licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.1.0 | c47d617be00391c09bbe2f0f093b4a364ff06ed2 | docs | 8302 |
```@meta
CurrentModule = TypeClasses
DocTestSetup = quote
using TypeClasses
using Dictionaries
end
```
# TypeClasses
## [Functor, Applicative, Monad](@id functor_applicative_monad)
Typeclass | Interface | Helpers from `TypeClasses`
--------- | --------- | ---------------------------
| `TypeClasses.foreach = Base.foreach` | `@syntax_foreach`
Functor, Applicative, Monad | `TypeClasses.map = Base.map` | `@syntax_map`
Applicative, Monad | `TypeClasses.pure`, `TypeClasses.ap` | `ap` is automatically defined if you defined `Base.map` and `TypeClasses.flatmap`. Further helpers: `mapn`, `@mapn`, `tupled`, `neutral_applicative`, `combine_applicative`, `orelse_applicative`
Monad | `TypeClasses.flatmap` | `flatten`, `↠` (\twoheadrightarrow), `@syntax_flatmap`
There are three syntax supported, where `@syntax_flatmap` is the most useful, however sometimes `@syntax_foreach` may also be handy because of its power and simplicity in a programming language with side-effects (like Julia).
```jldoctest
julia> @syntax_foreach begin # translates to foreach calls
a = [1, 2]
b = [3, 4]
@pure println("a = $a, b = $b")
end
a = 1, b = 3
a = 1, b = 4
a = 2, b = 3
a = 2, b = 4
julia> @syntax_map begin # translates to map calls
a = [1, 2]
b = [3, 4]
@pure "a = $a, b = $b"
end
2-element Vector{Vector{String}}:
["a = 1, b = 3", "a = 1, b = 4"]
["a = 2, b = 3", "a = 2, b = 4"]
julia> @syntax_flatmap begin # translates to map/flatmap calls
a = [1, 2]
b = [3, 4]
@pure "a = $a, b = $b"
end
4-element Vector{String}:
"a = 1, b = 3"
"a = 1, b = 4"
"a = 2, b = 3"
"a = 2, b = 4"
```
For **Applicatives** there are a couple of additional helpers
```jldoctest
julia> f(a, b, c) = a + b + c
f (generic function with 1 method)
julia> @mapn f([1,2], [10], [100, 200]) # can also be written as `mapn(f, [1,2], [10], [100,200])`
4-element Vector{Int64}:
111
211
112
212
julia> tupled([1,2], [3, 4])
4-element Vector{Tuple{Int64, Int64}}:
(1, 3)
(1, 4)
(2, 3)
(2, 4)
```
And for **Monads** you have
```jldoctest
julia> flatten([[1,2], [3,4]])
4-element Vector{Int64}:
1
2
3
4
julia> [1, 2] ↠ [3, 4] # flatmap(_ -> [3,4], [1,2])
4-element Vector{Int64}:
3
4
3
4
julia> Option(3) ↠ Option() ↠ Option("hi") # stopping behaviour with operator syntax
Const(nothing)
```
### Considerations
#### Functor - map
You can overload `TypeClasses.map` or `Base.map`, as you like, they are both the very same.
#### Monad - flatmap
We decided to use `flatmap` as the interface, because it is often more intuitiv to implement than `flatten` and also comes quite natural next to `map`.
In order to enable simple interactions between monads, all `flatmap` implementations use `convert` before flattening. The exception is `Identity` which for convenience just returns whatever inner monad may appear, without forcing a conversion to `Identity`. For example, this enables you to combine `Vector` with `OPtion`, `Try`, `Either` in all ways.
`@syntax_flatmap` provides monadic syntax (similar to haskell do-notation). However, the macro translates to `flatmap` and `map` only, and does not need `pure`.
#### Applicative - ap / mapn / map
`mapn` is explicitly an extra function, because it has a generic definition which uses `pure` and `ap`, which can also be derived given the implementation of `flatmap` and single `map`. Many types define `Base.map(f, a, b, c, ...)` which is in this sense a `mapn`. However, they sometimes do not conform to the respective implementation of `flatten`/`flatmap`. For example `Vector` defines `Base.map(f, a, b, c, ...)` for Vectors of equal length, however flattening vectors is collecting all combinations of all vectors. These are two different semantics and it is hard to forsee which error-potentials this would bring if they are intermixed. Another example is `Dictionaries.Dictionary`, which supports map similar to Vector, checking for same indices first and raising an error otherwise.
For convenience, `Base.map(f, a, b, c...)` is defined as an alias for `TypeClasses.mapn(f, a, b, c...)` for the data types `Option`, `Try`, `Either`, `ContextManager`, `Callable`, `Writer`, and `State`.
Each Applicative can lift an underlying Monoid. In addition some Applicatives also define Monoids themselves (e.g. Vector). Hence, we distinguish both by adding functions `neutral_applicative`, `combine_applicative`, `orelse_applicative`.
## [Semigroup, Monoid, Alternative](@id semigroup_monoid_alternative)
Typeclass | Interface | Helpers from `TypeClasses`
--------- | --------- | --------------
Monoid, Alternative | `TypeClasses.neutral` |
Monoid, Semigroup | `TypeClasses.combine` | alias `⊕` (\oplus), `reduce_monoid`, `foldr_monoid`, `foldl_monoid`
Alternative | `TypeClasses.orelse` | alias `⊘` (\oslash)
A **Semigroup** just supports `combine`, a **Monoid** in addition supports `neutral`. We define the generic neutral element `neutral` which is neutral to everything, hence every Semigroup is actually a Monoid in Julia. Hence `TypeClasses.neutral` is both a function which returns the neutral element (defaulting to `neutral`), as well as the generic neutral element itself.
Sometimes, the type itself has an obvious way of combining multiple values, like for `String` or `Vector`. Other times, the `combine` is forwarded to inner elements in case it is needed.
```jldoctest
julia> neutral(Vector) ⊕ [1,2] ⊕ [3]
3-element Vector{Any}:
1
2
3
julia> d = Dict(:a => "hello.", :b => 4) ⊕ Dict(:a => "world.", :c => 1.0)
Dict{Symbol, Any} with 3 entries:
:a => "hello.world."
:b => 4
:c => 1.0
julia> combine(Option(), Option([1]), Option([2, 3]))
Identity([1, 2, 3])
```
Let's look at **Alternative**. Take the `Dict` as an example of a container. If we find the same key in both dictionaries, `combine` is going to recursively call `combine` on them. Alternatively, we could just grab the one or the other. This is implemented within the `orelse` function, which will always take the first value it finds.
```jldoctest
julia> Dict(:a => "first", :b => 4) ⊘ Dict(:a => true, :c => 1.0)
Dict{Symbol, Any} with 3 entries:
:a => "first"
:b => 4
:c => 1.0
julia> orelse(Option(), Option(1), Option(4))
Identity(1)
```
### Considerations
We decided to use the same `neutral` for both Monoid and Alternative because of simplicity.
Julia does not have stable typeparameters (for optimization a typeparameter may be inferred as Any instead of more concrete type), and hence Alternative (which is concept targeted at Functors, i.e. things with one typeparameter) becomes way more similar to Monoid.
## [FlipTypes](@id flip_types)
Typeclass | Interface | Helpers from `TypeClasses`
--------- | --------- | --------------------------
FlipTypes | `TypeClasses.flip_types` | `TypeClasses.default_flip_types_having_pure_combine_apEltype`
`flip_types(::A{B{C}})` should return `::B{A{C}}`. Hence the name: it flips the first two types.
Here are some examples
```jldoctest
julia> flip_types([Option(:a), Option(:b)])
Identity([:a, :b])
julia> flip_types(Identity([:a, :b]))
2-element Vector{Identity{Symbol}}:
Identity(:a)
Identity(:b)
julia> flip_types([Option(:a), Option()])
Const(nothing)
julia> using Dictionaries
julia> flip_types(dictionary((:a => [1,2], :b => [3, 4])))
4-element Vector{Dictionary{Symbol, Int64}}:
{:a = 1, :b = 3}
{:a = 1, :b = 4}
{:a = 2, :b = 3}
{:a = 2, :b = 4}
julia> flip_types([dictionary((:a => 1, :b => 2)), dictionary((:a => 10, :b => 20)), dictionary((:b => 200, :c => 300))])
1-element Dictionaries.Dictionary{Symbol, Vector{Int64}}
:b │ [2, 20, 200]
```
You see that flip_types may actually forget information. This is normal, but very important to remember. Hence, applying flip_types twice usually not return to the original value, but will change the result.
### Considerations
FlipTypes is not an official TypeClass, however proofs to be a very essential abstraction. Normally this comes with the TypeClass Traversable and is called `sequence`, however that name is not very self-explanatory and sounds quite specific.
`TypeClasses.flip_types` has already one big usage in `ExtensibleEffects.jl`, for a generic implementation of effect handling.
| TypeClasses | https://github.com/JuliaFunctional/TypeClasses.jl.git |
|
[
"MIT"
] | 1.1.0 | c47d617be00391c09bbe2f0f093b4a364ff06ed2 | docs | 5295 | ```@meta
CurrentModule = TypeClasses
DocTestSetup = quote
using TypeClasses
using Dictionaries
end
```
# Introduction
Welcome to `TypeClasses.jl`. TypeClasses defines general programmatic abstractions taken from Scala cats and Haskell TypeClasses.
We use "interface" and "typeclass" synonymously. The following interfaces are defined:
TypeClass | Methods | Description
----------- | ----------------------------------- | --------------------------------------------------------------------
[Functor ](@ref functor_applicative_monad) | `Base.map` | The basic definition of a container or computational context.
[Applicative](@ref functor_applicative_monad) | Functor & `TypeClasses.pure` & `TypeClasses.ap` (automatically defined when `map` and `flatmap` are defined) | Computational context with support for parallel execution.
[Monad](@ref functor_applicative_monad) | Applicative & `TypeClasses.flatmap` | Computational context with support for sequential, nested execution.
[Semigroup](@ref semigroup_monoid_alternative) | `TypeClasses.combine`, alias `⊕` | The notion of something which can be combined with other things of its kind.
[Monoid](@ref semigroup_monoid_alternative) | Semigroup & `TypeClasses.neutral` | A semigroup with a neutral element is called a Monoid, an often used category.
[Alternative](@ref semigroup_monoid_alternative) | `TypeClasses.neutral` & `TypeClasses.orelse`, alias `⊘` | Slightly different than Monoid, the `orelse` semantic does not merge two values, but just takes one of the two.
[FlipTypes](@ref flip_types) | `TypeClasses.flip_types` | Enables dealing with nested types. Transforms an `A{B{C}}` into an `B{A{C}}`.
## Installation
```julia
using Pkg
Pkg.add("TypeClasses")
```
Use it like
```julia
using TypeClasses
```
## More Details
For detailed information of the TypeClasses, see [TypeClasses](@ref).
For detailed information about implementations of the TypeClasses for concrete DataTypes, see [DataTypes](@ref).
## General Design Decisions
* reuse as much `Base` as possible
* make it stable (hence so far we only support the most important type-classes)
* make it simple
* make it convenient
* bring examples
### No dispatch on `eltype`
With Functors and the like a typical thing you want to do is to get to know more about the inner type, i.e. the `eltype`. It turns out this is unwanted.
Julia's type-inference is seriously incomplete and there is also no sign that this will ever change. The compiler tries very hard to always infer the maximal specific type, but may fallback to more generic types if unsure or because of time-constraints. A calculation which may build up a `Vector{Number}` may easily turn out as a `Vector{Any}`, and even for a method returning `Vector{String}`, the underlying code may be that dynamic in nature, that the compiler just cannot infer the type and will return `Vector{Any}`. The take home message here is that, practically, `eltype` is an instable function. It's concrete behaviour, somewhere within a nested stack of function calls, may change between versions, depending on changing undocumented compiler-heuristics, or may even change because another layer of abstractions is added somewhere within the nested calls, which again triggers different compiler-heuristics.
If you dispatch on `Vector{Number}` in order to implement something specific for Number, that may fail to catch the Vector{Number} which was interpreted as `Vector{Any}` because of approximate type inference. You need to make sure that the semantics of the method for `Vector{Any}` is actually identical to the specialised version `Vector{Number}`. You should only ever do performance optimisations when dispatching on `eltype`, never base your semantics on `eltype`.
With Functors, specifically with Monads, we have exactly the setting where we may dispatch on `eltype` to define different semantics. They key reason is that there are a couple of Monads where you cannot inspect the concrete elements, for instance `Callable` where the element is hidden behind an arbitrary function. Hence you may not be able to implement a function for `Callable{Any}` in a sensible way, while it actually is well-defined for `Callable{Callable}`. That is not Julia.
Another example is the typeclass `neutral`. It turns out you can define `neutral` for each `Applicative` which ElementType itself implements `neutral`. It is really tempting to define the generic implementation for Applicatives, dispatching on `eltype`... Instead we provide specific applicative versions `neutral_applicative` and `combine_applicative` which assume the elements comply to the `Neutral` and `Semigroup` interface respectively. Similar for `orelse`.
As we cannot safely dispatch on `eltype`, the Julia way is to just assume your ElementType has the characteristics needed for your function, i.e. use duck-typing instead of dispatch. Naturally, this will work for all containers with the right elements. And in case the elements do not implement the required interfaces, it will fail with a well self-explaining `MethodError`. This you can then debug which will bring you directly to the place where you can inspect the elements in detail.
| TypeClasses | https://github.com/JuliaFunctional/TypeClasses.jl.git |
|
[
"MIT"
] | 1.11.1 | ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0 | code | 780 | @static if Base.VERSION >= v"1.6"
using TOML
using Test
else
using Pkg: TOML
using Test
end
# To generate the new UUID, we simply modify the first character of the original UUID
const original_uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
const new_uuid = "20745b16-79ce-11e8-11f9-7d13ad32a3b2"
# `@__DIR__` is the `.ci/` folder.
# Therefore, `dirname(@__DIR__)` is the repository root.
const project_filename = joinpath(dirname(@__DIR__), "Project.toml")
@testset "Test that the UUID is unchanged" begin
project_dict = TOML.parsefile(project_filename)
@test project_dict["uuid"] == original_uuid
end
write(
project_filename,
replace(
read(project_filename, String),
r"uuid = .*?\n" => "uuid = \"$(new_uuid)\"\n",
),
)
| Statistics | https://github.com/JuliaStats/Statistics.jl.git |
|
[
"MIT"
] | 1.11.1 | ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0 | code | 366 | using Documenter, Statistics
# Workaround for JuliaLang/julia/pull/28625
if Base.HOME_PROJECT[] !== nothing
Base.HOME_PROJECT[] = abspath(Base.HOME_PROJECT[])
end
makedocs(
modules = [Statistics],
sitename = "Statistics",
pages = Any[
"Statistics" => "index.md"
]
)
deploydocs(repo = "github.com/JuliaStats/Statistics.jl.git")
| Statistics | https://github.com/JuliaStats/Statistics.jl.git |
|
[
"MIT"
] | 1.11.1 | ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0 | code | 3069 | module SparseArraysExt
##### SparseArrays optimizations #####
using Base: require_one_based_indexing
using LinearAlgebra
using SparseArrays
using Statistics
using Statistics: centralize_sumabs2, unscaled_covzm
# extended functions
import Statistics: cov, centralize_sumabs2!
function cov(X::SparseMatrixCSC; dims::Int=1, corrected::Bool=true)
vardim = dims
a, b = size(X)
n, p = vardim == 1 ? (a, b) : (b, a)
# The covariance can be decomposed into two terms
# 1/(n - 1) ∑ (x_i - x̄)*(x_i - x̄)' = 1/(n - 1) (∑ x_i*x_i' - n*x̄*x̄')
# which can be evaluated via a sparse matrix-matrix product
# Compute ∑ x_i*x_i' = X'X using sparse matrix-matrix product
out = Matrix(unscaled_covzm(X, vardim))
# Compute x̄
x̄ᵀ = mean(X, dims=vardim)
# Subtract n*x̄*x̄' from X'X
@inbounds for j in 1:p, i in 1:p
out[i,j] -= x̄ᵀ[i] * x̄ᵀ[j]' * n
end
# scale with the sample size n or the corrected sample size n - 1
return rmul!(out, inv(n - corrected))
end
# This is the function that does the reduction underlying var/std
function centralize_sumabs2!(R::AbstractArray{S}, A::SparseMatrixCSC{Tv,Ti}, means::AbstractArray) where {S,Tv,Ti}
require_one_based_indexing(R, A, means)
lsiz = Base.check_reducedims(R,A)
for i in 1:max(ndims(R), ndims(means))
if axes(means, i) != axes(R, i)
throw(DimensionMismatch("dimension $i of `mean` should have indices $(axes(R, i)), but got $(axes(means, i))"))
end
end
isempty(R) || fill!(R, zero(S))
isempty(A) && return R
rowval = rowvals(A)
nzval = nonzeros(A)
m = size(A, 1)
n = size(A, 2)
if size(R, 1) == size(R, 2) == 1
# Reduction along both columns and rows
R[1, 1] = centralize_sumabs2(A, means[1])
elseif size(R, 1) == 1
# Reduction along rows
@inbounds for col = 1:n
mu = means[col]
r = convert(S, (m - length(nzrange(A, col)))*abs2(mu))
@simd for j = nzrange(A, col)
r += abs2(nzval[j] - mu)
end
R[1, col] = r
end
elseif size(R, 2) == 1
# Reduction along columns
rownz = fill(convert(Ti, n), m)
@inbounds for col = 1:n
@simd for j = nzrange(A, col)
row = rowval[j]
R[row, 1] += abs2(nzval[j] - means[row])
rownz[row] -= 1
end
end
for i = 1:m
R[i, 1] += rownz[i]*abs2(means[i])
end
else
# Reduction along a dimension > 2
@inbounds for col = 1:n
lastrow = 0
@simd for j = nzrange(A, col)
row = rowval[j]
for i = lastrow+1:row-1
R[i, col] = abs2(means[i, col])
end
R[row, col] = abs2(nzval[j] - means[row, col])
lastrow = row
end
for i = lastrow+1:m
R[i, col] = abs2(means[i, col])
end
end
end
return R
end
end # module
| Statistics | https://github.com/JuliaStats/Statistics.jl.git |
|
[
"MIT"
] | 1.11.1 | ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0 | code | 35912 | # This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Statistics
Standard library module for basic statistics functionality.
"""
module Statistics
using LinearAlgebra
using Base: has_offset_axes, require_one_based_indexing
export cor, cov, std, stdm, var, varm, mean!, mean,
median!, median, middle, quantile!, quantile
##### mean #####
"""
mean(itr)
Compute the mean of all elements in a collection.
!!! note
If `itr` contains `NaN` or [`missing`](@ref) values, the result is also
`NaN` or `missing` (`missing` takes precedence if array contains both).
Use the [`skipmissing`](@ref) function to omit `missing` entries and compute the
mean of non-missing values.
# Examples
```jldoctest
julia> using Statistics
julia> mean(1:20)
10.5
julia> mean([1, missing, 3])
missing
julia> mean(skipmissing([1, missing, 3]))
2.0
```
"""
mean(itr) = mean(identity, itr)
"""
mean(f, itr)
Apply the function `f` to each element of collection `itr` and take the mean.
```jldoctest
julia> using Statistics
julia> mean(√, [1, 2, 3])
1.3820881233139908
julia> mean([√1, √2, √3])
1.3820881233139908
```
"""
function mean(f, itr)
y = iterate(itr)
if y === nothing
return Base.mapreduce_empty_iter(f, +, itr,
Base.IteratorEltype(itr)) / 0
end
count = 1
value, state = y
f_value = f(value)/1
total = Base.reduce_first(+, f_value)
y = iterate(itr, state)
while y !== nothing
value, state = y
total += _mean_promote(total, f(value))
count += 1
y = iterate(itr, state)
end
return total/count
end
"""
mean(f, A::AbstractArray; dims)
Apply the function `f` to each element of array `A` and take the mean over dimensions `dims`.
!!! compat "Julia 1.3"
This method requires at least Julia 1.3.
```jldoctest
julia> using Statistics
julia> mean(√, [1, 2, 3])
1.3820881233139908
julia> mean([√1, √2, √3])
1.3820881233139908
julia> mean(√, [1 2 3; 4 5 6], dims=2)
2×1 Matrix{Float64}:
1.3820881233139908
2.2285192400943226
```
"""
mean(f, A::AbstractArray; dims=:) = _mean(f, A, dims)
function mean(f::Number, itr::Number)
f_value = try
f(itr)
catch err
if err isa MethodError && err.f === f && err.args == (itr,)
rethrow(ArgumentError("""mean(f, itr) requires a function and an iterable.
Perhaps you meant mean((x, y))?"""))
else
rethrow(err)
end
end
Base.reduce_first(+, f_value)/1
end
"""
mean!(r, v)
Compute the mean of `v` over the singleton dimensions of `r`, and write results to `r`.
# Examples
```jldoctest
julia> using Statistics
julia> v = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> mean!([1., 1.], v)
2-element Vector{Float64}:
1.5
3.5
julia> mean!([1. 1.], v)
1×2 Matrix{Float64}:
2.0 3.0
```
"""
function mean!(R::AbstractArray, A::AbstractArray)
sum!(R, A; init=true)
x = max(1, length(R)) // length(A)
R .= R .* x
return R
end
"""
mean(A::AbstractArray; dims)
Compute the mean of an array over the given dimensions.
!!! compat "Julia 1.1"
`mean` for empty arrays requires at least Julia 1.1.
# Examples
```jldoctest
julia> using Statistics
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> mean(A, dims=1)
1×2 Matrix{Float64}:
2.0 3.0
julia> mean(A, dims=2)
2×1 Matrix{Float64}:
1.5
3.5
```
"""
mean(A::AbstractArray; dims=:) = _mean(identity, A, dims)
_mean_promote(x::T, y::S) where {T,S} = convert(promote_type(T, S), y)
# ::Dims is there to force specializing on Colon (as it is a Function)
function _mean(f, A::AbstractArray, dims::Dims=:) where Dims
isempty(A) && return sum(f, A, dims=dims)/0
if dims === (:)
n = length(A)
else
n = mapreduce(i -> size(A, i), *, unique(dims); init=1)
end
x1 = f(first(A)) / 1
result = sum(x -> _mean_promote(x1, f(x)), A, dims=dims)
if dims === (:)
return result / n
else
return result ./= n
end
end
function mean(r::AbstractRange{T}) where T
isempty(r) && return zero(T)/0
return first(r)/2 + last(r)/2
end
##### variances #####
# faster computation of real(conj(x)*y)
realXcY(x::Real, y::Real) = x*y
realXcY(x::Complex, y::Complex) = real(x)*real(y) + imag(x)*imag(y)
var(iterable; corrected::Bool=true, mean=nothing) = _var(iterable, corrected, mean)
function _var(iterable, corrected::Bool, mean)
y = iterate(iterable)
if y === nothing
T = eltype(iterable)
return oftype((abs2(zero(T)) + abs2(zero(T)))/2, NaN)
end
count = 1
value, state = y
y = iterate(iterable, state)
if mean === nothing
# Use Welford algorithm as seen in (among other places)
# Knuth's TAOCP, Vol 2, page 232, 3rd edition.
M = value / 1
S = real(zero(M))
while y !== nothing
value, state = y
y = iterate(iterable, state)
count += 1
new_M = M + (value - M) / count
S = S + realXcY(value - M, value - new_M)
M = new_M
end
return S / (count - Int(corrected))
elseif isa(mean, Number) # mean provided
# Cannot use a compensated version, e.g. the one from
# "Updating Formulae and a Pairwise Algorithm for Computing Sample Variances."
# by Chan, Golub, and LeVeque, Technical Report STAN-CS-79-773,
# Department of Computer Science, Stanford University,
# because user can provide mean value that is different to mean(iterable)
sum2 = abs2(value - mean::Number)
while y !== nothing
value, state = y
y = iterate(iterable, state)
count += 1
sum2 += abs2(value - mean)
end
return sum2 / (count - Int(corrected))
else
throw(ArgumentError("invalid value of mean, $(mean)::$(typeof(mean))"))
end
end
centralizedabs2fun(m) = x -> abs2.(x - m)
centralize_sumabs2(A::AbstractArray, m) =
mapreduce(centralizedabs2fun(m), +, A)
centralize_sumabs2(A::AbstractArray, m, ifirst::Int, ilast::Int) =
Base.mapreduce_impl(centralizedabs2fun(m), +, A, ifirst, ilast)
function centralize_sumabs2!(R::AbstractArray{S}, A::AbstractArray, means::AbstractArray) where S
# following the implementation of _mapreducedim! at base/reducedim.jl
lsiz = Base.check_reducedims(R,A)
for i in 1:max(ndims(R), ndims(means))
if axes(means, i) != axes(R, i)
throw(DimensionMismatch("dimension $i of `mean` should have indices $(axes(R, i)), but got $(axes(means, i))"))
end
end
isempty(R) || fill!(R, zero(S))
isempty(A) && return R
if Base.has_fast_linear_indexing(A) && lsiz > 16 && !has_offset_axes(R, means)
nslices = div(length(A), lsiz)
ibase = first(LinearIndices(A))-1
for i = 1:nslices
@inbounds R[i] = centralize_sumabs2(A, means[i], ibase+1, ibase+lsiz)
ibase += lsiz
end
return R
end
indsAt, indsRt = Base.safe_tail(axes(A)), Base.safe_tail(axes(R)) # handle d=1 manually
keep, Idefault = Broadcast.shapeindexer(indsRt)
if Base.reducedim1(R, A)
i1 = first(Base.axes1(R))
@inbounds for IA in CartesianIndices(indsAt)
IR = Broadcast.newindex(IA, keep, Idefault)
r = R[i1,IR]
m = means[i1,IR]
@simd for i in axes(A, 1)
r += abs2(A[i,IA] - m)
end
R[i1,IR] = r
end
else
@inbounds for IA in CartesianIndices(indsAt)
IR = Broadcast.newindex(IA, keep, Idefault)
@simd for i in axes(A, 1)
R[i,IR] += abs2(A[i,IA] - means[i,IR])
end
end
end
return R
end
function varm!(R::AbstractArray{S}, A::AbstractArray, m::AbstractArray; corrected::Bool=true) where S
if isempty(A)
fill!(R, convert(S, NaN))
else
rn = div(length(A), length(R)) - Int(corrected)
centralize_sumabs2!(R, A, m)
R .= R .* (1 // rn)
end
return R
end
"""
varm(itr, mean; dims, corrected::Bool=true)
Compute the sample variance of collection `itr`, with known mean(s) `mean`.
The algorithm returns an estimator of the generative distribution's variance
under the assumption that each entry of `itr` is a sample drawn from the same
unknown distribution, with the samples uncorrelated.
For arrays, this computation is equivalent to calculating
`sum((itr .- mean(itr)).^2) / (length(itr) - 1)`.
If `corrected` is `true`, then the sum is scaled with `n-1`,
whereas the sum is scaled with `n` if `corrected` is
`false` with `n` the number of elements in `itr`.
If `itr` is an `AbstractArray`, `dims` can be provided to compute the variance
over dimensions. In that case, `mean` must be an array with the same shape as
`mean(itr, dims=dims)` (additional trailing singleton dimensions are allowed).
!!! note
If array contains `NaN` or [`missing`](@ref) values, the result is also
`NaN` or `missing` (`missing` takes precedence if array contains both).
Use the [`skipmissing`](@ref) function to omit `missing` entries and compute the
variance of non-missing values.
"""
varm(A::AbstractArray, m::AbstractArray; corrected::Bool=true, dims=:) = _varm(A, m, corrected, dims)
_varm(A::AbstractArray{T}, m, corrected::Bool, region) where {T} =
varm!(Base.reducedim_init(t -> abs2(t)/2, +, A, region), A, m; corrected=corrected)
varm(A::AbstractArray, m; corrected::Bool=true) = _varm(A, m, corrected, :)
function _varm(A::AbstractArray{T}, m, corrected::Bool, ::Colon) where T
n = length(A)
n == 0 && return oftype((abs2(zero(T)) + abs2(zero(T)))/2, NaN)
return centralize_sumabs2(A, m) / (n - Int(corrected))
end
"""
var(itr; corrected::Bool=true, mean=nothing[, dims])
Compute the sample variance of collection `itr`.
The algorithm returns an estimator of the generative distribution's variance
under the assumption that each entry of `itr` is a sample drawn from the same
unknown distribution, with the samples uncorrelated.
For arrays, this computation is equivalent to calculating
`sum((itr .- mean(itr)).^2) / (length(itr) - 1)`.
If `corrected` is `true`, then the sum is scaled with `n-1`,
whereas the sum is scaled with `n` if `corrected` is
`false` where `n` is the number of elements in `itr`.
If `itr` is an `AbstractArray`, `dims` can be provided to compute the variance
over dimensions.
A pre-computed `mean` may be provided. When `dims` is specified, `mean` must be
an array with the same shape as `mean(itr, dims=dims)` (additional trailing
singleton dimensions are allowed).
!!! note
If array contains `NaN` or [`missing`](@ref) values, the result is also
`NaN` or `missing` (`missing` takes precedence if array contains both).
Use the [`skipmissing`](@ref) function to omit `missing` entries and compute the
variance of non-missing values.
"""
var(A::AbstractArray; corrected::Bool=true, mean=nothing, dims=:) = _var(A, corrected, mean, dims)
function _var(A::AbstractArray, corrected::Bool, mean, dims)
if mean === nothing
mean = Statistics.mean(A, dims=dims)
end
return varm(A, mean; corrected=corrected, dims=dims)
end
function _var(A::AbstractArray, corrected::Bool, mean, ::Colon)
if mean === nothing
mean = Statistics.mean(A)
end
return real(varm(A, mean; corrected=corrected))
end
varm(iterable, m; corrected::Bool=true) = _var(iterable, corrected, m)
## variances over ranges
varm(v::AbstractRange, m::AbstractArray) = range_varm(v, m)
varm(v::AbstractRange, m) = range_varm(v, m)
function range_varm(v::AbstractRange, m)
f = first(v) - m
s = step(v)
l = length(v)
vv = f^2 * l / (l - 1) + f * s * l + s^2 * l * (2 * l - 1) / 6
if l == 0 || l == 1
return typeof(vv)(NaN)
end
return vv
end
function var(v::AbstractRange)
s = step(v)
l = length(v)
vv = abs2(s) * (l + 1) * l / 12
if l == 0 || l == 1
return typeof(vv)(NaN)
end
return vv
end
##### standard deviation #####
function sqrt!(A::AbstractArray)
for i in eachindex(A)
@inbounds A[i] = sqrt(A[i])
end
A
end
"""
std(itr; corrected::Bool=true, mean=nothing[, dims])
Compute the sample standard deviation of collection `itr`.
The algorithm returns an estimator of the generative distribution's standard
deviation under the assumption that each entry of `itr` is a sample drawn from
the same unknown distribution, with the samples uncorrelated.
For arrays, this computation is equivalent to calculating
`sqrt(sum((itr .- mean(itr)).^2) / (length(itr) - 1))`.
If `corrected` is `true`, then the sum is scaled with `n-1`,
whereas the sum is scaled with `n` if `corrected` is
`false` with `n` the number of elements in `itr`.
If `itr` is an `AbstractArray`, `dims` can be provided to compute the standard deviation
over dimensions.
A pre-computed `mean` may be provided. When `dims` is specified, `mean` must be
an array with the same shape as `mean(itr, dims=dims)` (additional trailing
singleton dimensions are allowed).
!!! note
If array contains `NaN` or [`missing`](@ref) values, the result is also
`NaN` or `missing` (`missing` takes precedence if array contains both).
Use the [`skipmissing`](@ref) function to omit `missing` entries and compute the
standard deviation of non-missing values.
"""
std(A::AbstractArray; corrected::Bool=true, mean=nothing, dims=:) = _std(A, corrected, mean, dims)
_std(A::AbstractArray, corrected::Bool, mean, dims) =
sqrt.(var(A; corrected=corrected, mean=mean, dims=dims))
_std(A::AbstractArray, corrected::Bool, mean, ::Colon) =
sqrt.(var(A; corrected=corrected, mean=mean))
_std(A::AbstractArray{<:AbstractFloat}, corrected::Bool, mean, dims) =
sqrt!(var(A; corrected=corrected, mean=mean, dims=dims))
_std(A::AbstractArray{<:AbstractFloat}, corrected::Bool, mean, ::Colon) =
sqrt.(var(A; corrected=corrected, mean=mean))
std(iterable; corrected::Bool=true, mean=nothing) =
sqrt(var(iterable, corrected=corrected, mean=mean))
"""
stdm(itr, mean; corrected::Bool=true[, dims])
Compute the sample standard deviation of collection `itr`, with known mean(s) `mean`.
The algorithm returns an estimator of the generative distribution's standard
deviation under the assumption that each entry of `itr` is a sample drawn from
the same unknown distribution, with the samples uncorrelated.
For arrays, this computation is equivalent to calculating
`sqrt(sum((itr .- mean(itr)).^2) / (length(itr) - 1))`.
If `corrected` is `true`, then the sum is scaled with `n-1`,
whereas the sum is scaled with `n` if `corrected` is
`false` with `n` the number of elements in `itr`.
If `itr` is an `AbstractArray`, `dims` can be provided to compute the standard deviation
over dimensions. In that case, `mean` must be an array with the same shape as
`mean(itr, dims=dims)` (additional trailing singleton dimensions are allowed).
!!! note
If array contains `NaN` or [`missing`](@ref) values, the result is also
`NaN` or `missing` (`missing` takes precedence if array contains both).
Use the [`skipmissing`](@ref) function to omit `missing` entries and compute the
standard deviation of non-missing values.
"""
stdm(A::AbstractArray, m::AbstractArray; corrected::Bool=true, dims=:) =
_std(A, corrected, m, dims)
stdm(iterable, m; corrected::Bool=true) =
sqrt(var(iterable, corrected=corrected, mean=m))
###### covariance ######
# auxiliary functions
_conj(x::AbstractArray{<:Real}) = x
_conj(x::AbstractArray) = conj(x)
_getnobs(x::AbstractVector, vardim::Int) = length(x)
_getnobs(x::AbstractMatrix, vardim::Int) = size(x, vardim)
function _getnobs(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int)
n = _getnobs(x, vardim)
_getnobs(y, vardim) == n || throw(DimensionMismatch("dimensions of x and y mismatch"))
return n
end
_vmean(x::AbstractVector, vardim::Int) = mean(x)
_vmean(x::AbstractMatrix, vardim::Int) = mean(x, dims=vardim)
# core functions
unscaled_covzm(x::AbstractVector{<:Number}) = sum(abs2, x)
unscaled_covzm(x::AbstractVector) = sum(t -> t*t', x)
unscaled_covzm(x::AbstractMatrix, vardim::Int) = (vardim == 1 ? _conj(x'x) : x * x')
function unscaled_covzm(x::AbstractVector, y::AbstractVector)
(isempty(x) || isempty(y)) &&
throw(ArgumentError("covariance only defined for non-empty vectors"))
return *(adjoint(y), x)
end
unscaled_covzm(x::AbstractVector, y::AbstractMatrix, vardim::Int) =
(vardim == 1 ? *(transpose(x), _conj(y)) : *(transpose(x), transpose(_conj(y))))
unscaled_covzm(x::AbstractMatrix, y::AbstractVector, vardim::Int) =
(c = vardim == 1 ? *(transpose(x), _conj(y)) : x * _conj(y); reshape(c, length(c), 1))
unscaled_covzm(x::AbstractMatrix, y::AbstractMatrix, vardim::Int) =
(vardim == 1 ? *(transpose(x), _conj(y)) : *(x, adjoint(y)))
# covzm (with centered data)
covzm(x::AbstractVector; corrected::Bool=true) = unscaled_covzm(x) / (length(x) - Int(corrected))
function covzm(x::AbstractMatrix, vardim::Int=1; corrected::Bool=true)
C = unscaled_covzm(x, vardim)
T = promote_type(typeof(first(C) / 1), eltype(C))
A = convert(AbstractMatrix{T}, C)
b = 1//(size(x, vardim) - corrected)
A .= A .* b
return A
end
covzm(x::AbstractVector, y::AbstractVector; corrected::Bool=true) =
unscaled_covzm(x, y) / (length(x) - Int(corrected))
function covzm(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int=1; corrected::Bool=true)
C = unscaled_covzm(x, y, vardim)
T = promote_type(typeof(first(C) / 1), eltype(C))
A = convert(AbstractArray{T}, C)
b = 1//(_getnobs(x, y, vardim) - corrected)
A .= A .* b
return A
end
# covm (with provided mean)
## Use map(t -> t - xmean, x) instead of x .- xmean to allow for Vector{Vector}
## which can't be handled by broadcast
covm(x::AbstractVector, xmean; corrected::Bool=true) =
covzm(map(t -> t - xmean, x); corrected=corrected)
covm(x::AbstractMatrix, xmean, vardim::Int=1; corrected::Bool=true) =
covzm(x .- xmean, vardim; corrected=corrected)
covm(x::AbstractVector, xmean, y::AbstractVector, ymean; corrected::Bool=true) =
covzm(map(t -> t - xmean, x), map(t -> t - ymean, y); corrected=corrected)
covm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1; corrected::Bool=true) =
covzm(x .- xmean, y .- ymean, vardim; corrected=corrected)
# cov (API)
"""
cov(x::AbstractVector; corrected::Bool=true)
Compute the variance of the vector `x`. If `corrected` is `true` (the default) then the sum
is scaled with `n-1`, whereas the sum is scaled with `n` if `corrected` is `false` where `n = length(x)`.
"""
cov(x::AbstractVector; corrected::Bool=true) = covm(x, mean(x); corrected=corrected)
"""
cov(X::AbstractMatrix; dims::Int=1, corrected::Bool=true)
Compute the covariance matrix of the matrix `X` along the dimension `dims`. If `corrected`
is `true` (the default) then the sum is scaled with `n-1`, whereas the sum is scaled with `n`
if `corrected` is `false` where `n = size(X, dims)`.
"""
cov(X::AbstractMatrix; dims::Int=1, corrected::Bool=true) =
covm(X, _vmean(X, dims), dims; corrected=corrected)
"""
cov(x::AbstractVector, y::AbstractVector; corrected::Bool=true)
Compute the covariance between the vectors `x` and `y`. If `corrected` is `true` (the
default), computes ``\\frac{1}{n-1}\\sum_{i=1}^n (x_i-\\bar x) (y_i-\\bar y)^*`` where
``*`` denotes the complex conjugate and `n = length(x) = length(y)`. If `corrected` is
`false`, computes ``\\frac{1}{n}\\sum_{i=1}^n (x_i-\\bar x) (y_i-\\bar y)^*``.
"""
cov(x::AbstractVector, y::AbstractVector; corrected::Bool=true) =
covm(x, mean(x), y, mean(y); corrected=corrected)
"""
cov(X::AbstractVecOrMat, Y::AbstractVecOrMat; dims::Int=1, corrected::Bool=true)
Compute the covariance between the vectors or matrices `X` and `Y` along the dimension
`dims`. If `corrected` is `true` (the default) then the sum is scaled with `n-1`, whereas
the sum is scaled with `n` if `corrected` is `false` where `n = size(X, dims) = size(Y, dims)`.
"""
cov(X::AbstractVecOrMat, Y::AbstractVecOrMat; dims::Int=1, corrected::Bool=true) =
covm(X, _vmean(X, dims), Y, _vmean(Y, dims), dims; corrected=corrected)
##### correlation #####
"""
clampcor(x)
Clamp a real correlation to between -1 and 1, leaving complex correlations unchanged
"""
clampcor(x::Real) = clamp(x, -1, 1)
clampcor(x) = x
# cov2cor!
function cov2cor!(C::AbstractMatrix{T}, xsd::AbstractArray) where T
require_one_based_indexing(C, xsd)
nx = length(xsd)
size(C) == (nx, nx) || throw(DimensionMismatch("inconsistent dimensions"))
for j = 1:nx
for i = 1:j-1
C[i,j] = adjoint(C[j,i])
end
C[j,j] = oneunit(T)
for i = j+1:nx
C[i,j] = clampcor(C[i,j] / (xsd[i] * xsd[j]))
end
end
return C
end
function cov2cor!(C::AbstractMatrix, xsd, ysd::AbstractArray)
require_one_based_indexing(C, ysd)
nx, ny = size(C)
length(ysd) == ny || throw(DimensionMismatch("inconsistent dimensions"))
for (j, y) in enumerate(ysd) # fixme (iter): here and in all `cov2cor!` we assume that `C` is efficiently indexed by integers
for i in 1:nx
C[i,j] = clampcor(C[i, j] / (xsd * y))
end
end
return C
end
function cov2cor!(C::AbstractMatrix, xsd::AbstractArray, ysd)
require_one_based_indexing(C, xsd)
nx, ny = size(C)
length(xsd) == nx || throw(DimensionMismatch("inconsistent dimensions"))
for j in 1:ny
for (i, x) in enumerate(xsd)
C[i,j] = clampcor(C[i,j] / (x * ysd))
end
end
return C
end
function cov2cor!(C::AbstractMatrix, xsd::AbstractArray, ysd::AbstractArray)
require_one_based_indexing(C, xsd, ysd)
nx, ny = size(C)
(length(xsd) == nx && length(ysd) == ny) ||
throw(DimensionMismatch("inconsistent dimensions"))
for (i, x) in enumerate(xsd)
for (j, y) in enumerate(ysd)
C[i,j] = clampcor(C[i,j] / (x * y))
end
end
return C
end
# corzm (non-exported, with centered data)
corzm(x::AbstractVector{T}) where {T} =
T === Missing ? missing : one(float(nonmissingtype(T)))
function corzm(x::AbstractMatrix, vardim::Int=1)
c = unscaled_covzm(x, vardim)
return cov2cor!(c, collect(sqrt(c[i,i]) for i in 1:min(size(c)...)))
end
corzm(x::AbstractVector, y::AbstractMatrix, vardim::Int=1) =
cov2cor!(unscaled_covzm(x, y, vardim), sqrt(sum(abs2, x)), sqrt!(sum(abs2, y, dims=vardim)))
corzm(x::AbstractMatrix, y::AbstractVector, vardim::Int=1) =
cov2cor!(unscaled_covzm(x, y, vardim), sqrt!(sum(abs2, x, dims=vardim)), sqrt(sum(abs2, y)))
corzm(x::AbstractMatrix, y::AbstractMatrix, vardim::Int=1) =
cov2cor!(unscaled_covzm(x, y, vardim), sqrt!(sum(abs2, x, dims=vardim)), sqrt!(sum(abs2, y, dims=vardim)))
# corm
corm(x::AbstractVector{T}, xmean) where {T} =
T === Missing ? missing : one(float(nonmissingtype(T)))
corm(x::AbstractMatrix, xmean, vardim::Int=1) = corzm(x .- xmean, vardim)
function corm(x::AbstractVector, mx, y::AbstractVector, my)
require_one_based_indexing(x, y)
n = length(x)
length(y) == n || throw(DimensionMismatch("inconsistent lengths"))
n > 0 || throw(ArgumentError("correlation only defined for non-empty vectors"))
@inbounds begin
# Initialize the accumulators
xx = zero(sqrt(abs2(one(x[1]))))
yy = zero(sqrt(abs2(one(y[1]))))
xy = zero(x[1] * y[1]')
@simd for i in eachindex(x, y)
xi = x[i] - mx
yi = y[i] - my
xx += abs2(xi)
yy += abs2(yi)
xy += xi * yi'
end
end
return clampcor(xy / max(xx, yy) / sqrt(min(xx, yy) / max(xx, yy)))
end
corm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1) =
corzm(x .- xmean, y .- ymean, vardim)
# cor
"""
cor(x::AbstractVector)
Return the number one.
"""
cor(x::AbstractVector{T}) where {T} =
T === Missing ? missing : one(float(nonmissingtype(T)))
"""
cor(X::AbstractMatrix; dims::Int=1)
Compute the Pearson correlation matrix of the matrix `X` along the dimension `dims`.
"""
cor(X::AbstractMatrix; dims::Int=1) = corm(X, _vmean(X, dims), dims)
"""
cor(x::AbstractVector, y::AbstractVector)
Compute the Pearson correlation between the vectors `x` and `y`.
"""
cor(x::AbstractVector, y::AbstractVector) = corm(x, mean(x), y, mean(y))
"""
cor(X::AbstractVecOrMat, Y::AbstractVecOrMat; dims=1)
Compute the Pearson correlation between the vectors or matrices `X` and `Y` along the dimension `dims`.
"""
cor(x::AbstractVecOrMat, y::AbstractVecOrMat; dims::Int=1) =
corm(x, _vmean(x, dims), y, _vmean(y, dims), dims)
##### median & quantiles #####
"""
middle(x)
Compute the middle of a scalar value, which is equivalent to `x` itself, but of the type of `middle(x, x)` for consistency.
"""
middle(x::Union{Bool,Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128}) = Float64(x)
# Specialized functions for number types allow for improved performance
middle(x::AbstractFloat) = x
middle(x::Number) = (x + zero(x)) / 1
"""
middle(x, y)
Compute the middle of two numbers `x` and `y`, which is
equivalent in both value and type to computing their mean (`(x + y) / 2`).
"""
middle(x::Number, y::Number) = x/2 + y/2
"""
middle(a::AbstractArray)
Compute the middle of an array `a`, which consists of finding its
extrema and then computing their mean.
```jldoctest
julia> using Statistics
julia> middle(1:10)
5.5
julia> a = [1,2,3.6,10.9]
4-element Vector{Float64}:
1.0
2.0
3.6
10.9
julia> middle(a)
5.95
```
"""
middle(a::AbstractArray) = ((v1, v2) = extrema(a); middle(v1, v2))
function middle(a::AbstractRange)
isempty(a) && throw(ArgumentError("middle of an empty range is undefined."))
return middle(first(a), last(a))
end
"""
median!(v)
Like [`median`](@ref), but may overwrite the input vector.
"""
function median!(v::AbstractVector)
isempty(v) && throw(ArgumentError("median of an empty array is undefined, $(repr(v))"))
eltype(v)>:Missing && any(ismissing, v) && return missing
any(x -> x isa Number && isnan(x), v) && return convert(eltype(v), NaN)
inds = axes(v, 1)
n = length(inds)
mid = div(first(inds)+last(inds),2)
if isodd(n)
return middle(partialsort!(v,mid))
else
m = partialsort!(v, mid:mid+1)
return middle(m[1], m[2])
end
end
median!(v::AbstractArray) = median!(vec(v))
"""
median(itr)
Compute the median of all elements in a collection.
For an even number of elements no exact median element exists, so the result is
equivalent to calculating mean of two median elements.
!!! note
If `itr` contains `NaN` or [`missing`](@ref) values, the result is also
`NaN` or `missing` (`missing` takes precedence if `itr` contains both).
Use the [`skipmissing`](@ref) function to omit `missing` entries and compute the
median of non-missing values.
# Examples
```jldoctest
julia> using Statistics
julia> median([1, 2, 3])
2.0
julia> median([1, 2, 3, 4])
2.5
julia> median([1, 2, missing, 4])
missing
julia> median(skipmissing([1, 2, missing, 4]))
2.0
```
"""
median(itr) = median!(collect(itr))
"""
median(A::AbstractArray; dims)
Compute the median of an array along the given dimensions.
# Examples
```jldoctest
julia> using Statistics
julia> median([1 2; 3 4], dims=1)
1×2 Matrix{Float64}:
2.0 3.0
```
"""
median(v::AbstractArray; dims=:) = _median(v, dims)
_median(v::AbstractArray, dims) = mapslices(median!, v, dims = dims)
_median(v::AbstractArray{T}, ::Colon) where {T} = median!(copyto!(Array{T,1}(undef, length(v)), v))
median(r::AbstractRange{<:Real}) = mean(r)
"""
quantile!([q::AbstractArray, ] v::AbstractVector, p; sorted=false, alpha::Real=1.0, beta::Real=alpha)
Compute the quantile(s) of a vector `v` at a specified probability or vector or tuple of
probabilities `p` on the interval [0,1]. If `p` is a vector, an optional
output array `q` may also be specified. (If not provided, a new output array is created.)
The keyword argument `sorted` indicates whether `v` can be assumed to be sorted; if
`false` (the default), then the elements of `v` will be partially sorted in-place.
Samples quantile are defined by `Q(p) = (1-γ)*x[j] + γ*x[j+1]`,
where `x[j]` is the j-th order statistic of `v`, `j = floor(n*p + m)`,
`m = alpha + p*(1 - alpha - beta)` and `γ = n*p + m - j`.
By default (`alpha = beta = 1`), quantiles are computed via linear interpolation between the points
`((k-1)/(n-1), x[k])`, for `k = 1:n` where `n = length(v)`. This corresponds to Definition 7
of Hyndman and Fan (1996), and is the same as the R and NumPy default.
The keyword arguments `alpha` and `beta` correspond to the same parameters in Hyndman and Fan,
setting them to different values allows to calculate quantiles with any of the methods 4-9
defined in this paper:
- Def. 4: `alpha=0`, `beta=1`
- Def. 5: `alpha=0.5`, `beta=0.5` (MATLAB default)
- Def. 6: `alpha=0`, `beta=0` (Excel `PERCENTILE.EXC`, Python default, Stata `altdef`)
- Def. 7: `alpha=1`, `beta=1` (Julia, R and NumPy default, Excel `PERCENTILE` and `PERCENTILE.INC`, Python `'inclusive'`)
- Def. 8: `alpha=1/3`, `beta=1/3`
- Def. 9: `alpha=3/8`, `beta=3/8`
!!! note
An `ArgumentError` is thrown if `v` contains `NaN` or [`missing`](@ref) values.
# References
- Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages",
*The American Statistician*, Vol. 50, No. 4, pp. 361-365
- [Quantile on Wikipedia](https://en.m.wikipedia.org/wiki/Quantile) details the different quantile definitions
# Examples
```jldoctest
julia> using Statistics
julia> x = [3, 2, 1];
julia> quantile!(x, 0.5)
2.0
julia> x
3-element Vector{Int64}:
1
2
3
julia> y = zeros(3);
julia> quantile!(y, x, [0.1, 0.5, 0.9]) === y
true
julia> y
3-element Vector{Float64}:
1.2000000000000002
2.0
2.8000000000000003
```
"""
function quantile!(q::AbstractArray, v::AbstractVector, p::AbstractArray;
sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha)
require_one_based_indexing(q, v, p)
if size(p) != size(q)
throw(DimensionMismatch("size of p, $(size(p)), must equal size of q, $(size(q))"))
end
isempty(q) && return q
minp, maxp = extrema(p)
_quantilesort!(v, sorted, minp, maxp)
for (i, j) in zip(eachindex(p), eachindex(q))
@inbounds q[j] = _quantile(v,p[i], alpha=alpha, beta=beta)
end
return q
end
function quantile!(v::AbstractVector, p::Union{AbstractArray, Tuple{Vararg{Real}}};
sorted::Bool=false, alpha::Real=1., beta::Real=alpha)
if !isempty(p)
minp, maxp = extrema(p)
_quantilesort!(v, sorted, minp, maxp)
end
return map(x->_quantile(v, x, alpha=alpha, beta=beta), p)
end
quantile!(a::AbstractArray, p::Union{AbstractArray,Tuple{Vararg{Real}}};
sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) =
quantile!(vec(a), p, sorted=sorted, alpha=alpha, beta=alpha)
quantile!(q::AbstractArray, a::AbstractArray, p::Union{AbstractArray,Tuple{Vararg{Real}}};
sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) =
quantile!(q, vec(a), p, sorted=sorted, alpha=alpha, beta=alpha)
quantile!(v::AbstractVector, p::Real; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) =
_quantile(_quantilesort!(v, sorted, p, p), p, alpha=alpha, beta=beta)
# Function to perform partial sort of v for quantiles in given range
function _quantilesort!(v::AbstractVector, sorted::Bool, minp::Real, maxp::Real)
isempty(v) && throw(ArgumentError("empty data vector"))
require_one_based_indexing(v)
if !sorted
lv = length(v)
lo = floor(Int,minp*(lv))
hi = ceil(Int,1+maxp*(lv))
# only need to perform partial sort
sort!(v, 1, lv, Base.Sort.PartialQuickSort(lo:hi), Base.Sort.Forward)
end
if (sorted && (ismissing(v[end]) || (v[end] isa Number && isnan(v[end])))) ||
any(x -> ismissing(x) || (x isa Number && isnan(x)), v)
throw(ArgumentError("quantiles are undefined in presence of NaNs or missing values"))
end
return v
end
# Core quantile lookup function: assumes `v` sorted
@inline function _quantile(v::AbstractVector, p::Real; alpha::Real=1.0, beta::Real=alpha)
0 <= p <= 1 || throw(ArgumentError("input probability out of [0,1] range"))
0 <= alpha <= 1 || throw(ArgumentError("alpha parameter out of [0,1] range"))
0 <= beta <= 1 || throw(ArgumentError("beta parameter out of [0,1] range"))
require_one_based_indexing(v)
n = length(v)
@assert n > 0 # this case should never happen here
m = alpha + p * (one(alpha) - alpha - beta)
aleph = n*p + oftype(p, m)
j = clamp(trunc(Int, aleph), 1, n-1)
γ = clamp(aleph - j, 0, 1)
if n == 1
a = v[1]
b = v[1]
else
a = v[j]
b = v[j + 1]
end
# When a ≉ b, b-a may overflow
# When a ≈ b, (1-γ)*a + γ*b may not be increasing with γ due to rounding
if isfinite(a) && isfinite(b) &&
(!(a isa Number) || !(b isa Number) || a ≈ b)
return a + γ*(b-a)
else
return (1-γ)*a + γ*b
end
end
"""
quantile(itr, p; sorted=false, alpha::Real=1.0, beta::Real=alpha)
Compute the quantile(s) of a collection `itr` at a specified probability or vector or tuple of
probabilities `p` on the interval [0,1]. The keyword argument `sorted` indicates whether
`itr` can be assumed to be sorted.
Samples quantile are defined by `Q(p) = (1-γ)*x[j] + γ*x[j+1]`,
where `x[j]` is the j-th order statistic of `itr`, `j = floor(n*p + m)`,
`m = alpha + p*(1 - alpha - beta)` and `γ = n*p + m - j`.
By default (`alpha = beta = 1`), quantiles are computed via linear interpolation between the points
`((k-1)/(n-1), x[k])`, for `k = 1:n` where `n = length(itr)`. This corresponds to Definition 7
of Hyndman and Fan (1996), and is the same as the R and NumPy default.
The keyword arguments `alpha` and `beta` correspond to the same parameters in Hyndman and Fan,
setting them to different values allows to calculate quantiles with any of the methods 4-9
defined in this paper:
- Def. 4: `alpha=0`, `beta=1`
- Def. 5: `alpha=0.5`, `beta=0.5` (MATLAB default)
- Def. 6: `alpha=0`, `beta=0` (Excel `PERCENTILE.EXC`, Python default, Stata `altdef`)
- Def. 7: `alpha=1`, `beta=1` (Julia, R and NumPy default, Excel `PERCENTILE` and `PERCENTILE.INC`, Python `'inclusive'`)
- Def. 8: `alpha=1/3`, `beta=1/3`
- Def. 9: `alpha=3/8`, `beta=3/8`
!!! note
An `ArgumentError` is thrown if `v` contains `NaN` or [`missing`](@ref) values.
Use the [`skipmissing`](@ref) function to omit `missing` entries and compute the
quantiles of non-missing values.
# References
- Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages",
*The American Statistician*, Vol. 50, No. 4, pp. 361-365
- [Quantile on Wikipedia](https://en.m.wikipedia.org/wiki/Quantile) details the different quantile definitions
# Examples
```jldoctest
julia> using Statistics
julia> quantile(0:20, 0.5)
10.0
julia> quantile(0:20, [0.1, 0.5, 0.9])
3-element Vector{Float64}:
2.0
10.0
18.000000000000004
julia> quantile(skipmissing([1, 10, missing]), 0.5)
5.5
```
"""
quantile(itr, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) =
quantile!(collect(itr), p, sorted=sorted, alpha=alpha, beta=beta)
quantile(v::AbstractVector, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) =
quantile!(sorted ? v : Base.copymutable(v), p; sorted=sorted, alpha=alpha, beta=beta)
# If package extensions are not supported in this Julia version
if !isdefined(Base, :get_extension)
include("../ext/SparseArraysExt.jl")
end
end # module
| Statistics | https://github.com/JuliaStats/Statistics.jl.git |
|
[
"MIT"
] | 1.11.1 | ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0 | code | 41068 | # This file is a part of Julia. License is MIT: https://julialang.org/license
using Statistics, Test, Random, LinearAlgebra, SparseArrays, Dates
using Test: guardseed
Random.seed!(123)
@testset "middle" begin
@test middle(3) === 3.0
@test middle(2, 3) === 2.5
let x = ((floatmax(1.0)/4)*3)
@test middle(x, x) === x
end
@test middle(1:8) === 4.5
@test middle([1:8;]) === 4.5
@test middle(5.0 + 2.0im, 2.0 + 3.0im) == 3.5 + 2.5im
@test middle(5.0 + 2.0im) == 5.0 + 2.0im
# ensure type-correctness
for T in [Bool,Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128,Float16,Float32,Float64]
@test middle(one(T)) === middle(one(T), one(T))
end
@test_throws Union{MethodError, ArgumentError} middle(Int[])
@test_throws ArgumentError middle(1:0)
@test middle(0:typemax(Int)) === typemax(Int) / 2
end
@testset "median" begin
@test median([1.]) === 1.
@test median([1.,3]) === 2.
@test median([1.,3,2]) === 2.
@test median([1,3,2]) === 2.0
@test median([1,3,2,4]) === 2.5
@test median([0.0,Inf]) == Inf
@test median([0.0,-Inf]) == -Inf
@test median([0.,Inf,-Inf]) == 0.0
@test median([1.,-1.,Inf,-Inf]) == 0.0
@test isnan(median([-Inf,Inf]))
X = [2 3 1 -1; 7 4 5 -4]
@test all(median(X, dims=2) .== [1.5, 4.5])
@test all(median(X, dims=1) .== [4.5 3.5 3.0 -2.5])
@test X == [2 3 1 -1; 7 4 5 -4] # issue #17153
@test_throws ArgumentError median([])
@test isnan(median([NaN]))
@test isnan(median([0.0,NaN]))
@test isnan(median([NaN,0.0]))
@test isnan(median([NaN,0.0,1.0]))
@test isnan(median(Any[NaN,0.0,1.0]))
@test isequal(median([NaN 0.0; 1.2 4.5], dims=2), reshape([NaN; 2.85], 2, 1))
@test ismissing(median([1, missing]))
@test ismissing(median([1, 2, missing]))
@test ismissing(median([NaN, 2.0, missing]))
@test ismissing(median([NaN, missing]))
@test ismissing(median([missing, NaN]))
@test ismissing(median(Any[missing, 2.0, 3.0, 4.0, NaN]))
@test median(skipmissing([1, missing, 2])) === 1.5
@test median!([1 2 3 4]) == 2.5
@test median!([1 2; 3 4]) == 2.5
@test invoke(median, Tuple{AbstractVector}, 1:10) == median(1:10) == 5.5
@test @inferred(median(Float16[1, 2, NaN])) === Float16(NaN)
@test @inferred(median(Float16[1, 2, 3])) === Float16(2)
@test @inferred(median(Float32[1, 2, NaN])) === NaN32
@test @inferred(median(Float32[1, 2, 3])) === 2.0f0
# custom type implementing minimal interface
struct A
x
end
Statistics.middle(x::A, y::A) = A(middle(x.x, y.x))
Base.isless(x::A, y::A) = isless(x.x, y.x)
@test median([A(1), A(2)]) === A(1.5)
@test median(Any[A(1), A(2)]) === A(1.5)
end
@testset "mean" begin
@test mean((1,2,3)) === 2.
@test mean([0]) === 0.
@test mean([1.]) === 1.
@test mean([1.,3]) == 2.
@test mean([1,2,3]) == 2.
@test mean([0 1 2; 4 5 6], dims=1) == [2. 3. 4.]
@test mean([1 2 3; 4 5 6], dims=1) == [2.5 3.5 4.5]
@test mean(-, [1 2 3 ; 4 5 6], dims=1) == [-2.5 -3.5 -4.5]
@test mean(-, [1 2 3 ; 4 5 6], dims=2) == transpose([-2.0 -5.0])
@test mean(-, [1 2 3 ; 4 5 6], dims=(1, 2)) == -3.5 .* ones(1, 1)
@test mean(-, [1 2 3 ; 4 5 6], dims=(1, 1)) == [-2.5 -3.5 -4.5]
@test mean(-, [1 2 3 ; 4 5 6], dims=()) == Float64[-1 -2 -3 ; -4 -5 -6]
@test mean(i->i+1, 0:2) === 2.
@test mean(isodd, [3]) === 1.
@test mean(x->3x, (1,1)) === 3.
# mean of iterables:
n = 10; a = randn(n); b = randn(n)
@test mean(Tuple(a)) ≈ mean(a)
@test mean(Tuple(a + b*im)) ≈ mean(a + b*im)
@test mean(cos, Tuple(a)) ≈ mean(cos, a)
@test mean(x->x/2, a + b*im) ≈ mean(a + b*im) / 2.
@test ismissing(mean(Tuple((1, 2, missing, 4, 5))))
@test isnan(mean([NaN]))
@test isnan(mean([0.0,NaN]))
@test isnan(mean([NaN,0.0]))
@test isnan(mean([0.,Inf,-Inf]))
@test isnan(mean([1.,-1.,Inf,-Inf]))
@test isnan(mean([-Inf,Inf]))
@test isequal(mean([NaN 0.0; 1.2 4.5], dims=2), reshape([NaN; 2.85], 2, 1))
@test ismissing(mean([1, missing]))
@test ismissing(mean([NaN, missing]))
@test ismissing(mean([missing, NaN]))
@test isequal(mean([missing 1.0; 2.0 3.0], dims=1), [missing 2.0])
@test mean(skipmissing([1, missing, 2])) === 1.5
@test isequal(mean(Complex{Float64}[]), NaN+NaN*im)
@test mean(Complex{Float64}[]) isa Complex{Float64}
@test isequal(mean(skipmissing(Complex{Float64}[])), NaN+NaN*im)
@test mean(skipmissing(Complex{Float64}[])) isa Complex{Float64}
@test isequal(mean(abs, Complex{Float64}[]), NaN)
@test mean(abs, Complex{Float64}[]) isa Float64
@test isequal(mean(abs, skipmissing(Complex{Float64}[])), NaN)
@test mean(abs, skipmissing(Complex{Float64}[])) isa Float64
@test isequal(mean(Int[]), NaN)
@test mean(Int[]) isa Float64
@test isequal(mean(skipmissing(Int[])), NaN)
@test mean(skipmissing(Int[])) isa Float64
@test_throws Exception mean([])
@test_throws Exception mean(skipmissing([]))
@test_throws ArgumentError mean((1 for i in 2:1))
if VERSION >= v"1.6.0-DEV.83"
@test_throws ArgumentError mean(())
@test_throws ArgumentError mean(Union{}[])
end
# Check that small types are accumulated using wider type
for T in (Int8, UInt8)
x = [typemax(T) typemax(T)]
g = (v for v in x)
@test mean(x) == mean(g) == typemax(T)
@test mean(identity, x) == mean(identity, g) == typemax(T)
@test mean(x, dims=2) == [typemax(T)]'
end
# Check that mean avoids integer overflow (#22)
let x = fill(typemax(Int), 10), a = tuple(x...)
@test (mean(x) == mean(x, dims=1)[] == mean(float, x)
== mean(a) == mean(v for v in x) == mean(v for v in a)
≈ float(typemax(Int)))
end
let x = rand(10000) # mean should use sum's accurate pairwise algorithm
@test mean(x) == sum(x) / length(x)
end
@test mean(Number[1, 1.5, 2+3im]) === 1.5+1im # mixed-type array
@test mean(v for v in Number[1, 1.5, 2+3im]) === 1.5+1im
@test isnan(@inferred mean(Int[]))
@test isnan(@inferred mean(Float32[]))
@test isnan(@inferred mean(Float64[]))
@test isnan(@inferred mean(Iterators.filter(x -> true, Int[])))
@test isnan(@inferred mean(Iterators.filter(x -> true, Float32[])))
@test isnan(@inferred mean(Iterators.filter(x -> true, Float64[])))
# using a number as a "function"
@test_throws "ArgumentError: mean(f, itr) requires a function and an iterable.\nPerhaps you meant mean((x, y))" mean(1, 2)
struct T <: Number
x::Int
end
(t::T)(y) = t.x == 0 ? t(y, y + 1, y + 2) : t.x * y
@test mean(T(2), 3) === 6.0
@test_throws MethodError mean(T(0), 3)
struct U <: Number
x::Int
end
(t::U)(y) = t.x == 0 ? throw(MethodError(T)) : t.x * y
@test @inferred mean(U(2), 3) === 6.0
end
@testset "mean/median for ranges" begin
for f in (mean, median)
for n = 2:5
@test f(2:n) == f([2:n;])
@test f(2:0.1:n) ≈ f([2:0.1:n;])
end
end
@test mean(2:0.1:4) === 3.0 # N.B. mean([2:0.1:4;]) != 3
@test mean(LinRange(2im, 4im, 21)) === 3.0im
@test mean(2:1//10:4) === 3//1
@test isnan(@inferred(mean(2:1))::Float64)
@test isnan(@inferred(mean(big(2):1))::BigFloat)
z = @inferred(mean(LinRange(2im, 1im, 0)))::ComplexF64
@test isnan(real(z)) & isnan(imag(z))
@test_throws DivideError mean(2//1:1)
@test mean(typemax(Int):typemax(Int)) === float(typemax(Int))
@test mean(prevfloat(Inf):prevfloat(Inf)) === prevfloat(Inf)
end
@testset "var & std" begin
# edge case: empty vector
# iterable; this has to throw for type stability
@test_throws Exception var(())
@test_throws Exception var((); corrected=false)
@test_throws Exception var((); mean=2)
@test_throws Exception var((); mean=2, corrected=false)
# reduction
@test isnan(var(Int[]))
@test isnan(var(Int[]; corrected=false))
@test isnan(var(Int[]; mean=2))
@test isnan(var(Int[]; mean=2, corrected=false))
# reduction across dimensions
@test isequal(var(Int[], dims=1), [NaN])
@test isequal(var(Int[], dims=1; corrected=false), [NaN])
@test isequal(var(Int[], dims=1; mean=[2]), [NaN])
@test isequal(var(Int[], dims=1; mean=[2], corrected=false), [NaN])
# edge case: one-element vector
# iterable
@test isnan(@inferred(var((1,))))
@test var((1,); corrected=false) === 0.0
@test var((1,); mean=2) === Inf
@test var((1,); mean=2, corrected=false) === 1.0
# reduction
@test isnan(@inferred(var([1])))
@test var([1]; corrected=false) === 0.0
@test var([1]; mean=2) === Inf
@test var([1]; mean=2, corrected=false) === 1.0
# reduction across dimensions
@test isequal(@inferred(var([1], dims=1)), [NaN])
@test var([1], dims=1; corrected=false) ≈ [0.0]
@test var([1], dims=1; mean=[2]) ≈ [Inf]
@test var([1], dims=1; mean=[2], corrected=false) ≈ [1.0]
@test var(1:8) == 6.
@test varm(1:8,1) == varm(Vector(1:8),1)
@test isnan(varm(1:1,1))
@test isnan(var(1:1))
@test isnan(var(1:-1))
@test @inferred(var(1.0:8.0)) == 6.
@test varm(1.0:8.0,1.0) == varm(Vector(1.0:8.0),1)
@test isnan(varm(1.0:1.0,1.0))
@test isnan(var(1.0:1.0))
@test isnan(var(1.0:-1.0))
@test @inferred(var(1.0f0:8.0f0)) === 6.f0
@test varm(1.0f0:8.0f0,1.0f0) == varm(Vector(1.0f0:8.0f0),1)
@test isnan(varm(1.0f0:1.0f0,1.0f0))
@test isnan(var(1.0f0:1.0f0))
@test isnan(var(1.0f0:-1.0f0))
@test varm([1,2,3], 2) ≈ 1.
@test var([1,2,3]) ≈ 1.
@test var([1,2,3]; corrected=false) ≈ 2.0/3
@test var([1,2,3]; mean=0) ≈ 7.
@test var([1,2,3]; mean=0, corrected=false) ≈ 14.0/3
@test varm((1,2,3), 2) ≈ 1.
@test var((1,2,3)) ≈ 1.
@test var((1,2,3); corrected=false) ≈ 2.0/3
@test var((1,2,3); mean=0) ≈ 7.
@test var((1,2,3); mean=0, corrected=false) ≈ 14.0/3
@test_throws ArgumentError var((1,2,3); mean=())
@test var([1 2 3 4 5; 6 7 8 9 10], dims=2) ≈ [2.5 2.5]'
@test var([1 2 3 4 5; 6 7 8 9 10], dims=2; corrected=false) ≈ [2.0 2.0]'
@test var(collect(1:99), dims=1) ≈ [825]
@test var(Matrix(transpose(collect(1:99))), dims=2) ≈ [825]
@test stdm([1,2,3], 2) ≈ 1.
@test std([1,2,3]) ≈ 1.
@test std([1,2,3]; corrected=false) ≈ sqrt(2.0/3)
@test std([1,2,3]; mean=0) ≈ sqrt(7.0)
@test std([1,2,3]; mean=0, corrected=false) ≈ sqrt(14.0/3)
@test stdm([1.0,2,3], 2) ≈ 1.
@test std([1.0,2,3]) ≈ 1.
@test std([1.0,2,3]; corrected=false) ≈ sqrt(2.0/3)
@test std([1.0,2,3]; mean=0) ≈ sqrt(7.0)
@test std([1.0,2,3]; mean=0, corrected=false) ≈ sqrt(14.0/3)
@test stdm([1.0,2,3], [0]; dims=1, corrected=false)[] ≈ sqrt(14.0/3)
@test std([1.0,2,3]; dims=1)[] ≈ 1.
@test std([1.0,2,3]; dims=1, corrected=false)[] ≈ sqrt(2.0/3)
@test std([1.0,2,3]; dims=1, mean=[0])[] ≈ sqrt(7.0)
@test std([1.0,2,3]; dims=1, mean=[0], corrected=false)[] ≈ sqrt(14.0/3)
@test stdm((1,2,3), 2) ≈ 1.
@test std((1,2,3)) ≈ 1.
@test std((1,2,3); corrected=false) ≈ sqrt(2.0/3)
@test std((1,2,3); mean=0) ≈ sqrt(7.0)
@test std((1,2,3); mean=0, corrected=false) ≈ sqrt(14.0/3)
@test stdm([1 2 3 4 5; 6 7 8 9 10], [3.0,8.0], dims=2) ≈ sqrt.([2.5 2.5]')
@test stdm([1 2 3 4 5; 6 7 8 9 10], [3.0,8.0], dims=2; corrected=false) ≈ sqrt.([2.0 2.0]')
@test std([1 2 3 4 5; 6 7 8 9 10], dims=2) ≈ sqrt.([2.5 2.5]')
@test std([1 2 3 4 5; 6 7 8 9 10], dims=2; corrected=false) ≈ sqrt.([2.0 2.0]')
let A = ComplexF64[exp(i*im) for i in 1:10^4]
@test varm(A, 0.) ≈ sum(map(abs2, A)) / (length(A) - 1)
@test varm(A, mean(A)) ≈ var(A)
end
@test var([1//1, 2//1]) isa Rational{Int}
@test var([1//1, 2//1], dims=1) isa Vector{Rational{Int}}
@test std([1//1, 2//1]) isa Float64
@test std([1//1, 2//1], dims=1) isa Vector{Float64}
@testset "var: empty cases" begin
A = Matrix{Int}(undef, 0,1)
@test var(A) === NaN
@test isequal(var(A, dims=1), fill(NaN, 1, 1))
@test isequal(var(A, dims=2), fill(NaN, 0, 1))
@test isequal(var(A, dims=(1, 2)), fill(NaN, 1, 1))
@test isequal(var(A, dims=3), fill(NaN, 0, 1))
end
# issue #6672
@test std(AbstractFloat[1,2,3], dims=1) == [1.0]
for f in (var, std)
@test ismissing(f([1, missing]))
@test ismissing(f([NaN, missing]))
@test ismissing(f([missing, NaN]))
@test isequal(f([missing 1.0; 2.0 3.0], dims=1), [missing f([1.0, 3.0])])
@test f(skipmissing([1, missing, 2])) === f([1, 2])
end
for f in (varm, stdm)
@test ismissing(f([1, missing], 0))
@test ismissing(f([1, 2], missing))
@test ismissing(f([1, NaN], missing))
@test ismissing(f([NaN, missing], 0))
@test ismissing(f([missing, NaN], 0))
@test ismissing(f([NaN, missing], missing))
@test ismissing(f([missing, NaN], missing))
@test f(skipmissing([1, missing, 2]), 0) === f([1, 2], 0)
end
@test isequal(var(Complex{Float64}[]), NaN)
@test var(Complex{Float64}[]) isa Float64
@test isequal(var(skipmissing(Complex{Float64}[])), NaN)
@test var(skipmissing(Complex{Float64}[])) isa Float64
@test_throws Exception var([])
@test_throws Exception var(skipmissing([]))
@test_throws Exception var((1 for i in 2:1))
@test isequal(var(Int[]), NaN)
@test var(Int[]) isa Float64
@test isequal(var(skipmissing(Int[])), NaN)
@test var(skipmissing(Int[])) isa Float64
# over dimensions with provided means
for x in ([1 2 3; 4 5 6], sparse([1 2 3; 4 5 6]))
@test var(x, dims=1, mean=mean(x, dims=1)) == var(x, dims=1)
@test var(x, dims=1, mean=reshape(mean(x, dims=1), 1, :, 1)) == var(x, dims=1)
@test var(x, dims=2, mean=mean(x, dims=2)) == var(x, dims=2)
@test var(x, dims=2, mean=reshape(mean(x, dims=2), :)) == var(x, dims=2)
@test var(x, dims=2, mean=reshape(mean(x, dims=2), :, 1, 1)) == var(x, dims=2)
@test_throws DimensionMismatch var(x, dims=1, mean=ones(size(x, 1)))
@test_throws DimensionMismatch var(x, dims=1, mean=ones(size(x, 1), 1))
@test_throws DimensionMismatch var(x, dims=2, mean=ones(1, size(x, 2)))
@test_throws DimensionMismatch var(x, dims=1, mean=ones(1, 1, size(x, 2)))
@test_throws DimensionMismatch var(x, dims=2, mean=ones(1, size(x, 2), 1))
@test_throws DimensionMismatch var(x, dims=2, mean=ones(size(x, 1), 1, 5))
@test_throws DimensionMismatch var(x, dims=1, mean=ones(1, size(x, 2), 5))
end
end
function safe_cov(x, y, zm::Bool, cr::Bool)
n = length(x)
if !zm
x = x .- mean(x)
y = y .- mean(y)
end
dot(vec(x), vec(y)) / (n - Int(cr))
end
X = [1.0 5.0;
2.0 4.0;
3.0 6.0;
4.0 2.0;
5.0 1.0]
Y = [6.0 2.0;
1.0 7.0;
5.0 8.0;
3.0 4.0;
2.0 3.0]
@testset "covariance" begin
for vd in [1, 2], zm in [true, false], cr in [true, false]
# println("vd = $vd: zm = $zm, cr = $cr")
if vd == 1
k = size(X, 2)
Cxx = zeros(k, k)
Cxy = zeros(k, k)
for i = 1:k, j = 1:k
Cxx[i,j] = safe_cov(X[:,i], X[:,j], zm, cr)
Cxy[i,j] = safe_cov(X[:,i], Y[:,j], zm, cr)
end
x1 = vec(X[:,1])
y1 = vec(Y[:,1])
else
k = size(X, 1)
Cxx = zeros(k, k)
Cxy = zeros(k, k)
for i = 1:k, j = 1:k
Cxx[i,j] = safe_cov(X[i,:], X[j,:], zm, cr)
Cxy[i,j] = safe_cov(X[i,:], Y[j,:], zm, cr)
end
x1 = vec(X[1,:])
y1 = vec(Y[1,:])
end
c = zm ? Statistics.covm(x1, 0, corrected=cr) :
cov(x1, corrected=cr)
@test isa(c, Float64)
@test c ≈ Cxx[1,1]
@inferred cov(x1, corrected=cr)
@test cov(X) == Statistics.covm(X, mean(X, dims=1))
C = zm ? Statistics.covm(X, 0, vd, corrected=cr) :
cov(X, dims=vd, corrected=cr)
@test size(C) == (k, k)
@test C ≈ Cxx
@inferred cov(X, dims=vd, corrected=cr)
@test cov(x1, y1) == Statistics.covm(x1, mean(x1), y1, mean(y1))
c = zm ? Statistics.covm(x1, 0, y1, 0, corrected=cr) :
cov(x1, y1, corrected=cr)
@test isa(c, Float64)
@test c ≈ Cxy[1,1]
@inferred cov(x1, y1, corrected=cr)
if vd == 1
@test cov(x1, Y) == Statistics.covm(x1, mean(x1), Y, mean(Y, dims=1))
end
C = zm ? Statistics.covm(x1, 0, Y, 0, vd, corrected=cr) :
cov(x1, Y, dims=vd, corrected=cr)
@test size(C) == (1, k)
@test vec(C) ≈ Cxy[1,:]
@inferred cov(x1, Y, dims=vd, corrected=cr)
if vd == 1
@test cov(X, y1) == Statistics.covm(X, mean(X, dims=1), y1, mean(y1))
end
C = zm ? Statistics.covm(X, 0, y1, 0, vd, corrected=cr) :
cov(X, y1, dims=vd, corrected=cr)
@test size(C) == (k, 1)
@test vec(C) ≈ Cxy[:,1]
@inferred cov(X, y1, dims=vd, corrected=cr)
@test cov(X, Y) == Statistics.covm(X, mean(X, dims=1), Y, mean(Y, dims=1))
C = zm ? Statistics.covm(X, 0, Y, 0, vd, corrected=cr) :
cov(X, Y, dims=vd, corrected=cr)
@test size(C) == (k, k)
@test C ≈ Cxy
@inferred cov(X, Y, dims=vd, corrected=cr)
end
@testset "floating point accuracy for `cov`" begin
# Large numbers
A = [4.0, 7.0, 13.0, 16.0]
C = A .+ 1.0e10
@test cov(A) ≈ cov(A, A) ≈
cov(reshape(A, :, 1))[1] ≈ cov(reshape(A, :, 1))[1] ≈
cov(C, C) ≈ var(C)
# Large Vector{Float32}
A = 20*randn(Float32, 10_000_000) .+ 100
@test cov(A) ≈ cov(A, A) ≈
cov(reshape(A, :, 1))[1] ≈ cov(reshape(A, :, 1))[1] ≈
var(A)
end
@testset "cov with missing" begin
@test cov([missing]) === cov([1, missing]) === missing
@test cov([1, missing], [2, 3]) === cov([1, 3], [2, missing]) === missing
@test_throws Exception cov([1 missing; 2 3])
@test_throws Exception cov([1 missing; 2 3], [1, 2])
@test_throws Exception cov([1, 2], [1 missing; 2 3])
@test isequal(cov([1 2; 2 3], [1, missing]), [missing missing]')
@test isequal(cov([1, missing], [1 2; 2 3]), [missing missing])
end
end
function safe_cor(x, y, zm::Bool)
if !zm
x = x .- mean(x)
y = y .- mean(y)
end
x = vec(x)
y = vec(y)
dot(x, y) / (sqrt(dot(x, x)) * sqrt(dot(y, y)))
end
@testset "correlation" begin
for vd in [1, 2], zm in [true, false]
# println("vd = $vd: zm = $zm")
if vd == 1
k = size(X, 2)
Cxx = zeros(k, k)
Cxy = zeros(k, k)
for i = 1:k, j = 1:k
Cxx[i,j] = safe_cor(X[:,i], X[:,j], zm)
Cxy[i,j] = safe_cor(X[:,i], Y[:,j], zm)
end
x1 = vec(X[:,1])
y1 = vec(Y[:,1])
else
k = size(X, 1)
Cxx = zeros(k, k)
Cxy = zeros(k, k)
for i = 1:k, j = 1:k
Cxx[i,j] = safe_cor(X[i,:], X[j,:], zm)
Cxy[i,j] = safe_cor(X[i,:], Y[j,:], zm)
end
x1 = vec(X[1,:])
y1 = vec(Y[1,:])
end
c = zm ? Statistics.corm(x1, 0) : cor(x1)
@test isa(c, Float64)
@test c ≈ Cxx[1,1]
@inferred cor(x1)
@test cor(X) == Statistics.corm(X, mean(X, dims=1))
C = zm ? Statistics.corm(X, 0, vd) : cor(X, dims=vd)
@test size(C) == (k, k)
@test C ≈ Cxx
@inferred cor(X, dims=vd)
@test cor(x1, y1) == Statistics.corm(x1, mean(x1), y1, mean(y1))
c = zm ? Statistics.corm(x1, 0, y1, 0) : cor(x1, y1)
@test isa(c, Float64)
@test c ≈ Cxy[1,1]
@inferred cor(x1, y1)
if vd == 1
@test cor(x1, Y) == Statistics.corm(x1, mean(x1), Y, mean(Y, dims=1))
end
C = zm ? Statistics.corm(x1, 0, Y, 0, vd) : cor(x1, Y, dims=vd)
@test size(C) == (1, k)
@test vec(C) ≈ Cxy[1,:]
@inferred cor(x1, Y, dims=vd)
if vd == 1
@test cor(X, y1) == Statistics.corm(X, mean(X, dims=1), y1, mean(y1))
end
C = zm ? Statistics.corm(X, 0, y1, 0, vd) : cor(X, y1, dims=vd)
@test size(C) == (k, 1)
@test vec(C) ≈ Cxy[:,1]
@inferred cor(X, y1, dims=vd)
@test cor(X, Y) == Statistics.corm(X, mean(X, dims=1), Y, mean(Y, dims=1))
C = zm ? Statistics.corm(X, 0, Y, 0, vd) : cor(X, Y, dims=vd)
@test size(C) == (k, k)
@test C ≈ Cxy
@inferred cor(X, Y, dims=vd)
end
@test cor(repeat(1:17, 1, 17))[2] <= 1.0
@test cor(1:17, 1:17) <= 1.0
@test cor(1:17, 18:34) <= 1.0
@test cor(Any[1, 2], Any[1, 2]) == 1.0
@test isnan(cor([0], Int8[81]))
let tmp = range(1, stop=85, length=100)
tmp2 = Vector(tmp)
@test cor(tmp, tmp) <= 1.0
@test cor(tmp, tmp2) <= 1.0
end
@test cor(Int[]) === 1.0
@test cor([im]) === 1.0 + 0.0im
@test_throws Exception cor([])
@test_throws Exception cor(Any[1.0])
@test cor([1, missing]) === 1.0
@test ismissing(cor([missing]))
@test_throws Exception cor(Any[1.0, missing])
@test Statistics.corm([true], 1.0) === 1.0
@test_throws Exception Statistics.corm(Any[0.0, 1.0], 0.5)
@test Statistics.corzm([true]) === 1.0
@test_throws Exception Statistics.corzm(Any[0.0, 1.0])
@testset "cor with missing" begin
@test cor([missing]) === missing
@test cor([1, missing]) == 1
@test cor([1, missing], [2, 3]) === cor([1, 3], [2, missing]) === missing
@test_throws Exception cor([1 missing; 2 3])
@test_throws Exception cor([1 missing; 2 3], [1, 2])
@test_throws Exception cor([1, 2], [1 missing; 2 3])
@test isequal(cor([1 2; 2 3], [1, missing]), [missing missing]')
@test isequal(cor([1, missing], [1 2; 2 3]), [missing missing])
end
end
@testset "quantile" begin
@test quantile([1,2,3,4],0.5) ≈ 2.5
@test quantile([1,2,3,4],[0.5]) ≈ [2.5]
@test quantile([1., 3],[.25,.5,.75])[2] ≈ median([1., 3])
@test quantile(100.0:-1.0:0.0, 0.0:0.1:1.0) ≈ 0.0:10.0:100.0
@test quantile(0.0:100.0, 0.0:0.1:1.0, sorted=true) ≈ 0.0:10.0:100.0
@test quantile(100f0:-1f0:0.0, 0.0:0.1:1.0) ≈ 0f0:10f0:100f0
@test quantile([Inf,Inf],0.5) == Inf
@test quantile([-Inf,1],0.5) == -Inf
# here it is required to introduce an absolute tolerance because the calculated value is 0
@test quantile([0,1],1e-18) ≈ 1e-18 atol=1e-18
@test quantile([1, 2, 3, 4],[]) == []
@test quantile([1, 2, 3, 4], (0.5,)) == (2.5,)
@test quantile([4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],
(0.1, 0.2, 0.4, 0.9)) == (2.0, 3.0, 5.0, 11.0)
@test quantile(Union{Int, Missing}[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],
[0.1, 0.2, 0.4, 0.9]) ≈ [2.0, 3.0, 5.0, 11.0]
@test quantile(Any[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],
[0.1, 0.2, 0.4, 0.9]) ≈ [2.0, 3.0, 5.0, 11.0]
@test quantile([4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],
Any[0.1, 0.2, 0.4, 0.9]) ≈ [2.0, 3.0, 5.0, 11.0]
@test quantile([4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],
Any[0.1, 0.2, 0.4, 0.9]) isa Vector{Float64}
@test quantile(Any[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],
Any[0.1, 0.2, 0.4, 0.9]) ≈ [2, 3, 5, 11]
@test quantile(Any[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],
Any[0.1, 0.2, 0.4, 0.9]) isa Vector{Float64}
@test quantile([1, 2, 3, 4], ()) == ()
@test isempty(quantile([1, 2, 3, 4], Float64[]))
@test quantile([1, 2, 3, 4], Float64[]) isa Vector{Float64}
@test quantile([1, 2, 3, 4], []) isa Vector{Any}
@test quantile([1, 2, 3, 4], [0, 1]) isa Vector{Int}
@test quantile(Any[1, 2, 3], 0.5) isa Float64
@test quantile(Any[1, big(2), 3], 0.5) isa BigFloat
@test quantile(Any[1, 2, 3], Float16(0.5)) isa Float16
@test quantile(Any[1, Float16(2), 3], Float16(0.5)) isa Float16
@test quantile(Any[1, big(2), 3], Float16(0.5)) isa BigFloat
@test quantile(reshape(1:100, (10, 10)), [0.00, 0.25, 0.50, 0.75, 1.00]) ==
[1.0, 25.75, 50.5, 75.25, 100.0]
# Need a large vector to actually check consequences of partial sorting
x = rand(50)
for sorted in (false, true)
x[10] = NaN
@test_throws ArgumentError quantile(x, 0.5, sorted=sorted)
x = Vector{Union{Float64, Missing}}(x)
x[10] = missing
@test_throws ArgumentError quantile(x, 0.5, sorted=sorted)
end
@test quantile(skipmissing([1, missing, 2]), 0.5) === 1.5
@test quantile([1], 0.5) === 1.0
# make sure that type inference works correctly in normal cases
for T in [Int, BigInt, Float64, Float16, BigFloat, Rational{Int}, Rational{BigInt}]
for S in [Float64, Float16, BigFloat, Rational{Int}, Rational{BigInt}]
@inferred quantile(T[1, 2, 3], S(0.5))
@inferred quantile(T[1, 2, 3], S(0.6))
@inferred quantile(T[1, 2, 3], S[0.5, 0.6])
@inferred quantile(T[1, 2, 3], (S(0.5), S(0.6)))
end
end
x = [3; 2; 1]
y = zeros(3)
@test quantile!(y, x, [0.1, 0.5, 0.9]) === y
@test y ≈ [1.2, 2.0, 2.8]
x = reshape(collect(1:100), (10, 10))
y = zeros(5)
@test quantile!(y, x, [0.00, 0.25, 0.50, 0.75, 1.00]) === y
@test y ≈ [1.0, 25.75, 50.5, 75.25, 100.0]
#tests for quantile calculation with configurable alpha and beta parameters
v = [2, 3, 4, 6, 9, 2, 6, 2, 21, 17]
# tests against scipy.stats.mstats.mquantiles method
@test quantile(v, 0.0, alpha=0.0, beta=0.0) ≈ 2.0
@test quantile(v, 0.2, alpha=1.0, beta=1.0) ≈ 2.0
@test quantile(v, 0.4, alpha=0.0, beta=0.0) ≈ 3.4
@test quantile(v, 0.4, alpha=0.0, beta=0.2) ≈ 3.32
@test quantile(v, 0.4, alpha=0.0, beta=0.4) ≈ 3.24
@test quantile(v, 0.4, alpha=0.0, beta=0.6) ≈ 3.16
@test quantile(v, 0.4, alpha=0.0, beta=0.8) ≈ 3.08
@test quantile(v, 0.4, alpha=0.0, beta=1.0) ≈ 3.0
@test quantile(v, 0.4, alpha=0.2, beta=0.0) ≈ 3.52
@test quantile(v, 0.4, alpha=0.2, beta=0.2) ≈ 3.44
@test quantile(v, 0.4, alpha=0.2, beta=0.4) ≈ 3.36
@test quantile(v, 0.4, alpha=0.2, beta=0.6) ≈ 3.28
@test quantile(v, 0.4, alpha=0.2, beta=0.8) ≈ 3.2
@test quantile(v, 0.4, alpha=0.2, beta=1.0) ≈ 3.12
@test quantile(v, 0.4, alpha=0.4, beta=0.0) ≈ 3.64
@test quantile(v, 0.4, alpha=0.4, beta=0.2) ≈ 3.56
@test quantile(v, 0.4, alpha=0.4, beta=0.4) ≈ 3.48
@test quantile(v, 0.4, alpha=0.4, beta=0.6) ≈ 3.4
@test quantile(v, 0.4, alpha=0.4, beta=0.8) ≈ 3.32
@test quantile(v, 0.4, alpha=0.4, beta=1.0) ≈ 3.24
@test quantile(v, 0.4, alpha=0.6, beta=0.0) ≈ 3.76
@test quantile(v, 0.4, alpha=0.6, beta=0.2) ≈ 3.68
@test quantile(v, 0.4, alpha=0.6, beta=0.4) ≈ 3.6
@test quantile(v, 0.4, alpha=0.6, beta=0.6) ≈ 3.52
@test quantile(v, 0.4, alpha=0.6, beta=0.8) ≈ 3.44
@test quantile(v, 0.4, alpha=0.6, beta=1.0) ≈ 3.36
@test quantile(v, 0.4, alpha=0.8, beta=0.0) ≈ 3.88
@test quantile(v, 0.4, alpha=0.8, beta=0.2) ≈ 3.8
@test quantile(v, 0.4, alpha=0.8, beta=0.4) ≈ 3.72
@test quantile(v, 0.4, alpha=0.8, beta=0.6) ≈ 3.64
@test quantile(v, 0.4, alpha=0.8, beta=0.8) ≈ 3.56
@test quantile(v, 0.4, alpha=0.8, beta=1.0) ≈ 3.48
@test quantile(v, 0.4, alpha=1.0, beta=0.0) ≈ 4.0
@test quantile(v, 0.4, alpha=1.0, beta=0.2) ≈ 3.92
@test quantile(v, 0.4, alpha=1.0, beta=0.4) ≈ 3.84
@test quantile(v, 0.4, alpha=1.0, beta=0.6) ≈ 3.76
@test quantile(v, 0.4, alpha=1.0, beta=0.8) ≈ 3.68
@test quantile(v, 0.4, alpha=1.0, beta=1.0) ≈ 3.6
@test quantile(v, 0.6, alpha=0.0, beta=0.0) ≈ 6.0
@test quantile(v, 0.6, alpha=1.0, beta=1.0) ≈ 6.0
@test quantile(v, 0.8, alpha=0.0, beta=0.0) ≈ 15.4
@test quantile(v, 0.8, alpha=0.0, beta=0.2) ≈ 14.12
@test quantile(v, 0.8, alpha=0.0, beta=0.4) ≈ 12.84
@test quantile(v, 0.8, alpha=0.0, beta=0.6) ≈ 11.56
@test quantile(v, 0.8, alpha=0.0, beta=0.8) ≈ 10.28
@test quantile(v, 0.8, alpha=0.0, beta=1.0) ≈ 9.0
@test quantile(v, 0.8, alpha=0.2, beta=0.0) ≈ 15.72
@test quantile(v, 0.8, alpha=0.2, beta=0.2) ≈ 14.44
@test quantile(v, 0.8, alpha=0.2, beta=0.4) ≈ 13.16
@test quantile(v, 0.8, alpha=0.2, beta=0.6) ≈ 11.88
@test quantile(v, 0.8, alpha=0.2, beta=0.8) ≈ 10.6
@test quantile(v, 0.8, alpha=0.2, beta=1.0) ≈ 9.32
@test quantile(v, 0.8, alpha=0.4, beta=0.0) ≈ 16.04
@test quantile(v, 0.8, alpha=0.4, beta=0.2) ≈ 14.76
@test quantile(v, 0.8, alpha=0.4, beta=0.4) ≈ 13.48
@test quantile(v, 0.8, alpha=0.4, beta=0.6) ≈ 12.2
@test quantile(v, 0.8, alpha=0.4, beta=0.8) ≈ 10.92
@test quantile(v, 0.8, alpha=0.4, beta=1.0) ≈ 9.64
@test quantile(v, 0.8, alpha=0.6, beta=0.0) ≈ 16.36
@test quantile(v, 0.8, alpha=0.6, beta=0.2) ≈ 15.08
@test quantile(v, 0.8, alpha=0.6, beta=0.4) ≈ 13.8
@test quantile(v, 0.8, alpha=0.6, beta=0.6) ≈ 12.52
@test quantile(v, 0.8, alpha=0.6, beta=0.8) ≈ 11.24
@test quantile(v, 0.8, alpha=0.6, beta=1.0) ≈ 9.96
@test quantile(v, 0.8, alpha=0.8, beta=0.0) ≈ 16.68
@test quantile(v, 0.8, alpha=0.8, beta=0.2) ≈ 15.4
@test quantile(v, 0.8, alpha=0.8, beta=0.4) ≈ 14.12
@test quantile(v, 0.8, alpha=0.8, beta=0.6) ≈ 12.84
@test quantile(v, 0.8, alpha=0.8, beta=0.8) ≈ 11.56
@test quantile(v, 0.8, alpha=0.8, beta=1.0) ≈ 10.28
@test quantile(v, 0.8, alpha=1.0, beta=0.0) ≈ 17.0
@test quantile(v, 0.8, alpha=1.0, beta=0.2) ≈ 15.72
@test quantile(v, 0.8, alpha=1.0, beta=0.4) ≈ 14.44
@test quantile(v, 0.8, alpha=1.0, beta=0.6) ≈ 13.16
@test quantile(v, 0.8, alpha=1.0, beta=0.8) ≈ 11.88
@test quantile(v, 0.8, alpha=1.0, beta=1.0) ≈ 10.6
@test quantile(v, 1.0, alpha=0.0, beta=0.0) ≈ 21.0
@test quantile(v, 1.0, alpha=1.0, beta=1.0) ≈ 21.0
end
# StatsBase issue 164
let y = [0.40003674665581906, 0.4085630862624367, 0.41662034698690303, 0.41662034698690303, 0.42189053966652057, 0.42189053966652057, 0.42553514344518345, 0.43985732442991354]
@test issorted(quantile(y, range(0.01, stop=0.99, length=17)))
end
@testset "issue #144: no overflow with quantile" begin
@test quantile(Float16[-9000, 100], 1.0) ≈ 100
@test quantile(Float16[-9000, 100], 0.999999999) ≈ 99.99999
@test quantile(Float32[-1e9, 100], 1) ≈ 100
@test quantile(Float32[-1e9, 100], 0.9999999999) ≈ 99.89999998
@test quantile(Float64[-1e20, 100], 1) ≈ 100
@test quantile(Float32[-1e15, -1e14, -1e13, -1e12, -1e11, -1e10, -1e9, 100], 1) ≈ 100
@test quantile(Int8[-68, 60], 0.5) ≈ -4
@test quantile(Int32[-1e9, 2e9], 1.0) ≈ 2.0e9
@test quantile(Int64[-5e18, -2e18, 9e18], 1.0) ≈ 9.0e18
# check that quantiles are increasing with a, b and p even in corner cases
@test issorted(quantile([1.0, 1.0, 1.0+eps(), 1.0+eps()], range(0, 1, length=100)))
@test issorted(quantile([1.0, 1.0+1eps(), 1.0+2eps(), 1.0+3eps()], range(0, 1, length=100)))
@test issorted(quantile([1.0, 1.0+2eps(), 1.0+4eps(), 1.0+6eps()], range(0, 1, length=100)))
end
@testset "quantiles with Date and DateTime" begin
# this is the historical behavior
@test quantile([Date(2023, 09, 02)], .1) == Date(2023, 09, 02)
@test quantile([Date(2023, 09, 02), Date(2023, 09, 02)], .1) == Date(2023, 09, 02)
@test_throws InexactError quantile([Date(2023, 09, 02), Date(2023, 09, 03)], .1)
@test quantile([DateTime(2023, 09, 02)], .1) == DateTime(2023, 09, 02)
@test quantile([DateTime(2023, 09, 02), DateTime(2023, 09, 02)], .1) == DateTime(2023, 09, 02)
@test_throws InexactError quantile([DateTime(2023, 09, 02), DateTime(2023, 09, 03)], .1)
end
@testset "variance of complex arrays (#13309)" begin
z = rand(ComplexF64, 10)
@test var(z) ≈ invoke(var, Tuple{Any}, z) ≈ cov(z) ≈ var(z,dims=1)[1] ≈ sum(abs2, z .- mean(z))/9
@test isa(var(z), Float64)
@test isa(invoke(var, Tuple{Any}, z), Float64)
@test isa(cov(z), Float64)
@test isa(var(z,dims=1), Vector{Float64})
@test varm(z, 0.0) ≈ invoke(varm, Tuple{Any,Float64}, z, 0.0) ≈ sum(abs2, z)/9
@test isa(varm(z, 0.0), Float64)
@test isa(invoke(varm, Tuple{Any,Float64}, z, 0.0), Float64)
@test cor(z) === 1.0+0.0im
v = varm([1.0+2.0im], 0; corrected = false)
@test v ≈ 5
@test isa(v, Float64)
end
@testset "cov and cor of complex arrays (issue #21093)" begin
x = [2.7 - 3.3im, 0.9 + 5.4im, 0.1 + 0.2im, -1.7 - 5.8im, 1.1 + 1.9im]
y = [-1.7 - 1.6im, -0.2 + 6.5im, 0.8 - 10.0im, 9.1 - 3.4im, 2.7 - 5.5im]
@test cov(x, y) ≈ 4.8365 - 12.119im
@test cov(y, x) ≈ 4.8365 + 12.119im
@test cov(x, reshape(y, :, 1)) ≈ reshape([4.8365 - 12.119im], 1, 1)
@test cov(reshape(x, :, 1), y) ≈ reshape([4.8365 - 12.119im], 1, 1)
@test cov(reshape(x, :, 1), reshape(y, :, 1)) ≈ reshape([4.8365 - 12.119im], 1, 1)
@test cov([x y]) ≈ [21.779 4.8365-12.119im;
4.8365+12.119im 54.548]
@test cor(x, y) ≈ 0.14032104449218274 - 0.35160772008699703im
@test cor(y, x) ≈ 0.14032104449218274 + 0.35160772008699703im
@test cor(x, reshape(y, :, 1)) ≈ reshape([0.14032104449218274 - 0.35160772008699703im], 1, 1)
@test cor(reshape(x, :, 1), y) ≈ reshape([0.14032104449218274 - 0.35160772008699703im], 1, 1)
@test cor(reshape(x, :, 1), reshape(y, :, 1)) ≈ reshape([0.14032104449218274 - 0.35160772008699703im], 1, 1)
@test cor([x y]) ≈ [1.0 0.14032104449218274-0.35160772008699703im
0.14032104449218274+0.35160772008699703im 1.0]
end
@testset "Issue #17153 and PR #17154" begin
a = rand(10,10)
b = copy(a)
x = median(a, dims=1)
@test b == a
x = median(a, dims=2)
@test b == a
x = mean(a, dims=1)
@test b == a
x = mean(a, dims=2)
@test b == a
x = var(a, dims=1)
@test b == a
x = var(a, dims=2)
@test b == a
x = std(a, dims=1)
@test b == a
x = std(a, dims=2)
@test b == a
end
# dimensional correctness
const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test")
isdefined(Main, :Furlongs) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "Furlongs.jl"))
using .Main.Furlongs
Statistics.middle(x::Furlong{p}) where {p} = Furlong{p}(middle(x.val))
Statistics.middle(x::Furlong{p}, y::Furlong{p}) where {p} = Furlong{p}(middle(x.val, y.val))
@testset "Unitful elements" begin
r = Furlong(1):Furlong(1):Furlong(2)
a = Vector(r)
@test sum(r) == sum(a) == Furlong(3)
@test cumsum(r) == Furlong.([1,3])
@test mean(r) == mean(a) == median(a) == median(r) == Furlong(1.5)
@test var(r) == var(a) == Furlong{2}(0.5)
@test std(r) == std(a) == Furlong{1}(sqrt(0.5))
# Issue #21786
A = [Furlong{1}(rand(-5:5)) for i in 1:2, j in 1:2]
@test mean(mean(A, dims=1), dims=2)[1] === mean(A)
@test var(A, dims=1)[1] === var(A[:, 1])
@test std(A, dims=1)[1] === std(A[:, 1])
end
# Issue #22901
@testset "var and quantile of Any arrays" begin
x = Any[1, 2, 4, 10]
y = Any[1, 2, 4, 10//1]
@test var(x) === 16.25
@test var(y) === 16.25
@test std(x) === sqrt(16.25)
@test quantile(x, 0.5) === 3.0
@test quantile(x, 1//2) === 3//1
end
@testset "Promotion in covzm. Issue #8080" begin
A = [1 -1 -1; -1 1 1; -1 1 -1; 1 -1 -1; 1 -1 1]
@test Statistics.covzm(A) - mean(A, dims=1)'*mean(A, dims=1)*size(A, 1)/(size(A, 1) - 1) ≈ cov(A)
A = [1//1 -1 -1; -1 1 1; -1 1 -1; 1 -1 -1; 1 -1 1]
@test (A'A - size(A, 1)*mean(A, dims=1)'*mean(A, dims=1))/4 == cov(A)
end
@testset "Mean along dimension of empty array" begin
a0 = zeros(0)
a00 = zeros(0, 0)
a01 = zeros(0, 1)
a10 = zeros(1, 0)
@test isequal(mean(a0, dims=1) , fill(NaN, 1))
@test isequal(mean(a00, dims=(1, 2)), fill(NaN, 1, 1))
@test isequal(mean(a01, dims=1) , fill(NaN, 1, 1))
@test isequal(mean(a10, dims=2) , fill(NaN, 1, 1))
end
@testset "cov/var/std of Vector{Vector}" begin
x = [[2,4,6],[4,6,8]]
@test var(x) ≈ vec(var([x[1] x[2]], dims=2))
@test std(x) ≈ vec(std([x[1] x[2]], dims=2))
@test cov(x) ≈ cov([x[1] x[2]], dims=2)
end
@testset "var of sparse array" begin
se33 = SparseMatrixCSC{Float64}(I, 3, 3)
sA = sprandn(3, 7, 0.5)
pA = sparse(rand(3, 7))
for arr in (se33, sA, pA)
farr = Array(arr)
@test var(arr) ≈ var(farr)
@test var(arr, dims=1) ≈ var(farr, dims=1)
@test var(arr, dims=2) ≈ var(farr, dims=2)
@test var(arr, dims=(1, 2)) ≈ [var(farr)]
@test isequal(var(arr, dims=3), var(farr, dims=3))
end
@testset "empty cases" begin
@test var(sparse(Int[])) === NaN
@test isequal(var(spzeros(0, 1), dims=1), var(Matrix{Int}(I, 0, 1), dims=1))
@test isequal(var(spzeros(0, 1), dims=2), var(Matrix{Int}(I, 0, 1), dims=2))
@test isequal(var(spzeros(0, 1), dims=(1, 2)), var(Matrix{Int}(I, 0, 1), dims=(1, 2)))
@test isequal(var(spzeros(0, 1), dims=3), var(Matrix{Int}(I, 0, 1), dims=3))
end
end
# Faster covariance function for sparse matrices
# Prevents densifying the input matrix when subtracting the mean
# Test against dense implementation
# PR https://github.com/JuliaLang/julia/pull/22735
# Part of this test needed to be hacked due to the treatment
# of Inf in sparse matrix algebra
# https://github.com/JuliaLang/julia/issues/22921
# The issue will be resolved in
# https://github.com/JuliaLang/julia/issues/22733
@testset "optimizing sparse $elty covariance" for elty in (Float64, Complex{Float64})
n = 10
p = 5
np2 = div(n*p, 2)
nzvals, x_sparse = guardseed(1) do
if elty <: Real
nzvals = randn(np2)
else
nzvals = complex.(randn(np2), randn(np2))
end
nzvals, sparse(rand(1:n, np2), rand(1:p, np2), nzvals, n, p)
end
x_dense = convert(Matrix{elty}, x_sparse)
@testset "Test with no Infs and NaNs, vardim=$vardim, corrected=$corrected" for vardim in (1, 2),
corrected in (true, false)
@test cov(x_sparse, dims=vardim, corrected=corrected) ≈
cov(x_dense , dims=vardim, corrected=corrected)
end
@testset "Test with $x11, vardim=$vardim, corrected=$corrected" for x11 in (NaN, Inf),
vardim in (1, 2),
corrected in (true, false)
x_sparse[1,1] = x11
x_dense[1 ,1] = x11
cov_sparse = cov(x_sparse, dims=vardim, corrected=corrected)
cov_dense = cov(x_dense , dims=vardim, corrected=corrected)
@test cov_sparse[2:end, 2:end] ≈ cov_dense[2:end, 2:end]
@test isfinite.(cov_sparse) == isfinite.(cov_dense)
@test isfinite.(cov_sparse) == isfinite.(cov_dense)
end
@testset "Test with NaN and Inf, vardim=$vardim, corrected=$corrected" for vardim in (1, 2),
corrected in (true, false)
x_sparse[1,1] = Inf
x_dense[1 ,1] = Inf
x_sparse[2,1] = NaN
x_dense[2 ,1] = NaN
cov_sparse = cov(x_sparse, dims=vardim, corrected=corrected)
cov_dense = cov(x_dense , dims=vardim, corrected=corrected)
@test cov_sparse[(1 + vardim):end, (1 + vardim):end] ≈
cov_dense[ (1 + vardim):end, (1 + vardim):end]
@test isfinite.(cov_sparse) == isfinite.(cov_dense)
@test isfinite.(cov_sparse) == isfinite.(cov_dense)
end
end
@testset "var, std, cov and cor on empty inputs" begin
@test isnan(var(Int[]))
@test isnan(std(Int[]))
@test isequal(cov(Int[]), -0.0)
@test isequal(cor(Int[]), 1.0)
@test_throws ArgumentError cov(Int[], Int[])
@test_throws ArgumentError cor(Int[], Int[])
mx = Matrix{Int}(undef, 0, 2)
my = Matrix{Int}(undef, 0, 3)
@test isequal(var(mx, dims=1), fill(NaN, 1, 2))
@test isequal(std(mx, dims=1), fill(NaN, 1, 2))
@test isequal(var(mx, dims=2), fill(NaN, 0, 1))
@test isequal(std(mx, dims=2), fill(NaN, 0, 1))
@test isequal(cov(mx, my), fill(-0.0, 2, 3))
@test isequal(cor(mx, my), fill(NaN, 2, 3))
@test isequal(cov(my, mx, dims=1), fill(-0.0, 3, 2))
@test isequal(cor(my, mx, dims=1), fill(NaN, 3, 2))
@test isequal(cov(mx, Int[]), fill(-0.0, 2, 1))
@test isequal(cor(mx, Int[]), fill(NaN, 2, 1))
@test isequal(cov(Int[], my), fill(-0.0, 1, 3))
@test isequal(cor(Int[], my), fill(NaN, 1, 3))
end
| Statistics | https://github.com/JuliaStats/Statistics.jl.git |
|
[
"MIT"
] | 1.11.1 | ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0 | docs | 1166 | # Statistics.jl
[](https://github.com/JuliaStats/Statistics.jl/actions?query=workflow%3ACI+branch%3Amaster)
Development repository for the Statistics standard library (stdlib) that ships with Julia.
#### Using the development version of Statistics.jl
If you want to develop this package, do the following steps:
- Clone the repo anywhere.
- In line 2 of the `Project.toml` file (the line that begins with `uuid = ...`), modify the UUID, e.g. change the `107` to `207`.
- Change the current directory to the Statistics repo you just cloned and start julia with `julia --project`.
- `import Statistics` will now load the files in the cloned repo instead of the Statistics stdlib.
- To test your changes, simply do `include("test/runtests.jl")`.
If you need to build Julia from source with a git checkout of Statistics, then instead use `make DEPS_GIT=Statistics` when building Julia. The `Statistics` repo is in `stdlib/Statistics`, and created initially with a detached `HEAD`. If you're doing this from a pre-existing Julia repository, you may need to `make clean` beforehand.
| Statistics | https://github.com/JuliaStats/Statistics.jl.git |
|
[
"MIT"
] | 1.11.1 | ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0 | docs | 186 | # Statistics
The Statistics standard library module contains basic statistics functionality.
```@docs
std
stdm
var
varm
cor
cov
mean!
mean
median!
median
middle
quantile!
quantile
```
| Statistics | https://github.com/JuliaStats/Statistics.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 1741 | using Documenter
using QuantumCircuitOpt
using DocumenterTools: Themes
for w in ("light", "dark")
header = read(joinpath(@__DIR__, "src/assets/themes/style.scss"), String)
theme = read(joinpath(@__DIR__, "src/assets/themes/$(w)defs.scss"), String)
write(joinpath(@__DIR__, "src/assets/themes/$(w).scss"), header*"\n"*theme)
end
Themes.compile(
joinpath(@__DIR__, "src/assets/themes/documenter-light.css"),
joinpath(@__DIR__, "src/assets/themes/light.scss"),
)
Themes.compile(
joinpath(@__DIR__, "src/assets/themes/documenter-dark.css"),
joinpath(@__DIR__, "src/assets/themes/dark.scss"),
)
makedocs(
modules = [QuantumCircuitOpt],
sitename = "QuantumCircuitOpt.jl",
format = Documenter.HTML(mathengine = Documenter.MathJax(),
assets = [asset("https://fonts.googleapis.com/css?family=Montserrat|Source+Code+Pro&display=swap", class=:css),
"assets/extra_styles.css"],
prettyurls = get(ENV, "CI", nothing) == "true",
sidebar_sitename=false
),
# strict = true,
authors = "Harsha Nagarajan",
pages = [
"Introduction" => "index.md",
"Quick Start guide" => "quickguide.md",
"Quantum Gates Library" => [
"1-qubit gates" => "1_qubit_gates.md",
"2-qubit gates" => "2_qubit_gates.md",
"3-qubit gates" => "3_qubit_gates.md",
"Multi-qubit gates" => "multi_qubit_gates.md",
],
"Function References" => "function_references.md",
],
)
deploydocs(
repo = "github.com/harshangrjn/QuantumCircuitOpt.jl.git",
push_preview = true
)
| QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 12497 | function hadamard()
println(">>>>> Hadamard Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 3,
"elementary_gates" => ["U3_1", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.get_unitary("H_1", 2),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => [0, π/2],
"U3_ϕ_discretization" => [0, π/2],
"U3_λ_discretization" => [0, π],
)
end
function controlled_Z()
println(">>>>> Controlled-Z Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 4,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.CZGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/2:π,
"U3_ϕ_discretization" => -π:π/2:π,
"U3_λ_discretization" => -π:π/2:π,
)
end
function controlled_V()
println(">>>>> Controlled-V Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 7,
"elementary_gates" => ["H_1", "H_2", "T_1", "T_2", "Tdagger_1", "Tdagger_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.CVGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
end
function controlled_H()
println(">>>>> Controlled-H Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.CHGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -2*π:π/4:2*π,
"U3_ϕ_discretization" => [0],
"U3_λ_discretization" => [0],
)
end
function controlled_H_with_R()
println(">>>>> Controlled-H with R Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["RY_1", "RY_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.CHGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"RY_discretization" => [-π/4, π/4, π/2, -π/2],
"set_cnot_lower_bound" => 1,
"set_cnot_upper_bound" => 2,
)
end
function magic()
println(">>>>> M Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 4,
"elementary_gates" => ["U3_1", "U3_2", "CNot_2_1", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.MGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/2:π,
"U3_ϕ_discretization" => -π:π/2:π,
"U3_λ_discretization" => -π:π/2:π,
)
end
function magic_using_CNOT_1_2()
println(">>>>> M Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.MGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/2:π,
"U3_ϕ_discretization" => -π:π:π,
"U3_λ_discretization" => -π:π/2:π,
)
end
function magic_using_SHCnot()
println(">>>>> M gate using S, H and CNOT Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["S_1", "S_2", "H_1", "H_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.MGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
end
function S_using_U3()
println(">>>>> S Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 3,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.get_unitary("S_1", 2),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => [0, π/4, π/2],
"U3_ϕ_discretization" => [-π/2, 0, π/2],
"U3_λ_discretization" => [0, π],
)
end
function revcnot()
println(">>>>> Reverse CNOT Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["H_1", "H_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.CNotRevGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
end
function revcnot_with_U()
println(">>>>> Reverse CNOT using U3 and CNOT Gates <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.CNotRevGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/4:π,
"U3_ϕ_discretization" => [0],
"U3_λ_discretization" => [0],
)
end
function swap()
println(">>>>> SWAP Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["CNot_2_1", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.SwapGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
end
function W_using_U3()
println(">>>>> W Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["U3_2", "CNot_2_1", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.WGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => [-π/4, 0, π/4],
"U3_ϕ_discretization" => [0, π/4],
"U3_λ_discretization" => [0, π/2],
)
end
function W_using_HSTCnot()
println(">>>>> W Gate using H, S, T and CNOT gates <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 11,
"elementary_gates" => ["S_1", "S_2", "Sdagger_1", "Sdagger_2", "T_1", "T_2", "Tdagger_1", "Tdagger_2", "H_1", "H_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.WGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
end
function W_using_HCnot()
println(">>>>> W Gate using H and CNOT gates <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 6,
"elementary_gates" => ["CH_1_2", "CNot_2_1", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.WGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
end
function hadamard_coin()
println(">>>>> Hadamard Coin gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 12,
"elementary_gates" => ["Y_1", "Y_2", "Z_1", "Z_2", "T_2", "Tdagger_1", "Sdagger_1", "SX_1", "SXdagger_2", "CNot_2_1", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.HCoinGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_feasible",
)
end
function GroverDiffusion_using_HX()
println(">>>>> Grover's Diffusion Operator <<<<<")
return Dict{String, Any}(
#Reference: https://arxiv.org/pdf/1804.03719.pdf (Fig 6)
"num_qubits" => 2,
"maximum_depth" => 10,
"elementary_gates" => ["X_1", "X_1xX_2", "H_1xH_2", "X_2", "H_1", "H_2", "CNot_1_2", "Identity"],
# "elementary_gates" => ["X_1", "X_2", "H_1", "H_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.GroverDiffusionGate(),
"objective" => "minimize_depth",
"decomposition_type" => "optimal_global_phase",
)
end
function GroverDiffusion_using_Clifford()
println(">>>>> Grover's Diffusion Operator <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 6,
"elementary_gates" => ["X_1", "X_2", "H_1", "H_2", "S_1", "S_2", "T_1", "T_2", "Y_1", "Y_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.GroverDiffusionGate(),
"objective" => "minimize_depth",
"decomposition_type" => "optimal_global_phase",
)
end
function GroverDiffusion_using_U3()
println(">>>>> Grover's Diffusion Operator using U3 gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 10,
"elementary_gates" => ["U3_1", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.GroverDiffusionGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/2:π,
"U3_ϕ_discretization" => -π:π/2:π,
"U3_λ_discretization" => [0],
)
end
function iSwap()
println(">>>>> iSwap Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 10,
"elementary_gates" => ["T_1", "T_2", "Tdagger_1", "Tdagger_2", "H_1", "H_2", "CNot_1_2", "CNot_2_1", "Identity"],
# "elementary_gates" => ["S_1", "S_2", "Sdagger_1", "Sdagger_2", "H_1", "H_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.iSwapGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
end
function qft2_using_R()
println(">>>>> QFT2 Gate using R and CNOT gates <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 10,
"elementary_gates" => ["RX_1", "RZ_1", "RZ_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.QFT2Gate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_feasible",
"RX_discretization" => [π/2],
"RZ_discretization" => [-π/4, π/2, 3*π/4, 7*π/4],
)
end
function qft2_using_HT()
println(">>>>> QFT2 Gate using H, T, CNOT gates <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 8,
"elementary_gates" => ["H_1", "H_2", "T_1", "T_2", "Tdagger_1", "Tdagger_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.QFT2Gate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
end
function GR_using_R()
println(">>>>> GRGate testing <<<<<")
GR1 = QCOpt.get_unitary("GR", 2; angle = [π/6, π/3])
# GR2 = QCOpt.get_unitary("GR", 2; angle = [π/3, π/6])
CNot_1_2 = QCOpt.get_unitary("CNot_1_2", 2)
T = QCOpt.round_complex_values(GR1 * CNot_1_2)
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 3,
"elementary_gates" => ["R_1", "R_2", "CNot_1_2", "Identity"],
"R_θ_discretization" => [π/3, π/6],
"R_ϕ_discretization" => [π/3, π/6],
"target_gate" => T,
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
end
function X_using_GR()
println(">>>>> Pauli-X Gate using global rotation <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["GR", "R_1", "R_2", "CZ_1_2", "Identity"],
"target_gate" => QCOpt.get_unitary("X_1", 2),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"GR_θ_discretization" => [-π, -π/2, 0, π/2, π],
"GR_ϕ_discretization" => [0],
# "RZ_discretization" => [-π, -π/2, 0, π/2, π],
"R_θ_discretization" => [π/2, π],
"R_ϕ_discretization" => [π/2],
)
end
function CNOT_using_GR()
println(">>>>> CNOT Gate using global rotation <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["GR", "R_1", "R_2", "CZ_1_2", "Identity"],
"target_gate" => QCOpt.CNotGate(),
"objective" => "minimize_depth",
"decomposition_type" => "optimal_global_phase",
"GR_θ_discretization" => -2π:π/2:2π,
"GR_ϕ_discretization" => [0],
"R_θ_discretization" => 0:π/4:π,
"R_ϕ_discretization" => [π/2],
)
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 8411 | function RX_on_q3()
println(">>>>> RX Gate on third qubit using U3Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 3,
"elementary_gates" => ["U3_3", "Identity"],
"target_gate" => QCOpt.kron_single_qubit_gate(3, QCOpt.RXGate(π/4), "q3"),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => [0, π/4],
"U3_ϕ_discretization" => [0, -π/2],
"U3_λ_discretization" => [0, π/2],
)
end
function toffoli()
function toffoli_circuit()
# [(depth, gate)]
return [(1, "T_1"),
(2, "T_2"),
(3, "H_3"),
(4, "CNot_2_3"),
(5, "Tdagger_3"),
(6, "CNot_1_3"),
(7, "T_3"),
(8, "CNot_2_3"),
(9, "Tdagger_3"),
(10, "CNot_1_3"),
(11, "T_3"),
(12, "H_3"),
(13, "CNot_1_2"),
(14, "Tdagger_2"),
(15, "CNot_1_2")
]
end
println(">>>>> Toffoli gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 15,
"elementary_gates" => ["T_1", "T_2", "T_3", "H_3", "CNot_1_2", "CNot_1_3", "CNot_2_3", "Tdagger_1", "Tdagger_2", "Tdagger_3", "Identity"],
"target_gate" => QCOpt.ToffoliGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"input_circuit" => toffoli_circuit(),
"set_cnot_lower_bound" => 6,
"set_cnot_upper_bound" => 6,
)
end
function toffoli_using_kronecker()
println(">>>>> Toffoli gate using Kronecker <<<<<")
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 12,
"elementary_gates" => ["T_3", "H_3", "CNot_1_2", "CNot_1_3", "CNot_2_3", "Tdagger_3", "I_1xT_2xT_3", "CNot_1_2xH_3", "T_1xTdagger_2xI_3", "Identity"],
"target_gate" => QCOpt.ToffoliGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"set_cnot_lower_bound" => 6,
)
end
function toffoli_using_2qubit_gates()
# Reference: https://doi.org/10.1109/TCAD.2005.858352
println(">>>>> Toffoli gate with controlled gates <<<<<")
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 5,
"elementary_gates" => ["CV_1_3", "CV_2_3", "CV_1_2", "CVdagger_1_3", "CVdagger_2_3", "CVdagger_1_2", "CNot_2_1", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.ToffoliGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
end
function CNot_1_3()
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 8,
# "elementary_gates" => ["CNot_1_2", "CNot_2_3", "Identity"],
"elementary_gates" => ["H_1", "H_3", "H_2", "CNot_2_1", "CNot_3_2", "Identity"],
"target_gate" => QCOpt.get_unitary("CNot_1_3", 3),
"objective" => "minimize_depth",
)
end
function fredkin()
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 7,
# Reference: https://doi.org/10.1103/PhysRevA.53.2855
"elementary_gates" => ["CV_1_2", "CV_2_3", "CV_1_3", "CVdagger_1_2", "CVdagger_2_3", "CVdagger_1_3", "CNot_1_2", "CNot_3_2", "CNot_2_3", "CNot_1_3", "Identity"],
"target_gate" => QCOpt.CSwapGate(), #also Fredkin
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
end
function fredkin_using_SSwap()
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 8,
"elementary_gates" => ["SSwap_2_3", "SX_1", "SX_2", "SX_3", "H_1", "H_2", "H_3", "CNot_1_2", "CNot_3_2", "CNot_2_3", "CNot_1_3", "Identity"],
"target_gate" => QCOpt.CSwapGate(), #also Fredkin
"decomposition_type" => "exact_optimal",
"objective" => "minimize_depth"
)
end
function toffoli_left()
# Reference: https://arxiv.org/pdf/0803.2316.pdf
function target_gate()
H_3 = QCOpt.get_unitary("H_3", 3)
Tdagger_3 = QCOpt.get_unitary("Tdagger_3", 3)
T_3 = QCOpt.get_unitary("T_3", 3)
cnot_23 = QCOpt.get_unitary("CNot_2_3", 3)
CNot_1_3 = QCOpt.get_unitary("CNot_1_3", 3)
return H_3 * cnot_23 * Tdagger_3 * CNot_1_3 * T_3 * cnot_23 * Tdagger_3
end
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 7,
"elementary_gates" => ["H_3", "T_1", "T_2", "T_3", "Tdagger_1", "Tdagger_2", "Tdagger_3", "CNot_1_2", "CNot_2_3", "CNot_1_3", "Identity"],
"target_gate" => target_gate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
end
function toffoli_right()
# Reference: https://arxiv.org/pdf/0803.2316.pdf
function target_gate()
H_3 = QCOpt.get_unitary("H_3", 3)
Tdagger_2 = QCOpt.get_unitary("Tdagger_2", 3)
T_1 = QCOpt.get_unitary("T_1", 3)
T_2 = QCOpt.get_unitary("T_2", 3)
T_3 = QCOpt.get_unitary("T_3", 3)
CNot_1_2 = QCOpt.get_unitary("CNot_1_2", 3)
CNot_1_3 = QCOpt.get_unitary("CNot_1_3", 3)
return CNot_1_3 * T_2 * T_3 * CNot_1_2 * H_3 * T_1 * Tdagger_2 * CNot_1_2
end
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 8,
"elementary_gates" => ["H_3", "T_1", "T_2", "T_3", "Tdagger_1", "Tdagger_2", "Tdagger_3", "CNot_1_2", "CNot_2_3", "CNot_1_3", "Identity"],
"target_gate" => target_gate(),
"objective" => "minimize_depth"
)
end
function miller()
# Reference: https://doi.org/10.1109/TCAD.2005.858352
function target_gate()
CV_1_3 = QCOpt.get_unitary("CV_1_3", 3)
CV_2_3 = QCOpt.get_unitary("CV_2_3", 3)
CVdagger_2_3 = QCOpt.get_unitary("CVdagger_2_3", 3)
CNot_1_2 = QCOpt.get_unitary("CNot_1_2", 3)
CNot_3_1 = QCOpt.get_unitary("CNot_3_1", 3)
CNot_3_2 = QCOpt.get_unitary("CNot_3_2", 3)
return CNot_3_1 * CNot_3_2 * CV_2_3 * CNot_1_2 * CVdagger_2_3 * CV_1_3 * CNot_3_1 * CNot_1_2
end
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 8,
"elementary_gates" => ["CV_1_3", "CV_2_3", "CVdagger_2_3", "CNot_1_2", "CNot_3_1", "CNot_3_2", "Identity"],
"target_gate" => target_gate(),
"objective" => "minimize_depth"
)
end
function relative_toffoli()
#Reference: https://arxiv.org/pdf/1508.03273.pdf
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 9,
"elementary_gates" => ["H_3", "T_3", "Tdagger_3", "CNot_1_2", "CNot_2_3", "CNot_1_3", "Identity"],
"target_gate" => QCOpt.RCCXGate(),
"objective" => "minimize_depth",
"set_cnot_upper_bound" => 3
)
end
function margolus()
#Reference: https://arxiv.org/pdf/quant-ph/0312225.pdf
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 7,
"elementary_gates" => ["RY_3", "CNot_1_2", "CNot_2_3", "CNot_1_3", "Identity"],
"target_gate" => QCOpt.MargolusGate(),
"objective" => "minimize_depth",
"RY_discretization" => -π:π/4:π,
# "set_cnot_lower_bound" => 3,
# "set_cnot_upper_bound" => 3
)
end
function CiSwap()
#Reference: https://doi.org/10.1103/PhysRevResearch.2.033097
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 12,
"elementary_gates" => ["H_3", "T_3", "Tdagger_3", "CNot_3_2", "CNot_2_3", "CNot_1_3", "Identity"],
"target_gate" => QCOpt.CiSwapGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
end
function QFT3()
# QFT3 circuit using Controlled-Phase gates
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 7,
# "elementary_gates" => ["H_1", "H_2", "H_3", "CS_2_1", "CS_3_2", "CT_3_1", "Swap_1_3", "Identity"],
"elementary_gates" => ["H_1", "H_2", "H_3", "CU3_2_1", "CU3_3_2", "CU3_3_1", "Swap_1_3", "Identity"],
"CU3_θ_discretization" => [0],
"CU3_ϕ_discretization" => [0],
"CU3_λ_discretization" => [π/2, π/4],
"target_gate" => QCOpt.QFT3Gate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 3393 | function CNot_41()
# Reference: https://doi.org/10.1109/DSD.2018.00005
return Dict{String, Any}(
"num_qubits" => 4,
"maximum_depth" => 10,
"elementary_gates" => ["H_1", "H_2", "H_3", "CNot_1_3", "CNot_4_3", "Identity"],
"target_gate" => QCOpt.get_unitary("CNot_4_1", 4),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
end
function quantum_fulladder()
#Reference-1: https://doi.org/10.1109/DATE.2005.249
#Reference-2: https://doi.org/10.1109/TCAD.2005.858352
num_qubits = 4
function target_gate_1()
CV_1_2 = QCOpt.get_unitary("CV_1_2", num_qubits);
CV_4_2 = QCOpt.get_unitary("CV_4_2", num_qubits);
CVdagger_1_2 = QCOpt.get_unitary("CVdagger_1_2", num_qubits);
CVdagger_3_2 = QCOpt.get_unitary("CVdagger_3_2", num_qubits);
CNot_3_1 = QCOpt.get_unitary("CNot_3_1", num_qubits);
CNot_4_3 = QCOpt.get_unitary("CNot_4_3", num_qubits);
CNot_2_4 = QCOpt.get_unitary("CNot_2_4", num_qubits);
return CNot_2_4 * CV_4_2 * CVdagger_1_2 * CVdagger_3_2 * CNot_4_3 * CNot_3_1 * CV_1_2
end
return Dict{String, Any}(
"num_qubits" => num_qubits,
"maximum_depth" => 7,
"elementary_gates" => ["CV_1_2", "CV_4_2", "CV_3_2", "CVdagger_1_2", "CVdagger_4_2", "CVdagger_3_2", "CNot_3_1", "CNot_4_3", "CNot_2_4", "CNot_4_1", "Identity"],
"target_gate" => target_gate_1(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
end
function double_toffoli()
# Reference: https://doi.org/10.1109/TCAD.2005.858352
num_qubits = 4
function target_gate()
CV_3_4 = QCOpt.get_unitary("CV_3_4", num_qubits);
CV_2_4 = QCOpt.get_unitary("CV_2_4", num_qubits);
CVdagger_2_4 = QCOpt.get_unitary("CVdagger_2_4", num_qubits);
CNot_1_3 = QCOpt.get_unitary("CNot_1_3", num_qubits);
CNot_3_2 = QCOpt.get_unitary("CNot_3_2", num_qubits);
return CV_2_4 * CNot_1_3 * CNot_3_2 * CV_3_4 * CVdagger_2_4 * CNot_3_2 * CNot_1_3
end
return Dict{String, Any}(
"num_qubits" => 4,
"maximum_depth" => 7,
"elementary_gates" => ["CV_1_2", "CV_2_4", "CV_3_4", "CVdagger_1_2", "CVdagger_2_4", "CVdagger_3_4", "CNot_1_3", "CNot_3_2", "CNot_2_3", "Identity"],
"target_gate" => target_gate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
end
function double_peres()
# Reference: https://doi.org/10.1109/TCAD.2005.858352
num_qubits = 4
function target_gate()
CV_1_4 = QCOpt.get_unitary("CV_1_4", num_qubits);
CV_2_4 = QCOpt.get_unitary("CV_2_4", num_qubits);
CV_3_4 = QCOpt.get_unitary("CV_3_4", num_qubits);
CVdagger_3_4 = QCOpt.get_unitary("CVdagger_3_4", num_qubits);
CNot_1_2 = QCOpt.get_unitary("CNot_1_2", num_qubits);
CNot_2_3 = QCOpt.get_unitary("CNot_2_3", num_qubits);
return CV_2_4 * CNot_1_2 * CV_3_4 * CV_1_4 * CNot_2_3 * CVdagger_3_4
end
return Dict{String, Any}(
"num_qubits" => 4,
"maximum_depth" => 7,
"elementary_gates" => ["CV_1_4", "CV_2_4", "CV_3_4", "CVdagger_1_4", "CVdagger_2_4", "CVdagger_3_4", "CNot_1_2", "CNot_2_3", "Identity"],
"target_gate" => target_gate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 592 | function RX_on_5qubits()
println(">>>>> RX Gate on fourth qubit using U3Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 5,
"maximum_depth" => 3,
"elementary_gates" => ["H_1xCNot_2_3xI_4xI_5", "RX_2", "CU3_3_4", "Identity"],
"target_gate" => QCOpt.kron_two_qubit_gate(5, QCOpt.CRXGate(π/4), "q3", "q4"),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"CU3_θ_discretization" => [0, π/4],
"CU3_ϕ_discretization" => [0, -π/2],
"CU3_λ_discretization" => [0, π/2],
"RX_discretization" => [π/2],
)
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 1094 | decompose_gates = [
#-- 2-qubit gates --#
"hadamard",
"controlled_Z",
"controlled_V",
"controlled_H",
"controlled_H_with_R",
"magic",
"magic_using_CNOT_1_2",
"magic_using_SHCnot",
"S_using_U3",
"revcnot",
"revcnot_with_U",
"swap",
"W_using_U3",
"W_using_HCnot",
"GroverDiffusion_using_Clifford",
"GroverDiffusion_using_U3",
"iSwap",
"qft2_using_HT",
"RX_on_q3",
"X_using_GR",
"CNOT_using_GR",
#-- 3-qubit gates --#
"toffoli_using_2qubit_gates",
"CNot_1_3",
"fredkin",
"toffoli_left",
"toffoli_right",
"miller",
"relative_toffoli",
"margolus",
"CiSwap", # up to 1000s
#-- 4-qubit gates --#
"CNot_41",
"double_peres",
"quantum_fulladder",
"double_toffoli",
#-- 5-qubit gates --#
"RX_on_5qubits",
#-- paramterized gates --#
"parametrized_hermitian_gates"
] | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 8103 | #=
Settings for results in the paper "QuantumCircuitOpt: An Open-source Frameworkfor Provably Optimal
Quantum Circuit Design"
Version of QCOpt: v0.3.0
Last updated: Oct 12, 2021
=#
function controlled_Z()
println(">>>>> Controlled-Z Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 4,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.CZGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/2:π,
"U3_ϕ_discretization" => -π:π/2:π,
"U3_λ_discretization" => -π:π/2:π,)
end
function controlled_V()
println(">>>>> Controlled-V Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 7,
"elementary_gates" => ["H_1", "H_2", "T_1", "T_2", "Tdagger_1", "Tdagger_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.CVGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal")
end
function controlled_H()
println(">>>>> Controlled-H Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.CHGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -2*π:π/4:2*π,
"U3_ϕ_discretization" => [0],
"U3_λ_discretization" => [0],
)
end
function magic_using_U3_CNot_2_1()
println(">>>>> Magic basis using U3 and CNot_2_1 <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["U3_1", "U3_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.MGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/2:π,
"U3_ϕ_discretization" => -π:π/2:π,
"U3_λ_discretization" => -π:π/2:π,
)
end
function iSwapGate()
println(">>>>> iSwap Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 10,
"elementary_gates" => ["T_1", "T_2", "Tdagger_1", "Tdagger_2", "H_1", "H_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.iSwapGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal")
end
function GroverDiffusion_using_Clifford()
println(">>>>> Grover's Diffusion Operator <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 6,
"elementary_gates" => ["X_1", "X_2", "H_1", "H_2", "S_1", "S_2", "T_1", "T_2", "Y_1", "Y_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.GroverDiffusionGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal")
end
function GroverDiffusion_using_U3()
println(">>>>> Grover's Diffusion Operator using U3 gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 10,
"elementary_gates" => ["U3_1", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.GroverDiffusionGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/2:π,
"U3_ϕ_discretization" => -π:π/2:π,
"U3_λ_discretization" => [0])
end
function magic_using_SH_CNot_1_2()
println(">>>>> M gate using S, H and CNOT_1_2 Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 10,
"elementary_gates" => ["S_1", "S_2", "H_1", "H_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.MGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal")
end
function magic_using_SH_CNot_2_1()
println(">>>>> M gate using S, H and CNOT_2_1 Gate <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 10,
"elementary_gates" => ["S_1", "S_2", "H_1", "H_2", "CNot_2_1", "Identity"],
"target_gate" => QCOpt.MGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal")
end
function magic_using_U3_CNot_1_2()
println(">>>>> Magic basis using U3 and CNot_1_2 <<<<<")
return Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.MGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/2:π,
"U3_ϕ_discretization" => -π:π:π,
"U3_λ_discretization" => -π:π/2:π,)
end
function toffoli_with_controlled_gates()
# Reference: https://doi.org/10.1109/TCAD.2005.858352
println(">>>>> Toffoli gate using controlled gates <<<<<")
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 5,
"elementary_gates" => ["CV_1_3", "CV_2_3", "CV_1_2", "CVdagger_1_3", "CVdagger_2_3", "CVdagger_1_2", "CNot_2_1", "CNot_1_2", "Identity"],
"target_gate" => QCOpt.ToffoliGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal")
end
function Fredkin()
println(">>>>> Fredkin gate using controlled gates <<<<<")
return Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 7,
# Reference: https://doi.org/10.1103/PhysRevA.53.2855
"elementary_gates" => ["CV_1_2", "CV_2_3", "CV_1_3", "CVdagger_1_2", "CVdagger_2_3", "CVdagger_1_3", "CNot_1_2", "CNot_3_2", "CNot_2_3", "CNot_1_3", "Identity"],
"target_gate" => QCOpt.CSwapGate(), #also Fredkin
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal")
end
function double_toffoli()
println(">>>>> Double Toffoli using controlled gates <<<<<")
# Reference: https://doi.org/10.1109/TCAD.2005.858352
num_qubits = 4
function target_gate()
CV_3_4 = QCOpt.get_unitary("CV_3_4", num_qubits);
CV_2_4 = QCOpt.get_unitary("CV_2_4", num_qubits);
CVdagger_2_4 = QCOpt.get_unitary("CVdagger_2_4", num_qubits);
CNot_1_3 = QCOpt.get_unitary("CNot_1_3", num_qubits);
CNot_3_2 = QCOpt.get_unitary("CNot_3_2", num_qubits);
return CV_2_4 * CNot_1_3 * CNot_3_2 * CV_3_4 * CVdagger_2_4 * CNot_3_2 * CNot_1_3
end
return Dict{String, Any}(
"num_qubits" => 4,
"maximum_depth" => 7,
"elementary_gates" => ["CV_1_2", "CV_2_4", "CV_3_4", "CVdagger_1_2", "CVdagger_2_4", "CVdagger_3_4", "CNot_1_3", "CNot_3_2", "CNot_2_3", "Identity"],
"target_gate" => target_gate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal")
end
function quantum_fulladder()
#Reference-1: https://doi.org/10.1109/DATE.2005.249
#Reference-2: https://doi.org/10.1109/TCAD.2005.858352
println(">>>>> Quantum Full adder using controlled gates <<<<<")
num_qubits = 4
function target_gate()
CV_1_2 = QCOpt.get_unitary("CV_1_2", num_qubits);
CV_4_2 = QCOpt.get_unitary("CV_4_2", num_qubits);
CVdagger_1_2 = QCOpt.get_unitary("CVdagger_1_2", num_qubits);
CVdagger_3_2 = QCOpt.get_unitary("CVdagger_3_2", num_qubits);
CNot_3_1 = QCOpt.get_unitary("CNot_3_1", num_qubits);
CNot_4_3 = QCOpt.get_unitary("CNot_4_3", num_qubits);
CNot_2_4 = QCOpt.get_unitary("CNot_2_4", num_qubits);
return CNot_2_4 * CV_4_2 * CVdagger_1_2 * CVdagger_3_2 * CNot_4_3 * CNot_3_1 * CV_1_2
end
return Dict{String, Any}(
"num_qubits" => num_qubits,
"maximum_depth" => 7,
"elementary_gates" => ["CV_1_2", "CV_4_2", "CV_3_2", "CVdagger_1_2", "CVdagger_4_2", "CVdagger_3_2", "CNot_3_1", "CNot_4_3", "CNot_2_4", "CNot_4_1", "Identity"],
"target_gate" => target_gate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal")
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 3380 | #===================================#
# MIP solvers (commercial, faster) #
#===================================#
# https://github.com/jump-dev/Gurobi.jl
function get_gurobi(; solver_log = false)
return JuMP.optimizer_with_attributes(Gurobi.Optimizer,
MOI.Silent() => !solver_log,
# "MIPFocus" => 3, # Focus on optimality over feasibility
"Presolve" => 1)
end
# https://github.com/jump-dev/CPLEX.jl
function get_cplex(; solver_log = true)
return JuMP.optimizer_with_attributes(CPLEX.Optimizer,
MOI.Silent() => !solver_log,
# "CPX_PARAM_EPGAP" => 1E-4,
# "CPX_PARAM_MIPEMPHASIS" => 2 # Focus on optimality over feasibility
"CPX_PARAM_PREIND" => 1)
end
#====================================#
# MIP solvers (open-source, slower) #
#====================================#
# https://github.com/jump-dev/HiGHS.jl
function get_highs(; solver_log = true)
return JuMP.optimizer_with_attributes(
HiGHS.Optimizer,
"presolve" => "on",
"log_to_console" => solver_log,
)
end
# https://github.com/jump-dev/Cbc.jl
function get_cbc(; solver_log = true)
return JuMP.optimizer_with_attributes(Cbc.Optimizer,
MOI.Silent() => !solver_log)
end
# https://github.com/jump-dev/Glpk.jl
function get_glpk(; solver_log = true)
return JuMP.optimizer_with_attributes(GLPK.Optimizer,
MOI.Silent() => !solver_log)
end
#========================================================#
# Continuous nonlinear programming solver (open-source) #
#========================================================#
# https://github.com/jump-dev/Ipopt.jl
function get_ipopt(; solver_log = true)
return JuMP.optimizer_with_attributes(Ipopt.Optimizer,
MOI.Silent() => !solver_log,
"sb" => "yes",
"max_iter" => Int(1E4))
end
#=================================================================#
# Local mixed-integer nonlinear programming solver (open-source) #
#=================================================================#
# https://github.com/lanl-ansi/Juniper.jl
function get_juniper(; solver_log = true)
return JuMP.optimizer_with_attributes(Juniper.Optimizer,
MOI.Silent() => !solver_log,
"mip_solver" => get_gurobi(),
"nl_solver" => get_ipopt())
end
#=================================================================#
# Global mixed-integer nonlinear programming solver (open-source) #
#=================================================================#
# https://github.com/lanl-ansi/Alpine.jl
function get_alpine()
return JuMP.optimizer_with_attributes(Alpine.Optimizer,
"nlp_solver" => get_ipopt(),
"minlp_solver" => get_juniper(),
"mip_solver" => get_gurobi()
)
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 944 | function parametrized_hermitian_gates()
function target_gate(num_qubits, i, j, t)
A = Array{Complex{Float64},2}(zeros(2^num_qubits, 2^num_qubits))
A[i,j] = 1.0 + 0.0im
A[j,i] = 1.0 + 0.0im
return exp(im*A*t)
end
num_qubits = 2
A_i = 1 # 1 <= i,j <= num_qubits
A_j = 4 # 1 <= i,j <= num_qubits
t = 2.5
return Dict{String, Any}(
"num_qubits" => num_qubits,
"maximum_depth" => 10,
"elementary_gates" => ["RX_1", "RX_2", "CRX_1_2", "CRX_2_1", "CNot_1_2", "CNot_2_1", "Identity"],
# "elementary_gates" => ["RX_1", "RX_2", "RX_3", "CRX_1_2", "CRX_2_1", "CRX_2_3", "CRX_3_2", "CNot_1_2", "CNot_2_1", "CNot_2_3", "CNot_3_2", "Identity"],
"target_gate" => target_gate(num_qubits, A_i, A_j, t),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"RX_discretization" => [t*2,-t*2],
"CRX_discretization" => [t*2,-t*2],
)
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 3447 | #=
Results for the paper "QuantumCircuitOpt: An Open-source Frameworkfor Provably Optimal
Quantum Circuit Design" can be reproduced by executing this file.
Version of QCOpt: v0.3.0
Last updated: Oct 13, 2021
=#
import QuantumCircuitOpt as QCOpt
using JuMP
using Gurobi
include("gates_sc21.jl")
# Choosing a different MIP solver other than Gurobi can slow down the run times
qcm_optimizer = JuMP.optimizer_with_attributes(Gurobi.Optimizer, "Presolve" => 1)
#-----------------------------#
# Results of Table-I #
#-----------------------------#
table_I_gates = ["controlled_Z",
"controlled_V",
"controlled_H",
"magic_using_U3_CNot_2_1",
"iSwapGate",
"GroverDiffusion_using_U3"]
result_with_VC = Dict{String,Any}()
result_without_VC = Dict{String,Any}()
run_times_tab1 = zeros(length(table_I_gates),2)
k = 1
for gates in table_I_gates
params = getfield(Main, Symbol(gates))()
model_options = Dict{Symbol, Any}(:all_valid_constraints => 0)
global result_with_VC = QCOpt.run_QCModel(params,
qcm_optimizer;
options = model_options)
run_times_tab1[k,1] = result_with_VC["solve_time"]
model_options = Dict{Symbol, Any}(:all_valid_constraints => -1)
global result_without_VC = QCOpt.run_QCModel(params,
qcm_optimizer;
options = model_options)
run_times_tab1[k,2] = result_without_VC["solve_time"]
global k += 1
end
#--------------------------------------------#
# Results of Figure 3 (Magic basis) #
#--------------------------------------------#
result = Dict{String,Any}()
figure_3_gates = ["magic_using_SH_CNot_2_1",
"magic_using_U3_CNot_2_1",
"magic_using_SH_CNot_1_2",
"magic_using_U3_CNot_1_2",
]
run_times_fig3 = zeros(length(figure_3_gates),1)
k = 1
for gates in figure_3_gates
params = getfield(Main, Symbol(gates))()
global result = QCOpt.run_QCModel(params, qcm_optimizer)
run_times_fig3[k,1] = result["solve_time"]
global k += 1
end
#------------------------------------------------#
# Results of Figure 4 (Grover operator) #
#------------------------------------------------#
result = Dict{String,Any}()
figure_4_gates = ["GroverDiffusion_using_Clifford",
"GroverDiffusion_using_U3"]
run_times_fig4 = zeros(length(figure_4_gates),1)
k = 1
for gates in figure_4_gates
params = getfield(Main, Symbol(gates))()
global result = QCOpt.run_QCModel(params, qcm_optimizer)
run_times_fig4[k,1] = result["solve_time"]
global k += 1
end
#------------------------------------------------#
# Results of Figure 5 (larger circuits) #
#------------------------------------------------#
result = Dict{String,Any}()
figure_5_gates = ["toffoli_with_controlled_gates",
"Fredkin",
"double_toffoli",
"quantum_fulladder",
]
run_times_fig5 = zeros(length(figure_5_gates),1)
k = 1
for gates in figure_5_gates
params = getfield(Main, Symbol(gates))()
global result = QCOpt.run_QCModel(params, qcm_optimizer)
run_times_fig5[k,1] = result["solve_time"]
global k += 1
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 1060 | import QuantumCircuitOpt as QCOpt
using LinearAlgebra
using JuMP
using Gurobi
# using CPLEX
# using HiGHS
include("optimizers.jl")
[include("$(i)qubit_gates.jl") for i in 2:5]
include("parametrized_gates.jl")
include("decompose_all_gates.jl")
# decompose_gates = ["iSwap"]
#----------------------------------------------#
# Quantum Circuit Optimization model #
#----------------------------------------------#
qcopt_optimizer = get_gurobi(solver_log = true)
result = Dict{String,Any}()
times = zeros(length(decompose_gates), 1)
for gates = 1:length(decompose_gates)
params = getfield(Main, Symbol(decompose_gates[gates]))()
model_options = Dict{Symbol, Any}(
:model_type => "compact_formulation",
:convex_hull_gate_constraints => false,
:idempotent_gate_constraints => false,
:unitary_constraints => false,
:fix_unitary_variables => true,
)
global result = QCOpt.run_QCModel(params, qcopt_optimizer; options = model_options)
times[gates] = result["solve_time"]
end
| QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 1426 | module QuantumCircuitOpt
import JuMP
import LinearAlgebra
import Memento
import Pkg
const LA = LinearAlgebra
const QCO = QuantumCircuitOpt
const kron_symbol = 'x'
const qubit_separator = '_'
# Create our module level logger (this will get precompiled)
const _LOGGER = Memento.getlogger(@__MODULE__)
# Register the module level logger at runtime so that folks can access the logger via `getlogger(QuantumCircuitOpt)`
# NOTE: If this line is not included then the precompiled `QuantumCircuitOpt._LOGGER` won't be registered at runtime.
__init__() = Memento.register(_LOGGER)
"Suppresses information and warning messages output by QuantumCircuitOpt, for fine grained control use of the Memento package"
function silence()
Memento.info(_LOGGER, "Suppressing information and warning messages for the rest of this session. Use the Memento package for more fine-grained control of logging.")
Memento.setlevel!(Memento.getlogger(QuantumCircuitOpt), "error")
end
"allows the user to set the logging level without the need to add Memento"
function logger_config!(level)
Memento.config!(Memento.getlogger("QuantumCircuitOpt"), level)
end
include("data.jl")
include("gates.jl")
include("types.jl")
include("utility.jl")
include("chull.jl")
include("relaxations.jl")
include("qc_model.jl")
include("variables.jl")
include("constraints.jl")
include("objective.jl")
include("log.jl")
include("solution.jl")
end # module
| QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 3328 | """
_orientation(x::Tuple{<:Number, <:Number}, y::Tuple{<:Number, <:Number}, z::Tuple{<:Number, <:Number})
Utility function for `convex_hull`. Given an ordered triplet, this function returns if three
points are collinear, oriented in clock-wise or anticlock-wise direction.
"""
function _orientation(x::Tuple{<:Number, <:Number},
y::Tuple{<:Number, <:Number},
z::Tuple{<:Number, <:Number})
a = ((y[2] - x[2]) * (z[1] - y[1]) - (y[1] - x[1]) * (z[2] - y[2]))
if isapprox(a, 0, atol=1e-6)
return 0 # collinear
elseif a > 0
return 1 # clock-wise
else
return 2 # counterclock-wise
end
end
"""
_lt_filter(a::Tuple{<:Number, <:Number}, b::Tuple{<:Number, <:Number})
Utility function for sorting step in `convex_hull`. Given two points, `a` and `b`, this function
returns true if `a` has larger polar angle (counterclock-wise direction) than `b` w.r.t. first point `chull_p1`.
"""
function _lt_filter(a::Tuple{<:Number, <:Number}, b::Tuple{<:Number, <:Number})
o = QCO._orientation(chull_p1, a, b)
if o == 0
if LA.norm(collect(chull_p1 .- b))^2 >= LA.norm(collect(chull_p1 .- a))^2
return true
else
return false
end
elseif o == 2
return true
else
return false
end
end
"""
convex_hull(points::Vector{T}) where T<:Tuple{Number, Number}
Graham's scan algorithm to compute the convex hull of a finite set of `n` points in a plane
with time complexity `O(n*log(n))`. Given a vector of tuples of co-ordinates, this function returns a
vector of tuples of co-ordinates which form the convex hull of the given set of points.
Sources: https://doi.org/10.1016/0020-0190(72)90045-2
https://en.wikipedia.org/wiki/Graham_scan
"""
function convex_hull(points::Vector{T}) where T<:Tuple{Number, Number}
num_points = size(points)[1]
if num_points == 0
Memento.error(_LOGGER, "Atleast one point is necessary for evaluating the convex hull")
elseif num_points <= 2
return points
end
min_y = points[1][2]
min = 1
# Bottom-most or else the left-most point when tie
for i in 2:num_points
y = points[i][2]
if (y < min_y) || (y == min_y && points[i][1] < points[min][1])
min_y = y
min = i
end
end
# Placing the bottom/left-most point at first position
points[1], points[min] = points[min], points[1]
global chull_p1 = points[1]
points = Base.sort(points, lt = QCO._lt_filter)
# If two or more points are collinear with chull_p1, remove all except the farthest from chull_p1
arr_size = 2
for i in 2:num_points
while (i < num_points) && (QCO._orientation(chull_p1, points[i], points[i+1]) == 0)
i += 1
end
points[arr_size] = points[i]
arr_size += 1
end
if arr_size <= 3
return []
end
chull = []
append!(chull, [points[1]])
append!(chull, [points[2]])
append!(chull, [points[3]])
for i in 4:(arr_size-1)
while (size(chull)[1] > 1) && (QCO._orientation(chull[end - 1], chull[end], points[i]) != 2)
pop!(chull)
end
append!(chull, [points[i]])
end
return chull
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 23291 | #--------------------------------------------------------#
# Build all constraints of the QuantumCircuitModel here #
#--------------------------------------------------------#
function constraint_single_gate_per_depth(qcm::QuantumCircuitModel)
num_gates = size(qcm.data["gates_real"])[3]
max_depth = qcm.data["maximum_depth"]
JuMP.@constraint(qcm.model, [d=1:max_depth], sum(qcm.variables[:z_bin_var][n,d] for n=1:num_gates) == 1)
return
end
function constraint_gates_onoff_per_depth(qcm::QuantumCircuitModel)
num_gates = size(qcm.data["gates_real"])[3]
max_depth = qcm.data["maximum_depth"]
JuMP.@constraint(qcm.model, [d=1:max_depth], qcm.variables[:G_var][:,:,d] .==
sum(qcm.variables[:z_bin_var][n,d] * qcm.data["gates_real"][:,:,n] for n=1:num_gates))
return
end
function constraint_initial_gate_condition(qcm::QuantumCircuitModel)
num_gates = size(qcm.data["gates_real"])[3]
JuMP.@constraint(qcm.model, sum(qcm.variables[:V_var][:,:,n,1] for n=1:num_gates) .== qcm.data["initial_gate"])
JuMP.@constraint(qcm.model, [n=1:num_gates], qcm.variables[:V_var][:,:,n,1] .== (qcm.variables[:z_bin_var][n,1] .* qcm.data["initial_gate"]))
return
end
function constraint_intermediate_products(qcm::QuantumCircuitModel)
num_gates = size(qcm.data["gates_real"])[3]
max_depth = qcm.data["maximum_depth"]
JuMP.@constraint(qcm.model, [d=1:(max_depth-1)], qcm.variables[:U_var][:,:,d] .==
sum(qcm.variables[:V_var][:,:,n,d] * qcm.data["gates_real"][:,:,n] for n=1:num_gates))
JuMP.@constraint(qcm.model, [d=2:max_depth], sum(qcm.variables[:V_var][:,:,n,d] for n=1:num_gates) .==
qcm.variables[:U_var][:,:,(d-1)])
JuMP.@constraint(qcm.model, [d=1:(max_depth-1)], qcm.variables[:V_var][:,:,:,(d+1)] .==
qcm.variables[:zU_var][:,:,:,d])
return
end
function constraint_target_gate_condition(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
num_gates = size(qcm.data["gates_real"])[3]
decomposition_type = qcm.data["decomposition_type"]
if decomposition_type in ["exact_optimal", "exact_feasible"]
JuMP.@constraint(qcm.model, sum(qcm.variables[:V_var][:,:,n,max_depth] * qcm.data["gates_real"][:,:,n] for n=1:num_gates) .== qcm.data["target_gate"])
elseif decomposition_type == "approximate"
JuMP.@constraint(qcm.model, sum(qcm.variables[:V_var][:,:,n,max_depth] * qcm.data["gates_real"][:,:,n] for n=1:num_gates) .== qcm.data["target_gate"][:,:] + qcm.variables[:slack_var][:,:])
end
return
end
function constraint_complex_to_real_symmetry(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
n_r = size(qcm.data["gates_real"])[1]
n_c = size(qcm.data["gates_real"])[2]
for i=1:2:n_r, j=1:2:n_c, d=1:(max_depth-1)
JuMP.@constraint(qcm.model, qcm.variables[:U_var][i,j,d] == qcm.variables[:U_var][i+1,j+1,d])
JuMP.@constraint(qcm.model, qcm.variables[:U_var][i,j+1,d] == -qcm.variables[:U_var][i+1,j,d]) # This seems to slow down the solution search
end
return
end
function constraint_gate_product_linearization(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
n_r = size(qcm.data["gates_real"])[1]
n_c = size(qcm.data["gates_real"])[2]
num_gates = size(qcm.data["gates_real"])[3]
are_gates_real = qcm.data["are_gates_real"]
U_var = qcm.variables[:U_var]
zU_var = qcm.variables[:zU_var]
z_bin_var = qcm.variables[:z_bin_var]
i_val = 2 - are_gates_real
U_var_bound_tol = 1E-8
for i=1:i_val:n_r, j=1:n_c, n=1:num_gates, d=1:(max_depth-1)
U_var_l = JuMP.lower_bound(U_var[i,j,d])
U_var_u = JuMP.upper_bound(U_var[i,j,d])
if !(isapprox(abs(U_var_u - U_var_l), 0, atol = 2*U_var_bound_tol))
QCO.relaxation_bilinear(qcm.model, zU_var[i,j,n,d], U_var[i,j,d], z_bin_var[n,(d+1)])
else
JuMP.@constraint(qcm.model, zU_var[i,j,n,d] == (U_var_l + U_var_u)/2 * z_bin_var[n,(d+1)])
end
if !are_gates_real && isodd(j)
JuMP.@constraint(qcm.model, zU_var[i,j,n,d] == zU_var[i+1,j+1,n,d])
JuMP.@constraint(qcm.model, zU_var[i,j+1,n,d] == -zU_var[i+1,j,n,d])
end
end
return
end
function constraint_initial_gate_condition_compact(qcm::QuantumCircuitModel)
num_gates = size(qcm.data["gates_real"])[3]
JuMP.@constraint(qcm.model, qcm.variables[:U_var][:,:,1] .==
qcm.data["initial_gate"] * sum(qcm.variables[:z_bin_var][n,1] * qcm.data["gates_real"][:,:,n] for n=1:num_gates))
return
end
function constraint_intermediate_products_compact(qcm::QuantumCircuitModel)
num_gates = size(qcm.data["gates_real"])[3]
max_depth = qcm.data["maximum_depth"]
JuMP.@constraint(qcm.model, [d=2:max_depth], qcm.variables[:U_var][:,:,d] .==
sum((qcm.variables[:zU_var][:,:,n,(d-1)]) * qcm.data["gates_real"][:,:,n] for n=1:num_gates))
return
end
function constraint_target_gate_condition_compact(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
decomposition_type = qcm.data["decomposition_type"]
U_var = qcm.variables[:U_var]
if decomposition_type in ["exact_optimal", "exact_feasible"]
JuMP.@constraint(qcm.model, U_var[:,:,max_depth] .== qcm.data["target_gate"][:,:])
elseif decomposition_type == "approximate"
JuMP.@constraint(qcm.model, U_var[:,:,max_depth] .== qcm.data["target_gate"][:,:] + qcm.variables[:slack_var][:,:])
end
return
end
function constraint_target_gate_condition_glphase(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
n_r = size(qcm.data["gates_real"])[1]
n_c = size(qcm.data["gates_real"])[2]
U_var = qcm.variables[:U_var]
if qcm.data["are_gates_real"]
ref_nonzero_r, ref_nonzero_c = QCO._get_nonzero_idx_of_complex_matrix(Array{Complex{Float64},2}(qcm.data["target_gate"]))
for i=1:n_r, j=1:n_c
if isapprox(qcm.data["target_gate"][i,j], 0, atol=1E-6)
JuMP.@constraint(qcm.model, U_var[i,j,max_depth] == 0)
else
JuMP.@constraint(qcm.model, U_var[i,j,max_depth]*qcm.data["target_gate"][ref_nonzero_r,ref_nonzero_c] == qcm.data["target_gate"][i,j]*U_var[ref_nonzero_r,ref_nonzero_c,max_depth])
end
end
else
ref_nonzero_r, ref_nonzero_c = QCO._get_nonzero_idx_of_complex_to_real_matrix(qcm.data["target_gate"])
for i=1:2:n_r, j=1:2:n_c
if isapprox(qcm.data["target_gate"][i,j], 0, atol=1E-6) && isapprox(qcm.data["target_gate"][i,j+1], 0, atol=1E-6)
JuMP.@constraint(qcm.model, U_var[i,j,max_depth] == 0.0)
JuMP.@constraint(qcm.model, U_var[i,(j+1),max_depth] == 0.0)
else
#real parts equal
JuMP.@constraint(qcm.model, U_var[i,j,max_depth]*qcm.data["target_gate"][ref_nonzero_r,ref_nonzero_c] - U_var[i,(j+1),max_depth]*qcm.data["target_gate"][ref_nonzero_r,(ref_nonzero_c+1)] ==
U_var[ref_nonzero_r,ref_nonzero_c,max_depth]*qcm.data["target_gate"][i,j] - U_var[ref_nonzero_r,(ref_nonzero_c+1),max_depth]*qcm.data["target_gate"][i,(j+1)])
#complex parts equal
JuMP.@constraint(qcm.model, U_var[i,j,max_depth]*qcm.data["target_gate"][ref_nonzero_r,(ref_nonzero_c+1)] + U_var[i,(j+1),max_depth]*qcm.data["target_gate"][ref_nonzero_r,ref_nonzero_c] ==
U_var[ref_nonzero_r,ref_nonzero_c,max_depth]*qcm.data["target_gate"][i,(j+1)] + U_var[ref_nonzero_r,(ref_nonzero_c+1),max_depth]*qcm.data["target_gate"][i,j])
end
end
end
return
end
function constraint_slack_var_outer_approximation(qcm::QuantumCircuitModel)
slack_var = qcm.variables[:slack_var]
slack_var_oa = qcm.variables[:slack_var_oa]
# Number of under-estimators for the quadratic function
num_points = 9
for i=1:size(slack_var)[1], j=1:size(slack_var)[2]
lb = JuMP.lower_bound(slack_var[i,j])
ub = JuMP.upper_bound(slack_var[i,j])
if !(isapprox(lb, ub, atol = 1E-6))
oa_points = range(lb, ub, num_points)
JuMP.@constraint(qcm.model, [k=1:length(oa_points)],
slack_var_oa[i,j] >= 2*slack_var[i,j]*oa_points[k] - (oa_points[k])^2)
if !(0 in oa_points)
JuMP.@constraint(qcm.model, slack_var_oa[i,j] >= 0)
end
else
mid_point = (lb+ub)/2
JuMP.@constraint(qcm.model, slack_var_oa[i,j] >= 2*slack_var[i,j]*mid_point - (mid_point)^2)
end
end
return
end
function constraint_commutative_gate_pairs(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
z_bin_var = qcm.variables[:z_bin_var]
commute_pairs, commute_pairs_prodIdentity = QCO.get_commutative_gate_pairs(qcm.data["gates_dict"], qcm.data["decomposition_type"])
if !isempty(commute_pairs)
(length(commute_pairs) == 1) && (Memento.info(_LOGGER, "Detected $(length(commute_pairs)) input elementary gate pair which commutes"))
(length(commute_pairs) > 1) && (Memento.info(_LOGGER, "Detected $(length(commute_pairs)) input elementary gate pairs which commute"))
for i = 1:length(commute_pairs)
JuMP.@constraint(qcm.model, [d=1:(max_depth-1)], z_bin_var[commute_pairs[i][2], d] + z_bin_var[commute_pairs[i][1], d+1] <= 1)
end
end
if !isempty(commute_pairs_prodIdentity)
(length(commute_pairs_prodIdentity) == 1) && (Memento.info(_LOGGER, "Detected $(length(commute_pairs_prodIdentity)) input elementary gate pair whose product is Identity"))
(length(commute_pairs_prodIdentity) > 1) && (Memento.info(_LOGGER, "Detected $(length(commute_pairs_prodIdentity)) input elementary gate pairs whose product is Identity"))
for i = 1:length(commute_pairs_prodIdentity)
JuMP.@constraint(qcm.model, [d=1:(max_depth-1)], z_bin_var[commute_pairs_prodIdentity[i][2], d] + z_bin_var[commute_pairs_prodIdentity[i][1], d+1] <= 1)
JuMP.@constraint(qcm.model, [d=1:(max_depth-1)], z_bin_var[commute_pairs_prodIdentity[i][1], d] + z_bin_var[commute_pairs_prodIdentity[i][2], d+1] <= 1)
end
end
return
end
function constraint_involutory_gates(qcm::QuantumCircuitModel)
gates_dict = qcm.data["gates_dict"]
max_depth = qcm.data["maximum_depth"]
z_bin_var = qcm.variables[:z_bin_var]
involutory_gates = QCO.get_involutory_gates(gates_dict)
if !isempty(involutory_gates)
(length(involutory_gates) == 1) && (Memento.info(_LOGGER, "Detected $(length(involutory_gates)) involutory elementary gate"))
(length(involutory_gates) > 1) && (Memento.info(_LOGGER, "Detected $(length(involutory_gates)) involutory elementary gates"))
for i = 1:length(involutory_gates)
JuMP.@constraint(qcm.model, [d=1:(max_depth-1)], z_bin_var[involutory_gates[i], d] + z_bin_var[involutory_gates[i], d+1] <= 1)
end
end
return
end
function constraint_redundant_gate_product_pairs(qcm::QuantumCircuitModel)
gates_dict = qcm.data["gates_dict"]
max_depth = qcm.data["maximum_depth"]
z_bin_var = qcm.variables[:z_bin_var]
redundant_pairs = QCO.get_redundant_gate_product_pairs(gates_dict, qcm.data["decomposition_type"])
if !isempty(redundant_pairs)
(length(redundant_pairs) == 1) && (Memento.info(_LOGGER, "Detected $(length(redundant_pairs)) redundant input elementary gate pair"))
(length(redundant_pairs) > 1) && (Memento.info(_LOGGER, "Detected $(length(redundant_pairs)) redundant input elementary gate pairs"))
for i = 1:length(redundant_pairs)
JuMP.@constraint(qcm.model, [d=1:(max_depth-1)], z_bin_var[redundant_pairs[i][2], d] + z_bin_var[redundant_pairs[i][1], d+1] <= 1)
end
end
return
end
function constraint_idempotent_gates(qcm::QuantumCircuitModel)
gates_dict = qcm.data["gates_dict"]
max_depth = qcm.data["maximum_depth"]
z_bin_var = qcm.variables[:z_bin_var]
idempotent_gates = QCO.get_idempotent_gates(gates_dict, qcm.data["decomposition_type"])
if !isempty(idempotent_gates)
(length(idempotent_gates) == 1) && (Memento.info(_LOGGER, "Detected $(length(idempotent_gates)) idempotent elementary gate"))
(length(idempotent_gates) > 1) && (Memento.info(_LOGGER, "Detected $(length(idempotent_gates)) idempotent elementary gates"))
for i = 1:length(idempotent_gates)
JuMP.@constraint(qcm.model, [d=1:(max_depth-1)], z_bin_var[idempotent_gates[i], d] + z_bin_var[idempotent_gates[i], d+1] <= 1)
end
end
return
end
function constraint_identity_gate_symmetry(qcm::QuantumCircuitModel)
gates_dict = qcm.data["gates_dict"]
max_depth = qcm.data["maximum_depth"]
z_bin_var = qcm.variables[:z_bin_var]
identity_idx = []
for i=1:length(keys(gates_dict))
if "Identity" in gates_dict["$i"]["type"]
push!(identity_idx, i)
end
end
if !isempty(identity_idx)
for i = 1:length(identity_idx)
JuMP.@constraint(qcm.model, [d=1:(max_depth-1)], z_bin_var[identity_idx[i], d] <= z_bin_var[identity_idx[i], d+1])
end
end
return
end
function constraint_cnot_gate_bounds(qcm::QuantumCircuitModel)
cnot_idx = qcm.data["cnot_idx"]
max_depth = qcm.data["maximum_depth"]
z_bin_var = qcm.variables[:z_bin_var]
if !isempty(cnot_idx)
if "cnot_lower_bound" in keys(qcm.data)
JuMP.@constraint(qcm.model, sum(z_bin_var[n,d] for n in cnot_idx, d=1:max_depth) >= qcm.data["cnot_lower_bound"])
Memento.info(_LOGGER, "Applied CNot-gate lower bound constraint")
end
if "cnot_upper_bound" in keys(qcm.data)
JuMP.@constraint(qcm.model, sum(z_bin_var[n,d] for n in cnot_idx, d=1:max_depth) <= qcm.data["cnot_upper_bound"])
Memento.info(_LOGGER, "Applied CNot-gate upper bound constraint")
end
end
return
end
function constraint_convex_hull_complex_gates(qcm::QuantumCircuitModel)
if !qcm.data["are_gates_real"]
max_ex_pt = 4 # (>= 2) A parameter which can be an user input
z_bin_var = qcm.variables[:z_bin_var]
gates_real = qcm.data["gates_real"]
gates_dict = qcm.data["gates_dict"]
num_gates = size(gates_real)[3]
max_depth = qcm.data["maximum_depth"]
n_r = size(gates_dict["1"]["matrix"])[1]
n_c = size(gates_dict["1"]["matrix"])[2]
num_facets = 0
vertices_dict = Dict{Set{}, Tuple{<:Number, <:Number}}()
for I=1:n_r, J=1:n_c
vertices_coord_IJ = Set()
for K in keys(gates_dict)
re = QCO.round_real_value(real(gates_dict[K]["matrix"][I,J]))
im = QCO.round_real_value(imag(gates_dict[K]["matrix"][I,J]))
push!(vertices_coord_IJ, (re, im))
end
if (isapprox(minimum([x[1] for x in vertices_coord_IJ]), maximum([x[1] for x in vertices_coord_IJ]), atol = 1E-6)) || (isapprox(minimum([x[2] for x in vertices_coord_IJ]), maximum([x[2] for x in vertices_coord_IJ]), atol = 1E-6))
continue
else
# Eliminates repeated set of extreme points
vertices_dict[vertices_coord_IJ] = (I,J)
end
end
for vertices_coord in keys(vertices_dict)
I = vertices_dict[vertices_coord][1]
J = vertices_dict[vertices_coord][2]
vertices = Vector{Tuple{<:Number, <:Number}}()
if length(vertices_coord) == 2
for l in vertices_coord
push!(vertices, (l[1], l[2]))
end
slope, intercept = QCO._get_constraint_slope_intercept(vertices[1], vertices[2])
if !isinf(slope)
if isapprox(abs(slope), 0, atol=1E-6)
JuMP.@constraint(qcm.model, [d=1:max_depth],
sum(gates_real[(2*I-1),(2*J), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates) - intercept == 0)
else
JuMP.@constraint(qcm.model, [d=1:max_depth], sum(gates_real[(2*I-1),(2*J), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates)
- slope*sum(gates_real[(2*I-1),(2*J-1), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates) - intercept == 0)
end
elseif isinf(slope)
JuMP.@constraint(qcm.model, [d=1:max_depth], sum(gates_real[(2*I-1),(2*J-1), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates) == vertices[1][1])
end
num_facets += 1
elseif (length(vertices_coord) > 2)
for l in vertices_coord
push!(vertices, (l[1], l[2]))
end
vertices_convex_hull = QCO.convex_hull(vertices)
num_ex_pt = size(vertices_convex_hull)[1]
# Add a planar hull cut if num_ex_pt == 2
if (num_ex_pt >= 3) && (num_ex_pt <= max_ex_pt)
for i=1:num_ex_pt
v1 = vertices_convex_hull[i]
if i == num_ex_pt
v2 = vertices_convex_hull[1]
else
v2 = vertices_convex_hull[i+1]
end
# Test-vertex for half-space directionality
if i == (num_ex_pt - 1)
v3 = vertices_convex_hull[1]
elseif i == num_ex_pt
v3 = vertices_convex_hull[2]
else
v3 = vertices_convex_hull[i+2]
end
slope, intercept = QCO._get_constraint_slope_intercept(v1, v2)
# Facets of the hull
if !isinf(slope)
if v3[2] - slope*v3[1] - intercept <= -1E-6
if isapprox(abs(slope), 0, atol=1E-6)
JuMP.@constraint(qcm.model, [d=1:max_depth], sum(gates_real[(2*I-1),(2*J), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates) - intercept <= 0)
else
JuMP.@constraint(qcm.model, [d=1:max_depth], sum(gates_real[(2*I-1),(2*J), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates)
- slope*(sum(gates_real[(2*I-1),(2*J-1), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates)) - intercept <= 0)
end
num_facets += 1
elseif v3[2] - slope*v3[1] - intercept >= 1E-6
if isapprox(abs(slope), 0, atol=1E-6)
JuMP.@constraint(qcm.model, [d=1:max_depth], sum(gates_real[(2*I-1),(2*J), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates) - intercept >= 0)
else
JuMP.@constraint(qcm.model, [d=1:max_depth], sum(gates_real[(2*I-1),(2*J), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates)
- slope*(sum(gates_real[(2*I-1),(2*J-1), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates)) - intercept >= 0)
end
num_facets += 1
else
Memento.warn(_LOGGER, "Indeterminate direction for the planar-hull cut")
end
else isinf(slope)
if v3[1] >= v1[1] + 1E-6
JuMP.@constraint(qcm.model, [d=1:max_depth], sum(gates_real[(2*I-1),(2*J-1), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates) >= v1[1])
elseif v3[1] <= v1[1] - 1E-6
JuMP.@constraint(qcm.model, [d=1:max_depth], sum(gates_real[(2*I-1),(2*J-1), n_g] * z_bin_var[n_g,d] for n_g = 1:num_gates) <= v1[1])
else
Memento.warn(_LOGGER, "Indeterminate direction for the planar-hull cut")
end
num_facets += 1
end
end
end
end
end
if num_facets > 0
Memento.info(_LOGGER, "Applied $num_facets planar-hull cuts per max_depth of the decomposition")
end
end
return
end
function constraint_unitary_property(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
Z_var = qcm.variables[:Z_var]
z_bin_var = qcm.variables[:z_bin_var]
gates_real = qcm.data["gates_real"]
num_gates = size(gates_real)[3]
n_r = size(gates_real)[1]
n_c = size(gates_real)[2]
gates_adjoint = zeros(n_r, n_c, num_gates)
for k=1:num_gates
if qcm.data["are_gates_real"]
gates_adjoint[:,:,k] = gates_real[:,:,k]'
else
gate_complex = QCO.real_to_complex_gate(gates_real[:,:,k])
gate_complex_adj = Matrix{ComplexF64}(adjoint(gate_complex))
gates_adjoint[:,:,k] = QCO.complex_to_real_gate(gate_complex_adj)
end
end
for d = 1:max_depth
for i=1:num_gates
for j=i:num_gates
if i == j
JuMP.@constraint(qcm.model, Z_var[i,j,d] == z_bin_var[i,d])
else
QCO.relaxation_bilinear(qcm.model, Z_var[i,j,d], z_bin_var[i,d], z_bin_var[j,d])
# JuMP.@constraint(qcm.model, Z_var[i,j,d] == 0)
JuMP.@constraint(qcm.model, Z_var[j,i,d] == Z_var[i,j,d])
end
end
# RLT-type constraint
JuMP.@constraint(qcm.model, sum(Z_var[i,:,d]) == z_bin_var[i,d])
end
# JuMP.@constraint(qcm.model, sum(Z_var[i,i,d] for i=1:num_gates) == 1)
end
# Unitary constraint
JuMP.@constraint(qcm.model, [d=1:max_depth], sum(Z_var[i,j,d]* QCO.round_real_value.(gates_real[:,:,i] * gates_adjoint[:,:,j] +
gates_real[:,:,j] * gates_adjoint[:,:,i]) for i=1:(num_gates-1),
j=(i+1):num_gates) .== zeros(n_r, n_c))
return
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 37539 | import LinearAlgebra: I
"""
get_data(params::Dict{String, Any}; eliminate_identical_gates = true)
Given the user input `params` dictionary, this function returns a dictionary of processed data which contains all the
necessary information to formulate the optimization model for the circuit design problem.
"""
function get_data(params::Dict{String, Any}; eliminate_identical_gates = true)
# Number of qubits
if "num_qubits" in keys(params)
if params["num_qubits"] < 2
Memento.error(_LOGGER, "Minimum of 2 qubits is necessary")
end
num_qubits = params["num_qubits"]
else
Memento.error(_LOGGER, "Number of qubits has to be specified by the user")
end
# Depth
if "maximum_depth" in keys(params)
if params["maximum_depth"] < 2
Memento.error(_LOGGER, "Minimum depth of 2 is necessary")
end
maximum_depth = params["maximum_depth"]
else
Memento.error(_LOGGER, "Maximum depth of the decomposition has to be specified by the user")
end
# Elementary gates
if !("elementary_gates" in keys(params)) || isempty(params["elementary_gates"])
Memento.error(_LOGGER, "Specify at least two unique unitary elementary gates")
end
# Input Circuit
if "input_circuit" in keys(params)
input_circuit = params["input_circuit"]
else
# default value
input_circuit = []
end
input_circuit_dict = Dict{String,Any}()
if length(input_circuit) > 0 && (length(input_circuit) <= params["maximum_depth"])
input_circuit_dict = QCO.get_input_circuit_dict(input_circuit, params)
else
(length(input_circuit) > 0) && (Memento.warn(_LOGGER, "Neglecting the input circuit as it's depth is greater than the allowable depth"))
end
# Decomposition type
if "decomposition_type" in keys(params)
decomposition_type = params["decomposition_type"]
else
decomposition_type = "exact_optimal"
end
if !(decomposition_type in ["exact_optimal", "exact_feasible", "optimal_global_phase", "approximate"])
Memento.error(_LOGGER, "Decomposition type not supported")
end
# Objective function
if "objective" in keys(params)
objective = params["objective"]
else
objective = "minimize_depth"
end
elementary_gates = unique(params["elementary_gates"])
if length(elementary_gates) < length(params["elementary_gates"])
Memento.warn(_LOGGER, "Eliminating non-unique gates in the input elementary gates")
end
gates_dict, are_elementary_gates_real = QCO.get_elementary_gates_dictionary(params, elementary_gates)
target_real, is_target_real = QCO.get_target_gate(params, are_elementary_gates_real, decomposition_type)
gates_dict_unique, M_real_unique, identity_idx, cnot_idx = QCO.eliminate_nonunique_gates(gates_dict, are_elementary_gates_real, eliminate_identical_gates = eliminate_identical_gates)
# Initial gate
if "initial_gate" in keys(params)
if params["initial_gate"] == "Identity"
if are_elementary_gates_real && is_target_real
initial_gate = real(QCO.IGate(num_qubits))
else
initial_gate = QCO.complex_to_real_gate(QCO.IGate(num_qubits))
end
else
Memento.error(_LOGGER, "Currently, only \"Identity\" is supported as an initial gate")
# Add code here to support non-identity as an initial gate.
end
else
if are_elementary_gates_real && is_target_real
initial_gate = real(QCO.IGate(num_qubits))
else
initial_gate = QCO.complex_to_real_gate(QCO.IGate(num_qubits))
end
end
data = Dict{String, Any}("num_qubits" => num_qubits,
"maximum_depth" => maximum_depth,
"gates_dict" => gates_dict_unique,
"gates_real" => M_real_unique,
"initial_gate" => initial_gate,
"identity_idx" => identity_idx,
"cnot_idx" => cnot_idx,
"elementary_gates" => elementary_gates,
"target_gate" => target_real,
"are_gates_real" => (are_elementary_gates_real && is_target_real),
"objective" => objective,
"decomposition_type" => decomposition_type
)
if data["are_gates_real"]
Memento.info(_LOGGER, "Detected all-real elementary and target gates")
end
# Rotation and Universal gate angle discretizations
data = QCO._populate_data_angle_discretization!(data, params)
# Determinant test for input gates
(data["decomposition_type"] in ["exact_optimal", "exact_feasible"]) && QCO._determinant_test_for_infeasibility(data)
# Input circuit
if length(keys(input_circuit_dict)) > 0
data["input_circuit"] = input_circuit_dict
end
# CNOT lower/upper bound
data = QCO._get_cnot_bounds!(data, params)
return data
end
"""
eliminate_nonunique_gates(gates_dict::Dict{String, Any})
"""
function eliminate_nonunique_gates(gates_dict::Dict{String, Any}, are_elementary_gates_real::Bool; eliminate_identical_gates = false)
num_gates = length(keys(gates_dict))
# This identifies if all the elementary gates have only real entries and returns compact matrices
if are_elementary_gates_real
M_real = zeros(size(gates_dict["1"]["matrix"])[1], size(gates_dict["1"]["matrix"])[2], num_gates)
else
M_real = zeros(2*size(gates_dict["1"]["matrix"])[1], 2*size(gates_dict["1"]["matrix"])[2], num_gates)
end
for i=1:num_gates
if are_elementary_gates_real
M_real[:,:,i] = real(gates_dict["$i"]["matrix"])
else
M_real[:,:,i] = QCO.complex_to_real_gate(gates_dict["$i"]["matrix"])
end
end
M_real_unique = M_real
M_real_idx = collect(1:size(M_real)[3])
if eliminate_identical_gates
M_real_unique, M_real_idx = QCO.unique_matrices(M_real)
end
gates_dict_unique = Dict{String, Any}()
if size(M_real_unique)[3] < size(M_real)[3]
Memento.info(_LOGGER, "Detected $(size(M_real)[3]-size(M_real_unique)[3]) non-unique gates (after discretization)")
for i = 1:length(M_real_idx)
gates_dict_unique["$i"] = gates_dict["$(M_real_idx[i])"]
end
else
gates_dict_unique = gates_dict
end
identity_idx = QCO._get_identity_idx(M_real_unique)
for i_id = 1:length(identity_idx)
if !("Identity" in gates_dict_unique["$(identity_idx[i_id])"]["type"])
push!(gates_dict_unique["$(identity_idx[i_id])"]["type"], "Identity")
end
end
cnot_idx = QCO._get_cnot_idx(gates_dict_unique)
return gates_dict_unique, M_real_unique, identity_idx, cnot_idx
end
function _populate_data_angle_discretization!(data::Dict{String, Any}, params::Dict{String, Any})
one_angle_gates, two_angle_gates, three_angle_gates = QCO._get_angle_gates_idx(data["elementary_gates"])
if !isempty(union(one_angle_gates, two_angle_gates, three_angle_gates))
if length(findall(x -> (occursin("discretization", x)), collect(keys(params)))) == 0
Memento.error(_LOGGER, "Enter valid discretization angles in the imput params")
end
data["discretization"] = Dict{String, Any}()
if !isempty(one_angle_gates)
for i in one_angle_gates
gate_type = QCO._parse_gate_string(data["elementary_gates"][i], type = true)
data["discretization"][gate_type] = Float64.(params["$(gate_type)_discretization"])
end
end
if !isempty(two_angle_gates)
for i in two_angle_gates
gate_type = QCO._parse_gate_string(data["elementary_gates"][i], type = true)
data["discretization"]["$(gate_type)_θ"] = Float64.(params["$(gate_type)_θ_discretization"])
data["discretization"]["$(gate_type)_ϕ"] = Float64.(params["$(gate_type)_ϕ_discretization"])
end
end
if !isempty(three_angle_gates)
for i in three_angle_gates
gate_type = QCO._parse_gate_string(data["elementary_gates"][i], type = true)
data["discretization"]["$(gate_type)_θ"] = Float64.(params["$(gate_type)_θ_discretization"])
data["discretization"]["$(gate_type)_ϕ"] = Float64.(params["$(gate_type)_ϕ_discretization"])
data["discretization"]["$(gate_type)_λ"] = Float64.(params["$(gate_type)_λ_discretization"])
end
end
end
return data
end
"""
get_target_gate(params::Dict{String, Any}, are_elementary_gates_real::Bool)
Given the user input `params` dictionary and a boolean if all the input elementary gates are real,
this function returns the corresponding real version of the target gate.
"""
function get_target_gate(params::Dict{String, Any}, are_elementary_gates_real::Bool, decomposition_type::String)
if !("target_gate" in keys(params)) || isempty(params["target_gate"])
Memento.error(_LOGGER, "Target gate not found in the input data")
end
if (size(params["target_gate"])[1] != size(params["target_gate"])[2]) || (size(params["target_gate"])[1] != 2^params["num_qubits"])
Memento.error(_LOGGER, "Dimensions of target gate do not match the input num_qubits")
end
# Identify if the target gate has only real entries or if it is real up to a global phase and returns a compact matrix
is_target_real = QCO.is_gate_real(params["target_gate"])
if are_elementary_gates_real
global_phase = 0
if (decomposition_type in ["optimal_global_phase"]) && !is_target_real
ref_nonzero_r, ref_nonzero_c = QCO._get_nonzero_idx_of_complex_matrix(params["target_gate"])
global_phase = angle(params["target_gate"][ref_nonzero_r, ref_nonzero_c])
end
is_target_real_up_to_phase = QCO.is_gate_real(exp(-im*global_phase)*params["target_gate"])
if is_target_real_up_to_phase
return real(exp(-im*global_phase)*params["target_gate"]), is_target_real_up_to_phase
else
Memento.error(_LOGGER, "Infeasible decomposition: all elementary gates have zero imaginary parts and target is not real for exact decomposition or not real up to a global phase for optimal_global_phase decomposition.")
end
else
return QCO.complex_to_real_gate(params["target_gate"]), is_target_real
end
end
function get_elementary_gates_dictionary(params::Dict{String, Any}, elementary_gates::Array{String,1})
num_qubits = params["num_qubits"]
one_angle_gates, two_angle_gates, three_angle_gates = QCO._get_angle_gates_idx(elementary_gates)
one_angle_gates_dict = Dict{String,Any}()
two_angle_gates_dict = Dict{String,Any}()
three_angle_gates_dict = Dict{String,Any}()
if !isempty(one_angle_gates)
one_angle_gates_dict = QCO.get_all_one_angle_gates(params, elementary_gates, one_angle_gates)
end
if !isempty(two_angle_gates)
two_angle_gates_dict = QCO.get_all_two_angle_gates(params, elementary_gates, two_angle_gates)
end
if !isempty(three_angle_gates)
three_angle_gates_dict = QCO.get_all_three_angle_gates(params, elementary_gates, three_angle_gates)
end
all_angle_gates_dict = merge(one_angle_gates_dict, two_angle_gates_dict, three_angle_gates_dict)
gates_dict = Dict{String, Any}()
counter = 1
for i=1:length(elementary_gates)
if i in union(one_angle_gates, two_angle_gates, three_angle_gates)
M_elementary_dict = all_angle_gates_dict[elementary_gates[i]]
for k in keys(M_elementary_dict) # Angle
for l in keys(M_elementary_dict[k]["$(num_qubits)qubit_rep"]) # qubits (which will now be 1)
gates_dict["$counter"] = Dict{String, Any}("type" => [elementary_gates[i]],
"angle" => Any,
"qubit_loc" => l,
"matrix" => M_elementary_dict[k]["$(num_qubits)qubit_rep"][l])
if i in one_angle_gates
gates_dict["$counter"]["angle"] = M_elementary_dict[k]["angle"]
elseif i in two_angle_gates
gates_dict["$counter"]["angle"] = Dict{String, Any}("θ" => M_elementary_dict[k]["θ"],
"ϕ" => M_elementary_dict[k]["ϕ"])
elseif i in three_angle_gates
gates_dict["$counter"]["angle"] = Dict{String, Any}("θ" => M_elementary_dict[k]["θ"],
"ϕ" => M_elementary_dict[k]["ϕ"],
"λ" => M_elementary_dict[k]["λ"],)
end
counter += 1
end
end
else
M = QCO.get_unitary(elementary_gates[i], num_qubits)
gates_dict["$counter"] = Dict{String, Any}("type" => [elementary_gates[i]],
"matrix" => M)
counter += 1
end
end
are_elementary_gates_real = true
for i in keys(gates_dict)
if !(QCO.is_gate_real(gates_dict[i]["matrix"]))
are_elementary_gates_real = false
continue
end
end
return gates_dict, are_elementary_gates_real
end
function get_all_one_angle_gates(params::Dict{String, Any}, elementary_gates::Array{String,1}, gates_idx::Vector{Int64})
gates_complex = Dict{String, Any}()
if length(gates_idx) >= 1
for i=1:length(gates_idx)
input_gate = elementary_gates[gates_idx[i]]
gate_name = QCO._parse_gate_string(input_gate, type=true)
if isempty(params[string(gate_name,"_discretization")])
Memento.error(_LOGGER, "Empty discretization angles for $(input_gate) gate. Input a valid angle")
end
angle_disc = Float64.(params[string(gate_name,"_discretization")])
gates_complex[input_gate] = Dict{String, Any}()
gates_complex[input_gate] = QCO.get_discretized_one_angle_gates(input_gate, gates_complex[input_gate], angle_disc, params["num_qubits"])
end
end
return gates_complex
end
function get_discretized_one_angle_gates(gate_type::String, M1::Dict{String, Any}, discretization::Array{Float64,1}, num_qubits::Int64)
if length(discretization) >= 1
for i=1:length(discretization)
angles = discretization[i]
M1["angle_$i"] = Dict{String, Any}("angle" => angles,
"$(num_qubits)qubit_rep" => Dict{String, Any}() )
qubit_loc = QCO._parse_gate_string(gate_type, qubits=true)
if length(qubit_loc) == 1
qubit_loc_str = string(qubit_loc[1])
elseif length(qubit_loc) == 2
qubit_loc_str = string(qubit_loc[1], qubit_separator, qubit_loc[2])
end
M1["angle_$i"]["$(num_qubits)qubit_rep"]["qubit_$(qubit_loc_str)"] = QCO.get_unitary(gate_type, num_qubits, angle = angles)
end
end
return M1
end
# This function assumes that θ and ϕ are the only angle paramters in the input gate (like QCO.RGate())
function get_all_two_angle_gates(params::Dict{String, Any}, elementary_gates::Array{String,1}, gates_idx::Vector{Int64})
gates_complex = Dict{String, Any}()
if length(gates_idx) >= 1
for i=1:length(gates_idx)
input_gate = elementary_gates[gates_idx[i]]
gate_name = QCO._parse_gate_string(input_gate, type = true)
gates_complex[input_gate] = Dict{String, Any}()
for angle in ["θ", "ϕ"]
if isempty(params["$(gate_name)_$(angle)_discretization"])
Memento.error(_LOGGER, "Empty $(angle) discretization angle for $input_gate gate. Input atleast one valid angle")
end
end
θ_disc = Vector{Float64}(params["$(gate_name)_θ_discretization"])
ϕ_disc = Vector{Float64}(params["$(gate_name)_ϕ_discretization"])
gates_complex[input_gate] = QCO.get_discretized_two_angle_gates(input_gate, gates_complex[input_gate], θ_disc, ϕ_disc, params["num_qubits"])
end
end
return gates_complex
end
# This function assumes that θ and ϕ are the only angle paramters in the input gate (like QCO.RGate())
function get_discretized_two_angle_gates(gate_type::String, M2::Dict{String, Any}, θ_discretization::Array{Float64,1}, ϕ_discretization::Array{Float64,1}, num_qubits::Int64)
counter = 1
for i=1:length(θ_discretization)
for j=1:length(ϕ_discretization)
angles = [θ_discretization[i], ϕ_discretization[j]]
M2["angle_$(counter)"] = Dict{String, Any}("θ" => angles[1],
"ϕ" => angles[2],
"$(num_qubits)qubit_rep" => Dict{String, Any}()
)
if !(gate_type in QCO.MULTI_QUBIT_GATES)
qubit_loc = QCO._parse_gate_string(gate_type, qubits=true)
if length(qubit_loc) == 1
qubit_loc_str = string(qubit_loc[1])
elseif length(qubit_loc) == 2
qubit_loc_str = string(qubit_loc[1], qubit_separator, qubit_loc[2])
end
M2["angle_$(counter)"]["$(num_qubits)qubit_rep"]["qubit_$(qubit_loc_str)"] = QCO.get_unitary(gate_type, num_qubits, angle = angles)
else
M2["angle_$(counter)"]["$(num_qubits)qubit_rep"]["multi_qubits"] = QCO.get_unitary(gate_type, num_qubits, angle = angles)
end
counter += 1
end
end
return M2
end
function get_all_three_angle_gates(params::Dict{String, Any}, elementary_gates::Array{String,1}, gates_idx::Vector{Int64})
gates_complex = Dict{String, Any}()
if length(gates_idx) >= 1
for i=1:length(gates_idx)
input_gate = elementary_gates[gates_idx[i]]
gate_name = QCO._parse_gate_string(input_gate, type = true)
gates_complex[input_gate] = Dict{String, Any}()
for angle in ["θ", "ϕ", "λ"]
if isempty(params["$(gate_name)_$(angle)_discretization"])
Memento.error(_LOGGER, "Empty $(angle) discretization angle for $input_gate gate. Input atleast one valid angle")
end
end
θ_disc = Vector{Float64}(params["$(gate_name)_θ_discretization"])
ϕ_disc = Vector{Float64}(params["$(gate_name)_ϕ_discretization"])
λ_disc = Vector{Float64}(params["$(gate_name)_λ_discretization"])
gates_complex[input_gate] = QCO.get_discretized_three_angle_gates(input_gate, gates_complex[input_gate], θ_disc, ϕ_disc, λ_disc, params["num_qubits"])
end
end
return gates_complex
end
function get_discretized_three_angle_gates(gate_type::String, M3::Dict{String, Any}, θ_discretization::Array{Float64,1}, ϕ_discretization::Array{Float64,1}, λ_discretization::Array{Float64,1}, num_qubits::Int64)
counter = 1
for i=1:length(θ_discretization)
for j=1:length(ϕ_discretization)
for k=1:length(λ_discretization)
angles = [θ_discretization[i], ϕ_discretization[j], λ_discretization[k]]
M3["angle_$(counter)"] = Dict{String, Any}("θ" => angles[1],
"ϕ" => angles[2],
"λ" => angles[3],
"$(num_qubits)qubit_rep" => Dict{String, Any}()
)
qubit_loc = QCO._parse_gate_string(gate_type, qubits=true)
if length(qubit_loc) == 1
qubit_loc_str = string(qubit_loc[1])
elseif length(qubit_loc) == 2
qubit_loc_str = string(qubit_loc[1], qubit_separator, qubit_loc[2])
end
M3["angle_$(counter)"]["$(num_qubits)qubit_rep"]["qubit_$(qubit_loc_str)"] = QCO.get_unitary(gate_type, num_qubits, angle = angles)
counter += 1
end
end
end
return M3
end
"""
get_unitary(input::String, num_qubits::Int64; angle = nothing)
Given an input string representing the gate and number of qubits of the circuit, this function returns a full-sized
gate with respect to the input number of qubits. For example, if `num_qubits = 3` and the input gate in `H_3`
(Hadamard on third qubit), then this function returns `IGate ⨂ IGate ⨂ HGate`, where IGate and HGate are single
qubit Identity and Hadamard gates, respectively. Note that `angle` vector is an optional input which is
necessary when the input gate is parametrized by Euler angles.
"""
function get_unitary(input::String, num_qubits::Int64; angle = nothing)
if num_qubits > 10
Memento.error(_LOGGER, "Greater than 10 qubits is currently not supported")
end
if occursin(QCO.kron_symbol, input)
return QCO.get_full_sized_kron_gate(input, num_qubits)
end
if input == "Identity"
return QCO.IGate(num_qubits)
end
gate_type, qubit_loc = QCO._parse_gate_string(input, type = true, qubits = true)
if !(gate_type in union(QCO.ONE_QUBIT_GATES, QCO.TWO_QUBIT_GATES, QCO.MULTI_QUBIT_GATES))
Memento.error(_LOGGER, "Specified $input gate does not exist in the predefined set of gates")
end
QCO._catch_input_gate_errors(gate_type, qubit_loc, num_qubits, input; angle = angle)
#----------------------;
# One qubit gates ;
#----------------------;
if length(qubit_loc) == 1
if gate_type in QCO.ONE_QUBIT_GATES_CONSTANTS
return QCO.kron_single_qubit_gate(num_qubits, getfield(QCO, Symbol(gate_type, "Gate"))(), "q$(qubit_loc[1])")
elseif gate_type in QCO.ONE_QUBIT_GATES_ANGLE_PARAMETERS
if (angle !== nothing) && (length(angle) > 0)
if length(angle) == 1
return QCO.kron_single_qubit_gate(num_qubits, getfield(QCO, Symbol(gate_type, "Gate"))(angle[1]), "q$(qubit_loc[1])")
elseif length(angle) == 2
return QCO.kron_single_qubit_gate(num_qubits, getfield(QCO, Symbol(gate_type, "Gate"))(angle[1], angle[2]), "q$(qubit_loc[1])")
elseif length(angle) == 3
return QCO.kron_single_qubit_gate(num_qubits, getfield(QCO, Symbol(gate_type, "Gate"))(angle[1], angle[2], angle[3]), "q$(qubit_loc[1])")
end
else
Memento.error(_LOGGER, "Enter a valid angle parameter for the input $input gate")
end
end
#----------------------;
# Two qubit gates ;
#----------------------;
elseif length(qubit_loc) == 2
if gate_type in QCO.TWO_QUBIT_GATES_CONSTANTS
if (qubit_loc[1] < qubit_loc[2]) || (gate_type in QCO.TWO_QUBIT_GATES_CONSTANTS_SYMMETRIC)
return QCO.kron_two_qubit_gate(num_qubits, getfield(QCO, Symbol(gate_type, "Gate"))(), "q$(qubit_loc[1])", "q$(qubit_loc[2])")
else
return QCO.kron_two_qubit_gate(num_qubits, getfield(QCO, Symbol(gate_type, "RevGate"))(), "q$(qubit_loc[1])", "q$(qubit_loc[2])")
end
elseif gate_type in QCO.TWO_QUBIT_GATES_ANGLE_PARAMETERS
if (angle !== nothing) && (length(angle) > 0)
if length(angle) == 1
if (qubit_loc[1] < qubit_loc[2])
return QCO.kron_two_qubit_gate(num_qubits, getfield(QCO, Symbol(gate_type, "Gate"))(angle[1]), "q$(qubit_loc[1])", "q$(qubit_loc[2])")
else
return QCO.kron_two_qubit_gate(num_qubits, getfield(QCO, Symbol(gate_type, "RevGate"))(angle[1]), "q$(qubit_loc[1])", "q$(qubit_loc[2])")
end
elseif length(angle) == 3
if (qubit_loc[1] < qubit_loc[2])
return QCO.kron_two_qubit_gate(num_qubits, getfield(QCO, Symbol(gate_type, "Gate"))(angle[1], angle[2], angle[3]), "q$(qubit_loc[1])", "q$(qubit_loc[2])")
else
return QCO.kron_two_qubit_gate(num_qubits, getfield(QCO, Symbol(gate_type, "RevGate"))(angle[1], angle[2], angle[3]), "q$(qubit_loc[1])", "q$(qubit_loc[2])")
end
end
else
Memento.error(_LOGGER, "Enter a valid angle parameter for the input $input gate")
end
end
#-----------------------;
# Multi qubit gates ;
#-----------------------;
elseif gate_type in QCO.MULTI_QUBIT_GATES_ANGLE_PARAMETERS
if (angle !== nothing) && (length(angle) == 2)
return getfield(QCO, Symbol(gate_type, "Gate"))(num_qubits, angle[1], angle[2])
else
Memento.error(_LOGGER, "Enter a valid angle parameter for the input $input gate")
end
end
end
"""
get_full_sized_kron_gate(input::String, num_qubits::Int64)
Given an input string with kronecker symbols representing the gate and number of qubits of
the circuit, this function returns a full-sized gate with respect to the input number of qubits.
For example, if `num_qubits = 3` and the input gate in `I_1xT_2xH_3`, then this function returns
`IGate⨂TGate⨂HGate`, where IGate, TGate and HGate are single-qubit Identity, T and
Hadamard gates, respectively. Two qubit gates can also be used as one of the input gates, for ex. `I_1xCV_2_3xH_4`.
Note that this function currently does not support an input gate parametrized with Euler angles.
"""
function get_full_sized_kron_gate(input::String, num_qubits::Int64)
kron_gates = QCO._parse_gates_with_kron_symbol(input)
if length(unique(kron_gates)) !== length(kron_gates)
Memento.error(_LOGGER, "Specify only a single gate per qubit within kron symbol gate $input")
end
M = 1
gate_qubit_locs = []
for i = 1:length(kron_gates)
gate_type, qubit_loc = QCO._parse_gate_string(kron_gates[i], type = true, qubits = true)
if !(gate_type in union(QCO.ONE_QUBIT_GATES_CONSTANTS, QCO.TWO_QUBIT_GATES_CONSTANTS))
Memento.error(_LOGGER, "Specified $input gate is not supported in conjunction with the Kronecker product operation")
end
QCO._catch_input_gate_errors(gate_type, qubit_loc, num_qubits, input)
if issubset(qubit_loc, gate_qubit_locs)
Memento.error(_LOGGER, "Specified qubit(s) for $input gate is incorrect")
else
append!(gate_qubit_locs, range(qubit_loc[1], qubit_loc[end]))
end
# One-qubit gates
if (length(qubit_loc) == 1) && (gate_type in QCO.ONE_QUBIT_GATES_CONSTANTS)
if (gate_type == "I") || (gate_type == "Identity")
M = kron(M, getfield(QCO, Symbol(gate_type, "Gate"))(1))
else
M = kron(M, getfield(QCO, Symbol(gate_type, "Gate"))())
end
# Two-qubit gates
elseif (length(qubit_loc) == 2) && (gate_type in QCO.TWO_QUBIT_GATES_CONSTANTS)
gate_width = abs(qubit_loc[1] - qubit_loc[2])
if gate_width == 1
if (qubit_loc[1] < qubit_loc[2]) || (gate_type in QCO.TWO_QUBIT_GATES_CONSTANTS_SYMMETRIC)
M = kron(M, getfield(QCO, Symbol(gate_type, "Gate"))())
else
M = kron(M, getfield(QCO, Symbol(gate_type, "RevGate"))())
end
else
if (qubit_loc[1] < qubit_loc[2]) || (gate_type in QCO.TWO_QUBIT_GATES_CONSTANTS_SYMMETRIC)
kron_gate = QCO.get_unitary(string(gate_type, qubit_separator, 1, qubit_separator, Int(gate_width + 1)), (gate_width + 1))
else
kron_gate = QCO.get_unitary(string(gate_type, qubit_separator, Int(gate_width + 1), qubit_separator, 1), (gate_width + 1))
end
M = kron(M, kron_gate)
end
end
end
QCO._catch_kron_dimension_errors(num_qubits, size(M)[1])
return M
end
"""
get_input_circuit_dict(input_circuit::Vector{Tuple{Int64,String}}, params::Dict{String,Any})
Given the user input circuit which serves as a warm-start to the optimization model, and user input params dictionary,
this function outputs the post-processed dictionary of the input circuit which is used by the optimization model.
"""
function get_input_circuit_dict(input_circuit::Vector{Tuple{Int64,String}}, params::Dict{String,Any})
input_circuit_dict = Dict{String, Any}()
status = true
gate_type = []
for i = 1:length(input_circuit)
if !(input_circuit[i][2] in params["elementary_gates"])
status = false
gate_type = input_circuit[i][2]
end
end
if status
for i = 1:length(input_circuit)
if i == input_circuit[i][1]
input_circuit_dict["$i"] = Dict{String, Any}("depth" => input_circuit[i][1],
"gate" => input_circuit[i][2])
# Later: add support for universal and rotation gates here
else
input_circuit_dict = Dict{String, Any}()
Memento.warn(_LOGGER, "Neglecting the input circuit as multiple gates cannot be input at the same depth")
break
end
end
else
Memento.warn(_LOGGER, "Neglecting the input circuit as gate $gate_type is not in input elementary gates")
end
return input_circuit_dict
end
"""
_catch_input_gate_errors(gate_type::String, qubit_loc::Vector{Int64}, num_qubits::Int64, input_gate::String)
Given an input gate string, number of qubits of the circuit and the qubit locations for the input gate,
this function catches and throws any errors, should the input gate type and qubits are invalid.
"""
function _catch_input_gate_errors(gate_type::String, qubit_loc::Vector{Int64}, num_qubits::Int64, input_gate::String; angle = nothing)
if num_qubits <= 0
Memento.error(_LOGGER, "Specified number of qubits has to be >= 1")
end
if (gate_type in QCO.TWO_QUBIT_GATES) && (length(qubit_loc) != 2)
Memento.error(_LOGGER, "Specify two qubits for 2-qubit gate $gate_type in elementary gates")
elseif (gate_type in QCO.ONE_QUBIT_GATES) && (length(qubit_loc) == 0)
Memento.error(_LOGGER, "Specify a qubit for the 1-qubit gate $gate_type in elementary gates")
elseif (gate_type in QCO.ONE_QUBIT_GATES) && (length(qubit_loc) >= 2)
Memento.error(_LOGGER, "Specify only one qubit for the 1-qubit gate $gate_type in elementary gates")
end
if isempty(qubit_loc) && (gate_type !== "GR")
Memento.error(_LOGGER, "Specify a valid qubit location(s) for the input $input_gate gate")
elseif (gate_type == "GR") && (!isempty(qubit_loc))
Memento.error(_LOGGER, "Qubit locations are not necessary for Global-R gate as it is simultaneously applied on all qubits at a depth")
elseif !issubset(qubit_loc, 1:num_qubits)
Memento.error(_LOGGER, "Specified qubit(s) for $input_gate gate ∉ {1,...,$num_qubits}")
elseif (length(qubit_loc) == 2) && (isapprox(qubit_loc[1], qubit_loc[2]))
Memento.error(_LOGGER, "Specified $input_gate gate cannot have identical control and target qubits")
elseif length(qubit_loc) > 2
Memento.error(_LOGGER, "Only 1- and 2-qubit elementary gates are currently supported")
end
if !(gate_type in union(QCO.ONE_QUBIT_GATES_ANGLE_PARAMETERS, QCO.TWO_QUBIT_GATES_ANGLE_PARAMETERS,
QCO.MULTI_QUBIT_GATES_ANGLE_PARAMETERS)) && (angle !== nothing)
Memento.warn(_LOGGER, "Neglecting the angle input for gate $(gate_type) with constant parameters")
end
end
function _get_R_XYZ_gates_idx(elementary_gates::Array{String,1})
return findall(x -> (startswith(x, "RX") || startswith(x, "RY") || startswith(x, "RZ")) && !(occursin(kron_symbol, x)), elementary_gates)
end
function _get_R_gates_idx(elementary_gates::Array{String,1})
return findall(x -> startswith(x, "R") && !(startswith(x, "RX") || startswith(x, "RY") || startswith(x, "RZ")) && !(occursin(kron_symbol, x)), elementary_gates)
end
function _get_GR_gates_idx(elementary_gates::Array{String,1})
return findall(x -> (startswith(x, "GR")) && !(occursin(kron_symbol, x)), elementary_gates)
end
function _get_U3_gates_idx(elementary_gates::Array{String,1})
return findall(x -> (startswith(x, "U3")) && !(occursin(kron_symbol, x)), elementary_gates)
end
function _get_CR_gates_idx(elementary_gates::Array{String,1})
return findall(x -> (startswith(x, "CRX") || startswith(x, "CRY") || startswith(x, "CRZ")) && !(occursin(kron_symbol, x)), elementary_gates)
end
function _get_CU3_gates_idx(elementary_gates::Array{String, 1})
return findall(x -> (startswith(x, "CU3")) && !(occursin(kron_symbol, x)), elementary_gates)
end
function _get_Phase_gates_idx(elementary_gates::Array{String, 1})
return findall(x -> (startswith(x, "Phase")) && !(occursin(kron_symbol, x)), elementary_gates)
end
function _get_identity_idx(M::Array{Float64,3})
identity_idx = Int64[]
for i=1:size(M)[3]
if isapprox(M[:,:,i], Matrix(I, size(M)[1], size(M)[2]), atol=1E-5)
push!(identity_idx, i)
end
end
return identity_idx
end
function _get_cnot_idx(gates_dict::Dict{String, Any})
cnot_idx = Int64[]
# Counts for both (CNot_i_j and CNot_j_i) or (CX_i_j and CX_j_i)
for i in keys(gates_dict)
# Input gates with kron symbols
if occursin(kron_symbol, gates_dict[i]["type"][1])
gate_types = QCO._parse_gates_with_kron_symbol(gates_dict[i]["type"][1])
for j = 1:length(gate_types)
gate_type = QCO._parse_gate_string(gate_types[j], type = true)
if gate_type in ["CNot", "CX"]
push!(cnot_idx, parse(Int64, i))
end
end
else
# Single input gate per depth
if "Identity" in gates_dict[i]["type"]
continue
end
gate_type = QCO._parse_gate_string(gates_dict[i]["type"][1], type = true)
if gate_type in ["CNot", "CX"]
push!(cnot_idx, parse(Int64, i))
end
end
end
return cnot_idx
end
function _get_angle_gates_idx(elementary_gates::Array{String,1})
# Update this list as new gates with angle parameters are added in gates.jl
R_XYZ_gates_idx = QCO._get_R_XYZ_gates_idx(elementary_gates)
R_gates_idx = QCO._get_R_gates_idx(elementary_gates)
GR_gates_idx = QCO._get_GR_gates_idx(elementary_gates)
Phase_gates_idx = QCO._get_Phase_gates_idx(elementary_gates)
CR_gates_idx = QCO._get_CR_gates_idx(elementary_gates)
U3_gates_idx = QCO._get_U3_gates_idx(elementary_gates)
CU3_gates_idx = QCO._get_CU3_gates_idx(elementary_gates)
one_angle_gates = union(R_XYZ_gates_idx, Phase_gates_idx, CR_gates_idx)
two_angle_gates = union(R_gates_idx, GR_gates_idx)
three_angle_gates = union(U3_gates_idx, CU3_gates_idx)
return one_angle_gates, two_angle_gates, three_angle_gates
end
function _get_cnot_bounds!(data::Dict{String, Any}, params::Dict{String, Any})
cnot_lb = 0
cnot_ub = data["maximum_depth"]
if "set_cnot_lower_bound" in keys(params)
cnot_lb = params["set_cnot_lower_bound"]
end
if "set_cnot_upper_bound" in keys(params)
cnot_ub = params["set_cnot_upper_bound"]
end
if cnot_lb > data["maximum_depth"]
Memento.error(_LOGGER, "Invalid lower bound on the number of CNOT gates given the maximum depth")
end
if cnot_lb < cnot_ub
if cnot_lb > 0
data["cnot_lower_bound"] = params["set_cnot_lower_bound"]
end
if cnot_ub < data["maximum_depth"]
data["cnot_upper_bound"] = params["set_cnot_upper_bound"]
end
elseif isapprox(cnot_lb, cnot_ub, atol=1E-6)
data["cnot_lower_bound"] = cnot_lb
data["cnot_upper_bound"] = cnot_ub
else
Memento.warn(_LOGGER, "Invalid CNot-gate lower/upper bound")
end
return data
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 46605 | #=
IMPORTANT: a) Update the lists below whenever a 1 or 2 qubit gate is added to this file.
b) Update QCO._get_angle_gates_idx in src/data.jl if gates with angle parameters are
added to this file.
=#
const ONE_QUBIT_GATES_ANGLE_PARAMETERS = ["U3", "U2", "U1", "R", "RX", "RY", "RZ", "Phase"]
const ONE_QUBIT_GATES_CONSTANTS = ["Identity", "I", "H", "X", "Y", "Z", "S",
"Sdagger", "T", "Tdagger", "SX", "SXdagger"]
const TWO_QUBIT_GATES_ANGLE_PARAMETERS = ["CRX", "CRXRev", "CRY", "CRYRev", "CRZ", "CRZRev",
"CU3", "CU3Rev"]
# >= 3 qubit gates
const MULTI_QUBIT_GATES_ANGLE_PARAMETERS = ["GR"]
# Gates invariant to qubit flip
const TWO_QUBIT_GATES_CONSTANTS_SYMMETRIC = ["Swap", "SSwap", "iSwap", "Sycamore", "DCX", "W", "M", "CZ",
"QFT2", "HCoin", "GroverDiffusion", "CS", "CSdagger",
"CT", "CTdagger"]
# Gates non-invariant to qubit flip
const TWO_QUBIT_GATES_CONSTANTS_ASYMMETRIC = ["CNot", "CNotRev", "CX", "CXRev", "CY", "CYRev",
"CH", "CHRev", "CV", "CVRev", "CVdagger",
"CVdaggerRev", "CSX", "CSXRev"]
const ONE_QUBIT_GATES = union(QCO.ONE_QUBIT_GATES_CONSTANTS,
QCO.ONE_QUBIT_GATES_ANGLE_PARAMETERS)
const TWO_QUBIT_GATES_CONSTANTS = union(QCO.TWO_QUBIT_GATES_CONSTANTS_SYMMETRIC,
QCO.TWO_QUBIT_GATES_CONSTANTS_ASYMMETRIC)
const TWO_QUBIT_GATES = union(QCO.TWO_QUBIT_GATES_CONSTANTS,
QCO.TWO_QUBIT_GATES_ANGLE_PARAMETERS)
# >= 3 qubit gates
const MULTI_QUBIT_GATES = union(QCO.MULTI_QUBIT_GATES_ANGLE_PARAMETERS)
"""
_catch_gate_name_error()
Helper function to ensure that the kron_symbol `x` does not appear in any of the gate names.
"""
function _catch_gate_name_error()
all_gates = union(QCO.ONE_QUBIT_GATES, QCO.TWO_QUBIT_GATES, QCO.MULTI_QUBIT_GATES)
if length(findall(x -> occursin(QCO.kron_symbol, x), all_gates)) > 0
Memento.error(_LOGGER, "Avoid the character `$(QCO.kron_symbol)` in the elemetary gate name")
end
end
QCO._catch_gate_name_error()
#-------------------------------------#
# ONE QUBIT gates #
#-------------------------------------#
@doc raw"""
IGate(num_qubits::Int64)
Identity matrix for an input number of qubits.
**Matrix Representation (num_qubits = 1)**
```math
I = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
```
"""
function IGate(num_qubits::Int64)
return Array{Complex{Float64},2}(Matrix(LA.I, 2^num_qubits, 2^num_qubits))
end
@doc raw"""
U3Gate(θ::Number, ϕ::Number, λ::Number)
Universal single-qubit rotation gate with three Euler angles, ``\theta``, ``\phi`` and ``\lambda``.
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
U3(\theta, \phi, \lambda) =
\begin{pmatrix}
\cos(\th) & -e^{i\lambda}\sin(\th) \\
e^{i\phi}\sin(\th) & e^{i(\phi+\lambda)}\cos(\th)
\end{pmatrix}
```
"""
function U3Gate(θ::Number, ϕ::Number, λ::Number)
QCO._verify_angle_bounds(θ)
QCO._verify_angle_bounds(ϕ)
QCO._verify_angle_bounds(λ)
U3 = Array{Complex{Float64},2}([ cos(θ/2) -(cos(λ) + (sin(λ))im)*sin(θ/2)
(cos(ϕ) + (sin(ϕ))im)*sin(θ/2) (cos(λ+ϕ) + (sin(λ+ϕ))im)*cos(θ/2)])
return QCO.round_complex_values(U3)
end
@doc raw"""
U2Gate(ϕ::Number, λ::Number)
Universal single-qubit rotation gate with two Euler angles, ``\phi`` and ``\lambda``. U2Gate is the special case of
[U3Gate](@ref).
**Matrix Representation**
```math
U2(\phi, \lambda) = \frac{1}{\sqrt{2}}
\begin{pmatrix}
1 & -e^{i\lambda} \\
e^{i\phi} & e^{i(\phi+\lambda)}
\end{pmatrix}
```
"""
function U2Gate(ϕ::Number, λ::Number)
θ = π/2
U2 = QCO.U3Gate(θ, ϕ, λ)
return U2
end
@doc raw"""
U1Gate(λ::Number)
Universal single-qubit rotation gate with one Euler angle, ``\lambda``. U1Gate represents rotation about the Z axis and
is the special case of [U3Gate](@ref), which also known as the [PhaseGate](@ref). Also note that ``U1(\pi) = ``[ZGate](@ref), ``U1(\pi/2) = ``[SGate](@ref) and
``U1(\pi/4) = ``[TGate](@ref).
**Matrix Representation**
```math
U1(\lambda) =
\begin{pmatrix}
1 & 0 \\
0 & e^{i\lambda}
\end{pmatrix}
```
"""
function U1Gate(λ::Number)
θ = 0
ϕ = 0
U1 = QCO.U3Gate(θ, ϕ, λ)
return U1
end
@doc raw"""
RGate(θ::Number, ϕ::Number)
A single-qubit rotation gate with two Euler angles, ``\theta`` and ``\phi``,
about the ``\cos(\phi)x + \sin(\phi)y`` axis.
**Matrix Representation**
```math
R(\theta, \phi) = e^{-i \theta \left(\cos{\phi} x + \sin{\phi} y\right)} =
\begin{pmatrix}
\cos{\theta} & -i e^{-i \phi} \sin{\theta} \\
-i e^{i \phi} \sin{\theta} & \cos{\theta}
\end{pmatrix}
```
"""
function RGate(θ::Number, ϕ::Number)
R = Array{Complex{Float64},2}([cos(θ/2) -(sin(ϕ) + (cos(ϕ))im)*sin(θ/2)
(sin(ϕ) - (cos(ϕ))im)*sin(θ/2) cos(θ/2)])
return QCO.round_complex_values(R)
end
@doc raw"""
RXGate(θ::Number)
A single-qubit Pauli gate which represents rotation about the X axis.
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
RX(\theta) = exp(-i \th X) =
\begin{pmatrix}
\cos{\th} & -i\sin{\th} \\
-i\sin{\th} & \cos{\th}
\end{pmatrix}
```
"""
function RXGate(θ::Number)
QCO._verify_angle_bounds(θ)
RX = Array{Complex{Float64},2}([cos(θ/2) -(sin(θ/2))im; -(sin(θ/2))im cos(θ/2)])
return QCO.round_complex_values(RX)
end
@doc raw"""
RYGate(θ::Number)
A single-qubit Pauli gate which represents rotation about the Y axis.
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
RY(\theta) = exp(-i \th Y) =
\begin{pmatrix}
\cos{\th} & -\sin{\th} \\
\sin{\th} & \cos{\th}
\end{pmatrix}
```
"""
function RYGate(θ::Number)
QCO._verify_angle_bounds(θ)
RY = Array{Complex{Float64},2}([cos(θ/2) -(sin(θ/2)); (sin(θ/2)) cos(θ/2)])
return QCO.round_complex_values(RY)
end
@doc raw"""
RZGate(θ::Number)
A single-qubit Pauli gate which represents rotation about the Z axis. This gate is also equivalent to [U1Gate](@ref) up to a phase factor,
that is, ``RZ(\theta) = e^{-i{\theta}/2}U1(\theta)``.
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
RZ(\theta) = exp(-i\th Z) =
\begin{pmatrix}
e^{-i\th} & 0 \\
0 & e^{i\th}
\end{pmatrix}
```
"""
function RZGate(θ::Number)
QCO._verify_angle_bounds(θ)
RZ = Array{Complex{Float64},2}([(cos(θ/2) - (sin(θ/2))im) 0; 0 (cos(θ/2) + (sin(θ/2))im)])
return QCO.round_complex_values(RZ)
end
@doc raw"""
HGate()
Single-qubit Hadamard gate, which is a ``\pi`` rotation about the X+Z axis, thus equivalent to [U3Gate](@ref)(``\frac{\pi}{2},0,\pi``)
**Matrix Representation**
```math
H = \frac{1}{\sqrt{2}}
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
```
"""
function HGate()
return Array{Complex{Float64},2}(1/sqrt(2)*[1 1; 1 -1])
end
@doc raw"""
XGate()
Single-qubit Pauli-X gate (``\sigma_x``), equivalent to [U3Gate](@ref)(``\pi,0,\pi``)
**Matrix Representation**
```math
X = \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
```
"""
function XGate()
return Array{Complex{Float64},2}([0 1; 1 0])
end
@doc raw"""
YGate()
Single-qubit Pauli-Y gate (``\sigma_y``), equivalent to [U3Gate](@ref)(``\pi,\frac{\pi}{2},\frac{\pi}{2}``)
**Matrix Representation**
```math
Y = \begin{pmatrix}
0 & -i \\
i & 0
\end{pmatrix}
```
"""
function YGate()
return Array{Complex{Float64},2}([0 -im; im 0])
end
@doc raw"""
ZGate()
Single-qubit Pauli-Z gate (``\sigma_z``), equivalent to [U3Gate](@ref)(``0,0,\pi``)
**Matrix Representation**
```math
Z = \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
```
"""
function ZGate()
return Array{Complex{Float64},2}([1 0; 0 -1])
end
@doc raw"""
SGate()
Single-qubit S gate, equivalent to [U3Gate](@ref)(``0,0,\frac{\pi}{2}``). This
gate is also referred to as a Clifford gate, P gate or a square-root of Pauli-[ZGate](@ref). Historically, this is also
called as the phase gate (denoted by P), since it shifts the phase of the one state relative to the zero state.
**Matrix Representation**
```math
S = \begin{pmatrix}
1 & 0 \\
0 & i
\end{pmatrix}
```
"""
function SGate()
return Array{Complex{Float64},2}([1 0; 0 im])
end
@doc raw"""
SdaggerGate()
Single-qubit, hermitian conjugate of the [SGate](@ref). This is also an alternative square root of
the [ZGate](@ref).
**Matrix Representation**
```math
S = \begin{pmatrix}
1 & 0 \\
0 & -i
\end{pmatrix}
```
"""
function SdaggerGate()
return Array{Complex{Float64},2}([1 0; 0 -im])
end
@doc raw"""
TGate()
Single-qubit T gate, equivalent to [U3Gate](@ref)(``0,0,\frac{\pi}{4}``). This
gate is also referred to as a ``\frac{\pi}{8}`` gate or as a fourth-root of Pauli-[ZGate](@ref).
**Matrix Representation**
```math
T = \begin{pmatrix}
1 & 0 \\
0 & e^{i\pi/4}
\end{pmatrix}
```
"""
function TGate()
return Array{Complex{Float64},2}([1 0; 0 (1/sqrt(2)) + (1/sqrt(2))im])
end
@doc raw"""
TdaggerGate()
Single-qubit, hermitian conjugate of the [TGate](@ref). This gate is equivalent to [U3Gate](@ref)(``0,0,-\frac{\pi}{4}``). This
gate is also referred to as the fourth-root of Pauli-[ZGate](@ref).
**Matrix Representation**
```math
T^{\dagger} = \begin{pmatrix}
1 & 0 \\
0 & e^{-i\pi/4}
\end{pmatrix}
```
"""
function TdaggerGate()
return Array{Complex{Float64},2}([1 0; 0 (1/sqrt(2)) - (1/sqrt(2))im])
end
@doc raw"""
SXGate()
Single-qubit square root of pauli-[XGate](@ref).
**Matrix Representation**
```math
\sqrt{X} = \frac{1}{2} \begin{pmatrix}
1 + i & 1 - i \\
1 - i & 1 + i
\end{pmatrix}
```
"""
function SXGate()
return Array{Complex{Float64},2}(1/2*[1+im 1-im; 1-im 1+im])
end
@doc raw"""
SXdaggerGate()
Single-qubit hermitian conjugate of the square root of pauli-[XGate](@ref), or the [SXGate](@ref).
**Matrix Representation**
```math
\sqrt{X}^{\dagger} = \frac{1}{2} \begin{pmatrix}
1 - i & 1 + i \\
1 + i & 1 - i
\end{pmatrix}
```
"""
function SXdaggerGate()
return Array{Complex{Float64},2}(1/2*[1-im 1+im; 1+im 1-im])
end
@doc raw"""
PhaseGate(λ::Number)
Single-qubit rotation gate about the Z axis. This is also equivalent to [U3Gate](@ref)(``0,0,\lambda``). This
gate is also referred to as the [U1Gate](@ref).
**Matrix Representation**
```math
P(\lambda) = \begin{pmatrix}
1 & 0 \\
0 & e^{i\lambda}
\end{pmatrix}
```
"""
function PhaseGate(λ::Number)
return QCO.U1Gate(λ)
end
#-------------------------------------#
# TWO-QUBIT GATES #
#-------------------------------------#
@doc raw"""
CNotGate()
Two-qubit controlled NOT gate with control and target on first and second qubits, respectively. This is also
called the controlled X gate ([CXGate](@ref)).
**Circuit Representation**
```
q_0: ──■──
┌─┴─┐
q_1: ┤ X ├
└───┘
```
**Matrix Representation**
```math
CNot = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
```
"""
function CNotGate()
return QCO.controlled_gate(QCO.XGate(), 1)
end
@doc raw"""
CNotRevGate()
Two-qubit reverse controlled NOT gate, with target and control on first and second qubits, respectively.
**Circuit Representation**
```
┌───┐
q_0: ┤ X ├
└─┬─┘
q_1: ──■──
```
**Matrix Representation**
```math
CNotRev = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
```
"""
function CNotRevGate()
return QCO.controlled_gate(QCO.XGate(), 1, reverse = true)
end
@doc raw"""
DCXGate()
Two-qubit double controlled NOT gate consisting of two back-to-back [CNotGate](@ref)s with alternate controls.
**Circuit Representation**
```
┌───┐
q_0: ──■──┤ X ├
┌─┴─┐└─┬─┘
q_1: ┤ X ├──■──
└───┘
```
**Matrix Representation**
```math
DCX = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
```
"""
function DCXGate()
return Array{Complex{Float64},2}([1 0 0 0; 0 0 0 1; 0 1 0 0; 0 0 1 0])
end
@doc raw"""
CXGate()
Two-qubit controlled [XGate](@ref), which is also the same as [CNotGate](@ref).
**Circuit Representation**
```
q_0: ──■──
┌─┴─┐
q_1: ┤ X ├
└───┘
```
**Matrix Representation**
```math
CX = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
```
"""
function CXGate()
return QCO.controlled_gate(QCO.XGate(), 1)
end
@doc raw"""
CXRevGate()
Two-qubit reverse controlled-X gate, with target and control on first and second qubits, respectively.
This is also the same as [CNotRevGate](@ref).
**Circuit Representation**
```
┌───┐
q_0: ┤ X ├
└─┬─┘
q_1: ──■──
```
**Matrix Representation**
```math
CXRev = I \otimes |0 \rangle\langle 0| + X \otimes |1 \rangle\langle 1| = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
```
"""
function CXRevGate()
return QCO.controlled_gate(QCO.XGate(), 1, reverse = true)
end
@doc raw"""
CYGate()
Two-qubit controlled [YGate](@ref).
**Circuit Representation**
```
q_0: ──■──
┌─┴─┐
q_1: ┤ Y ├
└───┘
```
**Matrix Representation**
```math
CY = |0 \rangle\langle 0| \otimes I + |1 \rangle\langle 1| \otimes Y = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{pmatrix}
```
"""
function CYGate()
return QCO.controlled_gate(QCO.YGate(), 1)
end
@doc raw"""
CYRevGate()
Two-qubit reverse controlled-Y gate, with target and control on first and second qubits, respectively.
**Circuit Representation**
```
┌───┐
q_0: ┤ Y ├
└─┬─┘
q_1: ──■──
```
**Matrix Representation**
```math
CYRev = I \otimes |0 \rangle\langle 0| + Y \otimes |1 \rangle\langle 1| = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & 1 & 0 \\
0 & i & 0 & 0
\end{pmatrix}
```
"""
function CYRevGate()
return QCO.controlled_gate(QCO.YGate(), 1, reverse = true)
end
@doc raw"""
CZGate()
Two-qubit, symmetric, controlled [ZGate](@ref).
**Circuit Representation**
```
q_0: ──■── ─■─
┌─┴─┐ ≡ │
q_1: ┤ Z ├ ─■─
└───┘
```
**Matrix Representation**
```math
CZ = |0 \rangle\langle 0| \otimes I + |1 \rangle\langle 1| \otimes Z = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
```
"""
function CZGate()
return QCO.controlled_gate(QCO.ZGate(), 1)
end
@doc raw"""
CHGate()
Two-qubit, symmetric, controlled Hadamard gate ([HGate](@ref)).
**Circuit Representation**
```
q_0: ──■──
┌─┴─┐
q_1: ┤ H ├
└───┘
```
**Matrix Representation**
```math
CH = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes H = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}
```
"""
function CHGate()
return QCO.controlled_gate(QCO.HGate(), 1)
end
@doc raw"""
CHRevGate()
Two-qubit reverse controlled-H gate, with target and control on first and second qubits, respectively.
**Circuit Representation**
```
┌───┐
q_0: ┤ H ├
└─┬─┘
q_1: ──■──
```
**Matrix Representation**
```math
CHRev = I \otimes |0\rangle\langle 0| + H \otimes |1\rangle\langle 1| = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 0 & 1 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{pmatrix}
```
"""
function CHRevGate()
return QCO.controlled_gate(QCO.HGate(), 1, reverse = true)
end
@doc raw"""
CVGate()
Two-qubit, controlled-V gate, which is also the same as Controlled square-root of X gate ([CSXGate](@ref)).
**Circuit Representation**
```
q_0: ──■──
┌─┴─┐
q_1: ┤ V ├
└───┘
```
**Matrix Representation**
```math
CV = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0.5+0.5i & 0.5-0.5i \\
0 & 0 & 0.5-0.5i & 0.5+0.5i
\end{pmatrix}
```
"""
function CVGate()
return QCO.CSXGate()
end
@doc raw"""
CVRevGate()
Two-qubit reverse controlled-V gate, with target and control on first and second qubits, respectively.
**Circuit Representation**
```
┌───┐
q_0: ┤ V ├
└─┬─┘
q_1: ──■──
```
**Matrix Representation**
```math
CVRev = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0.5+0.5i & 0 & 0.5-0.5i \\
0 & 0 & 1 & 0 \\
0 & 0.5-0.5i & 0 & 0.5+0.5i
\end{pmatrix}
```
"""
function CVRevGate()
return Array{Complex{Float64},2}([1 0 0 0; 0 0.5+0.5im 0 0.5-0.5im; 0 0 1 0; 0 0.5-0.5im 0 0.5+0.5im])
end
@doc raw"""
CVdaggerGate()
Two-qubit hermitian conjugate of controlled-V gate, which is also the same as hermitian conjugate Controlled square-root of X gate ([CSXGate](@ref)).
**Circuit Representation**
```
q_0: ──■──
┌─┴─┐
q_1: ┤ V'├
└───┘
```
**Matrix Representation**
```math
CVdagger = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0.5-0.5i & 0.5+0.5i \\
0 & 0 & 0.5+0.5i & 0.5-0.5i
\end{pmatrix}
```
"""
function CVdaggerGate()
return Array{Complex{Float64},2}([1 0 0 0; 0 1 0 0; 0 0 0.5-0.5im 0.5+0.5im; 0 0 0.5+0.5im 0.5-0.5im])
end
@doc raw"""
CVdaggerRevGate()
Two-qubit hermitian conjugate of reverse controlled-V gate, with target and control on first and second qubits, respectively.
**Circuit Representation**
```
┌───┐
q_0: ┤ V'├
└─┬─┘
q_1: ──■──
```
**Matrix Representation**
```math
CVdaggerRev = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0.5-0.5i & 0 & 0.5+0.5i \\
0 & 0 & 1 & 0 \\
0 & 0.5+0.5i & 0 & 0.5-0.5i
\end{pmatrix}
```
"""
function CVdaggerRevGate()
return Array{Complex{Float64},2}([1 0 0 0; 0 0.5-0.5im 0 0.5+0.5im; 0 0 1 0; 0 0.5+0.5im 0 0.5-0.5im])
end
@doc raw"""
CSGate()
Two-qubit, controlled-S gate, which induces π/2 phase in the target qubit.
This gate is invariant to the swap of control and target qubits.
**Circuit Representation**
```
q_0: ──■──
┌─┴─┐
q_1: ┤ S ├
└───┘
```
**Matrix Representation**
```math
CS = |0 \rangle\langle 0| \otimes I + |1 \rangle\langle 1| \otimes S = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{pmatrix}
```
"""
function CSGate()
return QCO.controlled_gate(QCO.SGate(), 1)
end
@doc raw"""
CSdaggerGate()
Two-qubit hermitian conjugate of controlled-S gate. This gate is invariant to the swap of control and target qubits.
**Circuit Representation**
```
q_0: ──■──
┌─┴─┐
q_1: ┤ S'├
└───┘
```
**Matrix Representation**
```math
CSdagger = |0 \rangle\langle 0| \otimes I + |1 \rangle\langle 1| \otimes S^{\dagger} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -i
\end{pmatrix}
```
"""
function CSdaggerGate()
return QCO.controlled_gate(QCO.SdaggerGate(), 1)
end
@doc raw"""
CTGate()
Two-qubit, controlled-T gate, which induces a π/4 phase in the target qubit.
This gate is invariant to the swap of control and target qubits.
**Circuit Representation**
```
q_0: ──■──
┌─┴─┐
q_1: ┤ T ├
└───┘
```
**Matrix Representation**
```math
CT = |0 \rangle\langle 0| \otimes I + |1 \rangle\langle 1| \otimes T = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{i\pi/4}
\end{pmatrix}
```
"""
function CTGate()
return QCO.controlled_gate(QCO.TGate(), 1)
end
@doc raw"""
CTdaggerGate()
Two-qubit hermitian conjugate of controlled-T gate. This gate is invariant to the swap of control and target qubits.
**Circuit Representation**
```
q_0: ──■──
┌─┴─┐
q_1: ┤ T'├
└───┘
```
**Matrix Representation**
```math
CTdagger = |0 \rangle\langle 0| \otimes I + |1 \rangle\langle 1| \otimes T^{\dagger} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{-i\pi/4}
\end{pmatrix}
```
"""
function CTdaggerGate()
return QCO.controlled_gate(QCO.TdaggerGate(), 1)
end
@doc raw"""
WGate()
Two-qubit, W hermitian gate, typically useful to diagonlize the ([SwapGate](@ref)).
**Matrix Representation**
```math
W = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
```
"""
function WGate()
return Array{Complex{Float64},2}([1 0 0 0; 0 1/sqrt(2) 1/sqrt(2) 0; 0 1/sqrt(2) -1/sqrt(2) 0; 0 0 0 1])
end
@doc raw"""
CRXGate(θ::Number)
Two-qubit controlled [RXGate](@ref).
**Circuit Representation**
```
q_0: ────■────
┌───┴───┐
q_1: ┤ RX(ϴ) ├
└───────┘
```
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
CRX(\theta)\ q_1, q_0 =
|0\rangle\langle0| \otimes I + |1\rangle\langle1| \otimes RX(\theta) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos{\th} & -i\sin{\th} \\
0 & 0 & -i\sin{\th} & \cos{\th}
\end{pmatrix}
```
"""
function CRXGate(θ::Number)
CRX = Array{Complex{Float64},2}([ 1 0 0 0
0 1 0 0
0 0 cos(θ/2) -(sin(θ/2))im
0 0 -(sin(θ/2))im cos(θ/2)])
return QCO.round_complex_values(CRX)
end
@doc raw"""
CRXRevGate(θ::Number)
Two-qubit controlled reverse [RXGate](@ref).
**Circuit Representation**
```
┌───────┐
q_1: ┤ RX(ϴ) ├
└───┬───┘
q_0: ────■────
```
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
CRXRev(\theta)\ q_1, q_0 =
|0\rangle\langle0| \otimes I + |1\rangle\langle1| \otimes RX(\theta) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos{\th} & 0 & -i\sin{\th} \\
0 & 0 & 1 & 0\\
0 & -i\sin{\th} & 0 & \cos{\th}
\end{pmatrix}
```
"""
function CRXRevGate(θ::Number)
CRXRev = Array{Complex{Float64},2}([1 0 0 0
0 cos(θ/2) 0 -(sin(θ/2))im
0 0 1 0
0 -(sin(θ/2))im 0 cos(θ/2)])
return QCO.round_complex_values(CRXRev)
end
@doc raw"""
CRYGate(θ::Number)
Two-qubit controlled [RYGate](@ref).
**Circuit Representation**
```
q_0: ────■────
┌───┴───┐
q_1: ┤ RY(ϴ) ├
└───────┘
```
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
CRY(\theta)\ q_1, q_0 =
|0\rangle\langle0| \otimes I + |1\rangle\langle1| \otimes RY(\theta) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos{\th} & -\sin{\th} \\
0 & 0 & \sin{\th} & \cos{\th}
\end{pmatrix}
```
"""
function CRYGate(θ::Number)
QCO._verify_angle_bounds(θ)
CRY = Array{Complex{Float64},2}([1 0 0 0
0 1 0 0
0 0 cos(θ/2) -(sin(θ/2))
0 0 (sin(θ/2)) cos(θ/2)])
return QCO.round_complex_values(CRY)
end
@doc raw"""
CRYRevGate(θ::Number)
Two-qubit controlled reverse [RYGate](@ref).
**Circuit Representation**
```
┌───────┐
q_1: ┤ RY(ϴ) ├
└───┬───┘
q_0: ────■────
```
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
CRYRev(\theta)\ q_1, q_0 =
|0\rangle\langle0| \otimes I + |1\rangle\langle1| \otimes RY(\theta) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos{\th} & 0 & -\sin{\th} \\
0 & 0 & 1 & 0 \\
0 & \sin{\th} & 0 & \cos{\th}
\end{pmatrix}
```
"""
function CRYRevGate(θ::Number)
QCO._verify_angle_bounds(θ)
CRYRev = Array{Complex{Float64},2}([ 1 0 0 0
0 cos(θ/2) 0 -(sin(θ/2))
0 0 1 0
0 (sin(θ/2)) 0 cos(θ/2)])
return QCO.round_complex_values(CRYRev)
end
@doc raw"""
CRZGate(θ::Number)
Two-qubit controlled [RZGate](@ref).
**Circuit Representation**
```
q_0: ────■────
┌───┴───┐
q_1: ┤ RZ(ϴ) ├
└───────┘
```
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
CRZ(\theta)\ q_1, q_0 =
|0\rangle\langle0| \otimes I + |1\rangle\langle1| \otimes RZ(\theta) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & e^{-i\th} & 0 \\
0 & 0 & 0 & e^{i\th}
\end{pmatrix}
```
"""
function CRZGate(θ::Number)
QCO._verify_angle_bounds(θ)
CRZ = Array{Complex{Float64},2}([ 1 0 0 0
0 1 0 0
0 0 (cos(θ/2) - (sin(θ/2))im) 0
0 0 0 (cos(θ/2) + (sin(θ/2))im)])
return QCO.round_complex_values(CRZ)
end
@doc raw"""
CRZRevGate(θ::Number)
Two-qubit controlled reverse [RZGate](@ref).
**Circuit Representation**
```
┌───────┐
q_1: ┤ RZ(ϴ) ├
└───┬───┘
q_0: ────■────
```
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
CRZRev(\theta)\ q_1, q_0 =
|0\rangle\langle0| \otimes I + |1\rangle\langle1| \otimes RZ(\theta) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & e^{-i\th} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{i\th}
\end{pmatrix}
```
"""
function CRZRevGate(θ::Number)
QCO._verify_angle_bounds(θ)
CRZRev = Array{Complex{Float64},2}([ 1 0 0 0
0 (cos(θ/2) - (sin(θ/2))im) 0 0
0 0 1 0
0 0 0 (cos(θ/2) + (sin(θ/2))im)])
return QCO.round_complex_values(CRZRev)
end
@doc raw"""
CU3Gate(θ::Number, ϕ::Number, λ::Number)
Two-qubit, controlled version of the universal rotation gate with three Euler angles ([U3Gate](@ref)).
**Circuit Representation**
```
q_0: ──────■──────
┌─────┴─────┐
q_1: ┤ U3(ϴ,φ,λ) ├
└───────────┘
```
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
CU3(\theta, \phi, \lambda)\ q_1, q_0 =
|0\rangle\langle 0| \otimes I +
|1\rangle\langle 1| \otimes U3(\theta,\phi,\lambda) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos(\th) & -e^{i\lambda}\sin(\th) \\
0 & 0 & e^{i\phi}\sin(\th) & e^{i(\phi+\lambda)}\cos(\th)
\end{pmatrix}
```
"""
function CU3Gate(θ::Number, ϕ::Number, λ::Number)
QCO._verify_angle_bounds(θ)
QCO._verify_angle_bounds(ϕ)
QCO._verify_angle_bounds(λ)
CU3 = Array{Complex{Float64},2}([ 1 0 0 0
0 1 0 0
0 0 cos(θ/2) -(cos(λ)+(sin(λ))im)*sin(θ/2)
0 0 (cos(ϕ)+(sin(ϕ))im)*sin(θ/2) (cos(λ+ϕ)+(sin(λ+ϕ))im)*cos(θ/2)])
return QCO.round_complex_values(CU3)
end
@doc raw"""
CU3RevGate(θ::Number, ϕ::Number, λ::Number)
Two-qubit, reverse controlled version of the universal rotation gate with three Euler angles ([U3Gate](@ref)).
**Circuit Representation**
```
┌────────────┐
q_1: ┤ U3(ϴ,φ,λ) ├
└──────┬─────┘
q_0: ───────■──────
```
**Matrix Representation**
```math
\newcommand{\th}{\frac{\theta}{2}}
CU3(\theta, \phi, \lambda)\ q_1, q_0 =
|0\rangle\langle 0| \otimes I +
|1\rangle\langle 1| \otimes U3(\theta,\phi,\lambda) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(\th) & 0 & -e^{i\lambda}\sin(\th) \\
0 & 0 & 1 & 0 \\
0 & e^{i\phi}\sin(\th) & 0 & e^{i(\phi+\lambda)}\cos(\th)
\end{pmatrix}
```
"""
function CU3RevGate(θ::Number, ϕ::Number, λ::Number)
QCO._verify_angle_bounds(θ)
QCO._verify_angle_bounds(ϕ)
QCO._verify_angle_bounds(λ)
CU3Rev = Array{Complex{Float64},2}([ 1 0 0 0
0 cos(θ/2) 0 -(cos(λ)+(sin(λ))im)*sin(θ/2)
0 0 1 0
0 (cos(ϕ)+(sin(ϕ))im)*sin(θ/2) 0 (cos(λ+ϕ)+(sin(λ+ϕ))im)*cos(θ/2)])
return QCO.round_complex_values(CU3Rev)
end
@doc raw"""
SwapGate()
Two-qubit, symmetric, SWAP gate.
**Circuit Representation**
```
q_0: ─X─
│
q_1: ─X─
```
**Matrix Representation**
```math
SWAP = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
```
"""
function SwapGate()
return Array{Complex{Float64},2}([1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1])
end
@doc raw"""
SSwapGate()
Two-qubit, square root version of the [SwapGate](@ref).
**Circuit Representation**
```
┌────────────┐
q_0: ┤ ├
│ sqrt(Swap) │
q_1: ┤ ├
└────────────┘
```
**Matrix Representation**
```math
SWAP = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0.5+0.5i & 0.5-0.5i & 0 \\
0 & 0.5-0.5i & 0.5+0.5i & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
```
"""
function SSwapGate()
return sqrt(QCO.SwapGate())
end
@doc raw"""
iSwapGate()
Two-qubit, symmetric and clifford, iSWAP gate. This is an entangling swapping gate where the qubits
obtain a phase of ``i`` if the state of the qubits is swapped.
**Circuit Representation**
```
q_0: ─⨂─
│
q_1: ─⨂─
```
Minimum depth representation
```
┌───┐ ┌───┐ ┌───┐
q_0: ─┤ X ├──■──┤ S ├─┤ X ├─
└─┬─┘┌─┴─┐└───┘ └─┬─┘
q_1: ───■──┤ X ├────────■──
└───┘
```
**Matrix Representation**
```math
iSWAP = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
```
"""
function iSwapGate()
return Array{Complex{Float64},2}([1 0 0 0; 0 0 im 0; 0 im 0 0; 0 0 0 1])
end
@doc raw"""
CSXGate()
Two-qubit controlled version of ([SXGate](@ref)).
**Circuit Representation**
```
q_0: ─────■─────
┌────┴────┐
q_1: ┤ sqrt(X) ├
└─────────┘
```
**Matrix Representation**
```math
CSXGate = |0 \rangle\langle 0| \otimes I + |1 \rangle\langle 1| \otimes SX = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0.5+0.5i & 0.5-0.5i \\
0 & 0 & 0.5-0.5i & 0.5+0.5i
\end{pmatrix}
```
"""
function CSXGate()
return QCO.controlled_gate(QCO.SXGate(), 1)
end
@doc raw"""
CSXRevGate()
Two-qubit controlled version of the reverse ([SXGate](@ref)).
**Circuit Representation**
```
┌─────────┐
q_1: ┤ sqrt(X) ├
└────┬────┘
q_0: ─────■────
```
**Matrix Representation**
```math
CSXRevGate = I \otimes |0\rangle\langle 0| + SX \otimes |1\rangle\langle 1| = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0.5+0.5i & 0 & 0.5-0.5i \\
0 & 0 & 1 & 0 \\
0 & 0.5-0.5i & 0 & 0.5+0.5i
\end{pmatrix}
```
"""
function CSXRevGate()
return QCO.controlled_gate(QCO.SXGate(), 1, reverse = true)
end
@doc raw"""
MGate()
Two-qubit Magic gate, also known as the Ising coupling or the XX gate.
Reference: [https://doi.org/10.1103/PhysRevA.69.032315](https://doi.org/10.1103/PhysRevA.69.032315)
**Circuit Representation**
```
┌───┐ ┌───┐
q_0: ─┤ X ├────────┤ S ├
└─┬─┘ └─┬─┘
│ ┌───┐ ┌─┴─┐
q_1: ───■───┤ H ├──┤ S ├
└───┘ └───┘
```
**Matrix Representation**
```math
M = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & i & 0 & 0 \\
0 & 0 & i & 1 \\
0 & 0 & i & -1 \\
1 & -i & 0 & 0
\end{pmatrix}
```
"""
function MGate()
return Array{Complex{Float64},2}(1/sqrt(2)*[1 im 0 0; 0 0 im 1; 0 0 im -1; 1 -im 0 0])
end
@doc raw"""
QFT2Gate()
Two-qubit Quantum Fourier Transform (QFT) gate, where the QFT operation on n-qubits is given by:
```math
|j\rangle \mapsto \frac{1}{2^{n/2}} \sum_{k=0}^{2^n - 1} e^{2\pi ijk / 2^n} |k\rangle
```
**Circuit Representation**
```
┌──────┐
q_0: ┤ ├
│ QFT2 │
q_1: ┤ ├
└──────┘
```
**Matrix Representation**
```math
M = \frac{1}{2} \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{pmatrix}
```
"""
function QFT2Gate()
return Array{Complex{Float64},2}(0.5*[1 1 1 1; 1 im -1 -im; 1 -1 1 -1; 1 -im -1 im])
end
@doc raw"""
HCoinGate()
Two-qubit, Hadamard Coin gate when implemented in tune with the quantum cellular automata.
Reference: [https://doi.org/10.1007/s11128-018-1983-x](https://doi.org/10.1007/s11128-018-1983-x), [https://arxiv.org/pdf/2106.03115.pdf](https://arxiv.org/pdf/2106.03115.pdf)
**Matrix Representation**
```math
HCoinGate = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
```
"""
function HCoinGate()
return Array{Complex{Float64},2}([1 0 0 0; 0 1/sqrt(2) 1/sqrt(2) 0; 0 1/sqrt(2) -1/sqrt(2) 0; 0 0 0 1])
end
@doc raw"""
GroverDiffusionGate()
Two-qubit, Grover's diffusion operator, a key building block of the Glover's algorithm used to find a specific
item (with probability > 0.5) within a randomly ordered database of N items in O(sqrt(N)) operations.
Reference: [https://arxiv.org/pdf/1804.03719.pdf](https://arxiv.org/pdf/1804.03719.pdf)
**Matrix Representation**
```math
GroverDiffusionGate = \frac{1}{2}\begin{pmatrix}
1 & -1 & -1 & -1 \\
-1 & 1 & -1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & -1 & -1 & 1
\end{pmatrix}
```
"""
function GroverDiffusionGate()
return Array{Complex{Float64},2}(0.5*[1 -1 -1 -1; -1 1 -1 -1; -1 -1 1 -1; -1 -1 -1 1])
end
@doc raw"""
SycamoreGate()
Two-qubit Sycamore Gate, native to Google's universal quantum processor.
Reference: [quantumai.google/cirq/google/devices](https://quantumai.google/cirq/google/devices)
**Circuit Representation**
```
┌──────┐
q_0: ┤ ├
│ SYC │
q_1: ┤ ├
└──────┘
```
**Matrix Representation**
```math
SycamoreGate() = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & -i & 0 & 0 \\
0 & 0 & 0 & e^{-i \frac{\pi}{6}}
\end{pmatrix}
```
"""
function SycamoreGate()
return Array{Complex{Float64},2}([1 0 0 0
0 0 -im 0
0 -im 0 0
0 0 0 cos(pi/6)-(sin(pi/6))im])
end
#---------------------------------------#
# Three-qubit gates #
#---------------------------------------#
@doc raw"""
ToffoliGate()
Three-qubit Toffoli gate, also known as the CCX (controlled-controlled-NOT) gate.
**Circuit Representation**
```
q_0: ──■──
│
q_1: ──■──
┌─┴─┐
q_2: ┤ X ├
└───┘
```
**Matrix Representation**
```math
Toffoli =
|0 \rangle \langle 0| \otimes I \otimes I + |1 \rangle \langle 1| \otimes CXGate =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
```
"""
function ToffoliGate()
return QCO.controlled_gate(QCO.XGate(), 2)
end
@doc raw"""
CSwapGate()
Three-qubit, controlled [SwapGate](@ref), also known as the [Fredkin gate](https://en.wikipedia.org/wiki/Fredkin_gate).
**Circuit Representation**
```
q_0: ─■─
│
q_1: ─X─
│
q_2: ─X─
```
**Matrix Representation**
```math
CSwapGate =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
```
"""
function CSwapGate()
return QCO.controlled_gate(QCO.SwapGate(), 1)
end
@doc raw"""
CCZGate()
Three-qubit controlled-controlled Z gate.
**Circuit Representation**
```
q_0: ─■─
│
q_1: ─■─
│
q_2: ─■─
```
**Matrix Representation**
```math
CCZGate =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
\end{pmatrix}
```
"""
function CCZGate()
return QCO.controlled_gate(QCO.ZGate(), 2)
end
@doc raw"""
PeresGate()
Three-qubit Peres gate. This gate is equivalent to [ToffoliGate](@ref) followed by the [CNotGate](@ref) in 3 qubits.
Reference: [https://doi.org/10.1103/PhysRevA.32.3266](https://doi.org/10.1103/PhysRevA.32.3266)
**Circuit Representation**
```
q_0: ──■─────■──
│ ┌─┴─┐
q_1: ──■───┤ X ├
┌─┴─┐ └───┘
q_2: ┤ X ├──────
└───┘
```
**Matrix Representation**
```math
PeresGate =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{pmatrix}
```
"""
function PeresGate()
return Array{Complex{Float64},2}([1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0])
end
@doc raw"""
RCCXGate()
Three-qubit relative (or simplified) Toffoli gate, or the CCX gate. This gate is equivalent to [ToffoliGate](@ref) upto relative phases.
The advantage of this gate is that it's implementation requires only three CNot (or CX) gates.
Reference: [https://arxiv.org/pdf/1508.03273.pdf](https://arxiv.org/pdf/1508.03273.pdf)
**Matrix Representation**
```math
RCCXGate =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -i \\
0 & 0 & 0 & 0 & 0 & 0 & i & 0 \\
\end{pmatrix}
```
"""
function RCCXGate()
return Array{Complex{Float64},2}([1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 -im
0 0 0 0 0 0 im 0])
end
@doc raw"""
MargolusGate()
Three-qubit Margolus gate, which is a simplified [ToffoliGate](@ref) and coincides with the Toffoli gate up
to a single change of sign. The advantage of this gate is that its implementation requires only three CNot (or CX) gates.
Reference: [https://arxiv.org/pdf/quant-ph/0312225.pdf](https://arxiv.org/pdf/quant-ph/0312225.pdf)
**Matrix Representation**
```math
MargolusGate =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
```
"""
function MargolusGate()
return Array{Complex{Float64},2}([1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0])
end
@doc raw"""
QFT3Gate()
Three-qubit Quantum Fourier Transform (QFT) gate, where the QFT operation on n-qubits is given by:
```math
|j\rangle \mapsto \frac{1}{2^{n/2}} \sum_{k=0}^{2^n - 1} e^{2\pi ijk / 2^n} |k\rangle
```
**Circuit Representation**
```
┌──────┐
q_0: ┤ ├
│ │
q_1: ┤ QFT3 ├
│ │
q_3: ┤ ├
└──────┘
```
**Matrix Representation**
```math
M = \frac{1}{2\sqrt{2}} \begin{pmatrix}
1 1 1 1 1 1 1 1 \\
1 \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} i -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} -1 -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} -i \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \\
1 i -1 -i 1 i -1 -i \\
1 -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} -i \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} -1 \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} i -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \\
1 -1 1 -1 1 -1 1 -1 \\
1 -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} i \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} -1 \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} -i -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \\
1 -i -1 i 1 -i -1 i \\
1 \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} -i -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} -1 -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} i \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \\
\end{pmatrix}
```
"""
function QFT3Gate()
a = 1/sqrt(8)
b = 1/sqrt(2)
return Array{Complex{Float64},2}(a*[1+0.0im 1+0.0im 1+0.0im 1+0.0im 1+0.0im 1+0.0im 1+0.0im 1+0.0im
1+0.0im (b)+(b)im 0.0+1im -(b)+(b)im -1+0.0im -(b)-(b)im 0.0-1im (b)-(b)im
1+0.0im 0.0+1im -1+0.0im 0.0-1im 1+0.0im 0.0+1im -1+0.0im 0.0-1im
1+0.0im -(b)+(b)im 0.0-1im (b)+(b)im -1+0.0im (b)-(b)im 0.0+1im -(b)-(b)im
1+0.0im -1+0.0im 1+0.0im -1+0.0im 1+0.0im -1+0.0im 1+0.0im -1+0.0im
1+0.0im -(b)-(b)im 0.0+1im (b)-(b)im -1+0.0im (b)+(b)im 0.0-1im -(b)+(b)im
1+0.0im 0.0-1im -1+0.0im 0.0+1im 1+0.0im 0.0-1im -1+0.0im 0.0+1im
1+0.0im (b)-(b)im 0.0-1im -(b)-(b)im -1+0.0im -(b)+(b)im 0.0+1im (b)+(b)im])
end
@doc raw"""
CiSwapGate()
Three-qubit controlled version of the [iSwapGate](@ref).
Reference: [https://doi.org/10.1103/PhysRevResearch.2.033097](https://doi.org/10.1103/PhysRevResearch.2.033097)
**Circuit Representation**
```
q_0: ─────■─────
│
┌───────┐
q_1: ─┤ ├─
│ iSwap │
q_2: ─┤ ├─
└───────┘
```
**Matrix Representation**
```math
CiSwapGate =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & i & 0 \\
0 & 0 & 0 & 0 & 0 & i & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
```
"""
function CiSwapGate()
return QCO.controlled_gate(QCO.iSwapGate(), 1)
end
#---------------------------------------#
# Multi-qubit gates #
#---------------------------------------#
@doc raw"""
GRGate(num_qubits::Int64, θ::Number, ϕ::Number)
A multi-qubit rotation gate with two Euler angles, ``\theta`` and ``\phi``,
applied about the ``\cos(\phi)x + \sin(\phi)y`` axis and parametrized by the number of qubits.
This gate can be applied to multiple qubits simultaneously, for a given depth.
The global R gate is native to atomic systems. In the one-qubit case, this gate is
equivalent to the [RGate](@ref).
Reference: [Qiskit's circuit library](https://qiskit.org/documentation/stubs/qiskit.circuit.library.GR.html)
**Circuit Representation (in 3 qubits)**
```
┌──────────┐
q_0: ┤0 ├
│ │
q_1: ┤1 GR(ϴ,φ) ├
│ │
q_2: ┤2 ├
└──────────┘
```
**Matrix Representation (in 3 qubits)**
```math
GR(\theta, \phi) = \exp \left(-i \sum_{i=1}^{3} (\cos(\phi)X_i + \sin(\phi)Y_i) \theta/2 \right) \\
= R(\theta, \phi) \otimes R(\theta, \phi) \otimes R(\theta, \phi)
```
"""
function GRGate(num_qubits::Int64, θ::Number, ϕ::Number)
return QCO.round_complex_values(QCO.multi_qubit_global_gate(num_qubits, QCO.RGate(θ,ϕ)))
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 12316 | """
visualize_solution(results::Dict{String, Any}, data::Dict{String, Any}; gate_sequence = false)
Given dictionaries of results and data, and assuming that the optimization model had a feasible solution,
this function aids in visualizing the optimal circuit decomposition.
"""
function visualize_solution(results::Dict{String, Any}, data::Dict{String, Any}; gate_sequence = false)
_header_color = :cyan
_main_color = :White
if !(results["primal_status"] in [MOI.FEASIBLE_POINT, MOI.NEARLY_FEASIBLE_POINT])
if results["termination_status"] == MOI.TIME_LIMIT
Memento.warn(_LOGGER, "Optimizer hits time limit with an infeasible primal status. Gate decomposition may be inaccurate")
else
Memento.warn(_LOGGER, "Infeasible primal status. Gate decomposition may be inaccurate")
end
return
else
gates_sol, gates_sol_compressed = QCO.get_postprocessed_circuit(results, data)
end
if !isempty(gates_sol_compressed)
printstyled("\n","=============================================================================","\n"; color = _main_color)
printstyled("QuantumCircuitOpt version: ", Pkg.TOML.parse(read(string(pkgdir(QCO), "/Project.toml"), String))["version"], "\n"; color = _header_color, bold = true)
printstyled("\n","Quantum Circuit Model Data"; color = _header_color, bold = true)
printstyled("\n"," ","Number of qubits: ", data["num_qubits"], "\n"; color = _main_color)
printstyled(" ","Total number of elementary gates (after presolve): ",size(data["gates_real"])[3],"\n"; color = _main_color)
printstyled(" ","Maximum depth of decomposition: ", data["maximum_depth"],"\n"; color = _main_color)
printstyled(" ","Elementary gates: ", data["elementary_gates"],"\n"; color = _main_color)
if "discretization" in keys(data)
for i in keys(data["discretization"])
printstyled(" ","$i discretization: ", ceil.(rad2deg.(data["discretization"][i]), digits = 1),"\n"; color = _main_color)
end
end
printstyled(" ","Type of decomposition: ", data["decomposition_type"],"\n"; color = _main_color)
printstyled(" ","MIP optimizer: ", results["optimizer"],"\n"; color = _main_color)
printstyled("\n","Optimal Circuit Decomposition","\n"; color = _header_color, bold = true)
print(" ")
for i=1:length(gates_sol_compressed)
if i != length(gates_sol_compressed)
printstyled(gates_sol_compressed[i], " * "; color = _main_color)
else
if data["decomposition_type"] in ["exact_optimal", "exact_feasible", "optimal_global_phase"]
printstyled(gates_sol_compressed[i], " = ", "Target gate","\n"; color = _main_color)
elseif data["decomposition_type"] == "approximate"
printstyled(gates_sol_compressed[i], " ≈ ", "Target gate","\n"; color = _main_color)
end
end
end
if data["decomposition_type"] == "approximate"
printstyled(" ","||Decomposition error||₂: ", round(LA.norm(results["solution"]["slack_var"]), digits = 10),"\n"; color = _main_color)
end
if data["objective"] == "minimize_depth"
if length(data["identity_idx"]) >= 1 && (data["decomposition_type"] !== "exact_feasible") && !(results["termination_status"] == MOI.TIME_LIMIT)
printstyled(" ","Minimum optimal depth: ", length(gates_sol_compressed),"\n"; color = _main_color)
else
printstyled(" ","Decomposition depth: ", length(gates_sol_compressed),"\n"; color = _main_color)
end
elseif data["objective"] == "minimize_cnot"
if !isempty(data["cnot_idx"])
if data["decomposition_type"] in ["exact_optimal", "exact_feasible", "optimal_global_phase"]
printstyled(" ","Minimum number of CNOT gates: ", round(results["objective"], digits = 6),"\n"; color = _main_color)
elseif data["decomposition_type"] == "approximate"
printstyled(" ","Minimum number of CNOT gates: ", round((results["objective"] - results["objective_slack_penalty"]*LA.norm(results["solution"]["slack_var"])^2), digits = 6),"\n"; color = _main_color)
end
end
end
printstyled(" ","Optimizer run time: ", ceil(results["solve_time"], digits=2)," sec.","\n"; color = _main_color)
if results["termination_status"] == MOI.TIME_LIMIT
printstyled(" ","Termination status: TIME_LIMIT", "\n"; color = _main_color)
end
printstyled("=============================================================================","\n"; color = _main_color)
else
Memento.warn(_LOGGER, "Valid integral feasible solutions could not be found to visualize the solution")
end
if gate_sequence
return gates_sol
end
end
function get_postprocessed_circuit(results::Dict{String, Any}, data::Dict{String, Any})
gates_sol = Array{String,1}()
id_sequence = QCO._gate_id_sequence(results["solution"]["z_bin_var"], data["maximum_depth"])
(data["decomposition_type"] in ["exact_optimal", "exact_feasible", "optimal_global_phase"]) && QCO.validate_circuit_decomposition(data, id_sequence)
for d = 1:data["maximum_depth"]
gate_id = data["gates_dict"]["$(id_sequence[d])"]
if !("Identity" in gate_id["type"])
s1 = gate_id["type"][1]
if occursin(kron_symbol, s1)
push!(gates_sol, s1)
elseif !(QCO._parse_gate_string(s1, type = true) in union(QCO.ONE_QUBIT_GATES_ANGLE_PARAMETERS, QCO.TWO_QUBIT_GATES_ANGLE_PARAMETERS, QCO.MULTI_QUBIT_GATES_ANGLE_PARAMETERS))
push!(gates_sol, s1)
else
# s2 = String[]
# for i_qu = 1:data["num_qubits"]
# if gate_id["qubit_loc"] == "qubit_$i_qu"
# s2 = "$i_qu"
# end
# end
if "angle" in keys(gate_id)
if length(keys(gate_id["angle"])) == 1
θ = round(rad2deg(gate_id["angle"]), digits = 3)
s3 = "$(θ)"
push!(gates_sol, string(s1,"(", s3, ")"))
elseif length(keys(gate_id["angle"])) == 2
θ = round(rad2deg(gate_id["angle"]["θ"]), digits = 3)
ϕ = round(rad2deg(gate_id["angle"]["ϕ"]), digits = 3)
s3 = string("(","$(θ)",",","$(ϕ)",")")
push!(gates_sol, string(s1, s3))
elseif length(keys(gate_id["angle"])) == 3
θ = round(rad2deg(gate_id["angle"]["θ"]), digits = 3)
ϕ = round(rad2deg(gate_id["angle"]["ϕ"]), digits = 3)
λ = round(rad2deg(gate_id["angle"]["λ"]), digits = 3)
s3 = string("(","$(θ)",",","$(ϕ)", ",","$(λ)",")")
push!(gates_sol, string(s1, s3))
end
end
end
end
end
gates_sol_compressed = QCO.get_depth_compressed_circuit(data["num_qubits"], gates_sol)
return gates_sol, gates_sol_compressed
end
"""
validate_circuit_decomposition(data::Dict{String, Any}, id_sequence::Array{Int64,1})
This function validates the circuit decomposition if it is indeed exact with respect to the specified target gate.
"""
function validate_circuit_decomposition(data::Dict{String, Any}, id_sequence::Array{Int64,1}; error_message = true)
valid_status = false
M_sol = Array{Complex{Float64},2}(Matrix(LA.I, 2^(data["num_qubits"]), 2^(data["num_qubits"])))
for i in id_sequence
M_sol *= data["gates_dict"]["$i"]["matrix"]
end
# This tolerance is very important for the final feasiblity check
if data["are_gates_real"]
target_gate = real(data["target_gate"])
else
target_gate = QCO.real_to_complex_gate(data["target_gate"])
end
if data["decomposition_type"] in ["exact_optimal", "exact_feasible"]
(QCO.isapprox(M_sol, convert(Array{Complex{Float64},2}, target_gate), atol = 1E-4)) && (valid_status = true)
elseif data["decomposition_type"] in ["optimal_global_phase"]
(QCO.isapprox_global_phase(M_sol, convert(Array{Complex{Float64},2}, target_gate))) && (valid_status = true)
end
(!(valid_status) && error_message) && Memento.error(_LOGGER, "Decomposition is not valid: Problem may be infeasible")
return valid_status
end
"""
get_depth_compressed_circuit(num_qubits::Int64, gates_sol::Array{String,1})
Given the number of qubits and the sequence of gates from the solution, this function returns a
decomposition of gates after compressing adjacent pair of gates represented on two separate qubits.
For example, gates H1 and H2 appearing in a sequence will be compressed to H1xH2 (kron(H1,H2)).
This functionality is currently supported only for two qubit circuits and gates without angle parameters.
"""
function get_depth_compressed_circuit(num_qubits::Int64, gates_sol::Array{String,1})
# This part of the code may be hacky. This needs to be updated once the input format gets cleaned up for elementary gates with U and R gates.
if (length(gates_sol) == 1) || (num_qubits > 2)
return gates_sol
end
gates_sol_compressed = String[]
angle_param_gate = false
for i=1:length(gates_sol)
if !occursin(kron_symbol, gates_sol[i])
if !occursin("GR", gates_sol[i])
gates_sol_type = QCO._parse_gate_string(gates_sol[i], type = true)
else
gates_sol_type = "GR"
end
if gates_sol_type in union(QCO.ONE_QUBIT_GATES_ANGLE_PARAMETERS, QCO.TWO_QUBIT_GATES_ANGLE_PARAMETERS, QCO.MULTI_QUBIT_GATES_ANGLE_PARAMETERS)
angle_param_gate = true
break
end
end
end
if !angle_param_gate
status = false
for i=1:(length(gates_sol))
if i <= length(gates_sol) - 1
if status
status = false
continue
else
gate_i = QCO.is_multi_qubit_gate(gates_sol[i])
gate_iplus1 = QCO.is_multi_qubit_gate(gates_sol[i+1])
if !(gate_i) && !(gate_iplus1)
if (occursin('1', gates_sol[i]) && occursin('2', gates_sol[i+1])) || (occursin('2', gates_sol[i]) && occursin('1', gates_sol[i+1]))
if occursin('1', gates_sol[i])
gate_string = string(gates_sol[i],"x",gates_sol[i+1])
else
gate_string = string(gates_sol[i+1],"x",gates_sol[i])
end
push!(gates_sol_compressed, gate_string)
status = true
continue
else
push!(gates_sol_compressed, gates_sol[i])
end
else
push!(gates_sol_compressed, gates_sol[i])
end
end
else
if !status
push!(gates_sol_compressed, gates_sol[i])
end
end
end
else
return gates_sol
end
if isempty(gates_sol_compressed)
Memento.error(_LOGGER, "Compressed gates solution is empty")
end
return gates_sol_compressed
end
function _gate_id_sequence(z_val::Matrix{<:Number}, maximum_depth::Int64)
id_sequence = Array{Int64,1}()
for d = 1:maximum_depth
id = findall(isone.(round.(abs.(z_val[:,d]), digits=3)))[1]
push!(id_sequence, id)
end
return id_sequence
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 2530 | #------------------------------------------------------------#
# Build the objective function for QuantumCircuitModel here #
#------------------------------------------------------------#
function objective_minimize_total_depth(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
identity_idx = qcm.data["identity_idx"]
num_gates = size(qcm.data["gates_real"])[3]
decomposition_type = qcm.data["decomposition_type"]
if !isempty(identity_idx)
if decomposition_type in ["exact_optimal", "optimal_global_phase"]
JuMP.@objective(qcm.model, Min, sum(qcm.variables[:z_bin_var][n,d] for n = 1:num_gates, d=1:max_depth if !(n in identity_idx)))
elseif decomposition_type == "exact_feasible"
QCO.objective_feasibility(qcm)
elseif decomposition_type == "approximate"
JuMP.@objective(qcm.model, Min, sum(qcm.variables[:z_bin_var][n,d] for n = 1:num_gates, d=1:max_depth if !(n in identity_idx))
+ qcm.options.objective_slack_penalty * sum(qcm.variables[:slack_var_oa]))
end
else
QCO.objective_feasibility(qcm)
end
return
end
function objective_feasibility(qcm::QuantumCircuitModel)
decomposition_type = qcm.data["decomposition_type"]
if decomposition_type in ["exact_optimal", "exact_feasible", "optimal_global_phase"]
# Feasibility objective
Memento.warn(_LOGGER, "Switching to a feasibility problem")
elseif decomposition_type == "approximate"
JuMP.@objective(qcm.model, Min, sum(qcm.variables[:slack_var_oa]))
end
return
end
function objective_minimize_cnot_gates(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
cnot_idx = qcm.data["cnot_idx"]
decomposition_type = qcm.data["decomposition_type"]
if !isempty(qcm.data["cnot_idx"])
if decomposition_type in ["exact_optimal", "exact_feasible", "optimal_global_phase"]
JuMP.@objective(qcm.model, Min, sum(qcm.variables[:z_bin_var][n,d] for n in cnot_idx, d=1:max_depth))
elseif decomposition_type == "approximate"
JuMP.@objective(qcm.model, Min, sum(qcm.variables[:z_bin_var][n,d] for n in cnot_idx, d=1:max_depth)
+ (qcm.options.objective_slack_penalty * sum(qcm.variables[:slack_var_oa])))
end
else
Memento.error(_LOGGER, "CNot (CX) gate not found in input elementary gates")
end
return
end
| QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 8365 | #-----------------------------------------------------------#
# Build optimization model for circuit decomsposition here #
#-----------------------------------------------------------#
import JuMP: MOI
function build_QCModel(data::Dict{String, Any}; options = nothing)
m_qc = QCO.QuantumCircuitModel(data)
# Update defaults to user-defined options
if options !== nothing
for i in keys(options)
QCO.set_option(m_qc, i, options[i])
end
end
QCO._catch_options_errors(m_qc)
# convex-hull formulation per depth, but larger number of variables and constraints
if m_qc.options.model_type == "balas_formulation"
QCO.variable_QCModel_balas(m_qc)
QCO.constraint_QCModel_balas(m_qc)
# minimal variables and constraints, but not a convex-hull formulation per depth
elseif m_qc.options.model_type == "compact_formulation"
QCO.variable_QCModel_compact(m_qc)
QCO.constraint_QCModel_compact(m_qc)
end
QCO.objective_QCModel(m_qc)
return m_qc
end
function variable_QCModel_balas(qcm::QuantumCircuitModel)
QCO.variable_gates_per_depth(qcm)
QCO.variable_gates_onoff(qcm)
QCO.variable_sequential_gate_products(qcm)
QCO.variable_gate_products_copy(qcm)
QCO.variable_gate_products_linearization(qcm)
if qcm.data["decomposition_type"] == "approximate"
QCO.variable_slack_for_feasibility(qcm)
QCO.variable_slack_var_outer_approximation(qcm)
end
QCO.variable_QCModel_valid(qcm)
return
end
function constraint_QCModel_balas(qcm::QuantumCircuitModel)
QCO.constraint_single_gate_per_depth(qcm)
QCO.constraint_gates_onoff_per_depth(qcm)
QCO.constraint_initial_gate_condition(qcm)
QCO.constraint_intermediate_products(qcm)
QCO.constraint_gate_product_linearization(qcm)
QCO.constraint_target_gate_condition(qcm)
QCO.constraint_cnot_gate_bounds(qcm)
(qcm.data["decomposition_type"] == "approximate") && (QCO.constraint_slack_var_outer_approximation(qcm))
(!qcm.data["are_gates_real"]) && (QCO.constraint_complex_to_real_symmetry(qcm))
QCO.constraint_QCModel_valid(qcm)
return
end
function variable_QCModel_compact(qcm::QuantumCircuitModel)
QCO.variable_gates_onoff(qcm)
QCO.variable_sequential_gate_products(qcm)
QCO.variable_gate_products_linearization(qcm)
if qcm.data["decomposition_type"] == "approximate"
QCO.variable_slack_for_feasibility(qcm)
QCO.variable_slack_var_outer_approximation(qcm)
end
QCO.variable_QCModel_valid(qcm)
return
end
function variable_QCModel_valid(qcm::QuantumCircuitModel)
if qcm.options.all_valid_constraints != -1
if qcm.options.all_valid_constraints == 1
QCO.variable_binary_products(qcm)
elseif qcm.options.all_valid_constraints == 0
qcm.options.unitary_constraints && QCO.variable_binary_products(qcm)
end
end
return
end
function constraint_QCModel_compact(qcm::QuantumCircuitModel)
QCO.constraint_single_gate_per_depth(qcm)
QCO.constraint_initial_gate_condition_compact(qcm)
QCO.constraint_intermediate_products_compact(qcm)
QCO.constraint_gate_product_linearization(qcm)
if qcm.data["decomposition_type"] == "optimal_global_phase"
QCO.constraint_target_gate_condition_glphase(qcm)
else
QCO.constraint_target_gate_condition_compact(qcm)
end
QCO.constraint_cnot_gate_bounds(qcm)
(qcm.data["decomposition_type"] == "approximate") && (QCO.constraint_slack_var_outer_approximation(qcm))
# (!qcm.data["are_gates_real"]) && (QCO.constraint_complex_to_real_symmetry(qcm)) # seems to slow down MIP run times
QCO.constraint_QCModel_valid(qcm)
return
end
function constraint_QCModel_valid(qcm::QuantumCircuitModel)
if qcm.options.all_valid_constraints != -1
if qcm.options.all_valid_constraints == 1
QCO.constraint_commutative_gate_pairs(qcm)
QCO.constraint_involutory_gates(qcm)
QCO.constraint_redundant_gate_product_pairs(qcm)
QCO.constraint_idempotent_gates(qcm)
QCO.constraint_identity_gate_symmetry(qcm)
QCO.constraint_convex_hull_complex_gates(qcm)
QCO.constraint_unitary_property(qcm)
elseif qcm.options.all_valid_constraints == 0
qcm.options.commute_gate_constraints && QCO.constraint_commutative_gate_pairs(qcm)
qcm.options.involutory_gate_constraints && QCO.constraint_involutory_gates(qcm)
qcm.options.redundant_gate_pair_constraints && QCO.constraint_redundant_gate_product_pairs(qcm)
qcm.options.idempotent_gate_constraints && QCO.constraint_idempotent_gates(qcm)
qcm.options.identity_gate_symmetry_constraints && QCO.constraint_identity_gate_symmetry(qcm)
qcm.options.convex_hull_gate_constraints && QCO.constraint_convex_hull_complex_gates(qcm)
qcm.options.unitary_constraints && QCO.constraint_unitary_property(qcm)
end
end
return
end
function objective_QCModel(qcm::QuantumCircuitModel)
if qcm.data["objective"] == "minimize_depth"
QCO.objective_minimize_total_depth(qcm)
elseif qcm.data["objective"] == "minimize_cnot"
QCO.objective_minimize_cnot_gates(qcm)
end
return
end
""
function optimize_QCModel!(qcm::QuantumCircuitModel; optimizer=nothing)
if qcm.options.relax_integrality
JuMP.relax_integrality(qcm.model)
end
if JuMP.mode(qcm.model) != JuMP.DIRECT && optimizer !== nothing
if JuMP.backend(qcm.model).optimizer === nothing
JuMP.set_optimizer(qcm.model, optimizer)
else
Memento.warn(_LOGGER, "Model already contains optimizer, cannot use optimizer specified in `optimize_QCModel!`")
end
end
JuMP.set_time_limit_sec(qcm.model, qcm.options.time_limit)
if !qcm.options.optimizer_log
JuMP.set_silent(qcm.model)
end
if JuMP.mode(qcm.model) != JuMP.DIRECT && JuMP.backend(qcm.model).optimizer === nothing
Memento.error(_LOGGER, "No optimizer specified in `optimize_QCModel!` or the given JuMP model.")
end
start_time = time()
_, solve_time, solve_bytes_alloc, sec_in_gc = @timed JuMP.optimize!(qcm.model)
try
solve_time = JuMP.solve_time(qcm.model)
catch
Memento.warn(_LOGGER, "The given optimizer does not provide the SolveTime() attribute, falling back on @timed. This is not a rigorous timing value.");
end
Memento.debug(_LOGGER, "JuMP model optimize time: $(time() - start_time)")
qcm.result = QCO.build_QCModel_result(qcm, solve_time)
return qcm.result
end
function run_QCModel(params::Dict{String, Any},
qcm_optimizer::MOI.OptimizerWithAttributes;
options = nothing)
data = QCO.get_data(params)
model_qc = QCO.build_QCModel(data, options = options)
result_qc = QCO.optimize_QCModel!(model_qc, optimizer = qcm_optimizer)
if model_qc.options.relax_integrality
if result_qc["primal_status"] == MOI.FEASIBLE_POINT
Memento.info(_LOGGER, "Integrality-relaxed solutions can be found in the results dictionary")
else
Memento.info(_LOGGER, "Infeasible primal status for the integrality-relaxed problem")
end
else
if model_qc.options.visualize_solution
QCO.visualize_solution(result_qc, data)
end
end
return result_qc
end
function set_option(qcm::QuantumCircuitModel, s::Symbol, val)
Base.setproperty!(qcm.options, s, val)
end
function _catch_options_errors(qcm::QuantumCircuitModel)
if !(qcm.options.model_type in ["compact_formulation", "balas_formulation"])
Memento.warn(_LOGGER, "Invalid model_type. Setting it to default value (compact_formulation).")
QCO.set_option(qcm, :model_type, "compact_formulation")
end
if !(qcm.options.all_valid_constraints in [-1,0,1])
Memento.warn(_LOGGER, "Invalid all_valid_constraints; choose a value ∈ [-1,0,1]. Setting it to default value of 0.")
QCO.set_option(qcm, :all_valid_constraints, 0)
end
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 2734 | """
variable_domain(var::JuMP.VariableRef)
Computes the valid domain of a given JuMP variable taking into account bounds
and the varaible's implicit bounds (e.g. binary).
"""
function variable_domain(var::JuMP.VariableRef)
lb = -Inf
(JuMP.has_lower_bound(var)) && (lb = JuMP.lower_bound(var))
(JuMP.is_binary(var)) && (lb = max(lb, 0.0))
ub = Inf
(JuMP.has_upper_bound(var)) && (ub = JuMP.upper_bound(var))
(JuMP.is_binary(var)) && (ub = min(ub, 1.0))
return (lower_bound=lb, upper_bound=ub)
end
"""
relaxation_bilinear(m::JuMP.Model, xy::JuMP.VariableRef, x::JuMP.VariableRef, y::JuMP.VariableRef)
general relaxation of binlinear term (McCormick), which can be used to obtain specific variants in partiuclar cases of variables (like binary)
```
z >= JuMP.lower_bound(x)*y + JuMP.lower_bound(y)*x - JuMP.lower_bound(x)*JuMP.lower_bound(y)
z >= JuMP.upper_bound(x)*y + JuMP.upper_bound(y)*x - JuMP.upper_bound(x)*JuMP.upper_bound(y)
z <= JuMP.lower_bound(x)*y + JuMP.upper_bound(y)*x - JuMP.lower_bound(x)*JuMP.upper_bound(y)
z <= JuMP.upper_bound(x)*y + JuMP.lower_bound(y)*x - JuMP.upper_bound(x)*JuMP.lower_bound(y)
```
"""
function relaxation_bilinear(m::JuMP.Model, xy::JuMP.VariableRef, x::JuMP.VariableRef, y::JuMP.VariableRef)
lb_x, ub_x = variable_domain(x)
lb_y, ub_y = variable_domain(y)
(isapprox(lb_x, 0, atol = 1E-6)) && (lb_x = 0)
(isapprox(lb_y, 0, atol = 1E-6)) && (lb_y = 0)
(isapprox(lb_x, 1, atol = 1E-6)) && (lb_x = 1)
(isapprox(lb_y, 1, atol = 1E-6)) && (lb_y = 1)
(isapprox(ub_x, 0, atol = 1E-6)) && (ub_x = 0)
(isapprox(ub_y, 0, atol = 1E-6)) && (ub_y = 0)
(isapprox(ub_x, 1, atol = 1E-6)) && (ub_x = 1)
(isapprox(ub_y, 1, atol = 1E-6)) && (ub_y = 1)
if (lb_x == 0) && (ub_x == 1) && ((lb_y != 0) || (ub_y != 1))
JuMP.@constraint(m, xy >= lb_y*x)
JuMP.@constraint(m, xy >= y + ub_y*x - ub_y)
JuMP.@constraint(m, xy <= ub_y*x)
JuMP.@constraint(m, xy <= y + lb_y*x - lb_y)
elseif (lb_y == 0) && (ub_y == 1) && ((lb_x != 0) || (ub_x != 1))
JuMP.@constraint(m, xy >= lb_x*y)
JuMP.@constraint(m, xy >= ub_x*y + x - ub_x)
JuMP.@constraint(m, xy <= lb_x*y + x - lb_x)
JuMP.@constraint(m, xy <= ub_x*y)
elseif (lb_x == 0) && (ub_x == 1) && (lb_y == 0) && (ub_y == 1)
JuMP.@constraint(m, xy <= x)
JuMP.@constraint(m, xy <= y)
JuMP.@constraint(m, xy >= x + y - 1)
else
JuMP.@constraint(m, xy >= lb_x*y + lb_y*x - lb_x*lb_y)
JuMP.@constraint(m, xy >= ub_x*y + ub_y*x - ub_x*ub_y)
JuMP.@constraint(m, xy <= lb_x*y + ub_y*x - lb_x*ub_y)
JuMP.@constraint(m, xy <= ub_x*y + lb_y*x - ub_x*lb_y)
end
return m
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 1907 | ""
function build_QCModel_result(qcm::QuantumCircuitModel, solve_time::Number)
# try-catch is needed until solvers reliably support ResultCount()
result_count = 1
try
result_count = JuMP.result_count(qcm.model)
catch
Memento.warn(_LOGGER, "the given optimizer does not provide the ResultCount() attribute, assuming the solver returned a solution which may be incorrect.");
end
solution = Dict{String,Any}()
if result_count > 0
solution = QCO.build_QCModel_solution(qcm)
else
Memento.warn(_LOGGER, "Quantum circuit model has no results, solution cannot be built")
end
result = Dict{String,Any}(
"optimizer" => JuMP.solver_name(qcm.model),
"termination_status" => JuMP.termination_status(qcm.model),
"primal_status" => JuMP.primal_status(qcm.model),
"objective" => QCO.get_objective_value(qcm.model),
"objective_lb" => QCO.get_objective_bound(qcm.model),
"solve_time" => solve_time,
"solution" => solution,
)
# Objective slack Penalty
if qcm.data["decomposition_type"] == "approximate"
result["objective_slack_penalty"] = qcm.options.objective_slack_penalty
end
return result
end
""
function get_objective_value(model::JuMP.Model)
obj_val = NaN
try
obj_val = JuMP.objective_value(model)
catch
Memento.warn(_LOGGER, "Objective value is unbounded. Problem may be infeasible or not constrained properly");
end
return obj_val
end
""
function get_objective_bound(model::JuMP.Model)
obj_lb = -Inf
try
obj_lb = JuMP.objective_bound(model)
catch
end
return obj_lb
end
function build_QCModel_solution(qcm::QuantumCircuitModel)
solution = Dict{String,Any}()
for i in keys(qcm.variables)
solution[String(i)] = JuMP.value.(qcm.variables[i])
end
return solution
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 4484 | export QuantumCircuitModel
"""
QCModelOptions
The composite mutable struct, `QCModelOptions`, holds various optimization model options for enhancements
with defualt options set to the values provided by `get_default_options` function.
"""
mutable struct QCModelOptions
model_type :: String
all_valid_constraints :: Int64
commute_gate_constraints :: Bool
involutory_gate_constraints :: Bool
redundant_gate_pair_constraints :: Bool
identity_gate_symmetry_constraints :: Bool
fix_unitary_variables :: Bool
visualize_solution :: Bool
idempotent_gate_constraints :: Bool
convex_hull_gate_constraints :: Bool
unitary_constraints :: Bool
time_limit :: Float64
relax_integrality :: Bool
optimizer_log :: Bool
objective_slack_penalty :: Float64
end
"""
get_default_options()
This function returns the default options for building the struct `QCModelOptions`.
"""
function get_default_options()
model_type = "compact_formulation" # check MODEL_TYPES in src/qc_model.jl for options
all_valid_constraints = 0 # -1, 0, 1
commute_gate_constraints = true # true, false
involutory_gate_constraints = true # true, false
redundant_gate_pair_constraints = true # true, false
identity_gate_symmetry_constraints = true # true, false
fix_unitary_variables = true # true, false
visualize_solution = true # true, false
idempotent_gate_constraints = false # true, false
convex_hull_gate_constraints = false # true, false
unitary_constraints = false # true, false
time_limit = 10800 # float value
relax_integrality = false # true, false
optimizer_log = true # true, false
objective_slack_penalty = 1E3 # > 0 value
return QCModelOptions(model_type,
all_valid_constraints,
commute_gate_constraints,
involutory_gate_constraints,
redundant_gate_pair_constraints,
identity_gate_symmetry_constraints,
fix_unitary_variables,
visualize_solution,
idempotent_gate_constraints,
convex_hull_gate_constraints,
unitary_constraints,
time_limit,
relax_integrality,
optimizer_log,
objective_slack_penalty)
end
"""
QuantumCircuitModel
The composite mutable struct, `QuantumCircuitModel`, holds dictionaries for input data, abstract JuMP model for optimization,
variable references and result from solving the JuMP model.
"""
mutable struct QuantumCircuitModel
data :: Dict{String,Any}
model :: JuMP.Model
options :: QCModelOptions
variables :: Dict{Symbol,Any}
result :: Dict{String,Any}
"Constructor for struct `QuantumCircuitModel`"
function QuantumCircuitModel(data::Dict{String,Any})
data = data
model = JuMP.Model()
options = QCO.get_default_options()
variables = Dict{Symbol,Any}()
result = Dict{String,Any}()
qcm = new(data, model, options, variables, result)
return qcm
end
end
"""
GateData
The composite mutable struct, `GateData`, type of the gate, the complex matrix form
of the gate, full sized real form of the gate, inverse of the gate and a boolean which
states if the gate has all real entries.
"""
mutable struct GateData
type :: String
complex :: Array{Complex{Float64},2}
real :: Array{Float64,2}
inverse :: Array{Float64,2}
isreal :: Bool
"Constructor for struct `GateData`"
function GateData(gate_type::String, num_qubits::Int64)
type = gate_type
complex = QCO.get_unitary(type, num_qubits)
real = QCO.complex_to_real_gate(complex)
inverse = inv(real)
isreal = iszero(imag(complex))
gate = new(type, complex, real, inverse, isreal)
return gate
end
end
| QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 29140 | """
auxiliary_variable_bounds(v::Array{JuMP.VariableRef,1})
Given a vector of JuMP variables (maximum 4 variables), this function returns the worst-case
bounds, the product of these input variables can admit.
"""
function auxiliary_variable_bounds(v::Array{JuMP.VariableRef,1})
v_l = [JuMP.lower_bound(v[1]), JuMP.upper_bound(v[1])]
v_u = [JuMP.lower_bound(v[2]), JuMP.upper_bound(v[2])]
M = v_l * v_u'
if length(v) == 2
# Bilinear
return minimum(M), maximum(M)
elseif (length(v) == 3) || (length(v) == 4)
M1 = zeros(Float64, (2, 2, 2))
M1[:,:,1] = M * JuMP.lower_bound(v[3])
M1[:,:,2] = M * JuMP.upper_bound(v[3])
if length(v) == 3
# Trilinear
return minimum(M1), maximum(M1)
elseif length(v) == 4
# Quadrilinear
M2 = zeros(Float64, (2, 2, 4))
M2[:,:,1:2] = M1 * JuMP.lower_bound(v[4])
M2[:,:,3:4] = M1 * JuMP.upper_bound(v[4])
return minimum(M2), maximum(M2)
end
end
end
"""
gate_element_bounds(M::Array{Float64,3})
Given a set of elementary gates, `{G1, G2, ... ,Gn}`, this function evaluates
the range of every co-ordinate of the superimposed gates, over all possible gates.
"""
function gate_element_bounds(M::Array{Float64,3})
M_l = zeros(size(M)[1], size(M)[2])
M_u = zeros(size(M)[1], size(M)[2])
for i = 1:size(M)[1], j = 1:size(M)[2]
M_l[i,j] = minimum(M[i,j,:])
M_u[i,j] = maximum(M[i,j,:])
if M_l[i,j] > M_u[i,j]
Memento.error(_LOGGER, "Lower and upper bound conflict in the elements of input elementary gates")
elseif (M_l[i,j] in [-Inf, Inf]) || (M_u[i,j] in [-Inf, Inf])
Memento.error(_LOGGER, "Unbounded entry detected in the input elementary gates")
end
end
return M_l, M_u
end
"""
get_commutative_gate_pairs(M::Dict{String,Any}; decomposition_type::String; identity_in_pairs = true)
Given a dictionary of elementary quantum gates, this function returns all pairs of commuting
gates. Optional argument, `identity_pairs` can be set to `false` if identity matrix need not be part of the commuting pairs.
"""
function get_commutative_gate_pairs(M::Dict{String,Any}, decomposition_type::String; identity_in_pairs = true)
num_gates = length(keys(M))
commute_pairs = Array{Tuple{Int64,Int64},1}()
commute_pairs_prodIdentity = Array{Tuple{Int64,Int64},1}()
Id = Matrix{Complex{Float64}}(Matrix(LA.I, size(M["1"]["matrix"])[1], size(M["1"]["matrix"])[2]))
for i = 1:(num_gates-1), j = (i+1):num_gates
M_i = M["$i"]["matrix"]
M_j = M["$j"]["matrix"]
if ("Identity" in M["$i"]["type"]) || ("Identity" in M["$j"]["type"])
continue
end
M_ij = M_i*M_j
M_ji = M_j*M_i
if decomposition_type in ["optimal_global_phase"]
# Commuting pairs up to a global phase
QCO.isapprox_global_phase(M_ij, Id) && push!(commute_pairs_prodIdentity, (i,j))
QCO.isapprox_global_phase(M_ij, M_ji) && push!(commute_pairs, (i,j))
else
# Commuting pairs == Identity
isapprox(M_ij, Id, atol = 1E-4) && push!(commute_pairs_prodIdentity, (i,j))
isapprox(M_ij, M_ji, atol = 1E-4) && push!(commute_pairs, (i,j))
end
end
if identity_in_pairs
# Commuting pairs involving Identity
identity_idx = []
for i in keys(M)
("Identity" in M[i]["type"]) && push!(identity_idx, parse(Int64, i))
end
if length(identity_idx) > 0
for i = 1:length(identity_idx)
for j = 1:num_gates
(j != identity_idx[i]) && push!(commute_pairs, (j, identity_idx[i]))
end
end
end
end
return commute_pairs, commute_pairs_prodIdentity
end
"""
get_redundant_gate_product_pairs(M::Dict{String,Any}, decomposition_type::String)
Given a dictionary of elementary quantum gates, this function returns all pairs of gates whose product is
one of the input elementary gates. For example, let `G_basis = {G1, G2, G3}` be the elementary gates. If `G1*G2 ∈ G_basis`,
then `(1,2)` is considered as a redundant pair.
"""
function get_redundant_gate_product_pairs(M::Dict{String,Any}, decomposition_type::String)
num_gates = length(keys(M))
redundant_pairs_idx = Array{Tuple{Int64,Int64},1}()
# Non-Identity redundant pairs
for i = 1:(num_gates-1), j = (i+1):num_gates
M_i = M["$i"]["matrix"]
M_j = M["$j"]["matrix"]
if ("Identity" in M["$i"]["type"]) || ("Identity" in M["$j"]["type"])
continue
end
for k = 1:num_gates
if (k != i) && (k != j) && !("Identity" in M["$k"]["type"])
M_k = M["$k"]["matrix"]
if decomposition_type in ["optimal_global_phase"]
QCO.isapprox_global_phase(M_i*M_j, M_k) && push!(redundant_pairs_idx, (i,j))
QCO.isapprox_global_phase(M_j*M_i, M_k) && push!(redundant_pairs_idx, (j,i))
else
isapprox(M_i*M_j, M_k, atol = 1E-4) && push!(redundant_pairs_idx, (i,j))
isapprox(M_j*M_i, M_k, atol = 1E-4) && push!(redundant_pairs_idx, (j,i))
end
end
end
end
return redundant_pairs_idx
end
"""
get_idempotent_gates(M::Dict{String,Any}, decomposition_type::String)
Given the dictionary of complex quantum gates, this function returns the indices of matrices which are self-idempotent
or idempotent with other set of input gates, excluding the Identity gate.
"""
function get_idempotent_gates(M::Dict{String,Any}, decomposition_type::String)
num_gates = length(keys(M))
idempotent_gates_idx = Vector{Int64}()
# Excluding Identity gate in input
for i = 1:num_gates
M_i = M["$i"]["matrix"]
for j = 1:num_gates
M_j = M["$j"]["matrix"]
if ("Identity" in M["$i"]["type"]) || ("Identity" in M["$j"]["type"])
continue
end
if decomposition_type in ["optimal_global_phase"]
QCO.isapprox_global_phase(M_i^2, M_j) && push!(idempotent_gates_idx, i)
else
isapprox(M_i^2, M_j, atol=1E-4) && push!(idempotent_gates_idx, i)
end
end
end
return idempotent_gates_idx
end
"""
get_involutory_gates(M::Dict{String,Any})
Given the dictionary of complex gates `G_1, G_2, ..., G_n`, this function returns the indices of these gates
which are involutory, i.e, `G_i^2 = Identity`, excluding the Identity gate.
"""
function get_involutory_gates(M::Dict{String,Any})
num_gates = length(keys(M))
involutory_gates_idx = Vector{Int64}()
if num_gates > 0
n_r = size(M["1"]["matrix"])[1]
n_c = size(M["1"]["matrix"])[2]
end
Id = Matrix{ComplexF64}(LA.I, n_r, n_c)
# Excluding Identity gate in input
for i=1:num_gates
if !("Identity" in M["$i"]["type"]) && (isapprox((M["$i"]["matrix"])^2, Id, atol=1E-5))
push!(involutory_gates_idx, i)
end
end
return involutory_gates_idx
end
"""
complex_to_real_gate(M::Array{Complex{Float64},2})
Given a complex-valued two-dimensional quantum gate of size NxN, this function returns a real-valued gate
of dimensions 2Nx2N.
"""
function complex_to_real_gate(M::Array{Complex{Float64},2})
n = size(M)[1]
M_real = zeros(2*n, 2*n)
ii = 1; jj = 1;
for i = collect(1:2:2*n)
for j = collect(1:2:2*n)
if isapprox(real(M[ii,jj]), 0, atol=1E-6)
M_real[i,j] = 0
M_real[i+1,j+1] = 0
else
M_real[i,j] = real(M[ii,jj])
M_real[i+1,j+1] = real(M[ii,jj])
end
if isapprox(imag(M[ii,jj]), 0, atol=1E-6)
M_real[i,j+1] = 0
M_real[i+1,j] = 0
else
M_real[i,j+1] = imag(M[ii,jj])
M_real[i+1,j] = -imag(M[ii,jj])
end
jj += 1
end
jj = 1
ii += 1
end
return M_real
end
"""
real_to_complex_gate(M::Array{Complex{Float64},2})
Given a real-valued two-dimensional quantum gate of size 2Nx2N, this function returns a complex-valued gate
of size NxN, if the input gate is in a valid complex form.
"""
function real_to_complex_gate(M::Array{Float64,2})
n = size(M)[1]
if !iseven(n)
Memento.error(_LOGGER, "Specified gate can admit only even numbered columns and rows")
end
M_complex = zeros(Complex{Float64}, (Int(n/2), Int(n/2)))
ii = 1; jj = 1;
for i = collect(1:2:n)
for j = collect(1:2:n)
if !isapprox(M[i,j], M[i+1, j+1], atol = 1E-5) || !isapprox(M[i+1,j], -M[i,j+1], atol = 1E-5)
Memento.error(_LOGGER, "Specified real form of the complex gate is invalid")
end
M_re = M[i,j]
M_im = M[i,j+1]
(isapprox(M_re, 0, atol=1E-6)) && (M_re = 0)
(isapprox(M_im, 0, atol=1E-6)) && (M_im = 0)
M_complex[ii,jj] = complex(M_re, M_im)
jj += 1
end
jj = 1
ii += 1
end
return M_complex
end
"""
round_complex_values(M::Array{Complex{Float64},2})
Given a complex-valued matrix, this function returns a complex-valued matrix which
rounds the values closest to 0, 1 and -1. This is useful to avoid numerical issues.
"""
function round_complex_values(M::Array{Complex{Float64},2})
if length(size(M)) == 2
n_r = size(M)[1]
n_c = size(M)[2]
M_round = Array{Complex{Float64},2}(zeros(n_r,n_c))
for i=1:n_r
for j=1:n_c
M_round[i,j] = complex(QCO.round_real_value(real(M[i,j])), QCO.round_real_value(imag(M[i,j])))
end
end
return M_round
else
return M
end
end
"""
round_real_value(x::T) where T <: Number
Given a real-valued number, this function returns a real-value which rounds the values closest to 0, 1 and -1.
"""
function round_real_value(x::T) where T <: Number
if isapprox(abs(x), 0, atol=1E-6)
x = 0
elseif isapprox(x, 1, atol=1E-6)
x = 1
elseif isapprox(x, -1, atol=1E-6)
x = -1
end
return x
end
"""
unique_idx(x::AbstractArray{T})
This function returns the indices of unique elements in a given array of scalar or vector inputs. Overall,
this function computes faster than Julia's built-in `findfirst` command.
"""
function unique_idx(x::AbstractArray{T}) where T
uniqueset = Set{T}()
ex = eachindex(x)
idxs = Vector{eltype(ex)}()
for i in ex
xi = x[i]
if !(xi in uniqueset)
push!(idxs, i)
push!(uniqueset, xi)
end
end
idxs
end
"""
unique_matrices(M::Array{Float64, 3})
This function returns the unique set of matrices and the corresponding indices
of unique matrices from the given set of matrices.
"""
function unique_matrices(M::Array{Float64, 3})
M[isapprox.(M, 0, atol=1E-6)] .= 0
M_reshape = [];
for i=1:size(M)[3]
push!(M_reshape, round.(reshape(M[:,:,i], size(M)[1]*size(M)[2]), digits=5))
end
idx = QCO.unique_idx(M_reshape)
return M[:,:,idx], idx
end
"""
kron_single_qubit_gate(num_qubits::Int64, M::Array{Complex{Float64},2}, qubit_loc::String)
Given number of qubits of the circuit, the complex-valued one-qubit gate and the qubit location ("q1","q2',"q3",...),
this function returns a full-sized gate after applying appropriate kronecker products. This function supports any number
integer-valued qubits.
"""
function kron_single_qubit_gate(num_qubits::Int64, M::Array{Complex{Float64},2}, qubit_loc::String)
if size(M)[1] != 2
Memento.error(_LOGGER, "Input should be an one-qubit gate")
end
qubit = parse(Int, qubit_loc[2:end])
if !(qubit in 1:num_qubits)
Memento.error(_LOGGER, "Specified qubit location, $qubit, has to be ∈ [q1,...,q$num_qubits]")
end
I = QCO.IGate(1)
M_kron = 1
for i = 1:num_qubits
M_iter = I
if i == qubit
M_iter = M
end
M_kron = kron(M_kron, M_iter)
end
QCO._catch_kron_dimension_errors(num_qubits, size(M_kron)[1])
return QCO.round_complex_values(M_kron)
end
"""
kron_two_qubit_gate(num_qubits::Int64, M::Array{Complex{Float64},2}, c_qubit_loc::String, t_qubit_loc::String)
Given number of qubits of the circuit, the complex-valued two-qubit gate and the control and
target qubit locations ("q1","q2',"q3",...), this function returns a full-sized gate after applying
appropriate kronecker products. This function supports any number of integer-valued qubits.
"""
function kron_two_qubit_gate(num_qubits::Int64, M::Array{Complex{Float64},2}, c_qubit_loc::String, t_qubit_loc::String)
if size(M)[1] != 4
Memento.error(_LOGGER, "Input should be a two-qubit gate")
end
c_qubit = parse(Int, c_qubit_loc[2:end])
t_qubit = parse(Int, t_qubit_loc[2:end])
if !(c_qubit in 1:num_qubits) || !(t_qubit in 1:num_qubits)
Memento.error(_LOGGER, "Specified control and target qubit locations have to be ∈ [q1,...,q$num_qubits]")
elseif isapprox(c_qubit, t_qubit, atol = 1E-6)
Memento.error(_LOGGER, "Control and target qubits cannot be identical for a multi-qubit elementary gate")
end
I = QCO.IGate(1)
Swap = QCO.SwapGate()
# If on adjacent qubits
if abs(c_qubit - t_qubit) == 1
M_kron = 1
for i = 1:(num_qubits-1)
M_iter = I
if (i in [c_qubit, t_qubit]) && (i+1 in [c_qubit, t_qubit])
M_iter = M
end
M_kron = kron(M_kron, M_iter)
end
# If on non-adjacent qubits
# Assuming the qubit numbering starts at 1, and not 0
elseif abs(c_qubit - t_qubit) >= 2
ct = abs(c_qubit - t_qubit)
M_sub_depth = 2*ct - 1
M_sub_loc = ct
M_sub_swap_id = ct
M_sub = Matrix{Complex{Float64}}(LA.I, 2^(ct+1),2^(ct+1))
# Idea is to represent gate_1_4 = swap_3_4 * swap_2_3 * gate_1_2 * swap_2_3 * swap_3_4
for d=1:M_sub_depth
M_sub_kron = 1
swap_qubits = true
for i=1:ct
M_sub_iter = I
if (d == M_sub_loc) && (i == 1)
M_sub_iter = M
elseif !(d == M_sub_loc) && (i == M_sub_swap_id) && swap_qubits
M_sub_iter = Swap
if (d < M_sub_loc) && (M_sub_swap_id > 2)
M_sub_swap_id -= 1
elseif (d > M_sub_loc)
M_sub_swap_id += 1
end
swap_qubits = false
end
M_sub_kron = kron(M_sub_kron, M_sub_iter)
end
M_sub *= M_sub_kron
end
M_kron = 1
i = 1
while i <= num_qubits
M_iter = I
if (i in [c_qubit, t_qubit])
M_iter = M_sub
i += (ct+1)
else
i += 1
end
M_kron = kron(M_kron, M_iter)
end
end
QCO._catch_kron_dimension_errors(num_qubits, size(M_kron)[1])
return QCO.round_complex_values(M_kron)
end
"""
multi_qubit_global_gate(num_qubits::Int64, M::Array{Complex{Float64},2})
Given number of qubits of the circuit and any complex-valued one-qubit gate (`G``) in it's matrix form,
this function returns a multi-qubit global gate, by applying `G` simultaneously on all the qubits.
For example, given `G` and `num_qubits = 3`, this function returns `G⨂G⨂G`.
"""
function multi_qubit_global_gate(num_qubits::Int64, M::Array{Complex{Float64},2})
if size(M)[1] != 2
Memento.error(_LOGGER, "Input should be an one-qubit gate")
end
M_kron = 1
for i = 1:num_qubits
M_kron = kron(M_kron, M)
end
QCO._catch_kron_dimension_errors(num_qubits, size(M_kron)[1])
return QCO.round_complex_values(M_kron)
end
"""
_parse_gates_with_kron_symbol(s::String)
Given a string with gates separated by kronecker symbols `x`, this function parses and returns the vector of gates. For
example, if the input string is `H_1xCNot_2_3xT_4`, the output will be `Vector{String}(["H_1", "CNot_2_3", "T_4"])`.
"""
function _parse_gates_with_kron_symbol(s::String)
gates = Vector{String}()
gate_id = string()
for i = 1:length(s)
if s[i] != QCO.kron_symbol
gate_id = gate_id * s[i]
else
push!(gates, gate_id)
(i != length(s)) && (gate_id = string())
end
if i == length(s)
push!(gates, gate_id)
end
end
return gates
end
"""
_parse_gate_string(s::String)
Given a string representing a single gate with qubit numbers separated by symbol `_`, this
function parses and returns the vector of qubits on which the input gate is located. For example,
if the input string is `CRX_2_3`, the output will be `Vector{Int64}([2,3])`.
"""
function _parse_gate_string(s::String; type=false, qubits=false)
gates = Vector{String}()
gate_id = string()
for i = 1:length(s)
if s[i] != QCO.qubit_separator
gate_id = gate_id * s[i]
else
push!(gates, gate_id)
(i != length(s)) && (gate_id = string())
end
if (i == length(s)) && (s[i] != qubit_separator)
push!(gates, gate_id)
end
end
if type && qubits
return gates[1], parse.(Int, gates[2:end]) # Assuming 1st element is the gate type/name
elseif type
return gates[1]
elseif qubits
return parse.(Int, gates[2:end])
end
end
"""
is_gate_real(M::Array{Complex{Float64},2})
Given a complex-valued quantum gate, M, this function returns if M has purely real parts or not as it's elements.
"""
function is_gate_real(M::Array{Complex{Float64},2})
M_imag = imag(M)
n_r = size(M_imag)[1]
n_c = size(M_imag)[2]
if sum(isapprox.(M_imag, zeros(n_r, n_c), atol=1E-6)) == n_r*n_c
return true
else
return false
end
end
"""
_get_constraint_slope_intercept(vertex1::Vector{<:Number}, vertex2::Vector{<:Number})
Given co-ordinates of two points in a plane, this function returns the slope (m) and intercept (c) of the
line joining these two points.
"""
function _get_constraint_slope_intercept(vertex1::Tuple{<:Number, <:Number}, vertex2::Tuple{<:Number, <:Number})
if isapprox.(vertex1, vertex2, atol=1E-6) == [true, true]
Memento.warn(_LOGGER, "Invalid slope and intercept for two identical vertices")
return
end
if isapprox(vertex1[1], vertex2[1], atol = 1E-6)
return Inf, Inf
else
m = QCO.round_real_value((vertex2[2] - vertex1[2]) / (vertex2[1] - vertex1[1]))
c = QCO.round_real_value(vertex1[2] - (m * vertex1[1]))
return m,c
end
end
"""
is_multi_qubit_gate(gate::String)
Given the input gate string, this function returns a boolean if the input gate is a multi qubit gate or not.
For example, for a 2-qubit gate `CRZ_1_2`, output is `true`.
"""
function is_multi_qubit_gate(gate::String)
if occursin(kron_symbol, gate) || (gate in QCO.MULTI_QUBIT_GATES)
return true
end
qubit_loc = QCO._parse_gate_string(gate, qubits = true)
if length(qubit_loc) > 1
return true
elseif length(qubit_loc) == 1
return false
else
Memento.error(_LOGGER, "Atleast one qubit has to be specified for an input gate")
end
end
function _verify_angle_bounds(angle::Number)
if !(-2*π <= angle <= 2*π)
Memento.error(_LOGGER, "Input angle is not within valid bounds in [-2π, 2π]")
end
end
function _catch_kron_dimension_errors(num_qubits::Int64, M_dim::Int64)
if M_dim !== 2^(num_qubits)
Memento.error(_LOGGER, "Dimensions mismatch in evaluation of Kronecker product")
end
end
"""
_determinant_test_for_infeasibility(data::Dict{String,Any})
Given the processed data dictionary, this function performs a few simple tests based on the determinant values of
elementary and target gates to detect MIP infeasibility.
"""
function _determinant_test_for_infeasibility(data::Dict{String,Any})
if data["are_gates_real"]
det_target = LA.det(data["target_gate"])
else
det_target = LA.det(QCO.real_to_complex_gate(data["target_gate"]))
end
if isapprox(imag(det_target), 0, atol = 1E-6)
if isapprox(det_target, -1, atol=1E-6)
sum_det = 0
for k = 1:length(keys(data["gates_dict"]))
det_val = LA.det(data["gates_dict"]["$k"]["matrix"])
if isapprox(imag(det_val), 0, atol = 1E-6)
sum_det += det_val
end
end
if (isapprox(sum_det, length(keys(data["gates_dict"])), atol = 1E-6)) && (data["decomposition_type"] == "exact_optimal")
Memento.error(_LOGGER, "Infeasible decomposition: det.(elementary_gates) = 1, while det(target_gate) = -1")
end
end
else
det_gates_real = true
for k = 1:length(keys(data["gates_dict"]))
if !(isapprox(imag(LA.det(data["gates_dict"]["$k"]["matrix"])), 0, atol=1E-6))
det_gates_real = false
continue
end
end
if det_gates_real && (data["decomposition_type"] == "exact_optimal")
Memento.error(_LOGGER, "Infeasible decomposition: det.(elementary_gates) = real, while det(target_gate) = complex")
end
end
end
"""
_get_nonzero_idx_of_complex_to_real_matrix(M::Array{Float64,2})
A helper function for global phase constraints: Given a complex to real reformulated matrix, `M`, using `QCO.complex_to_real_gate`, this function
returns the first non-zero index it locates within `M`.
"""
function _get_nonzero_idx_of_complex_to_real_matrix(M::Array{Float64,2})
for i=1:2:size(M)[1], j=1:2:size(M)[2]
if !isapprox(M[i,j], 0, atol=1E-6) || !isapprox(M[i,j+1], 0, atol=1E-6)
return i,j
end
end
end
"""
_get_nonzero_idx_of_complex_matrix(M::Array{Complex{Float64},2})
A helper function for global phase constraints: Given a complex matrix, `M`, this
function returns the first non-zero index it locates within `M`, either in real or the complex part.
"""
function _get_nonzero_idx_of_complex_matrix(M::Array{Complex{Float64},2})
for i=1:size(M)[1], j=1:size(M)[2]
if !isapprox(M[i,j], 0, atol=1E-6)
return i,j
end
end
end
"""
isapprox_global_phase(M1::Array{Complex{Float64},2}, M2::Array{Complex{Float64},2}; tol_0 = 1E-4)
Given two complex matrices, `M1` and `M2`, this function returns a boolean if these matrices are
equivalent up to a global phase.
"""
function isapprox_global_phase(M1::Array{Complex{Float64},2}, M2::Array{Complex{Float64},2}; tol_0 = 1E-4)
ref_nonzero_r, ref_nonzero_c = QCO._get_nonzero_idx_of_complex_matrix(M1)
global_phase = M2[ref_nonzero_r, ref_nonzero_c] / M1[ref_nonzero_r, ref_nonzero_c] # exp(-im*ϕ)
return isapprox(M2, global_phase * M1, atol = tol_0)
end
"""
_get_elementary_gates_fixed_indices(M::Array{T,3} where T <: Number)
Given the set of input elementary gates in real form,
this function returns a dictionary of tuples of indices wholse values are fixed in `sum_k (z_k*M[:,:,k])`.
"""
function _get_elementary_gates_fixed_indices(M::Array{T,3} where T <: Number)
N = size(M[:,:,1])[1]
M_l, M_u = QCO.gate_element_bounds(M)
G_fixed_idx = Dict{Tuple{Int64, Int64}, Any}()
for i=1:N, j=1:N
if isapprox(M_l[i,j], M_u[i,j], atol = 1E-6)
G_fixed_idx[(i,j)] = Dict{String, Any}("value" => M_l[i,j])
end
end
return G_fixed_idx
end
"""
_get_unitary_variables_fixed_indices(M::Array{T,3} where T <: Number,
maximum_depth::Int64)
Given a 3D array of real square matrices (representing gates), and a maximum alowable depth,
this function returns a dictionary of tuples of indices wholse values are fixed in the unitary matrices for every depth
of the circuit.
"""
function _get_unitary_variables_fixed_indices(M::Array{T,3} where T <: Number, maximum_depth::Int64)
N = size(M)[1]
G_fixed_idx = QCO._get_elementary_gates_fixed_indices(M)
U_fixed_idx = Dict{Int64, Any}()
for depth = 1:(maximum_depth-1)
U_fixed_idx[depth] = Dict{Tuple{Int64, Int64}, Any}()
if depth == 1
# Assuming data["initial_gate"] == "Identity"
U_fixed_idx[depth] = G_fixed_idx
else
U_fixed_idx[depth] = QCO._get_matrix_product_fixed_indices(U_fixed_idx[depth-1], G_fixed_idx, N)
end
end
return U_fixed_idx
end
"""
_get_matrix_product_fixed_indices(left_matrix_fixed_idx::Dict{Tuple{Int64, Int64}, Any},
right_matrix_fixed_idx::Dict{Tuple{Int64, Int64}, Any},
N::Int64)
Given left and right square matrices of size `NxN`, in a dictionary format with tuples of indices whose values are fixed,
this function returns a dictionary of tuples of indices wholse values are fixed in `left_matrix * right_matrix`.
"""
function _get_matrix_product_fixed_indices(left_matrix_fixed_idx::Dict{Tuple{Int64, Int64}, Any},
right_matrix_fixed_idx::Dict{Tuple{Int64, Int64}, Any},
N::Int64)
product_fixed_idx = Dict{Tuple{Int64, Int64}, Any}()
for row = 1:N
left_matrix_constants_row = filter(p -> (p.first[1] == row), left_matrix_fixed_idx)
left_matrix_zeros_row = filter(p -> (isapprox(p.second["value"], 0, atol = 1E-6)), left_matrix_constants_row)
v_constants_row = keys(left_matrix_constants_row) |> collect .|> last
v_zeros_row = keys(left_matrix_zeros_row) |> collect .|> last
for col = 1:N
right_matrix_constants_col = filter(p -> (p.first[2] == col), right_matrix_fixed_idx)
right_matrix_zeros_col = filter(p -> (isapprox(p.second["value"], 0, atol=1E-6)), right_matrix_constants_col)
v_constants_col = keys(right_matrix_constants_col) |> collect .|> first
v_zeros_col = keys(right_matrix_zeros_col) |> collect .|> first
all_zero_idx = union(v_zeros_row, v_zeros_col)
# Keep track of zero value indices in matrix product
if sort(all_zero_idx) == 1:N
product_fixed_idx[(row,col)] = Dict{String, Any}("value" => 0)
end
# Keep track of non-zero constant value indices in matrix product
if (sort(v_constants_row) == 1:N) && (sort(v_constants_col) == 1:N)
value = 0
for i = 1:N
value += left_matrix_constants_row[(row, i)]["value"] * right_matrix_constants_col[(i, col)]["value"]
end
product_fixed_idx[(row,col)] = Dict{String, Any}("value" => value)
end
end
end
return product_fixed_idx
end
"""
controlled_gate(gate::Array{Complex{Float64},2}, num_control_qubits::Int64; reverse = false)
Given a complex-valued matrix (`gate`) of `N` qubits, and number of control qubits (`NCQ`),
this function returns a complex-valued controlled gate representable in `N+NCQ` qubits.
The state of control qubit is applied `NCQ` times to every wire preceeding the location
of the input gate. Note that this function does not account for the actual location
of the controlled gate in the circuit. Here are a few examples:
(a) [ToffoliGate](@ref) = controlled_gate(XGate(), 2) = controlled_gate(CNotGate(), 1)
(b) CCCCCZGate = controlled_gate(ZGate(), 5)
(c) TCCGate = controlled(TGate(), 2, reverse = true)
"""
function controlled_gate(gate::Array{Complex{Float64},2}, num_control_qubits::Int64; reverse = false)
if num_control_qubits < 0
Memento.error(_LOGGER, "Number of control qubits has to be a non-negative integer")
end
M_0 = Array{Complex{Float64},2}([1 0; 0 0])
M_1 = Array{Complex{Float64},2}([0 0; 0 1])
ctrl_gate = gate
for _ = 1:num_control_qubits
num_qubits = Int(log2(size(ctrl_gate)[1]))
if !reverse
# |0⟩⟨0| ⊗ I
control_0 = kron(M_0, QCO.IGate(num_qubits))
# |1⟩⟨1| ⊗ G
control_1 = kron(M_1, ctrl_gate)
else
# I ⊗ |0⟩⟨0|
control_0 = kron(QCO.IGate(num_qubits), M_0)
# G ⊗ |1⟩⟨1|
control_1 = kron(ctrl_gate, M_1)
end
ctrl_gate = control_0 + control_1
end
return ctrl_gate
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 6605 | #-----------------------------------------------------------#
# Initialize all variables of the QuantumCircuitModel here #
#-----------------------------------------------------------#
function variable_gates_per_depth(qcm::QuantumCircuitModel)
tol_0 = 1E-6
n_r = size(qcm.data["gates_real"])[1]
n_c = size(qcm.data["gates_real"])[2]
max_depth = qcm.data["maximum_depth"]
M_l, M_u = QCO.gate_element_bounds(qcm.data["gates_real"])
qcm.variables[:G_var] = JuMP.@variable(qcm.model, M_l[i,j] <= G_var[i=1:n_r, j=1:n_c, 1:max_depth] <= M_u[i,j])
num_vars_fixed = 0
for i=1:n_r, j=1:n_c
if isapprox(M_l[i,j], M_u[i,j], atol=tol_0)
for d=1:max_depth
JuMP.fix(G_var[i,j,d], M_l[i,j]; force=true)
end
num_vars_fixed += 1
end
end
if num_vars_fixed > 0
Memento.info(_LOGGER, "$num_vars_fixed of $(n_r * n_c) entries are constants in the given set of gates.")
end
return
end
function variable_gates_onoff(qcm::QuantumCircuitModel)
num_gates = size(qcm.data["gates_real"])[3]
max_depth = qcm.data["maximum_depth"]
qcm.variables[:z_bin_var] = JuMP.@variable(qcm.model, z_bin_var[1:num_gates,1:max_depth], Bin)
if "input_circuit" in keys(qcm.data)
gates_dict = qcm.data["gates_dict"]
start_value = qcm.data["input_circuit"]
for d in keys(start_value)
circuit_depth = start_value[d]["depth"]
gate_start = start_value[d]["gate"]
for n in keys(gates_dict)
if gate_start in gates_dict[n]["type"]
JuMP.set_start_value(z_bin_var[parse(Int64, n), circuit_depth], 1)
end
end
end
end
return
end
function variable_sequential_gate_products(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
n_r = size(qcm.data["gates_real"])[1]
n_c = size(qcm.data["gates_real"])[2]
if !qcm.options.fix_unitary_variables
qcm.variables[:U_var] = JuMP.@variable(qcm.model, -1 <= U_var[1:n_r, 1:n_c, 1:max_depth] <= 1)
return
end
qcm.variables[:U_var] = JuMP.@variable(qcm.model, U_var[1:n_r, 1:n_c, 1:max_depth])
U_fixed_idx = QCO._get_unitary_variables_fixed_indices(qcm.data["gates_real"], max_depth)
# U_var_bound_tol = 1E-8
for depth = 1:(max_depth-1)
U_fix = U_fixed_idx[depth]
for ii = 1:n_r, jj = 1:n_c
if ((ii, jj) in keys(U_fix))
if isapprox(U_fix[(ii, jj)]["value"], -1, atol = 1E-6)
JuMP.set_lower_bound(U_var[ii, jj, depth], -1)
JuMP.set_upper_bound(U_var[ii, jj, depth], -1)
elseif isapprox(U_fix[(ii, jj)]["value"], 0, atol = 1E-6)
JuMP.set_lower_bound(U_var[ii, jj, depth], 0)
JuMP.set_upper_bound(U_var[ii, jj, depth], 0)
elseif isapprox(U_fix[(ii, jj)]["value"], 1, atol = 1E-6)
JuMP.set_lower_bound(U_var[ii, jj, depth], 1)
JuMP.set_upper_bound(U_var[ii, jj, depth], 1)
else
JuMP.set_lower_bound(U_var[ii, jj, depth], U_fix[(ii, jj)]["value"])
JuMP.set_upper_bound(U_var[ii, jj, depth], U_fix[(ii, jj)]["value"])
end
else
JuMP.set_lower_bound(U_var[ii, jj, depth], -1)
JuMP.set_upper_bound(U_var[ii, jj, depth], 1)
end
end
end
for ii = 1:n_r, jj = 1:n_c
JuMP.set_lower_bound(U_var[ii, jj, max_depth], -1)
JuMP.set_upper_bound(U_var[ii, jj, max_depth], 1)
end
return
end
function variable_gate_products_copy(qcm::QuantumCircuitModel)
max_depth = qcm.data["maximum_depth"]
n_r = size(qcm.data["gates_real"])[1]
n_c = size(qcm.data["gates_real"])[2]
num_gates = size(qcm.data["gates_real"])[3]
qcm.variables[:V_var] = JuMP.@variable(qcm.model, -1 <= V_var[1:n_r, 1:n_c, 1:num_gates, 1:max_depth] <= 1)
return
end
function variable_gate_products_linearization(qcm::QuantumCircuitModel)
n_r = size(qcm.data["gates_real"])[1]
n_c = size(qcm.data["gates_real"])[2]
max_depth = qcm.data["maximum_depth"]
num_gates = size(qcm.data["gates_real"])[3]
if !qcm.options.fix_unitary_variables
qcm.variables[:zU_var] = JuMP.@variable(qcm.model, -1 <= zU_var[1:n_r, 1:n_c, 1:num_gates, 1:(max_depth-1)] <= 1)
return
end
U_var = qcm.variables[:U_var]
qcm.variables[:zU_var] = JuMP.@variable(qcm.model, zU_var[1:n_r, 1:n_c, 1:num_gates, 1:(max_depth-1)])
for d = 1:(max_depth-1), i = 1:n_r, j = 1:n_c, k = 1:num_gates
U_var_l = JuMP.lower_bound(U_var[i,j,d])
U_var_u = JuMP.upper_bound(U_var[i,j,d])
if isapprox(U_var_l, 0, atol = 1E-6) && isapprox(U_var_u, 0, atol = 1E-6)
JuMP.set_lower_bound(zU_var[i,j,k,d], 0)
JuMP.set_upper_bound(zU_var[i,j,k,d], 0)
else
JuMP.set_lower_bound(zU_var[i,j,k,d], -1)
JuMP.set_upper_bound(zU_var[i,j,k,d], 1)
end
end
return
end
function variable_slack_for_feasibility(qcm::QuantumCircuitModel)
n_r = size(qcm.data["gates_real"])[1]
n_c = size(qcm.data["gates_real"])[2]
max_depth = qcm.data["maximum_depth"]
U_var = qcm.variables[:U_var]
qcm.variables[:slack_var] = JuMP.@variable(qcm.model, slack_var[1:n_r, 1:n_c])
for i=1:n_r, j=1:n_c
lb = JuMP.lower_bound(U_var[i,j,max_depth-1])
ub = JuMP.upper_bound(U_var[i,j,max_depth-1])
if isapprox(lb, 0, atol = 1E-6) && isapprox(ub, 0, atol = 1E-6)
JuMP.set_lower_bound(slack_var[i,j], 0)
JuMP.set_upper_bound(slack_var[i,j], 0)
else
JuMP.set_lower_bound(slack_var[i,j], -1)
JuMP.set_upper_bound(slack_var[i,j], 1)
end
end
return
end
function variable_slack_var_outer_approximation(qcm::QuantumCircuitModel)
n_r = size(qcm.data["gates_real"])[1]
n_c = size(qcm.data["gates_real"])[2]
qcm.variables[:slack_var_oa] = JuMP.@variable(qcm.model, -1 <= slack_var_oa[1:n_r, 1:n_c] <= 1)
return
end
function variable_binary_products(qcm::QuantumCircuitModel)
num_gates = size(qcm.data["gates_real"])[3]
max_depth = qcm.data["maximum_depth"]
qcm.variables[:Z_var] = JuMP.@variable(qcm.model, 0 <= Z[1:num_gates, 1:num_gates, 1:max_depth] <= 1)
return
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 802 | @testset "Tests: convex_hull" begin
points_1a = [(0.5, 0.0), (0.0, 0.0), (1, 0), (0,1), (-0.5, 0), (0.0, 0.5)]
points_1b = [(0.0, 0.0), (1, 0), (0,1), (-0.5, 0), (0.5, 0.0), (0.0, 0.5)]
points_2a = [(0.5, 0.0), (0.0, 0.0), (1, 0), (0,1), (-0.5, 0), (0.0, 0.5), (0.5, -0.5)]
points_2b = [(0.5, 0.0), (0.5, -0.5), (0.0, 0.0), (0,1), (-0.5, 0), (0.0, 0.5), (1, 0)]
points_3a = [(0,0)]
points_3b = [(-0.5,-0.5), (0.5,0.5)]
points_3c = [(-0.5, -0.5), (0.5, 0.5), (0, 0), (0.25, 0.25)]
@test QCO.convex_hull(points_1a) == QCO.convex_hull(points_1b)
@test QCO.convex_hull(points_2a) == QCO.convex_hull(points_2b)
@test QCO.convex_hull(points_3a) == points_3a
@test QCO.convex_hull(points_3b) == points_3b
@test QCO.convex_hull(points_3c) == points_3b
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 5718 | # Unit tests for functions in data.jl
@testset "Data tests: building elementary universal gate" begin
test_angle = π/3
pauli_Y = QCO.YGate()
H = QCO.HGate()
U3_1 = [(1/sqrt(2))+0.0im 0.0-(1/sqrt(2))im
0.0+(1/sqrt(2))im -(1/sqrt(2))+0.0im]
test_U3_1 = QCO.U3Gate(π/2,π/2,π/2)
@test isapprox(U3_1, test_U3_1)
# @test ceil.(real(U3_1), digits=6) == ceil.(real(test_U3_1), digits=6)
# @test ceil.(imag(U3_1), digits=6) == ceil.(imag(test_U3_1), digits=6)
test_U3_2 = QCO.U3Gate(π,π/2,π/2)
@test isapprox(test_U3_2, pauli_Y)
test_U2_2 = QCO.U2Gate(0,π)
@test isapprox(test_U2_2, H)
test_U3_3 = QCO.U3Gate(test_angle, -π/2, π/2)
@test isapprox(QCO.RXGate(test_angle), test_U3_3)
test_U3_4 = QCO.U3Gate(test_angle, 0, 0)
@test isapprox(QCO.RYGate(test_angle), test_U3_4)
test_U1_1 = exp(-((test_angle)/2)im)*QCO.U1Gate(test_angle)
@test isapprox(QCO.RZGate(test_angle), test_U1_1)
end
@testset "Data tests: get_full_sized_gate" begin
# 2-qubit gates
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 2,
"elementary_gates" => ["T_1", "T_2", "Tdagger_1", "Tdagger_2", "S_1", "S_2", "Sdagger_1", "Sdagger_2", "SX_1", "SX_2", "SXdagger_1", "SXdagger_2", "X_1", "X_2", "Y_1", "Y_2", "Z_1", "Z_2", "CZ_1_2", "CH_1_2", "CV_1_2", "Phase_1", "Phase_2", "CSX_1_2", "DCX_1_2", "Sycamore_1_2"],
"Phase_discretization" => [π],
"target_gate" => QCO.IGate(2),
)
data = QCO.get_data(params, eliminate_identical_gates = false)
@test length(keys(data["gates_dict"])) == 26
# kron gates
params = Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 2,
"elementary_gates" => ["I_1xH_2xT_3", "Tdagger_1xS_2xSdagger_3", "SX_1xSXdagger_2xX_3", "Y_1xCNot_2_3", "CNot_2_1xZ_3", "CV_2_1xI_3", "I_1xCV_2_3", "CVdagger_2_1xI_3", "I_1xCVdagger_2_3", "CX_2_1xI_3", "I_1xCX_2_3", "CY_2_1xI_3", "I_1xCY_2_3", "CZ_2_1xI_3", "I_1xCZ_2_3", "CH_2_1xI_3", "I_1xCH_2_3", "CSX_2_1xI_3", "I_1xCSX_2_3", "Swap_2_1xI_3", "I_1xiSwap_2_3", "DCX_2_1xI_3", "I_1xSycamore_2_3"],
"target_gate" => QCO.IGate(3),
)
data = QCO.get_data(params, eliminate_identical_gates = false)
@test length(keys(data["gates_dict"])) == 23
# 3-qubit gates
params = Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 2,
"elementary_gates" => ["H_3", "T_3", "Tdagger_3", "Sdagger_3", "SX_3", "SXdagger_3", "X_3", "Y_3", "Z_3", "CNot_1_2", "CNot_2_3", "CNot_2_1", "CNot_3_2", "CNot_1_3", "CNot_3_1"],
"target_gate" => QCO.IGate(3)
)
# 4-qubit gates
params = Dict{String, Any}(
"num_qubits" => 4,
"maximum_depth" => 2,
"elementary_gates" => ["CU3_1_3", "CRX_3_4", "CNot_2_4", "CH_1_4"],
"CRX_discretization" => [π],
"CU3_θ_discretization" => [π/2],
"CU3_ϕ_discretization" => [-π/2],
"CU3_λ_discretization" => [π/4],
"target_gate" => QCO.IGate(4)
)
data = QCO.get_data(params)
@test length(keys(data["gates_dict"])) == 4
#5-qubit gates
params = Dict{String, Any}(
"num_qubits" => 5,
"maximum_depth" => 2,
"elementary_gates" => ["H_1", "T_2", "Tdagger_3", "Sdagger_4", "SX_5", "CX_1_2", "CX_2_1", "CY_1_2", "CY_2_1", "CRX_2_3", "CNot_3_4", "CH_5_4", "CRY_1_3", "CRZ_2_4", "CV_3_5", "CZ_4_1", "CSX_5_1"],
"CRX_discretization" => [π],
"CRY_discretization" => [π],
"CRZ_discretization" => [π],
"target_gate" => QCO.IGate(5)
)
data = QCO.get_data(params)
@test length(keys(data["gates_dict"])) == 17
end
@testset "Data tests: get_input_circuit_dict" begin
function input_circuit_1()
# [(depth, gate)]
return [(1, "CNot_2_1"),
(2, "S_1"),
(3, "H_2"),
(4, "S_2")
]
end
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["S_1", "S_2", "H_1", "H_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCO.MGate(),
"input_circuit" => input_circuit_1(),
)
data = QCO.get_data(params)
@test "input_circuit" in keys(data)
@test data["input_circuit"]["1"]["depth"] == 1
@test data["input_circuit"]["1"]["gate"] == "CNot_2_1"
@test data["input_circuit"]["2"]["depth"] == 2
@test data["input_circuit"]["2"]["gate"] == "S_1"
@test data["input_circuit"]["3"]["depth"] == 3
@test data["input_circuit"]["3"]["gate"] == "H_2"
@test data["input_circuit"]["4"]["depth"] == 4
@test data["input_circuit"]["4"]["gate"] == "S_2"
function input_circuit_2()
# [(depth, gate)]
return [(1, "CNot_2_1"),
(2, "S_1"),
(3, "H_2"),
(4, "T_1")
]
end
params["input_circuit"] = input_circuit_2()
data = QCO.get_data(params)
@test !("input_circuit" in keys(data))
function input_circuit_3()
# [(depth, gate)]
return [(1, "CNot_2_1"),
(2, "S_1"),
(2, "H_2"),
(4, "S_2")
]
end
params["input_circuit"] = input_circuit_3()
data = QCO.get_data(params)
@test !("input_circuit" in keys(data))
function input_circuit_4()
# [(depth, gate)]
return [(1, "CNot_2_1"),
(2, "S_1"),
(3, "H_2"),
(4, "S_2"),
(5, "Identity"),
(6, "S_1"),
]
end
params["input_circuit"] = input_circuit_4()
data = QCO.get_data(params)
@test !("input_circuit" in keys(data))
end
| QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 10953 | # Unit tests for functions in gates.jl
@testset "Gates tests: elementary universal gates in gates.jl" begin
@test isapprox(QCO.U2Gate(0,-π/4), QCO.U3Gate(π/2,0,-π/4), atol=tol_0)
@test isapprox(QCO.U1Gate(-π/4), QCO.U3Gate(0,0,-π/4), atol=tol_0)
ctrl_qbit_1 = Array{Complex{Float64},2}([1 0; 0 0])
ctrl_qbit_2 = Array{Complex{Float64},2}([0 0; 0 1])
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.XGate()), QCO.CXGate(), atol = tol_0)
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.YGate()), QCO.CYGate(), atol = tol_0)
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.ZGate()), QCO.CZGate(), atol = tol_0)
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.HGate()), QCO.CHGate(), atol = tol_0)
@test isapprox(QCO.CXGate(), QCO.CNotGate(), atol = tol_0)
ϴ1 = π/3
ϴ2 = -2*π/3
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.RXGate(ϴ1)), QCO.CRXGate(ϴ1), atol = tol_0)
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.RXGate(ϴ2)), QCO.CRXGate(ϴ2), atol = tol_0)
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.RYGate(ϴ1)), QCO.CRYGate(ϴ1), atol = tol_0)
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.RYGate(ϴ2)), QCO.CRYGate(ϴ2), atol = tol_0)
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.RZGate(ϴ1)), QCO.CRZGate(ϴ1), atol = tol_0)
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.RZGate(ϴ2)), QCO.CRZGate(ϴ2), atol = tol_0)
θ = π/3
ϕ = -2*π/3
λ = π/6
@test isapprox(kron(ctrl_qbit_1, QCO.IGate(1)) + kron(ctrl_qbit_2, QCO.U3Gate(θ,ϕ,λ)), QCO.CU3Gate(θ,ϕ,λ), atol = tol_0)
@test isapprox(QCO.SwapGate(), QCO.CNotGate() * QCO.CNotRevGate() * QCO.CNotGate(), atol = tol_0)
@test isapprox(QCO.iSwapGate(), QCO.CNotRevGate() * QCO.CNotGate() * kron(QCO.SGate(), QCO.IGate(1)) * QCO.CNotRevGate(), atol = tol_0)
@test isapprox(QCO.PhaseGate(λ), QCO.U3Gate(0,0,λ), atol = tol_0)
@test isapprox(QCO.DCXGate(), QCO.CNotGate() * QCO.CNotRevGate(), atol = tol_0)
S1_S2 = kron(QCO.SGate(), QCO.SGate())
H2 = kron(QCO.IGate(1), QCO.HGate())
@test isapprox(QCO.MGate(), QCO.CNotRevGate() * H2 * S1_S2)
Z1 = QCO.get_unitary("Z_1", 2);
Z2 = QCO.get_unitary("Z_2", 2);
T2 = QCO.get_unitary("T_2", 2);
Y_2 = QCO.get_unitary("Y_2", 2);
CNot_1_2 = QCO.get_unitary("CNot_1_2", 2);
CNot_2_1 = QCO.get_unitary("CNot_2_1", 2);
Sdagger1 = QCO.get_unitary("Sdagger_1", 2);
Tdagger1 = QCO.get_unitary("Tdagger_1", 2);
SX1 = QCO.get_unitary("SX_1", 2);
SXdagger2 = QCO.get_unitary("SXdagger_2", 2);
@test isapprox(-QCO.HCoinGate(), Z2 * CNot_2_1 * SXdagger2 * Y_2 * CNot_2_1 * Tdagger1 * Z1 * T2 * Sdagger1 * CNot_1_2 * Sdagger1 * SX1 * CNot_2_1 * CNot_1_2, atol = tol_0)
CV_23 = QCO.get_unitary("CV_2_3", 3);
CNot_1_2 = QCO.get_unitary("CNot_1_2", 3);
CVdagger_23 = QCO.get_unitary("CVdagger_2_3", 3);
CV_13 = QCO.get_unitary("CV_1_3", 3);
@test isapprox(QCO.ToffoliGate(), CV_23 * CNot_1_2 * CVdagger_23 * CNot_1_2 * CV_13, atol = tol_0)
CVdagger_12 = QCO.get_unitary("CVdagger_1_2", 3);
CVdagger_31 = QCO.get_unitary("CVdagger_3_1", 3);
@test isapprox(QCO.IGate(3), CVdagger_12 * CVdagger_12 * CVdagger_12 * CVdagger_12 * CVdagger_31 * CVdagger_31 * CVdagger_31 * CVdagger_31, atol = tol_0)
H_2 = QCO.get_unitary("H_2", 2);
T_1 = QCO.get_unitary("T_1", 2);
Tdagger2 = QCO.get_unitary("Tdagger_2", 2);
@test isapprox(QCO.CVdaggerGate(), H_2 * Tdagger1 * CNot_2_1 * T_1 * Tdagger2 * CNot_2_1 * H_2, atol = tol_0)
@test isapprox(QCO.CVGate(), QCO.CNotGate() * QCO.CVdaggerGate(), atol = tol_0)
# Next 3 tests from: https://american-cse.org/csci2015/data/9795a059.pdf
CV_31 = QCO.get_unitary("CV_3_1", 3);
CNot_2_3 = QCO.get_unitary("CNot_2_3", 3);
CVdagger_31 = QCO.get_unitary("CVdagger_3_1", 3);
CV_21 = QCO.get_unitary("CV_2_1", 3);
CVdagger_21 = QCO.get_unitary("CVdagger_2_1", 3);
@test isapprox(CV_31 * CNot_2_3 * CVdagger_31 * CNot_2_3 * CV_21, CVdagger_21 * CNot_2_3 * CV_31 * CNot_2_3 * CVdagger_31, atol = tol_0)
CV_12 = QCO.get_unitary("CV_1_2", 3);
CV_32 = QCO.get_unitary("CV_3_2", 3);
CVdagger_32 = QCO.get_unitary("CVdagger_3_2", 3);
CVdagger_12 = QCO.get_unitary("CVdagger_1_2", 3);
CNot_1_3 = QCO.get_unitary("CNot_1_3", 3);
@test isapprox(CV_32 * CNot_1_3 * CVdagger_32 * CNot_1_3 * CV_12, CVdagger_32 * CNot_1_3 * CV_32 * CNot_1_3 * CVdagger_12, atol = tol_0)
CVdagger_13 = QCO.get_unitary("CVdagger_1_3", 3);
CNot_2_1 = QCO.get_unitary("CNot_2_1", 3);
@test isapprox(CV_13 * CNot_2_1 * CVdagger_13 * CNot_2_1 * CV_23, CVdagger_13 * CNot_2_1 * CV_13 * CNot_2_1 * CVdagger_23, atol = tol_0)
# 2-qubit Grover's diffusion operator (Ref: https://arxiv.org/pdf/1804.03719.pdf)
H_1 = QCO.get_unitary("H_1", 2);
X_2 = QCO.get_unitary("X_2", 2);
CNot_1_2 = QCO.get_unitary("CNot_1_2", 2);
@test isapprox(QCO.GroverDiffusionGate(), Y_2 * H_1 * X_2 * CNot_1_2 * H_1 * Y_2, atol=tol_0)
# 2 Qubit QFT (Ref: https://www.cs.bham.ac.uk/internal/courses/intro-mqc/current/lecture06_handout.pdf)
SWAP = QCO.get_unitary("Swap_1_2", 2);
CU = QCO.get_unitary("CU3_2_1", 2, angle = [0, π/4, π/4]);
@test isapprox(QCO.QFT2Gate(), H_1 * CU * H_2 * SWAP)
# 3 Qubit QFT (Ref: Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 5.1)
CS_2_1 = QCO.get_unitary("CS_2_1", 3)
CS_3_2 = QCO.get_unitary("CS_3_2", 3)
CT_3_1 = QCO.get_unitary("CT_3_1", 3)
SWAP_1_3 = QCO.get_unitary("Swap_1_3", 3)
H_1 = QCO.get_unitary("H_1", 3)
H_2 = QCO.get_unitary("H_2", 3)
H_3 = QCO.get_unitary("H_3", 3)
@test isapprox(QCO.QFT3Gate(), H_1 * CS_2_1 * CT_3_1 * H_2 * CS_3_2 * H_3 * SWAP_1_3)
# CRY Decomp (Ref: https://quantumcomputing.stackexchange.com/questions/2143/how-can-a-controlled-ry-be-made-from-cnots-and-rotations)
CNOT12 = QCO.get_unitary("CNot_1_2", 2);
U3_negpi = QCO.get_unitary("U3_2", 2, angle=[-pi/2, 0, 0]);
U3_pi = QCO.get_unitary("U3_2", 2, angle=[pi/2, 0, 0]);
@test isapprox(QCO.CRYGate(pi), CNOT12 * U3_negpi * CNOT12 * U3_pi, atol = tol_0)
# Identity tests
Id = QCO.IGate(2);
CRXRev = QCO.get_unitary("CRX_2_1", 2, angle=pi);
@test isapprox(Id, CRXRev * CRXRev * CRXRev * CRXRev, atol = tol_0)
CRYRev = QCO.get_unitary("CRY_2_1", 2, angle=pi);
@test isapprox(Id, CRYRev * CRYRev * CRYRev * CRYRev, atol = tol_0)
CRZRev = QCO.get_unitary("CRZ_2_1", 2, angle=pi);
@test isapprox(Id, CRZRev * CRZRev * CRZRev * CRZRev, atol = tol_0)
# Rev gate tests for involution
@test isapprox(QCO.CXRevGate(), QCO.CNotRevGate(), atol = tol_0)
@test isapprox(QCO.CXGate() * QCO.SwapGate() * QCO.CXRevGate() * QCO.SwapGate(), QCO.IGate(2), atol = tol_0)
@test isapprox(QCO.CYGate() * QCO.SwapGate() * QCO.CYRevGate() * QCO.SwapGate(), QCO.IGate(2), atol = tol_0)
@test isapprox(QCO.CZGate() * QCO.SwapGate() * QCO.CZGate() * QCO.SwapGate(), QCO.IGate(2), atol = tol_0)
@test isapprox(QCO.CHGate() * QCO.SwapGate() * QCO.CHRevGate() * QCO.SwapGate(), QCO.IGate(2), atol = tol_0)
# Rev gate tests for non-involution
@test isapprox(QCO.CVGate() * QCO.SwapGate() * QCO.CVRevGate() * QCO.SwapGate(), QCO.CVGate()^2, atol = tol_0)
@test isapprox(QCO.CSXGate() * QCO.SwapGate() * QCO.CSXRevGate() * QCO.SwapGate(), QCO.CSXGate()^2, atol = tol_0)
@test isapprox(QCO.WGate(), QCO.HCoinGate(), atol = tol_0)
# Fredkin test = CSwapGate
CNot_3_2 = QCO.get_unitary("CNot_3_2", 3)
CV_23 = QCO.get_unitary("CV_2_3", 3)
CV_13 = QCO.get_unitary("CV_1_3", 3)
CNot_1_2 = QCO.get_unitary("CNot_1_2", 3)
CVdagger_23 = QCO.get_unitary("CVdagger_2_3", 3)
@test isapprox(QCO.CSwapGate(), CNot_3_2 * CV_23 * CV_13 * CNot_1_2 * CVdagger_23 * CNot_1_2 * CNot_3_2, atol = tol_0)
# CCZGate test: CCZ is equivalent to Toffoli when the target qubit is conjugated by Hadamard gates
H_3 = QCO.get_unitary("H_3", 3)
@test isapprox(QCO.ToffoliGate(), H_3 * QCO.CCZGate() * H_3, atol = tol_0)
# Peres test
CVdagger_13 = QCO.get_unitary("CVdagger_1_3", 3)
@test isapprox(QCO.PeresGate(), QCO.ToffoliGate() * CNot_1_2, atol = tol_0)
@test isapprox(QCO.PeresGate(), CVdagger_13 * CVdagger_23 * CNot_1_2 * CV_23, atol = tol_0)
# iSwap test
@test isapprox(QCO.get_unitary("iSwap_2_1", 3), QCO.get_unitary("iSwap_1_2", 3), atol = tol_0)
@test isapprox(QCO.get_unitary("iSwap_2_3", 4), QCO.get_unitary("iSwap_3_2", 4), atol = tol_0)
@test isapprox(QCO.get_unitary("iSwap_3_5", 5), QCO.get_unitary("iSwap_5_3", 5), atol = tol_0)
# Sycamore test
@test isapprox(QCO.SycamoreGate()^12, QCO.IGate(2), atol = tol_0)
# RCCX test
T_3 = QCO.get_unitary("T_3", 3)
Tdagger_3 = QCO.get_unitary("Tdagger_3", 3)
@test isapprox(QCO.RCCXGate(), H_3 * Tdagger_3 * CNot_2_3 * T_3 * CNot_1_3 * Tdagger_3 * CNot_2_3 * T_3 * H_3, atol = tol_0)
# Margolus test
RY_a = QCO.get_unitary("RY_3", 3, angle = -π/4)
RY_b = QCO.get_unitary("RY_3", 3, angle = π/4)
@test isapprox(QCO.MargolusGate(), RY_a * CNot_2_3 * RY_a * CNot_1_3 * RY_b * CNot_2_3 * RY_b, atol = tol_0)
# CiSwap test
@test isapprox(QCO.CiSwapGate(), CNot_3_2 * H_3 * CNot_2_3 * T_3 * CNot_1_3 * Tdagger_3 * CNot_2_3 * T_3 * CNot_1_3 * Tdagger_3 * H_3 * CNot_3_2, atol = tol_0)
# 2-angle RGate test
# Ref: https://qiskit.org/documentation/stubs/qiskit.circuit.library.RGate.html#qiskit.circuit.library.RGate
θ = π/3; ϕ = π/6;
R1 = QCO.RGate(θ, ϕ)
U3 = QCO.U3Gate(θ, ϕ, -ϕ)
U3[1,2] = U3[1,2] * im; U3[2,1] = U3[2,1] * -im;
@test isapprox(R1, U3; atol = tol_0)
# CS, CSdagger gate test
H1 = QCO.get_unitary("H_1", 2)
H2 = QCO.get_unitary("H_2", 2)
CS_12 = QCO.get_unitary("CS_1_2", 2)
@test isapprox(H1 * CS_12 * H2 * QCO.SwapGate(), QCO.QFT2Gate(), atol = tol_0)
@test isapprox(QCO.CSGate() * QCO.CSdaggerGate(), QCO.IGate(2), atol = tol_0)
#SSwapGate test
@test isapprox(QCO.SSwapGate()^2, QCO.SwapGate(), atol = 1E-6)
# CT, CTdagger gate test
@test isapprox(QCO.CTGate() * QCO.CTdaggerGate(), QCO.IGate(2), atol = tol_0)
# Test for elementary gates with kron symbols
M1 = QCO.get_unitary("I_1xCZ_2_4xH_5", 5)
M2 = kron(kron(QCO.IGate(1), QCO.get_unitary("CZ_1_3", 3)), QCO.HGate())
@test isapprox(M1, M2, atol = tol_0)
M1 = QCO.get_unitary("CV_4_1xH_5xZ_6", 6)
M2 = kron(kron(QCO.get_unitary("CV_4_1", 4), QCO.HGate()), QCO.ZGate())
@test isapprox(M1, M2, atol = tol_0)
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 28422 | @testset "QC_model Tests: Minimize depth for controlled-NOT gate" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["H_1", "H_2", "CNot_1_2", "Identity"],
"initial_gate" => "Identity",
"target_gate" => QCO.CNotRevGate(),
"set_cnot_lower_bound" => 1,
"set_cnot_upper_bound" => 1,
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
model_options = Dict{Symbol, Any}(:model_type => "compact_formulation_1", # Testing incorrect model_type
:all_valid_constraints => 2) # Testing incorrect all_valid_constraints
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 5, atol=tol_0)
@test isapprox(result_qc["solution"]["z_bin_var"][1,1], 1, atol=tol_0) || isapprox(result_qc["solution"]["z_bin_var"][2,1], 1, atol=tol_0)
@test isapprox(result_qc["solution"]["z_bin_var"][1,2], 1, atol=tol_0) || isapprox(result_qc["solution"]["z_bin_var"][2,2], 1, atol=tol_0)
@test isapprox(result_qc["solution"]["z_bin_var"][3,3], 1, atol=tol_0)
@test isapprox(result_qc["solution"]["z_bin_var"][1,4], 1, atol=tol_0) || isapprox(result_qc["solution"]["z_bin_var"][2,4], 1, atol=tol_0)
@test isapprox(result_qc["solution"]["z_bin_var"][1,5], 1, atol=tol_0) || isapprox(result_qc["solution"]["z_bin_var"][2,5], 1, atol=tol_0)
end
@testset "QC_model Tests: Minimum CNOT swap gate decomposition" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 4,
"elementary_gates" => ["CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCO.SwapGate(),
"set_cnot_lower_bound" => 2,
"set_cnot_upper_bound" => 3,
"objective" => "minimize_cnot",
"decomposition_type" => "exact_optimal"
)
model_options = Dict{Symbol, Any}(:model_type => "balas_formulation",
:all_valid_constraints => 1)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 3, atol = tol_0)
@test isapprox(sum(result_qc["solution"]["z_bin_var"][1:2,:]), 3, atol=tol_0)
end
@testset "QC_model Tests: Minimum depth U3(0,0,π/4) gate" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 2,
"elementary_gates" => ["U3_1", "U3_2", "Identity"],
"target_gate" => QCO.kron_single_qubit_gate(2, QCO.U3Gate(0,0,π/4), "q1"),
"U3_θ_discretization" => [0, π/2],
"U3_ϕ_discretization" => [0],
"U3_λ_discretization" => [0, π/4],
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
result_qc = QCO.run_QCModel(params, MIP_SOLVER)
data = QCO.get_data(params)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 1, atol = tol_0)
@test "Identity" in data["gates_dict"]["3"]["type"]
@test isapprox(sum(result_qc["solution"]["z_bin_var"][3,:]), 1, atol = tol_0)
@test isapprox(sum(result_qc["solution"]["z_bin_var"][4,:]), 1, atol = tol_0)
@test data["gates_dict"]["4"]["qubit_loc"] == "qubit_1"
end
@testset "QC_model Tests: Minimum depth CU3(0,0,π/4) gate" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 2,
"elementary_gates" => ["CU3_1_2", "CU3_2_1", "Identity"],
"target_gate" => QCO.CU3Gate(0, 0, π/4),
"CU3_θ_discretization" => [0, π/2],
"CU3_ϕ_discretization" => [0],
"CU3_λ_discretization" => [0, π/4],
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
result_qc = QCO.run_QCModel(params, MIP_SOLVER)
data = QCO.get_data(params)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 1, atol = tol_0)
@test "Identity" in data["gates_dict"]["3"]["type"]
@test isapprox(sum(result_qc["solution"]["z_bin_var"][3,:]), 1, atol = tol_0)
@test isapprox(sum(result_qc["solution"]["z_bin_var"][4,:]), 1, atol = tol_0)
@test data["gates_dict"]["4"]["qubit_loc"] == "qubit_1_2"
end
@testset "QC_model Tests: Minimum depth Rev CU3(0,0,π/4) gate" begin
params = Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 2,
"elementary_gates" => ["CU3_3_1", "CU3_1_3", "Identity"],
"target_gate" => QCO.get_unitary("CU3_3_1", 3, angle = [0, 0, pi/4]),
"CU3_θ_discretization" => [0, π/2],
"CU3_ϕ_discretization" => [0],
"CU3_λ_discretization" => [0, π/4],
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
result_qc = QCO.run_QCModel(params, MIP_SOLVER)
data = QCO.get_data(params)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 1, atol = tol_0)
@test "Identity" in data["gates_dict"]["3"]["type"]
@test isapprox(sum(result_qc["solution"]["z_bin_var"][3,:]), 1, atol = tol_0)
@test isapprox(sum(result_qc["solution"]["z_bin_var"][4,:]), 1, atol = tol_0)
@test data["gates_dict"]["4"]["qubit_loc"] == "qubit_3_1"
end
@testset "QC_model Tests: Minimum depth RX, RY, RZ gate decomposition" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 3,
"elementary_gates" => ["RX_1", "RY_2", "RZ_1", "Identity"],
"target_gate" => QCO.kron_single_qubit_gate(2, QCO.RXGate(π/4), "q1") * QCO.kron_single_qubit_gate(2, QCO.RYGate(π/4), "q2") * QCO.kron_single_qubit_gate(2, QCO.RZGate(π/4), "q1"),
"RX_discretization" => [0, π/4],
"RY_discretization" => [π/4],
"RZ_discretization" => [π/2, π/4],
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
model_options = Dict{Symbol, Any}(:model_type => "balas_formulation",
:commute_gate_constraints => true)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 3, atol = tol_0)
end
@testset "QC_model Tests: Minimum depth CRX, CRY, CRZ gate decomposition" begin
params = Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 3,
"elementary_gates" => ["CRX_1_2", "CRY_2_3", "CRZ_3_1", "Identity"],
"target_gate" => QCO.get_unitary("CRX_1_2", 3, angle = pi/4) * QCO.get_unitary("CRY_2_3", 3, angle=pi/4) * QCO.get_unitary("CRZ_3_1", 3, angle=pi/4),
"CRX_discretization" => [0, π/4],
"CRY_discretization" => [π/4],
"CRZ_discretization" => [π/2, π/4],
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
model_options = Dict{Symbol, Any}(:model_type => "balas_formulation",
:commute_gate_constraints => true)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 3, atol = tol_0)
end
@testset "QC_model Tests: Minimum depth Rev CRX, CRY, CRZ gate decomposition" begin
params = Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 3,
"elementary_gates" => ["CRX_3_1", "CRY_3_1", "CRZ_1_3", "Identity"],
"target_gate" => QCO.get_unitary("CRX_3_1", 3, angle=pi/4) * QCO.get_unitary("CRY_3_1", 3, angle=pi/4) * QCO.get_unitary("CRZ_1_3", 3, angle = pi/2),
"CRX_discretization" => [0, π/4],
"CRY_discretization" => [π/4],
"CRZ_discretization" => [π/2, π/4],
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
model_options = Dict{Symbol, Any}(:model_type => "balas_formulation",
:commute_gate_constraints => true)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 3, atol = tol_0)
end
@testset "QC_model Tests: 3-qubit RX gate decomposition" begin
params = Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 2,
"elementary_gates" => ["U3_1", "U3_2", "U3_3", "Identity"],
"target_gate" => QCO.kron_single_qubit_gate(3, QCO.RXGate(π/4), "q3"),
"U3_θ_discretization" => [0, π/4],
"U3_ϕ_discretization" => [0, -π/2],
"U3_λ_discretization" => [0, π/2],
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
model_options = Dict{Symbol, Any}(:model_type => "balas_formulation")
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
data = QCO.get_data(params)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 1, atol = tol_0)
if isapprox(sum(result_qc["solution"]["z_bin_var"][14,:]), 1, atol=tol_0)
@test data["gates_dict"]["14"]["qubit_loc"] == "qubit_3"
@test isapprox(rad2deg(data["gates_dict"]["14"]["angle"]["θ"]), 45, atol=tol_0)
@test isapprox(rad2deg(data["gates_dict"]["14"]["angle"]["ϕ"]), -90, atol=tol_0)
@test isapprox(rad2deg(data["gates_dict"]["14"]["angle"]["λ"]), 90, atol=tol_0)
end
end
@testset "QC_model Tests: 3-qubit CRX gate decomposition" begin
params = Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 2,
"elementary_gates" => ["CU3_1_2", "CU3_2_3", "CU3_1_3", "Identity"],
"target_gate" => QCO.get_unitary("CRX_1_3", 3, angle = pi/4),
"CU3_θ_discretization" => [0, π/4],
"CU3_ϕ_discretization" => [0, -π/2],
"CU3_λ_discretization" => [0, π/2],
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
model_options = Dict{Symbol, Any}(:model_type => "balas_formulation")
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
data = QCO.get_data(params)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 1, atol = tol_0)
if isapprox(sum(result_qc["solution"]["z_bin_var"][18,:]), 1, atol=tol_0)
@test data["gates_dict"]["18"]["qubit_loc"] == "qubit_1_3"
@test isapprox(rad2deg(data["gates_dict"]["18"]["angle"]["θ"]), 45, atol=tol_0)
@test isapprox(rad2deg(data["gates_dict"]["18"]["angle"]["ϕ"]), -90, atol=tol_0)
@test isapprox(rad2deg(data["gates_dict"]["18"]["angle"]["λ"]), 90, atol=tol_0)
end
end
@testset "QC_model Tests: feasibility problem" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 3,
"elementary_gates" => ["H_1", "H_2"],
"target_gate" => QCO.kron_single_qubit_gate(2, QCO.HGate(), "q1"),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
model_options = Dict{Symbol, Any}(:all_valid_constraints => -1)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
data = QCO.get_data(params)
for i in keys(data["gates_dict"])
if data["gates_dict"][i]["type"] == "H_1"
@test isapprox(sum(result_qc["solution"]["z_bin_var"][parse(Int64, i),:]), 3 , atol = tol_0)
end
end
end
@testset "QC_model Tests: JuMP set_start_value for z_bin_var variables" begin
function input_circuit()
# [(depth, gate)]
return [(1, "CNot_2_1"),
(2, "S_1"),
(3, "H_2"),
(4, "S_2")
]
end
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 4,
"elementary_gates" => ["S_1", "S_2", "H_1", "H_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCO.MGate(),
"input_circuit" => input_circuit(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
result_qc = QCO.run_QCModel(params, MIP_SOLVER)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(sum(result_qc["solution"]["z_bin_var"][6,:]), 1, atol=tol_0)
@test isapprox(sum(result_qc["solution"]["z_bin_var"][5,:]), 0, atol=tol_0)
end
@testset "QC_model Tests: Involutory gate constraints" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 4,
"elementary_gates" => ["S_1", "S_2", "H_1", "H_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCO.MGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
gates_dict = QCO.get_data(params)["gates_dict"]
involutory_gates = QCO.get_involutory_gates(gates_dict)
@test length(involutory_gates) == 4 #excluding Identity gate
for i in keys(gates_dict)
if ("S_1" in gates_dict[i]["type"]) || ("S_2" in gates_dict[i]["type"])
@test !(parse(Int, i) in involutory_gates)
end
if ("H_1" in gates_dict[i]["type"]) || ("H_2" in gates_dict[i]["type"]) || ("CNot_1_2" in gates_dict[i]["type"]) || ("CNot_2_1" in gates_dict[i]["type"])
@test (parse(Int, i) in involutory_gates)
end
end
result_qc = QCO.run_QCModel(params, MIP_SOLVER)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 4, atol = tol_0)
end
@testset "QC_model Tests: TIME_LIMIT for building results dict and log" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["S_1", "S_2", "H_1", "H_2", "CNot_1_2", "CNot_2_1", "Identity"],
"target_gate" => QCO.MGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal"
)
model_options = Dict{Symbol, Any}(:time_limit => 0.2)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.TIME_LIMIT
@test result_qc["primal_status"] == MOI.NO_SOLUTION
end
@testset "QC_model Tests: constraint_redundant_gate_product_pairs" begin
function target_gate()
T1 = QCO.get_unitary("U3_2", 2, angle = [0,π/2,π])
T2 = QCO.get_unitary("U3_1", 2, angle = [π/2,π/2,-π/2])
return T1*T2
end
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 2,
"elementary_gates" => ["U3_1", "U3_2", "Identity"],
"target_gate" => target_gate(),
"U3_θ_discretization" => [0, π/2],
"U3_ϕ_discretization" => [π/2],
"U3_λ_discretization" => [-π/2, π],
"objective" => "minimize_depth")
data = QCO.get_data(params)
redundant_pairs = QCO.get_redundant_gate_product_pairs(data["gates_dict"], data["decomposition_type"])
@test length(redundant_pairs) == 2
@test redundant_pairs[1] == (1,4)
@test redundant_pairs[2] == (5,7)
@test isapprox(data["gates_dict"]["1"]["matrix"] * data["gates_dict"]["4"]["matrix"], data["gates_dict"]["2"]["matrix"], atol = tol_0)
@test isapprox(data["gates_dict"]["5"]["matrix"] * data["gates_dict"]["7"]["matrix"], data["gates_dict"]["6"]["matrix"], atol = tol_0)
result_qc = QCO.run_QCModel(params, MIP_SOLVER)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 2.0, atol = tol_0)
end
@testset "QC_model Tests: constraint_idempotent_gates" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 3,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "Identity"],
"target_gate" => QCO.CZGate(),
"U3_θ_discretization" => [-π/2, 0, π/2],
"U3_ϕ_discretization" => [0, π/2],
"U3_λ_discretization" => [0, π/2])
data = QCO.get_data(params)
idempotent_pairs = QCO.get_idempotent_gates(data["gates_dict"], data["decomposition_type"])
@test length(idempotent_pairs) == 2
model_options = Dict{Symbol, Any}(:idempotent_gate_constraints => true)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 3.0, atol = tol_0)
for i in keys(data["gates_dict"])
if "Identity" in data["gates_dict"][i]["type"]
@test isapprox(sum(result_qc["solution"]["z_bin_var"][parse(Int64, i),:]), 0, atol = tol_0)
end
end
end
@testset "QC_model Tests: constraint_convex_hull_complex_gates" begin
function target_gate()
num_qubits = 4
CV_1_4 = QCO.get_unitary("CV_1_4", num_qubits);
CV_2_4 = QCO.get_unitary("CV_2_4", num_qubits);
CV_3_4 = QCO.get_unitary("CV_3_4", num_qubits);
CVdagger_3_4 = QCO.get_unitary("CVdagger_3_4", num_qubits);
CNot_1_2 = QCO.get_unitary("CNot_1_2", num_qubits);
CNot_2_3 = QCO.get_unitary("CNot_2_3", num_qubits);
return CV_2_4 * CNot_1_2 * CV_3_4 * CV_1_4 * CNot_2_3 * CVdagger_3_4
end
params = Dict{String, Any}(
"num_qubits" => 4,
"maximum_depth" => 6,
"elementary_gates" => ["CV_1_4", "CV_2_4", "CV_3_4", "CVdagger_3_4", "CNot_1_2", "CNot_2_3", "Identity"],
"target_gate" => target_gate()
)
model_options = Dict{Symbol, Any}(:relax_integrality => true,
:convex_hull_gate_constraints => true,
:fix_unitary_variables => true,
:optimizer_log => false,
)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 0.6, atol = tol_0)
end
@testset "QC_model Tests: RGate decomposition" begin
num_qubits = 2
GR1 = QCO.GRGate(num_qubits, π/6, π/3)
CNot_1_2 = QCO.get_unitary("CNot_1_2", 2)
T = QCO.round_complex_values(GR1 * CNot_1_2)
params = Dict{String, Any}(
"num_qubits" => num_qubits,
"maximum_depth" => 3,
"elementary_gates" => ["R_1", "R_2", "CNot_1_2", "Identity"],
"R_θ_discretization" => [π/3, π/6],
"R_ϕ_discretization" => [π/3, π/6],
"target_gate" => T,
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
)
model_options = Dict{Symbol, Any}(:optimizer_log => false, :fix_unitary_variables => false)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 3.0, atol = tol_0)
z_sol = result_qc["solution"]["z_bin_var"]
@test isapprox(sum(z_sol[1:8, :]), 2, atol = tol_0)
@test isapprox(sum(z_sol[9, :]), 1, atol = tol_0)
end
@testset "QC_model Tests: GRGate decomposition for Pauli-X gate, and unitary constraints" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["GR", "RZ_2", "CZ_1_2", "Identity"],
"target_gate" => QCO.get_unitary("X_1", 2),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"GR_θ_discretization" => [-π/2, π/2],
"GR_ϕ_discretization" => [0],
"RZ_discretization" => [π],
)
model_options = Dict{Symbol, Any}(:optimizer_log => false, :unitary_constraints => true)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 5.0, atol = tol_0)
z_sol = result_qc["solution"]["z_bin_var"]
@test isapprox(sum(z_sol[4, :]), 2, atol = tol_0) # test for number of CZ gates
end
@testset "QC_model Tests: Decomposition using exact_feasible option" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["CH_1_2", "CNot_2_1", "CNot_1_2", "Identity"],
"target_gate" => QCO.WGate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_feasible",
)
model_options = Dict{Symbol, Any}(:optimizer_log => false)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 0.0, atol = tol_0)
z_sol = result_qc["solution"]["z_bin_var"]
@test isapprox(sum(z_sol[2:4, :]), 4, atol = tol_0)
end
@testset "QC_model Tests: Approximate decomposition using outer approximation" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["H_1", "H_2", "CNot_1_2", "Identity"],
"target_gate" => QCO.CNotRevGate(),
"objective" => "minimize_depth",
"decomposition_type" => "approximate",
)
model_options = Dict{Symbol, Any}(:optimizer_log => false)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 5.0, atol = tol_0)
end
@testset "QC_model Tests: Approximate decomposition using outer approximation" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["H_1", "H_2", "CNot_1_2", "Identity"],
"target_gate" => QCO.CNotRevGate(),
"objective" => "minimize_depth",
"decomposition_type" => "approximate",
)
model_options = Dict{Symbol, Any}(:optimizer_log => false)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 5.0, atol = tol_0)
# Testing approximate decomposition for balas_formulation
model_options = Dict{Symbol, Any}(:optimizer_log => false, :model_type => "balas_formulation")
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 5.0, atol = tol_0)
# Testing approximate decomposition for feasibility case
params["elementary_gates"] = ["H_1", "H_2", "CNot_1_2"]
model_options = Dict{Symbol, Any}(:optimizer_log => false)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 0.0, atol = tol_0)
# Testing approximate decomposition for minimizing CNOT gates
params["elementary_gates"] = ["H_1", "H_2", "CNot_1_2", "Identity"]
params["objective"] = "minimize_cnot"
model_options = Dict{Symbol, Any}(:optimizer_log => false)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 1.0, atol = tol_0)
# Testing approximate decomposition for case when slack_var-s are fixed based on U_var-s
params = Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 7,
"elementary_gates" => ["CV_1_2", "CV_2_3", "CV_1_3", "CVdagger_1_2", "CVdagger_2_3", "CVdagger_1_3", "CNot_1_2", "CNot_3_2", "CNot_2_3", "CNot_1_3", "Identity"],
"target_gate" => QCO.CSwapGate(), #also Fredkin
"objective" => "minimize_depth",
"decomposition_type" => "approximate"
)
model_options = Dict{Symbol, Any}(:optimizer_log => false, :relax_integrality => true, :fix_unitary_variables => true)
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 0.38281250, atol = tol_0)
end
@testset "QC_model Tests: Global phase constraints" begin
#Real elementary gates - Target is real but with a minus sign
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["H_1", "H_2", "CNot_1_2", "Identity"],
"target_gate" => - QCO.CNotRevGate(),
"objective" => "minimize_depth",
)
model_options = Dict{Symbol, Any}(:optimizer_log => false)
# Without global phase constraints
params["decomposition_type"] = "exact_optimal"
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.INFEASIBLE
@test result_qc["primal_status"] == MOI.NO_SOLUTION
# With global phase constraints
params["decomposition_type"] = "optimal_global_phase"
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 5.0, atol = tol_0)
# Real elementary gates - Target is complex, but real in a global phase sence
params["target_gate"] = exp(im*pi*0.3) * QCO.CNotRevGate()
# Without global phase constraints
# This is an infeasible decomposition: all elementary gates have zero imaginary parts and
# target is not real for exact decomposition or not real up to a global phase for
# `optimal_global_phase` decomposition.
# With global phase constraints
params["decomposition_type"] = "optimal_global_phase"
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 5.0, atol = tol_0)
# Using complex-valued elementary gates
params["elementary_gates"] = ["T_1", "H_1", "H_2", "CNot_1_2", "Identity"]
# Without global phase constraints
params["decomposition_type"] = "exact_optimal"
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.INFEASIBLE
@test result_qc["primal_status"] == MOI.NO_SOLUTION
# Using global phase constraints
params["decomposition_type"] = "optimal_global_phase"
result_qc = QCO.run_QCModel(params, MIP_SOLVER; options = model_options)
@test result_qc["termination_status"] == MOI.OPTIMAL
@test result_qc["primal_status"] == MOI.FEASIBLE_POINT
@test isapprox(result_qc["objective"], 5.0, atol = tol_0)
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 1175 | @testset "Relaxation tests: relaxation_bilinear" begin
QCO.silence()
m = JuMP.Model(MIP_SOLVER)
LB = [-1, -2.5, 0, -3, 0]
UB = [2.5, 0, 1, 3.2, 1]
JuMP.@variable(m, LB[i] <= x[i=1:5] <= UB[i])
JuMP.@variable(m, z[1:6])
QCO.relaxation_bilinear(m, z[1], x[1], x[2])
QCO.relaxation_bilinear(m, z[2], x[1], x[4])
QCO.relaxation_bilinear(m, z[3], x[2], x[3])
QCO.relaxation_bilinear(m, z[4], x[3], x[4])
QCO.relaxation_bilinear(m, z[5], x[3], x[5])
QCO.relaxation_bilinear(m, z[6], x[4], x[5])
JuMP.@constraint(m, sum(x) >= 3.3)
JuMP.@constraint(m, sum(x) <= 3.8)
coefficients = [0.4852, -0.7795, 0.1788, 0.7778, 0.3418, -0.3407]
JuMP.set_objective_function(m, sum(coefficients[i] * z[i] for i=1:length(z)))
obj_vals = Vector{Float64}()
for obj_sense in [MOI.MIN_SENSE, MOI.MAX_SENSE]
JuMP.set_objective_sense(m, obj_sense)
JuMP.optimize!(m)
@test JuMP.termination_status(m) == MOI.OPTIMAL
push!(obj_vals, JuMP.objective_value(m))
end
@test obj_vals[1] <= -9.922644 # global optimum value
@test obj_vals[2] >= 4.908516 # global optimum value
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 598 | using JuMP
using Test
import QuantumCircuitOpt as QCO
import Memento
import LinearAlgebra as LA
import HiGHS
# Suppress warnings during testing
QCO.logger_config!("error")
const HIGHS = MOI.OptimizerWithAttributes(
HiGHS.Optimizer,
"presolve" => "on",
"log_to_console" => false,
)
const MIP_SOLVER = HIGHS
tol_0 = 1E-6
@testset "QuantumCircuitOpt" begin
include("utility_tests.jl")
include("chull_tests.jl")
include("gates_tests.jl")
include("types_tests.jl")
include("data_tests.jl")
include("qc_model_tests.jl")
include("relaxations_tests.jl")
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 189 | @testset "Tests: types" begin
gate = QCO.GateData("H_1", 2)
@test gate.isreal
gate = QCO.GateData("S_3", 3)
@test !gate.isreal
# Add more tests for U3 and R gates.
end
| QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | code | 8490 | # Unit tests for functions in utility.jl
M_c = [complex(1,0) complex(0,-1)
complex(-0.5,0.5) complex(0,0)]
M_r = [1.0 0.0 0.0 -1.0
0.0 1.0 1.0 0.0
-0.5 0.5 0.0 0.0
-0.5 -0.5 0.0 0.0]
# Variable bounds to test auxiliary_variable_bounds function
l = [-2, -1, 0, 2]
u = [-1, 2, 3, 2]
@testset "Tests: complex to real matrix function" begin
test_M_r = QCO.complex_to_real_gate(M_c)
@test test_M_r == M_r
end
@testset "Tests: real to complex matrix function" begin
test_M_c = QCO.real_to_complex_gate(M_r)
@test test_M_c == M_c
end
@testset "Tests: auxiliary variable product bounds" begin
m = Model()
@variable(m, l[i] <= x[i=1:length(l)] <= u[i])
# x1*x2
@test QCO.auxiliary_variable_bounds([x[1], x[2]]) == (-4, 2)
# x1*x3
@test QCO.auxiliary_variable_bounds([x[1], x[3]]) == (-6, 0)
# x1*x4
@test QCO.auxiliary_variable_bounds([x[1], x[4]]) == (-4, -2)
# x4*x4
@test QCO.auxiliary_variable_bounds([x[4], x[4]]) == (4, 4)
# x1*x2*x3
@test QCO.auxiliary_variable_bounds([x[1], x[2], x[3]]) == (-12, 6)
@test QCO.auxiliary_variable_bounds([x[3], x[1], x[2]]) == (-12, 6)
@test QCO.auxiliary_variable_bounds([x[2], x[1], x[3]]) == (-12, 6)
# x1*x2*x3*x4
@test QCO.auxiliary_variable_bounds([x[1], x[2], x[3], x[4]]) == (-24, 12)
@test QCO.auxiliary_variable_bounds([x[4], x[1], x[3], x[2]]) == (-24, 12)
@test QCO.auxiliary_variable_bounds([x[4], x[3], x[2], x[1]]) == (-24, 12)
end
@testset "Tests: unique_matrices and unique_idx" begin
D = zeros(3,3,4)
D[:,:,1] = Matrix(LA.I,3,3)
D[:,:,2] = rand(3,3)
D[:,:,3] = Matrix(LA.I,3,3)
D[:,:,4] = rand(3,3)
D[1,1,3] = 1 + 2*tol_0
D[3,3,3] = 1 - tol_0
D[1,2,3] = 0 - tol_0
D[1,3,3] = 0 + tol_0
D[isapprox.(D, 0, atol=tol_0)] .= 0
D_unique, D_unique_idx = QCO.unique_matrices(D)
@test D_unique_idx == [1,2,4]
@test D_unique[:,:,1] == D[:,:,1]
@test D_unique[:,:,2] == D[:,:,2]
@test D_unique[:,:,3] == D[:,:,4]
end
@testset "Tests: commuting matrices" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 5,
"elementary_gates" => ["H_1", "H_2", "CNot_1_2", "Identity"],
"target_gate" => QCO.CNotRevGate()
)
data = QCO.get_data(params)
C2,C2_Identity = QCO.get_commutative_gate_pairs(data["gates_dict"], data["decomposition_type"])
@test length(C2) == 4
@test length(C2_Identity) == 0
@test isapprox(data["gates_real"][:,:,C2[1][1]] * data["gates_real"][:,:,C2[1][2]], data["gates_real"][:,:,C2[1][2]] * data["gates_real"][:,:,C2[1][1]], atol=tol_0)
# With global phase equivalence
params["decomposition_type"] = "optimal_global_phase"
params["elementary_gates"] = ["Y_1", "H_1", "H_2", "CNot_1_2", "Identity"]
data = QCO.get_data(params)
C2,C2_Identity = QCO.get_commutative_gate_pairs(data["gates_dict"], data["decomposition_type"])
@test length(C2) == 7
end
@testset "Tests: kron_single_qubit_gate" begin
I1 = QCO.kron_single_qubit_gate(4, QCO.IGate(1), "q1")
I2 = QCO.kron_single_qubit_gate(4, QCO.IGate(1), "q2")
I3 = QCO.kron_single_qubit_gate(4, QCO.IGate(1), "q3")
I4 = QCO.kron_single_qubit_gate(4, QCO.IGate(1), "q4")
@test I1 == I2 == I3 == I4
end
@testset "Tests: get_redundant_gate_product_pairs" begin
params = Dict{String, Any}(
"num_qubits" => 3,
"maximum_depth" => 15,
"elementary_gates" => ["T_1", "T_2", "T_3", "H_3", "CNot_1_2", "CNot_1_3", "CNot_2_3", "Tdagger_2", "Tdagger_3", "Identity"],
"target_gate" => QCO.ToffoliGate()
)
data = QCO.get_data(params)
redundant_pairs = QCO.get_redundant_gate_product_pairs(data["gates_dict"], data["decomposition_type"])
@test length(redundant_pairs) == 0
# With global phase equivalence
params["decomposition_type"] = "optimal_global_phase"
data = QCO.get_data(params)
redundant_pairs = QCO.get_redundant_gate_product_pairs(data["gates_dict"], data["decomposition_type"])
@test length(redundant_pairs) == 0
end
@testset "Tests: get_idempotent_gates" begin
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 14,
"elementary_gates" => ["Y_1", "Y_2", "Z_1", "Z_2", "T_2", "Tdagger_1", "Sdagger_1", "SX_1", "SXdagger_2", "CNot_2_1", "CNot_1_2", "Identity"],
"target_gate" => -QCO.HCoinGate())
data = QCO.get_data(params)
idempotent_gates = QCO.get_idempotent_gates(data["gates_dict"], data["decomposition_type"])
@test idempotent_gates[1] == 6
@test idempotent_gates[2] == 7
@test "Tdagger_1" in data["gates_dict"]["$(idempotent_gates[1])"]["type"]
@test "Sdagger_1" in data["gates_dict"]["$(idempotent_gates[2])"]["type"]
@test "Z_1" in data["gates_dict"]["3"]["type"]
M1 = data["gates_dict"]["$(idempotent_gates[1])"]["matrix"]
M2 = data["gates_dict"]["$(idempotent_gates[2])"]["matrix"]
@test isapprox(M1^2, data["gates_dict"]["7"]["matrix"], atol = tol_0)
@test isapprox(M2^2, data["gates_dict"]["3"]["matrix"], atol = tol_0)
# With global phase equivalence
params["decomposition_type"] = "optimal_global_phase"
data = QCO.get_data(params)
idempotent_gates = QCO.get_idempotent_gates(data["gates_dict"], data["decomposition_type"])
@test length(idempotent_gates) == 2
end
@testset "Tests: _parse_gate_string" begin
v1 = QCO._parse_gate_string("RX_1", qubits=true)
@test v1[1] == 1
v2 = QCO._parse_gate_string("CU3_51", qubits=true)
@test v2[1] == 51
v3 = QCO._parse_gate_string("CRZ_9_1", qubits=true)
@test length(v3) == 2
@test v3[1] == 9
@test v3[2] == 1
end
@testset "Tests: is_gate_real" begin
M_test = [0 1E-7im -1E-7im; 1E-10im 0 0; -1E-8im -1E-10im 0]
@test QCO.is_gate_real(M_test)
M_test = [0 1E-7im -1E-7im; 1E-10im 0 0; -1E-8im -1E-5im 0]
@test !QCO.is_gate_real(M_test)
end
@testset "Tests: _get_constraint_slope_intercept" begin
v1 = (0.0, 0.0)
v2 = (1.0, 1.0)
m,c = QCO._get_constraint_slope_intercept(v1, v2)
@test m == 1
@test c == 0
m,c = QCO._get_constraint_slope_intercept(v2, v1)
@test m == 1
@test c == 0
v2 = (0, 0.5)
m,c = QCO._get_constraint_slope_intercept(v1, v2)
@test !isfinite(m)
@test !isfinite(c)
v1 = (1.0, 2.0)
v2 = (-3.0, 4.0)
m,c = QCO._get_constraint_slope_intercept(v1, v2)
@test m == -0.5
@test c == 2.5
QCO._get_constraint_slope_intercept(v1, v1)
end
@testset "Tests: U_var fixed indices" begin
num_qubits = 2
maximum_depth = 3
# Input gates
H1 = QCO.complex_to_real_gate(QCO.get_unitary("H_1", num_qubits))
CNot_1_2 = QCO.complex_to_real_gate(QCO.get_unitary("CNot_1_2", num_qubits))
Id = QCO.complex_to_real_gate(QCO.IGate(num_qubits))
# Assuming only H1 in elementary gates
n_r = size(H1)[1]
gates = zeros(n_r,n_r,1)
gates[:,:,1] = H1
U_fixed_idx = QCO._get_unitary_variables_fixed_indices(gates, maximum_depth)
# Depth = 1
for idx in keys(U_fixed_idx[1])
@test isapprox(U_fixed_idx[1][idx]["value"], gates[idx[1],idx[2],1], atol = tol_0)
end
# Depth = 2 (product of H1 is an identity matrix)
@test length(keys(U_fixed_idx[2])) == n_r * n_r
for idx in keys(U_fixed_idx[2])
@test isapprox(U_fixed_idx[2][idx]["value"], Id[idx[1], idx[2]], atol = tol_0)
end
# Assuming H1 and CNot_1_2 in elementary gates
gates = zeros(n_r,n_r,2)
gates[:,:,1] = H1
gates[:,:,2] = CNot_1_2
U_fixed_idx = QCO._get_unitary_variables_fixed_indices(gates, maximum_depth)
# Depth = 1
sum_mat = abs.(gates[:,:,1]) + abs.(gates[:,:,2])
for idx in keys(U_fixed_idx[1])
if isapprox(U_fixed_idx[1][idx]["value"], 0, atol = tol_0)
@test isapprox(U_fixed_idx[1][idx]["value"], sum_mat[idx[1], idx[2]], atol = tol_0)
end
end
# Depth = 2
prod_mat_1 = gates[:,:,1] * gates[:,:,2]
prod_mat_2 = gates[:,:,2] * gates[:,:,1]
for idx in keys(U_fixed_idx[2])
if isapprox(U_fixed_idx[2][idx]["value"], 0, atol = tol_0)
@test isapprox(U_fixed_idx[2][idx]["value"], prod_mat_1[idx[1], idx[2]], atol = tol_0)
@test isapprox(U_fixed_idx[2][idx]["value"], prod_mat_2[idx[1], idx[2]], atol = tol_0)
end
end
end | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 13841 | QuantumCircuitOpt.jl Change Log
===============================
### v0.5.9
- Catch error in `data.jl` if `set_cnot_lower_bound` > `maximum_depth`
- Feasibility switching warning moved to the correct condition in objective.jl
- Renamed function `get_full_sized_gate` -> `get_unitary`
- Added 3-qubit `QFT3Gate` to gates.jl
- Added `QFT3` circuit using controlled-phase gates in examples
- Updated docs and unit tests to reflect above changes
### v0.5.8
- Readme update for dark/light theme logo display
- Fixed Docs compile issue
- Updated arXiv link for SC22 paper
### v0.5.7
- Clean up in log.jl to validate circuit decomposition upto global phase
- Added `parametrized_hermitian_gates` in examples
### v0.5.6
- Video link to SC22 presentation added
### v0.5.5
- `optimal_global_phase` now recognizes commuting elementary gate pairs that commute, are redundant and idempotent up to a global phase
- Docs updated with the SC22 (IEEE) paper link
- Added `isapprox_global_phase` utility to evaluate equivalences of any two complex gates up to a global phase
- Updated docs and unit tests to reflect above changes
- Removed compatability on Pkg
### v0.5.4
- Added a generalized function to obtain controlled gates (`controlled_gate()`) in any number of qubits
- Cleaned-up controlled gates in `src/gates.jl`
- Updated docs to reflect above changes
### v0.5.3
- Minor update: SC22 publication added in docs
- README banner update
### v0.5.2
- Added dependency on `Pkg` package for logging purposes
- Renamed gates in `src/examples` folder
### v0.5.1
- New feature: Added support for compiling optimal circuits upto a global phase using linear constraints (`optimal_global_phase`)
- Deactivated determinant feasiblity check for global phase model
- Bug fix in evaluation of kron-symboled elementary gates (#63)
- `get_full_sized_gate` function now supports gates with kronecker operations
- Updated docs and unit tests to reflect above changes
### v0.5.0
- Minor: Fixed result `primal_status` issue in `log.jl`
- Added helper functions for obtaining fixed indices of `U_var` unitary variables to zeros or constant values. Dropped linearization constraints for fixed `U_var` variables
- Dropped support for `unit_magnitude_constraints`
- Reformulated quadratic objective function of `slack_var` variables into a linear outer-approximation - increases code coverage due to MILP reformulation
- Fixed `slack_var` based on fixed `U_var` variables
- Minor updates in error messages for kron symboled gates
- Changed Cbc test dependency to HiGHS (MIP) solver
- Updated docs and unit tests to reflect above changes
### v0.4.1
- Added support for returning exact feasible decomposition (without optimality certificate) using `exact_feasible`
- Added support for unitary constraints using binary linearizations (speeds up feasiblity problems)
- Added `W_using_HSTCnot` in examples
- Added `CNOT_using_GR` in examples (for Rydberg atom array-based simulators)
- Added support for `CSGate`, `CSdaggerGate`, `CTGate`, `CTdaggerGate` and `SSwapGate` (sqrt(`SwapGate`))
- Dropped support for `CZRevGate` as it is invariant to qubit flip
- Updated README and docs with the Youtube link for the JuliaCon's presentation
- Updated `decomposition_type` to `exact_optimal` from `exact`
- Updated docs and unit tests to reflect above changes
### v0.4.0
- Added support for two angle param gates througout data and log
- Added support for Rotation gate (`RGate`) with two angle params
- Added support for multi-qubit gates with angle params
- Added support for Global R gate (`GRGate`) with two angle params
- Clean-up in `data.jl` and `utility.jl` to handle multi-qubit gates
- Decomposition of Pauli-X using global rotation added in 2-qubit examples
- Updated planar-hull cuts evaluation to account for repeated sets of extreme points (improved run times)
- Clean-up of `constraint_convex_hull_complex_gates`
- Updated docs and unit tests to reflect above changes
### v0.3.6
- DOI link for publication added
- Added support for JuMP v1.0
### v0.3.5
- Dropped support for redundant `constraint_complex_to_real_symmetry_compact` function
- Added unit magnitude (outer-approximation) constraints for unitary variables
- Updated docs and unit tests to reflect above changes
- Updated README.md and docs with the Youtube link for the SC21 presentation
- Added support for JuMP v0.22+
- Dropped explicit support for MathOptInterface
### v0.3.4
- Updated error messages in `src/data.jl` to better represent one and two qubit gates
- More determinant-based tests (to handle complex det values) to detect infeasibility
- Updated unit tests to cover CNOT gate bound constraints
### v0.3.3
- Added determinant-based test to detect infeasibility in the pre-processing step
- Added support for 3-qubit RCCXGate (relative Toffoli)
- Added support for 3-qubit MargolusGate (simplified Toffoli) - #46
- Added support for 3-qubit CiSwapGate (controlled iSwap)
- Updated docs and unit tests to reflect above changes
### v0.3.2
- Moved all the model options (including valid constraints) from `qc_model.jl` to `types.jl` into `QCModelOptions`, a struct form
- Streamlined default options for `QCModelOptions`
- Moved `relax_integrality`, `time_limit`, `objective_slack_penalty` and `optimizer_log` options from `data.jl` to `QCModelOptions`
- Removed `identify_real_gates`, `optimizer` and `optimizer_presolve` options from `params` and updated `solvers.jl`
- Default recognition of real elementary and target gates, and implements a compact MIP
- Updated docs and unit tests to reflect above changes
### v0.3.1
- Added decomposition of the QFT2 gate using H, T and CNOT gates to `2qubits_gates.jl`
- Added CITATION.bib
- Added QCOpt's framework to quick start guide in docs
- Minor updates in README
### v0.3.0
- Enabling support for convex hull evaluation (Graham's algorithm) within QCOpt (`QCO.convex_hull()`)
- Dropping dependency on QHull.jl
- Added decomposition of quantum full-adder, double-toffoli and double-peres gates to `4qubit_gates.jl`
- Added decomposition of toffoli gate using controlled gates and miller gate to `3qubit_gates.jl`
- Added decomposition of QFT2 gates using R gates to `2qubits_gates.jl`
- Issue #37 fixed and more meaningful messages for input gate parsing
- Updated unit tests to cover `convex_hull` function
- Bug fix in `_get_cnot_idx` to account for gates with kronecker symbols
- Inculded `CXGate` for evaluation of `_get_cnot_idx` in `data.jl`
- Separate files added in the `examples` folder for SC21 paper's results
- Options to add lower and upper bounds on number of CNOT gates in user-defined `params`
- User-specified "depth" changed to "maximum_depth"
- Updated docs and unit tests to reflect above changes
### v0.2.5
- Major updates in input gate convention for two qubit gates. For example, `CNot_12` becomes `CNot_1_2`. This update now makes the package flexible to be able to compute on any number of qubit circuits. `CNot_2_10` is a valid input for a 10 qubit circuit
- Major clean up in `data.jl` including generalized parsing in `get_full_sized_gate` and `get_full_sized_kron_gate` functions
- Clean up of `log.jl` to make it generic and consistent with above changes
- Enabling support for convex hull-based cuts on complex variables at every depth (improved run times in CPLEX, default = turned off)
- Added `constraint_convex_hull_complex_gates` function in support with depndency of QHull.jl
- Added `round_real_value` function and cleaned up `round_complex_values` in `utility.jl`
- Added toffoli-left block and toffoli-right block decompositions to `3qubit_gates.jl`
- Update `is_multi_qubit_gate` function to make it generic to any gate type
### v0.2.4
- Enabling support for 2-qubit Sycamore gate, native to Google's quantum processor
- Citation for the SC21 paper (accepted)
- Clean-up in real to complex matrix conversion and vice-versa in `src/utility.jl`
- Better rounding in `relaxation_bilinear` function
- Updated docs with more function references to reflect the above changes
### v0.2.3
- Enabling support for Identity-gate symmetry-breaking constraints - improved run times
- Enabling support for `identify_real_gates` which applies a compact MIP formulation (turned-off default)
- Updated unit tests and docs to reflect the above changes
- Minor bug fix in `is_multi_qubit_gate` function to handle gates with kron symbols
### v0.2.2
- Bug fix in `is_multi_qubit_gate` function in `src/log.jl` to handle any 2 qubit gates
- Decomposition for 4-qubit CNot_41 added in `examples/4qubit_gates.jl`
- Moved involutory gate evaluation from `data.jl` to a `get_involutory_gates` function in `utility.jl` (to be consistent with other similar functions). `constraint_involutory_gates` function is updated accordingly to reflect these changes
- Meaningful error messages in `data.jl` for input gates with missing continuous angle parameters
- Updated unit tests on involutory gates
### v0.2.1
- Framework updates which support upto *nine* qubit circuit decompositions
- Generalizing and condensing `kron_single_qubit_gate` function to handle any number of integer-valued qubits in `src/utility.jl`
- Generalizing and condensing `kron_two_qubit_gate` function to handle any number of integer-valued qubits without explicit enumeration in `src/utility.jl`. Also, computes slightly faster with lesser memory on larger qubits than the previous version
- Docs updates for missing inputs options
- Enabling support for PhaseGate with discretizations in `src/data.jl`
- Enabling support for DCXGate in `src/data.jl`
- Minor clean ups and removal of redundant functions in `src/data.jl`
### v0.2.0
- MAJOR framework updates which support gates upto *five* qubit gates. Framework is now flexible to generalize it to even larger qubit circuits, by updating functions `kron_single_qubit_gate` and `kron_two_qubit_gate`
- Bug fixes and major re-factoring of `src/data.jl` to support any permutation of gates on qubits
- Enabling Controlled-R (CRX, CRY, CRZ) and Controlled-U3 (CU3) gates
- Adding functions to data.jl that are the equivalent of the single-qubit ones (e.g. get_all_CR_gates)
- Enabling this functionality in the log.jl
- Kron symbol updated from `⊗` to `x`
- Enabling functionality to take elementary gates with kronecker symbols over all qubits. For example, `"H_1xCNot_23xI_4xI_5"`, `H_1xH_2xT_3`, `I_1xSX_2xTdagger_3`. This functionality only supports one and 2 qubit gates without angle parameters (excluded controlled R and U3 gates)
- Adding various new 2 qubit gates (including controlled R and U3) in `src/gates.jl`
- Expanding the elementary gates set with cleaner and flexible framework for any `num_qubits` in functions, `get_full_sized_gate` and `get_full_sized_kron_gate`
- Adding new functions: `_parse_gates_with_kron_symbol`, `kron_two_qubit_gate`
- Updating Docs and adding new unit tests to reflect above changes
### v0.1.9
- Updated toffoli input circuit to make it feasible for the commuting gate constraints
- Added support for 3-qubit Toffoli using Rotation gates, Fredkin gate and `CNot_13` (in `src/examples`)
- Infeasibility bug fix in commuting gate constraints (for `T_2` expressed as `U3_2(0,0,π/4)`)
### v0.1.8
- Added support for specificity of qubits in U3 and Rotation (RX, RY, RZ) gates (Major change). Example: U3_1, RX_2, RZ_3, etc
- Added support for kronecker product gates (`X_1⊗X_2`, `S_1⊗S_2`, etc) and bug fix to handle this change in `get_compressed_decomposition` in `src/log.jl`
- Added `is_multi_qubit_gate` function in `src/log.jl`
- Docs and tests updated to reflect above changes
### v0.1.7
- Added support for a few controlled versions of V gates in 2 & 3 qubits
- Added support for Grover's diffusion operator
- Naming convention updated from NameQubit to Name_Qubit for 1 qubit gates (consistent with 2 qubit gates)
- `cnot_ij` updated to `CNot_ij` to be consistent with naming convention in `src/gates.jl`
- Docs and tests updated to reflect above changes
### v0.1.6
- Added support for obtaining idempotent matrices and adding corresponding valid constraints
- Updated `all_valid_constraints` from `Bool` to values in `[-1,0,1]`
- `qc_model.jl` clean-up
- Updated unit tests to reflect above changes
### v0.1.5
- Added support for pair-wise commuting products with Identity, (AB=BA=I)
- Bug fix to remove redundant pairs in `get_commutative_gate_pairs` when corresponding product is an Identity gate
- Added support for eliminating redundant pairs whose product matches an input elementary gate (`get_redundant_gate_product_pairs` in utility) - improved run times
- Added support to turn on/off all valid constraints (`all_valid_constraints`)
- Updated docs to reflect the improved run times
### v0.1.4
- Optimizer time limit option added for early termination of solvers
- `log.jl` updates to support optimizer hitting time limits
- Revamping of commuting gate valid constraints (dropped support for triplets)
- Revamping data.jl to fix default values of user inputs
- Updated unit tests for the above changes
### v0.1.3
- Update to minimize_depth from maximizing IGate to minimizing non-IGates, which also improved run times.
- Clean-up and update to unit tests to reflect the above change
- Fixed Gurobi solver bug in `examples/solver.jl`
- Involutory gate constraints added and corresponding unit tests
### v0.1.2
- Update to warm start with an initial circuit (without U3 and R gates)
- Update to unit tests to reflect the above changes
- Update to docs to reflect the above changes
- Bug fixes in error/warn messages
### v0.1.1
- docs/make.jl updates for sidebar name
- Updated docs logo to handle dark theme
### v0.1.0
- Initial function-based working implementation
- Support for 2- and 3-qubit decompositions
- Added preliminary documentation
- Added preliminary unit tests
- Github Actions set-up
| QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 7504 | <h1 align="center" margin=0px>
<!-- <img src="https://github.com/harshangrjn/QuantumCircuitOpt.jl/blob/master/docs/src/assets/logo_header_light.png#gh-light-mode-only" width=90%>
<img src="https://github.com/harshangrjn/QuantumCircuitOpt.jl/blob/master/docs/src/assets/logo_header_dark.png#gh-dark-mode-only" width=90%>
<br> -->
<a href="https://github.com#gh-light-mode-only">
<img src="https://github.com/harshangrjn/QuantumCircuitOpt.jl/blob/master/docs/src/assets/logo_header_light.png#gh-light-mode-only" width=90%>
</a>
<a href="https://github.com#gh-dark-mode-only">
<img src="https://github.com/harshangrjn/QuantumCircuitOpt.jl/blob/master/docs/src/assets/logo_header_dark.png#gh-dark-mode-only" width=90%>
</a>
<br>
A Julia Package for Optimal Quantum Circuit Design
</h1>
Status:
[](https://github.com/harshangrjn/QuantumCircuitOpt.jl/actions/workflows/ci.yml)
[](https://codecov.io/gh/harshangrjn/QuantumCircuitOpt.jl)
[](https://juliahub.com/ui/Packages/QuantumCircuitOpt/dwSy1)
<!-- Stable version: [](https://harshangrjn.github.io/QuantumCircuitOpt.jl/stable/) -->
Dev version: [](https://harshangrjn.github.io/QuantumCircuitOpt.jl/dev/)
<!-- # QuantumCircuitOpt.jl -->
**QuantumCircuitOpt** is a Julia package which implements discrete optimization-based methods for provably optimal synthesis of an architecture for quantum circuits. While programming quantum computers, a primary goal is to build useful and less-noisy quantum circuits from the basic building blocks, also termed as elementary gates which arise due to hardware constraints. Thus, given a desired quantum computation, as a target gate, and a set of elemental one- and two-qubit gates, this package provides a _provably optimal, exact_ (up to global phase and machine precision) or an approximate decomposition with minimum number of elemental gates and CNOT gates. Now, this package also supports multi-qubit gates in the elementary gates set, such as the [global rotation](https://harshangrjn.github.io/QuantumCircuitOpt.jl/dev/multi_qubit_gates/#GRGate) gate. _Note that QuantumCircuitOpt currently supports only decompositions of circuits up to ten qubits_.
Overall, QuantumCircuitOpt can be a useful tool for researchers and developers working on quantum algorithms or quantum computing applications, as it can help to reduce the resource requirements of quantum computations, making them more practical and efficient.
## Installation
QuantumCircuitOpt is a registered package and can be installed by entering the following in the Julia REPL-mode:
```julia
import Pkg
Pkg.add("QuantumCircuitOpt")
```
## Usage
- Clone the repository.
- Open a terminal in the repo folder and run `julia --project=.`.
- Hit `]` to open the project environment and run `test` to run unit tests. If
you see an error because of missing packages, run `resolve`.
On how to use this package, check the Documentation's [quick start guide](https://harshangrjn.github.io/QuantumCircuitOpt.jl/dev/quickguide/#Sample-circuit-decomposition) and the [examples](https://github.com/harshangrjn/QuantumCircuitOpt.jl/tree/master/examples) folder for several important circuit decompositions.
## Video Links
For more technical details about the package, check out these video links:
- November 2022: Presentation [link](https://vimeo.com/771366943/01810daa4e) from the [Third Quantum Computing Software Workshop](https://sc22.supercomputing.org/session/?sess=sess423), held in conjunction with the International Conference on Super Computing ([SC22](https://sc22.supercomputing.org)).
- July 2022: Presentation [link](https://www.youtube.com/watch?v=OeONXwD4JJY) from the [JuliaCon 2022](https://pretalx.com/juliacon-2022/talk/KJTGC3/) conference.
- November 2021: Presentation [link](https://www.youtube.com/watch?v=sf1HJW5Vmio) from the [Second Quantum Computing Software Workshop](https://sc21.supercomputing.org/session/?sess=sess345), held in conjunction with the International Conference on Super Computing ([SC21](https://sc21.supercomputing.org)).
## Sample Circuit Synthesis
Here is a sample usage of QuantumCircuitOpt to optimally decompose a 2-qubit controlled-Z gate ([CZGate](https://harshangrjn.github.io/QuantumCircuitOpt.jl/dev/2_qubit_gates/#CZGate)) using the entangling [CNOT](https://harshangrjn.github.io/QuantumCircuitOpt.jl/dev/2_qubit_gates/#CNotGate) gate and an one-qubit universal rotation gate ([U3Gate](https://harshangrjn.github.io/QuantumCircuitOpt.jl/dev/1_qubit_gates/#U3Gate)) with three discretized Euler angles (θ,ϕ,λ):
```julia
import QuantumCircuitOpt as QCOpt
using JuMP
using Gurobi
# Target: CZGate
function target_gate()
return Array{Complex{Float64},2}([1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 -1])
end
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 4,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "Identity"],
"target_gate" => target_gate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/2:π,
"U3_ϕ_discretization" => -π:π/2:π,
"U3_λ_discretization" => -π:π/2:π,
)
qcm_optimizer = JuMP.optimizer_with_attributes(Gurobi.Optimizer, "presolve" => 1)
QCOpt.run_QCModel(params, qcm_optimizer)
```
If you prefer to decompose a target gate of your choice, update the `target_gate()` function and the
set of `elementary_gates` accordingly in the above sample code.
## Bug reports and Contributing
Please report any issues via the Github **[issue tracker](https://github.com/harshangrjn/QuantumCircuitOpt.jl/issues)**. All types of issues are welcome and encouraged; this includes bug reports, documentation typos, feature requests, etc.
QuantumCircuitOpt is being actively developed and suggestions or other forms of contributions are encouraged.
## Acknowledgement
This work was supported by Los Alamos National Laboratory's LDRD Early Career Research award. The primary developer of this package is [Harsha Nagarajan](http://harshanagarajan.com) ([@harshangrjn](https://github.com/harshangrjn)).
## Citing QuantumCircuitOpt
If you find QuantumCircuitOpt useful in your work, we request you to cite the following paper ([IEEE link](https://doi.org/10.1109/QCS54837.2021.00010), [arXiv link](https://arxiv.org/abs/2111.11674)):
```bibtex
@inproceedings{QCOpt_SC2021,
title={{QuantumCircuitOpt}: An Open-source Framework for Provably Optimal Quantum Circuit Design},
author={Nagarajan, Harsha and Lockwood, Owen and Coffrin, Carleton},
booktitle={SC21: The International Conference for High Performance Computing, Networking, Storage, and Analysis},
series={Second Workshop on Quantum Computing Software},
pages={55--63},
year={2021},
doi={10.1109/QCS54837.2021.00010},
organization={IEEE Computer Society}
}
```
Another publication which explores the potential of non-linear programming formulations in QuantumCircuitOpt is the following: [IEEE link](https://doi.org/10.1109/QCS56647.2022.00009), [arXiv link](https://arxiv.org/abs/2310.18281). | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 484 | # Documentation for QuantumCircuitOpt
## Installation
QuantumCircuitOpt's documentation is generated using [Documenter.jl](https://github.com/JuliaDocs/Documenter.jl). To install it, run the following command in a Julia session:
```julia
Pkg.add("Documenter")
Pkg.add("DocumenterTools")
```
## Building the Docs
To preview the `html` output of the documents, run the following command:
```julia
julia --color=yes make.jl
```
You can then view the documents in `build/index.html`. | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 688 | # Quantum Circuits Library: Single-qubit gates
```@meta
CurrentModule = QuantumCircuitOpt
```
## IGate
```@docs
IGate
```
## U3Gate
```@docs
U3Gate
```
## U2Gate
```@docs
U2Gate
```
## U1Gate
```@docs
U1Gate
```
## RGate
```@docs
RGate
```
## RXGate
```@docs
RXGate
```
## RYGate
```@docs
RYGate
```
## RZGate
```@docs
RZGate
```
## HGate
```@docs
HGate
```
## XGate
```@docs
XGate
```
## YGate
```@docs
YGate
```
## ZGate
```@docs
ZGate
```
## SGate
```@docs
SGate
```
## SdaggerGate
```@docs
SdaggerGate
```
## TGate
```@docs
TGate
```
## TdaggerGate
```@docs
TdaggerGate
```
## SXGate
```@docs
SXGate
```
## SXdaggerGate
```@docs
SXdaggerGate
```
## PhaseGate
```@docs
PhaseGate
``` | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 1408 | # Quantum Circuits Library: Two-qubit gates
```@meta
CurrentModule = QuantumCircuitOpt
```
## CNotGate
```@docs
CNotGate
```
## CNotRevGate
```@docs
CNotRevGate
```
## DCXGate
```@docs
DCXGate
```
## CXGate
```@docs
CXGate
```
## CXRevGate
```@docs
CXRevGate
```
## CYGate
```@docs
CYGate
```
## CYRevGate
```@docs
CYRevGate
```
## CZGate
```@docs
CZGate
```
## CHGate
```@docs
CHGate
```
## CHRevGate
```@docs
CHRevGate
```
## CVGate
```@docs
CVGate
```
## CVRevGate
```@docs
CVRevGate
```
## CVdaggerGate
```@docs
CVdaggerGate
```
## CVdaggerRevGate
```@docs
CVdaggerRevGate
```
## WGate
```@docs
WGate
```
## CRXGate
```@docs
CRXGate
```
## CRXRevGate
```@docs
CRXRevGate
```
## CRYGate
```@docs
CRYGate
```
## CRYRevGate
```@docs
CRYRevGate
```
## CRZGate
```@docs
CRZGate
```
## CRZRevGate
```@docs
CRZRevGate
```
## CSGate
```@docs
CSGate
```
## CSdaggerGate
```@docs
CSdaggerGate
```
## CTGate
```@docs
CTGate
```
## CTdaggerGate
```@docs
CTdaggerGate
```
## CU3Gate
```@docs
CU3Gate
```
## CU3RevGate
```@docs
CU3RevGate
```
## SwapGate
```@docs
SwapGate
```
## SSwapGate
```@docs
SSwapGate
```
## iSwapGate
```@docs
iSwapGate
```
## CSXGate
```@docs
CSXGate
```
## CSXRevGate
```@docs
CSXRevGate
```
## MGate
```@docs
MGate
```
## QFT2Gate
```@docs
QFT2Gate
```
## HCoinGate
```@docs
HCoinGate
```
## GroverDiffusionGate
```@docs
GroverDiffusionGate
```
## SycamoreGate
```@docs
SycamoreGate
```
| QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 353 | # Quantum Circuits Library: Three-qubit gates
```@meta
CurrentModule = QuantumCircuitOpt
```
## ToffoliGate
```@docs
ToffoliGate
```
## CSwapGate
```@docs
CSwapGate
```
## CCZGate
```@docs
CCZGate
```
## PeresGate
```@docs
PeresGate
```
## RCCXGate
```@docs
RCCXGate
```
## MargolusGate
```@docs
MargolusGate
```
## CiSwapGate
```@docs
CiSwapGate
``` | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 87 | # QuantumCircuitOpt Function References
```@autodocs
Modules = [QuantumCircuitOpt]
``` | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 4561 | ```@raw html
<align="center"/>
<img width="790px" class="display-light-only" src="assets/docs_header.png" alt="assets/docs_header.png"/>
<img width="790px" class="display-dark-only" src="assets/docs_header_dark.png" alt="assets/docs_header.png"/>
```
# Documentation
```@meta
CurrentModule = QuantumCircuitOpt
```
## Overview
**[QuantumCircuitOpt](https://github.com/harshangrjn/QuantumCircuitOpt.jl)** is a Julia package which implements discrete optimization-based methods for provably optimal synthesis of an architecture for Quantum circuits. While programming Quantum Computers, a primary goal is to build useful and less-noisy quantum circuits from the basic building blocks, also termed as elementary gates which arise due to hardware constraints. Thus, given a desired quantum computation, as a target gate, and a set of elemental one- and two-qubit gates, this package provides a _provably optimal, exact_ (up to global phase and machine precision) or an approximate decomposition with minimum number of elemental gates and CNOT gates. Now, this package also supports multi-qubit gates in the elementary gates set, such as the [global rotation](https://harshangrjn.github.io/QuantumCircuitOpt.jl/dev/multi_qubit_gates/#GRGate) gate which is native to trapped ion quantum computers. _Note that QuantumCircuitOpt currently supports only decompositions of circuits up to ten qubits_.
Overall, QuantumCircuitOpt can be a useful tool for researchers and developers working on quantum algorithms or quantum computing applications, as it can help to reduce the resource requirements of quantum computations, making them more practical and efficient.
## Installation
To use QuantumCircuitOpt, first [download and install](https://julialang.org/downloads/) Julia. Note that the current version of QuantumCircuitOpt is compatible with Julia 1.0 and later.
The latest stable release of QuantumCircuitOpt can be installed by entering the following in the Julia REPL-mode:
```julia
import Pkg
Pkg.add("QuantumCircuitOpt")
```
At least one mixed-integer programming (MIP) solver is required for running QuantumCircuitOpt. The well-known [Gurobi](https://github.com/jump-dev/Gurobi.jl) or IBM's [CPLEX](https://github.com/jump-dev/CPLEX.jl) solver is highly recommended, as it is fast, scaleable and can be used to solve on fairly large-scale circuits. However, the open-source MIP solver [HiGHS](https://github.com/jump-dev/HiGHS.jl) is also compatible with QuantumCircuitOpt. Gurobi (or any other MIP solver) can be installed via the package manager with
```julia
import Pkg
Pkg.add("Gurobi")
```
## Unit Tests
To run the tests in the package, run the following command after installing the QuantumCircuitOpt package.
```julia
import Pkg
Pkg.test("QuantumCircuitOpt")
```
## Acknowledgement
This work was supported by Los Alamos National Laboratory's LDRD Early Career Research award. The primary developer of this package is [Harsha Nagarajan](http://harshanagarajan.com) ([@harshangrjn](https://github.com/harshangrjn)).
## Citing QuantumCircuitOpt
If you find QuantumCircuitOpt useful in your work, we request you to cite the following publication ([IEEE link](https://doi.org/10.1109/QCS54837.2021.00010), [arXiv link](https://arxiv.org/abs/2111.11674)):
```bibtex
@inproceedings{NagarajanLockwoodCoffrin2021,
title={{QuantumCircuitOpt}: An Open-source Framework for Provably Optimal Quantum Circuit Design},
author={Nagarajan, Harsha and Lockwood, Owen and Coffrin, Carleton},
booktitle={SC21: The International Conference for High Performance Computing, Networking, Storage, and Analysis},
series={Second Workshop on Quantum Computing Software},
pages={55--63},
year={2021},
doi={10.1109/QCS54837.2021.00010},
organization={IEEE Computer Society}
}
```
Another publication which explores the potential of non-linear programming formulations in the QuantumCircuitOpt package is the following ([IEEE link](https://doi.org/10.1109/QCS56647.2022.00009), [arXiv link](https://arxiv.org/abs/2310.18281)):
```bibtex
@inproceedings{HendersonNagarajanCoffrin2022,
title={Exploring Non-linear Programming Formulations in {QuantumCircuitOpt} for Optimal Circuit Design},
author={Henderson. R, Elena and Nagarajan, Harsha and Coffrin, Carleton},
booktitle={SC22: The International Conference for High Performance Computing, Networking, Storage, and Analysis},
series={Third Workshop on Quantum Computing Software},
pages={36--42},
year={2022},
doi={10.1109/QCS56647.2022.00009},
organization={IEEE Computer Society}
}
``` | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 124 | # Quantum Circuits Library: Multi-qubit gates
```@meta
CurrentModule = QuantumCircuitOpt
```
## GRGate
```@docs
GRGate
``` | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 16285 | # Quick Start Guide
## Framework
Building on the recent success of [Julia](https://julialang.org), [JuMP](https://github.com/jump-dev/JuMP.jl) and mixed-integer programming (MIP) solvers, [QuantumCircuitOpt](https://github.com/harshangrjn/QuantumCircuitOpt.jl) (or QCOpt), is an open-source toolkit for optimal quantum circuit design. As illustrated in the figure below, QCOpt is written in Julia, a relatively new and fast dynamic programming language used for technical computing with support for extensible type system and meta-programming. At a high level, QCOpt provides an abstraction layer to achieve two primary goals:
1. To capture user-specified inputs, such as a desired quantum computation and the available hardware gates, and build a JuMP model of an MIP formulation, and
2. To extract, analyze and post-process the solution from the JuMP model to provide exact and approximate circuit decompositions, up to a global phase and machine precision.
```@raw html
<align="center"/>
<img width="550px" class="display-light-only" src="../assets/QCOpt_framework.png" alt="../assets/QCOpt_framework.png"/>
<img width="550px" class="display-dark-only" src="../assets/QCOpt_framework_dark.png" alt="../assets/QCOpt_framework.png"/>
```
## Video tutorials
- November 2022: Presentation [link](https://vimeo.com/771366943/01810daa4e) from the [Third Quantum Computing Software Workshop](https://sc22.supercomputing.org/session/?sess=sess423), held in conjunction with the International Conference on Super Computing ([SC22](https://sc22.supercomputing.org)). This video will introduce the importance of nonlinear programming formulations for optimal quantum circuit design. More technical details can be found in this [paper](https://doi.org/10.1109/QCS56647.2022.00009).
- July 2022: Presentation at the [JuliaCon 2022](https://pretalx.com/juliacon-2022/talk/KJTGC3/) introduces the package in greater depth and how to use it's various features.
```@raw html
<align="center"/>
<a href="https://www.youtube.com/watch?v=OeONXwD4JJY">
<img alt="Youtube-link" src="../assets/video_img_2.png"
width=500" height="350">
</a>
```
- November 2021: Presentation from the [2nd Quantum Computing Software Workshop](https://sc21.supercomputing.org/session/?sess=sess345), held in conjunction with the International Conference on Super Computing ([SC21](https://sc21.supercomputing.org)), will introduce the technicalities underlying the package, which can also be found in this [paper](https://doi.org/10.1109/QCS54837.2021.00010).
```@raw html
<align="center"/>
<a href="https://www.youtube.com/watch?v=sf1HJW5Vmio">
<img alt="Youtube-link" src="../assets/video_img_1.png"
width=500" height="350">
</a>
```
## Getting started
To get started, install [QCOpt](https://github.com/harshangrjn/QuantumCircuitOpt.jl) and [JuMP](https://github.com/jump-dev/JuMP.jl), a modeling language layer for optimization. QCOpt also needs a MIP solver such as [Gurobi](https://github.com/jump-dev/Gurobi.jl) or IBM's [CPLEX](https://github.com/jump-dev/CPLEX.jl). If you prefer an open-source MIP solver, install [HiGHS](https://github.com/jump-dev/HiGHS.jl) from the Julia package manager, though be warned that the run times of QCOpt can be substantially slower using any of the open-source MIP solvers.
# User inputs
QCOpt takes two types of user-defined input specifications. The first type of input contains all the necessary circuit specifications. This is given by a dictionary in Julia, which is a collection of key-value pairs, where every key is of the type `String`, which admits values of various types. Below is the list of allowable keys for the dictionary, given in column 1, and it's respective values with descriptions, given in column 2. This input dictionary is represented as `params` in all the [example](https://github.com/harshangrjn/QuantumCircuitOpt.jl/tree/master/examples) circuit decompositions.
| Mandatory circuit specifications | Description |
| -----------: | :----------- |
| `num_qubits` | Number of qubits of the circuit (≥ 2). |
| `maximum_depth` | Maximum allowable depth for decomposition of the circuit (≥ 2). |
| `elementary_gates` | Vector of all one and two qubit elementary gates. The menagerie of quantum gates currently supported in QCOpt can be found in [gates.jl](https://github.com/harshangrjn/QuantumCircuitOpt.jl/blob/master/src/gates.jl). |
| `target_gate` | Target unitary gate which you wish to decompose using the above-mentioned `elementary_gates`.|
| `objective` | Choose one of the following: (a) `minimize_depth`, which minimizes the total number of one- and two-qubit gates. For this option, include `Identity` matrix in the above-mentioned `elementary_gates`, (b) `minimize_cnot`, which minimizes the number of CNOT gates in the decomposition. (default: `minimize_depth`) |
| `decomposition_type` | Choose one of the following: (a) `exact_optimal`, which finds an exact, provably optimal, decomposition if it exists, (b) `exact_feasible`, which finds any feasible exact decomposition, but not necessarily an optimal one if it exists, (c) `optimal_global_phase`, which finds an optimal (best) circuit decomposition if it exists, up to a global phase (d) `approximate`, which finds an approximate decomposition if an exact one does not exist; otherwise it will return an exact decomposition (default: `exact_optimal`)|
If the above-specified `elementary_gates` contain gates with continuous angle parameters, then the following mandarotry input angle discretizations have to be specified in addition to the above inputs:
| Mandatory angle discretizations | Description |
| -----------: | :----------- |
| `RX_discretization` | Vector of discretization angles (in radians) for `RXGate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `RY_discretization` | Vector of discretization angles (in radians) for `RYGate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `RZ_discretization` | Vector of discretization angles (in radians) for `RZGate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `Phase_discretization` | Vector of discretization angles (in radians) for `PhaseGate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `U3_θ_discretization` | Vector of discretization angles (in radians) for θ parameter in `U3Gate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `U3_ϕ_discretization` | Vector of discretization angles (in radians) for ϕ parameter in `U3Gate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `U3_λ_discretization` | Vector of discretization angles (in radians) for λ parameter in `U3Gate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `CRX_discretization` | Vector of discretization angles (in radians) for `CRXGate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `CRY_discretization` | Vector of discretization angles (in radians) for `CRYGate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `CRZ_discretization` | Vector of discretization angles (in radians) for `CRZGate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `CU3_θ_discretization` | Vector of discretization angles (in radians) for θ parameter in `CU3Gate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `CU3_ϕ_discretization` | Vector of discretization angles (in radians) for ϕ parameter in `CU3Gate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
| `CU3_λ_discretization` | Vector of discretization angles (in radians) for λ parameter in `CU3Gate`. Input this only if this gate is part of the above-mentioned `elementary_gates`.|
In addition, here is a list of *optional* circuit specifications, which can be added to the above set of inputs, to accelerate the performance of the QCOpt package:
| Optional circuit specifications | Description |
| -----------: | :----------- |
| `initial_gate` | Intitial-condition gate to the decomposition (gate at 0th depth) (default: `Identity`). |
| `set_cnot_lower_bound` | This option sets a lower bound on the total number of CNot or CX gates which an optimal decomposition can admit. |
| `set_cnot_upper_bound` | This option sets an upper bound on the total number of CNot/CX gates which an optimal decomposition can admit. Note that both `set_cnot_lower_bound` and `set_cnot_upper_bound` can also be set to an identitcal value to fix the number of CNot/CX gates in the optimal decomposition.|
| `input_circuit` | Input circuit representing an ensemble of elementary gates which decomposes the given target gate. This input circuit, which serves as a warm-start, can accelerate the MIP solver's search for the incumbent solution. (default: empty circuit). |
# Optimization model inputs
The second set of inputs for QCOpt contains all the optional specifications for the underlying optimization models. This is given by a dictionary in Julia, which is a collection of key-value pairs, where every key is of the type `Symbol`, which admits values of various types. Below is the list of allowable keys for this dictionary, given in column 1, and it's respective values with descriptions, given in column 2. This input dictionary is an optional one, as it's default values are already set in [`types.jl`](https://github.com/harshangrjn/QuantumCircuitOpt.jl/blob/master/src/types.jl) correspnding to an optimal performance of the QCOpt package. Further, this dictionary is an optional argument while executing functions, `build_QCModel` and `run_QCModel` only.
| Optional model inputs | Description |
| -----------: | :----------- |
|`model_type`| The type of implemented MIP model to optimize in QCOpt (default: `compact_formulation`). |
|`commute_gate_constraints`| This option activates the valid constraints to eliminate pairs of commuting gates in the elementary (native) gates set (default: `true`)|
|`involutory_gate_constraints`| This option activates the valid constraints to eliminate pairs of involutory gates in the elementary (native) gates set (default: `true`)|
|`redundant_gate_pair_constraints`| This option activates the valid constraints to eliminate redundant pairs of gates in the elementary (native) gates set (default: `true`)|
|`identity_gate_symmetry_constraints`| This option activates the valid constraints to eliminate symmetry in the Identity gate in the decomposition (default: `true`)|
|`idempotent_gate_constraints`| This option activates the valid constraints to eliminate idempotent gates in the elementary (native) gates set (default: `false`)|
|`convex_hull_gate_constraints`| This option activates the valid constraints to apply convex hull of complex entries in the elementary (native) gates set (default: `false`)|
|`fix_unitary_variables`| This option evaluates all the fixed-valued indices of unitary matrix varaibles (`U_var`) at every depth, and appropriately builds the optimization model (default: `true`)|
|`visualize_solution`| This option activates the visualization of the optimal circuit decomposition (default: `true`)|
| `relax_integrality` | This option transforms integer variables into continuous variables (default: `false`). |
| `optimizer_log` | This option enables or disables console logging for the `optimizer` (default: `true`).|
| `objective_slack_penalty` | This option sets the penalty for minimizing the slack term in the objective, when `decomposition_type` is set to `approximate` (default: `1E3`). |
| `time_limit` | This option allows sets the maximum time limit for the optimizer in seconds (default: `10,800`). |
# Sample circuit synthesis
Using the above-described mandatory and optional user inputs, here is a sample circuit decomposition to minimize the total depth for implementing a 2-qubit controlled-Z gate ([CZGate](https://harshangrjn.github.io/QuantumCircuitOpt.jl/dev/2_qubit_gates/#CZGate)), with entangling [CNOT](https://harshangrjn.github.io/QuantumCircuitOpt.jl/dev/2_qubit_gates/#CNotGate) gate and the one-qubit, universal rotation gate ([U3Gate](https://harshangrjn.github.io/QuantumCircuitOpt.jl/dev/1_qubit_gates/#U3Gate)) with three discretized Euler angles (θ,ϕ,λ):
```julia
import QuantumCircuitOpt as QCOpt
using JuMP
using Gurobi
# Target: CZGate
function target_gate()
return Array{Complex{Float64},2}([1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 -1])
end
# Circuit specifications (mandatory)
params = Dict{String, Any}(
"num_qubits" => 2,
"maximum_depth" => 4,
"elementary_gates" => ["U3_1", "U3_2", "CNot_1_2", "Identity"],
"target_gate" => target_gate(),
"objective" => "minimize_depth",
"decomposition_type" => "exact_optimal",
"U3_θ_discretization" => -π:π/2:π,
"U3_ϕ_discretization" => -π:π/2:π,
"U3_λ_discretization" => -π:π/2:π,
)
# Optimization model inputs (optional)
model_options = Dict{Symbol, Any}(:model_type => "compact_formulation",
:visualize_solution => true)
qcm_optimizer = JuMP.optimizer_with_attributes(Gurobi.Optimizer, "presolve" => 1)
QCOpt.run_QCModel(params, qcm_optimizer; options = model_options)
```
If you prefer to decompose a target gate of your choice, update the `target_gate()` function and the
set of `elementary_gates` accordingly in the above sample code. For more such circuit decompositions, with various types of elementary gates, refer to [examples](https://github.com/harshangrjn/QuantumCircuitOpt.jl/tree/master/examples) folder.
!!! warning
Note that [QCOpt](https://github.com/harshangrjn/QuantumCircuitOpt.jl) tries to find the global minima of a specified objective function for a given set of input one- and two-qubit gates, target gate and the total depth of the decomposition. This combinatiorial optimization problem is known to be NP-hard to compute in the size of `num_qubits`, `maximum_depth` and `elementary_gates`.
!!! tip
Run times of [QCOpt](https://github.com/harshangrjn/QuantumCircuitOpt.jl)'s mathematical optimization models are significantly faster using [Gurobi](https://www.gurobi.com) as the underlying mixed-integer programming (MIP) solver. Note that this solver's individual-usage license is available [free](https://www.gurobi.com/academia/academic-program-and-licenses/) for academic purposes.
# Extracting results
The run commands (for example, `run_QCModel`) in QCOpt return detailed results in the form of a dictionary. This dictionary can be saved for further processing as follows,
```julia
results = QCOpt.run_QCModel(params, qcm_optimizer)
```
For example, for decomposing the above controlled-Z gate, the QCOpt's runtime and the optimal objective value (minimum depth) can be accessed using,
```julia
results["solve_time"]
results["objective"]
```
Also, `results["solution"]` contains detailed information about the solution produced by the optimization model, which can be utilized for further analysis.
# Visualizing results
QCOpt currently supports the visualization of optimal circuit decompositions obtained from the results dictionary (from above), which can be executed using,
```julia
data = QCOpt.get_data(params)
QCOpt.visualize_solution(results, data)
```
For example, for the above controlled-Z gate decomposition, the processed output of QCOpt is as follows:
```
=============================================================================
QuantumCircuitOpt version: v0.5.1
Quantum Circuit Model Data
Number of qubits: 2
Total number of elementary gates (after presolve): 72
Maximum depth of decomposition: 4
Elementary gates: ["U3_1", "U3_2", "CNot_1_2", "Identity"]
U3_θ discretization: [-180.0, -90.0, 0.0, 90.0, 180.0]
U3_ϕ discretization: [-180.0, -90.0, 0.0, 90.0, 180.0]
U3_λ discretization: [-180.0, -90.0, 0.0, 90.0, 180.0]
Type of decomposition: exact_optimal
MIP optimizer: Gurobi
Optimal Circuit Decomposition
U3_2(-90.0,0.0,0.0) * CNot_1_2 * U3_2(90.0,0.0,0.0) = Target gate
Minimum optimal depth: 3
Optimizer run time: 3.01 sec.
=============================================================================
```
| QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"BSD-3-Clause"
] | 0.5.9 | d695ea89a34e0acecae211a3c6cc0d6254411507 | docs | 296 | # Examples for QuantumCircuitOpt
`run_examples.jl` file contains the main driver file which can be executed to decompose a target gate into sequence of elementary gates of your choice. Multiple such gate implementations can be found inside files such as `2qubit_gates.jl`, `3qubit_gates.jl`, etc. | QuantumCircuitOpt | https://github.com/harshangrjn/QuantumCircuitOpt.jl.git |
|
[
"MIT"
] | 0.2.1 | b40f10bde9569c0c900489f89a5882a0a90c2cf4 | code | 5265 | module BioFetch
using FASTX
using GenomicAnnotations
using BioServices.EUtils
using BioServices.EBIProteins
export fetchseq, SeqFormat, fasta, gb
@enum SeqFormat fasta gb
"""
fetchseq(ids::AbstractString::AbstractVector{<:AbstractString}, range::Union{Nothing, AbstractRange} = nothing, revstrand = false; format::SeqFormat = fasta)
Fetches sequence data from a database by accession number in either FASTA format or GenBank flatfile format.
Nucleotide and protein records may be mixed. Results will be returned in the order provided.
Supports NCBI, Ensembl, and UniProt accession numbers.
GenBank format may not work right now.
```julia
fetchseq("AH002844") # retrive one FASTA NCBI nucleotide record
fetchseq(["CAA41295.1", "NP_000176"]) # retrieve two FASTA NCBI protein records
fetchseq("NC_036893.1", 81_775_230 .+ (1:1_000_000)) # retrive a 1 Mb segment of a FASTA NCBI genomic record
fetchseq("NC_036893.1", 81000000:81999999, true) # retrive a 1 Mb segment of a FASTA NCBI genomic record on the reverse strand
```
`range` and `revstrand` are only valid for nucleotide queries
"""
function fetchseq(ids::AbstractVector{<:AbstractString}, range::Union{Nothing, AbstractRange} = nothing, revstrand = false; format::SeqFormat = fasta)
ncbinucleotides = String[]
ncbiproteins = String[]
ebiuniprots = String[]
ebiensembls = String[]
order = IdDict(ncbinucleotides => [], ncbiproteins => [], ebiuniprots => [], ebiensembls => [])
for (i, id) ∈ enumerate(ids)
ebiensembl = startswith(id, r"ENS[A-Z][0-9]{11}")
ncbiprotein = startswith(id, r"[NX]P_|[A-Z]{3}[0-9]")
ncbinucleotide = startswith(id, r"[NX][CGRTMW]_|[A-Z]{2}[0-9]|[A-Z]{4,6}[0-9]") && !ebiensembl
ebiuniprot = startswith(id, r"[A-Z][0-9][A-Z0-9]{4}")
ncbiprotein || ncbinucleotide || ebiuniprot || ebiensembl || throw("could not infer database for $id")
array = ncbinucleotide ? ncbinucleotides :
ncbiprotein ? ncbiproteins :
ebiuniprot ? ebiuniprots :
ebiensembl ? ebiensembls :
error()
push!(array, id)
push!(order[array], i)
end
results = [fetchseq_ncbi(ncbinucleotides, "nuccore"; format, range, revstrand);
fetchseq_ncbi(ncbiproteins, "protein"; format);
fetchseq_uniprot(ebiuniprots; format);
fetchseq_ensembl(ebiensembls; format)]
order = [order[ncbinucleotides]; order[ncbiproteins]; order[ebiuniprots]; order[ebiensembls]]
return results[order]
end
function fetchseq(id::AbstractString, range::Union{Nothing, AbstractRange} = nothing, revstrand = false; format::SeqFormat = fasta)
ebiensembl = startswith(id, r"ENS[A-Z][0-9]{11}")
ncbiprotein = startswith(id, r"[NX]P_|[A-Z]{3}[0-9]")
ncbinucleotide = startswith(id, r"[NX][CGRTMW]_|[A-Z]{2}[0-9]|[A-Z]{4,6}[0-9]") && !ebiensembl
ebiuniprot = startswith(id, r"[A-Z][0-9][A-Z0-9]{4}")
result = ncbinucleotide ? fetchseq_ncbi(id, "nuccore"; format, range, revstrand) :
ncbiprotein ? fetchseq_ncbi(id, "protein"; format) :
ebiuniprot ? fetchseq_uniprot([id]; format) :
ebiensembl ? fetchseq_ensembl([id]; format) :
error("could not infer database for $id")
return result
end
function fetchseq_ncbi(ids, db::AbstractString; format::SeqFormat = fasta, range::Union{Nothing, AbstractRange} = nothing, revstrand = false)
isempty(ids) && return []
if isnothing(range)
response = efetch(; db, id = ids, rettype = String(Symbol(format)), retmode="text", strand = revstrand ? 2 : 1)
else
response = efetch(; db, id = ids, rettype = String(Symbol(format)), retmode="text", seq_start = first(range), seq_stop = last(range), strand = revstrand ? 2 : 1)
end
body = IOBuffer(response.body)
reader = format == fasta ? FASTA.Reader(body) :
format == gb ? GenBank.Reader(body) :
nothing
records = [record for record ∈ reader]
return records
end
function fetchseq_uniprot(ids::AbstractVector; format::SeqFormat = fasta)
isempty(ids) && return []
records = []
contenttype = format == fasta ? "text/x-fasta" : format == gb ? "text/flatfile" : error("unknown format")
for id ∈ ids
response = ebiproteins(; accession = id, contenttype)
body = IOBuffer(response.body)
reader = format == fasta ? FASTA.Reader(body) :
format == gb ? GenBank.Reader(body) :
nothing
records = [record for record ∈ reader]
append!(records, records)
end
return records
end
function fetchseq_ensembl(ids::AbstractVector; format::SeqFormat = fasta)
isempty(ids) && return []
records = []
contenttype = format == fasta ? "text/x-fasta" : format == gb ? "text/flatfile" : error("unknown format")
for id ∈ ids
response = ebiproteins(; dbtype = "Ensembl", dbid = id, contenttype)
body = IOBuffer(response.body)
reader = format == fasta ? FASTA.Reader(body) :
format == gb ? GenBank.Reader(body) :
nothing
records = [record for record ∈ reader]
append!(records, records)
end
return records
end
end
| BioFetch | https://github.com/BioJulia/BioFetch.jl.git |
|
[
"MIT"
] | 0.2.1 | b40f10bde9569c0c900489f89a5882a0a90c2cf4 | code | 894 | using BioFetch, FASTX, GenomicAnnotations, Test
nr002726 = fetchseq("NR_002726.2")
@test length(nr002726) == 1
@test typeof(nr002726[1]) == FASTA.Record
nr002726gb = fetchseq("NR_002726.2", format = gb)
@test length(nr002726gb) == 1
@test typeof(nr002726gb[1]) == GenomicAnnotations.Record{Gene}
seqs = fetchseq(["CAA41295.1", "NP_000176"], format = fasta)
@test length(seqs) == 2
@test typeof(seqs[1]) == FASTA.Record
nr002726 = fetchseq("NR_002726.2", 10:20)
nr002726rev = fetchseq("NR_002726.2", 10:20, true)
@test length(nr002726) == 1
@test typeof(nr002726[1]) == FASTA.Record
@test length(FASTX.sequence(nr002726[1])) == 11
@test length(FASTX.sequence(nr002726rev[1])) == 11
@test map(x -> x == 'G' ? 'C' : x == 'C' ? 'G' : x == 'T' ? 'A' : x == 'A' ? 'T' : x, FASTX.sequence(nr002726[1])) |> reverse == FASTX.sequence(nr002726rev[1])
@test length(fetchseq("ENSG00000141510")) == 42
| BioFetch | https://github.com/BioJulia/BioFetch.jl.git |
|
[
"MIT"
] | 0.2.1 | b40f10bde9569c0c900489f89a5882a0a90c2cf4 | docs | 1011 | # BioFetch.jl
Easily fetch biological sequences from online sources
BioFetch provides a higher-level interface to retrieve data from sequence databases and provide them in
a readily manipulatable form via FASTX.jl and GenomeAnnotations.jl.
Currently supports Entrez (NCBI) Nucleotide and Protein databases, as well as UniProt and Ensembl.
Examples:
```julia
fetchseq("AH002844") # retrive one NCBI nucleotide record as FASTA
fetchseq("CAA41295.1", "NP_000176", format = gb) # retrieve two NCBI protein records as GenBank Flat File
fetchseq("Q00987") # retrieve one UniProt protein record as FASTA
fetchseq("ENSG00000141510") # retrieve one Ensembl gene record's proteins as FASTA
fetchseq("NC_036893.1", 81_775_230 .+ (1:1_000_000)) # retrive a 1 Mb segment of a FASTA NCBI genomic record
fetchseq("NC_036893.1", 81000000:81999999, true) # retrive a 1 Mb segment of a FASTA NCBI genomic record on the reverse strand
```
| BioFetch | https://github.com/BioJulia/BioFetch.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 181 | using Documenter, ITensorMPOCompression, ITensors
makedocs(;
sitename="ITensorMPOCompression",
format=Documenter.HTML(; prettyurls=false),
modules=[ITensorMPOCompression],
)
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 3014 | #' # ITensorMPOCompression
#'
#' A package to enable block respecting compression of Matrix Product Operators (MPOs) for use with ITensors.jl.
#'
#' Reference: *Daniel E. Parker, Xiangyu Cao, and Michael P. Zaletel Phys. Rev. B 102, 035147*
#'
#' ITensors has built in support for generating MPOs from local operators. This framework is called `AutoMPO`. MPOs
#' generated by `AutoMPO` are already compressed, so you only need this package
#' if you:
#'
#' 1. Are using MPOs that are created by hand, outside the `AutoMPO` framework.
#' 2. Want your MPO to be in orthogonal/canonical form.
#' 3. Need to see the bond spectrums throughout the lattice.
#'
#' Support for compression of infinite lattice MPOs (iMPOs) is in the ITensorInfiniteMPS package
#' which can be found [here](https://github.com/ITensor/ITensorInfiniteMPS.jl).
#'
#' Technical notes on what this package does can be founs [here](https://github.com/JanReimers/ITensorMPOCompression.jl/blob/main/docs/TechnicalDetails.pdf)
#'
#' ## Installation
#'
#' You can install this package through the Julia package manager:
#' ```julia
#' julia> ] add ITensorMPOCompression
#' ```
#' ## Examples
#'
#' Here are is an example of orthogonalizing an hand generated (not using AutoMPO) MPO
#+ term=true
using ITensors
using ITensorMPOCompression
include("../test/hamiltonians/hamiltonians.jl");
N = 10; #10 sites
NNN = 7; #Include up to 7th nearest neighbour interactions
sites = siteinds("S=1/2", N);
H = transIsing_MPO(sites, NNN);
is_regular_form(H,lower) == true
@show get_Dw(H); #Show bond dimensions
pprint(H[2]) #schematic view of operators at site #2
orthogonalize!(H,left); #Orthogonalize into left canonical form. Also does rank reduction.
orthogonalize!(H,right); #Orthogonalize into right canoncial form.
pprint(H[2]) #Show vastly reduced matrix of operators at site #2
@show get_Dw(H); #Show reduced bond dimensions
is_regular_form(H,lower) == true
isortho(H, right) == true #looks at cached ortho center limits
check_ortho(H,right) == true #Does the more expensive V*V_dagger==Id contraction and test
pprint(H) #High level view of what is in the MPO.
#' Here are is an example of truncating an hand generated (not using AutoMPO) MPO
#+ term=true
using ITensors
using ITensorMPOCompression
include("../test/hamiltonians/hamiltonians.jl");
N = 10; #10 sites
NNN = 7; #Include up to 7th nearest neighbour interactions
sites = siteinds("S=1/2", N);
H = transIsing_MPO(sites, NNN);
is_regular_form(H,lower) == true
spectrums = truncate!(H,left);
pprint(H[5])
@show get_Dw(H);
@show spectrums;
is_regular_form(H,lower) == true
isortho(H, left) == true
check_ortho(H, left) == true
#' ## Generating this README
#' This file was generated with [weave.jl](https://github.com/JunoLab/Weave.jl) with the following commands:
#+ eval=false
using ITensorMPOCompression, Weave
weave(
joinpath(pkgdir(ITensorMPOCompression), "examples", "README.jl");
doctype="github",
out_path=pkgdir(ITensorMPOCompression),
)
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 1552 | # Define the nearest neighbor term `S⋅S` for the Heisenberg model
using ITensors
using ITensorMPOCompression
using Printf
Base.show(io::IO, f::Float64) = @printf(io, "%1.3f", f)
import ITensorMPOCompression: insert_Q, reg_form_Op
function two_site_gate(s,n::Int64)
U = ITensors.randomU(Float64, s[n], s[n+1])
U = prime(U; plev=1)
Udag = dag(prime(U))
return U,Udag
end
function apply(U::ITensor,WL::reg_form_Op,WR::reg_form_Op,Udag::ITensor)
WbL=extract_blocks(WL,left;Ac=true)
WbR=extract_blocks(WR,right;Ac=true)
WbR.𝐀̂𝐜̂=replaceind(WbR.𝐀̂𝐜̂,WbR.irAc,WbL.icAc)
#@show inds(WbL.𝐀̂𝐜̂) inds(WbR.𝐀̂𝐜̂)
Phi = prime(((WbL.𝐀̂𝐜̂ * WbR.𝐀̂𝐜̂) * U) * Udag, -2; tags="Site")
#@show inds(Phi)
@assert order(Phi)==6
is=siteinds(WL)
U, ss, V, spec, iu, iv = svd(Phi, WbL.irAc, is...; utags=tags(WL.iright),vtags=tags(WR.ileft), cutoff=1e-15)
WL⎖,iqpl=insert_Q(WL,U,iu,left)
WR⎖,iqpr=insert_Q(WR,ss*V,iv,right)
WR⎖=replaceind(WR⎖,iqpr,iqpl)
check(WL⎖)
check(WR⎖)
@assert is_regular_form(WL⎖)
@assert is_regular_form(WR⎖)
return WL⎖,WR⎖
end
function gate_sweep!(H::reg_form_MPO)
N=length(H)
for n in 1:N-1
U,Udag=two_site_gate(s,n)
H[n],H[n+1]=apply(U,H[n],H[n+1],Udag)
end
end
N,NNN = 5,2
s = siteinds("S=1/2", N)
H = reg_form_MPO(Heisenberg_AutoMPO(s, NNN))
@assert is_gauge_fixed(H)
orthogonalize!(H,right)
@assert is_gauge_fixed(H)
gate_sweep!(H)
# U,Udag=two_site_gate(s,2)
# H[2],H[3]=apply(U,H[2],H[3],Udag)
# #@assert check_ortho(H[2],left)
pprint(H)
orthogonalize!(H,right)
pprint(H)
nothing
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 730 | using ITensors, ITensorMPOCompression
include("../test/hamiltonians/hamiltonians.jl")
N = 10
sites = siteinds("S=1/2", N; conserve_qns=true)
state = [isodd(n) ? "Up" : "Dn" for n in 1:length(sites)]
psi = randomMPS(sites, state)
println("Show QN directions. Arrows should point *away* from ortho centers")
println("MPS as constructed")
show_directions(psi)
println("MPS with ortho center on site 5")
orthogonalize!(psi, 5)
show_directions(psi)
H = transIsing_AutoMPO(sites, 1);
println("MPO as constructed from AutoMPO")
show_directions(H)
println("MPO ortho=left (orth center on site 10)")
orthogonalize!(H,left)
show_directions(H)
println("MPO ortho=right (orth center on site 1)")
orthogonalize!(H,right)
show_directions(H)
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 516 | using ITensors
using ITensorMPOCompression
include("../test/hamiltonians/hamiltonians.jl")
N = 10; #10 sites
NNN = 7; #Include up to 7th nearest neighbour interactions
sites = siteinds("S=1/2", N);
H = transIsing_MPO(sites, NNN);
is_regular_form(H,lower) == true
pprint(H[2])
orthogonalize!(H,1)
pprint(H[2])
get_Dw(H)
is_regular_form(H,lower) == true
isortho(H, right) == true #looks at cached ortho center limits
check_ortho(H,right) == true #Does the more expensive V*V_dagger==Id contraction and test
pprint(H)
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 313 | using ITensors
using ITensorMPOCompression
include("../test/hamiltonians/hamiltonians.jl")
N = 10; #10 sites
NNN = 7; #Include up to 7th nearest neighbour interactions
sites = siteinds("S=1/2", N);
H = transIsing_MPO(sites, NNN);
pprint(H)
bond_spectrum = truncate!(H,left)
pprint(H)
@show bond_spectrum
nothing
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 1207 | using ITensors
using ITensorMPOCompression
using Printf
Base.show(io::IO, f::Float64) = @printf(io, "%1.3f", f)
function Heisenberg_2D_AutoMPO(sites, Nx::Int64, Ny::Int64, hz::Float64=0.0, J::Float64=1.0)
N = length(sites)
@mpoc_assert N == Nx * Ny
ampo = OpSum()
for j in 1:N
add!(ampo, hz, "Sz", j)
end
lattice = square_lattice(Nx, Ny; yperiodic=false)
# Define the Heisenberg spin Hamiltonian on this lattice
ampo = OpSum()
for b in lattice
ampo .+= 0.5 * J, "S+", b.s1, "S-", b.s2
ampo .+= 0.5 * J, "S-", b.s1, "S+", b.s2
ampo .+= J, "Sz", b.s1, "Sz", b.s2
end
return MPO(ampo, sites)
end
Nx = 10
Ny = 6
N = Nx * Ny; #10 sites
sites = siteinds("S=1/2", N);
H = Heisenberg_2D_AutoMPO(sites, Nx, Ny)
Dw_auto = get_Dw(H)
bond_spectrum = truncate!(H,left) #if you look at the SV spectrum we min(sv)=0.25 so there is nothing small to truncate.
Dw_trunc = get_Dw(H)
if Dw_auto == Dw_trunc
println("It is very hard to beat autoMPO!!!!")
println(" And here is why:")
println(" For a pseudo 2D MPOs there are no small singular values to truncate")
else
println("Wa-hoo truncate did something useful :)")
@show Dw_auto Dw_trunc
end
@show bond_spectrum
nothing
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 3666 | using ITensors
using ITensorMPOCompression
using Test
# using Printf
# Base.show(io::IO, f::Float64) = @printf(io, "%1.3e", f) #dumb way to control float output
include("../test/hamiltonians/hamiltonians.jl")
@testset "Investigate suprise effects of the inital sweep direction" begin
ul = lower
initstate(n) = "↑"
verbose = false
@printf(" max(Dw) dumb-summed \n")
@printf(" N NNN Raw L1 L2 R1 R2\n")
for NNN in [1, 5, 8, 12, 14, 20, 25]
# N needs to be big enough that there is block in the middle of lattice which
# exhibits no edge effects.
N = 2 * NNN + 4
sites = siteinds("S=1/2", N)
HdumbL = two_body_MPO(sites, NNN; Jprime=1.0, presummed=false)
HdumbR = deepcopy(HdumbL)
Dw_raw=maxlinkdim(HdumbL)
orthogonalize!(HdumbL, left; verbose=verbose, atol=1e-14)
orthogonalize!(HdumbR, right; verbose=verbose, atol=1e-14)
Dw1_L, Dw1_R = maxlinkdim(HdumbL), maxlinkdim(HdumbR)
orthogonalize!(HdumbL, right; verbose=verbose, atol=1e-14)
orthogonalize!(HdumbR, left; verbose=verbose, atol=1e-14)
Dw2_L, Dw2_R = maxlinkdim(HdumbL), maxlinkdim(HdumbR)
@printf("%4i %4i %4i %4i %4i %4i %4i \n", N, NNN, Dw_raw, Dw1_L, Dw2_L, Dw1_R, Dw2_R)
end
end
@testset "Tabulate MPO Dw reduction for 2 body NNN interactions" begin
ul=lower
initstate(n) = "↑"
@printf(" |--------------------------max(Dw)-------------------------|\n")
@printf(" AutoMPO pre-summed dumb-summed \n")
@printf(" Finite Finite finite \n")
@printf(" N NNN raw orth trunc raw orth trunc raw orth trunc\n")
for NNN in 1:15
# N needs to be big enough that there is block in the middle of lattice which
# exhibits no edge effects.
N=2*NNN+4
#Nmid=div(N,2)
#NNNd= NNN>15 ? 1 : NNN #don't bother with the dumb version for largeish NNN
sites = siteinds("S=1/2",N;conserve_qns=false);
Hpres=two_body_MPO(sites,NNN;presummed=true)
Hdumb=two_body_MPO(sites,NNN;presummed=false)
Hauto=two_body_AutoMPO(sites,NNN;nexp=4)
Dw_ps_raw,Dw_ds_raw,Dw_auto_raw=maxlinkdim(Hpres),maxlinkdim(Hdumb),maxlinkdim(Hauto)
orthogonalize!(Hpres,left;atol=1e-15)
orthogonalize!(Hpres,right;atol=1e-15)
orthogonalize!(Hdumb,left;atol=1e-15)
orthogonalize!(Hdumb,right;atol=1e-15)
orthogonalize!(Hauto,left;atol=1e-15)
orthogonalize!(Hauto,right;atol=1e-15)
Dw_ps_orth,Dw_ds_orth,Dw_auto_orth=maxlinkdim(Hpres),maxlinkdim(Hdumb),maxlinkdim(Hauto)
ss_pres=truncate!(Hpres,left;cutoff=1e-15)
ss_dumb=truncate!(Hdumb,left;cutoff=1e-15)
ss_auto=truncate!(Hauto,left;cutoff=1e-15)
Dw_ps_trunc,Dw_ds_trunc,Dw_auto_trunc=maxlinkdim(Hpres),maxlinkdim(Hdumb),maxlinkdim(Hauto)
@printf("%3i %3i %3i %3i %3i %3i %3i %3i %3i %3i %3i\n",
N,NNN,
Dw_auto_raw,Dw_auto_orth,Dw_auto_trunc,
Dw_ps_raw,Dw_ps_orth,Dw_ps_trunc,
Dw_ds_raw,Dw_ds_orth,Dw_ds_trunc,
)
#
# Make sure the bond spectrum for auto, presummed amd dum summed hamiltonians
# are all identical to machine precision.
#
@test length(ss_pres)==length(ss_auto)
@test length(ss_dumb)==length(ss_auto)
for nb in 1:length(ss_pres)
ss_p=eigs(ss_pres[nb])
ss_d=eigs(ss_dumb[nb])
ss_a=eigs(ss_auto[nb])
if !isnothing(ss_d)
pd=.√(ss_p)-.√(ss_d)
pa=.√(ss_p)-.√(ss_a)
#@show sqrt(sum(pa.^2))/N
@test sqrt(sum(pd.^2))/N ≈ 0.0 atol = 1e-14*N
@test sqrt(sum(pa.^2))/N ≈ 0.0 atol = 4e-12*N
end
end
end
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 2720 | using ITensors
using ITensorMPOCompression
using Test
# using Printf
# Base.show(io::IO, f::Float64) = @printf(io, "%1.3e", f) #dumb way to control float output
include("../test/hamiltonians/hamiltonians.jl")
maxlinkdim(H::MPO)=maximum(get_Dw(H))
maxlinkdim(H::reg_form_MPO)=maximum(get_Dw(MPO(H)))
@testset "Investigate suprise effects of the inital sweep direction for 3 body Hamiltonian" begin
ul = lower
initstate(n) = "↑"
verbose = false
@printf(" max(Dw) dumb-summed \n")
@printf(" N Raw autoMPO L1 L2 R1 R2 \n")
for N in 3:15
# N needs to be big enough that there is block in the middle of lattice which
# exhibits no edge effects.
sites = siteinds("S=1/2", N)
HhandL = reg_form_MPO(three_body_MPO(sites, N))
HhandR = reg_form_MPO(three_body_MPO(sites, N))
Hauto = three_body_AutoMPO(sites)
Dw_raw, Dw_auto = maxlinkdim(HhandL), maxlinkdim(Hauto)
orthogonalize!(HhandL,left; verbose=verbose, atol=1e-14)
orthogonalize!(HhandR,right; verbose=verbose, atol=1e-14)
Dw1_L, Dw1_R = maxlinkdim(HhandL), maxlinkdim(HhandR)
orthogonalize!(HhandL,right; verbose=verbose, atol=1e-14)
orthogonalize!(HhandR,left; verbose=verbose, atol=1e-14)
Dw2_L, Dw2_R = maxlinkdim(HhandL), maxlinkdim(HhandR)
@printf(
"%4i %4i %4i %4i %4i %4i %4i \n",
N,
Dw_raw,
Dw_auto,
Dw1_L,
Dw2_L,
Dw1_R,
Dw2_R,
)
end
end
@testset "Tabulate MPO Dw reduction for 3 body Hamiltonian" begin
ul = lower
initstate(n) = "↑"
@printf(" |--------max(Dw)-----------|\n")
@printf(" AutoMPO hand built\n")
@printf(" N raw trunc raw trunc \n")
for N in 3:15
sites = siteinds("S=1/2", N)
Hhand = reg_form_MPO(three_body_MPO(sites, N))
Hauto = reg_form_MPO(three_body_AutoMPO(sites))
Dw_hand_raw, Dw_auto_raw = maxlinkdim(Hhand), maxlinkdim(Hauto)
ss_hand = truncate!(Hhand,left; cutoff=1e-15, atol=1e-15)
ss_auto = truncate!(Hauto,left; cutoff=1e-15, atol=1e-15)
Dw_hand_trunc1, Dw_auto_trunc = maxlinkdim(Hhand), maxlinkdim(Hauto)
@printf(
"%3i %3i %3i %3i %3i \n",
N,
Dw_auto_raw,
Dw_auto_trunc,
Dw_hand_raw,
Dw_hand_trunc1,
)
#
# Make sure the bond spectrum for auto, presummed amd dum summed hamiltonians
# are all identical to machine precision.
#
@test length(ss_hand) == length(ss_auto)
for nb in 1:length(ss_hand)
ss_h = eigs(ss_hand[nb])
ss_a = eigs(ss_auto[nb])
ha = .√(ss_h) - .√(ss_a)
#@show sqrt(sum(ha.^2))/N
@test sqrt(sum(ha .^ 2)) / N ≈ 0.0 atol = 3e-12
end
end
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 549 | using ITensors
using ITensorMPOCompression
include("../test/hamiltonians/hamiltonians.jl")
# using Printf
# Base.show(io::IO, f::Float64) = @printf(io, "%1.3f", f) #dumb way to control float output
N = 10; #10 sites
NNN = 7; #Include up to 7th nearest neighbour interactions
sites = siteinds("S=1/2", N);
H = transIsing_MPO(sites, NNN);
is_regular_form(H,lower) == true
@show get_Dw(H)
spectrums = truncate!(H,left)
pprint(H[5])
@show get_Dw(H)
@show spectrums
is_regular_form(H,lower) == true
isortho(H, left) == true
check_ortho(H, left) == true
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 738 | using ITensors
function two_component_BH(N::Int64;U=1.0,U12=-0.5,t1=0.5,t2=0.25,kwargs...)
sites = siteinds("Boson",N;conserve_qns=true,conserve_number=false)
op = OpSum()
for i in 1:2:N-3
op += -U/2, "N", i
op += U/2, "N", i,"N",i
op += -t1, "a", i, "a†", i + 2
op += -t1, "a†", i, "a", i + 2
end
op += -U/2, "N", N-1
op += U/2, "N", N-1,"N",N-1
for i in 2:2:N-2
op += -U/2, "N", i
op += U/2, "N", i,"N",i
op += -t2, "a", i, "a†", i + 2
op += -t2, "a†", i, "a", i + 2
end
op += -U/2, "N", N
op += U/2, "N", N,"N",N
for i in 1:2:N-1
op +=U12, "N", i,"N",i+1
end
MPO(op,sites;kwargs...)
end
two_component_BH(6)
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 6486 | module ITensorMPOCompression
using ITensors
using NDTensors
import ITensors: addqns, isortho, orthocenter, setinds , linkind, data, permute, checkflux
import ITensors: dim, dims, trivial_space, eachindval, eachval, getindex, setindex!
import ITensors: truncate!, truncate, orthogonalize, orthogonalize!
import ITensors: QNIndex, QNBlocks, Indices, AbstractMPS, DenseTensor, BlockSparseTensor,DiagTensor, tensor
import NDTensors: getperm, BlockDim, blockstart, blockend
import Base: similar, reverse, transpose
# reg_form and orth_type values and functions
export upper, lower, left, right, mirror, flip
# lots of characterization functions
export is_regular_form, isortho, check_ortho, detect_regular_form
# MPO bond dimensions and bond spectrum
export get_Dw, min, max
export bond_spectrums
# primary operations
#export orthogonalize!, truncate, truncate!
# Display helpers
export @pprint, pprint, show_directions
# Wrapped MPO types
export reg_form_MPO
macro mpoc_assert(ex)
esc(:($Base.@assert $ex))
end
function mpoc_checkflux(::Union{DenseTensor,DiagTensor})
# No-op
end
function mpoc_checkflux(T::Union{BlockSparseTensor,DiagBlockSparseTensor})
return checkflux(T)
end
macro checkflux(T)
return esc(:(mpoc_checkflux(tensor($T))))
end
default_eps = 1e-14 #for characterization routines, floats abs()<default_eps are considered to be zero.
@doc """
@enum reg_form upper lower
Indicates that an MPO or operator-valued matrix has either an `upper` or `lower` regular form.
This becomes non-trival for rectangular matrices.
See also [`detect_regular_form`](@ref) and related functions
"""
@enum reg_form upper lower
@doc """
@enum orth_type left right
Indicates that an MPO matrix satisfies the conditions for `left` or `right` canonical form
"""
@enum orth_type left right
# """
# mirror(lr::orth_type)::orth_type
# returns this mirror of lr. `left`->`right` and `right`->`left`
# """
function mirror(lr::orth_type)::orth_type
if lr == left
ret = right
else #must be right
ret = left
end
return ret
end
mirror(ul::reg_form) = ul == lower ? upper : lower
bond_spectrums = Vector{Spectrum}
function Base.max(s::Spectrum)::Float64
return sqrt(eigs(s)[1])
end
function Base.min(s::Spectrum)::Float64
return sqrt(eigs(s)[end])
end
function Base.max(ss::bond_spectrums)::Float64
ret = max(ss[1])
for n in 2:length(ss)
ms = max(ss[n])
if ms > ret
ret = ms
end
end
return ret
end
function Base.min(ss::bond_spectrums)::Float64
ret = min(ss[1])
for n in 2:length(ss)
ms = min(ss[n])
if ms < ret
ret = ms
end
end
return ret
end
function slice(A::ITensor, iv::IndexVal...)::ITensor
iv_dagger = [dag(x.first) => x.second for x in iv]
return A * onehot(iv_dagger...)
end
"""
assign!(W::ITensor,i1::IndexVal,i2::IndexVal,op::ITensor)
Assign an operator to an element of the operator valued matrix W
W[i1,i2]=op
"""
function assign!(W::ITensor, op::ITensor, ivs::IndexVal...)
return assign!(W, tensor(op), ivs...)
end
function assign!(W::ITensor, op::DenseTensor, ivs::IndexVal...)
iss = inds(op)
for s in eachindval(iss)
s2 = [x.second for x in s]
W[ivs..., s...] = op[s2...]
end
end
function assign!(W::ITensor, op::BlockSparseTensor, ivs::IndexVal...)
iss = inds(op)
for b in eachnzblock(op)
isv = [iss[i] => b[i] for i in 1:length(b)]
W[ivs..., isv...] = op[b][1] #not sure why we need [1] here
end
end
"""
function redim(i::Index,Dw::Int64)::Index
Create an index with the same tags ans plev, but different dimension(s) and and id
"""
#
# Build and increased QN space with padding at the begining and end.
# Use the sample qns argument get the correct blocks for padding.
# Ability to split blocks is not needed, therefore not supported.
#
function redim(iq::QNIndex, pad1::Int64, pad2::Int64, qns::QNBlocks)
@assert pad1 == blockdim(qns[1]) #Splitting blocks not supported
@assert pad2 == blockdim(qns[end]) #Splitting blocks not supported
qnsp = [qns[1], space(iq)..., qns[end]] #creat the new space
return Index(qnsp; tags=tags(iq), plev=plev(iq), dir=dir(iq)) #create new index.
end
function redim(i::Index, pad1::Int64, pad2::Int64, ::Int64)
#@assert dim(i) + pad1 + pad2 <= Dw
return Index(dim(i) + pad1 + pad2; tags=tags(i), plev=plev(i), dir=dir(i)) #create new index.
end
#
# Build a reduced QN space from offset->Dw+offset, possibly splitting QNBlocks at the
# begining and end of the space.
#
function redim(iq::QNIndex, Dw::Int64, offset::Int64)
# println("---------------------")
# @show iq Dw offset
@assert dim(iq) - offset >= Dw
qns=copy(space(iq))
qns1=QNBlocks()
is=1
for i in 0:length(qns) #starting at 0 quickly dispenses with the offset==0 case.
_Dw=dim(qns[1:i])
if _Dw==offset
is=i+1
break
elseif _Dw>offset
excess = _Dw-offset
if excess==blockdim(qns[i])
is=i #no need to split the block. Add this block below.
else #we need to split this block and add it here.
qn_split=qn(qns[i])=>excess
#push!(qns1,qn_split)
qns[i]=qn_split
is=i
end
break
end
end
# @show qns1 is
for i in is:length(qns)
_Dw=dim(qns[is:i])
if _Dw==Dw #no need to split .. and we are done.
push!(qns1,qns[i])
break;
elseif _Dw>Dw #Need to split
excess = _Dw-Dw #How much space to leave
bdim=blockdim(qns[i])
qn_split=qn(qns[i])=>bdim-excess
push!(qns1,qn_split)
break
else
push!(qns1,qns[i])
end
end
# @show qns1
@mpoc_assert Dw==dim(qns1)
return Index(qns1; tags=tags(iq), plev=plev(iq), dir=dir(iq)) #create new index.
end
function redim(i::Index, Dw::Int64, ::Int64)
return Index(Dw; tags=tags(i), plev=plev(i)) #create new index.
end
function Base.reverse(i::QNIndex)
return Index(Base.reverse(space(i)); dir=dir(i), tags=tags(i), plev=plev(i))
end
function Base.reverse(i::Index)
return Index(space(i); tags=tags(i), plev=plev(i))
end
function G_transpose(i::Index, iu::Index)
D = dim(i)
@mpoc_assert D == dim(iu)
G = ITensor(0.0, dag(i), iu)
for n in 1:D
G[i => n, iu => D + 1 - n] = 1.0
end
return G
end
include("subtensor.jl")
include("reg_form_Op.jl")
include("blocking.jl")
include("reg_form_MPO.jl")
include("util.jl")
include("gauge_fix.jl")
include("qx.jl")
include("characterization.jl")
include("orthogonalize.jl")
include("truncate.jl")
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 9128 |
#-------------------------------------------------------------------------------
#
# Blocking functions
#
#
# Decisions: 1) Use ilf,ilb==forward,backward or ir,ic=row,column ?
# 2) extract_blocks gets everything. Should it defer to get_bc_block for b and c?
# may best to define W as
# ul=lower ul=upper
# 1 0 0 1 b d
# lr=left b A 0 0 A c
# d c I 0 0 I
#
# 1 0 0 1 c d
# lr=right c A 0 0 A b
# d b I 0 0 I
#
# Use kwargs in extract_blocks so caller can choose what they need. Default is c only
#
mutable struct regform_blocks
𝕀::Union{ITensor,Nothing}
𝐀̂::Union{ITensor,Nothing}
𝐀̂𝐜̂::Union{ITensor,Nothing}
𝐕̂::Union{ITensor,Nothing}
𝐛̂::Union{ITensor,Nothing}
𝐜̂::Union{ITensor,Nothing}
𝐝̂::Union{ITensor,Nothing}
irA::Union{Index,Nothing}
icA::Union{Index,Nothing}
irAc::Union{Index,Nothing}
icAc::Union{Index,Nothing}
irV::Union{Index,Nothing}
icV::Union{Index,Nothing}
irb::Union{Index,Nothing}
icb::Union{Index,Nothing}
irc::Union{Index,Nothing}
icc::Union{Index,Nothing}
ird::Union{Index,Nothing}
icd::Union{Index,Nothing}
function regform_blocks()
return new(
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
nothing,
)
end
end
d(Wb::regform_blocks)::Float64 = scalar(Wb.𝕀 * dag(Wb.𝕀))
b0(Wb::regform_blocks)::ITensor = Wb.𝐛̂ * dag(Wb.𝕀) / d(Wb)
c0(Wb::regform_blocks)::ITensor = Wb.𝐜̂ * dag(Wb.𝕀) / d(Wb)
A0(Wb::regform_blocks)::ITensor = Wb.𝐀̂ * dag(Wb.𝕀) / d(Wb)
#
# Transpose inds for upper, no-op for lower
#
function swap_ul(ileft::Index, iright::Index, ul::reg_form)
return if ul == lower
(ileft, iright, dim(ileft), dim(iright))
else
(iright, ileft, dim(iright), dim(ileft))
end
end
function swap_ul(Wrf::reg_form_Op)
return if Wrf.ul == lower
(Wrf.ileft, Wrf.iright, dim(Wrf.ileft), dim(Wrf.iright))
else
(Wrf.iright, Wrf.ileft, dim(Wrf.iright), dim(Wrf.ileft))
end
end
# lower left or upper right
llur(ul::reg_form, lr::orth_type) = lr == left && ul == lower || lr == right && ul == upper
llur(W::reg_form_Op, lr::orth_type) = llur(W.ul, lr)
# Use recognizably distinct UTF symbols for operators, and op valued vectors and matrices:
# 𝐀̂ 𝐛̂ 𝐜̂ 𝐝̂ 𝐕̂
function extract_blocks(
Wrf::reg_form_Op,
lr::orth_type;
all=false,
c=false,
b=false,
d=false,
A=false,
Ac=false,
V=false,
I=true,
fix_inds=false,
swap_bc=true,
)::regform_blocks
check(Wrf)
@assert plev(Wrf.ileft) == 0
@assert plev(Wrf.iright) == 0
W = Wrf.W
ir, ic = linkinds(Wrf)
if Wrf.ul == upper
ir, ic = ic, ir #transpose
end
nr, nc = dim(ir), dim(ic)
@assert nr > 1 || nc > 1
if all || fix_inds #does not include Ac
A = b = c = d = I = true
end
if !llur(Wrf, lr) && swap_bc #not lower-left or upper-right
b, c = c, b #swap flags
end
A = A && (nr > 1 && nc > 1)
b = b && nr > 1
c = c && nc > 1
Wb = regform_blocks()
I && (Wb.𝕀 = nr > 1 ? slice(W, ir => 1, ic => 1) : slice(W, ir => 1, ic => nc))
if A
Wb.𝐀̂ = W[ir => 2:(nr - 1), ic => 2:(nc - 1)]
Wb.irA, = inds(Wb.𝐀̂; tags=tags(ir))
Wb.icA, = inds(Wb.𝐀̂; tags=tags(ic))
end
if Ac
if llur(Wrf, lr)
Wb.𝐀̂𝐜̂ = nr > 1 ? W[ir => 2:nr, ic => 2:(nc - 1)] : W[ir => 1:1, ic => 2:(nc - 1)]
else
Wb.𝐀̂𝐜̂ =
nc > 1 ? W[ir => 2:(nr - 1), ic => 1:(nc - 1)] : W[ir => 2:(nr - 1), ic => 1:1]
end
Wb.irAc, = inds(Wb.𝐀̂𝐜̂; tags=tags(ir))
Wb.icAc, = inds(Wb.𝐀̂𝐜̂; tags=tags(ic))
end
if V
i1, i2, n1, n2 = swap_ul(Wrf)
if llur(Wrf, lr) #lower left/upper right
min1 = Base.min(n1, 2)
min2 = Base.min(n2, 2)
Wb.𝐕̂ = W[i1 => min1:n1, i2 => min2:n2] #Bottom right corner
else #lower right/upper left
max1 = Base.max(n1 - 1, 1)
max2 = Base.max(n2 - 1, 1)
Wb.𝐕̂ = W[i1 => 1:max1, i2 => 1:max2] #top left corner
end
Wb.irV, = inds(Wb.𝐕̂; tags=tags(ir))
Wb.icV, = inds(Wb.𝐕̂; tags=tags(ic))
end
if b
Wb.𝐛̂ = W[ir => 2:(nr - 1), ic => 1:1]
Wb.irb, = inds(Wb.𝐛̂; tags=tags(ir))
Wb.icb, = inds(Wb.𝐛̂; tags=tags(ic))
end
if c
Wb.𝐜̂ = W[ir => nr:nr, ic => 2:(nc - 1)]
Wb.irc, = inds(Wb.𝐜̂; tags=tags(ir))
Wb.icc, = inds(Wb.𝐜̂; tags=tags(ic))
end
if d
Wb.𝐝̂ = nr > 1 ? W[ir => nr:nr, ic => 1:1] : W[ir => 1:1, ic => 1:1]
Wb.ird, = inds(Wb.𝐝̂; tags=tags(ir))
Wb.icd, = inds(Wb.𝐝̂; tags=tags(ic))
end
if fix_inds
if !isnothing(Wb.𝐜̂)
Wb.𝐜̂ = replaceind(Wb.𝐜̂, Wb.irc, Wb.ird)
Wb.irc = Wb.ird
end
if !isnothing(Wb.𝐛̂)
Wb.𝐛̂ = replaceind(Wb.𝐛̂, Wb.icb, Wb.icd)
Wb.icb = Wb.icd
end
if !isnothing(Wb.𝐀̂)
Wb.𝐀̂ = replaceinds(Wb.𝐀̂, [Wb.irA, Wb.icA], [Wb.irb, Wb.icc])
Wb.irA, Wb.icA = Wb.irb, Wb.icc
end
end
if !llur(Wrf, lr) && swap_bc #not lower-left or upper-right
Wb.𝐛̂, Wb.𝐜̂ = Wb.𝐜̂, Wb.𝐛̂
Wb.irb, Wb.irc = Wb.irc, Wb.irb
Wb.icb, Wb.icc = Wb.icc, Wb.icb
end
if !isnothing(Wb.𝐀̂)
@assert hasinds(Wb.𝐀̂, Wb.irA, Wb.icA)
end
return Wb
end
function set_𝐛̂_block!(Wrf::reg_form_Op, 𝐛̂::ITensor)
check(Wrf)
i1, i2, n1, n2 = swap_ul(Wrf)
return Wrf.W[i1 => 2:(n1 - 1), i2 => 1:1] = 𝐛̂
end
function set_𝐜̂_block!(Wrf::reg_form_Op, 𝐜̂::ITensor)
check(Wrf)
i1, i2, n1, n2 = swap_ul(Wrf)
return Wrf.W[i1 => n1:n1, i2 => 2:(n2 - 1)] = 𝐜̂
end
function set_𝐛̂𝐜̂_block!(Wrf::reg_form_Op, 𝐛̂𝐜̂::ITensor, lr::orth_type)
@mpoc_assert Wrf.ul==lower
if lr==left
set_𝐛̂_block!(Wrf, 𝐛̂𝐜̂)
else
set_𝐜̂_block!(Wrf, 𝐛̂𝐜̂)
end
end
function set_𝐝̂_block!(Wrf::reg_form_Op, 𝐝̂::ITensor)
check(Wrf)
i1, i2, n1, n2 = swap_ul(Wrf)
return Wrf.W[i1 => n1:n1, i2 => 1:1] = 𝐝̂
end
function set_𝕀_block!(Wrf::reg_form_Op, 𝕀::ITensor)
check(Wrf)
i1, i2, n1, n2 = swap_ul(Wrf)
n1 > 1 && assign!(Wrf.W, 𝕀, i1 => 1, i2 => 1)
return n2 > 1 && assign!(Wrf.W, 𝕀, i1 => n1, i2 => n2)
end
function set_𝐀̂𝐜̂_block(Wrf::reg_form_Op, 𝐀̂𝐜̂::ITensor, lr::orth_type)
@mpoc_assert Wrf.ul==lower
check(Wrf)
i1, i2, n1, n2 = swap_ul(Wrf)
if lr==left #lower left/upper right
min1 = Base.min(n1, 2)
Wrf.W[i1 => min1:n1, i2 => 2:(n2 - 1)] = 𝐀̂𝐜̂
else #lower right/upper left
max2 = Base.max(n2 - 1, 1)
Wrf.W[i1 => 2:(n1 - 1), i2 => 1:max2] = 𝐀̂𝐜̂
end
end
# noop versions for when b/c are empty. Happens in edge ops of H.
function set_𝐛̂𝐜̂_block!(::reg_form_Op, ::Nothing, ::orth_type) end
function set_𝐛̂_block!(::reg_form_Op, ::Nothing) end
function set_𝐜̂_block!(::reg_form_Op, ::Nothing) end
#
# Given R, build R⎖ such that lr=left R=M*R⎖, lr=right R=R⎖*M
#
function build_R⎖(R::ITensor, iqx::Index, ilf::Index)::Tuple{ITensor,Index}
@mpoc_assert order(R) == 2
@mpoc_assert hasinds(R, iqx, ilf)
@mpoc_assert dim(iqx) == dim(ilf) #make sure RL is square
@checkflux(R)
im = Index(space(iqx); tags=tags(iqx), dir=dir(iqx), plev=1) #new common index between M and R⎖
R⎖ = ITensor(0.0, im, ilf)
#R⎖+=δ(im,ilf) #set diagonal ... blocksparse + diag is not supported yet. So we do it manually below.
Dw = dim(im)
for j1 in 2:(Dw - 1)
R⎖[im => j1, ilf => j1] = 1.0 # Fill in the interior diagonal
end
#
# Copy over the perimeter of RL.
#
R⎖[im => Dw:Dw, ilf => 2:Dw] = R[iqx => Dw:Dw, ilf => 2:Dw] #last row
R⎖[im => 1:Dw, ilf => 1:1] = R[iqx => 1:Dw, ilf => 1:1] #first col
@checkflux(R⎖)
#
# Fix up index tags and primes.
#
im = noprime(settags(im, "Link,m"))
RL_prime = noprime(replacetags(R⎖, tags(iqx), tags(im); plev=1))
return RL_prime, dag(im)
end
function my_similar(::DenseTensor, inds...)
return ITensor(inds...)
end
function my_similar(::BlockSparseTensor, inds...)
return ITensor(inds...)
end
function my_similar(::DiagTensor, inds...)
return diagITensor(inds...)
end
function my_similar(::DiagBlockSparseTensor, inds...)
return diagITensor(inds...)
end
function my_similar(T::ITensor, inds...)
return my_similar(tensor(T), inds...)
end
function warn_space(A::ITensor, ig::Index)
ia, = inds(A; tags=tags(ig), plev=plev(ig))
@mpoc_assert dim(ia) + 2 == dim(ig)
if hasqns(A)
sa, sg = space(ia), space(ig)
if dir(ia) != dir(ig)
sa = -sa
end
if sa != sg[2:(nblocks(ig) - 1)]
@warn "Mismatched spaces:"
@show sa sg[2:(nblocks(ig) - 1)] dir(ia) dir(ig)
#@assert false
end
end
end
# |1 0 0|
# given A, spit out G=|0 A 0| , indices of G are provided.
# |0 0 1|
function grow(A::ITensor, ig1::Index, ig2::Index)
@checkflux(A)
@mpoc_assert order(A) == 2
warn_space(A, ig1)
warn_space(A, ig2)
Dw1, Dw2 = dim(ig1), dim(ig2)
G = my_similar(A, ig1, ig2)
G[ig1 => 1, ig2 => 1] = 1.0
@checkflux(G)
G[ig1 => Dw1, ig2 => Dw2] = 1.0
@checkflux(G)
G[ig1 => 2:(Dw1 - 1), ig2 => 2:(Dw2 - 1)] = A
@checkflux(G)
return G
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 7781 | #
# Functions for characterizing operator tensors
#
#
# Figure out the site number, and left and indicies of an MPS or MPO ITensor
# assumes:
# 1) link indices all have a "Link" tag
# 2) the "Link" tag is the first tag for each link index
# 3) one other tag has the form "l=$n" where n is the link number
# 4) the site number is the largest of the link numbers, i.e. left link is l=n-1
#
# Obviously a lot of things could go wrong with all these assumptions.
#
# returns forward,reverse relatvie to sweep direction indexes
# if lr=left, then the sweep direction is o the right, and i_right is the forward index.
function parse_links(A::ITensor, lr::orth_type)::Tuple{Index,Index}
i_left, i_right = parse_links(A)
return lr == left ? (i_right, i_left) : (i_left, i_right)
end
function parse_links(A::ITensor)::Tuple{Index,Index}
#
# find any site index and try and extract the site number
#
d, nsite, space = parse_site(A)
#
# Now process the link tags
#
ils = filterinds(inds(A); tags="Link")
if length(ils) == 2
n1, c1 = parse_link(ils[1])
n2, c2 = parse_link(ils[2]) #find the "l=$n" tags. -1 if not such tag
n1, n2 = infer_site_numbers(n1, n2, nsite) #handle qx links with no l=$n tags.
if c1 > c2
return ils[2], ils[1]
elseif c2 > c1
return ils[1], ils[2]
elseif n1 > n2
return ils[2], ils[1]
elseif n2 > n1
return ils[1], ils[2]
else
@mpoc_assert false #no way to dermine order of links
end
elseif length(ils) == 1
n, c = parse_link(ils[1])
if n == Nothing
return Index(1), ils[1] #probably a qx link, don't know if row or col
elseif nsite == 1
return Index(1), ils[1] #row vector
else
return ils[1], Index(1) #col vector
end
else
@show ils
@mpoc_assert false
end
end
undef_int = -99999
function parse_site(W::ITensor)
is = inds(W; tags="Site")[1]
return parse_site(is)
end
function parse_site(is::Index)
@mpoc_assert hastags(is, "Site")
nsite = undef_int #sentenal value
for t in tags(is)
ts = String(t)
if ts[1:2] == "n="
nsite::Int64 = tryparse(Int64, ts[3:end])
end
if length(ts) >= 4 && ts[1:4] == "Spin"
space = ts
end
if ts[1:2] == "S="
space = ts[3:end]
end
end
@mpoc_assert nsite >= 0
return dim(is), nsite, space
end
function parse_link(il::Index)::Tuple{Int64,Int64}
@mpoc_assert hastags(il, "Link")
nsite = ncell = undef_int #sentinel values
for t in tags(il)
ts = String(t)
if ts[1:2] == "l=" || ts[1:2] == "n="
nsite::Int64 = tryparse(Int64, ts[3:end])
end
if ts[1:2] == "c="
ncell::Int64 = tryparse(Int64, ts[3:end])
end
end
return nsite, ncell
end
#
# if one ot links is "Link,qx" then we don't get any site info from it.
# All this messy logic below tries to infer the site # of qx link from site index
# and link number of other index.
#
function infer_site_numbers(n1::Int64, n2::Int64, nsite::Int64)::Tuple{Int64,Int64}
if n1 == undef_int && n2 == undef_int
@mpoc_assert false
end
if n1 == undef_int
if n2 == nsite
n1 = nsite - 1
elseif n2 == nsite - 1
n1 = nsite
else
@mpoc_assert false
end
end
if n2 == undef_int
if n1 == nsite
n2 = nsite - 1
elseif n1 == nsite - 1
n2 = nsite
else
@mpoc_assert false
end
end
return n1, n2
end
#
# Handles direction and leaving out the last element in the sweep.
#
function sweep(H::AbstractMPS, lr::orth_type)::StepRange{Int64,Int64}
N = length(H)
return lr == left ? (1:1:(N - 1)) : (N:-1:2)
end
#----------------------------------------------------------------------------
#
# Detection of canonical (orthogonal) forms
#
@doc """
isortho(H,lr)::Bool
Test if anMPO is in `lr` orthogonal (canonical) form by checking the cached orthogonality center.
# Arguments
- `H:MPO` : MPO to be characterized.
- `lr::orth_type` : choose `left` or `right` orthogonality condition to test for.
Returns `true` if the MPO is in `lr` orthogonal (canonical) form. This is a fast operation and should be safe to use in time critical production code. The one exception is for iMPO with Ncell=1, where currently the ortho center does not distinguis between left/right or un-orthognal states.
"""
function ITensors.isortho(H::AbstractMPS, lr::orth_type)::Bool
io = false
# if length(H)==1
# io=check_ortho(H,lr) #Expensive!!
# else
if isortho(H)
if lr == left
io = orthocenter(H) == length(H)
else
io = orthocenter(H) == 1
end
end
#end
return io
end
#----------------------------------------------------------------------------
#
# Detection of upper and lower regular forms
#
#
# This test is complicated by two things
# 1) It is not clear to me (JR) that the A block of an MPO matrix must be upper or lower triangular for
# block respecting compression to work properly. Parker et al. make no definitive statement about this.
# It is my intention to test this empirically using auto MPO generated Hamiltonians
# which tend to be non-triangular.
# 2) As a consequence of 1, we cannot decide in advance whether to test for upper or lower regular forms.
# We must therefore test for both and return true if either one is true.
#
@doc """
detect_regular_form(H)::Tuple{Bool,Bool}
Inspect the structure of an MPO `H` to see if it satisfies the regular form conditions.
# Arguments
- `H::MPO` : MPO to be characterized.
# Keywords
- `eps::Float64 = 1e-14` : operators inside `W` with norm(W[i,j])<eps are assumed to be zero.
# Returns a Tuple containing
- `reg_lower::Bool` Indicates all sites in `H` are in lower regular form.
- `reg_upper::Bool` Indicates all sites in `H` are in upper regular form.
The function returns two Bools in order to handle cases where `H` is not regular form, returning (`false`,`false`) and `H` is in a special pseudo-diagonal regular form, returning (`true`,`true`).
"""
function detect_regular_form(H::AbstractMPS;kwargs...)::Tuple{Bool,Bool}
return is_regular_form(H, lower;kwargs...), is_regular_form(H, upper;kwargs...)
end
@doc """
is_regular_form(H::MPO,ul::reg_form)::Bool
Inspect the structure of an MPO `H` to see if it satisfies the `lower/upper` regular form conditions.
# Arguments
- `H::MPO` : MPO to be characterized.
- `ul::reg_form` : Select whether to test for `lower` or `upper` regular form.
# Keywords
- `eps::Float64 = 1e-14` : operators inside `W` with norm(W[i,j])<eps are assumed to be zero.
# Returns
- `regular::Bool` Indicates all sites in `H` are in `ul` regular form.
"""
function is_regular_form(H::AbstractMPS, ul::reg_form;kwargs...)::Bool
il = dag(linkind(H, 1))
for n in 2:(length(H) - 1)
ir = linkind(H, n)
#@show il ir inds(H[n])
Wrf = reg_form_Op(H[n], il, ir, ul)
!is_regular_form(Wrf;kwargs...) && return false
il = dag(ir)
end
return true
end
function get_Dw(H::MPO)::Vector{Int64}
N = length(H)
Dws = Vector{Int64}(undef, N - 1)
for n in 1:(N - 1)
l = commonind(H[n], H[n + 1])
Dws[n] = dim(l)
end
return Dws
end
function get_traits(W::reg_form_Op, eps::Float64)
r, c = W.ileft, W.iright
d, n, space = parse_site(W.W)
Dw1, Dw2 = dim(r), dim(c)
bl, bu = detect_regular_form(W;eps=eps)
l = bl ? 'L' : ' '
u = bu ? 'U' : ' '
if bl && bu
l = 'D'
u = ' '
elseif !(bl || bu)
l = 'N'
u = 'o'
end
tri = bl ? lower : upper
is__left = check_ortho(W, left; eps=eps)
is_right = check_ortho(W, right; eps=eps)
if is__left && is_right
lr = 'B'
elseif is__left && !is_right
lr = 'L'
elseif !is__left && is_right
lr = 'R'
else
lr = 'M'
end
return Dw1, Dw2, d, l, u, lr
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 2279 | #
# Find the first dim==1 index and remove it, then return a Vector.
#
function vector_o2(T::ITensor)
@assert order(T) == 2
i1 = inds(T)[findfirst(d -> d == 1, dims(T))]
return vector(T * dag(onehot(i1 => 1)))
end
function is_gauge_fixed(Wrf::reg_form_Op; eps=1e-14, b=true, c=true, kwargs...)::Bool
Wb = extract_blocks(Wrf, left; c=c, b=b)
nr, nc = dims(Wrf)
if b && nr > 1
!(norm(b0(Wb)) < eps) && return false
end
if c && nc > 1
!(norm(c0(Wb)) < eps) && return false
end
return true
end
function is_gauge_fixed(Hrf::AbstractMPS; kwargs...)::Bool
for W in Hrf
!is_gauge_fixed(W; kwargs...) && return false
end
return true
end
function gauge_fix!(H::reg_form_MPO;kwargs...)
if !is_gauge_fixed(H;kwargs)
tₙ = Vector{Float64}(undef, 1)
for W in H
tₙ = gauge_fix!(W, tₙ, left)
@assert is_regular_form(W)
end
#tₙ=Vector{Float64}(undef,1) end of sweep above already returns this.
for W in reverse(H)
tₙ = gauge_fix!(W, tₙ, right)
@assert is_regular_form(W)
end
end
end
function gauge_fix!(W::reg_form_Op, tₙ₋₁::Vector{Float64}, lr::orth_type)
@assert W.ul==lower
@assert is_regular_form(W)
Wb = extract_blocks(W, lr; all=true, fix_inds=true)
𝕀, 𝐀̂, 𝐛̂, 𝐜̂, 𝐝̂ = Wb.𝕀, Wb.𝐀̂, Wb.𝐛̂, Wb.𝐜̂, Wb.𝐝̂ #for readability below.
nr, nc = dims(W)
nb, nf = lr == left ? (nr, nc) : (nc, nr)
#
# Make in ITensor with suitable indices from the 𝒕ₙ₋₁ vector.
#
if nb > 1
ibd, ibb =lr==left ? (Wb.ird, Wb.irb) : (Wb.icd, Wb.icb)
𝒕ₙ₋₁ = ITensor(tₙ₋₁, dag(ibb), ibd)
end
𝐜̂⎖ = nothing
#
# First two if blocks are special handling for row and column vector at the edges of the MPO
#
if nb == 1 #col/row at start of sweep.
𝒕ₙ = c0(Wb)
𝐜̂⎖ = 𝐜̂ - 𝕀 * 𝒕ₙ
𝐝̂⎖ = 𝐝̂
elseif nf == 1 ##col/row at the end of the sweep
𝐝̂⎖ = 𝐝̂ + 𝒕ₙ₋₁ * 𝐛̂
𝒕ₙ = ITensor(1.0, Index(1), Index(1)) #Not used, but required for the return statement.
else
𝒕ₙ = 𝒕ₙ₋₁ * A0(Wb) + c0(Wb)
𝐜̂⎖ = 𝐜̂ + 𝒕ₙ₋₁ * 𝐀̂ - 𝒕ₙ * 𝕀
𝐝̂⎖ = 𝐝̂ + 𝒕ₙ₋₁ * 𝐛̂
end
set_𝐝̂_block!(W, 𝐝̂⎖)
set_𝐛̂𝐜̂_block!(W, 𝐜̂⎖,mirror(lr))
@assert is_regular_form(W)
# 𝒕ₙ is always a 1xN tensor so we need to remove that dim==1 index in order for vector(𝒕ₙ) to work.
return vector_o2(𝒕ₙ)
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 4444 | #-----------------------------------------------------------------
#
# Ac block respecting orthogonalization.
#
@doc """
orthogonalize!(H::MPO,lr::orth_type)
Bring an MPO into left or right canonical form using block respecting QR decomposition.
# Arguments
- `H::MPO` : Matrix Product Operator to be orthogonalized
- `lr::orth_type` : Choose `left` or `right` orthgonal/canoncial form for the output.
# Keywords
- `atol::Float64 = 1e-14` : Absolute cutoff for rank revealing QR which removes zero pivot rows.
- `rtol::Float64 = -1.0` : Relative cutoff for rank revealing QR which removes zero pivot rows.
- `verbose::Bool = false` : Show some details of the orthogonalization process.
atol=`-1.0 and rtol=`-1.0 indicates no rank reduction.
# Examples
```julia
julia> using ITensors
julia> using ITensorMPOCompression
include("../test/hamiltonians/hamiltonians.jl");
julia> N=10; #10 sites
julia> NNN=7; #Include up to 7th nearest neighbour interactions
julia> sites = siteinds("S=1/2",N);
julia> H=transIsing_MPO(sites,NNN);
#
# Make sure we have a regular form or orhtogonalize! won't work.
#
julia> is_regular_form(H,lower)==true
true
#
# Let's see what the second site for the MPO looks like.
# I = unit operator, and S = any other operator
#
julia> pprint(H[2])
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.
.
.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0
0 S 0 S 0 0 S 0 0 0 S 0 0 0 0 S 0 0 0 0 0 S 0 0 0 0 0 0 S I
#
# Now we can orthogonalize or bring it into canonical form.
# Defaults are left orthogonal with rank reduction.
#
julia> orthogonalize!(H,left);
#
# Wahoo .. rank reduction knocked the size of H way down, and we haven't
# tried compressing yet!
#
julia> pprint(H[2])
I 0 0 0
S I 0 0
0 0 S I
#
# What do all the bond dimensions of H look like?
#
julia> @show get_Dw(H);
get_Dw(H) = [3, 4, 5, 6, 7, 8, 9, 9, 9]
#
# wrap up with two more checks on the structure of H
#
julia> is_lower_regular_form(H)==true
true
julia> isortho(H,left)==true
true
```
"""
function ITensors.orthogonalize!(H::MPO, lr::orth_type; kwargs...)
Hrf = reg_form_MPO(H)
orthogonalize!(Hrf, lr; kwargs)
copy!(H,Hrf)
end
@doc """
orthogonalize!(H::MPO,j::Int64)
Bring an MPO into mixed canonical form with the orthogonality center on site `j`.
# Arguments
- `H::MPO` : Matrix Product Operator to be orthogonalized
- `j::Int64` : Site index for the orthogonality centre.
# Keywords
- `atol::Float64 = 1e-14` : Absolute cutoff for rank revealing QR which removes zero pivot rows.
- `rtol::Float64 = -1.0` : Relative cutoff for rank revealing QR which removes zero pivot rows.
- `verbose::Bool = false` : Show some details of the orthogonalization process.
atol=`-1.0 and rtol=`-1.0 indicates no rank reduction.
# Examples
```julia
julia> using ITensors
julia> using ITensorMPOCompression
include("../test/hamiltonians/hamiltonians.jl");
julia> N=10; #10 sites
julia> NNN=7; #Include up to 7th nearest neighbour interactions
julia> sites = siteinds("S=1/2",N);
julia> H=transIsing_MPO(sites,NNN);
julia> orthogonalize!(H,5);
julia> pprint(H)
n Dw1 Dw2 d Reg. Orth.
Form Form
1 1 3 2 L B
2 3 4 2 L L
3 4 5 2 L L
4 5 6 2 L L
5 6 7 2 L M
6 7 6 2 L R
7 6 5 2 L R
8 5 4 2 L R
9 4 3 2 L R
10 3 1 2 L B
```
"""
function ITensors.orthogonalize!(H::MPO, j::Int64; kwargs...)
Hrf = reg_form_MPO(H)
orthogonalize!(Hrf, j; kwargs...)
copy!(H,Hrf)
end
function ITensors.orthogonalize!(H::reg_form_MPO, lr::orth_type; kwargs...)
gauge_fix!(H;kwargs...)
rng = sweep(H, lr)
for n in rng
nn = n + rng.step
H[n], R, iqp = ac_qx(H[n], lr;kwargs...)
H[nn] *= R
check(H[n])
check(H[nn])
end
H.rlim = rng.stop + rng.step + 1
H.llim = rng.stop + rng.step - 1
return
end
function ITensors.orthogonalize!(H::reg_form_MPO, j::Int64; kwargs...)
if !isortho(H)
orthogonalize!(H,right;kwargs...)
end
oc=orthocenter(H)
rng= oc<=j ? (oc:1:j-1) : (oc-1:-1:j)
for n in rng
nn = n + rng.step
H[n], R, iqp = ac_qx(H[n], left;kwargs...)
H[nn] *= R
check(H[n])
check(H[nn])
end
H.rlim = j + 1
H.llim = j - 1
return
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 5363 | using LinearAlgebra
@doc """
`block_qx(W::ITensor,ul::reg_form)::Tuple{ITensor,ITensor,Index}`
Perform a block respecting QX decomposition of the operator valued matrix `W`.
The appropriate decomposition, QR, RQ, QL, LQ is selected based on the `reg_form` `ul`
and the `orth` keyword argument.
The new internal `Index` between Q and R/L is modified so that the tags are "Link,qx" instead
"Link,qr" etc. returned by the qr/rq/ql/lq routines. Q and R/L are also gauge fixed so that
the corner element of R/L is 1.0 and Q⁺Q=d𝕀 where d is the dimensionality of the local
Hilbert space.
# Arguments
- `W` Operator valued matrix for decomposition.
- `ul` upper/lower regular form of `W`. We can auto detect here, but is more efficient if this is done by the higher level calling routines.
# Keywords
- `orth::orth_type = right` : choose `left` or `right` orthogonal (canonical) form
- `rr_cutoff::Float64 = -1.0` : cutoff for rank revealing QX which removes zero pivot rows and columns.
All rows with max(abs(R[r,:]))<rr_cutoff are considered zero and removed. rr_cutoff==-1.0 indicates no rank reduction.
# Returns a Tuple containing
- `Q` with orthonormal columns or rows depending on orth=left/right, dimensions: (χ+1)x(χq+1)
- `R` or `L` depending on `ul` with dimensions: (χq+2)x(χ\'+2)
- `iq` the new internal link index between `Q` and `R`/`L` with dimensions χq+2 and tags="Link,qx"
# Example
```julia
julia>using ITensors
julia>using ITensorMPOCompression
julia>N=5; #5 sites
julia>NNN=2; #Include 2nd nearest neighbour interactions
julia>sites = siteinds("S=1/2",N);
#
# Make a Hamiltonian directly, i.e. not using autoMPO
#
julia>H=transIsing_MPO(sites,NNN);
#
# Use pprint to see the structure for site #2. I = unit operator and S = any
# other operator
#
julia>pprint(H[2]) #H[1] is a row vector, so let's see what H[2] looks like
I 0 0 0 0
S 0 0 0 0
S 0 0 0 0
0 0 I 0 0
0 S 0 S I
#
# Now do a block respecting QX decomposition. QL decomposition is chosen because
# H[2] is in lower regular form and the default ortho direction is left.
#
julia>Q,L,iq=block_qx(H[2];rr_cutoff=1e-14); #Block respecting QL
#
# The first column of Q is unchanged because it is outside the V-block.
# Also one column was removed because set rr_cutoff to enable rank revealing QX.
#
julia>pprint(Q)
I 0 0 0
S 0 0 0
S 0 0 0
0 I 0 0
0 0 S I
#
# Similarly L is missing one row due to the rank revealing QX algorithm
#
julia>pprint(L,iq) #we need to tell pprint the iq is the row index.
I 0 0 0 0
0 0 I 0 0
0 S 0 S 0
0 0 0 0 I
```
"""
function equal_edge_blocks(i1::QNIndex, i2::QNIndex)::Bool
qns1, qns2 = space(i1), space(i2)
qn11, qn1n = qns1[1], qns1[nblocks(qns1)]
qn21, qn2n = qns2[1], qns2[nblocks(qns2)]
return ITensors.have_same_qns(qn(qn11), qn(qn21)) &&
ITensors.have_same_qns(qn(qn1n), qn(qn2n))
end
function equal_edge_blocks(::Index, ::Index)::Bool
return true
end
function insert_Q(Ŵrf::reg_form_Op, Q̂::ITensor, iq::Index, lr::orth_type)
@mpoc_assert Ŵrf.ul==lower
#
# Create new index by growing iq.
#
ilb, ilf = linkinds(Ŵrf, lr) #Backward and forward indices.
iq⎖ = redim(iq, 1, 1, space(ilf)) #pad with 1 at the start and 1 and the end: iqp =(1,iq,1).
ileft, iright = lr == left ? (ilb, iq⎖) : (iq⎖, ilb)
#
# Create a new reg form tensor
#
Ŵrf⎖ = reg_form_Op(eltype(Ŵrf), ileft, iright,siteinds(Ŵrf))
#
# Preserve b,c,d blocks and insert Q
#
Wb = extract_blocks(Ŵrf, lr; b=true, c=false, d=true) # we don't need c here?
set_𝐛̂𝐜̂_block!(Ŵrf⎖, Wb.𝐛̂, lr) #preserve b or c block from old W
set_𝐝̂_block!(Ŵrf⎖, Wb.𝐝̂) #preserve d block from old W
set_𝕀_block!(Ŵrf⎖, Wb.𝕀) #init I blocks from old W
set_𝐀̂𝐜̂_block(Ŵrf⎖, Q̂, lr) #Insert new Qs form QR decomp
return Ŵrf⎖, iq⎖
end
function ac_qx(Ŵrf::reg_form_Op, lr::orth_type; qprime=false, verbose=false, cutoff=1e-14, kwargs...)
@mpoc_assert Ŵrf.ul==lower
@checkflux(Ŵrf.W)
Wb = extract_blocks(Ŵrf, lr; Ac=true)
ilf_Ac = lr==left ? Wb.icAc : Wb.irAc
ilf = forward(Ŵrf, lr) #Backward and forward indices.
@checkflux(Wb.𝐀̂𝐜̂)
if lr == left
Qinds = noncommoninds(Wb.𝐀̂𝐜̂, ilf_Ac)
Q̂, R, iq, p = qr(
Wb.𝐀̂𝐜̂, Qinds; verbose=verbose, positive=true, atol=cutoff, tags=tags(ilf)
)
else
Rinds = ilf_Ac
R, Q̂, iq, p = lq(
Wb.𝐀̂𝐜̂, Rinds; verbose=verbose, positive=true, atol=cutoff, tags=tags(ilf)
)
end
@checkflux(Q̂)
@checkflux(R)
# Re-scale
dh = d(Wb) #dimension of local Hilbert space.
@assert abs(dh - round(dh)) == 0.0 #better be an integer!
Q̂ *= sqrt(dh)
R /= sqrt(dh)
Ŵrf⎖, iq⎖ = insert_Q(Ŵrf, Q̂, iq, lr) #create a new W with Q. The size may change.
@assert equal_edge_blocks(ilf, iq⎖)
#both inds or R have the same tags, so we prime one of them so the grow function can distinguish.
R⎖ = grow(prime(R, iq), dag(iq⎖)', ilf)
p = add_edges(p) #grow p so we can apply it to Rp.
if qprime
iq⎖ = prime(iq⎖)
else
R⎖ = noprime(R⎖)
end
return Ŵrf⎖, R⎖, iq⎖, p
end
function add_edges(p::Vector{Int64})
Dw = length(p) + 2
return [1, (p .+ 1)..., Dw]
end
#
# This assumes the edge D=1 blocks appear first in the block list
# If this fails we need to return a dict{Block,Vector{Int64}} so we can
# associate block with perm vectors
#
function add_edges(p::Vector{Vector{Int64}})
return [[1], [1], p...]
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 5083 | #-----------------------------------------------------------------------
#
# Finite lattice with open BCs, of regulat form Tensos: l*W1*W2...*WN*r
# Edge tensors have dim=1 dummy indices (order(W)==4) so generic code can work the same
# on all tensors.
#
mutable struct reg_form_MPO <: AbstractMPS
data::Vector{reg_form_Op}
llim::Int # orthocenter-1
rlim::Int # orthocenter+1
d0::ITensor # onehot tensor used to create the l=0 dummy index.
dN::ITensor # onehot tensor used to create the l=N dummy index.
ul::reg_form #upper or lower
function reg_form_MPO(
Ws::Vector{reg_form_Op},
llim::Int64,
rlim::Int64,
d0::ITensor,
dN::ITensor,
ul::reg_form,
)
return new(Ws, llim, rlim, d0, dN, ul)
end
end
function reg_form_MPO(
H::MPO, ils::Indices, irs::Indices, d0::ITensor, dN::ITensor, ul::reg_form
)
N = length(H)
@assert length(ils) == N
@assert length(irs) == N
data = Vector{reg_form_Op}(undef, N)
for n in eachindex(H)
data[n] = reg_form_Op(H[n], ils[n], irs[n], ul)
end
return reg_form_MPO(data, H.llim, H.rlim, d0, dN, ul)
end
function add_edge_links!(H::MPO)
N = length(H)
irs = map(n -> linkind(H, n), 1:(N - 1)) #right facing index, which can be thought of as a column index
ils = dag.(irs) #left facing index, or row index.
ts = trivial_space(irs[1])
T = eltype(H[1])
il0 = Index(ts; tags="Link,l=0", dir=dir(dag(irs[1])))
ilN = Index(ts; tags="Link,l=$N", dir=dir(irs[1]))
d0 = onehot(T, il0 => 1)
dN = onehot(T, ilN => 1)
H[1] *= d0
H[N] *= dN
ils, irs = [il0, ils...], [irs..., ilN]
for n in 1:N
il, ir, W = ils[n], irs[n], H[n]
#@show il ir inds(W,tags="Link")
@assert !hasqns(il) || dir(W, il) == dir(il)
@assert !hasqns(ir) || dir(W, ir) == dir(ir)
end
return ils, irs, d0, dN
end
function reg_form_MPO(H::MPO;honour_upper=false, kwargs...)
(bl, bu) = detect_regular_form(H;kwargs...)
if !(bl || bu)
throw(ErrorException("MPO++(H::MPO), H must be in either lower or upper regular form"))
end
if (bl && bu)
# @pprint(H[1])
@assert false
end
ul::reg_form = bl ? lower : upper #if both bl and bu are true then something is seriously wrong
ils, irs, d0, dN = add_edge_links!(H)
Hrf=reg_form_MPO(H, ils, irs, d0, dN, ul)
# flip to lower regular form by default.
if ul==upper && !honour_upper
Hrf=transpose(Hrf)
end
check(Hrf)
return Hrf
end
function check(Hrf::reg_form_MPO)
check.(Hrf)
end
function ITensors.MPO(Hrf::reg_form_MPO)::MPO
N = length(Hrf)
H = MPO(Ws(Hrf))
H[1] *= dag(Hrf.d0)
H[N] *= dag(Hrf.dN)
H.llim,H.rlim=Hrf.llim,Hrf.rlim
return H
end
function copy!(H::MPO,Hrf::reg_form_MPO)
for n in eachindex(H)
H[n]=Hrf[n].W
end
N = length(Hrf)
H[1]*=dag(Hrf.d0)
H[N]*=dag(Hrf.dN)
H.llim,H.rlim=Hrf.llim,Hrf.rlim
end
data(H::reg_form_MPO) = H.data
function Ws(H::reg_form_MPO)
return map(n -> H[n].W, 1:length(H))
end
Base.length(H::reg_form_MPO) = length(H.data)
function Base.reverse(H::reg_form_MPO)
return reg_form_MPO(Base.reverse(H.data), H.llim, H.rlim, H.d0, H.dN, H.ul)
end
Base.iterate(H::reg_form_MPO, args...) = iterate(H.data, args...)
Base.getindex(H::reg_form_MPO, args...) = getindex(H.data, args...)
Base.setindex!(H::reg_form_MPO, args...) = setindex!(H.data, args...)
function get_Dw(H::reg_form_MPO)
return get_Dw(MPO(H))
end
function is_regular_form(H::reg_form_MPO;kwargs...)::Bool
for W in H
!is_regular_form(W;kwargs...) && return false
end
return true
end
@doc """
check_ortho(H,lr)::Bool
Test if all sites in an MPO statisfty the condition for `lr` orthogonal (canonical) form.
# Arguments
- `H:MPO` : MPO to be characterized.
- `lr::orth_type` : choose `left` or `right` orthogonality condition to test for.
# Keywrds
- `eps::Float64 = 1e-14` : operators inside H with norm(W[i,j])<eps are assumed to be zero.
Returns `true` if the MPO is in `lr` orthogonal (canonical) form. This is an expensive operation which scales as N*Dw^3 which should mostly be used only for unit testing code or in debug mode. In production code use isortho which looks at the cached ortho state.
"""
check_ortho(H::MPO, lr::orth_type;kwargs...)=check_ortho(reg_form_MPO(copy(H)), lr;kwargs...)
function check_ortho(H::reg_form_MPO, lr::orth_type;kwargs...)::Bool
for n in sweep(H, lr) #skip the edge row/col opertors
!check_ortho(H[n], lr;kwargs...) && return false
end
return true
end
function Base.transpose(Hrf::reg_form_MPO)::reg_form_MPO
Ws=copy(data(Hrf))
N=length(Hrf)
ul1=mirror(Hrf.ul)
for n in 1:N-1
ir=Ws[n].iright
G = G_transpose(ir, reverse(ir))
Ws[n]*=G
Ws[n+1]*=dag(G)
Ws[n].ul=ul1
end
Ws[N].ul=ul1
return reg_form_MPO(Ws,Hrf.llim, Hrf.rlim,Hrf. d0, Hrf.dN, ul1)
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 7630 | #---------------------------------------------------------------------------------
#
# Manage an MPO/iMPO tensor and track the left and right facing indices. This
# seems to be easiest way to avoid tag hunting.
# Also track lower or upper regular form in ul member.
#
mutable struct reg_form_Op
W::ITensor
ileft::Index
iright::Index
ul::reg_form
function reg_form_Op(W::ITensor, ileft::Index, iright::Index, ul::reg_form)
if !hasinds(W, ileft, iright)
@show inds(W, tags="Link") ileft iright
end
@assert hasinds(W, ileft, iright)
return new(W, ileft, iright, ul)
end
function reg_form_Op(W::ITensor, ul::reg_form)
return new(W, Index(1), Index(1), ul)
end
end
#
# Internal consistency checks
#
function check(Wrf::reg_form_Op)
@mpoc_assert order(Wrf.W) == 4
@mpoc_assert tags(Wrf.ileft) != tags(Wrf.iright) || plev(Wrf.ileft) != plev(Wrf.iright)
@mpoc_assert hasinds(Wrf.W, Wrf.ileft)
@mpoc_assert hasinds(Wrf.W, Wrf.iright)
if hasqns(Wrf.W)
@mpoc_assert dir(Wrf.W, Wrf.ileft) == dir(Wrf.ileft)
@mpoc_assert dir(Wrf.W, Wrf.iright) == dir(Wrf.iright)
@checkflux(Wrf.W)
end
end
function reg_form_Op(ElT::Type{<:Number},il::Index,ir::Index,is)
Ŵ = ITensor(ElT(0.0), il, ir, is)
return reg_form_Op(Ŵ, il, ir, lower)
end
# Extract a subtensor
function Base.getindex(Wrf::reg_form_Op, rleft::UnitRange, rright::UnitRange)
return Wrf.W[Wrf.ileft => rleft, Wrf.iright => rright]
end
#
# Support some ITensors/Base functions
#
Base.eltype(Wrf::reg_form_Op)=eltype(Wrf.W)
ITensors.dims(Wrf::reg_form_Op) = dim(Wrf.ileft), dim(Wrf.iright)
Base.getindex(Wrf::reg_form_Op, lr::orth_type) = lr == left ? Wrf.ileft : Wrf.iright
function Base.setindex!(Wrf::reg_form_Op, il::Index, lr::orth_type)
if lr == left
Wrf.ileft = il
else
Wrf.iright = il
end
end
function Base.show(io::IO, Wrf::reg_form_Op)
print(io," ileft=$(Wrf.ileft)\n, iright=$(Wrf.iright)\n, ul=$(Wrf.ul)\n\n")
return show(io, Wrf.W)
end
ITensors.order(Wrf::reg_form_Op) = order(Wrf.W)
ITensors.inds(Wrf::reg_form_Op;kwargs...) = inds(Wrf.W;kwargs...)
ITensors.siteinds(Wrf::reg_form_Op) = noncommoninds(Wrf.W, Wrf.ileft, Wrf.iright)
ITensors.linkinds(Wrf::reg_form_Op) = Wrf.ileft, Wrf.iright
ITensors.linkinds(Wrf::reg_form_Op, lr::orth_type) = backward(Wrf, lr), forward(Wrf, lr)
function ITensors.replacetags(Wrf::reg_form_Op, tsold, tsnew)
Wrf.W = replacetags(Wrf.W, tsold, tsnew)
Wrf.ileft = replacetags(Wrf.ileft, tsold, tsnew)
Wrf.iright = replacetags(Wrf.iright, tsold, tsnew)
return Wrf
end
function ITensors.replaceind(Wrf::reg_form_Op, iold::Index, inew::Index)
W= replaceind(Wrf.W, iold, inew)
if Wrf.ileft==iold
ileft=inew
iright=Wrf.iright
elseif Wrf.iright==iold
ileft=Wrf.ileft
iright=inew
else
@assert false
end
return reg_form_Op(W,ileft,iright,Wrf.ul)
end
function ITensors.noprime(Wrf::reg_form_Op)
Wrf.W = noprime(Wrf.W)
Wrf.ileft = noprime(Wrf.ileft)
Wrf.iright = noprime(Wrf.iright)
return Wrf
end
#
# Backward and forward indices for a given ortho direction. Sweep direction is opposite
# to the ortho direction. Hence the mirror in forward case.
#
forward(Wrf::reg_form_Op, lr::orth_type) = Wrf[mirror(lr)]
backward(Wrf::reg_form_Op, lr::orth_type) = Wrf[lr]
#
# Detection of upper/lower regular form
#
@doc """
detect_regular_form(W[,eps])::Tuple{Bool,Bool}
Inspect the structure of an operator-valued matrix W to see if it satisfies the regular form
conditions as specified in Section III, definition 3 of
> *Daniel E. Parker, Xiangyu Cao, and Michael P. Zaletel Phys. Rev. B 102, 035147*
# Arguments
- `W::ITensor` : operator-valued matrix to be characterized. W is expected to have 2 "Site" indices and 1 or 2 "Link" indices
@ Keywords
- `eps::Float64 = 1e-14` : operators inside W with norm(W[i,j])<eps are assumed to be zero.
# Returns a Tuple containing
- `reg_lower::Bool` Indicates W is in lower regular form.
- `reg_upper::Bool` Indicates W is in upper regular form.
The function returns two Bools in order to handle cases where W is not in regular form, returning
(false,false) and W is in a special pseudo diagonal regular form, returning (true,true).
"""
detect_regular_form(Wrf::reg_form_Op;kwargs...)::Tuple{Bool,Bool} =
is_regular_form(Wrf, lower;kwargs...), is_regular_form(Wrf, upper;kwargs...)
is_regular_form(Wrf::reg_form_Op;kwargs...)::Bool =
is_regular_form(Wrf, Wrf.ul;kwargs...)
function is_regular_form(Wrf::reg_form_Op, ul::reg_form;eps=default_eps,verbose=false)::Bool
ul_cache = Wrf.ul
Wrf.ul = mirror(ul)
Wb = extract_blocks(Wrf, left; b=true, c=true, d=true)
is = siteinds(Wrf)
𝕀 = delta(is) #We need to make our own, can't trust Wb.𝕀 is ul is wrong.
dh = dim(is[1])
nr, nc = dims(Wrf)
if (nc == 1 && ul == lower) || (nr == 1 && ul == upper)
i1 = abs(scalar(dag(𝕀) * slice(Wrf.W, Wrf.ileft => 1, Wrf.iright => 1)) - dh) < eps
iN = bz = cz = dz = true
end
if (nr == 1 && ul == lower) || (nc == 1 && ul == upper)
iN = abs(scalar(dag(𝕀) * slice(Wrf.W, Wrf.ileft => nr, Wrf.iright => nc)) - dh) < eps
i1 = bz = cz = dz = true
end
if nr > 1 && nc > 1
i1 = abs(scalar(dag(Wb.𝕀) * slice(Wrf.W, Wrf.ileft => 1, Wrf.iright => 1)) - dh) < eps
iN = abs(scalar(dag(Wb.𝕀) * slice(Wrf.W, Wrf.ileft => nr, Wrf.iright => nc)) - dh) < eps
bz = isnothing(Wb.𝐛̂) ? true : norm(Wb.𝐛̂) < eps
cz = isnothing(Wb.𝐜̂) ? true : norm(Wb.𝐜̂) < eps
dz = norm(Wb.𝐝̂) < eps
end
Wrf.ul = ul_cache
if !(i1 && iN && bz && cz && dz) && verbose
@warn "Non regular form tensor encountered."
pprint(Wrf.W)
@show ul nr nc i1 iN bz cz dz
@show dh scalar(dag(𝕀) * slice(Wrf.W,Wrf.ileft=>1,Wrf.iright=>1)) Wb.𝕀 𝕀
end
return i1 && iN && bz && cz && dz
end
#
# Contract V blocks to test orthogonality.
#
function check_ortho(W::ITensor, lr::orth_type, ul::reg_form;kwargs...)
il,ir=parse_links(W)
if order(W)==3
T=eltype(W)
if dim(il)==1
W*=onehot(T, il => 1)
else
W*=onehot(T, ir => 1)
end
end
return check_ortho(reg_form_Op(W,il,ir,ul),lr;kwargs...)
end
function check_ortho(Wrf::reg_form_Op, lr::orth_type; eps=default_eps, verbose=false)::Bool
Wb = extract_blocks(Wrf, lr; V=true)
DwDw = dim(Wb.irV) * dim(Wb.icV)
ilf = llur(Wrf, lr) ? Wb.icV : Wb.irV
Id = Wb.𝐕̂ * prime(dag(Wb.𝐕̂), ilf) / d(Wb)
if order(Id) == 2
is_can = norm(dense(Id) - delta(ilf, dag(ilf'))) / sqrt(DwDw) < eps
if !is_can && verbose
@show Id
end
elseif order(Id) == 0
is_can = abs(scalar(Id) - d(Wb)) < eps
end
return is_can
end
#
# Overload * tensor contraction operators. Detect which link index ileft/iright is common with B
# and replace it with the correct remaining link from B
#
function product(Wrf::reg_form_Op, B::ITensor)::reg_form_Op
WB = Wrf.W * B
ic = commonind(Wrf.W, B)
@assert hastags(ic, "Link")
new_index = noncommonind(B, ic, siteinds(Wrf))
if ic == Wrf.iright
return reg_form_Op(WB, Wrf.ileft, new_index, Wrf.ul)
elseif ic == Wrf.ileft
return reg_form_Op(WB, new_index, Wrf.iright, Wrf.ul)
else
@assert false
end
end
Base.:*(Wrf::reg_form_Op, B::ITensor)::reg_form_Op = product(Wrf, B)
Base.:*(A::ITensor, Wrf::reg_form_Op)::reg_form_Op = product(Wrf, A)
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 10860 | using StaticArrays
import Base.range
struct IndexRange
index::Index
range::UnitRange{Int64}
function IndexRange(i::Index, r::UnitRange)
return new(i, r)
end
end
irPair{T} = Pair{<:Index{T},UnitRange{Int64}} where {T}
irPairU{T} = Union{irPair{T},IndexRange} where {T}
IndexRange(ir::irPair{T}) where {T} = IndexRange(ir.first, ir.second)
IndexRange(ir::IndexRange) = IndexRange(ir.index, ir.range)
start(ir::IndexRange) = range(ir).start
starts(irs::Tuple{Vararg{UnitRange{Int64}}}) = map((ir) -> ir.start, irs)
stops(irs::Tuple{Vararg{UnitRange{Int64}}}) = map((ir) -> ir.stop, irs)
starts(irs::SVector{N,UnitRange{Int64}}) where {N} = map((ir) -> ir.start, irs)
stops(irs::SVector{N,UnitRange{Int64}}) where {N} = map((ir) -> ir.stop, irs)
range(ir::IndexRange) = ir.range
range(i::Index) = 1:dim(i)
ranges(irs::Tuple) = ntuple(i -> range(irs[i]), Val(length(irs)))
ranges(starts::SVector{N,Int64},stops::SVector{N,Int64}) where {N} = map(i -> starts[i]:stops[i], 1:N)
indices(irs::Tuple{Vararg{IndexRange}}) = map((ir) -> ir.index, irs)
indranges(ips::Tuple{Vararg{irPairU}}) = map((ip) -> IndexRange(ip), ips)
dim(ir::IndexRange) = dim(range(ir))
dim(r::UnitRange{Int64}) = r.stop - r.start + 1
dims(irs::Tuple{Vararg{IndexRange}}) = map((ir) -> dim(ir), irs)
redim(ip::irPair) = redim(IndexRange(ip))
redim(ir::IndexRange) = redim(ir.index, dim(ir), start(ir) - 1)
redim(irs::Tuple{Vararg{IndexRange}}) = map((ir) -> redim(ir), irs)
eachval(ir::IndexRange) = range(ir)
eachval(irs::Tuple{Vararg{IndexRange}}) = CartesianIndices(ranges(irs))
function eachindval(irs::Tuple{Vararg{IndexRange}})
return (indices(irs) .=> Tuple(ns) for ns in eachval(irs))
end
#--------------------------------------------------------------------------------------
#
# NDTensor level code which distinguishes between Dense and BlockSparse storage
#
function in_range(
block_start::NTuple{N,Int64}, block_end::NTuple{N,Int64}, rs::UnitRange{Int64}...
) where {N}
for i in eachindex(rs)
(block_start[i] > rs[i].stop || block_end[i] < rs[i].start) && return false
end
return true
end
function fix_ranges(
dest_block_start::SVector{N,Int64},
dest_block_end::SVector{N,Int64},
rs::SVector{N,UnitRange{Int64}}
) where {N}
return ranges(max.(0,starts(rs)-dest_block_start).+1,min.(dest_block_end,stops(rs))-dest_block_start.+1)
end
function get_subtensor(
T::BlockSparseTensor{ElT,N}, new_inds, rs::UnitRange{Int64}...
) where {ElT,N}
Ds = Vector{DenseTensor{ElT,N}}()
bs = Vector{Block{N}}()
for b in eachnzblock(T)
blockT = blockview(T, b)
if in_range(blockstart(T,b),blockend(T,b),rs...)# && !isnothing(blockT)
rs1=fix_ranges(SVector(blockstart(T,b)),SVector(blockend(T,b)),SVector(rs))
_,tb1=blockindex(T,starts(rs)...)
tb1=CartesianIndex(ntuple(i->tb1[i]-1,N))
push!(Ds,blockT[rs1...])
push!(bs,CartesianIndex(b)-tb1)
end
end
if length(Ds) == 0
return BlockSparseTensor(new_inds)
end
T_sub = BlockSparseTensor(ElT, undef, bs, new_inds)
for ib in eachindex(Ds)
blockT_sub = bs[ib]
blockview(T_sub, blockT_sub) .= Ds[ib]
end
return T_sub
end
#
# The code for diag and non-diag is the same. Use Union to capture this.
# Not sure how to trap cross assignemnts like: DiagBlockSparseTensor[] = BlockSparseTensor[]
#
function set_subtensor(
T::Union{BlockSparseTensor{ElT,N},DiagBlockSparseTensor{ElT,N}}, A::Union{BlockSparseTensor{ElT,N},DiagBlockSparseTensor{ElT,N}}, rs::UnitRange{Int64}...
) where {ElT,N}
for ab in eachnzblock(A)
blockA = blockview(A, ab)
iT=SVector(blockstart(A, ab))+SVector(starts(rs)).-1
index_within_Tblock, tb = blockindex(T, iT...)
#
# Get a blockView. Insert a new block if we have to.
#
blockT = blockview(T, tb)
if isnothing(blockT)
insertblock!(T, tb)
blockT = blockview(T, tb)
end
siwb=SVector(index_within_Tblock)
dA=SVector(dims(blockA))
dT=SVector(blockend(T, tb))-siwb.+1
if all(dA.<=dT) #All of blockA fits inside blockT
rs1=ranges(siwb,siwb+dA.-1)
blockT[rs1...] = blockA #Dense assignment for each block
else
# rsa = ntuple(i -> 1:dim(inds(A)[i]), N)
# rs1=ranges(siwb,siwb+min.(dA,dT).-1)
# rsa1 = ntuple(i -> (rsa[i].start):(rsa[i].start + Base.min(dA[i], dT[i]) - 1), N)
# blockT[rs1...] = blockA[rsa1...] #partial block Dense assignment for each block
@error "Subtensor assign, Incomplete bloc transfer is not supported."
@assert false
end
end # for for ab in eachnzblock(A)
end
function set_subtensor(
T::DiagTensor{ElT}, A::DiagTensor{ElT}, rs::UnitRange{Int64}...
) where {ElT}
if !all(y -> y == rs[1], rs)
@error("set_subtensor(DiagTensor): All ranges must be the same, rs=$(rs).")
end
N = length(rs)
#only assign along the diagonal.
for i in rs[1]
is = ntuple(i1 -> i, N)
js = ntuple(j1 -> i - rs[1].start + 1, N)
T[is...] = A[js...]
end
end
function setindex!(
T::BlockSparseTensor{ElT,N}, A::BlockSparseTensor{ElT,N}, irs::Vararg{UnitRange{Int64},N}
) where {ElT,N}
return set_subtensor(T, A, irs...)
end
function setindex!(
T::DiagTensor{ElT,N}, A::DiagTensor{ElT,N}, irs::Vararg{UnitRange{Int64},N}
) where {ElT,N}
return set_subtensor(T, A, irs...)
end
function setindex!(
T::DiagBlockSparseTensor{ElT,N},
A::DiagBlockSparseTensor{ElT,N},
irs::Vararg{UnitRange{Int64},N},
) where {ElT,N}
return set_subtensor(T, A, irs...)
end
#------------------------------------------------------------------------------------
#
# ITensor level wrappers which allows us to handle the indices in a different manner
# depending on dense/block-sparse
#
function get_subtensor_wrapper(
T::DenseTensor{ElT,N}, new_inds, rs::UnitRange{Int64}...
) where {ElT,N}
return ITensor(T[rs...], new_inds)
end
function get_subtensor_wrapper(
T::BlockSparseTensor{ElT,N}, new_inds, rs::UnitRange{Int64}...
) where {ElT,N}
return ITensor(get_subtensor(T, new_inds, rs...))
end
function ITensors.permute(indsT::T, irs::IndexRange...) where {T<:(Tuple{Vararg{T,N}} where {N,T})}
ispec = indices(irs) #indices caller specified ranges for
inot = Tuple(noncommoninds(indsT, ispec)) #indices not specified by caller
isort = ispec..., inot... #all indices sorted so user specified ones are first.
isort_sub = redim(irs)..., inot... #all indices for subtensor
p = getperm(indsT, ntuple(n -> isort[n], length(isort)))
if !isperm(p)
@show p ispec inot indsT isort
end
return NDTensors.permute(isort_sub, p), NDTensors.permute((ranges(irs)..., ranges(inot)...), p)
end
#
# Use NDTensors T[3:4,1:3,1:6...] syntax to extract the subtensor.
#
function get_subtensor_ND(T::ITensor, irs::IndexRange...)
isub, rsub = permute(inds(T), irs...) #get indices and ranges for the subtensor
return get_subtensor_wrapper(tensor(T), isub, rsub...) #virtual dispatch based on Dense or BlockSparse
end
function match_tagplev(i1::Index, i2s::Index...)
for i in eachindex(i2s)
#@show i tags(i1) tags(i2s[i]) plev(i1) plev(i2s[i])
if tags(i1) == tags(i2s[i]) && plev(i1) == plev(i2s[i])
return i
end
end
@error("match_tagplev: unable to find tag/plev for $i1 in Index set $i2s.")
return nothing
end
function getperm_tagplev(s1, s2)
N = length(s1)
r = Vector{Int}(undef, N)
return map!(i -> match_tagplev(s1[i], s2...), r, 1:length(s1))
end
#
#
# Permute is1 to be in the order of is2.
# BUT: match based on tags and plevs instread of IDs
#
function permute_tagplev(is1, is2)
length(is1) != length(is2) && throw(
ArgumentError(
"length of first index set, $(length(is1)) does not match length of second index set, $(length(is2))",
),
)
perm = getperm_tagplev(is1, is2)
#@show perm is1 is2
return is1[invperm(perm)]
end
# This operation is non trivial because we need to
# 1) Establish that the non-requested (not in irs) indices are identical (same ID) between T & A
# 2) Establish that requested (in irs) indices have the same tags and
# prime levels (dims are different so they cannot possibly have the same IDs)
# 3) Use a combination of tags/primes (for irs indices) or IDs (for non irs indices) to permut
# the indices of A prior to conversion to a Tensor.
#
function set_subtensor_ND(T::ITensor, A::ITensor, irs::IndexRange...)
ireqT = indices(irs) #indices caller requested ranges for
inotT = Tuple(noncommoninds(inds(T), ireqT)) #indices not requested by caller
ireqA = Tuple(noncommoninds(inds(A), inotT)) #Get the requested indices for a
inotA = Tuple(noncommoninds(inds(A), ireqA))
p=getperm(inotA,ntuple(n -> inotT[n], length(inotT)))
inotA_sorted=NDTensors.permute(inotA,p)
if length(ireqT) != length(ireqA) || inotA_sorted != inotT
@show inotA inotT ireqT ireqA inotA != inotT length(ireqT) length(ireqA)
@error(
"subtensor assign, incompatable indices\ndestination inds=$(inds(T)),\n source inds=$(inds(A))."
)
@assert(false)
end
isortT = ireqT..., inotT... #all indices sorted so user specified ones are first.
p = getperm(inds(T), ntuple(n -> isortT[n], length(isortT))) # find p such that isort[p]==inds(T)
rsortT = NDTensors.permute((ranges(irs)..., ranges(inotT)...), p) #sorted ranges for T
ireqAp = permute_tagplev(ireqA, ireqT) #match based on tags & plev, NOT IDs since dims are different.
isortA = NDTensors.permute((ireqAp..., inotA...), p) #inotA is the same inotT, using inotA here for a less confusing read.
Ap = permute(A, isortA...; allow_alias=true)
return tensor(T)[rsortT...] = tensor(Ap)
end
# function set_subtensor_ND(T::ITensor, v::Number, irs::IndexRange...)
# ireqT = indices(irs) #indices caller requested ranges for
# inotT = Tuple(noncommoninds(inds(T), ireqT)) #indices not requested by caller
# isortT = ireqT..., inotT... #all indices sorted so user specified ones are first.
# p = getperm(inds(T), ntuple(n -> isortT[n], length(isortT))) # find p such that isort[p]==inds(T)
# rsortT = permute((ranges(irs)..., ranges(inotT)...), p) #sorted ranges for T
# return tensor(T)[rsortT...] .= v
# end
getindex(T::ITensor, irs::Vararg{IndexRange,N}) where {N} = get_subtensor_ND(T, irs...)
function getindex(T::ITensor, irs::Vararg{irPairU,N}) where {N}
return get_subtensor_ND(T, indranges(irs)...)
end
function setindex!(T::ITensor, A::ITensor, irs::Vararg{IndexRange,N}) where {N}
return set_subtensor_ND(T, A, irs...)
end
function setindex!(T::ITensor, A::ITensor, irs::Vararg{irPairU,N}) where {N}
return set_subtensor_ND(T, A, indranges(irs)...)
end
# function setindex!(T::ITensor, v::Number, irs::Vararg{IndexRange,N}) where {N}
# return set_subtensor_ND(T, v, irs...)
# end
# function setindex!(T::ITensor, v::Number, irs::Vararg{irPairU,N}) where {N}
# return set_subtensor_ND(T, v, indranges(irs)...)
# end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 4791 |
@doc """
truncate!(H::MPO,lr::orth_type)
Compress an MPO using block respecting SVD techniques as described in
> *Daniel E. Parker, Xiangyu Cao, and Michael P. Zaletel Phys. Rev. B 102, 035147*
# Arguments
- `H::MPO` : Matrix Product Operator to be truncated.
If `H` is not already in the correct canonical form for compression, it will automatically be put
into the correct form prior to compression.
- `lr::orth_type` : Choose `left` or `right` orthgonal/canoncial form for the output.
# Keywords
- `cutoff::Float64 = 1e-15` : The `cutoff` allows the SVD algorithm to truncate as many states as possible while still ensuring a certain accuracy.
# Returns
- `Vector{Spectrum}`, one `Spectrum' for each bond on the lattice.
# Example
```julia
julia> using ITensors
julia> using ITensorMPOCompression
include("../test/hamiltonians/hamiltonians.jl")
julia> N=10; #10 sites
julia> NNN=7; #Include up to 7th nearest neighbour interactions
julia> sites = siteinds("S=1/2",N);
julia> H=transIsing_MPO(sites,NNN);
#
# Make sure we have a regular form or truncate! won't work.
#
julia> is_lower_regular_form(H)==true
true
julia> @show get_Dw(H)
get_Dw(H) = [30, 30, 30, 30, 30, 30, 30, 30, 30]
#
# truncate! returns the spectrum of singular values at each bond. The largest
# singular values are remaining well under control. i.e. no sign of divergences.
#
julia> @show truncate!(H,left);
spectrums =
Bond Ns max(s) min(s) Entropy Tr. Error
1 1 0.30739 3.07e-01 0.22292 0.00e+00
2 2 0.35392 3.49e-02 0.26838 0.00e+00
3 3 0.37473 2.06e-02 0.29133 0.00e+00
4 4 0.38473 1.77e-02 0.30255 0.00e+00
5 5 0.38773 7.25e-04 0.30588 0.00e+00
6 4 0.38473 1.77e-02 0.30255 0.00e+00
7 3 0.37473 2.06e-02 0.29133 0.00e+00
8 2 0.35392 3.49e-02 0.26838 0.00e+00
9 1 0.30739 3.07e-01 0.22292 0.00e+00
julia> pprint(H[2])
I 0 0 0
S S S 0
0 S S I
#
# We can see that bond dimensions have been drastically reduced.
#
julia> get_Dw(H)
9-element Vector{Int64}: 3 4 5 6 7 6 5 4 3
julia> is_lower_regular_form(H)==true
true
julia> isortho(H,left)==true
true
```
"""
function truncate!(H::MPO, lr::orth_type; kwargs...)::bond_spectrums
Hrf = reg_form_MPO(H)
ss=truncate!(Hrf, lr; kwargs...)
copy!(H,Hrf)
return ss
end
function truncate(
Ŵrf::reg_form_Op, lr::orth_type; kwargs...
)::Tuple{reg_form_Op,ITensor,Spectrum}
@mpoc_assert Ŵrf.ul==lower
ilf = forward(Ŵrf, lr)
# l=n-1 l=n l=n-1 l=n l=n
# ------W---- --> -----Q-----R-----
# ilf iqx ilf
Q̂, R, iqx = ac_qx(Ŵrf, lr; qprime=true, kwargs...) #left Q[r,qx], R[qx,c] - right R[r,qx] Q[qx,c]
@checkflux(Q̂.W)
@checkflux(R)
if dim(ilf)>dim(iqx)
@warn "Truncate bail out, dim(ilf)=$(dim(ilf)), dim(iqx)=$(dim(iqx))"
return noprime(Q̂), noprime(R), Spectrum(nothing,0.0)
end
@mpoc_assert dim(ilf) == dim(iqx) #Rectanuglar not allowed
#
# Factor RL=M*L' (left/lower) = L'*M (right/lower) = M*R' (left/upper) = R'*M (right/upper)
# M will be returned as a Dw-2 X Dw-2 interior matrix. M_sans in the Parker paper.
#
Dw = dim(iqx)
M = R[dag(iqx) => 2:(Dw - 1), ilf => 2:(Dw - 1)]
M = replacetags(M, tags(ilf), "Link,m"; plev=0)
# l=n' l=n l=n' m l=n
# ------R---- ---> -----M------R'----
# iqx' ilf iqx' im ilf
R⎖, im = build_R⎖(R, iqx, ilf) #left M[lq,im] RL_prime[im,c] - right RL_prime[r,im] M[im,lq]
#
# svd decomp M.
#
isvd = inds(M; tags=tags(iqx))[1] #decide the backward index for svd. Works for both sweep directions.
U, s, V, spectrum, iu, iv = svd(M, isvd; kwargs...) # ns sing. values survive compression
#@show diag(array(s))
#
# Now recontrsuct R, and W in the truncated space.
#
iup = redim(iu, 1, 1, space(iqx))
R = grow(s * V, iup, im) * R⎖ #RL[l=n,u] dim ns+2 x Dw2
Uplus = grow(U, dag(iqx), dag(iup))
Uplus = noprime(Uplus, iqx)
Ŵrf = Q̂ * Uplus #W[l=n-1,u]
R = replacetags(R, "Link,u", tags(ilf)) #RL[l=n,l=n] sames tags, different id's and possibly diff dimensions.
Ŵrf = replacetags(Ŵrf, "Link,u", tags(ilf)) #W[l=n-1,l=n]
check(Ŵrf)
return Ŵrf, R, spectrum
end
function truncate!(H::reg_form_MPO, lr::orth_type; kwargs...)::bond_spectrums
#Two sweeps are essential for avoiding rectangular R in site truncate.
if !isortho(H)
orthogonalize!(H, lr; kwargs...)
orthogonalize!(H, mirror(lr); kwargs...)
end
gauge_fix!(H)
ss = bond_spectrums(undef, 0)
rng = sweep(H, lr)
for n in rng
nn = n + rng.step
H[n], R, s = truncate(H[n], lr; kwargs...)
H[nn] *= R
push!(ss, s)
end
H.rlim = rng.stop + rng.step + 1
H.llim = rng.stop + rng.step - 1
return ss
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 6878 | using Printf
function is_unit(O::ITensor, eps::Float64)::Bool
s = inds(O)
ITensors.@debug_check begin
@mpoc_assert(length(s) == 2)
end
Id = delta(s[1], s[2])
if hasqns(s)
nm = 0.0
for b in eachnzblock(Id)
isv = [s[i] => b[i] for i in 1:length(b)]
nm += abs(O[isv...] - Id[isv...])
end
return nm < eps
else
return norm(O - Id) < eps
end
end
function to_char(O::ITensor, eps::Float64)::Char
c = '0'
if is_unit(O, eps)
c = 'I'
elseif norm(O) > eps
c = 'S'
end
return c
end
function to_char(O::Float64, eps::Float64)::Char
c = '0'
if abs(O - 1.0) < eps
c = 'I'
elseif abs(O) > eps
c = 'S'
end
return c
end
@doc """
pprint(W[,eps])
Show (pretty print) a schematic view of an operator-valued matrix. In order to display any `ITensor`
as a matrix one must decide which index to use as the row index, and similarly for the column index.
`pprint` does this by inspecting the indices with "Site" tags to get the site number, and uses the
"Link" indices `l=\$n` as the column and `l=\$(n-1)` as the row. The output symbols I,0,S have the obvious
interpretations and S just means any (non zero) operator that is not I. This function can obviously
be enhanced to recognize and display other symbols like X,Y,Z ... instead of just S.
# Arguments
- `W::ITensor` : Operator-valued matrix for display.
- `eps::Float64 = 1e-14` : operators inside W with norm(W[i,j])<eps are assumed to be zero.
# Examples
```julia
julia> pprint(W)
I 0 0 0 0
S 0 0 0 0
S 0 0 0 0
0 0 I 0 0
0 S 0 S I
```
"""
function pprint(W::ITensor, eps::Float64=default_eps)
r, c = parse_links(W)
return pprint(r, W, c, eps)
end
function pprint(W::ITensor, c::Index, eps::Float64=default_eps)
r, = noncommoninds(W, c; tags="Link")
@mpoc_assert length(c) == 1
return pprint(r, W, c, eps)
end
function pprint(r::Index, W::ITensor, eps::Float64=default_eps)
c, = noncommoninds(W, r; tags="Link")
@mpoc_assert length(c) == 1
return pprint(r, W, c, eps)
end
macro pprint(W)
quote
println($(string(W)), " = ")
pprint($(esc(W)))
end
end
function Base.show(io::IO, ss::bond_spectrums)
N = length(ss)
print(io, "\nBond Ns max(s) min(s) Entropy Tr. Error\n")
for n in 1:N
s = ss[n]
if length(s.eigs) > 0
@printf(
io,
"%4i %4i %1.5f %1.2e %1.5f %1.2e\n",
n,
length(s.eigs),
max(s),
min(s),
entropy(s),
truncerror(s)
)
else
@printf(
io,
"%4i %4i ------- -------- ------- %1.2e\n",
n,
length(s.eigs),
truncerror(s)
)
end
end
end
function pprint(r::Index, W::ITensor, c::Index, eps::Float64=default_eps)
# @mpoc_assert hasind(W,r) can't assume this becuse parse_links could return a Dw=1 dummy index.
# @mpoc_assert hasind(W,c)
isl = filterinds(W; tags="Link")
ord = order(W)
if length(isl) == 2
for ir in eachindval(r)
for ic in eachindval(c)
if ord == 4
Oij = slice(W, ir, ic)
else
@mpoc_assert ord == 2
Oij = abs(W[ir, ic])
end
Base.print(to_char(Oij, eps))
Base.print(" ")
end
Base.print("\n")
end
elseif length(isl) == 1
for i in eachindval(isl[1])
Oij = slice(W, i)
Base.print(to_char(Oij, eps))
Base.print(" ")
end
Base.print("\n")
end
return Base.print("\n")
end
pprint(Wrf::reg_form_Op)=pprint(Wrf.ileft,Wrf.W,Wrf.iright)
@doc """
pprint(H[,eps])
Display the structure of an MPO, one line for each lattice site. For each site the table lists
- n : lattice site number
- Dw1 : dimension of the row index (left link index)
- Dw2 : dimension of the column index (right link index)
- d : dimension of the local Hilbert space
- Reg. Form : U=upper, L=lower, D=diagonal, No = Not reg. form.
- Orth. Form : L=left, R=right, M=not orthogonal, B=both left and right.
Be careful when reading the L symbols. L stands for Left in the Orth. column but is stands
for Lower in the other two columns.
# Arguments
- `H::MPO` : MPO for display.
- `eps::Float64 = 1e-14` : operators inside H with norm(W[i,j])<eps are assumed to be zero.
# Examples
```julia
julia> using ITensors
julia> using ITensorMPOCompression
julia> N=10; #10 sites
julia> NNN=7; #Include up to 7th nearest neighbour interactions
julia> sites = siteinds("S=1/2",N);
julia> H=transIsing_MPO(sites,NNN);
julia> pprint(H)
n Dw1 Dw2 d Reg. Orth. Tri.
Form Form Form
1 1 30 2 L M R
2 30 30 2 L M L
3 30 30 2 L M L
4 30 30 2 L M L
5 30 30 2 L M L
6 30 30 2 L M L
7 30 30 2 L M L
8 30 30 2 L M L
9 30 30 2 L M L
10 30 1 2 L M C
julia> orthogonalize!(H,orth=right)
julia> pprint(H)
n Dw1 Dw2 d Reg. Orth. Tri.
Form Form Form
1 1 3 2 L M R
2 3 4 2 L R L
3 4 5 2 L R L
4 5 6 2 L R L
5 6 7 2 L R L
6 7 6 2 L R L
7 6 5 2 L R L
8 5 4 2 L R L
9 4 3 2 L R L
10 3 1 2 L R C
julia> truncate!(H,orth=left)
julia> pprint(H)
n Dw1 Dw2 d Reg. Orth. Tri.
Form Form Form
1 1 3 2 L L R
2 3 4 2 L L L
3 4 5 2 L L F
4 5 6 2 L L F
5 6 7 2 L L F
6 7 6 2 L L F
7 6 5 2 L L F
8 5 4 2 L L F
9 4 3 2 L L L
10 3 1 2 L M C
```
"""
function pprint(H::MPO, eps::Float64=default_eps)
pprint(reg_form_MPO(copy(H)),eps)
end
function pprint(H::reg_form_MPO, eps::Float64=default_eps)
N = length(H)
println(" n Dw1 Dw2 d Reg. Orth.")
println(" Form Form ")
for n in 1:N
Dw1, Dw2, d, l, u, lr = get_traits(H[n], eps)
#println(" $n $Dw1 $Dw2 $d $l$u $lr $lt$ut")
@printf "%4i %4i %4i %4i %s%s %s\n" n Dw1 Dw2 d l u lr
end
end
function get_directions(psi::AbstractMPS)
return map(n -> dir(inds(psi[n]; tags="Link,l=$n")[1]), 1:(length(psi) - 1))
end
function show_directions(psi::AbstractMPS)
dirs = get_directions(psi)
n = 1
for d in dirs
print(" $n ")
if d == ITensors.In
print("<--")
elseif d == ITensors.Out
print("-->")
elseif d == ITensors.Neither
print("???")
else
@assert(false)
end
n += 1
end
return print(" $n \n")
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 5665 | using ITensors
using ITensorMPOCompression
using Test
using Revise, Printf
include("hamiltonians/hamiltonians.jl")
Base.show(io::IO, f::Float64) = @printf(io, "%1.3f", f) #dumb way to control float output
import ITensorMPOCompression: extract_blocks, regform_blocks
@testset "Extract blocks qns=$qns, ul=$ul" for qns in [false, true], ul in [lower, upper]
eps = 1e-15
N = 5 #5 sites
NNN = 2 #Include 2nd nearest neighbour interactions
sites = siteinds("Electron", N; conserve_qns=qns)
d = dim(inds(sites[1])[1])
H = reg_form_MPO(Hubbard_AutoMPO(sites, NNN; ul=ul);honour_upper=true)
lr = ul == lower ? left : right
Wrf = H[1]
nr, nc = dims(Wrf)
#pprint(Wrf.W)
Wb = extract_blocks(Wrf, lr; all=true, V=true)
@test norm(matrix(Wb.𝕀) - 1.0 * Matrix(LinearAlgebra.I, d, d)) < eps
@test isnothing(Wb.𝐀̂)
if ul == lower
@test isnothing(Wb.𝐛̂)
@test norm(array(Wb.𝐝̂) - array(Wrf[nr:nr, 1:1])) < eps
@test norm(array(Wb.𝐜̂) - array(Wrf[nr:nr, 2:(nc - 1)])) < eps
else
@test isnothing(Wb.𝐜̂)
@test norm(array(Wb.𝐝̂) - array(Wrf[1:1, nc:nc])) < eps
@test norm(array(Wb.𝐛̂) - array(Wrf[1:1, 2:(nc - 1)])) < eps
end
@test norm(array(Wb.𝐕̂) - array(Wrf[1:1, 2:nc])) < eps
Wrf = H[N]
nr, nc = dims(Wrf)
Wb = extract_blocks(Wrf, lr; all=true, V=true, fix_inds=true)
@test norm(matrix(Wb.𝕀) - 1.0 * Matrix(LinearAlgebra.I, d, d)) < eps
@test isnothing(Wb.𝐀̂)
if ul == lower
@test isnothing(Wb.𝐜̂)
@test norm(array(Wb.𝐝̂) - array(Wrf[nr:nr, 1:1])) < eps
@test norm(array(Wb.𝐛̂) - array(Wrf[2:(nr - 1), 1:1])) < eps
else
@test isnothing(Wb.𝐛̂)
@test norm(array(Wb.𝐝̂) - array(Wrf[1:1, nc:nc])) < eps
@test norm(array(Wb.𝐜̂) - array(Wrf[2:(nr - 1), nc:nc])) < eps
end
@test norm(array(Wb.𝐕̂) - array(Wrf[2:nr, 1:1])) < eps
Wrf = H[2]
nr, nc = dims(Wrf)
Wb = extract_blocks(Wrf, lr; all=true, V=true, fix_inds=true, Ac=true)
if ul == lower
@test norm(matrix(Wb.𝕀) - 1.0 * Matrix(LinearAlgebra.I, d, d)) < eps
@test norm(array(Wb.𝐝̂) - array(Wrf[nr:nr, 1:1])) < eps
@test norm(array(Wb.𝐛̂) - array(Wrf[2:(nr - 1), 1:1])) < eps
@test norm(array(Wb.𝐜̂) - array(Wrf[nr:nr, 2:(nc - 1)])) < eps
@test norm(array(Wb.𝐀̂) - array(Wrf[2:(nr - 1), 2:(nc - 1)])) < eps
@test norm(array(Wb.𝐀̂𝐜̂) - array(Wrf[2:nr, 2:(nc - 1)])) < eps
else
@test norm(matrix(Wb.𝕀) - 1.0 * Matrix(LinearAlgebra.I, d, d)) < eps
@test norm(array(Wb.𝐝̂) - array(Wrf[1:1, nc:nc])) < eps
@test norm(array(Wb.𝐛̂) - array(Wrf[1:1, 2:(nc - 1)])) < eps
@test norm(array(Wb.𝐜̂) - array(Wrf[2:(nr - 1), nc:nc])) < eps
@test norm(array(Wb.𝐀̂) - array(Wrf[2:(nr - 1), 2:(nc - 1)])) < eps
@test norm(array(Wb.𝐀̂𝐜̂) - array(Wrf[2:(nr - 1), 2:nc])) < eps
end
@test norm(array(Wb.𝐕̂) - array(Wrf[2:nr, 2:nc])) < eps
end
@testset "Extract blocks MPO with fix_inds=true ul=$ul" for ul in [lower, upper]
N = 5 #5 sites
NNN = 2 #Include 2nd nearest neighbour interactions
sites = siteinds("Electron", N; conserve_qns=false)
d = dim(inds(sites[1])[1])
H = reg_form_MPO(Hubbard_AutoMPO(sites, NNN; ul=ul);honour_upper=true)
lr = ul == lower ? left : right
Wrf = H[1]
Wb = extract_blocks(Wrf, lr; fix_inds=true)
if lr==left
@test hasinds(Wb.𝐜̂,Wb.irc,Wb.icc)
@test hasinds(Wb.𝐝̂,Wb.ird,Wb.icd)
@test Wb.ird==Wb.irc
else
@test hasinds(Wb.𝐛̂,Wb.irb,Wb.icb)
@test hasinds(Wb.𝐝̂,Wb.ird,Wb.icd)
@test Wb.icd==Wb.icb
end
Wrf = H[N]
Wb = extract_blocks(Wrf, lr; fix_inds=true)
if lr==right
@test hasinds(Wb.𝐜̂,Wb.irc,Wb.icc)
@test hasinds(Wb.𝐝̂,Wb.ird,Wb.icd)
@test Wb.ird==Wb.irc
else
@test hasinds(Wb.𝐛̂,Wb.irb,Wb.icb)
@test hasinds(Wb.𝐝̂,Wb.ird,Wb.icd)
@test Wb.icd==Wb.icb
end
Wrf = H[2]
Wb = extract_blocks(Wrf, lr; fix_inds=true)
@test hasinds(Wb.𝐀̂,Wb.irA,Wb.icA)
@test hasinds(Wb.𝐛̂,Wb.irb,Wb.icb)
@test hasinds(Wb.𝐜̂,Wb.irc,Wb.icc)
@test hasinds(Wb.𝐝̂,Wb.ird,Wb.icd)
@test Wb.ird==Wb.irc
@test Wb.icd==Wb.icb
@test Wb.irA==Wb.irb
end
@testset "Detect regular form qns=$qns, ul=$ul" for qns in [false, true],
ul in [lower, upper]
eps = 1e-15
N = 5 #5 sites
NNN = 2 #Include 2nd nearest neighbour interactions
sites = siteinds("Electron", N; conserve_qns=qns)
H = reg_form_MPO(Hubbard_AutoMPO(sites, NNN; ul=ul);honour_upper=true)
for W in H
@test is_regular_form(W, ul;eps=eps)
@test dim(W.ileft) == 1 || dim(W.iright) == 1 || !is_regular_form(W, mirror(ul);eps=eps)
end
end
@testset "Sub tensor assign for block sparse matrices with compatable QN spaces" begin
qns=[QN("Sz",0)=>1,QN("Sz",0)=>3,QN("Sz",0)=>2]
i,j=Index(qns,"i"),Index(qns,"j")
A=randomITensor(i,j)
nr,nc=dims(A)
B=copy(A)
for dr in 0:nr-1
for dc in 0:nc-1
#@show dr dc nr-dr nc-dc
B[i=>1:nr-dr,j=>1:nc-dc]=A[i=>1:nr-dr,j=>1:nc-dc]
@test norm(B-A)==0
B[i=>1+dr:nr,j=>1:nc-dc]=A[i=>1+dr:nr,j=>1:nc-dc]
@test norm(B-A)==0
end
end
end
#
# This is a tough nut to crack. But it is not needed for MPO compression.
#
# @testset "Sub tensor assign for block sparse matrices with in-compatable QN spaces" begin
# qns=[QN("Sz",0)=>1,QN("Sz",0)=>3,QN("Sz",0)=>2]
# qnsC=[QN("Sz",0)=>2,QN("Sz",0)=>2,QN("Sz",0)=>2] #purposely miss allgined.
# i,j=Index(qns,"i"),Index(qns,"j")
# A=randomITensor(i,j)
# nr,nc=dims(A)
# ic,jc=Index(qnsC,"i"),Index(qnsC,"j")
# C=randomITensor(ic,jc)
# @show dense(A) dense(C)
# C[ic=>1:nr,jc=>1:nc]=A[i=>1:nr,j=>1:nc]
# @show matrix(A)-matrix(C)
# @test norm(matrix(A)-matrix(C))==0
# end
nothing
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 1223 | using ITensors
using ITensorMPOCompression
using Test
using Revise, Printf, SparseArrays
include("hamiltonians/hamiltonians.jl")
import ITensorMPOCompression: gauge_fix!, is_gauge_fixed
Base.show(io::IO, f::Float64) = @printf(io, "%1.3f", f) #dumb way to control float output
models = [
[transIsing_MPO, "S=1/2", true],
[transIsing_AutoMPO, "S=1/2", true],
[Heisenberg_AutoMPO, "S=1/2", true],
[Heisenberg_AutoMPO, "S=1", true],
[Hubbard_AutoMPO, "Electron", false],
]
@testset "Gauge fix finite $(model[1]), qns=$qns, ul=$ul" for model in models,
qns in [false, true],
ul in [lower, upper]
eps = 1e-14
N = 10 #5 sites
NNN = 4 #Include 2nd nearest neighbour interactions
sites = siteinds(model[2], N; conserve_qns=qns)
Hrf = reg_form_MPO(model[1](sites, NNN; ul=ul))
pre_fixed = model[3] #Hamiltonian starts gauge fixed
state = [isodd(n) ? "Up" : "Dn" for n in 1:N]
H = MPO(Hrf)
psi = randomMPS(sites, state)
E0 = inner(psi', H, psi)
@test is_regular_form(Hrf)
@test pre_fixed == is_gauge_fixed(Hrf; eps=eps)
gauge_fix!(Hrf)
@test is_regular_form(Hrf)
@test is_gauge_fixed(Hrf; eps=eps)
He = MPO(Hrf)
E1 = inner(psi', He, psi)
@test E0 ≈ E1 atol = eps
end
nothing
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 6266 |
using ITensors
using ITensorMPOCompression
using Revise
using Test
include("hamiltonians/hamiltonians.jl")
import ITensorMPOCompression: transpose, orthogonalize!, redim
# using Printf
# Base.show(io::IO, f::Float64) = @printf(io, "%1.3e", f)
function random_qindex(d::Int64, nq::Int64)::Index
qns = Pair{QN,Int64}[]
for n in 1:nq
append!(qns, [QN() => rand(1:d)])
end
return Index(qns, "Link,l=1")
end
@testset verbose = true "Hamiltonians" begin
NNEs = [
(1, -1.5066685458330529),
(2, -1.4524087749432490),
(3, -1.4516941302867301),
(4, -1.4481111362390489),
]
@testset "MPOs hand coded versus autoMPO give same GS energies" for nne in NNEs
N = 5
model_kwargs = (hx=0.5,)
eps = 4e-14 #this is right at the lower limit for passing the tests.
NNN = nne[1]
Eexpected = nne[2]
sites = siteinds("SpinHalf", N; conserve_qns=false)
ITensors.ITensors.disable_debug_checks() #dmrg crashes when this in.
#
# Use autoMPO to make H
#
Hauto = transIsing_AutoMPO(sites, NNN; model_kwargs...)
Eauto, psi = fast_GS(Hauto, sites)
@test Eauto ≈ Eexpected atol = eps
Eauto1 = inner(psi', Hauto, psi)
@test Eauto1 ≈ Eexpected atol = eps
#
# Make H directly ... should be lower triangular
#
Hdirect = transIsing_MPO(sites, NNN; model_kwargs...) #defaults to lower reg form
#@show Hauto[1] Hdirect[1]
@test order(Hdirect[1]) == 3
@test inner(psi', Hdirect, psi) ≈ Eexpected atol = eps
Edirect, psidirect = fast_GS(Hdirect, sites)
@test Edirect ≈ Eexpected atol = eps
overlap = abs(inner(psi, psidirect))
@test overlap ≈ 1.0 atol = eps
end
@testset "Redim function with non-trivial QN spaces" begin
for offset in 0:2
for d in 1:5
for nq in 1:5
il = random_qindex(d, nq)
Dw = dim(il)
if Dw > 1 + offset
ilr = redim(il, Dw - offset - 1, offset)
@test dim(ilr) == Dw - offset - 1
end
end #for nq
end #for d
end #for offset
end #@testset
makeHs = [transIsing_AutoMPO, transIsing_MPO, Heisenberg_AutoMPO]
@testset "Auto MPO Ising Ham with Sz blocking" for makeH in makeHs
N = 5
eps = 4e-14 #this is right at the lower limit for passing the tests.
NNN = 2
sites = siteinds("SpinHalf", N; conserve_qns=true)
H = makeH(sites, NNN; ul=lower)
il = filterinds(inds(H[2]); tags="Link")
for i in 1:2
for start_offset in 0:2
for end_offset in 0:2
Dw = dim(il[i])
Dw_new = Dw - start_offset - start_offset
if Dw_new > 0
ilr = redim(il[i], Dw_new, start_offset)
@test dim(ilr) == Dw_new
end #if
end #for end_offset
end #for start_offset
end #for i
end #@testset
@testset "hand coded versus autoMPO with conserve_qns=true have the same index directions" begin
N = 5
hx = 0.0 #Hx!=0 breaks symmetry.
eps = 4e-14 #this is right at the lower limit for passing the tests.
NNN = 2
sites = siteinds("SpinHalf", N; conserve_qns=true)
Hauto = transIsing_AutoMPO(sites, NNN)
Hhand = transIsing_MPO(sites, NNN)
for (Wauto, Whand) in zip(Hauto, Hhand)
for ia in inds(Wauto)
ih = filterinds(Whand; tags=tags(ia), plev=plev(ia))[1]
@test dir(ia) == dir(ih)
end
end
end
@testset "Parker eq. 34 3-body Hamiltonian" begin
N = 15
sites = siteinds("SpinHalf", N; conserve_qns=false)
Hnot = three_body_AutoMPO(sites; cutoff=-1.0) #No truncation inside autoMPO
H = three_body_AutoMPO(sites; cutoff=1e-15) #Truncated by autoMPO
psi = randomMPS(sites)
Enot = inner(psi', Hnot, psi)
E = inner(psi', H, psi)
#@show E-Enot get_Dw(Hnot) get_Dw(H)
@test E ≈ Enot atol = 3e-9
end
function verify_links(H::MPO)
N = length(H)
@test order(H[1]) == 3
@test hastags(H[1], "Link,l=1")
@test hastags(H[1], "Site,n=1")
for n in 2:(N - 1)
@test order(H[n]) == 4
@test hastags(H[n], "Link,l=$(n-1)")
@test hastags(H[n], "Link,l=$n")
@test hastags(H[n], "Site,n=$n")
il, = inds(H[n - 1]; tags="Link,l=$(n-1)")
ir, = inds(H[n]; tags="Link,l=$(n-1)")
@test id(il) == id(ir)
end
@test order(H[N]) == 3
@test hastags(H[N], "Link,l=$(N-1)")
@test hastags(H[N], "Site,n=$N")
il, = inds(H[N - 1]; tags="Link,l=$(N-1)")
ir, = inds(H[N]; tags="Link,l=$(N-1)")
@test id(il) == id(ir)
end
makeHs = [
(transIsing_MPO, "S=1/2"),
(transIsing_AutoMPO, "S=1/2"),
(Heisenberg_AutoMPO, "S=1/2"),
(Hubbard_AutoMPO, "Electron"),
]
@testset "Reg for H=$(makeH[1]), ul=$ul, qns=$qns" for makeH in makeHs,
qns in [false, true],
ul in [lower, upper]
N = 5
sites = siteinds(makeH[2], N; conserve_qns=qns)
H = makeH[1](sites, 2; ul=ul)
@test is_regular_form(H, ul)
@test hasqns(H[1]) == qns
verify_links(H)
end
models = [
(transIsing_MPO, "S=1/2", true),
(transIsing_AutoMPO, "S=1/2", true),
(Heisenberg_AutoMPO, "S=1/2", true),
(Heisenberg_AutoMPO, "S=1", true),
(Hubbard_AutoMPO, "Electron", false),
]
@testset "Convert upper MPO to lower, H=$(model[1]), qns=$qns" for model in models, qns in [false,true]
N,NNN=5,2
sites = siteinds(model[2], N; conserve_qns=qns)
Hu = reg_form_MPO(model[1](sites, NNN;ul=upper);honour_upper=true)
@test is_regular_form(Hu)
@test Hu.ul==upper
Hl = transpose(Hu)
@test Hu.ul==upper
@test is_regular_form(Hu)
@test Hl.ul==lower
@test is_regular_form(Hl)
@test !check_ortho(Hu,left)
@test !check_ortho(Hl,left)
@test !check_ortho(Hu,right)
@test !check_ortho(Hl,right)
Hl1=MPO(Hl)
@test order(Hl1[1])==3
@test order(Hl1[N])==3
orthogonalize!(Hl,left)
@test Hu.ul==upper
@test is_regular_form(Hu)
@test Hl.ul==lower
@test is_regular_form(Hl)
@test check_ortho(Hl,left)
@test !check_ortho(Hu,left)
@test !check_ortho(Hu,right)
Hu1=transpose(Hl)
#@test check_ortho(Hu1,right)
@test check_ortho(Hu1,left)
Hl1=MPO(Hl)
@test order(Hl1[1])==3
@test order(Hl1[N])==3
end
end #Hamiltonians testset
nothing
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 3817 | using ITensors
using ITensorMPOCompression
using Revise
using Test
using Printf
include("hamiltonians/hamiltonians.jl")
import ITensorMPOCompression: gauge_fix!, is_gauge_fixed
Base.show(io::IO, f::Float64) = @printf(io, "%1.3f", f) #dumb way to control float output
verbose = false #verbose at the outer test level
verbose1 = false #verbose inside orth algos
@testset verbose = verbose "Orthogonalize" begin
models = [
[transIsing_MPO, "S=1/2", true],
[transIsing_AutoMPO, "S=1/2", true],
[Heisenberg_AutoMPO, "S=1/2", true],
[Heisenberg_AutoMPO, "S=1", true],
[Hubbard_AutoMPO, "Electron", false],
]
@testset "Ac/Ab block respecting decomposition $(model[1]), qns=$qns, ul=$ul" for model in
models,
qns in [false, true],
ul in [lower, upper]
eps = 1e-14
pre_fixed = model[3] #Hamiltonian starts gauge fixed
N = 10 #5 sites
NNN = 4 #Include 6nd nearest neighbour interactions
sites = siteinds(model[2], N; conserve_qns=qns)
Hrf = reg_form_MPO(model[1](sites, NNN; ul=ul))
state = [isodd(n) ? "Up" : "Dn" for n in 1:N]
psi = randomMPS(sites, state)
E0 = inner(psi', MPO(Hrf), psi)
@test is_regular_form(Hrf)
#
# Left->right sweep
#
lr = left
@test pre_fixed == is_gauge_fixed(Hrf)
NNN >= 7 && orthogonalize!(Hrf, right)
orthogonalize!(Hrf, left)
@test is_regular_form(Hrf)
@test check_ortho(Hrf, left)
@test isortho(Hrf, left)
NNN < 7 && @test is_gauge_fixed(Hrf) #Now everything should be fixed, unless NNN is big
#
# Expectation value check.
#
E1 = inner(psi', MPO(Hrf), psi)
@test E0 ≈ E1 atol = eps
#
# Right->left sweep
#
orthogonalize!(Hrf, right)
@test is_regular_form(Hrf)
@test check_ortho(Hrf, right)
@test isortho(Hrf, right)
@test is_gauge_fixed(Hrf) #Should still be gauge fixed
#
# # Expectation value check.
# #
E2 = inner(psi', MPO(Hrf), psi)
@test E0 ≈ E2 atol = eps
end
@testset "Ortho center options" for
N = 10 #5 sites
NNN = 4 #Include 4th nearest neighbour interactions
sites = siteinds("Electron", N; conserve_qns=false)
H=Hubbard_AutoMPO(sites, NNN)
for j=1:N
Hj=copy(H)
@test !check_ortho(Hj,left)
@test !check_ortho(Hj,right)
@test !isortho(Hj,left)
@test !isortho(Hj,right)
orthogonalize!(Hj,j)
for j1 in 1:j-1
@test check_ortho(Hj[j1],left,lower)
@test !check_ortho(Hj[j1],right,lower)
end
for j1 in j+1:N
@test !check_ortho(Hj[j1],left,lower)
@test check_ortho(Hj[j1],right,lower)
end
end
orthogonalize!(H,left)
for j=1:N
Hj=copy(H)
@test check_ortho(Hj,left)
@test !check_ortho(Hj,right)
@test isortho(Hj,left)
@test !isortho(Hj,right)
orthogonalize!(Hj,j)
for j1 in 1:j-1
@test check_ortho(Hj[j1],left,lower)
@test !check_ortho(Hj[j1],right,lower)
end
for j1 in j+1:N
@test !check_ortho(Hj[j1],left,lower)
@test check_ortho(Hj[j1],right,lower)
end
end
end
@testset "Compare Dws for Ac orthogonalized hand built MPO, vs Auto MPO, NNN=$NNN, ul=$ul, qns=$qns" for NNN in
[
1, 5, 8, 12
],
ul in [lower, upper],
qns in [false, true]
N = 2 * NNN + 4
sites = siteinds("S=1/2", N; conserve_qns=qns)
Hhand = reg_form_MPO(transIsing_MPO(sites, NNN; ul=ul))
Hauto = transIsing_AutoMPO(sites, NNN; ul=ul)
orthogonalize!(Hhand, right)
orthogonalize!(Hhand, left)
@test get_Dw(Hhand) == get_Dw(Hauto)
end
end
nothing
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 2356 | using ITensors
using ITensorMPOCompression
using Test
using Printf
include("hamiltonians/hamiltonians.jl")
import ITensorMPOCompression: sweep, ac_qx
#using Printf
#Base.show(io::IO, f::Float64) = @printf(io, "%1.3f", f)
#println("-----------Start--------------")
models = [
[transIsing_MPO, "S=1/2", true],
[transIsing_AutoMPO, "S=1/2", true],
[Heisenberg_AutoMPO, "S=1/2", true],
[Heisenberg_AutoMPO, "S=1", true],
[Hubbard_AutoMPO, "Electron", false],
]
@testset "Ac Block respecting QX decomposition $(model[1]), qns=$qns, ul=$ul, lr=$lr" for model in
models,
qns in [false, true],
ul in [lower, upper],
lr in [right, left]
N = 6
NNN = 4
model_kwargs = (hx=0.5, ul=ul)
eps = 1e-15
sites = siteinds(model[2], N)
pre_fixed = model[3] #Hamiltonian starts gauge fixed
#
# test lower triangular MPO
#
H = reg_form_MPO(model[1](sites, NNN))
rng = sweep(H, lr)
for n in rng
W = H[n]
@test is_regular_form(W)
W1, X, lq = ac_qx(W, lr; cutoff=1e-14)
@test pre_fixed == check_ortho(W1, lr;eps=eps)
end
end
@testset "QR,QL,LQ,RQ decomposition with rank revealing" begin
N = 10
NNN = 6
model_kwargs = (hx=0.5, ul=lower)
eps = 2e-15
rr_cutoff = 1e-15
sites = siteinds("SpinHalf", N)
#
# use lower tri MPO to get some zero pivots for QL and RQ.
#
H = transIsing_MPO(sites, NNN; model_kwargs...)
W = H[2]
r, c = parse_links(W)
Lind = noncommoninds(inds(W), c)
Rind = noncommoninds(inds(W), r)
@assert dim(c) == dim(r)
#
# use upper tri MPO to get some zero pivots for LQ and QR.
#
model_kwargs = (hx=0.5, ul=upper)
H = transIsing_MPO(sites, NNN; model_kwargs...)
W = H[2]
r, c = parse_links(W)
Lind = noncommoninds(inds(W), c)
Rind = noncommoninds(inds(W), r)
@assert dim(c) == dim(r)
#
# QR decomp
#
Q, R, iq = qr(W, Rind; positive=true, atol=rr_cutoff)
@test dim(c) - dim(iq) == 5 #make sure rank reduction worked.
@test Q * prime(Q, iq) ≈ δ(Float64, iq, iq') atol = eps
@test W ≈ R * Q atol = eps
#
# LQ decomp
#
L, Q, iq = lq(W, r; positive=true, atol=rr_cutoff)
@test dim(c) - dim(iq) == 5 #make sure rank reduction worked.
@test Q * prime(Q, iq) ≈ δ(Float64, iq, iq') atol = eps
@test W ≈ L * Q atol = eps
end
nothing
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 400 | using ITensors
using ITensorMPOCompression
using Test
using Revise
@testset "ITensorMPOCompression.jl" begin
@testset verbose = true "$filename" for filename in [
"blocking.jl",
"gauge_fix.jl",
"qx_unittests.jl",
"hamiltonians.jl",
"orthogonalize.jl",
"truncate.jl",
]
print("$filename: ")
@time include(filename)
end
end
nothing #suppress messy dump from Test
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 12009 | using ITensors
using ITensorMPOCompression
using Revise
using Test
using Printf
using Profile
include("hamiltonians/hamiltonians.jl")
using NDTensors: Diag, BlockSparse, tensor
#brute force method to control the default float display format.
Base.show(io::IO, f::Float64) = @printf(io, "%1.1e", f)
#
# We need consistent output from randomMPS in order to avoid flakey unit testset
# So we just pick any seed so that randomMPS (hopefull) gives us the same
# pseudo-random output for each test run.
#
using Random
Random.Random.seed!(12345);
ITensors.ITensors.disable_debug_checks()
verbose = false #verbose at the outer test level
verbose1 = false #verbose inside orth algos
@testset verbose = verbose "Truncate/Compress" begin
models = [
[transIsing_MPO, "S=1/2", true],
[transIsing_AutoMPO, "S=1/2", true],
[Heisenberg_AutoMPO, "S=1/2", true],
[Heisenberg_AutoMPO, "S=1", true],
[Hubbard_AutoMPO, "Electron", false],
]
@testset "Truncate/Compress MPO $(model[1]), qns=$qns, ul=$ul, lr=$lr" for model in
models,
qns in [false, true],
ul in [lower, upper],
lr in [left, right]
eps = 1e-14
pre_fixed = model[3] #Hamiltonian starts gauge fixed
N = 10 #5 sites
NNN = 4 #Include 6nd nearest neighbour interactions
sites = siteinds(model[2], N; conserve_qns=qns)
Hrf = reg_form_MPO(model[1](sites, NNN; ul=ul))
state = [isodd(n) ? "Up" : "Dn" for n in 1:N]
psi = randomMPS(sites, state)
E0 = inner(psi', MPO(Hrf), psi)
bs = truncate!(Hrf, lr)
@test is_regular_form(Hrf)
@test check_ortho(Hrf, lr)
@test is_gauge_fixed(Hrf) #Now everything should be fixed, unless NNN is big
#
# Expectation value check.
#
E1 = inner(psi', MPO(Hrf), psi)
@test E0 ≈ E1 atol = eps
end
# @testset "Test ground states" for qns in [false,true]
# eps=3e-13
# N=10
# NNN=5
# hx= qns ? 0.0 : 0.5
# sites = siteinds("SpinHalf", N;conserve_qns=qns)
# H=transIsing_MPO(sites,NNN;hx=hx)
# E0,psi0=fast_GS(H,sites)
# truncate!(H;verbose=verbose1,orth=left)
# E1,psi1=fast_GS(H,sites)
# overlap=abs(inner(psi0,psi1))
# RE=abs((E0-E1)/E0)
# if verbose
# @printf "Trans. Ising E0/N=%1.15f E1/N=%1.15f rel. error=%.1e overlap-1.0=%.1e \n" E0/(N-1) E1/(N-1) RE overlap-1.0
# end
# @test E0 ≈ E1 atol = eps
# @test overlap ≈ 1.0 atol = eps
# hx=0.0
# H=Heisenberg_AutoMPO(sites,NNN;hx=hx)
# E0,psi0=fast_GS(H,sites)
# truncate!(H;verbose=verbose1,orth=right)
# E1,psi1=fast_GS(H,sites)
# overlap=abs(inner(psi0,psi1))
# RE=abs((E0-E1)/E0)
# if verbose
# @printf "Heisenberg E0/N=%1.15f E1/N=%1.15f rel. error=%.1e overlap-1.0=%.1e \n" E0/(N-1) E1/(N-1) RE overlap-1.0
# end
# @test E0 ≈ E1 atol = eps
# @test overlap ≈ 1.0 atol = eps
# end
# @testset "Look at bond singular values for large lattices" begin
# NNN=5
# if verbose
# @printf " |------ max(sv) ----| min(sv)\n"
# @printf " N Dw left mid right mid\n"
# end
# for N in [6,8,10,12,18,20,40,80]
# sites = siteinds("SpinHalf", N)
# H=transIsing_MPO(sites,NNN;hx=0.5)
# specs=truncate!(H;verbose=verbose1,cutoff=1e-10)
# imid::Int64=div(N,2)
# max_1 =specs[1 ].eigs[1]
# max_mid=specs[imid].eigs[1]
# max_N =specs[N-1 ].eigs[1]
# min_mid=specs[imid].eigs[end]
# Dw=maximum(get_Dw(H))
# if verbose
# @printf "%4i %4i %1.5f %1.5f %1.5f %1.5f\n" N Dw max_1 max_mid max_N min_mid
# end
# @test (max_1-max_N)<1e-10
# @test max_mid<1.0
# end
# end
# @testset "Try a lattice with alternating S=1/2 and S=1 sites. MPO. Qns=$qns" for qns in [false,true]
# N=10
# NNN=4
# eps=1e-14
# sites = siteinds(n->isodd(n) ? "S=1/2" : "S=1",N; conserve_qns=qns)
# Ha=transIsing_AutoMPO(sites,NNN)
# H=transIsing_MPO(sites,NNN)
# #@show get_Dw(H)
# state=[isodd(n) ? "Up" : "Dn" for n=1:N]
# psi=randomMPS(sites,state)
# Ea=inner(psi',Ha,psi)
# E0=inner(psi',H,psi)
# @test E0 ≈ Ea atol = eps
# Ho=copy(H)
# orthogonalize!(Ho;verbose=verbose1,rr_cutoff=1e-12)
# #@show get_Dw(Ho)
# Eo=inner(psi',Ho,psi)
# @test E0 ≈ Eo atol = eps
# Ht=copy(H)
# ss=truncate!(Ht)
# #@show get_Dw(Ht)
# #@show ss
# Et=inner(psi',Ht,psi)
# #@show E0 Ea Eo Et E0-Eo E0-Et
# @test E0 ≈ Et atol = eps
# #
# # Run some GS calculations
# #
# #E0,psi0=fast_GS(H,sites) unreliable
# # All of these use and emperically determined number of sweeps to get full convergence
# # This model can easily get stuck in a false minimum.
# Ea,psia=fast_GS(Ha,sites,6)
# Eo,psio=fast_GS(Ho,sites,8)
# Et,psit=fast_GS(Ht,sites,7)
# #@show Ea Eo Et Ea-Eo Ea-Et
# E2a=inner(Ha,psia,Ha,psia)
# E2o=inner(Ho,psio,Ho,psio)
# E2t=inner(Ht,psit,Ht,psit)
# #@show E2a-Ea^2 E2o-Eo^2 E2t-Et^2
# @test E2a-Ea^2 ≈ 0.0 atol = eps
# @test E2o-Eo^2 ≈ 0.0 atol = eps
# @test E2t-Et^2 ≈ 0.0 atol = eps
# @test Ea ≈ Eo atol = eps
# @test Ea ≈ Et atol = eps
# end
# @testset "Try a lattice with alternating S=1/2 and S=1 sites. iMPO. Qns=$qns" for qns in [false,true]
# initstate(n) = isodd(n) ? "Dn" : "Up"
# ul=lower
# if verbose
# @printf " Dw Dw Dw \n"
# @printf " Ncell NNN uncomp. left right \n"
# end
# #
# # This one is tricky to set for QNs=true up due to QN flux constraints.
# # An Ncell=3 with S={1/2,1,1/2} seems to work.
# #
# for NNN in [2,4,6], N in [3] #
# si = infsiteinds(n->isodd(n) ? "S=1" : "S=1/2",N; initstate, conserve_qns=qns)
# H0=transIsing_iMPO(si,NNN;ul=ul)
# @test is_regular_form(H0)
# Dw0=Base.max(get_Dw(H0)...)
# #
# # Do truncate outputting left ortho Hamiltonian
# #
# HL=copy(H0)
# Ss,ss,HR=truncate!(HL;verbose=verbose1,orth=left)
# #@test typeof(storage(Ss[1])) == (qns ? BlockSparse{Float64, Vector{Float64}, 2} : Diag{Float64, Vector{Float64}})
# DwL=Base.max(get_Dw(HL)...)
# @test is_regular_form(HL)
# @test isortho(HL,left)
# @test check_ortho(HL,left)
# #
# # Now test guage relations using the diagonal singular value matrices
# # as the gauge transforms.
# #
# for n in 1:N
# @test norm(Ss[n-1]*HR[n]-HL[n]*Ss[n]) ≈ 0.0 atol = 1e-14
# end
# #
# # Do truncate from H0 outputting right ortho Hamiltonian
# #
# HR=copy(H0)
# Ss,ss,HL=truncate!(HR;verbose=verbose1,orth=right)
# #@test typeof(storage(Ss[1])) == (qns ? BlockSparse{Float64, Vector{Float64}, 2} : Diag{Float64, Vector{Float64}})
# DwR=Base.max(get_Dw(HR)...)
# @test is_regular_form(HR)
# @test isortho(HR,right)
# @test check_ortho(HR,right)
# for n in 1:N
# @test norm(Ss[n-1]*HR[n]-HL[n]*Ss[n]) ≈ 0.0 atol = 1e-14
# end
# if verbose
# @printf " %4i %4i %4i %4i %4i \n" N NNN Dw0 DwL DwR
# end
# end
# end
# @testset "Orthogonalize/truncate verify gauge invariace of <ψ|H|ψ>, ul=$ul, qbs=$qns" for ul in [lower,upper], qns in [false,true]
# initstate(n) = "↑"
# for N in [1], NNN in [2,4] #3 site unit cell fails for qns=true.
# svd_cutoff=1e-15 #Same as autoMPO uses.
# si = infsiteinds("S=1/2", N; initstate, conserve_szparity=qns)
# ψ = InfMPS(si, initstate)
# for n in 1:N
# ψ[n] = randomITensor(inds(ψ[n]))
# end
# H0=transIsing_iMPO(si,NNN;ul=ul)
# H0.llim=-1
# H0.rlim=1
# Hsum0=InfiniteSum{MPO}(H0,NNN)
# E0=expect(ψ,Hsum0)
# HL=copy(H0)
# orthogonalize!(HL;verbose=verbose1,orth=left)
# HsumL=InfiniteSum{MPO}(HL,NNN)
# EL=expect(ψ,HsumL)
# @test EL ≈ E0 atol = 1e-14
# HR=copy(HL)
# orthogonalize!(HR;verbose=verbose1,orth=right)
# HsumR=InfiniteSum{MPO}(HR,NNN)
# ER=expect(ψ,HsumR)
# @test ER ≈ E0 atol = 1e-14
# HL=copy(H0)
# truncate!(HL;verbose=verbose1,orth=left)
# HsumL=InfiniteSum{MPO}(HL,NNN)
# EL=expect(ψ,HsumL)
# @test EL ≈ E0 atol = 1e-14
# HR=copy(H0)
# truncate!(HR;verbose=verbose1,orth=right)
# HsumR=InfiniteSum{MPO}(HR,NNN)
# ER=expect(ψ,HsumR)
# @test ER ≈ E0 atol = 1e-14
# H=copy(H0)
# truncate!(H;verbose=verbose1)
# Hsum=InfiniteSum{MPO}(HR,NNN)
# E=expect(ψ,Hsum)
# @test E ≈ E0 atol = 1e-14
# #@show get_Dw(H0) get_Dw(HL) get_Dw(HR)
# end
# end
# Slow test, turn off if you are making big changes.
# @testset "Head to Head autoMPO with 2-body Hamiltonian ul=$ul, QNs=$qns" for ul in [lower,upper],qns in [false,true]
# for N in 3:15
# NNN=N-1#div(N,2)
# sites = siteinds("SpinHalf", N;conserve_qns=qns)
# Hauto=transIsing_AutoMPO(sites,NNN;ul=ul)
# Dw_auto=get_Dw(Hauto)
# Hr=transIsing_MPO(sites,NNN;ul=ul)
# truncate!(Hr;verbose=verbose1) #sweep left to right
# delta_Dw=sum(get_Dw(Hr)-Dw_auto)
# @test delta_Dw<=0
# if verbose && delta_Dw<0
# println("Compression beat AutoMPO by deltaDw=$delta_Dw for N=$N, NNN=$NNN,lr=right,ul=$ul,QNs=$qns")
# end
# if verbose && delta_Dw>0
# println("AutoMPO beat Compression by deltaDw=$delta_Dw for N=$N, NNN=$NNN,lr=right,ul=$ul,QNs=$qns")
# end
# end
# end
# Slow test, turn off if you are making big changes.
# @testset "Head to Head autoMPO with 3-body Hamiltonian" begin
# if verbose
# @printf "+-----+---------+--------------------+--------------------+\n"
# @printf "| |autoMPO | 1 truncation | 2 truncations |\n"
# @printf "| N | dE | dE RE Dw | dE RE Dw |\n"
# end
# eps=1e-15
# for N in [6,10,16,20,24]
# sites = siteinds("SpinHalf", N;conserve_qns=false)
# Hnot=three_body_AutoMPO(sites;cutoff=-1.0) #No truncation inside autoMPO
# H=three_body_AutoMPO(sites) #Truncated by autoMPO
# #@show get_Dw(Hnot)
# Dw_auto = get_Dw(H)
# psi=randomMPS(sites)
# Enot=inner(psi',Hnot,psi)
# E=inner(psi',H,psi)
# @test E ≈ Enot atol = sqrt(eps)
# truncate!(Hnot;verbose=verbose1,max_sweeps=1)
# Dw_1=get_Dw(Hnot)
# delta_Dw_1=sum(Dw_auto-Dw_1)
# Enott1=inner(psi',Hnot,psi)
# @test E ≈ Enott1 atol = sqrt(eps)
# RE1=abs(E-Enott1)/sqrt(eps)
# truncate!(Hnot;verbose=verbose1)
# Dw_2=get_Dw(Hnot)
# delta_Dw_2=sum(Dw_auto-Dw_2)
# Enott2=inner(psi',Hnot,psi)
# @test E ≈ Enott2 atol = sqrt(eps)
# RE2=abs(E-Enott2)/sqrt(eps)
# if verbose
# @printf "| %3i | %1.1e | %1.1e %1.3f %4i | %1.1e %1.3f %4i | \n" N abs(E-Enot) abs(E-Enott1) RE1 delta_Dw_1 abs(E-Enott2) RE2 delta_Dw_2
# end
# end
# end
end #@testset "Truncate/Compress"
nothing
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 12915 | import ITensorMPOCompression: parse_links, parse_site, G_transpose, @mpoc_assert, reg_form, assign!, slice, redim
@doc """
transIsing_MPO(sites,NNN;kwargs...)
Directly coded build up of a transverse Ising model Hamiltonian with up to `NNN` neighbour
2-body interactions. The interactions are hard coded to decay like `J/(i-j)`. between sites `i` and `j`.
# Arguments
- `sites` : Site set defining the lattice of sites.
- `NNN::Int64=1` : Number of neighbouring 2-body interactions to include in `H`
# Keywords
- `hx::Float64=0.0` : External magnetic field in `x` direction.
- `ul::reg_form=lower` : build H with `lower` or `upper` regular form.
- `J::Float64=1.0` : Nearest neighbour interaction strength. Further neighbours decay like `J/(i-j)`..
"""
function transIsing_MPO(sites, NNN::Int64;ul=lower,J=1.0,hx=0.0,pbc=false, kwargs...)::MPO
N = length(sites)
Dw::Int64 = transIsing_Dw(NNN)
use_qn::Bool = hasqns(sites[1])
mpo = MPO(N)
io = ul == lower ? ITensors.Out : ITensors.In
if pbc
prev_link = Ising_index(Dw, "Link,c=0,l=$(N)", use_qn, io)
else
prev_link = Ising_index(Dw, "Link,l=0", use_qn, io)
end
for n in 1:N
mpo[n] = transIsing_op(sites[n], prev_link, NNN, J, hx, ul, pbc)
prev_link = filterinds(mpo[n]; tags="Link,l=$n")[1]
end
if pbc
i0 = filterinds(mpo[1]; tags="Link,c=0,l=$(N)")[1]
i0 = replacetags(i0, "c=0", "c=1")
in = filterinds(mpo[N]; tags="Link,c=1,l=$(N)")[1]
mpo[N] = replaceind(mpo[N], in, i0)
end
if !pbc
mpo = to_openbc(mpo) #contract with l* and *r at the edges.
end
return mpo
end
# It turns out that the trans-Ising model
# Dw = 2+Sum(i,i=1..NNN) =2 + NNN*(NNN+1)/2
#
function transIsing_Dw(NNN::Int64)::Int64
return 2 + NNN * (NNN + 1) / 2
end
function Ising_index(Dw::Int64, tags::String, use_qn::Bool, dir)
if (use_qn)
if tags[1:4] == "Link"
qns = fill(QN("Sz", 0) => 1, Dw)
ind = Index(qns; dir=dir, tags=tags)
else
@mpoc_assert tags[1:4] == "Site"
ind = Index(QN("Sz", 1) => Dw; dir=dir, tags=tags)
end
else
ind = Index(Dw, tags)
end
return ind
end
# NNN = Number of Neighbours, for example
# NNN=1 corresponds to nearest neighbour
# NNN=2 corresponds to nearest and next nearest neighbour
function transIsing_op(
site::Index,
prev_link::Index,
NNN::Int64,
J::Float64,
hx::Float64=0.0,
ul::reg_form=lower,
pbc::Bool=false,
)::ITensor
@mpoc_assert NNN >= 1
do_field = hx != 0.0
Dw::Int64 = transIsing_Dw(NNN)
d, n, space = parse_site(site)
use_qn = hasqns(site)
r = dag(prev_link)
c = Ising_index(Dw, "Link,l=$n", use_qn, dir(prev_link))
if pbc
c = addtags(c, "c=1")
end
is = dag(site) #site seem to have the wrong direction!
W = ITensor(r, c, is, dag(is'))
Id = op(is, "Id")
Sz = op(is, "Sz")
if do_field
Sx = op(is, "Sx")
end
assign!(W, Id, r => 1, c => 1)
assign!(W, Id, r => Dw, c => Dw)
iblock = 1
if ul == lower
if do_field
assign!(W, hx * Sx, r => Dw, c => 1) #add field term
end
#very hard to explain this without a diagram.
for iNN in 1:NNN
assign!(W, Sz, r => iblock + 1, c => 1)
for jNN in 1:(iNN - 1)
assign!(W, Id, r => iblock + 1 + jNN, c => iblock + jNN)
end
Jn = J / (iNN) #interactions need to decay with distance in order for H to extensive
assign!(W, Jn * Sz, r => Dw, c => iblock + iNN)
iblock += iNN
end
else
if do_field
assign!(W, hx * Sx, r => 1, c => Dw) #add field term
end
#very hard to explain this without a diagram.
for iNN in 1:NNN
assign!(W, Sz, r => 1, c => iblock + 1)
for jNN in 1:(iNN - 1)
assign!(W, Id, r => iblock + jNN, c => iblock + 1 + jNN)
end
Jn = J / (iNN) #interactions need to decay with distance in order for H to extensive
assign!(W, Jn * Sz, r => iblock + iNN, c => Dw)
iblock += iNN
end
end
return W
end
#
# implement eq. E3 from the Parker paper.
#
# | I c1 c2 d1+d2 |
# W1+W2 = | 0 A1 0 b1 |
# | 0 0 A2 b2 |
# | 0 0 0 I |
# or
#
# | I 0 0 0 |
# W1+W2 = | b1 A1 0 0 |
# | b2 0 A2 0 |
# | d1+d2 c1 c2 I |
# χ
#
function add_ops(i1::ITensors.QNIndex,i2::ITensors.QNIndex)
qns=[space(i1)[1:end-1]...,space(i2)[2:end]...]
return Index(qns,tags=tags(l1),plev=plev(i1),dir=dir(i1))
end
function add_ops(i1::Index,i2::Index)
return Index(space(i1)+space(i2)-2,tags=tags(i1),plev=plev(i1),dir=dir(i1))
end
function add_ops(W1::ITensor, W2::ITensor)::ITensor
#@pprint(W1)
#@pprint(W2)
is1 = inds(W1; tags="Site", plev=0)[1]
is2 = inds(W2; tags="Site", plev=0)[1]
@mpoc_assert is1 == is2
l1, r1 = parse_links(W1)
l2, r2 = parse_links(W2)
@mpoc_assert tags(l1) == tags(l2)
@mpoc_assert tags(r1) == tags(r2)
χl1, χr1 = dim(l1) - 2, dim(r1) - 2
χl2, χr2 = dim(l2) - 2, dim(r2) - 2
χl, χr = χl1 + χl2, χr1 + χr2
l, r = add_ops(l1,l2), add_ops(r1,r2)
W = ITensor(0.0, l, r, is1, is1')
Id = slice(W1, l1 => 1, r1 => 1)
assign!(W, Id, l => 1, r => 1)
assign!(W, Id, l => χl + 2, r => χr + 2)
# d1+d2 block
d1 = slice(W1, l1 => χl1 + 2, r1 => 1)
d2 = slice(W2, l2 => χl2 + 2, r2 => 1)
assign!(W, d1 + d2, l => χl + 2, r => 1)
W[l => 2:(χl1 + 1), r => 1:1] = W1[l1 => 2:(χl1 + 1), r1 => 1:1] # b1 block
W[l => (χl1 + 2):(χl1 + χl2 + 1), r => 1:1] = W2[l2 => 2:(χl2 + 1), r2 => 1:1] # b2 block
W[l => (χl + 2):(χl + 2), r => 2:(χr1 + 1)] = W1[
l1 => (χl1 + 2):(χl1 + 2), r1 => 2:(χr1 + 1)
] # c1 block
W[l => (χl + 2):(χl + 2), r => (χr1 + 2):(χr1 + χr2 + 1)] = W2[
l2 => (χl2 + 2):(χl2 + 2), r2 => 2:(χr2 + 1)
] # c2 block
W[l => 2:(χl1 + 1), r => 2:(χr1 + 1)] = W1[l1 => 2:(χl1 + 1), r1 => 2:(χr1 + 1)] # A1 block
W[l => (χl1 + 2):(χl1 + χl2 + 1), r => (χr1 + 2):(χr1 + χr2 + 1)] = W2[
l2 => 2:(χl2 + 1), r2 => 2:(χr2 + 1)
] # A2 block
return W
end
function daisychain_links!(H::MPO; pbc=false)
N = length(H)
for n in 2:N
if pbc
ln = inds(H[n]; tags="c=0")[1]
replacetags!(H[n], "c=1", "c=$n")
else
ln = inds(H[n]; tags="l=0")[1]
replacetags!(H[n], "l=1", "l=$n")
end
l1, r1 = parse_links(H[n - 1])
#@show l1 r1 ln
#@show inds(H[n])
replaceind!(H[n], ln, r1)
#@show inds(H[n])
end
if pbc
i0 = filterinds(H[1]; tags="Link,c=0,l=$(N)")[1]
i0 = replacetags(i0, "c=0", "c=1")
in = filterinds(H[N]; tags="Link,c=1,l=$(N)")[1]
H[N] = replaceind(H[N], in, i0)
end
if !pbc
H = to_openbc(H) #contract with l* and *r at the edges.
end
end
# Add the W operator to each site and fix up all tags accordingly.
function addW!(sites, H, W)
N = length(sites)
H[1] = add_ops(H[1], W)
for n in 2:N
#@show inds(H[n])
iw1, iw2 = inds(W; tags="Link")
ih1, ih2 = inds(H[n]; tags="Link")
replacetags!(W, tags(iw2), tags(ih2))
replacetags!(W, tags(iw1), tags(ih1))
is = sites[n]
replaceinds!(W, inds(W; tags="Site"), (is, dag(is)'))
H[n] = add_ops(H[n], W)
end
end
function two_body_MPO(sites, NNN::Int64; pbc=false, Jprime=1.0, presummed=true, kwargs...)
N = length(sites)
H = MPO(N)
if pbc
l, r = Index(1, "Link,c=0,l=1"), Index(1, "Link,c=1,l=1")
else
l, r = Index(1, "Link,l=0"), Index(1, "Link,l=1")
end
ul = lower
H[1] = one_body_op(sites[1], l, r, ul; kwargs...)
for n in 2:N
H[n] = one_body_op(sites[n], l, r, ul; kwargs...)
end
W = H[1]
if Jprime != 0.0
if presummed
W = add_ops(W, two_body_sum(sites[1], l, r, NNN, ul; kwargs...))
else
for n in 1:NNN
W = add_ops(W, two_body_op(sites[1], l, r, n, ul; kwargs...))
end
end
end
addW!(sites, H, W)
daisychain_links!(H; kwargs...)
return H
end
function three_body_MPO(sites, NNN::Int64; pbc=false, Jprime=1.0, presummed=true, J=1.0, kwargs...)
N = length(sites)
H = MPO(N)
if pbc
l, r = Index(1, "Link,c=0,l=1"), Index(1, "Link,c=1,l=1")
else
l, r = Index(1, "Link,l=0"), Index(1, "Link,l=1")
end
ul = lower
H[1] = one_body_op(sites[1], l, r, ul; kwargs...)
for n in 2:N
H[n] = one_body_op(sites[n], l, r, ul; kwargs...)
end
W = H[1]
if Jprime != 0.0
if presummed
W = add_ops(W, two_body_sum(sites[1], l, r, NNN, ul; kwargs...))
else
for m in 1:NNN
W = add_ops(W, two_body_op(sites[1], l, r, m, ul; kwargs...))
end
end
end
if J != 0.0
for n in 2:NNN
for m in (n + 1):NNN
W = add_ops(W, three_body_op(sites[1], l, r, n, m, ul; kwargs...))
end
end
end
addW!(sites, H, W)
daisychain_links!(H; pbc=pbc)
H.llim,H.rlim=-1,1
return H
end
#
# d-block = Hx*Sx
#
function one_body_op(site::Index, r1::Index, c1::Index, ul::reg_form; hx=0.0, kwargs...)::ITensor
Dw::Int64 = 2
#d,n,space=parse_site(site)
#use_qn=hasqns(site)
r, c = redim(r1, Dw,0), redim(c1, Dw,0)
is = dag(site) #site seem to have the wrong direction!
W = ITensor(0.0, r, c, is, dag(is'))
Id = op(is, "Id")
assign!(W, Id, r => 1, c => 1)
assign!(W, Id, r => Dw, c => Dw)
if hx != 0.0
Sx = op(is, "Sx") #This will crash if Sz is a good QN
assign!(W, hx * Sx, r => Dw, c => 1)
end
return W
end
#
# J_1n * Z_1*Z_n
#
function two_body_op(
site::Index, r1::Index, c1::Index, n::Int64, ul::reg_form; Jprime=1.0, kwargs...
)::ITensor
@mpoc_assert n >= 1
Dw::Int64 = 2 + n
#d,n,space=parse_site(site)
#use_qn=hasqns(site)
r, c = redim(r1, Dw,0), redim(c1, Dw,0)
is = dag(site) #site seem to have the wrong direction!
W = ITensor(0.0, r, c, is, dag(is'))
Id = op(is, "Id")
Sz = op(is, "Sz")
assign!(W, Id, r => 1, c => 1)
assign!(W, Id, r => Dw, c => Dw)
Jn = Jprime / n^4 #interactions need to decay with distance in order for H to extensive
if ul == lower
assign!(W, Sz, r => 2, c => 1)
for j in 1:(n - 1)
assign!(W, Id, r => 2 + j, c => 1 + j)
end
assign!(W, Jn * Sz, r => Dw, c => Dw - 1)
else
assign!(W, Sz, r => 1, c => 2)
for j in 1:(n - 1)
assign!(W, Id, r => 1 + j, c => 2 + j)
end
assign!(W, Jn * Sz, r => Dw - 1, c => Dw)
end
return W
end
function two_body_sum(
site::Index, r1::Index, c1::Index, NNN::Int64, ul::reg_form;Jprime=1.0, kwargs...
)::ITensor
@mpoc_assert NNN >= 1
Dw::Int64 = 2 + NNN
#d,n,space=parse_site(site)
#use_qn=hasqns(site)
r, c = redim(r1, Dw,0), redim(c1, Dw,0)
is = dag(site) #site seem to have the wrong direction!
W = ITensor(0.0, r, c, is, dag(is'))
Id = op(is, "Id")
Sz = op(is, "Sz")
assign!(W, Id, r => 1, c => 1)
assign!(W, Id, r => Dw, c => Dw)
if ul == lower
assign!(W, Sz, r => Dw, c => Dw - 1)
else
assign!(W, Sz, r => Dw - 1, c => Dw)
end
for n in 1:NNN
Jn = Jprime / n^4 #interactions need to decay with distance in order for H to extensive
if ul == lower
assign!(W, Id, r => Dw - n, c => Dw - 1 - n)
assign!(W, Jn * Sz, r => Dw - n, c => 1)
else
assign!(W, Id, r => Dw - 1 - n, c => Dw - n)
assign!(W, Jn * Sz, r => 1, c => Dw - n)
end
end
return W
end
#
# J1n*Jnm * Z_1*Z_n*Z_m
#
function three_body_op(
site::Index, r1::Index, c1::Index, n::Int64, m::Int64, ul::reg_form; J=1.0, kwargs...
)::ITensor
@mpoc_assert n >= 1
@mpoc_assert m > n
W = two_body_op(site, r1, c1, m - 1, ul)
#@pprint(W)
r, c = inds(W; tags="Link")
Dw = dim(r)
Sz = op(dag(site), "Sz")
k = 1
Jkn = J / (n - k)^2
Jnm = J / (m - n)^2
#@show k,n,m,Jkn,Jnm
if ul == lower
assign!(W, Sz, r => 2 + n - k, c => 1 + n - k)
assign!(W, Jkn * Jnm * Sz, r => Dw, c => Dw - 1)
else
assign!(W, Sz, r => 1 + n - k, c => 2 + n - k)
assign!(W, Jkn * Jnm * Sz, r => Dw - 1, c => Dw)
end
return W
end
function to_openbc(mpo::MPO)::MPO
N = length(mpo)
l, r = get_lr(mpo)
mpo[1] = l * mpo[1]
mpo[N] = mpo[N] * r
@mpoc_assert length(filterinds(inds(mpo[1]); tags="Link")) == 1
@mpoc_assert length(filterinds(inds(mpo[N]); tags="Link")) == 1
return mpo
end
function get_lr(mpo::MPO)::Tuple{ITensor,ITensor}
ul::reg_form = is_regular_form(mpo, lower) ? lower : upper
N = length(mpo)
W1 = mpo[1]
llink = filterinds(inds(W1); tags="l=0")[1]
l = ITensor(0.0, dag(llink))
WN = mpo[N]
rlink = filterinds(inds(WN); tags="l=$N")[1]
r = ITensor(0.0, dag(rlink))
if ul == lower
l[llink => dim(llink)] = 1.0
r[rlink => 1] = 1.0
else
l[llink => 1] = 1.0
r[rlink => dim(rlink)] = 1.0
end
return l, r
end
function fast_GS(H::MPO, sites, nsweeps::Int64=5)::Tuple{Float64,MPS}
state = [isodd(n) ? "Up" : "Dn" for n in 1:length(sites)]
psi0 = randomMPS(sites, state)
sweeps = Sweeps(nsweeps)
setmaxdim!(sweeps, 2, 4, 8, 16, 32)
setcutoff!(sweeps, 1E-10)
#setnoise!(sweeps, 1e-6, 1e-7, 1e-8, 0.0)
E, psi = dmrg(H, psi0, sweeps; outputlevel=0)
return E, psi
end
include("hamiltonians_AutoMPO.jl")
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | code | 4764 |
@doc """
three_body_AutoMPO(sites;kwargs...)
Use `ITensor.autoMPO` to reproduce the 3 body Hamiltonian defined in eq. 34 of the Parker paper.
The MPO is returned in lower regular form.
# Arguments
- `sites` : Site set defining the lattice of sites.
# Keywords
- `hx::Float64 = 0.0` : External magnetic field in `x` direction.
"""
function three_body_AutoMPO(sites;hx=0.0, kwargs...)
N = length(sites)
os = OpSum()
if hx != 0
os = one_body(os, N, hx)
end
os = two_body(os, N; kwargs...)
os = three_body(os, N; kwargs...)
return MPO(os, sites; kwargs...)
end
function one_body(os::OpSum, N::Int64, hx::Float64=0.0)::OpSum
for n in 1:N
add!(os, hx, "Sx", n)
end
return os
end
function two_body(os::OpSum, N::Int64;Jprime=1.0, kwargs...)::OpSum
if Jprime != 0.0
for n in 1:N
for m in (n + 1):N
Jnm = Jprime / abs(n - m)^4
add!(os, Jnm, "Sz", n, "Sz", m)
# if heis
# add!(os, Jnm*0.5,"S+", n, "S-", m)
# add!(os, Jnm*0.5,"S-", n, "S+", m)
# end
end
end
end
return os
end
function three_body(os::OpSum, N::Int64; J=1.0, kwargs...)::OpSum
if J != 0.0
for k in 1:N
for n in (k + 1):N
Jkn = J / abs(n - k)^2
for m in (n + 1):N
Jnm = J / abs(m - n)^2
# if k==1
# @show k,n,m,Jkn,Jnm
# end
add!(os, Jnm * Jkn, "Sz", k, "Sz", n, "Sz", m)
end
end
end
end
return os
end
function to_upper!(H::ITensors.AbstractMPS)
N = length(H)
l, r = parse_links(H[1])
G = G_transpose(r, reverse(r))
H[1] = H[1] * G
for n in 2:(N - 1)
H[n] = dag(G) * H[n]
l, r = parse_links(H[n])
G = G_transpose(r, reverse(r))
H[n] = H[n] * G
end
return H[N] = dag(G) * H[N]
end
@doc """
transIsing_AutoMPO(sites,NNN;kwargs...)
Use `ITensor.autoMPO` to build up a transverse Ising model Hamiltonian with up to `NNN` neighbour 2-body
interactions. The interactions are hard coded to decay like `J/(i-j)`. between sites `i` and `j`.
The MPO is returned in lower regular form.
# Arguments
- `sites` : Site set defining the lattice of sites.
- `NNN::Int64` : Number of neighbouring 2-body interactions to include in `H`
# Keywords
- `hx::Float64 = 0.0` : External magnetic field in `x` direction.
- `J::Float64 = 1.0` : Nearest neighbour interaction strength. Further neighbours decay like `J/(i-j)`..
"""
function transIsing_AutoMPO(sites, NNN::Int64; ul=lower, J=1.0, hx=0.0, nexp=1,kwargs...)::MPO
do_field = hx != 0.0
N = length(sites)
ampo = OpSum()
if do_field
for j in 1:N
add!(ampo, hx, "Sx", j)
end
end
for dj in 1:NNN
f = J / dj^nexp
for j in 1:(N - dj)
add!(ampo, f, "Sz", j, "Sz", j + dj)
end
end
H = MPO(ampo, sites; kwargs...)
if ul == upper
to_upper!(H)
end
H.llim,H.rlim=-1,1
return H
end
function two_body_AutoMPO(sites, NNN::Int64; kwargs...)
return transIsing_AutoMPO(sites, NNN; kwargs...)
end
@doc """
Heisenberg_AutoMPO(sites,NNN;kwargs...)
Use `ITensor.autoMPO` to build up a Heisenberg model Hamiltonian with up to `NNN` neighbour
2-body interactions. The interactions are hard coded to decay like `J/(i-j)`. between sites `i` and `j`.
The MPO is returned in lower regular form.
# Arguments
- `sites` : Site set defining the lattice of sites.
- `NNN::Int64` : Number of neighbouring 2-body interactions to include in `H`
# Keywords
- `hz::Float64 = 0.0` : External magnetic field in `z` direction.
- `J::Float64 = 1.0` : Nearest neighbour interaction strength. Further neighbours decay like `J/(i-j)`.
"""
function Heisenberg_AutoMPO(sites, NNN::Int64;ul=lower,hz=0.0,J=1.0, kwargs...)::MPO
N = length(sites)
@mpoc_assert(N >= NNN)
@mpoc_assert(J!=0.0)
ampo = OpSum()
for j in 1:N
add!(ampo, hz, "Sz", j)
end
for dj in 1:NNN
f = J / dj
for j in 1:(N - dj)
add!(ampo, f, "Sz", j, "Sz", j + dj)
add!(ampo, f * 0.5, "S+", j, "S-", j + dj)
add!(ampo, f * 0.5, "S-", j, "S+", j + dj)
end
end
H = MPO(ampo, sites; kwargs...)
if ul == upper
to_upper!(H)
end
H.llim,H.rlim=-1,1
return H
end
function Hubbard_AutoMPO(sites, NNN::Int64; ul=lower, U=1.0,t=1.0,V=0.5, kwargs...)::MPO
N = length(sites)
@mpoc_assert(N >= NNN)
os = OpSum()
for i in 1:N
os += (U, "Nupdn", i)
end
for dn in 1:NNN
tj, Vj = t / dn, V / dn
for n in 1:(N - dn)
os += -tj, "Cdagup", n, "Cup", n + dn
os += -tj, "Cdagup", n + dn, "Cup", n
os += -tj, "Cdagdn", n, "Cdn", n + dn
os += -tj, "Cdagdn", n + dn, "Cdn", n
os += Vj, "Ntot", n, "Ntot", n + dn
end
end
H = MPO(os, sites; kwargs...)
if ul == upper
to_upper!(H)
end
H.llim,H.rlim=-1,1
return H
end
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | docs | 6215 | # ITensorMPOCompression
A package to enable block respecting compression of Matrix Product Operators (MPOs) for use with ITensors.jl.
Reference: *Daniel E. Parker, Xiangyu Cao, and Michael P. Zaletel Phys. Rev. B 102, 035147*
ITensors has built in support for generating MPOs from local operators. This framework is called `AutoMPO`. MPOs
generated by `AutoMPO` are already compressed, so you only need this package
if you:
1. Are using MPOs that are created by hand, outside the `AutoMPO` framework.
2. Want your MPO to be in orthogonal/canonical form.
3. Need to see the bond spectrums throughout the lattice.
Support for compression of infinite lattice MPOs (iMPOs) is in the ITensorInfiniteMPS package
which can be found [here](https://github.com/ITensor/ITensorInfiniteMPS.jl).
Technical notes on what this package does can be founs [here](https://github.com/JanReimers/ITensorMPOCompression.jl/blob/main/docs/TechnicalDetails.pdf)
## Installation
You can install this package through the Julia package manager:
```julia
julia> ] add ITensorMPOCompression
```
## Examples
Here are is an example of orthogonalizing an hand generated (not using AutoMPO) MPO
```julia
julia> using ITensors
julia> using ITensorMPOCompression
julia> include("../test/hamiltonians/hamiltonians.jl");
julia> N = 10; #10 sites
julia> NNN = 7; #Include up to 7th nearest neighbour interactions
julia> sites = siteinds("S=1/2", N);
julia> H = transIsing_MPO(sites, NNN);
julia> is_regular_form(H,lower) == true
true
julia> @show get_Dw(H); #Show bond dimensions
get_Dw(H) = [30, 30, 30, 30, 30, 30, 30, 30, 30]
julia> pprint(H[2]) #schematic view of operators at site #2
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0
0 S 0 S 0 0 S 0 0 0 S 0 0 0 0 S 0 0 0 0 0 S 0 0 0 0 0 0 S I
julia> orthogonalize!(H,left); #Orthogonalize into left canonical form. Also does rank reduction.
julia> orthogonalize!(H,right); #Orthogonalize into right canoncial form.
julia> pprint(H[2]) #Show vastly reduced matrix of operators at site #2
I 0 0 0
S S S 0
0 S 0 I
julia> @show get_Dw(H); #Show reduced bond dimensions
get_Dw(H) = [3, 4, 5, 6, 7, 6, 5, 4, 3]
julia> is_regular_form(H,lower) == true
true
julia> isortho(H, right) == true #looks at cached ortho center limits
true
julia> check_ortho(H,right) == true #Does the more expensive V*V_dagger==Id contraction and test
true
julia> pprint(H) #High level view of what is in the MPO.
n Dw1 Dw2 d Reg. Orth.
Form Form
1 1 3 2 L M
2 3 4 2 L R
3 4 5 2 L R
4 5 6 2 L R
5 6 7 2 L R
6 7 6 2 L R
7 6 5 2 L R
8 5 4 2 L R
9 4 3 2 L R
10 3 1 2 L B
```
Here are is an example of truncating an hand generated (not using AutoMPO) MPO
```julia
julia> using ITensors
julia> using ITensorMPOCompression
julia> include("../test/hamiltonians/hamiltonians.jl");
julia> N = 10; #10 sites
julia> NNN = 7; #Include up to 7th nearest neighbour interactions
julia> sites = siteinds("S=1/2", N);
julia> H = transIsing_MPO(sites, NNN);
julia> is_regular_form(H,lower) == true
true
julia> spectrums = truncate!(H,left);
julia> pprint(H[5])
I 0 0 0 0 0 0
S S S S S S 0
S S S S S S 0
S S S S S S 0
S S S S S S 0
0 S S S S S I
julia> @show get_Dw(H);
get_Dw(H) = [3, 4, 5, 6, 7, 6, 5, 4, 3]
julia> @show spectrums;
spectrums =
Bond Ns max(s) min(s) Entropy Tr. Error
1 1 0.30739 3.07e-01 0.22292 0.00e+00
2 2 0.35392 3.49e-02 0.26838 0.00e+00
3 3 0.37473 2.06e-02 0.29133 0.00e+00
4 4 0.38473 1.77e-02 0.30255 0.00e+00
5 5 0.38773 7.25e-04 0.30588 0.00e+00
6 4 0.38473 1.77e-02 0.30255 0.00e+00
7 3 0.37473 2.06e-02 0.29133 0.00e+00
8 2 0.35392 3.49e-02 0.26838 0.00e+00
9 1 0.30739 3.07e-01 0.22292 0.00e+00
julia> is_regular_form(H,lower) == true
true
julia> isortho(H, left) == true
true
julia> check_ortho(H, left) == true
true
```
## Generating this README
This file was generated with [weave.jl](https://github.com/JunoLab/Weave.jl) with the following commands:
```julia
using ITensorMPOCompression, Weave
weave(
joinpath(pkgdir(ITensorMPOCompression), "examples", "README.jl");
doctype="github",
out_path=pkgdir(ITensorMPOCompression),
)
```
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 0.3.1 | 58346ee4fd66739b207c9e69d4bd736b04a9c20e | docs | 5568 | # ITensorMPOCompression
ITensorMPOCompression is a Julia language module based in the [ITensors](https://itensor.org/) library. In general, compression of Hamiltonian MPOs must be treated differently than standard MPS compression. The root of the problem can be traced to the combination of both extensive and intensive degrees of freedom in Hamiltonian operators. If conventional compression methods are applied to Hamiltonian MPOs, one finds that two of the singular values will diverge as the lattice size increases, resulting in severe numerical instabilities.
The recent paper
> *Local Matrix Product Operators:Canonical Form, Compression, and Control Theory* Daniel E. Parker, Xiangyu Cao, and Michael P. Zaletel **Phys. Rev. B** 102, 035147
contains a number of important insights for the handling of finite and infinite lattice MPOs. They show that the intensive degrees of freedom can be isolated from the extensive ones. If one only compresses the intensive portions of the Hamiltonian then the divergent singular values are removed from the problem. This module attempts to implement the algorithms described in the *Parker et. al.* paper.
The techincal details are presented in a document provided with this module: [TechnicalDetails.pdf](../TechnicalDetails.pdf). A brief summary of the key functions of this module follows.
## Block respecting QX decomposition
### Finite MPO
A finite lattice MPO with *N* sites can expressed as
```math
\hat{H}=\hat{W}^{1}\hat{W}^{2}\hat{W}^{3}\cdots\hat{W}^{N-1}\hat{W}^{N}
```
where each ``\\\hat{W}^{n}`` is an operator-valued matrix on site *n*
### Regular Forms
MPOs must be in the so called regular form in order for orthogonalization and compression to succeed. These forms are defined as follows:
```math
\hat{W}_{upper}=\begin{bmatrix}\hat{\mathbb{I}} & \hat{\boldsymbol{c}} & \hat{d}\\
0 & \hat{\boldsymbol{A}} & \hat{\boldsymbol{b}}\\
0 & 0 & \hat{\mathbb{I}}
\end{bmatrix}
```
```math
\hat{W}_{lower}=\begin{bmatrix}\hat{\mathbb{I}} & 0 & 0\\
\hat{\boldsymbol{b}} & \hat{\boldsymbol{A}} & 0\\
\hat{d} & \hat{\boldsymbol{c}} & \hat{\mathbb{I}}
\end{bmatrix}
```
Where:
``\\\hat{\boldsymbol{b}}\quad and\quad\hat{\boldsymbol{c}}`` are operator-valued vectors and
``\\\hat{\boldsymbol{A}}`` is an operator-valued matrix which is *not nessecarily triangular*.
# Truncation (SVD compression)
Truncation (or compression) of an MPO starts with 2 orthogonalization sweeps using column pivoting, rank reducing QR decomposoitions. These sweeps will significantly reduce the bond dimensions of the MPO. A final sweep using SVD decomposition and compression of the internal degrees of freedom will then yield a bond spectrum at each bond site. The users can control the rank reduction and SVD compression using parameters described below.
```@docs
ITensorMPOCompression.truncate!
```
# Orthogonalization (Canonical forms)
Most users will not need to deal directly with orthogonalization, as the truncation routine will do this automaticlly. This is achieved by simply sweeping through the lattice and carrying out block respecting *QX* steps described in the technical notes. For left canoncical form one starts at the left and sweeps right, and the converse applies for right canonical form.
```@docs
ITensorMPOCompression.orthogonalize!
```
# Characterizations
The module has a number of functions for viewing and characterization of MPOs and operator-valued matrices.
## Regular forms
Regular forms are defined above in section [Regular Forms](@ref)
```@docs
ITensorMPOCompression.reg_form
detect_regular_form
is_regular_form
```
## Orthogonal forms
The definition of orthogonal forms for MPOs or operator-valued matrices are more complicated than those for MPSs. First we must define the inner product of two operator-valued matrices. For the case of orthogonal columns this looks like:
```math
\sum_{a}\left\langle \hat{W}_{ab}^{\dagger},\hat{W}_{ac}\right\rangle =\frac{\sum_{a}^{}Tr\left[\hat{W}_{ab}\hat{W}_{ac}\right]}{Tr\left[\hat{\mathbb{I}}\right]}=\delta_{bc}
```
Where the summation limits depend on where the V-block is for `left`/`right` and `lower`/`upper`. The specifics for all four cases are shown in table 6 in the [Technical Notes](../TechnicalDetails.pdf)
```@docs
ITensorMPOCompression.orth_type
ITensors.isortho
ITensorMPOCompression.check_ortho
```
# Some utility functions
One of the difficult aspects of working with operator-valued matrices is that they have four indices and if one just does a naive @show W to see what's in there, you see a voluminous output that is hard to read because of the default slicing selected by the @show overload. The pprint(W) (pretty print) function attempts to solve this problem by simply showing you where the zero, unit and other operators reside.
```@docs
pprint
```
# Test Hamiltonians
For development and demo purposes it is useful to have a quick way to make Hamiltonian
MPOs for various models. Right now we have four Hamiltonians available
1. Direct transverse Ising model with arbitrary neighbour 2-body interactions
2. autoMPO transverse Ising model with arbitrary neighbour 2-body interactions
3. autoMPO Heisenberg model with arbitrary neighbour 2-body interactions
4. The 3-body model in eq. 34 of the Parker paper, built with autoMPO.
The autoMPO MPOs come pre-truncated so they are not as useful for testing truncation. The automated truncation in AutoMPO can **partially** disabled by providing the the keyword argument `cutoff=-1.0` which gets passed down in the svd/truncate call used when building the MPO
| ITensorMPOCompression | https://github.com/JanReimers/ITensorMPOCompression.jl.git |
|
[
"MIT"
] | 1.3.1 | b6eb90a8a48763177796cb6944fec798ba482239 | code | 18920 | module MultiQuad
using QuadGK, Cuba, HCubature, Unitful, FastGaussQuadrature, LinearAlgebra, LRUCache, Base.Threads, ProgressMeter
export quad, dblquad, tplquad
function _quadgk_wrapper_1D(arg::Function, x1, x2; kwargs...)
return quadgk(arg, x1, x2; kwargs...)
end
function _cuba_wrapper_1D(arg::Function, x1, x2; method::Symbol, kwargs...)
if method == :suave
integrate = suave
elseif method == :vegas
integrate = vegas
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
units = unit(arg(x1)) * unit(x1)
arg2(a) = ustrip(units, (x2 - x1) * arg((x2 - x1) * a + x1))
function integrand(x, f)
f[1] = arg2(x[1])
end
result, err = integrate(integrand, 1, 1; kwargs...)
if units == Unitful.NoUnits
return result[1], err[1]
else
return (result[1], err[1]) .* units
end
end
#order, method, optional
function get_weights_fastgaussquadrature(order::Int, method::Symbol, optional::Real=NaN)
if method == :gausslegendre
xw = gausslegendre
return xw(order)
elseif method == :gausshermite
xw = gausshermite
return xw(order)
elseif method == :gausslaguerre
xw = gausslaguerre
if isnan(optional)
return xw(order)
else
α = optional
return xw(order, α)
end
elseif method == :gausschebyshev
xw = gausschebyshev
if isnan(optional)
return xw(order)
else
kind = optional
return xw(order, kind)
end
# elseif method == :gaussjacobi
# xw = gaussjacobi
# return xw(order)
elseif method == :gaussradau
xw = gaussradau
return xw(order)
elseif method == :gausslobatto
xw = gausslobatto
return xw(order)
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
end
const lru_xw_fastgaussquadrature = LRU{
Tuple{Int,Symbol,Real},
Tuple{Vector{Float64},Vector{Float64}},
}(maxsize=Int(1e5))
function get_weights_fastgaussquadrature_cached(order::Int, method::Symbol, optional::Real=NaN)
get!(lru_xw_fastgaussquadrature, (order, method, optional)) do
get_weights_fastgaussquadrature(order, method, optional)
end
end
function _fastgaussquadrature_wrapper_1D(arg::Function, x1, x2; method::Symbol, order::Int, multithreading::Bool=true, verbose::Bool=false, kwargs...)
if !(method in [:gausslegendre, :gausschebyshev, :gaussradau, :gausslobatto])
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
if haskey(kwargs, :α)
optional = kwargs[:α]
elseif haskey(kwargs, :kind)
optional = kwargs[:kind]
else
optional = NaN
end
x, w = get_weights_fastgaussquadrature_cached(order, method, optional)
b = x2
a = x1
b_a_2 = (b - a) / 2
a_plus_b_2 = (a + b) / 2
arg_gauss(x) = arg(b_a_2 * x + a_plus_b_2)
if verbose
p = Progress(order)
end
if multithreading && order - 1 > nthreads() && nthreads() > 1
tmp = arg_gauss(x[1])
knots = zeros(order) * unit(tmp)
knots[1] = tmp
if verbose
next!(p)
@threads for i in 2:order
knots[i] = arg_gauss(x[i])
next!(p)
end
else
@threads for i in 2:order
knots[i] = arg_gauss(x[i])
end
end
else
knots = arg_gauss.(x)
end
integral = b_a_2 * dot(w, knots)
return integral, NaN
end
function _fastgaussquadrature_wrapper_1D(arg::Function; method::Symbol, order::Int, multithreading::Bool=true, verbose::Bool=false, kwargs...)
if !(method in [:gausshermite, :gausslaguerre])
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
if haskey(kwargs, :α)
optional = kwargs[:α]
elseif haskey(kwargs, :kind)
optional = kwargs[:kind]
else
optional = NaN
end
x, w = get_weights_fastgaussquadrature_cached(order, method, optional)
if verbose
p = Progress(order)
end
if multithreading && order - 1 > nthreads() && nthreads() > 1
tmp = arg(x[1])
knots = zeros(order) * unit(tmp)
knots[1] = tmp
if verbose
next!(p)
@threads for i in 2:order
knots[i] = arg(x[i])
next!(p)
end
else
@threads for i in 2:order
knots[i] = arg(x[i])
end
end
else
knots = arg.(x)
end
integral = dot(w, knots)
return integral, NaN
end
@doc raw"""
quad(arg::Function, x1, x2[; method = :quadgk, oder=1000, multithreading=true, kwargs...])
Performs the integral ``\int_{x1}^{x2}f(x)dx``
Available integration methods:
- `:suave`
- `:vegas`
- `:quadgk`
There are several fixed order quadrature methods available based on [`FastGaussQuadrature`](https://github.com/JuliaApproximation/FastGaussQuadrature.jl)
- `:gausslegendre`
- `:gausshermite`
- `:gausslaguerre`
- `:gausschebyshev`
- `:gaussradau`
- `:gausslobatto`
If a specific integration routine is not needed, it is suggested to use `:quadgk` (the default option).
For highly oscillating integrals, it is advised to use `:gausslegendre`with a high order (~10000).
Please note that `:gausshermite` and `:gausslaguerre` are used to specific kind of integrals with infinite bounds.
For more informations on these integration techniques, please follow the official documentation [here](https://juliaapproximation.github.io/FastGaussQuadrature.jl/stable/gaussquadrature/).
See [QuadGK](https://github.com/JuliaMath/QuadGK.jl) and [Cuba.jl](https://giordano.github.io/Cuba.jl/stable/) for all the available keyword arguments.
# Examples
```jldoctest
using MultiQuad
func(x) = x^2*exp(-x)
quad(func, 0, 4) # equivalent to quad(func, 0, 4, method=:quadgk)
quad(func, 0, 4, method=:gausslegendre, order=1000)
# for certain kinds of integrals with infinite bounds, it may be possible to use a specific integration routine
func(x) = x^2*exp(-x)
quad(func, 0, Inf, method=:quadgk)[1]
# gausslaguerre computes the integral of f(x)*exp(-x) from 0 to infinity
quad(x -> x^4, method=:gausslaguerre, order=10000)[1]
```
`quad` can handle units of measurement through the [`Unitful`](https://github.com/PainterQubits/Unitful.jl) package:
```jldoctest
using Unitful
func(x) = x^2
integral, error = quad(func, 1u"m", 5u"m")
```
"""
function quad(arg::Function, x1, x2; method::Symbol=:quadgk, order::Int=1000, multithreading::Bool=true, verbose::Bool=false, kwargs...)
if method in [:suave, :vegas]
return _cuba_wrapper_1D(arg, x1, x2; method=method)
elseif method == :quadgk
return _quadgk_wrapper_1D(arg, x1, x2; kwargs...)
elseif method in [:gausslegendre, :gausschebyshev, :gaussradau, :gausslobatto]
return _fastgaussquadrature_wrapper_1D(arg, x1, x2; method=method, order=order, multithreading=multithreading, verbose=verbose, kwargs...)
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
end
@doc raw"""
quad(arg::Function; method[, oder=1000, kwargs...])
"""
function quad(arg::Function; method::Symbol, order::Int=1000, multithreading::Bool=true, verbose::Bool=false, kwargs...)
if method in [:gausshermite, :gausslaguerre]
return _fastgaussquadrature_wrapper_1D(arg; method=method, order=order, multithreading=multithreading, verbose=verbose, kwargs...)
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
end
function _cuba_wrapper_2D(arg::Function, x1, x2, y1::Function, y2::Function; method::Symbol, kwargs...)
if method == :cuhre
integrate = cuhre
elseif method == :divonne
integrate = divonne
elseif method == :suave
integrate = suave
elseif method == :vegas
integrate = vegas
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
units = unit(arg(y1(x1), x1)) * unit(x1) * unit(y1(x1))
arg1(a, x) = (y2(x) - y1(x)) * arg((y2(x) - y1(x)) * a + y1(x), x)
arg2(a, b) = ustrip(units, (x2 - x1) * arg1(a, (x2 - x1) * b + x1))
function integrand2(x, f)
f[1] = arg2(x[1], x[2])
end
result, err = integrate(integrand2, 2, 1; kwargs...)
if units == Unitful.NoUnits
return result[1], err[1]
else
return (result[1], err[1]) .* units
end
end
function _cuba_wrapper_2D(arg::Function, x1, x2, y1, y2; method::Symbol, kwargs...)
if method == :cuhre
integrate = cuhre
elseif method == :divonne
integrate = divonne
elseif method == :suave
integrate = suave
elseif method == :vegas
integrate = vegas
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
units = unit(arg(y1, x1)) * unit(x1) * unit(y1)
arg1(a, x) = (y2 - y1) * arg((y2 - y1) * a + y1, x)
arg2(a, b) = ustrip(units, (x2 - x1) * arg1(a, (x2 - x1) * b + x1))
function integrand2(x, f)
f[1] = arg2(x[1], x[2])
end
result, err = integrate(integrand2, 2, 1; kwargs...)
if units == Unitful.NoUnits
return result[1], err[1]
else
return (result[1], err[1]) .* units
end
end
function _hcubature_wrapper_2D(arg::Function, x1, x2, y1::Function, y2::Function; kwargs...)
units = unit(arg(y1(x1), x1)) * unit(x1) * unit(y1(x1))
arg1(a, x) = (y2(x) - y1(x)) * arg((y2(x) - y1(x)) * a + y1(x), x)
arg2(a, b) = ustrip(units, (x2 - x1) * arg1(a, (x2 - x1) * b + x1))
function integrand(arr)
return arg2(arr[1], arr[2])
end
min_arr = [0, 0]
max_arr = [1, 1]
result, err = hcubature(integrand, min_arr, max_arr; kwargs...)
if units == Unitful.NoUnits
return result[1], err[1]
else
return (result[1], err[1]) .* units
end
end
function _hcubature_wrapper_2D(arg::Function, x1, x2, y1, y2; kwargs...)
units = unit(arg(y1, x1)) * unit(x1) * unit(y1)
arg1(a, x) = (y2 - y1) * arg((y2 - y1) * a + y1, x)
arg2(a, b) = ustrip(units, (x2 - x1) * arg1(a, (x2 - x1) * b + x1))
function integrand(arr)
return arg2(arr[1], arr[2])
end
min_arr = [0, 0]
max_arr = [1, 1]
result, err = hcubature(integrand, min_arr, max_arr; kwargs...)
if units == Unitful.NoUnits
return result[1], err[1]
else
return (result[1], err[1]) .* units
end
end
@doc raw"""
dblquad(arg::Function, x1, x2, y1::Function, y2::Function; method = :cuhre, kwargs...)
Performs the integral ``\int_{x1}^{x2}\int_{y1(x)}^{y2(x)}f(y,x)dydx``
Available integration methods:
- `:cuhre`
- `:divonne`
- `:suave`
- `:vegas`
- `:hcubature`
See [Cuba.jl](https://giordano.github.io/Cuba.jl/stable/) for all the available keyword arguments fro the `:cuhre`, `:divonne`, `:suave` and `:vegas` methods.
See [HCubature](https://github.com/stevengj/HCubature.jl) for all the available keywords for the `:hcubature` method.
# Examples
```jldoctest
func(y,x) = sin(x)*y^2
integral, error = dblquad(func, 1, 2, x->0, x->x^2, rtol=1e-9)
```
`dblquad` can handle units of measurement through the [`Unitful`](https://github.com/PainterQubits/Unitful.jl) package:
```jldoctest
using Unitful
func(y,x) = x*y^2
integral, error = dblquad(func, 1u"m", 2u"m", x->0u"m^2", x->x^2, rtol=1e-9)
```
"""
function dblquad(
arg::Function,
x1,
x2,
y1::Function,
y2::Function;
method=:hcubature,
kwargs...
)
if method in [:cuhre, :divonne, :suave, :vegas]
return _cuba_wrapper_2D(arg, x1, x2, y1, y2; method=method)
elseif method == :hcubature
return _hcubature_wrapper_2D(arg, x1, x2, y1, y2; kwargs...)
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
end
function dblquad(
arg::Function,
x1,
x2,
y1,
y2;
method=:hcubature,
kwargs...
)
if method in [:cuhre, :divonne, :suave, :vegas]
return _cuba_wrapper_2D(arg, x1, x2, y1, y2; method=method)
elseif method == :hcubature
return _hcubature_wrapper_2D(arg, x1, x2, y1, y2; kwargs...)
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
end
function _cuba_wrapper_3D(arg::Function, x1, x2, y1::Function, y2::Function, z1::Function, z2::Function; method::Symbol, kwargs...)
if method == :cuhre
integrate = cuhre
elseif method == :divonne
integrate = divonne
elseif method == :suave
integrate = suave
elseif method == :vegas
integrate = vegas
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
units = unit(arg(z1(x1, y1(x1)), y1(x1), x1)) * unit(x1) * unit(y1(x1)) *
unit(z1(y1(x1), x1))
arg0(a, y, x) =
(z2(x, y) - z1(x, y)) * arg((z2(x, y) - z1(x, y)) * a + z1(x, y), y, x)
arg1(a, b, x) = (y2(x) - y1(x)) * arg0(a, (y2(x) - y1(x)) * b + y1(x), x)
arg2(a, b, c) =
ustrip(units, (x2 - x1) * arg1(a, b, (x2 - x1) * c + x1))
function integrand2(x, f)
f[1] = arg2(x[1], x[2], x[3])
end
result, err = integrate(integrand2, 3, 1; kwargs...)
if units == Unitful.NoUnits
return result[1], err[1]
else
return (result[1], err[1]) .* units
end
end
function _cuba_wrapper_3D(arg::Function, x1, x2, y1, y2, z1, z2; method::Symbol, kwargs...)
if method == :cuhre
integrate = cuhre
elseif method == :divonne
integrate = divonne
elseif method == :suave
integrate = suave
elseif method == :vegas
integrate = vegas
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
units = unit(arg(z1, y1, x1)) * unit(x1) * unit(y1) * unit(z1)
arg0(a, y, x) = (z2 - z1) * arg((z2 - z1) * a + z1, y, x)
arg1(a, b, x) = (y2 - y1) * arg0(a, (y2 - y1) * b + y1, x)
arg2(a, b, c) =
ustrip(units, (x2 - x1) * arg1(a, b, (x2 - x1) * c + x1))
function integrand2(x, f)
f[1] = arg2(x[1], x[2], x[3])
end
result, err = integrate(integrand2, 3, 1; kwargs...)
if units == Unitful.NoUnits
return result[1], err[1]
else
return (result[1], err[1]) .* units
end
end
function _hcubature_wrapper_3D(arg::Function, x1, x2, y1::Function, y2::Function, z1::Function, z2::Function; kwargs...)
units = unit(arg(z1(x1, y1(x1)), y1(x1), x1)) * unit(x1) * unit(y1(x1)) *
unit(z1(y1(x1), x1))
arg0(a, y, x) =
(z2(x, y) - z1(x, y)) * arg((z2(x, y) - z1(x, y)) * a + z1(x, y), y, x)
arg1(a, b, x) = (y2(x) - y1(x)) * arg0(a, (y2(x) - y1(x)) * b + y1(x), x)
arg2(a, b, c) =
ustrip(units, (x2 - x1) * arg1(a, b, (x2 - x1) * c + x1))
function integrand(arr)
return arg2(arr[1], arr[2], arr[3])
end
min_arr = [0, 0, 0]
max_arr = [1, 1, 1]
result, err = hcubature(integrand, min_arr, max_arr; kwargs...)
if units == Unitful.NoUnits
return result[1], err[1]
else
return (result[1], err[1]) .* units
end
end
function _hcubature_wrapper_3D(arg::Function, x1, x2, y1, y2, z1, z2; kwargs...)
units = unit(arg(z1, y1, x1)) * unit(x1) * unit(y1) * unit(z1)
arg0(a, y, x) = (z2 - z1) * arg((z2 - z1) * a + z1, y, x)
arg1(a, b, x) = (y2 - y1) * arg0(a, (y2 - y1) * b + y1, x)
arg2(a, b, c) =
ustrip(units, (x2 - x1) * arg1(a, b, (x2 - x1) * c + x1))
function integrand(arr)
return arg2(arr[1], arr[2], arr[3])
end
min_arr = [0, 0, 0]
max_arr = [1, 1, 1]
result, err = hcubature(integrand, min_arr, max_arr; kwargs...)
if units == Unitful.NoUnits
return result[1], err[1]
else
return (result[1], err[1]) .* units
end
end
@doc raw"""
tplquad(arg::Function, x1, x2, y1::Function, y2::Function, z1::Function, z2::Function; method = :cuhre, kwargs...)
Performs the integral ``\int_{x1}^{x2}\int_{y1(x)}^{y2(x)}\int_{z1(x,y)}^{z2(x,y)}f(z,y,x)dzdydx``
Available integration methods:
- `:cuhre`
- `:divonne`
- `:suave`
- `:vegas`
- `:hcubature`
See [Cuba.jl](https://giordano.github.io/Cuba.jl/stable/) for all the available keyword arguments fro the `:cuhre`, `:divonne`, `:suave` and `:vegas` methods.
See [HCubature](https://github.com/stevengj/HCubature.jl) for all the available keywords for the `:hcubature` method.
# Examples
```jldoctest
func(z,y,x) = sin(z)*y*x
integral, error = tplquad(func, 0, 4, x->x, x->x^2, (x,y)->2, (x,y)->3*x)
```
`tplquad` can handle units of measurement through the [`Unitful`](https://github.com/PainterQubits/Unitful.jl) package:
```jldoctest
using Unitful
func(z,y,x) = sin(z)*y*x
integral, error = tplquad(func, 0u"m", 4u"m", x->0u"m^2", x->x^2, (x,y)->0, (x,y)->3)
```
"""
function tplquad(
arg::Function,
x1,
x2,
y1::Function,
y2::Function,
z1::Function,
z2::Function;
method=:hcubature,
kwargs...
)
if method in [:cuhre, :divonne, :suave, :vegas]
return _cuba_wrapper_3D(arg, x1, x2, y1, y2, z1, z2; method=method, kwargs...)
elseif method == :hcubature
return _hcubature_wrapper_3D(arg, x1, x2, y1, y2, z1, z2; kwargs...)
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
end
function tplquad(
arg::Function,
x1,
x2,
y1,
y2,
z1,
z2;
method=:hcubature,
kwargs...
)
if method in [:cuhre, :divonne, :suave, :vegas]
return _cuba_wrapper_3D(arg, x1, x2, y1, y2, z1, z2; method=method, kwargs...)
elseif method == :hcubature
return _hcubature_wrapper_3D(arg, x1, x2, y1, y2, z1, z2; kwargs...)
else
ex = ErrorException("Integration method $method is not supported!")
throw(ex)
end
end
end # module
| MultiQuad | https://github.com/aurelio-amerio/MultiQuad.jl.git |
|
[
"MIT"
] | 1.3.1 | b6eb90a8a48763177796cb6944fec798ba482239 | code | 7562 | using MultiQuad, Test, Unitful
@testset "quad" begin
rtol = 1e-10
xmin = 0
xmax = 4
func1(x) = x^2 * exp(-x)
res = 2 - 26 / exp(4)
int, err = quad(func1, xmin, xmax, rtol = rtol)
@test isapprox(int, res, atol = err)
@test typeof(quad(
func1,
xmin,
xmax,
rtol = rtol,
method = :vegas,
)[1]) == Float64
@test typeof(quad(
func1,
xmin,
xmax,
rtol = rtol,
method = :suave,
)[1]) == Float64
xmin2 = 0 * u"m"
xmax2 = 4 * u"m"
func2(x) = x^2
res2 = 64 / 3
int2, err2 = quad(func2, xmin2, xmax2, rtol = rtol)
@test isapprox(int2, res2 * u"m^3", atol = err2)
@test typeof(quad(
func2,
xmin2,
xmax2,
rtol = rtol,
method = :vegas,
)[1]) == typeof(1.0 * u"m^3")
@test typeof(quad(
func2,
xmin2,
xmax2,
rtol = rtol,
method = :suave,
)[1]) == typeof(1.0 * u"m^3")
f(x) = x^4
@test quad(f, -1, 1, method=:gausslegendre, order=100000)[1] ≈ 2/5
@test quad(f, -1, 1, method=:gausslegendre, order=100000, multithreading=true)[1] ≈ 2/5
@test quad(f, -1, 1, method=:gausslegendre, order=100000, multithreading=true, verbose=true)[1] ≈ 2/5
@test quad(f, method=:gausshermite, order=10000)[1] ≈ 3(√π)/4
@test quad(f, method=:gausslaguerre, order=10000)[1] ≈ 24
@test quad(f, method=:gausslaguerre, order=3, α=1.0)[1] ≈ 120
@test quad(f, -1, 1, method=:gausschebyshev, order=3)[1] ≈ 3π/8
@test quad(f, -1, 1, method=:gausschebyshev, order=3, kind=1)[1] ≈ 3π/8
@test quad(f, -1, 1, method=:gausschebyshev, order=3, kind=2)[1] ≈ π/16
@test quad(f, -1, 1, method=:gausschebyshev, order=3, kind=3)[1] ≈ 3π/8
@test quad(f, -1, 1, method=:gausschebyshev, order=3, kind=4)[1] ≈ 3π/8
@test quad(f, -1, 1, method=:gaussradau, order=3)[1] ≈ 2/5
@test quad(f, -1, 1, method=:gausslobatto, order=4)[1] ≈ 2/5
@test_throws ErrorException quad(func1, 0, 4, method = :none)
end
@testset "dblquad" begin
rtol = 1e-10
xmin = 0
xmax = 4
ymin(x) = x^2
ymax(x) = x^3
func1(y, x) = y * x^3
res1 = 241664 / 5
int1, err1 = dblquad(
func1,
xmin,
xmax,
ymin,
ymax,
rtol = rtol,
method = :cuhre,
)
int1b, err1b = dblquad(
func1,
xmin,
xmax,
ymin,
ymax,
rtol = rtol,
method = :hcubature,
)
@test dblquad(
(y,x)->x*y,
0,
2,
0,
3,
rtol = rtol,
method = :hcubature,
)[1] ≈ 9
@test isapprox(int1, res1, atol = err1)
@test isapprox(int1b, res1, atol = err1b)
@test typeof(dblquad(
func1,
xmin,
xmax,
ymin,
ymax,
rtol = rtol,
method = :vegas,
)[1]) == Float64
@test typeof(dblquad(
func1,
xmin,
xmax,
ymin,
ymax,
rtol = rtol,
method = :suave,
)[1]) == Float64
@test typeof(dblquad(
func1,
xmin,
xmax,
ymin,
ymax,
rtol = rtol,
method = :divonne,
)[1]) == Float64
xmin2 = 0 * u"m"
xmax2 = 4 * u"m"
ymin2(x) = x^2 * u"m"
ymax2(x) = x^3
func2(y, x) = y * x^3
int2, err2 = dblquad(func2, xmin2, xmax2, ymin2, ymax2, rtol = rtol)
int2b, err2b = dblquad(
func2,
xmin2,
xmax2,
ymin2,
ymax2,
rtol = rtol,
method = :hcubature,
)
@test isapprox(int2, res1 * u"m^10", atol = err2)
@test isapprox(int2b, res1 * u"m^10", atol = err2b)
@test typeof(dblquad(
func2,
xmin2,
xmax2,
ymin2,
ymax2,
rtol = rtol,
method = :vegas,
)[1]) == typeof(1.0 * u"m^10")
@test typeof(dblquad(
func2,
xmin2,
xmax2,
ymin2,
ymax2,
rtol = rtol,
method = :suave,
)[1]) == typeof(1.0 * u"m^10")
@test typeof(dblquad(
func2,
xmin2,
xmax2,
ymin2,
ymax2,
rtol = rtol,
method = :divonne,
)[1]) == typeof(1.0 * u"m^10")
@test_throws ErrorException dblquad(
func1,
xmin,
xmax,
ymin,
ymax,
rtol = rtol,
method = :none,
)
end
@testset "tblquad" begin
rtol = 1e-10
xmin = 0
xmax = 4
ymin(x) = x^2
ymax(x) = x^3
zmin(x, y) = 3
zmax(x, y) = 4
func1(z, y, x) = y * x^3 * sin(z)
res = 241664 / 5 * (cos(3) - cos(4))
int1, err1 = tplquad(func1, xmin, xmax, ymin, ymax, zmin, zmax, rtol = rtol)
int1b, err1b = tplquad(
func1,
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
rtol = rtol,
method = :hcubature,
)
@test isapprox(int1, res, atol = err1)
@test isapprox(int1b, res, atol = err1b)
@test typeof(tplquad(
func1,
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
rtol = rtol,
method = :vegas,
)[1]) == Float64
@test typeof(tplquad(
func1,
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
rtol = rtol,
method = :suave,
)[1]) == Float64
@test tplquad(
(z,y,x)->x*y*z,
0,
2,
0,
2,
0,
3,
rtol = rtol,
method = :hcubature,
)[1] ≈ 18
@test typeof(tplquad(
func1,
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
rtol = rtol,
method = :divonne,
)[1]) == Float64
xmin2 = 0 * u"m"
xmax2 = 4 * u"m"
ymin2(x) = x^2 * u"m"
ymax2(x) = x^3
zmin2(x, y) = 3
zmax2(x, y) = 4
func2(z, y, x) = y * x^3 * sin(z)
int2, err2 = tplquad(
func2,
xmin2,
xmax2,
ymin2,
ymax2,
zmin2,
zmax2,
rtol = rtol,
)
int2b, err2b = tplquad(
func2,
xmin2,
xmax2,
ymin2,
ymax2,
zmin2,
zmax2,
rtol = rtol,
method = :hcubature,
)
@test isapprox(int2, res * u"m^10", atol = err2)
@test isapprox(int2b, res * u"m^10", atol = err2b)
@test typeof(tplquad(
func2,
xmin2,
xmax2,
ymin2,
ymax2,
zmin2,
zmax2,
rtol = rtol,
method = :vegas,
)[1]) == typeof(1.0 * u"m^10")
@test typeof(tplquad(
func2,
xmin2,
xmax2,
ymin2,
ymax2,
zmin2,
zmax2,
rtol = rtol,
method = :suave,
)[1]) == typeof(1.0 * u"m^10")
@test typeof(tplquad(
func2,
xmin2,
xmax2,
ymin2,
ymax2,
zmin2,
zmax2,
rtol = rtol,
method = :divonne,
)[1]) == typeof(1.0 * u"m^10")
@test_throws ErrorException tplquad(
func2,
xmin2,
xmax2,
ymin2,
ymax2,
zmin2,
zmax2,
rtol = rtol,
method = :none,
)[1]
end
| MultiQuad | https://github.com/aurelio-amerio/MultiQuad.jl.git |
|
[
"MIT"
] | 1.3.1 | b6eb90a8a48763177796cb6944fec798ba482239 | docs | 7390 | # MultiQuad.jl
[](https://github.com/aurelio-amerio/MultiQuad.jl/actions/workflows/CI.yml)
[](https://codecov.io/github/aurelio-amerio/MultiQuad.jl?branch=master)
**MultiQuad.jl** is a convenient interface to perform 1D, 2D and 3D numerical integrations.
It uses [QuadGK](https://github.com/JuliaMath/QuadGK.jl), [Cuba](https://github.com/giordano/Cuba.jl) and [HCubature](https://github.com/stevengj/HCubature.jl) as back-ends.
# Usage
## `quad`
```julia
quad(arg::Function, x1, x2; method = :quadgk, kwargs...)
```
It is possible to use `quad` to perform 1D integrals of the following kind:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_{x1}^{x2}f(x)dx" title="\int_{x1}^{x2}f(x)dx" />
The supported adaptive integration methods are:
- `:quadgk`
- `:vegas`
- `:suave`
There are several fixed order quadrature methods available based on [`FastGaussQuadrature`](https://github.com/JuliaApproximation/FastGaussQuadrature.jl)
- `:gausslegendre`
- `:gausshermite`
- `:gausslaguerre`
- `:gausschebyshev`
- `:gaussradau`
- `:gausslobatto`
If a specific integration routine is not needed, it is suggested to use `:quadgk` (the default option).
For highly oscillating integrals, it is advised to use `:gausslegendre`with a high order (~10000).
Please note that `:gausshermite` and `:gausslaguerre` are used to specific kind of integrals with infinite bounds.
For more informations on these integration techniques, please follow the official documentation [here](https://juliaapproximation.github.io/FastGaussQuadrature.jl/stable/gaussquadrature/).
While using fixed order quadrature methods, it is possible to use multithreading to compute the 1D quadrature, by passing the keyword argument `mutithreading=true` to `quad`. If the forseen integration time is long, it is also possible to display a progress bar by passing the keyword argument `verbose=true`.
See [QuadGK](https://github.com/JuliaMath/QuadGK.jl) and [Cuba.jl](https://giordano.github.io/Cuba.jl/stable/) for all the available keyword arguments.
### Example 1
Compute:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_{0}^{4}&space;x^2e^{-x}dx" title="\int_{0}^{4} x^2e^{-x}dx" />
```julia
using MultiQuad
func(x) = x^2*exp(-x)
quad(func, 0, 4) # equivalent to quad(func, 0, 4, method=:quadgk)
quad(func, 0, 4, method=:gausslegendre, order=1000)
# or add a progress bar and use multithreading
quad(func, 0, 4, method=:gausslegendre, order=10000, multithreading=true, verbose=true)
# for certain kinds of integrals with infinite bounds, it may be possible to use a specific integration routine
func(x) = x^2*exp(-x)
quad(func, 0, Inf, method=:quadgk)[1]
# gausslaguerre computes the integral of f(x)*exp(-x) from 0 to infinity
quad(x -> x^2, method=:gausslaguerre, order=10000)[1]
```
### Example 2
It is possible to compute integrals with unit of measurement using `Unitful`.
For example, let's compute:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_{0&space;m}^{5&space;m}&space;x^2e^{-x}dx" title="\int_{0 m}^{5 m} x^2e^{-x}dx" />
```julia
using MultiQuad
using Unitful
func(x) = x^2
quad(func, 1u"m", 5u"m")
```
## `dblquad`
```julia
dblquad(arg::Function, x1, x2, y1::Function, y2::Function; method = :cuhre, kwargs...)
dblquad(arg::Function, x1, x2, y1, y2; method = :cuhre, kwargs...)
```
It is possible to use `dblquad` to perform 2D integrals of the following kind:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_{x1}^{x2}dx\int_{y1(x)}^{y2(x)}dyf(y,x)" title="\int_{x1}^{x2}dx\int_{y1(x)}^{y2(x)}dyf(y,x)" />
The supported integration method are:
- `hcubature` (default)
- `:cuhre`
- `:vegas`
- `:suave`
- `:divonne`
It is suggested to use `:hcubature` (the default option).
See [Cuba.jl](https://giordano.github.io/Cuba.jl/stable/) and [HCubature](https://github.com/stevengj/HCubature.jl) for all the available keyword arguments.
### Example 1
Compute:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_1^2&space;dx&space;\int_{0}^{x^2}dy&space;\sin(x)&space;y^2" title="\int_1^2 dx \int_{0}^{x^2}dy \sin(x) y^2" />
```julia
using MultiQuad
func(y,x) = sin(x)*y^2
integral, error = dblquad(func, 1, 2, x->0, x->x^2, rtol=1e-9)
```
### Example 2
It is possible to compute integrals with unit of measurement using `Unitful`.
For example, let's compute:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_{1m}^{2m}dx\int_{0m^2}^{x^2}&space;dy&space;\,&space;x&space;y^2" title="\int_{1m}^{2m}dx\int_{0m^2}^{x^2} dy \, x y^2" />
```julia
using MultiQuad
using Unitful
func(y,x) = sin(x)*y^2
integral, error = dblquad(func, 1u"m", 2u"m", x->0u"m^2", x->x^2, rtol=1e-9)
```
### Example 3
Compute:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_1^2&space;dx&space;\int_{0}^{4}dy&space;\sin(x)&space;y^2" title="\int_1^2 dx \int_{0}^{4}dy \sin(x) y^2" />
```julia
using MultiQuad
func(y,x) = sin(x)*y^2
integral, error = dblquad(func, 1, 2, 0, 4, rtol=1e-9)
```
## `tplquad`
```julia
tplquad(arg::Function, x1, x2, y1::Function, y2::Function, z1::Function, z2::Function; method = :cuhre, kwargs...)
```
It is possible to use `quad` to perform 3D integrals of the following kind:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_{x1}^{x2}dx\int_{y1(x)}^{y2(x)}dy\int_{z1(x,y)}^{z2(x,y)}dz&space;\,&space;f(z,y,x)" title="\int_{x1}^{x2}dx\int_{y1(x)}^{y2(x)}dy\int_{z1(x,y)}^{z2(x,y)}dz \, f(z,y,x)" />
The supported integration method are:
- `:cuhre` (default)
- `:vegas`
- `:suave`
- `:divonne`
It is suggested to use `:cuhre` (the default option)
See [Cuba.jl](https://giordano.github.io/Cuba.jl/stable/) for all the available keyword arguments.
### Example 1
Compute:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_{0}^{4}dx\int_{x}^{x^2}dy\int_{2}^{3x}dz\sin(z)&space;\,&space;x&space;\,&space;y" title="\int_{0}^{4}dx\int_{x}^{x^2}dy\int_{2}^{3x}dz\sin(z) \, x \, y" />
```julia
using MultiQuad
func(z,y,x) = sin(z)*y*x
integral, error = tplquad(func, 0, 4, x->x, x->x^2, (x,y)->2, (x,y)->3*x)
```
### Example 2
It is possible to compute integrals with unit of measurement using `Unitful`.
For example, let's compute:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_{0m}^{4m}dx\int_{0m^2}^{x^2}dy\int_{0}^{3}dz\sin(z)&space;\,&space;x&space;\,&space;y" title="\int_{0m}^{4m}dx\int_{0m^2}^{x^2}dy\int_{0}^{3}dz\sin(z) \, x \, y" />
```julia
using MultiQuad
using Unitful
func(z,y,x) = sin(z)*y*x
integral, error = tplquad(func, 0u"m", 4u"m", x->0u"m^2", x->x^2, (x,y)->0, (x,y)->3)
```
### Example 3
Compute:
<img src="https://latex.codecogs.com/png.latex?\dpi{150}&space;\int_{0}^{4}dx\int_{x}^{2}dy\int_{2}^{3}dz\sin(z)&space;\,&space;x&space;\,&space;y" title="\int_{0}^{4}dx\int_{1}^{2}dy\int_{2}^{3}dz\sin(z) \, x \, y" />
```julia
using MultiQuad
func(z,y,x) = sin(z)*y*x
integral, error = tplquad(func, 0, 4, 1, 2, 2, 3)
```
| MultiQuad | https://github.com/aurelio-amerio/MultiQuad.jl.git |
|
[
"MIT"
] | 0.2.2 | 5500d6ddb814a60ecebbb204edd196107e258e54 | code | 3424 | module TarIterators
export TarIterator
using Tar
using BoundedStreams
struct TarIterator{T,F<:Function}
stream::T
filter::F
closestream::Bool
end
"""
TarIterator(io[, predicate])
Iterator over an input stream open for reading. `io` may also be pathname of an existing
tar file. The data in the stream or file must obey the `tar` file format understood by
package `Tar`.
If `predicate` is given, only tar elements with matching header data are processed.
* `String` or `Regex`: `predicate` is applied to the element names.
* `Symbol`: it must coincide with field `type` of `Tar.Header`.
* boolean function: it is applied to the `Tar.Header` of the elements.
* `Tuple`: AND of all predicates contained in tuple
* `Vector`: OR of all predicates contained in vector
Examples:
```
io = open("/tmp/abc.tar")
TarIterator(io) # all entries
TarIterator(io, :file) # all entries of file type
TarIterator(io, "y") # only entry with name "y"
TarIterator(io, r".*[.]txt") # all entries with name ending in ".txt"
TarIterator(io, h -> h.size > 100) # only entries with data size > 100
```
"""
function TarIterator(source::T, a::F=nothing; close_stream::Bool=false) where {T,F}
TarIterator(source, selector(a), close_stream)
end
function TarIterator(file::AbstractString, f=nothing; close_stream::Bool=false)
TarIterator(open(file), f, close_stream=close_stream)
end
function Base.iterate(ti::TarIterator, status=nothing)
stream = ti.stream
status !== nothing && close(status)
h = Tar.read_header(stream)
while h !== nothing
s = align(h.size)
if ti.filter(h)
closeop = ti.closestream ? BoundedStreams.CLOSE : s
io = BoundedInputStream(stream, h.size, close=closeop)
return (h, io), io
end
skip(stream, s)
h = Tar.read_header(stream)
end
nothing
end
# align to TAR block size
align(pos::Integer) = mod(-pos, 512) + pos
# predicates processing
selector(f::Function) = f
selector(a::Tuple) = function AND(h::Tar.Header)
for f in a
if !selector(f)(h)
return false
end
end
true
end
selector(a::AbstractVector) = function OR(h::Tar.Header)
for f in a
if selector(f)(h)
return true
end
end
false
end
selector(a::Union{AbstractString,Nothing,Symbol,Regex}) = h::Tar.Header -> predicate(h, a)
predicate(h::Tar.Header, ::Nothing) = true
predicate(h::Tar.Header, a::AbstractString) = h.path == a
predicate(h::Tar.Header, s::Symbol) = h.type == s
function predicate(h::Tar.Header, r::Regex)
fn = h.path
m = match(r, fn)
m !== nothing && m.match == fn
end
"""
open(ti::TarIterator)::BoundedInputStream
Skip to the first entry in tar stream according to predicates of `ti` and return
an open input stream, which allows to read data part of this entry.
"""
function Base.open(ti::TarIterator)
s = iterate(ti)
s === nothing && throw(EOFError())
s[1][2]
end
"""
open(ti::TarIterator) do h, io; ... end
Process all tar entries selected by `ti` and provide `h::Tar.Header` and
`io::BoundedInputStream` to the called function.
"""
function Base.open(f::Function, ti::TarIterator)
for (h, io) in ti
f(h, io)
end
end
Base.close(ti::TarIterator) = close(ti.stream)
Base.seekstart(ti::TarIterator) = seekstart(ti.stream)
end # module
| TarIterators | https://github.com/KlausC/TarIterators.jl.git |
|
[
"MIT"
] | 0.2.2 | 5500d6ddb814a60ecebbb204edd196107e258e54 | code | 167 |
using Test
using TarIterators
using BoundedStreams
using Tar
using CodecZlib
using TranscodingStreams
@testset "TarIterators" begin include("tariterators.jl"); end
| TarIterators | https://github.com/KlausC/TarIterators.jl.git |
|
[
"MIT"
] | 0.2.2 | 5500d6ddb814a60ecebbb204edd196107e258e54 | code | 2040 | # setup test file
dir = mkpath(abspath(@__FILE__, "..", "data", "ball"))
cd(dir)
mkpath("sub")
mkpath("empty")
for (fn, size) in (("a", 10), ("b", 100), ("c", 0), ("d", 3)), sub in ("", "sub",)
open(joinpath(sub, fn * ".dat"), "w") do io
write(io, fn^size)
end
end
cd(abspath(dir, ".."))
tarfile = "test.tar"
run(`sh -c "tar -cf $tarfile ball"`)
run(`sh -c "gzip <$tarfile >$tarfile.gz"`)
function opener(file::AbstractString, f=nothing; close_stream::Bool=false)
source = open(file)
if endswith(file, ".tar.gz") || endswith(file, ".tgz")
source = GzipDecompressorStream(source)
end
TarIterator(source, f, close_stream=close_stream)
end
@testset "reading all elements of $tarfile" for tarfile = (tarfile, tarfile*".gz")
ti = opener(tarfile)
@test ti !== nothing
s = iterate(ti)
@test s isa Tuple
(h, io), st = s
@test h isa Tar.Header
@test io isa BoundedInputStream
@test h.type == :directory
@test h.path == "ball/"
@test close(ti) === nothing
ti = opener(tarfile)
@test open(ti) isa BoundedInputStream
seekstart(ti)
res1 = Any[]
for (h, io) in ti
push!(res1, h)
push!(res1, read(io, String))
end
@test length(res1) == 22
seekstart(ti)
res2 = Any[]
open(ti) do h, io
push!(res2, h)
push!(res2, read(io, String))
end
@test length(res2) == 22
@test res1 == res2
end
@testset "iterations predicate $p" for (p,m) in [(nothing, 11),
("ball/b.dat", 1),
(r"^ball/(|.*/)a\.dat", 2),
(:file, 8),
(h->h.type == :file, 8),
((:file, h->h.size>10), 2),
([:directory, h->h.size>10], 5)]
n = 0
open(TarIterator(tarfile, p)) do h, io
n += 1
end
@test n == m
end
| TarIterators | https://github.com/KlausC/TarIterators.jl.git |
|
[
"MIT"
] | 0.2.2 | 5500d6ddb814a60ecebbb204edd196107e258e54 | docs | 1648 | # TarIterators.jl
[![Build Status][gha-img]][gha-url] [![Coverage Status][codecov-img]][codecov-url]
The `TarIterators` package can read from individual elements of POSIX TAR archives ("tarballs") as specified in [POSIX 1003.1-2001](https://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html).
## API & Usage
The public API of `TarIterators` includes only standard functions and one type:
* `TarIterator` — struct representing a file stream opened for reading a TAR file, may be restricted by predicates
* `iterate` — deliver pairs of `Tar.header` and `BoundedInputStream` for each element
* `close` - close wrapped stream
* `open` - deliver `BoundedInputStream` for the next element of tar file or process all elements in a loop
* `seekstart` - reset input to start
### Usage Example
```julia
using TarIterators
ti = TarIterator("/tmp/AB.tar", :file)
for (h, io) in ti
x = read(io, String)
println(x)
end
# reset to start
seekstart(ti)
# or equivalently
open(ti) do h, io
x = read(io, String)
println(x)
end
using CodecZlib
cio = GzipDecompressorStream(open("/tmp/AB.tar.gz"))
# process first file named "B"
io = open(TarIterator(cio, "B", close_stream=true))
x = read(io, 10)
close(io) # cio is closed implicitly
```
[gha-img]: https://github.com/KlausC/TarIterators.jl/workflows/CI/badge.svg
[gha-url]: https://github.com/KlausC/TarIterators.jl/actions?query=workflow%3ACI
[codecov-img]: https://codecov.io/gh/KlausC/TarIterators.jl/branch/master/graph/badge.svg
[codecov-url]: https://codecov.io/gh/KlausC/TarIterators.jl
| TarIterators | https://github.com/KlausC/TarIterators.jl.git |
|
[
"MIT"
] | 2.1.1 | a9327ceb1e062f3b080ac368e7ce86c15a3499d0 | code | 302 | module ContrastiveDivergenceRBM
using Optimisers: AbstractRule, setup, update!, Adam
using RestrictedBoltzmannMachines: RBM, moments_from_samples, sample_from_inputs,
zerosum!, rescale_weights!, infinite_minibatches, sample_v_from_v,
∂free_energy, ∂regularize!
include("cd.jl")
end # module
| ContrastiveDivergenceRBM | https://github.com/cossio/ContrastiveDivergenceRBM.jl.git |
|
[
"MIT"
] | 2.1.1 | a9327ceb1e062f3b080ac368e7ce86c15a3499d0 | code | 1983 | """
cd!(rbm, data)
Trains the RBM on data using Contrastive divergence.
"""
function cd!(
rbm::RBM,
data::AbstractArray;
batchsize::Int = 1,
iters::Int = 1, # number of gradient updates
steps::Int = 1, # MC steps to update fantasy chains
optim::AbstractRule = Adam(), # optimizer rule
moments = moments_from_samples(rbm.visible, data), # sufficient statistics for visible layer
# regularization
l2_fields::Real = 0, # visible fields L2 regularization
l1_weights::Real = 0, # weights L1 regularization
l2_weights::Real = 0, # weights L2 regularization
l2l1_weights::Real = 0, # weights L2/L1 regularization
# gauge
zerosum::Bool = true, # zerosum gauge for Potts layers
rescale::Bool = true, # normalize weights to unit norm (for continuous hidden units only)
callback = Returns(nothing), # called for every batch
shuffle::Bool = true,
# parameters to optimize
ps = (; visible = rbm.visible.par, hidden = rbm.hidden.par, w = rbm.w),
state = setup(optim, ps) # initialize optimiser state
)
@assert size(data) == (size(rbm.visible)..., size(data)[end])
# gauge constraints
zerosum && zerosum!(rbm)
rescale && rescale_weights!(rbm)
for (iter, (vd,)) in zip(1:iters, infinite_minibatches(data; batchsize, shuffle))
# fantasy chains, sampled from the data
vm = sample_v_from_v(rbm, vd; steps)
# compute gradient
∂d = ∂free_energy(rbm, vd; moments)
∂m = ∂free_energy(rbm, vm)
∂ = ∂d - ∂m
# weight decay
∂regularize!(∂, rbm; l2_fields, l1_weights, l2_weights, l2l1_weights, zerosum)
# feed gradient to Optimiser rule
gs = (; visible = ∂.visible, hidden = ∂.hidden, w = ∂.w)
state, ps = update!(state, ps, gs)
# reset gauge
rescale && rescale_weights!(rbm)
zerosum && zerosum!(rbm)
callback(; rbm, optim, iter, vm, vd, ∂)
end
return state, ps
end
| ContrastiveDivergenceRBM | https://github.com/cossio/ContrastiveDivergenceRBM.jl.git |
|
[
"MIT"
] | 2.1.1 | a9327ceb1e062f3b080ac368e7ce86c15a3499d0 | code | 172 | import Aqua
import ContrastiveDivergenceRBM
using Test: @testset
@testset verbose = true "aqua" begin
Aqua.test_all(ContrastiveDivergenceRBM; ambiguities = false)
end
| ContrastiveDivergenceRBM | https://github.com/cossio/ContrastiveDivergenceRBM.jl.git |
|
[
"MIT"
] | 2.1.1 | a9327ceb1e062f3b080ac368e7ce86c15a3499d0 | code | 706 | using Test: @test
using LinearAlgebra: svd
using RestrictedBoltzmannMachines: RBM, Spin
using Optimisers: Adam
using ContrastiveDivergenceRBM: cd!
N = 500
M = 300
K = 5
rbm = RBM(Spin((N,)), Spin((M,)), randn(N, M) / √N)
v = sign.(randn(N, K))
train_data = repeat(v, 1, 100)
niter = 1000
save_sv_every = 100
_myiter = 0
sv_history = zeros(length(rbm.hidden), niter ÷ save_sv_every)
function callback(; rbm, kw...)
rbm.visible.θ .= 0
rbm.hidden.θ .= 0
global _myiter += 1
if _myiter % save_sv_every == 0
sv_history[:, _myiter ÷ save_sv_every] .= svd(rbm.w).S
end
end
cd!(rbm, train_data; iters=niter, batchsize=128, callback, l2_weights=0.001, steps=10, optim=Adam(0.0001))
| ContrastiveDivergenceRBM | https://github.com/cossio/ContrastiveDivergenceRBM.jl.git |
|
[
"MIT"
] | 2.1.1 | a9327ceb1e062f3b080ac368e7ce86c15a3499d0 | code | 78 | module aqua_tests include("aqua.jl") end
module cd_tests include("cd.jl") end
| ContrastiveDivergenceRBM | https://github.com/cossio/ContrastiveDivergenceRBM.jl.git |
Subsets and Splits