desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'Set the radius, resolution and range. These values are updated when minval
and/or maxval change.'
| def _setEncoderParams(self):
| self.rangeInternal = float((self.maxval - self.minval))
self.resolution = (float(self.rangeInternal) / (self.n - self.w))
self.radius = (self.w * self.resolution)
self.range = (self.rangeInternal + self.resolution)
self.nInternal = (self.n - (2 * self.padding))
self._bucketValues = None
|
'TODO: document'
| def setFieldStats(self, fieldName, fieldStats):
| if ((fieldStats[fieldName]['min'] == None) or (fieldStats[fieldName]['max'] == None)):
return
self.minval = fieldStats[fieldName]['min']
self.maxval = fieldStats[fieldName]['max']
if (self.minval == self.maxval):
self.maxval += 1
self._setEncoderParams()
|
'Potentially change the minval and maxval using input.
**The learn flag is currently not supported by cla regions.**'
| def _setMinAndMax(self, input, learn):
| self.slidingWindow.next(input)
if ((self.minval is None) and (self.maxval is None)):
self.minval = input
self.maxval = (input + 1)
self._setEncoderParams()
elif learn:
sorted = self.slidingWindow.getSlidingWindow()
sorted.sort()
minOverWindow = sorted[0]
maxOverWindow = sorted[(len(sorted) - 1)]
if (minOverWindow < self.minval):
if (self.verbosity >= 2):
print ('Input %s=%.2f smaller than minval %.2f. Adjusting minval to %.2f' % (self.name, input, self.minval, minOverWindow))
self.minval = minOverWindow
self._setEncoderParams()
if (maxOverWindow > self.maxval):
if (self.verbosity >= 2):
print ('Input %s=%.2f greater than maxval %.2f. Adjusting maxval to %.2f' % (self.name, input, self.maxval, maxOverWindow))
self.maxval = maxOverWindow
self._setEncoderParams()
|
'[overrides nupic.encoders.scalar.ScalarEncoder.getBucketIndices]'
| def getBucketIndices(self, input, learn=None):
| self.recordNum += 1
if (learn is None):
learn = self._learningEnabled
if ((type(input) is float) and math.isnan(input)):
input = SENTINEL_VALUE_FOR_MISSING_DATA
if (input == SENTINEL_VALUE_FOR_MISSING_DATA):
return [None]
else:
self._setMinAndMax(input, learn)
return super(AdaptiveScalarEncoder, self).getBucketIndices(input)
|
'[overrides nupic.encoders.scalar.ScalarEncoder.encodeIntoArray]'
| def encodeIntoArray(self, input, output, learn=None):
| self.recordNum += 1
if (learn is None):
learn = self._learningEnabled
if (input == SENTINEL_VALUE_FOR_MISSING_DATA):
output[0:self.n] = 0
elif (not math.isnan(input)):
self._setMinAndMax(input, learn)
super(AdaptiveScalarEncoder, self).encodeIntoArray(input, output)
|
'[overrides nupic.encoders.scalar.ScalarEncoder.getBucketInfo]'
| def getBucketInfo(self, buckets):
| if ((self.minval is None) or (self.maxval is None)):
return [EncoderResult(value=0, scalar=0, encoding=numpy.zeros(self.n))]
return super(AdaptiveScalarEncoder, self).getBucketInfo(buckets)
|
'[overrides nupic.encoders.scalar.ScalarEncoder.topDownCompute]'
| def topDownCompute(self, encoded):
| if ((self.minval is None) or (self.maxval is None)):
return [EncoderResult(value=0, scalar=0, encoding=numpy.zeros(self.n))]
return super(AdaptiveScalarEncoder, self).topDownCompute(encoded)
|
'Initialize the random seed'
| def _seed(self, seed=(-1)):
| if (seed != (-1)):
self.random = NupicRandom(seed)
else:
self.random = NupicRandom()
|
'[Encoder class virtual method override]'
| def getDecoderOutputFieldTypes(self):
| return (FieldMetaType.string,)
|
'Generate a new and unique representation. Returns a numpy array
of shape (n,).'
| def _newRep(self):
| maxAttempts = 1000
for _ in xrange(maxAttempts):
foundUnique = True
population = numpy.arange(self.n, dtype=numpy.uint32)
choices = numpy.arange(self.w, dtype=numpy.uint32)
oneBits = sorted(self.random.sample(population, choices))
sdr = numpy.zeros(self.n, dtype='uint8')
sdr[oneBits] = 1
for i in xrange(self.ncategories):
if (sdr == self.sdrs[i]).all():
foundUnique = False
break
if foundUnique:
break
if (not foundUnique):
raise RuntimeError(('Error, could not find unique pattern %d after %d attempts' % (self.ncategories, maxAttempts)))
return sdr
|
'See method description in base.py'
| def getScalars(self, input):
| if (input == SENTINEL_VALUE_FOR_MISSING_DATA):
return numpy.array([0])
index = self.categoryToIndex.get(input, None)
if (index is None):
if self._learningEnabled:
self._addCategory(input)
index = (self.ncategories - 1)
else:
index = 0
return numpy.array([index])
|
'See method description in base.py'
| def getBucketIndices(self, input):
| return self.getScalars(input)
|
'See the function description in base.py'
| def decode(self, encoded, parentFieldName=''):
| assert (encoded[0:self.n] <= 1.0).all()
resultString = ''
resultRanges = []
overlaps = (self.sdrs * encoded[0:self.n]).sum(axis=1)
if (self.verbosity >= 2):
print 'Overlaps for decoding:'
for i in xrange(0, self.ncategories):
print ('%d %s' % (overlaps[i], self.categories[i]))
matchingCategories = (overlaps > self.thresholdOverlap).nonzero()[0]
for index in matchingCategories:
if (resultString != ''):
resultString += ' '
resultString += str(self.categories[index])
resultRanges.append([int(index), int(index)])
if (parentFieldName != ''):
fieldName = ('%s.%s' % (parentFieldName, self.name))
else:
fieldName = self.name
return ({fieldName: (resultRanges, resultString)}, [fieldName])
|
'Return the interal _topDownMappingM matrix used for handling the
bucketInfo() and topDownCompute() methods. This is a matrix, one row per
category (bucket) where each row contains the encoded output for that
category.'
| def _getTopDownMapping(self):
| if (self._topDownMappingM is None):
self._topDownMappingM = SM32(self.ncategories, self.n)
outputSpace = numpy.zeros(self.n, dtype=GetNTAReal())
for i in xrange(self.ncategories):
self.encodeIntoArray(self.categories[i], outputSpace)
self._topDownMappingM.setRowFromDense(i, outputSpace)
return self._topDownMappingM
|
'See the function description in base.py'
| def getBucketValues(self):
| return self.categories
|
'See the function description in base.py'
| def getBucketInfo(self, buckets):
| if (self.ncategories == 0):
return 0
topDownMappingM = self._getTopDownMapping()
categoryIndex = buckets[0]
category = self.categories[categoryIndex]
encoding = topDownMappingM.getRow(categoryIndex)
return [EncoderResult(value=category, scalar=categoryIndex, encoding=encoding)]
|
'See the function description in base.py'
| def topDownCompute(self, encoded):
| if (self.ncategories == 0):
return 0
topDownMappingM = self._getTopDownMapping()
categoryIndex = topDownMappingM.rightVecProd(encoded).argmax()
category = self.categories[categoryIndex]
encoding = topDownMappingM.getRow(categoryIndex)
return EncoderResult(value=category, scalar=categoryIndex, encoding=encoding)
|
'See the function description in base.py
kwargs will have the keyword "fractional", which is ignored by this encoder'
| def closenessScores(self, expValues, actValues, fractional=True):
| expValue = expValues[0]
actValue = actValues[0]
if (expValue == actValue):
closeness = 1.0
else:
closeness = 0.0
if (not fractional):
closeness = (1.0 - closeness)
return numpy.array([closeness])
|
'Initialize the random seed'
| def _seed(self, seed=(-1)):
| if (seed != (-1)):
self.random = NupicRandom(seed)
else:
self.random = NupicRandom()
|
'See method description in base.py'
| def getDecoderOutputFieldTypes(self):
| return (FieldMetaType.float,)
|
'See method description in base.py'
| def getWidth(self):
| return self.n
|
'See method description in base.py'
| def getBucketIndices(self, x):
| if ((isinstance(x, float) and math.isnan(x)) or (x == SENTINEL_VALUE_FOR_MISSING_DATA)):
return [None]
if (self._offset is None):
self._offset = x
bucketIdx = ((self._maxBuckets / 2) + int(round(((x - self._offset) / self.resolution))))
if (bucketIdx < 0):
bucketIdx = 0
elif (bucketIdx >= self._maxBuckets):
bucketIdx = (self._maxBuckets - 1)
return [bucketIdx]
|
'Given a bucket index, return the list of non-zero bits. If the bucket
index does not exist, it is created. If the index falls outside our range
we clip it.
:param index The bucket index to get non-zero bits for.
@returns numpy array of indices of non-zero bits for specified index.'
| def mapBucketIndexToNonZeroBits(self, index):
| if (index < 0):
index = 0
if (index >= self._maxBuckets):
index = (self._maxBuckets - 1)
if (not self.bucketMap.has_key(index)):
if (self.verbosity >= 2):
print 'Adding additional buckets to handle index=', index
self._createBucket(index)
return self.bucketMap[index]
|
'See method description in base.py'
| def encodeIntoArray(self, x, output):
| if ((x is not None) and (not isinstance(x, numbers.Number))):
raise TypeError(('Expected a scalar input but got input of type %s' % type(x)))
bucketIdx = self.getBucketIndices(x)[0]
output[0:self.n] = 0
if (bucketIdx is not None):
output[self.mapBucketIndexToNonZeroBits(bucketIdx)] = 1
|
'Create the given bucket index. Recursively create as many in-between
bucket indices as necessary.'
| def _createBucket(self, index):
| if (index < self.minIndex):
if (index == (self.minIndex - 1)):
self.bucketMap[index] = self._newRepresentation(self.minIndex, index)
self.minIndex = index
else:
self._createBucket((index + 1))
self._createBucket(index)
elif (index == (self.maxIndex + 1)):
self.bucketMap[index] = self._newRepresentation(self.maxIndex, index)
self.maxIndex = index
else:
self._createBucket((index - 1))
self._createBucket(index)
|
'Return a new representation for newIndex that overlaps with the
representation at index by exactly w-1 bits'
| def _newRepresentation(self, index, newIndex):
| newRepresentation = self.bucketMap[index].copy()
ri = (newIndex % self.w)
newBit = self.random.getUInt32(self.n)
newRepresentation[ri] = newBit
while ((newBit in self.bucketMap[index]) or (not self._newRepresentationOK(newRepresentation, newIndex))):
self.numTries += 1
newBit = self.random.getUInt32(self.n)
newRepresentation[ri] = newBit
return newRepresentation
|
'Return True if this new candidate representation satisfies all our overlap
rules. Since we know that neighboring representations differ by at most
one bit, we compute running overlaps.'
| def _newRepresentationOK(self, newRep, newIndex):
| if (newRep.size != self.w):
return False
if ((newIndex < (self.minIndex - 1)) or (newIndex > (self.maxIndex + 1))):
raise ValueError('newIndex must be within one of existing indices')
newRepBinary = numpy.array(([False] * self.n))
newRepBinary[newRep] = True
midIdx = (self._maxBuckets / 2)
runningOverlap = self._countOverlap(self.bucketMap[self.minIndex], newRep)
if (not self._overlapOK(self.minIndex, newIndex, overlap=runningOverlap)):
return False
for i in range((self.minIndex + 1), (midIdx + 1)):
newBit = ((i - 1) % self.w)
if newRepBinary[self.bucketMap[(i - 1)][newBit]]:
runningOverlap -= 1
if newRepBinary[self.bucketMap[i][newBit]]:
runningOverlap += 1
if (not self._overlapOK(i, newIndex, overlap=runningOverlap)):
return False
for i in range((midIdx + 1), (self.maxIndex + 1)):
newBit = (i % self.w)
if newRepBinary[self.bucketMap[(i - 1)][newBit]]:
runningOverlap -= 1
if newRepBinary[self.bucketMap[i][newBit]]:
runningOverlap += 1
if (not self._overlapOK(i, newIndex, overlap=runningOverlap)):
return False
return True
|
'Return the overlap between bucket indices i and j'
| def _countOverlapIndices(self, i, j):
| if (self.bucketMap.has_key(i) and self.bucketMap.has_key(j)):
iRep = self.bucketMap[i]
jRep = self.bucketMap[j]
return self._countOverlap(iRep, jRep)
else:
raise ValueError("Either i or j don't exist")
|
'Return the overlap between two representations. rep1 and rep2 are lists of
non-zero indices.'
| @staticmethod
def _countOverlap(rep1, rep2):
| overlap = 0
for e in rep1:
if (e in rep2):
overlap += 1
return overlap
|
'Return True if the given overlap between bucket indices i and j are
acceptable. If overlap is not specified, calculate it from the bucketMap'
| def _overlapOK(self, i, j, overlap=None):
| if (overlap is None):
overlap = self._countOverlapIndices(i, j)
if (abs((i - j)) < self.w):
if (overlap == (self.w - abs((i - j)))):
return True
else:
return False
elif (overlap <= self._maxOverlap):
return True
else:
return False
|
'Initialize the bucket map assuming the given number of maxBuckets.'
| def _initializeBucketMap(self, maxBuckets, offset):
| self._maxBuckets = maxBuckets
self.minIndex = (self._maxBuckets / 2)
self.maxIndex = (self._maxBuckets / 2)
self._offset = offset
self.bucketMap = {}
def _permutation(n):
r = numpy.arange(n, dtype=numpy.uint32)
self.random.shuffle(r)
return r
self.bucketMap[self.minIndex] = _permutation(self.n)[0:self.w]
self.numTries = 0
|
'(helper function) There are three different ways of thinking about the representation.
Handle each case here.'
| def _initEncoder(self, w, minval, maxval, n, radius, resolution):
| if (n != 0):
if ((radius != 0) or (resolution != 0)):
raise ValueError('Only one of n/radius/resolution can be specified for a ScalarEncoder')
assert (n > w)
self.n = n
if ((minval is not None) and (maxval is not None)):
if (not self.periodic):
self.resolution = (float(self.rangeInternal) / (self.n - self.w))
else:
self.resolution = (float(self.rangeInternal) / self.n)
self.radius = (self.w * self.resolution)
if self.periodic:
self.range = self.rangeInternal
else:
self.range = (self.rangeInternal + self.resolution)
else:
if (radius != 0):
if (resolution != 0):
raise ValueError('Only one of radius/resolution can be specified for a ScalarEncoder')
self.radius = radius
self.resolution = (float(self.radius) / w)
elif (resolution != 0):
self.resolution = float(resolution)
self.radius = (self.resolution * self.w)
else:
raise Exception('One of n, radius, resolution must be specified for a ScalarEncoder')
if ((minval is not None) and (maxval is not None)):
if self.periodic:
self.range = self.rangeInternal
else:
self.range = (self.rangeInternal + self.resolution)
nfloat = ((self.w * (self.range / self.radius)) + (2 * self.padding))
self.n = int(math.ceil(nfloat))
|
'(helper function) check if the settings are reasonable for SP to work'
| def _checkReasonableSettings(self):
| if (self.w < 21):
raise ValueError(('Number of bits in the SDR (%d) must be >= 21 (use forced=True to override).' % self.w))
|
'[Encoder class virtual method override]'
| def getDecoderOutputFieldTypes(self):
| return (FieldMetaType.float,)
|
'Return the bit offset of the first bit to be set in the encoder output.
For periodic encoders, this can be a negative number when the encoded output
wraps around.'
| def _getFirstOnBit(self, input):
| if (input == SENTINEL_VALUE_FOR_MISSING_DATA):
return [None]
else:
if (input < self.minval):
if (self.clipInput and (not self.periodic)):
if (self.verbosity > 0):
print ('Clipped input %s=%.2f to minval %.2f' % (self.name, input, self.minval))
input = self.minval
else:
raise Exception(('input (%s) less than range (%s - %s)' % (str(input), str(self.minval), str(self.maxval))))
if self.periodic:
if (input >= self.maxval):
raise Exception(('input (%s) greater than periodic range (%s - %s)' % (str(input), str(self.minval), str(self.maxval))))
elif (input > self.maxval):
if self.clipInput:
if (self.verbosity > 0):
print ('Clipped input %s=%.2f to maxval %.2f' % (self.name, input, self.maxval))
input = self.maxval
else:
raise Exception(('input (%s) greater than range (%s - %s)' % (str(input), str(self.minval), str(self.maxval))))
if self.periodic:
centerbin = (int((((input - self.minval) * self.nInternal) / self.range)) + self.padding)
else:
centerbin = (int((((input - self.minval) + (self.resolution / 2)) / self.resolution)) + self.padding)
minbin = (centerbin - self.halfwidth)
return [minbin]
|
'See method description in base.py'
| def getBucketIndices(self, input):
| if ((type(input) is float) and math.isnan(input)):
input = SENTINEL_VALUE_FOR_MISSING_DATA
if (input == SENTINEL_VALUE_FOR_MISSING_DATA):
return [None]
minbin = self._getFirstOnBit(input)[0]
if self.periodic:
bucketIdx = (minbin + self.halfwidth)
if (bucketIdx < 0):
bucketIdx += self.n
else:
bucketIdx = minbin
return [bucketIdx]
|
'See method description in base.py'
| def encodeIntoArray(self, input, output, learn=True):
| if ((input is not None) and (not isinstance(input, numbers.Number))):
raise TypeError(('Expected a scalar input but got input of type %s' % type(input)))
if ((type(input) is float) and math.isnan(input)):
input = SENTINEL_VALUE_FOR_MISSING_DATA
bucketIdx = self._getFirstOnBit(input)[0]
if (bucketIdx is None):
output[0:self.n] = 0
else:
output[:self.n] = 0
minbin = bucketIdx
maxbin = (minbin + (2 * self.halfwidth))
if self.periodic:
if (maxbin >= self.n):
bottombins = ((maxbin - self.n) + 1)
output[:bottombins] = 1
maxbin = (self.n - 1)
if (minbin < 0):
topbins = (- minbin)
output[(self.n - topbins):self.n] = 1
minbin = 0
assert (minbin >= 0)
assert (maxbin < self.n)
output[minbin:(maxbin + 1)] = 1
if (self.verbosity >= 2):
print
print 'input:', input
print 'range:', self.minval, '-', self.maxval
print 'n:', self.n, 'w:', self.w, 'resolution:', self.resolution, 'radius', self.radius, 'periodic:', self.periodic
print 'output:',
self.pprint(output)
print 'input desc:', self.decodedToStr(self.decode(output))
|
'See the function description in base.py'
| def decode(self, encoded, parentFieldName=''):
| tmpOutput = numpy.array((encoded[:self.n] > 0)).astype(encoded.dtype)
if (not tmpOutput.any()):
return (dict(), [])
maxZerosInARow = self.halfwidth
for i in xrange(maxZerosInARow):
searchStr = numpy.ones((i + 3), dtype=encoded.dtype)
searchStr[1:(-1)] = 0
subLen = len(searchStr)
if self.periodic:
for j in xrange(self.n):
outputIndices = numpy.arange(j, (j + subLen))
outputIndices %= self.n
if numpy.array_equal(searchStr, tmpOutput[outputIndices]):
tmpOutput[outputIndices] = 1
else:
for j in xrange(((self.n - subLen) + 1)):
if numpy.array_equal(searchStr, tmpOutput[j:(j + subLen)]):
tmpOutput[j:(j + subLen)] = 1
if (self.verbosity >= 2):
print 'raw output:', encoded[:self.n]
print 'filtered output:', tmpOutput
nz = tmpOutput.nonzero()[0]
runs = []
run = [nz[0], 1]
i = 1
while (i < len(nz)):
if (nz[i] == (run[0] + run[1])):
run[1] += 1
else:
runs.append(run)
run = [nz[i], 1]
i += 1
runs.append(run)
if (self.periodic and (len(runs) > 1)):
if ((runs[0][0] == 0) and ((runs[(-1)][0] + runs[(-1)][1]) == self.n)):
runs[(-1)][1] += runs[0][1]
runs = runs[1:]
ranges = []
for run in runs:
(start, runLen) = run
if (runLen <= self.w):
left = right = (start + (runLen / 2))
else:
left = (start + self.halfwidth)
right = (((start + runLen) - 1) - self.halfwidth)
if (not self.periodic):
inMin = (((left - self.padding) * self.resolution) + self.minval)
inMax = (((right - self.padding) * self.resolution) + self.minval)
else:
inMin = ((((left - self.padding) * self.range) / self.nInternal) + self.minval)
inMax = ((((right - self.padding) * self.range) / self.nInternal) + self.minval)
if self.periodic:
if (inMin >= self.maxval):
inMin -= self.range
inMax -= self.range
if (inMin < self.minval):
inMin = self.minval
if (inMax < self.minval):
inMax = self.minval
if (self.periodic and (inMax >= self.maxval)):
ranges.append([inMin, self.maxval])
ranges.append([self.minval, (inMax - self.range)])
else:
if (inMax > self.maxval):
inMax = self.maxval
if (inMin > self.maxval):
inMin = self.maxval
ranges.append([inMin, inMax])
desc = self._generateRangeDescription(ranges)
if (parentFieldName != ''):
fieldName = ('%s.%s' % (parentFieldName, self.name))
else:
fieldName = self.name
return ({fieldName: (ranges, desc)}, [fieldName])
|
'generate description from a text description of the ranges'
| def _generateRangeDescription(self, ranges):
| desc = ''
numRanges = len(ranges)
for i in xrange(numRanges):
if (ranges[i][0] != ranges[i][1]):
desc += ('%.2f-%.2f' % (ranges[i][0], ranges[i][1]))
else:
desc += ('%.2f' % ranges[i][0])
if (i < (numRanges - 1)):
desc += ', '
return desc
|
'Return the interal _topDownMappingM matrix used for handling the
bucketInfo() and topDownCompute() methods. This is a matrix, one row per
category (bucket) where each row contains the encoded output for that
category.'
| def _getTopDownMapping(self):
| if (self._topDownMappingM is None):
if self.periodic:
self._topDownValues = numpy.arange((self.minval + (self.resolution / 2.0)), self.maxval, self.resolution)
else:
self._topDownValues = numpy.arange(self.minval, (self.maxval + (self.resolution / 2.0)), self.resolution)
numCategories = len(self._topDownValues)
self._topDownMappingM = SM32(numCategories, self.n)
outputSpace = numpy.zeros(self.n, dtype=GetNTAReal())
for i in xrange(numCategories):
value = self._topDownValues[i]
value = max(value, self.minval)
value = min(value, self.maxval)
self.encodeIntoArray(value, outputSpace, learn=False)
self._topDownMappingM.setRowFromDense(i, outputSpace)
return self._topDownMappingM
|
'See the function description in base.py'
| def getBucketValues(self):
| if (self._bucketValues is None):
topDownMappingM = self._getTopDownMapping()
numBuckets = topDownMappingM.nRows()
self._bucketValues = []
for bucketIdx in range(numBuckets):
self._bucketValues.append(self.getBucketInfo([bucketIdx])[0].value)
return self._bucketValues
|
'See the function description in base.py'
| def getBucketInfo(self, buckets):
| topDownMappingM = self._getTopDownMapping()
category = buckets[0]
encoding = self._topDownMappingM.getRow(category)
if self.periodic:
inputVal = ((self.minval + (self.resolution / 2.0)) + (category * self.resolution))
else:
inputVal = (self.minval + (category * self.resolution))
return [EncoderResult(value=inputVal, scalar=inputVal, encoding=encoding)]
|
'See the function description in base.py'
| def topDownCompute(self, encoded):
| topDownMappingM = self._getTopDownMapping()
category = topDownMappingM.rightVecProd(encoded).argmax()
return self.getBucketInfo([category])
|
'See the function description in base.py'
| def closenessScores(self, expValues, actValues, fractional=True):
| expValue = expValues[0]
actValue = actValues[0]
if self.periodic:
expValue = (expValue % self.maxval)
actValue = (actValue % self.maxval)
err = abs((expValue - actValue))
if self.periodic:
err = min(err, (self.maxval - err))
if fractional:
pctErr = (float(err) / (self.maxval - self.minval))
pctErr = min(1.0, pctErr)
closeness = (1.0 - pctErr)
else:
closeness = err
return numpy.array([closeness])
|
'See method description in base.py'
| def getScalarNames(self, parentFieldName=''):
| names = []
def _formFieldName(encoder):
if (parentFieldName == ''):
return encoder.name
else:
return ('%s.%s' % (parentFieldName, encoder.name))
if (self.seasonEncoder is not None):
names.append(_formFieldName(self.seasonEncoder))
if (self.dayOfWeekEncoder is not None):
names.append(_formFieldName(self.dayOfWeekEncoder))
if (self.customDaysEncoder is not None):
names.append(_formFieldName(self.customDaysEncoder))
if (self.weekendEncoder is not None):
names.append(_formFieldName(self.weekendEncoder))
if (self.holidayEncoder is not None):
names.append(_formFieldName(self.holidayEncoder))
if (self.timeOfDayEncoder is not None):
names.append(_formFieldName(self.timeOfDayEncoder))
return names
|
'See method description in base.py'
| def getEncodedValues(self, input):
| if (input == SENTINEL_VALUE_FOR_MISSING_DATA):
return numpy.array([None])
assert isinstance(input, datetime.datetime)
values = []
timetuple = input.timetuple()
timeOfDay = (timetuple.tm_hour + (float(timetuple.tm_min) / 60.0))
if (self.seasonEncoder is not None):
dayOfYear = timetuple.tm_yday
values.append((dayOfYear - 1))
if (self.dayOfWeekEncoder is not None):
dayOfWeek = (timetuple.tm_wday + (timeOfDay / 24.0))
values.append(dayOfWeek)
if (self.weekendEncoder is not None):
if ((timetuple.tm_wday == 6) or (timetuple.tm_wday == 5) or ((timetuple.tm_wday == 4) and (timeOfDay > 18))):
weekend = 1
else:
weekend = 0
values.append(weekend)
if (self.customDaysEncoder is not None):
if (timetuple.tm_wday in self.customDays):
customDay = 1
else:
customDay = 0
values.append(customDay)
if (self.holidayEncoder is not None):
holidays = [(12, 25)]
val = 0
for h in holidays:
hdate = datetime.datetime(timetuple.tm_year, h[0], h[1], 0, 0, 0)
if (input > hdate):
diff = (input - hdate)
if (diff.days == 0):
val = 1
break
elif (diff.days == 1):
val = (1.0 - (float(diff.seconds) / 86400))
break
else:
diff = (hdate - input)
if (diff.days == 0):
val = (1.0 - (float(diff.seconds) / 86400))
values.append(val)
if (self.timeOfDayEncoder is not None):
values.append(timeOfDay)
return values
|
'See method description in :meth:`~.nupic.encoders.base.Encoder.getScalars`.
:param input: (datetime) representing the time being encoded
:returns: A numpy array of the corresponding scalar values in the following
order: season, dayOfWeek, weekend, holiday, timeOfDay. Some of
these fields might be omitted if they were not specified in the
encoder.'
| def getScalars(self, input):
| return numpy.array(self.getEncodedValues(input))
|
'See method description in base.py'
| def getBucketIndices(self, input):
| if (input == SENTINEL_VALUE_FOR_MISSING_DATA):
return ([None] * len(self.encoders))
else:
assert isinstance(input, datetime.datetime)
scalars = self.getScalars(input)
result = []
for i in xrange(len(self.encoders)):
(name, encoder, offset) = self.encoders[i]
result.extend(encoder.getBucketIndices(scalars[i]))
return result
|
'See method description in base.py'
| def encodeIntoArray(self, input, output):
| if (input == SENTINEL_VALUE_FOR_MISSING_DATA):
output[0:] = 0
else:
if (not isinstance(input, datetime.datetime)):
raise ValueError(('Input is type %s, expected datetime. Value: %s' % (type(input), str(input))))
scalars = self.getScalars(input)
for i in xrange(len(self.encoders)):
(name, encoder, offset) = self.encoders[i]
encoder.encodeIntoArray(scalars[i], output[offset:])
|
'Adds one encoder.
:param name: (string) name of encoder, should be unique
:param encoder: (:class:`.Encoder`) the encoder to add'
| def addEncoder(self, name, encoder):
| self.encoders.append((name, encoder, self.width))
for d in encoder.getDescription():
self.description.append((d[0], (d[1] + self.width)))
self.width += encoder.getWidth()
self._flattenedEncoderList = None
self._flattenedFieldTypeList = None
|
'Represents the sum of the widths of each fields encoding.'
| def getWidth(self):
| return self.width
|
':param fieldEncodings: dict of dicts, mapping field names to the field
params dict.
Each field params dict has the following keys:
1. ``fieldname``: data field name
2. ``type`` an encoder type
3. All other keys are encoder parameters
For example,
.. code-block:: python
fieldEncodings={
\'dateTime\': dict(fieldname=\'dateTime\', type=\'DateEncoder\',
timeOfDay=(5,5)),
\'attendeeCount\': dict(fieldname=\'attendeeCount\', type=\'ScalarEncoder\',
name=\'attendeeCount\', minval=0, maxval=250,
clipInput=True, w=5, resolution=10),
\'consumption\': dict(fieldname=\'consumption\',type=\'ScalarEncoder\',
name=\'consumption\', minval=0,maxval=110,
clipInput=True, w=5, resolution=5),
would yield a vector with a part encoded by the :class:`.DateEncoder`, and
to parts seperately taken care of by the :class:`.ScalarEncoder` with the
specified parameters. The three seperate encodings are then merged together
to the final vector, in such a way that they are always at the same location
within the vector.'
| def addMultipleEncoders(self, fieldEncodings):
| encoderList = sorted(fieldEncodings.items())
for (key, fieldParams) in encoderList:
if ((':' not in key) and (fieldParams is not None)):
fieldParams = fieldParams.copy()
fieldName = fieldParams.pop('fieldname')
encoderName = fieldParams.pop('type')
try:
self.addEncoder(fieldName, eval(encoderName)(**fieldParams))
except TypeError as e:
print ('#### Error in constructing %s encoder. Possibly missing some required constructor parameters. Parameters that were provided are: %s' % (encoderName, fieldParams))
raise
|
'See `nupic.encoders.base.Encoder` for more information.'
| def getWidth(self):
| return self.n
|
'See `nupic.encoders.base.Encoder` for more information.'
| def getDescription(self):
| return [('coordinate', 0), ('radius', 1)]
|
'See `nupic.encoders.base.Encoder` for more information.'
| def getScalars(self, inputData):
| return numpy.array(([0] * len(inputData)))
|
'See `nupic.encoders.base.Encoder` for more information.
@param inputData (tuple) Contains coordinate (numpy.array, N-dimensional
integer coordinate) and radius (int)
@param output (numpy.array) Stores encoded SDR in this numpy array'
| def encodeIntoArray(self, inputData, output):
| (coordinate, radius) = inputData
assert isinstance(radius, int), 'Expected integer radius, got: {} ({})'.format(radius, type(radius))
neighbors = self._neighbors(coordinate, radius)
winners = self._topWCoordinates(neighbors, self.w)
bitFn = (lambda coordinate: self._bitForCoordinate(coordinate, self.n))
indices = numpy.array([bitFn(w) for w in winners])
output[:] = 0
output[indices] = 1
|
'Returns coordinates around given coordinate, within given radius.
Includes given coordinate.
@param coordinate (numpy.array) N-dimensional integer coordinate
@param radius (int) Radius around `coordinate`
@return (numpy.array) List of coordinates'
| @staticmethod
def _neighbors(coordinate, radius):
| ranges = (xrange((n - radius), ((n + radius) + 1)) for n in coordinate.tolist())
return numpy.array(list(itertools.product(*ranges)))
|
'Returns the top W coordinates by order.
@param coordinates (numpy.array) A 2D numpy array, where each element
is a coordinate
@param w (int) Number of top coordinates to return
@return (numpy.array) A subset of `coordinates`, containing only the
top ones by order'
| @classmethod
def _topWCoordinates(cls, coordinates, w):
| orders = numpy.array([cls._orderForCoordinate(c) for c in coordinates.tolist()])
indices = numpy.argsort(orders)[(- w):]
return coordinates[indices]
|
'Hash a coordinate to a 64 bit integer.'
| @staticmethod
def _hashCoordinate(coordinate):
| coordinateStr = ','.join((str(v) for v in coordinate))
hash = int((int(hashlib.md5(coordinateStr).hexdigest(), 16) % (2 ** 64)))
return hash
|
'Returns the order for a coordinate.
@param coordinate (numpy.array) Coordinate
@return (float) A value in the interval [0, 1), representing the
order of the coordinate'
| @classmethod
def _orderForCoordinate(cls, coordinate):
| seed = cls._hashCoordinate(coordinate)
rng = Random(seed)
return rng.getReal64()
|
'Maps the coordinate to a bit in the SDR.
@param coordinate (numpy.array) Coordinate
@param n (int) The number of available bits in the SDR
@return (int) The index to a bit in the SDR'
| @classmethod
def _bitForCoordinate(cls, coordinate, n):
| seed = cls._hashCoordinate(coordinate)
rng = Random(seed)
return rng.getUInt32(n)
|
''
| def __init__(cls, name, bases, dict):
| def custom_setattr(self, name, value):
'A custom replacement for __setattr__\n\n Allows setting only exisitng attributes. It is designed to work\n with the _allow_new_attributes decorator.\n\n It works is by checking if the requested attribute is already in the\n __dict__ or if the _canAddAttributes counter > 0. Otherwise it raises an\n exception.\n If all is well it calls the original __setattr__. This means it can work\n also with classes that already have custom __setattr__\n '
if ((name == '_canAddAttributes') or (hasattr(self, '_canAddAttributes') and (self._canAddAttributes > 0)) or hasattr(self, name)):
return self._original_setattr(name, value)
else:
raise Exception(('Attempting to set a new attribute: ' + name))
if (deactivation_key in os.environ):
return
super(LockAttributesMetaclass, cls).__init__(name, bases, dict)
if (not hasattr(cls, '_original_setattr')):
cls._original_setattr = cls.__setattr__
cls.__setattr__ = custom_setattr
if ('__init__' in dict):
setattr(cls, '_original_init', dict['__init__'])
methods = [('__init__', dict.get('__init__', _simple_init)), ('__setstate__', dict.get('__setstate__', None))]
for (name, method) in methods:
if (method is not None):
setattr(cls, name, _allow_new_attributes(method))
|
'Print out what test we are running'
| def printTestHeader(self):
| print
print '###############################################################'
print ('Running %s...' % (self,))
print ('[%s UTC]' % datetime.utcnow())
print '###############################################################'
sys.stdout.flush()
return
|
'Print out a banner'
| def printBanner(self, msg, *args):
| print
print '==============================================================='
print (msg % args)
print >>sys.stdout, ('[%s UTC; %s]' % (datetime.utcnow(), self))
print '==============================================================='
sys.stdout.flush()
return
|
'Add an item to the log items list for the currently running session.
Our self.myAssertXXXXXX wrappers add the current items to the msg that is
passed to the unittest\'s assertXXXXX methods. The extra info will show up
in test results if the test fails.'
| def addExtraLogItem(self, item):
| self.__logItems.append(item)
return
|
'Called by our unittest.TestCase.assertXXXXXX overrides to construct a
message from the given message plus self.__logItems, if any. If
self.__logItems is non-empty, returns a dictionary containing the given
message value as the "msg" property and self.__logItems as the "extra"
property. If self.__logItems is empy, returns the given msg arg.'
| def __wrapMsg(self, msg):
| msg = (msg if (not self.__logItems) else {'msg': msg, 'extra': copy.copy(self.__logItems)})
msg = str(msg)
msg = msg.replace('\\n', '\n')
return msg
|
'unittest.TestCase.assertEqual override; adds extra log items to msg'
| def assertEqual(self, first, second, msg=None):
| unittest.TestCase.assertEqual(self, first, second, self.__wrapMsg(msg))
return
|
'unittest.TestCase.assertNotEqual override; adds extra log items to msg'
| def assertNotEqual(self, first, second, msg=None):
| unittest.TestCase.assertNotEqual(self, first, second, self.__wrapMsg(msg))
return
|
'unittest.TestCase.assertTrue override; adds extra log items to msg'
| def assertTrue(self, expr, msg=None):
| unittest.TestCase.assertTrue(self, expr, self.__wrapMsg(msg))
return
|
'unittest.TestCase.assertFalse override; adds extra log items to msg'
| def assertFalse(self, expr, msg=None):
| unittest.TestCase.assertFalse(self, expr, self.__wrapMsg(msg))
return
|
'Override this method to set the default TM params for `self.tm`.'
| def getDefaultTMParams(self):
| return {}
|
'Initialize Temporal Memory, and other member variables.
:param overrides: overrides for default Temporal Memory parameters'
| def init(self, overrides=None):
| params = self._computeTMParams(overrides)
class MonitoredTemporalMemory(TemporalMemoryMonitorMixin, self.getTMClass(), ):
pass
self.tm = MonitoredTemporalMemory(**params)
|
'returns: (dict) containing all custom configuration properties.'
| @classmethod
def getCustomDict(cls):
| return _CustomConfigurationFileWrapper.getCustomDict()
|
'Set a single custom setting and persist it to the custom configuration
store.
:param propertyName: (string) containing the name of the property to get
:param value: (object) value to set the property to'
| @classmethod
def setCustomProperty(cls, propertyName, value):
| cls.setCustomProperties({propertyName: value})
|
'Set multiple custom properties and persist them to the custom configuration
store.
:param properties: (dict) of property name/value pairs to set'
| @classmethod
def setCustomProperties(cls, properties):
| _getLogger().info('Setting custom configuration properties=%r; caller=%r', properties, traceback.format_stack())
_CustomConfigurationFileWrapper.edit(properties)
for (propertyName, value) in properties.iteritems():
cls.set(propertyName, value)
|
'Clear all configuration properties from in-memory cache, but do NOT alter
the custom configuration file. Used in unit-testing.'
| @classmethod
def clear(cls):
| super(Configuration, cls).clear()
_CustomConfigurationFileWrapper.clear(persistent=False)
|
'Clear all custom configuration settings and delete the persistent custom
configuration store.'
| @classmethod
def resetCustomConfig(cls):
| _getLogger().info('Resetting all custom configuration properties; caller=%r', traceback.format_stack())
super(Configuration, cls).clear()
_CustomConfigurationFileWrapper.clear(persistent=True)
|
'Loads custom configuration settings from their persistent storage.
.. warning :: DO NOT CALL THIS: It\'s typically not necessary to call this
method directly. This method exists *solely* for the benefit of
``prepare_conf.py``, which needs to load configuration files selectively.'
| @classmethod
def loadCustomConfig(cls):
| cls.readConfigFile(_CustomConfigurationFileWrapper.customFileName)
|
'Intercept the _readStdConfigFiles call from our base config class to
read in base and custom configuration settings.'
| @classmethod
def _readStdConfigFiles(cls):
| super(Configuration, cls)._readStdConfigFiles()
cls.loadCustomConfig()
|
'If persistent is True, delete the temporary file
Parameters:
persistent: if True, custom configuration file is deleted'
| @classmethod
def clear(cls, persistent=False):
| if persistent:
try:
os.unlink(cls.getPath())
except OSError as e:
if (e.errno != errno.ENOENT):
_getLogger().exception('Error %s while trying to remove dynamic configuration file: %s', e.errno, cls.getPath())
raise
cls._path = None
|
'Returns a dict of all temporary values in custom configuration file'
| @classmethod
def getCustomDict(cls):
| if (not os.path.exists(cls.getPath())):
return dict()
properties = Configuration._readConfigFile(os.path.basename(cls.getPath()), os.path.dirname(cls.getPath()))
values = dict()
for propName in properties:
if ('value' in properties[propName]):
values[propName] = properties[propName]['value']
return values
|
'Edits the XML configuration file with the parameters specified by
properties
Parameters:
properties: dict of settings to be applied to the custom configuration store
(key is property name, value is value)'
| @classmethod
def edit(cls, properties):
| copyOfProperties = copy(properties)
configFilePath = cls.getPath()
try:
with open(configFilePath, 'r') as fp:
contents = fp.read()
except IOError as e:
if (e.errno != errno.ENOENT):
_getLogger().exception('Error %s reading custom configuration store from %s, while editing properties %s.', e.errno, configFilePath, properties)
raise
contents = '<configuration/>'
try:
elements = ElementTree.XML(contents)
ElementTree.tostring(elements)
except Exception as e:
msg = ("File contents of custom configuration is corrupt. File location: %s; Contents: '%s'. Original Error (%s): %s." % (configFilePath, contents, type(e), e))
_getLogger().exception(msg)
raise RuntimeError(msg), None, sys.exc_info()[2]
if (elements.tag != 'configuration'):
e = ("Expected top-level element to be 'configuration' but got '%s'" % elements.tag)
_getLogger().error(e)
raise RuntimeError(e)
for propertyItem in elements.findall('./property'):
propInfo = dict(((attr.tag, attr.text) for attr in propertyItem))
name = propInfo['name']
if (name in copyOfProperties):
foundValues = propertyItem.findall('./value')
if (len(foundValues) > 0):
foundValues[0].text = str(copyOfProperties.pop(name))
if (not copyOfProperties):
break
else:
e = ('Property %s missing value tag.' % (name,))
_getLogger().error(e)
raise RuntimeError(e)
for (propertyName, value) in copyOfProperties.iteritems():
newProp = ElementTree.Element('property')
nameTag = ElementTree.Element('name')
nameTag.text = propertyName
newProp.append(nameTag)
valueTag = ElementTree.Element('value')
valueTag.text = str(value)
newProp.append(valueTag)
elements.append(newProp)
try:
makeDirectoryFromAbsolutePath(os.path.dirname(configFilePath))
with open(configFilePath, 'w') as fp:
fp.write(ElementTree.tostring(elements))
except Exception as e:
_getLogger().exception('Error while saving custom configuration properties %s in %s.', properties, configFilePath)
raise
|
'Sets the path of the custom configuration file'
| @classmethod
def _setPath(cls):
| cls._path = os.path.join(os.environ['NTA_DYNAMIC_CONF_DIR'], cls.customFileName)
|
'Get the path of the custom configuration file'
| @classmethod
def getPath(cls):
| if (cls._path is None):
cls._setPath()
return cls._path
|
'Retrieve the requested property as a string. If property does not exist,
then KeyError will be raised.
:param prop: (string) name of the property
:raises: KeyError
:returns: (string) property value'
| @classmethod
def getString(cls, prop):
| if (cls._properties is None):
cls._readStdConfigFiles()
envValue = os.environ.get(('%s%s' % (cls.envPropPrefix, prop.replace('.', '_'))), None)
if (envValue is not None):
return envValue
return cls._properties[prop]
|
'Retrieve the requested property and return it as a bool. If property
does not exist, then KeyError will be raised. If the property value is
neither 0 nor 1, then ValueError will be raised
:param prop: (string) name of the property
:raises: KeyError, ValueError
:returns: (bool) property value'
| @classmethod
def getBool(cls, prop):
| value = cls.getInt(prop)
if (value not in (0, 1)):
raise ValueError(('Expected 0 or 1, but got %r in config property %s' % (value, prop)))
return bool(value)
|
'Retrieve the requested property and return it as an int. If property
does not exist, then KeyError will be raised.
:param prop: (string) name of the property
:returns: (int) property value'
| @classmethod
def getInt(cls, prop):
| return int(cls.getString(prop))
|
'Retrieve the requested property and return it as a float. If property
does not exist, then KeyError will be raised.
:param prop: (string) name of the property
:returns: (float) property value'
| @classmethod
def getFloat(cls, prop):
| return float(cls.getString(prop))
|
'Get the value of the given configuration property as string. This
returns a string which is the property value, or the value of "default" arg.
If the property is not found, use :meth:`getString` instead.
.. note:: it\'s atypical for our configuration properties to be missing - a
missing configuration property is usually a very serious error. Because
of this, it\'s preferable to use one of the :meth:`getString`,
:meth:`getInt`, :meth:`getFloat`, etc. variants instead of :meth:`get`.
Those variants will raise KeyError when an expected property is missing.
:param prop: (string) name of the property
:param default: default value to return if property does not exist
:returns: (string) property value, or default if the property does not exist'
| @classmethod
def get(cls, prop, default=None):
| try:
return cls.getString(prop)
except KeyError:
return default
|
'Set the value of the given configuration property.
:param prop: (string) name of the property
:param value: (object) value to set'
| @classmethod
def set(cls, prop, value):
| if (cls._properties is None):
cls._readStdConfigFiles()
cls._properties[prop] = str(value)
|
'Return a dict containing all of the configuration properties
:returns: (dict) containing all configuration properties.'
| @classmethod
def dict(cls):
| if (cls._properties is None):
cls._readStdConfigFiles()
result = dict(cls._properties)
keys = os.environ.keys()
replaceKeys = filter((lambda x: x.startswith(cls.envPropPrefix)), keys)
for envKey in replaceKeys:
key = envKey[len(cls.envPropPrefix):]
key = key.replace('_', '.')
result[key] = os.environ[envKey]
return result
|
'Parse the given XML file and store all properties it describes.
:param filename: (string) name of XML file to parse (no path)
:param path: (string) path of the XML file. If None, then use the standard
configuration search path.'
| @classmethod
def readConfigFile(cls, filename, path=None):
| properties = cls._readConfigFile(filename, path)
if (cls._properties is None):
cls._properties = dict()
for name in properties:
if ('value' in properties[name]):
cls._properties[name] = properties[name]['value']
|
'Parse the given XML file and return a dict describing the file.
:param filename: (string) name of XML file to parse (no path)
:param path: (string) path of the XML file. If None, then use the standard
configuration search path.
:returns: (dict) with each property as a key and a dict of all the
property\'s attributes as value'
| @classmethod
def _readConfigFile(cls, filename, path=None):
| outputProperties = dict()
if (path is None):
filePath = cls.findConfigFile(filename)
else:
filePath = os.path.join(path, filename)
try:
if (filePath is not None):
try:
_getLogger().debug('Loading config file: %s', filePath)
with open(filePath, 'r') as inp:
contents = inp.read()
except Exception:
raise RuntimeError(('Expected configuration file at %s' % filePath))
else:
try:
contents = resource_string('nupic.support', filename)
except Exception as resourceException:
if (filename in [USER_CONFIG, CUSTOM_CONFIG]):
contents = '<configuration/>'
else:
raise resourceException
elements = ElementTree.XML(contents)
if (elements.tag != 'configuration'):
raise RuntimeError(("Expected top-level element to be 'configuration' but got '%s'" % elements.tag))
propertyElements = elements.findall('./property')
for propertyItem in propertyElements:
propInfo = dict()
propertyAttributes = list(propertyItem)
for propertyAttribute in propertyAttributes:
propInfo[propertyAttribute.tag] = propertyAttribute.text
name = propInfo.get('name', None)
if (('value' in propInfo) and (propInfo['value'] is None)):
value = ''
else:
value = propInfo.get('value', None)
if (value is None):
if ('novalue' in propInfo):
continue
else:
raise RuntimeError(("Missing 'value' element within the property element: => %s " % str(propInfo)))
restOfValue = value
value = ''
while True:
pos = restOfValue.find('${env.')
if (pos == (-1)):
value += restOfValue
break
value += restOfValue[0:pos]
varTailPos = restOfValue.find('}', pos)
if (varTailPos == (-1)):
raise RuntimeError(("Trailing environment variable tag delimiter '}' not found in %r" % restOfValue))
varname = restOfValue[(pos + 6):varTailPos]
if (varname not in os.environ):
raise RuntimeError(('Attempting to use the value of the environment variable %r, which is not defined' % varname))
envVarValue = os.environ[varname]
value += envVarValue
restOfValue = restOfValue[(varTailPos + 1):]
if (name is None):
raise RuntimeError(("Missing 'name' element within following property element:\n => %s " % str(propInfo)))
propInfo['value'] = value
outputProperties[name] = propInfo
return outputProperties
except Exception:
_getLogger().exception('Error while parsing configuration file: %s.', filePath)
raise
|
'Clear out the entire configuration.'
| @classmethod
def clear(cls):
| cls._properties = None
cls._configPaths = None
|
'Search the configuration path (specified via the NTA_CONF_PATH
environment variable) for the given filename. If found, return the complete
path to the file.
:param filename: (string) name of file to locate'
| @classmethod
def findConfigFile(cls, filename):
| paths = cls.getConfigPaths()
for p in paths:
testPath = os.path.join(p, filename)
if os.path.isfile(testPath):
return os.path.join(p, filename)
|
'Return the list of paths to search for configuration files.
:returns: (list) of paths'
| @classmethod
def getConfigPaths(cls):
| configPaths = []
if (cls._configPaths is not None):
return cls._configPaths
else:
if ('NTA_CONF_PATH' in os.environ):
configVar = os.environ['NTA_CONF_PATH']
configPaths = configVar.split(os.pathsep)
return configPaths
|
'Modify the paths we use to search for configuration files.
:param paths: (list) of paths to search for config files.'
| @classmethod
def setConfigPaths(cls, paths):
| cls._configPaths = list(paths)
|
'Read in all standard configuration files'
| @classmethod
def _readStdConfigFiles(cls):
| cls.readConfigFile(DEFAULT_CONFIG)
cls.readConfigFile(USER_CONFIG)
|
'Print a message to the console.
Prints only if level <= self.consolePrinterVerbosity
Printing with level 0 is equivalent to using a print statement,
and should normally be avoided.
:param level: (int) indicating the urgency of the message with
lower values meaning more urgent (messages at level 0 are the most
urgent and are always printed)
:param message: (string) possibly with format specifiers
:param args: specifies the values for any format specifiers in message
:param kw: newline is the only keyword argument. True (default) if a newline
should be printed'
| def cPrint(self, level, message, *args, **kw):
| if (level > self.consolePrinterVerbosity):
return
if (len(kw) > 1):
raise KeyError(('Invalid keywords for cPrint: %s' % str(kw.keys())))
newline = kw.get('newline', True)
if ((len(kw) == 1) and ('newline' not in kw)):
raise KeyError(('Invalid keyword for cPrint: %s' % kw.keys()[0]))
if (len(args) == 0):
if newline:
print message
else:
print message,
elif newline:
print (message % args)
else:
print (message % args),
|
'Generates a random sample from the discrete probability distribution and
returns its value, the log of the probability of sampling that value and the
log of the probability of sampling the current value (passed in).'
| def propose(self, current, r):
| stay = (r.uniform(0, 1) < self.kernel)
if stay:
logKernel = numpy.log(self.kernel)
return (current, logKernel, logKernel)
else:
curIndex = self.keyMap[current]
ri = r.randint(0, (self.nKeys - 1))
logKernel = numpy.log((1.0 - self.kernel))
lp = (logKernel + self.logp)
if (ri < curIndex):
return (self.keys[ri], lp, lp)
else:
return (self.keys[(ri + 1)], lp, lp)
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.