ 'token': idGOOGL, 'factor': 0.12345678, 'fixedIntervalPriceId': "GOOGL/USD"}) self.nodes[0].generate(1) # Check attributess result = self.nodes[0].listgovs()[8][0]['ATTRIBUTES'] assert_equal(result[f'v0/token/{idGOOGL}/loan_collateral_enabled'], 'true') assert_equal(result[f'v0/token/{idGOOGL}/loan_collateral_factor'], '0.12345678') assert_equal(result[f'v0/token/{idGOOGL}/fixed_interval_price_id'], 'GOOGL/USD') # Get token creation TX token = self.nodes[0].gettoken(idGOOGL)[idGOOGL] # Check entry in list collateral tokens result = self.nodes[0].listcollateraltokens()[2] assert_equal(result['token'], 'GOOGL') assert_equal(result['tokenId'], token['creationTx']) assert_equal(result['factor'], Decimal('0.12345678')) assert_equal(result['fixedIntervalPriceId'], 'GOOGL/USD') if __name__ == '__main__': LoanSetCollateralTokenTest().main()
the-stack_0_19537
#!/usr/bin/env python3 import re import rospy from std_msgs.msg import String from lg_common import AdhocBrowserPool from lg_msg_defs.msg import AdhocBrowsers from lg_common import AdhocBrowserDirectorBridge from lg_common.helpers import make_soft_relaunch_callback, handle_initial_state from lg_common.helpers import run_with_influx_exception_handler from interactivespaces_msgs.msg import GenericMessage from lg_msg_defs.msg import Ready NODE_NAME = 'lg_adhoc_browser' def main(): rospy.init_node(NODE_NAME, anonymous=True) extensions_root = rospy.get_param('~extensions_root', '/opt/endpoint/chrome/extensions/') viewport_name = rospy.get_param('~viewport', None) rosbridge_port = rospy.get_param('~rosbridge_port', 9090) rosbridge_host = rospy.get_param('~rosbridge_port', 'localhost') depend_on_rosbridge = rospy.get_param('~depend_on_rosbridge', True) global_dependency_timeout = rospy.get_param('/global_dependency_timeout', 15) hide_delay = rospy.get_param('~hide_delay', 0.5) destroy_delay = rospy.get_param('~destroy_delay', 2) if not viewport_name: rospy.logerr("Viewport is not set in the roslaunch file. Exiting.") exit(1) """ Initialize adhoc browser pool """ topic_name = 'browser_service/{}'.format(viewport_name) common_topic_name = 'browser_service/browsers' adhocbrowser_pool = AdhocBrowserPool(viewport_name=viewport_name, extensions_root=extensions_root, hide_delay=hide_delay, destroy_delay=destroy_delay) make_soft_relaunch_callback(adhocbrowser_pool.handle_soft_relaunch, groups=["media"]) rospy.Subscriber( topic_name, AdhocBrowsers, adhocbrowser_pool.handle_ros_message ) """ Initialize director => browser pool bridge that translates director GenericMessage to AdhocBrowsers.msg """ adhocbrowser_viewport_publisher = rospy.Publisher( topic_name, AdhocBrowsers, queue_size=3) adhocbrowser_aggregate_topic_publisher = rospy.Publisher(common_topic_name, AdhocBrowsers, queue_size=3) adhocbrowser_director_bridge = AdhocBrowserDirectorBridge( adhocbrowser_aggregate_topic_publisher, adhocbrowser_viewport_publisher, viewport_name) rospy.Subscriber('director/scene', GenericMessage, adhocbrowser_director_bridge.translate_director) rospy.Subscriber('director/ready', Ready, adhocbrowser_pool.unhide_browsers) handle_initial_state(adhocbrowser_director_bridge.translate_director) """ Initialize overlay hiding listener """ def getBrowserIds(msg): s = msg.data if '[' in s and ']' in s: ids = [sp for sp in re.split('\[\]\, ', s) if len(sp) > 0] adhocbrowser_pool.minimize_browsers(ids) else: adhocbrowser_pool.minimize_browsers([s]) rospy.Subscriber('director/minimize', String, getBrowserIds) """ Spin FTW """ rospy.spin() if __name__ == "__main__": run_with_influx_exception_handler(main, NODE_NAME)
the-stack_0_19538
import _plotly_utils.basevalidators class LenValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name='len', parent_name='scattercarpet.marker.colorbar', **kwargs ): super(LenValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'colorbars'), min=kwargs.pop('min', 0), role=kwargs.pop('role', 'style'), **kwargs )
the-stack_0_19541
"""Test Mikrotik setup process.""" from asynctest import CoroutineMock, Mock, patch from homeassistant.components import mikrotik from homeassistant.setup import async_setup_component from . import MOCK_DATA from tests.common import MockConfigEntry async def test_setup_with_no_config(hass): """Test that we do not discover anything or try to set up a hub.""" assert await async_setup_component(hass, mikrotik.DOMAIN, {}) is True assert mikrotik.DOMAIN not in hass.data async def test_successful_config_entry(hass): """Test config entry successful setup.""" entry = MockConfigEntry(domain=mikrotik.DOMAIN, data=MOCK_DATA,) entry.add_to_hass(hass) mock_registry = Mock() with patch.object(mikrotik, "MikrotikHub") as mock_hub, patch( "homeassistant.helpers.device_registry.async_get_registry", return_value=mock_registry, ): mock_hub.return_value.async_setup = CoroutineMock(return_value=True) mock_hub.return_value.serial_num = "12345678" mock_hub.return_value.model = "RB750" mock_hub.return_value.hostname = "mikrotik" mock_hub.return_value.firmware = "3.65" assert await mikrotik.async_setup_entry(hass, entry) is True assert len(mock_hub.mock_calls) == 2 p_hass, p_entry = mock_hub.mock_calls[0][1] assert p_hass is hass assert p_entry is entry assert len(mock_registry.mock_calls) == 1 assert mock_registry.mock_calls[0][2] == { "config_entry_id": entry.entry_id, "connections": {("mikrotik", "12345678")}, "manufacturer": mikrotik.ATTR_MANUFACTURER, "model": "RB750", "name": "mikrotik", "sw_version": "3.65", } async def test_hub_fail_setup(hass): """Test that a failed setup will not store the hub.""" entry = MockConfigEntry(domain=mikrotik.DOMAIN, data=MOCK_DATA,) entry.add_to_hass(hass) with patch.object(mikrotik, "MikrotikHub") as mock_hub: mock_hub.return_value.async_setup = CoroutineMock(return_value=False) assert await mikrotik.async_setup_entry(hass, entry) is False assert mikrotik.DOMAIN not in hass.data async def test_unload_entry(hass): """Test being able to unload an entry.""" entry = MockConfigEntry(domain=mikrotik.DOMAIN, data=MOCK_DATA,) entry.add_to_hass(hass) with patch.object(mikrotik, "MikrotikHub") as mock_hub, patch( "homeassistant.helpers.device_registry.async_get_registry", return_value=Mock(), ): mock_hub.return_value.async_setup = CoroutineMock(return_value=True) mock_hub.return_value.serial_num = "12345678" mock_hub.return_value.model = "RB750" mock_hub.return_value.hostname = "mikrotik" mock_hub.return_value.firmware = "3.65" assert await mikrotik.async_setup_entry(hass, entry) is True assert len(mock_hub.return_value.mock_calls) == 1 assert await mikrotik.async_unload_entry(hass, entry) assert entry.entry_id not in hass.data[mikrotik.DOMAIN]
the-stack_0_19542
import discord import src.modules.toxicity_helper as toxicity_helper from src.modules.catfact_helper import get_catfact from src.modules.repeat_helper import message_author, is_repeat, cycle, flush, message_author_debug from src.tools.botfunction import BotFunction from src.tools.message_return import message_data from src.modules.discord_helper import generate_embed BAN_EMOJI_ID = 338384063691751424 def super_toxic_heuristic(scores): return False class auto_on_message(BotFunction): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) async def action(self, message, *args, **kwargs): raise NotImplementedError class unsubscribe(auto_on_message): """ Extension of $catfact """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) async def action(self, message, *args, **kwargs): if message.content.lower().strip() == "unsubscribe": return message_data(message.channel, get_catfact()) # print(help(unsubscribe)) class private_message(auto_on_message): """ Yang will respond to private messages with a notice to not message him privately """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) async def action(self, message, *args, **kwargs): if isinstance(message.channel, (discord.DMChannel, discord.GroupChannel)): return message_data(message.channel, "I do not reply to private messages. If you have any questions, please message one of the mods.") return None class check_toxicity(auto_on_message): """ Notifies admins if a message is toxic (>.83) and removes it if super toxic (>.91) """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) async def remove_toxicity(self, message, scores, toxic_message): if message is None: return if super_toxic_heuristic(scores): await toxic_message.delete() await toxic_message.channel.send("We didn't accept you into this school to be toxic.") else: ban_emoji = await message.guild.fetch_emoji(BAN_EMOJI_ID) await message.add_reaction(ban_emoji) def check(reaction, user): return reaction.message.id == message.id and not user.bot and (reaction.emoji == ban_emoji) reaction, user = await self.bot.client.wait_for("reaction_add", check=check) try: await toxic_message.delete() except: await message.channel.send("Message unable to be deleted") async def action(self, message, *args, **kwargs): send_message, scores = toxicity_helper.get_toxicity(message) m = None if send_message is None else "" toxic_notif_channel = self.bot.client.get_channel(self.bot.config["toxic_notif_channel"]) if m is not None: toxic_notif_message = await toxic_notif_channel.send(embed=generate_embed(send_message)) await self.remove_toxicity(toxic_notif_message, scores, message) class mission_complete(auto_on_message): """ Repeats a message if it has been repeated bot.repeat_n times in a row in a channel """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def debug_reset(self): self.repeated_messages_dict = {(channel.id):[] for channel in self.bot.channels} async def action(self, message, *args, **kwargs): m_a = message_author(message.content, message.author, self.bot.debug) cycle(self.bot.repeated_messages_dict[message.channel.id], m_a, self.bot.repeat_n) if is_repeat(self.bot.repeated_messages_dict[message.channel.id], self.bot.repeat_n): send = self.bot.repeated_messages_dict[message.channel.id][-1].message flush(self.bot.repeated_messages_dict[message.channel.id]) return message_data(message.channel, send) return None async def debug_action(self, message, *args, **kwargs): m_a = message_author(message.content, message.author, self.bot.debug) cycle(self.bot.repeated_messages_dict[message.channel.id], m_a, self.bot.repeat_n) if is_repeat(self.bot.repeated_messages_dict[message.channel.id], self.bot.repeat_n): send = self.bot.repeated_messages_dict[message.channel.id][-1].message flush(self.bot.repeated_messages_dict[message.channel.id]) return message_data(message.channel, send) # @bot.auto_on_message(timedelta(minutes=1),None,True) # def fire(message): # """ # fire # """ # if "fire" in message.content.lower().split() and "update" in message.content.lower().split(): # return message_data(message.channel,"There is no threat to the campus") # return None # @bot.auto_on_message(None,None,True) # def test(message): # print(message.author.nick) # return message_data(message.channel,message.author.nick)
the-stack_0_19544
import unittest from caffe2.python import convnet_benchmarks as cb from caffe2.python import test_util, workspace @unittest.skipIf(not workspace.has_gpu_support, "no gpu") class TestConvnetBenchmarks(test_util.TestCase): def testConvnetBenchmarks(self): all_args = [ '--batch_size 16 --order NCHW --iterations 1 ' '--warmup_iterations 1', '--batch_size 16 --order NCHW --iterations 1 ' '--warmup_iterations 1 --forward_only', ] for model in [cb.AlexNet, cb.OverFeat, cb.VGGA, cb.Inception]: for arg_str in all_args: args = cb.GetArgumentParser().parse_args(arg_str.split(' ')) cb.Benchmark(model, args) if __name__ == '__main__': unittest.main()
the-stack_0_19545
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals from setuptools import setup, find_packages VERSION = open('VERSION').read().lstrip('version: ').rstrip('\n') setup( name='django-labjs', packages=find_packages(), version=VERSION, description='Django labjs templatetags.', long_description=open('README.rst').read(), author='Ashley Camba Garrido', author_email='[email protected]', maintainer='Luke Pomfrey', maintainer_email='[email protected]', url='https://github.com/lpomfrey/django-labjs', setup_requires=['setuptools_git >= 0.3'], install_requires=[ 'django-appconf>=0.4', 'django-compressor>=0.9.2', ], test_suite='runtests.runtests', include_package_data=True, zip_safe=False, # because we're including media that Django needs classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Software Development :: Libraries :: Python Modules', ], )
the-stack_0_19548
import logging from base64 import b64decode from dateutil import parser from requests import Session from xlsxwriter.utility import xl_col_to_name from redash.query_runner import * from redash.utils import json_dumps, json_loads from redash.query_runner.i18n_dataSource import zh logger = logging.getLogger(__name__) try: import gspread from gspread.httpsession import HTTPSession from oauth2client.service_account import ServiceAccountCredentials enabled = True except ImportError: enabled = False def _load_key(filename): with open(filename, "rb") as f: return json_loads(f.read()) def _get_columns_and_column_names(row): column_names = [] columns = [] duplicate_counter = 1 for i, column_name in enumerate(row): if not column_name: column_name = 'column_{}'.format(xl_col_to_name(i)) if column_name in column_names: column_name = u"{}{}".format(column_name, duplicate_counter) duplicate_counter += 1 column_names.append(column_name) columns.append({ 'name': column_name, 'friendly_name': column_name, 'type': TYPE_STRING }) return columns, column_names def _value_eval_list(row_values, col_types): value_list = [] raw_values = zip(col_types, row_values) for typ, rval in raw_values: try: if rval is None or rval == '': val = None elif typ == TYPE_BOOLEAN: val = True if unicode(rval).lower() == 'true' else False elif typ == TYPE_DATETIME: val = parser.parse(rval) elif typ == TYPE_FLOAT: val = float(rval) elif typ == TYPE_INTEGER: val = int(rval) else: # for TYPE_STRING and default val = unicode(rval) value_list.append(val) except (ValueError, OverflowError): value_list.append(rval) return value_list HEADER_INDEX = 0 class WorksheetNotFoundError(Exception): def __init__(self, worksheet_num, worksheet_count): message = "Worksheet number {} not found. Spreadsheet has {} worksheets. Note that the worksheet count is zero based.".format(worksheet_num, worksheet_count) super(WorksheetNotFoundError, self).__init__(message) def parse_query(query): values = query.split("|") key = values[0] # key of the spreadsheet worksheet_num = 0 if len(values) != 2 else int(values[1]) # if spreadsheet contains more than one worksheet - this is the number of it return key, worksheet_num def parse_worksheet(worksheet): if not worksheet: return {'columns': [], 'rows': []} columns, column_names = _get_columns_and_column_names(worksheet[HEADER_INDEX]) if len(worksheet) > 1: for j, value in enumerate(worksheet[HEADER_INDEX + 1]): columns[j]['type'] = guess_type(value) column_types = [c['type'] for c in columns] rows = [dict(zip(column_names, _value_eval_list(row, column_types))) for row in worksheet[HEADER_INDEX + 1:]] data = {'columns': columns, 'rows': rows} return data def parse_spreadsheet(spreadsheet, worksheet_num): worksheets = spreadsheet.worksheets() worksheet_count = len(worksheets) if worksheet_num >= worksheet_count: raise WorksheetNotFoundError(worksheet_num, worksheet_count) worksheet = worksheets[worksheet_num].get_all_values() return parse_worksheet(worksheet) class TimeoutSession(Session): def request(self, *args, **kwargs): kwargs.setdefault('timeout', 300) return super(TimeoutSession, self).request(*args, **kwargs) class GoogleSpreadsheet(BaseQueryRunner): def __init__(self, configuration): super(GoogleSpreadsheet, self).__init__(configuration) self.syntax = 'custom' @classmethod def annotate_query(cls): return False @classmethod def type(cls): return "google_spreadsheets" @classmethod def enabled(cls): return enabled @classmethod def configuration_schema(cls): return { 'type': 'object', 'properties': { 'jsonKeyFile': { "type": "string", 'title': zh.get('JSON Key File', 'JSON Key File') } }, 'required': ['jsonKeyFile'], 'secret': ['jsonKeyFile'] } def _get_spreadsheet_service(self): scope = [ 'https://spreadsheets.google.com/feeds', ] key = json_loads(b64decode(self.configuration['jsonKeyFile'])) creds = ServiceAccountCredentials.from_json_keyfile_dict(key, scope) timeout_session = HTTPSession() timeout_session.requests_session = TimeoutSession() spreadsheetservice = gspread.Client(auth=creds, http_session=timeout_session) spreadsheetservice.login() return spreadsheetservice def test_connection(self): self._get_spreadsheet_service() def is_url_key(self, key): if key.startswith('https://'): return True return False def run_query(self, query, user): logger.debug("Spreadsheet is about to execute query: %s", query) key, worksheet_num = parse_query(query) try: spreadsheet_service = self._get_spreadsheet_service() if self.is_url_key(key): spreadsheet = spreadsheet_service.open_by_url(key) else: spreadsheet = spreadsheet_service.open_by_key(key) data = parse_spreadsheet(spreadsheet, worksheet_num) return json_dumps(data), None except gspread.SpreadsheetNotFound: return None, "Spreadsheet ({}) not found. Make sure you used correct id.".format(key) register(GoogleSpreadsheet)
the-stack_0_19549
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import re import sys import urllib import tarfile import zipfile import os.path as osp from scipy.io import loadmat import numpy as np import h5py from scipy.misc import imsave from utils.iotools import mkdir_if_missing, write_json, read_json from .base import BaseImgDataset class iLIDS(BaseImgDataset): """ iLIDS (for single shot setting) Reference: Wang et al. Person Re-Identification by Video Ranking. ECCV 2014. URL: http://www.eecs.qmul.ac.uk/~xiatian/downloads_qmul_iLIDS-VID_ReID_dataset.html Dataset statistics: # identities: 300 # images: 600 # cameras: 2 """ dataset_dir = 'ilids-vid' def __init__(self, root='data', split_id=0, verbose=True, use_lmdb=False, **kwargs): super(iLIDS, self).__init__() self.dataset_dir = osp.join(root, self.dataset_dir) self.dataset_url = 'http://www.eecs.qmul.ac.uk/~xiatian/iLIDS-VID/iLIDS-VID.tar' self.data_dir = osp.join(self.dataset_dir, 'i-LIDS-VID') self.split_dir = osp.join(self.dataset_dir, 'train-test people splits') self.split_mat_path = osp.join(self.split_dir, 'train_test_splits_ilidsvid.mat') self.split_path = osp.join(self.dataset_dir, 'splits.json') self.cam_1_path = osp.join(self.dataset_dir, 'i-LIDS-VID/images/cam1') # differ from video self.cam_2_path = osp.join(self.dataset_dir, 'i-LIDS-VID/images/cam2') self._download_data() self._check_before_run() self._prepare_split() splits = read_json(self.split_path) if split_id >= len(splits): raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1)) split = splits[split_id] train_dirs, test_dirs = split['train'], split['test'] print("# train identites: {}, # test identites {}".format(len(train_dirs), len(test_dirs))) train, num_train_imgs, num_train_pids = self._process_data(train_dirs, cam1=True, cam2=True) query, num_query_imgs, num_query_pids = self._process_data(test_dirs, cam1=True, cam2=False) gallery, num_gallery_imgs, num_gallery_pids = self._process_data(test_dirs, cam1=False, cam2=True) num_total_pids = num_train_pids + num_query_pids num_total_imgs = num_train_imgs + num_query_imgs if verbose: print("=> iLIDS (single-shot) loaded") print("Dataset statistics:") print(" ------------------------------") print(" subset | # ids | # images") print(" ------------------------------") print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs)) print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs)) print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs)) print(" ------------------------------") print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs)) print(" ------------------------------") self.train = train self.query = query self.gallery = gallery self.num_train_pids = num_train_pids self.num_query_pids = num_query_pids self.num_gallery_pids = num_gallery_pids if use_lmdb: self.generate_lmdb() def _download_data(self): if osp.exists(self.dataset_dir): print("This dataset has been downloaded.") return mkdir_if_missing(self.dataset_dir) fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url)) print("Downloading iLIDS-VID dataset") urllib.urlretrieve(self.dataset_url, fpath) print("Extracting files") tar = tarfile.open(fpath) tar.extractall(path=self.dataset_dir) tar.close() def _check_before_run(self): """Check if all files are available before going deeper""" if not osp.exists(self.dataset_dir): raise RuntimeError("'{}' is not available".format(self.dataset_dir)) if not osp.exists(self.data_dir): raise RuntimeError("'{}' is not available".format(self.data_dir)) if not osp.exists(self.split_dir): raise RuntimeError("'{}' is not available".format(self.split_dir)) def _prepare_split(self): if not osp.exists(self.split_path): print("Creating splits ...") mat_split_data = loadmat(self.split_mat_path)['ls_set'] num_splits = mat_split_data.shape[0] num_total_ids = mat_split_data.shape[1] assert num_splits == 10 assert num_total_ids == 300 num_ids_each = num_total_ids // 2 # pids in mat_split_data are indices, so we need to transform them # to real pids person_cam1_dirs = sorted(glob.glob(osp.join(self.cam_1_path, '*'))) person_cam2_dirs = sorted(glob.glob(osp.join(self.cam_2_path, '*'))) person_cam1_dirs = [osp.basename(item) for item in person_cam1_dirs] person_cam2_dirs = [osp.basename(item) for item in person_cam2_dirs] # make sure persons in one camera view can be found in the other camera view assert set(person_cam1_dirs) == set(person_cam2_dirs) splits = [] for i_split in range(num_splits): # first 50% for testing and the remaining for training, following Wang et al. ECCV'14. train_idxs = sorted(list(mat_split_data[i_split,num_ids_each:])) test_idxs = sorted(list(mat_split_data[i_split,:num_ids_each])) train_idxs = [int(i)-1 for i in train_idxs] test_idxs = [int(i)-1 for i in test_idxs] # transform pids to person dir names train_dirs = [person_cam1_dirs[i] for i in train_idxs] test_dirs = [person_cam1_dirs[i] for i in test_idxs] split = {'train': train_dirs, 'test': test_dirs} splits.append(split) print("Totally {} splits are created, following Wang et al. ECCV'14".format(len(splits))) print("Split file is saved to {}".format(self.split_path)) write_json(splits, self.split_path) def _process_data(self, dirnames, cam1=True, cam2=True): dirname2pid = {dirname:i for i, dirname in enumerate(dirnames)} dataset = [] for i, dirname in enumerate(dirnames): if cam1: pdir = osp.join(self.cam_1_path, dirname) img_path = glob.glob(osp.join(pdir, '*.png')) # only one image is available in one folder assert len(img_path) == 1 img_path = img_path[0] pid = dirname2pid[dirname] dataset.append((img_path, pid, 0)) if cam2: pdir = osp.join(self.cam_2_path, dirname) img_path = glob.glob(osp.join(pdir, '*.png')) # only one image is available in one folder assert len(img_path) == 1 img_path = img_path[0] pid = dirname2pid[dirname] dataset.append((img_path, pid, 1)) num_imgs = len(dataset) num_pids = len(dirnames) return dataset, num_imgs, num_pids
the-stack_0_19553
from rltorch.network import BaseNetwork, create_dqn_base,\ create_linear_network class DiscreteConvQNetwork(BaseNetwork): def __init__(self, num_channels, output_dim, initializer='xavier'): super(DiscreteConvQNetwork, self).__init__() self.base = create_dqn_base(num_channels, initializer=initializer) self.V_stream = create_linear_network( 7*7*64, 1, hidden_units=[512], initializer=initializer) self.A_stream = create_linear_network( 7*7*64, output_dim, hidden_units=[512], initializer=initializer) def forward(self, states): h = self.base(states) V = self.V_stream(h) A = self.A_stream(h) Q = V + A - A.mean(1, keepdim=True) return Q class TwinedDiscreteConvQNetwork(BaseNetwork): def __init__(self, num_channels, output_dim, initializer='xavier'): super(TwinedDiscreteConvQNetwork, self).__init__() self.Q1 = DiscreteConvQNetwork( num_channels, output_dim, initializer) self.Q2 = DiscreteConvQNetwork( num_channels, output_dim, initializer) def forward(self, states): Q1 = self.Q1(states) Q2 = self.Q2(states) return Q1, Q2
the-stack_0_19555
#!/usr/bin/env python3 """ Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import socket import requests import urllib3 import jsonpickle from typing import List NETWORK_TYPE = "carrier_wifi_network" admin_cert = ( "/var/opt/magma/certs/rest_admin.crt", "/var/opt/magma/certs/rest_admin.key", ) # Disable warnings about SSL verification since its a local VM urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) class AllowedGREPeers: def __init__(self, ip: str, key: int): self.ip = ip self.key = key class CarrierWiFiConfig: def __init__(self, grePeers: List[AllowedGREPeers]): self.allowed_gre_peers = grePeers class NetworkDNSConfig: def __init__(self, enable_caching: bool, local_ttl: int): self.enable_caching = enable_caching self.local_ttl = local_ttl class XwFMNetwork: def __init__(self, id: str, name: str, description: str): self.id = id self.name = name self.description = description self.type = NETWORK_TYPE self.dns = NetworkDNSConfig(enable_caching=False, local_ttl=60) class TierImage: def __init__(self, name: str, order: int): self.name = name self.order = order class Tier: def __init__( self, id: str, name: str, version: str, images: List[TierImage], gateways: List[str], ): self.id = id self.name = name self.images = images self.version = version self.gateways = gateways class MagmadGatewayConfigs: def __init__( self, autoupgrade_enabled: bool, autoupgrade_poll_interval: int, checkin_interval: int, checkin_timeout: int, ): self.autoupgrade_enabled = autoupgrade_enabled self.autoupgrade_poll_interval = autoupgrade_poll_interval self.checkin_interval = checkin_interval self.checkin_timeout = checkin_timeout class ChallengeKey: def __init__(self, key_type: str): self.key_type = key_type class GatewayDevice: def __init__(self, hardware_id: str, key: ChallengeKey): self.hardware_id = hardware_id self.key = key class Gateway: def __init__( self, id: str, name: str, description: str, magmad: MagmadGatewayConfigs, device: GatewayDevice, tier: str, carrier_wifi: CarrierWiFiConfig, ): self.id = id self.name, self.description = name, description self.magmad = magmad self.device = device self.tier = tier self.carrier_wifi = carrier_wifi def cloud_get(url: str): resp = requests.get(url, verify=False, cert=admin_cert) if resp.status_code != 200: raise Exception("Received a %d response: %s" % (resp.status_code, resp.text)) return return resp.json() def cloud_post(url: str, data: str): resp = requests.post( url, data=data, headers={"content-type": "application/json"}, verify=False, cert=admin_cert, ) if resp.status_code not in [200, 201, 204]: raise Exception("Received a %d response: %s" % (resp.status_code, resp.text)) def create_network_if_not_exists(url: str, network_id: str): values = cloud_get(url + "/networks") if network_id in values: print(f"NMS XWF-M Network exists already - {network_id}") else: data = XwFMNetwork( id=network_id, name="XWFM Network", description="XWFM Network" ) cloud_post(url + "/networks", jsonpickle.pickler.encode(data)) # create tier tier_payload = Tier( id="default", name="default", version="0.0.0-0", images=[], gateways=[] ) cloud_post( url + f"/networks/{network_id}/tiers", jsonpickle.pickler.encode(tier_payload), ) print(f"{network_id} NMS XWF-M Network created successfully") def get_next_gateway_id(url: str, network_id: str, hw_id: str) -> (bool, str): gateways = cloud_get(url + f"/cwf/{network_id}/gateways") for gw in gateways.values(): if gw['device']['hardware_id'] == hw_id: return True, gw['id'] nbr = len(gateways) + 1 return False, str(nbr) def register_gateway(url: str, network_id: str, hardware_id: str, tier_id: str): """ Register XwF-M Gateway in the requested network. """ found, gid = get_next_gateway_id(url, network_id, hardware_id) if found: print(f"XWF-M Gateway exists already - {hardware_id}") else: grePeer = AllowedGREPeers(ip="192.168.128.2", key=100) data = Gateway( name=socket.gethostname().strip(), description=f"XWFM Gateway {gid}", tier="default", id=f"fbc_gw_{gid}", device=GatewayDevice( hardware_id=hardware_id, key=ChallengeKey(key_type="ECHO") ), magmad=MagmadGatewayConfigs( autoupgrade_enabled=True, autoupgrade_poll_interval=60, checkin_interval=60, checkin_timeout=30, ), carrier_wifi=CarrierWiFiConfig(grePeers=[grePeer]), ) cloud_post(url + f"/cwf/{network_id}/gateways", jsonpickle.pickler.encode(data)) def create_parser(): """ Creates the argparse parser with all the arguments. """ parser = argparse.ArgumentParser( description="Provision XwF-M Gateway", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--partner", dest="partner", action="store", help="Partner Short Name" ) parser.add_argument( "--hwid", dest="hwid", action="store", help="Gateway Hardware ID" ) parser.add_argument( "--url", dest="url", action="store", help="Orchestrator URL Address" ) return parser def main(): parser = create_parser() args = parser.parse_args() if not (args.hwid and args.url and args.partner): parser.print_usage() exit(1) # Create XwF-M Network partner = args.partner.strip() create_network_if_not_exists(args.url, partner) register_gateway(args.url, partner, args.hwid, "default") if __name__ == "__main__": main()
the-stack_0_19557
# -*- coding: utf-8 -*- # Copyright 2004-2020 Davide Alberani <[email protected]> # 2008-2018 H. Turgut Uyar <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ This module provides the classes (and the instances) that are used to parse the IMDb pages on the www.imdb.com server about a movie. For example, for Brian De Palma's "The Untouchables", the referred pages would be: combined details http://www.imdb.com/title/tt0094226/reference plot summary http://www.imdb.com/title/tt0094226/plotsummary ...and so on. """ from __future__ import absolute_import, division, print_function, unicode_literals import functools import re from imdb import PY2 from imdb import imdbURL_base from imdb.Company import Company from imdb.Movie import Movie from imdb.Person import Person from imdb.utils import _Container, KIND_MAP from .piculet import Path, Rule, Rules, preprocessors, transformers from .utils import DOMParserBase, analyze_imdbid, build_person, build_movie if PY2: from urllib import unquote else: from urllib.parse import unquote # Dictionary used to convert some section's names. _SECT_CONV = { 'directed': 'director', 'directed by': 'director', 'directors': 'director', 'editors': 'editor', 'writing credits': 'writer', 'writers': 'writer', 'produced': 'producer', 'cinematography': 'cinematographer', 'film editing': 'editor', 'casting': 'casting director', 'costume design': 'costume designer', 'makeup department': 'make up', 'production management': 'production manager', 'second unit director or assistant director': 'assistant director', 'costume and wardrobe department': 'costume department', 'costume departmen': 'costume department', 'sound department': 'sound crew', 'stunts': 'stunt performer', 'other crew': 'miscellaneous crew', 'also known as': 'akas', 'country': 'countries', 'runtime': 'runtimes', 'language': 'languages', 'certification': 'certificates', 'genre': 'genres', 'created': 'creator', 'creators': 'creator', 'color': 'color info', 'plot': 'plot outline', 'art directors': 'art direction', 'assistant directors': 'assistant director', 'set decorators': 'set decoration', 'visual effects department': 'visual effects', 'miscellaneous': 'miscellaneous crew', 'make up department': 'make up', 'plot summary': 'plot outline', 'cinematographers': 'cinematographer', 'camera department': 'camera and electrical department', 'costume designers': 'costume designer', 'production designers': 'production design', 'production managers': 'production manager', 'music original': 'original music', 'casting directors': 'casting director', 'other companies': 'miscellaneous companies', 'producers': 'producer', 'special effects by': 'special effects department', 'special effects': 'special effects companies' } re_space = re.compile(r'\s+') def _manageRoles(mo): """Perform some transformation on the html, so that roleIDs can be easily retrieved.""" firstHalf = mo.group(1) secondHalf = mo.group(2) newRoles = [] roles = secondHalf.split(' / ') for role in roles: role = role.strip() if not role: continue roleID = analyze_imdbid(role) if roleID is None: roleID = '/' else: roleID += '/' newRoles.append('<div class="_imdbpyrole" roleid="%s">%s</div>' % ( roleID, role.strip() )) return firstHalf + ' / '.join(newRoles) + mo.group(3) _reRolesMovie = re.compile(r'(<td class="character">)(.*?)(</td>)', re.I | re.M | re.S) def makeSplitter(lstrip=None, sep='|', comments=True, origNotesSep=' (', newNotesSep='::(', strip=None): """Return a splitter function suitable for a given set of data.""" def splitter(x): if not x: return x x = x.strip() if not x: return x if lstrip is not None: x = x.lstrip(lstrip).lstrip() lx = x.split(sep) lx[:] = [_f for _f in [j.strip() for j in lx] if _f] if comments: lx[:] = [j.replace(origNotesSep, newNotesSep, 1) for j in lx] if strip: lx[:] = [j.strip(strip) for j in lx] return lx return splitter def _toInt(val, replace=()): """Return the value, converted to integer, or None; if present, 'replace' must be a list of tuples of values to replace.""" for before, after in replace: val = val.replace(before, after) try: return int(val) except (TypeError, ValueError): return None _re_og_title = re.compile( r'(.*) \((?:(?:(.+)(?= ))? ?(\d{4})(?:(–)(\d{4}| ))?|(.+))\)', re.UNICODE ) def analyze_og_title(og_title): data = {} match = _re_og_title.match(og_title) if og_title and not match: # assume it's a title in production, missing release date information return {'title': og_title} data['title'] = match.group(1) if match.group(3): data['year'] = int(match.group(3)) kind = match.group(2) or match.group(6) if kind is None: kind = 'movie' else: kind = kind.lower() kind = KIND_MAP.get(kind, kind) data['kind'] = kind year_separator = match.group(4) # There is a year separator so assume an ongoing or ended series if year_separator is not None: end_year = match.group(5) if end_year is not None: data['series years'] = '%(year)d-%(end_year)s' % { 'year': data['year'], 'end_year': end_year.strip(), } elif kind.endswith('series'): data['series years'] = '%(year)d-' % {'year': data['year']} # No year separator and series, so assume that it ended the same year elif kind.endswith('series') and 'year' in data: data['series years'] = '%(year)d-%(year)d' % {'year': data['year']} if data['kind'] == 'episode' and data['title'][0] == '"': quote_end = data['title'].find('"', 1) data['tv series title'] = data['title'][1:quote_end] data['title'] = data['title'][quote_end + 1:].strip() return data def analyze_certificates(certificates): def reducer(acc, el): cert_re = re.compile(r'^(.+):(.+)$', re.UNICODE) if cert_re.match(el): acc.append(el) elif acc: acc[-1] = u'{}::{}'.format( acc[-1], el, ) return acc certificates = [el.strip() for el in certificates.split('\n') if el.strip()] return functools.reduce(reducer, certificates, []) def clean_akas(aka): aka = re_space.sub(' ', aka).strip() if aka.lower().startswith('see more'): aka = '' return aka class DOMHTMLMovieParser(DOMParserBase): """Parser for the "reference" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: mparser = DOMHTMLMovieParser() result = mparser.parse(reference_html_string) """ _containsObjects = True rules = [ Rule( key='title', extractor=Path('//meta[@property="og:title"]/@content', transform=analyze_og_title) ), Rule( key='localized title', extractor=Path('//div[@class="titlereference-header"]//span[@class="titlereference-title-year"]/preceding-sibling::text()', transform=lambda x: re_space.sub(' ', x).strip()) ), Rule( key='original title', extractor=Path('//div[@class="titlereference-header"]//span[@class="titlereference-original-title-label"]/preceding-sibling::text()', transform=lambda x: re_space.sub(' ', x).strip()) ), # parser for misc sections like 'casting department', 'stunts', ... Rule( key='misc sections', extractor=Rules( foreach='//h4[contains(@class, "ipl-header__content")]', rules=[ Rule( key=Path('./@name', transform=lambda x: x.replace('_', ' ').strip()), extractor=Rules( foreach='../../following-sibling::table[1]//tr', rules=[ Rule( key='person', extractor=Path('.//text()') ), Rule( key='link', extractor=Path('./td[1]/a[@href]/@href') ) ], transform=lambda x: build_person( x.get('person') or '', personID=analyze_imdbid(x.get('link')) ) ) ) ] ) ), Rule( key='cast', extractor=Rules( foreach='//table[@class="cast_list"]//tr', rules=[ Rule( key='person', extractor=Path('.//text()') ), Rule( key='link', extractor=Path('./td[2]/a/@href') ), Rule( key='roleID', extractor=Path('./td[4]//div[@class="_imdbpyrole"]/@roleid') ) ], transform=lambda x: build_person( x.get('person') or '', personID=analyze_imdbid(x.get('link')), roleID=(x.get('roleID') or '').split('/') ) ) ), Rule( key='recommendations', extractor=Rules( foreach='//div[@class="rec_overview"]', rules=[ Rule( key='movieID', extractor=Path( './@data-tconst', transform=lambda x: (x or '').replace('tt', '') ) ), Rule( key='title', extractor=Path( './/div[@class="rec-title"]//text()', transform=lambda x: re_space.sub(' ', x or '').strip() ) ), ], transform=lambda x: build_movie(x.get('title', ''), movieID=x.get('movieID')) ) ), Rule( key='myrating', extractor=Path('//span[@id="voteuser"]//text()') ), Rule( key='plot summary', extractor=Path('//td[starts-with(text(), "Plot")]/..//p/text()', transform=lambda x: x.strip().rstrip('|').rstrip()) ), Rule( key='genres', extractor=Path( foreach='//td[starts-with(text(), "Genre")]/..//li/a', path='./text()' ) ), Rule( key='runtimes', extractor=Path( foreach='//td[starts-with(text(), "Runtime")]/..//li', path='./text()', transform=lambda x: x.strip().replace(' min', '') ) ), Rule( key='countries', extractor=Path( foreach='//td[starts-with(text(), "Countr")]/..//li/a', path='./text()' ) ), Rule( key='country codes', extractor=Path( foreach='//td[starts-with(text(), "Countr")]/..//li/a', path='./@href', transform=lambda x: x.split('/')[2].strip().lower() ) ), Rule( key='language', extractor=Path( foreach='//td[starts-with(text(), "Language")]/..//li/a', path='./text()' ) ), Rule( key='language codes', extractor=Path( foreach='//td[starts-with(text(), "Language")]/..//li/a', path='./@href', transform=lambda x: x.split('/')[2].strip() ) ), Rule( key='color info', extractor=Path( foreach='//td[starts-with(text(), "Color")]/..//li/a', path='./text()', transform=lambda x: x.replace(' (', '::(') ) ), Rule( key='aspect ratio', extractor=Path( '//td[starts-with(text(), "Aspect")]/..//li/text()', transform=transformers.strip ) ), Rule( key='sound mix', extractor=Path( foreach='//td[starts-with(text(), "Sound Mix")]/..//li/a', path='./text()', transform=lambda x: x.replace(' (', '::(') ) ), Rule( key='box office', extractor=Rules( foreach='//section[contains(@class, "titlereference-section-box-office")]' '//table[contains(@class, "titlereference-list")]//tr', rules=[ Rule( key='box_office_title', extractor=Path('./td[1]/text()') ), Rule( key='box_office_detail', extractor=Path('./td[2]/text()') ) ], transform=lambda x: (x['box_office_title'].strip(), x['box_office_detail'].strip()) ), ), Rule( key='certificates', extractor=Path( '//td[starts-with(text(), "Certificat")]/..//text()', transform=analyze_certificates ) ), # Collects akas not encosed in <i> tags. Rule( key='other akas', extractor=Path( foreach='//section[contains(@class, "listo")]//td[starts-with(text(), "Also Known As")]/..//ul/li', path='.//text()', transform=clean_akas ) ), Rule( key='creator', extractor=Rules( foreach='//div[starts-with(normalize-space(text()), "Creator")]/ul/li[1]/a', rules=[ Rule( key='name', extractor=Path('./text()') ), Rule( key='link', extractor=Path('./@href') ) ], transform=lambda x: build_person( x.get('name') or '', personID=analyze_imdbid(x.get('link')) ) ) ), Rule( key='thin writer', extractor=Rules( foreach='//div[starts-with(normalize-space(text()), "Writer")]/ul/li[1]/a', rules=[ Rule( key='name', extractor=Path('./text()') ), Rule( key='link', extractor=Path('./@href') ) ], transform=lambda x: build_person( x.get('name') or '', personID=analyze_imdbid(x.get('link')) ) ) ), Rule( key='thin director', extractor=Rules( foreach='//div[starts-with(normalize-space(text()), "Director")]/ul/li[1]/a', rules=[ Rule( key='name', extractor=Path('./text()') ), Rule( key='link', extractor=Path('./@href') ) ], transform=lambda x: build_person( x.get('name') or '', personID=analyze_imdbid(x.get('link')) ) ) ), Rule( key='top/bottom rank', extractor=Path( '//li[@class="ipl-inline-list__item"]//a[starts-with(@href, "/chart/")]/text()' ) ), Rule( key='original air date', extractor=Path('//span[@imdbpy="airdate"]/text()') ), Rule( key='series years', extractor=Path( '//div[@id="tn15title"]//span[starts-with(text(), "TV series")]/text()', transform=lambda x: x.replace('TV series', '').strip() ) ), Rule( key='season/episode', extractor=Path( '//div[@class="titlereference-overview-season-episode-section"]/ul//text()', transform=transformers.strip ) ), Rule( key='number of episodes', extractor=Path( '//a[starts-with(text(), "All Episodes")]/text()', transform=lambda x: int(x.replace('All Episodes', '').strip()[1:-1]) ) ), Rule( key='episode number', extractor=Path( '//div[@id="tn15epnav"]/text()', transform=lambda x: int(re.sub(r'[^a-z0-9 ]', '', x.lower()).strip().split()[0])) ), Rule( key='previous episode', extractor=Path( '//span[@class="titlereference-overview-episodes-links"]' '//a[contains(text(), "Previous")]/@href', transform=analyze_imdbid ) ), Rule( key='next episode', extractor=Path( '//span[@class="titlereference-overview-episodes-links"]' '//a[contains(text(), "Next")]/@href', transform=analyze_imdbid ) ), Rule( key='number of seasons', extractor=Path( '//span[@class="titlereference-overview-years-links"]/../a[1]/text()', transform=int ) ), Rule( key='tv series link', extractor=Path('//a[starts-with(text(), "All Episodes")]/@href') ), Rule( key='akas', extractor=Path( foreach='//i[@class="transl"]', path='./text()', transform=lambda x: x .replace(' ', ' ') .rstrip('-') .replace('" - ', '"::', 1) .strip('"') .replace(' ', ' ') ) ), Rule( key='production status', extractor=Path( '//td[starts-with(text(), "Status:")]/..//div[@class="info-content"]//text()', transform=lambda x: x.strip().split('|')[0].strip().lower() ) ), Rule( key='production status updated', extractor=Path( '//td[starts-with(text(), "Status Updated:")]/' '..//div[@class="info-content"]//text()', transform=transformers.strip ) ), Rule( key='production comments', extractor=Path( '//td[starts-with(text(), "Comments:")]/' '..//div[@class="info-content"]//text()', transform=transformers.strip ) ), Rule( key='production note', extractor=Path( '//td[starts-with(text(), "Note:")]/' '..//div[@class="info-content"]//text()', transform=transformers.strip ) ), Rule( key='companies', extractor=Rules( foreach="//ul[@class='simpleList']", rules=[ Rule( key=Path('preceding-sibling::header[1]/div/h4/text()', transform=transformers.lower), extractor=Rules( foreach='./li', rules=[ Rule( key='name', extractor=Path('./a//text()') ), Rule( key='comp-link', extractor=Path('./a/@href') ), Rule( key='notes', extractor=Path('./text()') ) ], transform=lambda x: Company( name=x.get('name') or '', accessSystem='http', companyID=analyze_imdbid(x.get('comp-link')), notes=(x.get('notes') or '').strip() ) ) ) ] ) ), Rule( key='rating', extractor=Path('(//span[@class="ipl-rating-star__rating"])[1]/text()') ), Rule( key='votes', extractor=Path('//span[@class="ipl-rating-star__total-votes"][1]/text()') ), Rule( key='cover url', extractor=Path('//img[@alt="Poster"]/@src') ), Rule( key='imdbID', extractor=Path('//meta[@property="pageId"]/@content', transform=lambda x: (x or '').replace('tt', '')) ) ] preprocessors = [ ('/releaseinfo">', '"><span imdbpy="airdate">'), (re.compile(r'(<b class="blackcatheader">.+?</b>)', re.I), r'</div><div>\1'), ('<small>Full cast and crew for<br>', ''), ('<td> </td>', '<td>...</td>'), (re.compile(r'<span class="tv-extra">TV mini-series(\s+.*?)</span>', re.I), r'<span class="tv-extra">TV series\1</span> (mini)'), (_reRolesMovie, _manageRoles) ] def preprocess_dom(self, dom): # Handle series information. xpath = self.xpath(dom, "//b[text()='Series Crew']") if xpath: b = xpath[-1] # In doubt, take the last one. for a in self.xpath(b, "./following::h5/a[@class='glossary']"): name = a.get('name') if name: a.set('name', 'series %s' % name) # Remove links to IMDbPro. preprocessors.remove(dom, '//span[@class="pro-link"]') # Remove some 'more' links (keep others, like the one around # the number of votes). preprocessors.remove(dom, '//a[@class="tn15more"][starts-with(@href, "/title/")]') # Remove the "rest of list" in cast. preprocessors.remove(dom, '//td[@colspan="4"]/..') return dom re_space = re.compile(r'\s+') re_airdate = re.compile(r'(.*)\s*\(season (\d+), episode (\d+)\)', re.I) def postprocess_data(self, data): # Convert section names. for sect in list(data.keys()): if sect in _SECT_CONV: data[_SECT_CONV[sect]] = data[sect] del data[sect] sect = _SECT_CONV[sect] # Filter out fake values. for key in data: value = data[key] if isinstance(value, list) and value: if isinstance(value[0], Person): data[key] = [x for x in value if x.personID is not None] if isinstance(value[0], _Container): for obj in data[key]: obj.accessSystem = self._as obj.modFunct = self._modFunct for key in ['title']: if (key in data) and isinstance(data[key], dict): subdata = data[key] del data[key] data.update(subdata) misc_sections = data.get('misc sections') if misc_sections is not None: for section in misc_sections: # skip sections with their own parsers if 'cast' in section.keys(): continue data.update(section) del data['misc sections'] if 'akas' in data or 'other akas' in data: akas = data.get('akas') or [] other_akas = data.get('other akas') or [] akas += other_akas nakas = [] for aka in akas: aka = aka.strip() if not aka: continue if aka.endswith('" -'): aka = aka[:-3].rstrip() nakas.append(aka) if 'akas' in data: del data['akas'] if 'other akas' in data: del data['other akas'] if nakas: data['akas'] = nakas if 'runtimes' in data: data['runtimes'] = [x.replace(' min', '') for x in data['runtimes']] if 'number of seasons' in data: data['seasons'] = [str(i) for i in range(1, data['number of seasons'] + 1)] if 'season/episode' in data: tokens = data['season/episode'].split('Episode') try: data['season'] = int(tokens[0].split('Season')[1]) except: data['season'] = 'unknown' try: data['episode'] = int(tokens[1]) except: data['episode'] = 'unknown' del data['season/episode'] for k in ('writer', 'director'): t_k = 'thin %s' % k if t_k not in data: continue if k not in data: data[k] = data[t_k] del data[t_k] if 'top/bottom rank' in data: tbVal = data['top/bottom rank'].lower() if tbVal.startswith('top'): tbKey = 'top 250 rank' tbVal = _toInt(tbVal, [('top rated movies: #', '')]) else: tbKey = 'bottom 100 rank' tbVal = _toInt(tbVal, [('bottom rated movies: #', '')]) if tbVal: data[tbKey] = tbVal del data['top/bottom rank'] if 'year' in data and data['year'] == '????': del data['year'] if 'tv series link' in data: if 'tv series title' in data: data['episode of'] = Movie(title=data['tv series title'], movieID=analyze_imdbid(data['tv series link']), accessSystem=self._as, modFunct=self._modFunct) data['episode of']['kind'] = 'tv series' del data['tv series title'] del data['tv series link'] if 'rating' in data: try: data['rating'] = float(data['rating'].replace('/10', '')) except (TypeError, ValueError): pass if data['rating'] == 0: del data['rating'] if 'votes' in data: try: votes = data['votes'].replace('(', '').replace(')', '').replace(',', '').replace('votes', '') data['votes'] = int(votes) except (TypeError, ValueError): pass companies = data.get('companies') if companies: for section in companies: for key, value in section.items(): if key in data: key = '%s companies' % key data.update({key: value}) del data['companies'] if 'box office' in data: data['box office'] = dict(data['box office']) return data def _process_plotsummary(x): """Process a plot (contributed by Rdian06).""" xauthor = x.get('author') xplot = x.get('plot', '').strip() if xauthor: xplot += '::%s' % xauthor return xplot class DOMHTMLPlotParser(DOMParserBase): """Parser for the "plot summary" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a 'plot' key, containing a list of string with the structure: 'summary::summary_author <author@email>'. Example:: pparser = HTMLPlotParser() result = pparser.parse(plot_summary_html_string) """ _defGetRefs = True # Notice that recently IMDb started to put the email of the # author only in the link, that we're not collecting, here. rules = [ Rule( key='plot', extractor=Rules( foreach='//ul[@id="plot-summaries-content"]/li', rules=[ Rule( key='plot', extractor=Path('./p//text()') ), Rule( key='author', extractor=Path('.//div[@class="author-container"]//a/text()') ) ], transform=_process_plotsummary ) ), Rule( key='synopsis', extractor=Path( foreach='//ul[@id="plot-synopsis-content"]', path='.//li//text()' ) ) ] def preprocess_dom(self, dom): preprocessors.remove(dom, '//li[@id="no-summary-content"]') return dom def postprocess_data(self, data): if 'synopsis' in data and data['synopsis'][0] and 'a Synopsis for this title' in data['synopsis'][0]: del data['synopsis'] return data def _process_award(x): award = {} _award = x.get('award') if _award is not None: _award = _award.strip() award['award'] = _award if not award['award']: return {} award['year'] = x.get('year').strip() if award['year'] and award['year'].isdigit(): award['year'] = int(award['year']) award['result'] = x.get('result').strip() category = x.get('category').strip() if category: award['category'] = category received_with = x.get('with') if received_with is not None: award['with'] = received_with.strip() notes = x.get('notes') if notes is not None: notes = notes.strip().split('\n', 2)[0] notes = re_space.sub(' ', notes) if notes: award['notes'] = notes award['anchor'] = x.get('anchor') return award class DOMHTMLAwardsParser(DOMParserBase): """Parser for the "awards" page of a given person or movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: awparser = HTMLAwardsParser() result = awparser.parse(awards_html_string) """ subject = 'title' _containsObjects = True rules = [ Rule( key='awards', extractor=Rules( foreach='//*[@id="main"]/div[1]/div/table//tr', rules=[ Rule( key='year', extractor=Path('normalize-space(./ancestor::table/preceding-sibling::*[1]/a/text())') ), Rule( key='result', extractor=Path('./td[1]/b/text()') ), Rule( key='award', extractor=Path('./td[1]/span/text()') ), Rule( key='category', extractor=Path('normalize-space(./ancestor::table/preceding-sibling::*[1]/text())') ), Rule( key='notes', extractor=Path('./td[2]/text()') ), Rule( key='anchor', extractor=Path('.//text()') ) ], transform=_process_award ) ), Rule( key='recipients', extractor=Rules( foreach='//*[@id="main"]/div[1]/div/table//tr/td[2]/a', rules=[ Rule( key='name', extractor=Path('./text()') ), Rule( key='link', extractor=Path('./@href') ), Rule( key='anchor', extractor=Path('./ancestor::tr//text()') ) ] ) ) ] preprocessors = [ (re.compile('(<tr><td[^>]*>.*?</td></tr>\n\n</table>)', re.I), r'\1</table>'), (re.compile('(<tr><td[^>]*>\n\n<big>.*?</big></td></tr>)', re.I), r'</table><table class="_imdbpy">\1'), (re.compile('(<table[^>]*>\n\n)</table>(<table)', re.I), r'\1\2'), (re.compile('(<small>.*?)<br>(.*?</small)', re.I), r'\1 \2'), (re.compile('(</tr>\n\n)(<td)', re.I), r'\1<tr>\2') ] def preprocess_dom(self, dom): """Repeat td elements according to their rowspan attributes in subsequent tr elements. """ cols = self.xpath(dom, "//td[@rowspan]") for col in cols: span = int(col.get('rowspan')) del col.attrib['rowspan'] position = len(self.xpath(col, "./preceding-sibling::td")) row = col.getparent() for tr in self.xpath(row, "./following-sibling::tr")[:span - 1]: # if not cloned, child will be moved to new parent clone = self.clone(col) tr.insert(position, clone) return dom def postprocess_data(self, data): if len(data) == 0: return {} nd = [] for award in data['awards']: matches = [p for p in data.get('recipients', []) if 'nm' in p.get('link') and award.get('anchor') == p.get('anchor')] if self.subject == 'title': recipients = [ Person(name=recipient['name'], personID=analyze_imdbid(recipient['link'])) for recipient in matches ] award['to'] = recipients elif self.subject == 'name': recipients = [ Movie(title=recipient['name'], movieID=analyze_imdbid(recipient['link'])) for recipient in matches ] award['for'] = recipients nd.append(award) if 'anchor' in award: del award['anchor'] return {'awards': nd} class DOMHTMLTaglinesParser(DOMParserBase): """Parser for the "taglines" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: tparser = DOMHTMLTaglinesParser() result = tparser.parse(taglines_html_string) """ rules = [ Rule( key='taglines', extractor=Path( foreach='//div[@id="taglines_content"]/div', path='.//text()' ) ) ] def preprocess_dom(self, dom): preprocessors.remove(dom, '//div[@id="taglines_content"]/div[@class="header"]') preprocessors.remove(dom, '//div[@id="taglines_content"]/div[@id="no_content"]') return dom def postprocess_data(self, data): if 'taglines' in data: data['taglines'] = [tagline.strip() for tagline in data['taglines']] return data class DOMHTMLKeywordsParser(DOMParserBase): """Parser for the "keywords" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: kwparser = DOMHTMLKeywordsParser() result = kwparser.parse(keywords_html_string) """ rules = [ Rule( key='keywords', extractor=Path( foreach='//td[@data-item-keyword]', path='./@data-item-keyword', transform=lambda x: x.lower().replace(' ', '-') ) ) ] class DOMHTMLAlternateVersionsParser(DOMParserBase): """Parser for the "alternate versions" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: avparser = DOMHTMLAlternateVersionsParser() result = avparser.parse(alternateversions_html_string) """ _defGetRefs = True rules = [ Rule( key='alternate versions', extractor=Path( foreach='//ul[@class="trivia"]/li', path='.//text()', transform=transformers.strip ) ) ] class DOMHTMLTriviaParser(DOMParserBase): """Parser for the "trivia" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: tparser = DOMHTMLTriviaParser() result = tparser.parse(trivia_html_string) """ _defGetRefs = True rules = [ Rule( key='trivia', extractor=Path( foreach='//div[@class="sodatext"]', path='.//text()', transform=transformers.strip ) ) ] def preprocess_dom(self, dom): # Remove "link this quote" links. preprocessors.remove(dom, '//span[@class="linksoda"]') return dom class DOMHTMLSoundtrackParser(DOMParserBase): """Parser for the "soundtrack" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: stparser = DOMHTMLSoundtrackParser() result = stparser.parse(soundtrack_html_string) """ _defGetRefs = True preprocessors = [('<br />', '\n'), ('<br>', '\n')] rules = [ Rule( key='soundtrack', extractor=Path( foreach='//div[@class="list"]//div', path='.//text()', transform=transformers.strip ) ) ] def postprocess_data(self, data): if 'soundtrack' in data: nd = [] for x in data['soundtrack']: ds = x.split('\n') title = ds[0] if title[0] == '"' and title[-1] == '"': title = title[1:-1] nds = [] newData = {} for l in ds[1:]: if ' with ' in l or ' by ' in l or ' from ' in l \ or ' of ' in l or l.startswith('From '): nds.append(l) else: if nds: nds[-1] += l else: nds.append(l) newData[title] = {} for l in nds: skip = False for sep in ('From ',): if l.startswith(sep): fdix = len(sep) kind = l[:fdix].rstrip().lower() info = l[fdix:].lstrip() newData[title][kind] = info skip = True if not skip: for sep in ' with ', ' by ', ' from ', ' of ': fdix = l.find(sep) if fdix != -1: fdix = fdix + len(sep) kind = l[:fdix].rstrip().lower() info = l[fdix:].lstrip() newData[title][kind] = info break nd.append(newData) data['soundtrack'] = nd return data class DOMHTMLCrazyCreditsParser(DOMParserBase): """Parser for the "crazy credits" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: ccparser = DOMHTMLCrazyCreditsParser() result = ccparser.parse(crazycredits_html_string) """ _defGetRefs = True rules = [ Rule( key='crazy credits', extractor=Path( foreach='//ul/li/tt', path='.//text()', transform=lambda x: x.replace('\n', ' ').replace(' ', ' ') ) ) ] def _process_goof(x): text = (x.get('text') or '').strip() category = (x.get('category') or 'Goof').strip() return {"category": category, "text": text} class DOMHTMLGoofsParser(DOMParserBase): """Parser for the "goofs" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: gparser = DOMHTMLGoofsParser() result = gparser.parse(goofs_html_string) """ _defGetRefs = True rules = [ Rule( key='goofs', extractor=Rules( foreach='//div[contains(@class, "soda sodavote")]', rules=[ Rule( key='text', extractor=Path('./div[@class="sodatext"]/text()') ), Rule( key='category', extractor=Path('./preceding-sibling::h4[1]/text()') ) ], transform=_process_goof ) ) ] class DOMHTMLQuotesParser(DOMParserBase): """Parser for the "memorable quotes" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: qparser = DOMHTMLQuotesParser() result = qparser.parse(quotes_html_string) """ _defGetRefs = True rules = [ Rule( key='quotes', extractor=Path( foreach='//div[@class="sodatext"]', path='.//text()', transform=lambda x: x .strip() .replace(' \n', '::') .replace('::\n', '::') .replace('\n', ' ') ) ) ] def preprocess_dom(self, dom): preprocessors.remove(dom, '//div[@class="did-you-know-actions"]') return dom def postprocess_data(self, data): quotes = data.get('quotes', []) if not quotes: return {} quotes = [q.split('::') for q in quotes] return {'quotes': quotes} class DOMHTMLReleaseinfoParser(DOMParserBase): """Parser for the "release dates" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: rdparser = DOMHTMLReleaseinfoParser() result = rdparser.parse(releaseinfo_html_string) """ rules = [ Rule( key='release dates', extractor=Rules( foreach='//table[contains(@class, "release-dates-table-test-only")]//tr', rules=[ Rule( key='country', extractor=Path('.//td[1]//text()') ), Rule( key='date', extractor=Path('.//td[2]//text()') ), Rule( key='notes', extractor=Path('.//td[3]//text()') ) ] ) ), Rule( key='akas', extractor=Rules( foreach='//table[contains(@class, "akas-table-test-only")]//tr', rules=[ Rule( key='countries', extractor=Path('./td[1]/text()') ), Rule( key='title', extractor=Path('./td[2]/text()') ) ] ) ) ] preprocessors = [ (re.compile('(<h5><a name="?akas"?.*</table>)', re.I | re.M | re.S), r'<div class="_imdbpy_akas">\1</div>') ] def postprocess_data(self, data): if not ('release dates' in data or 'akas' in data): return data releases = data.get('release dates') or [] rl = [] for i in releases: country = i.get('country') date = i.get('date') if not (country and date): continue country = country.strip() date = date.strip() if not (country and date): continue notes = i.get('notes') info = '%s::%s' % (country, date) if notes: notes = notes.replace('\n', '') i['notes'] = notes info += notes rl.append(info) if releases: data['raw release dates'] = data['release dates'] del data['release dates'] if rl: data['release dates'] = rl akas = data.get('akas') or [] nakas = [] for aka in akas: title = (aka.get('title') or '').strip() if not title: continue countries = (aka.get('countries') or '').split(',') if not countries: nakas.append(title) else: for country in countries: nakas.append('%s %s' % (title, country.strip())) if akas: data['raw akas'] = data['akas'] del data['akas'] if nakas: data['akas'] = data['akas from release info'] = nakas return data class DOMHTMLRatingsParser(DOMParserBase): """Parser for the "user ratings" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: rparser = DOMHTMLRatingsParser() result = rparser.parse(userratings_html_string) """ re_means = re.compile(r'mean\s*=\s*([0-9]\.[0-9])\s*median\s*=\s*([0-9])', re.I) rules = [ Rule( key='votes', extractor=Rules( foreach='//th[@class="firstTableCoulmn"]/../../tr', rules=[ Rule( key='ordinal', extractor=Path('./td[1]/div//text()') ), Rule( key='votes', extractor=Path('./td[3]/div/div//text()') ) ] ) ), Rule( key='mean and median', extractor=Path( '//div[starts-with(normalize-space(text()), "Arithmetic mean")]/text()' ) ), Rule( key='demographics', extractor=Rules( foreach='//div[@class="smallcell"]', rules=[ Rule( key='link', extractor=Path('./a/@href') ), Rule( key='rating', extractor=Path('..//div[@class="bigcell"]//text()') ), Rule( key='votes', extractor=Path('./a/text()') ) ] ) ) ] def postprocess_data(self, data): nd = {} demographics = data.get('demographics') if demographics: dem = {} for dem_data in demographics: link = (dem_data.get('link') or '').strip() votes = (dem_data.get('votes') or '').strip() rating = (dem_data.get('rating') or '').strip() if not (link and votes and rating): continue eq_idx = link.rfind('=') if eq_idx == -1: continue info = link[eq_idx + 1:].replace('_', ' ') try: votes = int(votes.replace(',', '')) except Exception: continue try: rating = float(rating) except Exception: continue dem[info] = {'votes': votes, 'rating': rating} nd['demographics'] = dem votes = data.get('votes', []) if votes: nd['number of votes'] = {} for v_info in votes: ordinal = v_info.get('ordinal') nr_votes = v_info.get('votes') if not (ordinal and nr_votes): continue try: ordinal = int(ordinal) except Exception: continue try: nr_votes = int(nr_votes.replace(',', '')) except Exception: continue nd['number of votes'][ordinal] = nr_votes mean = data.get('mean and median', '') if mean: means = self.re_means.findall(mean) if means and len(means[0]) == 2: am, med = means[0] try: am = float(am) except (ValueError, OverflowError): pass if isinstance(am, float): nd['arithmetic mean'] = am try: med = int(med) except (ValueError, OverflowError): pass if isinstance(med, int): nd['median'] = med return nd def _normalize_href(href): if (href is not None) and (not href.lower().startswith('http://')): if href.startswith('/'): href = href[1:] # TODO: imdbURL_base may be set by the user! href = '%s%s' % (imdbURL_base, href) return href class DOMHTMLCriticReviewsParser(DOMParserBase): """Parser for the "critic reviews" pages of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: crparser = DOMHTMLCriticReviewsParser() result = crparser.parse(criticreviews_html_string) """ kind = 'critic reviews' rules = [ Rule( key='metascore', extractor=Path('//div[@class="metascore_wrap"]/div/span//text()') ), Rule( key='metacritic url', extractor=Path('//div[@class="article"]/div[@class="see-more"]/a/@href') ) ] class DOMHTMLReviewsParser(DOMParserBase): """Parser for the "reviews" pages of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: rparser = DOMHTMLReviewsParser() result = rparser.parse(reviews_html_string) """ rules = [ Rule( key='reviews', extractor=Rules( foreach='//div[@class="review-container"]', rules=[ Rule( key='text', extractor=Path('.//div[@class="text show-more__control"]//text()') ), Rule( key='helpful', extractor=Path('.//div[@class="text-muted"]/text()[1]') ), Rule( key='title', extractor=Path('.//div[@class="title"]//text()') ), Rule( key='author', extractor=Path('.//span[@class="display-name-link"]/a/@href') ), Rule( key='date', extractor=Path('.//span[@class="review-date"]//text()') ), Rule( key='rating', extractor=Path('.//span[@class="point-scale"]/preceding-sibling::span[1]/text()') ) ], transform=lambda x: ({ 'content': x.get('text', '').replace('\n', ' ').replace(' ', ' ').strip(), 'helpful': [int(s) for s in x.get('helpful', '').split() if s.isdigit()], 'title': x.get('title', '').strip(), 'author': analyze_imdbid(x.get('author')), 'date': x.get('date', '').strip(), 'rating': x.get('rating', '').strip() }) ) ) ] preprocessors = [('<br>', '<br>\n')] def postprocess_data(self, data): for review in data.get('reviews', []): if review.get('rating') and len(review['rating']) == 2: review['rating'] = int(review['rating'][0]) else: review['rating'] = None if review.get('helpful') and len(review['helpful']) == 2: review['not_helpful'] = review['helpful'][1] - review['helpful'][0] review['helpful'] = review['helpful'][0] else: review['helpful'] = 0 review['not_helpful'] = 0 review['author'] = "ur%s" % review['author'] return data class DOMHTMLFullCreditsParser(DOMParserBase): """Parser for the "full credits" (series cast section) page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: fcparser = DOMHTMLFullCreditsParser() result = fcparser.parse(fullcredits_html_string) """ kind = 'full credits' rules = [ Rule( key='cast', extractor=Rules( foreach='//table[@class="cast_list"]//tr[@class="odd" or @class="even"]', rules=[ Rule( key='person', extractor=Path('.//text()') ), Rule( key='link', extractor=Path('./td[2]/a/@href') ), Rule( key='roleID', extractor=Path('./td[4]//div[@class="_imdbpyrole"]/@roleid') ), Rule( key='headshot', extractor=Path('./td[@class="primary_photo"]/a/img/@loadlate') ) ], transform=lambda x: build_person( x.get('person', ''), personID=analyze_imdbid(x.get('link')), roleID=(x.get('roleID', '')).split('/'), headshot=(x.get('headshot', '')) ) ) ) ] preprocessors = [ (_reRolesMovie, _manageRoles) ] def postprocess_data(self, data): clean_cast = [] for person in data.get('cast', []): if person.personID and person.get('name'): clean_cast.append(person) if clean_cast: data['cast'] = clean_cast return data class DOMHTMLOfficialsitesParser(DOMParserBase): """Parser for the "official sites", "external reviews" "miscellaneous links", "sound clips", "video clips" and "photographs" pages of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: osparser = DOMHTMLOfficialsitesParser() result = osparser.parse(officialsites_html_string) """ rules = [ Rule( foreach='//h4[@class="li_group"]', key=Path( './text()', transform=lambda x: x.strip().lower() ), extractor=Rules( foreach='./following::ul[1]/li/a', rules=[ Rule( key='link', extractor=Path('./@href') ), Rule( key='info', extractor=Path('./text()') ) ], transform=lambda x: ( x.get('info').strip(), unquote(_normalize_href(x.get('link'))) ) ) ) ] class DOMHTMLConnectionParser(DOMParserBase): """Parser for the "connections" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: connparser = DOMHTMLConnectionParser() result = connparser.parse(connections_html_string) """ _containsObjects = True rules = [ Rule( key='connection', extractor=Rules( foreach='//div[@class="_imdbpy"]', rules=[ Rule( key=Path('./h5/text()', transform=transformers.lower), extractor=Rules( foreach='./a', rules=[ Rule( key='title', extractor=Path('./text()') ), Rule( key='movieID', extractor=Path('./@href') ) ] ) ) ] ) ) ] preprocessors = [ ('<h5>', '</div><div class="_imdbpy"><h5>'), # To get the movie's year. ('</a> (', ' ('), ('\n<br/>', '</a>'), ('<br/> - ', '::') ] def postprocess_data(self, data): for key in list(data.keys()): nl = [] for v in data[key]: title = v['title'] ts = title.split('::', 1) title = ts[0].strip() notes = '' if len(ts) == 2: notes = ts[1].strip() m = Movie(title=title, movieID=analyze_imdbid(v['movieID']), accessSystem=self._as, notes=notes, modFunct=self._modFunct) nl.append(m) data[key] = nl if not data: return {} return {'connections': data} class DOMHTMLLocationsParser(DOMParserBase): """Parser for the "locations" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: lparser = DOMHTMLLocationsParser() result = lparser.parse(locations_html_string) """ rules = [ Rule( key='locations', extractor=Rules( foreach='//dt', rules=[ Rule( key='place', extractor=Path('.//text()') ), Rule( key='note', extractor=Path('./following-sibling::dd[1]//text()') ) ], transform=lambda x: ('%s::%s' % (x['place'].strip(), (x['note'] or '').strip())).strip(':') ) ) ] class DOMHTMLTechParser(DOMParserBase): """Parser for the "technical", "publicity" (for people) and "contacts" (for people) pages of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: tparser = DOMHTMLTechParser() result = tparser.parse(technical_html_string) """ kind = 'tech' re_space = re.compile(r'\s+') rules = [ Rule( key='tech', extractor=Rules( foreach='//table//tr/td[@class="label"]', rules=[ Rule( key=Path( './text()', transform=lambda x: x.lower().strip()), extractor=Path( '..//td[2]//text()', transform=lambda x: [t.strip() for t in x.split(':::') if t.strip()] ) ) ] ) ) ] preprocessors = [ (re.compile('(<h5>.*?</h5>)', re.I), r'</div>\1<div class="_imdbpy">'), (re.compile('((<br/>|</p>|</table>))\n?<br/>(?!<a)', re.I), r'\1</div>'), # the ones below are for the publicity parser (re.compile('<p>(.*?)</p>', re.I), r'\1<br/>'), (re.compile('(</td><td valign="top">)', re.I), r'\1::'), (re.compile('(</tr><tr>)', re.I), r'\n\1'), (re.compile(r'<span class="ghost">\|</span>', re.I), r':::'), (re.compile('<br/?>', re.I), r':::') # this is for splitting individual entries ] def postprocess_data(self, data): info = {} for section in data.get('tech', []): info.update(section) for key, value in info.items(): if isinstance(value, list): info[key] = [self.re_space.sub(' ', x).strip() for x in value] else: info[key] = self.re_space.sub(' ', value).strip() return {self.kind: info} class DOMHTMLNewsParser(DOMParserBase): """Parser for the "news" page of a given movie or person. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: nwparser = DOMHTMLNewsParser() result = nwparser.parse(news_html_string) """ _defGetRefs = True rules = [ Rule( key='news', extractor=Rules( foreach='//h2', rules=[ Rule( key='title', extractor=Path('./text()') ), Rule( key='fromdate', extractor=Path('./following-sibling::p[1]/small//text()') ), Rule( key='body', extractor=Path('../following-sibling::p[2]//text()') ), Rule( key='link', extractor=Path('../..//a[text()="Permalink"]/@href') ), Rule( key='fulllink', extractor=Path('../..//a[starts-with(text(), "See full article at")]/@href') ) ], transform=lambda x: { 'title': x.get('title').strip(), 'date': x.get('fromdate').split('|')[0].strip(), 'from': x.get('fromdate').split('|')[1].replace('From ', '').strip(), 'body': (x.get('body') or '').strip(), 'link': _normalize_href(x.get('link')), 'full article link': _normalize_href(x.get('fulllink')) } ) ) ] preprocessors = [ (re.compile('(<a name=[^>]+><h2>)', re.I), r'<div class="_imdbpy">\1'), (re.compile('(<hr/>)', re.I), r'</div>\1'), (re.compile('<p></p>', re.I), r'') ] def postprocess_data(self, data): if 'news' not in data: return {} for news in data['news']: if 'full article link' in news: if news['full article link'] is None: del news['full article link'] return data def _parse_review(x): result = {} title = x.get('title').strip() if title[-1] == ':': title = title[:-1] result['title'] = title result['link'] = _normalize_href(x.get('link')) kind = x.get('kind').strip() if kind[-1] == ':': kind = kind[:-1] result['review kind'] = kind text = x.get('review').replace('\n\n', '||').replace('\n', ' ').split('||') review = '\n'.join(text) if x.get('author') is not None: author = x.get('author').strip() review = review.split(author)[0].strip() result['review author'] = author[2:] if x.get('item') is not None: item = x.get('item').strip() review = review[len(item):].strip() review = "%s: %s" % (item, review) result['review'] = review return result class DOMHTMLSeasonEpisodesParser(DOMParserBase): """Parser for the "episode list" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: sparser = DOMHTMLSeasonEpisodesParser() result = sparser.parse(episodes_html_string) """ rules = [ Rule( key='series link', extractor=Path('//div[@class="parent"]//a/@href') ), Rule( key='series title', extractor=Path('//head/meta[@property="og:title"]/@content') ), Rule( key='_seasons', extractor=Path( foreach='//select[@id="bySeason"]//option', path='./@value' ) ), Rule( key='_current_season', extractor=Path('//select[@id="bySeason"]//option[@selected]/@value') ), Rule( key='episodes', extractor=Rules( foreach='//div[@class="info"]', rules=[ Rule( key=Path('.//meta/@content', transform=lambda x: 'episode %s' % x), extractor=Rules( rules=[ Rule( key='link', extractor=Path('.//strong//a[@href][1]/@href') ), Rule( key='original air date', extractor=Path('.//div[@class="airdate"]/text()') ), Rule( key='title', extractor=Path('.//strong//text()') ), Rule( key='rating', extractor=Path( './/div[contains(@class, "ipl-rating-star")][1]' '/span[@class="ipl-rating-star__rating"][1]/text()' ) ), Rule( key='votes', extractor=Path( './/div[contains(@class, "ipl-rating-star")][1]' '/span[@class="ipl-rating-star__total-votes"][1]/text()' ) ), Rule( key='plot', extractor=Path('.//div[@class="item_description"]//text()') ) ] ) ) ] ) ) ] def postprocess_data(self, data): series_id = analyze_imdbid(data.get('series link')) series_title = data.get('series title', '').strip() selected_season = data.get('_current_season', 'unknown season').strip() if not (series_id and series_title): return {} series = Movie(title=series_title, movieID=str(series_id), accessSystem=self._as, modFunct=self._modFunct) if series.get('kind') == 'movie': series['kind'] = 'tv series' try: selected_season = int(selected_season) except ValueError: pass nd = {selected_season: {}} if 'episode -1' in data: counter = 1 for episode in data['episode -1']: while 'episode %d' % counter in data: counter += 1 k = 'episode %d' % counter data[k] = [episode] del data['episode -1'] episodes = data.get('episodes', []) for ep in episodes: if not ep: continue episode_nr, episode = list(ep.items())[0] if not episode_nr.startswith('episode '): continue episode_nr = episode_nr[8:].rstrip() try: episode_nr = int(episode_nr) except ValueError: pass episode_id = analyze_imdbid(episode.get('link' '')) episode_air_date = episode.get('original air date', '').strip() episode_title = episode.get('title', '').strip() episode_plot = episode.get('plot', '') episode_rating = episode.get('rating', '') episode_votes = episode.get('votes', '') if not (episode_nr is not None and episode_id and episode_title): continue ep_obj = Movie(movieID=episode_id, title=episode_title, accessSystem=self._as, modFunct=self._modFunct) ep_obj['kind'] = 'episode' ep_obj['episode of'] = series ep_obj['season'] = selected_season ep_obj['episode'] = episode_nr if episode_rating: try: ep_obj['rating'] = float(episode_rating) except: pass if episode_votes: try: ep_obj['votes'] = int(episode_votes.replace(',', '') .replace('.', '').replace('(', '').replace(')', '')) except: pass if episode_air_date: ep_obj['original air date'] = episode_air_date if episode_air_date[-4:].isdigit(): ep_obj['year'] = episode_air_date[-4:] if episode_plot: ep_obj['plot'] = episode_plot nd[selected_season][episode_nr] = ep_obj _seasons = data.get('_seasons') or [] for idx, season in enumerate(_seasons): try: _seasons[idx] = int(season) except ValueError: pass return {'episodes': nd, '_seasons': _seasons, '_current_season': selected_season} def _build_episode(x): """Create a Movie object for a given series' episode.""" episode_id = analyze_imdbid(x.get('link')) episode_title = x.get('title') e = Movie(movieID=episode_id, title=episode_title) e['kind'] = 'episode' oad = x.get('oad') if oad: e['original air date'] = oad.strip() year = x.get('year') if year is not None: year = year[5:] if year == 'unknown': year = '????' if year and year.isdigit(): year = int(year) e['year'] = year else: if oad and oad[-4:].isdigit(): e['year'] = int(oad[-4:]) epinfo = x.get('episode') if epinfo is not None: season, episode = epinfo.split(':')[0].split(',') e['season'] = int(season[7:]) e['episode'] = int(episode[8:]) else: e['season'] = 'unknown' e['episode'] = 'unknown' plot = x.get('plot') if plot: e['plot'] = plot.strip() return e class DOMHTMLEpisodesParser(DOMParserBase): """Parser for the "episode list" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: eparser = DOMHTMLEpisodesParser() result = eparser.parse(episodes_html_string) """ kind = 'episodes list' _episodes_path = "..//h4" _oad_path = "./following-sibling::span/strong[1]/text()" def _init(self): self.rules = [ Rule( key='series title', extractor=Path('//title/text()') ), Rule( key='series movieID', extractor=Path( './/h1/a[@class="main"]/@href', transform=analyze_imdbid ) ), Rule( key='episodes', extractor=Rules( foreach='//div[@class="_imdbpy"]/h3', rules=[ Rule( key='./a/@name', extractor=Rules( foreach=self._episodes_path, rules=[ Rule( key='link', extractor=Path('./a/@href') ), Rule( key='title', extractor=Path('./a/text()') ), Rule( key='year', extractor=Path('./preceding-sibling::a[1]/@name') ), Rule( key='episode', extractor=Path('./text()[1]') ), Rule( key='oad', extractor=Path(self._oad_path) ), Rule( key='plot', extractor=Path('./following-sibling::text()[1]') ) ], transform=_build_episode ) ) ] ) ) ] preprocessors = [ (re.compile('(<hr/>\n)(<h3>)', re.I), r'</div>\1<div class="_imdbpy">\2'), (re.compile('(</p>\n\n)</div>', re.I), r'\1'), (re.compile('<h3>(.*?)</h3>', re.I), r'<h4>\1</h4>'), (_reRolesMovie, _manageRoles), (re.compile('(<br/> <br/>\n)(<hr/>)', re.I), r'\1</div>\2') ] def postprocess_data(self, data): # A bit extreme? if 'series title' not in data: return {} if 'series movieID' not in data: return {} stitle = data['series title'].replace('- Episode list', '') stitle = stitle.replace('- Episodes list', '') stitle = stitle.replace('- Episode cast', '') stitle = stitle.replace('- Episodes cast', '') stitle = stitle.strip() if not stitle: return {} seriesID = data['series movieID'] if seriesID is None: return {} series = Movie(title=stitle, movieID=str(seriesID), accessSystem=self._as, modFunct=self._modFunct) nd = {} for key in list(data.keys()): if key.startswith('filter-season-') or key.startswith('season-'): season_key = key.replace('filter-season-', '').replace('season-', '') try: season_key = int(season_key) except ValueError: pass nd[season_key] = {} ep_counter = 1 for episode in data[key]: if not episode: continue episode_key = episode.get('episode') if episode_key is None: continue if not isinstance(episode_key, int): episode_key = ep_counter ep_counter += 1 cast_key = 'Season %s, Episode %s:' % (season_key, episode_key) if cast_key in data: cast = data[cast_key] for i in range(len(cast)): cast[i].billingPos = i + 1 episode['cast'] = cast episode['episode of'] = series nd[season_key][episode_key] = episode if len(nd) == 0: return {} return {'episodes': nd} class DOMHTMLFaqsParser(DOMParserBase): """Parser for the "FAQ" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: fparser = DOMHTMLFaqsParser() result = fparser.parse(faqs_html_string) """ _defGetRefs = True rules = [ Rule( key='faqs', extractor=Rules( foreach='//div[@class="section"]', rules=[ Rule( key='question', extractor=Path('./h3/a/span/text()') ), Rule( key='answer', extractor=Path('../following-sibling::div[1]//text()') ) ], transform=lambda x: '%s::%s' % ( x.get('question').strip(), '\n\n'.join(x.get('answer').replace('\n\n', '\n').strip().split('||')) ) ) ) ] preprocessors = [ (re.compile('<br/><br/>', re.I), r'||'), (re.compile('<h4>(.*?)</h4>\n', re.I), r'||\1--'), (re.compile('<span class="spoiler"><span>(.*?)</span></span>', re.I), r'[spoiler]\1[/spoiler]') ] class DOMHTMLAiringParser(DOMParserBase): """Parser for the "airing" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: aparser = DOMHTMLAiringParser() result = aparser.parse(airing_html_string) """ _containsObjects = True rules = [ Rule( key='series title', extractor=Path( '//title/text()', transform=lambda x: x.replace(' - TV schedule', '') ) ), Rule( key='series id', extractor=Path('//h1/a[@href]/@href') ), Rule( key='tv airings', extractor=Rules( foreach='//tr[@class]', rules=[ Rule( key='date', extractor=Path('./td[1]//text()') ), Rule( key='time', extractor=Path('./td[2]//text()') ), Rule( key='channel', extractor=Path('./td[3]//text()') ), Rule( key='link', extractor=Path('./td[4]/a[1]/@href') ), Rule( key='title', extractor=Path('./td[4]//text()') ), Rule( key='season', extractor=Path('./td[5]//text()') ) ], transform=lambda x: { 'date': x.get('date'), 'time': x.get('time'), 'channel': x.get('channel').strip(), 'link': x.get('link'), 'title': x.get('title'), 'season': (x.get('season') or '').strip() } ) ) ] def postprocess_data(self, data): if len(data) == 0: return {} seriesTitle = data.get('series title') or '' seriesID = analyze_imdbid(data.get('series id')) if seriesID and 'airing' in data: for airing in data['airing']: title = airing.get('title', '').strip() if not title: epsTitle = seriesTitle if seriesID is None: continue epsID = seriesID else: epsTitle = '%s {%s}' % (data['series title'], airing['title']) epsID = analyze_imdbid(airing['link']) e = Movie(title=epsTitle, movieID=epsID) airing['episode'] = e del airing['link'] del airing['title'] if not airing['season']: del airing['season'] if 'series title' in data: del data['series title'] if 'series id' in data: del data['series id'] if 'airing' in data: data['airing'] = [_f for _f in data['airing'] if _f] if 'airing' not in data or not data['airing']: return {} return data class DOMHTMLParentsGuideParser(DOMParserBase): """Parser for the "parents guide" page of a given movie. The page should be provided as a string, as taken from the www.imdb.com server. The final result will be a dictionary, with a key for every relevant section. Example:: pgparser = HTMLParentsGuideParser() result = pgparser.parse(parentsguide_html_string) """ rules = [ Rule( key='parents guide', extractor=Rules( foreach='//tr[@class="ipl-zebra-list__item"]', rules=[ Rule( key=Path( './td[1]/text()', transform=transformers.lower ), extractor=Path( path='./td[2]//text()', transform=lambda x: [ re_space.sub(' ', t) for t in x.split('\n') if t.strip() ] ) ) ] ) ) ] def postprocess_data(self, data): ret = {} for sect in data.get('parents guide', []): for key, value in sect.items(): ret[key] = value if isinstance(ret.get('mpaa'), list): ret['mpaa'] = ret['mpaa'][0] return ret _OBJECTS = { 'movie_parser': ((DOMHTMLMovieParser,), None), 'full_credits_parser': ((DOMHTMLFullCreditsParser,), None), 'plot_parser': ((DOMHTMLPlotParser,), None), 'movie_awards_parser': ((DOMHTMLAwardsParser,), None), 'taglines_parser': ((DOMHTMLTaglinesParser,), None), 'keywords_parser': ((DOMHTMLKeywordsParser,), None), 'crazycredits_parser': ((DOMHTMLCrazyCreditsParser,), None), 'goofs_parser': ((DOMHTMLGoofsParser,), None), 'alternateversions_parser': ((DOMHTMLAlternateVersionsParser,), None), 'trivia_parser': ((DOMHTMLTriviaParser,), None), 'soundtrack_parser': ((DOMHTMLSoundtrackParser,), None), 'quotes_parser': ((DOMHTMLQuotesParser,), None), 'releasedates_parser': ((DOMHTMLReleaseinfoParser,), None), 'ratings_parser': ((DOMHTMLRatingsParser,), None), 'criticrev_parser': ((DOMHTMLCriticReviewsParser,), {'kind': 'critic reviews'}), 'reviews_parser': ((DOMHTMLReviewsParser,), {'kind': 'reviews'}), 'externalsites_parser': ((DOMHTMLOfficialsitesParser,), None), 'officialsites_parser': ((DOMHTMLOfficialsitesParser,), None), 'externalrev_parser': ((DOMHTMLOfficialsitesParser,), None), 'misclinks_parser': ((DOMHTMLOfficialsitesParser,), None), 'soundclips_parser': ((DOMHTMLOfficialsitesParser,), None), 'videoclips_parser': ((DOMHTMLOfficialsitesParser,), None), 'photosites_parser': ((DOMHTMLOfficialsitesParser,), None), 'connections_parser': ((DOMHTMLConnectionParser,), None), 'tech_parser': ((DOMHTMLTechParser,), None), 'locations_parser': ((DOMHTMLLocationsParser,), None), 'news_parser': ((DOMHTMLNewsParser,), None), 'episodes_parser': ((DOMHTMLEpisodesParser,), None), 'season_episodes_parser': ((DOMHTMLSeasonEpisodesParser,), None), 'movie_faqs_parser': ((DOMHTMLFaqsParser,), None), 'airing_parser': ((DOMHTMLAiringParser,), None), 'parentsguide_parser': ((DOMHTMLParentsGuideParser,), None) }
the-stack_0_19559
# 1. data dataset_type = "Thumos14Dataset" data_root = "data/thumos14/" img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True ) num_frames = 480 chunk_size = 32 img_shape = (112, 112) overlap_ratio = 0.25 keep_ratio = 0.4 feat_downsample = 2 expid = "8.b.i" data = dict( samples_per_gpu=4, workers_per_gpu=6, train=dict( typename=dataset_type, ann_file=data_root + "annotations/val.json", video_prefix=data_root + "frames_15fps/val", pipeline=[ dict(typename="LoadMetaInfo"), dict(typename="LoadAnnotations"), dict(typename="Time2Frame"), dict(typename="TemporalRandomCrop", num_frames=num_frames, iof_th=0.75), dict(typename="LoadFrames", to_float32=True), dict(typename="SpatialRandomCrop", crop_size=img_shape), dict( typename="PhotoMetricDistortion", brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18, p=0.5, ), dict(typename="Rotate", limit=(-45, 45), border_mode="reflect101", p=0.5), dict(typename="SpatialRandomFlip", flip_ratio=0.5), dict(typename="Normalize", **img_norm_cfg), dict(typename="Pad", size=(num_frames, *img_shape)), dict(typename="DefaultFormatBundle"), dict( typename="Collect", keys=["imgs", "gt_segments", "gt_labels", "gt_segments_ignore"], ), ], ), val=dict( typename=dataset_type, ann_file=data_root + "annotations/test.json", video_prefix=data_root + "frames_15fps/test", pipeline=[ dict(typename="LoadMetaInfo"), dict(typename="Time2Frame"), dict( typename="OverlapCropAug", num_frames=num_frames, overlap_ratio=overlap_ratio, transforms=[ dict(typename="TemporalCrop"), dict(typename="LoadFrames", to_float32=True), dict(typename="SpatialCenterCrop", crop_size=img_shape), dict(typename="Normalize", **img_norm_cfg), dict(typename="Pad", size=(num_frames, *img_shape)), dict(typename="DefaultFormatBundle"), dict(typename="Collect", keys=["imgs"]), ], ), ], ), ) # 2. model num_classes = 20 strides = [8, 16, 32, 64, 128] use_sigmoid = True scales_per_octave = 5 octave_base_scale = 2 num_anchors = scales_per_octave model = dict( typename="MemSingleStageDetector", chunk_size=chunk_size, backbone=dict( typename="ChunkVideoSwin", chunk_size=chunk_size, do_pooling=True, patch_size=(2, 4, 4), in_chans=3, embed_dim=96, drop_path_rate=0.1, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=(8, 7, 7), patch_norm=True, frozen_stages=2, use_checkpoint=False, ), neck=[ dict( typename="SRMSwin", srm_cfg=dict( in_channels=768, out_channels=512, with_transformer=False, ), ), dict( typename="Transformer1DRelPos", encoder_layer_cfg=dict( dim=512, num_heads=16, max_seq_len=num_frames // strides[0], drop_path=0.1, ), num_layers=3, ), dict( typename="SelfAttnTDM", in_channels=512, out_channels=512, strides=2, num_heads=8, kernel_sizes = None, stage_layers=(1, 1, 1, 1), out_indices=(0, 1, 2, 3, 4), out_order="bct", ), dict( typename="FPN", in_channels=[512, 512, 512, 512, 512], out_channels=256, num_outs=5, start_level=0, conv_cfg=dict(typename="Conv1d"), norm_cfg=dict(typename="SyncBN"), ), ], head=dict( typename="RetinaHead", num_classes=num_classes, num_anchors=num_anchors, in_channels=256, stacked_convs=4, feat_channels=256, use_sigmoid=use_sigmoid, conv_cfg=dict(typename="Conv1d"), norm_cfg=dict(typename="SyncBN"), ), ) # 3. engines meshgrid = dict( typename="SegmentAnchorMeshGrid", strides=strides, base_anchor=dict( typename="SegmentBaseAnchor", base_sizes=strides, octave_base_scale=octave_base_scale, scales_per_octave=scales_per_octave, ), ) segment_coder = dict( typename="DeltaSegmentCoder", target_means=[0.0, 0.0], target_stds=[1.0, 1.0] ) train_engine = dict( typename="MemBankTrainEngine", membank=dict( chunk_size=chunk_size, keep_ratio=keep_ratio, feat_downsample=feat_downsample, mode="random", mem_bank_meta_file=f"data/tmp/thumos14/memory_mechanism/{expid}/feat_swint_15fps_128x128_crop112x112/meta_val.json", mem_bank_dir=f"data/tmp/thumos14/memory_mechanism/{expid}/feat_swint_15fps_128x128_crop112x112/val", ), model=model, criterion=dict( typename="SegmentAnchorCriterion", num_classes=num_classes, meshgrid=meshgrid, segment_coder=segment_coder, reg_decoded_segment=True, loss_cls=dict( typename="FocalLoss", use_sigmoid=use_sigmoid, gamma=2.0, alpha=0.25, loss_weight=1.0, ), loss_segment=dict(typename="DIoULoss", loss_weight=1.0), train_cfg=dict( assigner=dict( typename="MaxIoUAssigner", pos_iou_thr=0.6, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1, ignore_wrt_candidates=True, iou_calculator=dict(typename="SegmentOverlaps"), ), allowed_border=-1, pos_weight=-1, debug=False, ), ), optimizer=dict( typename="SGD", lr=0.01, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(custom_keys=dict(backbone={"lr_mult": 0.4})), ), ) # 3.2 val engine val_engine = dict( typename="ValEngine", model=model, meshgrid=meshgrid, converter=dict( typename="SegmentAnchorConverter", num_classes=num_classes, segment_coder=segment_coder, nms_pre=1000, use_sigmoid=use_sigmoid, ), num_classes=num_classes, test_cfg=dict( score_thr=0.005, nms=dict(typename="nmw", iou_thr=0.5), max_per_video=1200 ), use_sigmoid=use_sigmoid, ) # 4. hooks hooks = [ dict(typename="OptimizerHook"), dict( typename="CosineRestartLrSchedulerHook", periods=[100] * 12, restart_weights=[1] * 12, warmup="linear", warmup_iters=500, warmup_ratio=1e-1, min_lr_ratio=1e-2, ), dict(typename="EvalHook", eval_cfg=dict(mode="anet")), dict(typename="SnapshotHook", interval=100), dict(typename="LoggerHook", interval=10), ] # 5. work modes modes = ["train"] max_epochs = 1200 # 6. checkpoint # weights = dict(filepath='open-mmlab://i3d_r50_256p_32x2x1_100e_kinetics400_rgb') weights = dict( filepath="data/pretrained_models/vswin/swin_tiny_patch244_window877_kinetics400_1k_keysfrom_backbone.pth" ) # optimizer = dict(filepath='epoch_900_optim.pth') # meta = dict(filepath='epoch_900_meta.pth') # 7. misc seed = 10 dist_params = dict(backend="nccl") log_level = "INFO" find_unused_parameters = False
the-stack_0_19560
#!/usr/bin/env python # from tokens import EOF, Token from errors import ParseError class TokenStream: def __init__(self, tokens): self.tokens = tuple(tokens) self.at = 0 def current(self): if self.at >= len(self.tokens): return EOF('') raise ParseError('ran out of tokens') return self.tokens[self.at] def next(self): self.at += 1 if self.at > len(self.tokens): return EOF('') raise ParseError('ran out of tokens') advance = next def hasNext(self): return self.at < len(self.tokens) - 1 class AstNode(object): pass class ParseTree(object): __slots__ = ('rule', 'name', 'children') def __init__(self, rule, name): self.rule = rule self.name = name self.children = [] def add(self, child): self.children.append(child) def __repr__(self): text = '<%s>\n ' % self.name for child in self.children: if isinstance(child, ParseTree): text += repr(child).replace('\n', '\n ') else: text += repr(child) + '\n ' text = text.rstrip() + '\n' + '</%s>' % self.name return text # vim: et sw=4 sts=4
the-stack_0_19561
import torch import torch.utils.data import pandas as pd import os import numpy as np from numpy import genfromtxt import tqdm BANDS = ['B1', 'B10', 'B11', 'B12', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B9'] NORMALIZING_FACTOR = 1e-4 PADDING_VALUE = -1 class BavarianCropsDataset(torch.utils.data.Dataset): def __init__(self, root, partition, classmapping, mode=None, scheme="random", region=None, samplet=70, cache=True, seed=0, validfraction=0.1): assert (mode in ["trainvalid", "traintest"] and scheme=="random") or (mode is None and scheme=="blocks") # <- if scheme random mode is required, else None assert scheme in ["random","blocks"] assert partition in ["train","test","trainvalid","valid"] self.seed = seed self.validfraction = validfraction self.scheme = scheme # ensure that different seeds are set per partition seed += sum([ord(ch) for ch in partition]) np.random.seed(seed) torch.random.manual_seed(seed) self.mode = mode self.root = root if scheme=="random": if mode == "traintest": self.trainids = os.path.join(self.root, "ids", "random", region+"_train.txt") self.testids = os.path.join(self.root, "ids", "random", region+"_test.txt") elif mode == "trainvalid": self.trainids = os.path.join(self.root, "ids", "random", region+"_train.txt") self.testids = None self.read_ids = self.read_ids_random elif scheme=="blocks": self.trainids = os.path.join(self.root, "ids", "blocks", region+"_train.txt") self.testids = os.path.join(self.root, "ids", "blocks", region+"_test.txt") self.validids = os.path.join(self.root, "ids", "blocks", region + "_valid.txt") self.read_ids = self.read_ids_blocks self.mapping = pd.read_csv(classmapping, index_col=0).sort_values(by="id") self.mapping = self.mapping.set_index("nutzcode") self.classes = self.mapping["id"].unique() self.classname = self.mapping.groupby("id").first().classname.values self.klassenname = self.mapping.groupby("id").first().klassenname.values self.nclasses = len(self.classes) self.region = region self.partition = partition self.data_folder = "{root}/csv/{region}".format(root=self.root, region=self.region) self.samplet = samplet #all_csv_files #self.csvfiles = [ for f in os.listdir(root)] print("Initializing BavarianCropsDataset {} partition in {}".format(self.partition, self.region)) self.cache = os.path.join(self.root,"npy",os.path.basename(classmapping), scheme,region, partition) print("read {} classes".format(self.nclasses)) if cache and self.cache_exists() and not self.mapping_consistent_with_cache(): self.clean_cache() if cache and self.cache_exists() and self.mapping_consistent_with_cache(): print("precached dataset files found at " + self.cache) self.load_cached_dataset() else: print("no cached dataset found. iterating through csv folders in " + str(self.data_folder)) self.cache_dataset() self.hist, _ = np.histogram(self.y, bins=self.nclasses) print("loaded {} samples".format(len(self.ids))) #print("class frequencies " + ", ".join(["{c}:{h}".format(h=h, c=c) for h, c in zip(self.hist, self.classes)])) print(self) def __str__(self): return "Dataset {}. region {}. partition {}. X:{}, y:{} with {} classes".format(self.root, self.region, self.partition,str(len(self.X)) +"x"+ str(self.X[0].shape), self.y.shape, self.nclasses) def read_ids_random(self): assert isinstance(self.seed, int) assert isinstance(self.validfraction, float) assert self.partition in ["train", "valid", "test"] assert self.trainids is not None assert os.path.exists(self.trainids) np.random.seed(self.seed) """if trainids file provided and no testids file <- sample holdback set from trainids""" if self.testids is None: assert self.partition in ["train", "valid"] print("partition {} and no test ids file provided. Splitting trainids file in train and valid partitions".format(self.partition)) with open(self.trainids,"r") as f: ids = [int(id) for id in f.readlines()] print("Found {} ids in {}".format(len(ids), self.trainids)) np.random.shuffle(ids) validsize = int(len(ids) * self.validfraction) validids = ids[:validsize] trainids = ids[validsize:] print("splitting {} ids in {} for training and {} for validation".format(len(ids), len(trainids), len(validids))) assert len(validids) + len(trainids) == len(ids) if self.partition == "train": return trainids if self.partition == "valid": return validids elif self.testids is not None: assert self.partition in ["train", "test"] if self.partition=="test": with open(self.testids,"r") as f: test_ids = [int(id) for id in f.readlines()] print("Found {} ids in {}".format(len(test_ids), self.testids)) return test_ids if self.partition == "train": with open(self.trainids, "r") as f: train_ids = [int(id) for id in f.readlines()] return train_ids def read_ids_blocks(self): assert self.partition in ["train", "valid", "test", "trainvalid"] assert os.path.exists(self.validids) assert os.path.exists(self.testids) assert os.path.exists(self.trainids) assert self.scheme == "blocks" assert self.mode is None def read(filename): with open(filename, "r") as f: ids = [int(id) for id in f.readlines()] return ids if self.partition == "train": ids = read(self.trainids) elif self.partition == "valid": ids = read(self.validids) elif self.partition == "test": ids = read(self.testids) elif self.partition == "trainvalid": ids = read(self.trainids) + read(self.validids) return ids def cache_dataset(self): """ Iterates though the data folders and stores y, ids, classweights, and sequencelengths X is loaded at with getitem """ #ids = self.split(self.partition) ids = self.read_ids() assert len(ids) > 0 self.X = list() self.nutzcodes = list() self.stats = dict( not_found=list() ) self.ids = list() self.samples = list() #i = 0 for id in tqdm.tqdm(ids): id_file = self.data_folder+"/{id}.csv".format(id=id) if os.path.exists(id_file): self.samples.append(id_file) X,nutzcode = self.load(id_file) if len(nutzcode) > 0: nutzcode = nutzcode[0] if nutzcode in self.mapping.index: self.X.append(X) self.nutzcodes.append(nutzcode) self.ids.append(id) else: self.stats["not_found"].append(id_file) self.y = self.applyclassmapping(self.nutzcodes) self.sequencelengths = np.array([np.array(X).shape[0] for X in self.X]) assert len(self.sequencelengths) > 0 self.sequencelength = self.sequencelengths.max() self.ndims = np.array(X).shape[1] self.hist,_ = np.histogram(self.y, bins=self.nclasses) self.classweights = 1 / self.hist #if 0 in self.hist: # classid_ = np.argmin(self.hist) # nutzid_ = self.mapping.iloc[classid_].name # raise ValueError("Class {id} (nutzcode {nutzcode}) has 0 occurences in the dataset! " # "Check dataset or mapping table".format(id=classid_, nutzcode=nutzid_)) #self.dataweights = np.array([self.classweights[y] for y in self.y]) self.cache_variables(self.y, self.sequencelengths, self.ids, self.ndims, self.X, self.classweights) def mapping_consistent_with_cache(self): # cached y must have the same number of classes than the mapping return True #return len(np.unique(np.load(os.path.join(self.cache, "y.npy")))) == self.nclasses def cache_variables(self, y, sequencelengths, ids, ndims, X, classweights): os.makedirs(self.cache, exist_ok=True) # cache np.save(os.path.join(self.cache, "classweights.npy"), classweights) np.save(os.path.join(self.cache, "y.npy"), y) np.save(os.path.join(self.cache, "ndims.npy"), ndims) np.save(os.path.join(self.cache, "sequencelengths.npy"), sequencelengths) np.save(os.path.join(self.cache, "ids.npy"), ids) #np.save(os.path.join(self.cache, "dataweights.npy"), dataweights) np.save(os.path.join(self.cache, "X.npy"), X) def load_cached_dataset(self): # load self.classweights = np.load(os.path.join(self.cache, "classweights.npy")) self.y = np.load(os.path.join(self.cache, "y.npy")) self.ndims = int(np.load(os.path.join(self.cache, "ndims.npy"))) self.sequencelengths = np.load(os.path.join(self.cache, "sequencelengths.npy")) self.sequencelength = self.sequencelengths.max() self.ids = np.load(os.path.join(self.cache, "ids.npy")) self.X = np.load(os.path.join(self.cache, "X.npy"), allow_pickle=True) def cache_exists(self): weightsexist = os.path.exists(os.path.join(self.cache, "classweights.npy")) yexist = os.path.exists(os.path.join(self.cache, "y.npy")) ndimsexist = os.path.exists(os.path.join(self.cache, "ndims.npy")) sequencelengthsexist = os.path.exists(os.path.join(self.cache, "sequencelengths.npy")) idsexist = os.path.exists(os.path.join(self.cache, "ids.npy")) Xexists = os.path.exists(os.path.join(self.cache, "X.npy")) return yexist and sequencelengthsexist and idsexist and ndimsexist and Xexists and weightsexist def clean_cache(self): os.remove(os.path.join(self.cache, "classweights.npy")) os.remove(os.path.join(self.cache, "y.npy")) os.remove(os.path.join(self.cache, "ndims.npy")) os.remove(os.path.join(self.cache, "sequencelengths.npy")) os.remove(os.path.join(self.cache, "ids.npy")) #os.remove(os.path.join(self.cache, "dataweights.npy")) os.remove(os.path.join(self.cache, "X.npy")) os.removedirs(self.cache) def load(self, csv_file, load_pandas = False): """['B1', 'B10', 'B11', 'B12', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B9', 'QA10', 'QA20', 'QA60', 'doa', 'label', 'id']""" if load_pandas: sample = pd.read_csv(csv_file, index_col=0) X = np.array((sample[BANDS] * NORMALIZING_FACTOR).values) nutzcodes = sample["label"].values # nutzcode to classids (451,411) -> (0,1) else: # load with numpy data = genfromtxt(csv_file, delimiter=',', skip_header=1) X = data[:, 1:14] * NORMALIZING_FACTOR nutzcodes = data[:, 18] # drop times that contain nans if np.isnan(X).any(): t_without_nans = np.isnan(X).sum(1) > 0 X = X[~t_without_nans] nutzcodes = nutzcodes[~t_without_nans] return X, nutzcodes def applyclassmapping(self, nutzcodes): """uses a mapping table to replace nutzcodes (e.g. 451, 411) with class ids""" return np.array([self.mapping.loc[nutzcode]["id"] for nutzcode in nutzcodes]) def __len__(self): return len(self.ids) def __getitem__(self, idx): load_file = False if load_file: id = self.ids[idx] csvfile = os.path.join(self.data_folder, "{}.csv".format(id)) X,nutzcodes = self.load(csvfile) y = self.applyclassmapping(nutzcodes=nutzcodes) else: X = self.X[idx] y = np.array([self.y[idx]] * X.shape[0]) # repeat y for each entry in x # pad up to maximum sequence length t = X.shape[0] if self.samplet is None: npad = self.sequencelengths.max() - t X = np.pad(X,[(0,npad), (0,0)],'constant', constant_values=PADDING_VALUE) y = np.pad(y, (0, npad), 'constant', constant_values=PADDING_VALUE) else: idxs = np.random.choice(t, self.samplet, replace=False) idxs.sort() X = X[idxs] y = y[idxs] X = torch.from_numpy(X).type(torch.FloatTensor) y = torch.from_numpy(y).type(torch.LongTensor) return X, y, self.ids[idx] if __name__=="__main__": root = "/data/BavarianCrops" classmapping = "/data/BavarianCrops/classmapping.isprs.csv" train = BavarianCropsDataset(root="/data/BavarianCrops", region="holl", partition="train", scheme="blocks", classmapping = classmapping, samplet=50) test = BavarianCropsDataset(root="/data/BavarianCrops", region="holl", partition="test", scheme="blocks", classmapping = classmapping, samplet=50) train = BavarianCropsDataset(root="/data/BavarianCrops", region="holl", partition="valid", scheme="blocks", classmapping = classmapping, samplet=50) trainvalid = BavarianCropsDataset(root="/data/BavarianCrops", region="holl", partition="trainvalid", scheme="blocks", classmapping = classmapping, samplet=50,)
the-stack_0_19562
import requests from bs4 import BeautifulSoup baseQuery = 'https://patents.google.com/xhr/result' params = {'id': 'patent/US10343279B2/en', 'qs': 'q=Deep+learning+neural+interfaces&oq=Deep+learning+neural+interfaces'} response = requests.get(baseQuery, params=params) soup = BeautifulSoup(response.text, 'lxml') """ <span itemprop="title">Navigational control of robotic systems and other computer-implemented processes using developmental network with turing machine learning</span> <dd itemprop="publicationNumber">US10343279B2</dd> <dd itemprop="countryCode">US</dd> <dd itemprop="countryName">United States</dd> <dd itemprop="priorArtKeywords" repeat>area</dd> <dd itemprop="priorArtKeywords" repeat>developmental</dd> <dd itemprop="priorArtKeywords" repeat>turing machine</dd> <dd itemprop="priorArtKeywords" repeat>weights</dd> <dd itemprop="priorArtKeywords" repeat>emergent</dd> <dd><time itemprop="priorArtDate" datetime="2015-07-10">2015-07-10</time></dd> <dd itemprop="inventor" repeat>Juyang Weng</dd> <dd itemprop="inventor" repeat>Zejia Zheng</dd> <dd itemprop="inventor" repeat>Xie He</dd> <dt>Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)</dt> <dd itemprop="assigneeCurrent" repeat> Michigan State University MSU </dd> <dd itemprop="assigneeOriginal" repeat>Michigan State University MSU</dd> <dd><time itemprop="priorityDate" datetime="2015-07-10">2015-07-10</time></dd> <dt>Filing date</dt> <dd><time itemprop="filingDate" datetime="2016-07-08">2016-07-08</time></dd> <dt>Publication date</dt> <dd><time itemprop="publicationDate" datetime="2019-07-09">2019-07-09</time></dd> <div class="abstract"> """ title = soup.find('span', {'itemprop': "title"}) print(title.text.strip()) publicationNumber = soup.find("dd", {"itemprop": "publicationNumber"}) print(publicationNumber.text) countryCode = soup.find("dd", {"itemprop": "countryCode"}) print(countryCode.text) countryName = soup.find("dd", {"itemprop": "countryName"}) print(countryName.text) priorArtKeywords = soup.find_all("dd", {"itemprop": "priorArtKeywords"}) print(priorArtKeywords) priorArtDate = soup.find("time", {"itemprop": "priorArtDate"}) print(priorArtDate.text) inventors = soup.find_all("dd", {"itemprop": "inventor"}) print(inventors) assigneeCurrent = soup.find("dd", {"itemprop": "assigneeCurrents"}) print(assigneeCurrent.text.strip() if assigneeCurrent is not None else None) assigneeOriginal = soup.find("dd", {"itemprop": "assigneeOriginal"}) print(assigneeOriginal.text) priorityDate = soup.find("time", {"itemprop": "priorityDate"}) print(priorityDate.text) filingDate = soup.find("time", {"itemprop": "filingDate"}) print(filingDate.text) publicationDate = soup.find("time", {"itemprop": "publicationDate"}) print("publicationDate", publicationDate.text) abstract = soup.find("div", {"class": "abstract"}) print("abstract", abstract.text)
the-stack_0_19563
import pandas as pd import rdt from copulas.univariate import BetaUnivariate from sdv.demo import load_demo from sdv.relational import HMA1 from sdv.tabular import GaussianCopula def test_sdv_model_kwargs(): metadata, tables = load_demo(metadata=True) tables = {'users': tables['users']} metadata = metadata.to_dict() del metadata['tables']['sessions'] del metadata['tables']['transactions'] hma = HMA1(metadata, model=GaussianCopula, model_kwargs={ 'default_distribution': 'beta', 'categorical_transformer': 'label_encoding', }) hma.fit(tables) model = hma._models['users'] assert model._default_distribution == BetaUnivariate assert model._DTYPE_TRANSFORMERS['O'] == 'label_encoding' assert isinstance( model._metadata._hyper_transformer._transformers['gender'], rdt.transformers.categorical.LabelEncodingTransformer ) def test_ids_only_child(): """Ensure tables with nothing else than ids can be modeled and sampled.""" parent = pd.DataFrame({ 'parent_id': range(10), }) pk_child = pd.DataFrame({ 'child_id': range(10), 'parent_id': range(10), }) no_pk_child = pd.DataFrame({ 'parent_id': range(10), }) metadata = { 'tables': { 'parent': { 'fields': { 'parent_id': { 'type': 'id', }, }, 'primary_key': 'parent_id', }, 'pk_child': { 'fields': { 'child_id': { 'type': 'id', }, 'parent_id': { 'type': 'id', 'ref': { 'table': 'parent', 'field': 'field_id' } }, }, 'primary_key': 'child_id', }, 'no_pk_child': { 'fields': { 'parent_id': { 'type': 'id', 'ref': { 'table': 'parent', 'field': 'field_id' } }, }, }, } } tables = { 'parent': parent, 'pk_child': pk_child, 'no_pk_child': no_pk_child, } hma1 = HMA1(metadata=metadata) hma1.fit(tables) sampled = hma1.sample() assert set(sampled.keys()) == {'parent', 'pk_child', 'no_pk_child'} for name, table in tables.items(): assert table.shape == sampled[name].shape assert table.columns.tolist() == sampled[name].columns.tolist()
the-stack_0_19564
#!/usr/bin/env python3 # Dependencies from the Python 3 standard library: import os import subprocess as sp from shutil import copyfile # Dependencies from the Scipy stack https://www.scipy.org/stackspec.html : import numpy as np import matplotlib.pyplot as plt # Dependencies from https://github.com/AndrewGYork/remote_refocus/figure_generation : import np_tif ## Set/create directories input_directory = os.path.abspath(os.path.join( os.getcwd(), os.pardir, os.pardir, 'big_data_input', 'uFchip')) temp_directory = os.path.abspath(os.path.join( os.getcwd(), os.pardir, os.pardir, 'temp')) if not os.path.isdir(temp_directory): os.mkdir(temp_directory) temp_directory = os.path.join(temp_directory, 'uFchip') if not os.path.isdir(temp_directory): os.mkdir(temp_directory) output_directory = os.path.abspath(os.path.join( os.getcwd(), os.pardir, os.pardir, 'big_data_output')) if not os.path.isdir(output_directory): os.mkdir(output_directory) output_directory = os.path.join(output_directory, 'uFchip') if not os.path.isdir(output_directory): os.mkdir(output_directory) ## Set input file name and acquisition parameters for processing input_filename = ('transmitted_z_step_10_uF2.tif') cropped_filename = os.path.splitext(input_filename)[0] + '_cropped.tif' input_filename = os.path.join(input_directory, input_filename) cropped_filename = os.path.join(temp_directory, cropped_filename) num_tps = 1000 # Number of time points in series left_crop = 400 right_crop = 750 top_crop = 0 bottom_crop = 0 ## If cropped file exists then load if os.path.exists(cropped_filename): print('Found cropped tif, loading...', end='', sep='') data = np_tif.tif_to_array(cropped_filename) print('done') print('tif shape (t, y, x) =', data.shape) ## If no file found then load original and crop else: print('Loading original file...', end='', sep='') data = np_tif.tif_to_array(input_filename) print('done') data = data.reshape((num_tps,) + data.shape[-2:]) print('tif shape (t, y, x) =', data.shape) print('Cropping...', end='', sep='') if left_crop or right_crop > 0: data = data[:, :, left_crop:-right_crop] if top_crop or bottom_crop > 0: data = data[:, top_crop:-bottom_crop, :] print('done') print("Saving result...", end='', sep='') np_tif.array_to_tif( data.reshape(num_tps, data.shape[-2], data.shape[-1]), cropped_filename, slices=1, channels=1, frames=num_tps) print('done') print('tif shape (t, y, x) =', data.shape) ## Choose parameters for video current_frame = -1 xmargin = 0.01 ymargin = 0.025 space = 0.175 img_size = 0.5 max_intensity = 12500 wlw = 2 # white line width half amplitude start_tp = 0 # removing uneventful begging stop_tp = 100 # remove uneventful end xslice = 86 # choose slice along x for display ## Set output folder for images to make video output_filename = os.path.join(temp_directory, 'img%06i.png') ## Make images for video fig = plt.figure() for t in range(wlw + start_tp, num_tps - wlw - stop_tp): plt.clf() current_frame += 1 time = 0.001*t - 0.002 - 0.001*start_tp print('time = ', time) ax1 = plt.axes([0, 0.575, img_size, img_size]) ax1_data = data[t, :, :] ax1.imshow(ax1_data, cmap='gray', vmin=0, vmax=max_intensity) plt.setp(ax1.get_xticklabels(), visible=False) plt.setp(ax1.get_yticklabels(), visible=False) plt.setp(ax1.get_xticklines(), visible=False) plt.setp(ax1.get_yticklines(), visible=False) ax2 = plt.axes([0, 0, img_size, 1.5*img_size]) ax2_data = np.zeros((data.shape[0], data.shape[2], 3)) # RGB make_me_rgb = data[:, xslice, :].reshape(data.shape[0], data.shape[2], 1) make_me_rgb = np.clip(make_me_rgb/max_intensity, 0, 1) # Normalize to 0, 1 ax2_data[:, :, :] = make_me_rgb # Broadcast across all three color channels white_line = ax2_data[t-wlw:t+wlw, :, :] yellow = np.array([1, 1, 0]) white_line[0, :, :] = 0.5*yellow # Woo, broadcasting. white_line[1, :, :] = 1.0*yellow white_line[2, :, :] = 1.0*yellow white_line[3, :, :] = 0.5*yellow ax2.imshow(ax2_data) plt.setp(ax2.get_xticklabels(), visible=False) plt.setp(ax2.get_yticklabels(), visible=False) plt.setp(ax2.get_xticklines(), visible=False) plt.setp(ax2.get_yticklines(), visible=False) if 50 < t < 275: plt.figtext(xmargin, ymargin + 3.9*space, 'Microscope', color='yellow', family='monospace') else: plt.figtext(xmargin, ymargin + 3.9*space, 'Microscope', color='white', family='monospace') if 475 < t < 625: plt.figtext(xmargin, ymargin + 2*space, 'Stage', color='yellow', family='monospace') else: plt.figtext(xmargin, ymargin + 2*space, 'Stage', color='white', family='monospace') if 725 < t < 800: plt.figtext(xmargin, ymargin + space, 'Remote', color='yellow', family='monospace') else: plt.figtext(xmargin, ymargin + space, 'Remote', color='white', family='monospace') plt.figtext(xmargin, ymargin, 't=%6ss'%('%0.3f'%time), color='yellow', family='monospace') plt.savefig(output_filename%current_frame, bbox_inches='tight') plt.close(fig) ## Choose 'poster' image and copy to video location copyfile(os.path.join(temp_directory, 'img000250.png'), os.path.join(output_directory, 'poster.png')) ## Make video from images print("Converting images to mp4...", end='') convert_command = [ 'ffmpeg', '-y', # auto overwrite files '-r', '50', # frame rate '-f', 'image2', # format is image sequence '-i', os.path.join(temp_directory, 'img%06d.png'), # image sequence name '-movflags', 'faststart', # internet optimisation...(?) '-pix_fmt', 'yuv420p', # cross browser compatibility '-vcodec', 'libx264', # codec choice '-vf', 'scale=trunc(iw/2)*2:trunc(ih/2)*2', # even pixel number (important) '-preset', 'veryslow', # take time and compress to max '-crf', '25', # image quality vs file size os.path.join(output_directory, 'figure.mp4')] # output file name try: with open('conversion_messages.txt', 'wt') as f: f.write("So far, everthing's fine...\n") f.flush() sp.check_call(convert_command, stderr=f, stdout=f) f.flush() os.remove('conversion_messages.txt') except: # This is unlikely to be platform independent :D print("MP4 conversion failed. Is ffmpeg installed?") raise print('"figure.mp4" created') print('done.') ## This is a default figure so copy to 'images' in 'master' directory image_directory = os.path.abspath(os.path.join( os.getcwd(), os.pardir, os.pardir, 'master', 'images', 'uFchip')) if not os.path.isdir(image_directory): os.mkdir(image_directory) copyfile(os.path.join(output_directory, 'figure.mp4'), os.path.join(image_directory, 'figure.mp4')) copyfile(os.path.join(output_directory, 'poster.png'), os.path.join(image_directory, 'poster.png'))
the-stack_0_19565
# Copyright 2016 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from tripleo_common.actions import package_update from tripleo_common import constants from tripleo_common.tests import base class ClearBreakpointsActionTest(base.TestCase): def setUp(self,): super(ClearBreakpointsActionTest, self).setUp() self.stack_id = 'stack_id' self.refs = 'refs' @mock.patch('tripleo_common.actions.package_update.PackageUpdateManager') @mock.patch('tripleo_common.actions.base.TripleOAction.' 'get_orchestration_client') @mock.patch('tripleo_common.actions.base.TripleOAction.' 'get_compute_client') def test_run(self, mock_compute_client, mock_orchestration_client, mock_update_manager): mock_ctx = mock.MagicMock() action = package_update.ClearBreakpointsAction(self.stack_id, self.refs) result = action.run(mock_ctx) self.assertEqual(None, result) mock_compute_client.assert_called_once() mock_orchestration_client.assert_called_once() mock_update_manager.assert_called_once_with( mock_orchestration_client(), mock_compute_client(), self.stack_id, stack_fields={}) mock_update_manager().clear_breakpoints.assert_called_once_with( self.refs) class UpdateStackActionTest(base.TestCase): def setUp(self,): super(UpdateStackActionTest, self).setUp() self.timeout = 1 self.container = 'container' @mock.patch('tripleo_common.actions.templates.ProcessTemplatesAction.run') @mock.patch('tripleo_common.actions.base.TripleOAction.get_object_client') @mock.patch('tripleo_common.actions.base.TripleOAction.' 'get_orchestration_client') @mock.patch('tripleo_common.actions.base.TripleOAction.' 'get_compute_client') @mock.patch('tripleo_common.actions.package_update.time') @mock.patch('heatclient.common.template_utils.get_template_contents') def test_run(self, mock_template_contents, mock_time, mock_compute_client, mock_orchestration_client, mock_object_client, mock_templates_run): mock_ctx = mock.MagicMock() heat = mock.MagicMock() heat.stacks.get.return_value = mock.MagicMock( stack_name='stack', id='stack_id') mock_orchestration_client.return_value = heat mock_template_contents.return_value = ({}, { 'heat_template_version': '2016-04-30' }) mock_swift = mock.MagicMock() mock_env = """environments: - path: environments/test.yaml name: container parameter_defaults: random_data: a_value temp_environment: temp_environment template: template """ mock_swift.get_object.return_value = ({}, mock_env) mock_object_client.return_value = mock_swift # freeze time at datetime.datetime(2016, 9, 8, 16, 24, 24) mock_time.time.return_value = 1473366264 mock_templates_run.return_value = { 'StackAction': 'UPDATE', 'DeployIdentifier': 1473366264, 'UpdateIdentifier': 1473366264 } action = package_update.UpdateStackAction(self.timeout, container=self.container) action.run(mock_ctx) # verify parameters are as expected updated_mock_env = """environments: - path: environments/test.yaml name: container parameter_defaults: DeployIdentifier: 1473366264 StackAction: UPDATE UpdateIdentifier: 1473366264 random_data: a_value temp_environment: temp_environment template: template """ mock_swift.put_object.assert_called_once_with( self.container, constants.PLAN_ENVIRONMENT, updated_mock_env ) heat.stacks.update.assert_called_once_with( 'stack_id', StackAction='UPDATE', DeployIdentifier=1473366264, UpdateIdentifier=1473366264, existing='true', timeout_mins=1, environment={ 'resource_registry': { 'resources': { '*': { '*': {'UpdateDeployment': {'hooks': 'pre-update'}} } } } })
the-stack_0_19566
#!/usr/bin/env python # -*- coding: utf-8 -*- # ******************************************************** # Author : huangming # Email : [email protected] # Last modified : 2018-05-08 08:52 # Filename : log.py # Description : py3 # ******************************************************** '''Implements a simple log library. This module is a simple encapsulation of logging module to provide a more convenient interface to write log. The log will both print to stdout and write to log file. It provides a more flexible way to set the log actions, and also very simple. See examples showed below: Example 1: Use default settings import log log = log.Log(cmdlevel='info') log.debug('hello, world') log.info('hello, world') log.error('hello, world') log.critical('hello, world') Result: Print all log messages to file, and only print log whose level is greater than ERROR to stdout. The log file is located in 'xxx.log' if the module name is xxx.py. The default log file handler is size-rotated, if the log file's size is greater than 20M, then it will be rotated. Example 2: Use set_logger to change settings # Change limit size in bytes of default rotating action log.set_logger(limit = 10240) # 10M # Use time-rotated file handler, each day has a different log file, see # logging.handlers.TimedRotatingFileHandler for more help about 'when' log.set_logger(when = 'D', limit = 1) # Use normal file handler (not rotated) log.set_logger(backup_count = 0) # File log level set to INFO, and stdout log level set to DEBUG log.set_logger(cmdlevel = 'DEBUG', filelevel = 'INFO') # Change default log file name and log mode log.set_logger(filename = 'yyy.log', mode = 'w') # Change default log formatter log.set_logger(cmdfmt = '[%(levelname)s] %(message)s') ''' __author__ = "Mingo <[email protected]>" __status__ = "Development" __all__ = ['set_logger', 'debug', 'info', 'warning', 'error', 'critical', 'exception'] import os import sys import traceback import logging import logging.handlers class ColoredFormatter(logging.Formatter): '''A colorful formatter.''' def __init__(self, fmt = None, datefmt = None): logging.Formatter.__init__(self, fmt, datefmt) def format(self, record): # Color escape string COLOR_RED='\033[1;31m' COLOR_GREEN='\033[1;32m' COLOR_YELLOW='\033[1;33m' COLOR_BLUE='\033[1;34m' COLOR_PURPLE='\033[1;35m' COLOR_CYAN='\033[1;36m' COLOR_GRAY='\033[1;37m' COLOR_WHITE='\033[1;38m' COLOR_RESET='\033[1;0m' # Define log color LOG_COLORS = { 'DEBUG': '%s', 'INFO': COLOR_GREEN + '%s' + COLOR_RESET, 'WARNING': COLOR_YELLOW + '%s' + COLOR_RESET, 'ERROR': COLOR_RED + '%s' + COLOR_RESET, 'CRITICAL': COLOR_RED + '%s' + COLOR_RESET, 'EXCEPTION': COLOR_RED + '%s' + COLOR_RESET, } level_name = record.levelname msg = logging.Formatter.format(self, record) return LOG_COLORS.get(level_name, '%s') % msg class Log(): def __init__(self, loggername='', filename = None, mode = 'a', cmdlevel='DEBUG', filelevel='INFO', cmdfmt = '[%(asctime)s] %(filename)s line:%(lineno)d %(levelname)-8s%(message)s', filefmt = '[%(asctime)s] %(levelname)-8s%(message)s', cmddatefmt = '%H:%M:%S', filedatefmt = '%Y-%m-%d %H:%M:%S', backup_count = 0, limit = 20480, when = None, colorful = False): self.filename = filename self.loggername = loggername if self.filename is None: self.filename = getattr(sys.modules['__main__'], '__file__', 'log.py') self.filename = os.path.basename(self.filename.replace('.py', '.log')) #self.filename = os.path.join('/tmp', self.filename) if not os.path.exists(os.path.abspath(os.path.dirname(self.filename))): os.makedirs(os.path.abspath(os.path.dirname(self.filename))) self.mode = mode self.cmdlevel = cmdlevel self.filelevel = filelevel if isinstance(self.cmdlevel, str): self.cmdlevel = getattr(logging, self.cmdlevel.upper(), logging.DEBUG) if isinstance(self.filelevel, str): self.filelevel = getattr(logging, self.filelevel.upper(), logging.DEBUG) self.filefmt = filefmt self.cmdfmt = cmdfmt self.filedatefmt = filedatefmt self.cmddatefmt = cmddatefmt self.backup_count = backup_count self.limit = limit self.when = when self.colorful = colorful self.logger = None self.streamhandler = None self.filehandler = None if self.cmdlevel > 10: self.filefmt = '[%(asctime)s] %(levelname)-8s%(message)s' self.cmdfmt = '[%(asctime)s] %(levelname)-8s%(message)s' self.cmddatefmt = '%Y-%m-%d %H:%M:%S' self.set_logger(cmdlevel = self.cmdlevel) def init_logger(self): '''Reload the logger.''' if self.logger is None: self.logger = logging.getLogger(self.loggername) else: logging.shutdown() self.logger.handlers = [] self.streamhandler = None self.filehandler = None self.logger.setLevel(logging.DEBUG) def add_streamhandler(self): '''Add a stream handler to the logger.''' self.streamhandler = logging.StreamHandler() self.streamhandler.setLevel(self.cmdlevel) if self.colorful: formatter = ColoredFormatter(self.cmdfmt, self.cmddatefmt) else: formatter = logging.Formatter(self.cmdfmt, self.cmddatefmt,) self.streamhandler.setFormatter(formatter) self.logger.addHandler(self.streamhandler) def add_filehandler(self): '''Add a file handler to the logger.''' # Choose the filehandler based on the passed arguments if self.backup_count == 0: # Use FileHandler self.filehandler = logging.FileHandler(self.filename, self.mode) elif self.when is None: # Use RotatingFileHandler self.filehandler = logging.handlers.RotatingFileHandler(self.filename, self.mode, self.limit, self.backup_count) else: # Use TimedRotatingFileHandler self.filehandler = logging.handlers.TimedRotatingFileHandler(self.filename, self.when, 1, self.backup_count) self.filehandler.setLevel(self.filelevel) formatter = logging.Formatter(self.filefmt, self.filedatefmt,) self.filehandler.setFormatter(formatter) self.logger.addHandler(self.filehandler) def set_logger(self, **kwargs): '''Configure the logger.''' keys = ['mode','cmdlevel','filelevel','filefmt','cmdfmt',\ 'filedatefmt','cmddatefmt','backup_count','limit',\ 'when','colorful'] for (key, value) in kwargs.items(): if not (key in keys): return False setattr(self, key, value) if isinstance(self.cmdlevel, str): self.cmdlevel = getattr(logging, self.cmdlevel.upper(), logging.DEBUG) if isinstance(self.filelevel, str): self.filelevel = getattr(logging, self.filelevel.upper(), logging.DEBUG) if not "cmdfmt" in kwargs: self.filefmt='[%(asctime)s] %(filename)s line:%(lineno)d %(levelname)-8s%(message)s' self.filedatefmt = '%Y-%m-%d %H:%M:%S' self.cmdfmt='[%(asctime)s] %(filename)s line:%(lineno)d %(levelname)-8s%(message)s' self.cmddatefmt = '%H:%M:%S' if self.cmdlevel > 10: self.filefmt = '[%(asctime)s] %(levelname)-8s%(message)s' self.cmdfmt = '[%(asctime)s] %(levelname)-8s%(message)s' self.cmddatefmt = '%Y-%m-%d %H:%M:%S' self.init_logger() if self.cmdlevel>0: self.add_streamhandler() if self.filelevel>0: self.add_filehandler() # Import the common log functions for convenient self.import_log_funcs() return True def addFileLog(self,log): self.logger.addHandler(log.filehandler) return self def import_log_funcs(self): '''Import the common log functions from the logger to the class''' log_funcs = ['debug', 'info', 'warning', 'error', 'critical', 'exception'] for func_name in log_funcs: func = getattr(self.logger, func_name) setattr(self, func_name, func) def trace(self): info = sys.exc_info() for file, lineno, function, text in traceback.extract_tb(info[2]): self.error('%s line:%s in %s:%s' % (file, lineno, function, text)) self.error('%s: %s' % info[:2]) if __name__ == '__main__': log = Log(cmdlevel='info',colorful = True) err_log = Log('haha',cmdlevel='info',filename = 'log/tmp.log',backup_count = 1,when = 'D') # log = Log(cmdlevel='debug') log.set_logger(cmdlevel='debug') # log = log.addFileLog(err_log) for i in range(100000): log.debug('debug') err_log.debug('debug') log.info('debug%s' % 'haha') err_log.info('info%s' % 'haha') log.error((1,2)) log.error('debug') log.info({'a':1,'b':2}) os.system("pause") class A(): def __init__(self, log): self.log = log def a(self,a): self.log.info(a) class B(): def __init__(self, log): self.log = log def b(self,a): self.log.info(a) a = A(log) a.a("test a") b = B(log) b.b(5) def fun(a): return 10/a try: a = fun(0) except: log.trace()
the-stack_0_19567
# util/langhelpers.py # Copyright (C) 2005-2020 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Routines to help with the creation, loading and introspection of modules, classes, hierarchies, attributes, functions, and methods. """ from functools import update_wrapper import hashlib import inspect import itertools import operator import re import sys import textwrap import types import warnings from . import _collections from . import compat from .. import exc def md5_hex(x): if compat.py3k: x = x.encode("utf-8") m = hashlib.md5() m.update(x) return m.hexdigest() class safe_reraise(object): """Reraise an exception after invoking some handler code. Stores the existing exception info before invoking so that it is maintained across a potential coroutine context switch. e.g.:: try: sess.commit() except: with safe_reraise(): sess.rollback() """ __slots__ = ("warn_only", "_exc_info") def __init__(self, warn_only=False): self.warn_only = warn_only def __enter__(self): self._exc_info = sys.exc_info() def __exit__(self, type_, value, traceback): # see #2703 for notes if type_ is None: exc_type, exc_value, exc_tb = self._exc_info self._exc_info = None # remove potential circular references if not self.warn_only: compat.raise_( exc_value, with_traceback=exc_tb, ) else: if not compat.py3k and self._exc_info and self._exc_info[1]: # emulate Py3K's behavior of telling us when an exception # occurs in an exception handler. warn( "An exception has occurred during handling of a " "previous exception. The previous exception " "is:\n %s %s\n" % (self._exc_info[0], self._exc_info[1]) ) self._exc_info = None # remove potential circular references compat.raise_(value, with_traceback=traceback) def clsname_as_plain_name(cls): return " ".join( n.lower() for n in re.findall(r"([A-Z][a-z]+)", cls.__name__) ) def decode_slice(slc): """decode a slice object as sent to __getitem__. takes into account the 2.5 __index__() method, basically. """ ret = [] for x in slc.start, slc.stop, slc.step: if hasattr(x, "__index__"): x = x.__index__() ret.append(x) return tuple(ret) def _unique_symbols(used, *bases): used = set(used) for base in bases: pool = itertools.chain( (base,), compat.itertools_imap(lambda i: base + str(i), range(1000)), ) for sym in pool: if sym not in used: used.add(sym) yield sym break else: raise NameError("exhausted namespace for symbol base %s" % base) def map_bits(fn, n): """Call the given function given each nonzero bit from n.""" while n: b = n & (~n + 1) yield fn(b) n ^= b def decorator(target): """A signature-matching decorator factory.""" def decorate(fn): if not inspect.isfunction(fn) and not inspect.ismethod(fn): raise Exception("not a decoratable function") spec = compat.inspect_getfullargspec(fn) names = tuple(spec[0]) + spec[1:3] + (fn.__name__,) targ_name, fn_name = _unique_symbols(names, "target", "fn") metadata = dict(target=targ_name, fn=fn_name) metadata.update(format_argspec_plus(spec, grouped=False)) metadata["name"] = fn.__name__ code = ( """\ def %(name)s(%(args)s): return %(target)s(%(fn)s, %(apply_kw)s) """ % metadata ) decorated = _exec_code_in_env( code, {targ_name: target, fn_name: fn}, fn.__name__ ) decorated.__defaults__ = getattr(fn, "im_func", fn).__defaults__ decorated.__wrapped__ = fn return update_wrapper(decorated, fn) return update_wrapper(decorate, target) def _exec_code_in_env(code, env, fn_name): exec(code, env) return env[fn_name] def public_factory(target, location, class_location=None): """Produce a wrapping function for the given cls or classmethod. Rationale here is so that the __init__ method of the class can serve as documentation for the function. """ if isinstance(target, type): fn = target.__init__ callable_ = target doc = ( "Construct a new :class:`.%s` object. \n\n" "This constructor is mirrored as a public API function; " "see :func:`sqlalchemy%s` " "for a full usage and argument description." % (target.__name__, location) ) else: fn = callable_ = target doc = ( "This function is mirrored; see :func:`sqlalchemy%s` " "for a description of arguments." % location ) location_name = location.split(".")[-1] spec = compat.inspect_getfullargspec(fn) del spec[0][0] metadata = format_argspec_plus(spec, grouped=False) metadata["name"] = location_name code = ( """\ def %(name)s(%(args)s): return cls(%(apply_kw)s) """ % metadata ) env = {"cls": callable_, "symbol": symbol} exec(code, env) decorated = env[location_name] if hasattr(fn, "_linked_to"): linked_to, linked_to_location = fn._linked_to linked_to_doc = linked_to.__doc__ if class_location is None: class_location = "%s.%s" % (target.__module__, target.__name__) linked_to_doc = inject_docstring_text( linked_to_doc, ".. container:: inherited_member\n\n " "Inherited from :func:`sqlalchemy%s`; this constructor " "creates a :class:`%s` object" % (linked_to_location, class_location), 1, ) decorated.__doc__ = linked_to_doc else: decorated.__doc__ = fn.__doc__ decorated.__module__ = "sqlalchemy_1_3" + location.rsplit(".", 1)[0] if decorated.__module__ not in sys.modules: raise ImportError( "public_factory location %s is not in sys.modules" % (decorated.__module__,) ) if compat.py2k or hasattr(fn, "__func__"): fn.__func__.__doc__ = doc if not hasattr(fn.__func__, "_linked_to"): fn.__func__._linked_to = (decorated, location) else: fn.__doc__ = doc if not hasattr(fn, "_linked_to"): fn._linked_to = (decorated, location) return decorated class PluginLoader(object): def __init__(self, group, auto_fn=None): self.group = group self.impls = {} self.auto_fn = auto_fn def clear(self): self.impls.clear() def load(self, name): if name in self.impls: return self.impls[name]() if self.auto_fn: loader = self.auto_fn(name) if loader: self.impls[name] = loader return loader() try: import pkg_resources except ImportError: pass else: for impl in pkg_resources.iter_entry_points(self.group, name): self.impls[name] = impl.load return impl.load() raise exc.NoSuchModuleError( "Can't load plugin: %s:%s" % (self.group, name) ) def register(self, name, modulepath, objname): def load(): mod = compat.import_(modulepath) for token in modulepath.split(".")[1:]: mod = getattr(mod, token) return getattr(mod, objname) self.impls[name] = load def _inspect_func_args(fn): try: co_varkeywords = inspect.CO_VARKEYWORDS except AttributeError: # https://docs.python.org/3/library/inspect.html # The flags are specific to CPython, and may not be defined in other # Python implementations. Furthermore, the flags are an implementation # detail, and can be removed or deprecated in future Python releases. spec = compat.inspect_getfullargspec(fn) return spec[0], bool(spec[2]) else: # use fn.__code__ plus flags to reduce method call overhead co = fn.__code__ nargs = co.co_argcount return ( list(co.co_varnames[:nargs]), bool(co.co_flags & co_varkeywords), ) def get_cls_kwargs(cls, _set=None): r"""Return the full set of inherited kwargs for the given `cls`. Probes a class's __init__ method, collecting all named arguments. If the __init__ defines a \**kwargs catch-all, then the constructor is presumed to pass along unrecognized keywords to its base classes, and the collection process is repeated recursively on each of the bases. Uses a subset of inspect.getfullargspec() to cut down on method overhead, as this is used within the Core typing system to create copies of type objects which is a performance-sensitive operation. No anonymous tuple arguments please ! """ toplevel = _set is None if toplevel: _set = set() ctr = cls.__dict__.get("__init__", False) has_init = ( ctr and isinstance(ctr, types.FunctionType) and isinstance(ctr.__code__, types.CodeType) ) if has_init: names, has_kw = _inspect_func_args(ctr) _set.update(names) if not has_kw and not toplevel: return None if not has_init or has_kw: for c in cls.__bases__: if get_cls_kwargs(c, _set) is None: break _set.discard("self") return _set def get_func_kwargs(func): """Return the set of legal kwargs for the given `func`. Uses getargspec so is safe to call for methods, functions, etc. """ return compat.inspect_getfullargspec(func)[0] def get_callable_argspec(fn, no_self=False, _is_init=False): """Return the argument signature for any callable. All pure-Python callables are accepted, including functions, methods, classes, objects with __call__; builtins and other edge cases like functools.partial() objects raise a TypeError. """ if inspect.isbuiltin(fn): raise TypeError("Can't inspect builtin: %s" % fn) elif inspect.isfunction(fn): if _is_init and no_self: spec = compat.inspect_getfullargspec(fn) return compat.FullArgSpec( spec.args[1:], spec.varargs, spec.varkw, spec.defaults, spec.kwonlyargs, spec.kwonlydefaults, spec.annotations, ) else: return compat.inspect_getfullargspec(fn) elif inspect.ismethod(fn): if no_self and (_is_init or fn.__self__): spec = compat.inspect_getfullargspec(fn.__func__) return compat.FullArgSpec( spec.args[1:], spec.varargs, spec.varkw, spec.defaults, spec.kwonlyargs, spec.kwonlydefaults, spec.annotations, ) else: return compat.inspect_getfullargspec(fn.__func__) elif inspect.isclass(fn): return get_callable_argspec( fn.__init__, no_self=no_self, _is_init=True ) elif hasattr(fn, "__func__"): return compat.inspect_getfullargspec(fn.__func__) elif hasattr(fn, "__call__"): if inspect.ismethod(fn.__call__): return get_callable_argspec(fn.__call__, no_self=no_self) else: raise TypeError("Can't inspect callable: %s" % fn) else: raise TypeError("Can't inspect callable: %s" % fn) def format_argspec_plus(fn, grouped=True): """Returns a dictionary of formatted, introspected function arguments. A enhanced variant of inspect.formatargspec to support code generation. fn An inspectable callable or tuple of inspect getargspec() results. grouped Defaults to True; include (parens, around, argument) lists Returns: args Full inspect.formatargspec for fn self_arg The name of the first positional argument, varargs[0], or None if the function defines no positional arguments. apply_pos args, re-written in calling rather than receiving syntax. Arguments are passed positionally. apply_kw Like apply_pos, except keyword-ish args are passed as keywords. Example:: >>> format_argspec_plus(lambda self, a, b, c=3, **d: 123) {'args': '(self, a, b, c=3, **d)', 'self_arg': 'self', 'apply_kw': '(self, a, b, c=c, **d)', 'apply_pos': '(self, a, b, c, **d)'} """ if compat.callable(fn): spec = compat.inspect_getfullargspec(fn) else: spec = fn args = compat.inspect_formatargspec(*spec) if spec[0]: self_arg = spec[0][0] elif spec[1]: self_arg = "%s[0]" % spec[1] else: self_arg = None apply_pos = compat.inspect_formatargspec( spec[0], spec[1], spec[2], None, spec[4] ) num_defaults = 0 if spec[3]: num_defaults += len(spec[3]) if spec[4]: num_defaults += len(spec[4]) name_args = spec[0] + spec[4] if num_defaults: defaulted_vals = name_args[0 - num_defaults :] else: defaulted_vals = () apply_kw = compat.inspect_formatargspec( name_args, spec[1], spec[2], defaulted_vals, formatvalue=lambda x: "=" + x, ) if grouped: return dict( args=args, self_arg=self_arg, apply_pos=apply_pos, apply_kw=apply_kw, ) else: return dict( args=args[1:-1], self_arg=self_arg, apply_pos=apply_pos[1:-1], apply_kw=apply_kw[1:-1], ) def format_argspec_init(method, grouped=True): """format_argspec_plus with considerations for typical __init__ methods Wraps format_argspec_plus with error handling strategies for typical __init__ cases:: object.__init__ -> (self) other unreflectable (usually C) -> (self, *args, **kwargs) """ if method is object.__init__: args = grouped and "(self)" or "self" else: try: return format_argspec_plus(method, grouped=grouped) except TypeError: args = ( grouped and "(self, *args, **kwargs)" or "self, *args, **kwargs" ) return dict(self_arg="self", args=args, apply_pos=args, apply_kw=args) def getargspec_init(method): """inspect.getargspec with considerations for typical __init__ methods Wraps inspect.getargspec with error handling for typical __init__ cases:: object.__init__ -> (self) other unreflectable (usually C) -> (self, *args, **kwargs) """ try: return compat.inspect_getfullargspec(method) except TypeError: if method is object.__init__: return (["self"], None, None, None) else: return (["self"], "args", "kwargs", None) def unbound_method_to_callable(func_or_cls): """Adjust the incoming callable such that a 'self' argument is not required. """ if isinstance(func_or_cls, types.MethodType) and not func_or_cls.__self__: return func_or_cls.__func__ else: return func_or_cls def generic_repr(obj, additional_kw=(), to_inspect=None, omit_kwarg=()): """Produce a __repr__() based on direct association of the __init__() specification vs. same-named attributes present. """ if to_inspect is None: to_inspect = [obj] else: to_inspect = _collections.to_list(to_inspect) missing = object() pos_args = [] kw_args = _collections.OrderedDict() vargs = None for i, insp in enumerate(to_inspect): try: spec = compat.inspect_getfullargspec(insp.__init__) except TypeError: continue else: default_len = spec.defaults and len(spec.defaults) or 0 if i == 0: if spec.varargs: vargs = spec.varargs if default_len: pos_args.extend(spec.args[1:-default_len]) else: pos_args.extend(spec.args[1:]) else: kw_args.update( [(arg, missing) for arg in spec.args[1:-default_len]] ) if default_len: kw_args.update( [ (arg, default) for arg, default in zip( spec.args[-default_len:], spec.defaults ) ] ) output = [] output.extend(repr(getattr(obj, arg, None)) for arg in pos_args) if vargs is not None and hasattr(obj, vargs): output.extend([repr(val) for val in getattr(obj, vargs)]) for arg, defval in kw_args.items(): if arg in omit_kwarg: continue try: val = getattr(obj, arg, missing) if val is not missing and val != defval: output.append("%s=%r" % (arg, val)) except Exception: pass if additional_kw: for arg, defval in additional_kw: try: val = getattr(obj, arg, missing) if val is not missing and val != defval: output.append("%s=%r" % (arg, val)) except Exception: pass return "%s(%s)" % (obj.__class__.__name__, ", ".join(output)) class portable_instancemethod(object): """Turn an instancemethod into a (parent, name) pair to produce a serializable callable. """ __slots__ = "target", "name", "kwargs", "__weakref__" def __getstate__(self): return { "target": self.target, "name": self.name, "kwargs": self.kwargs, } def __setstate__(self, state): self.target = state["target"] self.name = state["name"] self.kwargs = state.get("kwargs", ()) def __init__(self, meth, kwargs=()): self.target = meth.__self__ self.name = meth.__name__ self.kwargs = kwargs def __call__(self, *arg, **kw): kw.update(self.kwargs) return getattr(self.target, self.name)(*arg, **kw) def class_hierarchy(cls): """Return an unordered sequence of all classes related to cls. Traverses diamond hierarchies. Fibs slightly: subclasses of builtin types are not returned. Thus class_hierarchy(class A(object)) returns (A, object), not A plus every class systemwide that derives from object. Old-style classes are discarded and hierarchies rooted on them will not be descended. """ if compat.py2k: if isinstance(cls, types.ClassType): return list() hier = {cls} process = list(cls.__mro__) while process: c = process.pop() if compat.py2k: if isinstance(c, types.ClassType): continue bases = ( _ for _ in c.__bases__ if _ not in hier and not isinstance(_, types.ClassType) ) else: bases = (_ for _ in c.__bases__ if _ not in hier) for b in bases: process.append(b) hier.add(b) if compat.py3k: if c.__module__ == "builtins" or not hasattr(c, "__subclasses__"): continue else: if c.__module__ == "__builtin__" or not hasattr( c, "__subclasses__" ): continue for s in [_ for _ in c.__subclasses__() if _ not in hier]: process.append(s) hier.add(s) return list(hier) def iterate_attributes(cls): """iterate all the keys and attributes associated with a class, without using getattr(). Does not use getattr() so that class-sensitive descriptors (i.e. property.__get__()) are not called. """ keys = dir(cls) for key in keys: for c in cls.__mro__: if key in c.__dict__: yield (key, c.__dict__[key]) break def monkeypatch_proxied_specials( into_cls, from_cls, skip=None, only=None, name="self.proxy", from_instance=None, ): """Automates delegation of __specials__ for a proxying type.""" if only: dunders = only else: if skip is None: skip = ( "__slots__", "__del__", "__getattribute__", "__metaclass__", "__getstate__", "__setstate__", ) dunders = [ m for m in dir(from_cls) if ( m.startswith("__") and m.endswith("__") and not hasattr(into_cls, m) and m not in skip ) ] for method in dunders: try: fn = getattr(from_cls, method) if not hasattr(fn, "__call__"): continue fn = getattr(fn, "im_func", fn) except AttributeError: continue try: spec = compat.inspect_getfullargspec(fn) fn_args = compat.inspect_formatargspec(spec[0]) d_args = compat.inspect_formatargspec(spec[0][1:]) except TypeError: fn_args = "(self, *args, **kw)" d_args = "(*args, **kw)" py = ( "def %(method)s%(fn_args)s: " "return %(name)s.%(method)s%(d_args)s" % locals() ) env = from_instance is not None and {name: from_instance} or {} compat.exec_(py, env) try: env[method].__defaults__ = fn.__defaults__ except AttributeError: pass setattr(into_cls, method, env[method]) def methods_equivalent(meth1, meth2): """Return True if the two methods are the same implementation.""" return getattr(meth1, "__func__", meth1) is getattr( meth2, "__func__", meth2 ) def as_interface(obj, cls=None, methods=None, required=None): """Ensure basic interface compliance for an instance or dict of callables. Checks that ``obj`` implements public methods of ``cls`` or has members listed in ``methods``. If ``required`` is not supplied, implementing at least one interface method is sufficient. Methods present on ``obj`` that are not in the interface are ignored. If ``obj`` is a dict and ``dict`` does not meet the interface requirements, the keys of the dictionary are inspected. Keys present in ``obj`` that are not in the interface will raise TypeErrors. Raises TypeError if ``obj`` does not meet the interface criteria. In all passing cases, an object with callable members is returned. In the simple case, ``obj`` is returned as-is; if dict processing kicks in then an anonymous class is returned. obj A type, instance, or dictionary of callables. cls Optional, a type. All public methods of cls are considered the interface. An ``obj`` instance of cls will always pass, ignoring ``required``.. methods Optional, a sequence of method names to consider as the interface. required Optional, a sequence of mandatory implementations. If omitted, an ``obj`` that provides at least one interface method is considered sufficient. As a convenience, required may be a type, in which case all public methods of the type are required. """ if not cls and not methods: raise TypeError("a class or collection of method names are required") if isinstance(cls, type) and isinstance(obj, cls): return obj interface = set(methods or [m for m in dir(cls) if not m.startswith("_")]) implemented = set(dir(obj)) complies = operator.ge if isinstance(required, type): required = interface elif not required: required = set() complies = operator.gt else: required = set(required) if complies(implemented.intersection(interface), required): return obj # No dict duck typing here. if not isinstance(obj, dict): qualifier = complies is operator.gt and "any of" or "all of" raise TypeError( "%r does not implement %s: %s" % (obj, qualifier, ", ".join(interface)) ) class AnonymousInterface(object): """A callable-holding shell.""" if cls: AnonymousInterface.__name__ = "Anonymous" + cls.__name__ found = set() for method, impl in dictlike_iteritems(obj): if method not in interface: raise TypeError("%r: unknown in this interface" % method) if not compat.callable(impl): raise TypeError("%r=%r is not callable" % (method, impl)) setattr(AnonymousInterface, method, staticmethod(impl)) found.add(method) if complies(found, required): return AnonymousInterface raise TypeError( "dictionary does not contain required keys %s" % ", ".join(required - found) ) class memoized_property(object): """A read-only @property that is only evaluated once.""" def __init__(self, fget, doc=None): self.fget = fget self.__doc__ = doc or fget.__doc__ self.__name__ = fget.__name__ def __get__(self, obj, cls): if obj is None: return self obj.__dict__[self.__name__] = result = self.fget(obj) return result def _reset(self, obj): memoized_property.reset(obj, self.__name__) @classmethod def reset(cls, obj, name): obj.__dict__.pop(name, None) def memoized_instancemethod(fn): """Decorate a method memoize its return value. Best applied to no-arg methods: memoization is not sensitive to argument values, and will always return the same value even when called with different arguments. """ def oneshot(self, *args, **kw): result = fn(self, *args, **kw) def memo(*a, **kw): return result memo.__name__ = fn.__name__ memo.__doc__ = fn.__doc__ self.__dict__[fn.__name__] = memo return result return update_wrapper(oneshot, fn) class group_expirable_memoized_property(object): """A family of @memoized_properties that can be expired in tandem.""" def __init__(self, attributes=()): self.attributes = [] if attributes: self.attributes.extend(attributes) def expire_instance(self, instance): """Expire all memoized properties for *instance*.""" stash = instance.__dict__ for attribute in self.attributes: stash.pop(attribute, None) def __call__(self, fn): self.attributes.append(fn.__name__) return memoized_property(fn) def method(self, fn): self.attributes.append(fn.__name__) return memoized_instancemethod(fn) class MemoizedSlots(object): """Apply memoized items to an object using a __getattr__ scheme. This allows the functionality of memoized_property and memoized_instancemethod to be available to a class using __slots__. """ __slots__ = () def _fallback_getattr(self, key): raise AttributeError(key) def __getattr__(self, key): if key.startswith("_memoized"): raise AttributeError(key) elif hasattr(self, "_memoized_attr_%s" % key): value = getattr(self, "_memoized_attr_%s" % key)() setattr(self, key, value) return value elif hasattr(self, "_memoized_method_%s" % key): fn = getattr(self, "_memoized_method_%s" % key) def oneshot(*args, **kw): result = fn(*args, **kw) def memo(*a, **kw): return result memo.__name__ = fn.__name__ memo.__doc__ = fn.__doc__ setattr(self, key, memo) return result oneshot.__doc__ = fn.__doc__ return oneshot else: return self._fallback_getattr(key) def dependency_for(modulename, add_to_all=False): def decorate(obj): tokens = modulename.split(".") mod = compat.import_( ".".join(tokens[0:-1]), globals(), locals(), [tokens[-1]] ) mod = getattr(mod, tokens[-1]) setattr(mod, obj.__name__, obj) if add_to_all and hasattr(mod, "__all__"): mod.__all__.append(obj.__name__) return obj return decorate def asbool(obj): if isinstance(obj, compat.string_types): obj = obj.strip().lower() if obj in ["true", "yes", "on", "y", "t", "1"]: return True elif obj in ["false", "no", "off", "n", "f", "0"]: return False else: raise ValueError("String is not true/false: %r" % obj) return bool(obj) def bool_or_str(*text): """Return a callable that will evaluate a string as boolean, or one of a set of "alternate" string values. """ def bool_or_value(obj): if obj in text: return obj else: return asbool(obj) return bool_or_value def asint(value): """Coerce to integer.""" if value is None: return value return int(value) def coerce_kw_type(kw, key, type_, flexi_bool=True, dest=None): r"""If 'key' is present in dict 'kw', coerce its value to type 'type\_' if necessary. If 'flexi_bool' is True, the string '0' is considered false when coercing to boolean. """ if dest is None: dest = kw if ( key in kw and (not isinstance(type_, type) or not isinstance(kw[key], type_)) and kw[key] is not None ): if type_ is bool and flexi_bool: dest[key] = asbool(kw[key]) else: dest[key] = type_(kw[key]) def constructor_copy(obj, cls, *args, **kw): """Instantiate cls using the __dict__ of obj as constructor arguments. Uses inspect to match the named arguments of ``cls``. """ names = get_cls_kwargs(cls) kw.update( (k, obj.__dict__[k]) for k in names.difference(kw) if k in obj.__dict__ ) return cls(*args, **kw) def counter(): """Return a threadsafe counter function.""" lock = compat.threading.Lock() counter = itertools.count(1) # avoid the 2to3 "next" transformation... def _next(): lock.acquire() try: return next(counter) finally: lock.release() return _next def duck_type_collection(specimen, default=None): """Given an instance or class, guess if it is or is acting as one of the basic collection types: list, set and dict. If the __emulates__ property is present, return that preferentially. """ if hasattr(specimen, "__emulates__"): # canonicalize set vs sets.Set to a standard: the builtin set if specimen.__emulates__ is not None and issubclass( specimen.__emulates__, set ): return set else: return specimen.__emulates__ isa = isinstance(specimen, type) and issubclass or isinstance if isa(specimen, list): return list elif isa(specimen, set): return set elif isa(specimen, dict): return dict if hasattr(specimen, "append"): return list elif hasattr(specimen, "add"): return set elif hasattr(specimen, "set"): return dict else: return default def assert_arg_type(arg, argtype, name): if isinstance(arg, argtype): return arg else: if isinstance(argtype, tuple): raise exc.ArgumentError( "Argument '%s' is expected to be one of type %s, got '%s'" % (name, " or ".join("'%s'" % a for a in argtype), type(arg)) ) else: raise exc.ArgumentError( "Argument '%s' is expected to be of type '%s', got '%s'" % (name, argtype, type(arg)) ) def dictlike_iteritems(dictlike): """Return a (key, value) iterator for almost any dict-like object.""" if compat.py3k: if hasattr(dictlike, "items"): return list(dictlike.items()) else: if hasattr(dictlike, "iteritems"): return dictlike.iteritems() elif hasattr(dictlike, "items"): return iter(dictlike.items()) getter = getattr(dictlike, "__getitem__", getattr(dictlike, "get", None)) if getter is None: raise TypeError("Object '%r' is not dict-like" % dictlike) if hasattr(dictlike, "iterkeys"): def iterator(): for key in dictlike.iterkeys(): yield key, getter(key) return iterator() elif hasattr(dictlike, "keys"): return iter((key, getter(key)) for key in dictlike.keys()) else: raise TypeError("Object '%r' is not dict-like" % dictlike) class classproperty(property): """A decorator that behaves like @property except that operates on classes rather than instances. The decorator is currently special when using the declarative module, but note that the :class:`~.sqlalchemy.ext.declarative.declared_attr` decorator should be used for this purpose with declarative. """ def __init__(self, fget, *arg, **kw): super(classproperty, self).__init__(fget, *arg, **kw) self.__doc__ = fget.__doc__ def __get__(desc, self, cls): return desc.fget(cls) class hybridproperty(object): def __init__(self, func): self.func = func def __get__(self, instance, owner): if instance is None: clsval = self.func(owner) clsval.__doc__ = self.func.__doc__ return clsval else: return self.func(instance) class hybridmethod(object): """Decorate a function as cls- or instance- level.""" def __init__(self, func): self.func = func def __get__(self, instance, owner): if instance is None: return self.func.__get__(owner, owner.__class__) else: return self.func.__get__(instance, owner) class _symbol(int): def __new__(self, name, doc=None, canonical=None): """Construct a new named symbol.""" assert isinstance(name, compat.string_types) if canonical is None: canonical = hash(name) v = int.__new__(_symbol, canonical) v.name = name if doc: v.__doc__ = doc return v def __reduce__(self): return symbol, (self.name, "x", int(self)) def __str__(self): return repr(self) def __repr__(self): return "symbol(%r)" % self.name _symbol.__name__ = "symbol" class symbol(object): """A constant symbol. >>> symbol('foo') is symbol('foo') True >>> symbol('foo') <symbol 'foo> A slight refinement of the MAGICCOOKIE=object() pattern. The primary advantage of symbol() is its repr(). They are also singletons. Repeated calls of symbol('name') will all return the same instance. The optional ``doc`` argument assigns to ``__doc__``. This is strictly so that Sphinx autoattr picks up the docstring we want (it doesn't appear to pick up the in-module docstring if the datamember is in a different module - autoattribute also blows up completely). If Sphinx fixes/improves this then we would no longer need ``doc`` here. """ symbols = {} _lock = compat.threading.Lock() def __new__(cls, name, doc=None, canonical=None): cls._lock.acquire() try: sym = cls.symbols.get(name) if sym is None: cls.symbols[name] = sym = _symbol(name, doc, canonical) return sym finally: symbol._lock.release() @classmethod def parse_user_argument( cls, arg, choices, name, resolve_symbol_names=False ): """Given a user parameter, parse the parameter into a chosen symbol. The user argument can be a string name that matches the name of a symbol, or the symbol object itself, or any number of alternate choices such as True/False/ None etc. :param arg: the user argument. :param choices: dictionary of symbol object to list of possible entries. :param name: name of the argument. Used in an :class:`.ArgumentError` that is raised if the parameter doesn't match any available argument. :param resolve_symbol_names: include the name of each symbol as a valid entry. """ # note using hash lookup is tricky here because symbol's `__hash__` # is its int value which we don't want included in the lookup # explicitly, so we iterate and compare each. for sym, choice in choices.items(): if arg is sym: return sym elif resolve_symbol_names and arg == sym.name: return sym elif arg in choice: return sym if arg is None: return None raise exc.ArgumentError("Invalid value for '%s': %r" % (name, arg)) _creation_order = 1 def set_creation_order(instance): """Assign a '_creation_order' sequence to the given instance. This allows multiple instances to be sorted in order of creation (typically within a single thread; the counter is not particularly threadsafe). """ global _creation_order instance._creation_order = _creation_order _creation_order += 1 def warn_exception(func, *args, **kwargs): """executes the given function, catches all exceptions and converts to a warning. """ try: return func(*args, **kwargs) except Exception: warn("%s('%s') ignored" % sys.exc_info()[0:2]) def ellipses_string(value, len_=25): try: if len(value) > len_: return "%s..." % value[0:len_] else: return value except TypeError: return value class _hash_limit_string(compat.text_type): """A string subclass that can only be hashed on a maximum amount of unique values. This is used for warnings so that we can send out parameterized warnings without the __warningregistry__ of the module, or the non-overridable "once" registry within warnings.py, overloading memory, """ def __new__(cls, value, num, args): interpolated = (value % args) + ( " (this warning may be suppressed after %d occurrences)" % num ) self = super(_hash_limit_string, cls).__new__(cls, interpolated) self._hash = hash("%s_%d" % (value, hash(interpolated) % num)) return self def __hash__(self): return self._hash def __eq__(self, other): return hash(self) == hash(other) def warn(msg): """Issue a warning. If msg is a string, :class:`.exc.SAWarning` is used as the category. """ warnings.warn(msg, exc.SAWarning, stacklevel=2) def warn_limited(msg, args): """Issue a warning with a parameterized string, limiting the number of registrations. """ if args: msg = _hash_limit_string(msg, 10, args) warnings.warn(msg, exc.SAWarning, stacklevel=2) def only_once(fn, retry_on_exception): """Decorate the given function to be a no-op after it is called exactly once.""" once = [fn] def go(*arg, **kw): # strong reference fn so that it isn't garbage collected, # which interferes with the event system's expectations strong_fn = fn # noqa if once: once_fn = once.pop() try: return once_fn(*arg, **kw) except: if retry_on_exception: once.insert(0, once_fn) raise return go _SQLA_RE = re.compile(r"sqlalchemy_1_3/([a-z_]+/){0,2}[a-z_]+\.py") _UNITTEST_RE = re.compile(r"unit(?:2|test2?/)") def chop_traceback(tb, exclude_prefix=_UNITTEST_RE, exclude_suffix=_SQLA_RE): """Chop extraneous lines off beginning and end of a traceback. :param tb: a list of traceback lines as returned by ``traceback.format_stack()`` :param exclude_prefix: a regular expression object matching lines to skip at beginning of ``tb`` :param exclude_suffix: a regular expression object matching lines to skip at end of ``tb`` """ start = 0 end = len(tb) - 1 while start <= end and exclude_prefix.search(tb[start]): start += 1 while start <= end and exclude_suffix.search(tb[end]): end -= 1 return tb[start : end + 1] NoneType = type(None) def attrsetter(attrname): code = "def set(obj, value):" " obj.%s = value" % attrname env = locals().copy() exec(code, env) return env["set"] class EnsureKWArgType(type): r"""Apply translation of functions to accept \**kw arguments if they don't already. """ def __init__(cls, clsname, bases, clsdict): fn_reg = cls.ensure_kwarg if fn_reg: for key in clsdict: m = re.match(fn_reg, key) if m: fn = clsdict[key] spec = compat.inspect_getfullargspec(fn) if not spec.varkw: clsdict[key] = wrapped = cls._wrap_w_kw(fn) setattr(cls, key, wrapped) super(EnsureKWArgType, cls).__init__(clsname, bases, clsdict) def _wrap_w_kw(self, fn): def wrap(*arg, **kw): return fn(*arg) return update_wrapper(wrap, fn) def wrap_callable(wrapper, fn): """Augment functools.update_wrapper() to work with objects with a ``__call__()`` method. :param fn: object with __call__ method """ if hasattr(fn, "__name__"): return update_wrapper(wrapper, fn) else: _f = wrapper _f.__name__ = fn.__class__.__name__ if hasattr(fn, "__module__"): _f.__module__ = fn.__module__ if hasattr(fn.__call__, "__doc__") and fn.__call__.__doc__: _f.__doc__ = fn.__call__.__doc__ elif fn.__doc__: _f.__doc__ = fn.__doc__ return _f def quoted_token_parser(value): """Parse a dotted identifier with accommodation for quoted names. Includes support for SQL-style double quotes as a literal character. E.g.:: >>> quoted_token_parser("name") ["name"] >>> quoted_token_parser("schema.name") ["schema", "name"] >>> quoted_token_parser('"Schema"."Name"') ['Schema', 'Name'] >>> quoted_token_parser('"Schema"."Name""Foo"') ['Schema', 'Name""Foo'] """ if '"' not in value: return value.split(".") # 0 = outside of quotes # 1 = inside of quotes state = 0 result = [[]] idx = 0 lv = len(value) while idx < lv: char = value[idx] if char == '"': if state == 1 and idx < lv - 1 and value[idx + 1] == '"': result[-1].append('"') idx += 1 else: state ^= 1 elif char == "." and state == 0: result.append([]) else: result[-1].append(char) idx += 1 return ["".join(token) for token in result] def add_parameter_text(params, text): params = _collections.to_list(params) def decorate(fn): doc = fn.__doc__ is not None and fn.__doc__ or "" if doc: doc = inject_param_text(doc, {param: text for param in params}) fn.__doc__ = doc return fn return decorate def _dedent_docstring(text): split_text = text.split("\n", 1) if len(split_text) == 1: return text else: firstline, remaining = split_text if not firstline.startswith(" "): return firstline + "\n" + textwrap.dedent(remaining) else: return textwrap.dedent(text) def inject_docstring_text(doctext, injecttext, pos): doctext = _dedent_docstring(doctext or "") lines = doctext.split("\n") if len(lines) == 1: lines.append("") injectlines = textwrap.dedent(injecttext).split("\n") if injectlines[0]: injectlines.insert(0, "") blanks = [num for num, line in enumerate(lines) if not line.strip()] blanks.insert(0, 0) inject_pos = blanks[min(pos, len(blanks) - 1)] lines = lines[0:inject_pos] + injectlines + lines[inject_pos:] return "\n".join(lines) def inject_param_text(doctext, inject_params): doclines = doctext.splitlines() lines = [] to_inject = None while doclines: line = doclines.pop(0) if to_inject is None: m = re.match(r"(\s+):param (?:\\\*\*?)?(.+?):", line) if m: param = m.group(2) if param in inject_params: # default indent to that of :param: plus one indent = " " * len(m.group(1)) + " " # but if the next line has text, use that line's # indentntation if doclines: m2 = re.match(r"(\s+)\S", doclines[0]) if m2: indent = " " * len(m2.group(1)) to_inject = indent + inject_params[param] elif line.lstrip().startswith(":param "): lines.append("\n") lines.append(to_inject) lines.append("\n") to_inject = None elif not line.rstrip(): lines.append(line) lines.append(to_inject) lines.append("\n") to_inject = None elif line.endswith("::"): # TODO: this still wont cover if the code example itself has blank # lines in it, need to detect those via indentation. lines.append(line) lines.append( doclines.pop(0) ) # the blank line following a code example continue lines.append(line) return "\n".join(lines) def repr_tuple_names(names): """Trims a list of strings from the middle and return a string of up to four elements. Strings greater than 11 characters will be truncated""" if len(names) == 0: return None flag = len(names) <= 4 names = names[0:4] if flag else names[0:3] + names[-1:] res = ["%s.." % name[:11] if len(name) > 11 else name for name in names] if flag: return ", ".join(res) else: return "%s, ..., %s" % (", ".join(res[0:3]), res[-1])
the-stack_0_19572
import sys import random import copy import keras import numpy as np class Puzzle: goal24 = list(range(25)) goal15 = list(range(16)) goal8 = list(range(9)) model = keras.models.load_model( '../neuronal-network/saved-neuronal-networks/15puzzle_solver_model_v20.h5') MaxPDB = 5 pdb = [] pdb_pattern = [] for i in range(MaxPDB): pdb.append({}) pdb_pattern.append(None) def __init__(self, board=None, blank=-1): if not board: self.x = 3 self.size = 9 self.board = [i for i in range(0, self.size)] self.blank = 0 else: self.board = board if len(self.board) == 9: self.x = 3 self.size = 9 elif len(self.board) == 16: self.x = 4 self.size = 16 elif len(self.board) == 25: self.x = 5 self.size = 25 else: print('puzzle size not supported') sys.exit(1) if blank == -1: self.blank = board.index(0) self.preferred = None def initialize_pdb(id): f = open("pdb"+str(id)+".txt", 'r') print('Reading PDB '+str(id)) line = f.readline(100) line = line.rstrip() numbers = line.split(' ') # los valores incluidos en el patron Puzzle.pdb_pattern[id] = [int(x) for x in numbers] while f: line = f.readline(100) line = line.rstrip() numbers = line.split(' ') if len(numbers) < 9: break tup = tuple([int(x) for x in numbers[:-1]]) value = int(numbers[-1]) Puzzle.pdb[id][tup] = value def pdb_heuristic(self, id): def abstract(x): if x in Puzzle.pdb_pattern[id] or x == 0: return x else: return -1 # creamos una tupla reemplazando por -1 tup = tuple([abstract(x) for x in self.board]) # a todo elemento que no esta en pattern return max(Puzzle.pdb[id][tup], self.manhattan()) def pdb_1(self): return self.pdb_heuristic(1) def pdb_2(self): return self.pdb_heuristic(2) def pdb_3(self): return self.pdb_heuristic(3) def pdb_max12(self): return max(self.pdb_heuristic(1), self.pdb_heuristic(2)) def pdb_max23(self): return max(self.pdb_heuristic(2), self.pdb_heuristic(3)) def pdb_max13(self): return max(self.pdb_heuristic(1), self.pdb_heuristic(3)) def pdb_max123(self): return max(self.pdb_heuristic(1), self.pdb_heuristic(2), self.pdb_heuristic(3)) def __hash__(self): return hash(tuple(self.board)) def __eq__(self, other): return self.board == other.board def __repr__(self): def tostr(d): if d > 0: return "%2d" % (d) else: return " " s = '\n' for i in range(0, self.x): s += "|" s += "|".join([tostr(d) for d in self.board[i*self.x:i*self.x+self.x]]) s += "|\n" return s def zero_heuristic(self): return 0 def incorrect_tiles(self): ''' retorna el numero de piezas que no estan en la posicion correcta ''' num = 0 for i in range(0, self.size): if self.board[i] == 0: continue else: if self.board[i] != i: num += 1 return num def manhattan(self): ''' retorna la suma de distancias manhattan de cada pieza a su posicion final ''' num = 0 for i in range(0, self.size): if self.board[i] == 0: continue else: num += abs(i % self.x - self.board[i] % self.x) num += abs(i // self.x - self.board[i] // self.x) return num def nn_repr(self): str = '' for n in self.board: str += '0'*n + '1' + '0'*(15-n) return np.array([list(str)]).astype('f') def successors(self): ''' Crea una lista de tuplas de la forma (estado, accion, costo) donde estado es el estado sucesor de self que se genera al ejecutar accion (un string) y costo (un numero real) es el costo de accion ''' def create_child(newblank): child = copy.deepcopy(self) child.blank = newblank child.board[child.blank] = 0 child.board[self.blank] = self.board[newblank] child.preferred = None return child prediction = Puzzle.model.predict(self.nn_repr())[0] # best = np.argmax(prediction) # print('myself:',self) # print('my preferred child:') succ = [] if self.blank > self.x - 1: c = create_child(self.blank-self.x) c.preferred = prediction[3] succ.append((c, 'up', 1)) # if best == 3: # c.preferred = True # print(c) if self.blank % self.x > 0: c = create_child(self.blank-1) c.preferred = prediction[0] succ.append((c, 'left', 1)) # if best == 0: # c.preferred = True # print(c) if self.blank % self.x < self.x - 1: c = create_child(self.blank+1) c.preferred = prediction[2] succ.append((c, 'right', 1)) # if best == 2: # c.preferred = True # print(c) if self.blank < self.size - self.x: c = create_child(self.blank+self.x) c.preferred = prediction[1] succ.append((c, 'down', 1)) # if best == 1: # c.preferred = True # print(c) return succ def is_goal(self): return self.size == 16 and Puzzle.goal15 == self.board or self.size == 9 and Puzzle.goal8 == self.board def random_walk(self, steps): state = self seen = [self] for i in range(0, steps): state = random.choice(state.successors())[0] while state in seen: state = random.choice(state.successors())[0] seen.append(state) return state
the-stack_0_19573
from PyAl.core import * from bs4 import BeautifulSoup import requests import requests_cache class Request: def __init__(self, url, payload=None, post=False): bundleID = bundle() cacheName = volatile(bundleID + "_requests_cache") requests_cache.configure(cacheName) if payload: self.request = requests.get(url, params=payload) if not post else requests.post(url, data=payload) else: self.request = requests.get(url) def souper(self): if self.request.status_code == requests.codes.ok: return BeautifulSoup(self.request.text) else: self.request.raise_for_status()
the-stack_0_19574
import copy import os import pathlib from urllib.parse import urljoin from .plugin import CredentialPlugin, CertFiles, raise_for_status import requests from django.utils.translation import gettext_lazy as _ base_inputs = { 'fields': [ { 'id': 'url', 'label': _('Server URL'), 'type': 'string', 'format': 'url', 'help_text': _('The URL to the HashiCorp Vault'), }, { 'id': 'token', 'label': _('Token'), 'type': 'string', 'secret': True, 'help_text': _('The access token used to authenticate to the Vault server'), }, { 'id': 'cacert', 'label': _('CA Certificate'), 'type': 'string', 'multiline': True, 'help_text': _('The CA certificate used to verify the SSL certificate of the Vault server'), }, {'id': 'role_id', 'label': _('AppRole role_id'), 'type': 'string', 'multiline': False, 'help_text': _('The Role ID for AppRole Authentication')}, { 'id': 'secret_id', 'label': _('AppRole secret_id'), 'type': 'string', 'multiline': False, 'secret': True, 'help_text': _('The Secret ID for AppRole Authentication'), }, { 'id': 'namespace', 'label': _('Namespace name (Vault Enterprise only)'), 'type': 'string', 'multiline': False, 'help_text': _('Name of the namespace to use when authenticate and retrieve secrets'), }, { 'id': 'kubernetes_role', 'label': _('Kubernetes role'), 'type': 'string', 'multiline': False, 'help_text': _( 'The Role for Kubernetes Authentication.' ' This is the named role, configured in Vault server, for AWX pod auth policies.' ' see https://www.vaultproject.io/docs/auth/kubernetes#configuration' ), }, { 'id': 'default_auth_path', 'label': _('Path to Auth'), 'type': 'string', 'multiline': False, 'default': 'approle', 'help_text': _('The Authentication path to use if one isn\'t provided in the metadata when linking to an input field. Defaults to \'approle\''), }, ], 'metadata': [ { 'id': 'secret_path', 'label': _('Path to Secret'), 'type': 'string', 'help_text': _( ( 'The path to the secret stored in the secret backend e.g, /some/secret/. It is recommended' ' that you use the secret backend field to identify the storage backend and to use this field' ' for locating a specific secret within that store. However, if you prefer to fully identify' ' both the secret backend and one of its secrets using only this field, join their locations' ' into a single path without any additional separators, e.g, /location/of/backend/some/secret.' ) ), }, { 'id': 'auth_path', 'label': _('Path to Auth'), 'type': 'string', 'multiline': False, 'help_text': _('The path where the Authentication method is mounted e.g, approle'), }, ], 'required': ['url', 'secret_path'], } hashi_kv_inputs = copy.deepcopy(base_inputs) hashi_kv_inputs['fields'].append( { 'id': 'api_version', 'label': _('API Version'), 'choices': ['v1', 'v2'], 'help_text': _('API v1 is for static key/value lookups. API v2 is for versioned key/value lookups.'), 'default': 'v1', } ) hashi_kv_inputs['metadata'] = ( [ { 'id': 'secret_backend', 'label': _('Name of Secret Backend'), 'type': 'string', 'help_text': _('The name of the kv secret backend (if left empty, the first segment of the secret path will be used).'), } ] + hashi_kv_inputs['metadata'] + [ { 'id': 'secret_key', 'label': _('Key Name'), 'type': 'string', 'help_text': _('The name of the key to look up in the secret.'), }, { 'id': 'secret_version', 'label': _('Secret Version (v2 only)'), 'type': 'string', 'help_text': _('Used to specify a specific secret version (if left empty, the latest version will be used).'), }, ] ) hashi_kv_inputs['required'].extend(['api_version', 'secret_key']) hashi_ssh_inputs = copy.deepcopy(base_inputs) hashi_ssh_inputs['metadata'] = ( [ { 'id': 'public_key', 'label': _('Unsigned Public Key'), 'type': 'string', 'multiline': True, } ] + hashi_ssh_inputs['metadata'] + [ {'id': 'role', 'label': _('Role Name'), 'type': 'string', 'help_text': _('The name of the role used to sign.')}, { 'id': 'valid_principals', 'label': _('Valid Principals'), 'type': 'string', 'help_text': _('Valid principals (either usernames or hostnames) that the certificate should be signed for.'), }, ] ) hashi_ssh_inputs['required'].extend(['public_key', 'role']) def handle_auth(**kwargs): token = None if kwargs.get('token'): token = kwargs['token'] elif kwargs.get('role_id') and kwargs.get('secret_id'): token = method_auth(**kwargs, auth_param=approle_auth(**kwargs)) elif kwargs.get('kubernetes_role'): token = method_auth(**kwargs, auth_param=kubernetes_auth(**kwargs)) else: raise Exception('Either token or AppRole/Kubernetes authentication parameters must be set') return token def approle_auth(**kwargs): return {'role_id': kwargs['role_id'], 'secret_id': kwargs['secret_id']} def kubernetes_auth(**kwargs): jwt_file = pathlib.Path('/var/run/secrets/kubernetes.io/serviceaccount/token') with jwt_file.open('r') as jwt_fo: jwt = jwt_fo.read().rstrip() return {'role': kwargs['kubernetes_role'], 'jwt': jwt} def method_auth(**kwargs): # get auth method specific params request_kwargs = {'json': kwargs['auth_param'], 'timeout': 30} # we first try to use the 'auth_path' from the metadata # if not found we try to fetch the 'default_auth_path' from inputs auth_path = kwargs.get('auth_path') or kwargs['default_auth_path'] url = urljoin(kwargs['url'], 'v1') cacert = kwargs.get('cacert', None) sess = requests.Session() # Namespace support if kwargs.get('namespace'): sess.headers['X-Vault-Namespace'] = kwargs['namespace'] request_url = '/'.join([url, 'auth', auth_path, 'login']).rstrip('/') with CertFiles(cacert) as cert: request_kwargs['verify'] = cert resp = sess.post(request_url, **request_kwargs) resp.raise_for_status() token = resp.json()['auth']['client_token'] return token def kv_backend(**kwargs): token = handle_auth(**kwargs) url = kwargs['url'] secret_path = kwargs['secret_path'] secret_backend = kwargs.get('secret_backend', None) secret_key = kwargs.get('secret_key', None) cacert = kwargs.get('cacert', None) api_version = kwargs['api_version'] request_kwargs = { 'timeout': 30, 'allow_redirects': False, } sess = requests.Session() sess.headers['Authorization'] = 'Bearer {}'.format(token) # Compatibility header for older installs of Hashicorp Vault sess.headers['X-Vault-Token'] = token if kwargs.get('namespace'): sess.headers['X-Vault-Namespace'] = kwargs['namespace'] if api_version == 'v2': if kwargs.get('secret_version'): request_kwargs['params'] = {'version': kwargs['secret_version']} if secret_backend: path_segments = [secret_backend, 'data', secret_path] else: try: mount_point, *path = pathlib.Path(secret_path.lstrip(os.sep)).parts '/'.join(path) except Exception: mount_point, path = secret_path, [] # https://www.vaultproject.io/api/secret/kv/kv-v2.html#read-secret-version path_segments = [mount_point, 'data'] + path else: if secret_backend: path_segments = [secret_backend, secret_path] else: path_segments = [secret_path] request_url = urljoin(url, '/'.join(['v1'] + path_segments)).rstrip('/') with CertFiles(cacert) as cert: request_kwargs['verify'] = cert response = sess.get(request_url, **request_kwargs) raise_for_status(response) json = response.json() if api_version == 'v2': json = json['data'] if secret_key: try: return json['data'][secret_key] except KeyError: raise RuntimeError('{} is not present at {}'.format(secret_key, secret_path)) return json['data'] def ssh_backend(**kwargs): token = handle_auth(**kwargs) url = urljoin(kwargs['url'], 'v1') secret_path = kwargs['secret_path'] role = kwargs['role'] cacert = kwargs.get('cacert', None) request_kwargs = { 'timeout': 30, 'allow_redirects': False, } request_kwargs['json'] = {'public_key': kwargs['public_key']} if kwargs.get('valid_principals'): request_kwargs['json']['valid_principals'] = kwargs['valid_principals'] sess = requests.Session() sess.headers['Authorization'] = 'Bearer {}'.format(token) if kwargs.get('namespace'): sess.headers['X-Vault-Namespace'] = kwargs['namespace'] # Compatability header for older installs of Hashicorp Vault sess.headers['X-Vault-Token'] = token # https://www.vaultproject.io/api/secret/ssh/index.html#sign-ssh-key request_url = '/'.join([url, secret_path, 'sign', role]).rstrip('/') with CertFiles(cacert) as cert: request_kwargs['verify'] = cert resp = sess.post(request_url, **request_kwargs) raise_for_status(resp) return resp.json()['data']['signed_key'] hashivault_kv_plugin = CredentialPlugin('HashiCorp Vault Secret Lookup', inputs=hashi_kv_inputs, backend=kv_backend) hashivault_ssh_plugin = CredentialPlugin('HashiCorp Vault Signed SSH', inputs=hashi_ssh_inputs, backend=ssh_backend)
the-stack_0_19576
# -*- coding: utf-8 -*- from chatterbot import ChatBot # Uncomment the following lines to enable verbose logging # import logging # logging.basicConfig(level=logging.INFO) # Create a new instance of a ChatBot bot = ChatBot( "SQLMemoryTerminal", storage_adapter='chatterbot.storage.SQLStorageAdapter', logic_adapters=[ "chatterbot.logic.MathematicalEvaluation", "chatterbot.logic.TimeLogicAdapter", "chatterbot.logic.BestMatch" ], input_adapter="chatterbot.input.TerminalAdapter", output_adapter="chatterbot.output.TerminalAdapter", ) print("Type something to begin...") # The following loop will execute each time the user enters input while True: try: # We pass None to this method because the parameter # is not used by the TerminalAdapter bot_input = bot.get_response(None) # Press ctrl-c or ctrl-d on the keyboard to exit except (KeyboardInterrupt, EOFError, SystemExit): break
the-stack_0_19579
from typing import List, Tuple, Union import unrealsdk from .. import bl2tools def set_materials(iobject: unrealsdk.UObject, materials: List[unrealsdk.UObject]) -> None: # As of now, the MapEditor doesent handle Materials for IO 100% correctly and sometimes exports wrong MICs. # So for now we simply ignore any materials, else the game might crash. return if materials is None or iobject.ObjectMesh is None: return iobject.ObjectMesh.Materials = materials def set_scale(iobject: unrealsdk.UObject, scale: float) -> None: iobject.DrawScale = scale def set_scale3d(iobject: unrealsdk.UObject, scale3d: List[float]) -> None: iobject.DrawScale3D = tuple(scale3d) def set_rotation(iobject: unrealsdk.UObject, rotator: Union[List[int], Tuple[int, int, int]]) -> None: iobject.Rotation = tuple(rotator) def set_location(iobject: unrealsdk.UObject, position: Union[List[float], Tuple[float, float, float]]) -> None: iobject.Location = tuple(position) def instantiate(io_definition: unrealsdk.UObject) -> unrealsdk.UObject: if not io_definition: unrealsdk.Log("Nope io") return False pc = bl2tools.get_player_controller() _loc = (pc.Location.X, pc.Location.Y, pc.Location.Z) pop_master = unrealsdk.FindAll("WillowPopulationMaster")[-1] is_bal_def = bl2tools.obj_is_in_class(io_definition, "InteractiveObjectBalanceDefinition") if is_bal_def: iobject = pop_master.SpawnPopulationControlledActor( io_definition.DefaultInteractiveObject.InteractiveObjectClass, None, "", _loc, (0, 0, 0) ) else: iobject = pop_master.SpawnPopulationControlledActor( io_definition.InteractiveObjectClass, None, "", _loc, (0, 0, 0) ) if pc.GetCurrentPlaythrough() != 2: will_pop = unrealsdk.FindAll("WillowPopulationOpportunityPoint")[1:] pop = unrealsdk.FindAll("PopulationOpportunityPoint")[1:] regions = pop if len(pop) > len(will_pop) else will_pop region_game_stage = max(pc.GetGameStageFromRegion(x.GameStageRegion) for x in regions if x.GameStageRegion) else: region_game_stage = max(x.GetGameStage() for x in unrealsdk.FindAll("WillowPlayerPawn") if x.Arms) iobject.SetGameStage(region_game_stage) iobject.SetExpLevel(region_game_stage) if is_bal_def: x = io_definition.SelectGradeIndex(region_game_stage, 0) iobject.InitializeBalanceDefinitionState(io_definition, x) io_definition.SetupInteractiveObjectLoot(iobject, x) iobject.InitializeFromDefinition(io_definition.DefaultInteractiveObject, False) if bl2tools.obj_is_in_class(iobject, "WillowVendingMachine"): vending_name = bl2tools.get_obj_path_name(iobject.InteractiveObjectDefinition).lower() markup = unrealsdk.FindObject("AttributeInitializationDefinition", "GD_Economy.VendingMachine.Init_MarkupCalc_P1") iobject.CommerceMarkup.InitializationDefinition = markup iobject.FeaturedItemCommerceMarkup.InitializationDefinition = markup iobject.InventoryConfigurationName = "Inventory" iobject.FeaturedItemConfigurationName = "FeaturedItem" item_stage = unrealsdk.FindObject("AttributeInitializationDefinition", "GD_Population_Shopping.Balance.Init_FeaturedItem_GameStage") item_awesome = unrealsdk.FindObject("AttributeInitializationDefinition", "GD_Population_Shopping.Balance.Init_FeaturedItem_AwesomeLevel") iobject.FeaturedItemGameStage.InitializationDefinition = item_stage iobject.FeaturedItemAwesomeLevel.InitializationDefinition = item_awesome if "health" in vending_name: iobject.ShopType = 2 elif "ammo" in vending_name: iobject.ShopType = 1 elif "weapon" in vending_name: iobject.ShopType = 0 iobject.ResetInventory() else: iobject.InitializeFromDefinition(io_definition, False) return iobject # noinspection PyBroadException def destroy(iobject: unrealsdk.UObject) -> None: try: # faster than if statement for this case. Exception shouldn't happen most of the time. set_location(iobject, (-9999999, -9999999, -9999999)) set_scale(iobject, 0) iobject.Destroyed() except Exception: # We really don't care if our object does not exist or is already deleted. pass
the-stack_0_19580
# Copyright 2013 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Python provides the base64 module as a core module but this is mostly limited to encoding and decoding base64 and it's variants. It is often useful to be able to perform other operations on base64 text. This module is meant to be used in conjunction with the core base64 module. Standardized base64 is defined in RFC-4648 "The Base16, Base32, and Base64 Data Encodings". This module provides the following base64 utility functionality: * tests if text is valid base64 * filter formatting from base64 * convert base64 between different alphabets * Handle padding issues - test if base64 is padded - removes padding - restores padding * wraps base64 text into formatted blocks - via iterator - return formatted string """ import re import string import six from six.moves import urllib from keystone.i18n import _ class InvalidBase64Error(ValueError): pass base64_alphabet_re = re.compile(r'^[^A-Za-z0-9+/=]+$') base64url_alphabet_re = re.compile(r'^[^A-Za-z0-9---_=]+$') base64_non_alphabet_re = re.compile(r'[^A-Za-z0-9+/=]+') base64url_non_alphabet_re = re.compile(r'[^A-Za-z0-9---_=]+') _strip_formatting_re = re.compile(r'\s+') _base64_to_base64url_trans = string.maketrans('+/', '-_') _base64url_to_base64_trans = string.maketrans('-_', '+/') def _check_padding_length(pad): if len(pad) != 1: raise ValueError(_('pad must be single character')) def is_valid_base64(text): """Test if input text can be base64 decoded. :param text: input base64 text :type text: string :returns: bool -- True if text can be decoded as base64, False otherwise """ text = filter_formatting(text) if base64_non_alphabet_re.search(text): return False try: return base64_is_padded(text) except InvalidBase64Error: return False def is_valid_base64url(text): """Test if input text can be base64url decoded. :param text: input base64 text :type text: string :returns: bool -- True if text can be decoded as base64url, False otherwise """ text = filter_formatting(text) if base64url_non_alphabet_re.search(text): return False try: return base64_is_padded(text) except InvalidBase64Error: return False def filter_formatting(text): """Return base64 text without any formatting, just the base64. Base64 text is often formatted with whitespace, line endings, etc. This function strips out any formatting, the result will contain only base64 characters. Note, this function does not filter out all non-base64 alphabet characters, it only removes characters used for formatting. :param text: input text to filter :type text: string :returns: string -- filtered text without formatting """ return _strip_formatting_re.sub('', text) def base64_to_base64url(text): """Convert base64 text to base64url text. base64url text is designed to be safe for use in file names and URL's. It is defined in RFC-4648 Section 5. base64url differs from base64 in the last two alphabet characters at index 62 and 63, these are sometimes referred as the altchars. The '+' character at index 62 is replaced by '-' (hyphen) and the '/' character at index 63 is replaced by '_' (underscore). This function only translates the altchars, non-alphabet characters are not filtered out. WARNING:: base64url continues to use the '=' pad character which is NOT URL safe. RFC-4648 suggests two alternate methods to deal with this: percent-encode percent-encode the pad character (e.g. '=' becomes '%3D'). This makes the base64url text fully safe. But percent-encoding has the downside of requiring percent-decoding prior to feeding the base64url text into a base64url decoder since most base64url decoders do not recognize %3D as a pad character and most decoders require correct padding. no-padding padding is not strictly necessary to decode base64 or base64url text, the pad can be computed from the input text length. However many decoders demand padding and will consider non-padded text to be malformed. If one wants to omit the trailing pad character(s) for use in URL's it can be added back using the base64_assure_padding() function. This function makes no decisions about which padding methodology to use. One can either call base64_strip_padding() to remove any pad characters (restoring later with base64_assure_padding()) or call base64url_percent_encode() to percent-encode the pad characters. :param text: input base64 text :type text: string :returns: string -- base64url text """ return text.translate(_base64_to_base64url_trans) def base64url_to_base64(text): """Convert base64url text to base64 text. See base64_to_base64url() for a description of base64url text and it's issues. This function does NOT handle percent-encoded pad characters, they will be left intact. If the input base64url text is percent-encoded you should call :param text: text in base64url alphabet :type text: string :returns: string -- text in base64 alphabet """ return text.translate(_base64url_to_base64_trans) def base64_is_padded(text, pad='='): """Test if the text is base64 padded. The input text must be in a base64 alphabet. The pad must be a single character. If the text has been percent-encoded (e.g. pad is the string '%3D') you must convert the text back to a base64 alphabet (e.g. if percent-encoded use the function base64url_percent_decode()). :param text: text containing ONLY characters in a base64 alphabet :type text: string :param pad: pad character (must be single character) (default: '=') :type pad: string :returns: bool -- True if padded, False otherwise :raises: ValueError, InvalidBase64Error """ _check_padding_length(pad) text_len = len(text) if text_len > 0 and text_len % 4 == 0: pad_index = text.find(pad) if pad_index >= 0 and pad_index < text_len - 2: raise InvalidBase64Error(_('text is multiple of 4, ' 'but pad "%s" occurs before ' '2nd to last char') % pad) if pad_index == text_len - 2 and text[-1] != pad: raise InvalidBase64Error(_('text is multiple of 4, ' 'but pad "%s" occurs before ' 'non-pad last char') % pad) return True if text.find(pad) >= 0: raise InvalidBase64Error(_('text is not a multiple of 4, ' 'but contains pad "%s"') % pad) return False def base64url_percent_encode(text): """Percent-encode base64url padding. The input text should only contain base64url alphabet characters. Any non-base64url alphabet characters will also be subject to percent-encoding. :param text: text containing ONLY characters in the base64url alphabet :type text: string :returns: string -- percent-encoded base64url text :raises: InvalidBase64Error """ if len(text) % 4 != 0: raise InvalidBase64Error(_('padded base64url text must be ' 'multiple of 4 characters')) return urllib.parse.quote(text) def base64url_percent_decode(text): """Percent-decode base64url padding. The input text should only contain base64url alphabet characters and the percent-encoded pad character. Any other percent-encoded characters will be subject to percent-decoding. :param text: base64url alphabet text :type text: string :returns: string -- percent-decoded base64url text """ decoded_text = urllib.parse.unquote(text) if len(decoded_text) % 4 != 0: raise InvalidBase64Error(_('padded base64url text must be ' 'multiple of 4 characters')) return decoded_text def base64_strip_padding(text, pad='='): """Remove padding from input base64 text. :param text: text containing ONLY characters in a base64 alphabet :type text: string :param pad: pad character (must be single character) (default: '=') :type pad: string :returns: string -- base64 text without padding :raises: ValueError """ _check_padding_length(pad) # Can't be padded if text is less than 4 characters. if len(text) < 4: return text if text[-1] == pad: if text[-2] == pad: return text[0:-2] else: return text[0:-1] else: return text def base64_assure_padding(text, pad='='): """Assure the input text ends with padding. Base64 text is normally expected to be a multiple of 4 characters. Each 4 character base64 sequence produces 3 octets of binary data. If the binary data is not a multiple of 3 the base64 text is padded at the end with a pad character such that it is always a multiple of 4. Padding is ignored and does not alter the binary data nor it's length. In some circumstances it is desirable to omit the padding character due to transport encoding conflicts. Base64 text can still be correctly decoded if the length of the base64 text (consisting only of characters in the desired base64 alphabet) is known, padding is not absolutely necessary. Some base64 decoders demand correct padding or one may wish to format RFC compliant base64, this function performs this action. Input is assumed to consist only of members of a base64 alphabet (i.e no whitespace). Iteration yields a sequence of lines. The line does NOT terminate with a line ending. Use the filter_formatting() function to assure the input text contains only the members of the alphabet. If the text ends with the pad it is assumed to already be padded. Otherwise the binary length is computed from the input text length and correct number of pad characters are appended. :param text: text containing ONLY characters in a base64 alphabet :type text: string :param pad: pad character (must be single character) (default: '=') :type pad: string :returns: string -- input base64 text with padding :raises: ValueError """ _check_padding_length(pad) if text.endswith(pad): return text n = len(text) % 4 if n == 0: return text n = 4 - n padding = pad * n return text + padding def base64_wrap_iter(text, width=64): """Fold text into lines of text with max line length. Input is assumed to consist only of members of a base64 alphabet (i.e no whitespace). Iteration yields a sequence of lines. The line does NOT terminate with a line ending. Use the filter_formatting() function to assure the input text contains only the members of the alphabet. :param text: text containing ONLY characters in a base64 alphabet :type text: string :param width: number of characters in each wrapped line (default: 64) :type width: int :returns: generator -- sequence of lines of base64 text. """ text = six.text_type(text) for x in six.moves.range(0, len(text), width): yield text[x:x + width] def base64_wrap(text, width=64): """Fold text into lines of text with max line length. Input is assumed to consist only of members of a base64 alphabet (i.e no whitespace). Fold the text into lines whose line length is width chars long, terminate each line with line ending (default is '\\n'). Return the wrapped text as a single string. Use the filter_formatting() function to assure the input text contains only the members of the alphabet. :param text: text containing ONLY characters in a base64 alphabet :type text: string :param width: number of characters in each wrapped line (default: 64) :type width: int :returns: string -- wrapped text. """ buf = six.StringIO() for line in base64_wrap_iter(text, width): buf.write(line) buf.write(u'\n') text = buf.getvalue() buf.close() return text
the-stack_0_19581
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from openstack.network import network_service from openstack import resource2 as resource class HealthMonitor(resource.Resource): resource_key = 'healthmonitor' resources_key = 'healthmonitors' base_path = '/lbaas/healthmonitors' service = network_service.NetworkService() # capabilities allow_create = True allow_get = True allow_update = True allow_delete = True allow_list = True _query_mapping = resource.QueryParameters( 'delay', 'expected_codes', 'http_method', 'max_retries', 'timeout', 'type', 'url_path', is_admin_state_up='adminstate_up', project_id='tenant_id', ) # Properties #: The time, in seconds, between sending probes to members. delay = resource.Body('delay') #: Expected HTTP codes for a passing HTTP(S) monitor. expected_codes = resource.Body('expected_codes') #: The HTTP method that the monitor uses for requests. http_method = resource.Body('http_method') #: The administrative state of the health monitor, which is up #: ``True`` or down ``False``. *Type: bool* is_admin_state_up = resource.Body('admin_state_up', type=bool) #: Maximum consecutive health probe tries. max_retries = resource.Body('max_retries') #: Name of the health monitor. name = resource.Body('name') #: List of pools associated with this health monitor #: *Type: list of dicts which contain the pool IDs* pool_ids = resource.Body('pools', type=list) #: The ID of the project this health monitor is associated with. project_id = resource.Body('tenant_id') #: The maximum number of seconds for a monitor to wait for a #: connection to be established before it times out. This value must #: be less than the delay value. timeout = resource.Body('timeout') #: The type of probe sent by the load balancer to verify the member #: state, which is PING, TCP, HTTP, or HTTPS. type = resource.Body('type') #: Path portion of URI that will be probed if type is HTTP(S). url_path = resource.Body('url_path')
the-stack_0_19585
# coding=utf-8 # flake8: noqa E302 """ Cmd2 testing for argument parsing """ import argparse from typing import ( Optional, ) import pytest import cmd2 from .conftest import ( run_cmd, ) # Prefer statically linked gnureadline if available (for macOS compatibility due to issues with libedit) try: import gnureadline as readline except ImportError: # Try to import readline, but allow failure for convenience in Windows unit testing # Note: If this actually fails, you should install readline on Linux or Mac or pyreadline on Windows try: # noinspection PyUnresolvedReferences import readline except ImportError: pass class ArgparseApp(cmd2.Cmd): def __init__(self): self.maxrepeats = 3 cmd2.Cmd.__init__(self) def namespace_provider(self) -> argparse.Namespace: ns = argparse.Namespace() ns.custom_stuff = "custom" return ns say_parser = cmd2.Cmd2ArgumentParser() say_parser.add_argument('-p', '--piglatin', action='store_true', help='atinLay') say_parser.add_argument('-s', '--shout', action='store_true', help='N00B EMULATION MODE') say_parser.add_argument('-r', '--repeat', type=int, help='output [n] times') say_parser.add_argument('words', nargs='+', help='words to say') @cmd2.with_argparser(say_parser) def do_say(self, args, *, keyword_arg: Optional[str] = None): """Repeat what you tell me to.""" words = [] for word in args.words: if word is None: word = '' if args.piglatin: word = '%s%say' % (word[1:], word[0]) if args.shout: word = word.upper() words.append(word) repetitions = args.repeat or 1 for i in range(min(repetitions, self.maxrepeats)): self.stdout.write(' '.join(words)) self.stdout.write('\n') if keyword_arg is not None: print(keyword_arg) tag_parser = cmd2.Cmd2ArgumentParser(description='create a html tag') tag_parser.add_argument('tag', help='tag') tag_parser.add_argument('content', nargs='+', help='content to surround with tag') @cmd2.with_argparser(tag_parser, preserve_quotes=True) def do_tag(self, args): self.stdout.write('<{0}>{1}</{0}>'.format(args.tag, ' '.join(args.content))) self.stdout.write('\n') @cmd2.with_argparser(cmd2.Cmd2ArgumentParser(), ns_provider=namespace_provider) def do_test_argparse_ns(self, args): self.stdout.write('{}'.format(args.custom_stuff)) @cmd2.with_argument_list def do_arglist(self, arglist, *, keyword_arg: Optional[str] = None): if isinstance(arglist, list): self.stdout.write('True') else: self.stdout.write('False') if keyword_arg is not None: print(keyword_arg) @cmd2.with_argument_list(preserve_quotes=True) def do_preservelist(self, arglist): self.stdout.write('{}'.format(arglist)) known_parser = cmd2.Cmd2ArgumentParser() known_parser.add_argument('-p', '--piglatin', action='store_true', help='atinLay') known_parser.add_argument('-s', '--shout', action='store_true', help='N00B EMULATION MODE') known_parser.add_argument('-r', '--repeat', type=int, help='output [n] times') @cmd2.with_argparser(known_parser, with_unknown_args=True) def do_speak(self, args, extra, *, keyword_arg: Optional[str] = None): """Repeat what you tell me to.""" words = [] for word in extra: if word is None: word = '' if args.piglatin: word = '%s%say' % (word[1:], word[0]) if args.shout: word = word.upper() words.append(word) repetitions = args.repeat or 1 for i in range(min(repetitions, self.maxrepeats)): self.stdout.write(' '.join(words)) self.stdout.write('\n') if keyword_arg is not None: print(keyword_arg) @cmd2.with_argparser(cmd2.Cmd2ArgumentParser(), preserve_quotes=True, with_unknown_args=True) def do_test_argparse_with_list_quotes(self, args, extra): self.stdout.write('{}'.format(' '.join(extra))) @cmd2.with_argparser(cmd2.Cmd2ArgumentParser(), ns_provider=namespace_provider, with_unknown_args=True) def do_test_argparse_with_list_ns(self, args, extra): self.stdout.write('{}'.format(args.custom_stuff)) @pytest.fixture def argparse_app(): app = ArgparseApp() return app def test_invalid_syntax(argparse_app): out, err = run_cmd(argparse_app, 'speak "') assert err[0] == "Invalid syntax: No closing quotation" def test_argparse_basic_command(argparse_app): out, err = run_cmd(argparse_app, 'say hello') assert out == ['hello'] def test_argparse_remove_quotes(argparse_app): out, err = run_cmd(argparse_app, 'say "hello there"') assert out == ['hello there'] def test_argparser_kwargs(argparse_app, capsys): """Test with_argparser wrapper passes through kwargs to command function""" argparse_app.do_say('word', keyword_arg="foo") out, err = capsys.readouterr() assert out == "foo\n" def test_argparse_preserve_quotes(argparse_app): out, err = run_cmd(argparse_app, 'tag mytag "hello"') assert out[0] == '<mytag>"hello"</mytag>' def test_argparse_custom_namespace(argparse_app): out, err = run_cmd(argparse_app, 'test_argparse_ns') assert out[0] == 'custom' def test_argparse_with_list(argparse_app): out, err = run_cmd(argparse_app, 'speak -s hello world!') assert out == ['HELLO WORLD!'] def test_argparse_with_list_remove_quotes(argparse_app): out, err = run_cmd(argparse_app, 'speak -s hello "world!"') assert out == ['HELLO WORLD!'] def test_argparse_with_list_preserve_quotes(argparse_app): out, err = run_cmd(argparse_app, 'test_argparse_with_list_quotes "hello" person') assert out[0] == '"hello" person' def test_argparse_with_list_custom_namespace(argparse_app): out, err = run_cmd(argparse_app, 'test_argparse_with_list_ns') assert out[0] == 'custom' def test_argparse_with_list_and_empty_doc(argparse_app): out, err = run_cmd(argparse_app, 'speak -s hello world!') assert out == ['HELLO WORLD!'] def test_argparser_correct_args_with_quotes_and_midline_options(argparse_app): out, err = run_cmd(argparse_app, "speak 'This is a' -s test of the emergency broadcast system!") assert out == ['THIS IS A TEST OF THE EMERGENCY BROADCAST SYSTEM!'] def test_argparser_and_unknown_args_kwargs(argparse_app, capsys): """Test with_argparser wrapper passing through kwargs to command function""" argparse_app.do_speak('', keyword_arg="foo") out, err = capsys.readouterr() assert out == "foo\n" def test_argparse_quoted_arguments_multiple(argparse_app): out, err = run_cmd(argparse_app, 'say "hello there" "rick & morty"') assert out == ['hello there rick & morty'] def test_argparse_help_docstring(argparse_app): out, err = run_cmd(argparse_app, 'help say') assert out[0].startswith('Usage: say') assert out[1] == '' assert out[2] == 'Repeat what you tell me to.' def test_argparse_help_description(argparse_app): out, err = run_cmd(argparse_app, 'help tag') assert out[0].startswith('Usage: tag') assert out[1] == '' assert out[2] == 'create a html tag' def test_argparse_prog(argparse_app): out, err = run_cmd(argparse_app, 'help tag') progname = out[0].split(' ')[1] assert progname == 'tag' def test_arglist(argparse_app): out, err = run_cmd(argparse_app, 'arglist "we should" get these') assert out[0] == 'True' def test_arglist_kwargs(argparse_app, capsys): """Test with_argument_list wrapper passes through kwargs to command function""" argparse_app.do_arglist('arg', keyword_arg="foo") out, err = capsys.readouterr() assert out == "foo\n" def test_preservelist(argparse_app): out, err = run_cmd(argparse_app, 'preservelist foo "bar baz"') assert out[0] == "['foo', '\"bar baz\"']" class SubcommandApp(cmd2.Cmd): """Example cmd2 application where we a base command which has a couple subcommands.""" def __init__(self): cmd2.Cmd.__init__(self) # subcommand functions for the base command def base_foo(self, args): """foo subcommand of base command""" self.poutput(args.x * args.y) def base_bar(self, args): """bar subcommand of base command""" self.poutput('((%s))' % args.z) def base_helpless(self, args): """helpless subcommand of base command""" self.poutput('((%s))' % args.z) # create the top-level parser for the base command base_parser = cmd2.Cmd2ArgumentParser() base_subparsers = base_parser.add_subparsers(dest='subcommand', metavar='SUBCOMMAND') base_subparsers.required = True # create the parser for the "foo" subcommand parser_foo = base_subparsers.add_parser('foo', help='foo help') parser_foo.add_argument('-x', type=int, default=1, help='integer') parser_foo.add_argument('y', type=float, help='float') parser_foo.set_defaults(func=base_foo) # create the parser for the "bar" subcommand parser_bar = base_subparsers.add_parser('bar', help='bar help', aliases=['bar_1', 'bar_2']) parser_bar.add_argument('z', help='string') parser_bar.set_defaults(func=base_bar) # create the parser for the "helpless" subcommand # This subcommand has aliases and no help text. It exists to prevent changes to _set_parser_prog() which # use an approach which relies on action._choices_actions list. See comment in that function for more # details. parser_bar = base_subparsers.add_parser('helpless', aliases=['helpless_1', 'helpless_2']) parser_bar.add_argument('z', help='string') parser_bar.set_defaults(func=base_bar) @cmd2.with_argparser(base_parser) def do_base(self, args): """Base command help""" # Call whatever subcommand function was selected func = getattr(args, 'func') func(self, args) # Add subcommands using as_subcommand_to decorator has_subcmds_parser = cmd2.Cmd2ArgumentParser(description="Tests as_subcmd_to decorator") has_subcmds_subparsers = has_subcmds_parser.add_subparsers(dest='subcommand', metavar='SUBCOMMAND') has_subcmds_subparsers.required = True @cmd2.with_argparser(has_subcmds_parser) def do_test_subcmd_decorator(self, args: argparse.Namespace): handler = args.cmd2_handler.get() handler(args) subcmd_parser = cmd2.Cmd2ArgumentParser(description="A subcommand") @cmd2.as_subcommand_to('test_subcmd_decorator', 'subcmd', subcmd_parser, help=subcmd_parser.description.lower()) def subcmd_func(self, args: argparse.Namespace): # Make sure printing the Namespace works. The way we originally added cmd2_hander to it resulted in a RecursionError. self.poutput(args) helpless_subcmd_parser = cmd2.Cmd2ArgumentParser(add_help=False, description="A subcommand with no help") @cmd2.as_subcommand_to( 'test_subcmd_decorator', 'helpless_subcmd', helpless_subcmd_parser, help=helpless_subcmd_parser.description.lower() ) def helpless_subcmd_func(self, args: argparse.Namespace): # Make sure vars(Namespace) works. The way we originally added cmd2_hander to it resulted in a RecursionError. self.poutput(vars(args)) @pytest.fixture def subcommand_app(): app = SubcommandApp() return app def test_subcommand_foo(subcommand_app): out, err = run_cmd(subcommand_app, 'base foo -x2 5.0') assert out == ['10.0'] def test_subcommand_bar(subcommand_app): out, err = run_cmd(subcommand_app, 'base bar baz') assert out == ['((baz))'] def test_subcommand_invalid(subcommand_app): out, err = run_cmd(subcommand_app, 'base baz') assert err[0].startswith('Usage: base') assert err[1].startswith("Error: argument SUBCOMMAND: invalid choice: 'baz'") def test_subcommand_base_help(subcommand_app): out, err = run_cmd(subcommand_app, 'help base') assert out[0].startswith('Usage: base') assert out[1] == '' assert out[2] == 'Base command help' def test_subcommand_help(subcommand_app): # foo has no aliases out, err = run_cmd(subcommand_app, 'help base foo') assert out[0].startswith('Usage: base foo') assert out[1] == '' assert out[2] == 'positional arguments:' # bar has aliases (usage should never show alias name) out, err = run_cmd(subcommand_app, 'help base bar') assert out[0].startswith('Usage: base bar') assert out[1] == '' assert out[2] == 'positional arguments:' out, err = run_cmd(subcommand_app, 'help base bar_1') assert out[0].startswith('Usage: base bar') assert out[1] == '' assert out[2] == 'positional arguments:' out, err = run_cmd(subcommand_app, 'help base bar_2') assert out[0].startswith('Usage: base bar') assert out[1] == '' assert out[2] == 'positional arguments:' # helpless has aliases and no help text (usage should never show alias name) out, err = run_cmd(subcommand_app, 'help base helpless') assert out[0].startswith('Usage: base helpless') assert out[1] == '' assert out[2] == 'positional arguments:' out, err = run_cmd(subcommand_app, 'help base helpless_1') assert out[0].startswith('Usage: base helpless') assert out[1] == '' assert out[2] == 'positional arguments:' out, err = run_cmd(subcommand_app, 'help base helpless_2') assert out[0].startswith('Usage: base helpless') assert out[1] == '' assert out[2] == 'positional arguments:' def test_subcommand_invalid_help(subcommand_app): out, err = run_cmd(subcommand_app, 'help base baz') assert out[0].startswith('Usage: base') def test_add_another_subcommand(subcommand_app): """ This tests makes sure _set_parser_prog() sets _prog_prefix on every _SubParsersAction so that all future calls to add_parser() write the correct prog value to the parser being added. """ new_parser = subcommand_app.base_subparsers.add_parser('new_sub', help="stuff") assert new_parser.prog == "base new_sub" def test_subcmd_decorator(subcommand_app): # Test subcommand that has help option out, err = run_cmd(subcommand_app, 'test_subcmd_decorator subcmd') assert out[0].startswith('Namespace(') out, err = run_cmd(subcommand_app, 'help test_subcmd_decorator subcmd') assert out[0] == 'Usage: test_subcmd_decorator subcmd [-h]' out, err = run_cmd(subcommand_app, 'test_subcmd_decorator subcmd -h') assert out[0] == 'Usage: test_subcmd_decorator subcmd [-h]' # Test subcommand that has no help option out, err = run_cmd(subcommand_app, 'test_subcmd_decorator helpless_subcmd') assert "'subcommand': 'helpless_subcmd'" in out[0] out, err = run_cmd(subcommand_app, 'help test_subcmd_decorator helpless_subcmd') assert out[0] == 'Usage: test_subcmd_decorator helpless_subcmd' assert not err out, err = run_cmd(subcommand_app, 'test_subcmd_decorator helpless_subcmd -h') assert not out assert err[0] == 'Usage: test_subcmd_decorator [-h] SUBCOMMAND ...' assert err[1] == 'Error: unrecognized arguments: -h' def test_unittest_mock(): from unittest import ( mock, ) from cmd2 import ( CommandSetRegistrationError, ) with mock.patch.object(ArgparseApp, 'namespace_provider'): with pytest.raises(CommandSetRegistrationError): app = ArgparseApp() with mock.patch.object(ArgparseApp, 'namespace_provider', spec=True): app = ArgparseApp() with mock.patch.object(ArgparseApp, 'namespace_provider', spec_set=True): app = ArgparseApp() with mock.patch.object(ArgparseApp, 'namespace_provider', autospec=True): app = ArgparseApp() def test_pytest_mock_invalid(mocker): from cmd2 import ( CommandSetRegistrationError, ) mocker.patch.object(ArgparseApp, 'namespace_provider') with pytest.raises(CommandSetRegistrationError): app = ArgparseApp() @pytest.mark.parametrize( 'spec_param', [ {'spec': True}, {'spec_set': True}, {'autospec': True}, ], ) def test_pytest_mock_valid(mocker, spec_param): mocker.patch.object(ArgparseApp, 'namespace_provider', **spec_param) app = ArgparseApp()
the-stack_0_19586
#!/usr/bin/env python3 # Copyright (c) 2009-2019 The Bitcoin Core developers # Copyright (c) 2014-2019 The DeimOS Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test deimosd with different proxy configuration. Test plan: - Start deimosd's with different proxy configurations - Use addnode to initiate connections - Verify that proxies are connected to, and the right connection command is given - Proxy configurations to test on deimosd side: - `-proxy` (proxy everything) - `-onion` (proxy just onions) - `-proxyrandomize` Circuit randomization - Proxy configurations to test on proxy side, - support no authentication (other proxy) - support no authentication + user/pass authentication (Tor) - proxy on IPv6 - Create various proxies (as threads) - Create deimosds that connect to them - Manipulate the deimosds using addnode (onetry) an observe effects addnode connect to IPv4 addnode connect to IPv6 addnode connect to onion addnode connect to generic DNS name """ import socket import os from test_framework.socks5 import Socks5Configuration, Socks5Command, Socks5Server, AddressType from test_framework.test_framework import DeimOSTestFramework from test_framework.util import ( PORT_MIN, PORT_RANGE, assert_equal, ) from test_framework.netutil import test_ipv6_local RANGE_BEGIN = PORT_MIN + 2 * PORT_RANGE # Start after p2p and rpc ports class ProxyTest(DeimOSTestFramework): def set_test_params(self): self.num_nodes = 4 def setup_nodes(self): self.have_ipv6 = test_ipv6_local() # Create two proxies on different ports # ... one unauthenticated self.conf1 = Socks5Configuration() self.conf1.addr = ('127.0.0.1', RANGE_BEGIN + (os.getpid() % 1000)) self.conf1.unauth = True self.conf1.auth = False # ... one supporting authenticated and unauthenticated (Tor) self.conf2 = Socks5Configuration() self.conf2.addr = ('127.0.0.1', RANGE_BEGIN + 1000 + (os.getpid() % 1000)) self.conf2.unauth = True self.conf2.auth = True if self.have_ipv6: # ... one on IPv6 with similar configuration self.conf3 = Socks5Configuration() self.conf3.af = socket.AF_INET6 self.conf3.addr = ('::1', RANGE_BEGIN + 2000 + (os.getpid() % 1000)) self.conf3.unauth = True self.conf3.auth = True else: self.log.warning("Testing without local IPv6 support") self.serv1 = Socks5Server(self.conf1) self.serv1.start() self.serv2 = Socks5Server(self.conf2) self.serv2.start() if self.have_ipv6: self.serv3 = Socks5Server(self.conf3) self.serv3.start() # Note: proxies are not used to connect to local nodes # this is because the proxy to use is based on CService.GetNetwork(), which return NET_UNROUTABLE for localhost args = [ ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-proxyrandomize=1'], ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-onion=%s:%i' % (self.conf2.addr),'-proxyrandomize=0'], ['-listen', '-proxy=%s:%i' % (self.conf2.addr),'-proxyrandomize=1'], [] ] if self.have_ipv6: args[3] = ['-listen', '-proxy=[%s]:%i' % (self.conf3.addr),'-proxyrandomize=0', '-noonion'] self.add_nodes(self.num_nodes, extra_args=args) self.start_nodes() def node_test(self, node, proxies, auth, test_onion=True): rv = [] # Test: outgoing IPv4 connection through node node.addnode("15.61.23.23:1234", "onetry") cmd = proxies[0].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: deimosd's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"15.61.23.23") assert_equal(cmd.port, 1234) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if self.have_ipv6: # Test: outgoing IPv6 connection through node node.addnode("[1233:3432:2434:2343:3234:2345:6546:4534]:5443", "onetry") cmd = proxies[1].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: deimosd's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"1233:3432:2434:2343:3234:2345:6546:4534") assert_equal(cmd.port, 5443) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if test_onion: # Test: outgoing onion connection through node node.addnode("deimosostk4e4re.onion:8333", "onetry") cmd = proxies[2].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"deimosostk4e4re.onion") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing DNS name connection through node node.addnode("node.noumenon:8333", "onetry") cmd = proxies[3].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"node.noumenon") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) return rv def run_test(self): # basic -proxy self.node_test(self.nodes[0], [self.serv1, self.serv1, self.serv1, self.serv1], False) # -proxy plus -onion self.node_test(self.nodes[1], [self.serv1, self.serv1, self.serv2, self.serv1], False) # -proxy plus -onion, -proxyrandomize rv = self.node_test(self.nodes[2], [self.serv2, self.serv2, self.serv2, self.serv2], True) # Check that credentials as used for -proxyrandomize connections are unique credentials = set((x.username,x.password) for x in rv) assert_equal(len(credentials), len(rv)) if self.have_ipv6: # proxy on IPv6 localhost self.node_test(self.nodes[3], [self.serv3, self.serv3, self.serv3, self.serv3], False, False) def networks_dict(d): r = {} for x in d['networks']: r[x['name']] = x return r # test RPC getnetworkinfo n0 = networks_dict(self.nodes[0].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n0[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n0[net]['proxy_randomize_credentials'], True) assert_equal(n0['onion']['reachable'], True) n1 = networks_dict(self.nodes[1].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n1[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n1[net]['proxy_randomize_credentials'], False) assert_equal(n1['onion']['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n1['onion']['proxy_randomize_credentials'], False) assert_equal(n1['onion']['reachable'], True) n2 = networks_dict(self.nodes[2].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n2[net]['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n2[net]['proxy_randomize_credentials'], True) assert_equal(n2['onion']['reachable'], True) if self.have_ipv6: n3 = networks_dict(self.nodes[3].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n3[net]['proxy'], '[%s]:%i' % (self.conf3.addr)) assert_equal(n3[net]['proxy_randomize_credentials'], False) assert_equal(n3['onion']['reachable'], False) if __name__ == '__main__': ProxyTest().main()
the-stack_0_19588
import sys import typer from typer.core import TyperCommand from click.parser import OptionParser from mltk import cli class _VariableArgumentOptionParser(OptionParser): def parse_args(self, args): if len(args) >= 2: self.ctx.meta['vargs'] = args[1:] return super().parse_args(args[:1]) else: return super().parse_args(args) class _VariableArgumentParsingCommand(TyperCommand): def make_parser(self, ctx): """Creates the underlying option parser for this command.""" parser = _VariableArgumentOptionParser(ctx) for param in self.get_params(ctx): param.add_to_parser(parser, ctx) return parser @cli.root_cli.command("custom", cls=_VariableArgumentParsingCommand) def custom_model_command( ctx: typer.Context, model: str = typer.Argument(..., help='Name of MLTK model OR path to model specification python script', metavar='<model>' ) ): """Custom Model Operations This allows for running custom-defined model commands. The model operations are defined in the model specification file. ---------- Examples ---------- \b # Run the 'visualize' custom command provided by the # siamese_contrastive example model mltk custom siamese_contrastive visualize """ # Import all required packages here instead of at top # to help improve the CLI's responsiveness from mltk.core import load_mltk_model # Find the MLTK Model file try: mltk_model = load_mltk_model( model, print_not_found_err=True ) except Exception as e: cli.handle_exception('Failed to load model', e) if len(mltk_model.cli.registered_commands) == 0: cli.abort(msg=f'Model {mltk_model.name} does not define any custom commands') # This works around an issue with mltk_cli.py # modules that only have one command # It simply adds a hidden dummy command to the root CLI @mltk_model.cli.command('_mltk_workaround', hidden=True) def _mltk_workaround(): pass try: orig_argv = sys.argv sys.argv = ['mltk'] + ctx.meta['vargs'] mltk_model.cli(prog_name=f'mltk custom {mltk_model.name}') except Exception as e: cli.handle_exception(f'Model {mltk_model.name} custom command failed', e) finally: sys.argv = orig_argv