|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- object-detection |
|
tags: |
|
- roboflow |
|
- signature |
|
pretty_name: Handwritten Signature |
|
size_categories: |
|
- 1K<n<10K |
|
configs: |
|
- config_name: full |
|
data_files: |
|
- split: train |
|
path: full/train-* |
|
- split: validation |
|
path: full/validation-* |
|
- split: test |
|
path: full/test-* |
|
default: true |
|
dataset_info: |
|
config_name: full |
|
features: |
|
- name: image_id |
|
dtype: int64 |
|
- name: image |
|
dtype: image |
|
- name: width |
|
dtype: int32 |
|
- name: height |
|
dtype: int32 |
|
- name: objects |
|
sequence: |
|
- name: id |
|
dtype: int64 |
|
- name: area |
|
dtype: int64 |
|
- name: bbox |
|
sequence: float32 |
|
length: 4 |
|
- name: category |
|
dtype: |
|
class_label: |
|
names: |
|
'0': signature |
|
splits: |
|
- name: train |
|
num_bytes: 114346924.72 |
|
num_examples: 1980 |
|
- name: validation |
|
num_bytes: 18085018 |
|
num_examples: 420 |
|
- name: test |
|
num_bytes: 18307713 |
|
num_examples: 419 |
|
download_size: 146763157 |
|
dataset_size: 150739655.72 |
|
--- |
|
|
|
# **Dataset: Signature Detection** |
|
|
|
This dataset was developed to train models for handwritten signature detection in various types of documents. It combines data from two public datasets ([Tobacco800](https://paperswithcode.com/dataset/tobacco-800) and [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up)) with processing and unification performed in [Roboflow](https://roboflow.com/). |
|
|
|
 |
|
|
|
## **Project Resources Overview** |
|
|
|
| Resource | Links / Badges | Details | |
|
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| **Article** | [](https://huggingface.co/blog/samuellimabraz/signature-detection-model) | A detailed community article covering the full development process of the project | |
|
| **Model Files** | [](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Available formats:** [](https://pytorch.org/) [](https://onnx.ai/) [](https://developer.nvidia.com/tensorrt) | |
|
| **Dataset – Original** | [](https://universe.roboflow.com/tech-ysdkk/signature-detection-hlx8j) | 2,819 document images annotated with signature coordinates | |
|
| **Dataset – Processed** | [](https://huggingface.co/datasets/tech4humans/signature-detection) | Augmented and pre-processed version (640px) for model training | |
|
| **Notebooks – Model Experiments** | [](https://colab.research.google.com/drive/1wSySw_zwyuv6XSaGmkngI4dwbj-hR4ix) [](https://api.wandb.ai/links/samuel-lima-tech4humans/30cmrkp8) | Complete training and evaluation pipeline with selection among different architectures (yolo, detr, rt-detr, conditional-detr, yolos) | |
|
| **Notebooks – HP Tuning** | [](https://colab.research.google.com/drive/1wSySw_zwyuv6XSaGmkngI4dwbj-hR4ix) [](https://api.wandb.ai/links/samuel-lima-tech4humans/31a6zhb1) | Optuna trials for optimizing the precision/recall balance | |
|
| **Inference Server** | [](https://github.com/tech4ai/t4ai-signature-detect-server) | Complete deployment and inference pipeline with Triton Inference Server<br> [](https://docs.openvino.ai/2025/index.html) [](https://www.docker.com/) [](https://developer.nvidia.com/triton-inference-server) | |
|
| **Live Demo** | [](https://huggingface.co/spaces/tech4humans/signature-detection) | Graphical interface with real-time inference<br> [](https://www.gradio.app/) [](https://plotly.com/python/) | |
|
|
|
## Dataset Components |
|
|
|
1. **[Tobacco800](https://paperswithcode.com/dataset/tobacco-800):** |
|
- Subset of the Complex Document Image Processing (CDIP) Test Collection. |
|
- Contains scanned images of documents related to the tobacco industry, created by the Illinois Institute of Technology. |
|
|
|
2. **[signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up):** |
|
- Part of [Roboflow 100](https://rf100.org/), an Intel initiative. |
|
- Includes 368 annotated images for handwritten signature detection. |
|
|
|
Both were unified to provide a robust and diverse foundation for object detection tasks. |
|
|
|
### **Dataset Details** |
|
|
|
- **Dataset Split:** |
|
- Training: 1,980 images (70%) |
|
- Validation: 420 images (15%) |
|
- Testing: 419 images (15%) |
|
|
|
- **Format:** COCO JSON |
|
- **License:** Apache 2.0 |
|
|
|
### **Preprocessing and Augmentations** |
|
|
|
- **Preprocessing:** |
|
- Auto-Orientation: Applied |
|
- Resizing: 640x640 pixels |
|
|
|
- **Applied Augmentations:** |
|
- 90° Rotation: Clockwise, counterclockwise, and upside down |
|
- Rotation: Between -10° and +10° |
|
- Shearing: ±4° Horizontal, ±3° Vertical |
|
- Brightness: Between -8% and +8% |
|
- Exposure: Between -13% and +13% |
|
- Blur: Up to 1.1 pixels |
|
- Noise: Up to 0.97% of pixels |
|
|
|
These steps were implemented to enhance the model's robustness and generalization ability. |
|
|
|
--- |
|
|
|
## **Model** |
|
|
|
This dataset was used to train the [yolov8s-signature-detector](https://huggingface.co/tech4humans/yolov8s-signature-detector) model for handwritten signature detection. For full technical details including performance metrics and architecture specifications, see the [Model Card](https://huggingface.co/tech4humans/yolov8s-signature-detector). |
|
|
|
--- |
|
|
|
## **How to Use with the Datasets Library** |
|
|
|
This dataset is available on the Hugging Face Hub and can be loaded directly using the `datasets` library. |
|
|
|
### **Installing the Library** |
|
|
|
```bash |
|
pip install datasets |
|
``` |
|
|
|
### **Loading the Dataset** |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("samuellimabraz/signature-detection") |
|
|
|
# Visualyze the first sample |
|
print(dataset["train"][0]) |
|
``` |
|
|
|
### **Use Case Example** |
|
|
|
```python |
|
import matplotlib.pyplot as plt |
|
import matplotlib.patches as patches |
|
import random |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("samuellimabraz/signature-detection") |
|
|
|
# Randomly select a sample from the test set |
|
sample = dataset["test"][random.randint(0, len(dataset["test"]))] |
|
|
|
image = sample["image"] |
|
bboxes = sample["objects"]["bbox"] |
|
|
|
fig, ax = plt.subplots(1, figsize=(8, 8)) |
|
ax.imshow(image) |
|
|
|
for bbox in bboxes: |
|
x, y, width, height = bbox |
|
rect = patches.Rectangle( |
|
(x, y), width, height, linewidth=2, edgecolor="red", facecolor="none" |
|
) |
|
ax.add_patch(rect) |
|
|
|
plt.axis("off") |
|
plt.show() |
|
``` |
|
|
|
--- |
|
|
|
## **License** |
|
|
|
The dataset is distributed under the [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) license. You are free to use, modify, and distribute the dataset as long as you comply with the license terms. |
|
|
|
--- |
|
|
|
## **Contact and Information** |
|
|
|
For more information, questions, and contributions, please contact [email protected]. |
|
|
|
<div align="center"> |
|
<p> |
|
📧 <b>Email:</b> <a href="mailto:[email protected]">[email protected]</a><br> |
|
🌐 <b>Website:</b> <a href="https://www.tech4.ai/">www.tech4.ai</a><br> |
|
💼 <b>LinkedIn:</b> <a href="https://www.linkedin.com/company/tech4humans-hyperautomation/">Tech4Humans</a> |
|
</p> |
|
</div> |
|
|
|
## **Author** |
|
|
|
<div align="center"> |
|
<table> |
|
<tr> |
|
<td align="center" width="140"> |
|
<a href="https://huggingface.co/samuellimabraz"> |
|
<img src="https://avatars.githubusercontent.com/u/115582014?s=400&u=c149baf46c51fdee45ad5344cf1b360236d90d09&v=4" width="120" alt="Samuel Lima"/> |
|
<h3>Samuel Lima</h3> |
|
</a> |
|
<p><i>AI Research Engineer</i></p> |
|
<p> |
|
<a href="https://huggingface.co/samuellimabraz"> |
|
<img src="https://img.shields.io/badge/🤗_HuggingFace-samuellimabraz-orange" alt="HuggingFace"/> |
|
</a> |
|
</p> |
|
</td> |
|
<td width="500"> |
|
<h4>Responsibilities in this Project</h4> |
|
<ul> |
|
<li>🔬 Model development and training</li> |
|
<li>📊 Dataset analysis and processing</li> |
|
<li>⚙️ Hyperparameter optimization and performance evaluation</li> |
|
<li>📝 Technical documentation and model card</li> |
|
</ul> |
|
</td> |
|
</tr> |
|
</table> |
|
</div> |
|
|
|
--- |
|
|
|
<div align="center"> |
|
<p>Developed with 💜 by <a href="https://www.tech4.ai/">Tech4Humans</a></p> |
|
</div> |