desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'Suppresses the output of this ParserElement; useful to keep punctuation from
cluttering up returned output.'
| def suppress(self):
| return Suppress(self)
|
'Disables the skipping of whitespace before matching the characters in the
ParserElement\'s defined pattern. This is normally only used internally by
the pyparsing module, but may be needed in some whitespace-sensitive grammars.'
| def leaveWhitespace(self):
| self.skipWhitespace = False
return self
|
'Overrides the default whitespace chars'
| def setWhitespaceChars(self, chars):
| self.skipWhitespace = True
self.whiteChars = chars
self.copyDefaultWhiteChars = False
return self
|
'Overrides default behavior to expand <TAB>s to spaces before parsing the input string.
Must be called before parseString when the input grammar contains elements that
match <TAB> characters.'
| def parseWithTabs(self):
| self.keepTabs = True
return self
|
'Define expression to be ignored (e.g., comments) while doing pattern
matching; may be called repeatedly, to define multiple comment or other
ignorable patterns.'
| def ignore(self, other):
| if isinstance(other, Suppress):
if (other not in self.ignoreExprs):
self.ignoreExprs.append(other)
else:
self.ignoreExprs.append(Suppress(other))
return self
|
'Enable display of debugging messages while doing pattern matching.'
| def setDebugActions(self, startAction, successAction, exceptionAction):
| self.debugActions = ((startAction or _defaultStartDebugAction), (successAction or _defaultSuccessDebugAction), (exceptionAction or _defaultExceptionDebugAction))
self.debug = True
return self
|
'Enable display of debugging messages while doing pattern matching.
Set flag to True to enable, False to disable.'
| def setDebug(self, flag=True):
| if flag:
self.setDebugActions(_defaultStartDebugAction, _defaultSuccessDebugAction, _defaultExceptionDebugAction)
else:
self.debug = False
return self
|
'Check defined expressions for valid structure, check for infinite recursive definitions.'
| def validate(self, validateTrace=[]):
| self.checkRecursion([])
|
'Execute the parse expression on the given file or filename.
If a filename is specified (instead of a file object),
the entire file is opened, read, and closed before parsing.'
| def parseFile(self, file_or_filename):
| try:
file_contents = file_or_filename.read()
except AttributeError:
f = open(file_or_filename, 'rb')
file_contents = f.read()
f.close()
return self.parseString(file_contents)
|
'Overrides the default Keyword chars'
| def setDefaultKeywordChars(chars):
| Keyword.DEFAULT_KEYWORD_CHARS = chars
|
'The parameters pattern and flags are passed to the re.compile() function as-is. See the Python re module for an explanation of the acceptable patterns and flags.'
| def __init__(self, pattern, flags=0):
| super(Regex, self).__init__()
if (len(pattern) == 0):
warnings.warn('null string passed to Regex; use Empty() instead', SyntaxWarning, stacklevel=2)
self.pattern = pattern
self.flags = flags
try:
self.re = re.compile(self.pattern, self.flags)
self.reString = self.pattern
except sre_constants.error:
warnings.warn(('invalid pattern (%s) passed to Regex' % pattern), SyntaxWarning, stacklevel=2)
raise
self.name = _ustr(self)
self.errmsg = ('Expected ' + self.name)
self.mayIndexError = False
self.mayReturnEmpty = True
|
'Defined with the following parameters:
- quoteChar - string of one or more characters defining the quote delimiting string
- escChar - character to escape quotes, typically backslash (default=None)
- escQuote - special quote sequence to escape an embedded quote string (such as SQL\'s "" to escape an embedded ") (default=None)
- multiline - boolean indicating whether quotes can span multiple lines (default=False)
- unquoteResults - boolean indicating whether the matched text should be unquoted (default=True)
- endQuoteChar - string of one or more characters defining the end of the quote delimited string (default=None => same as quoteChar)'
| def __init__(self, quoteChar, escChar=None, escQuote=None, multiline=False, unquoteResults=True, endQuoteChar=None):
| super(QuotedString, self).__init__()
quoteChar = quoteChar.strip()
if (len(quoteChar) == 0):
warnings.warn('quoteChar cannot be the empty string', SyntaxWarning, stacklevel=2)
raise SyntaxError()
if (endQuoteChar is None):
endQuoteChar = quoteChar
else:
endQuoteChar = endQuoteChar.strip()
if (len(endQuoteChar) == 0):
warnings.warn('endQuoteChar cannot be the empty string', SyntaxWarning, stacklevel=2)
raise SyntaxError()
self.quoteChar = quoteChar
self.quoteCharLen = len(quoteChar)
self.firstQuoteChar = quoteChar[0]
self.endQuoteChar = endQuoteChar
self.endQuoteCharLen = len(endQuoteChar)
self.escChar = escChar
self.escQuote = escQuote
self.unquoteResults = unquoteResults
if multiline:
self.flags = (re.MULTILINE | re.DOTALL)
self.pattern = ('%s(?:[^%s%s]' % (re.escape(self.quoteChar), _escapeRegexRangeChars(self.endQuoteChar[0]), (((escChar is not None) and _escapeRegexRangeChars(escChar)) or '')))
else:
self.flags = 0
self.pattern = ('%s(?:[^%s\\n\\r%s]' % (re.escape(self.quoteChar), _escapeRegexRangeChars(self.endQuoteChar[0]), (((escChar is not None) and _escapeRegexRangeChars(escChar)) or '')))
if (len(self.endQuoteChar) > 1):
self.pattern += (('|(?:' + ')|(?:'.join([('%s[^%s]' % (re.escape(self.endQuoteChar[:i]), _escapeRegexRangeChars(self.endQuoteChar[i]))) for i in range((len(self.endQuoteChar) - 1), 0, (-1))])) + ')')
if escQuote:
self.pattern += ('|(?:%s)' % re.escape(escQuote))
if escChar:
self.pattern += ('|(?:%s.)' % re.escape(escChar))
self.escCharReplacePattern = (re.escape(self.escChar) + '(.)')
self.pattern += (')*%s' % re.escape(self.endQuoteChar))
try:
self.re = re.compile(self.pattern, self.flags)
self.reString = self.pattern
except sre_constants.error:
warnings.warn(('invalid pattern (%s) passed to Regex' % self.pattern), SyntaxWarning, stacklevel=2)
raise
self.name = _ustr(self)
self.errmsg = ('Expected ' + self.name)
self.mayIndexError = False
self.mayReturnEmpty = True
|
'Extends leaveWhitespace defined in base class, and also invokes leaveWhitespace on
all contained expressions.'
| def leaveWhitespace(self):
| self.skipWhitespace = False
self.exprs = [e.copy() for e in self.exprs]
for e in self.exprs:
e.leaveWhitespace()
return self
|
'Give plot a pause, so data is drawn and GUI\'s event loop can run.'
| def refreshGUI(self):
| plt.pause(0.0001)
|
'Parameters:
_inputDimensions: The size of the input. (m,n) will give a size m x n
_columnDimensions: The size of the 2 dimensional array of columns'
| def __init__(self, inputDimensions, columnDimensions):
| self.inputDimensions = inputDimensions
self.columnDimensions = columnDimensions
self.inputSize = np.array(inputDimensions).prod()
self.columnNumber = np.array(columnDimensions).prod()
self.inputArray = np.zeros(self.inputSize, dtype=uintType)
self.activeArray = np.zeros(self.columnNumber, dtype=uintType)
random.seed(1)
self.sp = SP(self.inputDimensions, self.columnDimensions, potentialRadius=self.inputSize, numActiveColumnsPerInhArea=int((0.02 * self.columnNumber)), globalInhibition=True, seed=1, synPermActiveInc=0.01, synPermInactiveDec=0.008)
|
'create a random input vector'
| def createInput(self):
| print ((('-' * 70) + 'Creating a random input vector') + ('-' * 70))
self.inputArray[0:] = 0
for i in range(self.inputSize):
self.inputArray[i] = random.randrange(2)
|
'Run the spatial pooler with the input vector'
| def run(self):
| print ((('-' * 80) + 'Computing the SDR') + ('-' * 80))
self.sp.compute(self.inputArray, True, self.activeArray)
print self.activeArray.nonzero()
|
'Flip the value of 10% of input bits (add noise)
:param noiseLevel: The percentage of total input bits that should be flipped'
| def addNoise(self, noiseLevel):
| for _ in range(int((noiseLevel * self.inputSize))):
randomPosition = int((random.random() * self.inputSize))
if (self.inputArray[randomPosition] == 1):
self.inputArray[randomPosition] = 0
else:
self.inputArray[randomPosition] = 1
|
'Run one iteration of IdentityRegion\'s compute'
| def compute(self, inputs, outputs):
| outputs['out'][:] = inputs['in']
|
'Return the Spec for IdentityRegion.'
| @classmethod
def getSpec(cls):
| spec = {'description': IdentityRegion.__doc__, 'singleNodeOnly': True, 'inputs': {'in': {'description': 'The input vector.', 'dataType': 'Real32', 'count': 0, 'required': True, 'regionLevel': False, 'isDefaultInput': True, 'requireSplitterMap': False}}, 'outputs': {'out': {'description': 'A copy of the input vector.', 'dataType': 'Real32', 'count': 0, 'regionLevel': True, 'isDefaultOutput': True}}, 'parameters': {'dataWidth': {'description': 'Size of inputs', 'accessMode': 'Read', 'dataType': 'UInt32', 'count': 1, 'constraints': ''}}}
return spec
|
'Test with fast learning, make sure PAM allows us to train with fewer
repeats of the training data.'
| def testFastLearning(self):
| numOnBitsPerPattern = 3
baseParams = dict(seqFunction=buildOverlappedSequences, numSequences=2, seqLen=10, sharedElements=[2, 3], numOnBitsPerPattern=numOnBitsPerPattern, includeCPP=INCLUDE_CPP_TM, numCols=None, activationThreshold=numOnBitsPerPattern, minThreshold=numOnBitsPerPattern, newSynapseCount=numOnBitsPerPattern, initialPerm=0.6, permanenceInc=0.1, permanenceDec=0.0, globalDecay=0.0, pamLength=0, nTrainRepetitions=8, doResets=True)
print '\nRunning without PAM, 3 repetitions of the training data...'
self.assertTrue(testConfig(baseParams=baseParams, expMissingMin=20, expMissingMax=None, pamLength=1, nTrainRepetitions=3))
print '\nRunning with PAM, 3 repetitions of the training data...'
self.assertTrue(testConfig(baseParams=baseParams, expMissingMin=0, expMissingMax=0, pamLength=5, nTrainRepetitions=3))
|
'Test with slow learning, make sure PAM allows us to train with fewer
repeats of the training data.'
| def testSlowLearning(self):
| numOnBitsPerPattern = 3
baseParams = dict(seqFunction=buildOverlappedSequences, numSequences=2, seqLen=10, sharedElements=[2, 3], numOnBitsPerPattern=numOnBitsPerPattern, includeCPP=INCLUDE_CPP_TM, numCols=None, activationThreshold=numOnBitsPerPattern, minThreshold=numOnBitsPerPattern, newSynapseCount=numOnBitsPerPattern, initialPerm=0.11, permanenceInc=0.1, permanenceDec=0.0, globalDecay=0.0, pamLength=0, nTrainRepetitions=8, doResets=True)
print '\nRunning without PAM, 10 repetitions of the training data...'
self.assertTrue(testConfig(baseParams=baseParams, expMissingMin=10, expMissingMax=None, pamLength=1, nTrainRepetitions=10))
print '\nRunning with PAM, 10 repetitions of the training data...'
self.assertTrue(testConfig(baseParams=baseParams, expMissingMin=0, expMissingMax=0, pamLength=6, nTrainRepetitions=10))
|
'Test with slow learning, some overlap in the patterns, and TM thresholds
of 80% of newSynapseCount
Make sure PAM allows us to train with fewer repeats of the training data.'
| def testSlowLearningWithOverlap(self):
| if SHORT:
self.skipTest('Test skipped by default. Enable with --long.')
numOnBitsPerPattern = 5
baseParams = dict(seqFunction=buildOverlappedSequences, numSequences=2, seqLen=10, sharedElements=[2, 3], numOnBitsPerPattern=numOnBitsPerPattern, patternOverlap=2, includeCPP=INCLUDE_CPP_TM, numCols=None, activationThreshold=int((0.8 * numOnBitsPerPattern)), minThreshold=int((0.8 * numOnBitsPerPattern)), newSynapseCount=numOnBitsPerPattern, initialPerm=0.11, permanenceInc=0.1, permanenceDec=0.0, globalDecay=0.0, pamLength=0, nTrainRepetitions=8, doResets=True)
print '\nRunning without PAM, 10 repetitions of the training data...'
self.assertTrue(testConfig(baseParams=baseParams, expMissingMin=10, expMissingMax=None, pamLength=1, nTrainRepetitions=10))
print '\nRunning with PAM, 10 repetitions of the training data...'
self.assertTrue(testConfig(baseParams=baseParams, expMissingMin=0, expMissingMax=0, pamLength=6, nTrainRepetitions=10))
|
'Test with "Forbes-like" data. A bunch of sequences of lengths between 2
and 10 elements long.
We will test with both fast and slow learning.
Make sure PAM allows us to train with fewer repeats of the training data.'
| def testForbesLikeData(self):
| if SHORT:
self.skipTest('Test skipped by default. Enable with --long.')
numOnBitsPerPattern = 3
baseParams = dict(seqFunction=buildSequencePool, numSequences=20, seqLen=[3, 10], numPatterns=10, numOnBitsPerPattern=numOnBitsPerPattern, patternOverlap=1, includeCPP=INCLUDE_CPP_TM, numCols=None, activationThreshold=int((0.8 * numOnBitsPerPattern)), minThreshold=int((0.8 * numOnBitsPerPattern)), newSynapseCount=numOnBitsPerPattern, initialPerm=0.51, permanenceInc=0.1, permanenceDec=0.0, globalDecay=0.0, pamLength=0, checkSynapseConsistency=False, nTrainRepetitions=8, doResets=True)
print '\nRunning without PAM, fast learning, 2 repetitions of the training data...'
self.assertTrue(testConfig(baseParams=baseParams, expMissingMin=50, expMissingMax=None, pamLength=1, nTrainRepetitions=2))
print '\nRunning with PAM, fast learning, 2 repetitions of the training data...'
self.assertTrue(testConfig(baseParams=baseParams, expMissingMin=0, expMissingMax=0, pamLength=5, nTrainRepetitions=2))
print '\nRunning without PAM, slow learning, 8 repetitions of the training data...'
self.assertTrue(testConfig(baseParams=baseParams, expMissingMin=1, expMissingMax=None, initialPerm=0.31, pamLength=1, nTrainRepetitions=8))
print '\nRunning with PAM, slow learning, 8 repetitions of the training data...'
self.assertTrue(testConfig(baseParams=baseParams, expMissingMin=0, expMissingMax=0, initialPerm=0.31, pamLength=5, nTrainRepetitions=8))
|
'Test creation, pickling, and basic run of learning and inference.'
| def _basicTest(self, tm=None):
| trainingSet = _getSimplePatterns(10, 10)
for _ in range(2):
for seq in trainingSet[0:5]:
for _ in range(10):
tm.learn(seq)
tm.reset()
print 'Learning completed'
print 'Running inference'
tm.collectStats = True
for seq in trainingSet[0:5]:
tm.reset()
tm.resetStats()
for _ in range(10):
tm.infer(seq)
if (VERBOSITY > 1):
print
_printOneTrainingVector(seq)
tm.printStates(False, False)
print
print
if (VERBOSITY > 1):
print tm.getStats()
self.assertGreater(tm.getStats()['predictionScoreAvg2'], 0.8)
print ("tm.getStats()['predictionScoreAvg2'] = ", tm.getStats()['predictionScoreAvg2'])
print 'TMConstantTest ok'
|
'Print a single vector succinctly.'
| def _printOneTrainingVector(self, x):
| print ''.join((('1' if (k != 0) else '.') for k in x))
|
'Print all vectors'
| def _printAllTrainingSequences(self, trainingSequences):
| for (i, trainingSequence) in enumerate(trainingSequences):
print '============= Sequence', i, '================='
for pattern in trainingSequence:
self._printOneTrainingVector(pattern)
|
'Set verbosity level on the TM'
| def _setVerbosity(self, verbosity, tm, tmPy):
| tm.cells4.setVerbosity(verbosity)
tm.verbosity = verbosity
tmPy.verbosity = verbosity
|
'Create an instance of the appropriate temporal memory. We isolate
all parameters as constants specified here.'
| def _createTMs(self, numCols, fixedResources=False, checkSynapseConsistency=True):
| minThreshold = 4
activationThreshold = 8
newSynapseCount = 15
initialPerm = 0.3
connectedPerm = 0.5
permanenceInc = 0.1
permanenceDec = 0.05
if fixedResources:
permanenceDec = 0.1
maxSegmentsPerCell = 5
maxSynapsesPerSegment = 15
globalDecay = 0
maxAge = 0
else:
permanenceDec = 0.05
maxSegmentsPerCell = (-1)
maxSynapsesPerSegment = (-1)
globalDecay = 0.0001
maxAge = 1
if g_testCPPTM:
if (g_options.verbosity > 1):
print 'Creating BacktrackingTMCPP instance'
cppTM = BacktrackingTMCPP(numberOfCols=numCols, cellsPerColumn=4, initialPerm=initialPerm, connectedPerm=connectedPerm, minThreshold=minThreshold, newSynapseCount=newSynapseCount, permanenceInc=permanenceInc, permanenceDec=permanenceDec, activationThreshold=activationThreshold, globalDecay=globalDecay, maxAge=maxAge, burnIn=1, seed=g_options.seed, verbosity=g_options.verbosity, checkSynapseConsistency=checkSynapseConsistency, pamLength=1000, maxSegmentsPerCell=maxSegmentsPerCell, maxSynapsesPerSegment=maxSynapsesPerSegment)
cppTM.retrieveLearningStates = True
else:
cppTM = None
if (g_options.verbosity > 1):
print 'Creating PY TM instance'
pyTM = BacktrackingTM(numberOfCols=numCols, cellsPerColumn=4, initialPerm=initialPerm, connectedPerm=connectedPerm, minThreshold=minThreshold, newSynapseCount=newSynapseCount, permanenceInc=permanenceInc, permanenceDec=permanenceDec, activationThreshold=activationThreshold, globalDecay=globalDecay, maxAge=maxAge, burnIn=1, seed=g_options.seed, verbosity=g_options.verbosity, pamLength=1000, maxSegmentsPerCell=maxSegmentsPerCell, maxSynapsesPerSegment=maxSynapsesPerSegment)
return (cppTM, pyTM)
|
'Very simple patterns. Each pattern has numOnes consecutive
bits on. There are numPatterns*numOnes bits in the vector. These patterns
are used as elements of sequences when building up a training set.'
| def _getSimplePatterns(self, numOnes, numPatterns):
| numCols = (numOnes * numPatterns)
p = []
for i in xrange(numPatterns):
x = numpy.zeros(numCols, dtype='float32')
x[(i * numOnes):((i + 1) * numOnes)] = 1
p.append(x)
return p
|
'A simple sequence of 5 patterns. The left half of the vector contains
the pattern elements, each with numOnes consecutive bits. The right half
contains numOnes random bits. The function returns a pair:
trainingSequences: A list containing numRepetitions instances of the
above sequence
testSequence: A single clean test sequence containing the 5 patterns
but with no noise on the right half'
| def _buildSegmentLearningTrainingSet(self, numOnes=10, numRepetitions=10):
| numPatterns = 5
numCols = ((2 * numPatterns) * numOnes)
halfCols = (numPatterns * numOnes)
numNoiseBits = numOnes
p = self._getSimplePatterns(numOnes, numPatterns)
trainingSequences = []
for _ in xrange(numRepetitions):
sequence = []
for j in xrange(numPatterns):
v = numpy.zeros(numCols)
v[0:halfCols] = p[j]
noiseIndices = (self._rgen.permutation(halfCols) + halfCols)[0:numNoiseBits]
v[noiseIndices] = 1
sequence.append(v)
trainingSequences.append(sequence)
testSequence = []
for j in xrange(numPatterns):
v = numpy.zeros(numCols, dtype='float32')
v[0:halfCols] = p[j]
testSequence.append(v)
if (g_options.verbosity > 1):
print '\nTraining sequences'
self._printAllTrainingSequences(trainingSequences)
print '\nTest sequence'
self._printAllTrainingSequences([testSequence])
return (trainingSequences, [testSequence])
|
'Three simple sequences, composed of the same 5 static patterns. The left
half of the vector contains the pattern elements, each with numOnes
consecutive bits. The right half contains numOnes random bits.
Sequence 1 is: p0, p1, p2, p3, p4
Sequence 2 is: p4, p3, p2, p1, p0
Sequence 3 is: p2, p0, p4, p1, p3
The function returns a pair:
trainingSequences: A list containing numRepetitions instances of the
above sequences
testSequence: Clean test sequences with no noise on the right half'
| def _buildSL2TrainingSet(self, numOnes=10, numRepetitions=10):
| numPatterns = 5
numCols = ((2 * numPatterns) * numOnes)
halfCols = (numPatterns * numOnes)
numNoiseBits = numOnes
p = self._getSimplePatterns(numOnes, numPatterns)
numSequences = 3
indices = [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0], [2, 0, 4, 1, 3]]
trainingSequences = []
for i in xrange((numRepetitions * numSequences)):
sequence = []
for j in xrange(numPatterns):
v = numpy.zeros(numCols, dtype='float32')
v[0:halfCols] = p[indices[(i % numSequences)][j]]
noiseIndices = (self._rgen.permutation(halfCols) + halfCols)[0:numNoiseBits]
v[noiseIndices] = 1
sequence.append(v)
trainingSequences.append(sequence)
testSequences = []
for i in xrange(numSequences):
sequence = []
for j in xrange(numPatterns):
v = numpy.zeros(numCols, dtype='float32')
v[0:halfCols] = p[indices[(i % numSequences)][j]]
sequence.append(v)
testSequences.append(sequence)
if (g_options.verbosity > 1):
print '\nTraining sequences'
self._printAllTrainingSequences(trainingSequences)
print '\nTest sequences'
self._printAllTrainingSequences(testSequences)
return (trainingSequences, testSequences)
|
'Train the given TM once on the entire training set. on the Test a single
set of sequences once and check that individual predictions reflect the true
relative frequencies. Return a success code. Success code is 1 for pass, 0
for fail.'
| def _testSegmentLearningSequence(self, tms, trainingSequences, testSequences, doResets=True):
| if (testSequences == None):
testSequences = trainingSequences
(cppTM, pyTM) = (tms[0], tms[1])
if (cppTM is not None):
assert (fdrutils.tmDiff2(cppTM, pyTM, g_options.verbosity) == True)
if (g_options.verbosity > 0):
print '============= Training ================='
print 'TM parameters:'
print 'CPP'
if (cppTM is not None):
print cppTM.printParameters()
print '\nPY'
print pyTM.printParameters()
for (sequenceNum, trainingSequence) in enumerate(trainingSequences):
if (g_options.verbosity > 1):
print '============= New sequence ================='
if doResets:
if (cppTM is not None):
cppTM.reset()
pyTM.reset()
for (t, x) in enumerate(trainingSequence):
if (g_options.verbosity > 1):
print 'Time step', t, 'sequence number', sequenceNum
print 'Input: ', pyTM.printInput(x)
print 'NNZ:', x.nonzero()
x = numpy.array(x).astype('float32')
if (cppTM is not None):
cppTM.learn(x)
pyTM.learn(x)
if (cppTM is not None):
assert (fdrutils.tmDiff2(cppTM, pyTM, g_options.verbosity, relaxSegmentTests=False) == True)
if (g_options.verbosity > 2):
if (cppTM is not None):
print 'CPP'
cppTM.printStates(printPrevious=(g_options.verbosity > 4))
print '\nPY'
pyTM.printStates(printPrevious=(g_options.verbosity > 4))
print
if (g_options.verbosity > 4):
print 'Sequence finished. Complete state after sequence'
if (cppTM is not None):
print 'CPP'
cppTM.printCells()
print '\nPY'
pyTM.printCells()
print
if (g_options.verbosity > 2):
print 'Calling trim segments'
if (cppTM is not None):
(nSegsRemovedCPP, nSynsRemovedCPP) = cppTM.trimSegments()
(nSegsRemoved, nSynsRemoved) = pyTM.trimSegments()
if (cppTM is not None):
assert (nSegsRemovedCPP == nSegsRemoved)
assert (nSynsRemovedCPP == nSynsRemoved)
if (cppTM is not None):
assert (fdrutils.tmDiff2(cppTM, pyTM, g_options.verbosity) == True)
print 'Training completed. Stats:'
info = pyTM.getSegmentInfo()
print ' nSegments:', info[0]
print ' nSynapses:', info[1]
if (g_options.verbosity > 3):
print 'Complete state:'
if (cppTM is not None):
print 'CPP'
cppTM.printCells()
print '\nPY'
pyTM.printCells()
if (g_options.verbosity > 1):
print '============= Inference ================='
if (cppTM is not None):
cppTM.collectStats = True
pyTM.collectStats = True
nPredictions = 0
(cppNumCorrect, pyNumCorrect) = (0, 0)
for (sequenceNum, testSequence) in enumerate(testSequences):
if (g_options.verbosity > 1):
print '============= New sequence ================='
slen = len(testSequence)
if doResets:
if (cppTM is not None):
cppTM.reset()
pyTM.reset()
for (t, x) in enumerate(testSequence):
if (g_options.verbosity >= 2):
print 'Time step', t, '\nInput:'
pyTM.printInput(x)
if (cppTM is not None):
cppTM.infer(x)
pyTM.infer(x)
if (cppTM is not None):
assert (fdrutils.tmDiff2(cppTM, pyTM, g_options.verbosity) == True)
if (g_options.verbosity > 2):
if (cppTM is not None):
print 'CPP'
cppTM.printStates(printPrevious=(g_options.verbosity > 4), printLearnState=False)
print '\nPY'
pyTM.printStates(printPrevious=(g_options.verbosity > 4), printLearnState=False)
if (cppTM is not None):
cppScores = cppTM.getStats()
pyScores = pyTM.getStats()
if (g_options.verbosity >= 2):
if (cppTM is not None):
print 'CPP'
print cppScores
print '\nPY'
print pyScores
if ((t < (slen - 1)) and (t > pyTM.burnIn)):
nPredictions += 1
if (cppTM is not None):
if (cppScores['curPredictionScore2'] > 0.3):
cppNumCorrect += 1
if (pyScores['curPredictionScore2'] > 0.3):
pyNumCorrect += 1
if (cppTM is not None):
cppScores = cppTM.getStats()
pyScores = pyTM.getStats()
passTest = False
if (cppTM is not None):
if ((cppNumCorrect == nPredictions) and (pyNumCorrect == nPredictions)):
passTest = True
elif (pyNumCorrect == nPredictions):
passTest = True
if (not passTest):
print 'CPP correct predictions:', cppNumCorrect
print 'PY correct predictions:', pyNumCorrect
print 'Total predictions:', nPredictions
return passTest
|
'Test segment learning'
| def _testSL1(self, numOnes=10, numRepetitions=6, fixedResources=False, checkSynapseConsistency=True):
| if fixedResources:
testName = 'TestSL1_FS'
else:
testName = 'TestSL1'
print ('\nRunning %s...' % testName)
(trainingSet, testSet) = self._buildSegmentLearningTrainingSet(numOnes, numRepetitions)
numCols = len(trainingSet[0][0])
tms = self._createTMs(numCols=numCols, fixedResources=fixedResources, checkSynapseConsistency=checkSynapseConsistency)
testResult = self._testSegmentLearningSequence(tms, trainingSet, testSet)
if testResult:
print ('%s PASS' % testName)
return 1
else:
print ('%s FAILED' % testName)
return 0
|
'Test segment learning'
| def _testSL2(self, numOnes=10, numRepetitions=10, fixedResources=False, checkSynapseConsistency=True):
| if fixedResources:
testName = 'TestSL2_FS'
else:
testName = 'TestSL2'
print ('\nRunning %s...' % testName)
(trainingSet, testSet) = self._buildSL2TrainingSet(numOnes, numRepetitions)
numCols = len(trainingSet[0][0])
tms = self._createTMs(numCols=numCols, fixedResources=fixedResources, checkSynapseConsistency=checkSynapseConsistency)
testResult = self._testSegmentLearningSequence(tms, trainingSet, testSet)
if testResult:
print ('%s PASS' % testName)
return 1
else:
print ('%s FAILED' % testName)
return 0
|
'Test segment learning without fixed resources'
| def test_SL1NoFixedResources(self):
| self._testSL1(fixedResources=False, checkSynapseConsistency=g_options.long)
|
'Test segment learning with fixed resources'
| def test_SL1WithFixedResources(self):
| if (not g_options.long):
print ('Test %s only enabled with the --long option' % self._testMethodName)
return
self._testSL1(fixedResources=True, checkSynapseConsistency=g_options.long)
|
'Test segment learning without fixed resources'
| def test_SL2NoFixedResources(self):
| if (not g_options.long):
print ('Test %s only enabled with the --long option' % self._testMethodName)
return
self._testSL2(fixedResources=False, checkSynapseConsistency=g_options.long)
|
'Test segment learning with fixed resources'
| def test_SL2WithFixedResources(self):
| if (not g_options.long):
print ('Test %s only enabled with the --long option' % self._testMethodName)
return
self._testSL2(fixedResources=True, checkSynapseConsistency=g_options.long)
|
'requestedActivities: a sequence of PeriodicActivityRequest elements'
| def __init__(self, requestedActivities):
| self.__activities = []
for req in requestedActivities:
act = self.Activity(repeating=req.repeating, period=req.period, cb=req.cb, iteratorHolder=[iter(xrange(req.period))])
self.__activities.append(act)
return
|
'Activity tick handler; services all activities
Returns: True if controlling iterator says it\'s okay to keep going;
False to stop'
| def tick(self):
| for act in self.__activities:
if (not act.iteratorHolder[0]):
continue
try:
next(act.iteratorHolder[0])
except StopIteration:
act.cb()
if act.repeating:
act.iteratorHolder[0] = iter(xrange(act.period))
else:
act.iteratorHolder[0] = None
return True
|
'dirPath: the path that we attempted to create for experiment files
reason: any object that can be converted to a string that explains
the reason (may be an exception)'
| def __init__(self, dirPath, reason):
| super(_CreateDirectoryException, self).__init__((('Error creating directory ' + '<%s>: %s.') % (str(dirPath), str(reason))))
self.reason = reason
|
'problem: a string-convertible object that describes the problem
experienced by the error-reporting funciton.
precursor: a string-convertible object that explains
the original error that the error-reporting function
was attempting to report when it encountered its own failure.'
| def __init__(self, problem, precursor):
| super(_ErrorReportingException, self).__init__((("Encountered error: '%s' while reporting " + "error: '%s'.") % (problem, precursor)))
|
'Get the sensor input element that corresponds to the given inference
element. This is mainly used for metrics and prediction logging'
| @staticmethod
def getInputElement(inferenceElement):
| return InferenceElement.__inferenceInputMap.get(inferenceElement, None)
|
'Returns True if the inference from this timestep is predicted the input
for the NEXT timestep.
NOTE: This should only be checked IF THE MODEL\'S INFERENCE TYPE IS ALSO
TEMPORAL. That is, a temporal model CAN have non-temporal inference elements,
but a non-temporal model CANNOT have temporal inference elements'
| @staticmethod
def isTemporal(inferenceElement):
| if (InferenceElement.__temporalInferenceElements is None):
InferenceElement.__temporalInferenceElements = set([InferenceElement.prediction])
return (inferenceElement in InferenceElement.__temporalInferenceElements)
|
'Returns the number of records that elapse between when an inference is
made and when the corresponding input record will appear. For example, a
multistep prediction for 3 timesteps out will have a delay of 3
Parameters:
inferenceElement: The InferenceElement value being delayed
key: If the inference is a dictionary type, this specifies
key for the sub-inference that is being delayed'
| @staticmethod
def getTemporalDelay(inferenceElement, key=None):
| if (inferenceElement in (InferenceElement.prediction, InferenceElement.encodings)):
return 1
if (inferenceElement in (InferenceElement.anomalyScore, InferenceElement.anomalyLabel, InferenceElement.classification, InferenceElement.classConfidences)):
return 0
if (inferenceElement in (InferenceElement.multiStepPredictions, InferenceElement.multiStepBestPredictions)):
return int(key)
return 0
|
'Returns the maximum delay for the InferenceElements in the inference
dictionary
Parameters:
inferences: A dictionary where the keys are InferenceElements'
| @staticmethod
def getMaxDelay(inferences):
| maxDelay = 0
for (inferenceElement, inference) in inferences.iteritems():
if isinstance(inference, dict):
for key in inference.iterkeys():
maxDelay = max(InferenceElement.getTemporalDelay(inferenceElement, key), maxDelay)
else:
maxDelay = max(InferenceElement.getTemporalDelay(inferenceElement), maxDelay)
return maxDelay
|
'Returns True if the inference type is \'temporal\', i.e. requires a
temporal memory in the network.'
| @staticmethod
def isTemporal(inferenceType):
| if (InferenceType.__temporalInferenceTypes is None):
InferenceType.__temporalInferenceTypes = set([InferenceType.TemporalNextStep, InferenceType.TemporalClassification, InferenceType.TemporalAnomaly, InferenceType.TemporalMultiStep, InferenceType.NontemporalMultiStep])
return (inferenceType in InferenceType.__temporalInferenceTypes)
|
'Instantiate the Hypersearch worker
Parameters:
options: The command line options. See the main() method for a
description of these options
cmdLineArgs: Copy of the command line arguments, so we can place them
in the log'
| def __init__(self, options, cmdLineArgs):
| self._options = options
self.logger = logging.getLogger('.'.join(['com.numenta.nupic.swarming', self.__class__.__name__]))
if (options.logLevel is not None):
self.logger.setLevel(options.logLevel)
self.logger.info(('Launched with command line arguments: %s' % str(cmdLineArgs)))
self.logger.debug(('Env variables: %s' % pprint.pformat(os.environ)))
random.seed(42)
self._hs = None
self._modelIDCtrDict = dict()
self._modelIDCtrList = []
self._modelIDSet = set()
self._workerID = None
|
'For all models that modified their results since last time this method
was called, send their latest results to the Hypersearch implementation.'
| def _processUpdatedModels(self, cjDAO):
| curModelIDCtrList = cjDAO.modelsGetUpdateCounters(self._options.jobID)
if (len(curModelIDCtrList) == 0):
return
self.logger.debug(('current modelID/updateCounters: %s' % str(curModelIDCtrList)))
self.logger.debug(('last modelID/updateCounters: %s' % str(self._modelIDCtrList)))
curModelIDCtrList = sorted(curModelIDCtrList)
numItems = len(curModelIDCtrList)
changedEntries = filter((lambda x: (x[1][1] != x[2][1])), itertools.izip(xrange(numItems), curModelIDCtrList, self._modelIDCtrList))
if (len(changedEntries) > 0):
self.logger.debug('changedEntries: %s', str(changedEntries))
for entry in changedEntries:
(idx, (modelID, curCtr), (_, oldCtr)) = entry
self._modelIDCtrDict[modelID] = curCtr
assert (self._modelIDCtrList[idx][0] == modelID)
assert (curCtr != oldCtr)
self._modelIDCtrList[idx][1] = curCtr
changedModelIDs = [x[1][0] for x in changedEntries]
modelResults = cjDAO.modelsGetResultAndStatus(changedModelIDs)
for mResult in modelResults:
results = mResult.results
if (results is not None):
results = json.loads(results)
self._hs.recordModelProgress(modelID=mResult.modelId, modelParams=None, modelParamsHash=mResult.engParamsHash, results=results, completed=(mResult.status == cjDAO.STATUS_COMPLETED), completionReason=mResult.completionReason, matured=mResult.engMatured, numRecords=mResult.numRecords)
curModelIDSet = set([x[0] for x in curModelIDCtrList])
newModelIDs = curModelIDSet.difference(self._modelIDSet)
if (len(newModelIDs) > 0):
self._modelIDSet.update(newModelIDs)
curModelIDCtrDict = dict(curModelIDCtrList)
modelInfos = cjDAO.modelsGetResultAndStatus(newModelIDs)
modelInfos.sort()
modelParamsAndHashs = cjDAO.modelsGetParams(newModelIDs)
modelParamsAndHashs.sort()
for (mResult, mParamsAndHash) in itertools.izip(modelInfos, modelParamsAndHashs):
modelID = mResult.modelId
assert (modelID == mParamsAndHash.modelId)
self._modelIDCtrDict[modelID] = curModelIDCtrDict[modelID]
self._modelIDCtrList.append([modelID, curModelIDCtrDict[modelID]])
results = mResult.results
if (results is not None):
results = json.loads(mResult.results)
self._hs.recordModelProgress(modelID=modelID, modelParams=json.loads(mParamsAndHash.params), modelParamsHash=mParamsAndHash.engParamsHash, results=results, completed=(mResult.status == cjDAO.STATUS_COMPLETED), completionReason=mResult.completionReason, matured=mResult.engMatured, numRecords=mResult.numRecords)
self._modelIDCtrList.sort()
|
'Run this worker.
Parameters:
retval: jobID of the job we ran. This is used by unit test code
when calling this working using the --params command
line option (which tells this worker to insert the job
itself).'
| def run(self):
| options = self._options
self.logger.info('Connecting to the jobs database')
cjDAO = ClientJobsDAO.get()
self._workerID = cjDAO.getConnectionID()
if options.clearModels:
cjDAO.modelsClearAll()
if (options.params is not None):
options.jobID = cjDAO.jobInsert(client='hwTest', cmdLine="echo 'test mode'", params=options.params, alreadyRunning=True, minimumWorkers=1, maximumWorkers=1, jobType=cjDAO.JOB_TYPE_HS)
if (options.workerID is not None):
wID = options.workerID
else:
wID = self._workerID
buildID = Configuration.get('nupic.software.buildNumber', 'N/A')
logPrefix = ('<BUILDID=%s, WORKER=HW, WRKID=%s, JOBID=%s> ' % (buildID, wID, options.jobID))
ExtendedLogger.setLogPrefix(logPrefix)
if options.resetJobStatus:
cjDAO.jobSetFields(options.jobID, fields={'workerCompletionReason': ClientJobsDAO.CMPL_REASON_SUCCESS, 'cancel': False}, useConnectionID=False, ignoreUnchanged=True)
jobInfo = cjDAO.jobInfo(options.jobID)
self.logger.info(('Job info retrieved: %s' % str(clippedObj(jobInfo))))
jobParams = json.loads(jobInfo.params)
jsonSchemaPath = os.path.join(os.path.dirname(__file__), 'jsonschema', 'jobParamsSchema.json')
validate(jobParams, schemaPath=jsonSchemaPath)
hsVersion = jobParams.get('hsVersion', None)
if (hsVersion == 'v2'):
self._hs = HypersearchV2(searchParams=jobParams, workerID=self._workerID, cjDAO=cjDAO, jobID=options.jobID, logLevel=options.logLevel)
else:
raise RuntimeError(('Invalid Hypersearch implementation (%s) specified' % hsVersion))
try:
exit = False
numModelsTotal = 0
print >>sys.stderr, 'reporter:status:Evaluating first model...'
while (not exit):
batchSize = 10
modelIDToRun = None
while (modelIDToRun is None):
if (options.modelID is None):
self._processUpdatedModels(cjDAO)
(exit, newModels) = self._hs.createModels(numModels=batchSize)
if exit:
break
if (len(newModels) == 0):
continue
for (modelParams, modelParamsHash, particleHash) in newModels:
jsonModelParams = json.dumps(modelParams)
(modelID, ours) = cjDAO.modelInsertAndStart(options.jobID, jsonModelParams, modelParamsHash, particleHash)
if (not ours):
mParamsAndHash = cjDAO.modelsGetParams([modelID])[0]
mResult = cjDAO.modelsGetResultAndStatus([modelID])[0]
results = mResult.results
if (results is not None):
results = json.loads(results)
modelParams = json.loads(mParamsAndHash.params)
particleHash = cjDAO.modelsGetFields(modelID, ['engParticleHash'])[0]
particleInst = ('%s.%s' % (modelParams['particleState']['id'], modelParams['particleState']['genIdx']))
self.logger.info("Adding model %d to our internal DB because modelInsertAndStart() failed to insert it: paramsHash=%s, particleHash=%s, particleId='%s'", modelID, mParamsAndHash.engParamsHash.encode('hex'), particleHash.encode('hex'), particleInst)
self._hs.recordModelProgress(modelID=modelID, modelParams=modelParams, modelParamsHash=mParamsAndHash.engParamsHash, results=results, completed=(mResult.status == cjDAO.STATUS_COMPLETED), completionReason=mResult.completionReason, matured=mResult.engMatured, numRecords=mResult.numRecords)
else:
modelIDToRun = modelID
break
else:
modelIDToRun = int(options.modelID)
mParamsAndHash = cjDAO.modelsGetParams([modelIDToRun])[0]
modelParams = json.loads(mParamsAndHash.params)
modelParamsHash = mParamsAndHash.engParamsHash
cjDAO.modelSetFields(modelIDToRun, dict(engWorkerConnId=self._workerID))
if False:
for attempt in range(1000):
paramsHash = hashlib.md5(('OrphanParams.%d.%d' % (modelIDToRun, attempt))).digest()
particleHash = hashlib.md5(('OrphanParticle.%d.%d' % (modelIDToRun, attempt))).digest()
try:
cjDAO.modelSetFields(modelIDToRun, dict(engParamsHash=paramsHash, engParticleHash=particleHash))
success = True
except:
success = False
if success:
break
if (not success):
raise RuntimeError('Unexpected failure to change paramsHash and particleHash of orphaned model')
(modelIDToRun, ours) = cjDAO.modelInsertAndStart(options.jobID, mParamsAndHash.params, modelParamsHash)
if exit:
break
self.logger.info('RUNNING MODEL GID=%d, paramsHash=%s, params=%s', modelIDToRun, modelParamsHash.encode('hex'), modelParams)
persistentJobGUID = jobParams['persistentJobGUID']
assert persistentJobGUID, ('persistentJobGUID: %r' % (persistentJobGUID,))
modelCheckpointGUID = (((jobInfo.client + '_') + persistentJobGUID) + ('_' + str(modelIDToRun)))
self._hs.runModel(modelID=modelIDToRun, jobID=options.jobID, modelParams=modelParams, modelParamsHash=modelParamsHash, jobsDAO=cjDAO, modelCheckpointGUID=modelCheckpointGUID)
numModelsTotal += 1
self.logger.info('COMPLETED MODEL GID=%d; EVALUATED %d MODELs', modelIDToRun, numModelsTotal)
print >>sys.stderr, ('reporter:status:Evaluated %d models...' % numModelsTotal)
print >>sys.stderr, 'reporter:counter:HypersearchWorker,numModels,1'
if (options.modelID is not None):
exit = True
finally:
self._hs.close()
self.logger.info(('FINISHED. Evaluated %d models.' % numModelsTotal))
print >>sys.stderr, ('reporter:status:Finished, evaluated %d models' % numModelsTotal)
return options.jobID
|
'Parameters:
modelID: ID of this model in the models table
jobID:
params: a dictionary of parameters for this dummy model. The
possible keys are:
delay: OPTIONAL-This specifies the amount of time
(in seconds) that the experiment should wait
before STARTING to process records. This is
useful for simulating workers that start/end
at different times
finalDelay: OPTIONAL-This specifies the amount of time
(in seconds) that the experiment should wait
before it conducts its finalization operations.
These operations include checking if the model
is the best model, and writing out checkpoints.
waitTime: OPTIONAL-The amount of time (in seconds)
to wait in a busy loop to simulate
computation time on EACH ITERATION
randomizeWait: OPTIONAL-([0.0-1.0] ). Default:None
If set to a value, the above specified
wait time will be randomly be dithered by
+/- <randomizeWait>% of the specfied value.
For example, if randomizeWait=0.2, the wait
time will be dithered by +/- 20% of its value.
iterations: OPTIONAL-How many iterations to run the model
for. -1 means run forever (default=1)
metricFunctions: OPTIONAL-A list of single argument functions
serialized as strings, which return the metric
value given the record number.
Mutually exclusive with metricValue
metricValue: OPTIONAL-A single value to use for the metric
value (used to debug hypersearch).
Mutually exclusive with metricFunctions
finalize: OPTIONAL-(True/False). Default:True
When False, this will prevent the model from
recording it\'s metrics and performing other
functions that it usually performs after the
model has finished running
permutationParams: A dict containing the instances of all the
variables being permuted over
experimentDirectory: REQUIRED-An absolute path to a directory
with a valid description.py file.
NOTE: This does not actually affect the
running of the model or the metrics
produced. It is required to create certain
objects (such as the output stream)
makeCheckpoint: True to actually write a checkpoint out to
disk (default: False)
sysExitModelRange: A string containing two integers \'firstIdx,
endIdx\'. When present, if we are running the
firstIdx\'th model up to but not including the
endIdx\'th model, then do a sys.exit() while
running the model. This causes the worker to
exit, simulating an orphaned model.
delayModelRange: A string containing two integers \'firstIdx,
endIdx\'. When present, if we are running the
firstIdx\'th model up to but not including the
endIdx\'th model, then do a delay of 10 sec.
while running the model. This causes the
worker to run slower and for some other worker
to think the model should be orphaned.
exitAfter: The number of iterations after which the model
should perform a sys exit. This is an
alternative way of creating an orphaned model
that use\'s the dummmy model\'s modelIndex
instead of the modelID
errModelRange: A string containing two integers \'firstIdx,
endIdx\'. When present, if we are running the
firstIdx\'th model up to but not including the
endIdx\'th model, then raise an exception while
running the model. This causes the model to
fail with a CMPL_REASON_ERROR reason
sleepModelRange: A string containing 3 integers \'firstIdx,
endIdx: delay\'. When present, if we are running
the firstIdx\'th model up to but not including
the endIdx\'th model, then sleep for delay
seconds at the beginning of the run.
jobFailErr: If true, model will raise a JobFailException
which should cause the job to be marked as
failed and immediately cancel all other workers.
predictedField: Name of the input field for which this model is being
optimized
reportKeyPatterns: list of items from the results dict to include in
the report. These can be regular expressions.
optimizeKeyPattern: Which report item, if any, we will be optimizing for.
This can also be a regular expression, but is an error
if it matches more than one key from the experiment\'s
results.
jobsDAO: Jobs data access object - the interface to the
jobs database which has the model\'s table.
modelCheckpointGUID:
A persistent, globally-unique identifier for
constructing the model checkpoint key
logLevel: override logging level to this value, if not None
predictionCacheMaxRecords:
Maximum number of records for the prediction output cache.
Pass None for the default value.'
| def __init__(self, modelID, jobID, params, predictedField, reportKeyPatterns, optimizeKeyPattern, jobsDAO, modelCheckpointGUID, logLevel=None, predictionCacheMaxRecords=None):
| super(OPFDummyModelRunner, self).__init__(modelID=modelID, jobID=jobID, predictedField=predictedField, experimentDir=None, reportKeyPatterns=reportKeyPatterns, optimizeKeyPattern=optimizeKeyPattern, jobsDAO=jobsDAO, modelCheckpointGUID=modelCheckpointGUID, logLevel=logLevel, predictionCacheMaxRecords=None)
self._predictionCacheMaxRecords = predictionCacheMaxRecords
self._streamDef = copy.deepcopy(self._DUMMY_STREAMDEF)
self._params = copy.deepcopy(self._DEFAULT_PARAMS)
if (('permutationParams' in params) and ('__model_num' in params['permutationParams'])):
self.modelIndex = params['permutationParams']['__model_num']
else:
self.modelIndex = OPFDummyModelRunner.modelIndex
OPFDummyModelRunner.modelIndex += 1
self._loadDummyModelParameters(params)
self._logger.debug('Using Dummy model params: %s', self._params)
self._busyWaitTime = self._params['waitTime']
self._iterations = self._params['iterations']
self._doFinalize = self._params['finalize']
self._delay = self._params['delay']
self._sleepModelRange = self._params['sleepModelRange']
self._makeCheckpoint = self._params['makeCheckpoint']
self._finalDelay = self._params['finalDelay']
self._exitAfter = self._params['exitAfter']
self.randomizeWait = self._params['randomizeWait']
if (self._busyWaitTime is not None):
self.__computeWaitTime()
if ((self._params['metricFunctions'] is not None) and (self._params['metricValue'] is not None)):
raise RuntimeError("Error, only 1 of 'metricFunctions' or 'metricValue' can be passed to OPFDummyModelRunner params ")
self.metrics = None
self.metricValue = None
if (self._params['metricFunctions'] is not None):
self.metrics = eval(self._params['metricFunctions'])
elif (self._params['metricValue'] is not None):
self.metricValue = float(self._params['metricValue'])
else:
self.metrics = OPFDummyModelRunner.metrics[0]
if (self._params['experimentDirectory'] is not None):
self._model = self.__createModel(self._params['experimentDirectory'])
self.__fieldInfo = self._model.getFieldInfo()
self._sysExitModelRange = self._params['sysExitModelRange']
if (self._sysExitModelRange is not None):
self._sysExitModelRange = [int(x) for x in self._sysExitModelRange.split(',')]
self._delayModelRange = self._params['delayModelRange']
if (self._delayModelRange is not None):
self._delayModelRange = [int(x) for x in self._delayModelRange.split(',')]
self._errModelRange = self._params['errModelRange']
if (self._errModelRange is not None):
self._errModelRange = [int(x) for x in self._errModelRange.split(',')]
self._computModelDelay()
self._jobFailErr = self._params['jobFailErr']
self._logger.debug('Dummy Model %d params %r', self._modelID, self._params)
|
'Loads all the parameters for this dummy model. For any paramters
specified as lists, read the appropriate value for this model using the model
index'
| def _loadDummyModelParameters(self, params):
| for (key, value) in params.iteritems():
if (type(value) == list):
index = (self.modelIndex % len(params[key]))
self._params[key] = params[key][index]
else:
self._params[key] = params[key]
|
'Computes the amount of time (if any) to delay the run of this model.
This can be determined by two mutually exclusive parameters:
delay and sleepModelRange.
\'delay\' specifies the number of seconds a model should be delayed. If a list
is specified, the appropriate amount of delay is determined by using the
model\'s modelIndex property.
However, this doesn\'t work when testing orphaned models, because the
modelIndex will be the same for every recovery attempt. Therefore, every
recovery attempt will also be delayed and potentially orphaned.
\'sleepModelRange\' doesn\'t use the modelIndex property for a model, but rather
sees which order the model is in the database, and uses that to determine
whether or not a model should be delayed.'
| def _computModelDelay(self):
| if ((self._params['delay'] is not None) and (self._params['sleepModelRange'] is not None)):
raise RuntimeError("Only one of 'delay' or 'sleepModelRange' may be specified")
if (self._sleepModelRange is not None):
(range, delay) = self._sleepModelRange.split(':')
delay = float(delay)
range = map(int, range.split(','))
modelIDs = self._jobsDAO.jobGetModelIDs(self._jobID)
modelIDs.sort()
range[1] = min(range[1], len(modelIDs))
if (self._modelID in modelIDs[range[0]:range[1]]):
self._delay = delay
else:
self._delay = self._params['delay']
|
'Protected function that can be overridden by subclasses. Its main purpose
is to allow the the OPFDummyModelRunner to override this with deterministic
values
Returns: All the metrics being computed for this model'
| def _getMetrics(self):
| metric = None
if (self.metrics is not None):
metric = self.metrics((self._currentRecordIndex + 1))
elif (self.metricValue is not None):
metric = self.metricValue
else:
raise RuntimeError('No metrics or metric value specified for dummy model')
return {self._optimizeKeyPattern: metric}
|
'Runs the given OPF task against the given Model instance'
| def run(self):
| self._logger.debug(('Starting Dummy Model: modelID=%s;' % self._modelID))
periodic = self._initPeriodicActivities()
self._optimizedMetricLabel = self._optimizeKeyPattern
self._reportMetricLabels = [self._optimizeKeyPattern]
if (self._iterations >= 0):
iterTracker = iter(xrange(self._iterations))
else:
iterTracker = iter(itertools.count())
doSysExit = False
if (self._sysExitModelRange is not None):
modelAndCounters = self._jobsDAO.modelsGetUpdateCounters(self._jobID)
modelIDs = [x[0] for x in modelAndCounters]
modelIDs.sort()
(beg, end) = self._sysExitModelRange
if (self._modelID in modelIDs[int(beg):int(end)]):
doSysExit = True
if (self._delayModelRange is not None):
modelAndCounters = self._jobsDAO.modelsGetUpdateCounters(self._jobID)
modelIDs = [x[0] for x in modelAndCounters]
modelIDs.sort()
(beg, end) = self._delayModelRange
if (self._modelID in modelIDs[int(beg):int(end)]):
time.sleep(10)
if (self._errModelRange is not None):
modelAndCounters = self._jobsDAO.modelsGetUpdateCounters(self._jobID)
modelIDs = [x[0] for x in modelAndCounters]
modelIDs.sort()
(beg, end) = self._errModelRange
if (self._modelID in modelIDs[int(beg):int(end)]):
raise RuntimeError('Exiting with error due to errModelRange parameter')
if (self._delay is not None):
time.sleep(self._delay)
self._currentRecordIndex = 0
while True:
if self._isKilled:
break
if self._isCanceled:
break
if self._isMature:
if (not self._isBestModel):
self._cmpReason = self._jobsDAO.CMPL_REASON_STOPPED
break
else:
self._cmpReason = self._jobsDAO.CMPL_REASON_EOF
try:
self._currentRecordIndex = next(iterTracker)
except StopIteration:
break
self._writePrediction(ModelResult(None, None, None, None))
periodic.tick()
if self.__shouldSysExit(self._currentRecordIndex):
sys.exit(1)
if (self._busyWaitTime is not None):
time.sleep(self._busyWaitTime)
self.__computeWaitTime()
if doSysExit:
sys.exit(1)
if self._jobFailErr:
raise utils.JobFailException('E10000', "dummyModel's jobFailErr was True.")
if self._doFinalize:
if (not self._makeCheckpoint):
self._model = None
if (self._finalDelay is not None):
time.sleep(self._finalDelay)
self._finalize()
self._logger.info(('Finished: modelID=%r ' % self._modelID))
return (self._cmpReason, None)
|
'Creates the model\'s PredictionLogger object, which is an interface to write
model results to a permanent storage location'
| def _createPredictionLogger(self):
| class DummyLogger:
def writeRecord(self, record):
pass
def writeRecords(self, records, progressCB):
pass
def close(self):
pass
self._predictionLogger = DummyLogger()
|
'Checks to see if the model should exit based on the exitAfter dummy
parameter'
| def __shouldSysExit(self, iteration):
| if ((self._exitAfter is None) or (iteration < self._exitAfter)):
return False
results = self._jobsDAO.modelsGetFieldsForJob(self._jobID, ['params'])
modelIDs = [e[0] for e in results]
modelNums = [json.loads(e[1][0])['structuredParams']['__model_num'] for e in results]
sameModelNumbers = filter((lambda x: (x[1] == self.modelIndex)), zip(modelIDs, modelNums))
firstModelID = min(zip(*sameModelNumbers)[0])
return (firstModelID == self._modelID)
|
'Create our state object.
Parameters:
hsObj: Reference to the HypersesarchV2 instance
cjDAO: ClientJobsDAO instance
logger: logger to use
jobID: our JobID'
| def __init__(self, hsObj):
| self._hsObj = hsObj
self.logger = self._hsObj.logger
self._state = None
self._priorStateJSON = None
self._dirty = False
self.readStateFromDB()
|
'Return true if our local copy of the state has changed since the
last time we read from the DB.'
| def isDirty(self):
| return self._dirty
|
'Return true if the search should be considered over.'
| def isSearchOver(self):
| return self._state['searchOver']
|
'Set our state to that obtained from the engWorkerState field of the
job record.
Parameters:
stateJSON: JSON encoded state from job record'
| def readStateFromDB(self):
| self._priorStateJSON = self._hsObj._cjDAO.jobGetFields(self._hsObj._jobID, ['engWorkerState'])[0]
if (self._priorStateJSON is None):
swarms = dict()
if (self._hsObj._fixedFields is not None):
print self._hsObj._fixedFields
encoderSet = []
for field in self._hsObj._fixedFields:
if (field == '_classifierInput'):
continue
encoderName = self.getEncoderKeyFromName(field)
assert (encoderName in self._hsObj._encoderNames), ("The field '%s' specified in the fixedFields list is not present in this model." % field)
encoderSet.append(encoderName)
encoderSet.sort()
swarms['.'.join(encoderSet)] = {'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': 0}
elif (self._hsObj._searchType == HsSearchType.temporal):
for encoderName in self._hsObj._encoderNames:
swarms[encoderName] = {'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': 0}
elif (self._hsObj._searchType == HsSearchType.classification):
for encoderName in self._hsObj._encoderNames:
if (encoderName == self._hsObj._predictedFieldEncoder):
continue
swarms[encoderName] = {'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': 0}
elif (self._hsObj._searchType == HsSearchType.legacyTemporal):
swarms[self._hsObj._predictedFieldEncoder] = {'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': 0}
else:
raise RuntimeError(('Unsupported search type: %s' % self._hsObj._searchType))
self._state = dict(lastUpdateTime=time.time(), lastGoodSprint=None, searchOver=False, activeSwarms=swarms.keys(), swarms=swarms, sprints=[{'status': 'active', 'bestModelId': None, 'bestErrScore': None}], blackListedEncoders=[])
self._hsObj._cjDAO.jobSetFieldIfEqual(self._hsObj._jobID, 'engWorkerState', json.dumps(self._state), None)
self._priorStateJSON = self._hsObj._cjDAO.jobGetFields(self._hsObj._jobID, ['engWorkerState'])[0]
assert (self._priorStateJSON is not None)
self._state = json.loads(self._priorStateJSON)
self._dirty = False
|
'Update the state in the job record with our local changes (if any).
If we don\'t have the latest state in our priorStateJSON, then re-load
in the latest state and return False. If we were successful writing out
our changes, return True
Parameters:
retval: True if we were successful writing out our changes
False if our priorState is not the latest that was in the DB.
In this case, we will re-load our state from the DB'
| def writeStateToDB(self):
| if (not self._dirty):
return True
self._state['lastUpdateTime'] = time.time()
newStateJSON = json.dumps(self._state)
success = self._hsObj._cjDAO.jobSetFieldIfEqual(self._hsObj._jobID, 'engWorkerState', str(newStateJSON), str(self._priorStateJSON))
if success:
self.logger.debug(('Success changing hsState to: \n%s ' % pprint.pformat(self._state, indent=4)))
self._priorStateJSON = newStateJSON
else:
self.logger.debug(('Failed to change hsState to: \n%s ' % pprint.pformat(self._state, indent=4)))
self._priorStateJSON = self._hsObj._cjDAO.jobGetFields(self._hsObj._jobID, ['engWorkerState'])[0]
self._state = json.loads(self._priorStateJSON)
self.logger.info(('New hsState has been set by some other worker to: \n%s' % pprint.pformat(self._state, indent=4)))
return success
|
'Given an encoder dictionary key, get the encoder name.
Encoders are a sub-dict within model params, and in HSv2, their key
is structured like this for example:
\'modelParams|sensorParams|encoders|home_winloss\'
The encoderName is the last word in the | separated key name'
| def getEncoderNameFromKey(self, key):
| return key.split('|')[(-1)]
|
'Given an encoder name, get the key.
Encoders are a sub-dict within model params, and in HSv2, their key
is structured like this for example:
\'modelParams|sensorParams|encoders|home_winloss\'
The encoderName is the last word in the | separated key name'
| def getEncoderKeyFromName(self, name):
| return ('modelParams|sensorParams|encoders|%s' % name)
|
'Return the field contributions statistics.
Parameters:
retval: Dictionary where the keys are the field names and the values
are how much each field contributed to the best score.'
| def getFieldContributions(self):
| if (self._hsObj._fixedFields is not None):
return (dict(), dict())
predictedEncoderName = self._hsObj._predictedFieldEncoder
fieldScores = []
for (swarmId, info) in self._state['swarms'].iteritems():
encodersUsed = swarmId.split('.')
if (len(encodersUsed) != 1):
continue
field = self.getEncoderNameFromKey(encodersUsed[0])
bestScore = info['bestErrScore']
if (bestScore is None):
(_modelId, bestScore) = self._hsObj._resultsDB.bestModelIdAndErrScore(swarmId)
fieldScores.append((bestScore, field))
if (self._hsObj._searchType == HsSearchType.legacyTemporal):
assert (len(fieldScores) == 1)
(baseErrScore, baseField) = fieldScores[0]
for (swarmId, info) in self._state['swarms'].iteritems():
encodersUsed = swarmId.split('.')
if (len(encodersUsed) != 2):
continue
fields = [self.getEncoderNameFromKey(name) for name in encodersUsed]
fields.remove(baseField)
fieldScores.append((info['bestErrScore'], fields[0]))
else:
fieldScores.sort(reverse=True)
if ((self._hsObj._maxBranching > 0) and (len(fieldScores) > self._hsObj._maxBranching)):
baseErrScore = fieldScores[((- self._hsObj._maxBranching) - 1)][0]
else:
baseErrScore = fieldScores[0][0]
pctFieldContributionsDict = dict()
absFieldContributionsDict = dict()
if (baseErrScore is not None):
if (abs(baseErrScore) < 1e-05):
baseErrScore = 1e-05
for (errScore, field) in fieldScores:
if (errScore is not None):
pctBetter = (((baseErrScore - errScore) * 100.0) / baseErrScore)
else:
pctBetter = 0.0
errScore = baseErrScore
pctFieldContributionsDict[field] = pctBetter
absFieldContributionsDict[field] = (baseErrScore - errScore)
self.logger.debug(('FieldContributions: %s' % pctFieldContributionsDict))
return (pctFieldContributionsDict, absFieldContributionsDict)
|
'Return the list of all swarms in the given sprint.
Parameters:
retval: list of active swarm Ids in the given sprint'
| def getAllSwarms(self, sprintIdx):
| swarmIds = []
for (swarmId, info) in self._state['swarms'].iteritems():
if (info['sprintIdx'] == sprintIdx):
swarmIds.append(swarmId)
return swarmIds
|
'Return the list of active swarms in the given sprint. These are swarms
which still need new particles created in them.
Parameters:
sprintIdx: which sprint to query. If None, get active swarms from all
sprints
retval: list of active swarm Ids in the given sprint'
| def getActiveSwarms(self, sprintIdx=None):
| swarmIds = []
for (swarmId, info) in self._state['swarms'].iteritems():
if ((sprintIdx is not None) and (info['sprintIdx'] != sprintIdx)):
continue
if (info['status'] == 'active'):
swarmIds.append(swarmId)
return swarmIds
|
'Return the list of swarms in the given sprint that were not killed.
This is called when we are trying to figure out which encoders to carry
forward to the next sprint. We don\'t want to carry forward encoder
combintations which were obviously bad (in killed swarms).
Parameters:
retval: list of active swarm Ids in the given sprint'
| def getNonKilledSwarms(self, sprintIdx):
| swarmIds = []
for (swarmId, info) in self._state['swarms'].iteritems():
if ((info['sprintIdx'] == sprintIdx) and (info['status'] != 'killed')):
swarmIds.append(swarmId)
return swarmIds
|
'Return the list of all completed swarms.
Parameters:
retval: list of active swarm Ids'
| def getCompletedSwarms(self):
| swarmIds = []
for (swarmId, info) in self._state['swarms'].iteritems():
if (info['status'] == 'completed'):
swarmIds.append(swarmId)
return swarmIds
|
'Return the list of all completing swarms.
Parameters:
retval: list of active swarm Ids'
| def getCompletingSwarms(self):
| swarmIds = []
for (swarmId, info) in self._state['swarms'].iteritems():
if (info['status'] == 'completing'):
swarmIds.append(swarmId)
return swarmIds
|
'Return the best model ID and it\'s errScore from the given swarm.
If the swarm has not completed yet, the bestModelID will be None.
Parameters:
retval: (modelId, errScore)'
| def bestModelInCompletedSwarm(self, swarmId):
| swarmInfo = self._state['swarms'][swarmId]
return (swarmInfo['bestModelId'], swarmInfo['bestErrScore'])
|
'Return the best model ID and it\'s errScore from the given sprint.
If the sprint has not completed yet, the bestModelID will be None.
Parameters:
retval: (modelId, errScore)'
| def bestModelInCompletedSprint(self, sprintIdx):
| sprintInfo = self._state['sprints'][sprintIdx]
return (sprintInfo['bestModelId'], sprintInfo['bestErrScore'])
|
'Return the best model ID and it\'s errScore from the given sprint,
which may still be in progress. This returns the best score from all models
in the sprint which have matured so far.
Parameters:
retval: (modelId, errScore)'
| def bestModelInSprint(self, sprintIdx):
| swarms = self.getAllSwarms(sprintIdx)
bestModelId = None
bestErrScore = numpy.inf
for swarmId in swarms:
(modelId, errScore) = self._hsObj._resultsDB.bestModelIdAndErrScore(swarmId)
if (errScore < bestErrScore):
bestModelId = modelId
bestErrScore = errScore
return (bestModelId, bestErrScore)
|
'Change the given swarm\'s state to \'newState\'. If \'newState\' is
\'completed\', then bestModelId and bestErrScore must be provided.
Parameters:
swarmId: swarm Id
newStatus: new status, either \'active\', \'completing\', \'completed\', or
\'killed\''
| def setSwarmState(self, swarmId, newStatus):
| assert (newStatus in ['active', 'completing', 'completed', 'killed'])
swarmInfo = self._state['swarms'][swarmId]
if (swarmInfo['status'] == newStatus):
return
if ((swarmInfo['status'] == 'completed') and (newStatus == 'completing')):
return
self._dirty = True
swarmInfo['status'] = newStatus
if (newStatus == 'completed'):
(modelId, errScore) = self._hsObj._resultsDB.bestModelIdAndErrScore(swarmId)
swarmInfo['bestModelId'] = modelId
swarmInfo['bestErrScore'] = errScore
if ((newStatus != 'active') and (swarmId in self._state['activeSwarms'])):
self._state['activeSwarms'].remove(swarmId)
if (newStatus == 'killed'):
self._hsObj.killSwarmParticles(swarmId)
sprintIdx = swarmInfo['sprintIdx']
self.isSprintActive(sprintIdx)
sprintInfo = self._state['sprints'][sprintIdx]
statusCounts = dict(active=0, completing=0, completed=0, killed=0)
bestModelIds = []
bestErrScores = []
for info in self._state['swarms'].itervalues():
if (info['sprintIdx'] != sprintIdx):
continue
statusCounts[info['status']] += 1
if (info['status'] == 'completed'):
bestModelIds.append(info['bestModelId'])
bestErrScores.append(info['bestErrScore'])
if (statusCounts['active'] > 0):
sprintStatus = 'active'
elif (statusCounts['completing'] > 0):
sprintStatus = 'completing'
else:
sprintStatus = 'completed'
sprintInfo['status'] = sprintStatus
if (sprintStatus == 'completed'):
if (len(bestErrScores) > 0):
whichIdx = numpy.array(bestErrScores).argmin()
sprintInfo['bestModelId'] = bestModelIds[whichIdx]
sprintInfo['bestErrScore'] = bestErrScores[whichIdx]
else:
sprintInfo['bestModelId'] = 0
sprintInfo['bestErrScore'] = numpy.inf
bestPrior = numpy.inf
for idx in range(sprintIdx):
if (self._state['sprints'][idx]['status'] == 'completed'):
(_, errScore) = self.bestModelInCompletedSprint(idx)
if (errScore is None):
errScore = numpy.inf
else:
errScore = numpy.inf
if (errScore < bestPrior):
bestPrior = errScore
if (sprintInfo['bestErrScore'] >= bestPrior):
self._state['lastGoodSprint'] = (sprintIdx - 1)
if ((self._state['lastGoodSprint'] is not None) and (not self.anyGoodSprintsActive())):
self._state['searchOver'] = True
|
'Return True if there are any more good sprints still being explored.
A \'good\' sprint is one that is earlier than where we detected an increase
in error from sprint to subsequent sprint.'
| def anyGoodSprintsActive(self):
| if (self._state['lastGoodSprint'] is not None):
goodSprints = self._state['sprints'][0:(self._state['lastGoodSprint'] + 1)]
else:
goodSprints = self._state['sprints']
for sprint in goodSprints:
if (sprint['status'] == 'active'):
anyActiveSprints = True
break
else:
anyActiveSprints = False
return anyActiveSprints
|
'Return True if the given sprint has completed.'
| def isSprintCompleted(self, sprintIdx):
| numExistingSprints = len(self._state['sprints'])
if (sprintIdx >= numExistingSprints):
return False
return (self._state['sprints'][sprintIdx]['status'] == 'completed')
|
'See if we can kill off some speculative swarms. If an earlier sprint
has finally completed, we can now tell which fields should *really* be present
in the sprints we\'ve already started due to speculation, and kill off the
swarms that should not have been included.'
| def killUselessSwarms(self):
| numExistingSprints = len(self._state['sprints'])
if (self._hsObj._searchType == HsSearchType.legacyTemporal):
if (numExistingSprints <= 2):
return
elif (numExistingSprints <= 1):
return
completedSwarms = self.getCompletedSwarms()
completedSwarms = [(swarm, self._state['swarms'][swarm], self._state['swarms'][swarm]['bestErrScore']) for swarm in completedSwarms]
completedMatrix = [[] for i in range(numExistingSprints)]
for swarm in completedSwarms:
completedMatrix[swarm[1]['sprintIdx']].append(swarm)
for sprint in completedMatrix:
sprint.sort(key=itemgetter(2))
activeSwarms = self.getActiveSwarms()
activeSwarms.extend(self.getCompletingSwarms())
activeSwarms = [(swarm, self._state['swarms'][swarm], self._state['swarms'][swarm]['bestErrScore']) for swarm in activeSwarms]
activeMatrix = [[] for i in range(numExistingSprints)]
for swarm in activeSwarms:
activeMatrix[swarm[1]['sprintIdx']].append(swarm)
for sprint in activeMatrix:
sprint.sort(key=itemgetter(2))
toKill = []
for i in range(1, numExistingSprints):
for swarm in activeMatrix[i]:
curSwarmEncoders = swarm[0].split('.')
if (len(activeMatrix[(i - 1)]) == 0):
if ((i == 2) and (self._hsObj._tryAll3FieldCombinations or self._hsObj._tryAll3FieldCombinationsWTimestamps)):
pass
else:
bestInPrevious = completedMatrix[(i - 1)][0]
bestEncoders = bestInPrevious[0].split('.')
for encoder in bestEncoders:
if (not (encoder in curSwarmEncoders)):
toKill.append(swarm)
if (len(toKill) > 0):
print ('ParseMe: Killing encoders:' + str(toKill))
for swarm in toKill:
self.setSwarmState(swarm[0], 'killed')
return
|
'If the given sprint exists and is active, return active=True.
If the sprint does not exist yet, this call will create it (and return
active=True). If it already exists, but is completing or complete, return
active=False.
If sprintIdx is past the end of the possible sprints, return
active=False, noMoreSprints=True
IMPORTANT: When speculative particles are enabled, this call has some
special processing to handle speculative sprints:
* When creating a new speculative sprint (creating sprint N before
sprint N-1 has completed), it initially only puts in only ONE swarm into
the sprint.
* Every time it is asked if sprint N is active, it also checks to see if
it is time to add another swarm to the sprint, and adds a new swarm if
appropriate before returning active=True
* We decide it is time to add a new swarm to a speculative sprint when ALL
of the currently active swarms in the sprint have all the workers they
need (number of running (not mature) particles is _minParticlesPerSwarm).
This means that we have capacity to run additional particles in a new
swarm.
It is expected that the sprints will be checked IN ORDER from 0 on up. (It
is an error not to) The caller should always try to allocate from the first
active sprint it finds. If it can\'t, then it can call this again to
find/create the next active sprint.
Parameters:
retval: (active, noMoreSprints)
active: True if the given sprint is active
noMoreSprints: True if there are no more sprints possible'
| def isSprintActive(self, sprintIdx):
| while True:
numExistingSprints = len(self._state['sprints'])
if (sprintIdx <= (numExistingSprints - 1)):
if (not self._hsObj._speculativeParticles):
active = (self._state['sprints'][sprintIdx]['status'] == 'active')
return (active, False)
else:
active = (self._state['sprints'][sprintIdx]['status'] == 'active')
if (not active):
return (active, False)
activeSwarmIds = self.getActiveSwarms(sprintIdx)
swarmSizes = [self._hsObj._resultsDB.getParticleInfos(swarmId, matured=False)[0] for swarmId in activeSwarmIds]
notFullSwarms = [len(swarm) for swarm in swarmSizes if (len(swarm) < self._hsObj._minParticlesPerSwarm)]
if (len(notFullSwarms) > 0):
return (True, False)
if (self._state['lastGoodSprint'] is not None):
return (False, True)
if (self._hsObj._fixedFields is not None):
return (False, True)
if ((sprintIdx > 0) and (self._state['sprints'][(sprintIdx - 1)]['status'] == 'completed')):
(bestModelId, _) = self.bestModelInCompletedSprint((sprintIdx - 1))
(particleState, _, _, _, _) = self._hsObj._resultsDB.getParticleInfo(bestModelId)
bestSwarmId = particleState['swarmId']
baseEncoderSets = [bestSwarmId.split('.')]
else:
bestSwarmId = None
particleState = None
baseEncoderSets = []
for swarmId in self.getNonKilledSwarms((sprintIdx - 1)):
baseEncoderSets.append(swarmId.split('.'))
encoderAddSet = []
limitFields = False
if ((self._hsObj._maxBranching > 0) or (self._hsObj._minFieldContribution >= 0)):
if ((self._hsObj._searchType == HsSearchType.temporal) or (self._hsObj._searchType == HsSearchType.classification)):
if (sprintIdx >= 1):
limitFields = True
baseSprintIdx = 0
elif (self._hsObj._searchType == HsSearchType.legacyTemporal):
if (sprintIdx >= 2):
limitFields = True
baseSprintIdx = 1
else:
raise RuntimeError(('Unimplemented search type %s' % self._hsObj._searchType))
if limitFields:
(pctFieldContributions, absFieldContributions) = self.getFieldContributions()
toRemove = []
self.logger.debug(('FieldContributions min: %s' % self._hsObj._minFieldContribution))
for fieldname in pctFieldContributions:
if (pctFieldContributions[fieldname] < self._hsObj._minFieldContribution):
self.logger.debug(('FieldContributions removing: %s' % fieldname))
toRemove.append(self.getEncoderKeyFromName(fieldname))
else:
self.logger.debug(('FieldContributions keeping: %s' % fieldname))
swarms = self._state['swarms']
sprintSwarms = [(swarm, swarms[swarm]['bestErrScore']) for swarm in swarms if (swarms[swarm]['sprintIdx'] == baseSprintIdx)]
sprintSwarms = sorted(sprintSwarms, key=itemgetter(1))
if (self._hsObj._maxBranching > 0):
sprintSwarms = sprintSwarms[0:self._hsObj._maxBranching]
for swarm in sprintSwarms:
swarmEncoders = swarm[0].split('.')
for encoder in swarmEncoders:
if (not (encoder in encoderAddSet)):
encoderAddSet.append(encoder)
encoderAddSet = [encoder for encoder in encoderAddSet if (not (str(encoder) in toRemove))]
else:
encoderAddSet = self._hsObj._encoderNames
newSwarmIds = set()
if (((self._hsObj._searchType == HsSearchType.temporal) or (self._hsObj._searchType == HsSearchType.legacyTemporal)) and (sprintIdx == 2) and (self._hsObj._tryAll3FieldCombinations or self._hsObj._tryAll3FieldCombinationsWTimestamps)):
if self._hsObj._tryAll3FieldCombinations:
newEncoders = set(self._hsObj._encoderNames)
if (self._hsObj._predictedFieldEncoder in newEncoders):
newEncoders.remove(self._hsObj._predictedFieldEncoder)
else:
newEncoders = set(encoderAddSet)
if (self._hsObj._predictedFieldEncoder in newEncoders):
newEncoders.remove(self._hsObj._predictedFieldEncoder)
for encoder in self._hsObj._encoderNames:
if (encoder.endswith('_timeOfDay') or encoder.endswith('_weekend') or encoder.endswith('_dayOfWeek')):
newEncoders.add(encoder)
allCombos = list(itertools.combinations(newEncoders, 2))
for combo in allCombos:
newSet = list(combo)
newSet.append(self._hsObj._predictedFieldEncoder)
newSet.sort()
newSwarmId = '.'.join(newSet)
if (newSwarmId not in self._state['swarms']):
newSwarmIds.add(newSwarmId)
if (len(self.getActiveSwarms((sprintIdx - 1))) > 0):
break
else:
for baseEncoderSet in baseEncoderSets:
for encoder in encoderAddSet:
if ((encoder not in self._state['blackListedEncoders']) and (encoder not in baseEncoderSet)):
newSet = list(baseEncoderSet)
newSet.append(encoder)
newSet.sort()
newSwarmId = '.'.join(newSet)
if (newSwarmId not in self._state['swarms']):
newSwarmIds.add(newSwarmId)
if (len(self.getActiveSwarms((sprintIdx - 1))) > 0):
break
newSwarmIds = sorted(newSwarmIds)
if (len(newSwarmIds) == 0):
if (len(self.getAllSwarms(sprintIdx)) > 0):
return (True, False)
else:
return (False, True)
self._dirty = True
if (len(self._state['sprints']) == sprintIdx):
self._state['sprints'].append({'status': 'active', 'bestModelId': None, 'bestErrScore': None})
for swarmId in newSwarmIds:
self._state['swarms'][swarmId] = {'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': sprintIdx}
self._state['activeSwarms'] = self.getActiveSwarms()
success = self.writeStateToDB()
if success:
return (True, False)
|
'Log \'msg % args\' with severity \'DEBUG\'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.debug("Houston, we have a %s", "thorny problem", exc_info=1)'
| def debug(self, msg, *args, **kwargs):
| self._baseLogger.debug(self, self.getExtendedMsg(msg), *args, **kwargs)
|
'Log \'msg % args\' with severity \'INFO\'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.info("Houston, we have a %s", "interesting problem", exc_info=1)'
| def info(self, msg, *args, **kwargs):
| self._baseLogger.info(self, self.getExtendedMsg(msg), *args, **kwargs)
|
'Log \'msg % args\' with severity \'WARNING\'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.warning("Houston, we have a %s", "bit of a problem", exc_info=1)'
| def warning(self, msg, *args, **kwargs):
| self._baseLogger.warning(self, self.getExtendedMsg(msg), *args, **kwargs)
|
'Log \'msg % args\' with severity \'ERROR\'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.error("Houston, we have a %s", "major problem", exc_info=1)'
| def error(self, msg, *args, **kwargs):
| self._baseLogger.error(self, self.getExtendedMsg(msg), *args, **kwargs)
|
'Log \'msg % args\' with severity \'CRITICAL\'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.critical("Houston, we have a %s", "major disaster", exc_info=1)'
| def critical(self, msg, *args, **kwargs):
| self._baseLogger.critical(self, self.getExtendedMsg(msg), *args, **kwargs)
|
'Log \'msg % args\' with the integer severity \'level\'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.log(level, "We have a %s", "mysterious problem", exc_info=1)'
| def log(self, level, msg, *args, **kwargs):
| self._baseLogger.log(self, level, self.getExtendedMsg(msg), *args, **kwargs)
|
'Record the best score for a swarm\'s generation index (x)
Returns list of swarmIds to terminate.'
| def recordDataPoint(self, swarmId, generation, errScore):
| terminatedSwarms = []
if (swarmId in self.swarmScores):
entry = self.swarmScores[swarmId]
assert (len(entry) == generation)
entry.append(errScore)
entry = self.swarmBests[swarmId]
entry.append(min(errScore, entry[(-1)]))
assert (len(self.swarmBests[swarmId]) == len(self.swarmScores[swarmId]))
else:
assert (generation == 0)
self.swarmScores[swarmId] = [errScore]
self.swarmBests[swarmId] = [errScore]
if ((generation + 1) < self.MATURITY_WINDOW):
return terminatedSwarms
if ((self.MAX_GENERATIONS is not None) and (generation > self.MAX_GENERATIONS)):
self._logger.info(('Swarm %s has matured (more than %d generations). Stopping' % (swarmId, self.MAX_GENERATIONS)))
terminatedSwarms.append(swarmId)
if self._isTerminationEnabled:
terminatedSwarms.extend(self._getTerminatedSwarms(generation))
cumulativeBestScores = self.swarmBests[swarmId]
if (cumulativeBestScores[(-1)] == cumulativeBestScores[(- self.MATURITY_WINDOW)]):
self._logger.info(('Swarm %s has matured (no change in %d generations).Stopping...' % (swarmId, self.MATURITY_WINDOW)))
terminatedSwarms.append(swarmId)
self.terminatedSwarms = self.terminatedSwarms.union(terminatedSwarms)
return terminatedSwarms
|
'Returns the periodic checks to see if the model should
continue running.
Parameters:
terminationFunc: The function that will be called in the model main loop
as a wrapper around this function. Must have a parameter
called \'index\'
Returns: A list of PeriodicActivityRequest objects.'
| def getTerminationCallbacks(self, terminationFunc):
| activities = ([None] * len(ModelTerminator._MILESTONES))
for (index, (iteration, _)) in enumerate(ModelTerminator._MILESTONES):
cb = functools.partial(terminationFunc, index=index)
activities[index] = PeriodicActivityRequest(repeating=False, period=iteration, cb=cb)
|
'Retrieve the requested property as a string. If property does not exist,
then KeyError will be raised.
Parameters:
prop: name of the property
retval: property value as a string'
| @classmethod
def getString(cls, prop):
| if (cls._properties is None):
cls._readStdConfigFiles()
envValue = os.environ.get(('%s%s' % (cls.envPropPrefix, prop.replace('.', '_'))), None)
if (envValue is not None):
return envValue
return cls._properties[prop]
|
'Retrieve the requested property and return it as a bool. If property
does not exist, then KeyError will be raised. If the property value is
neither 0 nor 1, then ValueError will be raised
Parameters:
prop: name of the property
retval: property value as bool'
| @classmethod
def getBool(cls, prop):
| value = cls.getInt(prop)
if (value not in (0, 1)):
raise ValueError(('Expected 0 or 1, but got %r in config property %s' % (value, prop)))
return bool(value)
|
'Retrieve the requested property and return it as an int. If property
does not exist, then KeyError will be raised.
Parameters:
prop: name of the property
retval: property value as int'
| @classmethod
def getInt(cls, prop):
| return int(cls.getString(prop))
|
'Retrieve the requested property and return it as a float. If property
does not exist, then KeyError will be raised.
Parameters:
prop: name of the property
retval: property value as float'
| @classmethod
def getFloat(cls, prop):
| return float(cls.getString(prop))
|
'Get the value of the given configuration property as string. This
returns a string which is the property value, or the value of "default" arg
if the property is not found. Use Configuration.getString() instead.
NOTE: it\'s atypical for our configuration properties to be missing - a
missing configuration property is usually a very serious error. Because
of this, it\'s preferable to use one of the getString, getInt, getFloat,
etc. variants instead of get(). Those variants will raise KeyError when
an expected property is missing.
Parameters:
prop: name of the property
default: default value to return if property does not exist
retval: property value (as a string), or default if the property does
not exist.'
| @classmethod
def get(cls, prop, default=None):
| try:
return cls.getString(prop)
except KeyError:
return default
|
'Set the value of the given configuration property.
Parameters:
prop: name of the property
value: value to set'
| @classmethod
def set(cls, prop, value):
| if (cls._properties is None):
cls._readStdConfigFiles()
cls._properties[prop] = str(value)
|
'Return a dict containing all of the configuration properties
Parameters:
retval: dict containing all configuration properties.'
| @classmethod
def dict(cls):
| if (cls._properties is None):
cls._readStdConfigFiles()
result = dict(cls._properties)
keys = os.environ.keys()
replaceKeys = filter((lambda x: x.startswith(cls.envPropPrefix)), keys)
for envKey in replaceKeys:
key = envKey[len(cls.envPropPrefix):]
key = key.replace('_', '.')
result[key] = os.environ[envKey]
return result
|
'Parse the given XML file and store all properties it describes.
Parameters:
filename: name of XML file to parse (no path)
path: path of the XML file. If None, then use the standard
configuration search path.'
| @classmethod
def readConfigFile(cls, filename, path=None):
| properties = cls._readConfigFile(filename, path)
if (cls._properties is None):
cls._properties = dict()
for name in properties:
if ('value' in properties[name]):
cls._properties[name] = properties[name]['value']
|
'Parse the given XML file and return a dict describing the file.
Parameters:
filename: name of XML file to parse (no path)
path: path of the XML file. If None, then use the standard
configuration search path.
retval: returns a dict with each property as a key and a dict of all
the property\'s attributes as value'
| @classmethod
def _readConfigFile(cls, filename, path=None):
| outputProperties = dict()
if (path is None):
filePath = cls.findConfigFile(filename)
else:
filePath = os.path.join(path, filename)
try:
if (filePath is not None):
try:
_getLoggerBase().debug('Loading config file: %s', filePath)
with open(filePath, 'r') as inp:
contents = inp.read()
except Exception:
raise RuntimeError(('Expected configuration file at %s' % filePath))
else:
try:
contents = resource_string('nupic.support', filename)
except Exception as resourceException:
if (filename in [USER_CONFIG, CUSTOM_CONFIG]):
contents = '<configuration/>'
else:
raise resourceException
elements = ElementTree.XML(contents)
if (elements.tag != 'configuration'):
raise RuntimeError(("Expected top-level element to be 'configuration' but got '%s'" % elements.tag))
propertyElements = elements.findall('./property')
for propertyItem in propertyElements:
propInfo = dict()
propertyAttributes = list(propertyItem)
for propertyAttribute in propertyAttributes:
propInfo[propertyAttribute.tag] = propertyAttribute.text
name = propInfo.get('name', None)
if (('value' in propInfo) and (propInfo['value'] is None)):
value = ''
else:
value = propInfo.get('value', None)
if (value is None):
if ('novalue' in propInfo):
continue
else:
raise RuntimeError(("Missing 'value' element within the property element: => %s " % str(propInfo)))
restOfValue = value
value = ''
while True:
pos = restOfValue.find('${env.')
if (pos == (-1)):
value += restOfValue
break
value += restOfValue[0:pos]
varTailPos = restOfValue.find('}', pos)
if (varTailPos == (-1)):
raise RuntimeError(("Trailing environment variable tag delimiter '}' not found in %r" % restOfValue))
varname = restOfValue[(pos + 6):varTailPos]
if (varname not in os.environ):
raise RuntimeError(('Attempting to use the value of the environment variable %r, which is not defined' % varname))
envVarValue = os.environ[varname]
value += envVarValue
restOfValue = restOfValue[(varTailPos + 1):]
if (name is None):
raise RuntimeError(("Missing 'name' element within following property element:\n => %s " % str(propInfo)))
propInfo['value'] = value
outputProperties[name] = propInfo
return outputProperties
except Exception:
_getLoggerBase().exception('Error while parsing configuration file: %s.', filePath)
raise
|
'Clear out the entire configuration.'
| @classmethod
def clear(cls):
| cls._properties = None
cls._configPaths = None
|
'Search the configuration path (specified via the NTA_CONF_PATH
environment variable) for the given filename. If found, return the complete
path to the file.
Parameters:
filename: name of file to locate'
| @classmethod
def findConfigFile(cls, filename):
| paths = cls.getConfigPaths()
for p in paths:
testPath = os.path.join(p, filename)
if os.path.isfile(testPath):
return os.path.join(p, filename)
|
'Return the list of paths to search for configuration files.
Parameters:
retval: list of paths.'
| @classmethod
def getConfigPaths(cls):
| configPaths = []
if (cls._configPaths is not None):
return cls._configPaths
else:
if ('NTA_CONF_PATH' in os.environ):
configVar = os.environ['NTA_CONF_PATH']
configPaths = configVar.split(os.pathsep)
return configPaths
|
'Modify the paths we use to search for configuration files.
Parameters:
paths: list of paths to search for config files.'
| @classmethod
def setConfigPaths(cls, paths):
| cls._configPaths = list(paths)
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.