mit_restaurant / README.md
asahi417's picture
init
495ee5f
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: MIT Restaurant
---
# Dataset Card for "tner/mit_restaurant"
## Dataset Description
- **Repository:** [T-NER](https://github.com/asahi417/tner)
- **Dataset:** MIT restaurant
- **Domain:** Restaurant
- **Number of Entity:** 8
### Dataset Summary
MIT Restaurant NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
- Entity Types: `Rating`, `Amenity`, `Location`, `Restaurant_Name`, `Price`, `Hours`, `Dish`, `Cuisine`.
## Dataset Structure
### Data Instances
An example of `train` looks as follows.
```
{
'tags': [0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 4, 0],
'tokens': ['can', 'you', 'find', 'the', 'phone', 'number', 'for', 'the', 'closest', 'family', 'style', 'restaurant']
}
```
### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/mit_restaurant/raw/main/dataset/label.json).
```python
{
"O": 0,
"B-Rating": 1,
"I-Rating": 2,
"B-Amenity": 3,
"I-Amenity": 4,
"B-Location": 5,
"I-Location": 6,
"B-Restaurant_Name": 7,
"I-Restaurant_Name": 8,
"B-Price": 9,
"B-Hours": 10,
"I-Hours": 11,
"B-Dish": 12,
"I-Dish": 13,
"B-Cuisine": 14,
"I-Price": 15,
"I-Cuisine": 16
}
```
### Data Splits
| name |train|validation|test|
|---------|----:|---------:|---:|
|mit_restaurant |6900 | 760| 1521|