desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'inputRecord - dict containing the input to the sensor
Return a \'SensorInput\' object, which represents the \'parsed\'
representation of the input record'
| def _getSensorInputRecord(self, inputRecord):
| sensor = self._getSensorRegion()
dataRow = copy.deepcopy(sensor.getSelf().getOutputValues('sourceOut'))
dataDict = copy.deepcopy(inputRecord)
inputRecordEncodings = sensor.getSelf().getOutputValues('sourceEncodings')
inputRecordCategory = int(sensor.getOutputData('categoryOut')[0])
resetOut = sensor.getOutputData('resetOut')[0]
return SensorInput(dataRow=dataRow, dataDict=dataDict, dataEncodings=inputRecordEncodings, sequenceReset=resetOut, category=inputRecordCategory)
|
'inputRecord - dict containing the input to the sensor
Return a \'ClassifierInput\' object, which contains the mapped
bucket index for input Record'
| def _getClassifierInputRecord(self, inputRecord):
| absoluteValue = None
bucketIdx = None
if ((self._predictedFieldName is not None) and (self._classifierInputEncoder is not None)):
absoluteValue = inputRecord[self._predictedFieldName]
bucketIdx = self._classifierInputEncoder.getBucketIndices(absoluteValue)[0]
return ClassifierInput(dataRow=absoluteValue, bucketIndex=bucketIdx)
|
'Compute Anomaly score, if required'
| def _anomalyCompute(self):
| inferenceType = self.getInferenceType()
inferences = {}
sp = self._getSPRegion()
score = None
if (inferenceType == InferenceType.NontemporalAnomaly):
score = sp.getOutputData('anomalyScore')[0]
elif (inferenceType == InferenceType.TemporalAnomaly):
tm = self._getTPRegion()
if (sp is not None):
activeColumns = sp.getOutputData('bottomUpOut').nonzero()[0]
else:
sensor = self._getSensorRegion()
activeColumns = sensor.getOutputData('dataOut').nonzero()[0]
if (not (self._predictedFieldName in self._input)):
raise ValueError(("Expected predicted field '%s' in input row, but was not found!" % self._predictedFieldName))
score = tm.getOutputData('anomalyScore')[0]
if (sp is not None):
self._getAnomalyClassifier().setParameter('activeColumnCount', len(activeColumns))
self._getAnomalyClassifier().prepareInputs()
self._getAnomalyClassifier().compute()
labels = self._getAnomalyClassifier().getSelf().getLabelResults()
inferences[InferenceElement.anomalyLabel] = ('%s' % labels)
inferences[InferenceElement.anomalyScore] = score
return inferences
|
'Handle the CLA Classifier compute logic when implementing multi-step
prediction. This is where the patternNZ is associated with one of the
other fields from the dataset 0 to N steps in the future. This method is
used by each type of network (encoder only, SP only, SP +TM) to handle the
compute logic through the CLA Classifier. It fills in the inference dict with
the results of the compute.
Parameters:
patternNZ: The input to the CLA Classifier as a list of active input indices
inputTSRecordIdx: The index of the record as computed from the timestamp
and aggregation interval. This normally increments by 1
each time unless there are missing records. If there is no
aggregation interval or timestamp in the data, this will be
None.
rawInput: The raw input to the sensor, as a dict.'
| def _handleSDRClassifierMultiStep(self, patternNZ, inputTSRecordIdx, rawInput):
| inferenceArgs = self.getInferenceArgs()
predictedFieldName = inferenceArgs.get('predictedField', None)
if (predictedFieldName is None):
raise ValueError('No predicted field was enabled! Did you call enableInference()?')
self._predictedFieldName = predictedFieldName
classifier = self._getClassifierRegion()
if ((not self._hasCL) or (classifier is None)):
return {}
sensor = self._getSensorRegion()
minLikelihoodThreshold = self._minLikelihoodThreshold
maxPredictionsPerStep = self._maxPredictionsPerStep
needLearning = self.isLearningEnabled()
inferences = {}
if (self._classifierInputEncoder is None):
if (predictedFieldName is None):
raise RuntimeError("This experiment description is missing the 'predictedField' in its config, which is required for multi-step prediction inference.")
encoderList = sensor.getSelf().encoder.getEncoderList()
self._numFields = len(encoderList)
fieldNames = sensor.getSelf().encoder.getScalarNames()
if (predictedFieldName in fieldNames):
self._predictedFieldIdx = fieldNames.index(predictedFieldName)
else:
self._predictedFieldIdx = None
if (sensor.getSelf().disabledEncoder is not None):
encoderList = sensor.getSelf().disabledEncoder.getEncoderList()
else:
encoderList = []
if (len(encoderList) >= 1):
fieldNames = sensor.getSelf().disabledEncoder.getScalarNames()
self._classifierInputEncoder = encoderList[fieldNames.index(predictedFieldName)]
else:
encoderList = sensor.getSelf().encoder.getEncoderList()
self._classifierInputEncoder = encoderList[self._predictedFieldIdx]
if (not (predictedFieldName in rawInput)):
raise ValueError(("Input row does not contain a value for the predicted field configured for this model. Missing value for '%s'" % predictedFieldName))
absoluteValue = rawInput[predictedFieldName]
bucketIdx = self._classifierInputEncoder.getBucketIndices(absoluteValue)[0]
if isinstance(self._classifierInputEncoder, DeltaEncoder):
if (not hasattr(self, '_ms_prevVal')):
self._ms_prevVal = absoluteValue
prevValue = self._ms_prevVal
self._ms_prevVal = absoluteValue
actualValue = (absoluteValue - prevValue)
else:
actualValue = absoluteValue
if (isinstance(actualValue, float) and math.isnan(actualValue)):
actualValue = SENTINEL_VALUE_FOR_MISSING_DATA
classifier.setParameter('inferenceMode', True)
classifier.setParameter('learningMode', needLearning)
classificationIn = {'bucketIdx': bucketIdx, 'actValue': actualValue}
if (inputTSRecordIdx is not None):
recordNum = inputTSRecordIdx
else:
recordNum = self.__numRunCalls
clResults = classifier.getSelf().customCompute(recordNum=recordNum, patternNZ=patternNZ, classification=classificationIn)
predictionSteps = classifier.getParameter('steps')
predictionSteps = [int(x) for x in predictionSteps.split(',')]
inferences[InferenceElement.multiStepPredictions] = dict()
inferences[InferenceElement.multiStepBestPredictions] = dict()
inferences[InferenceElement.multiStepBucketLikelihoods] = dict()
for steps in predictionSteps:
likelihoodsVec = clResults[steps]
bucketValues = clResults['actualValues']
likelihoodsDict = dict()
bestActValue = None
bestProb = None
for (actValue, prob) in zip(bucketValues, likelihoodsVec):
if (actValue in likelihoodsDict):
likelihoodsDict[actValue] += prob
else:
likelihoodsDict[actValue] = prob
if ((bestProb is None) or (likelihoodsDict[actValue] > bestProb)):
bestProb = likelihoodsDict[actValue]
bestActValue = actValue
likelihoodsDict = HTMPredictionModel._removeUnlikelyPredictions(likelihoodsDict, minLikelihoodThreshold, maxPredictionsPerStep)
bucketLikelihood = {}
for k in likelihoodsDict.keys():
bucketLikelihood[self._classifierInputEncoder.getBucketIndices(k)[0]] = likelihoodsDict[k]
if isinstance(self._classifierInputEncoder, DeltaEncoder):
if (not hasattr(self, '_ms_predHistories')):
self._ms_predHistories = dict()
predHistories = self._ms_predHistories
if (not (steps in predHistories)):
predHistories[steps] = deque()
predHistory = predHistories[steps]
sumDelta = sum(predHistory)
offsetDict = dict()
for (k, v) in likelihoodsDict.iteritems():
if (k is not None):
offsetDict[((absoluteValue + float(k)) + sumDelta)] = v
bucketLikelihoodOffset = {}
for k in offsetDict.keys():
bucketLikelihoodOffset[self._classifierInputEncoder.getBucketIndices(k)[0]] = offsetDict[k]
if (bestActValue is not None):
predHistory.append(bestActValue)
if (len(predHistory) >= steps):
predHistory.popleft()
if (len(offsetDict) > 0):
inferences[InferenceElement.multiStepPredictions][steps] = offsetDict
inferences[InferenceElement.multiStepBucketLikelihoods][steps] = bucketLikelihoodOffset
else:
inferences[InferenceElement.multiStepPredictions][steps] = likelihoodsDict
inferences[InferenceElement.multiStepBucketLikelihoods][steps] = bucketLikelihood
if (bestActValue is None):
inferences[InferenceElement.multiStepBestPredictions][steps] = None
else:
inferences[InferenceElement.multiStepBestPredictions][steps] = ((absoluteValue + sumDelta) + bestActValue)
else:
inferences[InferenceElement.multiStepPredictions][steps] = likelihoodsDict
inferences[InferenceElement.multiStepBestPredictions][steps] = bestActValue
inferences[InferenceElement.multiStepBucketLikelihoods][steps] = bucketLikelihood
return inferences
|
'Remove entries with 0 likelihood or likelihood less than
minLikelihoodThreshold, but don\'t leave an empty dict.'
| @classmethod
def _removeUnlikelyPredictions(cls, likelihoodsDict, minLikelihoodThreshold, maxPredictionsPerStep):
| maxVal = (None, None)
for (k, v) in likelihoodsDict.items():
if (len(likelihoodsDict) <= 1):
break
if ((maxVal[0] is None) or (v >= maxVal[1])):
if ((maxVal[0] is not None) and (maxVal[1] < minLikelihoodThreshold)):
del likelihoodsDict[maxVal[0]]
maxVal = (k, v)
elif (v < minLikelihoodThreshold):
del likelihoodsDict[k]
likelihoodsDict = dict(sorted(likelihoodsDict.iteritems(), key=itemgetter(1), reverse=True)[:maxPredictionsPerStep])
return likelihoodsDict
|
'Only returns data for a stat called ``numRunCalls``.
:return:'
| def getRuntimeStats(self):
| ret = {'numRunCalls': self.__numRunCalls}
temporalStats = dict()
if self._hasTP:
for stat in self._netInfo.statsCollectors:
sdict = stat.getStats()
temporalStats.update(sdict)
ret[InferenceType.getLabel(InferenceType.TemporalNextStep)] = temporalStats
return ret
|
'Get the logger for this object. This is a protected method that is used
by the Model to access the logger created by the subclass
return:
A logging.Logger object. Should not be None'
| def _getLogger(self):
| return self.__logger
|
'Returns reference to the network\'s SP region'
| def _getSPRegion(self):
| return self._netInfo.net.regions.get('SP', None)
|
'Returns reference to the network\'s TM region'
| def _getTPRegion(self):
| return self._netInfo.net.regions.get('TM', None)
|
'Returns reference to the network\'s Sensor region'
| def _getSensorRegion(self):
| return self._netInfo.net.regions['sensor']
|
'Returns reference to the network\'s Classifier region'
| def _getClassifierRegion(self):
| if ((self._netInfo.net is not None) and ('Classifier' in self._netInfo.net.regions)):
return self._netInfo.net.regions['Classifier']
else:
return None
|
'Returns: sensor region\'s encoder for the given network'
| def _getEncoder(self):
| return self._getSensorRegion().getSelf().encoder
|
'Returns: sensor region\'s encoder that is sent only to the classifier,
not to the bottom of the network'
| def _getClassifierOnlyEncoder(self):
| return self._getSensorRegion().getSelf().disabledEncoder
|
'Returns: data source that we installed in sensor region'
| def _getDataSource(self):
| return self._getSensorRegion().getSelf().dataSource
|
'Create a CLA network and return it.
description: HTMPredictionModel description dictionary (TODO: define schema)
Returns: NetworkInfo instance;'
| def __createHTMNetwork(self, sensorParams, spEnable, spParams, tmEnable, tmParams, clEnable, clParams, anomalyParams):
| n = Network()
n.addRegion('sensor', 'py.RecordSensor', json.dumps(dict(verbosity=sensorParams['verbosity'])))
sensor = n.regions['sensor'].getSelf()
enabledEncoders = copy.deepcopy(sensorParams['encoders'])
for (name, params) in enabledEncoders.items():
if (params is not None):
classifierOnly = params.pop('classifierOnly', False)
if classifierOnly:
enabledEncoders.pop(name)
disabledEncoders = copy.deepcopy(sensorParams['encoders'])
for (name, params) in disabledEncoders.items():
if (params is None):
disabledEncoders.pop(name)
else:
classifierOnly = params.pop('classifierOnly', False)
if (not classifierOnly):
disabledEncoders.pop(name)
encoder = MultiEncoder(enabledEncoders)
sensor.encoder = encoder
sensor.disabledEncoder = MultiEncoder(disabledEncoders)
sensor.dataSource = DataBuffer()
prevRegion = 'sensor'
prevRegionWidth = encoder.getWidth()
if spEnable:
spParams = spParams.copy()
spParams['inputWidth'] = prevRegionWidth
self.__logger.debug(('Adding SPRegion; spParams: %r' % spParams))
n.addRegion('SP', 'py.SPRegion', json.dumps(spParams))
n.link('sensor', 'SP', 'UniformLink', '')
n.link('sensor', 'SP', 'UniformLink', '', srcOutput='resetOut', destInput='resetIn')
n.link('SP', 'sensor', 'UniformLink', '', srcOutput='spatialTopDownOut', destInput='spatialTopDownIn')
n.link('SP', 'sensor', 'UniformLink', '', srcOutput='temporalTopDownOut', destInput='temporalTopDownIn')
prevRegion = 'SP'
prevRegionWidth = spParams['columnCount']
if tmEnable:
tmParams = tmParams.copy()
if (prevRegion == 'sensor'):
tmParams['inputWidth'] = tmParams['columnCount'] = prevRegionWidth
else:
assert (tmParams['columnCount'] == prevRegionWidth)
tmParams['inputWidth'] = tmParams['columnCount']
self.__logger.debug(('Adding TMRegion; tmParams: %r' % tmParams))
n.addRegion('TM', 'py.TMRegion', json.dumps(tmParams))
n.link(prevRegion, 'TM', 'UniformLink', '')
if (prevRegion != 'sensor'):
n.link('TM', prevRegion, 'UniformLink', '', srcOutput='topDownOut', destInput='topDownIn')
else:
n.link('TM', prevRegion, 'UniformLink', '', srcOutput='topDownOut', destInput='temporalTopDownIn')
n.link('sensor', 'TM', 'UniformLink', '', srcOutput='resetOut', destInput='resetIn')
prevRegion = 'TM'
prevRegionWidth = tmParams['inputWidth']
if (clEnable and (clParams is not None)):
clParams = clParams.copy()
clRegionName = clParams.pop('regionName')
self.__logger.debug(('Adding %s; clParams: %r' % (clRegionName, clParams)))
n.addRegion('Classifier', ('py.%s' % str(clRegionName)), json.dumps(clParams))
if (str(clRegionName) == 'SDRClassifierRegion'):
n.link('sensor', 'Classifier', 'UniformLink', '', srcOutput='actValueOut', destInput='actValueIn')
n.link('sensor', 'Classifier', 'UniformLink', '', srcOutput='bucketIdxOut', destInput='bucketIdxIn')
n.link('sensor', 'Classifier', 'UniformLink', '', srcOutput='categoryOut', destInput='categoryIn')
n.link(prevRegion, 'Classifier', 'UniformLink', '')
if (self.getInferenceType() == InferenceType.TemporalAnomaly):
anomalyClParams = dict(trainRecords=anomalyParams.get('autoDetectWaitRecords', None), cacheSize=anomalyParams.get('anomalyCacheRecords', None))
self._addAnomalyClassifierRegion(n, anomalyClParams, spEnable, tmEnable)
n.initialize()
return NetworkInfo(net=n, statsCollectors=[])
|
'Return serializable state. This function will return a version of the
__dict__ with data that shouldn\'t be pickled stripped out. In particular,
the CLA Network is stripped out because it has it\'s own serialization
mechanism)
See also: _serializeExtraData()'
| def __getstate__(self):
| state = self.__dict__.copy()
state['_netInfo'] = NetworkInfo(net=None, statsCollectors=self._netInfo.statsCollectors)
for ephemeral in [self.__manglePrivateMemberName('__restoringFromState'), self.__manglePrivateMemberName('__logger')]:
state.pop(ephemeral)
return state
|
'Set the state of ourself from a serialized state.
See also: _deSerializeExtraData'
| def __setstate__(self, state):
| self.__dict__.update(state)
self.__restoringFromState = True
self.__logger = initLogger(self)
if (not hasattr(self, '_Model__inferenceType')):
self.__restoringFromV1 = True
self._hasSP = True
if (self.__temporalNetInfo is not None):
self._Model__inferenceType = InferenceType.TemporalNextStep
self._netInfo = self.__temporalNetInfo
self._hasTP = True
else:
raise RuntimeError('The Nontemporal inference type is not supported')
self._Model__inferenceArgs = {}
self._Model__learningEnabled = True
self._Model__inferenceEnabled = True
self.__dict__.pop('_HTMPredictionModel__encoderNetInfo', None)
self.__dict__.pop('_HTMPredictionModel__nonTemporalNetInfo', None)
self.__dict__.pop('_HTMPredictionModel__temporalNetInfo', None)
if (not hasattr(self, '_netInfo')):
self._hasSP = False
self._hasTP = False
if (self.__encoderNetInfo is not None):
self._netInfo = self.__encoderNetInfo
elif (self.__nonTemporalNetInfo is not None):
self._netInfo = self.__nonTemporalNetInfo
self._hasSP = True
else:
self._netInfo = self.__temporalNetInfo
self._hasSP = True
self._hasTP = True
self.__dict__.pop('_HTMPredictionModel__encoderNetInfo', None)
self.__dict__.pop('_HTMPredictionModel__nonTemporalNetInfo', None)
self.__dict__.pop('_HTMPredictionModel__temporalNetInfo', None)
self._classifierInputEncoder = None
if (not hasattr(self, '_minLikelihoodThreshold')):
self._minLikelihoodThreshold = DEFAULT_LIKELIHOOD_THRESHOLD
if (not hasattr(self, '_maxPredictionsPerStep')):
self._maxPredictionsPerStep = DEFAULT_MAX_PREDICTIONS_PER_STEP
if (not hasattr(self, '_hasCL')):
self._hasCL = (self._getClassifierRegion() is not None)
self.__logger.debug(('Restoring %s from state...' % self.__class__.__name__))
|
':param proto: capnp HTMPredictionModelProto message builder'
| def write(self, proto):
| super(HTMPredictionModel, self).writeBaseToProto(proto.modelBase)
proto.numRunCalls = self.__numRunCalls
proto.minLikelihoodThreshold = self._minLikelihoodThreshold
proto.maxPredictionsPerStep = self._maxPredictionsPerStep
self._netInfo.net.write(proto.network)
|
':param proto: capnp HTMPredictionModelProto message reader'
| @classmethod
def read(cls, proto):
| network = Network.read(proto.network)
spEnable = ('SP' in network.regions)
tmEnable = ('TM' in network.regions)
clEnable = ('Classifier' in network.regions)
model = cls(spEnable=spEnable, tmEnable=tmEnable, clEnable=clEnable, network=network, baseProto=proto.modelBase)
model.__numRunCalls = proto.numRunCalls
model._minLikelihoodThreshold = proto.minLikelihoodThreshold
model._maxPredictionsPerStep = proto.maxPredictionsPerStep
model._getSensorRegion().getSelf().dataSource = DataBuffer()
model._netInfo.net.initialize()
model.__restoringFromState = False
return model
|
'[virtual method override] This method is called during serialization
with an external directory path that can be used to bypass pickle for saving
large binary states.
extraDataDir:
Model\'s extra data directory path'
| def _serializeExtraData(self, extraDataDir):
| makeDirectoryFromAbsolutePath(extraDataDir)
outputDir = self.__getNetworkStateDirectory(extraDataDir=extraDataDir)
self.__logger.debug('Serializing network...')
self._netInfo.net.save(outputDir)
self.__logger.debug('Finished serializing network')
return
|
'[virtual method override] This method is called during deserialization
(after __setstate__) with an external directory path that can be used to
bypass pickle for loading large binary states.
extraDataDir:
Model\'s extra data directory path'
| def _deSerializeExtraData(self, extraDataDir):
| assert self.__restoringFromState
assert (self._netInfo.net is None), 'Network was already unpickled'
stateDir = self.__getNetworkStateDirectory(extraDataDir=extraDataDir)
self.__logger.debug('(%s) De-serializing network...', self)
self._netInfo.net = Network(stateDir)
self.__logger.debug('(%s) Finished de-serializing network', self)
self._netInfo.net.initialize()
if (self.getInferenceType() == InferenceType.TemporalAnomaly):
classifierType = self._getAnomalyClassifier().getSelf().__class__.__name__
if (classifierType is 'KNNClassifierRegion'):
anomalyClParams = dict(trainRecords=self._classifier_helper._autoDetectWaitRecords, cacheSize=self._classifier_helper._history_length)
spEnable = (self._getSPRegion() is not None)
tmEnable = True
knnRegion = self._getAnomalyClassifier().getSelf()
self._addAnomalyClassifierRegion(self._netInfo.net, anomalyClParams, spEnable, tmEnable)
self._getAnomalyClassifier().getSelf()._iteration = self.__numRunCalls
self._getAnomalyClassifier().getSelf()._recordsCache = self._classifier_helper.saved_states
self._getAnomalyClassifier().getSelf().saved_categories = self._classifier_helper.saved_categories
self._getAnomalyClassifier().getSelf()._knnclassifier = knnRegion
self._getTPRegion().setParameter('anomalyMode', True)
del self._classifier_helper
self._netInfo.net.initialize()
self.__restoringFromState = False
self.__logger.debug('(%s) Finished restoring from state', self)
return
|
'Attaches an \'AnomalyClassifier\' region to the network. Will remove current
\'AnomalyClassifier\' region if it exists.
Parameters
network - network to add the AnomalyClassifier region
params - parameters to pass to the region
spEnable - True if network has an SP region
tmEnable - True if network has a TM region; Currently requires True'
| def _addAnomalyClassifierRegion(self, network, params, spEnable, tmEnable):
| allParams = copy.deepcopy(params)
knnParams = dict(k=1, distanceMethod='rawOverlap', distanceNorm=1, doBinarization=1, replaceDuplicates=0, maxStoredPatterns=1000)
allParams.update(knnParams)
if (allParams['trainRecords'] is None):
allParams['trainRecords'] = DEFAULT_ANOMALY_TRAINRECORDS
if (allParams['cacheSize'] is None):
allParams['cacheSize'] = DEFAULT_ANOMALY_CACHESIZE
if ((self._netInfo is not None) and (self._netInfo.net is not None) and (self._getAnomalyClassifier() is not None)):
self._netInfo.net.removeRegion('AnomalyClassifier')
network.addRegion('AnomalyClassifier', 'py.KNNAnomalyClassifierRegion', json.dumps(allParams))
if spEnable:
network.link('SP', 'AnomalyClassifier', 'UniformLink', '', srcOutput='bottomUpOut', destInput='spBottomUpOut')
else:
network.link('sensor', 'AnomalyClassifier', 'UniformLink', '', srcOutput='dataOut', destInput='spBottomUpOut')
if tmEnable:
network.link('TM', 'AnomalyClassifier', 'UniformLink', '', srcOutput='topDownOut', destInput='tpTopDownOut')
network.link('TM', 'AnomalyClassifier', 'UniformLink', '', srcOutput='lrnActiveStateT', destInput='tpLrnActiveStateT')
else:
raise RuntimeError('TemporalAnomaly models require a TM region.')
|
'extraDataDir:
Model\'s extra data directory path
Returns: Absolute directory path for saving CLA Network'
| def __getNetworkStateDirectory(self, extraDataDir):
| if self.__restoringFromV1:
if (self.getInferenceType() == InferenceType.TemporalNextStep):
leafName = ('temporal' + '-network.nta')
else:
leafName = ('nonTemporal' + '-network.nta')
else:
leafName = (InferenceType.getLabel(self.getInferenceType()) + '-network.nta')
path = os.path.join(extraDataDir, leafName)
path = os.path.abspath(path)
return path
|
'Mangles the given mangled (private) member name; a mangled member name
is one whose name begins with two or more underscores and ends with one
or zero underscores.
privateMemberName:
The private member name (e.g., "__logger")
skipCheck: Pass True to skip test for presence of the demangled member
in our instance.
Returns: The demangled member name (e.g., "_HTMPredictionModel__logger")'
| def __manglePrivateMemberName(self, privateMemberName, skipCheck=False):
| assert privateMemberName.startswith('__'), ("%r doesn't start with __" % privateMemberName)
assert (not privateMemberName.startswith('___')), ('%r starts with ___' % privateMemberName)
assert (not privateMemberName.endswith('__')), ('%r ends with more than one underscore' % privateMemberName)
realName = (('_' + self.__myClassName.lstrip('_')) + privateMemberName)
if (not skipCheck):
getattr(self, realName)
return realName
|
'Initialize interpreter with blacklisted nodes removed from supported
nodes.'
| def __init__(self, *args, **kwargs):
| self.supported_nodes = tuple((set(self.supported_nodes) - self.blacklisted_nodes))
asteval.Interpreter.__init__(self, *args, **kwargs)
|
'Validates control dictionary for the experiment context'
| def __validateExperimentControl(self, control):
| taskList = control.get('tasks', None)
if (taskList is not None):
taskLabelsList = []
for task in taskList:
validateOpfJsonValue(task, 'opfTaskSchema.json')
validateOpfJsonValue(task['taskControl'], 'opfTaskControlSchema.json')
taskLabel = task['taskLabel']
assert isinstance(taskLabel, types.StringTypes), ('taskLabel type: %r' % type(taskLabel))
assert (len(taskLabel) > 0), 'empty string taskLabel not is allowed'
taskLabelsList.append(taskLabel.lower())
taskLabelDuplicates = filter((lambda x: (taskLabelsList.count(x) > 1)), taskLabelsList)
assert (len(taskLabelDuplicates) == 0), ('Duplcate task labels are not allowed: %s' % taskLabelDuplicates)
return
|
'Validates control dictionary for the nupic engine context'
| def __validateNupicControl(self, control):
| validateOpfJsonValue(control, 'nupicControlSchema.json')
|
'TODO: document
:param stream:'
| def normalizeStreamSource(self, stream):
| source = stream['source'][len(FILE_SCHEME):]
if os.path.isabs(source):
sourcePath = source
else:
sourcePath = resource_filename('nupic.datafiles', source)
if (not os.path.exists(sourcePath)):
sourcePath = os.path.join(os.getcwd(), source)
stream['source'] = (FILE_SCHEME + sourcePath)
|
'TODO: document'
| def normalizeStreamSources(self):
| task = dict(self.__control)
if ('dataset' in task):
for stream in task['dataset']['streams']:
self.normalizeStreamSource(stream)
else:
for subtask in task['tasks']:
for stream in subtask['dataset']['streams']:
self.normalizeStreamSource(stream)
|
'TODO: document'
| def convertNupicEnvToOPF(self):
| task = dict(self.__control)
task.pop('environment')
inferenceArgs = task.pop('inferenceArgs')
task['taskLabel'] = 'DefaultTask'
iterationCount = task.get('iterationCount', (-1))
iterationCountInferOnly = task.pop('iterationCountInferOnly', 0)
if (iterationCountInferOnly == (-1)):
iterationCycle = [IterationPhaseSpecInferOnly(1000, inferenceArgs=inferenceArgs)]
elif (iterationCountInferOnly > 0):
assert (iterationCount > 0), 'When iterationCountInferOnly is specified, iterationCount must also be specified and not be -1'
iterationCycle = [IterationPhaseSpecLearnAndInfer((iterationCount - iterationCountInferOnly), inferenceArgs=inferenceArgs), IterationPhaseSpecInferOnly(iterationCountInferOnly, inferenceArgs=inferenceArgs)]
else:
iterationCycle = [IterationPhaseSpecLearnAndInfer(1000, inferenceArgs=inferenceArgs)]
taskControl = dict(metrics=task.pop('metrics'), loggedMetrics=task.pop('loggedMetrics'), iterationCycle=iterationCycle)
task['taskControl'] = taskControl
self.__control = dict(environment=OpfEnvironment.Nupic, tasks=[task])
|
'requestedActivities: a sequence of PeriodicActivityRequest elements'
| def __init__(self, requestedActivities=[]):
| self.__activities = []
self.__appendActivities(requestedActivities)
return
|
'Adds activities
periodicActivities: A sequence of PeriodicActivityRequest elements'
| def addActivities(self, periodicActivities):
| self.__appendActivities(periodicActivities)
return
|
'Activity tick handler; services all activities
Returns: True if controlling iterator says it\'s okay to keep going;
False to stop'
| def tick(self):
| for act in self.__activities:
if (not act.iteratorHolder[0]):
continue
try:
next(act.iteratorHolder[0])
except StopIteration:
act.cb()
if act.repeating:
act.iteratorHolder[0] = iter(xrange((act.period - 1)))
else:
act.iteratorHolder[0] = None
return True
|
'periodicActivities: A sequence of PeriodicActivityRequest elements'
| def __appendActivities(self, periodicActivities):
| for req in periodicActivities:
act = self.Activity(repeating=req.repeating, period=req.period, cb=req.cb, iteratorHolder=[iter(xrange((req.period - 1)))])
self.__activities.append(act)
return
|
'Add the label labelName to each record with record ROWID in range from
start to end, noninclusive of end.
This will recalculate all points from end to the last record stored in the
internal cache of this classifier.'
| def addLabel(self, start, end, labelName):
| if (len(self.saved_states) == 0):
raise HTMPredictionModelInvalidRangeError("Invalid supplied range for 'addLabel'. Model has no saved records.")
startID = self.saved_states[0].ROWID
clippedStart = max(0, (start - startID))
clippedEnd = max(0, min(len(self.saved_states), (end - startID)))
if (clippedEnd <= clippedStart):
raise HTMPredictionModelInvalidRangeError("Invalid supplied range for 'addLabel'.", debugInfo={'requestRange': {'startRecordID': start, 'endRecordID': end}, 'clippedRequestRange': {'startRecordID': clippedStart, 'endRecordID': clippedEnd}, 'validRange': {'startRecordID': startID, 'endRecordID': self.saved_states[(len(self.saved_states) - 1)].ROWID}, 'numRecordsStored': len(self.saved_states)})
for state in self.saved_states[clippedStart:clippedEnd]:
if (labelName not in state.anomalyLabel):
state.anomalyLabel.append(labelName)
state.setByUser = True
self._addRecordToKNN(state)
assert (len(self.saved_categories) > 0)
for state in self.saved_states[clippedEnd:]:
self._updateState(state)
|
'Remove labels from each record with record ROWID in range from
start to end, noninclusive of end. Removes all records if labelFilter is
None, otherwise only removes the labels eqaul to labelFilter.
This will recalculate all points from end to the last record stored in the
internal cache of this classifier.'
| def removeLabels(self, start=None, end=None, labelFilter=None):
| if (len(self.saved_states) == 0):
raise HTMPredictionModelInvalidRangeError("Invalid supplied range for 'removeLabels'. Model has no saved records.")
startID = self.saved_states[0].ROWID
clippedStart = (0 if (start is None) else max(0, (start - startID)))
clippedEnd = (len(self.saved_states) if (end is None) else max(0, min(len(self.saved_states), (end - startID))))
if (clippedEnd <= clippedStart):
raise HTMPredictionModelInvalidRangeError("Invalid supplied range for 'removeLabels'.", debugInfo={'requestRange': {'startRecordID': start, 'endRecordID': end}, 'clippedRequestRange': {'startRecordID': clippedStart, 'endRecordID': clippedEnd}, 'validRange': {'startRecordID': startID, 'endRecordID': self.saved_states[(len(self.saved_states) - 1)].ROWID}, 'numRecordsStored': len(self.saved_states)})
recordsToDelete = []
for state in self.saved_states[clippedStart:clippedEnd]:
if (labelFilter is not None):
if (labelFilter in state.anomalyLabel):
state.anomalyLabel.remove(labelFilter)
else:
state.anomalyLabel = []
state.setByUser = False
recordsToDelete.append(state)
self._deleteRecordsFromKNN(recordsToDelete)
self._deleteRangeFromKNN(start, end)
for state in self.saved_states[clippedEnd:]:
self._updateState(state)
return {'status': 'success'}
|
'This method will add the record to the KNN classifier.'
| def _addRecordToKNN(self, record):
| classifier = self.htm_prediction_model._getAnomalyClassifier()
knn = classifier.getSelf()._knn
prototype_idx = classifier.getSelf().getParameter('categoryRecencyList')
category = self._labelListToCategoryNumber(record.anomalyLabel)
if (record.ROWID in prototype_idx):
knn.prototypeSetCategory(record.ROWID, category)
return
pattern = self._getStateAnomalyVector(record)
rowID = record.ROWID
knn.learn(pattern, category, rowID=rowID)
|
'This method will remove the given records from the classifier.
parameters
recordsToDelete - list of records to delete from the classififier'
| def _deleteRecordsFromKNN(self, recordsToDelete):
| classifier = self.htm_prediction_model._getAnomalyClassifier()
knn = classifier.getSelf()._knn
prototype_idx = classifier.getSelf().getParameter('categoryRecencyList')
idsToDelete = [r.ROWID for r in recordsToDelete if ((not r.setByUser) and (r.ROWID in prototype_idx))]
nProtos = knn._numPatterns
knn.removeIds(idsToDelete)
assert (knn._numPatterns == (nProtos - len(idsToDelete)))
|
'This method will remove any stored records within the range from start to
end. Noninclusive of end.
parameters
start - integer representing the ROWID of the start of the deletion range,
end - integer representing the ROWID of the end of the deletion range,
if None, it will default to end.'
| def _deleteRangeFromKNN(self, start=0, end=None):
| classifier = self.htm_prediction_model._getAnomalyClassifier()
knn = classifier.getSelf()._knn
prototype_idx = numpy.array(classifier.getSelf().getParameter('categoryRecencyList'))
if (end is None):
end = (prototype_idx.max() + 1)
idsIdxToDelete = numpy.logical_and((prototype_idx >= start), (prototype_idx < end))
idsToDelete = prototype_idx[idsIdxToDelete]
nProtos = knn._numPatterns
knn.removeIds(idsToDelete.tolist())
assert (knn._numPatterns == (nProtos - len(idsToDelete)))
|
'return the classified labeling of record'
| def _recomputeRecordFromKNN(self, record):
| inputs = {'categoryIn': [None], 'bottomUpIn': self._getStateAnomalyVector(record)}
outputs = {'categoriesOut': numpy.zeros((1,)), 'bestPrototypeIndices': numpy.zeros((1,)), 'categoryProbabilitiesOut': numpy.zeros((1,))}
classifier = self.htm_prediction_model._getAnomalyClassifier()
knn = classifier.getSelf()._knn
classifier_indexes = numpy.array(classifier.getSelf().getParameter('categoryRecencyList'))
valid_idx = numpy.where(((classifier_indexes >= self._autoDetectWaitRecords) & (classifier_indexes < record.ROWID)))[0].tolist()
if (len(valid_idx) == 0):
return None
classifier.setParameter('inferenceMode', True)
classifier.setParameter('learningMode', False)
classifier.getSelf().compute(inputs, outputs)
classifier.setParameter('learningMode', True)
classifier_distances = classifier.getSelf().getLatestDistances()
valid_distances = classifier_distances[valid_idx]
if (valid_distances.min() <= self._classificationMaxDist):
classifier_indexes_prev = classifier_indexes[valid_idx]
rowID = classifier_indexes_prev[valid_distances.argmin()]
indexID = numpy.where((classifier_indexes == rowID))[0][0]
category = classifier.getSelf().getCategoryList()[indexID]
return category
return None
|
'Construct a _HTMClassificationRecord based on the current state of the
htm_prediction_model of this classifier.
***This will look into the internals of the model and may depend on the
SP, TM, and KNNClassifier***'
| def _constructClassificationRecord(self):
| model = self.htm_prediction_model
sp = model._getSPRegion()
tm = model._getTPRegion()
tpImp = tm.getSelf()._tfdr
activeColumns = sp.getOutputData('bottomUpOut').nonzero()[0]
score = numpy.in1d(activeColumns, self._prevPredictedColumns).sum()
score = ((self._activeColumnCount - score) / float(self._activeColumnCount))
spSize = sp.getParameter('activeOutputCount')
tpSize = (tm.getParameter('cellsPerColumn') * tm.getParameter('columnCount'))
classificationVector = numpy.array([])
if (self._vectorType == 'tpc'):
classificationVector = numpy.zeros(tpSize)
activeCellMatrix = tpImp.getLearnActiveStateT().reshape(tpSize, 1)
activeCellIdx = numpy.where((activeCellMatrix > 0))[0]
if (activeCellIdx.shape[0] > 0):
classificationVector[numpy.array(activeCellIdx, dtype=numpy.uint16)] = 1
elif (self._vectorType == 'sp_tpe'):
classificationVector = numpy.zeros((spSize + spSize))
if (activeColumns.shape[0] > 0):
classificationVector[activeColumns] = 1.0
errorColumns = numpy.setdiff1d(self._prevPredictedColumns, activeColumns)
if (errorColumns.shape[0] > 0):
errorColumnIndexes = (numpy.array(errorColumns, dtype=numpy.uint16) + spSize)
classificationVector[errorColumnIndexes] = 1.0
else:
raise TypeError(("Classification vector type must be either 'tpc' or 'sp_tpe', current value is %s" % self._vectorType))
numPredictedCols = len(self._prevPredictedColumns)
predictedColumns = tm.getOutputData('topDownOut').nonzero()[0]
self._prevPredictedColumns = copy.deepcopy(predictedColumns)
if (self._anomalyVectorLength is None):
self._anomalyVectorLength = len(classificationVector)
result = _CLAClassificationRecord(ROWID=int((model.getParameter('__numRunCalls') - 1)), anomalyScore=score, anomalyVector=classificationVector.nonzero()[0].tolist(), anomalyLabel=[])
return result
|
'Run an iteration of this anomaly classifier'
| def compute(self):
| result = self._constructClassificationRecord()
if (result.ROWID >= self._autoDetectWaitRecords):
self._updateState(result)
self.saved_states.append(result)
if (len(self.saved_states) > self._history_length):
self.saved_states.pop(0)
return result
|
'Sets the autoDetectWaitRecords.'
| def setAutoDetectWaitRecords(self, waitRecords):
| if (not isinstance(waitRecords, int)):
raise HTMPredictionModelInvalidArgument(("Invalid argument type '%s'. WaitRecord must be a number." % type(waitRecords)))
if ((len(self.saved_states) > 0) and (waitRecords < self.saved_states[0].ROWID)):
raise HTMPredictionModelInvalidArgument(('Invalid value. autoDetectWaitRecord value must be valid record within output stream. Current minimum ROWID in output stream is %d.' % self.saved_states[0].ROWID))
self._autoDetectWaitRecords = waitRecords
for state in self.saved_states:
self._updateState(state)
|
'Return the autoDetectWaitRecords.'
| def getAutoDetectWaitRecords(self):
| return self._autoDetectWaitRecords
|
'Sets the autoDetectThreshold.
TODO: Ensure previously classified points outside of classifier are valid.'
| def setAutoDetectThreshold(self, threshold):
| if (not (isinstance(threshold, float) or isinstance(threshold, int))):
raise HTMPredictionModelInvalidArgument(("Invalid argument type '%s'. threshold must be a number." % type(threshold)))
self._autoDetectThreshold = threshold
for state in self.saved_states:
self._updateState(state)
|
'Return the autoDetectThreshold.'
| def getAutoDetectThreshold(self):
| return self._autoDetectThreshold
|
'Since the KNN Classifier stores categories as numbers, we must store each
label as a number. This method converts from a label to a unique number.
Each label is assigned a unique bit so multiple labels may be assigned to
a single record.'
| def _labelToCategoryNumber(self, label):
| if (label not in self.saved_categories):
self.saved_categories.append(label)
return pow(2, self.saved_categories.index(label))
|
'This method takes a list of labels and returns a unique category number.
This enables this class to store a list of categories for each point since
the KNN classifier only stores a single number category for each record.'
| def _labelListToCategoryNumber(self, labelList):
| categoryNumber = 0
for label in labelList:
categoryNumber += self._labelToCategoryNumber(label)
return categoryNumber
|
'Converts a category number into a list of labels'
| def _categoryToLabelList(self, category):
| if (category is None):
return []
labelList = []
labelNum = 0
while (category > 0):
if ((category % 2) == 1):
labelList.append(self.saved_categories[labelNum])
labelNum += 1
category = (category >> 1)
return labelList
|
'Returns a state\'s anomaly vertor converting it from spare to dense'
| def _getStateAnomalyVector(self, state):
| vector = numpy.zeros(self._anomalyVectorLength)
vector[state.anomalyVector] = 1
return vector
|
'new instance of MovingAverage, so method .next() can be used
@param windowSize - length of sliding window
@param existingHistoricalValues - construct the object with already
some values in it.'
| def __init__(self, windowSize, existingHistoricalValues=None):
| if (not isinstance(windowSize, numbers.Integral)):
raise TypeError('MovingAverage - windowSize must be integer type')
if (windowSize <= 0):
raise ValueError('MovingAverage - windowSize must be >0')
self.windowSize = windowSize
if (existingHistoricalValues is not None):
self.slidingWindow = existingHistoricalValues[(len(existingHistoricalValues) - windowSize):]
else:
self.slidingWindow = []
self.total = float(sum(self.slidingWindow))
|
'Routine for computing a moving average.
@param slidingWindow a list of previous values to use in computation that
will be modified and returned
@param total the sum of the values in slidingWindow to be used in the
calculation of the moving average
@param newVal a new number compute the new windowed average
@param windowSize how many values to use in the moving window
@returns an updated windowed average, the modified input slidingWindow list,
and the new total sum of the sliding window'
| @staticmethod
def compute(slidingWindow, total, newVal, windowSize):
| if (len(slidingWindow) == windowSize):
total -= slidingWindow.pop(0)
slidingWindow.append(newVal)
total += newVal
return ((float(total) / len(slidingWindow)), slidingWindow, total)
|
'Instance method wrapper around compute.'
| def next(self, newValue):
| (newAverage, self.slidingWindow, self.total) = self.compute(self.slidingWindow, self.total, newValue, self.windowSize)
return newAverage
|
'get current average'
| def getCurrentAvg(self):
| return (float(self.total) / len(self.slidingWindow))
|
'for loading this object'
| def __setstate__(self, state):
| self.__dict__.update(state)
if (not hasattr(self, 'slidingWindow')):
self.slidingWindow = []
if (not hasattr(self, 'total')):
self.total = 0
self.slidingWindow = sum(self.slidingWindow)
|
'Get Cap\'n Proto schema.
..warning: This is an abstract method. Per abc protocol, attempts to subclass
without overriding will fail.
@returns Cap\'n Proto schema'
| @classmethod
@abstractmethod
def getSchema(cls):
| pass
|
'Create a new object initialized from Cap\'n Proto obj.
Note: This is an abstract method. Per abc protocol, attempts to subclass
without overriding will fail.
:param proto: Cap\'n Proto obj
:return: Obj initialized from proto'
| @classmethod
@abstractmethod
def read(cls, proto):
| pass
|
'Write obj instance to Cap\'n Proto object
.. warning: This is an abstract method. Per abc protocol, attempts to
subclass without overriding will fail.
:param proto: Cap\'n Proto obj'
| @abstractmethod
def write(self, proto):
| pass
|
'Read serialized object from file.
:param f: input file
:param packed: If true, will assume content is packed
:return: first-class instance initialized from proto obj'
| @classmethod
def readFromFile(cls, f, packed=True):
| schema = cls.getSchema()
if packed:
proto = schema.read_packed(f)
else:
proto = schema.read(f)
return cls.read(proto)
|
'Write serialized object to file.
:param f: output file
:param packed: If true, will pack contents.'
| def writeToFile(self, f, packed=True):
| schema = self.getSchema()
proto = schema.new_message()
self.write(proto)
if packed:
proto.write_packed(f)
else:
proto.write(f)
|
'Create a :class:`~nupic.algorithms.connections.Connections` instance.
:class:`TemporalMemory` subclasses may override this method to choose a
different :class:`~nupic.algorithms.connections.Connections` implementation,
or to augment the instance otherwise returned by the default
:class:`~nupic.algorithms.connections.Connections` implementation.
See :class:`~nupic.algorithms.connections.Connections` for constructor
signature and usage.
:returns: :class:`~nupic.algorithms.connections.Connections` instance'
| @staticmethod
def connectionsFactory(*args, **kwargs):
| return Connections(*args, **kwargs)
|
'Perform one time step of the Temporal Memory algorithm.
This method calls :meth:`activateCells`, then calls
:meth:`activateDendrites`. Using :class:`TemporalMemory` via its
:meth:`compute` method ensures that you\'ll always be able to call
:meth:`getPredictiveCells` to get predictions for the next time step.
:param activeColumns: (iter) Indices of active columns.
:param learn: (bool) Whether or not learning is enabled.'
| def compute(self, activeColumns, learn=True):
| self.activateCells(sorted(activeColumns), learn)
self.activateDendrites(learn)
|
'Calculate the active cells, using the current active columns and dendrite
segments. Grow and reinforce synapses.
:param activeColumns: (iter) A sorted list of active column indices.
:param learn: (bool) If true, reinforce / punish / grow synapses.
**Pseudocode:**
for each column
if column is active and has active distal dendrite segments
call activatePredictedColumn
if column is active and doesn\'t have active distal dendrite segments
call burstColumn
if column is inactive and has matching distal dendrite segments
call punishPredictedColumn'
| def activateCells(self, activeColumns, learn=True):
| prevActiveCells = self.activeCells
prevWinnerCells = self.winnerCells
self.activeCells = []
self.winnerCells = []
segToCol = (lambda segment: int((segment.cell / self.cellsPerColumn)))
identity = (lambda x: x)
for columnData in groupby2(activeColumns, identity, self.activeSegments, segToCol, self.matchingSegments, segToCol):
(column, activeColumns, columnActiveSegments, columnMatchingSegments) = columnData
if (activeColumns is not None):
if (columnActiveSegments is not None):
cellsToAdd = self.activatePredictedColumn(column, columnActiveSegments, columnMatchingSegments, prevActiveCells, prevWinnerCells, learn)
self.activeCells += cellsToAdd
self.winnerCells += cellsToAdd
else:
(cellsToAdd, winnerCell) = self.burstColumn(column, columnMatchingSegments, prevActiveCells, prevWinnerCells, learn)
self.activeCells += cellsToAdd
self.winnerCells.append(winnerCell)
elif learn:
self.punishPredictedColumn(column, columnActiveSegments, columnMatchingSegments, prevActiveCells, prevWinnerCells)
|
'Calculate dendrite segment activity, using the current active cells.
:param learn: (bool) If true, segment activations will be recorded. This
information is used during segment cleanup.
**Pseudocode:**
for each distal dendrite segment with activity >= activationThreshold
mark the segment as active
for each distal dendrite segment with unconnected activity >= minThreshold
mark the segment as matching'
| def activateDendrites(self, learn=True):
| (numActiveConnected, numActivePotential) = self.connections.computeActivity(self.activeCells, self.connectedPermanence)
activeSegments = (self.connections.segmentForFlatIdx(i) for i in xrange(len(numActiveConnected)) if (numActiveConnected[i] >= self.activationThreshold))
matchingSegments = (self.connections.segmentForFlatIdx(i) for i in xrange(len(numActivePotential)) if (numActivePotential[i] >= self.minThreshold))
self.activeSegments = sorted(activeSegments, key=self.connections.segmentPositionSortKey)
self.matchingSegments = sorted(matchingSegments, key=self.connections.segmentPositionSortKey)
self.numActiveConnectedSynapsesForSegment = numActiveConnected
self.numActivePotentialSynapsesForSegment = numActivePotential
if learn:
for segment in self.activeSegments:
self.lastUsedIterationForSegment[segment.flatIdx] = self.iteration
self.iteration += 1
|
'Indicates the start of a new sequence. Clears any predictions and makes sure
synapses don\'t grow to the currently active cells in the next time step.'
| def reset(self):
| self.activeCells = []
self.winnerCells = []
self.activeSegments = []
self.matchingSegments = []
|
'Determines which cells in a predicted column should be added to winner cells
list, and learns on the segments that correctly predicted this column.
:param column: (int) Index of bursting column.
:param columnActiveSegments: (iter) Active segments in this column.
:param columnMatchingSegments: (iter) Matching segments in this column.
:param prevActiveCells: (list) Active cells in ``t-1``.
:param prevWinnerCells: (list) Winner cells in ``t-1``.
:param learn: (bool) If true, grow and reinforce synapses.
:returns: (list) A list of predicted cells that will be added to
active cells and winner cells.'
| def activatePredictedColumn(self, column, columnActiveSegments, columnMatchingSegments, prevActiveCells, prevWinnerCells, learn):
| return self._activatePredictedColumn(self.connections, self._random, columnActiveSegments, prevActiveCells, prevWinnerCells, self.numActivePotentialSynapsesForSegment, self.maxNewSynapseCount, self.initialPermanence, self.permanenceIncrement, self.permanenceDecrement, self.maxSynapsesPerSegment, learn)
|
'Activates all of the cells in an unpredicted active column, chooses a winner
cell, and, if learning is turned on, learns on one segment, growing a new
segment if necessary.
:param column: (int) Index of bursting column.
:param columnMatchingSegments: (iter) Matching segments in this column, or
None if there aren\'t any.
:param prevActiveCells: (list) Active cells in ``t-1``.
:param prevWinnerCells: (list) Winner cells in ``t-1``.
:param learn: (bool) Whether or not learning is enabled.
:returns: (tuple) Contains (``cells`` [iter], ``winnerCell`` [int])'
| def burstColumn(self, column, columnMatchingSegments, prevActiveCells, prevWinnerCells, learn):
| start = (self.cellsPerColumn * column)
cellsForColumn = xrange(start, (start + self.cellsPerColumn))
return self._burstColumn(self.connections, self._random, self.lastUsedIterationForSegment, column, columnMatchingSegments, prevActiveCells, prevWinnerCells, cellsForColumn, self.numActivePotentialSynapsesForSegment, self.iteration, self.maxNewSynapseCount, self.initialPermanence, self.permanenceIncrement, self.permanenceDecrement, self.maxSegmentsPerCell, self.maxSynapsesPerSegment, learn)
|
'Punishes the Segments that incorrectly predicted a column to be active.
:param column: (int) Index of bursting column.
:param columnActiveSegments: (iter) Active segments for this column, or None
if there aren\'t any.
:param columnMatchingSegments: (iter) Matching segments for this column, or
None if there aren\'t any.
:param prevActiveCells: (list) Active cells in ``t-1``.
:param prevWinnerCells: (list) Winner cells in ``t-1``.'
| def punishPredictedColumn(self, column, columnActiveSegments, columnMatchingSegments, prevActiveCells, prevWinnerCells):
| self._punishPredictedColumn(self.connections, columnMatchingSegments, prevActiveCells, self.predictedSegmentDecrement)
|
'Create a :class:`~nupic.algorithms.connections.Segment` on the specified
cell. This method calls
:meth:`~nupic.algorithms.connections.Connections.createSegment` on the
underlying :class:`~nupic.algorithms.connections.Connections`, and it does
some extra bookkeeping. Unit tests should call this method, and not
:meth:`~nupic.algorithms.connections.Connections.createSegment`.
:param cell: (int) Index of cell to create a segment on.
:returns: (:class:`~nupic.algorithms.connections.Segment`) The created
segment.'
| def createSegment(self, cell):
| return self._createSegment(self.connections, self.lastUsedIterationForSegment, cell, self.iteration, self.maxSegmentsPerCell)
|
':param connections: (Object)
Connections for the TM. Gets mutated.
:param random: (Object)
Random number generator. Gets mutated.
:param columnActiveSegments: (iter)
Active segments in this column.
:param prevActiveCells: (list)
Active cells in `t-1`.
:param prevWinnerCells: (list)
Winner cells in `t-1`.
:param numActivePotentialSynapsesForSegment: (list)
Number of active potential synapses per segment, indexed by the segment\'s
flatIdx.
:param maxNewSynapseCount: (int)
The maximum number of synapses added to a segment during learning
:param initialPermanence: (float)
Initial permanence of a new synapse.
@permanenceIncrement (float)
Amount by which permanences of synapses are incremented during learning.
@permanenceDecrement (float)
Amount by which permanences of synapses are decremented during learning.
:param maxSynapsesPerSegment: (int)
The maximum number of synapses per segment.
:param learn: (bool)
If true, grow and reinforce synapses.
:returns: cellsToAdd (list)
A list of predicted cells that will be added to active cells and winner
cells.
Pseudocode:
for each cell in the column that has an active distal dendrite segment
mark the cell as active
mark the cell as a winner cell
(learning) for each active distal dendrite segment
strengthen active synapses
weaken inactive synapses
grow synapses to previous winner cells'
| @classmethod
def _activatePredictedColumn(cls, connections, random, columnActiveSegments, prevActiveCells, prevWinnerCells, numActivePotentialSynapsesForSegment, maxNewSynapseCount, initialPermanence, permanenceIncrement, permanenceDecrement, maxSynapsesPerSegment, learn):
| cellsToAdd = []
previousCell = None
for segment in columnActiveSegments:
if (segment.cell != previousCell):
cellsToAdd.append(segment.cell)
previousCell = segment.cell
if learn:
cls._adaptSegment(connections, segment, prevActiveCells, permanenceIncrement, permanenceDecrement)
active = numActivePotentialSynapsesForSegment[segment.flatIdx]
nGrowDesired = (maxNewSynapseCount - active)
if (nGrowDesired > 0):
cls._growSynapses(connections, random, segment, nGrowDesired, prevWinnerCells, initialPermanence, maxSynapsesPerSegment)
return cellsToAdd
|
':param connections: (Object)
Connections for the TM. Gets mutated.
:param random: (Object)
Random number generator. Gets mutated.
:param lastUsedIterationForSegment: (list)
Last used iteration for each segment, indexed by the segment\'s flatIdx.
Gets mutated.
:param column: (int)
Index of bursting column.
:param columnMatchingSegments: (iter)
Matching segments in this column.
:param prevActiveCells: (list)
Active cells in `t-1`.
:param prevWinnerCells: (list)
Winner cells in `t-1`.
:param cellsForColumn: (sequence)
Range of cell indices on which to operate.
:param numActivePotentialSynapsesForSegment: (list)
Number of active potential synapses per segment, indexed by the segment\'s
flatIdx.
:param iteration: (int)
The current timestep.
:param maxNewSynapseCount: (int)
The maximum number of synapses added to a segment during learning.
:param initialPermanence: (float)
Initial permanence of a new synapse.
:param permanenceIncrement: (float)
Amount by which permanences of synapses are incremented during learning.
:param permanenceDecrement: (float)
Amount by which permanences of synapses are decremented during learning.
:param maxSegmentsPerCell: (int)
The maximum number of segments per cell.
:param maxSynapsesPerSegment: (int)
The maximum number of synapses per segment.
:param learn: (bool)
Whether or not learning is enabled.
:returns: (tuple) Contains:
`cells` (iter),
`winnerCell` (int),
Pseudocode:
mark all cells as active
if there are any matching distal dendrite segments
find the most active matching segment
mark its cell as a winner cell
(learning)
grow and reinforce synapses to previous winner cells
else
find the cell with the least segments, mark it as a winner cell
(learning)
(optimization) if there are prev winner cells
add a segment to this winner cell
grow synapses to previous winner cells'
| @classmethod
def _burstColumn(cls, connections, random, lastUsedIterationForSegment, column, columnMatchingSegments, prevActiveCells, prevWinnerCells, cellsForColumn, numActivePotentialSynapsesForSegment, iteration, maxNewSynapseCount, initialPermanence, permanenceIncrement, permanenceDecrement, maxSegmentsPerCell, maxSynapsesPerSegment, learn):
| if (columnMatchingSegments is not None):
numActive = (lambda s: numActivePotentialSynapsesForSegment[s.flatIdx])
bestMatchingSegment = max(columnMatchingSegments, key=numActive)
winnerCell = bestMatchingSegment.cell
if learn:
cls._adaptSegment(connections, bestMatchingSegment, prevActiveCells, permanenceIncrement, permanenceDecrement)
nGrowDesired = (maxNewSynapseCount - numActive(bestMatchingSegment))
if (nGrowDesired > 0):
cls._growSynapses(connections, random, bestMatchingSegment, nGrowDesired, prevWinnerCells, initialPermanence, maxSynapsesPerSegment)
else:
winnerCell = cls._leastUsedCell(random, cellsForColumn, connections)
if learn:
nGrowExact = min(maxNewSynapseCount, len(prevWinnerCells))
if (nGrowExact > 0):
segment = cls._createSegment(connections, lastUsedIterationForSegment, winnerCell, iteration, maxSegmentsPerCell)
cls._growSynapses(connections, random, segment, nGrowExact, prevWinnerCells, initialPermanence, maxSynapsesPerSegment)
return (cellsForColumn, winnerCell)
|
':param connections: (Object)
Connections for the TM. Gets mutated.
:param columnMatchingSegments: (iter)
Matching segments for this column.
:param prevActiveCells: (list)
Active cells in `t-1`.
:param predictedSegmentDecrement: (float)
Amount by which segments are punished for incorrect predictions.
Pseudocode:
for each matching segment in the column
weaken active synapses'
| @classmethod
def _punishPredictedColumn(cls, connections, columnMatchingSegments, prevActiveCells, predictedSegmentDecrement):
| if ((predictedSegmentDecrement > 0.0) and (columnMatchingSegments is not None)):
for segment in columnMatchingSegments:
cls._adaptSegment(connections, segment, prevActiveCells, (- predictedSegmentDecrement), 0.0)
|
'Create a segment on the connections, enforcing the maxSegmentsPerCell
parameter.'
| @classmethod
def _createSegment(cls, connections, lastUsedIterationForSegment, cell, iteration, maxSegmentsPerCell):
| while (connections.numSegments(cell) >= maxSegmentsPerCell):
leastRecentlyUsedSegment = min(connections.segmentsForCell(cell), key=(lambda segment: lastUsedIterationForSegment[segment.flatIdx]))
connections.destroySegment(leastRecentlyUsedSegment)
segment = connections.createSegment(cell)
if (segment.flatIdx == len(lastUsedIterationForSegment)):
lastUsedIterationForSegment.append(iteration)
elif (segment.flatIdx < len(lastUsedIterationForSegment)):
lastUsedIterationForSegment[segment.flatIdx] = iteration
else:
raise AssertionError('All segments should be created with the TM createSegment method.')
return segment
|
'Destroy nDestroy synapses on the specified segment, but don\'t destroy
synapses to the "excludeCells".'
| @classmethod
def _destroyMinPermanenceSynapses(cls, connections, random, segment, nDestroy, excludeCells):
| destroyCandidates = sorted((synapse for synapse in connections.synapsesForSegment(segment) if (synapse.presynapticCell not in excludeCells)), key=(lambda s: s._ordinal))
for _ in xrange(nDestroy):
if (len(destroyCandidates) == 0):
break
minSynapse = None
minPermanence = float('inf')
for synapse in destroyCandidates:
if (synapse.permanence < (minPermanence - EPSILON)):
minSynapse = synapse
minPermanence = synapse.permanence
connections.destroySynapse(minSynapse)
destroyCandidates.remove(minSynapse)
|
'Gets the cell with the smallest number of segments.
Break ties randomly.
:param random: (Object)
Random number generator. Gets mutated.
:param cells: (list)
Indices of cells.
:param connections: (Object)
Connections instance for the TM.
:returns: (int) Cell index.'
| @classmethod
def _leastUsedCell(cls, random, cells, connections):
| leastUsedCells = []
minNumSegments = float('inf')
for cell in cells:
numSegments = connections.numSegments(cell)
if (numSegments < minNumSegments):
minNumSegments = numSegments
leastUsedCells = []
if (numSegments == minNumSegments):
leastUsedCells.append(cell)
i = random.getUInt32(len(leastUsedCells))
return leastUsedCells[i]
|
'Creates nDesiredNewSynapes synapses on the segment passed in if
possible, choosing random cells from the previous winner cells that are
not already on the segment.
:param connections: (Object) Connections instance for the tm
:param random: (Object) TM object used to generate random
numbers
:param segment: (int) Segment to grow synapses on.
:param nDesiredNewSynapes: (int) Desired number of synapses to grow
:param prevWinnerCells: (list) Winner cells in `t-1`
:param initialPermanence: (float) Initial permanence of a new synapse.'
| @classmethod
def _growSynapses(cls, connections, random, segment, nDesiredNewSynapes, prevWinnerCells, initialPermanence, maxSynapsesPerSegment):
| candidates = list(prevWinnerCells)
for synapse in connections.synapsesForSegment(segment):
i = binSearch(candidates, synapse.presynapticCell)
if (i != (-1)):
del candidates[i]
nActual = min(nDesiredNewSynapes, len(candidates))
overrun = ((connections.numSynapses(segment) + nActual) - maxSynapsesPerSegment)
if (overrun > 0):
cls._destroyMinPermanenceSynapses(connections, random, segment, overrun, prevWinnerCells)
nActual = min(nActual, (maxSynapsesPerSegment - connections.numSynapses(segment)))
for _ in range(nActual):
i = random.getUInt32(len(candidates))
connections.createSynapse(segment, candidates[i], initialPermanence)
del candidates[i]
|
'Updates synapses on segment.
Strengthens active synapses; weakens inactive synapses.
:param connections: (Object) Connections instance for the tm
:param segment: (int) Segment to adapt
:param prevActiveCells: (list) Active cells in `t-1`
:param permanenceIncrement: (float) Amount to increment active synapses
:param permanenceDecrement: (float) Amount to decrement inactive synapses'
| @classmethod
def _adaptSegment(cls, connections, segment, prevActiveCells, permanenceIncrement, permanenceDecrement):
| synapsesToDestroy = []
for synapse in connections.synapsesForSegment(segment):
permanence = synapse.permanence
if (binSearch(prevActiveCells, synapse.presynapticCell) != (-1)):
permanence += permanenceIncrement
else:
permanence -= permanenceDecrement
permanence = max(0.0, min(1.0, permanence))
if (permanence < EPSILON):
synapsesToDestroy.append(synapse)
else:
connections.updateSynapsePermanence(synapse, permanence)
for synapse in synapsesToDestroy:
connections.destroySynapse(synapse)
if (connections.numSynapses(segment) == 0):
connections.destroySegment(segment)
|
'Returns the index of the column that a cell belongs to.
:param cell: (int) Cell index
:returns: (int) Column index'
| def columnForCell(self, cell):
| self._validateCell(cell)
return int((cell / self.cellsPerColumn))
|
'Returns the indices of cells that belong to a column.
:param column: (int) Column index
:returns: (list) Cell indices'
| def cellsForColumn(self, column):
| self._validateColumn(column)
start = (self.cellsPerColumn * column)
end = (start + self.cellsPerColumn)
return range(start, end)
|
'Returns the number of columns in this layer.
:returns: (int) Number of columns'
| def numberOfColumns(self):
| return reduce(mul, self.columnDimensions, 1)
|
'Returns the number of cells in this layer.
:returns: (int) Number of cells'
| def numberOfCells(self):
| return (self.numberOfColumns() * self.cellsPerColumn)
|
'Maps cells to the columns they belong to.
:param cells: (set) Cells
:returns: (dict) Mapping from columns to their cells in `cells`'
| def mapCellsToColumns(self, cells):
| cellsForColumns = defaultdict(set)
for cell in cells:
column = self.columnForCell(cell)
cellsForColumns[column].add(cell)
return cellsForColumns
|
'Returns the indices of the active cells.
:returns: (list) Indices of active cells.'
| def getActiveCells(self):
| return self.getCellIndices(self.activeCells)
|
'Returns the indices of the predictive cells.
:returns: (list) Indices of predictive cells.'
| def getPredictiveCells(self):
| previousCell = None
predictiveCells = []
for segment in self.activeSegments:
if (segment.cell != previousCell):
predictiveCells.append(segment.cell)
previousCell = segment.cell
return predictiveCells
|
'Returns the indices of the winner cells.
:returns: (list) Indices of winner cells.'
| def getWinnerCells(self):
| return self.getCellIndices(self.winnerCells)
|
'Returns the active segments.
:returns: (list) Active segments'
| def getActiveSegments(self):
| return self.activeSegments
|
'Returns the matching segments.
:returns: (list) Matching segments'
| def getMatchingSegments(self):
| return self.matchingSegments
|
'Returns the number of cells per column.
:returns: (int) The number of cells per column.'
| def getCellsPerColumn(self):
| return self.cellsPerColumn
|
'Returns the dimensions of the columns in the region.
:returns: (tuple) Column dimensions'
| def getColumnDimensions(self):
| return self.columnDimensions
|
'Returns the activation threshold.
:returns: (int) The activation threshold.'
| def getActivationThreshold(self):
| return self.activationThreshold
|
'Sets the activation threshold.
:param activationThreshold: (int) activation threshold.'
| def setActivationThreshold(self, activationThreshold):
| self.activationThreshold = activationThreshold
|
'Get the initial permanence.
:returns: (float) The initial permanence.'
| def getInitialPermanence(self):
| return self.initialPermanence
|
'Sets the initial permanence.
:param initialPermanence: (float) The initial permanence.'
| def setInitialPermanence(self, initialPermanence):
| self.initialPermanence = initialPermanence
|
'Returns the min threshold.
:returns: (int) The min threshold.'
| def getMinThreshold(self):
| return self.minThreshold
|
'Sets the min threshold.
:param minThreshold: (int) min threshold.'
| def setMinThreshold(self, minThreshold):
| self.minThreshold = minThreshold
|
'Returns the max new synapse count.
:returns: (int) The max new synapse count.'
| def getMaxNewSynapseCount(self):
| return self.maxNewSynapseCount
|
'Sets the max new synapse count.
:param maxNewSynapseCount: (int) Max new synapse count.'
| def setMaxNewSynapseCount(self, maxNewSynapseCount):
| self.maxNewSynapseCount = maxNewSynapseCount
|
'Get the permanence increment.
:returns: (float) The permanence increment.'
| def getPermanenceIncrement(self):
| return self.permanenceIncrement
|
'Sets the permanence increment.
:param permanenceIncrement: (float) The permanence increment.'
| def setPermanenceIncrement(self, permanenceIncrement):
| self.permanenceIncrement = permanenceIncrement
|
'Get the permanence decrement.
:returns: (float) The permanence decrement.'
| def getPermanenceDecrement(self):
| return self.permanenceDecrement
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.