desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'The expected length of the input vector.'
| @property
def input_size(self):
| return (self.block_size * self.num_blocks)
|
'Number of blocks with zeros from the left in block row `r`.'
| def _left_zero_blocks(self, r):
| if (not self._include_off_diagonal):
return r
elif (not self._upper):
return 0
elif self._include_diagonal:
return r
else:
return (r + 1)
|
'Number of blocks with zeros from the right in block row `r`.'
| def _right_zero_blocks(self, r):
| if (not self._include_off_diagonal):
return ((self._block_rows - r) - 1)
elif self._upper:
return 0
elif self._include_diagonal:
return ((self._block_rows - r) - 1)
else:
return (self._block_rows - r)
|
'Number of content blocks in block row `r`.'
| def _content_blocks(self, r):
| return ((self._block_rows - self._left_zero_blocks(r)) - self._right_zero_blocks(r))
|
'Constructs a new `BlockDiagonalMatrix` module.
Args:
block_shape: tuple, 2-dimensional tuple indicating the shape of each
individual block.
block_rows: int, the number of blocks in each row (and column) of the
output matrix.
name: string, name of the module.'
| def __init__(self, block_shape, block_rows, name='block_diagonal_matrix'):
| super(BlockDiagonalMatrix, self).__init__(block_shape=block_shape, block_rows=block_rows, include_diagonal=True, include_off_diagonal=False, name=name)
|
'Constructs a Conv2D module.
See the following documentation for an explanation of VALID versus SAME
padding modes:
https://www.tensorflow.org/api_guides/python/nn#Convolution
Args:
output_channels: Number of output channels. `output_channels` can be
either a number or a callable. In the latter case, since the function
invocation is deferred to graph construction time, the user must only
ensure that output_channels can be called, returning an integer,
when `build` is called.
kernel_shape: Sequence of kernel sizes (of size 2), or integer that is
used to define kernel size in all dimensions.
stride: Sequence of kernel strides (of size 2), or integer that is used to
define stride in all dimensions.
rate: Sequence of dilation rates (of size 2), or integer that is used to
define dilation rate in all dimensions. 1 corresponds to standard 2D
convolution, `rate > 1` corresponds to dilated convolution. Cannot be
> 1 if any of `stride` is also > 1.
padding: Padding algorithm, either `snt.SAME` or `snt.VALID`.
use_bias: Whether to include bias parameters. Default `True`.
initializers: Optional dict containing ops to initialize the filters (with
key \'w\') or biases (with key \'b\'). The default initializer for the
weights is a truncated normal initializer, which is commonly used
when the inputs are zero centered (see
https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for
the bias is a zero initializer.
partitioners: Optional dict containing partitioners to partition
weights (with key \'w\') or biases (with key \'b\'). As a default, no
partitioners are used.
regularizers: Optional dict containing regularizers for the filters
(with key \'w\') and the biases (with key \'b\'). As a default, no
regularizers are used. A regularizer should be a function that takes
a single `Tensor` as an input and returns a scalar `Tensor` output, e.g.
the L1 and L2 regularizers in `tf.contrib.layers`.
mask: Optional 2D or 4D array, tuple or numpy array containing values to
multiply the weights by component-wise.
data_format: A string. Specifies whether the channel dimension
of the input and output is the last dimension (default, NHWC), or the
second dimension ("NCHW").
custom_getter: Callable or dictionary of callables to use as
custom getters inside the module. If a dictionary, the keys
correspond to regexes to match variable names. See the `tf.get_variable`
documentation for information about the custom_getter API.
name: Name of the module.
Raises:
base.IncompatibleShapeError: If the given kernel shape is not an integer;
or if the given kernel shape is not a sequence of two integers.
base.IncompatibleShapeError: If the given stride is not an integer; or if
the given stride is not a sequence of two integers.
base.IncompatibleShapeError: If the given rate is not an integer; or if
the given rate is not a sequence of two integers.
base.IncompatibleShapeError: If a mask is given and its rank is neither 2
nor 4.
base.NotSupportedError: If rate in any dimension and the stride in any
dimension are simultaneously > 1.
ValueError: If the given padding is not `snt.VALID` or `snt.SAME`.
ValueError: If the given data_format is not a supported format (see
SUPPORTED_DATA_FORMATS).
KeyError: If `initializers`, `partitioners` or `regularizers` contain any
keys other than \'w\' or \'b\'.
TypeError: If any of the given initializers, partitioners or regularizers
are not callable.
TypeError: If mask is given and is not an array, tuple or a numpy array.'
| def __init__(self, output_channels, kernel_shape, stride=1, rate=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, mask=None, data_format=DATA_FORMAT_NHWC, custom_getter=None, name='conv_2d'):
| super(Conv2D, self).__init__(custom_getter=custom_getter, name=name)
self._output_channels = output_channels
self._input_shape = None
self._kernel_shape = _fill_and_verify_parameter_shape(kernel_shape, 2, 'kernel')
if (data_format not in SUPPORTED_DATA_FORMATS):
raise ValueError('Invalid data_format {:s}. Allowed formats {:s}'.format(data_format, SUPPORTED_DATA_FORMATS))
self._data_format = data_format
if (isinstance(stride, collections.Iterable) and (len(stride) == 4)):
self._stride = tuple(stride)[1:(-1)]
else:
self._stride = _fill_and_verify_parameter_shape(stride, 2, 'stride')
self._rate = _fill_and_verify_parameter_shape(rate, 2, 'rate')
if (any(((x > 1) for x in self._stride)) and any(((x > 1) for x in self._rate))):
raise base.NotSupportedError('Cannot have stride > 1 with rate > 1')
self._padding = _verify_padding(padding)
self._use_bias = use_bias
self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias)
self._initializers = util.check_initializers(initializers, self.possible_keys)
self._partitioners = util.check_partitioners(partitioners, self.possible_keys)
self._regularizers = util.check_regularizers(regularizers, self.possible_keys)
if (mask is not None):
if (not isinstance(mask, (list, tuple, np.ndarray))):
raise TypeError('Invalid type for mask: {}'.format(type(mask)))
self._mask = np.asanyarray(mask)
mask_rank = mask.ndim
if ((mask_rank != 2) and (mask_rank != 4)):
raise base.IncompatibleShapeError('Invalid mask rank: {}'.format(mask_rank))
else:
self._mask = None
|
'Connects the Conv2D module into the graph, with input Tensor `inputs`.
If this is not the first time the module has been connected to the graph,
the input Tensor provided here must have the same final 3 dimensions, in
order for the existing variables to be the correct size for the
multiplication. The batch size may differ for each connection.
Args:
inputs: A 4D Tensor of shape [batch_size, input_height, input_width,
input_channels] or [batch_size, input_channels, input_height,
input_width](NCHW).
Returns:
A 4D Tensor of shape [batch_size, output_height, output_width,
output_channels] or [batch_size, out_channels, out_height, out_width].
Raises:
ValueError: If connecting the module into the graph any time after the
first time and the inferred size of the input does not match previous
invocations.
base.IncompatibleShapeError: If the input tensor has the wrong number
of dimensions.
base.IncompatibleShapeError: If a mask is present and its shape is
incompatible with the shape of the weights.
base.UnderspecifiedError: If the input tensor has an unknown
`input_channels`.
TypeError: If input Tensor dtype is not `tf.float32`.'
| def _build(self, inputs):
| self._input_shape = tuple(inputs.get_shape().as_list())
if (len(self._input_shape) != 4):
raise base.IncompatibleShapeError('Input Tensor must have shape (batch_size, input_height, input_width, input_channels) or (batch_size, input_channels, input_height, input_width) but was {}.'.format(self._input_shape))
if (self._data_format == DATA_FORMAT_NCHW):
input_channels = self._input_shape[1]
else:
input_channels = self._input_shape[3]
if (input_channels is None):
raise base.UnderspecifiedError('Number of input channels must be known at module build time')
self._input_channels = input_channels
if (inputs.dtype != tf.float32):
raise TypeError('Input must have dtype tf.float32, but dtype was {}'.format(inputs.dtype))
weight_shape = (self._kernel_shape[0], self._kernel_shape[1], self._input_channels, self.output_channels)
if (self._data_format == DATA_FORMAT_NHWC):
bias_shape = (self.output_channels,)
else:
bias_shape = (1, self.output_channels, 1, 1)
if ('w' not in self._initializers):
self._initializers['w'] = create_weight_initializer(weight_shape[:3])
if (('b' not in self._initializers) and self._use_bias):
self._initializers['b'] = create_bias_initializer(bias_shape)
self._w = tf.get_variable('w', shape=weight_shape, initializer=self._initializers['w'], partitioner=self._partitioners.get('w', None), regularizer=self._regularizers.get('w', None))
w = self._w
if (self._mask is not None):
mask_rank = self._mask.ndim
mask_shape = self._mask.shape
if (mask_rank == 2):
if (mask_shape != self._kernel_shape):
raise base.IncompatibleShapeError('Invalid mask shape: {}'.format(mask_shape))
mask = np.reshape(self._mask, (self._kernel_shape + (1, 1)))
elif (mask_rank == 4):
if (mask_shape != tuple(weight_shape)):
raise base.IncompatibleShapeError('Invalid mask shape: {}'.format(mask_shape))
mask = self._mask
w *= mask
outputs = tf.nn.convolution(inputs, w, strides=self._stride, padding=self._padding, dilation_rate=self._rate, data_format=self._data_format)
if self._use_bias:
self._b = tf.get_variable('b', shape=bias_shape, initializer=self._initializers['b'], partitioner=self._partitioners.get('b', None), regularizer=self._regularizers.get('b', None))
outputs += self._b
return outputs
|
'Returns the number of output channels.'
| @property
def output_channels(self):
| if callable(self._output_channels):
self._output_channels = self._output_channels()
return self._output_channels
|
'Returns the kernel shape.'
| @property
def kernel_shape(self):
| return self._kernel_shape
|
'Returns the stride.'
| @property
def stride(self):
| return (((1,) + self._stride) + (1,))
|
'Returns the dilation rate.'
| @property
def rate(self):
| return self._rate
|
'Returns the padding algorithm.'
| @property
def padding(self):
| return self._padding
|
'Returns the Variable containing the weight matrix.'
| @property
def w(self):
| self._ensure_is_connected()
return self._w
|
'Returns the Variable containing the bias.
Returns:
Variable object containing the bias, from the most recent __call__.
Raises:
base.NotConnectedError: If the module has not been connected to the graph
yet, meaning the variables do not exist.
AttributeError: If the module does not use bias.'
| @property
def b(self):
| self._ensure_is_connected()
if (not self._use_bias):
raise AttributeError('No bias Variable in Conv2D Module when `use_bias=False`.')
return self._b
|
'Returns `True` if bias Variable is present in the module.'
| @property
def has_bias(self):
| return self._use_bias
|
'Returns the initializers dictionary.'
| @property
def initializers(self):
| return self._initializers
|
'Returns the partitioners dictionary.'
| @property
def partitioners(self):
| return self._partitioners
|
'Returns the regularizers dictionary.'
| @property
def regularizers(self):
| return self._regularizers
|
'Returns the mask.'
| @property
def mask(self):
| return self._mask
|
'Returns the data format.'
| @property
def data_format(self):
| return self._data_format
|
'Returns a cloned `Conv2D` module.
Args:
name: Optional string assigning name of cloned module. The default name
is constructed by appending "_clone" to `self.module_name`.
Returns:
`Conv2D` module.'
| def clone(self, name=None):
| if (name is None):
name = (self.module_name + '_clone')
return Conv2D(output_channels=self.output_channels, kernel_shape=self.kernel_shape, stride=self.stride, rate=self.rate, padding=self.padding, use_bias=self.has_bias, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, mask=self.mask, data_format=self.data_format, custom_getter=self._custom_getter, name=name)
|
'Returns the input shape.'
| @property
def input_shape(self):
| self._ensure_is_connected()
return self._input_shape
|
'Returns matching `Conv2DTranspose` module.
Args:
name: Optional string assigning name of transpose module. The default name
is constructed by appending "_transpose" to `self.name`.
Returns:
`Conv2DTranspose` module.
Raises:
base.NotSupportedError: If `rate` in any dimension > 1.'
| def transpose(self, name=None):
| if any(((x > 1) for x in self._rate)):
raise base.NotSupportedError('Cannot transpose a dilated convolution module.')
if (name is None):
name = (self.module_name + '_transpose')
def output_shape():
if (self._data_format != DATA_FORMAT_NCHW):
return self.input_shape[1:3]
else:
return self.input_shape[2:4]
return Conv2DTranspose(output_channels=(lambda : self._input_channels), output_shape=output_shape, kernel_shape=self.kernel_shape, stride=self.stride, padding=self.padding, use_bias=self._use_bias, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, data_format=self._data_format, custom_getter=self._custom_getter, name=name)
|
'Constructs a `Conv2DTranspose module`.
See the following documentation for an explanation of VALID versus SAME
padding modes:
https://www.tensorflow.org/api_guides/python/nn#Convolution
Args:
output_channels: Number of output channels.
Can be either a number or a callable. In the latter case, since the
function invocation is deferred to graph construction time, the user
must only ensure `output_channels` can be called, returning an
integer, when build is called.
output_shape: Output shape of transpose convolution.
Can be either an iterable of integers or a callable. In the latter
case, since the function invocation is deferred to graph construction
time, the user must only ensure that `output_shape` can be called,
returning an iterable of format `(out_height, out_width)` when `build`
is called. Note that `output_shape` defines the size of output signal
domain, as opposed to the shape of the output `Tensor`. If a None
value is given, a default shape is automatically calculated (see
docstring of _default_transpose_size function for more details).
kernel_shape: Sequence of kernel sizes (of size 2), or integer that is
used to define kernel size in all dimensions.
stride: Sequence of kernel strides (of size 2), or integer that is used to
define stride in all dimensions.
padding: Padding algorithm, either `snt.SAME` or `snt.VALID`.
use_bias: Whether to include bias parameters. Default `True`.
initializers: Optional dict containing ops to initialize the filters (with
key \'w\') or biases (with key \'b\').
partitioners: Optional dict containing partitioners to partition
weights (with key \'w\') or biases (with key \'b\'). As a default, no
partitioners are used.
regularizers: Optional dict containing regularizers for the filters
(with key \'w\') and the biases (with key \'b\'). As a default, no
regularizers are used. A regularizer should be a function that takes
a single `Tensor` as an input and returns a scalar `Tensor` output, e.g.
the L1 and L2 regularizers in `tf.contrib.layers`.
data_format: A string. Specifies whether the channel dimension
of the input and output is the last dimension (default, NHWC), or the
second dimension ("NCHW").
custom_getter: Callable or dictionary of callables to use as
custom getters inside the module. If a dictionary, the keys
correspond to regexes to match variable names. See the `tf.get_variable`
documentation for information about the custom_getter API.
name: Name of the module.
Raises:
base.IncompatibleShapeError: If the given kernel shape is neither an
integer nor a sequence of two integers.
base.IncompatibleShapeError: If the given stride is neither an integer nor
a sequence of two or four integers.
ValueError: If the given padding is not `snt.VALID` or `snt.SAME`.
ValueError: If the given data_format is not a supported format (see
SUPPORTED_DATA_FORMATS).
ValueError: If the given kernel_shape is `None`.
KeyError: If `initializers`, `partitioners` or `regularizers` contain any
keys other than \'w\' or \'b\'.
TypeError: If any of the given initializers, partitioners or regularizers
are not callable.'
| def __init__(self, output_channels, output_shape=None, kernel_shape=None, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, data_format=DATA_FORMAT_NHWC, custom_getter=None, name='conv_2d_transpose'):
| super(Conv2DTranspose, self).__init__(custom_getter=custom_getter, name=name)
self._output_channels = output_channels
if (output_shape is None):
self._output_shape = None
self._use_default_output_shape = True
else:
self._use_default_output_shape = False
if callable(output_shape):
self._output_shape = output_shape
else:
self._output_shape = _fill_and_verify_parameter_shape(output_shape, 2, 'output_shape')
self._input_shape = None
if (data_format not in SUPPORTED_DATA_FORMATS):
raise ValueError('Invalid data_format {:s}. Allowed formats {:s}'.format(data_format, SUPPORTED_DATA_FORMATS))
self._data_format = data_format
if (kernel_shape is None):
raise ValueError('`kernel_shape` cannot be None.')
self._kernel_shape = _fill_and_verify_parameter_shape(kernel_shape, 2, 'kernel')
if (isinstance(stride, collections.Iterable) and (len(stride) == 4)):
if (not (stride[0] == stride[3] == 1)):
raise base.IncompatibleShapeError('Invalid stride: First and last element must be 1.')
self._stride = tuple(stride)
else:
self._stride = _fill_and_one_pad_stride(stride, 2)
self._padding = _verify_padding(padding)
self._use_bias = use_bias
self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias)
self._initializers = util.check_initializers(initializers, self.possible_keys)
self._partitioners = util.check_partitioners(partitioners, self.possible_keys)
self._regularizers = util.check_regularizers(regularizers, self.possible_keys)
|
'Connects the Conv2DTranspose module into the graph.
If this is not the first time the module has been connected to the graph,
the input Tensor provided here must have the same final 3 dimensions, in
order for the existing variables to be the correct size for the
multiplication. The batch size may differ for each connection.
Args:
inputs: A 4D Tensor of shape [batch_size, input_height, input_width,
input_channels].
Returns:
A 4D Tensor of shape [batch_size, output_height, output_width,
output_channels].
Raises:
ValueError: If connecting the module into the graph any time after the
first time and the inferred size of the input does not match previous
invocations.
base.IncompatibleShapeError: If the input tensor has the wrong number of
dimensions; or if the input tensor has an unknown `input_channels`; or
or if `output_shape` is an iterable and is not in the format
`(out_height, out_width)`.
TypeError: If input Tensor dtype is not `tf.float32`.'
| def _build(self, inputs):
| self._input_shape = tuple(inputs.get_shape().as_list())
if (len(self._input_shape) != 4):
raise base.IncompatibleShapeError('Input Tensor must have shape (batch_size, input_height, input_width, input_channels)')
if (self._data_format == DATA_FORMAT_NCHW):
input_channels = self._input_shape[1]
else:
input_channels = self._input_shape[3]
if (input_channels is None):
raise base.IncompatibleShapeError('Number of input channels must be known at module build time')
if (inputs.dtype != tf.float32):
raise TypeError(('Input must have dtype tf.float32, but dtype was ' + inputs.dtype))
if self._use_default_output_shape:
self._output_shape = (lambda : _default_transpose_size(self._input_shape[1:(-1)], self.stride[1:(-1)], kernel_shape=self.kernel_shape, padding=self.padding))
if (len(self.output_shape) != 2):
raise base.IncompatibleShapeError('Output shape must be specified as (output_height, output_width)')
weight_shape = (self._kernel_shape[0], self._kernel_shape[1], self.output_channels, input_channels)
if (self._data_format == DATA_FORMAT_NHWC):
bias_shape = (self.output_channels,)
else:
bias_shape = (1, self.output_channels, 1, 1)
if ('w' not in self._initializers):
fan_in_shape = (weight_shape[:2] + (weight_shape[3],))
self._initializers['w'] = create_weight_initializer(fan_in_shape)
if (('b' not in self._initializers) and self._use_bias):
self._initializers['b'] = create_bias_initializer(bias_shape)
self._w = tf.get_variable('w', shape=weight_shape, initializer=self._initializers['w'], partitioner=self._partitioners.get('w', None), regularizer=self._regularizers.get('w', None))
batch_size = tf.expand_dims(tf.shape(inputs)[0], 0)
out_shape = tuple(self.output_shape)
out_channels = (self.output_channels,)
if (self._data_format == DATA_FORMAT_NCHW):
out_shape_tuple = (out_channels + out_shape)
else:
out_shape_tuple = (out_shape + out_channels)
conv_output_shape = tf.convert_to_tensor(out_shape_tuple)
output_shape = tf.concat([batch_size, conv_output_shape], 0)
outputs = tf.nn.conv2d_transpose(inputs, self._w, output_shape, strides=self._stride, padding=self._padding, data_format=self._data_format)
if self._use_bias:
self._b = tf.get_variable('b', shape=bias_shape, initializer=self._initializers['b'], partitioner=self._partitioners.get('b', None), regularizer=self._regularizers.get('b', None))
outputs += self._b
batch_size_value = inputs.get_shape()[0]
if (self._data_format == DATA_FORMAT_NCHW):
output_shape_value = (((batch_size_value,) + (self.output_channels,)) + self.output_shape)
else:
output_shape_value = (((batch_size_value,) + self.output_shape) + (self.output_channels,))
outputs.set_shape(output_shape_value)
return outputs
|
'Returns the number of output channels.'
| @property
def output_channels(self):
| if callable(self._output_channels):
self._output_channels = self._output_channels()
return self._output_channels
|
'Returns the kernel shape.'
| @property
def kernel_shape(self):
| return self._kernel_shape
|
'Returns the stride.'
| @property
def stride(self):
| return self._stride
|
'Returns the output shape.'
| @property
def output_shape(self):
| if (self._output_shape is None):
self._ensure_is_connected()
if callable(self._output_shape):
self._output_shape = tuple(self._output_shape())
return self._output_shape
|
'Returns the padding algorithm.'
| @property
def padding(self):
| return self._padding
|
'Returns the Variable containing the weight matrix.'
| @property
def w(self):
| self._ensure_is_connected()
return self._w
|
'Returns the Variable containing the bias.
Returns:
Variable object containing the bias, from the most recent __call__.
Raises:
base.NotConnectedError: If the module has not been connected to the graph
yet, meaning the variables do not exist.
AttributeError: If the module does not use bias.'
| @property
def b(self):
| self._ensure_is_connected()
if (not self._use_bias):
raise AttributeError('No bias Variable in Conv2DTranspose Module when `use_bias=False`.')
return self._b
|
'Returns `True` if bias Variable is present in the module.'
| @property
def has_bias(self):
| return self._use_bias
|
'Returns the initializers dictionary.'
| @property
def initializers(self):
| return self._initializers
|
'Returns the partitioners dictionary.'
| @property
def partitioners(self):
| return self._partitioners
|
'Returns the regularizers dictionary.'
| @property
def regularizers(self):
| return self._regularizers
|
'Returns the input shape.'
| @property
def input_shape(self):
| self._ensure_is_connected()
return self._input_shape
|
'Returns matching `Conv2D` module.
Args:
name: Optional string assigning name of transpose module. The default name
is constructed by appending "_transpose" to `self.name`.
Returns:
`Conv2D` module.'
| def transpose(self, name=None):
| if (name is None):
name = (self.module_name + '_transpose')
return Conv2D(output_channels=(lambda : self.input_shape[(-1)]), kernel_shape=self.kernel_shape, stride=self.stride[1:(-1)], padding=self.padding, use_bias=self._use_bias, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, data_format=self._data_format, custom_getter=self._custom_getter, name=name)
|
'Constructs a Conv1D module.
See the following documentation for an explanation of VALID versus SAME
padding modes:
https://www.tensorflow.org/api_guides/python/nn#Convolution
Args:
output_channels: Number of output channels. `output_channels` can be
either a number or a callable. In the latter case, since the function
invocation is deferred to graph construction time, the user must only
ensure that output_channels can be called, returning an integer,
when `build` is called.
kernel_shape: Sequence of kernel sizes (of size 1), or integer that is
used to define kernel size in all dimensions.
stride: Sequence of kernel strides (of size 1), or integer that is used to
define stride in all dimensions.
rate: Sequence of dilation rates (of size 1), or integer that is used to
define dilation rate in all dimensions. 1 corresponds to standard 2D
convolution, `rate > 1` corresponds to dilated convolution. Cannot be
> 1 if any of `stride` is also > 1.
padding: Padding algorithm, either `snt.SAME` or `snt.VALID`.
use_bias: Whether to include bias parameters. Default `True`.
initializers: Optional dict containing ops to initialize the filters (with
key \'w\') or biases (with key \'b\'). The default initializer for the
weights is a truncated normal initializer, which is commonly used
when the inputs are zero centered (see
https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for
the bias is a zero initializer.
partitioners: Optional dict containing partitioners to partition
weights (with key \'w\') or biases (with key \'b\'). As a default, no
partitioners are used.
regularizers: Optional dict containing regularizers for the filters
(with key \'w\') and the biases (with key \'b\'). As a default, no
regularizers are used. A regularizer should be a function that takes
a single `Tensor` as an input and returns a scalar `Tensor` output, e.g.
the L1 and L2 regularizers in `tf.contrib.layers`.
custom_getter: Callable or dictionary of callables to use as
custom getters inside the module. If a dictionary, the keys
correspond to regexes to match variable names. See the `tf.get_variable`
documentation for information about the custom_getter API.
name: Name of the module.
Raises:
base.IncompatibleShapeError: If the given kernel shape is not an integer;
or if the given kernel shape is not a sequence of two integers.
base.IncompatibleShapeError: If the given stride is not an integer; or if
the given stride is not a sequence of two or four integers.
base.IncompatibleShapeError: If the given rate is not an integer; or if
the given rate is not a sequence of two integers.
base.NotSupportedError: If rate in any dimension and the stride in any
dimension are simultaneously > 1.
ValueError: If the given padding is not `snt.VALID` or `snt.SAME`.
KeyError: If `initializers`, `partitioners` or `regularizers` contain any
keys other than \'w\' or \'b\'.
TypeError: If any of the given initializers, partitioners or regularizers
are not callable.'
| def __init__(self, output_channels, kernel_shape, stride=1, rate=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name='conv_1d'):
| super(Conv1D, self).__init__(custom_getter=custom_getter, name=name)
self._output_channels = output_channels
self._input_shape = None
self._kernel_shape = _fill_and_verify_parameter_shape(kernel_shape, 1, 'kernel')
if (isinstance(stride, collections.Iterable) and (len(stride) == 3)):
self._stride = tuple(stride)[1:(-1)]
else:
self._stride = _fill_and_verify_parameter_shape(stride, 1, 'stride')
self._rate = _fill_and_verify_parameter_shape(rate, 1, 'rate')
if (any(((x > 1) for x in self._stride)) and any(((x > 1) for x in self._rate))):
raise base.NotSupportedError('Cannot have stride > 1 with rate > 1')
self._padding = _verify_padding(padding)
self._use_bias = use_bias
self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias)
self._initializers = util.check_initializers(initializers, self.possible_keys)
self._partitioners = util.check_partitioners(partitioners, self.possible_keys)
self._regularizers = util.check_regularizers(regularizers, self.possible_keys)
|
'Connects the Conv1D module into the graph, with input Tensor `inputs`.
If this is not the first time the module has been connected to the graph,
the input Tensor provided here must have the same final 2 dimensions, in
order for the existing variables to be the correct size for the
multiplication. The batch size may differ for each connection.
Args:
inputs: A 3D Tensor of shape [batch_size, input_length, input_channels].
Returns:
A 3D Tensor of shape [batch_size, output_length, output_channels].
Raises:
ValueError: If connecting the module into the graph any time after the
first time and the inferred size of the input does not match previous
invocations.
base.IncompatibleShapeError: If the input tensor has the wrong number
of dimensions.
base.IncompatibleShapeError: If a mask is present and its shape is
incompatible with the shape of the weights.
base.UnderspecifiedError: If the input tensor has an unknown
`input_channels`.
TypeError: If input Tensor dtype is not `tf.float32`.'
| def _build(self, inputs):
| self._input_shape = tuple(inputs.get_shape().as_list())
if (len(self._input_shape) != 3):
raise base.IncompatibleShapeError('Input Tensor must have shape (batch_size, input_length, input_channels)')
if (self._input_shape[2] is None):
raise base.UnderspecifiedError('Number of input channels must be known at module build time')
else:
input_channels = self._input_shape[2]
if (inputs.dtype != tf.float32):
raise TypeError('Input must have dtype tf.float32, but dtype was {}'.format(inputs.dtype))
weight_shape = (self._kernel_shape[0], input_channels, self.output_channels)
bias_shape = (self.output_channels,)
if ('w' not in self._initializers):
self._initializers['w'] = create_weight_initializer(weight_shape[:2])
if (('b' not in self._initializers) and self._use_bias):
self._initializers['b'] = create_bias_initializer(bias_shape)
self._w = tf.get_variable('w', shape=weight_shape, initializer=self._initializers['w'], partitioner=self._partitioners.get('w', None), regularizer=self._regularizers.get('w', None))
outputs = tf.nn.convolution(inputs, self._w, strides=self._stride, padding=self._padding, dilation_rate=self._rate)
if self._use_bias:
self._b = tf.get_variable('b', shape=bias_shape, initializer=self._initializers['b'], partitioner=self._partitioners.get('b', None), regularizer=self._regularizers.get('b', None))
outputs += self._b
return outputs
|
'Returns the number of output channels.'
| @property
def output_channels(self):
| if callable(self._output_channels):
self._output_channels = self._output_channels()
return self._output_channels
|
'Returns the input shape.'
| @property
def input_shape(self):
| self._ensure_is_connected()
return self._input_shape
|
'Returns the kernel shape.'
| @property
def kernel_shape(self):
| return self._kernel_shape
|
'Returns the stride.'
| @property
def stride(self):
| return (((1,) + self._stride) + (1,))
|
'Returns the dilation rate.'
| @property
def rate(self):
| return self._rate
|
'Returns the padding algorithm.'
| @property
def padding(self):
| return self._padding
|
'Returns the Variable containing the weight matrix.'
| @property
def w(self):
| return self._w
|
'Returns the Variable containing the bias.'
| @property
def b(self):
| return self._b
|
'Returns `True` if bias Variable is present in the module.'
| @property
def has_bias(self):
| return self._use_bias
|
'Returns the initializers dictionary.'
| @property
def initializers(self):
| return self._initializers
|
'Returns the partitioners dictionary.'
| @property
def partitioners(self):
| return self._partitioners
|
'Returns the regularizers dictionary.'
| @property
def regularizers(self):
| return self._regularizers
|
'Returns matching `Conv1DTranspose` module.
Args:
name: Optional string assigning name of transpose module. The default name
is constructed by appending "_transpose" to `self.name`.
Returns:
`Conv1DTranspose` module.
Raises:
base.NotSupportedError: If `rate` in any dimension > 1.'
| def transpose(self, name=None):
| if any(((x > 1) for x in self._rate)):
raise base.NotSupportedError('Cannot transpose a dilated convolution module.')
if (name is None):
name = (self.module_name + '_transpose')
return Conv1DTranspose(output_channels=(lambda : self.input_shape[(-1)]), output_shape=(lambda : self.input_shape[1:(-1)]), kernel_shape=self.kernel_shape, stride=self.stride, padding=self.padding, use_bias=self._use_bias, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, custom_getter=self._custom_getter, name=name)
|
'Constructs a Conv1DTranspose module.
See the following documentation for an explanation of VALID versus SAME
padding modes:
https://www.tensorflow.org/api_guides/python/nn#Convolution
Args:
output_channels: Number of output channels. Can be either a number or a
callable. In the latter case, since the function invocation is
deferred to graph construction time, the user must only ensure
`output_channels` can be called, returning an integer, when build is
called.
output_shape: Output shape of transpose convolution. Can be either a
number or a callable. In the latter case, since the function
invocation is deferred to graph construction time, the user must only
ensure that `output_shape` can be called, returning an iterable of
format `(out_length)` when build is called. If a None
value is given, a default shape is automatically calculated (see
docstring of _default_transpose_size function for more details).
kernel_shape: Sequence of kernel sizes (of size 1), or integer that is
used to define kernel size in all dimensions.
stride: Sequence of kernel strides (of size 1), or integer that is used to
define stride in all dimensions.
padding: Padding algorithm, either `snt.SAME` or `snt.VALID`.
use_bias: Whether to include bias parameters. Default `True`.
initializers: Optional dict containing ops to initialize the filters (with
key \'w\') or biases (with key \'b\').
partitioners: Optional dict containing partitioners to partition
weights (with key \'w\') or biases (with key \'b\'). As a default, no
partitioners are used.
regularizers: Optional dict containing regularizers for the filters
(with key \'w\') and the biases (with key \'b\'). As a default, no
regularizers are used. A regularizer should be a function that takes
a single `Tensor` as an input and returns a scalar `Tensor` output, e.g.
the L1 and L2 regularizers in `tf.contrib.layers`.
custom_getter: Callable or dictionary of callables to use as
custom getters inside the module. If a dictionary, the keys
correspond to regexes to match variable names. See the `tf.get_variable`
documentation for information about the custom_getter API.
name: Name of the module.
Raises:
base.IncompatibleShapeError: If the given kernel shape is not an integer;
or if the given kernel shape is not a sequence of two integers.
base.IncompatibleShapeError: If the given stride is not an integer; or if
the given stride is not a sequence of two or four integers.
ValueError: If the given padding is not `snt.VALID` or `snt.SAME`.
ValueError: If the given kernel_shape is `None`.
KeyError: If `initializers`, `partitioners` or `regularizers` contain any
keys other than \'w\' or \'b\'.
TypeError: If any of the given initializers, partitioners or regularizers
are not callable.'
| def __init__(self, output_channels, output_shape=None, kernel_shape=None, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name='conv_1d_transpose'):
| super(Conv1DTranspose, self).__init__(custom_getter=custom_getter, name=name)
self._output_channels = output_channels
if (output_shape is None):
self._output_shape = None
self._use_default_output_shape = True
else:
self._use_default_output_shape = False
if callable(output_shape):
self._output_shape = output_shape
elif isinstance(output_shape, numbers.Integral):
self._output_shape = (output_shape,)
elif isinstance(output_shape, collections.Iterable):
self._output_shape = tuple(output_shape)
self._input_shape = None
if (kernel_shape is None):
raise ValueError('`kernel_shape` cannot be None.')
self._kernel_shape = _fill_and_verify_parameter_shape(kernel_shape, 1, 'kernel')
if (isinstance(stride, collections.Iterable) and (len(stride) == 3)):
if (not (stride[0] == stride[2] == 1)):
raise base.IncompatibleShapeError('Invalid stride: First and last element must be 1.')
self._stride = ((1,) + tuple(stride))
else:
self._stride = ((1,) + _fill_and_one_pad_stride(stride, 1))
self._padding = _verify_padding(padding)
self._use_bias = use_bias
self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias)
self._initializers = util.check_initializers(initializers, self.possible_keys)
self._partitioners = util.check_partitioners(partitioners, self.possible_keys)
self._regularizers = util.check_regularizers(regularizers, self.possible_keys)
|
'Connects the Conv1DTranspose module into the graph.
If this is not the first time the module has been connected to the graph,
the input Tensor provided here must have the same final 2 dimensions, in
order for the existing variables to be the correct size for the
multiplication. The batch size may differ for each connection.
Args:
inputs: A 3D Tensor of shape `[batch_size, input_length, input_channels]`.
Returns:
A 3D Tensor of shape `[batch_size, output_length, output_channels]`.
Raises:
ValueError: If connecting the module into the graph any time after the
first time and the inferred size of the input does not match previous
invocations.
base.IncompatibleShapeError: If the input tensor has the wrong number
of dimensions.
base.IncompatibleShapeError: If the input tensor has an unknown
`input_channels`.
base.IncompatibleShapeError: If `output_shape` is not an integer or
iterable of length 1.
TypeError: If input Tensor dtype is not tf.float32.'
| def _build(self, inputs):
| self._input_shape = tuple(inputs.get_shape().as_list())
if (len(self._input_shape) != 3):
raise base.IncompatibleShapeError('Input Tensor must have shape (batch_size, input_length, input_channels)')
if (self._input_shape[2] is None):
raise base.UnderspecifiedError('Number of input channels must be known at module build time')
input_channels = self._input_shape[2]
if self._use_default_output_shape:
self._output_shape = (lambda : _default_transpose_size(self._input_shape[1:(-1)], self.stride[2], kernel_shape=self.kernel_shape, padding=self.padding))
if (len(self.output_shape) != 1):
raise base.IncompatibleShapeError('Output shape must be specified as (output_length)')
if (inputs.dtype != tf.float32):
raise TypeError('Input must have dtype tf.float32, but dtype was {}'.format(inputs.dtype))
weight_shape = (1, self._kernel_shape[0], self.output_channels, input_channels)
bias_shape = (self.output_channels,)
if ('w' not in self._initializers):
fan_in_shape = (weight_shape[1], weight_shape[3])
self._initializers['w'] = create_weight_initializer(fan_in_shape)
if (('b' not in self._initializers) and self._use_bias):
self._initializers['b'] = create_bias_initializer(bias_shape)
self._w = tf.get_variable('w', shape=weight_shape, initializer=self._initializers['w'], partitioner=self._partitioners.get('w', None), regularizer=self._regularizers.get('w', None))
batch_size = tf.expand_dims(tf.shape(inputs)[0], 0)
out_shape = (1, self.output_shape[0])
out_channels = (self.output_channels,)
out_shape_tuple = (out_shape + out_channels)
conv_output_shape = tf.convert_to_tensor(out_shape_tuple)
tf_out_shape = tf.concat([batch_size, conv_output_shape], 0)
inputs = tf.expand_dims(inputs, 1)
outputs = tf.nn.conv2d_transpose(inputs, self._w, tf_out_shape, strides=self._stride, padding=self._padding)
if self._use_bias:
self._b = tf.get_variable('b', shape=bias_shape, initializer=self._initializers['b'], partitioner=self._partitioners.get('b', None), regularizer=self._regularizers.get('b', None))
outputs += self._b
outputs = tf.squeeze(outputs, [1])
batch_size_value = inputs.get_shape()[0]
output_shape_value = (((batch_size_value,) + self.output_shape) + (self.output_channels,))
outputs.set_shape(output_shape_value)
return outputs
|
'Returns the number of output channels.'
| @property
def output_channels(self):
| if callable(self._output_channels):
self._output_channels = self._output_channels()
return self._output_channels
|
'Returns the kernel shape.'
| @property
def kernel_shape(self):
| return self._kernel_shape
|
'Returns the stride.'
| @property
def stride(self):
| return self._stride
|
'Returns the output shape.'
| @property
def output_shape(self):
| if (self._output_shape is None):
self._ensure_is_connected()
if callable(self._output_shape):
self._output_shape = self._output_shape()
return self._output_shape
|
'Returns the input shape.'
| @property
def input_shape(self):
| self._ensure_is_connected()
return self._input_shape
|
'Returns the padding algorithm.'
| @property
def padding(self):
| return self._padding
|
'Returns the Variable containing the weight matrix.'
| @property
def w(self):
| self._ensure_is_connected()
return self._w
|
'Returns the Variable containing the bias.
Returns:
Variable object containing the bias, from the most recent __call__.
Raises:
base.NotConnectedError: If the module has not been connected to the graph
yet, meaning the variables do not exist.
AttributeError: If the module does not use bias.'
| @property
def b(self):
| self._ensure_is_connected()
if (not self._use_bias):
raise AttributeError('No bias Variable in Conv1DTranspose Module when `use_bias=False`.')
return self._b
|
'Returns `True` if bias Variable is present in the module.'
| @property
def has_bias(self):
| return self._use_bias
|
'Returns the initializers dictionary.'
| @property
def initializers(self):
| return self._initializers
|
'Returns the partitioners dictionary.'
| @property
def partitioners(self):
| return self._partitioners
|
'Returns the regularizers dictionary.'
| @property
def regularizers(self):
| return self._regularizers
|
'Returns matching `Conv1D` module.
Args:
name: Optional string assigning name of transpose module. The default name
is constructed by appending "_transpose" to `self.name`.
Returns:
`Conv1D` module.'
| def transpose(self, name=None):
| if (name is None):
name = (self.module_name + '_transpose')
return Conv1D(output_channels=(lambda : self.input_shape[(-1)]), kernel_shape=self.kernel_shape, stride=(self._stride[2],), padding=self.padding, use_bias=self._use_bias, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, custom_getter=self._custom_getter, name=name)
|
'Constructs a CausalConv1D module.
Args:
output_channels: Number of output channels. `output_channels` can be
either a number or a callable. In the latter case, since the function
invocation is deferred to graph construction time, the user must only
ensure that output_channels can be called, returning an integer,
when `build` is called.
kernel_shape: Sequence of kernel sizes (of size 1), or integer that is
used to define kernel size in all dimensions.
stride: Sequence of kernel strides (of size 1), or integer that is used to
define stride in all dimensions.
rate: Sequence of dilation rates (of size 1), or integer that is used to
define dilation rate in all dimensions. 1 corresponds to standard 2D
convolution, `rate > 1` corresponds to dilated convolution. Cannot be
> 1 if any of `stride` is also > 1.
use_bias: Whether to include bias parameters. Default `True`.
initializers: Optional dict containing ops to initialize the filters (with
key \'w\') or biases (with key \'b\'). The default initializer for the
weights is a truncated normal initializer, which is commonly used
when the inputs are zero centered (see
https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for
the bias is a zero initializer.
partitioners: Optional dict containing partitioners to partition
weights (with key \'w\') or biases (with key \'b\'). As a default, no
partitioners are used.
regularizers: Optional dict containing regularizers for the filters
(with key \'w\') and the biases (with key \'b\'). As a default, no
regularizers are used. A regularizer should be a function that takes
a single `Tensor` as an input and returns a scalar `Tensor` output, e.g.
the L1 and L2 regularizers in `tf.contrib.layers`.
custom_getter: Callable or dictionary of callables to use as
custom getters inside the module. If a dictionary, the keys
correspond to regexes to match variable names. See the `tf.get_variable`
documentation for information about the custom_getter API.
name: Name of the module.
Raises:
base.IncompatibleShapeError: If the given kernel shape is not an integer;
or if the given kernel shape is not a sequence of two integers.
base.IncompatibleShapeError: If the given stride is not an integer; or if
the given stride is not a sequence of two or four integers.
base.IncompatibleShapeError: If the given rate is not an integer; or if
the given rate is not a sequence of two integers.
base.NotSupportedError: If rate in any dimension and the stride in any
dimension are simultaneously > 1.
KeyError: If `initializers`, `partitioners` or `regularizers` contain any
keys other than \'w\' or \'b\'.
TypeError: If any of the given initializers, partitioners or regularizers
are not callable.'
| def __init__(self, output_channels, kernel_shape, stride=1, rate=1, use_bias=True, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name='causal_conv_1d'):
| super(CausalConv1D, self).__init__(output_channels=output_channels, kernel_shape=kernel_shape, stride=stride, rate=rate, padding=VALID, use_bias=use_bias, initializers=initializers, partitioners=partitioners, regularizers=regularizers, custom_getter=custom_getter, name=name)
|
'Connects the CausalConv1D module into the graph, with `inputs` as input.
If this is not the first time the module has been connected to the graph,
the input Tensor provided here must have the same final 2 dimensions, in
order for the existing variables to be the correct size for the
multiplication. The batch size may differ for each connection.
Args:
inputs: A 3D Tensor of shape [batch_size, input_length, input_channels].
Returns:
A 3D Tensor of shape [batch_size, output_length, output_channels].
Raises:
ValueError: If connecting the module into the graph any time after the
first time and the inferred size of the input does not match previous
invocations.
base.IncompatibleShapeError: If the input tensor has the wrong number
of dimensions.
base.IncompatibleShapeError: If a mask is present and its shape is
incompatible with the shape of the weights.
base.UnderspecifiedError: If the input tensor has an unknown
`input_channels`.
TypeError: If input Tensor dtype is not `tf.float32`.'
| def _build(self, inputs):
| self._input_shape = tuple(inputs.get_shape().as_list())
if (len(self._input_shape) != 3):
raise base.IncompatibleShapeError('Input Tensor must have shape (batch_size, input_length, input_channels)')
if (self._input_shape[2] is None):
raise base.UnderspecifiedError('Number of input channels must be known at module build time')
else:
input_channels = self._input_shape[2]
if (inputs.dtype != tf.float32):
raise TypeError('Input must have dtype tf.float32, but dtype was {}'.format(inputs.dtype))
weight_shape = (self._kernel_shape[0], input_channels, self.output_channels)
bias_shape = (self.output_channels,)
if ('w' not in self._initializers):
self._initializers['w'] = create_weight_initializer(weight_shape[:2])
if (('b' not in self._initializers) and self._use_bias):
self._initializers['b'] = create_bias_initializer(bias_shape)
self._w = tf.get_variable('w', shape=weight_shape, initializer=self._initializers['w'], partitioner=self._partitioners.get('w', None), regularizer=self._regularizers.get('w', None))
pad_amount = int(((self._kernel_shape[0] - 1) * self._rate[0]))
padded_inputs = tf.pad(inputs, paddings=[[0, 0], [pad_amount, 0], [0, 0]])
outputs = tf.nn.convolution(padded_inputs, self._w, strides=self._stride, padding=VALID, dilation_rate=self._rate)
if self._use_bias:
self._b = tf.get_variable('b', shape=bias_shape, initializer=self._initializers['b'], partitioner=self._partitioners.get('b', None), regularizer=self._regularizers.get('b', None))
outputs += self._b
return outputs
|
'Constructs an InPlaneConv2D module.
See the following documentation for an explanation of VALID versus SAME
padding modes:
https://www.tensorflow.org/api_guides/python/nn#Convolution
Args:
kernel_shape: Iterable with 2 elements in the layout [filter_height,
filter_width]; or integer that is used to define the list in all
dimensions.
stride: Iterable with 2 or 4 elements of kernel strides, or integer that
is used to define stride in all dimensions.
padding: Padding algorithm, either `snt.SAME` or `snt.VALID`.
use_bias: Whether to include bias parameters. Default `True`.
initializers: Optional dict containing ops to initialize the filters (with
key \'w\') or biases (with key \'b\').
partitioners: Optional dict containing partitioners to partition the
filters (with key \'w\') or biases (with key \'b\'). As a default, no
partitioners are used.
regularizers: Optional dict containing regularizers for the filters
(with key \'w\') and the biases (with key \'b\'). As a default, no
regularizers are used. A regularizer should be a function that takes
a single `Tensor` as an input and returns a scalar `Tensor` output, e.g.
the L1 and L2 regularizers in `tf.contrib.layers`.
custom_getter: Callable or dictionary of callables to use as
custom getters inside the module. If a dictionary, the keys
correspond to regexes to match variable names. See the `tf.get_variable`
documentation for information about the custom_getter API.
name: Name of the module.
Raises:
TypeError: If `kernel_shape` is not an integer or a sequence of 2
integers.
ValueError: If `stride` is neither an integer nor a sequence of 2 or
4 integers.
ValueError: If stride is a sequence of 4 integers, the first and last
dimensions are not equal to 1.
ValueError: If `padding` is not `snt.VALID` or `snt.SAME`.
KeyError: If `initializers`, `partitioners` or `regularizers` contain any
keys other than \'w\' or \'b\'.
TypeError: If any of the given initializers, partitioners or regularizers
are not callable.'
| def __init__(self, kernel_shape, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name='in_plane_conv2d'):
| super(InPlaneConv2D, self).__init__(custom_getter=custom_getter, name=name)
self._kernel_shape = _fill_and_verify_parameter_shape(kernel_shape, 2, 'kernel')
if (isinstance(stride, collections.Iterable) and (len(stride) == 4)):
if (not (stride[0] == stride[3] == 1)):
raise ValueError('Invalid stride: First and last element must be 1.')
self._stride = tuple(stride)
else:
self._stride = _fill_and_one_pad_stride(stride, 2)
self._padding = _verify_padding(padding)
self._use_bias = use_bias
self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias)
self._initializers = util.check_initializers(initializers, self.possible_keys)
self._partitioners = util.check_partitioners(partitioners, self.possible_keys)
self._regularizers = util.check_regularizers(regularizers, self.possible_keys)
self._input_shape = None
self._input_channels = None
|
'Connects the module into the graph, with input Tensor `inputs`.
Args:
inputs: A 4D Tensor of shape:
[batch_size, input_height, input_width, input_channels].
Returns:
A 4D Tensor of shape:
[batch_size, output_height, output_width, input_channels].
Raises:
ValueError: If connecting the module into the graph any time after the
first time and the inferred input size does not match previous
invocations.
base.IncompatibleShapeError: If the input tensor has the wrong number
of dimensions; or if the input tensor has an unknown `input_channels`.
TypeError: If input Tensor dtype is not tf.float32.'
| def _build(self, inputs):
| self._input_shape = tuple(inputs.get_shape().as_list())
if (len(self._input_shape) != 4):
raise base.IncompatibleShapeError('Input Tensor must have shape (batch_size, input_height, input_width, input_channels)')
if (self._input_shape[3] is None):
raise base.IncompatibleShapeError('Number of input channels must be known at module build time')
self._input_channels = self._input_shape[3]
if (inputs.dtype != tf.float32):
raise TypeError(('Input must have dtype tf.float32, but dtype was ' + inputs.dtype.name))
weight_shape = (self._kernel_shape[0], self._kernel_shape[1], 1, 1)
bias_shape = (self._input_channels,)
if ('w' not in self._initializers):
self._initializers['w'] = create_weight_initializer(weight_shape[:2])
if (('b' not in self._initializers) and self._use_bias):
self._initializers['b'] = create_bias_initializer(bias_shape)
self._w = tf.get_variable('w', shape=weight_shape, initializer=self._initializers['w'], partitioner=self._partitioners.get('w', None), regularizer=self._regularizers.get('w', None))
tiled_weights = tf.tile(self._w, [1, 1, self._input_channels, 1])
outputs = tf.nn.depthwise_conv2d(inputs, tiled_weights, strides=self._stride, padding=self._padding)
if self._use_bias:
self._b = tf.get_variable('b', shape=bias_shape, initializer=self._initializers['b'], partitioner=self._partitioners.get('b', None), regularizer=self._regularizers.get('b', None))
outputs += self._b
return outputs
|
'Returns the number of input channels.'
| @property
def input_channels(self):
| self._ensure_is_connected()
return self._input_channels
|
'Returns the number of output channels i.e. number of input channels.'
| @property
def output_channels(self):
| self._ensure_is_connected()
return self._input_channels
|
'Returns the input shape.'
| @property
def input_shape(self):
| self._ensure_is_connected()
return self._input_shape
|
'Returns the kernel shape.'
| @property
def kernel_shape(self):
| return self._kernel_shape
|
'Returns the stride.'
| @property
def stride(self):
| return self._stride
|
'Returns the padding algorithm.'
| @property
def padding(self):
| return self._padding
|
'Returns the Variable containing the weight matrix.'
| @property
def w(self):
| self._ensure_is_connected()
return self._w
|
'Returns the Variable containing the bias.
Returns:
Variable object containing the bias, from the most recent __call__.
Raises:
base.NotConnectedError: If the module has not been connected to the graph
yet, meaning the variables do not exist.
AttributeError: If the module does not use bias.'
| @property
def b(self):
| self._ensure_is_connected()
if (not self._use_bias):
raise AttributeError('No bias Variable in InPlaneConv2D Module when `use_bias=False`.')
return self._b
|
'Returns `True` if bias Variable is present in the module.'
| @property
def has_bias(self):
| return self._use_bias
|
'Returns the initializers dictionary.'
| @property
def initializers(self):
| return self._initializers
|
'Returns the partitioners dictionary.'
| @property
def partitioners(self):
| return self._partitioners
|
'Returns the regularizers dictionary.'
| @property
def regularizers(self):
| return self._regularizers
|
'Constructs a DepthwiseConv2D module.
See the following documentation for an explanation of VALID versus SAME
padding modes:
https://www.tensorflow.org/api_guides/python/nn#Convolution
Args:
channel_multiplier: Number of channels to expand convolution to. Must be
an integer. Must be > 0. When `channel_multiplier` is set to 1, apply
a different filter to each input channel producing one output channel
per input channel. Numbers larger than 1 cause multiple different
filters to be applied to each input channel, with their outputs being
concatenated together, producing `channel_multiplier` *
`input_channels` output channels.
kernel_shape: Iterable with 2 elements in the following layout:
[filter_height, filter_width] or integer that is
used to define the list in all dimensions.
stride: Iterable with 2 or 4 elements of kernel strides, or integer that
is used to define stride in all dimensions. Layout of list:
In case of 4 elements: `[1, stride_height, stride_widith, 1]`
In case of 2 elements: `[stride_height, stride_width]`.
padding: Padding algorithm, either `snt.SAME` or `snt.VALID`.
use_bias: Whether to include bias parameters. Default `True`.
initializers: Optional dict containing ops to initialize the filters (with
key \'w\') or biases (with key \'b\').
partitioners: Optional dict containing partitioners for the filters
(with key \'w\') and the biases (with key \'b\'). As a default, no
partitioners are used.
regularizers: Optional dict containing regularizers for the filters
(with key \'w\') and the biases (with key \'b\'). As a default, no
regularizers are used. A regularizer should be a function that takes
a single `Tensor` as an input and returns a scalar `Tensor` output, e.g.
the L1 and L2 regularizers in `tf.contrib.layers`.
custom_getter: Callable or dictionary of callables to use as
custom getters inside the module. If a dictionary, the keys
correspond to regexes to match variable names. See the `tf.get_variable`
documentation for information about the custom_getter API.
name: Name of the module.
Raises:
base.IncompatibleShapeError: If `kernel_shape` is not an integer or a
sequence of 3 integers.
base.IncompatibleShapeError: If `stride` is neither an integer nor a
sequence of 2 or 4 integers.
base.IncompatibleShapeError: If `stride` is a sequence of 4 integers and
`stride[0] != stride[3]`.
ValueError: if `channel_multiplier` is not an integer >= 1.
ValueError: If `padding` is not `snt.VALID` or `snt.SAME`.
KeyError: If `initializers`, `partitioners` or `regularizers` contain any
keys other than \'w\' or \'b\'.
TypeError: If any of the given initializers, partitioners or regularizers
are not callable.'
| def __init__(self, channel_multiplier, kernel_shape, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name='conv_2d_depthwise'):
| super(DepthwiseConv2D, self).__init__(custom_getter=custom_getter, name=name)
if ((not isinstance(channel_multiplier, numbers.Integral)) or (channel_multiplier < 1)):
raise ValueError(('channel_multiplier (=%d), must be integer >= 1' % channel_multiplier))
self._channel_multiplier = channel_multiplier
self._kernel_shape = _fill_and_verify_parameter_shape(kernel_shape, 2, 'kernel')
if (isinstance(stride, collections.Iterable) and (len(stride) == 4)):
if (not (stride[0] == stride[3] == 1)):
raise base.IncompatibleShapeError('Invalid stride: First and last element must be 1.')
self._stride = tuple(stride)
else:
self._stride = _fill_and_one_pad_stride(stride, 2)
self._padding = _verify_padding(padding)
self._use_bias = use_bias
self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias)
self._initializers = util.check_initializers(initializers, self.possible_keys)
self._partitioners = util.check_partitioners(partitioners, self.possible_keys)
self._regularizers = util.check_regularizers(regularizers, self.possible_keys)
self._input_shape = None
self._input_channels = None
self._output_channels = None
|
'Connects the module into the graph, with input Tensor `inputs`.
If this is not the first time the module has been connected to the graph,
the input Tensor provided here must have the same final 3 dimensions, in
order for the existing variables to be the correct size for the
multiplication. The batch size may differ for each connection.
Args:
inputs: A 4D Tensor of shape:
`[batch_size, input_height, input_width, input_channels]`.
Returns:
A 4D Tensor of shape:
`[batch_size, output_height, output_width, output_channels]`, where
`output_channels = input_channels * channel_multiplier`;
see `kernel_shape`.
Raises:
ValueError: If connecting the module into the graph any time after the
first time and the inferred size of the input does not match previous
invocations.
base.IncompatibleShapeError: If the input tensor has the wrong number
of dimensions; or if the input tensor has an unknown `input_channels`.
TypeError: If input Tensor dtype is not `tf.float32`.'
| def _build(self, inputs):
| self._input_shape = tuple(inputs.get_shape().as_list())
if (len(self._input_shape) != 4):
raise base.IncompatibleShapeError('Input Tensor must have shape (batch_size, input_height, input_width, input_channels)')
if (self._input_shape[3] is None):
raise base.IncompatibleShapeError('Number of input channels must be known at module build time')
self._input_channels = self._input_shape[3]
if (inputs.dtype != tf.float32):
raise TypeError(('Input must have dtype tf.float32, but dtype was ' + inputs.dtype.name))
self._output_channels = (self._input_channels * self._channel_multiplier)
weight_shape = (self._kernel_shape[0], self._kernel_shape[1], self._input_channels, self._channel_multiplier)
bias_shape = (self._output_channels,)
if ('w' not in self._initializers):
self._initializers['w'] = create_weight_initializer(weight_shape[:3])
if (('b' not in self._initializers) and self._use_bias):
self._initializers['b'] = create_bias_initializer(bias_shape)
self._w = tf.get_variable('w', shape=weight_shape, initializer=self._initializers['w'], partitioner=self._partitioners.get('w', None), regularizer=self._regularizers.get('w', None))
outputs = tf.nn.depthwise_conv2d(inputs, self._w, strides=self._stride, padding=self._padding)
if self._use_bias:
self._b = tf.get_variable('b', shape=bias_shape, initializer=self._initializers['b'], partitioner=self._partitioners.get('b', None), regularizer=self._regularizers.get('b', None))
outputs += self._b
return outputs
|
'Returns the number of input channels.'
| @property
def input_channels(self):
| self._ensure_is_connected()
return self._input_channels
|
'Returns the number of output channels.'
| @property
def output_channels(self):
| self._ensure_is_connected()
return self._output_channels
|
'Returns the input shape.'
| @property
def input_shape(self):
| self._ensure_is_connected()
return self._input_shape
|
'Returns the kernel shape.'
| @property
def kernel_shape(self):
| return self._kernel_shape
|
'Returns the channel multiplier.'
| @property
def channel_multiplier(self):
| return self._channel_multiplier
|
'Returns the stride.'
| @property
def stride(self):
| return self._stride
|
'Returns the padding algorithm.'
| @property
def padding(self):
| return self._padding
|
'Returns the Variable containing the weight matrix.'
| @property
def w(self):
| self._ensure_is_connected()
return self._w
|
'Returns the Variable containing the bias.
Returns:
Variable object containing the bias, from the most recent __call__.
Raises:
base.NotConnectedError: If the module has not been connected to the graph
yet, meaning the variables do not exist.
AttributeError: If the module does not use bias.'
| @property
def b(self):
| self._ensure_is_connected()
if (not self._use_bias):
raise AttributeError('No bias Variable in DepthwiseConv2D Module when `use_bias=False`.')
return self._b
|
'Returns `True` if bias Variable is present in the module.'
| @property
def has_bias(self):
| return self._use_bias
|
'Returns the initializers dictionary.'
| @property
def initializers(self):
| return self._initializers
|
'Returns the partitioners dictionary.'
| @property
def partitioners(self):
| return self._partitioners
|
'Returns the regularizers dictionary.'
| @property
def regularizers(self):
| return self._regularizers
|
'Constructs a SeparableConv2D module.
See the following documentation for an explanation of VALID versus SAME
padding modes:
https://www.tensorflow.org/api_guides/python/nn#Convolution
Args:
output_channels: Number of output channels. Must be an integer.
channel_multiplier: Number of channels to expand pointwise (depthwise)
convolution to. Must be an integer. Must be > 0.
When `channel_multiplier` is set to 1, applies a different filter to
each input channel. Numbers larger than 1 cause the filter to be
applied to `channel_multiplier` input channels. Outputs are
concatenated together.
kernel_shape: List with 2 elements in the following layout:
[filter_height, filter_width] or integer that is
used to define the list in all dimensions.
stride: List with 4 elements of kernel strides, or integer that is used to
define stride in all dimensions. Layout of list:
[1, stride_y, stride_x, 1].
padding: Padding algorithm, either `snt.SAME` or `snt.VALID`.
use_bias: Whether to include bias parameters. Default `True`.
initializers: Optional dict containing ops to initialize the filters (with
keys \'w_dw\' for depthwise and \'w_pw\' for pointwise) or biases
(with key \'b\').
partitioners: Optional dict containing partitioners to partition the
filters (with key \'w\') or biases (with key \'b\'). As a default, no
partitioners are used.
regularizers: Optional dict containing regularizers for the filters
(with keys \'w_dw\' for depthwise and \'w_pw\' for pointwise) and the
biases (with key \'b\'). As a default, no regularizers are used.
A regularizer should be a function that takes a single `Tensor` as an
input and returns a scalar `Tensor` output, e.g. the L1 and L2
regularizers in `tf.contrib.layers`.
custom_getter: Callable or dictionary of callables to use as
custom getters inside the module. If a dictionary, the keys
correspond to regexes to match variable names. See the `tf.get_variable`
documentation for information about the custom_getter API.
name: Name of the module.
Raises:
ValueError: If either `output_channels` or `channel_multiplier` is not an
integer or less than 1.
base.IncompatibleShapeError: If `kernel_shape` is not an integer or a
list of 3 integers.
base.IncompatibleShapeError: If `stride` is neither an integer nor a
list of 2 or 4 integers.
ValueError: If `padding` is not `snt.VALID` or `snt.SAME`;
KeyError: If `initializers`, `partitioners` or `regularizers` contain any
keys other than \'w_dw\', \'w_pw\' or \'b\'.
TypeError: If any of the given initializers, partitioners or regularizers
are not callable.'
| def __init__(self, output_channels, channel_multiplier, kernel_shape, stride=1, padding=SAME, use_bias=True, initializers=None, partitioners=None, regularizers=None, custom_getter=None, name='Separable_conv2d'):
| super(SeparableConv2D, self).__init__(custom_getter=custom_getter, name=name)
if ((not isinstance(output_channels, numbers.Integral)) or (output_channels < 1)):
raise ValueError('output_channels (={}), must be integer >= 1'.format(output_channels))
self._output_channels = output_channels
if ((not isinstance(channel_multiplier, numbers.Integral)) or (channel_multiplier < 1)):
raise ValueError('channel_multiplier ({}), must be integer >= 1'.format(channel_multiplier))
self._channel_multiplier = channel_multiplier
self._kernel_shape = _fill_and_verify_parameter_shape(kernel_shape, 2, 'kernel')
if (isinstance(stride, collections.Sequence) and (len(stride) == 4)):
if (not (stride[0] == stride[3] == 1)):
raise base.IncompatibleShapeError('Invalid stride: First and last element must be 1.')
if (not (isinstance(stride[1], numbers.Integral) and isinstance(stride[2], numbers.Integral))):
raise base.IncompatibleShapeError('Invalid stride: stride[1] and [2] must be integer.')
self._stride = tuple(stride)
else:
self._stride = _fill_and_one_pad_stride(stride, 2)
self._padding = _verify_padding(padding)
self._use_bias = use_bias
self.possible_keys = self.get_possible_initializer_keys(use_bias=use_bias)
self._initializers = util.check_initializers(initializers, self.possible_keys)
self._partitioners = util.check_partitioners(partitioners, self.possible_keys)
self._regularizers = util.check_regularizers(regularizers, self.possible_keys)
self._input_shape = None
self._input_channels = None
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.