licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
3397
""" function chain(X, arr::Array{L,1}) where {L<:Layer} Returns the input `Layer` and the output `Layer` from an `Array` of layers and the input of the model as and `Array` `X` """ function chain(X, arr::Array{L,1}) where {L<:Layer} if ! (arr[1] isa Input) X_Input = Input(X) end for l=1:length(arr) if l==1 if ! isa(arr[l],Input) X = arr[l](X_Input) else X_Input = X = arr[l](X) end else X = arr[l](X) end end #for return X_Input, X end export chain """ connect with the previous layer """ function (l::FCLayer)(li_1::Layer) l.prevLayer = li_1 if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end l.inputS = li_1.outputS l.outputS = (l.channels, li_1.outputS[2]) return l end #function (l::FCLayer)(li_1::Layer) function (l::Activation)(li_1::Layer) l.prevLayer = li_1 l.channels = li_1.channels l.inputS = l.outputS = li_1.outputS if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end return l end function (l::Flatten)(li_1::Layer) l.prevLayer = li_1 l.inputS = li_1.outputS l.channels = prod(l.inputS[1:end-1]) l.outputS = (l.channels, l.inputS[end]) if !(l in li_1.nextLayers) push!(li_1.nextLayers, l) end return l end function (l::BatchNorm)(li_1::Layer) l.prevLayer = li_1 l.channels = li_1.channels N = length(li_1.outputS) if l.dim >= N throw(DimensionMismatch("Normalization Dimension must be less than $N")) end l.inputS = l.outputS = li_1.outputS if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end return l end #function (l::BatchNorm) function (l::ConcatLayer)(ls::Array{L,1}) where {L<:Layer} for li in ls if !in(li,l.prevLayer) push!(l.prevLayer, li) end if !in(l, li.nextLayers) push!(li.nextLayers, l) end end #for l.inputS = ls[1].outputS l.channels = sum(li.channels for li in ls) l.LSlice[l.prevLayer[1]] = 1:l.prevLayer[1].channels for i=2:length(l.prevLayer) l.LSlice[l.prevLayer[i]] = (l.prevLayer[i-1].channels+1) : (l.prevLayer[i-1].channels+l.prevLayer[i].channels) end l.outputS = (l.inputS[1:end-2]...,l.channels,l.inputS[end]) return l end #function (l::AddLayer)(li::Array{Layer,1}) function (l::AddLayer)(ls::Array{L,1}) where {L<:Layer} for li in ls if !in(li,l.prevLayer) push!(l.prevLayer, li) end if !in(l, li.nextLayers) push!(li.nextLayers, l) end end #for l.inputS = l.outputS = ls[1].outputS l.channels = ls[1].channels return l end #function (l::AddLayer)(li::Array{Layer,1}) """ define input as X """ function (l::FCLayer)(x::Array) l.prevLayer = nothing return l end #function (l::FCLayer)(x::Array) function (l::Conv1D)(x::Array) l.prevLayer = nothing return l end function (l::Conv2D)(x::Array) l.prevLayer = nothing return l end function (l::Conv3D)(x::Array) l.prevLayer = nothing return l end function (l::Input)(X::AbstractArray{T,N}) where {T,N} l.A = X channels = size(X)[end-1] l.channels = channels return l end #function (l::Input)(X::AbstractArray{T,N}) export l
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
11235
""" flatten 2D matrix into (m*n, 1) matrix mainly used for images to flatten images inputs: x := 3D (rgp, m, n) matrix outputs: y := 2D (rgp*m*n, 1) matrix """ function flatten(x) rgp, n, m = size(x) return reshape(x, (rgp*m*n, 1)) end """ perform the forward propagation using input: x := (n0, m) matrix y := (c, m) matrix where c is the number of classes return cache of A, Z, Yhat, Cost """ function forwardProp(X::Matrix{T}, Y::Matrix{T}, model::Model) where {T} W::AbstractArray{Matrix{T},1}, B::AbstractArray{Matrix{T},1}, layers::AbstractArray{Layer,1}, lossFun = model.W, model.B, model.layers, model.lossFun regulization = model.regulization λ = model.λ m = size(X)[2] c = size(Y)[1] L = length(layers) A = Vector{Matrix{eltype(X)}}() Z = Vector{Matrix{eltype(X)}}() push!(Z, W[1]*X .+ B[1]) actFun = layers[1].actFun push!(A, eval(:($actFun.($Z[1])))) for l=2:L push!(Z, W[l]*A[l-1] .+ B[l]) actFun = layers[l].actFun if isequal(actFun, :softmax) a = Matrix{eltype(X)}(undef, c, 0) for i=1:m zCol = Z[l][:,i] a = hcat(a, eval(:($(actFun)($zCol)))) end push!(A, a) else push!(A, eval(:($(actFun).($Z[$l])))) end end if isequal(lossFun, :categoricalCrossentropy) cost = sum(eval(:($lossFun.($A[$L], $Y))))/ m else cost = sum(eval(:($lossFun.($A[$L], $Y)))) / (m*c) end if regulization > 0 cost += (λ/2m) * sum([norm(w, regulization) for w in W]) end return Dict("A"=>A, "Z"=>Z, "Yhat"=>A[L], "Cost"=>cost) end #forwardProp # export forwardProp """ predict Y using the model and the input X and the labels Y inputs: model := the trained model X := the input matrix Y := the input labels to compare with output: a Dict of "Yhat" := the predicted values "Yhat_bools" := the predicted labels "accuracy" := the accuracy of the predicted labels """ function predict(model::Model, X, Y) Ŷ = forwardProp(X, Y, model)["Yhat"] T = eltype(Ŷ) layers = model.layers c, m = size(Y) # if isbool(Y) acc = 0 if isequal(layers[end].actFun, :softmax) Ŷ_bool = BitArray(undef, c, 0) p = Progress(size(Ŷ)[2], 0.01) for v in eachcol(Ŷ) Ŷ_bool = hcat(Ŷ_bool, v .== maximum(v)) next!(p) end acc = sum([Ŷ_bool[:,i] == Y[:,i] for i=1:size(Y)[2]])/m println("Accuracy is = $acc") end if isequal(layers[end].actFun, :σ) Ŷ_bool = BitArray(undef, c, 0) p = Progress(size(Ŷ)[2], 0.01) for v in eachcol(Ŷ) Ŷ_bool = hcat(Ŷ_bool, v .> T(0.5)) next!(p) end acc = sum(Ŷ_bool .== Y)/(c*m) println("Accuracy is = $acc") end return Dict("Yhat"=>Ŷ, "Yhat_bool"=>Ŷ_bool, "accuracy"=>acc) end #predict function backProp(X,Y, model::Model, cache::Dict{}) layers::AbstractArray{Layer, 1} = model.layers lossFun = model.lossFun m = size(X)[2] L = length(layers) A, Z = cache["A"], cache["Z"] W, B, regulization, λ = model.W, model.B, model.regulization, model.λ D = [rand(size(A[i])...) .< layers[i].keepProb for i=1:L] if layers[L].keepProb < 1.0 #to save time of multiplication in case keepProb was one A = [A[i] .* D[i] for i=1:L] A = [A[i] ./ layers[i].keepProb for i=1:L] end # init all Arrays dA = Vector{Matrix{eltype(A[1])}}([similar(mat) for mat in A]) dZ = Vector{Matrix{eltype(Z[1])}}([similar(mat) for mat in Z]) dW = Vector{Matrix{eltype(W[1])}}([similar(mat) for mat in W]) dB = Vector{Matrix{eltype(B[1])}}([similar(mat) for mat in B]) dlossFun = Symbol("d",lossFun) actFun = layers[L].actFun if ! isequal(actFun, :softmax) && !(actFun==:σ && lossFun==:binaryCrossentropy) dA[L] = eval(:($dlossFun.($A[$L], $Y))) #.* eval(:($dActFun.(Z[L]))) end if layers[L].keepProb < 1.0 #to save time of multiplication in case keepProb was one dA[L] = dA[L] .* D[L] dA[L] = dA[L] ./ layers[L].keepProb end for l=L:-1:2 actFun = layers[l].actFun dActFun = Symbol("d",actFun) if l==L && (isequal(actFun, :softmax) || (actFun==:σ && lossFun==:binaryCrossentropy)) dZ[l] = A[l] .- Y else dZ[l] = dA[l] .* eval(:($dActFun.($Z[$l]))) end dW[l] = dZ[l]*A[l-1]' ./m if regulization > 0 if regulization==1 dW[l] .+= (λ/2m) else dW[l] .+= (λ/m) .* W[l] end end dB[l] = 1/m .* sum(dZ[l], dims=2) dA[l-1] = W[l]'dZ[l] if layers[l-1].keepProb < 1.0 #to save time of multiplication in case keepProb was one dA[l-1] = dA[l-1] .* D[l-1] dA[l-1] = dA[l-1] ./ layers[l-1].keepProb end end l=1 #shortcut cause I just copied from the for loop actFun = layers[l].actFun dActFun = Symbol("d",actFun) dZ[l] = dA[l] .* eval(:($dActFun.($Z[$l]))) dW[l] = 1/m .* dZ[l]*X' #where X = A[0] if regulization > 0 if regulization==1 dW[l] .+= (λ/2m) else dW[l] .+= (λ/m) .* W[l] end end dB[l] = 1/m .* sum(dZ[l], dims=2) grads = Dict("dW"=>dW, "dB"=>dB) return grads end #backProp function updateParams(model::Model, grads::Dict, tMiniBatch::Integer) W, B, V, S, layers = model.W, model.B, model.V, model.S, model.layers optimizer = model.optimizer dW, dB = grads["dW"], grads["dB"] L = length(layers) α = model.α β1, β2, ϵAdam = model.β1, model.β2, model.ϵAdam #initialize the needed variables to hold the corrected values #it is being init here cause these are not needed elsewhere VCorrected, SCorrected = deepInitVS(W,B,optimizer) if optimizer==:adam || optimizer==:momentum for i=1:L V[:dw][i] .= β1 .* V[:dw][i] .+ (1-β1) .* dW[i] V[:db][i] .= β1 .* V[:db][i] .+ (1-β1) .* dB[i] ##correcting VCorrected[:dw][i] .= V[:dw][i] ./ (1-β1^tMiniBatch) VCorrected[:db][i] .= V[:db][i] ./ (1-β1^tMiniBatch) if optimizer==:adam S[:dw][i] .= β2 .* S[:dw][i] .+ (1-β2) .* (dW[i].^2) S[:db][i] .= β2 .* S[:db][i] .+ (1-β2) .* (dB[i].^2) ##correcting SCorrected[:dw][i] .= S[:dw][i] ./ (1-β2^tMiniBatch) SCorrected[:db][i] .= S[:db][i] ./ (1-β2^tMiniBatch) ##update parameters with adam W[i] .-= (α .* (VCorrected[:dw][i] ./ (sqrt.(SCorrected[:dw][i]) .+ ϵAdam))) B[i] .-= (α .* (VCorrected[:db][i] ./ (sqrt.(SCorrected[:db][i]) .+ ϵAdam))) else#if optimizer==:momentum W[i] .-= (α .* VCorrected[:dw][i]) B[i] .-= (α .* VCorrected[:db][i]) end #if optimizer==:adam end #for i=1:L else W .-= (α .* dW) B .-= (α .* dB) end #if optimizer==:adam || optimizer==:momentum return W, B end #updateParams function updateParams!(model::Model, grads::Dict, tMiniBatch::Integer) W, B, V, S, layers = model.W, model.B, model.V, model.S, model.layers optimizer = model.optimizer dW, dB = grads["dW"], grads["dB"] L = length(layers) α = model.α β1, β2, ϵAdam = model.β1, model.β2, model.ϵAdam #initialize the needed variables to hold the corrected values #it is being init here cause these are not needed elsewhere VCorrected, SCorrected = deepInitVS(W,B,optimizer) if optimizer==:adam || optimizer==:momentum for i=1:L V[:dw][i] .= β1 .* V[:dw][i] .+ (1-β1) .* dW[i] V[:db][i] .= β1 .* V[:db][i] .+ (1-β1) .* dB[i] ##correcting VCorrected[:dw][i] .= V[:dw][i] ./ (1-β1^tMiniBatch) VCorrected[:db][i] .= V[:db][i] ./ (1-β1^tMiniBatch) if optimizer==:adam S[:dw][i] .= β2 .* S[:dw][i] .+ (1-β2) .* (dW[i].^2) S[:db][i] .= β2 .* S[:db][i] .+ (1-β2) .* (dB[i].^2) ##correcting SCorrected[:dw][i] .= S[:dw][i] ./ (1-β2^tMiniBatch) SCorrected[:db][i] .= S[:db][i] ./ (1-β2^tMiniBatch) ##update parameters with adam W[i] .-= (α .* (VCorrected[:dw][i] ./ (sqrt.(SCorrected[:dw][i]) .+ ϵAdam))) B[i] .-= (α .* (VCorrected[:db][i] ./ (sqrt.(SCorrected[:db][i]) .+ ϵAdam))) else#if optimizer==:momentum W[i] .-= (α .* VCorrected[:dw][i]) B[i] .-= (α .* VCorrected[:db][i]) end #if optimizer==:adam end #for i=1:L else W .-= (α .* dW) B .-= (α .* dB) end #if optimizer==:adam || optimizer==:momentum model.W, model.B = W, B return end #updateParams! function updateParams!(model::Model, cLayer::Layer, cnt::Integer = -1; tMiniBatch::Integer = 1) optimizer = model.optimizer α = model.α β1, β2, ϵAdam = model.β1, model.β2, model.ϵAdam if cLayer.updateCount >= cnt return nothing end #if cLayer.updateCount >= cnt cLayer.updateCount += 1 #initialize the needed variables to hold the corrected values #it is being init here cause these are not needed elsewhere VCorrected = Dict(:dw=>similar(cLayer.dW), :db=>similar(cLayer.dB)) SCorrected = Dict(:dw=>similar(cLayer.dW), :db=>similar(cLayer.dB)) if optimizer==:adam || optimizer==:momentum cLayer.V[:dw] .= β1 .* cLayer.V[:dw] .+ (1-β1) .* cLayer.dW cLayer.V[:db] .= β1 .* cLayer.V[:db] .+ (1-β1) .* cLayer.dB ##correcting VCorrected[:dw] .= cLayer.V[:dw] ./ (1-β1^tMiniBatch) VCorrected[:db] .= cLayer.V[:db] ./ (1-β1^tMiniBatch) if optimizer==:adam cLayer.S[:dw] .= β2 .* cLayer.S[:dw] .+ (1-β2) .* (cLayer.dW.^2) cLayer.S[:db] .= β2 .* cLayer.S[:db] .+ (1-β2) .* (cLayer.dB.^2) ##correcting SCorrected[:dw] .= cLayer.S[:dw] ./ (1-β2^tMiniBatch) SCorrected[:db] .= cLayer.S[:db] ./ (1-β2^tMiniBatch) ##update parameters with adam cLayer.W .-= (α .* (VCorrected[:dw] ./ (sqrt.(SCorrected[:dw]) .+ ϵAdam))) cLayer.B .-= (α .* (VCorrected[:db] ./ (sqrt.(SCorrected[:db]) .+ ϵAdam))) else#if optimizer==:momentum cLayer.W .-= (α .* VCorrected[:dw]) cLayer.B .-= (α .* VCorrected[:db]) end #if optimizer==:adam else cLayer.W .-= (α .* cLayer.dW) cLayer.B .-= (α .* cLayer.dB) end #if optimizer==:adam || optimizer==:momentum return nothing end #updateParams!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
315
""" This file holds all the includes commands for easier test and dev purpose """ include("TypeDef.jl") include("lossFuns.jl") include("actFuns.jl") include("initializations.jl") include("cnn/includes.jl") # include("backForProp.jl") include("parallelBackForProp.jl") include("assistance.jl") include("chain.jl")
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
6578
### single layer initWB #TODO create initializers dependent for each method """ initialize W and B for layer with inputs of size of (nl_1) and layer size of (nl) returns: W: of size of (nl, nl_1) """ function initWB!( cLayer::FCLayer, p::Type{T} = Float64::Type{Float64}; He = true, coef = 0.01, zro = false, ) where {T} s = (cLayer.channels, cLayer.prevLayer.channels) if He coef = sqrt(2 / s[end]) end if zro W = zeros(T, s...) else W = T.(randn(s...) .* coef) end B = zeros(T, (s[1], 1)) cLayer.W, cLayer.B = W, B cLayer.dW = zeros(T, s...) cLayer.dB = deepcopy(B) return nothing end #initWB function initWB!( cLayer::Activation, p::Type{T} = Float64::Type{Float64}; He = true, coef = 0.01, zro = false, ) where {T} return nothing end function initWB!( cLayer::Flatten, p::Type{T} = Float64::Type{Float64}; He = true, coef = 0.01, zro = false, ) where {T} return nothing end function initWB!( cLayer::ConcatLayer, p::Type{T} = Float64::Type{Float64}; He = true, coef = 0.01, zro = false, ) where {T} return nothing end function initWB!( cLayer::Input, p::Type{T} = Float64::Type{Float64}; He = true, coef = 0.01, zro = false, ) where {T} # cLayer.inputS = cLayer.outputS = size(cLayer.A) return nothing end function initWB!( cLayer::BatchNorm, p::Type{T} = Float64::Type{Float64}; He = true, coef = 0.01, zro = false, ) where {T} cn = cLayer.prevLayer.channels if He coef = sqrt(2 / cn) end N = length(cLayer.prevLayer.inputS) normDim = cLayer.dim #bring the batch size into front S = (cLayer.prevLayer.outputS[end], cLayer.prevLayer.outputS[1:end-1]...) paramS = Array{Integer,1}([1]) for i=2:N if S[i] < 1 || (i-1) <= normDim push!(paramS, 1) else push!(paramS, S[i]) end #if S[i] < 1 end #for if !zro W = T.(randn(paramS...) .* coef) else W = zeros(T, paramS...) end if !(size(cLayer.W) == size(W)) cLayer.W = W cLayer.dW = zeros(T, paramS...) cLayer.B = zeros(T, paramS...) cLayer.dB = zeros(T, paramS...) end #if !(size(cLayer.W) == size(W)) return nothing end #function initWB!(cLayer::BatchNorm export initWB! ### deepInitWB! """ initialize W's and B's using inputs: X := is the input of the neural Network outLayer := is the output Layer or the current layer of initialization cnt := is a counter to determinde the current step and its an internal variable kwargs: He := is a true/false array, whether to use the He **et al.** initialization or not coef := when not using He **et al.** initialization use this coef to multiply with the random numbers initialization zro := true/false variable whether to initialize W with zeros or not """ function deepInitWB!( outLayer::Layer, cnt = -1; He = true, coef = 0.01, zro = false, dtype = Float64, ) if cnt < 0 cnt = outLayer.forwCount + 1 end if dtype == nothing T = eltype(X) else T = dtype end prevLayer = outLayer.prevLayer forwCount = outLayer.forwCount if outLayer isa Input if forwCount < cnt outLayer.forwCount += 1 initWB!(outLayer, T; He = He, coef = coef, zro = zro) end #if forwCount < cnt elseif isa(outLayer, MILayer) if forwCount < cnt outLayer.forwCount += 1 for prevLayer in outLayer.prevLayer deepInitWB!( prevLayer, cnt; He = He, coef = coef, zro = zro, dtype = dtype, ) end #for prevLayer in outLayer.prevLayer end #if forwCount < cnt else #if prevLayer == nothing if forwCount < cnt outLayer.forwCount += 1 deepInitWB!( prevLayer, cnt; He = He, coef = coef, zro = zro, dtype = dtype, ) initWB!(outLayer, T; He = He, coef = coef, zro = zro) end #if forwCount < cnt end #if prevLayer == nothing return nothing end #deepInitWB export deepInitWB! ### single layer initVS function initVS!( cLayer::FCLayer, optimizer::Symbol ) cLayer.V[:dw] = deepcopy(cLayer.dW) cLayer.V[:db] = deepcopy(cLayer.dB) if optimizer == :adam cLayer.S = deepcopy(cLayer.V) end #if optimizer == :adam return nothing end #function initVS! function initVS!( cLayer::IoA, optimizer::Symbol ) where {IoA <: Union{Input, Activation, Flatten, ConcatLayer}} return nothing end # function initVS!( cLayer::BatchNorm, optimizer::Symbol, ) T = typeof(cLayer.W) if (! haskey(cLayer.V, :dw)) || (size(cLayer.V[:dw]) != size(cLayer.dW)) cLayer.V = Dict(:dw=>deepcopy(cLayer.dW), :db=>deepcopy(cLayer.dB)) cLayer.S = deepcopy(cLayer.V) end return nothing end export initVS! ### deepInitVS! function deepInitVS!(outLayer::Layer, optimizer::Symbol, cnt::Integer = -1) if cnt < 0 cnt = outLayer.forwCount + 1 end prevLayer = outLayer.prevLayer if optimizer == :adam || optimizer == :momentum if outLayer isa Input if outLayer.forwCount < cnt outLayer.forwCount += 1 initVS!(outLayer, optimizer) end #if outLayer.forwCount < cnt elseif isa(outLayer, MILayer) if outLayer.forwCount < cnt outLayer.forwCount += 1 for prevLayer in outLayer.prevLayer deepInitVS!(prevLayer, optimizer, cnt) end #for end #if outLayer.forwCount < cnt else #if prevLayer == nothing if outLayer.forwCount < cnt outLayer.forwCount += 1 deepInitVS!(prevLayer, optimizer, cnt) initVS!(outLayer, optimizer) end #if outLayer.forwCount < cnt end #if prevLayer == nothing end #if optimizer==:adam || optimizer==:momentum return nothing end #function deepInitVS! export deepInitVS!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
8557
""" Depricated file """ function layerBackProp( cLayer::FCLayer, model::Model, actFun::SoS, labels::AbstractArray, ) where {SoS<:Union{Type{softmax},Type{σ}}} lossFun = model.lossFun dlossFun = Symbol("d", lossFun) A = cLayer.A Y = labels dZ = eval(:($dlossFun($A, $Y))) cLayer.dA = cLayer.W'dZ return dZ end #softmax or σ layerBackProp function layerBackProp( cLayer::Activation, model::Model, actFun::SoS, labels::AbstractArray, ) where {SoS<:Union{Type{softmax},Type{σ}}} lossFun = model.lossFun dlossFun = Symbol("d", lossFun) A = cLayer.A Y = labels dZ = eval(:($dlossFun($A, $Y))) return dZ end #softmax or σ layerBackProp function layerBackProp!( cLayer::FCLayer, model::Model, dA::AoN = nothing; labels::AoN = nothing, kwargs..., ) where {AoN<:Union{AbstractArray,Nothing}} prevLayer = cLayer.prevLayer lossFun = model.lossFun m = size(cLayer.A)[end] A = cLayer.A regulization, λ = model.regulization, model.λ actFun = cLayer.actFun dZ = [] if cLayer.actFun == model.outLayer.actFun dZ = layerBackProp(cLayer, model, eval(:($actFun)), labels) elseif dA != nothing keepProb = cLayer.keepProb if keepProb < 1.0 #to save time of multiplication in case keepProb was one D = rand(cLayer.channels, 1) .< keepProb dA .*= D dA ./= keepProb end dActFun = Symbol("d", cLayer.actFun) Z = cLayer.Z dZ = dA .* eval(:($dActFun($Z))) elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dA = [] for nextLayer in cLayer.nextLayers try dA .+= nextLayer.dA catch e #in case first time DimensionMismatch dA = nextLayer.dA end end #for keepProb = cLayer.keepProb if keepProb < 1.0 #to save time of multiplication in case keepProb was one D = rand(cLayer.channels, 1) .< keepProb dA .*= D dA ./= keepProb end dActFun = Symbol("d", cLayer.actFun) Z = cLayer.Z dZ = dA .* eval(:($dActFun($Z))) else #in case not every next layer done backprop return nothing end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) cLayer.dW = dZ * cLayer.prevLayer.A' ./ m if regulization > 0 if regulization == 1 cLayer.dW .+= (λ / 2m) else cLayer.dW .+= (λ / m) .* cLayer.W end end cLayer.dB = 1 / m .* sum(dZ, dims = 2) cLayer.dA = cLayer.W'dZ cLayer.backCount += 1 return nothing end #function layerBackProp(cLayer::FCLayer) function layerBackProp!( cLayer::Activation, model::Model, dA::AoN = nothing; labels::AoN = nothing, kwargs..., ) where {AoN<:Union{AbstractArray,Nothing}} prevLayer = cLayer.prevLayer lossFun = model.lossFun m = size(cLayer.A)[end] regulization, λ = model.regulization, model.λ actFun = cLayer.actFun dZ = [] if cLayer.actFun == model.outLayer.actFun dZ = layerBackProp(cLayer, model, eval(:($actFun)), labels) elseif dA != nothing keepProb = cLayer.keepProb if keepProb < 1.0 #to save time of multiplication in case keepProb was one D = rand(cLayer.channels, 1) .< keepProb dA .*= D dA ./= keepProb end dActFun = Symbol("d", cLayer.actFun) Z = cLayer.Z dZ = dA .* eval(:($dActFun($Z))) elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dA = [] for nextLayer in cLayer.nextLayers try dA .+= nextLayer.dA catch e #if first time DimensionMismatch dA = nextLayer.dA end #try/catch end #for try keepProb = cLayer.keepProb if keepProb < 1.0 #to save time of multiplication in case keepProb was one D = rand(cLayer.channels, 1) .< keepProb dA .*= D dA ./= keepProb end catch e end dActFun = Symbol("d", cLayer.actFun) Z = cLayer.prevLayer.A #this is the Activation layer dZ = dA .* eval(:($dActFun($Z))) else #in case not every next layer done backprop return nothing end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) cLayer.dA = dZ cLayer.backCount += 1 return nothing end #function layerBackProp!(cLayer::Activation function layerBackProp!( cLayer::AddLayer, model::Model, dA::AoN = nothing; labels::AoN = nothing, kwargs..., ) where {AoN<:Union{AbstractArray,Nothing}} # m = size(cLayer.A)[end] # # A = cLayer.A # # regulization, λ = model.regulization, model.λ if dA != nothing keepProb = cLayer.keepProb if keepProb < 1.0 #to save time of multiplication in case keepProb was one D = rand(cLayer.channels, 1) .< keepProb dA .*= D dA ./= keepProb end dActFun = Symbol("d", cLayer.actFun) Z = cLayer.Z dZ = dA .* eval(:($dActFun($Z))) elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dA = [] for nextLayer in cLayer.nextLayers try dA .+= nextLayer.dA catch e dA = nextLayer.dA #to initialize dA end #try/catch end #for cLayer.dA = dA else #in case not every next layer done backprop return nothing end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) cLayer.backCount += 1 return nothing end #function layerBackProp!(cLayer::AddLayer function layerBackProp!( cLayer::Input, model::Model, dA::AoN = nothing; labels::AoN = nothing, kwargs..., ) where {AoN<:Union{AbstractArray,Nothing}} # m = size(cLayer.A)[end] # # A = cLayer.A # # regulization, λ = model.regulization, model.λ if dA != nothing cLayer.dA = dA elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dA = [] for nextLayer in cLayer.nextLayers try dA .+= nextLayer.dA catch e dA = nextLayer.dA #need to initialize dA end #try/catch end #for cLayer.dA = dA else #in case not every next layer done backprop return nothing end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) cLayer.backCount += 1 return nothing end #function layerBackProp!(cLayer::Input function layerBackProp!( cLayer::BatchNorm, model::Model, dA::AoN = nothing; labels::AoN = nothing, kwargs..., ) where {AoN<:Union{AbstractArray,Nothing}} prevLayer = cLayer.prevLayer lossFun = model.lossFun m = size(cLayer.A)[end] A = cLayer.A normDim = cLayer.dim regulization, λ = model.regulization, model.λ dZ = [] if dA != nothing dZ = cLayer.W .* dA elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dA = [] for nextLayer in cLayer.nextLayers try dA .+= nextLayer.dA catch e dA = nextLayer.dA #need to initialize dA end #try/catch end #for Z = cLayer.Z dZ = cLayer.W .* dA else #in case not every next layer done backprop return nothing end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) cLayer.dW = sum(dZ .* cLayer.Z, dims = 1:normDim) if regulization > 0 if regulization == 1 cLayer.dW .+= (λ / 2m) else cLayer.dW .+= (λ / m) .* cLayer.W end end cLayer.dB = sum(dZ, dims = 1:normDim) N = prod(size(dZ)[1:normDim]) varep = cLayer.var .+ cLayer.ϵ dẐ = dZ ./ sqrt.(varep) .* (.-(cLayer.Ai_μ_s) .* ((N - 1) / N^2) ./ (varep) .^ 2 .+ 1) .* (1 - 1 / N) cLayer.dA = dẐ cLayer.backCount += 1 return nothing end #function layerBackProp(cLayer::BatchNorm) export layerBackProp!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
2313
""" Depricated file """ using Statistics ###Input Layer function layerForProp!( cLayer::Input, X::AbstractArray = Array{Any,1}(undef,0); kwargs..., ) if length(X) != 0 cLayer.A = X cLayer.inputS = cLayer.outputS = size(X) end cLayer.forwCount += 1 # Base.GC.gc() return nothing end ###FCLayer forprop function layerForProp!( cLayer::FCLayer, Ai::AbstractArray = Array{Any,1}(undef,0); kwargs..., ) if length(Ai) == 0 Ai = cLayer.prevLayer.A end cLayer.inputS = cLayer.prevLayer.outputS cLayer.Z = cLayer.W * Ai .+ cLayer.B actFun = cLayer.actFun Z = cLayer.Z cLayer.outputS = size(Z) cLayer.A = eval(:($actFun($Z))) cLayer.forwCount += 1 # Base.GC.gc() return nothing end #function layerForProp!(cLayer::FCLayer) ###AddLayer forprop function layerForProp!(cLayer::AddLayer; kwargs...,) cLayer.A = similar(cLayer.prevLayer[1].A) cLayer.A .= 0 for prevLayer in cLayer.prevLayer cLayer.A .+= prevLayer.A end cLayer.forwCount += 1 # Base.GC.gc() return nothing end #function layerForProp!(cLayer::AddLayer) ###Activation forprop function layerForProp!( cLayer::Activation, Ai::AbstractArray = Array{Any,1}(undef,0); kwargs..., ) if length(Ai) == 0 Ai = cLayer.prevLayer.A end actFun = cLayer.actFun cLayer.A = eval(:($actFun($Ai))) cLayer.inputS = cLayer.outputS = size(Ai) cLayer.forwCount += 1 # Ai = nothing # Base.GC.gc() return nothing end #function layerForProp!(cLayer::Activation) ###BatchNorm function layerForProp!( cLayer::BatchNorm, Ai::AbstractArray = Array{Any,1}(undef,0); kwargs..., ) if length(Ai) == 0 Ai = cLayer.prevLayer.A end initWB!(cLayer) cLayer.μ = mean(Ai, dims = 1:cLayer.dim) Ai_μ = Ai .- cLayer.μ N = prod(size(Ai)[1:cLayer.dim]) cLayer.Ai_μ_s = Ai_μ .^ 2 cLayer.var = sum(cLayer.Ai_μ_s, dims = 1:cLayer.dim) ./ N cLayer.Z = Ai_μ ./ sqrt.(cLayer.var .+ cLayer.ϵ) cLayer.A = cLayer.W .* cLayer.Z .+ cLayer.B cLayer.forwCount += 1 Ai_μ = nothing cLayer.inputS = cLayer.outputS = size(Ai) # Base.GC.gc() return nothing end #function layerForProp!(cLayer::BatchNorm) export layerForProp!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
3265
@doc raw""" function layerUpdateParams!( model::Model, cLayer::FoB, cnt::Integer = -1; tMiniBatch::Integer = 1, kwargs..., ) where {FoB <: Union{FCLayer, BatchNorm}} update trainable parameters for `FCLayer` and `BatchNorm` layers """ function layerUpdateParams!( model::Model, cLayer::FoB, cnt::Integer = -1; tMiniBatch::Integer = 1, kwargs..., ) where {FoB <: Union{FCLayer, BatchNorm}} optimizer = model.optimizer α = model.α β1, β2, ϵAdam = model.β1, model.β2, model.ϵAdam if cLayer.updateCount >= cnt return nothing end #if cLayer.updateCount >= cnt if !all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) return nothing end #initialize the needed variables to hold the corrected values #it is being init here cause these are not needed elsewhere VCorrected = Dict(:dw=>similar(cLayer.dW), :db=>similar(cLayer.dB)) SCorrected = Dict(:dw=>similar(cLayer.dW), :db=>similar(cLayer.dB)) if optimizer==:adam || optimizer==:momentum if tMiniBatch == 1 cLayer.V[:dw] .= 0 cLayer.V[:db] .= 0 end cLayer.V[:dw] .= β1 .* cLayer.V[:dw] .+ (1-β1) .* cLayer.dW cLayer.V[:db] .= β1 .* cLayer.V[:db] .+ (1-β1) .* cLayer.dB ##correcting VCorrected[:dw] .= cLayer.V[:dw] ./ (1-β1^tMiniBatch) VCorrected[:db] .= cLayer.V[:db] ./ (1-β1^tMiniBatch) if optimizer==:adam if tMiniBatch == 1 cLayer.S[:dw] .= 0 cLayer.S[:db] .= 0 end cLayer.S[:dw] .= β2 .* cLayer.S[:dw] .+ (1-β2) .* (cLayer.dW.^2) cLayer.S[:db] .= β2 .* cLayer.S[:db] .+ (1-β2) .* (cLayer.dB.^2) ##correcting SCorrected[:dw] .= cLayer.S[:dw] ./ (1-β2^tMiniBatch) SCorrected[:db] .= cLayer.S[:db] ./ (1-β2^tMiniBatch) ##update parameters with adam cLayer.W .-= (α .* (VCorrected[:dw] ./ (sqrt.(SCorrected[:dw]) .+ ϵAdam))) cLayer.B .-= (α .* (VCorrected[:db] ./ (sqrt.(SCorrected[:db]) .+ ϵAdam))) else#if optimizer==:momentum cLayer.W .-= (α .* VCorrected[:dw]) cLayer.B .-= (α .* VCorrected[:db]) end #if optimizer==:adam else cLayer.W .-= (α .* cLayer.dW) cLayer.B .-= (α .* cLayer.dB) end #if optimizer==:adam || optimizer==:momentum cLayer.updateCount += 1 return nothing end #updateParams! function layerUpdateParams!( model::Model, cLayer::IoA, cnt::Integer = -1; tMiniBatch::Integer = 1, kwargs..., ) where {IoA <: Union{Input, Activation, AddLayer, Flatten, ConcatLayer}} # optimizer = model.optimizer # α = model.α # β1, β2, ϵAdam = model.β1, model.β2, model.ϵAdam if cLayer.updateCount >= cnt return nothing end #if cLayer.updateCount >= cnt if !all(i->(i.updateCount==cLayer.nextLayers[1].updateCount), cLayer.nextLayers) return nothing end cLayer.updateCount += 1 return nothing end #updateParams! export layerUpdateParams!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
2391
abstract type lossFun end export lossFun ### binaryCrossentropy """ return the average cross entropy loss over vector of labels and predictions input: a := (?1, c,m) matrix of predicted values, where c is the number of classes y := (?1, c,m) matrix of predicted values, where c is the number of classes Note: in case the number of classes is one (1) it is okay to have a scaler values for a and y output: J := scaler value of the cross entropy loss """ abstract type binaryCrossentropy <: lossFun end function binaryCrossentropy(a, y) aNew = prevnextfloat.(a) J = .-(y .* log.(aNew) .+ (1 .- y) .* log.(1 .- aNew)) return J end #binaryCrossentropy export binaryCrossentropy """ compute the drivative of cross-entropy loss function to the input of the layer dZ """ function dbinaryCrossentropy(a, y) dJ = a .- y return dJ end #dbinaryCrossentropy export dbinaryCrossentropy ### categoricalCrossentropy abstract type categoricalCrossentropy <: lossFun end function categoricalCrossentropy(a, y) aNew = prevnextfloat.(a) J = .-(y .* log.(aNew)) return J end function dcategoricalCrossentropy(a, y) dJ = a .- y return dJ end export categoricalCrossentropy, dcategoricalCrossentropy """ return previous float if x == 1 and nextfloat if x == 0 """ prevnextfloat(x) = x==0 ? nextfloat(x) : x==1 ? prevfloat(x) : x export prevnextfloat ### cost function """ function cost( loss::Type{categoricalCrossentropy}, A::AbstractArray{T1,N}, Y::AbstractArray{T2,N}, ) where {T1, T2, N} Compute the cost for `categoricalCrossentropy` loss function """ function cost( loss::Type{categoricalCrossentropy}, A::AbstractArray{T1,N}, Y::AbstractArray{T2,N}, ) where {T1, T2, N} c, m = size(A)[N-1:N] costs = sum(loss(A,Y)) / m return Float64.(costs) end #function cost """ function cost( loss::Type{binaryCrossentropy}, A::AbstractArray{T1,N}, Y::AbstractArray{T2,N}, ) where {T1, T2, N} Compute the cost for `binaryCrossentropy` loss function """ function cost( loss::Type{binaryCrossentropy}, A::AbstractArray{T1,N}, Y::AbstractArray{T2,N}, ) where {T1, T2, N} c, m = size(A)[N-1:N] costs = sum(loss(A,Y)) / (c*m) return Float64.(costs) end #function cost
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
23696
include("parallelLayerForProp.jl") using ProgressMeter try ProgressMeter.ijulia_behavior(:clear) catch end using Random using LinearAlgebra ### @doc raw""" function chainForProp( X::AbstractArray{T,N}, cLayer::Layer, cnt::Integer = -1; FCache = Dict{Layer,Dict{Symbol,AbstractArray}}(), kwargs..., ) where {T,N} perform the chained forward propagation using recursive calls # Arguments: - `X::AbstractArray{T,N}` := input of the input layer - `cLayer::Layer` := Input Layer - `cnt::Integer` := an internal counter used to cache the layers was performed not to redo it again # Returns - `Cache::Dict{Layer, Dict{Symbol, Array}}` := the output each layer either A, Z or together As Dict of layer to dict of Symbols and Arrays for internal use, it set again the values of Z and A in each layer to be used later in back propagation and add one to the layer forwCount value when pass through it """ function chainForProp( X::AbstractArray{T,N}, cLayer::Layer, cnt::Integer = -1; FCache = Dict{Layer,Dict{Symbol,AbstractArray}}(), kwargs..., ) where {T,N} if cnt < 0 cnt = cLayer.forwCount + 1 end if length(cLayer.nextLayers) == 0 if cLayer.forwCount < cnt FCache[cLayer] = layerForProp(cLayer; FCache = FCache, kwargs...) end #if cLayer.forwCount < cnt return FCache elseif isa(cLayer, MILayer) #if typeof(cLayer)==AddLayer if all( i -> (i.forwCount == cLayer.prevLayer[1].forwCount), cLayer.prevLayer, ) FCache[cLayer] = layerForProp(cLayer; FCache = FCache, kwargs...) for nextLayer in cLayer.nextLayers FCache = chainForProp(X, nextLayer, cnt; FCache = FCache, kwargs...) end end #if all return FCache else #if cLayer.prevLayer==nothing if cLayer.forwCount < cnt if cLayer isa Input FCache[cLayer] = layerForProp(cLayer, X; FCache = FCache, kwargs...) else FCache[cLayer] = layerForProp(cLayer; FCache = FCache, kwargs...) end for nextLayer in cLayer.nextLayers FCache = chainForProp(X, nextLayer, cnt; FCache = FCache, kwargs...) end end #if cLayer.forwCount < cnt return FCache end #if cLayer.prevLayer!=nothing return FCache end #function chainForProp! export chainForProp @doc raw""" predictBatch(model::Model, X::AbstractArray, Y = nothing; kwargs...) predict Y using the model and the input X and the labels Y # Inputs - `model::Model` := the trained model - `X::AbstractArray` := the input `Array` - `Y` := the input labels to compare with (optional) # Output - a `Tuple` of * `Ŷ` := the predicted values * `Ŷ_bool` := the predicted labels * `"accuracy"` := the accuracy of the predicted labels """ function predictBatch(model::Model, X::AbstractArray, Y = nothing; kwargs...) kwargs = Dict{Symbol, Any}(kwargs...) kwargs[:prediction] = getindex(kwargs, :prediction, default = true) FCache = chainForProp(X, model.inLayer; kwargs...) Ŷ = FCache[model.outLayer][:A] T = eltype(Ŷ) outLayer = model.outLayer actFun = outLayer.actFun # if isbool(Y) return Ŷ, probToValue(eval(:($actFun)), Ŷ; labels = Y)... end #predict export predictBatch ### @doc raw""" predict(model::Model, X_In::AbstractArray, Y_In = nothing; kwargs...) Run the prediction based on the trained `model` # Arguments - `model::Model` := the trained `Model` to predict on - `X_In` := the input `Array` - `Y_In` := labels (optional) to evaluate the model ## Key-word Arugmets - `batchSize` := default `32` - `useProgBar` := (`Bool`) where or not to shoe the prograss bar # Return - a `Dict` of: * `:YhatValue` := Array of the output of the integer prediction values * `:YhatProb` := Array of the output probabilities * `:accuracy` := the accuracy of prediction in case `Y_In` is given """ function predict(model::Model, X_In::AbstractArray, Y_In = nothing; kwargs...) kwargs = Dict{Symbol, Any}(kwargs...) batchSize = getindex(kwargs, :batchSize; default = 32) printAcc = getindex(kwargs, :printAcc; default = true) useProgBar = getindex(kwargs, :useProgBar; default = true) GCInt = getindex(kwargs, :GCInt, default = 5) noBool = getindex(kwargs, :noBool, default = false) kwargs[:prediction] = getindex(kwargs, :prediction, default = true) outLayer, lossFun, α = model.outLayer, model.lossFun, model.α Costs = [] nX = ndims(X_In) T = eltype(X_In) m = size(X_In)[end] # c = size(Y_train)[end-1] nB = m ÷ batchSize axX = axes(X_In)[1:end-1] Y = nothing if Y_In != nothing axY = axes(Y_In)[1:end-1] end if useProgBar p = Progress((m % batchSize != 0 ? nB + 1 : nB), 0.1) end nY = length(model.outLayer.outputS) Ŷ_out = Array{AbstractArray{T,nY},1}(undef, nB + ((m % batchSize == 0) ? 0 : 1)) Ŷ_prob_out = Array{AbstractArray{T,nY},1}(undef, nB + ((m % batchSize == 0) ? 0 : 1)) accuracy = Array{AbstractFloat,1}(undef, nB + ((m % batchSize == 0) ? 0 : 1)) # Threads.@threads @simd for j = 1:nB downInd = (j - 1) * batchSize + 1 upInd = j * batchSize X = view(X_In, axX..., downInd:upInd) if Y_In != nothing Y = view(Y_In, axY..., downInd:upInd) end Ŷ_prob_out[j], Ŷ_out[j], accuracy[j] = predictBatch(model, X, Y; kwargs...) if useProgBar update!(p, j, showvalues = [("Instances $m", j * batchSize)]) end #if useProgBar # X = Y = nothing # Ŷ = nothing # if j%GCInt == 0 # Base.GC.gc() # end end if m % batchSize != 0 downInd = (nB) * batchSize + 1 X = view(X_In, axX..., downInd:m) if Y_In != nothing Y = view(Y_In, axY..., downInd:m) end Ŷ_prob_out[nB+1], Ŷ_out[nB+1], accuracy[nB+1] = predictBatch(model, X, Y; kwargs...) # X = Y = nothing # Base.GC.gc() if useProgBar update!(p, nB + 1, showvalues = [("Instances $m", m)]) end end # accuracyM = nothing # if !(isempty(accuracy)) accuracyM = mean(filter(x -> x != nothing, accuracy)) # end if noBool Ŷ_values = nothing Ŷ_prob = nothing else # Ŷ_values = Array{T,nY}(undef, repeat([0], nY)...) Ŷ_values = cat(Ŷ_out... ; dims = nY) Ŷ_prob = cat(Ŷ_prob_out...; dims = nY) end return Dict( :YhatValue => Ŷ_values, :YhatProb => Ŷ_prob, :accuracy => accuracyM, ) end #function predict( # model::Model, # X_In::AbstractArray, # Y_In=nothing; # batchSize = 32, # printAcc = true, # useProgBar = false, # ) export predict ### chainBackProp include("parallelLayerBackProp.jl") # include("layerUpdateParams.jl") @doc raw""" function chainBackProp( X::AbstractArray{T1,N1}, Y::AbstractArray{T2,N2}, model::Model, FCache::Dict{Layer,Dict{Symbol,AbstractArray}}, cLayer::L = nothing, BCache::Dict{Layer,Dict{Symbol,AbstractArray}}=Dict{Layer,Dict{Symbol,AbstractArray}}(), cnt = -1; tMiniBatch::Integer = -1, #can be used to perform both back and update params kwargs..., ) where {L<:Union{Layer,Nothing},T1,T2,N1,N2} # Arguments - `X` := train data - `Y` := train labels - `model` := is the model to perform the back propagation on - `FCache` := the cached values of the forward propagation as `Dict{Layer, Dict{Symbol, AbstractArray}}` - `cLayer` := is an internal variable to hold the current layer - `BCache` := to hold the cache of the back propagtion (internal variable) - `cnt` := is an internal variable to count the step of back propagation currently on to avoid re-do it ## Key-word Arguments - `tMiniBatch` := to perform both the back prop and update trainable parameters in the same recursive call (if less than 1 update during back propagation is ditched) - `kwargs` := other key-word arguments to be bassed to `layerBackProp` methods # Return - `BCache` := the cached values of the back propagation """ function chainBackProp( X::AbstractArray{T1,N1}, Y::AbstractArray{T2,N2}, model::Model, FCache::Dict{Layer,Dict{Symbol,AbstractArray}}, cLayer::L = nothing, BCache::Dict{Layer,Dict{Symbol,AbstractArray}}=Dict{Layer,Dict{Symbol,AbstractArray}}(), cnt = -1; tMiniBatch::Integer = -1, #can be used to perform both back and update params kwargs..., ) where {L<:Union{Layer,Nothing},T1,T2,N1,N2} if cnt < 0 cnt = model.outLayer.backCount + 1 end if cLayer == nothing cLayer = model.outLayer BCache[cLayer] = layerBackProp(cLayer, model, FCache, BCache; labels = Y, kwargs...) if tMiniBatch > 0 layerUpdateParams!( model, cLayer, cnt; tMiniBatch = tMiniBatch, kwargs..., ) end BCache = chainBackProp( X, Y, model, FCache, cLayer.prevLayer, BCache, cnt; tMiniBatch = tMiniBatch, kwargs..., ) elseif cLayer isa MILayer BCache[cLayer] = layerBackProp(cLayer, model, FCache, BCache; kwargs...) if tMiniBatch > 0 layerUpdateParams!( model, cLayer, cnt; tMiniBatch = tMiniBatch, kwargs..., ) end if cLayer.backCount >= cnt #in case layerBackProp did not do the back #prop becasue the next layers are not all #done yet for prevLayer in cLayer.prevLayer BCache = chainBackProp( X, Y, model, FCache, prevLayer, BCache, cnt; tMiniBatch = tMiniBatch, kwargs..., ) end #for end else #if cLayer==nothing BCache[cLayer] = layerBackProp(cLayer, model, FCache, BCache; kwargs...) if tMiniBatch > 0 layerUpdateParams!( model, cLayer, cnt; tMiniBatch = tMiniBatch, kwargs..., ) end if cLayer.backCount >= cnt #in case layerBackProp did not do the back #prop becasue the next layers are not all #done yet if !(cLayer isa Input) BCache = chainBackProp( X, Y, model, FCache, cLayer.prevLayer, BCache, cnt; tMiniBatch = tMiniBatch, kwargs..., ) end #if cLayer.prevLayer == nothing end end #if cLayer==nothing return BCache end #backProp export chainBackProp ###update parameters include("layerUpdateParams.jl") @doc raw""" chainUpdateParams!(model::Model, cLayer::L=nothing, cnt = -1; tMiniBatch::Integer = 1) where {L<:Union{Layer,Nothing}} Update trainable parameters using recursive call # Arguments - `model` := the model holds the training and update process - `cLayer` := internal variable for recursive call holds the current layer - `cnt` := an internal variable to hold the count of update in each layer not to re-do it ## Key-word Arguments - `tMiniBatch` := the number of mini-batch of the total train collection # Return - `nothing` """ function chainUpdateParams!(model::Model, cLayer::L=nothing, cnt = -1; tMiniBatch::Integer = 1) where {L<:Union{Layer,Nothing}} if cnt < 0 cnt = model.outLayer.updateCount + 1 end if cLayer==nothing layerUpdateParams!(model, model.outLayer, cnt, tMiniBatch=tMiniBatch) chainUpdateParams!(model, model.outLayer.prevLayer, cnt, tMiniBatch=tMiniBatch) elseif cLayer isa MILayer #update the AddLayer updateCounter if cLayer.updateCount < cnt cLayer.updateCount += 1 end for prevLayer in cLayer.prevLayer chainUpdateParams!(model, prevLayer, cnt, tMiniBatch=tMiniBatch) end #for else #if cLayer==nothing layerUpdateParams!(model, cLayer, cnt, tMiniBatch=tMiniBatch) if !(cLayer isa Input) chainUpdateParams!(model, cLayer.prevLayer, cnt, tMiniBatch=tMiniBatch) end #if cLayer.prevLayer == nothing end #if cLayer==nothing return nothing end #function chainUpdateParams! export chainUpdateParams! ### train @doc raw""" train( X_train, Y_train, model::Model, epochs; testData = nothing, testLabels = nothing, kwargs..., ) Repeat the trainging (forward/backward propagation and update parameters) # Argument - `X_train` := the training data - `Y_train` := the training labels - `model` := the model to train - `epochs` := the number of repetitions of the training phase # Key-word Arguments - `testData` := to evaluate the training process over test data too - `testLabels` := to evaluate the training process over test data too - `batchSize` := the size of training when mini batch training ` `useProgBar` := (true, false) value to use prograss bar - `kwargs` := other key-word Arguments to pass for the lower functions in hierarchy # Return - A `Dict{Symbol, Vector}` of: * `:trainAccuracies` := an `Array` of the accuracies of training data at each epoch * `:trainCosts` := an `Array` of the costs of training data at each epoch * In case `testDate` and `testLabels` are givens: + `:testAccuracies` := an `Array` of the accuracies of test data at each epoch + `:testCosts` := an `Array` of the costs of test data at each epoch """ function train( X_train, Y_train, model::Model, epochs; testData = nothing, testLabels = nothing, kwargs..., ) kwargs = Dict{Symbol, Any}(kwargs...) batchSize = getindex(kwargs, :batchSize; default = 32) printCostsInterval = getindex(kwargs, :printCostsInterval; default = 0) useProgBar = getindex(kwargs, :useProgBar; default = true) embedUpdate = getindex(kwargs, :embedUpdate; default = true) metrics = getindex(kwargs, :metrics; default = [:accuracy, :cost]) Accuracy = :accuracy in metrics Cost = :cost in metrics test = testData != nothing && testLabels != nothing inLayer, outLayer, lossFun, α = model.inLayer, model.outLayer, model.lossFun, model.α outAct = outLayer.actFun m = size(X_train)[end] c = size(Y_train)[end-1] nB = m ÷ batchSize N = ndims(X_train) axX = axes(X_train)[1:end-1] axY = axes(Y_train)[1:end-1] nMiniBatch = (nB + Integer(m % batchSize != 0)) if useProgBar p = Progress(epochs*nMiniBatch, 0.1) showValues = Dict{String, Real}("Epoch $(epochs)"=>0, "Instances $(m)"=>0, ) end if Accuracy showValues["Train Accuracy"] = 0.0 end if Cost showValues["Train Cost"] = 0.0 end if test testAcc = [] testCost = [] showValues["Test Accuracy"] = 0.0 showValues["Test Cost"] = 0.0 end Accuracies = [] Costs = [] for i=1:epochs shufInd = randperm(m) minCosts = [] #the costs of all mini-batches minAcc = [] for j=1:nB downInd = (j-1)*batchSize+1 upInd = j * batchSize batchInd = shufInd[downInd:upInd] X = X_train[axX..., batchInd] Y = Y_train[axY..., batchInd] FCache = chainForProp(X, inLayer; kwargs...) a = FCache[outLayer][:A] if Accuracy _, acc = probToValue(eval(:($outAct)), a; labels = Y) push!(minAcc, acc) if useProgBar tmpAcc = mean(minAcc) showValues["Train Accuracy"] = round(tmpAcc ; digits=4) end end if Cost minCost = cost(eval(:($lossFun)), a, Y) push!(minCosts, minCost) if useProgBar tmpCost = mean(minCosts) showValues["Train Cost"] = round(tmpCost; digits = 4) end end if embedUpdate BCache = chainBackProp(X,Y, model, FCache; tMiniBatch = j, kwargs...) else BCache = chainBackProp(X,Y, model, FCache; kwargs...) chainUpdateParams!(model; tMiniBatch = j) end #if embedUpdate if useProgBar showValues["Epoch $(epochs)"] = i showValues["Instances $(m)"] = j*batchSize update!(p, (i-1)*nMiniBatch+j; showvalues=[("Epoch $(epochs)", pop!(showValues, "Epoch $(epochs)")), ("Instances $(m)", pop!(showValues, "Instances $(m)")), showValues...]) end # if :accuracy in metrics && :cost in metrics # update!(p, ((i-1)*(nB + ((m % batchSize == 0) ? 0 : 1)))+j; showvalues=[("Epoch ($epochs)", i), ("Instances ($m)", j*batchSize), (:Accuracy, round(mean(minAcc); digits=4)), (:Cost, round(mean(minCosts); digits=4))]) # elseif :accuracy in metrics # update!(p, ((i-1)*(nB + ((m % batchSize == 0) ? 0 : 1)))+j; showvalues=[("Epoch ($epochs)", i), ("Instances ($m)", j*batchSize), (:Accuracy, round(mean(minAcc); digits=4))]) # elseif :cost in metrics # update!(p, ((i-1)*(nB + ((m % batchSize == 0) ? 0 : 1)))+j; showvalues=[("Epoch ($epochs)", i), ("Instances ($m)", j*batchSize), (:Cost, round(mean(minCosts); digits=4))]) # else # update!(p, ((i-1)*(nB + ((m % batchSize == 0) ? 0 : 1)))+j; showvalues=[("Epoch ($epochs)", i), ("Instances ($m)", j*batchSize)]) # end # end # chainUpdateParams!(model; tMiniBatch = j) end #for j=1:nB iterate over the mini batches if m%batchSize != 0 downInd = (nB)*batchSize+1 batchInd = shufInd[downInd:end] X = X_train[axX..., batchInd] Y = Y_train[axY..., batchInd] FCache = chainForProp(X, inLayer; kwargs...) if Accuracy _, acc = probToValue(eval(:($outAct)), FCache[outLayer][:A]; labels = Y) push!(minAcc, acc) if useProgBar tmpAcc = mean(minAcc) showValues["Train Cost"] = round(tmpAcc ; digits=4) end end a = FCache[outLayer][:A] if Cost minCost = cost(eval(:($lossFun)), a, Y) push!(minCosts, minCost) if useProgBar tmpCost = mean(minCosts) showValues["Train Cost"] = round(tmpCost; digits = 4) end end if embedUpdate BCache = chainBackProp(X,Y, model, FCache; tMiniBatch = nB + 1, kwargs...) else BCache = chainBackProp(X,Y, model, FCache; kwargs...) chainUpdateParams!(model; tMiniBatch = nB + 1) end #if embedUpdate end if Accuracy tmpAcc = mean(minAcc) push!(Accuracies, tmpAcc) if useProgBar showValues["Train Accuracy"] = round(tmpAcc; digits=4) end end if Cost tmpCost = mean(minCosts) push!(Costs, tmpCost) if useProgBar showValues["Train Cost"] = round(tmpCost; digits=4) end end if printCostsInterval>0 && i%printCostsInterval==0 println("N = $i, Cost = $(Costs[end])") end if test testDict = predict(model, testData, testLabels; useProgBar = false, batchSize=batchSize) testcost = cost(eval(:($lossFun)), testDict[:YhatProb], testLabels) if Accuracy push!(testAcc, testDict[:accuracy]) if useProgBar showValues["Test Accuracy"] = round(testDict[:accuracy]; digits=4) end end if Cost push!(testCost, testcost) if useProgBar showValues["Test Cost"] = round(testcost; digits=4) end end end if useProgBar showValues["Epoch $(epochs)"] = i showValues["Instances $(m)"] = m update!(p, (i-1)*nMiniBatch+(nB+1); showvalues=[("Epoch $(epochs)", pop!(showValues, "Epoch $(epochs)")), ("Instances $(m)", pop!(showValues, "Instances $(m)")), showValues...]) end # if useProgBar # if useProgBar # if :accuracy in metrics && :cost in metrics # update!(p, ((i-1)*(nB + ((m % batchSize == 0) ? 0 : 1)))+(nB + 1); showvalues=[("Epoch ($epochs)", i), ("Instances ($m)", m), (:Accuracy, round(mean(minAcc); digits=4)), (:Cost, round(mean(minCosts); digits=4))]) # elseif :accuracy in metrics # update!(p, ((i-1)*(nB + ((m % batchSize == 0) ? 0 : 1)))+(nB + 1); showvalues=[("Epoch ($epochs)", i), ("Instances ($m)", j*batchSize), (:Accuracy, round(mean(minAcc); digits=4))]) # elseif :cost in metrics # update!(p, ((i-1)*(nB + ((m % batchSize == 0) ? 0 : 1)))+(nB + 1); showvalues=[("Epoch ($epochs)", i), ("Instances ($m)", j*batchSize), (:Cost, round(mean(minCosts); digits=4))]) # else # update!(p, ((i-1)*(nB + ((m % batchSize == 0) ? 0 : 1)))+(nB + 1); showvalues=[("Epoch ($epochs)", i), ("Instances ($m)", j*batchSize)]) # end # end # end end # model.W, model.B = W, B outDict = Dict{Symbol, Array{T,1} where {T}}() if Accuracy outDict[:trainAccuracies] = Accuracies if test outDict[:testAccuracies] = testAcc end end if Cost outDict[:trainCosts] = Costs if test outDict[:testCosts] = testCost end end return outDict end #train export train
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
17716
@doc raw""" layerBackProp( cLayer::FCLayer, model::Model, actFun::SoS, Ao::AbstractArray, labels::AbstractArray, ) where {SoS<:Union{Type{softmax},Type{σ}}} For output `FCLayer` layers with softmax and sigmoid activation functions """ function layerBackProp( cLayer::FCLayer, model::Model, actFun::SoS, Ao::AbstractArray, labels::AbstractArray, ) where {SoS<:Union{Type{softmax},Type{σ}}} lossFun = model.lossFun dlossFun = Symbol("d", lossFun) Y = labels dZ = eval(:($dlossFun($Ao, $Y))) # dAi = cLayer.W'dZ return dZ #, dAi end #softmax or σ layerBackProp @doc raw""" layerBackProp( cLayer::Activation, model::Model, actFun::SoS, Ao::AbstractArray, labels::AbstractArray, ) where {SoS<:Union{Type{softmax},Type{σ}}} For output `Activation` layers with softmax and sigmoid activation functions """ function layerBackProp( cLayer::Activation, model::Model, actFun::SoS, Ao::AbstractArray, labels::AbstractArray, ) where {SoS<:Union{Type{softmax},Type{σ}}} lossFun = model.lossFun dlossFun = Symbol("d", lossFun) Y = labels dZ = eval(:($dlossFun($Ao, $Y))) return dZ end #softmax or σ layerBackProp @doc raw""" layerBackProp( cLayer::FCLayer, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,2} = Array{Any,2}(undef,0,0); labels::AbstractArray{T2,2} = Array{Any,2}(undef,0,0), kwargs..., ) where {T1,T2} Perform the back propagation of `FCLayer` type on the activations and trainable parameters `W` and `B` # Argument - `cLayer` := the layer to perform the backprop on - `model` := the `Model` - `FCache` := the cache values of the forprop - `BCache` := the cache values of the backprop from the front `Layer`(s) - `dAo` := (for test purpose) the derivative of the front `Layer` - `labels` := in case this is the output layer # Return - A `Dict{Symbol, AbstractArray}(:dA => dAi)` """ function layerBackProp( cLayer::FCLayer, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,2} = Array{Any,2}(undef,0,0); labels::AbstractArray{T2,2} = Array{Any,2}(undef,0,0), kwargs..., ) where {T1,T2} prevLayer = cLayer.prevLayer lossFun = model.lossFun Ao = FCache[cLayer][:A] regulization, λ = model.regulization, model.λ actFun = cLayer.actFun dZ = [] if cLayer.actFun == model.outLayer.actFun dZ = layerBackProp(cLayer, model, eval(:($actFun)), Ao, labels) elseif length(dAo) != 0 keepProb = cLayer.keepProb if keepProb < 1.0 #to save time of multiplication in case keepProb was one D = rand(cLayer.channels, 1) .< keepProb dAo .*= D dAo ./= keepProb end dActFun = Symbol("d", cLayer.actFun) Z = FCache[cLayer][:Z] dZ = dAo .* eval(:($dActFun($Z))) elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= getLayerSlice(cLayer, nextLayer, BCache) catch e #in case first time DimensionMismatch dAo = getLayerSlice(cLayer, nextLayer, BCache) end end #for keepProb = cLayer.keepProb if keepProb < 1.0 #to save time of multiplication in case keepProb was one D = rand(cLayer.channels, 1) .< keepProb dAo .*= D dAo ./= keepProb end dActFun = Symbol("d", cLayer.actFun) Z = FCache[cLayer][:Z] dZ = dAo .* eval(:($dActFun($Z))) else #in case not every next layer done backprop return Dict(:dA => Array{Any,1}(undef,0)) end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) m = size(dZ)[end] cLayer.dW = dZ * FCache[cLayer.prevLayer][:A]' ./ m if regulization > 0 if regulization == 1 cLayer.dW .+= (λ / 2m) else cLayer.dW .+= (λ / m) .* cLayer.W end end cLayer.dB = 1 / m .* sum(dZ, dims = 2) dAi = cLayer.W'dZ cLayer.backCount += 1 return Dict(:dA => dAi) end #function layerBackProp(cLayer::FCLayer) @doc raw""" layerBackProp( cLayer::Activation, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,N} = Array{Any,1}(undef,0); labels::AbstractArray{T2,N} = Array{Any,1}(undef,0), kwargs..., ) where {T1,T2,N} Perform the back propagation of `Activation` type # Argument - `cLayer` := the layer to perform the backprop on - `model` := the `Model` - `FCache` := the cache values of the forprop - `BCache` := the cache values of the backprop from the front `Layer`(s) - `dAo` := (for test purpose) the derivative of the front `Layer` - `labels` := in case this is the output layer # Return - A `Dict{Symbol, AbstractArray}(:dA => dAi)` """ function layerBackProp( cLayer::Activation, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,N} = Array{Any,1}(undef,0); labels::AbstractArray{T2,N} = Array{Any,1}(undef,0), kwargs..., ) where {T1,T2,N} prevLayer = cLayer.prevLayer lossFun = model.lossFun Ao = FCache[cLayer][:A] regulization, λ = model.regulization, model.λ actFun = cLayer.actFun dZ = [] if cLayer.actFun == model.outLayer.actFun dZ = layerBackProp(cLayer, model, eval(:($actFun)), Ao, labels) elseif length(dAo) != 0 keepProb = cLayer.keepProb if keepProb < 1.0 #to save time of multiplication in case keepProb was one D = rand(cLayer.channels, 1) .< keepProb dAo .*= D dAo ./= keepProb end dActFun = Symbol("d", cLayer.actFun) Z = FCache[cLayer][:Z] dZ = dAo .* eval(:($dActFun($Z))) elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= getLayerSlice(cLayer, nextLayer, BCache) catch e #in case first time DimensionMismatch dAo = getLayerSlice(cLayer, nextLayer, BCache) end end #for dActFun = Symbol("d", cLayer.actFun) ## get the input as the output of the previous layer Z = FCache[cLayer.prevLayer][:A] dZ = dAo .* eval(:($dActFun($Z))) else #in case not every next layer done backprop return Dict(:dA => Array{Any,1}(undef,0)) end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) # cLayer.dW = dZ * FCache[cLayer.prevLayer][:A]' ./ m # # if regulization > 0 # if regulization == 1 # cLayer.dW .+= (λ / 2m) # else # cLayer.dW .+= (λ / m) .* cLayer.W # end # end # # cLayer.dB = 1 / m .* sum(dZ, dims = 2) dAi = dZ cLayer.backCount += 1 return Dict(:dA => dAi) end #function layerBackProp(cLayer::Activation ### Flatten @doc raw""" layerBackProp( cLayer::Flatten, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,N} = Array{Any,1}(undef,0); labels::AbstractArray{T2,N} = Array{Any,1}(undef,0), kwargs..., ) where {T1,T2,N} Perform the back propagation of `Flatten` type # Argument - `cLayer` := the layer to perform the backprop on - `model` := the `Model` - `FCache` := the cache values of the forprop - `BCache` := the cache values of the backprop from the front `Layer`(s) - `dAo` := (for test purpose) the derivative of the front `Layer` - `labels` := in case this is the output layer # Return - A `Dict{Symbol, AbstractArray}(:dA => dAi)` """ function layerBackProp( cLayer::Flatten, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,N} = Array{Any,1}(undef,0); labels::AbstractArray{T2,N} = Array{Any,1}(undef,0), kwargs..., ) where {T1,T2,N} prevLayer = cLayer.prevLayer Ao = FCache[cLayer][:A] regulization, λ = model.regulization, model.λ if length(dAo) == 0 && all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= getLayerSlice(cLayer, nextLayer, BCache) catch e #in case first time DimensionMismatch dAo = getLayerSlice(cLayer, nextLayer, BCache) end end #for else #in case not every next layer done backprop return Dict(:dA => Array{Any,1}(undef,0)) end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) dAi = reshape(dAo, cLayer.inputS) cLayer.backCount += 1 return Dict(:dA => dAi) end #function layerBackProp(cLayer::Activation ### AddLayer @doc raw""" layerBackProp( cLayer::AddLayer, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,N} = Array{Any,1}(undef,0); labels::AbstractArray{T2,N} = Array{Any,1}(undef,0), kwargs..., ) where {T1,T2,N} Perform the back propagation of `AddLayer` type # Argument - `cLayer` := the layer to perform the backprop on - `model` := the `Model` - `FCache` := the cache values of the forprop - `BCache` := the cache values of the backprop from the front `Layer`(s) - `dAo` := (for test purpose) the derivative of the front `Layer` - `labels` := in case this is the output layer # Return - A `Dict{Symbol, AbstractArray}(:dA => dAi)` """ function layerBackProp( cLayer::AddLayer, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,N} = Array{Any,1}(undef,0); labels::AbstractArray{T2,N} = Array{Any,1}(undef,0), kwargs..., ) where {T1,T2,N} if length(dAo) != 0 return Dict(:dA => dAo) elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= getLayerSlice(cLayer, nextLayer, BCache) catch e dAo = getLayerSlice(cLayer, nextLayer, BCache) #to initialize dA end #try/catch end #for else #in case not every next layer done backprop return Dict(:dA => Array{Any,1}(undef,0)) end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) cLayer.backCount += 1 return Dict(:dA => dAo) end #function layerBackProp(cLayer::AddLayer ### ConcatLayer function layerBackProp( cLayer::ConcatLayer, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,N} = Array{Any,1}(undef,0); labels::AbstractArray{T2,N} = Array{Any,1}(undef,0), kwargs..., ) where {T1,T2,N} if length(dAo) != 0 return Dict(:dA => dAo) elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= getLayerSlice(cLayer, nextLayer, BCache) catch e dAo = getLayerSlice(cLayer, nextLayer, BCache) #to initialize dA end #try/catch end #for else #in case not every next layer done backprop return Dict(:dA => Array{Any,1}(undef,0)) end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) cLayer.backCount += 1 return Dict(:dA => dAo) end #function layerBackProp(cLayer::AddLayer @doc raw""" layerBackProp( cLayer::Input, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,N} = Array{Any,1}(undef,0); labels::AbstractArray{T2,N} = Array{Any,1}(undef,0), kwargs..., ) where {T1,T2,N} Perform the back propagation of `Input` type # Argument - `cLayer` := the layer to perform the backprop on - `model` := the `Model` - `FCache` := the cache values of the forprop - `BCache` := the cache values of the backprop from the front `Layer`(s) - `dAo` := (for test purpose) the derivative of the front `Layer` - `labels` := in case this is the output layer # Return - A `Dict{Symbol, AbstractArray}(:dA => dAi)` """ function layerBackProp( cLayer::Input, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray{T1,N} = Array{Any,1}(undef,0); labels::AbstractArray{T2,N} = Array{Any,1}(undef,0), kwargs..., ) where {T1,T2,N} if length(dAo) != 0 return Dict(:dA => dAo) elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= getLayerSlice(cLayer, nextLayer, BCache) catch e dAo = getLayerSlice(cLayer, nextLayer, BCache) #need to initialize dA end #try/catch end #for else #in case not every next layer done backprop return Dict(:dA => Array{Any,1}(undef,0)) end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) cLayer.backCount += 1 return Dict(:dA => dAo) end #function layerBackProp(cLayer::Input @doc raw""" layerBackProp( cLayer::BatchNorm, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray = Array{Any,1}(undef,0); labels::AbstractArray = Array{Any,1}(undef,0), kwargs..., ) Perform the back propagation of `BatchNorm` type on the activations and trainable parameters `W` and `B` # Argument - `cLayer` := the layer to perform the backprop on - `model` := the `Model` - `FCache` := the cache values of the forprop - `BCache` := the cache values of the backprop from the front `Layer`(s) - `dAo` := (for test purpose) the derivative of the front `Layer` - `labels` := in case this is the output layer # Return - A `Dict{Symbol, AbstractArray}(:dA => dAi)` """ function layerBackProp( cLayer::BatchNorm, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, dAo::AbstractArray = Array{Any,1}(undef,0); labels::AbstractArray = Array{Any,1}(undef,0), kwargs..., ) prevLayer = cLayer.prevLayer lossFun = model.lossFun Ao = FCache[cLayer][:A] Ai = FCache[cLayer.prevLayer][:A] m = size(Ao)[end] normDim = cLayer.dim+1 regulization, λ = model.regulization, model.λ N = length(cLayer.outputS) dZ = [] if length(dAo) != 0 dAo = permutedims(dAo, [N, (1:N-1)...]) dZ = cLayer.W .* dAo elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= getLayerSlice(cLayer, nextLayer, BCache) catch e dAo = getLayerSlice(cLayer, nextLayer, BCache) #need to initialize dA end #try/catch end #for dAo = permutedims(dAo, [N, (1:N-1)...]) dZ = cLayer.W .* dAo else #in case not every next layer done backprop return Dict(:dA => Array{Any,1}(undef,0)) end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) #Z is already flipped cLayer.dW = sum(dAo .* FCache[cLayer][:Z], dims = 1:normDim) if regulization > 0 if regulization == 1 cLayer.dW .+= (λ / 2m) else cLayer.dW .+= (λ / m) .* cLayer.W end end cLayer.dB = sum(dAo, dims = 1:normDim) Num = prod(size(dAo)[1:normDim]) varep = FCache[cLayer][:var] .+ cLayer.ϵ Ai_μ = FCache[cLayer][:Ai_μ] Ai_μ_s = FCache[cLayer][:Ai_μ_s] svarep = sqrt.(varep) dZ1 = dZ ./ svarep dZ2 = sum(dZ .* Ai_μ; dims = 1:normDim) dZ2 .*= (-1 ./ (svarep .^ 2)) dZ2 .*= (0.5 ./ svarep) dZ2 = dZ2 .* (1.0 / Num) .* ones(promote_type(eltype(Ai_μ), eltype(dZ2)), size(Ai_μ)) dZ2 .*= (2 .* Ai_μ) dẐ = dZ1 .+ dZ2 dZ3 = dẐ dZ4 = .- sum(dẐ; dims = 1:normDim) dZ4 = dZ4 .* (1.0 / Num) .* ones(promote_type(eltype(Ai), eltype(dZ4)), size(dZ3)) dAip = dZ3 .+ dZ4 dAi = permutedims(dAip, [(2:N)..., 1]) # dẐ = # dZ ./ sqrt.(varep) .* # (.-(Ai_μ_s) .* ((N - 1) / N^2) ./ (varep) .^ 2 .+ 1) .* # (1 - 1 / N) # # dAi = dẐ cLayer.backCount += 1 return Dict(:dA => dAi) end #function layerBackProp(cLayer::BatchNorm) export layerBackProp
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
7266
using Statistics ###Input Layer @doc raw""" layerForProp( cLayer::Input, X::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) Perform forward propagation for `Input` `Layer` # Arguments - `cLayer` := the layer to perform for prop on - `X` := is the input data of the `Input` `Layer` - `FCache` := a cache holder of the for prop # Return - A `Dict{Symbol, AbstractArray}(:A => Ao)` """ function layerForProp( cLayer::Input, X::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) if length(X) != 0 # cLayer.A = X cLayer.inputS = cLayer.outputS = size(X) end cLayer.forwCount += 1 # Base.GC.gc() return Dict(:A=>X) end ###FCLayer forprop @doc raw""" layerForProp( cLayer::FCLayer, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) Perform forward propagation for `FCLayer` `Layer` # Arguments - `cLayer` := the layer to perform for prop on - `Ai` := is the input activation of the `FCLayer` `Layer` - `FCache` := a cache holder of the for prop # Return - A `Dict{Symbol, AbstractArray}(:A => Ao, :Z => Z)` """ function layerForProp( cLayer::FCLayer, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) prevLayer = cLayer.prevLayer if length(Ai) == 0 Ai = FCache[prevLayer][:A] end cLayer.inputS = cLayer.prevLayer.outputS Z = cLayer.W * Ai .+ cLayer.B actFun = cLayer.actFun # Z = cLayer.Z cLayer.outputS = size(Z) A = eval(:($actFun($Z))) cLayer.forwCount += 1 # Base.GC.gc() return Dict(:Z=>Z, :A=>A) end #function layerForProp(cLayer::FCLayer) ###AddLayer forprop @doc raw""" layerForProp( cLayer::AddLayer; FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) Perform forward propagation for `AddLayer` `Layer` # Arguments - `cLayer` := the layer to perform for prop on - `FCache` := a cache holder of the for prop # Return - A `Dict{Symbol, AbstractArray}(:A => Ao)` """ function layerForProp( cLayer::AddLayer; FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) A = similar(FCache[cLayer.prevLayer[1]][:A]) .= 0 # if all( # i -> (i.forwCount == cLayer.prevLayer[1].forwCount), # cLayer.prevLayer, # ) for prevLayer in cLayer.prevLayer A .+= FCache[prevLayer][:A] end # end #if all cLayer.forwCount += 1 # Base.GC.gc() return Dict(:A=>A) end #function layerForProp(cLayer::AddLayer) ### ConcatLayer forprop function layerForProp( cLayer::ConcatLayer; FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) N = ndims(FCache[cLayer.prevLayer[1]][:A]) A = cat([FCache[prevLayer][:A] for prevLayer in cLayer.prevLayer]...; dims=N-1) cLayer.forwCount += 1 # Base.GC.gc() return Dict(:A=>A) end #function layerForProp(cLayer::AddLayer) ###Activation forprop @doc raw""" layerForProp( cLayer::Activation, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) Perform forward propagation for `Activation` `Layer` # Arguments - `cLayer` := the layer to perform for prop on - `Ai` := is the input activation of the `Activation` `Layer` - `FCache` := a cache holder of the for prop # Return - A `Dict{Symbol, AbstractArray}(:A => Ao)` """ function layerForProp( cLayer::Activation, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) prevLayer = cLayer.prevLayer if length(Ai) == 0 Ai = FCache[prevLayer][:A] end actFun = cLayer.actFun A = eval(:($actFun($Ai))) cLayer.inputS = cLayer.outputS = size(Ai) cLayer.forwCount += 1 # Ai = nothing # Base.GC.gc() return Dict(:A=>A) end #function layerForProp(cLayer::Activation) ### Flatten @doc raw""" layerForProp( cLayer::Flatten, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) Perform forward propagation for `Flatten` `Layer` # Arguments - `cLayer` := the layer to perform for prop on - `Ai` := is the input activation of the `Flatten` `Layer` - `FCache` := a cache holder of the for prop # Return - A `Dict{Symbol, AbstractArray}(:A => Ao)` """ function layerForProp( cLayer::Flatten, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) prevLayer = cLayer.prevLayer if length(Ai) == 0 Ai = FCache[prevLayer][:A] end cLayer.inputS = size(Ai) cLayer.outputS = (prod(cLayer.inputS[1:end-1]), cLayer.inputS[end]) A = reshape(Ai,cLayer.outputS) cLayer.forwCount += 1 # Ai = nothing # Base.GC.gc() return Dict(:A=>A) end #function layerForProp(cLayer::Activation) ###BatchNorm @doc raw""" layerForProp( cLayer::BatchNorm, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) Perform forward propagation for `BatchNorm` `Layer` and trainable parameters W and B # Arguments - `cLayer` := the layer to perform for prop on - `Ai` := is the input activation of the `BatchNorm` `Layer` - `FCache` := a cache holder of the for prop # Return - `Dict( :μ => μ, :Ai_μ => Ai_μ, :Ai_μ_s => Ai_μ_s, :var => var, :Z => Z, :A => Ao, :Ap => Ap, )` """ function layerForProp( cLayer::BatchNorm, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs..., ) prediction = getindex(kwargs, :prediction; default=false) prevLayer = cLayer.prevLayer if length(Ai) == 0 Ai = FCache[prevLayer][:A] end if prediction cLayer.forwCount += 1 NDim = cLayer.dim μ = mean(Ai, dims = 1:NDim) Ai_μ = Ai .- μ Num = prod(size(Ai)[1:NDim]) Ai_μ_s = Ai_μ .^ 2 var = sum(Ai_μ_s, dims = 1:NDim) ./ Num Z = Ai_μ ./ sqrt.(var .+ cLayer.ϵ) Ao = cLayer.W .* Z .+ cLayer.B return Dict(:A => Ao) end #prediction # initWB!(cLayer) # initVS!(cLayer, model.optimizer) N = ndims(Ai) Ai = permutedims(Ai, [N,(1:N-1)...]) NDim = cLayer.dim + 1 μ = mean(Ai, dims = 1:NDim) Ai_μ = Ai .- μ Num = prod(size(Ai)[1:NDim]) Ai_μ_s = Ai_μ .^ 2 var = sum(Ai_μ_s, dims = 1:NDim) ./ Num Z = Ai_μ ./ sqrt.(var .+ cLayer.ϵ) Ap = cLayer.W .* Z .+ cLayer.B Ao = permutedims(Ap, [(2:N)..., 1]) cLayer.forwCount += 1 # Ai_μ = nothing cLayer.inputS = cLayer.outputS = size(Ao) # Base.GC.gc() return Dict( :μ => μ, :Ai_μ => Ai_μ, :Ai_μ_s => Ai_μ_s, :var => var, :Z => Z, :A => Ao, :Ap => Ap, ) end #function layerForProp(cLayer::BatchNorm) export layerForProp
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
3507
#import only the needed parts not to have conflict import NNlib.conv, NNlib.conv! ### NNConv function NNConv!(cLayer::Conv1D, Ai::AbstractArray{T,3}) where {T} padS = paddingSize(cLayer, Ai) cLayer.Z = conv(Ai, cLayer.W[end:-1:1, :, :], stride = cLayer.s, pad = padS) Z = cLayer.Z .+= cLayer.B[:, 1, :] actFun = cLayer.actFun cLayer.A = eval(:($actFun($Z))) return nothing end #function img2colConvolve(cLayer::Conv1D function NNConv!(cLayer::Conv2D, Ai::AbstractArray{T,4}) where {T} padS = paddingSize(cLayer, Ai) cLayer.Z = conv(Ai, cLayer.W[end:-1:1, end:-1:1, :, :], stride = cLayer.s, pad = padS) Z = cLayer.Z .+= cLayer.B[:, :, 1, :] actFun = cLayer.actFun cLayer.A = eval(:($actFun($Z))) return nothing end #function img2colConvolve(cLayer::Conv2D function NNConv!(cLayer::Conv3D, Ai::AbstractArray{T,5}) where {T} padS = paddingSize(cLayer, Ai) cLayer.Z = conv( Ai, cLayer.W[end:-1:1, end:-1:1, end:-1:1, :, :], stride = cLayer.s, pad = padS, ) Z = cLayer.Z .+= cLayer.B[:, :, :, 1, :] actFun = cLayer.actFun cLayer.A = eval(:($actFun($Z))) return nothing end #function img2colConvolve(cLayer::Conv3D export NNConv! ### dNNConv! #import only the needed parts not to have conflict import NNlib.∇conv_data, NNlib.∇conv_filter, NNlib.DenseConvDims function dNNConv!( cLayer::Conv1D, dZ::AbstractArray{T,3}, Ai::AoN = nothing, # Ao::AoN = nothing, ) where {AoN<:Union{AbstractArray,Nothing},T} if Ai == nothing Ai = cLayer.prevLayer.A end # if Ao == nothing # Ao = cLayer.A # end W = cLayer.W padS = paddingSize(cLayer, Ai) convdim = DenseConvDims(Ai, W, stride = cLayer.s, padding = padS) cLayer.dA = ∇conv_data(dZ, W[end:-1:1, :, :], convdim) cLayer.dW[end:-1:1, :, :] = ∇conv_filter(Ai, dZ, convdim) cLayer.dB = sum(permutedims(dZ, [1, 3, 2]), dims = 1:2) return nothing end #function img2colConvolve(cLayer::Conv1D function dNNConv!( cLayer::Conv2D, dZ::AbstractArray, Ai::AoN = nothing, # Ao::AoN = nothing, ) where {AoN<:Union{AbstractArray,Nothing},T} if Ai == nothing Ai = cLayer.prevLayer.A end # if Ao == nothing # Ao = cLayer.A # end W = cLayer.W convdim = DenseConvDims(Ai, W, stride = cLayer.s) padS = paddingSize(cLayer, Ai) convdim = DenseConvDims(Ai, W, stride = cLayer.s, padding = padS) cLayer.dA = ∇conv_data(dZ, W[end:-1:1, end:-1:1, :, :], convdim) cLayer.dW[end:-1:1, end:-1:1, :, :] = ∇conv_filter(Ai, dZ, convdim) cLayer.dB = sum(permutedims(dZ, [1, 2, 4, 3]), dims = 1:3) return nothing end #function img2colConvolve(cLayer::Conv2D function dNNConv!( cLayer::Conv3D, dZ::AbstractArray, Ai::AoN = nothing, # Ao::AoN = nothing, ) where {AoN<:Union{AbstractArray,Nothing},T} if Ai == nothing Ai = cLayer.prevLayer.A end # if Ao == nothing # Ao = cLayer.A # end W = cLayer.W convdim = DenseConvDims(Ai, W, stride = cLayer.s) padS = paddingSize(cLayer, Ai) convdim = DenseConvDims(Ai, W, stride = cLayer.s, padding = padS) cLayer.dA = ∇conv_data(dZ, W[end:-1:1, end:-1:1, end:-1:1, :, :], convdim) cLayer.dW[end:-1:1, end:-1:1, end:-1:1, :, :] = ∇conv_filter(Ai, dZ, convdim) cLayer.dB = sum(permutedims(dZ, [1, 2, 3, 5, 4]), dims = 1:4) return nothing end #function img2colConvolve(cLayer::Conv3D export dNNConv!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
24438
@doc raw""" # Summary abstract type PaddableLayer <: Layer Abstract Type to hold all Paddable Layers (i.e. `ConvLayer` & `PoolLayer`) # Subtypes ConvLayer PoolLayer # Supertype Hierarchy PaddableLayer <: Layer <: Any """ abstract type PaddableLayer <: Layer end @doc raw""" # Summary abstract type ConvLayer <: PaddableLayer Abstract Type to hold all ConvLayer # Subtypes Conv1D Conv2D Conv3D # Supertype Hierarchy ConvLayer <: PaddableLayer <: Layer <: Any """ abstract type ConvLayer <: PaddableLayer end export ConvLayer ### Convolution layers @doc raw""" # Summary mutable struct Conv2D <: ConvLayer # Fields channels :: Integer f :: Tuple{Integer,Integer} s :: Tuple{Integer,Integer} inputS :: Tuple outputS :: Tuple padding :: Symbol W :: Array{F,4} where F dW :: Array{F,4} where F K :: Array{F,2} where F dK :: Array{F,2} where F B :: Array{F,4} where F dB :: Array{F,4} where F actFun :: Symbol keepProb :: AbstractFloat V :: Dict{Symbol,Array{F,4} where F} S :: Dict{Symbol,Array{F,4} where F} V̂dk :: Array{F,2} where F Ŝdk :: Array{F,2} where F forwCount :: Integer backCount :: Integer updateCount :: Integer prevLayer :: Union{Nothing, Layer} nextLayers :: Array{Layer,1} # Supertype Hierarchy Conv2D <: ConvLayer <: PaddableLayer <: Layer <: Any """ mutable struct Conv2D <: ConvLayer channels::Integer """ filter size """ f::Tuple{Integer, Integer} """ stides size """ s::Tuple{Integer, Integer} inputS::Tuple outputS::Tuple """ Padding mode `:valid` or `:same` """ padding::Symbol W::Array{F, 4} where {F} dW::Array{F,4} where {F} """ Unrolled filters """ K::Array{F, 2} where {F} dK::Array{F, 2} where {F} B::Array{F, 4} where {F} dB::Array{F, 4} where {F} actFun::Symbol keepProb::AbstractFloat # Z::Array{T,4} where {T} # # dA::Array{T,4} where {T} # A::Array{T,4} where {T} V::Dict{Symbol, Array{F, 4} where {F}} S::Dict{Symbol, Array{F, 4} where {F}} V̂dk::Array{F, 2} where {F} Ŝdk::Array{F, 2} where {F} forwCount::Integer backCount::Integer updateCount::Integer prevLayer::L where {L<:Union{Layer,Nothing}} nextLayers::Array{Layer,1} function Conv2D( c, f::Tuple{Integer, Integer}; prevLayer=nothing, strides::Tuple{Integer, Integer}=(1, 1), padding::Symbol=:valid, activation::Symbol=:noAct, keepProb=1.0 ) if prevLayer == nothing T = Any elseif prevLayer isa Array T = eltype(prevLayer) else T = eltype(prevLayer.W) end new(c, f, strides, (0,), #inputS (0,), #outputS padding, Array{T,4}(undef,0,0,0,0), #W Array{T,4}(undef,0,0,0,0), #dW Matrix{T}(undef,0,0), #K Matrix{T}(undef,0,0), #dK Array{T,4}(undef,0,0,0,0), #B Array{T,4}(undef,0,0,0,0), #dB activation, keepProb, # Array{T,4}(undef, 0,0,0,0), #Z # Array{T,4}(undef, 0,0,0,0), #dA # Array{T,4}(undef, 0,0,0,0), #A Dict(:dw=>Array{T,4}(undef,0,0,0,0), :db=>Array{T,4}(undef,0,0,0,0)), #V Dict(:dw=>Array{T,4}(undef,0,0,0,0), :db=>Array{T,4}(undef,0,0,0,0)), #S Matrix{T}(undef,0,0), #V̂dk Matrix{T}(undef,0,0), #Ŝdk 0, #forwCount 0, #backCount 0, #updateCount prevLayer, Array{Layer,1}(undef, 0) #nextLayer ) end #function Conv2D end #mutable struct Conv2D export Conv2D @doc raw""" # Summary mutable struct Conv1D <: ConvLayer # Fields channels :: Integer f :: Integer s :: Integer inputS :: Tuple outputS :: Tuple padding :: Symbol W :: Array{F,3} where F dW :: Array{F,3} where F K :: Array{F,2} where F dK :: Array{F,2} where F B :: Array{F,3} where F dB :: Array{F,3} where F actFun :: Symbol keepProb :: AbstractFloat V :: Dict{Symbol,Array{F,3} where F} S :: Dict{Symbol,Array{F,3} where F} V̂dk :: Array{F,2} where F Ŝdk :: Array{F,2} where F forwCount :: Integer backCount :: Integer updateCount :: Integer prevLayer :: Union{Nothing, Layer} nextLayers :: Array{Layer,1} # Supertype Hierarchy Conv1D <: ConvLayer <: PaddableLayer <: Layer <: Any """ mutable struct Conv1D <: ConvLayer channels::Integer """ filter size """ f::Integer """ stides size """ s::Integer inputS::Tuple outputS::Tuple padding::Symbol W::Array{F, 3} where {F} dW::Array{F, 3} where {F} """ Unrolled filters """ K::Array{F, 2} where {F} dK::Array{F, 2} where {F} B::Array{F, 3} where {F} dB::Array{F, 3} where {F} actFun::Symbol keepProb::AbstractFloat # Z::Array{T,3} where {T} # dA::Array{T,3} where {T} # A::Array{T,3} where {T} V::Dict{Symbol, Array{F, 3} where {F}} S::Dict{Symbol, Array{F, 3} where {F}} V̂dk::Array{F, 2} where {F} Ŝdk::Array{F, 2} where {F} forwCount::Integer backCount::Integer updateCount::Integer prevLayer::L where {L<:Union{Layer,Nothing}} nextLayers::Array{Layer,1} function Conv1D(c, f::Integer; prevLayer=nothing, strides::Integer=1, padding::Symbol=:valid, activation::Symbol=:noAct, keepProb=1.0) if prevLayer == nothing T = Any elseif prevLayer isa Array T = eltype(prevLayer) else T = eltype(prevLayer.W) end new(c, f, strides, (0,), #inputS (0,), #outputS padding, Array{T,3}(undef,0,0,0), #W Array{T,3}(undef,0,0,0), #dW Matrix{T}(undef,0,0), #K Matrix{T}(undef,0,0), #dK Array{T,3}(undef,0,0,0), #B Array{T,3}(undef,0,0,0), #dB activation, keepProb, # Array{T,3}(undef, 0,0,0), #Z # Array{T,3}(undef, 0,0,0), #dA # Array{T,3}(undef, 0,0,0), #A Dict(:dw=>Array{T,3}(undef,0,0,0), :db=>Array{T,3}(undef,0,0,0)), #V Dict(:dw=>Array{T,3}(undef,0,0,0), :db=>Array{T,3}(undef,0,0,0)), #S Matrix{T}(undef,0,0), #V̂dk Matrix{T}(undef,0,0), #Ŝdk 0, #forwCount 0, #backCount 0, #updateCount prevLayer, Array{Layer,1}(undef, 0) #nextLayer ) end #function Conv1D end #mutable struct Conv1D export Conv1D @doc raw""" # Summary mutable struct Conv3D <: ConvLayer # Fields channels :: Integer f :: Tuple{Integer,Integer,Integer} s :: Tuple{Integer,Integer,Integer} inputS :: Tuple outputS :: Tuple padding :: Symbol W :: Array{F,5} where F dW :: Array{F,5} where F K :: Array{F,2} where F dK :: Array{F,2} where F B :: Array{F,5} where F dB :: Array{F,5} where F actFun :: Symbol keepProb :: AbstractFloat V :: Dict{Symbol,Array{F,5} where F} S :: Dict{Symbol,Array{F,5} where F} V̂dk :: Array{F,2} where F Ŝdk :: Array{F,2} where F forwCount :: Integer backCount :: Integer updateCount :: Integer prevLayer :: Union{Nothing, Layer} nextLayers :: Array{Layer,1} # Supertype Hierarchy Conv3D <: ConvLayer <: PaddableLayer <: Layer <: Any """ mutable struct Conv3D <: ConvLayer channels::Integer """ filter size """ f::Tuple{Integer, Integer, Integer} """ stides size """ s::Tuple{Integer, Integer, Integer} inputS::Tuple outputS::Tuple padding::Symbol W::Array{F, 5} where {F} dW::Array{F, 5} where {F} """ Unrolled filters """ K::Array{F, 2} where {F} dK::Array{F, 2} where {F} B::Array{F, 5} where {F} dB::Array{F, 5} where {F} actFun::Symbol keepProb::AbstractFloat # Z::Array{T,5} where {T} # dA::Array{T,5} where {T} # A::Array{T,5} where {T} V::Dict{Symbol, Array{F, 5} where {F}} S::Dict{Symbol, Array{F, 5} where {F}} V̂dk::Array{F, 2} where {F} Ŝdk::Array{F, 2} where {F} forwCount::Integer backCount::Integer updateCount::Integer prevLayer::L where {L<:Union{Layer,Nothing}} nextLayers::Array{Layer,1} function Conv3D(c, f::Tuple{Integer, Integer, Integer}; prevLayer=nothing, strides::Tuple{Integer, Integer, Integer}=(1, 1, 1), padding::Symbol=:valid, activation::Symbol=:noAct, keepProb=1.0) if prevLayer == nothing T = Any elseif prevLayer isa Array T = eltype(prevLayer) else T = eltype(prevLayer.W) end new(c, f, strides, (0,), #inputS (0,), #outputS padding, Array{T,5}(undef,0,0,0,0,0), #W Array{T,5}(undef,0,0,0,0,0), #dW Matrix{T}(undef,0,0), #K Matrix{T}(undef,0,0), #dK Array{T,5}(undef,0,0,0,0,0), #B Array{T,5}(undef,0,0,0,0,0), #dB activation, keepProb, # Array{T,5}(undef, 0,0,0,0,0), #Z # Array{T,5}(undef, 0,0,0,0,0), #dA # Array{T,5}(undef, 0,0,0,0,0), #A Dict(:dw=>Array{T,5}(undef,0,0,0,0,0), :db=>Array{T,5}(undef,0,0,0,0,0)), #V Dict(:dw=>Array{T,5}(undef,0,0,0,0,0), :db=>Array{T,5}(undef,0,0,0,0,0)), #S Matrix{T}(undef,0,0), #V̂dk Matrix{T}(undef,0,0), #Ŝdk 0, #forwCount 0, #backCount 0, #updateCount prevLayer, Array{Layer,1}(undef, 0) #nextLayer ) end #function Conv3D end #mutable struct Conv3D export Conv3D ### Pooling layers @doc raw""" # Summary abstract type PoolLayer <: PaddableLayer Abstract Type to hold all the `PoolLayer`s # Subtypes AveragePoolLayer MaxPoolLayer # Supertype Hierarchy PoolLayer <: PaddableLayer <: Layer <: Any """ abstract type PoolLayer <: PaddableLayer end export PoolLayer @doc raw""" # Summary abstract type MaxPoolLayer <: PoolLayer Abstract Type to hold all the `MaxPoolLayer`s # Subtypes MaxPool1D MaxPool2D MaxPool3D # Supertype Hierarchy MaxPoolLayer <: PoolLayer <: PaddableLayer <: Layer <: Any """ abstract type MaxPoolLayer <: PoolLayer end export MaxPoolLayer @doc """ MaxPool2D( f::Tuple{Integer,Integer}=(2,2); prevLayer=nothing, strides::Tuple{Integer,Integer}=f, padding::Symbol=:valid, ) # Summary mutable struct MaxPool2D <: MaxPoolLayer # Fields channels :: Integer f :: Tuple{Integer,Integer} s :: Tuple{Integer,Integer} inputS :: Tuple outputS :: Tuple padding :: Symbol forwCount :: Integer backCount :: Integer updateCount :: Integer prevLayer :: Union{Nothing, Layer} nextLayers :: Array{Layer,1} # Supertype Hierarchy MaxPool2D <: MaxPoolLayer <: PoolLayer <: PaddableLayer <: Layer <: Any """ mutable struct MaxPool2D <: MaxPoolLayer channels::Integer """ filter size """ f::Tuple{Integer, Integer} """ stides size """ s::Tuple{Integer, Integer} inputS::Tuple outputS::Tuple padding::Symbol # dA::Array{T,4} where {T} # A::Array{T,4} where {T} forwCount::Integer backCount::Integer updateCount::Integer prevLayer::L where {L<:Union{Layer,Nothing}} nextLayers::Array{Layer,1} function MaxPool2D( f::Tuple{Integer,Integer}=(2,2); prevLayer=nothing, strides::Tuple{Integer,Integer}=f, padding::Symbol=:valid, ) if prevLayer == nothing T = Any elseif prevLayer isa Array T = eltype(prevLayer) else T = eltype(prevLayer.W) end return new( 0, #channels f, strides, (0,), #inputS (0,), #outputS padding, # Array{T,4}(undef,0,0,0,0), #dA # Array{T,4}(undef,0,0,0,0), #A 0, #forwCount 0, #backCount 0, #updateCount prevLayer, Array{Layer,1}(undef,0), ) end #function MaxPool2D end #mutable struct MaxPool2D export MaxPool2D @doc """ MaxPool1D( f::Integer=2; prevLayer=nothing, strides::Integer=f, padding::Symbol=:valid, ) # Summary mutable struct MaxPool1D <: MaxPoolLayer # Fields channels :: Integer f :: Integer s :: Integer inputS :: Tuple outputS :: Tuple padding :: Symbol forwCount :: Integer backCount :: Integer updateCount :: Integer prevLayer :: Union{Nothing, Layer} nextLayers :: Array{Layer,1} # Supertype Hierarchy MaxPool1D <: MaxPoolLayer <: PoolLayer <: PaddableLayer <: Layer <: Any """ mutable struct MaxPool1D <: MaxPoolLayer channels::Integer """ filter size """ f::Integer """ stides size """ s::Integer inputS::Tuple outputS::Tuple padding::Symbol # dA::Array{T,3} where {T} # A::Array{T,3} where {T} forwCount::Integer backCount::Integer updateCount::Integer prevLayer::L where {L<:Union{Layer,Nothing}} nextLayers::Array{Layer,1} function MaxPool1D( f::Integer=2; prevLayer=nothing, strides::Integer=f, padding::Symbol=:valid, ) if prevLayer == nothing T = Any elseif prevLayer isa Array T = eltype(prevLayer) else T = eltype(prevLayer.W) end return new( 0, #channels f, strides, (0,), #inputS (0,), #outputS padding, # Array{T,3}(undef,0,0,0), #dA # Array{T,3}(undef,0,0,0), #A 0, #forwCount 0, #backCount 0, #updateCount prevLayer, Array{Layer,1}(undef,0), ) end #function MaxPool1D end #mutable struct MaxPool1D export MaxPool1D @doc """ MaxPool3D( f::Tuple{Integer,Integer,Integer}=(2,2,2); prevLayer=nothing, strides::Tuple{Integer,Integer,Integer}=f, padding::Symbol=:valid, ) # Summary mutable struct MaxPool3D <: MaxPoolLayer # Fields channels :: Integer f :: Tuple{Integer,Integer,Integer} s :: Tuple{Integer,Integer,Integer} inputS :: Tuple outputS :: Tuple padding :: Symbol forwCount :: Integer backCount :: Integer updateCount :: Integer prevLayer :: Union{Nothing, Layer} nextLayers :: Array{Layer,1} # Supertype Hierarchy MaxPool3D <: MaxPoolLayer <: PoolLayer <: PaddableLayer <: Layer <: Any """ mutable struct MaxPool3D <: MaxPoolLayer channels::Integer """ filter size """ f::Tuple{Integer, Integer, Integer} """ stides size """ s::Tuple{Integer, Integer, Integer} inputS::Tuple outputS::Tuple padding::Symbol # dA::Array{T,5} where {T} # A::Array{T,5} where {T} forwCount::Integer backCount::Integer updateCount::Integer prevLayer::L where {L<:Union{Layer,Nothing}} nextLayers::Array{Layer,1} function MaxPool3D( f::Tuple{Integer,Integer,Integer}=(2,2,2); prevLayer=nothing, strides::Tuple{Integer,Integer,Integer}=f, padding::Symbol=:valid, ) if prevLayer == nothing T = Any elseif prevLayer isa Array T = eltype(prevLayer) else T = eltype(prevLayer.W) end return new( 0, #channels f, strides, (0,), #inputS (0,), #outputS padding, # Array{T,5}(undef,0,0,0,0,0), #dA # Array{T,5}(undef,0,0,0,0,0), #A 0, #forwCount 0, #backCount 0, #updateCount prevLayer, Array{Layer,1}(undef,0), ) end #function MaxPool3D end #mutable struct MaxPool3D export MaxPool3D #### AveragePoolLayer @doc raw""" # Summary abstract type AveragePoolLayer <: PoolLayer # Subtypes AveragePool1D AveragePool2D AveragePool3D # Supertype Hierarchy AveragePoolLayer <: PoolLayer <: PaddableLayer <: Layer <: Any """ abstract type AveragePoolLayer <: PoolLayer end export AveragePoolLayer @doc raw""" AveragePool2D( f::Tuple{Integer,Integer}=(2,2); prevLayer=nothing, strides::Tuple{Integer,Integer}=f, padding::Symbol=:valid, ) # Summary mutable struct AveragePool2D <: AveragePoolLayer # Fields channels :: Integer f :: Tuple{Integer,Integer} s :: Tuple{Integer,Integer} inputS :: Tuple outputS :: Tuple padding :: Symbol forwCount :: Integer backCount :: Integer updateCount :: Integer prevLayer :: Union{Nothing, Layer} nextLayers :: Array{Layer,1} # Supertype Hierarchy AveragePool2D <: AveragePoolLayer <: PoolLayer <: PaddableLayer <: Layer <: Any """ mutable struct AveragePool2D <: AveragePoolLayer channels::Integer """ filter size """ f::Tuple{Integer, Integer} """ stides size """ s::Tuple{Integer, Integer} inputS::Tuple outputS::Tuple padding::Symbol # dA::Array{T,4} where {T} # A::Array{T,4} where {T} forwCount::Integer backCount::Integer updateCount::Integer prevLayer::L where {L<:Union{Layer,Nothing}} nextLayers::Array{Layer,1} function AveragePool2D( f::Tuple{Integer,Integer}=(2,2); prevLayer=nothing, strides::Tuple{Integer,Integer}=f, padding::Symbol=:valid, ) if prevLayer == nothing T = Any elseif prevLayer isa Array T = eltype(prevLayer) else T = eltype(prevLayer.W) end return new( 0, #channels f, strides, (0,), #inputS (0,), #outputS padding, # Array{T,4}(undef,0,0,0,0), #dA # Array{T,4}(undef,0,0,0,0), #A 0, #forwCount 0, #backCount 0, #updateCount prevLayer, Array{Layer,1}(undef,0), ) end #function AveragePool2D end #mutable struct AveragePool2D export AveragePool2D @doc raw""" AveragePool1D( f::Integer=2; prevLayer=nothing, strides::Integer=f, padding::Symbol=:valid, ) # Summary mutable struct AveragePool1D <: AveragePoolLayer # Fields channels :: Integer f :: Integer s :: Integer inputS :: Tuple outputS :: Tuple padding :: Symbol forwCount :: Integer backCount :: Integer updateCount :: Integer prevLayer :: Union{Nothing, Layer} nextLayers :: Array{Layer,1} # Supertype Hierarchy AveragePool1D <: AveragePoolLayer <: PoolLayer <: PaddableLayer <: Layer <: Any """ mutable struct AveragePool1D <: AveragePoolLayer channels::Integer """ filter size """ f::Integer """ stides size """ s::Integer inputS::Tuple outputS::Tuple padding::Symbol # dA::Array{T,3} where {T} # A::Array{T,3} where {T} forwCount::Integer backCount::Integer updateCount::Integer prevLayer::L where {L<:Union{Layer,Nothing}} nextLayers::Array{Layer,1} function AveragePool1D( f::Integer=2; prevLayer=nothing, strides::Integer=f, padding::Symbol=:valid, ) if prevLayer == nothing T = Any elseif prevLayer isa Array T = eltype(prevLayer) else T = eltype(prevLayer.W) end return new( 0, #channels f, strides, (0,), #inputS (0,), #outputS padding, # Array{T,3}(undef,0,0,0), #dA # Array{T,3}(undef,0,0,0), #A 0, #forwCount 0, #backCount 0, #updateCount prevLayer, Array{Layer,1}(undef,0), ) end #function AveragePool1D end #mutable struct AveragePool1D export AveragePool1D @doc raw""" AveragePool3D( f::Tuple{Integer,Integer,Integer}=(2,2,2); prevLayer=nothing, strides::Tuple{Integer,Integer,Integer}=f, padding::Symbol=:valid, ) # Summary mutable struct AveragePool3D <: AveragePoolLayer # Fields channels :: Integer f :: Tuple{Integer,Integer,Integer} s :: Tuple{Integer,Integer,Integer} inputS :: Tuple outputS :: Tuple padding :: Symbol forwCount :: Integer backCount :: Integer updateCount :: Integer prevLayer :: Union{Nothing, Layer} nextLayers :: Array{Layer,1} # Supertype Hierarchy AveragePool3D <: AveragePoolLayer <: PoolLayer <: PaddableLayer <: Layer <: Any """ mutable struct AveragePool3D <: AveragePoolLayer channels::Integer """ filter size """ f::Tuple{Integer, Integer, Integer} """ stides size """ s::Tuple{Integer, Integer, Integer} inputS::Tuple outputS::Tuple padding::Symbol # dA::Array{T,5} where {T} # A::Array{T,5} where {T} forwCount::Integer backCount::Integer updateCount::Integer prevLayer::L where {L<:Union{Layer,Nothing}} nextLayers::Array{Layer,1} function AveragePool3D( f::Tuple{Integer,Integer,Integer}=(2,2,2); prevLayer=nothing, strides::Tuple{Integer,Integer,Integer}=f, padding::Symbol=:valid, ) if prevLayer == nothing T = Any elseif prevLayer isa Array T = eltype(prevLayer) else T = eltype(prevLayer.W) end return new( 0, #channels f, strides, (0,), #inputS (0,), #outputS padding, # Array{T,5}(undef,0,0,0,0,0), #dA # Array{T,5}(undef,0,0,0,0,0), #A 0, #forwCount 0, #backCount 0, #updateCount prevLayer, Array{Layer,1}(undef,0), ) end #function AveragePool3D end #mutable struct AveragePool3D export AveragePool3D
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
4594
function (l::Conv1D)(li_1::Layer) l.prevLayer = li_1 if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end padding = l.padding c = l.channels n_Hi, ci, m = l.inputS = li_1.outputS s_H = l.s f_H = l.f if l.padding == :same l.outputS = (n_Hi, c, m) elseif l.padding == :valid n_H = ((n_Hi - f_H) ÷ s_H) + 1 l.outputS = (n_H, c, m) end return l end function (l::Conv2D)(li_1::Layer) l.prevLayer = li_1 if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end padding = l.padding c = l.channels n_Hi, n_Wi, ci, m = l.inputS = li_1.outputS s_H, s_W = l.s f_H, f_W = l.f if l.padding == :same l.outputS = (n_Hi, n_Wi, c, m) elseif l.padding == :valid n_H = ((n_Hi - f_H) ÷ s_H) + 1 n_W = ((n_Wi - f_W) ÷ s_W) + 1 l.outputS = (n_H, n_W, c, m) end return l end function (l::Conv3D)(li_1::Layer) l.prevLayer = li_1 if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end padding = l.padding c = l.channels n_Hi, n_Wi, n_Di, ci, m = l.inputS = li_1.outputS s_H, s_W, s_D = l.s f_H, f_W, f_D = l.f if l.padding == :same l.outputS = (n_Hi, n_Wi, n_Di, c, m) elseif l.padding == :valid n_H = ((n_Hi - f_H) ÷ s_H) + 1 n_W = ((n_Wi - f_W) ÷ s_W) + 1 n_D = ((n_Di - f_D) ÷ s_D) + 1 l.outputS = (n_H, n_W, n_D, c, m) end return l end function (l::MaxPool1D)(li_1::Layer) l.prevLayer = li_1 if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end padding = l.padding c = l.channels = li_1.channels n_Hi, ci, m = l.inputS = li_1.outputS s_H = l.s f_H = l.f if l.padding == :same l.outputS = (n_Hi, c, m) elseif l.padding == :valid n_H = ((n_Hi - f_H) ÷ s_H) + 1 l.outputS = (n_H, c, m) end return l end function (l::MaxPool2D)(li_1::Layer) l.prevLayer = li_1 if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end padding = l.padding c = l.channels = li_1.channels n_Hi, n_Wi, ci, m = l.inputS = li_1.outputS s_H, s_W = l.s f_H, f_W = l.f if l.padding == :same l.outputS = (n_Hi, n_Wi, c, m) elseif l.padding == :valid n_H = ((n_Hi - f_H) ÷ s_H) + 1 n_W = ((n_Wi - f_W) ÷ s_W) + 1 l.outputS = (n_H, n_W, c, m) end return l end function (l::MaxPool3D)(li_1::Layer) l.prevLayer = li_1 if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end padding = l.padding c = l.channels = li_1.channels n_Hi, n_Wi, n_Di, ci, m = l.inputS = li_1.outputS s_H, s_W, s_D = l.s f_H, f_W, f_D = l.f if l.padding == :same l.outputS = (n_Hi, n_Wi, n_Di, c, m) elseif l.padding == :valid n_H = ((n_Hi - f_H) ÷ s_H) + 1 n_W = ((n_Wi - f_W) ÷ s_W) + 1 n_D = ((n_Di - f_D) ÷ s_D) + 1 l.outputS = (n_H, n_W, n_D, c, m) end return l end function (l::AveragePool1D)(li_1::Layer) l.prevLayer = li_1 if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end padding = l.padding c = l.channels = li_1.channels n_Hi, ci, m = l.inputS = li_1.outputS s_H = l.s f_H = l.f if l.padding == :same l.outputS = (n_Hi, c, m) elseif l.padding == :valid n_H = ((n_Hi - f_H) ÷ s_H) + 1 l.outputS = (n_H, c, m) end return l end function (l::AveragePool2D)(li_1::Layer) l.prevLayer = li_1 if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end padding = l.padding c = l.channels = li_1.channels n_Hi, n_Wi, ci, m = l.inputS = li_1.outputS s_H, s_W = l.s f_H, f_W = l.f if l.padding == :same l.outputS = (n_Hi, n_Wi, c, m) elseif l.padding == :valid n_H = ((n_Hi - f_H) ÷ s_H) + 1 n_W = ((n_Wi - f_W) ÷ s_W) + 1 l.outputS = (n_H, n_W, c, m) end return l end function (l::AveragePool3D)(li_1::Layer) l.prevLayer = li_1 if ! in(l,li_1.nextLayers) push!(li_1.nextLayers, l) end padding = l.padding c = l.channels = li_1.channels n_Hi, n_Wi, n_Di, ci, m = l.inputS = li_1.outputS s_H, s_W, s_D = l.s f_H, f_W, f_D = l.f if l.padding == :same l.outputS = (n_Hi, n_Wi, n_Di, c, m) elseif l.padding == :valid n_H = ((n_Hi - f_H) ÷ s_H) + 1 n_W = ((n_Wi - f_W) ÷ s_W) + 1 n_D = ((n_Di - f_D) ÷ s_D) + 1 l.outputS = (n_H, n_W, n_D, c, m) end return l end
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
8318
#Naive convolution method using for loops with some parallel using #@simd and @inbounds function convolve!(cLayer::Conv1D, Ai::AbstractArray{T,3}) where {T} Aip = padding(cLayer, Ai) f_H = cLayer.f s_H = cLayer.s lastDim = ndims(Ai) n_H, c, m = size(cLayer.Z) W = cLayer.W B = cLayer.B @simd for mi = 1:m @simd for ci = 1:c @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 @inbounds ai = Aip[h_start:h_end, :, mi] @inbounds cLayer.Z[hi, ci, mi] = W[:, :, ci] ⋅ ai # ai = nothing # Base.GC.gc() end #for mi=1:m, hi=1:n_H end #for ci=1:c end #for mi=1:m @inbounds cLayer.Z .+= B[:, 1, :] Z = cLayer.Z actFun = cLayer.actFun cLayer.A = eval(:($actFun($Z))) W = B = Z = nothing Ai = nothing # Base.GC.gc() return nothing end #function convolve(cLayer::Conv1D function convolve!(cLayer::Conv2D, Ai::AbstractArray{T,4}) where {T} Aip = padding(cLayer, Ai) f_H, f_W = cLayer.f s_H, s_W = cLayer.s lastDim = ndims(Ai) n_H, n_W, c, m = size(cLayer.Z) W = cLayer.W B = cLayer.B @simd for mi = 1:m @simd for ci = 1:c @simd for wi = 1:n_W @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 @inbounds ai = Aip[h_start:h_end, w_start:w_end, :, mi] @inbounds cLayer.Z[hi, wi, ci, mi] = W[:, :, :, ci] ⋅ ai end #for hi=1:n_H end #for mi=1:m, wi=1:n_W, hi=1:n_H end #for ci=1:c end #for mi=1:m @inbounds cLayer.Z .+= B[:, :, 1, :] Z = cLayer.Z actFun = cLayer.actFun cLayer.A = eval(:($actFun($Z))) # Base.GC.gc() return nothing end #function convolve(cLayer::Conv2D function convolve!(cLayer::Conv3D, Ai::AbstractArray{T,5}) where {T} Aip = padding(cLayer, Ai) f_H, f_W, f_D = cLayer.f s_H, s_W, s_D = cLayer.s lastDim = ndims(Ai) n_H, n_W, n_D, c, m = size(cLayer.Z) W = cLayer.W B = cLayer.B @simd for mi = 1:m @simd for ci = 1:c @simd for di = 1:n_D @simd for wi = 1:n_W @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 d_start = di * s_D - (s_D == 1 ? 0 : s_D - 1) d_end = di * s_D - (s_D == 1 ? 0 : s_D - 1) + f_D - 1 @inbounds ai = Aip[ h_start:h_end, w_start:w_end, d_start:d_end, :, mi, ] @inbounds cLayer.Z[hi, wi, di, ci, mi] = W[:, :, :, :, ci] ⋅ ai # ai = nothing # Base.GC.gc() end #for hi=1:n_H end #for wi=1:n_W end #for di=1:n_D end #for ci=1:c end #for mi=1:m @inbounds cLayer.Z .+= B[:, :, :, 1, :] Z = cLayer.Z actFun = cLayer.actFun cLayer.A = eval(:($actFun($Z))) W = B = Z = nothing Ai = nothing # Base.GC.gc() return nothing end #function convolve(cLayer::Conv3D export convolve! ### dconvolve #Naive convolution method using for loops with some parallel using #@simd and @inbounds function dconvolve!( cLayer::Conv1D, Ai::AbstractArray{T,3}, dAi::AbstractArray{T,3}, dZ::AbstractArray{T,3}, ) where {T} Aip = padding(cLayer, Ai) padS = paddingSize(cLayer, Ai) dAip = similar(Aip) dAip .= 0 f_H = cLayer.f s_H = cLayer.s lastDim = ndims(Ai) n_H, c, m = size(cLayer.Z) W = cLayer.W cLayer.dW = similar(W) cLayer.dW .= 0 B = cLayer.B cLayer.dB = similar(B) cLayer.dB .= 0 @simd for mi = 1:m @simd for ci = 1:c for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 @inbounds ai = Aip[h_start:h_end, :, mi] @inbounds dAip[h_start:h_end, :, mi] .+= dZ[hi, ci, mi] .* W[:, :, ci] @inbounds cLayer.dW[:, :, ci] .+= (ai .* dZ[hi, ci, mi]) @inbounds cLayer.dB[:, :, ci] .+= dZ[hi, ci, mi] end #for end #for ci=1:c end #for mi=1:m dAi .= dAip[1+padS[1]:end-padS[2], :, :] return dAi end #function dconvolve(cLayer::Conv1D function dconvolve!( cLayer::Conv2D, Ai::AbstractArray{T,4}, dAi::AbstractArray{T,4}, dZ::AbstractArray{T,4}, ) where {T} Aip = padding(cLayer, Ai) padS = paddingSize(cLayer, Ai) dAip = similar(Aip) dAip .= 0 f_H, f_W = cLayer.f s_H, s_W = cLayer.s lastDim = ndims(Ai) n_H, n_W, c, m = size(cLayer.Z) W = cLayer.W cLayer.dW = similar(W) cLayer.dW .= 0 B = cLayer.B cLayer.dB = similar(B) cLayer.dB .= 0 @simd for mi = 1:m @simd for ci = 1:c for wi = 1:n_W, hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 @inbounds ai = Aip[h_start:h_end, w_start:w_end, :, mi] @inbounds dAip[h_start:h_end, w_start:w_end, :, mi] .+= dZ[hi, wi, ci, mi] .* W[:, :, :, ci] @inbounds cLayer.dW[:, :, :, ci] .+= (ai .* dZ[hi, wi, ci, mi]) @inbounds cLayer.dB[:, :, :, ci] .+= dZ[hi, wi, ci, mi] end #for end #for ci=1:c end #for mi=1:m dAi .= dAip[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], :, :] return dAi end #function dconvolve(cLayer::Conv2D function dconvolve!( cLayer::Conv3D, Ai::AbstractArray{T,5}, dAi::AbstractArray{T,5}, dZ::AbstractArray{T,5}, ) where {T} Aip = padding(cLayer, Ai) padS = paddingSize(cLayer, Ai) dAip = similar(Aip) dAip .= 0 f_H, f_W, f_D = cLayer.f s_H, s_W, s_D = cLayer.s lastDim = ndims(Ai) n_H, n_W, n_D, c, m = size(cLayer.Z) W = cLayer.W cLayer.dW = similar(W) cLayer.dW .= 0 B = cLayer.B cLayer.dB = similar(B) cLayer.dB .= 0 @simd for mi = 1:m @simd for ci = 1:c for wi = 1:n_W, hi = 1:n_H, di = 1:n_D h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 d_start = di * s_D - (s_D == 1 ? 0 : s_D - 1) d_end = di * s_D - (s_D == 1 ? 0 : s_D - 1) + f_D - 1 @inbounds ai = Aip[h_start:h_end, w_start:w_end, d_start:d_end, :, mi] @inbounds dAip[ h_start:h_end, w_start:w_end, d_start:d_end, :, mi, ] .+= dZ[hi, wi, di, ci, mi] .* W[:, :, :, :, ci] @inbounds cLayer.dW[:, :, :, :, ci] .+= (ai .* dZ[hi, wi, ci, mi]) @inbounds cLayer.dB[:, :, :, :, ci] .+= dZ[hi, wi, di, ci, mi] end #for end #for ci=1:c end #for mi=1:m dAi .= dAip[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], 1+padS[5]:end-padS[6], :, :, ] return nothing end #function dconvolve(cLayer::Conv3D export dconvolve!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
548
export outDims function outDims(cLayer::PL, Ai::AbstractArray{T,N}) where {PL <: PaddableLayer, N, T} return outDims(cLayer, size(Ai)) end function outDims(cLayer::PL, AiS::Tuple) where {PL <: PaddableLayer} f = cLayer.f s = cLayer.s inputS = cLayer.inputS[1:end-2] paddedS = paddedSize(cLayer, AiS)[1:end-2] ci, m = cLayer.inputS[end-1:end] co = cLayer.channels outputS = [] for i=1:length(f) n = (paddedS[i] - f[i]) ÷ s[i] + 1 push!(outputS, n) end return (outputS..., co, m) end
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
5904
using Statistics function fastPooling!( cLayer::OneD, Ai::AbstractArray{T,3}, ) where {OneD<:Union{MaxPool1D,AveragePool1D},T} Aip = padding(cLayer, Ai) n_Hi, c, m = size(Aip) s_H = cLayer.s f_H = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 if cLayer isa MaxPoolLayer cLayer.A = reshape( maximum(reshape(Aip, f_H, n_H, c, m), dims = 1), n_H, c, m, ) else cLayer.A = reshape(mean(reshape(Aip, f_H, n_H, c, m), dims = 1), n_H, c, m) end #if cLayer isa MaxPoolLayer return nothing end #function fastPooling!(cLayer::OneD function fastPooling!( cLayer::TwoD, Ai::AbstractArray{T,4}, ) where {TwoD<:Union{MaxPool2D,AveragePool2D},T} Aip = padding(cLayer, Ai) n_Hi, n_Wi, c, m = size(Aip) s_H, s_W = cLayer.s f_H, f_W = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 if cLayer isa MaxPoolLayer cLayer.A = reshape( maximum( permutedims( reshape(Aip, f_H, n_H, f_W, n_W, c, m), [1, 3, 2, 4, 5, 6], ), dims = 1:2, ), n_H, n_W, c, m, ) else cLayer.A = reshape( mean( permutedims( reshape(Aip, f_H, n_H, f_W, n_W, c, m), [1, 3, 2, 4, 5, 6], ), dims = 1:2, ), n_H, n_W, c, m, ) end #if cLayer isa MaxPoolLayer return nothing end #function fastPooling!(cLayer::TwoD, function fastPooling!( cLayer::ThreeD, Ai::AbstractArray{T,5}, ) where {ThreeD<:Union{MaxPool3D,AveragePool3D},T} Aip = padding(cLayer, Ai) n_Hi, n_Wi, n_Di, c, m = size(Aip) s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 if cLayer isa MaxPoolLayer cLayer.A = reshape( maximum( permutedims( reshape(Aip, f_H, n_H, f_W, n_W, f_D, n_D, c, m), [1, 3, 5, 2, 4, 6, 7, 8], ), dims = 1:3, ), n_H, n_W, n_D, c, m, ) else cLayer.A = reshape( mean( permutedims( reshape(Aip, f_H, n_H, f_W, n_W, f_D, n_D, c, m), [1, 3, 5, 2, 4, 6, 7, 8], ), dims = 1:3, ), n_H, n_W, n_D, c, m, ) end #if cLayer isa MaxPoolLayer return nothing end #function fastPooling!(cLayer::ThreeD, export fastPooling! ### dfastPooling function dfastPooling!( cLayer::OneD, Ai::AbstractArray{T,3}, dAi::AbstractArray{T,3}, Ao::AbstractArray{T,3}, dAo::AbstractArray{T,3}, ) where {OneD<:Union{MaxPool1D,AveragePool1D},T} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) n_Hi, c, m = size(Aip) s_H = cLayer.s f_H = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 Aipr = reshape(Aip, f_H, n_H, c, m) if cLayer isa MaxPoolLayer mask = Aipr .== reshape(Ao, 1, n_H, c, m) else mask = similar(Aipr) .= 1 / prod((cLayer.f)) end #if cLayer isa MaxPoolLayer dAi .= reshape(reshape(dAo, 1, n_H, c, m) .* mask, n_Hi, c, m)[1+padS[1]:end-padS[2], :, :] mask = nothing return nothing end #function dfastPooling!(cLayer::OneD function dfastPooling!( cLayer::TwoD, Ai::AbstractArray{T,4}, dAi::AbstractArray{T,4}, Ao::AbstractArray{T,4}, dAo::AbstractArray{T,4}, ) where {TwoD<:Union{MaxPool2D,AveragePool2D},T} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) n_Hi, n_Wi, c, m = size(Aip) s_H, s_W = cLayer.s f_H, f_W = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 Aipr = permutedims(reshape(Aip, f_H, n_H, f_W, n_W, c, m), [1, 3, 2, 4, 5, 6]) if cLayer isa MaxPoolLayer mask = Aipr .== reshape(Ao, 1, 1, n_H, n_W, c, m) else mask = similar(Aipr) .= 1 / prod((cLayer.f)) end dAi .= reshape( permutedims( reshape(dAo, 1, 1, n_H, n_W, c, m) .* mask, [1, 3, 2, 4, 5, 6], ), n_Hi, n_Wi, c, m, )[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], :, :] mask = nothing return nothing end #function dfastPooling!(cLayer::TwoD, function dfastPooling!( cLayer::ThreeD, Ai::AbstractArray{T,5}, dAi::AbstractArray{T,5}, Ao::AbstractArray{T,5}, dAo::AbstractArray{T,5}, ) where {ThreeD<:Union{MaxPool3D,AveragePool3D},T} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) n_Hi, n_Wi, n_Di, c, m = size(Aip) s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 Aipr = permutedims( reshape(Aip, f_H, n_H, f_W, n_W, f_D, n_D, c, m), [1, 3, 5, 2, 4, 6, 7, 8], ) if cLayer isa MaxPoolLayer mask = Aipr .== reshape(Ao, 1, 1, 1, n_H, n_W, n_D, c, m) else mask = similar(Aipr) .= 1 / prod((cLayer.f)) end dAi .= reshape( permutedims( reshape(dAo, 1, 1, 1, n_H, n_W, n_D, c, m) .* mask, [1, 4, 2, 5, 3, 6, 7, 8], ), n_Hi, n_Wi, n_Di, c, m, )[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], 1+padS[5]:end-padS[6], :, :, ] mask = nothing return nothing end #function dfastPooling!(cLayer::ThreeD, export dfastPooling!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
1754
###img2col function img2col(A::AbstractArray{T,3})::AbstractArray{T,2} where {T} S = size(A) vs = prod(S[1:end-1]) m = S[end] return reshape(A, vs, m) end #function img2col(A::Array{T,3}) function img2col(A::AbstractArray{T,4})::AbstractArray{T,2} where {T} S = size(A) vs = prod(S[1:end-1]) m = S[end] return reshape(permutedims(A, [2, 1, 3, 4]), vs, m) end #function img2col(A::Array{T,4}) function img2row(A::AbstractArray{T,4})::AbstractArray{T,2} where {T} S = size(A) vs = prod(S[1:end-1]) m = S[end] return reshape(A, vs, m) end #function img2col(A::Array{T,4}) function img2col(A::AbstractArray{T,5})::AbstractArray{T,2} where {T} S = size(A) vs = prod(S[1:end-1]) m = S[end] return reshape(permutedims(A, [2, 1, 3, 4, 5]), vs, m) end #function img2col(A::Array{T,5}) export img2col ### col2img function col2img( Av::AbstractArray{T,2}, outputS::Tuple{Integer,Integer,Integer}, )::AbstractArray{T,3} where {T} return reshape(Av, outputS) end #function col2img(Av::Array{T,2}, c::Integer) function col2img( Av::AbstractArray{T,2}, outputS::Tuple{Integer,Integer,Integer,Integer}, )::AbstractArray{T,4} where {T} H, W, c, m = outputS return permutedims(reshape(Av, (W, H, c, m)), [2, 1, 3, 4]) end #function col2img(Av::Array{T,2}, c::Integer; H::Integer=-1, W::Integer=-1) function col2img( Av::AbstractArray{T,2}, outputS::Tuple{Integer,Integer,Integer,Integer,Integer}, )::AbstractArray{T,5} where {T} H, W, D, c, m = outputS return permutedims(reshape(Av, (W, H, D, c, m)), [2, 1, 3, 4, 5]) end #function col2img(Av::Array{T,2}, c::Integer; H::Integer=-1, W::Integer=-1, D::Integer=-1) export col2img1D, col2img2D, col2img3D
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
3655
function img2colConvolve!(cLayer::Conv1D, Ai::AbstractArray{T,3}) where {T} Aip = padding(cLayer, Ai) Z = cLayer.Z = col2img1D(cLayer.K * img2col(Aip), cLayer.outputS) .+ cLayer.B[:, 1, :] actFun = cLayer.actFun cLayer.A = eval(:($actFun($Z))) return nothing end #function img2colConvolve(cLayer::Conv1D function img2colConvolve!(cLayer::Conv2D, Ai::AbstractArray{T,4}) where {T} Aip = padding(cLayer, Ai) Z = cLayer.Z = col2img2D(cLayer.K * img2col(Aip), cLayer.outputS) .+ cLayer.B[:, :, 1, :] actFun = cLayer.actFun cLayer.A = eval(:($actFun($Z))) return nothing end #function img2colConvolve(cLayer::Conv2D function img2colConvolve!(cLayer::Conv3D, Ai::AbstractArray{T,5}) where {T} Aip = padding(cLayer, Ai) Z = cLayer.Z = col2img3D(cLayer.K * img2col(Aip), cLayer.outputS) .+ cLayer.B[:, :, :, 1, :] actFun = cLayer.actFun cLayer.A = eval(:($actFun($Z))) return nothing end #function img2colConvolve(cLayer::Conv3D export img2colConvolve! ### dimg2colConvolve! export dimg2colConvolve! function dimg2colConvolve!( cLayer::Conv1D, Ai::AbstractArray{T1,3}, dAi::AbstractArray{T2,3}, dZ::AbstractArray{T3,3}, ) where {T1,T2,T3} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) Aipv = img2col(Aip) dZv = img2col(dZ) n_Hi, c, m = size(Aip) s_H = cLayer.s f_H = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 dAi .= col2img1D(cLayer.K' * dZv, (n_Hi,c,m))[1+padS[1]:end-padS[2], :, :] cLayer.dK = dZv * Aipv' cLayer.dB = sum(permutedims(dZ, [1, 3, 2]), dims = 1:2) return nothing end # function dimg2colConvolve!( # cLayer::Conv1D, # Ai::AbstractArray{T,3}, # dA::AbstractArray{T,3}, # dZ::AbstractArray{T,3}, # ) where {T} function dimg2colConvolve!( cLayer::Conv2D, Ai::AbstractArray{T1,4}, dAi::AbstractArray{T2,4}, dZ::AbstractArray{T3,4}, ) where {T1,T2,T3} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) Aipv = img2col(Aip) dZv = img2col(dZ) n_Hi, n_Wi, c, m = size(Aip) s_H, s_W = cLayer.s f_H, f_W = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 dAi .= col2img1D(cLayer.K' * dZv, (n_Hi,n_Wi,c,m))[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], :, :] cLayer.dK = dZv * Aipv' cLayer.dB = sum(permutedims(dZ, [1, 2, 4, 3]), dims = 1:3) return nothing end # function dimg2colConvolve!( # cLayer::Conv2D, # Ai::AbstractArray{T,4}, # dA::AbstractArray{T,4}, # dZ::AbstractArray{T,4}, # ) where {T} function dimg2colConvolve!( cLayer::Conv3D, Ai::AbstractArray{T1,5}, dAi::AbstractArray{T2,5}, dZ::AbstractArray{T3,5}, ) where {T1,T2,T3} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) Aipv = img2col(Aip) dZv = img2col(dZ) n_Hi, n_Wi, n_Di, c, m = size(Aip) s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 dAi .= col2img1D(cLayer.K' * dZv, (n_Hi, n_Wi, n_Di, c, m))[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], 1+padS[5]:end-padS[6], :, :, ] cLayer.dK = dZv * Aipv' cLayer.dB = sum(permutedims(dZ, [1, 2, 3, 5, 4]), dims = 1:4) return nothing end # function dimg2colConvolve!( # cLayer::Conv3D, # Ai::AbstractArray{T,5}, # dA::AbstractArray{T,5}, # dZ::AbstractArray{T,5}, # ) where {T}
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
463
include("TypeDef.jl") include("initializations.jl") # include("convolve.jl") include("padding.jl") # include("pooling.jl") # include("layerForProp.jl") # include("layerBackProp.jl") include("layerUpdateParams.jl") include("chain.jl") include("img2col.jl") include("unroll.jl") include("dimensions.jl") # include("img2colConvolve.jl") # include("fastPooling.jl") # include("NNConv.jl") ### include("parallelLayerForProp.jl") include("parallelLayerBackProp.jl")
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
4416
function initWB!( cLayer::Conv1D, p::Type{T} = Float64::Type{Float64}; He::Bool = true, coef::AbstractFloat = 0.01, zro::Bool = false, ) where {T} f = cLayer.f cl = cLayer.channels cl_1 = cLayer.prevLayer.channels inputS = cLayer.inputS s_H = cLayer.s f_H = cLayer.f # ## note this is the input to the matmult after padding # if cLayer.padding == :same # p_H = Integer(ceil((s_H * (n_Hi - 1) - n_Hi + f_H) / 2)) # n_H = n_Hi + 2p_H # elseif cLayer.padding == :valid # n_H = n_Hi # end if He coef = sqrt(2 / cl_1) end if zro W = zeros(T, f..., cl_1, cl) else W = T.(randn(f..., cl_1, cl) .* coef) end B = zeros(T, repeat([1], length(f) + 1)..., cl) cLayer.W, cLayer.B = W, B cLayer.K = Matrix{T}(undef,0,0) #unroll(cLayer, (n_H, ci, m)) cLayer.dW = zeros(T, f..., cl_1, cl) cLayer.dK = Matrix{T}(undef,0,0) #unroll(cLayer, (n_H, ci, m), :dW) cLayer.dB = deepcopy(B) return nothing end #initWB function initWB!( cLayer::Conv2D, p::Type{T} = Float64::Type{Float64}; He::Bool = true, coef::AbstractFloat = 0.01, zro::Bool = false, ) where {T} f = cLayer.f cl = cLayer.channels cl_1 = cLayer.prevLayer.channels inputS = cLayer.inputS s_H, s_W = cLayer.s f_H, f_W = cLayer.f ## note this is the input to the matmult after padding # if cLayer.padding == :same # p_H = Integer(ceil((s_H * (n_Hi - 1) - n_Hi + f_H) / 2)) # p_W = Integer(ceil((s_W * (n_Wi - 1) - n_Wi + f_W) / 2)) # n_H, n_W = n_Hi + 2p_H, n_Wi + 2p_W # elseif cLayer.padding == :valid # n_H = n_Hi # n_W = n_Wi # end if He coef = sqrt(2 / cl_1) end if zro W = zeros(T, f..., cl_1, cl) else W = T.(randn(f..., cl_1, cl) .* coef) end B = zeros(T, repeat([1], length(f) + 1)..., cl) cLayer.W, cLayer.B = W, B cLayer.K = Matrix{T}(undef,0,0) #unroll(cLayer, (n_H, n_W, ci, m)) cLayer.dW = zeros(T, f..., cl_1, cl) cLayer.dK = Matrix{T}(undef,0,0) #unroll(cLayer, (n_H, n_W, ci, m), :dW) cLayer.dB = deepcopy(B) return nothing end #initWB function initWB!( cLayer::Conv3D, p::Type{T} = Float64::Type{Float64}; He::Bool= true, coef::AbstractFloat = 0.01, zro::Bool = false, ) where {T} f = cLayer.f cl = cLayer.channels cl_1 = cLayer.prevLayer.channels inputS = cLayer.inputS s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f ## note this is the input to the matmult after padding # if cLayer.padding == :same # p_H = Integer(ceil((s_H * (n_Hi - 1) - n_Hi + f_H) / 2)) # p_W = Integer(ceil((s_W * (n_Wi - 1) - n_Wi + f_W) / 2)) # p_D = Integer(ceil((s_D * (n_Di - 1) - n_Di + f_D) / 2)) # n_H, n_W, n_D = n_Hi + 2p_H, n_Wi + 2p_W, n_Di + 2p_D # elseif cLayer.padding == :valid # n_H = n_Hi # n_W = n_Wi # n_D = n_Di # end if He coef = sqrt(2 / cl_1) end if zro W = zeros(T, f..., cl_1, cl) else W = T.(randn(f..., cl_1, cl) .* coef) end B = zeros(T, repeat([1], length(f) + 1)..., cl) cLayer.W, cLayer.B = W, B cLayer.K = Matrix{T}(undef,0,0) #unroll(cLayer, (n_H, n_W, n_D, ci, m)) cLayer.dW = zeros(T, f..., cl_1, cl) cLayer.dK = Matrix{T}(undef,0,0) #unroll(cLayer, (n_H, n_W, n_D, ci, m), :dW) cLayer.dB = deepcopy(B) return nothing end #initWB ###Pooling Layers function initWB!( cLayer::P, p::Type{T} = Float64::Type{Float64}; He::Bool = true, coef::AbstractFloat = 0.01, zro::Bool = false, ) where {T,P<:PoolLayer} return nothing end export initWB! ### initVS! function initVS!(cLayer::CL, optimizer::Symbol) where {CL <: ConvLayer} if optimizer == :adam || optimizer == :momentum cLayer.V[:dw] = deepcopy(cLayer.dW) cLayer.V̂dk = deepcopy(cLayer.dK) cLayer.V[:db] = deepcopy(cLayer.dB) if optimizer == :adam cLayer.S = deepcopy(cLayer.V) cLayer.Ŝdk = deepcopy(cLayer.V̂dk) end #if optimizer == :adam end #if optimizer == :adam || optimizer == :momentum return nothing end #function initVS! initVS!(cLayer::P, optimizer::Symbol) where {P<:PoolLayer} = nothing export initVS!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
7884
### convlayers function layerBackProp( cLayer::ConvLayer, model::Model, actFun::SoS, labels::AbstractArray, ) where {SoS<:Union{Type{softmax},Type{σ}}} lossFun = model.lossFun dlossFun = Symbol("d", lossFun) A = cLayer.A Y = labels dZ = eval(:($dlossFun($A, $Y))) return dZ end #softmax or σ layerBackProp function layerBackProp!( cLayer::CL, model::Model, Ai::AbstractArray = Array{Any,1}(undef,0), Ao::AbstractArray = Array{Any,1}(undef,0), dAo::AbstractArray = Array{Any,1}(undef,0); labels::AbstractArray = Array{Any,1}(undef,0), kwargs... ) where {CL <: ConvLayer} NNlib = getindex(kwargs, :NNlib; default=true) img2col = getindex(kwargs, :img2col; default=true) if length(Ai) == 0 Ai = cLayer.prevLayer.A end if length(Ao) == 0 Ao = cLayer.A end m = size(Ao)[end] regulization, λ = model.regulization, model.λ actFun = cLayer.actFun dZ = [] if cLayer.actFun == model.outLayer.actFun dZ = layerBackProp(cLayer, model, eval(:($actFun)), labels) elseif length(dAo) != 0 dActFun = Symbol("d", cLayer.actFun) Z = cLayer.Z dZ = dAo .* eval(:($dActFun($Z))) elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= nextLayer.dA catch e dAo = nextLayer.dA #need to initialize dA end #try/catch end #for dActFun = Symbol("d", cLayer.actFun) Z = cLayer.Z dZ = dAo .* eval(:($dActFun($Z))) else #in case not every next layer done backprop return nothing end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) if NNlib dNNConv!(cLayer, dZ, Ai) else cLayer.dA = similar(Ai) #the size before padding cLayer.dA .= 0 if img2col dimg2colConvolve!(cLayer, Ai, cLayer.dA, dZ) else dconvolve!(cLayer, Ai, cLayer.dA, dZ) end #if img2col end #if NNlib cLayer.backCount += 1 return nothing end #function layerBackProp!(cLayer::Input ### Pooling Layers #import only the needed parts not to have conflict import NNlib.∇maxpool, NNlib.∇meanpool, NNlib.∇maxpool!, NNlib.∇meanpool!, NNlib.PoolDims function layerBackProp!( cLayer::OneD, model::Model, Ai::AbstractArray = Array{Any,1}(undef,0), Ao::AbstractArray = Array{Any,1}(undef,0), dAo::AbstractArray = Array{Any,1}(undef,0); labels::AbstractArray = Array{Any,1}(undef,0), kwargs... ) where {OneD<:Union{MaxPool1D,AveragePool1D}} NNlib = getindex(kwargs, :NNlib) ? kwargs[:NNlib] : true if length(Ai) == 0 Ai = cLayer.prevLayer.A end if length(Ao) == 0 Ao = cLayer.A end padS = paddingSize(cLayer, Ai) cLayer.dA = similar(Ai) .= 0 if length(dAo) == 0 if all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= nextLayer.dA catch e dAo = nextLayer.dA #need to initialize dA end #try/catch end #for else return nothing end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) end #if dA==nothing if NNlib pooldims = PoolDims(Ai, cLayer.f, stride = cLayer.s, padding = padS) if cLayer isa MaxPoolLayer ∇maxpool!(cLayer.dA, dAo, Ao, Ai, pooldims) elseif cLayer isa AveragePoolLayer ∇meanpool!(cLayer.dA, dAo, Ao, Ai, pooldims) end #if cLayer isa MaxPoolLayer else if cLayer.s == cLayer.f dfastPooling!(cLayer, Ai, cLayer.dA, Ao, dAo) else dpooling!(cLayer, Ai, cLayer.dA, Ao, dAo) end #if cLayer.s == cLayer.f end #if NNlib cLayer.backCount += 1 return nothing end #unction layerBackProp!(cLayer::OneD) where {OneD <: Union{MaxPool1D, AveragePool1D}} function layerBackProp!( cLayer::TwoD, model::Model, Ai::AbstractArray = Array{Any,1}(undef,0), Ao::AbstractArray = Array{Any,1}(undef,0), dAo::AbstractArray = Array{Any,1}(undef,0); labels::AbstractArray = Array{Any,1}(undef,0), kwargs... ) where {TwoD<:Union{MaxPool2D,AveragePool2D}} NNlib = getindex(kwargs, :NNlib) ? kwargs[:NNlib] : true if length(Ai) == 0 Ai = cLayer.prevLayer.A end if length(Ao) == 0 Ao = cLayer.A end padS = paddingSize(cLayer, Ai) cLayer.dA = similar(Ai) .= 0 if length(dAo) == 0 if all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= nextLayer.dA catch e dAo = nextLayer.dA #need to initialize dA end #try/catch end #for else return nothing end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) end #if dA==nothing if NNlib pooldims = PoolDims(Ai, cLayer.f, stride = cLayer.s, padding = padS) if cLayer isa MaxPoolLayer ∇maxpool!(cLayer.dA, dAo, Ao, Ai, pooldims) elseif cLayer isa AveragePoolLayer ∇meanpool!(cLayer.dA, dAo, Ao, Ai, pooldims) end #if cLayer isa MaxPoolLayer else if cLayer.s == cLayer.f dfastPooling!(cLayer, Ai, cLayer.dA, Ao, dAo) else dpooling!(cLayer, Ai, cLayer.dA, Ao, dAo) end #if cLayer.s == cLayer.f end #if NNlib cLayer.backCount += 1 return nothing end #function layerBackProp!(cLayer::TwoD) where {TwoD <: Union{MaxPool2D, AveragePool2D}} function layerBackProp!( cLayer::ThreeD, model::Model, Ai::AbstractArray = Array{Any,1}(undef,0), Ao::AbstractArray = Array{Any,1}(undef,0), dAo::AbstractArray = Array{Any,1}(undef,0); labels::AbstractArray = Array{Any,1}(undef,0), kwargs..., ) where {ThreeD<:Union{MaxPool3D,AveragePool3D}} NNlib = getindex(kwargs, :NNlib) ? kwargs[:NNlib] : true if length(Ai) == 0 Ai = cLayer.prevLayer.A end if length(Ao) == 0 Ao = cLayer.A end padS = paddingSize(cLayer, Ai) cLayer.dA = similar(Ai) .= 0 if length(dAo) == 0 if all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= nextLayer.dA catch e dAo = nextLayer.dA #need to initialize dA end #try/catch end #for else return nothing end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) end #if dA==nothing if NNlib pooldims = PoolDims(Ai, cLayer.f, stride = cLayer.s, padding = padS) if cLayer isa MaxPoolLayer ∇maxpool!(cLayer.dA, dAo, Ao, Ai, pooldims) elseif cLayer isa AveragePoolLayer ∇meanpool!(cLayer.dA, dAo, Ao, Ai, pooldims) end #if cLayer isa MaxPoolLayer else if cLayer.s == cLayer.f dfastPooling!(cLayer, Ai, cLayer.dA, Ao, dAo) else dpooling!(cLayer, Ai, cLayer.dA, Ao, dAo) end #if cLayer.s == cLayer.f end #if NNlib cLayer.backCount += 1 return nothing end #function layerBackProp!(cLayer::ThreeD) where {ThreeD <: Union{MaxPool3D, AveragePool3D}}
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
7575
###convolution layers forprop function layerForProp!( cLayer::Conv1D, Ai::AbstractArray = Array{Any,1}(undef,0); kwargs... ) NNlib = getindex(kwargs, :NNlib) ? kwargs[:NNlib] : true img2col = getindex(kwargs, :img2col) ? kwargs[:img2col] : false if length(Ai) == 0 Ai = cLayer.prevLayer.A end cLayer.inputS = size(Ai) # Ai = padding(cLayer, Ai) n_Hi, ci, m = paddedSize(cLayer, Ai) s_H = cLayer.s f_H = cLayer.f c = cLayer.channels n_H = (n_Hi - f_H) ÷ s_H + 1 if NNlib NNConv!(cLayer, Ai) elseif img2col ## in case input different size than previous time if (n_H * c, n_Hi * ci) != size(cLayer.K) cLayer.K = unroll(cLayer, (n_Hi, ci, m)) end img2colConvolve!(cLayer, Ai) else cLayer.Z = zeros(eltype(Ai), n_H, cLayer.channels, m) convolve!(cLayer, Ai) end cLayer.outputS = size(cLayer.A) Ai = nothing cLayer.forwCount += 1 # Base.GC.gc() return nothing end #function layerForProp!(cLayer::Conv1D) function layerForProp!( cLayer::Conv2D, Ai::AbstractArray = Array{Any,1}(undef,0); kwargs... ) NNlib = getindex(kwargs, :NNlib) ? kwargs[:NNlib] : true img2col = getindex(kwargs, :img2col) ? kwargs[:img2col] : false if length(Ai) == 0 Ai = cLayer.prevLayer.A end cLayer.inputS = size(Ai) # Ai = padding(cLayer, Ai) n_Hi, n_Wi, ci, m = paddedSize(cLayer, Ai) c = cLayer.channels s_H, s_W = cLayer.s f_H, f_W = cLayer.f c = cLayer.channels n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 if NNlib NNConv!(cLayer, Ai) elseif img2col ## in case input different size than previous time if (n_W * n_H * c, n_Hi * n_Wi * ci) != size(cLayer.K) cLayer.K = unroll(cLayer, (n_Hi, n_Wi, ci, m)) end #if (n_W*n_H* c, n_Hi*n_Wi*ci) != size(cLayer.K) img2colConvolve!(cLayer, Ai) else cLayer.Z = zeros(eltype(Ai), n_H, n_W, cLayer.channels, m) convolve!(cLayer, Ai) end #if img2colConvolve cLayer.outputS = size(cLayer.A) Ai = nothing cLayer.forwCount += 1 # Base.GC.gc() return nothing end #function layerForProp!(cLayer::Conv2D) function layerForProp!( cLayer::Conv3D, Ai::AbstractArray = Array{Any,1}(undef,0); kwargs... ) NNlib = getindex(kwargs, :NNlib) ? kwargs[:NNlib] : true img2col = getindex(kwargs, :img2col) ? kwargs[:img2col] : false if length(Ai) == 0 Ai = cLayer.prevLayer.A end cLayer.inputS = size(Ai) # Ai = padding(cLayer, Ai) n_Hi, n_Wi, n_Di, ci, m = paddedSize(cLayer, Ai) s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f c = cLayer.channels n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 if NNlib NNConv!(cLayer, Ai) elseif img2col ## in case input different size than previous time if (n_W * n_H * n_D * c, n_Hi * n_Wi * n_Di * ci) != size(cLayer.K) cLayer.K = unroll(cLayer, (n_Hi, n_Wi, n_Di, ci, m)) end #if (n_W*n_H* c, n_Hi*n_Wi*ci) != size(cLayer.K) img2colConvolve!(cLayer, Ai) else cLayer.Z = zeros(eltype(Ai), n_H, n_W, n_D, cLayer.channels, m) convolve!(cLayer, Ai) end #if img2colConvolve cLayer.outputS = size(cLayer.A) cLayer.forwCount += 1 Ai = nothing # Base.GC.gc() return nothing end #function layerForProp!(cLayer::Conv3D) ### Pooling Layers #import only the needed parts not to have conflict import NNlib.maxpool, NNlib.meanpool, NNlib.maxpool!, NNlib.meanpool!, NNlib.PoolDims function layerForProp!( cLayer::OneD, Ai::AbstractArray = Array{Any,1}(undef,0); kwargs... ) where {OneD<:Union{MaxPool1D,AveragePool1D}} NNlib = getindex(kwargs, :NNlib) ? kwargs[:NNlib] : true if length(Ai) == 0 Ai = cLayer.prevLayer.A end cLayer.inputS = size(Ai) # Ai = padding(cLayer, Ai) padS = paddingSize(cLayer, Ai) n_Hi, ci, m = paddedSize(cLayer, Ai) s_H = cLayer.s f_H = cLayer.f c = cLayer.channels n_H = (n_Hi - f_H) ÷ s_H + 1 cLayer.A = zeros(eltype(Ai), n_H, c, m) if NNlib pooldims = PoolDims(Ai, cLayer.f, stride = cLayer.s, padding = padS) if cLayer isa MaxPoolLayer maxpool!(cLayer.A, Ai, pooldims) elseif cLayer isa AveragePoolLayer meanpool!(cLayer.A, Ai, pooldims) end #if cLayer isa MaxPoolLayer elseif f_H == s_H #to use the built-in reshape and maximum and mean fastPooling!(cLayer, Ai) else pooling!(cLayer, Ai) end #if NNlibConv cLayer.outputS = size(cLayer.A) Ai = nothing cLayer.forwCount += 1 # Base.GC.gc() return nothing end #unction layerForProp!(cLayer::OneD) where {OneD <: Union{MaxPool1D, AveragePool1D}} function layerForProp!( cLayer::TwoD, Ai::AbstractArray = Array{Any,1}(undef,0); kwargs..., ) where {TwoD<:Union{MaxPool2D,AveragePool2D}} NNlib = getindex(kwargs, :NNlib) ? kwargs[:NNlib] : true if length(Ai) == 0 Ai = cLayer.prevLayer.A end cLayer.inputS = size(Ai) # Ai = padding(cLayer, Ai) padS = paddingSize(cLayer, Ai) n_Hi, n_Wi, ci, m = paddedSize(cLayer, Ai) s_H, s_W = S = cLayer.s f_H, f_W = F = cLayer.f c = cLayer.channels n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 cLayer.A = zeros(eltype(Ai), n_H, n_W, c, m) if NNlib pooldims = PoolDims(Ai, cLayer.f, stride = cLayer.s, padding = padS) if cLayer isa MaxPoolLayer maxpool!(cLayer.A, Ai, pooldims) elseif cLayer isa AveragePoolLayer meanpool!(cLayer.A, Ai, pooldims) end #if cLayer isa MaxPoolLayer elseif F == S #to use the built-in reshape, maximum and mean fastPooling!(cLayer, Ai) else pooling!(cLayer, Ai) end #if NNlibConv cLayer.outputS = size(cLayer.A) Ai = nothing cLayer.forwCount += 1 # Base.GC.gc() return nothing end #function layerForProp!(cLayer::TwoD) where {TwoD <: Union{MaxPool2D, AveragePool2D}} function layerForProp!( cLayer::ThreeD, Ai::AbstractArray = Array{Any,1}(undef,0); kwargs..., ) where {ThreeD<:Union{MaxPool3D,AveragePool3D}} NNlib = getindex(kwargs, :NNlib) ? kwargs[:NNlib] : true if length(Ai) == 0 Ai = cLayer.prevLayer.A end cLayer.inputS = size(Ai) # Ai = padding(cLayer, Ai) padS = paddingSize(cLayer, Ai) n_Hi, n_Wi, n_Di, ci, m = paddedSize(cLayer, Ai) s_H, s_W, s_D = S = cLayer.s f_H, f_W, f_D = F = cLayer.f c = cLayer.channels n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 cLayer.A = zeros(eltype(Ai), n_H, n_W, n_D, c, m) if NNlib pooldims = PoolDims(Ai, cLayer.f, stride = cLayer.s, padding = padS) if cLayer isa MaxPoolLayer maxpool!(cLayer.A, Ai, pooldims) elseif cLayer isa AveragePoolLayer meanpool!(cLayer.A, Ai, pooldims) end #if cLayer isa MaxPoolLayer elseif F == S #to use the built-in reshape and maximum and mean fastPooling!(cLayer, Ai) else pooling!(cLayer, Ai) end #if NNlibConv cLayer.outputS = size(cLayer.A) Ai = nothing cLayer.forwCount += 1 # Base.GC.gc() return nothing end #function layerForProp!(cLayer::ThreeD) where {ThreeD <: Union{MaxPool3D, AveragePool3D}}
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
2983
#TODO make sure to renew V and S at each epoch function layerUpdateParams!( model::Model, cLayer::CL, cnt::Integer = -1; tMiniBatch::Integer = 1, kwargs..., ) where {CL<:ConvLayer} optimizer = model.optimizer α = model.α β1, β2, ϵAdam = model.β1, model.β2, model.ϵAdam if cLayer.updateCount >= cnt return nothing end #if cLayer.updateCount >= cnt if !all( i -> (i.updateCount == cLayer.nextLayers[1].updateCount), cLayer.nextLayers, ) return nothing end #initialize the needed variables to hold the corrected values #it is being init here cause these are not needed elsewhere if optimizer == :adam || optimizer == :momentum VCorrected = Dict(:dw => similar(cLayer.dW), :db => similar(cLayer.dB)) if tMiniBatch == 1 cLayer.V[:dw] .= 0 cLayer.V[:db] .= 0 end cLayer.V[:dw] .= β1 .* cLayer.V[:dw] .+ (1 - β1) .* cLayer.dW cLayer.V[:db] .= β1 .* cLayer.V[:db] .+ (1 - β1) .* cLayer.dB ##correcting VCorrected[:dw] .= cLayer.V[:dw] ./ (1 - β1^tMiniBatch) VCorrected[:db] .= cLayer.V[:db] ./ (1 - β1^tMiniBatch) if optimizer == :adam SCorrected = Dict(:dw => similar(cLayer.dW), :db => similar(cLayer.dB)) if tMiniBatch == 1 cLayer.S[:dw] .= 0 cLayer.S[:db] .= 0 end cLayer.S[:dw] .= β2 .* cLayer.S[:dw] .+ (1 - β2) .* (cLayer.dW .^ 2) cLayer.S[:db] .= β2 .* cLayer.S[:db] .+ (1 - β2) .* (cLayer.dB .^ 2) ##correcting SCorrected[:dw] .= cLayer.S[:dw] ./ (1 - β2^tMiniBatch) SCorrected[:db] .= cLayer.S[:db] ./ (1 - β2^tMiniBatch) ##update parameters with adam cLayer.W .-= (α .* (VCorrected[:dw] ./ (sqrt.(SCorrected[:dw]) .+ ϵAdam))) cLayer.B .-= (α .* (VCorrected[:db] ./ (sqrt.(SCorrected[:db]) .+ ϵAdam))) VCorrected = nothing SCorrected = nothing else#if optimizer==:momentum cLayer.W .-= (α .* VCorrected[:dw]) cLayer.B .-= (α .* VCorrected[:db]) VCorrected = nothing end #if optimizer==:adam else cLayer.W .-= (α .* cLayer.dW) cLayer.B .-= (α .* cLayer.dB) end #if optimizer==:adam || optimizer==:momentum cLayer.updateCount += 1 # Base.GC.gc() return nothing end #layerUpdateParams! function layerUpdateParams!( model::Model, cLayer::PL, cnt::Integer = -1; tMiniBatch::Integer = 1, kwargs..., ) where {PL<:PoolLayer} if cLayer.updateCount >= cnt return nothing end #if cLayer.updateCount >= cnt if !all( i -> (i.updateCount == cLayer.nextLayers[1].updateCount), cLayer.nextLayers, ) return nothing end cLayer.updateCount += 1 return nothing end #updateParams!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
5254
using PaddedViews ### export paddedSize function paddedSize(cLayer::PL, Ai::AoN=nothing) where {PL<:PaddableLayer, AoN <: Union{AbstractArray, Nothing}} if Ai == nothing Ai = cLayer.prevLayer.A end return paddedSize(cLayer, size(Ai)) end #function paddedSize(cLayer::PL, Ai::AoN=nothing) where {PL<:PaddableLayer, AoN <: Union{AbstractArray, Nothing}} function paddedSize(cLayer::PL, AiS::Tuple) where {PL<:PaddableLayer} padS = paddingSize(cLayer, AiS) outPS = [i for i in AiS] for i=1:(length(AiS)-2) outPS[i] += padS[2i-1] + padS[2i] end return Tuple(outPS) end #function paddedSize(cLayer::PL, AiS::Tuple) where {PL<:PaddableLayer} ### export paddingSize function paddingSize(cLayer::PL, Ai::AoN=nothing) where {PL<:PaddableLayer, AoN <: Union{AbstractArray, Nothing}} if Ai == nothing Ai = cLayer.prevLayer.A end return paddingSize(cLayer, size(Ai)) end """ function paddingSize(cLayer::PL, Ai::AbstractArray) where {PL<:PaddableLayer} Helping function that returns the p_H_hi, p_H_lo, and (in case 2D Conv), p_W_hi, p_W_lo, and so on """ function paddingSize(cLayer::PL, AiS::Tuple) where {PL<:PaddableLayer} ndim = length(AiS) if cLayer.padding == :valid return Tuple(repeat([0], (ndim-2)*2)) end if ndim == 3 n_Hi, ci, m = AiS s_H = cLayer.s f_H = cLayer.f if cLayer.padding == :same p_H = s_H * (n_Hi - 1) - n_Hi + f_H p_H_hi = p_H ÷ 2 + ((p_H % 2 == 0) ? 0 : 1) p_H_lo = p_H ÷ 2 n_H = n_Hi return (p_H_hi, p_H_lo) end elseif ndim == 4 n_Hi, n_Wi, ci, m = AiS (s_H, s_W) = cLayer.s (f_H, f_W) = cLayer.f if cLayer.padding == :same p_H = (s_H * (n_Hi - 1) - n_Hi + f_H) p_W = (s_W * (n_Wi - 1) - n_Wi + f_W) p_H_hi = p_H ÷ 2 + ((p_H % 2 == 0) ? 0 : 1) p_H_lo = p_H ÷ 2 p_W_hi = p_W ÷ 2 + ((p_W % 2 == 0) ? 0 : 1) p_W_lo = p_W ÷ 2 n_H, n_W = n_Hi, n_Wi return (p_H_hi, p_H_lo, p_W_hi, p_W_lo) end elseif ndim == 5 n_Hi, n_Wi, n_Di, ci, m = AiS s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f if cLayer.padding == :same p_H = (s_H * (n_Hi - 1) - n_Hi + f_H) p_W = (s_W * (n_Wi - 1) - n_Wi + f_W) p_D = (s_D * (n_Di - 1) - n_Di + f_D) p_H_hi = p_H ÷ 2 + ((p_H % 2 == 0) ? 0 : 1) p_H_lo = p_H ÷ 2 p_W_hi = p_W ÷ 2 + ((p_W % 2 == 0) ? 0 : 1) p_W_lo = p_W ÷ 2 p_D_hi = p_D ÷ 2 + ((p_D % 2 == 0) ? 0 : 1) p_D_lo = p_D ÷ 2 n_H, n_W, n_D = n_Hi, n_Wi, n_Di return (p_H_hi, p_H_lo, p_W_hi, p_W_lo, p_D_hi, p_D_lo) end #if cLayer.padding == :same end end #function paddingSize(cLayer::CL, AiS::Tuple) ###Padding functions function padding( cLayer::P, Ai::AoN = nothing, ) where {P<:PaddableLayer,AoN<:Union{AbstractArray,Nothing}} ndim = Ai if Ai == nothing Ai = cLayer.prevLayer.A end if cLayer.padding == :same Ai = padding(Ai, paddingSize(cLayer, Ai)...) elseif cLayer.padding == :valid Ai = Ai end return Ai end #function padding(cLayer::P) where {P <: PaddableLayer} """ function padding(Ai::AbstractArray{T,4}, p_H::Integer, p_W::Integer=-1) where {T} pad zeros to the Array Ai with amount of p values inputs: Ai := Array of type T and dimension N p := integer determinde the amount of zeros padding i.e. if Ai is a 3-dimensional array the padding will be for the first dimension if Ai is a 4-dimensional array the padding will be for the first 2 dimensions if Ai is a 5-dimensional array the padding will be for the first 3 dimensions output: PaddinView array where it contains the padded values and the original data without copying it """ function padding( Ai::AbstractArray{T,4}, p_H_hi::Integer, p_H_lo::Integer, p_W_hi::Integer, p_W_lo::Integer, ) where {T} n_H, n_W, c, m = size(Ai) return PaddedView( 0, Ai, (p_H_hi + p_H_lo + n_H, p_W_hi + p_W_lo + n_W, c, m), (1 + p_H_hi, 1 + p_W_hi, 1, 1), ) end #function padding(Ai::Array{T,4} function padding( Ai::AbstractArray{T,3}, p_H_hi::Integer, p_H_lo::Integer, ) where {T} n_H, c, m = size(Ai) return PaddedView(0, Ai, (p_H_hi + p_H_lo + n_H, c, m), (1 + p_H_hi, 1, 1)) end #function padding(Ai::Array{T,3} function padding( Ai::AbstractArray{T,5}, p_H_hi::Integer, p_H_lo::Integer, p_W_hi::Integer, p_W_lo::Integer, p_D_hi::Integer, p_D_lo::Integer, ) where {T} n_H, n_W, n_D, c, m = size(Ai) return PaddedView( 0, Ai, ( p_H_hi + p_H_lo + n_H, p_W_hi + p_W_lo + n_W, p_D_hi + p_D_lo + n_D, c, m, ), (1 + p_H_hi, 1 + p_W_hi, 1 + p_D_hi, 1, 1), ) end #function padding(Ai::Array{T,5} export padding
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
9415
#Naive convolution method using for loops with some parallel using #@simd and @inbounds function convolve(cLayer::Conv1D, Ai::AbstractArray{T1,3}) where {T1} Aip = padding(cLayer, Ai) f_H = cLayer.f s_H = cLayer.s lastDim = ndims(Ai) paddedS = paddedSize(cLayer, Ai)[1:end-2] s = cLayer.s f = cLayer.f outputS = outDims(cLayer, Ai)[1:end-2] ci, m = cLayer.inputS[end-1:end] co = cLayer.channels Z = zeros(eltype(Ai), outputS..., co, m) n_H, c, m = size(Z) W = cLayer.W B = cLayer.B # @simd for mi = 1:m # @simd for Threads.@threads for ci = 1:c # @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 @inbounds ai = view(Aip,h_start:h_end, :, mi) @inbounds Z[hi, ci, mi] = W[:, :, ci] ⋅ ai + B[1,1,ci] # ai = nothing # Base.GC.gc() end #for mi=1:m, hi=1:n_H end #for ci=1:c end #for mi=1:m # @inbounds Z .+= B[:, 1, :] actFun = cLayer.actFun Ao = eval(:($actFun($Z))) # Base.GC.gc() return Dict(:Z => Z, :A => Ao) end #function convolve(cLayer::Conv1D function convolve(cLayer::Conv2D, Ai::AbstractArray{T1,4}) where {T1} Aip = padding(cLayer, Ai) f_H, f_W = cLayer.f s_H, s_W = cLayer.s lastDim = ndims(Ai) cLayer.inputS = size(Ai) paddedS = paddedSize(cLayer, Ai)[1:end-2] s = cLayer.s f = cLayer.f outputS = outDims(cLayer, Ai)[1:end-2] ci, m = cLayer.inputS[end-1:end] co = cLayer.channels Z = zeros(eltype(Ai), outputS..., co, m) n_H, n_W, c, m = size(Z) W = cLayer.W B = cLayer.B # @simd for mi = 1:m # @simd Threads.@threads for ci = 1:c # @simd for # wi = 1:n_W for wi = 1:n_W, hi = 1:n_H # @simd # for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 @inbounds ai = view(Aip,h_start:h_end, w_start:w_end, :, mi) # @inbounds ai = Aip[h_start:h_end, w_start:w_end, :, mi] @inbounds Z[hi, wi, ci, mi] = W[:, :, :, ci] ⋅ ai + B[1,1,1,ci] # end #for hi=1:n_H end #for wi=1:n_W, hi=1:n_H end #for ci=1:c end #for mi=1:m # @inbounds Z .+= B[:, :, 1, :] actFun = cLayer.actFun Ao = eval(:($actFun($Z))) # Base.GC.gc() return Dict(:Z => Z, :A => Ao) end #function convolve(cLayer::Conv2D function convolve(cLayer::Conv3D, Ai::AbstractArray{T1,5}) where {T1} Aip = padding(cLayer, Ai) f_H, f_W, f_D = cLayer.f s_H, s_W, s_D = cLayer.s lastDim = ndims(Ai) paddedS = paddedSize(cLayer, Ai)[1:end-2] s = cLayer.s f = cLayer.f outputS = outDims(cLayer, Ai)[1:end-2] ci, m = cLayer.inputS[end-1:end] co = cLayer.channels Z = zeros(eltype(Ai), outputS..., co, m) n_H, n_W, n_D, c, m = size(Z) W = cLayer.W B = cLayer.B # @simd for mi = 1:m # @simd for Threads.@threads for ci = 1:c # @simd for # @simd for for di = 1:n_D, wi = 1:n_W, hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 d_start = di * s_D - (s_D == 1 ? 0 : s_D - 1) d_end = di * s_D - (s_D == 1 ? 0 : s_D - 1) + f_D - 1 @inbounds ai = view(Aip, h_start:h_end, w_start:w_end, d_start:d_end, :, mi, ) @inbounds Z[hi, wi, di, ci, mi] = W[:, :, :, :, ci] ⋅ ai + B[1,1,1,1,ci] # ai = nothing # Base.GC.gc() end #for hi=1:n_H # end #for wi=1:n_W # end #for di=1:n_D end #for ci=1:c end #for mi=1:m # @inbounds Z .+= B[:, :, :, 1, :] actFun = cLayer.actFun Ao = eval(:($actFun($Z))) # Base.GC.gc() return Dict(:Z => Z, :A => Ao) end #function convolve(cLayer::Conv3D export convolve ### dconvolve #Naive convolution method using for loops with some parallel using #@simd and @inbounds function dconvolve!( cLayer::Conv1D, Ai::AbstractArray{T1,3}, dAi::AbstractArray{T2,3}, dZ::AbstractArray{T3,3}, ) where {T1,T2,T3} Aip = padding(cLayer, Ai) padS = paddingSize(cLayer, Ai) dAip = zeros(promote_type(eltype(dZ),eltype(Ai)), size(Aip)) f_H = cLayer.f s_H = cLayer.s lastDim = ndims(Ai) n_H, c, m = size(dZ) W = cLayer.W cLayer.dW = similar(W) cLayer.dW .= 0 B = cLayer.B cLayer.dB = similar(B) cLayer.dB .= 0 # @simd for mi = 1:m # @simd Threads.@threads for ci = 1:c for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 @inbounds ai = view(Aip, h_start:h_end, :, mi) @inbounds dAip[h_start:h_end, :, mi] .+= dZ[hi, ci, mi] .* W[:, :, ci] @inbounds cLayer.dW[:, :, ci] .+= (ai .* dZ[hi, ci, mi]) @inbounds cLayer.dB[:, :, ci] .+= dZ[hi, ci, mi] end #for end #for ci=1:c end #for mi=1:m dAi .= dAip[1+padS[1]:end-padS[2], :, :] return dAi end #function dconvolve(cLayer::Conv1D function dconvolve!( cLayer::Conv2D, Ai::AbstractArray{T1,4}, dAi::AbstractArray{T2,4}, dZ::AbstractArray{T3,4}, ) where {T1,T2,T3} Aip = padding(cLayer, Ai) padS = paddingSize(cLayer, Ai) dAip = zeros(promote_type(eltype(dZ),eltype(Ai)), size(Aip)) f_H, f_W = cLayer.f s_H, s_W = cLayer.s lastDim = ndims(Ai) n_H, n_W, c, m = size(dZ) W = cLayer.W cLayer.dW = similar(W) cLayer.dW .= 0 B = cLayer.B cLayer.dB = similar(B) cLayer.dB .= 0 # @simd for mi = 1:m # @simd Threads.@threads for ci = 1:c for wi = 1:n_W, hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 @inbounds ai = view(Aip, h_start:h_end, w_start:w_end, :, mi) @inbounds dAip[h_start:h_end, w_start:w_end, :, mi] .+= dZ[hi, wi, ci, mi] .* W[:, :, :, ci] @inbounds cLayer.dW[:, :, :, ci] .+= (ai .* dZ[hi, wi, ci, mi]) @inbounds cLayer.dB[:, :, :, ci] .+= dZ[hi, wi, ci, mi] end #for end #for ci=1:c end #for mi=1:m dAi .= dAip[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], :, :] return dAi end #function dconvolve(cLayer::Conv2D function dconvolve!( cLayer::Conv3D, Ai::AbstractArray{T1,5}, dAi::AbstractArray{T2,5}, dZ::AbstractArray{T3,5}, ) where {T1,T2,T3} Aip = padding(cLayer, Ai) padS = paddingSize(cLayer, Ai) dAip = zeros(promote_type(eltype(dZ),eltype(Ai)), size(Aip)) f_H, f_W, f_D = cLayer.f s_H, s_W, s_D = cLayer.s lastDim = ndims(Ai) n_H, n_W, n_D, c, m = size(dZ) W = cLayer.W cLayer.dW = similar(W) cLayer.dW .= 0 B = cLayer.B cLayer.dB = similar(B) cLayer.dB .= 0 # @simd for mi = 1:m # @simd Threads.@threads for ci = 1:c for di = 1:n_D, wi = 1:n_W, hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 d_start = di * s_D - (s_D == 1 ? 0 : s_D - 1) d_end = di * s_D - (s_D == 1 ? 0 : s_D - 1) + f_D - 1 @inbounds ai = view(Aip, h_start:h_end, w_start:w_end, d_start:d_end, :, mi) @inbounds dAip[ h_start:h_end, w_start:w_end, d_start:d_end, :, mi, ] .+= dZ[hi, wi, di, ci, mi] .* W[:, :, :, :, ci] @inbounds cLayer.dW[:, :, :, :, ci] .+= (ai .* dZ[hi, wi, ci, mi]) @inbounds cLayer.dB[:, :, :, :, ci] .+= dZ[hi, wi, di, ci, mi] end #for end #for ci=1:c end #for mi=1:m dAi .= dAip[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], 1+padS[5]:end-padS[6], :, :, ] return nothing end #function dconvolve(cLayer::Conv3D export dconvolve!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
5129
using Statistics function fastPooling!( cLayer::OneD, Ai::AbstractArray{T,3}, Ao::AbstractArray{T,3}, ) where {OneD<:Union{MaxPool1D,AveragePool1D},T} Aip = padding(cLayer, Ai) n_Hi, c, m = size(Aip) s_H = cLayer.s f_H = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 if cLayer isa MaxPoolLayer pool = maximum else pool = mean end Ao .= reshape( pool(reshape(Aip, f_H, n_H, c, m), dims = 1), n_H, c, m, ) return nothing end #function fastPooling!(cLayer::OneD function fastPooling!( cLayer::TwoD, Ai::AbstractArray{T,4}, Ao::AbstractArray{T,4}, ) where {TwoD<:Union{MaxPool2D,AveragePool2D},T} Aip = padding(cLayer, Ai) n_Hi, n_Wi, c, m = size(Aip) s_H, s_W = cLayer.s f_H, f_W = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 if cLayer isa MaxPoolLayer pool = maximum else pool = mean end Ao .= reshape( pool( permutedims( reshape(Aip, f_H, n_H, f_W, n_W, c, m), [1, 3, 2, 4, 5, 6], ), dims = 1:2, ), n_H, n_W, c, m, ) return nothing end #function fastPooling!(cLayer::TwoD, function fastPooling!( cLayer::ThreeD, Ai::AbstractArray{T,5}, Ao::AbstractArray{T,5}, ) where {ThreeD<:Union{MaxPool3D,AveragePool3D},T} Aip = padding(cLayer, Ai) n_Hi, n_Wi, n_Di, c, m = size(Aip) s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 if cLayer isa MaxPoolLayer pool = maximum else pool = mean end Ao .= reshape( pool( permutedims( reshape(Aip, f_H, n_H, f_W, n_W, f_D, n_D, c, m), [1, 3, 5, 2, 4, 6, 7, 8], ), dims = 1:3, ), n_H, n_W, n_D, c, m, ) return nothing end #function fastPooling!(cLayer::ThreeD, export fastPooling! ### dfastPooling function dfastPooling!( cLayer::OneD, Ai::AbstractArray{T,3}, dAi::AbstractArray{T,3}, Ao::AbstractArray{T,3}, dAo::AbstractArray{T,3}, ) where {OneD<:Union{MaxPool1D,AveragePool1D},T} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) n_Hi, c, m = size(Aip) s_H = cLayer.s f_H = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 Aipr = reshape(Aip, f_H, n_H, c, m) if cLayer isa MaxPoolLayer mask = Aipr .== reshape(Ao, 1, n_H, c, m) else mask = similar(Aipr) .= 1 / prod((cLayer.f)) end #if cLayer isa MaxPoolLayer dAi .= reshape(reshape(dAo, 1, n_H, c, m) .* mask, n_Hi, c, m)[1+padS[1]:end-padS[2], :, :] mask = nothing return nothing end #function dfastPooling!(cLayer::OneD function dfastPooling!( cLayer::TwoD, Ai::AbstractArray{T,4}, dAi::AbstractArray{T,4}, Ao::AbstractArray{T,4}, dAo::AbstractArray{T,4}, ) where {TwoD<:Union{MaxPool2D,AveragePool2D},T} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) n_Hi, n_Wi, c, m = size(Aip) s_H, s_W = cLayer.s f_H, f_W = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 Aipr = permutedims(reshape(Aip, f_H, n_H, f_W, n_W, c, m), [1, 3, 2, 4, 5, 6]) if cLayer isa MaxPoolLayer mask = Aipr .== reshape(Ao, 1, 1, n_H, n_W, c, m) else mask = similar(Aipr) .= 1 / prod((cLayer.f)) end dAi .= reshape( permutedims( reshape(dAo, 1, 1, n_H, n_W, c, m) .* mask, [1, 3, 2, 4, 5, 6], ), n_Hi, n_Wi, c, m, )[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], :, :] mask = nothing return nothing end #function dfastPooling!(cLayer::TwoD, function dfastPooling!( cLayer::ThreeD, Ai::AbstractArray{T,5}, dAi::AbstractArray{T,5}, Ao::AbstractArray{T,5}, dAo::AbstractArray{T,5}, ) where {ThreeD<:Union{MaxPool3D,AveragePool3D},T} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) n_Hi, n_Wi, n_Di, c, m = size(Aip) s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 Aipr = permutedims( reshape(Aip, f_H, n_H, f_W, n_W, f_D, n_D, c, m), [1, 3, 5, 2, 4, 6, 7, 8], ) if cLayer isa MaxPoolLayer mask = Aipr .== reshape(Ao, 1, 1, 1, n_H, n_W, n_D, c, m) else mask = similar(Aipr) .= 1 / prod((cLayer.f)) end dAi .= reshape( permutedims( reshape(dAo, 1, 1, 1, n_H, n_W, n_D, c, m) .* mask, [1, 4, 2, 5, 3, 6, 7, 8], ), n_Hi, n_Wi, n_Di, c, m, )[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], 1+padS[5]:end-padS[6], :, :, ] mask = nothing return nothing end #function dfastPooling!(cLayer::ThreeD, export dfastPooling!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
2991
function img2colConvolve(cLayer::CL, Ai::AbstractArray{T,N}) where {T,N, CL <: ConvLayer} Aip = padding(cLayer, Ai) axBT = axes(cLayer.B) axB = axBT[1:end-2] axBend = axBT[end] Z = col2img(cLayer.K * img2col(Aip), cLayer.outputS) .+ view(cLayer.B, axB..., 1, axBend) actFun = cLayer.actFun Ao = eval(:($actFun($Z))) return Dict(:Z => Z, :A => Ao) end #function img2colConvolve(cLayer::CL export img2colConvolve ### dimg2colConvolve! export dimg2colConvolve! function dimg2colConvolve!( cLayer::Conv1D, Ai::AbstractArray{T1,3}, dAi::AbstractArray{T2,3}, dZ::AbstractArray{T3,3}, ) where {T1,T2,T3} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) Aipv = img2col(Aip) dZv = img2col(dZ) n_Hi, c, m = size(Aip) s_H = cLayer.s f_H = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 dAi .= col2img(cLayer.K' * dZv, (n_Hi,c,m))[1+padS[1]:end-padS[2], :, :] cLayer.dK = dZv * Aipv' cLayer.dB = sum(permutedims(dZ, [1, 3, 2]), dims = 1:2) return nothing end # function dimg2colConvolve!( # cLayer::Conv1D, # Ai::AbstractArray{T,3}, # dA::AbstractArray{T,3}, # dZ::AbstractArray{T,3}, # ) where {T} function dimg2colConvolve!( cLayer::Conv2D, Ai::AbstractArray{T1,4}, dAi::AbstractArray{T2,4}, dZ::AbstractArray{T3,4}, ) where {T1,T2,T3} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) Aipv = img2col(Aip) dZv = img2col(dZ) n_Hi, n_Wi, c, m = size(Aip) s_H, s_W = cLayer.s f_H, f_W = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 dAi .= col2img(cLayer.K' * dZv, (n_Hi,n_Wi,c,m))[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], :, :] cLayer.dK = dZv * Aipv' cLayer.dB = sum(permutedims(dZ, [1, 2, 4, 3]), dims = 1:3) return nothing end # function dimg2colConvolve!( # cLayer::Conv2D, # Ai::AbstractArray{T,4}, # dA::AbstractArray{T,4}, # dZ::AbstractArray{T,4}, # ) where {T} function dimg2colConvolve!( cLayer::Conv3D, Ai::AbstractArray{T1,5}, dAi::AbstractArray{T2,5}, dZ::AbstractArray{T3,5}, ) where {T1,T2,T3} padS = paddingSize(cLayer, Ai) Aip = padding(cLayer, Ai) Aipv = img2col(Aip) dZv = img2col(dZ) n_Hi, n_Wi, n_Di, c, m = size(Aip) s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 dAi .= col2img(cLayer.K' * dZv, (n_Hi, n_Wi, n_Di, c, m))[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], 1+padS[5]:end-padS[6], :, :, ] cLayer.dK = dZv * Aipv' cLayer.dB = sum(permutedims(dZ, [1, 2, 3, 5, 4]), dims = 1:4) return nothing end # function dimg2colConvolve!( # cLayer::Conv3D, # Ai::AbstractArray{T,5}, # dA::AbstractArray{T,5}, # dZ::AbstractArray{T,5}, # ) where {T}
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
6632
### convlayers @doc raw""" function layerBackProp( cLayer::ConvLayer, model::Model, actFun::SoS, Ao::AbstractArray, labels::AbstractArray, ) where {SoS<:Union{Type{softmax},Type{σ}}} Derive the loss function to the input of the activation function when activation is either `softmax` or `σ` # Return - `dZ::AbstractArray` := the derivative of the loss function to the input of the activation function """ function layerBackProp( cLayer::ConvLayer, model::Model, actFun::SoS, Ao::AbstractArray, labels::AbstractArray, ) where {SoS<:Union{Type{softmax},Type{σ}}} lossFun = model.lossFun dlossFun = Symbol("d", lossFun) Y = labels dZ = eval(:($dlossFun($Ao, $Y))) return dZ end #softmax or σ layerBackProp @doc raw""" function layerBackProp( cLayer::ConvLayer, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, Ai::AbstractArray = Array{Any,1}(undef,0), Ao::AbstractArray = Array{Any,1}(undef,0), dAo::AbstractArray = Array{Any,1}(undef,0); labels::AbstractArray = Array{Any,1}(undef,0), kwargs... ) Performs the layer back propagation for a `ConvLayer` # Arguments - `cLayer::ConvLayer` - `model::Model` - `FCache` := the cache of the forward propagation step - `BCache` := the cache of so far done back propagation - for test purpose Ai Ao dAo - `labels` := when `cLayer` is an output `Layer` # Return - `Dict(:dA => dAi)` """ function layerBackProp( cLayer::CL, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, Ai::AbstractArray = Array{Any,1}(undef,0), Ao::AbstractArray = Array{Any,1}(undef,0), dAo::AbstractArray = Array{Any,1}(undef,0); labels::AbstractArray = Array{Any,1}(undef,0), kwargs... ) where {CL <: ConvLayer} kwargs = Dict{Symbol, Any}(kwargs...) NNlib = getindex(kwargs, :NNlib; default=true) img2col = getindex(kwargs, :img2col; default=true) if length(Ai) == 0 Ai = FCache[cLayer.prevLayer][:A] end if length(Ao) == 0 Ao = FCache[cLayer][:A] end m = size(Ao)[end] regulization, λ = model.regulization, model.λ actFun = cLayer.actFun dZ = [] if cLayer.actFun == model.outLayer.actFun dZ = layerBackProp(cLayer, model, eval(:($actFun)), Ao, labels) elseif length(dAo) != 0 dActFun = Symbol("d", cLayer.actFun) Z = FCache[cLayer][:Z] dZ = dAo .* eval(:($dActFun($Z))) elseif all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= getLayerSlice(cLayer, nextLayer, BCache) catch e dAo = getLayerSlice(cLayer, nextLayer, BCache) #need to initialize dA end #try/catch end #for dActFun = Symbol("d", cLayer.actFun) Z = FCache[cLayer][:Z] dZ = dAo .* eval(:($dActFun($Z))) else #in case not every next layer done backprop return Dict(:dA => Array{Any,1}(undef,0)) end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) dAi = zeros(promote_type(eltype(Ai),eltype(dZ)), size(Ai)) if NNlib dNNConv!(cLayer, Ai, dAi, dZ) elseif img2col dimg2colConvolve!(cLayer, Ai, dAi, dZ) else dconvolve!(cLayer, Ai, dAi, dZ) end #if NNlib cLayer.backCount += 1 return Dict(:dA => dAi) end #function layerBackProp(cLayer::Input ### Pooling Layers #import only the needed parts not to have conflict import NNlib.∇maxpool, NNlib.∇meanpool, NNlib.∇maxpool!, NNlib.∇meanpool!, NNlib.PoolDims @doc raw""" layerBackProp( cLayer::PoolLayer, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, Ai::AbstractArray = Array{Any,1}(undef,0), Ao::AbstractArray = Array{Any,1}(undef,0), dAo::AbstractArray = Array{Any,1}(undef,0); labels::AbstractArray = Array{Any,1}(undef,0), kwargs... ) Performs the layer back propagation for a `PoolLayer` # Arguments - `cLayer::ConvLayer` - `model::Model` - `FCache` := the cache of the forward propagation step - `BCache` := the cache of so far done back propagation - for test purpose Ai Ao dAo - `labels` := when `cLayer` is an output `Layer` # Return - `Dict(:dA => dAi)` """ function layerBackProp( cLayer::PL, model::Model, FCache::Dict{Layer, Dict{Symbol, AbstractArray}}, BCache::Dict{Layer, Dict{Symbol, AbstractArray}}, Ai::AbstractArray = Array{Any,1}(undef,0), Ao::AbstractArray = Array{Any,1}(undef,0), dAo::AbstractArray = Array{Any,1}(undef,0); labels::AbstractArray = Array{Any,1}(undef,0), kwargs... ) where {PL <: PoolLayer} kwargs = Dict{Symbol, Any}(kwargs...) fastPool = getindex(kwargs, :fastPool; default=true) NNlib = getindex(kwargs, :NNlib; default=true) if length(Ai) == 0 Ai = FCache[cLayer.prevLayer][:A] end if length(Ao) == 0 Ao = FCache[cLayer][:A] end padS = paddingSize(cLayer, Ai) if length(dAo) == 0 if all( i -> (i.backCount == cLayer.nextLayers[1].backCount), cLayer.nextLayers, ) dAo = [] for nextLayer in cLayer.nextLayers try dAo .+= getLayerSlice(cLayer, nextLayer, BCache) catch e dAo = getLayerSlice(cLayer, nextLayer, BCache) #need to initialize dA end #try/catch end #for else return Dict(:dA => Array{Any,1}(undef,0)) end #if all(i->(i.backCount==cLayer.nextLayers[1].backCount), cLayer.nextLayers) end #if dA==nothing dAi = zeros(promote_type(eltype(Ai), eltype(dAo)), size(Ai)) if NNlib pooldims = PoolDims(Ai, cLayer.f, stride = cLayer.s, padding = padS) if cLayer isa MaxPoolLayer ∇maxpool!(dAi, dAo, Ao, Ai, pooldims) elseif cLayer isa AveragePoolLayer ∇meanpool!(dAi, dAo, Ao, Ai, pooldims) end #if cLayer isa MaxPoolLayer elseif cLayer.s == cLayer.f && fastPool dfastPooling!(cLayer, Ai, dAi, Ao, dAo) else dpooling!(cLayer, Ai, dAi, Ao, dAo) end #if NNlib cLayer.backCount += 1 return Dict(:dA => dAi) end #unction layerBackProp(cLayer::PL,
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
3816
include("parallelNNConv.jl") include("parallelConvolve.jl") include("parallelImg2colConvolve.jl") ###convolution layers forprop @doc raw""" function layerForProp( cLayer::ConvLayer, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs... ) Perform the layer forward propagation for a `ConvLayer` # Arguments - `cLayer::ConvLayer` - `Ai` := optional activation of the previous layer - `FCache` := a `Dict` holds the outputs of `layerForProp` of the previous `Layer`(s) # Returns - `Dict(:Z => Z, :A => Ao)` """ function layerForProp( cLayer::CL, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs... ) where {CL <: ConvLayer} kwargs = Dict{Symbol, Any}(kwargs...) NNlib = getindex(kwargs, :NNlib; default=true) img2col = getindex(kwargs, :img2col; default=false) if length(Ai) == 0 Ai = FCache[cLayer.prevLayer][:A] end cLayer.inputS = size(Ai) paddedS = paddedSize(cLayer, Ai)[1:end-2] s = cLayer.s f = cLayer.f outputS = outDims(cLayer, Ai)[1:end-2] ci, m = cLayer.inputS[end-1:end] co = cLayer.channels if NNlib D = NNConv(cLayer, Ai) elseif img2col ## in case input different size than previous time if (prod((outputS..., co)), prod((paddedS..., ci))) != size(cLayer.K) cLayer.K = unroll(cLayer, (paddedS..., ci, m)) end D = img2colConvolve(cLayer, Ai) else D = convolve(cLayer, Ai) end cLayer.outputS = size(D[:A]) # Ai = nothing cLayer.forwCount += 1 # Base.GC.gc() return D end #function layerForProp(cLayer::Conv1D) ### Pooling Layers include("parallelFastPooling.jl") include("parallelPooling.jl") #import only the needed parts not to have conflict import NNlib.maxpool, NNlib.meanpool, NNlib.maxpool!, NNlib.meanpool!, NNlib.PoolDims @doc raw""" layerForProp( cLayer::PoolLayer}, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs... ) Perform the layer forward propagation for a `PoolLayer` # Arguments - `cLayer::PoolLayer` - `Ai` := optional activation of the previous layer - `FCache` := a `Dict` holds the outputs of `layerForProp` of the previous `Layer`(s) # Returns - `Dict(:A => Ao)` """ function layerForProp( cLayer::PL, Ai::AbstractArray = Array{Any,1}(undef,0); FCache::Dict{Layer,Dict{Symbol, AbstractArray}}, kwargs... ) where {PL <: PoolLayer} kwargs = Dict{Symbol, Any}(kwargs...) fastPool = getindex(kwargs, :fastPool; default=true) NNlib = getindex(kwargs, :NNlib; default=true) if length(Ai) == 0 Ai = FCache[cLayer.prevLayer][:A] end cLayer.inputS = size(Ai) paddedS = paddedSize(cLayer, Ai)[1:end-2] s = cLayer.s f = cLayer.f outputS = outDims(cLayer, Ai)[1:end-2] ci, m = cLayer.inputS[end-1:end] co = cLayer.channels cLayer.inputS = size(Ai) padS = paddingSize(cLayer, Ai) Ao = zeros(eltype(Ai), outputS..., co, m) if NNlib pooldims = PoolDims(Ai, f, stride = s, padding = padS) if cLayer isa MaxPoolLayer maxpool!(Ao, Ai, pooldims) elseif cLayer isa AveragePoolLayer meanpool!(Ao, Ai, pooldims) end #if cLayer isa MaxPoolLayer elseif s == f && fastPool #to use the built-in reshape and maximum and mean fastPooling!(cLayer, Ai, Ao) else pooling!(cLayer, Ai, Ao) end #if NNlibConv cLayer.outputS = size(Ao) # Ai = nothing cLayer.forwCount += 1 # Base.GC.gc() return Dict(:A => Ao) end #unction layerForProp(cLayer::OneD) where {OneD <: Union{MaxPool1D, AveragePool1D}}
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
2310
#import only the needed parts not to have conflict import NNlib.conv, NNlib.conv! ### NNConv @doc raw""" NNConv(cLayer::CL, Ai::AbstractArray{T,N}) where {T,N, CL <: ConvLayer} Perform the forward propagation for `cLayer::ConvLayer` using fast implementation of `NNlib` # Return - `Dict(:Z => Z, :A => A)` """ function NNConv(cLayer::CL, Ai::AbstractArray{T,N}) where {T,N, CL <: ConvLayer} padS = paddingSize(cLayer, Ai) # axW = axes(cLayer.W)[1:end-2] # raxW = reverse.(axW) # Z = conv(Ai, cLayer.W[raxW..., :, :], stride = cLayer.s, pad = padS) Z = conv(Ai, cLayer.W, stride = cLayer.s, pad = padS, flipped=true) axB = axes(cLayer.B)[1:end-2] Z .+= cLayer.B[axB..., 1, :] actFun = cLayer.actFun A = eval(:($actFun($Z))) return Dict(:Z => Z, :A => A) end #function img2colConvolve(cLayer::CL export NNConv ### dNNConv! #import only the needed parts not to have conflict import NNlib.∇conv_data!, NNlib.∇conv_filter, NNlib.DenseConvDims @doc raw""" function dNNConv!( cLayer::CL, Ai::AbstractArray{T1,N}, dAi::AbstractArray{T2,N}, dZ::AbstractArray{T3,N}, ) where {T1, T2, T3, N, CL <: ConvLayer} Performs the back propagation for `cLayer::ConvLayer` and save values to the pre-allocated `Array` `dAi` and trainable parameters `W` & `B` # Arguments - `cLayer::ConvLayer` - `Ai::AbstractArray{T1,N}` := the input activation of `cLayer` - `dAi::AbstractArray{T2,N}` := pre-allocated to hold the derivative of the activation - `dZ::AbstractArray{T3,N}` := the derivative of the cost to the input of the activation function # Return `nothing` """ function dNNConv!( cLayer::CL, Ai::AbstractArray{T1,N}, dAi::AbstractArray{T2,N}, dZ::AbstractArray{T3,N}, ) where {T1, T2, T3, N, CL <: ConvLayer} W = cLayer.W padS = paddingSize(cLayer, Ai) convdim = DenseConvDims(Ai, W, stride = cLayer.s, padding = padS, flipkernel=true) # axW = axes(cLayer.W)[1:end-2] # raxW = reverse.(axW) # dAi .= ∇conv_data(dZ, W[raxW..., :, :], convdim) ∇conv_data!(dAi, dZ, W, convdim) cLayer.dW = ∇conv_filter(Ai, dZ, convdim) cLayer.dB = sum(permutedims(dZ, [(1:N-2)..., N, N-1]), dims = 1:(N-1)) return nothing end #function img2colConvolve(cLayer::Conv1D export dNNConv!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
15100
using Statistics function pooling!( cLayer::OneD, Ai::AbstractArray{T,3}, Ao::AbstractArray{T,3}, ) where {OneD<:Union{MaxPool1D,AveragePool1D},T} Aip = padding(cLayer, Ai) n_Hi, c, m = size(Aip) s_H = cLayer.s f_H = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 if cLayer isa MaxPoolLayer pool = maximum else pool = mean end #if cLayer isa MaxPoolLayer # @simd for mi = 1:m # @simd for Threads.@threads for ci = 1:c # @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 @inbounds ai = view(Aip,h_start:h_end, ci, mi) @inbounds Ao[hi, ci, mi] = pool(ai) # ai = nothing # Base.GC.gc() end #for end #for ci=1:c end #for mi=1:m, ci=1:c return nothing end #function pooling!(cLayer::OneD function pooling!( cLayer::TwoD, Ai::AbstractArray{T,4}, Ao::AbstractArray{T,4}, ) where {TwoD<:Union{MaxPool2D,AveragePool2D},T} Aip = padding(cLayer, Ai) n_Hi, n_Wi, c, m = size(Aip) s_H, s_W = cLayer.s f_H, f_W = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 if cLayer isa MaxPoolLayer pool = maximum else pool = mean end #if cLayer isa MaxPoolLayer # @simd for mi = 1:m # @simd for Threads.@threads for ci = 1:c # @simd for # @simd for wi = 1:n_W, hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 @inbounds ai = view(Aip, h_start:h_end, w_start:w_end, ci, mi) @inbounds Ao[hi, wi, ci, mi] = pool(ai) # ai = nothing # Base.GC.gc() end #for hi=1:n_H # end #for wi=1:n_W end #for ci=1:c end #for mi=1:m, return nothing end #function pooling!(cLayer::TwoD, function pooling!( cLayer::ThreeD, Ai::AbstractArray{T,5}, Ao::AbstractArray{T,5}, ) where {ThreeD<:Union{MaxPool3D,AveragePool3D},T} Aip = padding(cLayer, Ai) n_Hi, n_Wi, n_Di, c, m = size(Aip) s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 if cLayer isa MaxPoolLayer pool = maximum else pool = mean end #if cLayer isa MaxPoolLayer # @simd for mi = 1:m # @simd for Threads.@threads for ci = 1:c # @simd for # @simd for # @simd for di = 1:n_D, wi = 1:n_W, hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 d_start = di * s_D - (s_D == 1 ? 0 : s_D - 1) d_end = di * s_D - (s_D == 1 ? 0 : s_D - 1) + f_D - 1 @inbounds ai = view(Aip, h_start:h_end, w_start:w_end, d_start:d_end, ci, mi, ) @inbounds Ao[hi, wi, di, ci, mi] = pool(ai) # ai = nothing # Base.GC.gc() end #for hi=1:n_H # end #for wi=1:n_W # end #for di=1:n_D end #for ci=1:c end #for mi=1:m, ci=1:c return nothing end #function pooling!(cLayer::ThreeD, export pooling! ###dpooling function dpooling!( cLayer::OneD, Ai::AbstractArray{T,3}, dAi::AbstractArray{T,3}, Ao::AbstractArray{T,3}, dAo::AbstractArray{T,3}, ) where {OneD<:Union{MaxPool1D,AveragePool1D},T} padS = paddingSize(cLayer, Ai) paddedS = paddedSize(cLayer, Ai) Aip = padding(cLayer, Ai) dAip = zeros(eltype(Ai), paddedS) n_Hi, c, m = paddedS s_H = sS = cLayer.s f_H = fS = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 # if sS == fS #to use the @simd the parallele the operation # # @simd # for mi = 1:m, # # @simd for # ci = 1:c # # @simd # Threads.@threads for hi = 1:n_H # h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) # h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 # @inbounds ai = Aip[h_start:h_end, ci, mi] # if cLayer isa MaxPoolLayer # mask = (Ao[hi,ci,mi] .== ai) # @inbounds dAip[h_start:h_end, ci, mi] .+= # (dAo[hi, ci, mi] .* mask) # else # mask = similar(ai) # mask .= 1 / prod(size(ai)) # @inbounds dAip[h_start:h_end, ci, mi] .+= # (dAo[hi, ci, mi] .* mask) # end #if cLayer isa MaxPoolLayer # end #for hi=1:n_H # # end #for ci=1:c # end #for mi=1:m # else # @simd for mi = 1:m # @simd Threads.@threads for ci = 1:c for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 @inbounds ai = Aip[h_start:h_end, ci, mi] if cLayer isa MaxPoolLayer mask = (Ao[hi,ci,mi] .== ai) @inbounds dAip[h_start:h_end, ci, mi] .+= (dAo[hi, ci, mi] .* mask) else mask = similar(ai) mask .= 1 / prod(size(ai)) @inbounds dAip[h_start:h_end, ci, mi] .+= (dAo[hi, ci, mi] .* mask) end #if cLayer isa MaxPoolLayer end #for hi=1:n_H end #for ci=1:c end #for mi=1:m # end #if sS == fS dAi .= dAip[1+padS[1]:end-padS[2], :, :] return nothing end #function dpooling!(cLayer::OneD function dpooling!( cLayer::TwoD, Ai::AbstractArray{T,4}, dAi::AbstractArray{T,4}, Ao::AbstractArray{T,4}, dAo::AbstractArray{T,4}, ) where {TwoD<:Union{MaxPool2D,AveragePool2D},T} padS = paddingSize(cLayer, Ai) paddedS = paddedSize(cLayer, Ai) Aip = padding(cLayer, Ai) dAip = zeros(eltype(Ai), paddedS) n_Hi, n_Wi, c, m = paddedS s_H, s_W = sS = cLayer.s f_H, f_W = fS = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 # if sS == fS # # @simd # for mi = 1:m, # # @simd for # ci = 1:c, # # @simd for # wi = 1:n_W # # @simd # Threads.@threads for hi = 1:n_H # h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) # h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 # w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) # w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 # @inbounds ai = Aip[h_start:h_end, w_start:w_end, ci, mi] # if cLayer isa MaxPoolLayer # mask = (Ao[hi,wi,ci,mi] .== ai) # @inbounds dAip[ # h_start:h_end, # w_start:w_end, # ci, # mi, # ] .+= (dAo[hi, wi, ci, mi] .* mask) # else # mask = similar(ai) # mask .= 1 / prod(size(ai)) # @inbounds dAip[ # h_start:h_end, # w_start:w_end, # ci, # mi, # ] .+= (dAo[hi, wi, ci, mi] .* mask) # end #if cLayer isa MaxPoolLayer # end #for hi=1:n_H # # end #for wi=1:n_W # # end #for ci=1:c # end #for mi=1:m # else # @simd for mi = 1:m # @simd Threads.@threads for ci = 1:c for wi = 1:n_W, hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 @inbounds ai = Aip[h_start:h_end, w_start:w_end, ci, mi] if cLayer isa MaxPoolLayer mask = (Ao[hi,wi,ci,mi] .== ai) @inbounds dAip[h_start:h_end, w_start:w_end, ci, mi] .+= (dAo[hi, wi, ci, mi] .* mask) else mask = similar(ai) mask .= 1 / prod(size(ai)) @inbounds dAip[h_start:h_end, w_start:w_end, ci, mi] .+= (dAo[hi, wi, ci, mi] .* mask) end #if cLayer isa MaxPoolLayer end #for wi=1:n_W, hi=1:n_H end #for ci=1:c end #for mi=1:m # end #if sS == fS dAi .= dAip[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], :, :] return nothing end #function dpooling!(cLayer::TwoD, function dpooling!( cLayer::ThreeD, Ai::AbstractArray{T,5}, dAi::AbstractArray{T,5}, Ao::AbstractArray{T,5}, dAo::AbstractArray{T,5}, ) where {ThreeD<:Union{MaxPool3D,AveragePool3D},T} padS = paddingSize(cLayer, Ai) paddedS = paddedSize(cLayer, Ai) Aip = padding(cLayer, Ai) dAip = zeros(eltype(Ai), paddedS) n_Hi, n_Wi, n_Di, c, m = paddedS s_H, s_W, s_D = sS = cLayer.s f_H, f_W, f_D = fS = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 # if sS == fS # # @simd # for mi = 1:m, # # @simd for # ci = 1:c, # # @simd for # di = 1:n_D, # # @simd for # wi = 1:n_W # # @simd # Threads.@threads for hi = 1:n_H # h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) # h_end = # hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 # w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) # w_end = # wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 # d_start = di * s_D - (s_D == 1 ? 0 : s_D - 1) # d_end = # di * s_D - (s_D == 1 ? 0 : s_D - 1) + f_D - 1 # @inbounds ai = Aip[ # h_start:h_end, # w_start:w_end, # d_start:d_end, # ci, # mi, # ] # if cLayer isa MaxPoolLayer # mask = (Ao[hi,wi,di,ci,mi] .== ai) # @inbounds dAip[ # h_start:h_end, # w_start:w_end, # d_start:d_end, # ci, # mi, # ] .+= (dAo[hi, wi, di, ci, mi] .* mask) # else # mask = similar(ai) # mask .= 1 / prod(size(ai)) # @inbounds dAip[ # h_start:h_end, # w_start:w_end, # d_start:d_end, # ci, # mi, # ] .+= (dAo[hi, wi, di, ci, mi] .* mask) # end #if cLayer isa MaxPoolLayer # end #for hi=1:n_H # # end #for wi=1:n_W # # end #for di=1:n_D # # end #for ci=1:c # end #for mi=1:m # # else # @simd for mi = 1:m # @simd Threads.@threads for ci = 1:c for di = 1:n_D, wi = 1:n_W, hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 d_start = di * s_D - (s_D == 1 ? 0 : s_D - 1) d_end = di * s_D - (s_D == 1 ? 0 : s_D - 1) + f_D - 1 @inbounds ai = Aip[h_start:h_end, w_start:w_end, d_start:d_end, ci, mi] if cLayer isa MaxPoolLayer mask = (Ao[hi,wi,di,ci,mi] .== ai) @inbounds dAip[ h_start:h_end, w_start:w_end, d_start:d_end, ci, mi, ] .+= (dAo[hi, wi, di, ci, mi] .* mask) else mask = similar(ai) mask .= 1 / prod(size(ai)) @inbounds dAip[ h_start:h_end, w_start:w_end, d_start:d_end, ci, mi, ] .+= (dAo[hi, wi, di, ci, mi] .* mask) end #if cLayer isa MaxPoolLayer end #for wi=1:n_W, hi=1:n_H, di=1:n_D end #for ci=1:c end #for mi=1:m # end #if sS == fS dAi .= dAip[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], 1+padS[5]:end-padS[6], :, :, ] return nothing end #function dpooling!(cLayer::ThreeD, export dpooling!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
14125
using Statistics function pooling!( cLayer::OneD, Ai::AbstractArray{T,3}, ) where {OneD<:Union{MaxPool1D,AveragePool1D},T} Aip = padding(cLayer, Ai) n_Hi, c, m = size(Aip) s_H = cLayer.s f_H = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 if cLayer isa MaxPoolLayer pool = maximum else pool = mean end #if cLayer isa MaxPoolLayer @simd for mi = 1:m @simd for ci = 1:c @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 @inbounds ai = Aip[h_start:h_end, ci, mi] @inbounds cLayer.A[hi, ci, mi] = pool(ai) # ai = nothing # Base.GC.gc() end #for end #for ci=1:c end #for mi=1:m, ci=1:c return nothing end #function pooling!(cLayer::OneD function pooling!( cLayer::TwoD, Ai::AbstractArray{T,4}, ) where {TwoD<:Union{MaxPool2D,AveragePool2D},T} Aip = padding(cLayer, Ai) n_Hi, n_Wi, c, m = size(Aip) s_H, s_W = cLayer.s f_H, f_W = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 if cLayer isa MaxPoolLayer pool = maximum else pool = mean end #if cLayer isa MaxPoolLayer @simd for mi = 1:m @simd for ci = 1:c @simd for wi = 1:n_W @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 @inbounds ai = view(Aip, h_start:h_end, w_start:w_end, ci, mi) @inbounds cLayer.A[hi, wi, ci, mi] = pool(ai) # ai = nothing # Base.GC.gc() end #for hi=1:n_H end #for wi=1:n_W end #for ci=1:c end #for mi=1:m, return nothing end #function pooling!(cLayer::TwoD, function pooling!( cLayer::ThreeD, Ai::AbstractArray{T,5}, ) where {ThreeD<:Union{MaxPool3D,AveragePool3D},T} Aip = padding(cLayer, Ai) n_Hi, n_Wi, n_Di, c, m = size(Aip) s_H, s_W, s_D = cLayer.s f_H, f_W, f_D = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 if cLayer isa MaxPoolLayer pool = maximum else pool = mean end #if cLayer isa MaxPoolLayer @simd for mi = 1:m @simd for ci = 1:c @simd for di = 1:n_D @simd for wi = 1:n_W @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 d_start = di * s_D - (s_D == 1 ? 0 : s_D - 1) d_end = di * s_D - (s_D == 1 ? 0 : s_D - 1) + f_D - 1 @inbounds ai = Aip[ h_start:h_end, w_start:w_end, d_start:d_end, ci, mi, ] @inbounds cLayer.A[hi, wi, di, ci, mi] = pool(ai) # ai = nothing # Base.GC.gc() end #for hi=1:n_H end #for wi=1:n_W end #for di=1:n_D end #for ci=1:c end #for mi=1:m, ci=1:c return nothing end #function pooling!(cLayer::ThreeD, export pooling! ###dpooling function dpooling!( cLayer::OneD, Ai::AbstractArray{T,3}, dAi::AbstractArray{T,3}, Ao::AbstractArray{T,3}, dAo::AbstractArray{T,3}, ) where {OneD<:Union{MaxPool1D,AveragePool1D},T} padS = paddingSize(cLayer, Ai) paddedS = paddedSize(cLayer, Ai) dAip = zeros(eltype(Ai), paddedS) n_Hi, c, m = paddedS s_H = sS = cLayer.s f_H = fS = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 if sS == fS #to use the @simd the parallele the operation @simd for mi = 1:m @simd for ci = 1:c @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 @inbounds ai = Aip[h_start:h_end, ci, mi] if cLayer isa MaxPoolLayer mask = (Ao[hi,ci,mi] .== ai) @inbounds dAip[h_start:h_end, ci, mi] .+= (dAo[hi, ci, mi] .* mask) else mask = similar(ai) mask .= 1 / prod(size(ai)) @inbounds dAip[h_start:h_end, ci, mi] .+= (dAo[hi, ci, mi] .* mask) end #if cLayer isa MaxPoolLayer end #for hi=1:n_H end #for ci=1:c end #for mi=1:m else @simd for mi = 1:m @simd for ci = 1:c for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 @inbounds ai = Aip[h_start:h_end, ci, mi] if cLayer isa MaxPoolLayer mask = (Ao[hi,ci,mi] .== ai) @inbounds dAip[h_start:h_end, ci, mi] .+= (dAo[hi, ci, mi] .* mask) else mask = similar(ai) mask .= 1 / prod(size(ai)) @inbounds dAip[h_start:h_end, ci, mi] .+= (dAo[hi, ci, mi] .* mask) end #if cLayer isa MaxPoolLayer end #for hi=1:n_H end #for ci=1:c end #for mi=1:m end #if sS == fS dAi .= dAip[1+padS[1]:end-padS[2], :, :] return nothing end #function dpooling!(cLayer::OneD function dpooling!( cLayer::TwoD, Ai::AbstractArray{T,4}, dAi::AbstractArray{T,4}, Ao::AbstractArray{T,4}, dAo::AbstractArray{T,4}, ) where {TwoD<:Union{MaxPool2D,AveragePool2D},T} padS = paddingSize(cLayer, Ai) paddedS = paddedSize(cLayer, Ai) dAip = zeros(eltype(Ai), paddedS) n_Hi, n_Wi, c, m = paddedS s_H, s_W = sS = cLayer.s f_H, f_W = fS = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 if sS == fS @simd for mi = 1:m @simd for ci = 1:c @simd for wi = 1:n_W @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 @inbounds ai = Aip[h_start:h_end, w_start:w_end, ci, mi] if cLayer isa MaxPoolLayer mask = (Ao[hi,wi,ci,mi] .== ai) @inbounds dAip[ h_start:h_end, w_start:w_end, ci, mi, ] .+= (dAo[hi, wi, ci, mi] .* mask) else mask = similar(ai) mask .= 1 / prod(size(ai)) @inbounds dAip[ h_start:h_end, w_start:w_end, ci, mi, ] .+= (dAo[hi, wi, ci, mi] .* mask) end #if cLayer isa MaxPoolLayer end #for hi=1:n_H end #for wi=1:n_W end #for ci=1:c end #for mi=1:m else @simd for mi = 1:m @simd for ci = 1:c for wi = 1:n_W, hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 @inbounds ai = Aip[h_start:h_end, w_start:w_end, ci, mi] if cLayer isa MaxPoolLayer mask = (Ao[hi,wi,ci,mi] .== ai) @inbounds dAip[h_start:h_end, w_start:w_end, ci, mi] .+= (dAo[hi, wi, ci, mi] .* mask) else mask = similar(ai) mask .= 1 / prod(size(ai)) @inbounds dAip[h_start:h_end, w_start:w_end, ci, mi] .+= (dAo[hi, wi, ci, mi] .* mask) end #if cLayer isa MaxPoolLayer end #for wi=1:n_W, hi=1:n_H end #for ci=1:c end #for mi=1:m end #if sS == fS dAi .= dAip[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], :, :] return nothing end #function dpooling!(cLayer::TwoD, function dpooling!( cLayer::ThreeD, Ai::AbstractArray{T,5}, dAi::AbstractArray{T,5}, Ao::AbstractArray{T,5}, dAo::AbstractArray{T,5}, ) where {ThreeD<:Union{MaxPool3D,AveragePool3D},T} padS = paddingSize(cLayer, Ai) paddedS = paddedSize(cLayer, Ai) dAip = zeros(eltype(Ai), paddedS) n_Hi, n_Wi, n_Di, c, m = paddedS s_H, s_W, s_D = sS = cLayer.s f_H, f_W, f_D = fS = cLayer.f n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 if sS == fS @simd for mi = 1:m @simd for ci = 1:c @simd for di = 1:n_D @simd for wi = 1:n_W @simd for hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 d_start = di * s_D - (s_D == 1 ? 0 : s_D - 1) d_end = di * s_D - (s_D == 1 ? 0 : s_D - 1) + f_D - 1 @inbounds ai = Aip[ h_start:h_end, w_start:w_end, d_start:d_end, ci, mi, ] if cLayer isa MaxPoolLayer mask = (Ao[hi,wi,di,ci,mi] .== ai) @inbounds dAip[ h_start:h_end, w_start:w_end, d_start:d_end, ci, mi, ] .+= (dAo[hi, wi, di, ci, mi] .* mask) else mask = similar(ai) mask .= 1 / prod(size(ai)) @inbounds dAip[ h_start:h_end, w_start:w_end, d_start:d_end, ci, mi, ] .+= (dAo[hi, wi, di, ci, mi] .* mask) end #if cLayer isa MaxPoolLayer end #for hi=1:n_H end #for wi=1:n_W end #for di=1:n_D end #for ci=1:c end #for mi=1:m else @simd for mi = 1:m @simd for ci = 1:c for di = 1:n_D, wi = 1:n_W, hi = 1:n_H h_start = hi * s_H - (s_H == 1 ? 0 : s_H - 1) h_end = hi * s_H - (s_H == 1 ? 0 : s_H - 1) + f_H - 1 w_start = wi * s_W - (s_W == 1 ? 0 : s_W - 1) w_end = wi * s_W - (s_W == 1 ? 0 : s_W - 1) + f_W - 1 d_start = di * s_D - (s_D == 1 ? 0 : s_D - 1) d_end = di * s_D - (s_D == 1 ? 0 : s_D - 1) + f_D - 1 @inbounds ai = Aip[h_start:h_end, w_start:w_end, d_start:d_end, ci, mi] if cLayer isa MaxPoolLayer mask = (Ao[hi,wi,di,ci,mi] .== ai) @inbounds dAip[ h_start:h_end, w_start:w_end, d_start:d_end, ci, mi, ] .+= (dAo[hi, wi, di, ci, mi] .* mask) else mask = similar(ai) mask .= 1 / prod(size(ai)) @inbounds dAip[ h_start:h_end, w_start:w_end, d_start:d_end, ci, mi, ] .+= (dAo[hi, wi, di, ci, mi] .* mask) end #if cLayer isa MaxPoolLayer end #for wi=1:n_W, hi=1:n_H, di=1:n_D end #for ci=1:c end #for mi=1:m end #if sS == fS dAi .= dAip[1+padS[1]:end-padS[2], 1+padS[3]:end-padS[4], 1+padS[5]:end-padS[6], :, :, ] return nothing end #function dpooling!(cLayer::ThreeD, export dpooling!
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
8961
using PaddedViews #TODO use parallel processing to speed up the unrolling process #TODO build a reroll function to extract W from K ### unroll conv1d @doc raw""" unroll(cLayer::Conv1D, AiS::Tuple, param::Symbol=:W) unroll the `param` of `Conv1D` into 2D matrix # Arguments - `cLayer` := the layer of the paramters to unroll - `AiS` := the `padded` input to determinde the size and shape of the output of `unroll` - `param` := `Conv1D` parameter to be `unroll`ed # Return - `K` := 2D `Matrix` of the `param` """ function unroll(cLayer::Conv1D, AiS::Tuple, param::Symbol=:W) prevLayer = cLayer.prevLayer n_Hi, ci, m = AiS f_H = cLayer.f s_H = cLayer.s c = cLayer.channels n_H = (n_Hi - f_H) ÷ s_H + 1 W = eval(:($cLayer.$param)) T = eltype(W) B = cLayer.B K = nothing for ch=1:size(W)[end] k2d = nothing w3d = W[:,:,ch] k = nothing for i=range(1, step=s_H, length=n_H) w2d = PaddedView(0, w3d, (n_Hi,ci), (i,1)) for w=1:size(w2d)[2] if w==1 k2d = w2d[:,w] else k2d = vcat(k2d, w2d[:,w]) end #if h==1 end #for w=1:size(w3d)[3] if i==1 k = k2d else k = hcat(k, k2d) end #if i==1 end #for i=1:n_W if ch == 1 K = k else K = hcat(K, k) end #if ch==1 end #for ch=1:size(W)[end] return transpose(K) end #function unroll(cLayer::Conv2D) ###unroll conv2d @doc raw""" unroll(cLayer::Conv2D, AiS::Tuple, param::Symbol=:W) unroll the `param` of `Conv1D` into 2D matrix # Arguments - `cLayer` := the layer of the paramters to unroll - `AiS` := the `padded` input to determinde the size and shape of the output of `unroll` - `param` := `Conv1D` parameter to be `unroll`ed # Return - `K` := 2D `Matrix` of the `param` """ function unroll(cLayer::Conv2D, AiS::Tuple, param::Symbol=:W) prevLayer = cLayer.prevLayer n_Hi, n_Wi, ci, m = AiS HWi = n_Hi*n_Wi f_H, f_W = cLayer.f fHW = f_H * f_W s_H, s_W = cLayer.s c = cLayer.channels n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 W = eval(:($cLayer.$param)) T = eltype(W) B = cLayer.B K = nothing for ch=1:size(W)[end] w3da = W[:,:,:,ch] k2d = nothing k3d = nothing k4d = nothing k = nothing for i=range(1, step=s_H, length=n_H) w3db = PaddedView(0, w3da, (n_Hi, f_W,ci), (i,1,1)) for j=range(1, step=s_W, length=n_W) w3d = PaddedView(0, w3db, (n_Hi, n_Wi,ci), (1,j,1)) for w=1:size(w3d)[3] for h=1:size(w3d)[1] if h==1 k2d = w3d[h,:,w] else k2d = vcat(k2d, w3d[h,:,w]) end #if h==1 end #for h=1:size(w)[1] if w==1 k3d = k2d else k3d = vcat(k3d, k2d) end #if w==1 end #for w=1:size(w3d)[3] if j==1 k4d = k3d else k4d = hcat(k4d, k3d) end end #for j=1:n_H if i==1 k = k4d else k = hcat(k, k4d) end #if i==1 end #for i=1:n_W if ch==1 K = k else K = hcat(K, k) end #if ch==1 end #for ch=1:size(W)[end] return transpose(K) end #function unroll(cLayer::Conv2D) ###unroll conv3d @doc raw""" unroll(cLayer::Conv3D, AiS::Tuple, param::Symbol=:W) unroll the `param` of `Conv3D` into 2D matrix # Arguments - `cLayer` := the layer of the paramters to unroll - `AiS` := the `padded` input to determinde the size and shape of the output of `unroll` - `param` := `Conv1D` parameter to be `unroll`ed # Return - `K` := 2D `Matrix` of the `param` """ function unroll(cLayer::Conv3D, AiS::Tuple, param::Symbol=:W) prevLayer = cLayer.prevLayer n_Hi, n_Wi, n_Di, ci, m = AiS HWDi = n_Hi*n_Wi*n_Di f_H, f_W, f_D = cLayer.f fHW = f_H * f_W * f_D s_H, s_W, s_D = cLayer.s c = cLayer.channels n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 n_D = (n_Di - f_D) ÷ s_D + 1 W = eval(:($cLayer.$param)) T = eltype(W) B = cLayer.B K = nothing for ch=1:size(W)[end] w4da = W[:,:,:,:,ch] k2d = nothing k3d = nothing k4d = nothing k5d = nothing k = nothing k1 = nothing for l=range(1, step=s_D, length=n_D) w4db = PaddedView(0, w4da, (f_H, f_W, n_Di, ci), (1,1,l,1)) for i=range(1, step=s_H, length=n_H) w4dc = PaddedView(0, w4db, (n_Hi, f_W, n_Di, ci), (i,1,1,1)) for j=range(1, step=s_W, length=n_W) w4d = PaddedView(0, w4dc, (n_Hi, n_Wi, n_Di, ci), (1,j,1,1)) for w=1:size(w4d)[4] for d=1:size(w4d)[3] for h=1:size(w4d)[1] if h==1 k2d = w4d[h,:,d,w] else k2d = vcat(k2d, w4d[h,:,d,w]) end #if h==1 end #for h=1:size(w)[1] if d==1 k3d = deepcopy(k2d) else k3d = vcat(k3d, k2d) end #if w==1 end #for w=1:size(w3d)[3] if w==1 k4d = deepcopy(k3d) else k4d = vcat(k4d, k3d) end #if d==1 end #for d=1:size(w4d)[4] if j==1 k5d = deepcopy(k4d) else k5d = hcat(k5d, k4d) end end #for j=1:n_H if i==1 k = deepcopy(k5d) else k = hcat(k, k5d) end #if i==1 end #for i=1:n_W if l==1 k1 = deepcopy(k) else k1 = hcat(k1, k) end #if l==1 end #for l=range(1, step=s_D, length=n_D) if ch==1 K = k1 else K = hcat(K, k1) end #if ch==1 end #for ch=1:size(W)[end] return transpose(K) end #function unroll(cLayer::Conv2D) export unroll function unrollcol(cLayer::Conv2D, AiS::Tuple, param::Symbol=:W) prevLayer = cLayer.prevLayer n_Hi, n_Wi, ci, m = AiS HWi = n_Hi*n_Wi f_H, f_W = cLayer.f fHW = f_H * f_W s_H, s_W = cLayer.s c = cLayer.channels n_H = (n_Hi - f_H) ÷ s_H + 1 n_W = (n_Wi - f_W) ÷ s_W + 1 W = eval(:($cLayer.$param)) T = eltype(W) B = cLayer.B K = nothing for ch=1:size(W)[end] w3da = W[:,:,:,ch] k2d = nothing k3d = nothing k4d = nothing k = nothing for i=range(1, step=s_W, length=n_W) w3db = PaddedView(0, w3da, (f_H, n_Wi,ci), (1,i,1)) for j=range(1, step=s_H, length=n_H) w3d = PaddedView(0, w3db, (n_Hi, n_Wi,ci), (j,1,1)) for cj=1:size(w3d)[3] for w=1:size(w3d)[2] if w==1 k2d = w3d[:,w,cj] else k2d = vcat(k2d, w3d[:,w,cj]) end #if h==1 end #for h=1:size(w)[1] if cj==1 k3d = k2d k2d = nothing else k3d = vcat(k3d, k2d) k2d = nothing end #if w==1 end #for w=1:size(w3d)[3] if j==1 k4d = k3d k3d = nothing else k4d = hcat(k4d, k3d) k3d = nothing end end #for j=1:n_H if i==1 k = k4d k4d = nothing else k = hcat(k, k4d) k4d = nothing end #if i==1 end #for i=1:n_W if ch==1 K = k k = nothing Base.GC.gc() else K = hcat(K, k) k2d = nothing Base.GC.gc() end #if ch==1 end #for ch=1:size(W)[end] return transpose(K) end #function unroll(cLayer::Conv2D)
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
code
31
using Test @test true == true
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
docs
2998
GitHub main.yml Status | Travis CI building Status | Stable Documentation | Dev Documentation ----------|-----------|----------|----------- ![.github/workflows/main.yml](https://github.com/MohHizzani/NumNN.jl/workflows/.github/workflows/main.yml/badge.svg) | [![Build Status](https://travis-ci.com/MohHizzani/NumNN.jl.svg?branch=master)](https://travis-ci.com/MohHizzani/NumNN.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://mohhizzani.github.io/NumNN.jl/stable) | [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://mohhizzani.github.io/NumNN.jl/dev) # NumNN.jl This package provides high-level Neural Network APIs deals with different number representations like [Posit][1], Logarithmic Data Representations, Residual Number System (RNS), and -for sure- the conventional IEEE formats. Since, the implementation and development process for testing novel number systems on different Deep Learning applications using the current available DP frameworks in easily feasible. An urgent need for an unconventional library that provides both the easiness and complexity of simulating and testing and evaluate new number systems before the hardware design complex process— was resurfaced. ## Why Julia? [Julia][2] provides in an unconventional way the ability to simulate new number systems and deploy this simulation to be used as high-level primitive type. **[Multiple Dispatch][3]** provides a unique ability to write a general code then specify the implementation based on the type. ### Examples of Multiple Dispatch ```julia julia> aInt = 1; #with Integer type julia> bInt = 2; #with Integer type julia> cInt = 1 + 2; #which is a shortcut for cInt = +(1,2) julia> aFloat = 1.0; #with Float64 type julia> bFloat = 2.0; #with Flot64 type julia> aInt + bFloat #will use the method +(::Int64, ::Float64) 3.0 ``` Now let's do something more interesting with **Posit** (continue on the previous example) ```julia julia> using SoftPosit julia> aP = Posit16(1) Posit16(0x4000) julia> bP = Posit16(2) Posit16(0x5000) julia> aInt + aP #Note how the result is in Posit16 type Posit16(0x5000) ``` The output was of type `Posit16` because in **Julia** you can define a [Promote Rule][4] which mean when the output can be in either type(s) of the input, **promote** the output to be of the specified type. Which can be defined as follows: ```julia Base.promote_rule(::Type{Int64}, ::Type{Posit16}) = Posit16 ``` This means that the output of an operation on both `Int64` and `Posit16` should be converted to `Posit16`. ## Install To install in Julia ```julia julia> ] add NumNN ``` ## To Use ```julia julia> using NumNN ``` [1]: <superfri.org/superfri/article/view/137> "Beating Floating Point at its Own Game: Posit Arithmetic" [2]: <julialang.org> "Julia Language" [3]: <https://docs.julialang.org/en/v1/manual/methods/> "Julia Multiple Dispatch" [4]: <https://docs.julialang.org/en/v1/manual/conversion-and-promotion/#Promotion-1> "Juila Promotion"
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
docs
80
# Docstrings ```@autodocs Modules = [NumNN] Order = [:type, :function] ```
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
docs
2356
# NumNN.jl This package provides high-level Neural Network APIs deals with different number representations like [Posit](https://www.superfri.org/superfri/article/view/137 "Beating Floating Point at its Own Game: Posit Arithmetic"), Logarithmic Data Representations, Residual Number System (RNS), and -for sure- the conventional IEEE formats. Since, the implementation and development process for testing novel number systems on different Deep Learning applications using the current available DP frameworks in easily feasible. An urgent need for an unconventional library that provides both the easiness and complexity of simulating and testing and evaluate new number systems before the hardware design complex process— was resurfaced. ## Why Julia? [Julia](https://julialang.org/ "Julia Language") provides in an unconventional way the ability to simulate new number systems and deploy this simulation to be used as high-level primitive type. **[Multiple Dispatch](https://docs.julialang.org/en/v1/manual/methods/ "Julia Multiple Dispatch")** provides a unique ability to write a general code then specify the implementation based on the type. ### Examples of Multiple Dispatch ```julia-repl julia> aInt = 1; #with Integer type julia> bInt = 2; #with Integer type julia> cInt = 1 + 2; #which is a shortcut for cInt = +(1,2) julia> aFloat = 1.0; #with Float64 type julia> bFloat = 2.0; #with Flot64 type julia> aInt + bFloat #will use the method +(::Int64, ::Float64) 3.0 ``` Now let's do something more interesting with **Posit** (continue on the previous example) ```julia-repl julia> using SoftPosit julia> aP = Posit16(1) Posit16(0x4000) julia> bP = Posit16(2) Posit16(0x5000) julia> aInt + aP #Note how the result is in Posit16 type Posit16(0x5000) ``` The output was of type `Posit16` because in **Julia** you can define a [Promote Rule](https://docs.julialang.org/en/v1/manual/conversion-and-promotion/#Promotion-1 "Juila Promotion") which mean when the output can be in either type(s) of the input, **promote** the output to be of the specified type. Which can be defined as follows: ```julia Base.promote_rule(::Type{Int64}, ::Type{Posit16}) = Posit16 ``` This means that the output of an operation on both `Int64` and `Posit16` should be converted to `Posit16`. ```@contents Pages = ["docstrings.md", "tutorials.md"] ```
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.5.3
a1f51078c01785207ec90a733bbceff8c2ecbe72
docs
633
# Tutorials To learn how to use [NumNN](https://github.com/MohHizzani/NumNN.jl), here some tutorials as [Jupyter](https://jupyter.org/) notebooks ## [Intro to **NumNN** using Fully-Connected Layers](https://nbviewer.jupyter.org/github/MohHizzani/NumNN.jl/blob/master/examples/00_FCLayer_FashionMNIST.ipynb) ## [Intro to **NumNN** using Convolution Neural Networks](https://nbviewer.jupyter.org/github/MohHizzani/NumNN.jl/blob/master/examples/01_CNN_FashionMNIST.ipynb) ## [Example of **Inception** Neural Network](https://nbviewer.jupyter.org/github/MohHizzani/NumNN.jl/blob/master/examples/02_CNN_Inception_FashionMNIST.ipynb)
NumNN
https://github.com/MohHizzani/NumNN.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
878
module ConstraintLearning # SECTION - imports using ConstraintDomains using Constraints using LocalSearchSolvers using CompositionalNetworks using Dictionaries using Evolutionary using Memoization using TestItems using ThreadPools using QUBOConstraints using DataFrames using Flux using PrettyTables import Flux.Optimise: update! import Flux: params import CompositionalNetworks: exclu, nbits_exclu, nbits, layers, compose, as_int # SECTION - exports export icn export qubo export ICNConfig export ICNGeneticOptimizer export ICNLocalSearchOptimizer export ICNOptimizer export QUBOGradientOptimizer export QUBOOptimizer # SECTION - includes common include("common.jl") # SECTION - ICN include("icn/base.jl") include("icn/genetic.jl") include("icn/cbls.jl") include("icn.jl") # SECTION - QUBO include("qubo/base.jl") include("qubo/gradient.jl") include("qubo.jl") end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
2025
""" δ(X[, Y]; discrete = true) Compute the extrema over a collection `X`` or a pair of collection `(X, Y)`. """ function δ(X; discrete = true) mn, mx = extrema(X) return mx - mn + discrete end function δ(X, Y; discrete = true) mnx, mxx = extrema(X) mny, mxy = extrema(Y) return max(mxx, mxy) - min(mnx, mny) + discrete end """ sub_eltype(X) Return the element type of of the first element of a collection. """ sub_eltype(X) = eltype(first(T)) """ domain_size(ds::Number) Extends the domain_size function when `ds` is number (for dispatch purposes). """ domain_size(ds::Number) = ds """ make_training_sets(X, penalty, args...) Return a pair of solutions and non solutions sets based on `X` and `penalty`. """ function make_training_sets(X, penalty, p, ds) f = isnothing(p) ? ((x; param = p) -> penalty(x)) : penalty solutions = Set{Vector{Int}}() non_sltns = Set{Vector{Int}}() foreach( c -> (cv = collect(c); push!(f(cv; param = p) ? solutions : non_sltns, cv)), X ) return solutions, non_sltns end # REVIEW - Is it correct? Make a CI test function make_training_sets(X, penalty::Vector{T}, _) where {T <: Real} solutions = Set{Vector{Int}}() non_sltns = Set{Vector{Int}}() foreach( (c, p) -> (cv = collect(c); push!(p ? non_sltns : solutions, cv)), Iterators.zip(X, penalty) ) return solutions, non_sltns end """ make_set_penalty(X, X̅, args...; kargs) Return a penalty function when the training set is already split into a pair of solutions `X` and non solutions `X̅`. """ function make_set_penalty(X, X̅) penalty = x -> x ∈ X ? 1.0 : x ∈ X̅ ? 0.0 : 0.5 X_train = union(X, X̅) return X_train, penalty end make_set_penalty(X, X̅, ::Nothing) = make_set_penalty(X, X̅) function make_set_penalty(X, X̅, icn_conf; parameters...) penalty = icn(X, X̅; metric = icn_conf.metric, optimizer = icn.optimizer, parameters...) X_train = union(X, X̅) return X_train, penalty end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
1811
""" icn(X,X̅; kargs..., parameters...) TBW """ function icn( X, X̅; discrete = true, dom_size = δ(Iterators.flatten(X), Iterators.flatten(X̅); discrete), metric = :hamming, optimizer = ICNGeneticOptimizer(), X_test = nothing, parameters... ) lc = learn_compose( X, X̅, dom_size; metric, optimizer, X_test, parameters... )[1] return composition(lc) end function icn( domains::Vector{D}, penalty::F; configurations = nothing, discrete = true, dom_size = nothing, metric = :hamming, optimizer = ICNGeneticOptimizer(), X_test = nothing, parameters... ) where {D <: AbstractDomain, F <: Function} if isnothing(configurations) configurations = explore(domains, penalty; parameters...) end if isnothing(dom_size) dom_size = δ( Iterators.flatten(configurations[1]), Iterators.flatten(configurations[2]); discrete ) end return icn( configurations[1], configurations[2]; discrete, dom_size, metric, optimizer, X_test, parameters... ) end function icn( X, penalty::F; discrete = true, dom_size = δ(Iterators.flatten(X); discrete), metric = :hamming, optimizer = ICNGeneticOptimizer(), X_test = nothing, parameters... ) where {F <: Function} solutions, non_sltns = make_training_sets(X, penalty, dom_size; parameters...) return icn( solutions, non_sltns; discrete, dom_size, metric, optimizer, X_test, parameters... ) end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
818
""" qubo(X,X̅; kargs..., parameters...) TBW """ function qubo( X, penalty::Function, dom_stuff = nothing; param = nothing, icn_conf = nothing, optimizer = GradientDescentOptimizer(), X_test = X ) if icn_conf !== nothing penalty = icn( X, penalty; param, metric = icn_conf.metric, optimizer = icn_conf.optimizer) end return train(X, penalty, dom_stuff; optimizer, X_test) end function qubo( X, X̅, dom_stuff = nothing; icn_conf = nothing, optimizer = GradientDescentOptimizer(), param = nothing, X_test = union(X, X̅) ) X_train, penalty = make_set_penalty(X, X̅, param, icn_conf) return qubo(X_train, penalty, dom_stuff; icn_conf, optimizer, param, X_test) end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
415
""" const ICNOptimizer = CompositionalNetworks.AbstractOptimizer An abstract type for optmizers defined to learn ICNs. """ const ICNOptimizer = CompositionalNetworks.AbstractOptimizer """ struct ICNConfig{O <: ICNOptimizer} A structure to hold the metric and optimizer configurations used in learning the weights of an ICN. """ struct ICNConfig{O <: ICNOptimizer} metric::Symbol optimizer::O end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
3172
""" ICNLocalSearchOptimizer(options = LocalSearchSolvers.Options()) Default constructor to learn an ICN through a CBLS solver. """ struct ICNLocalSearchOptimizer <: ICNOptimizer options::LocalSearchSolvers.Options ICNLocalSearchOptimizer(options = LocalSearchSolvers.Options()) = new(options) end """ mutually_exclusive(layer, w) Constraint ensuring that `w` encode exclusive operations in `layer`. """ function mutually_exclusive(layer, w) x = as_int(w) l = length(layer) return iszero(x) ? 1.0 : max(0.0, x - l) end """ no_empty_layer(x; X = nothing) Constraint ensuring that at least one operation is selected. """ no_empty_layer(x; X = nothing) = max(0, 1 - sum(x)) """ parameter_specific_operations(x; X = nothing) Constraint ensuring that at least one operation related to parameters is selected if the error function to be learned is parametric. """ parameter_specific_operations(x; X = nothing) = 0.0 """ CompositionalNetworks.optimize!(icn, solutions, non_sltns, dom_size, metric, optimizer::ICNLocalSearchOptimizer; parameters...) Extends the `optimize!` method to `ICNLocalSearchOptimizer`. """ function CompositionalNetworks.optimize!( icn, solutions, non_sltns, dom_size, metric, optimizer::ICNLocalSearchOptimizer; parameters... ) @debug "starting debug opt" m = model(; kind = :icn) n = nbits(icn) # All variables are boolean d = domain([false, true]) # Add variables foreach(_ -> variable!(m, d), 1:n) # Add constraint start = 1 for layer in layers(icn) if exclu(layer) stop = start + nbits_exclu(layer) - 1 f(x; X = nothing) = mutually_exclusive(layer, x) constraint!(m, f, start:stop) else stop = start + length(layer) - 1 constraint!(m, no_empty_layer, start:stop) end start = stop + 1 end # Add objective inplace = zeros(dom_size, max_icn_length()) function fitness(w) _w = BitVector(w) compo = compose(icn, _w) f = composition(compo) S = Iterators.flatten((solutions, non_sltns)) @debug _w compo f S metric σ = sum( x -> abs(f(x; X = inplace, dom_size, parameters...) - eval(metric)(x, solutions)), S) return σ + regularization(icn) + weights_bias(_w) end objective!(m, fitness) # Create solver and solve s = solver(m; options = optimizer.options) solve!(s) @debug "pool" s.pool best_values(s.pool) best_values(s) s.pool.configurations # Return best values if has_solution(s) weights!(icn, BitVector(collect(best_values(s)))) else CompositionalNetworks.generate_weights(icn) end best = weights(icn) return best, Dictionary{BitVector, Int}([best], [1]) end @testitem "ICN: CBLS" tags=[:icn, :cbls] default_imports=false begin using ConstraintDomains using ConstraintLearning domains = [domain([1, 2, 3, 4]) for i in 1:4] compo = icn(domains, allunique; optimizer = ICNLocalSearchOptimizer()) # @test compo([1,2,3,3], dom_size = 4) > 0.0 end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
4768
""" generate_population(icn, pop_size Generate a pôpulation of weights (individuals) for the genetic algorithm weighting `icn`. """ function generate_population(icn, pop_size) population = Vector{BitVector}() foreach(_ -> push!(population, falses(nbits(icn))), 1:pop_size) return population end """ _optimize!(icn, X, X_sols; metric = hamming, pop_size = 200) Optimize and set the weights of an ICN with a given set of configuration `X` and solutions `X_sols`. """ function _optimize!( icn, solutions, non_sltns, dom_size, metric, pop_size, iterations; samples = nothing, memoize = false, parameters... ) inplace = zeros(dom_size, max_icn_length()) _non_sltns = isnothing(samples) ? non_sltns : rand(non_sltns, samples) function fitness(w) compo = compose(icn, w) f = composition(compo) S = Iterators.flatten((solutions, _non_sltns)) σ = sum( x -> abs(f(x; X = inplace, dom_size, parameters...) - metric(x, solutions)), S ) return σ + regularization(icn) + weights_bias(w) end _fitness = memoize ? (@memoize Dict memoize_fitness(w)=fitness(w)) : fitness _icn_ga = GA(; populationSize = pop_size, crossoverRate = 0.8, epsilon = 0.05, selection = tournament(2), crossover = SPX, mutation = flip, mutationRate = 1.0 ) pop = generate_population(icn, pop_size) r = Evolutionary.optimize(_fitness, pop, _icn_ga, Evolutionary.Options(; iterations)) return weights!(icn, Evolutionary.minimizer(r)) end """ optimize!(icn, X, X_sols, global_iter, local_iter; metric=hamming, popSize=100) Optimize and set the weights of an ICN with a given set of configuration `X` and solutions `X_sols`. The best weights among `global_iter` will be set. """ function optimize!( icn, solutions, non_sltns, global_iter, iter, dom_size, metric, pop_size; sampler = nothing, memoize = false, parameters... ) results = Dictionary{BitVector, Int}() aux_results = Vector{BitVector}(undef, global_iter) nt = Base.Threads.nthreads() @info """Starting optimization of weights$(nt > 1 ? " (multithreaded)" : "")""" samples = isnothing(sampler) ? nothing : sampler(length(solutions) + length(non_sltns)) @qthreads for i in 1:global_iter @info "Iteration $i" aux_icn = deepcopy(icn) _optimize!( aux_icn, solutions, non_sltns, dom_size, eval(metric), pop_size, iter; samples, memoize, parameters... ) aux_results[i] = weights(aux_icn) end foreach(bv -> incsert!(results, bv), aux_results) best = rand(findall(x -> x == maximum(results), results)) weights!(icn, best) return best, results end struct ICNGeneticOptimizer <: ICNOptimizer global_iter::Int local_iter::Int memoize::Bool pop_size::Int sampler::Union{Nothing, Function} end """ ICNGeneticOptimizer(; kargs...) Default constructor to learn an ICN through a Genetic Algorithm. Default `kargs` TBW. """ function ICNGeneticOptimizer(; global_iter = Threads.nthreads(), local_iter = 64, memoize = false, pop_size = 64, sampler = nothing ) return ICNGeneticOptimizer(global_iter, local_iter, memoize, pop_size, sampler) end """ CompositionalNetworks.optimize!(icn, solutions, non_sltns, dom_size, metric, optimizer::ICNGeneticOptimizer; parameters...) Extends the `optimize!` method to `ICNGeneticOptimizer`. """ function CompositionalNetworks.optimize!( icn, solutions, non_sltns, dom_size, metric, optimizer::ICNGeneticOptimizer; parameters... ) return optimize!( icn, solutions, non_sltns, optimizer.global_iter, optimizer.local_iter, dom_size, metric, optimizer.pop_size; optimizer.sampler, optimizer.memoize, parameters... ) end """ ICNConfig(; metric = :hamming, optimizer = ICNGeneticOptimizer()) Constructor for `ICNConfig`. Defaults to hamming metric using a genetic algorithm. """ function ICNConfig(; metric = :hamming, optimizer = ICNGeneticOptimizer()) return ICNConfig(metric, optimizer) end @testitem "ICN: Genetic" tags=[:icn, :genetic] default_imports=false begin using ConstraintDomains using ConstraintLearning using Test domains = [domain([1, 2, 3, 4]) for i in 1:4] compo = icn(domains, allunique) @test compo([1, 2, 3, 3], dom_size = 4) > 0.0 end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
203
""" const QUBOOptimizer = QUBOConstraints.AbstractOptimizer An abstract type for optimizers used to learn QUBO matrices from constraints. """ const QUBOOptimizer = QUBOConstraints.AbstractOptimizer
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
6153
struct QUBOGradientOptimizer <: QUBOConstraints.AbstractOptimizer binarization::Symbol η::Float64 precision::Int oversampling::Bool end """ QUBOGradientOptimizer(; kargs...) A QUBO optimizer based on gradient descent. Defaults TBW """ function QUBOGradientOptimizer(; binarization = :one_hot, η = 0.001, precision = 5, oversampling = false ) return QUBOGradientOptimizer(binarization, η, precision, oversampling) end """ predict(x, Q) Return the predictions given by `Q` for a given configuration `x`. """ predict(x, Q) = transpose(x) * Q * x """ loss(x, y, Q) Loss of the prediction given by `Q`, a training set `y`, and a given configuration `x`. """ loss(x, y, Q) = (predict(x, Q) .- y) .^ 2 """ make_df(X, Q, penalty, binarization, domains) DataFrame arrangement to output some basic evaluation of a matrix `Q`. """ function make_df(X, Q, penalty, binarization, domains) df = DataFrame() for (i, x) in enumerate(X) if i == 1 df = DataFrame(transpose(x), :auto) else push!(df, transpose(x)) end end dim = length(df[1, :]) if binarization == :none df[!, :penalty] = map(r -> penalty(Vector(r)), eachrow(df)) df[!, :predict] = map(r -> predict(Vector(r), Q), eachrow(df[:, 1:dim])) else df[!, :penalty] = map( r -> penalty(binarize(Vector(r), domains; binarization)), eachrow(df) ) df[!, :predict] = map( r -> predict(binarize(Vector(r), domains; binarization), Q), eachrow(df[:, 1:dim]) ) end min_false = minimum( filter(:penalty => >(minimum(df[:, :penalty])), df)[:, :predict]; init = typemax(Int) ) df[!, :shifted] = df[:, :predict] .- min_false df[!, :accurate] = df[:, :penalty] .* df[:, :shifted] .≥ 0.0 return df end """ preliminaries(args) Preliminaries to the training process in a `QUBOGradientOptimizer` run. """ function preliminaries(X, domains, binarization) if binarization == :none n = length(first(X)) return X, zeros(n, n) else Y = map(x -> collect(binarize(x, domains; binarization)), X) n = length(first(Y)) return Y, zeros(n, n) end end function preliminaries(X, _) n = length(first(X)) return X, zeros(n, n) end """ train!(Q, X, penalty, η, precision, X_test, oversampling, binarization, domains) Training inner method. """ function train!(Q, X, penalty, η, precision, X_test, oversampling, binarization, domains) θ = params(Q) try penalty(first(X)) catch e if isa(e, UndefKeywordError) penalty = (x; dom_size = δ_extrema(Iterators.flatten(X))) -> penalty( x; dom_size) else throw(e) end end for x in (oversampling ? oversample(X, penalty) : X) grads = gradient(() -> loss(x, penalty(x), Q), θ) Q .-= η * grads[Q] end Q[:, :] = round.(precision * Q) df = make_df(X_test, Q, penalty, binarization, domains) return pretty_table(DataFrames.describe(df[ !, [:penalty, :predict, :shifted, :accurate]])) end """ train(X, penalty[, d]; optimizer = QUBOGradientOptimizer(), X_test = X) Learn a QUBO matrix on training set `X` for a constraint defined by `penalty` with optional domain information `d`. By default, it uses a `QUBOGradientOptimizer` and `X` as a testing set. """ function train( X, penalty, domains::Vector{D}; optimizer = QUBOGradientOptimizer(), X_test = X ) where {D <: DiscreteDomain} Y, Q = preliminaries(X, domains, optimizer.binarization) train!( Q, Y, penalty, optimizer.η, optimizer.precision, X_test, optimizer.oversampling, optimizer.binarization, domains ) return Q end function train( X, penalty, dom_stuff = nothing; optimizer = QUBOGradientOptimizer(), X_test = X ) return train(X, penalty, to_domains(X, dom_stuff); optimizer, X_test) end ## SECTION - Test Items @testitem "QUBOConstraints" tags=[:qubo, :gradient] default_imports=false begin using ConstraintLearning using QUBOConstraints X₃₃ = [rand(0:2, 3) for _ in 1:10] X₃₃_test = [rand(0:2, 3) for _ in 1:100] B₉ = [rand(Bool, 9) for _ in 1:10] B₉_test = [rand(Bool, 9) for _ in 1:2000] training_configs = [ Dict( :info => "No binarization on ⟦0,2⟧³", :train => X₃₃, :test => X₃₃_test, :encoding => :none, :binarization => :none ), Dict( :info => "Domain Wall binarization on ⟦0,2⟧³", :train => X₃₃, :test => X₃₃_test, :encoding => :none, :binarization => :domain_wall ), Dict( :info => "One-Hot pre-encoded on ⟦0,2⟧³", :train => B₉, :test => B₉_test, :encoding => :one_hot, :binarization => :none ) ] function all_different(x, encoding) encoding == :none && (return allunique(x)) isv = if encoding == :one_hot mapreduce(i -> is_valid(x[i:(i + 2)], Val(encoding)), *, 1:3:9) else mapreduce(i -> is_valid(x[i:(i + 1)], Val(encoding)), *, 1:2:6) end if isv b = all_different(debinarize(x; binarization = encoding), :none) return b ? -1.0 : 1.0 else return length(x) end end function all_different(x, encoding, binarization) return all_different(x, encoding == :none ? binarization : encoding) end for config in training_configs println("\nTest for $(config[:info])") penalty = x -> all_different(x, config[:encoding], config[:binarization]) optimizer = QUBOGradientOptimizer(; binarization = config[:binarization]) qubo(config[:train], penalty; optimizer, X_test = config[:test]) # qubo(config[:train], penalty; optimizer, X_test = config[:test], icn_conf = ICNConfig()) end end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
884
@testset "Aqua.jl" begin import Aqua import ConstraintLearning # TODO: Fix the broken tests and remove the `broken = true` flag Aqua.test_all( ConstraintLearning; ambiguities = (broken = true,), deps_compat = false, piracies = (broken = false,), unbound_args = (broken = false) ) @testset "Ambiguities: ConstraintLearning" begin # Aqua.test_ambiguities(ConstraintLearning;) end @testset "Piracies: ConstraintLearning" begin # Aqua.test_piracies(ConstraintLearning;) end @testset "Dependencies compatibility (no extras)" begin Aqua.test_deps_compat( ConstraintLearning; check_extras = false # ignore = [:Random] ) end @testset "Unbound type parameters" begin # Aqua.test_unbound_args(ConstraintLearning;) end end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
59
@testset "TestItemRunner" begin @run_package_tests end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
code
160
using Test using TestItemRunner using TestItems @testset "Package tests: ConstraintLearning" begin include("Aqua.jl") include("TestItemRunner.jl") end
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
0.1.9
fb00568e77176ce5a5e9266277b7a696cbc4e0f3
docs
1221
# ConstraintLearning [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaConstraints.github.io/ConstraintLearning.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaConstraints.github.io/ConstraintLearning.jl/dev) [![Build Status](https://github.com/JuliaConstraints/ConstraintLearning.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/JuliaConstraints/ConstraintLearning.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/JuliaConstraints/ConstraintLearning.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaConstraints/ConstraintLearning.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac) [![PkgEval](https://JuliaCI.github.io/NanosoldierReports/pkgeval_badges/C/ConstraintLearning.svg)](https://JuliaCI.github.io/NanosoldierReports/pkgeval_badges/report.html) ## Citing See [`CITATION.bib`](CITATION.bib) for the relevant reference(s).
ConstraintLearning
https://github.com/JuliaConstraints/ConstraintLearning.jl.git
[ "MIT" ]
1.3.0
91d51d3b38c103a0e0820f2e4419812efdd7e7e5
code
1977
using ModelingToolkit using ModelingToolkitStandardLibrary.Electrical using ModelingToolkitStandardLibrary.Blocks: Constant using ModelingToolkitDesigner using CairoMakie using GLMakie @component function PassThru2(; name) @variables t systems = @named begin p1 = Pin() p2 = Pin() end eqs = [connect(p1, p2)] return ODESystem(eqs, t, [], []; name, systems) end @component function PassThru3(; name) @variables t systems = @named begin p1 = Pin() p2 = Pin() p3 = Pin() end eqs = [connect(p1, p2, p3)] return ODESystem(eqs, t, [], []; name, systems) end @component function Circuit(; name) R = 1.0 C = 1.0 V = 1.0 @variables t systems = @named begin resistor = Resistor(R = R) capacitor = Capacitor(C = C) source = Voltage() constant = Constant(k = V) ground = Ground() pt2 = PassThru2() pt3 = PassThru3() end eqs = [ connect(resistor.p, pt2.p1) connect(source.p, pt2.p2) connect(source.n, pt3.p2) connect(capacitor.n, pt3.p1) connect(resistor.n, capacitor.p) connect(ground.g, pt3.p3) connect(source.V, constant.output) ] # eqs = [connect(constant.output, source.V) # connect(source.p, resistor.p) # connect(resistor.n, capacitor.p) # connect(capacitor.n, source.n, ground.g)] ODESystem(eqs, t, [], []; systems, name) end @named rc = Circuit() # using OrdinaryDiffEq # sys = structural_simplify(rc) # prob = ODEProblem(sys, Pair[], (0, 10.0)) # sol = solve(prob, Tsit5()) path = joinpath(@__DIR__, "design") design = ODESystemDesign(rc, path) GLMakie.set_theme!(Theme(; fontsize = 12)) ModelingToolkitDesigner.view(design) # CairoMakie.set_theme!(Theme(;fontsize=12)) # fig = ModelingToolkitDesigner.view(design, false) # save(joinpath(@__DIR__, "electrical.svg"), fig; resolution=(300,300))
ModelingToolkitDesigner
https://github.com/bradcarman/ModelingToolkitDesigner.jl.git
[ "MIT" ]
1.3.0
91d51d3b38c103a0e0820f2e4419812efdd7e7e5
code
1190
using ModelingToolkit using ModelingToolkitDesigner import ModelingToolkitStandardLibrary.Hydraulic.IsothermalCompressible as IC import ModelingToolkitStandardLibrary.Blocks as B @parameters t @component function System(; name) pars = [] systems = @named begin fluid = IC.HydraulicFluid(; density = 876, bulk_modulus = 1.2e9, viscosity = 0.034) stp = B.Step(; height = 10e5, start_time = 0.005) src = IC.InputSource(; p_int = 0) vol = IC.FixedVolume(; p_int = 0, vol = 10.0) res = IC.Tube(5; p_int = 0, area = 0.01, length = 500.0) end eqs = [ connect(stp.output, src.p) connect(src.port, res.port_a) connect(vol.port, res.port_b) connect(src.port, fluid) ] ODESystem(eqs, t, [], pars; name, systems) end @named sys = System() path = joinpath(@__DIR__, "design") # folder where visualization info is saved and retrieved design = ODESystemDesign(sys, path); ModelingToolkitDesigner.view(design) # using CairoMakie # CairoMakie.set_theme!(Theme(;fontsize=12)) # fig = ModelingToolkitDesigner.view(design, false) # save(joinpath(@__DIR__, "hydraulic.svg"), fig; resolution=(400,200))
ModelingToolkitDesigner
https://github.com/bradcarman/ModelingToolkitDesigner.jl.git
[ "MIT" ]
1.3.0
91d51d3b38c103a0e0820f2e4419812efdd7e7e5
code
1400
using ModelingToolkit using ModelingToolkitDesigner using ModelingToolkitStandardLibrary.Blocks import ModelingToolkitStandardLibrary.Mechanical.Translational as TV @parameters t D = Differential(t) @component function PassThru3(; name) @variables t systems = @named begin p1 = TV.MechanicalPort() p2 = TV.MechanicalPort() p3 = TV.MechanicalPort() end eqs = [connect(p1, p2, p3)] return ODESystem(eqs, t, [], []; name, systems) end @component function MassSpringDamper(; name) systems = @named begin dv = TV.Damper(d = 1, v_a_0 = 1) sv = TV.Spring(k = 1, v_a_0 = 1, delta_s_0 = 1) bv = TV.Mass(m = 1, v_0 = 1) gv = TV.Fixed() pt1 = PassThru3() pt2 = PassThru3() end eqs = [ connect(bv.flange, pt2.p2) connect(sv.flange_a, pt2.p1) connect(dv.flange_a, pt2.p3) connect(dv.flange_b, pt1.p3) connect(sv.flange_b, pt1.p1) connect(gv.flange, pt1.p2) ] return ODESystem(eqs, t, [], []; name, systems) end @named msd = MassSpringDamper() path = joinpath(@__DIR__, "design") design = ODESystemDesign(msd, path) ModelingToolkitDesigner.view(design) # using CairoMakie # CairoMakie.set_theme!(Theme(;fontsize=12)) # fig = ModelingToolkitDesigner.view(design, false) # save(joinpath(@__DIR__, "mechanical.svg"), fig; resolution=(400,200))
ModelingToolkitDesigner
https://github.com/bradcarman/ModelingToolkitDesigner.jl.git
[ "MIT" ]
1.3.0
91d51d3b38c103a0e0820f2e4419812efdd7e7e5
code
203
connect(resistor.p, pt2.p1) connect(source.p, pt2.p2) connect(source.n, pt3.p2) connect(capacitor.n, pt3.p1) connect(resistor.n, capacitor.p) connect(ground.g, pt3.p3) connect(source.V, constant.output)
ModelingToolkitDesigner
https://github.com/bradcarman/ModelingToolkitDesigner.jl.git
[ "MIT" ]
1.3.0
91d51d3b38c103a0e0820f2e4419812efdd7e7e5
code
170
connect(bv.flange, pt2.p2) connect(sv.flange_a, pt2.p1) connect(dv.flange_a, pt2.p3) connect(dv.flange_b, pt1.p3) connect(sv.flange_b, pt1.p1) connect(gv.flange, pt1.p2)
ModelingToolkitDesigner
https://github.com/bradcarman/ModelingToolkitDesigner.jl.git
[ "MIT" ]
1.3.0
91d51d3b38c103a0e0820f2e4419812efdd7e7e5
code
112
connect(stp.output, src.p) connect(src.port, res.port_a) connect(vol.port, res.port_b) connect(src.port, fluid)
ModelingToolkitDesigner
https://github.com/bradcarman/ModelingToolkitDesigner.jl.git
[ "MIT" ]
1.3.0
91d51d3b38c103a0e0820f2e4419812efdd7e7e5
code
38992
module ModelingToolkitDesigner using GLMakie using CairoMakie using ModelingToolkit using FilterHelpers using FileIO using TOML using ModelingToolkitStandardLibrary.Blocks: AnalysisPoint #TODO: ctrl + up/down/left/right gives bigger jumps const Δh = 0.05 const dragging = Ref(false) abstract type DesignMap end struct DesignColorMap <: DesignMap domain::String color::Symbol end const design_colors = DesignMap[ DesignColorMap("ModelingToolkitStandardLibrary.Electrical.Pin", :tomato) DesignColorMap( "ModelingToolkitStandardLibrary.Mechanical.Translational.MechanicalPort", :yellowgreen, ) DesignColorMap( "ModelingToolkitStandardLibrary.Mechanical.TranslationalPosition.Flange", :green, ) DesignColorMap( "ModelingToolkitStandardLibrary.Mechanical.TranslationalPosition.Support", :green, ) DesignColorMap("ModelingToolkitStandardLibrary.Mechanical.Rotational.Flange", :green) DesignColorMap("ModelingToolkitStandardLibrary.Mechanical.Rotational.Support", :green) DesignColorMap("ModelingToolkitStandardLibrary.Thermal.HeatPort", :red) DesignColorMap( "ModelingToolkitStandardLibrary.Magnetic.FluxTubes.MagneticPort", :purple, ) DesignColorMap( "ModelingToolkitStandardLibrary.Hydraulic.IsothermalCompressible.HydraulicPort", :blue, ) DesignColorMap( "ModelingToolkitStandardLibrary.Hydraulic.IsothermalCompressible.HydraulicFluid", :blue, ) ] function add_color(system::ODESystem, color::Symbol) @assert ModelingToolkit.isconnector(system) "The `system` must be a connector" type = string(system.gui_metadata.type) map = DesignColorMap(type, color) push!(design_colors, map) println("Added $map to `ModelingToolkitDesigner.design_colors`") end mutable struct ODESystemDesign # parameters::Vector{Parameter} # states::Vector{State} parent::Union{Symbol,Nothing} system::ODESystem system_color::Symbol components::Vector{ODESystemDesign} connectors::Vector{ODESystemDesign} connections::Vector{Tuple{ODESystemDesign,ODESystemDesign}} xy::Observable{Tuple{Float64,Float64}} icon::Union{String,Nothing} color::Observable{Symbol} wall::Observable{Symbol} file::String end Base.show(io::IO, x::ODESystemDesign) = print(io, x.system.name) Base.show(io::IO, x::Tuple{ODESystemDesign,ODESystemDesign}) = print( io, "$(x[1].parent).$(x[1].system.name) $(round.(x[1].xy[]; digits=2)) <---> $(x[2].parent).$(x[2].system.name) $(round.(x[2].xy[]; digits=2))", ) Base.copy(x::Tuple{ODESystemDesign,ODESystemDesign}) = (copy(x[1]), copy(x[2])) Base.copy(x::ODESystemDesign) = ODESystemDesign( x.parent, x.system, x.system_color, copy.(x.components), copy.(x.connectors), copy.(x.connections), Observable(x.xy[]), x.icon, Observable(x.system_color), Observable(x.wall[]), x.file, ) function ODESystemDesign( system::ODESystem, design_path::String; x = 0.0, y = 0.0, icon = nothing, wall = :E, parent = nothing, kwargs..., ) file = design_file(system, design_path) design_dict = if isfile(file) TOML.parsefile(file) else Dict() end systems = filter(x -> typeof(x) == ODESystem, ModelingToolkit.get_systems(system)) components = ODESystemDesign[] connectors = ODESystemDesign[] connections = Tuple{ODESystemDesign,ODESystemDesign}[] if !isempty(systems) process_children!( components, systems, design_dict, design_path, system.name, false; kwargs..., ) process_children!( connectors, systems, design_dict, design_path, system.name, true; kwargs..., ) for wall in [:E, :W, :N, :S] connectors_on_wall = filter(x -> get_wall(x) == wall, connectors) n = length(connectors_on_wall) if n > 1 i = 0 for conn in connectors_on_wall order = get_wall_order(conn) i = max(i, order) + 1 if order == 0 conn.wall[] = Symbol(wall, i) end end end end for eq in equations(system) if (eq.rhs isa Connection) && isnothing(eq.lhs.systems) #filters out domain_connect #TODO: handle case of domain_connect connection with fluid conns = [] for connector in eq.rhs.systems if contains(string(connector.name), '₊') # connector of child system conn_parent, child = split(string(connector.name), '₊') child_design = filtersingle( x -> string(x.system.name) == conn_parent, components, ) if !isnothing(child_design) connector_design = filtersingle( x -> string(x.system.name) == child, child_design.connectors, ) else connector_design = nothing end else # connector of parent system connector_design = filtersingle(x -> x.system.name == connector.name, connectors) end if !isnothing(connector_design) push!(conns, connector_design) end end for i = 2:length(conns) push!(connections, (conns[i-1], conns[i])) end end if eq.rhs isa AnalysisPoint conns = [] for connector in [eq.rhs.in, eq.rhs.out] if contains(string(connector.name), '₊') # connector of child system conn_parent, child = split(string(connector.name), '₊') child_design = filtersingle( x -> string(x.system.name) == conn_parent, components, ) if !isnothing(child_design) connector_design = filtersingle( x -> string(x.system.name) == child, child_design.connectors, ) else connector_design = nothing end else # connector of parent system connector_design = filtersingle(x -> x.system.name == connector.name, connectors) end if !isnothing(connector_design) push!(conns, connector_design) end end for i = 2:length(conns) push!(connections, (conns[i-1], conns[i])) end end end end xy = Observable((x, y)) color = get_color(system) if wall isa String wall = Symbol(wall) end return ODESystemDesign( parent, system, color, components, connectors, connections, xy, icon, Observable(color), Observable(wall), file, ) end is_pass_thru(design::ODESystemDesign) = is_pass_thru(design.system) function is_pass_thru(system::ODESystem) types = split(string(system.gui_metadata.type), '.') component_type = types[end] return startswith(component_type, "PassThru") end function design_file(system::ODESystem, path::String) @assert !isnothing(system.gui_metadata) "ODESystem must use @component: $(system.name)" # path = joinpath(@__DIR__, "designs") if !isdir(path) mkdir(path) end parts = split(string(system.gui_metadata.type), '.') for part in parts[1:end-1] path = joinpath(path, part) if !isdir(path) mkdir(path) end end file = joinpath(path, "$(parts[end]).toml") return file end function process_children!( children::Vector{ODESystemDesign}, systems::Vector{ODESystem}, design_dict::Dict, design_path::String, parent::Symbol, is_connector = false; connectors..., ) systems = filter(x -> ModelingToolkit.isconnector(x) == is_connector, systems) if !isempty(systems) for (i, system) in enumerate(systems) # key = Symbol(namespace, "₊", system.name) key = string(system.name) kwargs = if haskey(design_dict, key) design_dict[key] else Dict() end kwargs_pair = Pair[] push!(kwargs_pair, :parent => parent) if !is_connector #if x and y are missing, add defaults if !haskey(kwargs, "x") & !haskey(kwargs, "y") push!(kwargs_pair, :x => i * 3 * Δh) push!(kwargs_pair, :y => i * Δh) end # r => wall for icon rotation if haskey(kwargs, "r") push!(kwargs_pair, :wall => kwargs["r"]) end else if haskey(connectors, safe_connector_name(system.name)) push!(kwargs_pair, :wall => connectors[safe_connector_name(system.name)]) end end for (key, value) in kwargs push!(kwargs_pair, Symbol(key) => value) end push!(kwargs_pair, :icon => find_icon(system, design_path)) push!( children, ODESystemDesign(system, design_path; NamedTuple(kwargs_pair)...), ) end end end function get_design_path(design::ODESystemDesign) type = string(design.system.gui_metadata.type) parts = split(type, '.') path = joinpath(parts[1:end-1]..., "$(parts[end]).toml") return replace(design.file, path => "") end function get_icons(system::ODESystem, design_path::String) type = string(system.gui_metadata.type) path = split(type, '.') pkg_location = Base.find_package(string(path[1])) bases = if !isnothing(pkg_location) [ design_path joinpath(pkg_location, "..", "..", "icons") joinpath(@__DIR__, "..", "icons") ] else [ design_path joinpath(@__DIR__, "..", "icons") ] end icons = [joinpath(base, path[1:end-1]..., "$(path[end]).png") for base in bases] return abspath.(icons) end find_icon(design::ODESystemDesign) = find_icon(design.system, get_design_path(design)) function find_icon(system::ODESystem, design_path::String) icons = get_icons(system, design_path) for icon in icons isfile(icon) && return icon end return joinpath(@__DIR__, "..", "icons", "NotFound.png") end function is_tuple_approx(a::Tuple{<:Number,<:Number}, b::Tuple{<:Number,<:Number}; atol) r1 = isapprox(a[1], b[1]; atol) r2 = isapprox(a[2], b[2]; atol) return all([r1, r2]) end get_change(::Val) = (0.0, 0.0) get_change(::Val{Keyboard.up}) = (0.0, +Δh / 5) get_change(::Val{Keyboard.down}) = (0.0, -Δh / 5) get_change(::Val{Keyboard.left}) = (-Δh / 5, 0.0) get_change(::Val{Keyboard.right}) = (+Δh / 5, 0.0) function next_wall(current_wall) if current_wall == :N :E elseif current_wall == :W :N elseif current_wall == :S :W elseif current_wall == :E :S end end function view(design::ODESystemDesign, interactive = true) if interactive GLMakie.activate!(inline=false) else CairoMakie.activate!() end fig = Figure() title = if isnothing(design.parent) "$(design.system.name) [$(design.file)]" else "$(design.parent).$(design.system.name) [$(design.file)]" end ax = Axis( fig[2:11, 1:10]; aspect = DataAspect(), yticksvisible = false, xticksvisible = false, yticklabelsvisible = false, xticklabelsvisible = false, xgridvisible = false, ygridvisible = false, bottomspinecolor = :transparent, leftspinecolor = :transparent, rightspinecolor = :transparent, topspinecolor = :transparent, ) if interactive connect_button = Button(fig[12, 1]; label = "connect", fontsize = 12) clear_selection_button = Button(fig[12, 2]; label = "clear selection", fontsize = 12) next_wall_button = Button(fig[12, 3]; label = "move node", fontsize = 12) align_horrizontal_button = Button(fig[12, 4]; label = "align horz.", fontsize = 12) align_vertical_button = Button(fig[12, 5]; label = "align vert.", fontsize = 12) open_button = Button(fig[12, 6]; label = "open", fontsize = 12) rotate_button = Button(fig[12, 7]; label = "rotate", fontsize=12) mode_toggle = Toggle(fig[12, 8]) save_button = Button(fig[12, 10]; label = "save", fontsize = 12) Label(fig[1, :], title; halign = :left, fontsize = 11) Label(fig[2,:], "keyboard: m - toggle mouse dragging, c - connect, r - rotate"; halign = :left, fontsize=10) end for component in design.components add_component!(ax, component) for connector in component.connectors notify(connector.wall) end notify(component.xy) end for connector in design.connectors add_component!(ax, connector) notify(connector.xy) end for connection in design.connections connect!(ax, connection) end if interactive on(events(fig).mousebutton, priority = 2) do event if event.button == Mouse.left if event.action == Mouse.press # if Keyboard.s in events(fig).keyboardstate # Delete marker plt, i = pick(fig) if !isnothing(plt) if plt isa Image image = plt xobservable = image[1] xvalues = xobservable[] yobservable = image[2] yvalues = yobservable[] x = xvalues.left + Δh * 0.8 y = yvalues.left + Δh * 0.8 selected_system = filtersingle( s -> is_tuple_approx(s.xy[], (x, y); atol = 1e-3), [design.components; design.connectors], ) if isnothing(selected_system) x = xvalues.left + Δh * 0.8 * 0.5 y = yvalues.left + Δh * 0.8 * 0.5 selected_system = filterfirst( s -> is_tuple_approx(s.xy[], (x, y); atol = 1e-3), [design.components; design.connectors], ) if isnothing(selected_system) @warn "clicked an image at ($(round(x; digits=1)), $(round(y; digits=1))), but no system design found!" else selected_system.color[] = :pink dragging[] = true end else selected_system.color[] = :pink dragging[] = true end elseif plt isa Scatter point = plt observable = point[1] values = observable[] geometry_point = Float64.(values[1]) x = geometry_point[1] y = geometry_point[2] selected_component = filtersingle( c -> is_tuple_approx(c.xy[], (x, y); atol = 1e-3), design.components, ) if !isnothing(selected_component) selected_component.color[] = :pink else all_connectors = vcat([s.connectors for s in design.components]...) selected_connector = filtersingle( c -> is_tuple_approx(c.xy[], (x, y); atol = 1e-3), all_connectors, ) if !isnothing(selected_connector) selected_connector.color[] = :pink end end elseif plt isa Mesh triangles = plt[1][] points = map(x->sum(x.points)/length(x.points), triangles) x,y = sum(points)/length(points) selected_component = filtersingle( c -> is_tuple_approx(c.xy[], (x, y); atol = 1e-3), design.components, ) if !isnothing(selected_component) selected_component.color[] = :pink dragging[] = true end end end Consume(true) elseif event.action == Mouse.release dragging[] = false Consume(true) end end if event.button == Mouse.right clear_selection(design) Consume(true) end return Consume(false) end on(events(fig).mouseposition, priority = 2) do mp if dragging[] for sub_design in [design.components; design.connectors] if sub_design.color[] == :pink position = mouseposition(ax) sub_design.xy[] = (position[1], position[2]) break #only move one system for mouse drag end end return Consume(true) end return Consume(false) end on(events(fig).keyboardbutton) do event if event.action == Keyboard.press if event.key == Keyboard.m dragging[] = !dragging[] elseif event.key == Keyboard.c connect!(ax, design) elseif event.key == Keyboard.r rotate(design) else change = get_change(Val(event.key)) if change != (0.0, 0.0) for sub_design in [design.components; design.connectors] if sub_design.color[] == :pink xc = sub_design.xy[][1] yc = sub_design.xy[][2] sub_design.xy[] = (xc + change[1], yc + change[2]) end end reset_limits!(ax) return Consume(true) end end end end on(connect_button.clicks) do clicks connect!(ax, design) end on(clear_selection_button.clicks) do clicks clear_selection(design) end #TODO: fix the ordering too on(next_wall_button.clicks) do clicks for component in design.components for connector in component.connectors if connector.color[] == :pink current_wall = get_wall(connector) current_order = get_wall_order(connector) if current_order > 1 connectors_on_wall = filter(x -> get_wall(x) == current_wall, component.connectors) for cow in connectors_on_wall order = max(get_wall_order(cow), 1) if order == current_order - 1 cow.wall[] = Symbol(current_wall, current_order) end if order == current_order cow.wall[] = Symbol(current_wall, current_order - 1) end end else connectors_on_wall = filter(x -> get_wall(x) == next_wall(current_wall), component.connectors) # connector is added to wall, need to fix any un-ordered connectors for cow in connectors_on_wall order = get_wall_order(cow) if order == 0 cow.wall[] = Symbol(next_wall(current_wall), 1) end end current_order = length(connectors_on_wall) + 1 if current_order > 1 connector.wall[] = Symbol(next_wall(current_wall), current_order) else connector.wall[] = next_wall(current_wall) end # connector is leaving wall, need to reduce the order connectors_on_wall = filter(x -> get_wall(x) == current_wall, component.connectors) if length(connectors_on_wall) > 1 for cow in connectors_on_wall order = get_wall_order(cow) if order == 0 cow.wall[] = Symbol(current_wall, 1) else cow.wall[] = Symbol(current_wall, order - 1) end end else for cow in connectors_on_wall cow.wall[] = current_wall end end end end end end end on(align_horrizontal_button.clicks) do clicks align(design, :horrizontal) end on(align_vertical_button.clicks) do clicks align(design, :vertical) end on(open_button.clicks) do clicks for component in design.components if component.color[] == :pink view_design = ODESystemDesign(component.system, get_design_path(component)) view_design.parent = design.system.name fig_ = view(view_design) display(GLMakie.Screen(), fig_) break end end end on(save_button.clicks) do clicks save_design(design) end on(mode_toggle.active) do val toggle_pass_thrus(design, val) end on(rotate_button.clicks) do clicks rotate(design) end end toggle_pass_thrus(design, !interactive) return fig end function toggle_pass_thrus(design::ODESystemDesign, hide::Bool) for component in design.components if is_pass_thru(component) if hide component.color[] = :transparent for connector in component.connectors connector.color[] = :transparent end else component.color[] = component.system_color for connector in component.connectors connector.color[] = connector.system_color end end else end end end function rotate(design::ODESystemDesign) for sub_design in [design.components; design.connectors] if sub_design.color[] == :pink sub_design.wall[] = next_wall(get_wall(sub_design)) end end end function align(design::ODESystemDesign, type) xs = Float64[] ys = Float64[] for sub_design in [design.components; design.connectors] if sub_design.color[] == :pink x, y = sub_design.xy[] push!(xs, x) push!(ys, y) end end ym = sum(ys) / length(ys) xm = sum(xs) / length(xs) for sub_design in [design.components; design.connectors] if sub_design.color[] == :pink x, y = sub_design.xy[] if type == :horrizontal sub_design.xy[] = (x, ym) elseif type == :vertical sub_design.xy[] = (xm, y) end end end end function clear_selection(design::ODESystemDesign) for component in design.components for connector in component.connectors connector.color[] = connector.system_color end component.color[] = :black end for connector in design.connectors connector.color[] = connector.system_color end end function connect!(ax::Axis, design::ODESystemDesign) all_connectors = vcat([s.connectors for s in design.components]...) push!(all_connectors, design.connectors...) selected_connectors = ODESystemDesign[] for connector in all_connectors if connector.color[] == :pink push!(selected_connectors, connector) connector.color[] = connector.system_color end end if length(selected_connectors) > 1 connect!(ax, (selected_connectors[1], selected_connectors[2])) push!(design.connections, (selected_connectors[1], selected_connectors[2])) end end function connect!(ax::Axis, connection::Tuple{ODESystemDesign,ODESystemDesign}) xs = Observable(Float64[]) ys = Observable(Float64[]) update = () -> begin empty!(xs[]) empty!(ys[]) for connector in connection push!(xs[], connector.xy[][1]) push!(ys[], connector.xy[][2]) end notify(xs) notify(ys) end style = :solid for connector in connection s = get_style(connector) if s != :solid style = s end on(connector.xy) do val update() end end update() lines!(ax, xs, ys; color = connection[1].color[], linestyle = style) end get_text_alignment(wall::Symbol) = get_text_alignment(Val(wall)) get_text_alignment(::Val{:E}) = (:left, :top) get_text_alignment(::Val{:W}) = (:right, :top) get_text_alignment(::Val{:S}) = (:left, :top) get_text_alignment(::Val{:N}) = (:left, :bottom) get_color(design::ODESystemDesign) = get_color(design.system) function get_color(system::ODESystem) if !isnothing(system.gui_metadata) domain = string(system.gui_metadata.type) # domain_parts = split(full_domain, '.') # domain = join(domain_parts[1:end-1], '.') map = filtersingle( x -> (x.domain == domain) & (typeof(x) == DesignColorMap), design_colors, ) if !isnothing(map) return map.color end end return :black end get_style(design::ODESystemDesign) = get_style(design.system) function get_style(system::ODESystem) sts = ModelingToolkit.get_unknowns(system) if length(sts) == 1 s = first(sts) vtype = ModelingToolkit.get_connection_type(s) if vtype === ModelingToolkit.Flow return :dash end end return :solid end function draw_box!(ax::Axis, design::ODESystemDesign) xo = Observable(zeros(5)) yo = Observable(zeros(5)) points = Observable([(0., 0.), (1., 0.), (1., 1.), (0., 1.)]) Δh_, linewidth = if ModelingToolkit.isconnector(design.system) 0.6 * Δh, 2 else Δh, 1 end on(design.xy) do val x = val[1] y = val[2] xo[], yo[] = box(x, y, Δh_) new_points = Tuple{Float64, Float64}[] for i=1:4 push!(new_points, (xo[][i], yo[][i])) end points[] = new_points end poly!(ax, points, color=:white) lines!(ax, xo, yo; color = design.color, linewidth) if !isempty(design.components) xo2 = Observable(zeros(5)) yo2 = Observable(zeros(5)) on(design.xy) do val x = val[1] y = val[2] xo2[], yo2[] = box(x, y, Δh_ * 1.1) end lines!(ax, xo2, yo2; color = design.color, linewidth) end end function draw_passthru!(ax::Axis, design::ODESystemDesign) xo = Observable(0.0) yo = Observable(0.0) on(design.xy) do val x = val[1] y = val[2] xo[] = x yo[] = y end scatter!(ax, xo, yo; color = first(design.connectors).system_color, marker = :circle) for connector in design.connectors cxo = Observable(zeros(2)) cyo = Observable(zeros(2)) function update() cxo[] = [connector.xy[][1], design.xy[][1]] cyo[] = [connector.xy[][2], design.xy[][2]] end on(connector.xy) do val update() end on(design.xy) do val update() end lines!(ax, cxo, cyo; color = connector.system_color) end end function draw_icon!(ax::Axis, design::ODESystemDesign) xo = Observable((0.0,0.0)) yo = Observable((0.0,0.0)) scale = if ModelingToolkit.isconnector(design.system) 0.5 * 0.8 else 0.8 end on(design.xy) do val x = val[1] y = val[2] xo[] = (x - Δh * scale, x + Δh * scale) yo[] = (y - Δh * scale, y + Δh * scale) end if !isnothing(design.icon) imgd = Observable(load(design.icon)) update() = begin img = load(design.icon) w = get_wall(design) imgd[] = if w == :E rotr90(img) elseif w == :S rotr90(rotr90(img)) elseif w == :W rotr90(rotr90(rotr90(img))) elseif w == :N img end end update() on(design.wall) do val update() end image!(ax, xo, yo, imgd) end end function draw_label!(ax::Axis, design::ODESystemDesign) xo = Observable(0.0) yo = Observable(0.0) scale = if ModelingToolkit.isconnector(design.system) 1 + 0.75 * 0.5 else 0.925 end on(design.xy) do val x = val[1] y = val[2] xo[] = x yo[] = y - Δh * scale end text!(ax, xo, yo; text = string(design.system.name), align = (:center, :bottom)) end function draw_nodes!(ax::Axis, design::ODESystemDesign) xo = Observable(0.0) yo = Observable(0.0) on(design.xy) do val x = val[1] y = val[2] xo[] = x yo[] = y end update = (connector) -> begin connectors_on_wall = filter(x -> get_wall(x) == get_wall(connector), design.connectors) n_items = length(connectors_on_wall) delta = 2 * Δh / (n_items + 1) sort!(connectors_on_wall, by=x->x.wall[]) for i = 1:n_items x, y = get_node_position(get_wall(connector), delta, i) connectors_on_wall[i].xy[] = (x + xo[], y + yo[]) end end for connector in design.connectors on(connector.wall) do val update(connector) end on(design.xy) do val update(connector) end draw_node!(ax, connector) draw_node_label!(ax, connector) end end function draw_node!(ax::Axis, connector::ODESystemDesign) xo = Observable(0.0) yo = Observable(0.0) on(connector.xy) do val x = val[1] y = val[2] xo[] = x yo[] = y end scatter!(ax, xo, yo; marker = :rect, color = connector.color, markersize = 15) end function draw_node_label!(ax::Axis, connector::ODESystemDesign) xo = Observable(0.0) yo = Observable(0.0) alignment = Observable((:left, :top)) on(connector.xy) do val x = val[1] y = val[2] xt, yt = get_node_label_position(get_wall(connector), x, y) xo[] = xt yo[] = yt alignment[] = get_text_alignment(get_wall(connector)) end scene = GLMakie.Makie.parent_scene(ax) current_font_size = theme(scene, :fontsize) text!( ax, xo, yo; text = string(connector.system.name), color = connector.color, align = alignment, fontsize = current_font_size[] * 0.625, ) end get_wall(design::ODESystemDesign) = Symbol(string(design.wall[])[1]) function get_wall_order(design::ODESystemDesign) wall = string(design.wall[]) if length(wall) > 1 order = tryparse(Int, wall[2:end]) if isnothing(order) order = 1 end return order else return 0 end end get_node_position(w::Symbol, delta, i) = get_node_position(Val(w), delta, i) get_node_label_position(w::Symbol, x, y) = get_node_label_position(Val(w), x, y) get_node_position(::Val{:N}, delta, i) = (delta * i - Δh, +Δh) get_node_label_position(::Val{:N}, x, y) = (x + Δh / 10, y + Δh / 5) get_node_position(::Val{:S}, delta, i) = (delta * i - Δh, -Δh) get_node_label_position(::Val{:S}, x, y) = (x + Δh / 10, y - Δh / 5) get_node_position(::Val{:E}, delta, i) = (+Δh, delta * i - Δh) get_node_label_position(::Val{:E}, x, y) = (x + Δh / 5, y) get_node_position(::Val{:W}, delta, i) = (-Δh, delta * i - Δh) get_node_label_position(::Val{:W}, x, y) = (x - Δh / 5, y) function add_component!(ax::Axis, design::ODESystemDesign) draw_box!(ax, design) draw_nodes!(ax, design) if is_pass_thru(design) draw_passthru!(ax, design) else draw_icon!(ax, design) draw_label!(ax, design) end end # box(model::ODESystemDesign, Δh = 0.05) = box(model.xy[][1], model.xy[],[2] Δh) function box(x, y, Δh = 0.05) xs = [x + Δh, x - Δh, x - Δh, x + Δh, x + Δh] ys = [y + Δh, y + Δh, y - Δh, y - Δh, y + Δh] return xs, ys end # function get_design_code(design::ODESystemDesign) # println("[") # for child_design in design.systems # println("\t$(design.system.name).$(child_design.system.name) => (x=$(round(child_design.xy[][1]; digits=2)), y=$(round(child_design.xy[][2]; digits=2)))") # for node in child_design.connectors # if node.wall[] != :E # println("\t$(design.system.name).$(child_design.system.name).$(node.system.name) => (wall=:$(node.wall[]),)") # end # end # end # println() # for node in design.connectors # println("\t$(design.system.name).$(node.system.name) => (x=$(round(node.xy[][1]; digits=2)), y=$(round(node.xy[][2]; digits=2)))") # end # println("]") # end function connection_part(design::ODESystemDesign, connection::ODESystemDesign) if connection.parent == design.system.name return "$(connection.system.name)" else return "$(connection.parent).$(connection.system.name)" end end connection_code(design::ODESystemDesign) = connection_code(stdout, design) function connection_code(io::IO, design::ODESystemDesign) for connection in design.connections println( io, "connect($(connection_part(design, connection[1])), $(connection_part(design, connection[2])))", ) end end safe_connector_name(name::Symbol) = Symbol("_$name") function save_design(design::ODESystemDesign) design_dict = Dict() for component in design.components x, y = component.xy[] pairs = Pair{Symbol,Any}[ :x => round(x; digits = 2) :y => round(y; digits = 2) ] if component.wall[] != :E push!(pairs, :r => string(component.wall[]) ) end for connector in component.connectors if connector.wall[] != :E #don't use get_wall() here, need to preserve E1, E2, etc push!(pairs, safe_connector_name(connector.system.name) => string(connector.wall[])) end end design_dict[component.system.name] = Dict(pairs) end for connector in design.connectors x, y = connector.xy[] pairs = Pair{Symbol,Any}[ :x => round(x; digits = 2) :y => round(y; digits = 2) ] design_dict[connector.system.name] = Dict(pairs) end save_design(design_dict, design.file) connection_file = replace(design.file, ".toml" => ".jl") open(connection_file, "w") do io connection_code(io, design) end end function save_design(design_dict::Dict, file::String) open(file, "w") do io TOML.print(io, design_dict; sorted = true) do val if val isa Symbol return string(val) end end end end # macro input(file) # s = if isfile(file) # read(file, String) # else # "" # end # e = Meta.parse(s) # esc(e) # end export ODESystemDesign, DesignColorMap, connection_code, add_color end # module ModelingToolkitDesigner
ModelingToolkitDesigner
https://github.com/bradcarman/ModelingToolkitDesigner.jl.git
[ "MIT" ]
1.3.0
91d51d3b38c103a0e0820f2e4419812efdd7e7e5
code
2129
using ModelingToolkitDesigner using ModelingToolkit, Test import ModelingToolkitStandardLibrary.Hydraulic.IsothermalCompressible as IC import ModelingToolkitStandardLibrary.Blocks as B import ModelingToolkitStandardLibrary.Mechanical.Translational as T using ModelingToolkitDesigner: ODESystemDesign, DesignColorMap, DesignMap @parameters t D = Differential(t) @component function system(N; name) pars = [] systems = @named begin fluid = IC.HydraulicFluid() stp = B.Step(; height = 10e5, offset = 0, start_time = 0.005, duration = Inf, smooth = 0, ) src = IC.Pressure(; p_int = 0) vol = IC.FixedVolume(; p_int = 0, vol = 10.0) res = IC.Tube(N; p_int = 0, area = 0.01, length = 500.0) end eqs = Equation[ connect(stp.output, src.p) connect(src.port, res.port_a) connect(vol.port, res.port_b) connect(src.port, fluid) ] ODESystem(eqs, t, [], pars; name, systems) end @named sys = system(5) @test ModelingToolkitDesigner.get_color(sys.vol.port) == :blue @test ModelingToolkitDesigner.get_color(sys.vol) == :black path = joinpath(@__DIR__, "designs"); fixed_volume_icon_ans = raw"icons\ModelingToolkitStandardLibrary\Hydraulic\IsothermalCompressible\FixedVolume.png" fixed_volume_icon_ans = abspath(fixed_volume_icon_ans) fixed_volume_icon_ans = normpath(fixed_volume_icon_ans) fixed_volume_icon_ans = lowercase(fixed_volume_icon_ans) fixed_volume_icon = ModelingToolkitDesigner.find_icon(sys.vol, path) fixed_volume_icon = abspath(fixed_volume_icon) fixed_volume_icon = normpath(fixed_volume_icon) fixed_volume_icon = lowercase(fixed_volume_icon) #TODO: How can I make this work? normpath is not doing what I think it should # @test fixed_volume_icon == fixed_volume_icon_ans design = ODESystemDesign(sys, path); @test design.components[2].xy[] == (0.58, 0.0) @test lowercase(abspath(design.components[3].icon)) == fixed_volume_icon @test_nowarn ModelingToolkitDesigner.view(design) @test_nowarn ModelingToolkitDesigner.view(design, false)
ModelingToolkitDesigner
https://github.com/bradcarman/ModelingToolkitDesigner.jl.git
[ "MIT" ]
1.3.0
91d51d3b38c103a0e0820f2e4419812efdd7e7e5
code
116
connect(stp.output, src.input) connect(src.port, res.port_a) connect(vol.port, res.port_b) connect(src.port, fluid)
ModelingToolkitDesigner
https://github.com/bradcarman/ModelingToolkitDesigner.jl.git
[ "MIT" ]
1.3.0
91d51d3b38c103a0e0820f2e4419812efdd7e7e5
docs
8176
# ModelingToolkitDesigner.jl The ModelingToolkitDesigner.jl package is a helper tool for visualizing and editing ModelingToolkit.jl system connections. # Updates ## v1.3 - updating to ModelingToolkit v9 ## v1.1.0 - easier component selection (one only needs to click inside the boarder box) ## v1.0.0 - added icon rotation feature ![rotation](https://github.com/bradcarman/ModelingToolkitDesigner.jl/assets/40798837/8c904030-5d4c-4ba8-a105-f0b098ae842a) - added keyboard commands - m: after selecting a component, use the `m` key to turn dragging on. This can be easier then clicking and dragging. - c: connect - r: rotate ## v0.3.0 - Connector nodes are now correctly positioned around the component with natural ordering ![moving](https://user-images.githubusercontent.com/40798837/242108325-0736b264-5374-4b63-8823-589c0e447de7.gif) ## v0.2.0 - Settings Files (*.toml) Updates/Breaking Changes - icon rotation now saved with key `r`, previously was `wall` which was not the best name - connectors nodes now saved with an underscore: `_name`, this helps prevent a collision with nodes named `x`, `y`, or `r` ## Examples Examples can be found in the "examples" folder. ### Hydraulic Example ![example2](examples/hydraulic.svg) ### Electrical Example ![example2](examples/electrical.svg) ### Mechanical Example ![example3](examples/mechanical.svg) # Tutorial Let's start with a simple hydraulic system with no connections defined yet... ```julia using ModelingToolkit using ModelingToolkitDesigner using GLMakie import ModelingToolkitStandardLibrary.Hydraulic.IsothermalCompressible as IC import ModelingToolkitStandardLibrary.Blocks as B @parameters t @component function system(; name) pars = [] systems = @named begin stp = B.Step(;height = 10e5, start_time = 0.005) src = IC.InputSource(;p_int=0) vol = IC.FixedVolume(;p_int=0, vol=10.0) res = IC.Pipe(5; p_int=0, area=0.01, length=500.0) end eqs = Equation[] ODESystem(eqs, t, [], pars; name, systems) end @named sys = system() ``` Then we can visualize the system using `ODESystemDesign()` and the `view()` functions ```julia path = joinpath(@__DIR__, "design") # folder where visualization info is saved and retrieved design = ODESystemDesign(sys, path); ModelingToolkitDesigner.view(design) ``` ![step 1](https://user-images.githubusercontent.com/40798837/228621071-2044a422-5a5a-4a3b-89fe-7e4d297f9438.png) Components can then be positioned in several ways: - keyboard: select component and then use up, down, left, right keys - mouse: click and drag (or click and then `m` key) - alignment: select and align horrizontal or vertial with respective buttons ![step2-3](https://user-images.githubusercontent.com/40798837/228626821-9e405ec3-e89b-4f30-bfff-ceb761ea6e2f.png) Nodes/Connectors can be positioned by selecting with the mouse and using the __move node__ button. *Note: Components and Nodes can be de-selected by right clicking anywhere or using the button* __clear selection__ ![step4-5](https://user-images.githubusercontent.com/40798837/228626824-06f4d432-ea93-408d-ad1a-ddaa6ddc14e6.png) Connections can then be made by clicking 2 nodes and using the __connect__ button or the `c` key. One can then click the __save__ button which will store the visualization information in the `path` location in a `.toml` format as well as the connection code in `.jl` format. ![step6-7](https://user-images.githubusercontent.com/40798837/228640663-e263a561-6549-415b-a8ff-b74e78c4bdb9.png) The connection code can also be obtained with the `connection_code()` function ```julia julia> connection_code(design) connect(stp.output, src.input) connect(src.port, res.port_a) connect(vol.port, res.port_b) ``` After the original `system()` component function is updated with the connection equations, the connections will be re-drawn automatically when using `ModelingToolkitDesigner.view()`. *Note: CairoMakie vector based images can also be generated by passing `false` to the 2nd argument of `view()` (i.e. the `interactive` variable).* # Hierarchy If a component has a double lined box then it is possible to "look under the hood". Simply select the component and click __open__. ![step8-9](https://user-images.githubusercontent.com/40798837/228666972-14ea5032-52c6-4447-a97b-383356fbcbcf.png) Edits made to sub-components can be saved and loaded directly or indirectly. # Pass Thrus To generate more esthetic diagrams, one can use as special kind of component called a `PassThru`, which simply defines 2 or more connected `connectors` to serve as a corner, tee, or any other junction. Simply define a component function starting with `PassThru` and ModelingToolkitDesigner.jl will recognize it as a special component type. For example for a corner with 2 connection points: ```julia @component function PassThru2(;name) @variables t systems = @named begin p1 = Pin() p2 = Pin() end eqs = [ connect(p1, p2) ] return ODESystem(eqs, t, [], []; name, systems) end ``` And for a tee with 3 connection points ```julia @component function PassThru3(;name) @variables t systems = @named begin p1 = Pin() p2 = Pin() p3 = Pin() end eqs = [ connect(p1, p2, p3) ] return ODESystem(eqs, t, [], []; name, systems) end ``` Adding these components to your system will then allow for corners, tees, etc. to be created. When editing is complete, use the toggle switch to hide the `PassThru` details, showing a more esthetic connection diagram. ![step10-11](https://user-images.githubusercontent.com/40798837/229201536-4444a037-18b3-4efd-bc93-d2c182abf533.png) # Icons ModelingToolkitDesigner.jl comes with icons for the ModelingToolkitStandardLibrary.jl pre-loaded. For custom components, icons are loaded from either the `path` variable supplied to `ODESystemDesign()` or from an `icons` folder of the package namespace. To find the paths ModelingToolkitDesign.jl is searching, run the following on the component of interest (for example `sys.vol`) ```julia julia> println.(ModelingToolkitDesigner.get_icons(sys.vol, path)); ...\ModelingToolkitDesigner.jl\examples\design\ModelingToolkitStandardLibrary\Hydraulic\IsothermalCompressible\FixedVolume.png ...\ModelingToolkitStandardLibrary.jl\icons\ModelingToolkitStandardLibrary\Hydraulic\IsothermalCompressible\FixedVolume.png ...\ModelingToolkitDesigner.jl\icons\ModelingToolkitStandardLibrary\Hydraulic\IsothermalCompressible\FixedVolume.png ``` The first file location comes from the `path` variable. The second is looking for a folder `icons` in the component parent package, in this case `ModelingToolkitStandardLibrary`, and the third path is from the `icons` folder of this `ModelingToolkitDesigner` package. The first real file is the chosen icon load path. Feel free to contribute icons here for any other public component libraries. ## Icon Rotation Rotate an icon using the button or key `r`. The icon rotation is controlled by the `r` atribute in the saved `.toml` design file. The default direction is "E" for east. The image direciton can change to any "N","S","E","W". For example, to rotate the capacitor icon by -90 degrees (i.e. from "E" to "N") simply edit the design file as ``` [capacitor] _n = "S" x = 0.51 y = 0.29 r = "N" ``` # Colors ModelingToolkitDesigner.jl colors the connections based on `ModelingToolkitDesigner.design_colors`. Colors for the ModelingToolkitStandardLibrary.jl are already loaded. To add a custom connector color, simply use `add_color(system::ODESystem, color::Symbol)` where `system` is a reference to the connector (e.g. `sys.vol.port`) and `color` is a named color from [Colors.jl](https://juliagraphics.github.io/Colors.jl/stable/namedcolors/). # TODO - Finish adding icons for the ModelingToolkitStandardLibrary.jl - Improve text positioning and fontsize - How to include connection equations automatically, maybe implement the `input` macro - Provide `PassThru`'s without requiring user to add `PassThru` components to ODESystem - Add documentation
ModelingToolkitDesigner
https://github.com/bradcarman/ModelingToolkitDesigner.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
852
using SoapySDR using Documenter DocMeta.setdocmeta!(SoapySDR, :DocTestSetup, :(using SoapySDR); recursive = true) makedocs(; modules = [SoapySDR], authors = "JuliaTelecom and contributors", repo = "https://github.com/JuliaTelecom/SoapySDR.jl/blob/{commit}{path}#{line}", sitename = "SoapySDR.jl", format = Documenter.HTML(; prettyurls = get(ENV, "CI", "false") == "true", canonical = "https://JuliaTelecom.github.io/SoapySDR.jl", assets = String[], ), pages = [ "Home" => "index.md", "Tutorial" => "tutorial.md", "Loading Drivers" => "drivers.md", "High Level API" => "highlevel.md", "Low Level API" => "lowlevel.md", "Troubleshooting" => "troubleshooting.md", ], ) deploydocs(; repo = "github.com/JuliaTelecom/SoapySDR.jl", devbranch = "main")
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
2029
# This script shows how to use the direct buffer access API with the RTLSDR # and validate acess using its internal testmode using SoapySDR using SoapyRTLSDR_jll SoapySDR.versioninfo() function dma_test() # open the first device devs = Devices() dev_args = devs[1] dev = Device(dev_args) # get the RX channel chan = dev.rx[1] # enable the test pattern so we can validate the type conversions SoapySDR.SoapySDRDevice_writeSetting(dev, "testmode", "true") native_format = chan.native_stream_format # open RX stream stream = SDRStream(native_format, [chan]) for rate in SoapySDR.list_sample_rates(chan) println("Testing sample rate:", rate) chan.sample_rate = rate SoapySDR.activate!(stream) # acquire buffers using the low-level API buffs = Ptr{native_format}[C_NULL] bytes = 0 total_bytes = 0 timeout_count = 0 overflow_count = 0 buf_ct = stream.num_direct_access_buffers println("Receiving data") time = @elapsed for i = 1:buf_ct*3 # cycle through all buffers three times err, handle, flags, timeNs = SoapySDR.SoapySDRDevice_acquireReadBuffer(dev, stream, buffs, 1000000) if err == SOAPY_SDR_TIMEOUT timeout_count += 1 elseif err == SOAPY_SDR_OVERFLOW overflow_count += 1 end arr = unsafe_wrap(Array{native_format}, buffs[1], stream.mtu) # check the count for j in eachindex(arr) @assert imag(arr[j]) - real(arr[j]) == 1 end SoapySDR.SoapySDRDevice_releaseReadBuffer(dev, stream, handle) total_bytes += stream.mtu * sizeof(native_format) end println("Data rate: $(Base.format_bytes(total_bytes / time))/s") println("Timeout count:", timeout_count) println("Overflow count:", overflow_count) SoapySDR.deactivate!(stream) end end dma_test()
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
2639
using FFTW using PyPlot using DSP using WAV function downsample(data, M) order = 35 # filter order d = 0.01 # transition band coeffs = remez(order, [0, 1 / (M * 2) - d, 1 / (M * 2) + d, 0.5], [1, 0]) return (decimate(filt(coeffs, [1], data), M), coeffs, [1]) end function decimate(data, M) return data[1:M:end] end function discriminator(data, M) # Limiter data = data ./ abs.(data) # differentiator (data2, b2, a2) = differentiator(data, M) # complex conj delay (ds, b, a) = delay((conj.(data2)), (M - 1) / 2.0, 80) data_mod = ds .* data2 return (imag.(data_mod), b, a, b2, a2) end function differentiator(data, M) b = remez(M, [0, 0.5], [1.0], filter_type = RemezFilterType(2)) return (filt(b, [1], data), b, [1]) end function delay(data, D, o) a = 0.1 b = [sin.(a * (n - D)) / (a * (n - D)) + 0im for n = 0:o-1] c = filt(b, a, data) return (c, b, [1]) end function deemphasis(data, t, f) T = 1 / f al = 1 / tan(T / (2 * t)) b = [1, 1] a = [1 + al, 1 - al] return (filt(b, a, data), b, a) end function lowPassFilter(data, f, pb, sb) fp = pb / f ft = sb / f order = 35 coeffs = remez(order, [0, fp, ft, 0.5], [1, 0]) return (filt(coeffs, [1], data), coeffs, [1]) end function plotTimeFreq(storeFft, fs, f0) w, h = figaspect(0.33) figure(figsize = [w, h]) minF = (f0 - fs / 2) ./ 1e6 maxF = (f0 + fs / 2) ./ 1e6 maxT = 1 / fs * size(storeFft)[1] * size(storeFft)[2] imshow(storeFft, extent = [minF, maxF, 0, maxT], aspect = "auto") xlabel("Frequnecy (MHz)") ylabel("Time (s)") cb = colorbar() cb[:set_label]("Magnitude (dB)") end function plotTime(data, fs) w, h = figaspect(0.33) figure(figsize = [w, h]) maxT = 1 / fs * size(data)[1] t = range(0, maxT, length = size(data)[1]) plot(t, data, linewidth = 0.1) xlim([0, maxT]) xlabel("Time (s)") ylabel("Amplitude") end function plotIq(data) figure() scatter(real.(data), imag.(data), s = 10) xlabel("In-phase") ylabel("Quadrature") title("IQ data") end function fmDemod(data, fs) # downsample fs2 = 256e3 M = Int(fs / fs2) (data3, b3, a3) = downsample(data, M) (data4, b4, a4, b42, a42) = discriminator(data3, 10) t = 75e-6 (data5, b5, a5) = deemphasis(data4, t, fs2) (data6, b6, a6) = lowPassFilter(data5, fs2, 15e3, 18e3) fs3 = 64e3 M = Int(fs2 / fs3) (data7, b7, a7) = downsample(data6, M) maxval = abs(data7[argmax(abs.(data7))]) data8 = data7 ./ maxval return (data8, fs3) return (data7, fs3) end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
4805
using Printf using FFTW using PyPlot using DSP using SoapySDR # Don't forget to add/import a device-specific plugin package! # using xtrx_jll # using SoapyLMS7_jll # using SoapyRTLSDR_jll # using SoapyPlutoSDR_jll # using SoapyUHD_jll include("fmDemod.jl") # enumerate devices (kwargs, sz) = SoapySDR.SoapySDRDevice_enumerate() t = unsafe_load(kwargs) for i = 1:Int(sz[]) @printf "\nnumber of results in device = %i\n" t.size @printf "Found device #%d: " i keys = unsafe_string.(unsafe_wrap(Array, t.keys, t.size)) vals = unsafe_string.(unsafe_wrap(Array, t.vals, t.size)) for j = 1:t.size @printf "%s=%s, " keys[j] vals[j] end @printf "\n" end @printf "\nnumber of devices = %i\n" Int(sz[]) SoapySDR.SoapySDRKwargs_clear(kwargs) # create device instance # args can be user defined or from the enumeration result sdr = SoapySDR.SoapySDRDevice_make(kwargs) if (unsafe_load(sdr) == C_NULL) @printf "SoapySDRDevice_make fail: %s\n" unsafe_string( SoapySDR.SoapySDRDevice_lastError(), ) end # query device info (name, sz) = SoapySDR.SoapySDRDevice_listAntennas(sdr, SoapySDR.SOAPY_SDR_RX, 0) @printf "Rx antennas: " for i = 1:Int(sz[]) @printf "%s, " unsafe_string.(unsafe_wrap(Array, name, Int(sz[])))[i] end @printf "\n" (name2, sz2) = SoapySDR.SoapySDRDevice_listGains(sdr, SoapySDR.SOAPY_SDR_RX, 0) @printf "Rx gains: " for i = 1:Int(sz[]) @printf "%s, " unsafe_string.(unsafe_wrap(Array, name2, Int(sz2[])))[i] end @printf "\n" (ranges, sz) = SoapySDR.SoapySDRDevice_getFrequencyRange(sdr, SoapySDR.SOAPY_SDR_RX, 0) @printf "Rx freq ranges: " for i = 1:Int(sz[]) range = unsafe_wrap(Array, ranges, Int(sz[]))[i] @printf "[%g Hz -> %g Hz], " range.minimum range.maximum end @printf "\n" # apply settings #sampRate = 1024e3 sampRate = 2048e3 #sampRate = 512e3 if (SoapySDR.SoapySDRDevice_setSampleRate(sdr, SoapySDR.SOAPY_SDR_RX, 0, sampRate) != 0) @printf "setSampleRate fail: %s\n" unsafe_string(SoapySDR.SoapySDRDevice_lastError()) end #f0 = 103.3e6 f0 = 104.1e6 #f0 = 938.2e6 if (SoapySDR.SoapySDRDevice_setFrequency(sdr, SoapySDR.SOAPY_SDR_RX, 0, f0, C_NULL) != 0) @printf "setFrequency fail: %s\n" unsafe_string(SoapySDR.SoapySDRDevice_lastError()) end # set up a stream (complex floats) rxStream = SoapySDR.SoapySDRStream() if ( SoapySDR.SoapySDRDevice_setupStream( sdr, SoapySDR.SOAPY_SDR_RX, SoapySDR.SOAPY_SDR_CF32, C_NULL, 0, SoapySDR.KWArgs(), ) != 0 ) @printf "setupStream fail: %s\n" unsafe_string(SoapySDR.SoapySDRDevice_lastError()) end # start streaming SoapySDR.SoapySDRDevice_activateStream(sdr, pointer_from_objref(rxStream), 0, 0, 0) # create a re-usable buffer for rx samples buffsz = 1024 buff = Array{ComplexF32}(undef, buffsz) # receive some samples timeS = 15 timeSamp = Int(floor(timeS * sampRate / buffsz)) storeIq = zeros(ComplexF32, buffsz * timeSamp) flags = Ref{Cint}() timeNs = Ref{Clonglong}() buffs = [buff] #storeFft = zeros(timeSamp, buffsz) storeBuff = zeros(ComplexF32, timeSamp, buffsz) for i = 1:timeSamp nelem, flags, timeNs = SoapySDR.SoapySDRDevice_readStream( sdr, pointer_from_objref(rxStream), Ref(pointer(buff)), buffsz, 100000, ) local storeBuff[i, :] = buff end b = blackman(20) storeFft = zeros(timeSamp, buffsz) for i = 1:size(storeBuff)[1] local storeFft[i, :] = 20 .* log10.(abs.(fftshift(fft(storeBuff[i, :])))) end # get IQ array storeIq = Array(reshape(storeBuff', :, size(storeBuff)[1] * size(storeBuff)[2])')[:] # shutdown the stream SoapySDR.SoapySDRDevice_deactivateStream(sdr, pointer_from_objref(rxStream), 0, 0) # stop streaming SoapySDR.SoapySDRDevice_closeStream(sdr, pointer_from_objref(rxStream)) SoapySDR.SoapySDRDevice_unmake(sdr) function plotTimeFreq(storeFft, fs, f0) w, h = figaspect(0.5) figure(figsize = [w, h]) minF = (f0 - fs / 2) ./ 1e6 maxF = (f0 + fs / 2) ./ 1e6 maxT = 1 / fs * size(storeFft)[1] * size(storeFft)[2] imshow(storeFft, extent = [minF, maxF, 0, maxT], aspect = "auto") xlabel("Frequnecy (MHz)") ylabel("Time (s)") cb = colorbar() cb[:set_label]("Magnitude (dB)") end function plotTime(data, fs) w, h = figaspect(0.25) figure(figsize = [w, h]) maxT = 1 / fs * size(data)[1] t = range(0, maxT, length = size(data)[1]) plot(t, data, linewidth = 0.1) xlim([0, maxT]) xlabel("Time (s)") ylabel("Amplitude") end function plotIq(data) figure() scatter(real.(data), imag.(data), s = 10) xlabel("In-phase") ylabel("Quadrature") title("IQ data") end plotIq(storeIq[1:10000]) plotTimeFreq(storeFft, sampRate, f0) (data, fs) = fmDemod(storeIq, sampRate) plotTime(data, fs) wavwrite(data, "demod.wav", Fs = fs)
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
2315
using Printf using FFTW using PyPlot using DSP using SoapySDR using Unitful # Don't forget to add/import a device-specific plugin package! # using xtrx_jll # using SoapyLMS7_jll # using SoapyRTLSDR_jll # using SoapyPlutoSDR_jll # using SoapyUHD_jll include("fmDemod.jl") include("highlevel_dump_devices.jl") devs = Devices() sdr = Device(devs[1]) rx1 = sdr.rx[1] # setup AGC if available #rx1.gain_mode = true sampRate = 2.048e6 rx1.sample_rate = sampRate * u"Hz" f0 = 104.1e6 rx1.frequency = f0 * u"Hz" # set up a stream (complex floats) rxStream = SoapySDR.Stream(ComplexF32, [rx1]) # start streaming # create a re-usable buffer for rx samples buffsz = 1024 buff = Array{ComplexF32}(undef, buffsz) # receive some samples timeS = 15 timeSamp = Int(floor(timeS * sampRate / buffsz)) storeIq = zeros(ComplexF32, buffsz * timeSamp) #storeFft = zeros(timeSamp, buffsz) storeBuff = zeros(ComplexF32, timeSamp, buffsz) # Enable ther stream SoapySDR.activate!(rxStream) for i = 1:timeSamp read!(rxStream, [buff]) storeBuff[i, :] = buff end b = blackman(20) storeFft = zeros(timeSamp, buffsz) for i = 1:size(storeBuff)[1] local storeFft[i, :] = 20 .* log10.(abs.(fftshift(fft(storeBuff[i, :])))) end # get IQ array storeIq = Array(reshape(storeBuff', :, size(storeBuff)[1] * size(storeBuff)[2])')[:] function plotTimeFreq(storeFft, fs, f0) w, h = figaspect(0.5) figure(figsize = [w, h]) minF = (f0 - fs / 2) ./ 1e6 maxF = (f0 + fs / 2) ./ 1e6 maxT = 1 / fs * size(storeFft)[1] * size(storeFft)[2] imshow(storeFft, extent = [minF, maxF, 0, maxT], aspect = "auto") xlabel("Frequency (MHz)") ylabel("Time (s)") cb = colorbar() cb[:set_label]("Magnitude (dB)") end function plotTime(data, fs) w, h = figaspect(0.25) figure(figsize = [w, h]) maxT = 1 / fs * size(data)[1] t = range(0, maxT, length = size(data)[1]) plot(t, data, linewidth = 0.1) xlim([0, maxT]) xlabel("Time (s)") ylabel("Amplitude") end function plotIq(data) figure() scatter(real.(data), imag.(data), s = 10) xlabel("In-phase") ylabel("Quadrature") title("IQ data") end plotIq(storeIq[1:10000]) plotTimeFreq(storeFft, sampRate, f0) (data, fs) = fmDemod(storeIq, sampRate) plotTime(data, fs) wavwrite(data, "demod.wav", Fs = fs)
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
468
using SoapySDR # Don't forget to add/import a device-specific plugin package! # using xtrx_jll # using SoapyLMS7_jll # using SoapyRTLSDR_jll for (didx, dev) in enumerate(Devices()) @info("device", dev, idx = didx) dev = Device(dev) @info("TX channels:") for (idx, tx_channel) in enumerate(dev.tx) display(tx_channel) end @info("RX channels:") for (idx, rx_channel) in enumerate(dev.rx) display(rx_channel) end end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
2572
using SoapySDR # Don't forget to add/import a device-specific plugin package! # using xtrx_jll # using SoapyLMS7_jll # using SoapyRTLSDR_jll # using SoapyPlutoSDR_jll # using SoapyUHD_jll # Or we can load OS provided modules or custom modules # with the SOAPY_SDR_PLUGIN_PATH environment variable: # ENV["SOAPY_SDR_PLUGIN_PATH"]="/usr/lib/x86_64-linux-gnu/SoapySDR/modules0.8/" # Get the Devices devs = Devices() # we can add arguments to the device constructor or filter multiple devices: # devs[1]["refclk"] = "26000000" # devs = filter(x -> haskey(x, "driver") && x["driver"] == "plutosdr", devs) # Now open the first device and get the first RX and TX channel streams dev = Device(devs[1]) c_tx = dev.tx[1] c_rx = dev.rx[1] # Configure channel with appropriate parameters. We choose to sneak into # the very high end of the 2.4 GHz ISM band, above Wifi channel 14 (which # itself is well outside of the typical US equipment range, which only goes # up to channel 11, e.g. 2.473 GHz). c_tx.bandwidth = 2u"MHz" c_rx.bandwidth = 200u"kHz" c_tx.frequency = 2.498u"GHz" c_rx.frequency = 2.498u"GHz" c_tx.gain = 52u"dB" c_rx.gain = -2u"dB" c_tx.sample_rate = 1u"MHz" c_rx.sample_rate = 1u"MHz" # Write out a sinusoid oscillating at 100KHz, lasting 10ms t = (1:round(Int, 0.01 * 1e6)) ./ 1e6 data_tx = ComplexF32.(sin.(2π .* t .* 100e3), 0.0f0) data_tx_zeros = zeros(ComplexF32, length(data_tx)) # Open both RX and TX streams s_tx = SoapySDR.Stream(ComplexF32, [c_tx]) s_rx = SoapySDR.Stream(ComplexF32, [c_rx]) # Then, do the actual writing and reading! function loopback_test(s_tx, s_rx, num_buffers) # allocate some recieve buffers data_rx_buffs = Vector{ComplexF32}[] for _ = 1:num_buffers push!(data_rx_buffs, Vector(undef, length(data_tx))) end SoapySDR.activate!.((s_tx, s_rx)) # Read/write `num_buffers`, writing zeros out except for one buffer. for idx = 1:num_buffers if idx == ceil(num_buffers / 2) Base.write(s_tx, [data_tx]) else Base.write(s_tx, [data_tx_zeros]) end Base.read!(s_rx, [data_rx_buffs[idx]]) end SoapySDR.deactivate!.((s_tx, s_rx)) return data_rx_buffs end # This should take about 100ms, since we're rx/tx'ing 10x buffers which should each be 10ms long. loopback_test(s_tx, s_rx, 2) data_rx_buffs = loopback_test(s_tx, s_rx, 3) # Join all buffers together data_rx = vcat(data_rx_buffs...) # Should see a nice big spike of a sinusoid being transmitted in the middle using Plots; plotly(size = (750, 750)); plot(real.(data_rx));
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
3359
using Printf using FFTW using GLMakie using DSP using SoapySDR using Unitful using TimerOutputs using Observables # Don't forget to add/import a device-specific plugin package! # using xtrx_jll # using SoapyLMS7_jll using SoapyRTLSDR_jll # using SoapyPlutoSDR_jll # using SoapyUHD_jll include("highlevel_dump_devices.jl") get_time_ms() = trunc(Int, time() * 1000) function makie_fft(direct_buffer_access = true, timer_display = false) devs = Devices() sdr = Device(devs[1]) rx1 = sdr.rx[1] sampRate = 2.048e6 rx1.sample_rate = sampRate * u"Hz" # Enable automatic Gain Control rx1.gain_mode = true to = TimerOutput() f0 = 104.1e6 rx1.frequency = f0 * u"Hz" # set up a stream (complex floats) format = rx1.native_stream_format rxStream = SoapySDR.Stream(format, [rx1]) # create a re-usable buffer for rx samples buffsz = rxStream.mtu buff = Array{format}(undef, buffsz) buffs = Ptr{format}[C_NULL] # pointer for direct buffer API # receive some samples timeS = 10 timeSamp = Int(floor(timeS * sampRate / buffsz)) decimator_factor = 16 storeFft = Observable(zeros(timeSamp, div(buffsz, decimator_factor))) @info "initializing plot..." fig = heatmap(storeFft) display(fig) @info "planning fft..." fft_plan_a = plan_fft(buff) last_plot = get_time_ms() last_timeoutput = get_time_ms() # If there is timing slack, we can sleep a bit to run event handlers have_slack = true # Enable ther stream @info "streaming..." SoapySDR.activate!(rxStream) while true @timeit to "Reading stream" begin if !direct_buffer_access read!(rxStream, (buff,)) else err, handle, flags, timeNs = SoapySDR.SoapySDRDevice_acquireReadBuffer(sdr, rxStream, buffs, 0) if err == SoapySDR.SOAPY_SDR_TIMEOUT sleep(0.001) have_slack = true continue # we don't have any data available yet, so loop elseif err == SoapySDR.SOAPY_SDR_OVERFLOW have_slack = false err = buffsz # nothing to do, should be the MTU end @assert err > 0 buff = unsafe_wrap(Array{format}, buffs[1], (buffsz,)) SoapySDR.SoapySDRDevice_releaseReadBuffer(sdr, rxStream, handle) end end @timeit to "Copying FFT data" storeFft[][2:end, :] .= storeFft[][1:end-1, :] @timeit to "FFT" storeFft[][1, :] = 20 .* log10.(abs.(fftshift(fft_plan_a * buff)))[1:decimator_factor:end] @timeit to "Plotting" begin if have_slack && get_time_ms() - last_plot > 100 # 10 fps storeFft[] = storeFft[] last_plot = get_time_ms() end end if have_slack && timer_display @timeit to "Timer Display" begin if get_time_ms() - last_timeoutput > 3000 show(to) last_timeoutput = get_time_ms() end end end @timeit to "GC" begin have_slack && GC.gc(false) end have_slack && sleep(0.01) # give some time for Makie event handlers end end makie_fft()
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
925
using SoapySDR, SoapyRTLSDR_jll # Here we want to test the behavior in a loop, to ensure # that we can block on buffer overflow conditions, and # handle partial reads, measure latnecy, etc function rapid_read() dev = open(Devices()[1]) rx_chan = dev.rx rx_stream = SoapySDR.Stream(rx_chan) @show rx_stream.mtu SoapySDR.activate!(rx_stream) bufs = [Vector{SoapySDR.streamtype(rx_stream)}(undef, 1_000_000) for i = 1:2] flip = true while true # double buffer flip = !flip current_buff = bufs[Int(flip)+1] prev_buff = bufs[Int(!flip)+1] read!(rx_stream, [current_buff]) # sanity checks? #nequal = 0 #for i in eachindex(current_buff.bufs) # nequal += Int(current_buff.bufs[1][i] == prev_buff.bufs[1][i]) #end #@show current_buff.timens #@show nequal, current_buff.timens, delta_t end end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
1062
#! /usr/bin/env julia using soapysdr_jll using Clang.Generators include_dir = joinpath(soapysdr_jll.artifact_dir, "include") |> normpath clang_dir = joinpath(include_dir, "clang-c") options = load_options(joinpath(@__DIR__, "generator.toml")) @show options # add compiler flags, e.g. "-DXXXXXXXXX" args = get_default_args() push!(args, "-I$include_dir") @show args headers = [ joinpath(include_dir, "SoapySDR", header) for header in readdir(joinpath(include_dir, "SoapySDR")) if endswith(header, ".h") ] @show headers @show basename.(headers) # there is also an experimental `detect_headers` function for auto-detecting top-level headers in the directory # headers = detect_headers(clang_dir, args) filter!(s -> basename(s) ∉ ["Config.h"], headers) # Deivce is hand-wrapped and COnfig is not needed # A few macros that don't translate well, and not applicable options["general"]["output_ignorelist"] = ["SOAPY_SDR_API", "SOAPY_SDR_LOCAL"] # create context @show options ctx = create_context(headers, args, options) # run generator build!(ctx)
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
1221
""" `SoapySDR.Modules` provides a modules for loading SoapySDR modules via paths. This is an alternative to environmental variables and dlopen. """ module Modules using ..SoapySDR function get_root_path() ptr = SoapySDR.SoapySDR_getRootPath() ptr == C_NULL ? "" : unsafe_string(ptr) end function list_search_paths() len = Ref{Csize_t}() ptr = SoapySDR.SoapySDR_listSearchPaths(len) SoapySDR.StringList(ptr, len[]) end function list() len = Ref{Csize_t}() ptr = SoapySDR.SoapySDR_listModules(len) SoapySDR.StringList(ptr, len[]) end function list_in_path(path) len = Ref{Csize_t}() ptr = SoapySDR.SoapySDR_listModulesPath(path, len) SoapySDR.StringList(ptr, len[]) end function load_module(path) ptr = SoapySDR.SoapySDR_loadModule(path) ptr == C_NULL ? "" : unsafe_string(ptr) end function get_module_version(path) ptr = SoapySDR.SoapySDR_getModuleVersion(path) ptr == C_NULL ? "" : unsafe_string(ptr) end function unload_module(path) ptr = SoapySDR.SoapySDR_unloadModule(path) ptr == C_NULL ? "" : unsafe_string(ptr) end function load() SoapySDR.SoapySDR_loadModules() end function unload() SoapySDR.SoapySDR_unloadModules() end end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
909
module SoapySDR using soapysdr_jll const lib = soapysdr_jll.libsoapysdr const soapysdr = soapysdr_jll.libsoapysdr using CEnum using Intervals using Unitful using Unitful.DefaultSymbols const dB = u"dB" const GC = Base.GC export @u_str include("error.jl") include("lowlevel/auto_wrap.jl") include("unithelpers.jl") include("typemap.jl") include("typewrappers.jl") include("highlevel.jl") include("functionwraps.jl") include("logger.jl") include("version.jl") include("Modules.jl") const SDRStream = Stream export SDRStream, SOAPY_SDR_TX, SOAPY_SDR_RX, SOAPY_SDR_END_BURST, SOAPY_SDR_HAS_TIME, SOAPY_SDR_END_ABRUPT, SOAPY_SDR_ONE_PACKET, SOAPY_SDR_MORE_FRAGMENTS, SOAPY_SDR_WAIT_TRIGGER, SOAPY_SDR_TIMEOUT, SOAPY_SDR_STREAM_ERROR, SOAPY_SDR_CORRUPTION, SOAPY_SDR_OVERFLOW, SOAPY_SDR_NOT_SUPPORTED, SOAPY_SDR_TIME_ERROR, SOAPY_SDR_UNDERFLOW end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
733
""" error_to_string(error) Calls `SoapySDR_errToStr(error)`, returning the string. """ function error_to_string(error) ptr = SoapySDR_errToStr(error) ptr === C_NULL ? "" : unsafe_string(ptr) end struct SoapySDRDeviceError <: Exception status::Int msg::String end function get_SoapySDRDeviceError() return SoapySDRDeviceError( SoapySDRDevice_lastStatus(), unsafe_string(SoapySDRDevice_lastError()), ) end function with_error_check(f::Function) val = f() if SoapySDRDevice_lastStatus() != 0 throw(get_SoapySDRDeviceError()) end return val end macro soapy_checked(ex) return quote with_error_check() do $(esc(ex)) end end end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
6136
function SoapySDRDevice_listSensors(device) len = Ref{Csize_t}() args = SoapySDRDevice_listSensors(device, len) (args, len[]) end function SoapySDRDevice_getSettingInfo(device) len = Ref{Csize_t}() args = SoapySDRDevice_getSettingInfo(device, len) (args, len[]) end function SoapySDRDevice_listTimeSources(device) len = Ref{Csize_t}() args = SoapySDRDevice_listTimeSources(device, len) (args, len[]) end function SoapySDRDevice_listClockSources(device) len = Ref{Csize_t}() args = SoapySDRDevice_listClockSources(device, len) (args, len[]) end function SoapySDRDevice_listRegisterInterfaces(device) len = Ref{Csize_t}() args = SoapySDRDevice_listRegisterInterfaces(device, len) (args, len[]) end function SoapySDRDevice_listGPIOBanks(device) len = Ref{Csize_t}() args = SoapySDRDevice_listGPIOBanks(device, len) (args, len[]) end function SoapySDRDevice_listUARTs(device) len = Ref{Csize_t}() args = SoapySDRDevice_listUARTs(device, len) (args, len[]) end function SoapySDRDevice_listAntennas(device, direction, channel) len = Ref{Csize_t}() args = SoapySDRDevice_listAntennas(device, direction, channel, len) (args, len[]) end function SoapySDRDevice_getBandwidthRange(device, direction, channel) len = Ref{Csize_t}() args = SoapySDRDevice_getBandwidthRange(device, direction, channel, len) (args, len[]) end function SoapySDRDevice_getFrequencyRange(device, direction, channel) len = Ref{Csize_t}() args = SoapySDRDevice_getFrequencyRange(device, direction, channel, len) (args, len[]) end function SoapySDRDevice_listFrequencies(device, direction, channel) len = Ref{Csize_t}() args = SoapySDRDevice_listFrequencies(device, direction, channel, len) (args, len[]) end function SoapySDRDevice_getFrequencyRangeComponent(device, direction, channel, name) len = Ref{Csize_t}() args = SoapySDRDevice_getFrequencyRangeComponent(device, direction, channel, name, len) (args, len[]) end function SoapySDRDevice_listGains(device, direction, channel) len = Ref{Csize_t}() args = SoapySDRDevice_listGains(device, direction, channel, len) (args, len[]) end function SoapySDRDevice_getStreamFormats(device, direction, channel) len = Ref{Csize_t}() args = SoapySDRDevice_getStreamFormats(device, direction, channel, len) (args, len[]) end function SoapySDRDevice_getNativeStreamFormat(device, direction, channel) fullscale = Ref{Cdouble}() str = SoapySDRDevice_getNativeStreamFormat(device, direction, channel, fullscale) (str, fullscale[]) end function SoapySDRDevice_getSampleRateRange(device, direction, channel) len = Ref{Csize_t}() args = SoapySDRDevice_getSampleRateRange(device, direction, channel, len) (args, len[]) end function SoapySDRDevice_acquireReadBuffer(device::Device, stream, buffs, timeoutUs = 100000) #SOAPY_SDR_API int SoapySDRDevice_acquireReadBuffer(SoapySDRDevice *device, # SoapySDRStream *stream, # size_t *handle, # const void **buffs, # int *flags, # long long *timeNs, # const long timeoutUs); handle = Ref{Csize_t}() flags = Ref{Cint}(0) timeNs = Ref{Clonglong}(-1) if !isopen(stream) throw(InvalidStateException("stream is closed!", :closed)) end bytes = SoapySDRDevice_acquireReadBuffer( device, stream, handle, buffs, flags, timeNs, timeoutUs, ) bytes, handle[], flags[], timeNs[] end function SoapySDRDevice_acquireWriteBuffer( device::Device, stream, buffs, timeoutUs = 100000, ) #SOAPY_SDR_API int SoapySDRDevice_acquireWriteBuffer(SoapySDRDevice *device, # SoapySDRStream *stream, # size_t *handle, # void **buffs, # const long timeoutUs); handle = Ref{Csize_t}() if !isopen(stream) throw(InvalidStateException("stream is closed!", :closed)) end bytes = SoapySDRDevice_acquireWriteBuffer(device, stream, handle, buffs, timeoutUs) return bytes, handle[] end function SoapySDRDevice_releaseWriteBuffer( device::Device, stream, handle, numElems, flags = Ref{Cint}(0), timeNs = 0, ) #SOAPY_SDR_API void SoapySDRDevice_releaseWriteBuffer(SoapySDRDevice *device, # SoapySDRStream *stream, # const size_t handle, # const size_t numElems, # int *flags, # const long long timeNs); ccall( (:SoapySDRDevice_releaseWriteBuffer, lib), Cvoid, (Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Csize_t, Csize_t, Ref{Cint}, Clonglong), device, stream, handle, numElems, flags, timeNs, ) flags[] end function SoapySDRDevice_readStream(device::Device, stream, buffs, numElems, timeoutUs) if !isopen(stream) throw(InvalidStateException("stream is closed!", :closed)) end flags = Ref{Cint}() timeNs = Ref{Clonglong}() nelems = ccall( (:SoapySDRDevice_readStream, lib), Cint, ( Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Ptr{Cvoid}, Csize_t, Ptr{Cint}, Ptr{Clonglong}, Clong, ), device, stream, buffs, numElems, flags, timeNs, timeoutUs, ) nelems, flags[], timeNs[] end function SoapySDRDevice_writeStream( device::Device, stream, buffs, numElems, flags, timeNs, timeoutUs, ) if !isopen(stream) throw(InvalidStateException("stream is closed!", :closed)) end flags = Ref{Cint}(flags) nelems = ccall( (:SoapySDRDevice_writeStream, lib), Cint, ( Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Ptr{Cvoid}, Csize_t, Ptr{Cint}, Clonglong, Clong, ), device, stream, buffs, numElems, flags, timeNs, timeoutUs, ) nelems, flags[] end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
34835
# High level API exports export Devices, Device, dB, gainrange """ Devices() Device(args...) Enumerates all detectable SDR devices on the system. Indexing into the returned `Devices` object returns a list of keywords used to create a `Device` struct. Optionally pass in a list of keywords to filter the returned list. Example: ``` Devices(driver="rtlsdr") ``` """ struct Devices kwargslist::KWArgsList function Devices(args) len = Ref{Csize_t}() kwargs = SoapySDRDevice_enumerate(isnothing(args) ? C_NULL : args, len) kwargs = KWArgsList(kwargs, len[]) if isempty(kwargs) @warn "No devices available! Make sure a supported SDR module is included." end new(kwargs) end end Base.length(d::Devices) = length(d.kwargslist) function Devices(; kwargs...) Devices(KWArgs(kwargs)) end function Base.show(io::IO, d::Devices) if length(d) == 0 println(io, "No devices available! Make sure a supported SDR module is included.") end for (i, dev) in enumerate(d.kwargslist) print(io, "[$i] ") join(io, dev, ", ") println(io) end end Base.getindex(d::Devices, i::Integer) = d.kwargslist[i] Base.iterate(d::Devices, state = 1) = state > length(d) ? nothing : (d[state], state + 1) #################################################################################################### # Device #################################################################################################### """ Device A device is a collection of SDR channels, obtained from the `Devices()` list. Fields: - `info` - `driver` - `hardware` - `tx` - `rx` - `sensors` - `time_source` - `time_sources` - `clock_source` - `clock_sources` - `frontendmapping_rx` - `frontendmapping_tx` """ mutable struct Device ptr::Ptr{SoapySDRDevice} function Device(args::KWArgs) dev_ptr = SoapySDRDevice_make(args) if dev_ptr == C_NULL throw(ArgumentError("Unable to open device!")) end this = new(dev_ptr) finalizer(this) do this this.ptr != C_NULL && SoapySDRDevice_unmake(this.ptr) this.ptr = Ptr{SoapySDRDevice}(C_NULL) end return this end end function Device(f::Function, args::KWArgs) dev = Device(args) try f(dev) finally finalize(dev) end end Base.cconvert(::Type{<:Ptr{SoapySDRDevice}}, d::Device) = d Base.unsafe_convert(::Type{<:Ptr{SoapySDRDevice}}, d::Device) = d.ptr Base.isopen(d::Device) = d.ptr != C_NULL function Base.show(io::IO, d::Device) println(io, "SoapySDR ", d.hardware, " device") println(io, " driver: ", d.driver) println(io, " number of TX channels:", length(d.tx)) println(io, " number of RX channels:", length(d.rx)) println(io, " sensors: ", d.sensors) println(io, " time_source: ", d.time_source) println(io, " time_sources:", d.time_sources) println(io, " clock_source: ", d.clock_source) println(io, " clock_sources:", d.clock_sources) println(io, " frontendmapping_rx: ", d.frontendmapping_rx) println(io, " frontendmapping_tx: ", d.frontendmapping_tx) println(io, " uarts: ", d.uarts) println(io, " gpios: ", d.gpios) println(io, " registers: ", d.registers) print(io, " master_clock_rate: ") print_unit(io, d.master_clock_rate) end function Base.getproperty(d::Device, s::Symbol) if s === :info KWArgs(SoapySDRDevice_getHardwareInfo(d)) elseif s === :driver Symbol(unsafe_string(SoapySDRDevice_getDriverKey(d))) elseif s === :hardware Symbol(unsafe_string(SoapySDRDevice_getHardwareKey(d))) elseif s === :tx ChannelList(d, Tx) elseif s === :rx ChannelList(d, Rx) elseif s === :sensors ComponentList(SensorComponent, d) elseif s === :time_sources ComponentList(TimeSource, d) elseif s === :uarts ComponentList(UART, d) elseif s === :registers ComponentList(Register, d) elseif s === :gpios ComponentList(GPIO, d) elseif s === :time_source TimeSource(Symbol(unsafe_string(SoapySDRDevice_getTimeSource(d.ptr)))) elseif s === :clock_sources ComponentList(ClockSource, d) elseif s === :clock_source ClockSource(Symbol(unsafe_string(SoapySDRDevice_getClockSource(d.ptr)))) elseif s === :frontendmapping_tx unsafe_string(SoapySDRDevice_getFrontendMapping(d, Tx)) elseif s === :frontendmapping_rx unsafe_string(SoapySDRDevice_getFrontendMapping(d, Rx)) elseif s === :master_clock_rate SoapySDRDevice_getMasterClockRate(d.ptr) * u"Hz" else getfield(d, s) end end function Base.setproperty!(c::Device, s::Symbol, v) if s === :frontendmapping_tx SoapySDRDevice_setFrontendMapping(c.ptr, Tx, v) elseif s === :frontendmapping_rx SoapySDRDevice_setFrontendMapping(c.ptr, Rx, v) elseif s === :time_source SoapySDRDevice_setTimeSource(c.ptr, string(v)) elseif s === :clock_source SoapySDRDevice_setClockSource(c.ptr, string(v)) elseif s === :master_clock_rate SoapySDRDevice_setMasterClockRate(c.ptr, v) else return setfield!(c, s, v) end end function Base.propertynames(::Device) return ( :ptr, :info, :driver, :hardware, :tx, :rx, :sensors, :time_source, :timesources, :clock_source, :clock_source, :frontendmapping_rx, :frontendmapping_tx, :uarts, :registers, :gpios, :master_clock_rate, ) end #################################################################################################### # Channel #################################################################################################### """ Channel A channel on the given `Device`. Note!!: A Channel can be created from a `Device` or extracted from a `ChannelList`. It should rarely be necessary to create a Channel directly. Has the following properties: - `device::Device` - `Device` to which the `Channel` belongs - `direction` - either `Tx` or `Rx` - `idx` - channel index used by Soapy - `info` - channel info consiting of `KWArgs` - `antenna` - antenna name - `gain_mode` - Automatic Gain control, `true`, `false`, or `missing` - `gain_elements` - list of `GainElements` of the channel - `gain` - effective gain, distributed amongst the `GainElements` - `dc_offset_mode` - Automatic DC offset mode, `true`, `false` or `missing` - `dc_offset` - DC offset value - `iq_balance_mode` - Automatic IQ balance mode, `true`, `false` or `missing` - `iq_balance` - IQ balance value - `frequency_correction` - frequency correction value - `sample_rate` - sample rate - `bandwidth` - bandwidth - `frequency` - center frequency - `fullduplex` - full duplex mode with other (TX/RX) channels - `native_stream_format` - native stream format - `stream_formats` - supported stream formats (converted by Soapy) - `fullscale` - full scale value - `sensors` - sensor list ## Reading and writing to Components gains, antennas, and sensors may consist of a chain or selectable subcomponets. To set or read e.g. a sensors, one may use the following syntax: dev = Devices()[1] cr = dev.rx[1] # read a sensor value s1 = cr.sensors[1] cr[s1] # read and set the gain element g1 = cr.gain_elements[1] cr[g1] cr[g1] = 4*u"dB" # read and set the frequency component f1 = cr.frequency_components[1] cr[f1] cr[f1] = 2.498*u"GHz" """ struct Channel device::Device direction::Direction idx::Int end function Base.show(io::IO, c::Channel) println(io, " antenna: ", c.antenna) println(io, " antennas: ", c.antennas) print(io, " bandwidth [ ") join(io, map(x -> sprint(print_hz_range, x), bandwidth_ranges(c)), ", ") println(io, " ]: ", pick_freq_unit(c.bandwidth)) print(io, " frequency [ ") join(io, map(x -> sprint(print_hz_range, x), frequency_ranges(c)), ", ") println(io, " ]: ", pick_freq_unit(c.frequency)) for element in FrequencyComponentList(c) print(io, " ", element, " [ ") join(io, map(x -> sprint(print_hz_range, x), frequency_ranges(c, element)), ", ") println(io, " ]: ", pick_freq_unit(c[element])) end println(io, " gain_mode (AGC=true/false/missing): ", c.gain_mode) println(io, " gain: ", c.gain) println(io, " gain_elements:") for element in c.gain_elements println(io, " ", element, " [", gain_range(c, element), "]: ", c[element]) end println(io, " fullduplex: ", c.fullduplex) println(io, " stream_formats: ", c.stream_formats) println(io, " native_stream_format: ", c.native_stream_format) println(io, " fullscale: ", c.fullscale) println(io, " sensors: ", c.sensors) print(io, " sample_rate [ ") join(io, map(x -> sprint(print_hz_range, x), sample_rate_ranges(c)), ", ") println(io, " ]: ", pick_freq_unit(c.sample_rate)) println(io, " dc_offset_mode (true/false/missing): ", c.dc_offset_mode) println(io, " dc_offset: ", c.dc_offset) println(io, " iq_balance_mode (true/false/missing): ", c.iq_balance_mode) println(io, " iq_balance: ", c.iq_balance) fc = c.frequency_correction println(io, " frequency_correction: ", fc, ismissing(fc) ? "" : " ppm") end """ ChannelList A grouping of channels on the Device. Note: This should not be called directly, but rather through the Device.rx and Device.tx properties. """ struct ChannelList <: AbstractVector{Channel} device::Device direction::Direction end function Base.size(cl::ChannelList) (SoapySDRDevice_getNumChannels(cl.device, cl.direction),) end function Base.getindex(cl::ChannelList, i::Integer) checkbounds(cl, i) Channel(cl.device, cl.direction, i - 1) end function Base.getproperty(c::Channel, s::Symbol) if s === :info return KWArgs(SoapySDRDevice_getChannelInfo(c.device.ptr, c.direction, c.idx)) elseif s === :antenna ant = SoapySDRDevice_getAntenna(c.device.ptr, c.direction, c.idx) return Antenna(Symbol(ant == C_NULL ? "" : unsafe_string(ant))) elseif s === :antennas return AntennaList(c) elseif s === :gain return SoapySDRDevice_getGain(c.device.ptr, c.direction, c.idx) * dB elseif s === :gain_elements return GainElementList(c) elseif s === :dc_offset_mode if !SoapySDRDevice_hasDCOffsetMode(c.device.ptr, c.direction, c.idx) return missing end return SoapySDRDevice_getDCOffsetMode(c.device.ptr, c.direction, c.idx) elseif s === :dc_offset if !SoapySDRDevice_hasDCOffset(c.device.ptr, c.direction, c.idx) return missing end i = Ref{Cdouble}(0) q = Ref{Cdouble}(0) SoapySDRDevice_getDCOffset(c.device.ptr, c.direction, c.idx, i, q) return i[], q[] elseif s === :iq_balance_mode if !SoapySDRDevice_hasIQBalanceMode(c.device.ptr, c.direction, c.idx) return missing end return SoapySDRDevice_getIQBalanceMode(c.device.ptr, c.direction, c.idx) elseif s === :iq_balance if !SoapySDRDevice_hasIQBalance(c.device.ptr, c.direction, c.idx) return missing end i = Ref{Cdouble}(0) q = Ref{Cdouble}(0) SoapySDRDevice_getIQBalance(c.device.ptr, c.direction, c.idx, i, q) return Complex(i[], q[]) elseif s === :gain_mode if !SoapySDRDevice_hasGainMode(c.device.ptr, c.direction, c.idx) return missing end return SoapySDRDevice_getGainMode(c.device.ptr, c.direction, c.idx) elseif s === :frequency_correction if !SoapySDRDevice_hasFrequencyCorrection(c.device.ptr, c.direction, c.idx) return missing end # TODO: ppm unit? return SoapySDRDevice_getFrequencyCorrection(c.device.ptr, c.direction, c.idx) elseif s === :sample_rate return SoapySDRDevice_getSampleRate(c.device.ptr, c.direction, c.idx) * Hz elseif s === :sensors ComponentList(SensorComponent, c.device, c) elseif s === :bandwidth return SoapySDRDevice_getBandwidth(c.device.ptr, c.direction, c.idx) * Hz elseif s === :frequency return SoapySDRDevice_getFrequency(c.device.ptr, c.direction, c.idx) * Hz elseif s === :fullduplex return Bool(SoapySDRDevice_getFullDuplex(c.device.ptr, c.direction, c.idx)) elseif s === :stream_formats slist = StringList(SoapySDRDevice_getStreamFormats(c.device.ptr, c.direction, c.idx)...) return map(_stream_map_soapy2jl, slist) elseif s === :native_stream_format fmt, _ = SoapySDRDevice_getNativeStreamFormat(c.device.ptr, c.direction, c.idx) return _stream_map_soapy2jl(fmt == C_NULL ? "" : unsafe_string(fmt)) elseif s === :fullscale _, fullscale = SoapySDRDevice_getNativeStreamFormat(c.device.ptr, c.direction, c.idx) return fullscale elseif s === :frequency_components return FrequencyComponentList(c) else return getfield(c, s) end end function Base.propertynames(::SoapySDR.Channel) return ( :device, :direction, :idx, :info, :antenna, :antennas, :gain_elements, :gain, :dc_offset_mode, :dc_offset, :iq_balance_mode, :iq_balance, :gain_mode, :frequency_correction, :frequency_components, :sample_rate, :bandwidth, :frequency, :fullduplex, :native_stream_format, :stream_formats, :fullscale, :sensors, ) end function Base.setproperty!(c::Channel, s::Symbol, v) if s === :antenna if v isa Antenna SoapySDRDevice_setAntenna(c.device.ptr, c.direction, c.idx, v.name) elseif v isa Symbol || v isa String SoapySDRDevice_setAntenna(c.device.ptr, c.direction, c.idx, v) else throw(ArgumentError("antenna must be an Antenna or a Symbol")) end elseif s === :frequency if isa(v, Quantity) SoapySDRDevice_setFrequency( c.device.ptr, c.direction, c.idx, uconvert(u"Hz", v).val, C_NULL, ) elseif isa(v, FreqSpec) throw(ArgumentError("FreqSpec unsupported")) else throw( ArgumentError( "Frequency must be specified as either a Quantity or a FreqSpec!", ), ) end elseif s === :bandwidth SoapySDRDevice_setBandwidth( c.device.ptr, c.direction, c.idx, uconvert(u"Hz", v).val, ) elseif s === :gain_mode SoapySDRDevice_setGainMode(c.device.ptr, c.direction, c.idx, v) elseif s === :gain SoapySDRDevice_setGain(c.device.ptr, c.direction, c.idx, uconvert(u"dB", v).val) elseif s === :sample_rate SoapySDRDevice_setSampleRate( c.device.ptr, c.direction, c.idx, uconvert(u"Hz", v).val, ) elseif s === :dc_offset_mode SoapySDRDevice_setDCOffsetMode(c.device.ptr, c.direction, c.idx, v) elseif s === :iq_balance SoapySDRDevice_setIQBalance(c.device.ptr, c.direction, c.idx, real(v), imag(v)) else throw(ArgumentError("Channel has no property: $s")) end end #################################################################################################### # Components #################################################################################################### # Components is an internal mechaism to allow for dispatch and interface through the Julia API # For example there may be several GainElements we list in a Channel. A Julian idiom for this is # the set/getindex class of functions. abstract type AbstractComponent end Base.print(io::IO, c::AbstractComponent) = print(io, c.name) Base.convert(::Type{T}, s::Symbol) where {T<:AbstractComponent} = T(s) Base.convert(::Type{T}, s::String) where {T<:AbstractComponent} = T(Symbol(s)) Base.convert(::Type{Cstring}, s::AbstractComponent) = Cstring(unsafe_convert(Ptr{UInt8}, s.name)) for e in ( :TimeSource, :ClockSource, :GainElement, :Antenna, :FrequencyComponent, :SensorComponent, :Setting, :Register, :UART, :GPIO, ) @eval begin struct $e <: AbstractComponent name::Symbol end function $e(s::AbstractString) $e(Symbol(s)) end end end struct ComponentList{T<:AbstractComponent} <: AbstractVector{T} s::StringList end Base.size(l::ComponentList) = (length(l.s),) Base.getindex(l::ComponentList{T}, i::Integer) where {T} = T(Symbol(l.s[i])) function Base.show(io::IO, l::ComponentList{T}) where {T} print(io, T, "[") for c in l print(io, c, ",") end print(io, "]") end for (e, f) in zip( (:Antenna, :GainElement, :FrequencyComponent, :SensorComponent), ( :SoapySDRDevice_listAntennas, :SoapySDRDevice_listGains, :SoapySDRDevice_listFrequencies, :SoapySDRDevice_listSensors, ), ) @eval begin $f(channel::Channel) = $f(channel.device, channel.direction, channel.idx) $(Symbol(string(e, "List")))(channel::Channel) = ComponentList{$e}(StringList($f(channel)...)) end end function ComponentList(::Type{T}, d::Device) where {T<:AbstractComponent} if T <: SensorComponent ComponentList{SensorComponent}(StringList(SoapySDRDevice_listSensors(d.ptr)...)) elseif T <: TimeSource ComponentList{TimeSource}(StringList(SoapySDRDevice_listTimeSources(d.ptr)...)) elseif T <: ClockSource ComponentList{ClockSource}(StringList(SoapySDRDevice_listClockSources(d.ptr)...)) elseif T <: UART ComponentList{UART}(StringList(SoapySDRDevice_listUARTs(d.ptr)...)) elseif T <: GPIO ComponentList{GPIO}(StringList(SoapySDRDevice_listGPIOBanks(d.ptr)...)) elseif T <: Register ComponentList{Register}(StringList(SoapySDRDevice_listRegisterInterfaces(d.ptr)...)) end end function ComponentList(::Type{T}, d::Device, c::Channel) where {T<:AbstractComponent} len = Ref{Csize_t}() if T <: SensorComponent s = SoapySDRDevice_listChannelSensors(d.ptr, c.direction, c.idx, len) ComponentList{SensorComponent}(StringList(s, len[])) end end using Base: unsafe_convert function Base.getindex(c::Channel, ge::GainElement) SoapySDRDevice_getGainElement(c.device, c.direction, c.idx, ge.name) * dB end function Base.getindex(c::Channel, fe::FrequencyComponent) SoapySDRDevice_getFrequencyComponent(c.device, c.direction, c.idx, fe.name) * Hz end function Base.getindex(c::Channel, se::SensorComponent) unsafe_string(SoapySDRDevice_readChannelSensor(c.device, c.direction, c.idx, se.name)) end function Base.getindex(c::Channel, se::Setting) unsafe_string(SoapySDRDevice_readChannelSetting(c.device, c.direction, c.idx, se.name)) end function Base.getindex(d::Device, se::SensorComponent) unsafe_string(SoapySDRDevice_readSensor(d.ptr, se.name)) end function Base.getindex(d::Device, se::Setting) unsafe_string(SoapySDRDevice_readSetting(d.ptr, se.name)) end function Base.getindex(d::Device, se::Tuple{Register,<:Integer}) SoapySDRDevice_readRegister(d.ptr, se[1].name, se[2]) end function Base.setindex!(c::Channel, gain, ge::GainElement) SoapySDRDevice_setGainElement(c.device, c.direction, c.idx, ge.name, gain.val) return gain end function Base.setindex!(c::Channel, frequency, ge::FrequencyComponent) SoapySDRDevice_setFrequencyComponent( c.device, c.direction, c.idx, ge.name, uconvert(u"Hz", frequency).val, C_NULL, ) return frequency end function Base.setindex!(d::Device, v::AbstractString, ge::Setting) SoapySDRDevice_writeSetting(d, ge.name, v) return v end function Base.setindex!(c::Channel, v::AbstractString, se::Setting) SoapySDRDevice_writeChannelSetting(c.device, c.direction, c.idx, se.name, v) end """ Set a register value on a device: ``` dev[SoapySDR.Register("LMS7002M")] = (0x1234, 0x5678) # tuple of: (addr, value) dev[(SoapySDR.Register("LMS7002M"), 0x1234)] = 0x5678 # this is also equivalent, and symmetric to the getindex form to read ``` """ function Base.setindex!(d::Device, val::Tuple{<:Integer,<:Integer}, se::Register) SoapySDRDevice_writeRegister(d.ptr, se.name, val[1], val[2]) end function Base.setindex!(d::Device, val::Integer, se::Tuple{Register,<:Integer}) SoapySDRDevice_writeRegister(d.ptr, se[1].name, se[2], val) end ## GainElement function _gainrange(soapyr::SoapySDRRange) if soapyr.step == 0.0 # Represents an interval rather than a range return (soapyr.minimum * dB) .. (soapyr.maximum * dB) end # TODO @warn "Step ranges are not supported for gain elements. Returning Interval instead. Step: $(soapyr.step*dB)" #return range(soapyr.minimum*dB; stop=soapyr.maximum*dB, step=soapyr.step*dB) return (soapyr.minimum * dB) .. (soapyr.maximum * dB) end function gainrange(c::Channel) return _gainrange(SoapySDRDevice_getGainRange(c.device, c.direction, c.idx)) end gainrange(c::Channel, ge::GainElement) = return _gainrange( SoapySDRDevice_getGainElementRange(c.device, c.direction, c.idx, ge.name), ) function _hzrange(soapyr::SoapySDRRange) if soapyr.step == 0.0 # Represents an interval rather than a range return (soapyr.minimum * Hz) .. (soapyr.maximum * Hz) end return range(soapyr.minimum * Hz; stop = soapyr.maximum * Hz, step = soapyr.step * Hz) end function bandwidth_ranges(c::Channel) (ptr, len) = SoapySDRDevice_getBandwidthRange(c.device.ptr, c.direction, c.idx) ptr == C_NULL && return SoapySDRRange[] arr = map(_hzrange, unsafe_wrap(Array, Ptr{SoapySDRRange}(ptr), (len,))) SoapySDR_free(ptr) arr end function frequency_ranges(c::Channel) (ptr, len) = SoapySDRDevice_getFrequencyRange(c.device.ptr, c.direction, c.idx) ptr == C_NULL && return SoapySDRRange[] arr = map(_hzrange, unsafe_wrap(Array, Ptr{SoapySDRRange}(ptr), (len,))) SoapySDR_free(ptr) arr end function frequency_ranges(c::Channel, fe::FrequencyComponent) (ptr, len) = SoapySDRDevice_getFrequencyRangeComponent(c.device.ptr, c.direction, c.idx, fe.name) ptr == C_NULL && return SoapySDRRange[] arr = map(_hzrange, unsafe_wrap(Array, Ptr{SoapySDRRange}(ptr), (len,))) SoapySDR_free(ptr) arr end function gain_range(c::Channel, ge::GainElement) ptr = SoapySDRDevice_getGainElementRange(c.device.ptr, c.direction, c.idx, ge.name) ptr end function sample_rate_ranges(c::Channel) (ptr, len) = SoapySDRDevice_getSampleRateRange(c.device.ptr, c.direction, c.idx) ptr == C_NULL && return SoapySDRRange[] arr = map(_hzrange, unsafe_wrap(Array, Ptr{SoapySDRRange}(ptr), (len,))) SoapySDR_free(ptr) arr end """ list_sample_rates(::Channel) List the natively supported sample rates for a given channel. """ function list_sample_rates(c::Channel) len = Ref{Csize_t}(0) ptr = SoapySDRDevice_listSampleRates(c.device.ptr, c.direction, c.idx, len) arr = unsafe_wrap(Array, Ptr{Float64}(ptr), (len[],)) * Hz SoapySDR_free(ptr) arr end ### Frequency Setting struct FreqSpec{T} val::T kwargs::Dict{Any,String} end #################################################################################################### # Stream #################################################################################################### """ SoapySDR.Stream(channels) SoapySDR.Stream(::Type{T}, channels) Constructs a `Stream{T}` where `T` is the stream type of the device. If unspecified, the native format will be used. Fields: - nchannels - The number of channels in the stream - mtu - The stream Maximum Transmission Unit - num_direct_access_buffers - The numer of direct access buffers available in the stream ## Example ``` SoapySDR.Stream(Devices()[1].rx) ``` """ mutable struct Stream{T} d::Device nchannels::Int ptr::Ptr{SoapySDRStream} function Stream{T}(d::Device, nchannels, ptr::Ptr{SoapySDRStream}) where {T} this = new{T}(d, Int(nchannels), ptr) finalizer(this) do obj isopen(d) || return SoapySDRDevice_closeStream(d, obj.ptr) obj.ptr = Ptr{SoapySDRStream}(C_NULL) end return this end end Base.cconvert(::Type{<:Ptr{SoapySDRStream}}, s::Stream) = s Base.unsafe_convert(::Type{<:Ptr{SoapySDRStream}}, s::Stream) = s.ptr Base.isopen(s::Stream) = s.ptr != C_NULL && isopen(s.d) streamtype(::Stream{T}) where {T} = T function Base.setproperty!(c::Stream, s::Symbol, v) return setfield!(c, s, v) end function Base.propertynames(::Stream) return (:d, :nchannels, :mtu, :num_direct_access_buffers) end function Base.getproperty(stream::Stream, s::Symbol) if s === :mtu if !isopen(stream) throw(InvalidStateException("Stream is closed!", :closed)) end SoapySDRDevice_getStreamMTU(stream.d.ptr, stream.ptr) elseif s === :num_direct_access_buffers if !isopen(stream) throw(InvalidStateException("Stream is closed!", :closed)) end SoapySDRDevice_getNumDirectAccessBuffers(stream.d.ptr, stream.ptr) else return getfield(stream, s) end end function Base.show(io::IO, s::Stream) print(io, "Stream on ", s.d.hardware) end function Stream(format::Type, device::Device, direction::Direction; kwargs...) Stream{T}( device, 1, SoapySDRDevice_setupStream( device, direction, string(format), C_NULL, 0, KWArgs(kwargs), ), ) end function Stream(format::Type, channels::AbstractVector{T}; kwargs...) where {T<:Channel} soapy_format = _stream_map_jl2soapy(format) isempty(channels) && error( "Must specify at least one channel or use the device/direction constructor for automatic.", ) device = first(channels).device direction = first(channels).direction if !all(channels) do channel channel.device == device && channel.direction == direction end throw(ArgumentError("Channels must agree on device and direction")) end Stream{format}( device, length(channels), SoapySDRDevice_setupStream( device, direction, soapy_format, map(x -> x.idx, channels), length(channels), KWArgs(kwargs), ), ) end function Stream(channels::AbstractVector{T}; kwargs...) where {T<:Channel} native_format = promote_type(map(c -> c.native_stream_format, channels)...) if native_format <: AbstractComplexInteger @warn "$(string(native_format)) may be poorly supported, it is recommend to specify a different type with Stream(format::Type, channels)" end Stream(native_format, channels; kwargs...) end function Stream(format::Type, channel::Channel; kwargs...) Stream(format, [channel], kwargs...) end function Stream(channel::Channel; kwargs...) Stream([channel], kwargs...) end function Stream(f::Function, args...; kwargs...) stream = Stream(args...; kwargs...) try f(stream) finally finalize(stream) end end const SoapyStreamFlags = Dict( "END_BURST" => SOAPY_SDR_END_BURST, "HAS_TIME" => SOAPY_SDR_HAS_TIME, "END_ABRUPT" => SOAPY_SDR_END_ABRUPT, "ONE_PACKET" => SOAPY_SDR_ONE_PACKET, "MORE_FRAGMENTS" => SOAPY_SDR_MORE_FRAGMENTS, "WAIT_TRIGGER" => SOAPY_SDR_WAIT_TRIGGER, ) function flags_to_set(flags) s = Set{String}() for (name, val) in SoapyStreamFlags if val & flags != 0 push!(s, name) end end return s end function Base.read!( ::Stream, ::NTuple; kwargs... ) error("Buffers should be a Vector of Vectors rather than NTuple.") end """ read!(s::SoapySDR.Stream{T}, buffers::AbstractVector{AbstractVector{T}}; [timeout], [flags::Ref{Int}], [throw_error=false]) Read data from the device into the given buffers. """ function Base.read!( s::Stream{T}, buffers::AbstractVector{<:AbstractVector{T}}; timeout = nothing, flags::Union{Ref{Int},Nothing} = nothing, throw_error::Bool = false, ) where {T} t_start = time() timeout === nothing && (timeout = 0.1u"s") # Default from SoapySDR upstream timeout_s = uconvert(u"s", timeout).val timeout_us = uconvert(u"μs", timeout).val total_nread = 0 samples_to_read = length(first(buffers)) if !all(length(b) == samples_to_read for b in buffers) throw(ArgumentError("Buffers must all be same length!")) end GC.@preserve buffers while total_nread < samples_to_read # collect list of pointers to pass to SoapySDR buff_ptrs = pointer(map(b -> pointer(b, total_nread + 1), buffers)) nread, out_flags, timens = SoapySDRDevice_readStream( s.d, s, buff_ptrs, samples_to_read - total_nread, timeout_us, ) if typeof(flags) <: Ref flags[] |= out_flags end if nread < 0 if throw_error throw(SoapySDRDeviceError(nread, error_to_string(nread))) end else total_nread += nread end if time() > t_start + timeout_s # We've timed out, return early and warn. Something is probably wrong. @warn( "readStream timeout!", timeout = timeout_s, total_nread, samples_to_read, flags = join(flags_to_set(out_flags), ","), ) return buffers end end return buffers end """ read(s::SoapySDR.Stream{T}, nb::Integer; [timeout]) Read at most `nb` samples from s """ function Base.read(s::Stream{T}, n::Integer; timeout = nothing) where {T} bufs = [Vector{T}(undef, n) for _ in 1:s.nchannels] read!(s, bufs; timeout) bufs end function activate!(s::Stream; flags = 0, timens = nothing, numElems = nothing) if !isopen(s) throw(InvalidStateException("stream is closed!", :closed)) end if timens === nothing timens = 0 else timens = uconvert(u"ns", timens).val end if numElems === nothing numElems = 0 end SoapySDRDevice_activateStream(s.d, s, flags, timens, numElems) return nothing end function activate!(f::Function, streams::AbstractVector{<:Stream}; kwargs...) activated_streams = Vector{SoapySDR.Stream}(undef, length(streams)) try for i in eachindex(streams) s = streams[i] activate!(s; kwargs...) activated_streams[i] = s end f() finally for s in activated_streams deactivate!(s; kwargs...) end end end function activate!(f::Function, s::Stream; kwargs...) try activate!(s; kwargs...) f() finally deactivate!(s; kwargs...) end end function deactivate!(s::Stream; flags = 0, timens = nothing) SoapySDRDevice_deactivateStream( s.d, s, flags, timens === nothing ? 0 : uconvert(u"ns", timens).val, ) return nothing end function Base.write( ::Stream, ::NTuple; kwargs... ) error("Buffers should be a Vector of Vectors rather than NTuple.") end """ write(s::SoapySDR.Stream{T}, buffer::AbstractVector{AbstractVector{T}}; [timeout], [flags::Ref{Int}], [throw_error=false]) where {N, T} Write data from the given buffers into the device. The buffers must all be the same length. """ function Base.write( s::Stream{T}, buffers::AbstractVector{<:AbstractVector{T}}; timeout = nothing, flags::Union{Ref{Int},Nothing} = nothing, throw_error::Bool = false, ) where {T} t_start = time() timeout === nothing && (timeout = 0.1u"s") # Default from SoapySDR upstream timeout_s = uconvert(u"s", timeout).val timeout_us = uconvert(u"μs", timeout).val total_nwritten = 0 samples_to_write = length(first(buffers)) if !all(length(b) == samples_to_write for b in buffers) throw(ArgumentError("Buffers must all be same length!")) end if length(buffers) != s.nchannels throw(ArgumentError("Must provide buffers for every channel in stream!")) end GC.@preserve buffers while total_nwritten < samples_to_write buff_ptrs = pointer(map(b -> pointer(b, total_nwritten + 1), buffers)) nwritten, out_flags = SoapySDRDevice_writeStream( s.d, s, buff_ptrs, samples_to_write - total_nwritten, 0, 0, timeout_us, ) if typeof(flags) <: Ref flags[] |= out_flags end if nwritten < 0 if throw_error throw(SoapySDRDeviceError(nwritten, error_to_string(nwritten))) end else total_nwritten += nwritten end if time() > t_start + timeout_s # We've timed out, return early and warn. Something is probably wrong. @warn( "writeStream timeout!", timeout = timeout_s, total_nwritten, samples_to_write, flags = join(flags_to_set(out_flags), ","), ) return buffers end end return buffers end """ get_sensor_info(::Device, ::String) Read the sensor extracted from `list_sensors`. Returns: the value as a string. Note: Appropriate conversions need to be done by the user. """ function get_sensor_info(d::Device, name) SoapySDRDevice_getSensorInfo(d.ptr, name) end ## Time API """ has_hardware_time(::Device, what::String) Query if the Device has hardware time for the given source. """ function has_hardware_time(d::Device, what::String) SoapySDRDevice_hasHardwareTime(d.ptr, what) end """ get_hardware_time(::Device, what::String) Get hardware time for the given source. """ function get_hardware_time(d::Device, what::String) SoapySDRDevice_getHardwareTime(d.ptr, what) end """ set_hardware_time(::Device, timeNs::Int64 what::String) Set hardware time for the given source. """ function set_hardware_time(d::Device, timeNs::Int64, what::String) SoapySDRDevice_setHardwareTime(d.ptr, timeNs, what) end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
2047
""" Log handler to forward Soapy logs to Julia logs. """ function logger_soapy2jl(level, cmessage) #SOAPY_SDR_FATAL = 1 #!< A fatal error. The application will most likely terminate. This is the highest priority. #SOAPY_SDR_CRITICAL = 2 #!< A critical error. The application might not be able to continue running successfully. #SOAPY_SDR_ERROR = 3 #!< An error. An operation did not complete successfully, but the application as a whole is not affected. #SOAPY_SDR_WARNING = 4 #!< A warning. An operation completed with an unexpected result. #SOAPY_SDR_NOTICE = 5 #!< A notice, which is an information with just a higher priority. #SOAPY_SDR_INFO = 6 #!< An informational message, usually denoting the successful completion of an operation. #SOAPY_SDR_DEBUG = 7 #!< A debugging message. #SOAPY_SDR_TRACE = 8 #!< A tracing message. This is the lowest priority. #SOAPY_SDR_SSI = 9 #!< Streaming status indicators such as "U" (underflow) and "O" (overflow). message = unsafe_string(cmessage) level = SoapySDRLogLevel(level) if level in (SOAPY_SDR_FATAL, SOAPY_SDR_CRITICAL, SOAPY_SDR_ERROR) @error message elseif level == SOAPY_SDR_WARNING @warn message elseif level in (SOAPY_SDR_NOTICE, SOAPY_SDR_INFO) @info message elseif level in (SOAPY_SDR_DEBUG, SOAPY_SDR_TRACE, SOAPY_SDR_SSI) @debug message else println("SoapySDR_jll: ", message) end end """ Initialize the log handler to convert Soapy logs to Julia logs. This should be called once at the start of a script before doing work. """ function register_log_handler() julia_log_handler = @cfunction(logger_soapy2jl, Cvoid, (Cint, Cstring)) SoapySDR_registerLogHandler(julia_log_handler) end """ Set the log level threshold. Log messages with lower priority are dropped. NOTE: This uses SoapySDR log level number, which is different from Julia log level number. """ function set_log_level(level) SoapySDR_setLogLevel(SoapySDRLogLevel(level)) end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
2341
# Map of Soapy stream formats to Julia types """SOAPY_SDR_TX SOAPY_SDR_RX""" @enum Direction Tx = 0 Rx = 1 """ Abstract type denoting a Complex(U)Int(12/4) type. These need to be specially handled with bit shifting, and we do no data processing in this library, so this exists for convience to other package developers. Subtypes are `ComplexInt` and `ComplexUInt`, for convience with handling sign extends. """ abstract type AbstractComplexInteger end """ Type indicating a Complex Int format. Parameter `T` indicates the number of bits. """ struct ComplexInt{T} <: AbstractComplexInteger end """ Type indicating a Complex Unsigned Int format. Parameter `T` indicates the number of bits. """ struct ComplexUInt{T} <: AbstractComplexInteger end const _stream_type_pairs = [ (SOAPY_SDR_CF64, Complex{Float64}), (SOAPY_SDR_CF32, Complex{Float32}), (SOAPY_SDR_CS32, Complex{Int32}), (SOAPY_SDR_CU32, Complex{UInt32}), (SOAPY_SDR_CS16, Complex{Int16}), (SOAPY_SDR_CU16, Complex{UInt16}), (SOAPY_SDR_CS12, ComplexInt{12}), (SOAPY_SDR_CU12, ComplexUInt{12}), (SOAPY_SDR_CS8, Complex{Int8}), (SOAPY_SDR_CU8, Complex{UInt8}), (SOAPY_SDR_CS4, ComplexInt{4}), (SOAPY_SDR_CU4, ComplexUInt{4}), (SOAPY_SDR_F64, Float64), (SOAPY_SDR_F32, Float32), (SOAPY_SDR_S32, Int32), (SOAPY_SDR_U32, UInt32), (SOAPY_SDR_S16, Int16), (SOAPY_SDR_U16, UInt16), (SOAPY_SDR_S8, Int8), (SOAPY_SDR_U8, UInt8), ("", Nothing), ] """ Type map from SoapySDR Stream formats to Julia types. Note: Please see ComplexUInt and ComplexUInt if using 12 or 4 bit complex types. """ const _stream_type_soapy2jl = Dict{String,Type}(_stream_type_pairs) """ Type map from SoapySDR Stream formats to Julia types. Note: Please see ComplexUInt and ComplexUInt if using 12 or 4 bit complex types. """ const _stream_type_jl2soapy = Dict{Type,String}(reverse.(_stream_type_pairs)) function _stream_map_jl2soapy(stream_type) if !haskey(_stream_type_jl2soapy, stream_type) error("Unsupported stream type: ", stream_type) end return _stream_type_jl2soapy[stream_type] end function _stream_map_soapy2jl(stream_type) if !haskey(_stream_type_soapy2jl, stream_type) error("Unsupported stream type: ", stream_type) end return _stream_type_soapy2jl[stream_type] end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
4159
## KWArgs export KWArgs mutable struct KWArgs <: AbstractDict{String,String} box::Base.RefValue{SoapySDRKwargs} function KWArgs(kw::SoapySDRKwargs; owned::Bool = true) this = new(Ref(kw)) owned && finalizer(SoapySDRKwargs_clear, this) return this end end KWArgs() = KWArgs(SoapySDRKwargs_fromString("")) function KWArgs(kwargs::Base.Iterators.Pairs) args = KWArgs() for kv in kwargs args[string(kv.first)] = kv.second end return args end Base.unsafe_convert(T::Type{Ptr{SoapySDRKwargs}}, args::KWArgs) = Base.unsafe_convert(T, args.box) Base.String(args::KWArgs) = unsafe_string(SoapySDRKwargs_toString(args)) Base.parse(::Type{KWArgs}, str::String) = KWArgs(SoapySDRKwargs_fromString(str)) function Base.show(io::IO, ::MIME{Symbol("text/plain")}, args::KWArgs) print(io, "KWArgs(") print(io, String(args)) print(io, ")") end function Base.getindex(args::KWArgs, key) key = convert(String, key) cstr = SoapySDRKwargs_get(args, key) cstr == C_NULL && throw(KeyError(key)) unsafe_string(cstr) end function Base.setindex!(args::KWArgs, value, key) key = convert(String, key) value = convert(String, value) SoapySDRKwargs_set(args, key, value) args end Base.length(kw::KWArgs) = kw.box[].size function Base.iterate(kw::KWArgs, i = 1) i > length(kw) && return nothing GC.@preserve kw begin return ( unsafe_string(unsafe_load(kw.box[].keys, i)) => unsafe_string(unsafe_load(kw.box[].vals, i)) ), i + 1 end end ## KWArgsList mutable struct KWArgsList <: AbstractVector{KWArgs} ptr::Ptr{SoapySDRKwargs} length::Csize_t function KWArgsList(ptr::Ptr{SoapySDRKwargs}, length::Csize_t) this = new(ptr, length) finalizer(this) do this SoapySDRKwargsList_clear(this, this.length) end this end end Base.size(kwl::KWArgsList) = (kwl.length,) function Base.unsafe_convert(::Type{Ptr{SoapySDRKwargs}}, kwl::KWArgsList) @assert kwl.ptr != C_NULL kwl.ptr end function Base.getindex(kwl::KWArgsList, i::Integer) @boundscheck checkbounds(kwl, i) KWArgs(unsafe_load(kwl.ptr, i); owned = false) end ## ArgInfoList mutable struct ArgInfoList <: AbstractVector{SoapySDRArgInfo} ptr::Ptr{SoapySDRArgInfo} length::Csize_t function ArgInfoList(ptr::Ptr{SoapySDRArgInfo}, length::Csize_t) this = new(ptr, length) finalizer(this) do this SoapySDRArgInfoList_clear(this.ptr, this.length) end return this end end Base.size(kwl::ArgInfoList) = (kwl.length,) function Base.getindex(kwl::ArgInfoList, i::Integer) @boundscheck checkbounds(kwl, i) unsafe_load(kwl.ptr, i) end ## StringList mutable struct StringList <: AbstractVector{String} strs::Ptr{Cstring} length::Csize_t function StringList(strs::Ptr{Cstring}, length::Integer; owned::Bool = true) this = new(strs, Csize_t(length)) if owned finalizer(SoapySDRStrings_clear, this) end this end end function StringList(strs::Ptr{Ptr{Cchar}}, length::Integer; kwargs...) StringList(reinterpret(Ptr{Cstring}, strs), length; kwargs...) end Base.size(s::StringList) = (s.length,) function Base.getindex(s::StringList, i::Integer) checkbounds(s, i) unsafe_string(unsafe_load(s.strs, i)) end SoapySDRStrings_clear(s::StringList) = GC.@preserve s SoapySDRStrings_clear(pointer_from_objref(s), s.length) ## ArgInfo function Base.show(io::IO, s::SoapySDRArgInfo) println(io, "name: ", unsafe_string(s.name)) println(io, "key: ", unsafe_string(s.key)) #println(io, "value: ", unsafe_string(s.value)) println(io, "description: ", unsafe_string(s.description)) println(io, "units: ", unsafe_string(s.units)) #type #range println(io, "options: ", StringList(s.options, s.numOptions; owned = false)) println(io, "optionNames: ", StringList(s.optionNames, s.numOptions; owned = false)) end function Base.show(io::IO, s::SoapySDRRange) print(io, s.minimum, ":", s.step, ":", s.maximum) end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
1829
#################################################################################################### # Unit Printing #################################################################################################### # Express everything in (kHz, MHz, GHz) function pick_freq_unit(val::Quantity) iszero(val.val) && return val abs(val) >= 1.0u"GHz" ? uconvert(u"GHz", val) : abs(val) >= 1.0u"MHz" ? uconvert(u"MHz", val) : uconvert(u"kHz", val) end # Print to 3 digits of precision, no decimal point print_3_digit(io::IO, val::Quantity) = print(io, Base.Ryu.writeshortest( round(val.val, sigdigits = 3), false, #= plus =# false, #= space =# false, #= hash =# )) function print_unit(io::IO, val::Quantity) print_3_digit(io, val) print(io, " ", unit(val)) end function print_unit_interval(io::IO, min, max) if unit(min) == unit(max) || iszero(min.val) print_3_digit(io, min) print(io, "..") print_3_digit(io, max) print(io, " ", unit(max)) else print_unit(io, min) print(io, " .. ") print_unit(io, max) end end function print_unit_steprange(io::IO, min, max, step) print_unit(io, min) print(io, ":") print_unit(io, step) print(io, ":") print_unit(io, max) end print_unit_interval(io::IO, x::Interval{<:Any,Closed,Closed}) = print_unit_interval(io, minimum(x), maximum(x)) using Intervals: Closed function print_hz_range(io::IO, x::Interval{<:Any,Closed,Closed}) min, max = pick_freq_unit(minimum(x)), pick_freq_unit(maximum(x)) print_unit_interval(io, min, max) end function print_hz_range(io::IO, x::AbstractRange) min, step, max = pick_freq_unit(first(x)), pick_freq_unit(Base.step(x)), pick_freq_unit(last(x)) print_unit_steprange(io, min, max, step) end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
434
""" versioninfo(io::IO=stdout) Print information about the version of SoapySDR in use. """ function versioninfo(io = stdout; kwargs...) api_ver = unsafe_string(SoapySDR_getAPIVersion()) abi_ver = unsafe_string(SoapySDR_getABIVersion()) lib_ver = unsafe_string(SoapySDR_getLibVersion()) println(io, "API Version ", api_ver) println(io, "ABI Version ", abi_ver) println(io, "Library Version ", lib_ver) end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
104651
# typedef void ( * SoapySDRConverterFunction ) ( const void * , void * , const size_t , const double ) """ A typedef for declaring a ConverterFunction to be maintained in the ConverterRegistry. A converter function copies and optionally converts an input buffer of one format into an output buffer of another format. The parameters are (input pointer, output pointer, number of elements, optional scalar) """ const SoapySDRConverterFunction = Ptr{Cvoid} """ SoapySDRConverterFunctionPriority Allow selection of a converter function with a given source and target format. """ @cenum SoapySDRConverterFunctionPriority::UInt32 begin SOAPY_SDR_CONVERTER_GENERIC = 0 SOAPY_SDR_CONVERTER_VECTORIZED = 3 SOAPY_SDR_CONVERTER_CUSTOM = 5 end """ SoapySDRConverter_listTargetFormats(sourceFormat, length) Get a list of existing target formats to which we can convert the specified source from. \\param sourceFormat the source format markup string \\param [out] length the number of valid target formats \\return a list of valid target formats """ function SoapySDRConverter_listTargetFormats(sourceFormat, length) ccall( (:SoapySDRConverter_listTargetFormats, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{Cchar}, Ptr{Csize_t}), sourceFormat, length, ) end """ SoapySDRConverter_listSourceFormats(targetFormat, length) Get a list of existing source formats to which we can convert the specified target from. \\param targetFormat the target format markup string \\param [out] length the number of valid source formats \\return a list of valid source formats """ function SoapySDRConverter_listSourceFormats(targetFormat, length) ccall( (:SoapySDRConverter_listSourceFormats, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{Cchar}, Ptr{Csize_t}), targetFormat, length, ) end """ SoapySDRConverter_listPriorities(sourceFormat, targetFormat, length) Get a list of available converter priorities for a given source and target format. \\param sourceFormat the source format markup string \\param targetFormat the target format markup string \\param [out] length the number of priorities \\return a list of priorities or nullptr if none are found """ function SoapySDRConverter_listPriorities(sourceFormat, targetFormat, length) ccall( (:SoapySDRConverter_listPriorities, soapysdr), Ptr{SoapySDRConverterFunctionPriority}, (Ptr{Cchar}, Ptr{Cchar}, Ptr{Csize_t}), sourceFormat, targetFormat, length, ) end """ SoapySDRConverter_getFunction(sourceFormat, targetFormat) Get a converter between a source and target format with the highest available priority. \\param sourceFormat the source format markup string \\param targetFormat the target format markup string \\return a conversion function pointer or nullptr if none are found """ function SoapySDRConverter_getFunction(sourceFormat, targetFormat) ccall( (:SoapySDRConverter_getFunction, soapysdr), SoapySDRConverterFunction, (Ptr{Cchar}, Ptr{Cchar}), sourceFormat, targetFormat, ) end """ SoapySDRConverter_getFunctionWithPriority(sourceFormat, targetFormat, priority) Get a converter between a source and target format with a given priority. \\param sourceFormat the source format markup string \\param targetFormat the target format markup string \\return a conversion function pointer or nullptr if none are found """ function SoapySDRConverter_getFunctionWithPriority(sourceFormat, targetFormat, priority) ccall( (:SoapySDRConverter_getFunctionWithPriority, soapysdr), SoapySDRConverterFunction, (Ptr{Cchar}, Ptr{Cchar}, SoapySDRConverterFunctionPriority), sourceFormat, targetFormat, priority, ) end """ SoapySDRConverter_listAvailableSourceFormats(length) Get a list of known source formats in the registry. \\param [out] length the number of known source formats \\return a list of known source formats """ function SoapySDRConverter_listAvailableSourceFormats(length) ccall( (:SoapySDRConverter_listAvailableSourceFormats, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{Csize_t},), length, ) end mutable struct SoapySDRDevice end mutable struct SoapySDRStream end """ SoapySDRDevice_lastStatus() Get the last status code after a Device API call. The status code is cleared on entry to each Device call. When an device API call throws, the C bindings catch the exception, and set a non-zero last status code. Use lastStatus() to determine success/failure for Device calls without integer status return codes. """ function SoapySDRDevice_lastStatus() ccall((:SoapySDRDevice_lastStatus, soapysdr), Cint, ()) end """ SoapySDRDevice_lastError() Get the last error message after a device call fails. When an device API call throws, the C bindings catch the exception, store its message in thread-safe storage, and return a non-zero status code to indicate failure. Use lastError() to access the exception's error message. """ function SoapySDRDevice_lastError() ccall((:SoapySDRDevice_lastError, soapysdr), Ptr{Cchar}, ()) end """ SoapySDRKwargs Definition for a key/value string map """ struct SoapySDRKwargs size::Csize_t keys::Ptr{Ptr{Cchar}} vals::Ptr{Ptr{Cchar}} end """ SoapySDRDevice_enumerate(args, length) Enumerate a list of available devices on the system. \\param args device construction key/value argument filters \\param [out] length the number of elements in the result. \\return a list of arguments strings, each unique to a device """ function SoapySDRDevice_enumerate(args, length) @soapy_checked ccall( (:SoapySDRDevice_enumerate, soapysdr), Ptr{SoapySDRKwargs}, (Ptr{SoapySDRKwargs}, Ptr{Csize_t}), args, length, ) end """ SoapySDRDevice_enumerateStrArgs(args, length) Enumerate a list of available devices on the system. Markup format for args: "keyA=valA, keyB=valB". \\param args a markup string of key/value argument filters \\param [out] length the number of elements in the result. \\return a list of arguments strings, each unique to a device """ function SoapySDRDevice_enumerateStrArgs(args, length) @soapy_checked ccall( (:SoapySDRDevice_enumerateStrArgs, soapysdr), Ptr{SoapySDRKwargs}, (Ptr{Cchar}, Ptr{Csize_t}), args, length, ) end """ SoapySDRDevice_make(args) Make a new Device object given device construction args. The device pointer will be stored in a table so subsequent calls with the same arguments will produce the same device. For every call to make, there should be a matched call to unmake. \\param args device construction key/value argument map \\return a pointer to a new Device object """ function SoapySDRDevice_make(args) @soapy_checked ccall( (:SoapySDRDevice_make, soapysdr), Ptr{SoapySDRDevice}, (Ptr{SoapySDRKwargs},), args, ) end """ SoapySDRDevice_makeStrArgs(args) Make a new Device object given device construction args. The device pointer will be stored in a table so subsequent calls with the same arguments will produce the same device. For every call to make, there should be a matched call to unmake. \\param args a markup string of key/value arguments \\return a pointer to a new Device object or null for error """ function SoapySDRDevice_makeStrArgs(args) @soapy_checked ccall( (:SoapySDRDevice_makeStrArgs, soapysdr), Ptr{SoapySDRDevice}, (Ptr{Cchar},), args, ) end """ SoapySDRDevice_unmake(device) Unmake or release a device object handle. \\param device a pointer to a device object \\return 0 for success or error code on failure """ function SoapySDRDevice_unmake(device) @soapy_checked ccall( (:SoapySDRDevice_unmake, soapysdr), Cint, (Ptr{SoapySDRDevice},), device, ) end """ SoapySDRDevice_make_list(argsList, length) Create a list of devices from a list of construction arguments. This is a convenience call to parallelize device construction, and is fundamentally a parallel for loop of make(Kwargs). \\param argsList a list of device arguments per each device \\param length the length of the argsList array \\return a list of device pointers per each specified argument """ function SoapySDRDevice_make_list(argsList, length) @soapy_checked ccall( (:SoapySDRDevice_make_list, soapysdr), Ptr{Ptr{SoapySDRDevice}}, (Ptr{SoapySDRKwargs}, Csize_t), argsList, length, ) end """ SoapySDRDevice_make_listStrArgs(argsList, length) Create a list of devices from a list of construction arguments. This is a convenience call to parallelize device construction, and is fundamentally a parallel for loop of makeStrArgs(args). \\param argsList a list of device arguments per each device \\param length the length of the argsList array \\return a list of device pointers per each specified argument """ function SoapySDRDevice_make_listStrArgs(argsList, length) @soapy_checked ccall( (:SoapySDRDevice_make_listStrArgs, soapysdr), Ptr{Ptr{SoapySDRDevice}}, (Ptr{Ptr{Cchar}}, Csize_t), argsList, length, ) end """ SoapySDRDevice_unmake_list(devices, length) Unmake or release a list of device handles and free the devices array memory as well. This is a convenience call to parallelize device destruction, and is fundamentally a parallel for loop of unmake(Device *). \\param devices a list of pointers to device objects \\param length the length of the devices array \\return 0 for success or error code on failure """ function SoapySDRDevice_unmake_list(devices, length) @soapy_checked ccall( (:SoapySDRDevice_unmake_list, soapysdr), Cint, (Ptr{Ptr{SoapySDRDevice}}, Csize_t), devices, length, ) end """ SoapySDRDevice_getDriverKey(device) A key that uniquely identifies the device driver. This key identifies the underlying implementation. Several variants of a product may share a driver. \\param device a pointer to a device instance """ function SoapySDRDevice_getDriverKey(device) @soapy_checked ccall( (:SoapySDRDevice_getDriverKey, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice},), device, ) end """ SoapySDRDevice_getHardwareKey(device) A key that uniquely identifies the hardware. This key should be meaningful to the user to optimize for the underlying hardware. \\param device a pointer to a device instance """ function SoapySDRDevice_getHardwareKey(device) if !isopen(device) throw(InvalidStateException("Device is closed!", :closed)) end @soapy_checked ccall( (:SoapySDRDevice_getHardwareKey, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice},), device, ) end """ SoapySDRDevice_getHardwareInfo(device) Query a dictionary of available device information. This dictionary can any number of values like vendor name, product name, revisions, serials... This information can be displayed to the user to help identify the instantiated device. \\param device a pointer to a device instance """ function SoapySDRDevice_getHardwareInfo(device) @soapy_checked ccall( (:SoapySDRDevice_getHardwareInfo, soapysdr), SoapySDRKwargs, (Ptr{SoapySDRDevice},), device, ) end """ SoapySDRDevice_setFrontendMapping(device, direction, mapping) Set the frontend mapping of available DSP units to RF frontends. This mapping controls channel mapping and channel availability. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param mapping a vendor-specific mapping string \\return an error code or 0 for success """ function SoapySDRDevice_setFrontendMapping(device, direction, mapping) @soapy_checked ccall( (:SoapySDRDevice_setFrontendMapping, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Ptr{Cchar}), device, direction, mapping, ) end """ SoapySDRDevice_getFrontendMapping(device, direction) Get the mapping configuration string. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\return the vendor-specific mapping string """ function SoapySDRDevice_getFrontendMapping(device, direction) @soapy_checked ccall( (:SoapySDRDevice_getFrontendMapping, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice}, Cint), device, direction, ) end """ SoapySDRDevice_getNumChannels(device, direction) Get a number of channels given the streaming direction \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\return the number of channels """ function SoapySDRDevice_getNumChannels(device, direction) @soapy_checked ccall( (:SoapySDRDevice_getNumChannels, soapysdr), Csize_t, (Ptr{SoapySDRDevice}, Cint), device, direction, ) end """ SoapySDRDevice_getChannelInfo(device, direction, channel) Get channel info given the streaming direction \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel the channel number to get info for \\return channel information """ function SoapySDRDevice_getChannelInfo(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getChannelInfo, soapysdr), SoapySDRKwargs, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_getFullDuplex(device, direction, channel) Find out if the specified channel is full or half duplex. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return true for full duplex, false for half duplex """ function SoapySDRDevice_getFullDuplex(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getFullDuplex, soapysdr), Bool, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_getStreamFormats(device, direction, channel, length) Query a list of the available stream formats. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of format strings \\return a list of allowed format strings. See SoapySDRDevice_setupStream() for the format syntax. """ function SoapySDRDevice_getStreamFormats(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_getStreamFormats, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_getNativeStreamFormat(device, direction, channel, fullScale) Get the hardware's native stream format for this channel. This is the format used by the underlying transport layer, and the direct buffer access API calls (when available). \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] fullScale the maximum possible value \\return the native stream buffer format string """ function SoapySDRDevice_getNativeStreamFormat(device, direction, channel, fullScale) @soapy_checked ccall( (:SoapySDRDevice_getNativeStreamFormat, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cdouble}), device, direction, channel, fullScale, ) end """ SoapySDRArgInfoType Possible data types for argument info """ @cenum SoapySDRArgInfoType::UInt32 begin SOAPY_SDR_ARG_INFO_BOOL = 0 SOAPY_SDR_ARG_INFO_INT = 1 SOAPY_SDR_ARG_INFO_FLOAT = 2 SOAPY_SDR_ARG_INFO_STRING = 3 end """ SoapySDRRange Definition for a min/max numeric range """ struct SoapySDRRange minimum::Cdouble maximum::Cdouble step::Cdouble end """ SoapySDRArgInfo Definition for argument info """ struct SoapySDRArgInfo key::Ptr{Cchar} value::Ptr{Cchar} name::Ptr{Cchar} description::Ptr{Cchar} units::Ptr{Cchar} type::SoapySDRArgInfoType range::SoapySDRRange numOptions::Csize_t options::Ptr{Ptr{Cchar}} optionNames::Ptr{Ptr{Cchar}} end """ SoapySDRDevice_getStreamArgsInfo(device, direction, channel, length) Query the argument info description for stream args. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of argument infos \\return a list of argument info structures """ function SoapySDRDevice_getStreamArgsInfo(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_getStreamArgsInfo, soapysdr), Ptr{SoapySDRArgInfo}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_setupStream(device, direction, format, channels, numChans, args) Initialize a stream given a list of channels and stream arguments. The implementation may change switches or power-up components. All stream API calls should be usable with the new stream object after setupStream() is complete, regardless of the activity state. The API allows any number of simultaneous TX and RX streams, but many dual-channel devices are limited to one stream in each direction, using either one or both channels. This call will return an error if an unsupported combination is requested, or if a requested channel in this direction is already in use by another stream. When multiple channels are added to a stream, they are typically expected to have the same sample rate. See SoapySDRDevice_setSampleRate(). \\param device a pointer to a device instance \\return the opaque pointer to a stream handle. \\parblock The returned stream is not required to have internal locking, and may not be used concurrently from multiple threads. \\endparblock \\param direction the channel direction (`SOAPY_SDR_RX` or `SOAPY_SDR_TX`) \\param format A string representing the desired buffer format in read/writeStream() \\parblock The first character selects the number type: - "C" means complex - "F" means floating point - "S" means signed integer - "U" means unsigned integer The type character is followed by the number of bits per number (complex is 2x this size per sample) Example format strings: - "CF32" - complex float32 (8 bytes per element) - "CS16" - complex int16 (4 bytes per element) - "CS12" - complex int12 (3 bytes per element) - "CS4" - complex int4 (1 byte per element) - "S32" - int32 (4 bytes per element) - "U8" - uint8 (1 byte per element) \\endparblock \\param channels a list of channels or empty for automatic \\param numChans the number of elements in the channels array \\param args stream args or empty for defaults \\parblock Recommended keys to use in the args dictionary: - "WIRE" - format of the samples between device and host \\endparblock \\return the stream pointer or nullptr for failure """ function SoapySDRDevice_setupStream(device, direction, format, channels, numChans, args) @soapy_checked ccall( (:SoapySDRDevice_setupStream, soapysdr), Ptr{SoapySDRStream}, (Ptr{SoapySDRDevice}, Cint, Ptr{Cchar}, Ptr{Csize_t}, Csize_t, Ptr{SoapySDRKwargs}), device, direction, format, channels, numChans, args, ) end """ SoapySDRDevice_closeStream(device, stream) Close an open stream created by setupStream \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\return 0 for success or error code on failure """ function SoapySDRDevice_closeStream(device, stream) @soapy_checked ccall( (:SoapySDRDevice_closeStream, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}), device, stream, ) end """ SoapySDRDevice_getStreamMTU(device, stream) Get the stream's maximum transmission unit (MTU) in number of elements. The MTU specifies the maximum payload transfer in a stream operation. This value can be used as a stream buffer allocation size that can best optimize throughput given the underlying stream implementation. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\return the MTU in number of stream elements (never zero) """ function SoapySDRDevice_getStreamMTU(device, stream) @soapy_checked ccall( (:SoapySDRDevice_getStreamMTU, soapysdr), Csize_t, (Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}), device, stream, ) end """ SoapySDRDevice_activateStream(device, stream, flags, timeNs, numElems) Activate a stream. Call activate to prepare a stream before using read/write(). The implementation control switches or stimulate data flow. The timeNs is only valid when the flags have SOAPY_SDR_HAS_TIME. The numElems count can be used to request a finite burst size. The SOAPY_SDR_END_BURST flag can signal end on the finite burst. Not all implementations will support the full range of options. In this case, the implementation returns SOAPY_SDR_NOT_SUPPORTED. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\param flags optional flag indicators about the stream \\param timeNs optional activation time in nanoseconds \\param numElems optional element count for burst control \\return 0 for success or error code on failure """ function SoapySDRDevice_activateStream(device, stream, flags, timeNs, numElems) @soapy_checked ccall( (:SoapySDRDevice_activateStream, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Cint, Clonglong, Csize_t), device, stream, flags, timeNs, numElems, ) end """ SoapySDRDevice_deactivateStream(device, stream, flags, timeNs) Deactivate a stream. Call deactivate when not using using read/write(). The implementation control switches or halt data flow. The timeNs is only valid when the flags have SOAPY_SDR_HAS_TIME. Not all implementations will support the full range of options. In this case, the implementation returns SOAPY_SDR_NOT_SUPPORTED. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\param flags optional flag indicators about the stream \\param timeNs optional deactivation time in nanoseconds \\return 0 for success or error code on failure """ function SoapySDRDevice_deactivateStream(device, stream, flags, timeNs) if !isopen(stream) throw(InvalidStateException("Stream is closed!", :closed)) end @soapy_checked ccall( (:SoapySDRDevice_deactivateStream, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Cint, Clonglong), device, stream, flags, timeNs, ) end """ SoapySDRDevice_readStream(device, stream, buffs, numElems, flags, timeNs, timeoutUs) Read elements from a stream for reception. This is a multi-channel call, and buffs should be an array of void *, where each pointer will be filled with data from a different channel. **Client code compatibility:** The readStream() call should be well defined at all times, including prior to activation and after deactivation. When inactive, readStream() should implement the timeout specified by the caller and return SOAPY_SDR_TIMEOUT. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\param buffs an array of void* buffers num chans in size \\param numElems the number of elements in each buffer \\param [out] flags optional flag indicators about the result \\param [out] timeNs the buffer's timestamp in nanoseconds \\param timeoutUs the timeout in microseconds \\return the number of elements read per buffer or error code """ function SoapySDRDevice_readStream( device, stream, buffs, numElems, flags, timeNs, timeoutUs, ) @soapy_checked ccall( (:SoapySDRDevice_readStream, soapysdr), Cint, ( Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Ptr{Ptr{Cvoid}}, Csize_t, Ptr{Cint}, Ptr{Clonglong}, Clong, ), device, stream, buffs, numElems, flags, timeNs, timeoutUs, ) end """ SoapySDRDevice_writeStream(device, stream, buffs, numElems, flags, timeNs, timeoutUs) Write elements to a stream for transmission. This is a multi-channel call, and buffs should be an array of void *, where each pointer will be filled with data for a different channel. **Client code compatibility:** Client code relies on writeStream() for proper back-pressure. The writeStream() implementation must enforce the timeout such that the call blocks until space becomes available or timeout expiration. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\param buffs an array of void* buffers num chans in size \\param numElems the number of elements in each buffer \\param [in,out] flags optional input flags and output flags \\param timeNs the buffer's timestamp in nanoseconds \\param timeoutUs the timeout in microseconds \\return the number of elements written per buffer or error """ function SoapySDRDevice_writeStream( device, stream, buffs, numElems, flags, timeNs, timeoutUs, ) @soapy_checked ccall( (:SoapySDRDevice_writeStream, soapysdr), Cint, ( Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Ptr{Ptr{Cvoid}}, Csize_t, Ptr{Cint}, Clonglong, Clong, ), device, stream, buffs, numElems, flags, timeNs, timeoutUs, ) end """ SoapySDRDevice_readStreamStatus(device, stream, chanMask, flags, timeNs, timeoutUs) Readback status information about a stream. This call is typically used on a transmit stream to report time errors, underflows, and burst completion. **Client code compatibility:** Client code may continually poll readStreamStatus() in a loop. Implementations of readStreamStatus() should wait in the call for a status change event or until the timeout expiration. When stream status is not implemented on a particular stream, readStreamStatus() should return SOAPY_SDR_NOT_SUPPORTED. Client code may use this indication to disable a polling loop. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\param chanMask to which channels this status applies \\param flags optional input flags and output flags \\param timeNs the buffer's timestamp in nanoseconds \\param timeoutUs the timeout in microseconds \\return 0 for success or error code like timeout """ function SoapySDRDevice_readStreamStatus(device, stream, chanMask, flags, timeNs, timeoutUs) @soapy_checked ccall( (:SoapySDRDevice_readStreamStatus, soapysdr), Cint, ( Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Ptr{Csize_t}, Ptr{Cint}, Ptr{Clonglong}, Clong, ), device, stream, chanMask, flags, timeNs, timeoutUs, ) end """ SoapySDRDevice_getNumDirectAccessBuffers(device, stream) How many direct access buffers can the stream provide? This is the number of times the user can call acquire() on a stream without making subsequent calls to release(). A return value of 0 means that direct access is not supported. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\return the number of direct access buffers or 0 """ function SoapySDRDevice_getNumDirectAccessBuffers(device, stream) @soapy_checked ccall( (:SoapySDRDevice_getNumDirectAccessBuffers, soapysdr), Csize_t, (Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}), device, stream, ) end """ SoapySDRDevice_getDirectAccessBufferAddrs(device, stream, handle, buffs) Get the buffer addresses for a scatter/gather table entry. When the underlying DMA implementation uses scatter/gather then this call provides the user addresses for that table. Example: The caller may query the DMA memory addresses once after stream creation to pre-allocate a re-usable ring-buffer. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\param handle an index value between 0 and num direct buffers - 1 \\param buffs an array of void* buffers num chans in size \\return 0 for success or error code when not supported """ function SoapySDRDevice_getDirectAccessBufferAddrs(device, stream, handle, buffs) @soapy_checked ccall( (:SoapySDRDevice_getDirectAccessBufferAddrs, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Csize_t, Ptr{Ptr{Cvoid}}), device, stream, handle, buffs, ) end """ SoapySDRDevice_acquireReadBuffer(device, stream, handle, buffs, flags, timeNs, timeoutUs) Acquire direct buffers from a receive stream. This call is part of the direct buffer access API. The buffs array will be filled with a stream pointer for each channel. Each pointer can be read up to the number of return value elements. The handle will be set by the implementation so that the caller may later release access to the buffers with releaseReadBuffer(). Handle represents an index into the internal scatter/gather table such that handle is between 0 and num direct buffers - 1. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\param handle an index value used in the release() call \\param buffs an array of void* buffers num chans in size \\param flags optional flag indicators about the result \\param timeNs the buffer's timestamp in nanoseconds \\param timeoutUs the timeout in microseconds \\return the number of elements read per buffer or error code """ function SoapySDRDevice_acquireReadBuffer( device, stream, handle, buffs, flags, timeNs, timeoutUs, ) @soapy_checked ccall( (:SoapySDRDevice_acquireReadBuffer, soapysdr), Cint, ( Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Ptr{Csize_t}, Ptr{Ptr{Cvoid}}, Ptr{Cint}, Ptr{Clonglong}, Clong, ), device, stream, handle, buffs, flags, timeNs, timeoutUs, ) end """ SoapySDRDevice_releaseReadBuffer(device, stream, handle) Release an acquired buffer back to the receive stream. This call is part of the direct buffer access API. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\param handle the opaque handle from the acquire() call """ function SoapySDRDevice_releaseReadBuffer(device, stream, handle) @soapy_checked ccall( (:SoapySDRDevice_releaseReadBuffer, soapysdr), Cvoid, (Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Csize_t), device, stream, handle, ) end """ SoapySDRDevice_acquireWriteBuffer(device, stream, handle, buffs, timeoutUs) Acquire direct buffers from a transmit stream. This call is part of the direct buffer access API. The buffs array will be filled with a stream pointer for each channel. Each pointer can be written up to the number of return value elements. The handle will be set by the implementation so that the caller may later release access to the buffers with releaseWriteBuffer(). Handle represents an index into the internal scatter/gather table such that handle is between 0 and num direct buffers - 1. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\param handle an index value used in the release() call \\param buffs an array of void* buffers num chans in size \\param timeoutUs the timeout in microseconds \\return the number of available elements per buffer or error """ function SoapySDRDevice_acquireWriteBuffer(device, stream, handle, buffs, timeoutUs) @soapy_checked ccall( (:SoapySDRDevice_acquireWriteBuffer, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Ptr{Csize_t}, Ptr{Ptr{Cvoid}}, Clong), device, stream, handle, buffs, timeoutUs, ) end """ SoapySDRDevice_releaseWriteBuffer(device, stream, handle, numElems, flags, timeNs) Release an acquired buffer back to the transmit stream. This call is part of the direct buffer access API. Stream meta-data is provided as part of the release call, and not the acquire call so that the caller may acquire buffers without committing to the contents of the meta-data, which can be determined by the user as the buffers are filled. \\param device a pointer to a device instance \\param stream the opaque pointer to a stream handle \\param handle the opaque handle from the acquire() call \\param numElems the number of elements written to each buffer \\param flags optional input flags and output flags \\param timeNs the buffer's timestamp in nanoseconds """ function SoapySDRDevice_releaseWriteBuffer(device, stream, handle, numElems, flags, timeNs) @soapy_checked ccall( (:SoapySDRDevice_releaseWriteBuffer, soapysdr), Cvoid, (Ptr{SoapySDRDevice}, Ptr{SoapySDRStream}, Csize_t, Csize_t, Ptr{Cint}, Clonglong), device, stream, handle, numElems, flags, timeNs, ) end """ SoapySDRDevice_listAntennas(device, direction, channel, length) Get a list of available antennas to select on a given chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of antenna names \\return a list of available antenna names """ function SoapySDRDevice_listAntennas(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_listAntennas, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_setAntenna(device, direction, channel, name) Set the selected antenna on a chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param name the name of an available antenna \\return an error code or 0 for success """ function SoapySDRDevice_setAntenna(device, direction, channel, name) @soapy_checked ccall( (:SoapySDRDevice_setAntenna, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}), device, direction, channel, name, ) end """ SoapySDRDevice_getAntenna(device, direction, channel) Get the selected antenna on a chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return the name of an available antenna """ function SoapySDRDevice_getAntenna(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getAntenna, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_hasDCOffsetMode(device, direction, channel) Does the device support automatic DC offset corrections? \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return true if automatic corrections are supported """ function SoapySDRDevice_hasDCOffsetMode(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_hasDCOffsetMode, soapysdr), Bool, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_setDCOffsetMode(device, direction, channel, automatic) Set the automatic DC offset corrections mode. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param automatic true for automatic offset correction \\return an error code or 0 for success """ function SoapySDRDevice_setDCOffsetMode(device, direction, channel, automatic) @soapy_checked ccall( (:SoapySDRDevice_setDCOffsetMode, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Bool), device, direction, channel, automatic, ) end """ SoapySDRDevice_getDCOffsetMode(device, direction, channel) Get the automatic DC offset corrections mode. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return true for automatic offset correction """ function SoapySDRDevice_getDCOffsetMode(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getDCOffsetMode, soapysdr), Bool, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_hasDCOffset(device, direction, channel) Does the device support frontend DC offset correction? \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return true if DC offset corrections are supported """ function SoapySDRDevice_hasDCOffset(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_hasDCOffset, soapysdr), Bool, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_setDCOffset(device, direction, channel, offsetI, offsetQ) Set the frontend DC offset correction. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param offsetI the relative correction (1.0 max) \\param offsetQ the relative correction (1.0 max) \\return an error code or 0 for success """ function SoapySDRDevice_setDCOffset(device, direction, channel, offsetI, offsetQ) @soapy_checked ccall( (:SoapySDRDevice_setDCOffset, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Cdouble, Cdouble), device, direction, channel, offsetI, offsetQ, ) end """ SoapySDRDevice_getDCOffset(device, direction, channel, offsetI, offsetQ) Get the frontend DC offset correction. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] offsetI the relative correction (1.0 max) \\param [out] offsetQ the relative correction (1.0 max) \\return 0 for success or error code on failure """ function SoapySDRDevice_getDCOffset(device, direction, channel, offsetI, offsetQ) @soapy_checked ccall( (:SoapySDRDevice_getDCOffset, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cdouble}, Ptr{Cdouble}), device, direction, channel, offsetI, offsetQ, ) end """ SoapySDRDevice_hasIQBalance(device, direction, channel) Does the device support frontend IQ balance correction? \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return true if IQ balance corrections are supported """ function SoapySDRDevice_hasIQBalance(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_hasIQBalance, soapysdr), Bool, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_setIQBalance(device, direction, channel, balanceI, balanceQ) Set the frontend IQ balance correction. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param balanceI the relative correction (1.0 max) \\param balanceQ the relative correction (1.0 max) \\return an error code or 0 for success """ function SoapySDRDevice_setIQBalance(device, direction, channel, balanceI, balanceQ) @soapy_checked ccall( (:SoapySDRDevice_setIQBalance, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Cdouble, Cdouble), device, direction, channel, balanceI, balanceQ, ) end """ SoapySDRDevice_getIQBalance(device, direction, channel, balanceI, balanceQ) Get the frontend IQ balance correction. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] balanceI the relative correction (1.0 max) \\param [out] balanceQ the relative correction (1.0 max) \\return 0 for success or error code on failure """ function SoapySDRDevice_getIQBalance(device, direction, channel, balanceI, balanceQ) @soapy_checked ccall( (:SoapySDRDevice_getIQBalance, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cdouble}, Ptr{Cdouble}), device, direction, channel, balanceI, balanceQ, ) end """ SoapySDRDevice_hasIQBalanceMode(device, direction, channel) Does the device support automatic frontend IQ balance correction? \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return true if automatic IQ balance corrections are supported """ function SoapySDRDevice_hasIQBalanceMode(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_hasIQBalanceMode, soapysdr), Bool, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_setIQBalanceMode(device, direction, channel, automatic) Set the automatic frontend IQ balance correction. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param automatic true for automatic correction \\return 0 for success or error code on failure """ function SoapySDRDevice_setIQBalanceMode(device, direction, channel, automatic) @soapy_checked ccall( (:SoapySDRDevice_setIQBalanceMode, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Bool), device, direction, channel, automatic, ) end """ SoapySDRDevice_getIQBalanceMode(device, direction, channel) Get the automatic frontend IQ balance corrections mode. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return true for automatic correction """ function SoapySDRDevice_getIQBalanceMode(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getIQBalanceMode, soapysdr), Bool, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_hasFrequencyCorrection(device, direction, channel) Does the device support frontend frequency correction? \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return true if frequency corrections are supported """ function SoapySDRDevice_hasFrequencyCorrection(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_hasFrequencyCorrection, soapysdr), Bool, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_setFrequencyCorrection(device, direction, channel, value) Fine tune the frontend frequency correction. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param value the correction in PPM \\return an error code or 0 for success """ function SoapySDRDevice_setFrequencyCorrection(device, direction, channel, value) @soapy_checked ccall( (:SoapySDRDevice_setFrequencyCorrection, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Cdouble), device, direction, channel, value, ) end """ SoapySDRDevice_getFrequencyCorrection(device, direction, channel) Get the frontend frequency correction value. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return the correction value in PPM """ function SoapySDRDevice_getFrequencyCorrection(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getFrequencyCorrection, soapysdr), Cdouble, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_listGains(device, direction, channel, length) List available amplification elements. Elements should be in order RF to baseband. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel \\param [out] length the number of gain names \\return a list of gain string names """ function SoapySDRDevice_listGains(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_listGains, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_hasGainMode(device, direction, channel) Does the device support automatic gain control? \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return true for automatic gain control """ function SoapySDRDevice_hasGainMode(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_hasGainMode, soapysdr), Bool, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_setGainMode(device, direction, channel, automatic) Set the automatic gain mode on the chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param automatic true for automatic gain setting \\return an error code or 0 for success """ function SoapySDRDevice_setGainMode(device, direction, channel, automatic) @soapy_checked ccall( (:SoapySDRDevice_setGainMode, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Bool), device, direction, channel, automatic, ) end """ SoapySDRDevice_getGainMode(device, direction, channel) Get the automatic gain mode on the chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return true for automatic gain setting """ function SoapySDRDevice_getGainMode(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getGainMode, soapysdr), Bool, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_setGain(device, direction, channel, value) Set the overall amplification in a chain. The gain will be distributed automatically across available element. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param value the new amplification value in dB \\return an error code or 0 for success """ function SoapySDRDevice_setGain(device, direction, channel, value) @soapy_checked ccall( (:SoapySDRDevice_setGain, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Cdouble), device, direction, channel, value, ) end """ SoapySDRDevice_setGainElement(device, direction, channel, name, value) Set the value of a amplification element in a chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param name the name of an amplification element \\param value the new amplification value in dB \\return an error code or 0 for success """ function SoapySDRDevice_setGainElement(device, direction, channel, name, value) @soapy_checked ccall( (:SoapySDRDevice_setGainElement, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}, Cdouble), device, direction, channel, name, value, ) end """ SoapySDRDevice_getGain(device, direction, channel) Get the overall value of the gain elements in a chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return the value of the gain in dB """ function SoapySDRDevice_getGain(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getGain, soapysdr), Cdouble, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_getGainElement(device, direction, channel, name) Get the value of an individual amplification element in a chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param name the name of an amplification element \\return the value of the gain in dB """ function SoapySDRDevice_getGainElement(device, direction, channel, name) @soapy_checked ccall( (:SoapySDRDevice_getGainElement, soapysdr), Cdouble, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}), device, direction, channel, name, ) end """ SoapySDRDevice_getGainRange(device, direction, channel) Get the overall range of possible gain values. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return the range of possible gain values for this channel in dB """ function SoapySDRDevice_getGainRange(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getGainRange, soapysdr), SoapySDRRange, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_getGainElementRange(device, direction, channel, name) Get the range of possible gain values for a specific element. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param name the name of an amplification element \\return the range of possible gain values for the specified amplification element in dB """ function SoapySDRDevice_getGainElementRange(device, direction, channel, name) @soapy_checked ccall( (:SoapySDRDevice_getGainElementRange, soapysdr), SoapySDRRange, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}), device, direction, channel, name, ) end """ SoapySDRDevice_setFrequency(device, direction, channel, frequency, args) Set the center frequency of the chain. - For RX, this specifies the down-conversion frequency. - For TX, this specifies the up-conversion frequency. The default implementation of setFrequency() will tune the "RF" component as close as possible to the requested center frequency. Tuning inaccuracies will be compensated for with the "BB" component. The args can be used to augment the tuning algorithm. - Use "OFFSET" to specify an "RF" tuning offset, usually with the intention of moving the LO out of the passband. The offset will be compensated for using the "BB" component. - Use the name of a component for the key and a frequency in Hz as the value (any format) to enforce a specific frequency. The other components will be tuned with compensation to achieve the specified overall frequency. - Use the name of a component for the key and the value "IGNORE" so that the tuning algorithm will avoid altering the component. - Vendor specific implementations can also use the same args to augment tuning in other ways such as specifying fractional vs integer N tuning. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param frequency the center frequency in Hz \\param args optional tuner arguments \\return an error code or 0 for success """ function SoapySDRDevice_setFrequency(device, direction, channel, frequency, args) @soapy_checked ccall( (:SoapySDRDevice_setFrequency, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Cdouble, Ptr{SoapySDRKwargs}), device, direction, channel, frequency, args, ) end """ SoapySDRDevice_setFrequencyComponent(device, direction, channel, name, frequency, args) Tune the center frequency of the specified element. - For RX, this specifies the down-conversion frequency. - For TX, this specifies the up-conversion frequency. Recommended names used to represent tunable components: - "CORR" - freq error correction in PPM - "RF" - frequency of the RF frontend - "BB" - frequency of the baseband DSP \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param name the name of a tunable element \\param frequency the center frequency in Hz \\param args optional tuner arguments \\return an error code or 0 for success """ function SoapySDRDevice_setFrequencyComponent( device, direction, channel, name, frequency, args, ) @soapy_checked ccall( (:SoapySDRDevice_setFrequencyComponent, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}, Cdouble, Ptr{SoapySDRKwargs}), device, direction, channel, name, frequency, args, ) end """ SoapySDRDevice_getFrequency(device, direction, channel) Get the overall center frequency of the chain. - For RX, this specifies the down-conversion frequency. - For TX, this specifies the up-conversion frequency. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return the center frequency in Hz """ function SoapySDRDevice_getFrequency(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getFrequency, soapysdr), Cdouble, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_getFrequencyComponent(device, direction, channel, name) Get the frequency of a tunable element in the chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param name the name of a tunable element \\return the tunable element's frequency in Hz """ function SoapySDRDevice_getFrequencyComponent(device, direction, channel, name) @soapy_checked ccall( (:SoapySDRDevice_getFrequencyComponent, soapysdr), Cdouble, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}), device, direction, channel, name, ) end """ SoapySDRDevice_listFrequencies(device, direction, channel, length) List available tunable elements in the chain. Elements should be in order RF to baseband. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel \\param [out] length the number names \\return a list of tunable elements by name """ function SoapySDRDevice_listFrequencies(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_listFrequencies, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_getFrequencyRange(device, direction, channel, length) Get the range of overall frequency values. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of ranges \\return a list of frequency ranges in Hz """ function SoapySDRDevice_getFrequencyRange(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_getFrequencyRange, soapysdr), Ptr{SoapySDRRange}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_getFrequencyRangeComponent(device, direction, channel, name, length) Get the range of tunable values for the specified element. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param name the name of a tunable element \\param [out] length the number of ranges \\return a list of frequency ranges in Hz """ function SoapySDRDevice_getFrequencyRangeComponent(device, direction, channel, name, length) @soapy_checked ccall( (:SoapySDRDevice_getFrequencyRangeComponent, soapysdr), Ptr{SoapySDRRange}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}, Ptr{Csize_t}), device, direction, channel, name, length, ) end """ SoapySDRDevice_getFrequencyArgsInfo(device, direction, channel, length) Query the argument info description for tune args. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of argument infos \\return a list of argument info structures """ function SoapySDRDevice_getFrequencyArgsInfo(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_getFrequencyArgsInfo, soapysdr), Ptr{SoapySDRArgInfo}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_setSampleRate(device, direction, channel, rate) Set the baseband sample rate of the chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param rate the sample rate in samples per second \\return an error code or 0 for success """ function SoapySDRDevice_setSampleRate(device, direction, channel, rate) @soapy_checked ccall( (:SoapySDRDevice_setSampleRate, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Cdouble), device, direction, channel, rate, ) end """ SoapySDRDevice_getSampleRate(device, direction, channel) Get the baseband sample rate of the chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return the sample rate in samples per second """ function SoapySDRDevice_getSampleRate(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getSampleRate, soapysdr), Cdouble, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_listSampleRates(device, direction, channel, length) Get the range of possible baseband sample rates. \\deprecated replaced by getSampleRateRange() \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of sample rates \\return a list of possible rates in samples per second """ function SoapySDRDevice_listSampleRates(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_listSampleRates, soapysdr), Ptr{Cdouble}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_getSampleRateRange(device, direction, channel, length) Get the range of possible baseband sample rates. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of sample rates \\return a list of sample rate ranges in samples per second """ function SoapySDRDevice_getSampleRateRange(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_getSampleRateRange, soapysdr), Ptr{SoapySDRRange}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_setBandwidth(device, direction, channel, bw) Set the baseband filter width of the chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param bw the baseband filter width in Hz \\return an error code or 0 for success """ function SoapySDRDevice_setBandwidth(device, direction, channel, bw) @soapy_checked ccall( (:SoapySDRDevice_setBandwidth, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Cdouble), device, direction, channel, bw, ) end """ SoapySDRDevice_getBandwidth(device, direction, channel) Get the baseband filter width of the chain. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\return the baseband filter width in Hz """ function SoapySDRDevice_getBandwidth(device, direction, channel) @soapy_checked ccall( (:SoapySDRDevice_getBandwidth, soapysdr), Cdouble, (Ptr{SoapySDRDevice}, Cint, Csize_t), device, direction, channel, ) end """ SoapySDRDevice_listBandwidths(device, direction, channel, length) Get the range of possible baseband filter widths. \\deprecated replaced by getBandwidthRange() \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of bandwidths \\return a list of possible bandwidths in Hz """ function SoapySDRDevice_listBandwidths(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_listBandwidths, soapysdr), Ptr{Cdouble}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_getBandwidthRange(device, direction, channel, length) Get the range of possible baseband filter widths. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of ranges \\return a list of bandwidth ranges in Hz """ function SoapySDRDevice_getBandwidthRange(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_getBandwidthRange, soapysdr), Ptr{SoapySDRRange}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_setMasterClockRate(device, rate) Set the master clock rate of the device. \\param device a pointer to a device instance \\param rate the clock rate in Hz \\return an error code or 0 for success """ function SoapySDRDevice_setMasterClockRate(device, rate) @soapy_checked ccall( (:SoapySDRDevice_setMasterClockRate, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cdouble), device, rate, ) end """ SoapySDRDevice_getMasterClockRate(device) Get the master clock rate of the device. \\param device a pointer to a device instance \\return the clock rate in Hz """ function SoapySDRDevice_getMasterClockRate(device) @soapy_checked ccall( (:SoapySDRDevice_getMasterClockRate, soapysdr), Cdouble, (Ptr{SoapySDRDevice},), device, ) end """ SoapySDRDevice_getMasterClockRates(device, length) Get the range of available master clock rates. \\param device a pointer to a device instance \\param [out] length the number of ranges \\return a list of clock rate ranges in Hz """ function SoapySDRDevice_getMasterClockRates(device, length) @soapy_checked ccall( (:SoapySDRDevice_getMasterClockRates, soapysdr), Ptr{SoapySDRRange}, (Ptr{SoapySDRDevice}, Ptr{Csize_t}), device, length, ) end """ SoapySDRDevice_setReferenceClockRate(device, rate) Set the reference clock rate of the device. \\param device a pointer to a device instance \\param rate the clock rate in Hz \\return an error code or 0 for success """ function SoapySDRDevice_setReferenceClockRate(device, rate) @soapy_checked ccall( (:SoapySDRDevice_setReferenceClockRate, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cdouble), device, rate, ) end """ SoapySDRDevice_getReferenceClockRate(device) Get the reference clock rate of the device. \\param device a pointer to a device instance \\return the clock rate in Hz """ function SoapySDRDevice_getReferenceClockRate(device) @soapy_checked ccall( (:SoapySDRDevice_getReferenceClockRate, soapysdr), Cdouble, (Ptr{SoapySDRDevice},), device, ) end """ SoapySDRDevice_getReferenceClockRates(device, length) Get the range of available reference clock rates. \\param device a pointer to a device instance \\param [out] length the number of sources \\return a list of clock rate ranges in Hz """ function SoapySDRDevice_getReferenceClockRates(device, length) ccall( (:SoapySDRDevice_getReferenceClockRates, soapysdr), Ptr{SoapySDRRange}, (Ptr{SoapySDRDevice}, Ptr{Csize_t}), device, length, ) end """ SoapySDRDevice_listClockSources(device, length) Get the list of available clock sources. \\param device a pointer to a device instance \\param [out] length the number of sources \\return a list of clock source names """ function SoapySDRDevice_listClockSources(device, length) @soapy_checked ccall( (:SoapySDRDevice_listClockSources, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Ptr{Csize_t}), device, length, ) end """ SoapySDRDevice_setClockSource(device, source) Set the clock source on the device \\param device a pointer to a device instance \\param source the name of a clock source \\return an error code or 0 for success """ function SoapySDRDevice_setClockSource(device, source) @soapy_checked ccall( (:SoapySDRDevice_setClockSource, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{Cchar}), device, source, ) end """ SoapySDRDevice_getClockSource(device) Get the clock source of the device \\param device a pointer to a device instance \\return the name of a clock source """ function SoapySDRDevice_getClockSource(device) @soapy_checked ccall( (:SoapySDRDevice_getClockSource, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice},), device, ) end """ SoapySDRDevice_listTimeSources(device, length) Get the list of available time sources. \\param device a pointer to a device instance \\param [out] length the number of sources \\return a list of time source names """ function SoapySDRDevice_listTimeSources(device, length) @soapy_checked ccall( (:SoapySDRDevice_listTimeSources, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Ptr{Csize_t}), device, length, ) end """ SoapySDRDevice_setTimeSource(device, source) Set the time source on the device \\param device a pointer to a device instance \\param source the name of a time source \\return an error code or 0 for success """ function SoapySDRDevice_setTimeSource(device, source) @soapy_checked ccall( (:SoapySDRDevice_setTimeSource, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{Cchar}), device, source, ) end """ SoapySDRDevice_getTimeSource(device) Get the time source of the device \\param device a pointer to a device instance \\return the name of a time source """ function SoapySDRDevice_getTimeSource(device) @soapy_checked ccall( (:SoapySDRDevice_getTimeSource, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice},), device, ) end """ SoapySDRDevice_hasHardwareTime(device, what) Does this device have a hardware clock? \\param device a pointer to a device instance \\param what optional argument \\return true if the hardware clock exists """ function SoapySDRDevice_hasHardwareTime(device, what) @soapy_checked ccall( (:SoapySDRDevice_hasHardwareTime, soapysdr), Bool, (Ptr{SoapySDRDevice}, Ptr{Cchar}), device, what, ) end """ SoapySDRDevice_getHardwareTime(device, what) Read the time from the hardware clock on the device. The what argument can refer to a specific time counter. \\param device a pointer to a device instance \\param what optional argument \\return the time in nanoseconds """ function SoapySDRDevice_getHardwareTime(device, what) @soapy_checked ccall( (:SoapySDRDevice_getHardwareTime, soapysdr), Clonglong, (Ptr{SoapySDRDevice}, Ptr{Cchar}), device, what, ) end """ SoapySDRDevice_setHardwareTime(device, timeNs, what) Write the time to the hardware clock on the device. The what argument can refer to a specific time counter. \\param device a pointer to a device instance \\param timeNs time in nanoseconds \\param what optional argument \\return 0 for success or error code on failure """ function SoapySDRDevice_setHardwareTime(device, timeNs, what) @soapy_checked ccall( (:SoapySDRDevice_setHardwareTime, soapysdr), Cint, (Ptr{SoapySDRDevice}, Clonglong, Ptr{Cchar}), device, timeNs, what, ) end """ SoapySDRDevice_setCommandTime(device, timeNs, what) Set the time of subsequent configuration calls. The what argument can refer to a specific command queue. Implementations may use a time of 0 to clear. \\deprecated replaced by setHardwareTime() \\param device a pointer to a device instance \\param timeNs time in nanoseconds \\param what optional argument \\return 0 for success or error code on failure """ function SoapySDRDevice_setCommandTime(device, timeNs, what) @soapy_checked ccall( (:SoapySDRDevice_setCommandTime, soapysdr), Cint, (Ptr{SoapySDRDevice}, Clonglong, Ptr{Cchar}), device, timeNs, what, ) end """ SoapySDRDevice_listSensors(device, length) List the available global readback sensors. A sensor can represent a reference lock, RSSI, temperature. \\param device a pointer to a device instance \\param [out] length the number of sensor names \\return a list of available sensor string names """ function SoapySDRDevice_listSensors(device, length) @soapy_checked ccall( (:SoapySDRDevice_listSensors, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Ptr{Csize_t}), device, length, ) end """ SoapySDRDevice_getSensorInfo(device, key) Get meta-information about a sensor. Example: displayable name, type, range. \\param device a pointer to a device instance \\param key the ID name of an available sensor \\return meta-information about a sensor """ function SoapySDRDevice_getSensorInfo(device, key) @soapy_checked ccall( (:SoapySDRDevice_getSensorInfo, soapysdr), SoapySDRArgInfo, (Ptr{SoapySDRDevice}, Ptr{Cchar}), device, key, ) end """ SoapySDRDevice_readSensor(device, key) Readback a global sensor given the name. The value returned is a string which can represent a boolean ("true"/"false"), an integer, or float. \\param device a pointer to a device instance \\param key the ID name of an available sensor \\return the current value of the sensor """ function SoapySDRDevice_readSensor(device, key) @soapy_checked ccall( (:SoapySDRDevice_readSensor, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice}, Ptr{Cchar}), device, key, ) end """ SoapySDRDevice_listChannelSensors(device, direction, channel, length) List the available channel readback sensors. A sensor can represent a reference lock, RSSI, temperature. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of sensor names \\return a list of available sensor string names """ function SoapySDRDevice_listChannelSensors(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_listChannelSensors, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_getChannelSensorInfo(device, direction, channel, key) Get meta-information about a channel sensor. Example: displayable name, type, range. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param key the ID name of an available sensor \\return meta-information about a sensor """ function SoapySDRDevice_getChannelSensorInfo(device, direction, channel, key) @soapy_checked ccall( (:SoapySDRDevice_getChannelSensorInfo, soapysdr), SoapySDRArgInfo, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}), device, direction, channel, key, ) end """ SoapySDRDevice_readChannelSensor(device, direction, channel, key) Readback a channel sensor given the name. The value returned is a string which can represent a boolean ("true"/"false"), an integer, or float. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param key the ID name of an available sensor \\return the current value of the sensor """ function SoapySDRDevice_readChannelSensor(device, direction, channel, key) @soapy_checked ccall( (:SoapySDRDevice_readChannelSensor, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}), device, direction, channel, key, ) end """ SoapySDRDevice_listRegisterInterfaces(device, length) Get a list of available register interfaces by name. \\param device a pointer to a device instance \\param [out] length the number of interfaces \\return a list of available register interfaces """ function SoapySDRDevice_listRegisterInterfaces(device, length) @soapy_checked ccall( (:SoapySDRDevice_listRegisterInterfaces, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Ptr{Csize_t}), device, length, ) end """ SoapySDRDevice_writeRegister(device, name, addr, value) Write a register on the device given the interface name. This can represent a register on a soft CPU, FPGA, IC; the interpretation is up the implementation to decide. \\param device a pointer to a device instance \\param name the name of a available register interface \\param addr the register address \\param value the register value \\return 0 for success or error code on failure """ function SoapySDRDevice_writeRegister(device, name, addr, value) @soapy_checked ccall( (:SoapySDRDevice_writeRegister, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Cuint, Cuint), device, name, addr, value, ) end """ SoapySDRDevice_readRegister(device, name, addr) Read a register on the device given the interface name. \\param device a pointer to a device instance \\param name the name of a available register interface \\param addr the register address \\return the register value """ function SoapySDRDevice_readRegister(device, name, addr) @soapy_checked ccall( (:SoapySDRDevice_readRegister, soapysdr), Cuint, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Cuint), device, name, addr, ) end """ SoapySDRDevice_writeRegisters(device, name, addr, value, length) Write a memory block on the device given the interface name. This can represent a memory block on a soft CPU, FPGA, IC; the interpretation is up the implementation to decide. \\param device a pointer to a device instance \\param name the name of a available memory block interface \\param addr the memory block start address \\param value the memory block content \\param length the number of words in the block \\return 0 for success or error code on failure """ function SoapySDRDevice_writeRegisters(device, name, addr, value, length) @soapy_checked ccall( (:SoapySDRDevice_writeRegisters, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Cuint, Ptr{Cuint}, Csize_t), device, name, addr, value, length, ) end """ SoapySDRDevice_readRegisters(device, name, addr, length) Read a memory block on the device given the interface name. Pass the number of words to be read in via length; length will be set to the number of actual words read. \\param device a pointer to a device instance \\param name the name of a available memory block interface \\param addr the memory block start address \\param [inout] length number of words to be read from memory block \\return the memory block content """ function SoapySDRDevice_readRegisters(device, name, addr, length) @soapy_checked ccall( (:SoapySDRDevice_readRegisters, soapysdr), Ptr{Cuint}, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Cuint, Ptr{Csize_t}), device, name, addr, length, ) end """ SoapySDRDevice_getSettingInfo(device, length) Describe the allowed keys and values used for settings. \\param device a pointer to a device instance \\param [out] length the number of sensor names \\return a list of argument info structures """ function SoapySDRDevice_getSettingInfo(device, length) @soapy_checked ccall( (:SoapySDRDevice_getSettingInfo, soapysdr), Ptr{SoapySDRArgInfo}, (Ptr{SoapySDRDevice}, Ptr{Csize_t}), device, length, ) end """ SoapySDRDevice_writeSetting(device, key, value) Write an arbitrary setting on the device. The interpretation is up the implementation. \\param device a pointer to a device instance \\param key the setting identifier \\param value the setting value \\return 0 for success or error code on failure """ function SoapySDRDevice_writeSetting(device, key, value) @soapy_checked ccall( (:SoapySDRDevice_writeSetting, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Ptr{Cchar}), device, key, value, ) end """ SoapySDRDevice_readSetting(device, key) Read an arbitrary setting on the device. \\param device a pointer to a device instance \\param key the setting identifier \\return the setting value """ function SoapySDRDevice_readSetting(device, key) @soapy_checked ccall( (:SoapySDRDevice_readSetting, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice}, Ptr{Cchar}), device, key, ) end """ SoapySDRDevice_getChannelSettingInfo(device, direction, channel, length) Describe the allowed keys and values used for channel settings. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param [out] length the number of sensor names \\return a list of argument info structures """ function SoapySDRDevice_getChannelSettingInfo(device, direction, channel, length) @soapy_checked ccall( (:SoapySDRDevice_getChannelSettingInfo, soapysdr), Ptr{SoapySDRArgInfo}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Csize_t}), device, direction, channel, length, ) end """ SoapySDRDevice_writeChannelSetting(device, direction, channel, key, value) Write an arbitrary channel setting on the device. The interpretation is up the implementation. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param key the setting identifier \\param value the setting value \\return 0 for success or error code on failure """ function SoapySDRDevice_writeChannelSetting(device, direction, channel, key, value) @soapy_checked ccall( (:SoapySDRDevice_writeChannelSetting, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}, Ptr{Cchar}), device, direction, channel, key, value, ) end """ SoapySDRDevice_readChannelSetting(device, direction, channel, key) Read an arbitrary channel setting on the device. \\param device a pointer to a device instance \\param direction the channel direction RX or TX \\param channel an available channel on the device \\param key the setting identifier \\return the setting value """ function SoapySDRDevice_readChannelSetting(device, direction, channel, key) @soapy_checked ccall( (:SoapySDRDevice_readChannelSetting, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice}, Cint, Csize_t, Ptr{Cchar}), device, direction, channel, key, ) end """ SoapySDRDevice_listGPIOBanks(device, length) Get a list of available GPIO banks by name. \\param [out] length the number of GPIO banks \\param device a pointer to a device instance """ function SoapySDRDevice_listGPIOBanks(device, length) @soapy_checked ccall( (:SoapySDRDevice_listGPIOBanks, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Ptr{Csize_t}), device, length, ) end """ SoapySDRDevice_writeGPIO(device, bank, value) Write the value of a GPIO bank. \\param device a pointer to a device instance \\param bank the name of an available bank \\param value an integer representing GPIO bits \\return 0 for success or error code on failure """ function SoapySDRDevice_writeGPIO(device, bank, value) @soapy_checked ccall( (:SoapySDRDevice_writeGPIO, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Cuint), device, bank, value, ) end """ SoapySDRDevice_writeGPIOMasked(device, bank, value, mask) Write the value of a GPIO bank with modification mask. \\param device a pointer to a device instance \\param bank the name of an available bank \\param value an integer representing GPIO bits \\param mask a modification mask where 1 = modify \\return 0 for success or error code on failure """ function SoapySDRDevice_writeGPIOMasked(device, bank, value, mask) @soapy_checked ccall( (:SoapySDRDevice_writeGPIOMasked, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Cuint, Cuint), device, bank, value, mask, ) end """ SoapySDRDevice_readGPIO(device, bank) Readback the value of a GPIO bank. \\param device a pointer to a device instance \\param bank the name of an available bank \\return an integer representing GPIO bits """ function SoapySDRDevice_readGPIO(device, bank) @soapy_checked ccall( (:SoapySDRDevice_readGPIO, soapysdr), Cuint, (Ptr{SoapySDRDevice}, Ptr{Cchar}), device, bank, ) end """ SoapySDRDevice_writeGPIODir(device, bank, dir) Write the data direction of a GPIO bank. 1 bits represent outputs, 0 bits represent inputs. \\param device a pointer to a device instance \\param bank the name of an available bank \\param dir an integer representing data direction bits \\return 0 for success or error code on failure """ function SoapySDRDevice_writeGPIODir(device, bank, dir) @soapy_checked ccall( (:SoapySDRDevice_writeGPIODir, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Cuint), device, bank, dir, ) end """ SoapySDRDevice_writeGPIODirMasked(device, bank, dir, mask) Write the data direction of a GPIO bank with modification mask. 1 bits represent outputs, 0 bits represent inputs. \\param device a pointer to a device instance \\param bank the name of an available bank \\param dir an integer representing data direction bits \\param mask a modification mask where 1 = modify \\return 0 for success or error code on failure """ function SoapySDRDevice_writeGPIODirMasked(device, bank, dir, mask) @soapy_checked ccall( (:SoapySDRDevice_writeGPIODirMasked, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Cuint, Cuint), device, bank, dir, mask, ) end """ SoapySDRDevice_readGPIODir(device, bank) Read the data direction of a GPIO bank. \\param device a pointer to a device instance 1 bits represent outputs, 0 bits represent inputs. \\param bank the name of an available bank \\return an integer representing data direction bits """ function SoapySDRDevice_readGPIODir(device, bank) @soapy_checked ccall( (:SoapySDRDevice_readGPIODir, soapysdr), Cuint, (Ptr{SoapySDRDevice}, Ptr{Cchar}), device, bank, ) end """ SoapySDRDevice_writeI2C(device, addr, data, numBytes) Write to an available I2C slave. If the device contains multiple I2C masters, the address bits can encode which master. \\param device a pointer to a device instance \\param addr the address of the slave \\param data an array of bytes write out \\param numBytes the number of bytes to write \\return 0 for success or error code on failure """ function SoapySDRDevice_writeI2C(device, addr, data, numBytes) @soapy_checked ccall( (:SoapySDRDevice_writeI2C, soapysdr), Cint, (Ptr{SoapySDRDevice}, Cint, Ptr{Cchar}, Csize_t), device, addr, data, numBytes, ) end """ SoapySDRDevice_readI2C(device, addr, numBytes) Read from an available I2C slave. If the device contains multiple I2C masters, the address bits can encode which master. Pass the number of bytes to be read in via numBytes; numBytes will be set to the number of actual bytes read. \\param device a pointer to a device instance \\param addr the address of the slave \\param [inout] numBytes the number of bytes to read \\return an array of bytes read from the slave """ function SoapySDRDevice_readI2C(device, addr, numBytes) @soapy_checked ccall( (:SoapySDRDevice_readI2C, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice}, Cint, Ptr{Csize_t}), device, addr, numBytes, ) end """ SoapySDRDevice_transactSPI(device, addr, data, numBits) Perform a SPI transaction and return the result. Its up to the implementation to set the clock rate, and read edge, and the write edge of the SPI core. SPI slaves without a readback pin will return 0. If the device contains multiple SPI masters, the address bits can encode which master. \\param device a pointer to a device instance \\param addr an address of an available SPI slave \\param data the SPI data, numBits-1 is first out \\param numBits the number of bits to clock out \\return the readback data, numBits-1 is first in """ function SoapySDRDevice_transactSPI(device, addr, data, numBits) @soapy_checked ccall( (:SoapySDRDevice_transactSPI, soapysdr), Cuint, (Ptr{SoapySDRDevice}, Cint, Cuint, Csize_t), device, addr, data, numBits, ) end """ SoapySDRDevice_listUARTs(device, length) Enumerate the available UART devices. \\param device a pointer to a device instance \\param [out] length the number of UART names \\return a list of names of available UARTs """ function SoapySDRDevice_listUARTs(device, length) @soapy_checked ccall( (:SoapySDRDevice_listUARTs, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{SoapySDRDevice}, Ptr{Csize_t}), device, length, ) end """ SoapySDRDevice_writeUART(device, which, data) Write data to a UART device. Its up to the implementation to set the baud rate, carriage return settings, flushing on newline. \\param device a pointer to a device instance \\param which the name of an available UART \\param data a null terminated array of bytes \\return 0 for success or error code on failure """ function SoapySDRDevice_writeUART(device, which, data) @soapy_checked ccall( (:SoapySDRDevice_writeUART, soapysdr), Cint, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Ptr{Cchar}), device, which, data, ) end """ SoapySDRDevice_readUART(device, which, timeoutUs) Read bytes from a UART until timeout or newline. Its up to the implementation to set the baud rate, carriage return settings, flushing on newline. \\param device a pointer to a device instance \\param which the name of an available UART \\param timeoutUs a timeout in microseconds \\return a null terminated array of bytes """ function SoapySDRDevice_readUART(device, which, timeoutUs) @soapy_checked ccall( (:SoapySDRDevice_readUART, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRDevice}, Ptr{Cchar}, Clong), device, which, timeoutUs, ) end """ SoapySDRDevice_getNativeDeviceHandle(device) A handle to the native device used by the driver. The implementation may return a null value if it does not support or does not wish to provide access to the native handle. \\param device a pointer to a device instance \\return a handle to the native device or null """ function SoapySDRDevice_getNativeDeviceHandle(device) @soapy_checked ccall( (:SoapySDRDevice_getNativeDeviceHandle, soapysdr), Ptr{Cvoid}, (Ptr{SoapySDRDevice},), device, ) end """ SoapySDR_errToStr(errorCode) Convert a error code to a string for printing purposes. If the error code is unrecognized, errToStr returns "UNKNOWN". \\param errorCode a negative integer return code \\return a pointer to a string representing the error """ function SoapySDR_errToStr(errorCode) ccall((:SoapySDR_errToStr, soapysdr), Ptr{Cchar}, (Cint,), errorCode) end """ SoapySDR_formatToSize(format) Get the size of a single element in the specified format. \\param format a supported format string \\return the size of an element in bytes """ function SoapySDR_formatToSize(format) ccall((:SoapySDR_formatToSize, soapysdr), Csize_t, (Ptr{Cchar},), format) end """ SoapySDRLogLevel The available priority levels for log messages. The default log level threshold is SOAPY_SDR_INFO. Log messages with lower priorities are dropped. The default threshold can be set via the SOAPY_SDR_LOG_LEVEL environment variable. Set SOAPY_SDR_LOG_LEVEL to the string value: "WARNING", "ERROR", "DEBUG", etc... or set it to the equivalent integer value. """ @cenum SoapySDRLogLevel::UInt32 begin SOAPY_SDR_FATAL = 1 SOAPY_SDR_CRITICAL = 2 SOAPY_SDR_ERROR = 3 SOAPY_SDR_WARNING = 4 SOAPY_SDR_NOTICE = 5 SOAPY_SDR_INFO = 6 SOAPY_SDR_DEBUG = 7 SOAPY_SDR_TRACE = 8 SOAPY_SDR_SSI = 9 end """ SoapySDR_log(logLevel, message) Send a message to the registered logger. \\param logLevel a possible logging level \\param message a logger message string """ function SoapySDR_log(logLevel, message) ccall( (:SoapySDR_log, soapysdr), Cvoid, (SoapySDRLogLevel, Ptr{Cchar}), logLevel, message, ) end # typedef void ( * SoapySDRLogHandler ) ( const SoapySDRLogLevel logLevel , const char * message ) """ Typedef for the registered log handler function. """ const SoapySDRLogHandler = Ptr{Cvoid} """ SoapySDR_registerLogHandler(handler) Register a new system log handler. Platforms should call this to replace the default stdio handler. Passing `NULL` restores the default. """ function SoapySDR_registerLogHandler(handler) ccall((:SoapySDR_registerLogHandler, soapysdr), Cvoid, (SoapySDRLogHandler,), handler) end """ SoapySDR_setLogLevel(logLevel) Set the log level threshold. Log messages with lower priority are dropped. """ function SoapySDR_setLogLevel(logLevel) ccall((:SoapySDR_setLogLevel, soapysdr), Cvoid, (SoapySDRLogLevel,), logLevel) end """ SoapySDR_getRootPath() Query the root installation path """ function SoapySDR_getRootPath() ccall((:SoapySDR_getRootPath, soapysdr), Ptr{Cchar}, ()) end """ SoapySDR_listSearchPaths(length) The list of paths automatically searched by loadModules(). \\param [out] length the number of elements in the result. \\return a list of automatically searched file paths """ function SoapySDR_listSearchPaths(length) ccall((:SoapySDR_listSearchPaths, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{Csize_t},), length) end """ SoapySDR_listModules(length) List all modules found in default path. The result is an array of strings owned by the caller. \\param [out] length the number of elements in the result. \\return a list of file paths to loadable modules """ function SoapySDR_listModules(length) ccall((:SoapySDR_listModules, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{Csize_t},), length) end """ SoapySDR_listModulesPath(path, length) List all modules found in the given path. The result is an array of strings owned by the caller. \\param path a directory on the system \\param [out] length the number of elements in the result. \\return a list of file paths to loadable modules """ function SoapySDR_listModulesPath(path, length) ccall( (:SoapySDR_listModulesPath, soapysdr), Ptr{Ptr{Cchar}}, (Ptr{Cchar}, Ptr{Csize_t}), path, length, ) end """ SoapySDR_loadModule(path) Load a single module given its file system path. The caller must free the result error string. \\param path the path to a specific module file \\return an error message, empty on success """ function SoapySDR_loadModule(path) ccall((:SoapySDR_loadModule, soapysdr), Ptr{Cchar}, (Ptr{Cchar},), path) end """ SoapySDR_getLoaderResult(path) List all registration loader errors for a given module path. The resulting dictionary contains all registry entry names provided by the specified module. The value of each entry is an error message string or empty on successful load. \\param path the path to a specific module file \\return a dictionary of registry names to error messages """ function SoapySDR_getLoaderResult(path) ccall((:SoapySDR_getLoaderResult, soapysdr), SoapySDRKwargs, (Ptr{Cchar},), path) end """ SoapySDR_getModuleVersion(path) Get a version string for the specified module. Modules may optionally provide version strings. \\param path the path to a specific module file \\return a version string or empty if no version provided """ function SoapySDR_getModuleVersion(path) ccall((:SoapySDR_getModuleVersion, soapysdr), Ptr{Cchar}, (Ptr{Cchar},), path) end """ SoapySDR_unloadModule(path) Unload a module that was loaded with loadModule(). The caller must free the result error string. \\param path the path to a specific module file \\return an error message, empty on success """ function SoapySDR_unloadModule(path) ccall((:SoapySDR_unloadModule, soapysdr), Ptr{Cchar}, (Ptr{Cchar},), path) end """ SoapySDR_loadModules() Load the support modules installed on this system. This call will only actually perform the load once. Subsequent calls are a NOP. """ function SoapySDR_loadModules() ccall((:SoapySDR_loadModules, soapysdr), Cvoid, ()) end """ SoapySDR_unloadModules() Unload all currently loaded support modules. """ function SoapySDR_unloadModules() ccall((:SoapySDR_unloadModules, soapysdr), Cvoid, ()) end """ SoapySDR_ticksToTimeNs(ticks, rate) Convert a tick count into a time in nanoseconds using the tick rate. \\param ticks a integer tick count \\param rate the ticks per second \\return the time in nanoseconds """ function SoapySDR_ticksToTimeNs(ticks, rate) ccall((:SoapySDR_ticksToTimeNs, soapysdr), Clonglong, (Clonglong, Cdouble), ticks, rate) end """ SoapySDR_timeNsToTicks(timeNs, rate) Convert a time in nanoseconds into a tick count using the tick rate. \\param timeNs time in nanoseconds \\param rate the ticks per second \\return the integer tick count """ function SoapySDR_timeNsToTicks(timeNs, rate) ccall( (:SoapySDR_timeNsToTicks, soapysdr), Clonglong, (Clonglong, Cdouble), timeNs, rate, ) end """ SoapySDRKwargs_fromString(markup) Convert a markup string to a key-value map. The markup format is: "key0=value0, key1=value1" """ function SoapySDRKwargs_fromString(markup) ccall((:SoapySDRKwargs_fromString, soapysdr), SoapySDRKwargs, (Ptr{Cchar},), markup) end """ SoapySDRKwargs_toString(args) Convert a key-value map to a markup string. The markup format is: "key0=value0, key1=value1" """ function SoapySDRKwargs_toString(args) ccall((:SoapySDRKwargs_toString, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRKwargs},), args) end """ SoapySDR_free(ptr) Free a pointer allocated by SoapySDR. For most platforms this is a simple call around free() """ function SoapySDR_free(ptr) ccall((:SoapySDR_free, soapysdr), Cvoid, (Ptr{Cvoid},), ptr) end """ SoapySDRStrings_clear(elems, length) Clear the contents of a list of string Convenience call to deal with results that return a string list. """ function SoapySDRStrings_clear(elems, length) ccall( (:SoapySDRStrings_clear, soapysdr), Cvoid, (Ptr{Ptr{Ptr{Cchar}}}, Csize_t), elems, length, ) end """ SoapySDRKwargs_set(args, key, val) Set a key/value pair in a kwargs structure. \\post If the key exists, the existing entry will be modified; otherwise a new entry will be appended to args. On error, the elements of args will not be modified, and args is guaranteed to be in a good state. \\return 0 for success, otherwise allocation error """ function SoapySDRKwargs_set(args, key, val) ccall( (:SoapySDRKwargs_set, soapysdr), Cint, (Ptr{SoapySDRKwargs}, Ptr{Cchar}, Ptr{Cchar}), args, key, val, ) end """ SoapySDRKwargs_get(args, key) Get a value given a key in a kwargs structure. \\return the string or NULL if not found """ function SoapySDRKwargs_get(args, key) ccall( (:SoapySDRKwargs_get, soapysdr), Ptr{Cchar}, (Ptr{SoapySDRKwargs}, Ptr{Cchar}), args, key, ) end """ SoapySDRKwargs_clear(args) Clear the contents of a kwargs structure. This frees all the underlying memory and clears the members. """ function SoapySDRKwargs_clear(args) ccall((:SoapySDRKwargs_clear, soapysdr), Cvoid, (Ptr{SoapySDRKwargs},), args) end """ SoapySDRKwargsList_clear(args, length) Clear a list of kwargs structures. This frees all the underlying memory and clears the members. """ function SoapySDRKwargsList_clear(args, length) ccall( (:SoapySDRKwargsList_clear, soapysdr), Cvoid, (Ptr{SoapySDRKwargs}, Csize_t), args, length, ) end """ SoapySDRArgInfo_clear(info) Clear the contents of a argument info structure. This frees all the underlying memory and clears the members. """ function SoapySDRArgInfo_clear(info) ccall((:SoapySDRArgInfo_clear, soapysdr), Cvoid, (Ptr{SoapySDRArgInfo},), info) end """ SoapySDRArgInfoList_clear(info, length) Clear a list of argument info structures. This frees all the underlying memory and clears the members. """ function SoapySDRArgInfoList_clear(info, length) ccall( (:SoapySDRArgInfoList_clear, soapysdr), Cvoid, (Ptr{SoapySDRArgInfo}, Csize_t), info, length, ) end """ SoapySDR_getAPIVersion() Get the SoapySDR library API version as a string. The format of the version string is <b>major.minor.increment</b>, where the digits are taken directly from <b>SOAPY_SDR_API_VERSION</b>. """ function SoapySDR_getAPIVersion() ccall((:SoapySDR_getAPIVersion, soapysdr), Ptr{Cchar}, ()) end """ SoapySDR_getABIVersion() Get the ABI version string that the library was built against. A client can compare <b>SOAPY_SDR_ABI_VERSION</b> to getABIVersion() to check for ABI incompatibility before using the library. If the values are not equal then the client code was compiled against a different ABI than the library. """ function SoapySDR_getABIVersion() ccall((:SoapySDR_getABIVersion, soapysdr), Ptr{Cchar}, ()) end """ SoapySDR_getLibVersion() Get the library version and build information string. The format of the version string is <b>major.minor.patch-buildInfo</b>. This function is commonly used to identify the software back-end to the user for command-line utilities and graphical applications. """ function SoapySDR_getLibVersion() ccall((:SoapySDR_getLibVersion, soapysdr), Ptr{Cchar}, ()) end # Skipping MacroDefinition: SOAPY_SDR_HELPER_DLL_IMPORT __attribute__ ( ( visibility ( "default" ) ) ) # Skipping MacroDefinition: SOAPY_SDR_HELPER_DLL_EXPORT __attribute__ ( ( visibility ( "default" ) ) ) # Skipping MacroDefinition: SOAPY_SDR_HELPER_DLL_LOCAL __attribute__ ( ( visibility ( "hidden" ) ) ) # Skipping MacroDefinition: SOAPY_SDR_EXTERN extern const SOAPY_SDR_TX = 0 const SOAPY_SDR_RX = 1 const SOAPY_SDR_END_BURST = 1 << 1 const SOAPY_SDR_HAS_TIME = 1 << 2 const SOAPY_SDR_END_ABRUPT = 1 << 3 const SOAPY_SDR_ONE_PACKET = 1 << 4 const SOAPY_SDR_MORE_FRAGMENTS = 1 << 5 const SOAPY_SDR_WAIT_TRIGGER = 1 << 6 const SOAPY_SDR_TIMEOUT = -1 const SOAPY_SDR_STREAM_ERROR = -2 const SOAPY_SDR_CORRUPTION = -3 const SOAPY_SDR_OVERFLOW = -4 const SOAPY_SDR_NOT_SUPPORTED = -5 const SOAPY_SDR_TIME_ERROR = -6 const SOAPY_SDR_UNDERFLOW = -7 const SOAPY_SDR_CF64 = "CF64" const SOAPY_SDR_CF32 = "CF32" const SOAPY_SDR_CS32 = "CS32" const SOAPY_SDR_CU32 = "CU32" const SOAPY_SDR_CS16 = "CS16" const SOAPY_SDR_CU16 = "CU16" const SOAPY_SDR_CS12 = "CS12" const SOAPY_SDR_CU12 = "CU12" const SOAPY_SDR_CS8 = "CS8" const SOAPY_SDR_CU8 = "CU8" const SOAPY_SDR_CS4 = "CS4" const SOAPY_SDR_CU4 = "CU4" const SOAPY_SDR_F64 = "F64" const SOAPY_SDR_F32 = "F32" const SOAPY_SDR_S32 = "S32" const SOAPY_SDR_U32 = "U32" const SOAPY_SDR_S16 = "S16" const SOAPY_SDR_U16 = "U16" const SOAPY_SDR_S8 = "S8" const SOAPY_SDR_U8 = "U8" const SOAPY_SDR_SSI = SOAPY_SDR_SSI const SOAPY_SDR_TRUE = "true" const SOAPY_SDR_FALSE = "false" const SOAPY_SDR_API_VERSION = 0x00080000 const SOAPY_SDR_ABI_VERSION = "0.8"
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
code
9567
using SoapySDR using Test using Unitful using Unitful.DefaultSymbols using Intervals const dB = u"dB" const sd = SoapySDR const hardware = "loopback" # Load dummy test harness or hardware if hardware == "loopback" using SoapyLoopback_jll elseif hardware == "rtlsdr" using SoapyRTLSDR_jll else error("unknown test hardware") end # Test Log Handler registration SoapySDR.register_log_handler() @testset "SoapySDR.jl" begin @testset "Version" begin SoapySDR.versioninfo() end @testset "Logging" begin SoapySDR.register_log_handler() SoapySDR.set_log_level(0) end @testset "Error" begin SoapySDR.error_to_string(-1) == "TIMEOUT" SoapySDR.error_to_string(10) == "UNKNOWN" end @testset "Ranges/Display" begin intervalrange = sd.SoapySDRRange(0, 1, 0) steprange = sd.SoapySDRRange(0, 1, 0.1) intervalrangedb = sd._gainrange(intervalrange) steprangedb = sd._gainrange(steprange) #TODO intervalrangehz = sd._hzrange(intervalrange) steprangehz = sd._hzrange(steprange) hztype = typeof(1.0 * Hz) @test typeof(intervalrangedb) == Interval{Gain{Unitful.LogInfo{:Decibel,10,10},:?,Float64},Closed,Closed} @test typeof(steprangedb) == Interval{Gain{Unitful.LogInfo{:Decibel,10,10},:?,Float64},Closed,Closed} @test typeof(intervalrangehz) == Interval{hztype,Closed,Closed} if VERSION >= v"1.7" @test typeof(steprangehz) == StepRangeLen{ hztype, Base.TwicePrecision{hztype}, Base.TwicePrecision{hztype}, Int64, } else @test typeof(steprangehz) == StepRangeLen{ hztype, Base.TwicePrecision{hztype}, Base.TwicePrecision{hztype}, } end io = IOBuffer(read = true, write = true) sd.print_hz_range(io, intervalrangehz) @test String(take!(io)) == "00..0.001 kHz" sd.print_hz_range(io, steprangehz) @test String(take!(io)) == "00 Hz:0.0001 kHz:0.001 kHz" end @testset "Keyword Arguments" begin args = KWArgs() @test length(args) == 0 args = parse(KWArgs, "foo=1,bar=2") @test length(args) == 2 @test args["foo"] == "1" @test args["bar"] == "2" args["foo"] = "0" @test args["foo"] == "0" args["qux"] = "3" @test length(args) == 3 @test args["qux"] == "3" str = String(args) @test contains(str, "foo=0") end @testset "High Level API" begin io = IOBuffer(read = true, write = true) # Test failing to open a device due to an invalid specification @test_throws SoapySDR.SoapySDRDeviceError Device(parse(KWArgs, "driver=foo")) # Device constructor, show, iterator @test length(Devices()) == 1 @test length(Devices(driver = "loopback")) == 1 show(io, Devices()) deva = Devices()[1] deva["refclk"] = "internal" dev = Device(deva) show(io, dev) for dev in Devices() show(io, dev) end @test typeof(dev) == sd.Device @test typeof(dev.info) == sd.KWArgs @test dev.driver == :LoopbackDriver @test dev.hardware == :LoopbackHardware @test dev.time_sources == SoapySDR.TimeSource[:sw_ticks, :hw_ticks] @test dev.time_source == SoapySDR.TimeSource(:sw_ticks) dev.time_source = "hw_ticks" @test dev.time_source == SoapySDR.TimeSource(:hw_ticks) dev.time_source = dev.time_sources[1] @test dev.time_source == SoapySDR.TimeSource(:sw_ticks) # Channels rx_chan_list = dev.rx tx_chan_list = dev.tx @test typeof(rx_chan_list) == sd.ChannelList @test typeof(tx_chan_list) == sd.ChannelList show(io, rx_chan_list) show(io, tx_chan_list) rx_chan = dev.rx[1] tx_chan = dev.tx[1] @test typeof(rx_chan) == sd.Channel @test typeof(tx_chan) == sd.Channel show(io, rx_chan) show(io, tx_chan) show(io, MIME"text/plain"(), rx_chan) show(io, MIME"text/plain"(), tx_chan) #channel set/get properties @test rx_chan.native_stream_format == SoapySDR.ComplexInt{12} #, fullscale @test rx_chan.stream_formats == [Complex{Int8}, SoapySDR.ComplexInt{12}, Complex{Int16}, ComplexF32] @test tx_chan.native_stream_format == SoapySDR.ComplexInt{12} #, fullscale @test tx_chan.stream_formats == [Complex{Int8}, SoapySDR.ComplexInt{12}, Complex{Int16}, ComplexF32] @test rx_chan.antennas == SoapySDR.Antenna[:RX, :TX] @test tx_chan.antennas == SoapySDR.Antenna[:RX, :TX] @test rx_chan.antenna == SoapySDR.Antenna(:RX) @test tx_chan.antenna == SoapySDR.Antenna(:TX) rx_chan.antenna = :TX # TODO: Add some more antennas to the loopback driver #@test rx_chan.antenna == SoapySDR.Antenna(:TX) rx_chan.antenna = :RX rx_chan.antenna = "RX" @test_throws ArgumentError rx_chan.antenna = 100 @test rx_chan.antenna == SoapySDR.Antenna(:RX) # channel gain tests @test rx_chan.gain_mode == false rx_chan.gain_mode = true @test rx_chan.gain_mode == true @test rx_chan.gain_elements == SoapySDR.GainElement[:IF1, :IF2, :IF3, :IF4, :IF5, :IF6, :TUNER] if1 = rx_chan.gain_elements[1] @show rx_chan[if1] rx_chan[if1] = 0.5u"dB" @test rx_chan[if1] == 0.5u"dB" #@show rx_chan.gain_profile @show rx_chan.frequency_correction #@test tx_chan.bandwidth == 2.048e6u"Hz" #@test tx_chan.frequency == 1.0e8u"Hz" #@test tx_chan.gain == -53u"dB" #@test tx_chan.sample_rate == 2.048e6u"Hz" # setter/getter tests rx_chan.sample_rate = 1e5u"Hz" #@test rx_chan.sample_rate == 1e5u"Hz" @test_logs (:warn, r"poorly supported") match_mode = :any begin rx_stream = sd.Stream([rx_chan]) @test typeof(rx_stream) == sd.Stream{sd.ComplexInt{12}} tx_stream = sd.Stream([tx_chan]) @test typeof(tx_stream) == sd.Stream{sd.ComplexInt{12}} @test tx_stream.nchannels == 1 @test rx_stream.nchannels == 1 @test tx_stream.num_direct_access_buffers == 0x000000000000000f @test tx_stream.mtu == 0x0000000000020000 @test rx_stream.num_direct_access_buffers == 0x000000000000000f @test rx_stream.mtu == 0x0000000000020000 end rx_stream = sd.Stream(ComplexF32, [rx_chan]) @test typeof(rx_stream) == sd.Stream{ComplexF32} tx_stream = sd.Stream(ComplexF32, [tx_chan]) @test typeof(tx_stream) == sd.Stream{ComplexF32} sd.activate!(rx_stream) sd.activate!(tx_stream) # First, try to write an invalid buffer type, ensure that that errors buffers = [zeros(ComplexF32, 10), zeros(ComplexF32, 11)] @test_throws ArgumentError write(tx_stream, buffers) # We (unfortunately) cannot do a write/read test, as that's not supported # by SoapyLoopback yet, despite the name. ;) #= tx_buff = randn(ComplexF32, tx_stream.mtu) write(tx_stream, (tx_buff,)) rx_buff = vcat( only(read(rx_stream, div(rx_stream.mtu,2))), only(read(rx_stream, div(rx_stream.mtu,2))), ) @test length(rx_buff) == length(tx_buff) @test all(rx_buff .== tx_buff) =# # Test that reading once more causes a warning to be printed, as there's nothing to be read: @test_logs (:warn, r"readStream timeout!") match_mode = :any begin read(rx_stream, 1) end sd.deactivate!(rx_stream) sd.deactivate!(tx_stream) # do block syntax Device(Devices()[1]) do dev println(dev.info) end # and again to ensure correct GC Device(Devices()[1]) do dev sd.Stream(ComplexF32, [dev.rx[1]]) do s_rx println(dev.info) println(s_rx) # Activate/deactivate sd.activate!(s_rx) do end # Group activate/deactivate sd.Stream(ComplexF32, [dev.tx[1]]) do s_tx sd.activate!([s_rx, s_tx]) do end end end end end @testset "Settings" begin io = IOBuffer(read = true, write = true) dev = Device(Devices()[1]) arglist = SoapySDR.ArgInfoList(SoapySDR.SoapySDRDevice_getSettingInfo(dev)...) println(arglist) a1 = arglist[1] println(a1) end @testset "Examples" begin include("../examples/highlevel_dump_devices.jl") end @testset "Modules" begin @test SoapySDR.Modules.get_root_path() == "/workspace/destdir" @test all( SoapySDR.Modules.list_search_paths() .== ["/workspace/destdir/lib/SoapySDR/modules0.8"], ) @test SoapySDR.Modules.list() == String[] end using Aqua # Aqua tests # Intervals brings a bunch of ambiquities unfortunately Aqua.test_all(SoapySDR; ambiguities = false) end #SoapySDR testset if VERSION >= v"1.8" @info "Running JET..." using JET display(JET.report_package(SoapySDR)) end
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
docs
913
# SoapySDR.jl [![Dev Docs](https://img.shields.io/badge/docs-latest-blu)](https://juliatelecom.github.io/SoapySDR.jl/dev/) [![Coverage Status](https://coveralls.io/repos/github/JuliaTelecom/SoapySDR.jl/badge.svg?branch=main)](https://coveralls.io/github/JuliaTelecom/SoapySDR.jl?branch=main) A Julia wrapper for [SoapySDR](https://github.com/pothosware/SoapySDR/wiki) to enable SDR processing in Julia. It features a high level interface to interact with underlying SDR radios. Several radios are supported in the Julia Package manager, and may be easily installed for use with SoapySDR.jl - [Quick Start](https://juliatelecom.github.io/SoapySDR.jl/dev/#Quick-Start) - [Tutorial](https://juliatelecom.github.io/SoapySDR.jl/dev/tutorial/) - [High Level API](https://juliatelecom.github.io/SoapySDR.jl/dev/highlevel/) - [Supported Radios](https://juliatelecom.github.io/SoapySDR.jl/dev/#Loading-a-Driver-Module)
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
docs
1480
# Loading Drivers Below is a list of driver modules that may be installed with the Julia package manager. | Device | Julia Package | |---------|------------------| | xrtx | xtrx_jll | |RTL-SDR | SoapyRTLSDR_jll | |LimeSDR | SoapyLMS7_jll | | USRP | SoapyUHD_jll | |Pluto SDR| SoapyPlutoSDR_jll| If you need a driver module that is not listed, you can search [JuliaHub](https://juliahub.com) to see if it may have been added to the package manager. If not, please file an [issue](https://github.com/JuliaTelecom/SoapySDR.jl/issues). Alternatively, you can see the instructions below about using operating system provided modules with SoapySDR.jl. To activate the driver and module, simply use the package along with SoapySDR. For example: ``` julia> using SoapySDR, xtrx_jll ``` or: ``` julia> using SoapySDR, SoapyRTLSDR_jll ``` ## Loading System-Provided Driver Modules The `SOAPY_SDR_PLUGIN_PATH` environmental variable is read by SoapySDR to load local driver modules. For example, on Ubuntu one may use the Ubuntu package manager to install all SoapySDR driver modules: ``` sudo apt install soapysdr0.8-module-all ``` These can then be used from SoapySDR.jl by exporting the environmental variable with the module directory: ``` export SOAPY_SDR_PLUGIN_PATH=/usr/lib/x86_64-linux-gnu/SoapySDR/modules0.8/ ``` This can add support for more devices than is provided by the Julia package manager, however compatibility is not guaranteed.
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
docs
155
```@meta CurrentModule = SoapySDR ``` # SoapySDR High Level API ```@autodocs Modules = [SoapySDR] Pages = ["highlevel.jl", "loghandler.jl"] ```
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
docs
858
```@meta CurrentModule = SoapySDR ``` # SoapySDR Documentation for [SoapySDR](https://github.com/JuliaTelecom/SoapySDR.jl). This package provides a Julia wrapper for the [SoapySDR](https://github.com/pothosware/SoapySDR) C++ library. ## Quick Start ### Transmitting and Receiving (loopback) ````@eval using Markdown Markdown.parse(""" ```julia $(read(joinpath(@__DIR__, "../../examples/highlevel_loopback.jl"), String)) ``` """) ```` ## Release Log ### 0.2 This changes the high level API to allow device constructor arguments. In prior releases to construct a `Device` one would do: ``` devs = Devices() dev = devs[1] ``` Now one has to explicitly call `open` to create the `Device`, which allows arguments to be set: ``` devs = Devices() devs[1]["argument"] = "value" dev = open(devs[1]) ``` Similarly it is now possible to `close` a device.
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
docs
400
```@meta CurrentModule = SoapySDR ``` # SoapySDR Low Level API !!! warning This documentation is part of the low level libsoapysdr interface. These bindings and documentation are autogenerated and reflect the complete SoapySDR C API. For end-users, the [high-level](./highlevel.md) Julia APIs are preferred. ```@autodocs Modules = [SoapySDR] Pages = ["lowlevel/auto_wrap.jl"] ```
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
docs
1487
# Troubleshooting Below are some common issues and how to resolve them. If you don't find the issue listed here, please [file an issue](). We are always looking to help identify and fix bugs. ## No Devices Found You may see: ``` julia> Devices() No devices available! Make sure a supported SDR module is included. ``` Make sure you have included a module driver from the [module list](./index.md#Loading-a-Driver-Module). If this doesn't work, and you are on Linux, please see the [udev section](./#Udev-Rules) below. ## Linux Troubleshooting ### Udev Rules Udev rules should be copied into `/etc/udev/rules.d/`. Udev rules for some common devices are linked below: - [RTL-SDR](https://github.com/osmocom/rtl-sdr/blob/d770add42e87a40e59a0185521373f516778384b/rtl-sdr.rules) - [USRP](https://github.com/EttusResearch/uhd/blob/919043f305efdd29fbdf586e9cde95d9507150e8/host/utils/uhd-usrp.rules) - [LimeSDR](https://github.com/myriadrf/LimeSuite/blob/a45e482dad28508d8787e0fdc5168d45ac877ab5/udev-rules/64-limesuite.rules) - [ADALM-Pluto](https://github.com/analogdevicesinc/plutosdr-fw/blob/cbe7306055828ce0a12a9da35efc6685c86f811f/scripts/53-adi-plutosdr-usb.rules) ### Blacklisting Kernel Modules For some devices such as the RTL-SDR, a kernel module may need to be blacklisted in order to use the user space driver. Typically the library will warn is this is required. Please check you distribution instructions for how to do this. RTL-SDR module name: `dvb_usb_rtl28xxu`
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
docs
1793
# Tutorial !!! note You have to load a driver for your particular SDR in order to work with SoapySDR. Available modules through the Julia Package manager are listed on the [index.](./index.md) The entry point of this package is the `Devices()` object, which will list all devices known to SoapySDR on the current system. Here we will use XTRX: ``` julia> using SoapySDR, xtrx_jll julia> Devices() [1] :addr => "pcie:///dev/xtrx0", :dev => "pcie:///dev/xtrx0", :driver => "xtrx", :label => "XTRX: pcie:///dev/xtrx0 (10Gbit)", :media => "PCIe", :module => "SoapyXTRX", :name => "XTRX", :serial => "", :type => "xtrx" ``` Devices may be selected just by indexing: ``` julia> device = Devices()[1] SoapySDR xtrxdev device (driver: xtrxsoapy) w/ 2 TX channels and 2 RX channels ``` The channels on the device are then available on the resulting object ``` julia> device.tx 2-element SoapySDR.ChannelList: Channel(xtrxdev, Tx, 0) Channel(xtrxdev, Tx, 1) julia> device.rx 2-element SoapySDR.ChannelList: Channel(xtrxdev, Rx, 0) Channel(xtrxdev, Rx, 1) julia> device.tx[1] TX Channel #1 on xtrxdev Selected Antenna [TXH, TXW]: TXW Bandwidth [ 800 kHz .. 16 MHz, 28..60 MHz ]: 0.0 Hz Frequency [ 30 MHz .. 3.8 GHz ]: 0.0 Hz RF [ 30 MHz .. 3.8 GHz ]: 0.0 Hz BB [ -00..00 Hz ]: 0.0 Hz Gain [0.0 dB .. 52.0 dB]: 0.0 dB PAD [0.0 dB .. 52.0 dB]: 0.0 dB Sample Rate [ 2.1..56.2 MHz, 61.4..80 MHz ]: 0.0 Hz DC offset correction: (0.0, 0.0) IQ balance correction: (0.0, 0.0) ``` To send or receive data, start a stream on a particular channel: ``` julia> stream = SDRStream(ComplexF32, [device.rx[1]]) Stream on xtrxdev ``` These may then be accessed using standard IO functions: ``` julia> SoapySDR.activate!(stream) julia> Base.read(stream, 10_000) ```
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT", "BSL-1.0" ]
0.5.0
e96812c38a7ca1c013d35c9515f05a1d023e2191
docs
240
# SoapySDR Binding generation via Clang.jl Instructions: ``` ] activate . ] instantiate ] up include("gen.jl") ``` This generates the files in `src/lowlevel/<header>.h.jl`. Files in lowlevel without this extension are maintained by hand.
SoapySDR
https://github.com/JuliaTelecom/SoapySDR.jl.git
[ "MIT" ]
1.6.0
a7dc7bfc2fc6638c18241bfcdb9d73c7dd256482
code
5037
# override Documenter.jl/src/Writers/HTMLWriter.jl using Dates import Documenter: Documents, Documenter, Writers, Utilities import Documenter.Utilities.DOM: DOM, Tag, @tags import Documenter.Writers.HTMLWriter: getpage, render_head, render_article, open_output, mdconvert, pagetitle, navhref, domify, render_settings, THEMES const zh_CN_numbers = ["一", "二", "三", "四", "五", "六", "七", "八", "九", "十", "十一", "十二"] const zh_CN_months = zh_CN_numbers[1:12] .* "月" const zh_CN_months_abbrev = zh_CN_months const zh_CN_days = [ "周" .* zh_CN_numbers[1:6] "周日" ] Dates.LOCALES["zh_CN"] = Dates.DateLocale(zh_CN_months, zh_CN_months_abbrev, zh_CN_days, [""]) #= 1. 修改编辑翻译提示语 - 改 icon 为 FontAwesome: fa-globe(f0ac) - 改 "Edit on Github" 为 “完善 Transifex 上的翻译" - 改为对应的 Transifex URL 2. 修改前后翻页提示语 - "Previous" => t_Previous - "Next" => t_Next =# const t_Edit_on_xx = " 完善 Transifex 上的翻译" # 开头加空格,避免与 icon 靠太近 const t_Icon = "\uf0ac" # fa-globe # 生成对应文件在 Transifex 上的翻译地址 function transifex_url(rel_path) # 首页源文件在 GitHub 上 if splitdir(rel_path) == splitdir("src/index.md") return "https://github.com/JuliaCN/JuliaZH.jl/blob/master/doc/src/index.md" end # rel_path => "src\\manual\\getting-started.md" paths, file_name = splitdir(rel_path) # paths => "src\\manual" # file_name => "getting-started.md" _, parent_fold = splitdir(paths) # parent_fold => "manual" page_name = replace(file_name, '.' => "") # page_name => "getting-startedmd" # final URL => # "https://www.transifex.com/juliacn/manual-zh_cn/translate/#zh_CN/getting-startedmd" "https://www.transifex.com/juliacn/$parent_fold-zh_cn/translate/#zh_CN/$page_name" end # workaround on Documenter/#977 function Documenter.Writers.HTMLWriter.render_navbar(ctx, navnode, edit_page_link::Bool) @tags div header nav ul li a span # The breadcrumb (navigation links on top) navpath = Documents.navpath(navnode) header_links = map(navpath) do nn title = mdconvert(pagetitle(ctx, nn); droplinks=true) nn.page === nothing ? li(a[".is-disabled"](title)) : li(a[:href => navhref(ctx, nn, navnode)](title)) end header_links[end] = header_links[end][".is-active"] breadcrumb = nav[".breadcrumb"]( ul[".is-hidden-mobile"](header_links), ul[".is-hidden-tablet"](header_links[end]) # when on mobile, we only show the page title, basically ) # The "Edit on GitHub" links and the hamburger to open the sidebar (on mobile) float right navbar_right = div[".docs-right"] # Set the logo and name for the "Edit on.." button. if edit_page_link && (ctx.settings.edit_link !== nothing) && !ctx.settings.disable_git host_type = Utilities.repo_host_from_url(ctx.doc.user.repo) logo = t_Icon pageurl = get(getpage(ctx, navnode).globals.meta, :EditURL, getpage(ctx, navnode).source) edit_branch = isa(ctx.settings.edit_link, String) ? ctx.settings.edit_link : nothing # 1.3: 改 URL url = transifex_url(getpage(ctx, navnode).source) if url !== nothing title = t_Edit_on_xx push!(navbar_right.nodes, a[".docs-edit-link", :href => url, :title => title]( span[".docs-icon.fab"](logo), span[".docs-label.is-hidden-touch"](title) ) ) end end # Settings cog push!(navbar_right.nodes, a[ "#documenter-settings-button.docs-settings-button.fas.fa-cog", :href => "#", :title => "设置", ]) # Hamburger on mobile push!(navbar_right.nodes, a[ "#documenter-sidebar-button.docs-sidebar-button.fa.fa-bars.is-hidden-desktop", :href => "#" ]) # Construct the main <header> node that should be the first element in div.docs-main header[".docs-navbar"](breadcrumb, navbar_right) end function render_settings(ctx) @tags div header section footer p button hr span select option label a theme_selector = p( label[".label"]("选择主题"), div[".select"]( select["#documenter-themepicker"](option[:value=>theme](theme) for theme in THEMES) ) ) now_full = Dates.format(now(), "Y U d E HH:MM"; locale="zh_CN") now_short = Dates.format(now(), "Y U d E"; locale="zh_CN") buildinfo = p( "本文档在", span[".colophon-date", :title => now_full](now_short), "由", a[:href => "https://github.com/JuliaDocs/Documenter.jl"]("Documenter.jl"), "使用$(Base.VERSION)版本的Julia生成。" ) div["#documenter-settings.modal"]( div[".modal-background"], div[".modal-card"]( header[".modal-card-head"]( p[".modal-card-title"]("设置"), button[".delete"]() ), section[".modal-card-body"]( theme_selector, hr(), buildinfo ), footer[".modal-card-foot"]() ) ) end
JuliaZH
https://github.com/JuliaCN/JuliaZH.jl.git
[ "MIT" ]
1.6.0
a7dc7bfc2fc6638c18241bfcdb9d73c7dd256482
code
2657
using DocumenterLaTeX, Markdown import Documenter: Documents, Documenter, Writers, Utilities import Documenter.Writers.LaTeXWriter: piperun, _print const LaTeX_CC="xelatex" const DOCKER_IMAGE = "tianjun2018/documenter-latex:latest" function Documenter.Writers.LaTeXWriter.latexinline(io, math::Markdown.LaTeX) # Handle MathJax and TeX inconsistency since the first wants `\LaTeX` wrapped # in math delims, whereas actual TeX fails when that is done. math.formula == "\\LaTeX" ? _print(io, " ", math.formula, " ") : _print(io, " \\(", math.formula, "\\) ") end function Documenter.Writers.LaTeXWriter.compile_tex(doc::Documents.Document, settings::LaTeX, texfile::String) if settings.platform == "native" Sys.which("latexmk") === nothing && (@error "LaTeXWriter: latexmk command not found."; return false) @info "LaTeXWriter: using latexmk to compile tex." piperun(`latexmk -f -interaction=nonstopmode -view=none -$(LaTeX_CC) -shell-escape $texfile`) return true # NOTE: 中文排版依然有问题,我们暂时不管他们。输出的pdf大部分情况下依然可以使用。 # try # piperun(`latexmk -f -interaction=nonstopmode -view=none -$(LaTeX_CC) -shell-escape $texfile`) # return true # catch err # logs = cp(pwd(), mktempdir(); force=true) # @error "LaTeXWriter: failed to compile tex with latexmk. " * # "Logs and partial output can be found in $(Utilities.locrepr(logs))." exception = err # return false # end elseif settings.platform == "docker" Sys.which("docker") === nothing && (@error "LaTeXWriter: docker command not found."; return false) @info "LaTeXWriter: using docker to compile tex." script = """ mkdir /home/zeptodoctor/build cd /home/zeptodoctor/build cp -r /mnt/. . latexmk -f -interaction=nonstopmode -view=none -$(LaTeX_CC) -shell-escape $texfile """ try piperun(`docker run -itd -u zeptodoctor --name latex-container -v $(pwd()):/mnt/ --rm $(DOCKER_IMAGE)`) piperun(`docker exec -u zeptodoctor latex-container bash -c $(script)`) piperun(`docker cp latex-container:/home/zeptodoctor/build/. .`) return true catch err logs = cp(pwd(), mktempdir(); force=true) @error "LaTeXWriter: failed to compile tex with docker. " * "Logs and partial output can be found in $(Utilities.locrepr(logs))." exception = err return false finally try; piperun(`docker stop latex-container`); catch; end end end end
JuliaZH
https://github.com/JuliaCN/JuliaZH.jl.git
[ "MIT" ]
1.6.0
a7dc7bfc2fc6638c18241bfcdb9d73c7dd256482
code
9190
#!/usr/bin/env julia # This file is a part of Julia. License is MIT: https://julialang.org/license using Libdl # Build a system image binary at sysimg_path.dlext. Allow insertion of a userimg via # userimg_path. If sysimg_path.dlext is currently loaded into memory, don't continue # unless force is set to true. Allow targeting of a CPU architecture via cpu_target. function default_sysimg_path(debug=false) if Sys.isunix() splitext(Libdl.dlpath(debug ? "sys-debug" : "sys"))[1] else joinpath(dirname(Sys.BINDIR), "lib", "julia", debug ? "sys-debug" : "sys") end end """ build_sysimg(sysimg_path=default_sysimg_path(), cpu_target="native", userimg_path=nothing; force=false) Rebuild the system image. Store it in `sysimg_path`, which defaults to a file named `sys.ji` that sits in the same folder as `libjulia.{so,dylib}`, except on Windows where it defaults to `Sys.BINDIR/../lib/julia/sys.ji`. Use the cpu instruction set given by `cpu_target`. Valid CPU targets are the same as for the `-C` option to `julia`, or the `-march` option to `gcc`. Defaults to `native`, which means to use all CPU instructions available on the current processor. Include the user image file given by `userimg_path`, which should contain directives such as `using MyPackage` to include that package in the new system image. New system image will not replace an older image unless `force` is set to true. """ function build_sysimg(sysimg_path=nothing, cpu_target="native", userimg_path=nothing; force=false, debug=false) if sysimg_path === nothing sysimg_path = default_sysimg_path(debug) end # Quit out if a sysimg is already loaded and is in the same spot as sysimg_path, unless forcing sysimg = Libdl.dlopen_e("sys") if sysimg != C_NULL if !force && Base.samefile(Libdl.dlpath(sysimg), "$(sysimg_path).$(Libdl.dlext)") @info("System image already loaded at $(Libdl.dlpath(sysimg)), set force=true to override.") return nothing end end # Canonicalize userimg_path before we enter the base_dir if userimg_path !== nothing userimg_path = abspath(userimg_path) end # Enter base and setup some useful paths base_dir = dirname(Base.find_source_file("sysimg.jl")) cd(base_dir) do julia = joinpath(Sys.BINDIR, debug ? "julia-debug" : "julia") cc, warn_msg = find_system_compiler() # Ensure we have write-permissions to wherever we're trying to write to try touch("$sysimg_path.ji") catch err_msg = "Unable to modify $sysimg_path.ji, ensure parent directory exists " err_msg *= "and is writable; absolute paths work best.)" error(err_msg) end # Copy in userimg.jl if it exists if userimg_path !== nothing if !isfile(userimg_path) error("$userimg_path is not found, ensure it is an absolute path.") end if isfile("userimg.jl") error("$(joinpath(base_dir, "userimg.jl")) already exists, delete manually to continue.") end cp(userimg_path, "userimg.jl") end try # Start by building basecompiler.{ji,o} basecompiler_path = joinpath(dirname(sysimg_path), "basecompiler") @info("Building basecompiler.o") @info("$julia -C $cpu_target --output-ji $basecompiler_path.ji --output-o $basecompiler_path.o compiler/compiler.jl") run(`$julia -C $cpu_target --output-ji $basecompiler_path.ji --output-o $basecompiler_path.o compiler/compiler.jl`) # Bootstrap off of that to create sys.{ji,o} @info("Building sys.o") @info("$julia -C $cpu_target --output-ji $sysimg_path.ji --output-o $sysimg_path.o -J $basecompiler_path.ji --startup-file=no sysimg.jl") run(`$julia -C $cpu_target --output-ji $sysimg_path.ji --output-o $sysimg_path.o -J $basecompiler_path.ji --startup-file=no sysimg.jl`) if cc !== nothing link_sysimg(sysimg_path, cc, debug) end # Spit out all our warning messages for w in warn_msg @warn w end if cc == nothing @info("System image successfully built at $sysimg_path.ji.") end if !Base.samefile("$(default_sysimg_path(debug)).ji", "$sysimg_path.ji") if isfile("$sysimg_path.$(Libdl.dlext)") @info("To run Julia with this image loaded, run: `julia -J $sysimg_path.$(Libdl.dlext)`.") else @info("To run Julia with this image loaded, run: `julia -J $sysimg_path.ji`.") end else @info("Julia will automatically load this system image at next startup.") end finally # Cleanup userimg.jl if userimg_path !== nothing && isfile("userimg.jl") rm("userimg.jl") end end end end # Search for a compiler to link sys.o into sys.dl_ext. Honor CC environment variable. function find_system_compiler() warn_msg = String[] # save warning messages into an array if haskey(ENV, "CC") if !success(`$(ENV["CC"]) -v`) push!(warn_msg, "Using compiler override $(ENV["CC"]), but unable to run `$(ENV["CC"]) -v`.") end return ENV["CC"], warn_msg end # On Windows, check to see if WinRPM is installed, and if so, see if gcc is installed if Sys.iswindows() try Core.eval(Main, :(using WinRPM)) winrpmgcc = joinpath(WinRPM.installdir, "usr", "$(Sys.ARCH)-w64-mingw32", "sys-root", "mingw", "bin", "gcc.exe") if success(`$winrpmgcc --version`) return winrpmgcc, warn_msg else throw() end catch push!(warn_msg, "Install GCC via `Pkg.add(\"WinRPM\"); WinRPM.install(\"gcc\")` to generate sys.dll for faster startup times.") end end # See if `cc` exists try if success(`cc -v`) return "cc", warn_msg end catch push!(warn_msg, "No supported compiler found; startup times will be longer.") return nothing, warn_msg end end # Link sys.o into sys.$(dlext) function link_sysimg(sysimg_path=nothing, cc=find_system_compiler(), debug=false) if sysimg_path === nothing sysimg_path = default_sysimg_path(debug) end julia_libdir = dirname(Libdl.dlpath(debug ? "libjulia-debug" : "libjulia")) FLAGS = ["-L$julia_libdir"] push!(FLAGS, "-shared") push!(FLAGS, debug ? "-ljulia-debug" : "-ljulia") if Sys.iswindows() push!(FLAGS, "-lssp") end if Sys.isapple() whole_archive = "-Wl,-all_load" no_whole_archive = "" else whole_archive = "-Wl,--whole-archive" no_whole_archive = "-Wl,--no-whole-archive" end sysimg_file = "$sysimg_path.$(Libdl.dlext)" cc_cmd = `$cc $FLAGS -o $sysimg_path.tmp $whole_archive $sysimg_path.o $no_whole_archive` @info("Linking sys.$(Libdl.dlext) with $cc_cmd") # Windows has difficulties overwriting a file in use so we first link to a temp file if success(pipeline(cc_cmd; stdout=stdout, stderr=stderr)) mv("$sysimg_path.tmp", sysimg_file; force=true) end @info("System image successfully built at $sysimg_path.$(Libdl.dlext)") return end # When running this file as a script, try to do so with default values. If arguments are passed # in, use them as the arguments to build_sysimg above. # Also check whether we are running `genstdlib.jl`, in which case we don't want to build a # system image and instead only need `build_sysimg`'s docstring to be available. if !isdefined(Main, :GenStdLib) && !isinteractive() if length(ARGS) > 5 || ("--help" in ARGS || "-h" in ARGS) println("Usage: build_sysimg.jl <sysimg_path> <cpu_target> <usrimg_path.jl> [--force] [--debug] [--help]") println(" <sysimg_path> is an absolute, extensionless path to store the system image at") println(" <cpu_target> is an LLVM cpu target to build the system image against") println(" <usrimg_path.jl> is the path to a user image to be baked into the system image") println(" --debug Using julia-debug instead of julia to build the system image") println(" --force Set if you wish to overwrite the default system image") println(" --help Print out this help text and exit") println() println(" Example:") println(" build_sysimg.jl /usr/local/lib/julia/sys core2 ~/my_usrimg.jl --force") println() println(" Running this script with no arguments is equivalent to:") println(" build_sysimg.jl $(default_sysimg_path()) native") return 0 end debug_flag = "--debug" in ARGS filter!(x -> x != "--debug", ARGS) force_flag = "--force" in ARGS filter!(x -> x != "--force", ARGS) build_sysimg(ARGS...; force=force_flag, debug=debug_flag) end
JuliaZH
https://github.com/JuliaCN/JuliaZH.jl.git
[ "MIT" ]
1.6.0
a7dc7bfc2fc6638c18241bfcdb9d73c7dd256482
code
7055
# tweaked from https://github.com/JuliaLang/julia/blob/master/doc/make.jl # Install dependencies needed to build the documentation. empty!(LOAD_PATH) push!(LOAD_PATH, @__DIR__, "@stdlib") empty!(DEPOT_PATH) pushfirst!(DEPOT_PATH, joinpath(@__DIR__, "deps")) using Pkg Pkg.instantiate() using Documenter, DocumenterLaTeX include("../contrib/HTMLWriter.jl") include("../contrib/LaTeXWriter.jl") # Include the `build_sysimg` file. baremodule GenStdLib end @isdefined(build_sysimg) || @eval module BuildSysImg include(joinpath(@__DIR__, "..", "contrib", "build_sysimg.jl")) end # Documenter Setup. symlink_q(tgt, link) = isfile(link) || symlink(tgt, link) cp_q(src, dest) = isfile(dest) || cp(src, dest) """ cpi18ndoc(;root, i18ndoc, stdlib) Copy i18n doc to build folder. """ function cpi18ndoc(; root=joinpath(@__DIR__, ".."), i18ndoc=["base", "devdocs", "manual"], stdlib=true, force=false) # stdlib if stdlib cp(joinpath(root, "zh_CN", "stdlib"), joinpath(root, "stdlib"); force=force) end for each in i18ndoc cp(joinpath(root, "zh_CN", "doc", "src", each), joinpath(root, "doc", "src", each); force=force) end end """ clean(;root, stdlib, i18ndoc) Clean up build i18n cache. """ function clean(;root=joinpath(@__DIR__, ".."), stdlib=true, i18ndoc=["base", "devdocs", "manual"]) if stdlib rm(joinpath(root, "stdlib"); recursive=true) end for each in i18ndoc rm(joinpath(root, "doc", "src", each); recursive=true) end end cpi18ndoc(;force=true) # make links for stdlib package docs, this is needed until #522 in Documenter.jl is finished const STDLIB_DOCS = [] const STDLIB_DIR = joinpath(@__DIR__, "..", "stdlib") cd(joinpath(@__DIR__, "src")) do Base.rm("stdlib"; recursive=true, force=true) mkdir("stdlib") for dir in readdir(STDLIB_DIR) sourcefile = joinpath(STDLIB_DIR, dir, "docs", "src", "index.md") if isfile(sourcefile) targetfile = joinpath("stdlib", dir * ".md") push!(STDLIB_DOCS, (stdlib = Symbol(dir), targetfile = targetfile)) if Sys.iswindows() cp_q(sourcefile, targetfile) else symlink_q(sourcefile, targetfile) end end end end # manual/unicode-input.md const UnicodeDataPath = joinpath(Sys.BINDIR, "..", "UnicodeData.txt") if !isfile(UnicodeDataPath) download("http://www.unicode.org/Public/9.0.0/ucd/UnicodeData.txt", UnicodeDataPath) end const PAGES = [ "主页" => "index.md", "手册" => [ "manual/getting-started.md", "manual/variables.md", "manual/integers-and-floating-point-numbers.md", "manual/mathematical-operations.md", "manual/complex-and-rational-numbers.md", "manual/strings.md", "manual/functions.md", "manual/control-flow.md", "manual/variables-and-scoping.md", "manual/types.md", "manual/methods.md", "manual/constructors.md", "manual/conversion-and-promotion.md", "manual/interfaces.md", "manual/modules.md", "manual/documentation.md", "manual/metaprogramming.md", "manual/arrays.md", "manual/missing.md", "manual/networking-and-streams.md", "manual/parallel-computing.md", "manual/asynchronous-programming.md", "manual/multi-threading.md", "manual/distributed-computing.md", "manual/running-external-programs.md", "manual/calling-c-and-fortran-code.md", "manual/handling-operating-system-variation.md", "manual/environment-variables.md", "manual/embedding.md", "manual/code-loading.md", "manual/profile.md", "manual/stacktraces.md", "manual/performance-tips.md", "manual/workflow-tips.md", "manual/style-guide.md", "manual/faq.md", "manual/noteworthy-differences.md", "manual/unicode-input.md", "manual/command-line-options.md", ], "Base" => [ "base/base.md", "base/collections.md", "base/math.md", "base/numbers.md", "base/strings.md", "base/arrays.md", "base/parallel.md", "base/multi-threading.md", "base/constants.md", "base/file.md", "base/io-network.md", "base/punctuation.md", "base/sort.md", "base/iterators.md", "base/c.md", "base/libc.md", "base/stacktraces.md", "base/simd-types.md", ], "Standard Library" => [stdlib.targetfile for stdlib in STDLIB_DOCS], "Developer Documentation" => [ "devdocs/reflection.md", "Documentation of Julia's Internals" => [ "devdocs/init.md", "devdocs/ast.md", "devdocs/types.md", "devdocs/object.md", "devdocs/eval.md", "devdocs/callconv.md", "devdocs/compiler.md", "devdocs/functions.md", "devdocs/cartesian.md", "devdocs/meta.md", "devdocs/subarrays.md", "devdocs/isbitsunionarrays.md", "devdocs/sysimg.md", "devdocs/llvm.md", "devdocs/stdio.md", "devdocs/boundscheck.md", "devdocs/locks.md", "devdocs/offset-arrays.md", "devdocs/require.md", "devdocs/inference.md", "devdocs/ssair.md", "devdocs/gc-sa.md", ], "Developing/debugging Julia's C code" => [ "devdocs/backtraces.md", "devdocs/debuggingtips.md", "devdocs/valgrind.md", "devdocs/sanitizers.md", # "devdocs/probes.md" # seems not synced from transifix ], ], ] for stdlib in STDLIB_DOCS @eval using $(stdlib.stdlib) end const render_pdf = "pdf" in ARGS const is_deploy = "deploy" in ARGS const format = if render_pdf LaTeX( platform = "texplatform=docker" in ARGS ? "docker" : "native" ) else Documenter.HTML( prettyurls = is_deploy, canonical = is_deploy ? "https://juliacn.github.io/JuliaZH.jl/latest/" : nothing, analytics = "UA-28835595-9", assets = [ "assets/julia-manual.css" ], lang = "zh-cn", # footer = "📢📢📢Julia中文社区现已加入“开源软件供应链点亮计划”,如果你想改善Julia中文文档的翻译,那就赶快来 [报名](https://summer.iscas.ac.cn/#/org/prodetail/210370191) 吧!" ) end makedocs( modules = [Base, Core, BuildSysImg, [Base.root_module(Base, stdlib.stdlib) for stdlib in STDLIB_DOCS]...], clean = true, doctest = ("doctest=fix" in ARGS) ? (:fix) : ("doctest=true" in ARGS) ? true : false, linkcheck = "linkcheck=true" in ARGS, checkdocs = :none, format = format, sitename = "Julia中文文档", authors = "Julia中文社区", pages = PAGES, ) deploydocs( repo = "github.com/JuliaCN/JuliaZH.jl.git", target = "build", deps = nothing, make = nothing, branch = render_pdf ? "pdf" : "gh-pages" )
JuliaZH
https://github.com/JuliaCN/JuliaZH.jl.git
[ "MIT" ]
1.6.0
a7dc7bfc2fc6638c18241bfcdb9d73c7dd256482
code
536
module JuliaZH import Base.Docs: DocStr # early version of JuliaZH provides these two methods import PkgServerClient: set_mirror, generate_startup const keywords = Dict{Symbol,DocStr}() function __init__() # Set pkg server to the nearest mirror @eval using PkgServerClient # set to Chinese env by default ENV["REPL_LOCALE"] = "zh_CN" if ccall(:jl_generating_output, Cint, ()) == 0 include(joinpath(@__DIR__, "i18n_patch.jl")) include(joinpath(@__DIR__, "basedocs.jl")) end end end # module
JuliaZH
https://github.com/JuliaCN/JuliaZH.jl.git
[ "MIT" ]
1.6.0
a7dc7bfc2fc6638c18241bfcdb9d73c7dd256482
code
11505
import Base.BaseDocs: @kw_str """ **欢迎来到 Julia $(string(VERSION)).** 完整的中文手册可以在这里找到 https://docs.juliacn.com/ 更多中文资料和教程,也请关注 Julia 中文社区 https://cn.julialang.org 新手请参考中文 discourse 上的新手指引 https://discourse.juliacn.com/t/topic/159 输入 `?`, 然后输入你想要查看帮助文档的函数或者宏名称就可以查看它们的文档。例如 `?cos`, 或者 `?@time` 然后按回车键即可。 在 REPL 中输入 `ENV["REPL_LOCALE"]=""` 将恢复英文模式。再次回到中文模式请输入 `ENV["REPL_LOCALE"]="zh_CN"`。 """ kw"help", kw"?", kw"julia", kw"" """ using `using Foo` 将会加载一个名为 `Foo` 的模块(module)或者一个包,然后其 [`export`](@ref) 的名称将可以直接使用。不论是否被 `export`,名称都可以通过点来访问(例如,输入 `Foo.foo` 来访问到 `foo`)。查看[手册中关于模块的部分](@ref modules)以获取更多细节。 """ kw"using" """ import `import Foo` 将会加载一个名为 `Foo` 的模块(module)或者一个包。`Foo` 模块中的名称可以通过点来访问到(例如,输入 `Foo.foo` 可以获取到 `foo`)。查看[手册中关于模块的部分](@ref modules)以获取更多细节。 """ kw"import" """ export `export` 被用来在模块中告诉Julia哪些函数或者名字可以由用户使用。例如 `export foo` 将在 [`using`](@ref) 这个 module 的时候使得 `foo`可以直接被访问到。查看[手册中关于模块的部分](@ref modules)以获取更多细节。 """ kw"export" """ abstract type `abstract type` 声明来一个不能实例化的类型,它将仅仅作为类型图中的一个节点存在,从而能够描述一系列相互关联的具体类型(concrete type):这些具体类型都是抽象类型的子节点。抽象类型在概念上使得 Julia 的类型系统不仅仅是一系列对象的集合。例如: ```julia abstract type Number end abstract type Real <: Number end ``` [`Number`](@ref) 没有父节点(父类型), 而 [`Real`](@ref) 是 `Number` 的一个抽象子类型。 """ kw"abstract type" """ module `module` 会声明一个 `Module` 类型的实例用于描述一个独立的变量名空间。在一个模块(module)里,你可以控制来自于其它模块的名字是否可见(通过载入,import),你也可以决定你的名字有哪些是可以公开的(通过暴露,export)。模块使得你在在创建上层定义时无需担心命名冲突。查看[手册中关于模块的部分](@ref modules)以获取更多细节。 # 例子 ```julia module Foo import Base.show export MyType, foo struct MyType x end bar(x) = 2x foo(a::MyType) = bar(a.x) + 1 show(io::IO, a::MyType) = print(io, "MyType \$(a.x)") end ``` """ kw"module" """ baremodule `baremodule` 将声明一个不包含 `using Base` 或者 `eval` 定义的模块。但是它将仍然载入 `Core` 模块。 """ kw"baremodule" """ primitive type `primitive type` 声明了一个其数据仅仅由一系列二进制数表示的具体类型。比较常见的例子是整数类型和浮点类型。下面是一些内置的原始类型(primitive type): ```julia primitive type Char 32 end primitive type Bool <: Integer 8 end ``` 名称后面的数字表达了这个类型存储所需的比特数目。目前这个数字要求是 8 bit 的倍数。[`Bool`](@ref) 类型的声明展示了一个原始类型如何选择成为另一个类型的子类型。 """ kw"primitive type" """ macro `macro` 定义了一种会将生成的代码包含在最终程序体中的方法,这称之为宏。一个宏将一系列输入映射到一个表达式,然后所返回的表达式将会被直接进行编译而不需要在运行时调用 `eval` 函数。宏的输入可以包括表达式、字面量和符号。例如: # 例子 ```jldoctest julia> macro sayhello(name) return :( println("Hello, ", \$name, "!") ) end @sayhello (macro with 1 method) julia> @sayhello "小明" Hello, 小明! ``` """ kw"macro" """ local `local`将会定义一个新的局部变量。 查看[手册:变量作用域](@ref scope-of-variables)以获取更详细的信息。 # 例子 ```jldoctest julia> function foo(n) x = 0 for i = 1:n local x # introduce a loop-local x x = i end x end foo (generic function with 1 method) julia> foo(10) 0 ``` """ kw"local" """ global `global x` 将会使得当前作用域和当前作用所包含的作用域里的 `x` 指向名为 `x` 的全局变量。查看[手册:变量作用域](@ref scope-of-variables)以获取更多信息。 # 例子 ```jldoctest julia> z = 3 3 julia> function foo() global z = 6 # use the z variable defined outside foo end foo (generic function with 1 method) julia> foo() 6 julia> z 6 ``` """ kw"global" """ let `let` 会在每次被运行时声明一个新的变量绑定。这个新的变量绑定将拥有一个新的地址。这里的不同只有当变量通过闭包生存在它们的作用域外时才会显现。`let` 语法接受逗号分割的一系列赋值语句和变量名: ```julia let var1 = value1, var2, var3 = value3 code end ``` 这些赋值语句是按照顺序求值的,等号右边的表达式将会首先求值,然后才绑定给左边的变量。因此这使得 `let x = x` 这样的表达式有意义,因为这两个 `x` 变量将具有不同的地址。 """ kw"let" """ quote `quote` 会将其包含的代码扩变成一个多重的表达式对象,而无需显示调用 `Expr` 的构造器。这称之为引用,比如说 ```julia ex = quote x = 1 y = 2 x + y end ``` 和其它引用方式不同的是,`:( ... )`形式的引用(被包含时)将会在表达式树里引入一个在操作表达式树时必须要考虑的 `QuoteNode` 元素。而在其它场景下,`:( ... )`和 `quote .. end` 代码块是被同等对待的。 """ kw"quote" """ ' 厄米算符(共轭转置),参见 [`adjoint`](@ref) # 例子 ```jldoctest julia> A = [1.0 -2.0im; 4.0im 2.0] 2×2 Array{Complex{Float64},2}: 1.0+0.0im -0.0-2.0im 0.0+4.0im 2.0+0.0im julia> A' 2×2 Array{Complex{Float64},2}: 1.0-0.0im 0.0-4.0im -0.0+2.0im 2.0-0.0im ``` """ kw"'" """ const `const` 被用来声明常数全局变量。在大部分(尤其是性能敏感的代码)全局变量应当被声明为常数。 ```julia const x = 5 ``` 可以使用单个 `const` 声明多个常数变量。 ```julia const y, z = 7, 11 ``` 注意 `const` 只会作用于一个 `=` 操作,因此 `const x = y = 1` 声明了 `x` 是常数,而 `y` 不是。在另一方面,`const x = const y = 1`声明了 `x` 和 `y` 都是常数。 注意「常数性质」并不会强制容器内部变成常数,所以如果 `x` 是一个数组或者字典(举例来讲)你仍然可以给它们添加或者删除元素。 严格来讲,你甚至可以重新定义 `const`(常数)变量,尽管这将会让编译器产生一个警告。唯一严格的要求是这个变量的**类型**不能改变,这也是为什么常数变量会比一般的全局变量更快的原因。 """ kw"const" """ function 函数由 `function` 关键词定义: ```julia function add(a, b) return a + b end ``` 或者是更短的形式: ```julia add(a, b) = a + b ``` [`return`](@ref) 关键词的使用方法和其它语言完全一样,但是常常是不使用的。一个没有显示声明 `return` 的函数将返回函数体最后一个表达式。 """ kw"function" """ return `return` 可以用来在函数体中立即退出并返回给定值,例如 ```julia function compare(a, b) a == b && return "equal to" a < b ? "less than" : "greater than" end ``` 通常,你可以在函数体的任意位置放置 `return` 语句,包括在多层嵌套的循环和条件表达式中,但要注意 `do` 块。例如: ```julia function test1(xs) for x in xs iseven(x) && return 2x end end function test2(xs) map(xs) do x iseven(x) && return 2x x end end ``` 在第一个例子中,return 一碰到偶数就跳出包含它的函数,因此 `test1([5,6,7])` 返回 `12`。 你可能希望第二个例子的行为与此相同,但实际上,这里的 `return` 只会跳出(在 `do` 块中的)*内部*函数并把值返回给 `map`。于是,`test2([5,6,7])` 返回 `[5,12,7]`。 """ kw"return" # 仿照 https://docs.juliacn.com/latest/manual/control-flow/#man-conditional-evaluation-1 """ if/elseif/else `if`/`elseif`/`else` 执行条件表达式(Conditional evaluation)可以根据布尔表达式的值,让部分代码被执行或者不被执行。下面是对 `if`-`elseif`-`else` 条件语法的分析: ```julia if x < y println("x is less than y") elseif x > y println("x is greater than y") else println("x is equal to y") end ``` 如果表达式 `x < y` 是 `true`,那么对应的代码块会被执行;否则判断条件表达式 `x > y`,如果它是 `true`,则执行对应的代码块;如果没有表达式是 true,则执行 `else` 代码块。`elseif` 和 `else` 代码块是可选的,并且可以使用任意多个 `elseif` 代码块。 """ kw"if", kw"elseif", kw"else" """ for `for` 循环通过迭代一系列值来重复计算循环体。 # 例子 ```jldoctest julia> for i in [1, 4, 0] println(i) end 1 4 0 ``` """ kw"for" # 仿照 https://docs.juliacn.com/latest/manual/control-flow/#man-loops-1 """ while `while` 循环会重复执行条件表达式,并在该表达式为 `true` 时继续执行 while 循环的主体部分。当 while 循环第一次执行时,如果条件表达式为 false,那么主体代码就一次也不会被执行。 # 例子 jldoctest julia> i = 1 1 julia> while i < 5 println(i) global i += 1 end 1 2 3 4 ``` """ kw"while" """ end `end` 标记一个表达式块的结束,例如 [`module`](@ref)、[`struct`](@ref)、[`mutable struct`](@ref)、[`begin`](@ref)、[`let`](@ref)、[`for`](@ref) 等。`end` 在索引数组时也可以用来表示维度的最后一个索引。 # 例子 ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> A[end, :] 2-element Array{Int64,1}: 3 4 ``` """ kw"end" # 仿照 https://docs.juliacn.com/latest/manual/control-flow/#try/catch-%E8%AF%AD%E5%8F%A5-1 """ try/catch `try/catch` 语句可以用来捕获 `Exception`,并进行异常处理。例如,一个自定义的平方根函数可以通过 `Exception` 来实现自动按需调用求解实数或者复数平方根的方法: ```julia f(x) = try sqrt(x) catch sqrt(complex(x, 0)) end ``` `try/catch` 语句允许保存 `Exception` 到一个变量中,例如 `catch y`。 `try/catch` 组件的强大之处在于能够将高度嵌套的计算立刻解耦成更高层次地调用函数。 """ kw"try", kw"catch" # 仿照 https://docs.juliacn.com/latest/manual/control-flow/#finally-%E5%AD%90%E5%8F%A5-1 """ finally 无论代码块是如何退出的,都让代码块在退出时运行某段代码。这里是一个确保一个打开的文件被关闭的例子: ```julia f = open("file") try operate_on_file(f) finally close(f) end ``` 当控制流离开 `try` 代码块(例如,遇到 `return`,或者正常结束),`close(f)` 就会被执行。如果 `try` 代码块由于异常退出,这个异常会继续传递。`catch` 代码块可以和 `try` 还有 `finally` 配合使用。这时 `finally` 代码块会在 `catch` 处理错误之后才运行。 """ kw"finally" """ break 立即跳出当前循环。 # 例子 ```jldoctest julia> i = 0 0 julia> while true global i += 1 i > 5 && break println(i) end 1 2 3 4 5 ``` """ kw"break" """ continue 跳过当前循环迭代的剩余部分。 # 例子 ```jldoctest julia> for i = 1:6 iseven(i) && continue println(i) end 1 3 5 ``` """ kw"continue" """ do 创建一个匿名函数。例如: ```julia map(1:10) do x 2x end ``` 等价于 `map(x->2x, 1:10)`。 像这样便可使用多个参数: ```julia map(1:10, 11:20) do x, y x + y end ``` """ kw"do" """ ... 「splat」运算符 `...` 表示参数序列。`...` 可以在函数定义中用来表示该函数接受任意数量的参数。`...` 也可以用来将函数作用于参数序列。 # 例子 ```jldoctest julia> add(xs...) = reduce(+, xs) add (generic function with 1 method) julia> add(1, 2, 3, 4, 5) 15 julia> add([1, 2, 3]...) 6 julia> add(7, 1:100..., 1000:1100...) 111107 ``` """ kw"..." """ ; `;` 在 Julia 中具有与许多类 C 语言相似的作用,用于分隔前一个语句的结尾。`;` 在换行中不是必要的,但可以用于在单行中分隔语句或者将多个表达式连接为单个表达式。`;` 也用于抑制 REPL 和类似界面中的输出打印。 # 例子 ```julia julia> function foo() x = "Hello, "; x *= "World!" return x end foo (generic function with 1 method) julia> bar() = (x = "Hello, Mars!"; return x) bar (generic function with 1 method) julia> foo(); julia> bar() "Hello, Mars!" ``` """ kw";" """ x && y 短路布尔 AND。 """ kw"&&" """ x || y 短路布尔 OR。 """ kw"||" """ ccall((function_name, library), returntype, (argtype1, ...), argvalue1, ...) ccall(function_name, returntype, (argtype1, ...), argvalue1, ...) ccall(function_pointer, returntype, (argtype1, ...), argvalue1, ...) 调用由 C 导出的共享库里的函数,该函数由元组 `(function_name, library)` 指定,其中的每个组件都是字符串或符号。若不指定库,还可以使用 `function_name` 的符号或字符串,它会在当前进程中解析。另外,`ccall` 也可用于调用函数指针 `function_pointer`,比如 `dlsym` 返回的函数指针。 请注意参数类型元组必须是字面上的元组,而不是元组类型的变量或表达式。 通过自动插入对 `unsafe_convert(argtype, cconvert(argtype, argvalue))` 的调用,每个传给 `ccall` 的 `argvalue` 将被类型转换为对应的 `argtype`。(有关的详细信息,请参阅 [`unsafe_convert`](@ref Base.unsafe_convert) 和 [`cconvert`](@ref Base.cconvert) 的文档。)在大多数情况下,这只会简单地调用 `convert(argtype, argvalue)`。 """ kw"ccall" """ begin `begin...end` 表示一个代码块。 ```julia begin println("Hello, ") println("World!") end ``` 通常,`begin` 不会是必需的,因为诸如 [`function`](@ref) and [`let`](@ref) 之类的关键字会隐式地开始代码块。另请参阅 [`;`](@ref)。 """ kw"begin" """ struct struct 是 Julia 中最常用的数据类型,由名称和一组字段指定。 ```julia struct Point x y end ``` 可对字段施加类型限制,该限制也可被参数化: ```julia struct Point{X} x::X y::Float64 end ``` struct 可以通过 `<:` 语法声明一个抽象超类型: A struct can also declare an abstract super type via `<:` syntax: ```julia struct Point <: AbstractPoint x y end ``` `struct` 默认是不可变的;这些类型的实例在构造后不能被修改。如需修改实例,请使用 [`mutable struct`](@ref) 来声明一个可以修改其实例的类型。 有关更多细节,比如怎么定义构造函数,请参阅手册的 [复合类型](@ref) 章节。 """ kw"struct" """ mutable struct `mutable struct` 类似于 [`struct`](@ref),但另外允许在构造后设置类型的字段。有关详细信息,请参阅 [复合类型](@ref)。 """ kw"mutable struct" """ new 仅在内部构造函数中可用的特殊函数,用来创建该类型的对象。有关更多信息,请参阅手册的 [内部构造方法](@ref) 章节。 """ kw"new" """ where `where` 关键字创建一个类型,该类型是其他类型在一些变量上所有值的迭代并集。例如 `Vector{T} where T<:Real` 包含所有元素类型是某种 `Real` 的 [`Vector`](@ref)。 如果省略,变量上界默认为 `Any`: ```julia Vector{T} where T # short for `where T<:Any` ``` 变量也可以具有下界: ```julia Vector{T} where T>:Int Vector{T} where Int<:T<:Real ``` 嵌套的 `where` 也有简洁的语法。例如,这行代码: ```julia Pair{T, S} where S<:Array{T} where T<:Number ``` 可以缩写为: ```julia Pair{T, S} where {T<:Number, S<:Array{T}} ``` 这种形式常见于方法签名: 请注意,在这种形式中,最外层变量列在最前面。这与使用语法 `T{p1, p2, ...}` 将类型「作用」于参数值时所替换变量的次序相匹配。 """ kw"where" """ ans 一个引用最后一次计算结果的变量,在交互式提示符中会自动设置。 """ kw"ans" """ Union{} `Union{}`,即空的类型 [`Union`](@ref),是没有值的类型。也就是说,它具有决定性性质:对于任何 `x`,`isa(x, Union{}) == false`。`Base.Bottom` 被定义为其别名,`Union{}` 的类型是 `Core.TypeofBottom`。 # 例子 ```jldoctest julia> isa(nothing, Union{}) false ``` """ kw"Union{}", Base.Bottom """ :: `::` 运算符用于类型声明,在程序中可被附加到表达式和变量后。详见手册的 [类型声明](@ref) 章节 在类型声明外,`::` 用于断言程序中的表达式和变量具有给定类型。 # 例子 ```jldoctest julia> (1+2)::AbstractFloat ERROR: TypeError: typeassert: expected AbstractFloat, got Int64 julia> (1+2)::Int 3 ``` """ kw"::" """ Julia 的基础库。 """ kw"Base"
JuliaZH
https://github.com/JuliaCN/JuliaZH.jl.git
[ "MIT" ]
1.6.0
a7dc7bfc2fc6638c18241bfcdb9d73c7dd256482
code
1186
using REPL using Base.Docs: catdoc, modules, DocStr, Binding, MultiDoc, isfield, namify, bindingexpr, defined, resolve, getdoc, meta, aliasof, signature, isexpr import Base.Docs: doc, formatdoc, parsedoc, apropos, DocStr, lazy_iterpolate, quot, metadata, docexpr, keyworddoc function REPL.lookup_doc(ex) locale = get(ENV, "REPL_LOCALE", "en_US") if locale == "" locale == "en_US" end kw_dict = locale == "zh_CN" ? keywords : Docs.keywords if haskey(kw_dict, ex) Docs.parsedoc(kw_dict[ex]) elseif isa(ex, Union{Expr, Symbol}) binding = esc(bindingexpr(namify(ex))) if isexpr(ex, :call) || isexpr(ex, :macrocall) sig = esc(signature(ex)) :($(doc)($binding, $sig)) else :($(doc)($binding)) end else :($(doc)($(typeof)($(esc(ex))))) end end function Base.Docs.keyworddoc(__source__, __module__, str, def::Base.BaseDocs.Keyword) @nospecialize str docstr = esc(docexpr(__source__, __module__, lazy_iterpolate(str), metadata(__source__, __module__, def, false))) return :($setindex!($(keywords), $docstr, $(esc(quot(def.name)))); nothing) end
JuliaZH
https://github.com/JuliaCN/JuliaZH.jl.git
[ "MIT" ]
1.6.0
a7dc7bfc2fc6638c18241bfcdb9d73c7dd256482
code
271
using Test ENV["JULIA_PKG_SERVER"] = "" using JuliaZH @test !isempty(ENV["JULIA_PKG_SERVER"]) @testset "check ENV" begin @test ENV["REPL_LOCALE"] == "zh_CN" JuliaZH.set_mirror("BFSU") @test ENV["JULIA_PKG_SERVER"] == "https://mirrors.bfsu.edu.cn/julia" end
JuliaZH
https://github.com/JuliaCN/JuliaZH.jl.git