text
stringlengths 0
828
|
---|
""""""
|
if isinstance(order_or_history, MarketOrderList):
|
return orders.encode_to_json(order_or_history)
|
elif isinstance(order_or_history, MarketHistoryList):
|
return history.encode_to_json(order_or_history)
|
else:
|
raise Exception(""Must be one of MarketOrderList or MarketHistoryList."")"
|
207,"def event_subscriber(event):
|
""""""
|
Register a method, which gets called when this event triggers.
|
:param event: the event to register the decorator method on.
|
""""""
|
def wrapper(method):
|
Registry.register_event(event.name, event, method)
|
return wrapper"
|
208,"def dispatch_event(event, subject='id'):
|
""""""
|
Dispatch an event when the decorated method is called.
|
:param event: the event class to instantiate and dispatch.
|
:param subject_property: the property name to get the subject.
|
""""""
|
def wrapper(method):
|
def inner_wrapper(*args, **kwargs):
|
resource = method(*args, **kwargs)
|
if isinstance(resource, dict):
|
subject_ = resource.get(subject)
|
data = resource
|
else:
|
subject_ = getattr(resource, subject)
|
data = resource.__dict__
|
event(subject_, data).dispatch()
|
return resource
|
return inner_wrapper
|
return wrapper"
|
209,"def add(self, classifier, threshold, begin=None, end=None):
|
""""""Adds a new strong classifier with the given threshold to the cascade.
|
**Parameters:**
|
classifier : :py:class:`bob.learn.boosting.BoostedMachine`
|
A strong classifier to add
|
``threshold`` : float
|
The classification threshold for this cascade step
|
``begin``, ``end`` : int or ``None``
|
If specified, only the weak machines with the indices ``range(begin,end)`` will be added.
|
""""""
|
boosted_machine = bob.learn.boosting.BoostedMachine()
|
if begin is None: begin = 0
|
if end is None: end = len(classifier.weak_machines)
|
for i in range(begin, end):
|
boosted_machine.add_weak_machine(classifier.weak_machines[i], classifier.weights[i])
|
self.cascade.append(boosted_machine)
|
self.thresholds.append(threshold)
|
self._indices()"
|
210,"def create_from_boosted_machine(self, boosted_machine, classifiers_per_round, classification_thresholds=-5.):
|
""""""Creates this cascade from the given boosted machine, by simply splitting off strong classifiers that have classifiers_per_round weak classifiers.
|
**Parameters:**
|
``boosted_machine`` : :py:class:`bob.learn.boosting.BoostedMachine`
|
The strong classifier to split into a regular cascade.
|
``classifiers_per_round`` : int
|
The number of classifiers that each cascade step should contain.
|
``classification_threshold`` : float
|
A single threshold that will be applied in all rounds of the cascade.
|
""""""
|
indices = list(range(0, len(boosted_machine.weak_machines), classifiers_per_round))
|
if indices[-1] != len(boosted_machine.weak_machines): indices.append(len(boosted_machine.weak_machines))
|
self.cascade = []
|
self.indices = []
|
for i in range(len(indices)-1):
|
machine = bob.learn.boosting.BoostedMachine()
|
for index in range(indices[i], indices[i+1]):
|
machine.add_weak_machine(boosted_machine.weak_machines[index], boosted_machine.weights[index, 0])
|
self.cascade.append(machine)
|
if isinstance(classification_thresholds, (int, float)):
|
self.thresholds = [classification_thresholds] * len(self.cascade)
|
else:
|
self.thresholds = classification_thresholds"
|
211,"def generate_boosted_machine(self):
|
""""""generate_boosted_machine() -> strong
|
Creates a single strong classifier from this cascade by concatenating all strong classifiers.
|
**Returns:**
|
``strong`` : :py:class:`bob.learn.boosting.BoostedMachine`
|
The strong classifier as a combination of all classifiers in this cascade.
|
""""""
|
strong = bob.learn.boosting.BoostedMachine()
|
for machine, index in zip(self.cascade, self.indices):
|
weak = machine.weak_machines
|
weights = machine.weights
|
for i in range(len(weak)):
|
strong.add_weak_machine(weak[i], weights[i])
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.