premise
stringlengths
12
3.12k
hypothesis
stringlengths
10
236
label
stringclasses
3 values
premise_tptp
stringlengths
51
8k
hypothesis_tptp
stringlengths
41
352
proof_inputs
sequencelengths
0
20
proof
stringlengths
767
76.8k
rule_concentration
float64
0
0.72
Lisa, Joni are the only persons in the room. Everyone in the room does not write poetry. Everyone in the room does not collect luxury watches, does not compose and performs experimental electronic music or does not write poetry. Someone in the room does not write poetry. It is true that “everyone outside the room does not write poetry”. Everyone in the room does not enjoy deep-sea diving and exploring underwater caves.
Everyone in the room does not enjoy deep-sea diving and exploring underwater caves and does not write poetry.
entailment
room(lisa)&room(joni)&(![X]:(room(X)=>(X='lisa'|X='joni')))& (![X]:(room(X)=>(does_not_write_poetry(X))))& (![X]:(room(X)=>(((does_not_collect_luxury_watches(X))|(does_not_compose_and_performs_experimental_electronic_music(X))|(does_not_write_poetry(X))))))& (?[X]:(room(X)&(does_not_write_poetry(X))))& (![X]:(room(X)=>(does_not_collect_luxury_watches(X))))& ((![X]:((does_not_compose_and_performs_experimental_electronic_music(X))<=>(does_not_collect_luxury_watches(X)))))& (![X]:(~room(X)=>(does_not_write_poetry(X))))& (![X]:(room(X)=>(((does_not_compose_and_performs_experimental_electronic_music(X))|(does_not_write_poetry(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(does_not_compose_and_performs_experimental_electronic_music(X))))& (![X]:(anywhere(X)=>(((does_not_compose_and_performs_experimental_electronic_music(X))|(does_not_write_poetry(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(((does_not_write_poetry(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))|(does_not_compose_and_performs_experimental_electronic_music(X))))))& ((![X]:((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))=>(does_not_collect_luxury_watches(X)))))& (![X]:(room(X)=>(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))
room(lisa)&room(joni)&(![X]:(room(X)=>(X='lisa'|X='joni')))& ![X]:(room(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))&(does_not_write_poetry(X)))))
[ "p0", "p1", "p6", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 4100194303215326038594557 % SZS output start Proof for 4100194303215326038594557 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => ~preda(X0)) [input p1] 50. ! [X0] : (~room(X0) => ~preda(X0)) [input p6] 56. ! [X0] : (room(X0) => ~predd(X0)) [input p12] 57. ~(! [X0] : (room(X0) => (~preda(X0) & ~predd(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 58. ~(! [X0] : (room(X0) => (~preda(X0) & ~predd(X0))) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary)) [rectify 57] 140. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 140] 142. ! [X0] : (~preda(X0) | ~room(X0)) [ennf transformation 45] 143. ! [X0] : (~preda(X0) | room(X0)) [ennf transformation 50] 144. ! [X0] : (~predd(X0) | ~room(X0)) [ennf transformation 56] 145. ? [X0] : ((preda(X0) | predd(X0)) & room(X0)) | ? [X1] : ((paul != X1 & mary != X1) & room(X1)) | ~room(paul) | ~room(mary) [ennf transformation 58] 146. ? [X0] : ((preda(X0) | predd(X0)) & room(X0)) | ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~room(paul) | ~room(mary) [flattening 145] 150. ? [X0] : ((preda(X0) | predd(X0)) & room(X0)) => ((preda(sK1) | predd(sK1)) & room(sK1)) [choice axiom] 151. ? [X1] : (paul != X1 & mary != X1 & room(X1)) => (paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 152. ((preda(sK1) | predd(sK1)) & room(sK1)) | (paul != sK2 & mary != sK2 & room(sK2)) | ~room(paul) | ~room(mary) [skolemisation 146,151,150] 233. room(mary) [cnf transformation 141] 234. room(paul) [cnf transformation 141] 235. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 141] 236. ~preda(X0) | ~room(X0) [cnf transformation 142] 239. ~preda(X0) | room(X0) [cnf transformation 143] 240. ~predd(X0) | ~room(X0) [cnf transformation 144] 241. room(sK1) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 152] 242. room(sK1) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 152] 243. room(sK1) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 152] 244. preda(sK1) | predd(sK1) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 152] 245. preda(sK1) | predd(sK1) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 152] 246. preda(sK1) | predd(sK1) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 152] 247. ~preda(X0) [subsumption resolution 239,236] 248. predd(sK1) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 246,247] 249. predd(sK1) | paul != sK2 | ~room(mary) [subsumption resolution 248,234] 250. predd(sK1) | paul != sK2 [subsumption resolution 249,233] 252. 1 <=> paul = sK2 [avatar definition] 254. paul != sK2 <- (~1) [avatar component clause 252] 256. 2 <=> predd(sK1) [avatar definition] 258. predd(sK1) <- (2) [avatar component clause 256] 259. ~1 | 2 [avatar split clause 250,256,252] 260. predd(sK1) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 245,247] 261. predd(sK1) | mary != sK2 | ~room(mary) [subsumption resolution 260,234] 262. predd(sK1) | mary != sK2 [subsumption resolution 261,233] 264. 3 <=> mary = sK2 [avatar definition] 266. mary != sK2 <- (~3) [avatar component clause 264] 267. ~3 | 2 [avatar split clause 262,256,264] 268. predd(sK1) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 244,247] 269. predd(sK1) | room(sK2) | ~room(mary) [subsumption resolution 268,234] 270. predd(sK1) | room(sK2) [subsumption resolution 269,233] 272. 4 <=> room(sK2) [avatar definition] 274. room(sK2) <- (4) [avatar component clause 272] 275. 4 | 2 [avatar split clause 270,256,272] 276. room(sK1) | paul != sK2 | ~room(mary) [subsumption resolution 243,234] 277. room(sK1) | paul != sK2 [subsumption resolution 276,233] 279. 5 <=> room(sK1) [avatar definition] 281. room(sK1) <- (5) [avatar component clause 279] 282. ~1 | 5 [avatar split clause 277,279,252] 283. room(sK1) | mary != sK2 | ~room(mary) [subsumption resolution 242,234] 284. room(sK1) | mary != sK2 [subsumption resolution 283,233] 285. ~3 | 5 [avatar split clause 284,279,264] 286. room(sK1) | room(sK2) | ~room(mary) [subsumption resolution 241,234] 287. room(sK1) | room(sK2) [subsumption resolution 286,233] 288. 4 | 5 [avatar split clause 287,279,272] 292. mary = sK2 | paul = sK2 <- (4) [resolution 235,274] 302. paul = sK2 <- (~3, 4) [subsumption resolution 292,266] 303. $false <- (~1, ~3, 4) [subsumption resolution 302,254] 304. 1 | 3 | ~4 [avatar contradiction clause 303] 307. ~room(sK1) <- (2) [resolution 258,240] 308. $false <- (2, 5) [subsumption resolution 307,281] 309. ~2 | ~5 [avatar contradiction clause 308] 310. $false [avatar sat refutation 259,267,275,282,285,288,304,309] % SZS output end Proof for 4100194303215326038594557 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.438705
There is a room. If “everyone in the room watches fantasy movies or does not enjoy writing detailed reviews of new and classic board games” then “everyone in the room who watches fantasy movies is a cybersecurity expert”. Everyone in the room who is a cybersecurity expert watches fantasy movies. No one in the room watches fantasy movies only if they designs and sews custom cosplay costumes for conventions. Everyone in the room who designs and sews custom cosplay costumes for conventions neither is a client of LVMH nor watches fantasy movies. If someone designs and sews custom cosplay costumes for conventions then he/she enjoys cross-country skiing. Everyone in the room enjoys stand-up paddleboarding if they makes homemade pastries and enjoys writing detailed reviews of new and classic board games. Everyone in the room who enjoys stand-up paddleboarding is a cybersecurity expert. Everyone anywhere enjoys stand-up paddleboarding or does not make homemade pastries. Everyone in the room who is a cybersecurity expert volunteers for local environmental conservation projects. No one in the room trains for and competes in international triathlons, enjoys writing detailed reviews of new and classic board games or own a television only if they writes in-depth travel guides for off-the-beaten-path destinations. Everyone in the room who writes in-depth travel guides for off-the-beaten-path destinations does practice yoga. Everyone anywhere who writes in-depth travel guides for off-the-beaten-path destinations, is a dedicated advocate for digital privacy and encryption or volunteers for local environmental conservation projects makes homemade pastries. Everyone outside the room who enjoys stand-up paddleboarding bakes bread at home or has a saltwater aquarium or both. Everyone anywhere bakes bread at home or has a saltwater aquarium or both if and only if they designs and sews custom cosplay costumes for conventions. Everyone in the room makes homemade pastries or is not a dedicated advocate for digital privacy and encryption. Everyone in the room who makes homemade pastries regularly contributes to tech forums and online communities. Everyone anywhere who regularly contributes to tech forums and online communities makes homemade pastries. Everyone in the room makes homemade pastries if they is an avid mountain climber who has scaled several peaks and vice versa.
Everyone in the room makes homemade pastries.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))|(watches_fantasy_movies(X))))))=>(![X]:(room(X)=>(((watches_fantasy_movies(X))=>(is_a_cybersecurity_expert(X)))))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(watches_fantasy_movies(X))))))& (~?[X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=(watches_fantasy_movies(X))))))& (![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(~((is_a_client_of_LVMH(X))|(watches_fantasy_movies(X))))))))& ((![X]:((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(enjoys_cross-country_skiing(X)))))& (![X]:(room(X)=>(((((makes_homemade_pastries(X))&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))=>(enjoys_stand-up_paddleboarding(X))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(is_a_cybersecurity_expert(X))))))& (![X]:(anywhere(X)=>(((does_not_make_homemade_pastries(X))|(enjoys_stand-up_paddleboarding(X))))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (~?[X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<=(((trains_for_and_competes_in_international_triathlons(X))|(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))|(own_a_television(X))))))))& (![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(does_practice_yoga(X))))))& (![X]:(anywhere(X)=>(((((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(volunteers_for_local_environmental_conservation_projects(X))))=>(makes_homemade_pastries(X))))))& (![X]:(~room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(((bakes_bread_at_home(X))|(has_a_saltwater_aquarium(X))))))))& (![X]:(anywhere(X)=>(((((bakes_bread_at_home(X))|(has_a_saltwater_aquarium(X))))<=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(makes_homemade_pastries(X))))))& (![X]:(room(X)=>(((makes_homemade_pastries(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(anywhere(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(makes_homemade_pastries(X))))))& (![X]:(room(X)=>(((makes_homemade_pastries(X))<=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))
(there_is_a_room)& ![X]:(room(X)=>(makes_homemade_pastries(X)))
[ "b4", "p0", "p1", "p3", "p9", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 779186541073916792024988 % SZS output start Proof for 779186541073916792024988 5. ! [X0] : anywhere(X0) [input b4] 44. there_is_a_room [input p0] 45. ! [X0] : (room(X0) => (predv(X0) | ~predm(X0))) => ! [X0] : (room(X0) => (predv(X0) => predx(X0))) [input p1] 47. ~? [X0] : (room(X0) => (predv(X0) => predt(X0))) [input p3] 53. ! [X0] : (room(X0) => (predx(X0) => predj(X0))) [input p9] 56. ! [X0] : (anywhere(X0) => ((predj(X0) | preda(X0) | predu(X0)) => predk(X0))) [input p12] 63. ~(! [X0] : (room(X0) => predk(X0)) & there_is_a_room) [input hypothesis] 64. ! [X0] : (room(X0) => (predv(X0) | ~predm(X0))) => ! [X1] : (room(X1) => (predv(X1) => predx(X1))) [rectify 45] 66. ! [X0] : (anywhere(X0) => ((predj(X0) | predu(X0)) => predk(X0))) [pure predicate removal 56] 70. ! [X0] : (anywhere(X0) => (predj(X0) => predk(X0))) [pure predicate removal 66] 144. ! [X1] : ((predx(X1) | ~predv(X1)) | ~room(X1)) | ? [X0] : ((~predv(X0) & predm(X0)) & room(X0)) [ennf transformation 64] 145. ! [X1] : (predx(X1) | ~predv(X1) | ~room(X1)) | ? [X0] : (~predv(X0) & predm(X0) & room(X0)) [flattening 144] 148. ! [X0] : ((~predt(X0) & predv(X0)) & room(X0)) [ennf transformation 47] 149. ! [X0] : (~predt(X0) & predv(X0) & room(X0)) [flattening 148] 158. ! [X0] : ((predj(X0) | ~predx(X0)) | ~room(X0)) [ennf transformation 53] 159. ! [X0] : (predj(X0) | ~predx(X0) | ~room(X0)) [flattening 158] 161. ! [X0] : ((predk(X0) | ~predj(X0)) | ~anywhere(X0)) [ennf transformation 70] 162. ! [X0] : (predk(X0) | ~predj(X0) | ~anywhere(X0)) [flattening 161] 171. ? [X0] : (~predk(X0) & room(X0)) | ~there_is_a_room [ennf transformation 63] 173. ! [X0] : (predx(X0) | ~predv(X0) | ~room(X0)) | ? [X1] : (~predv(X1) & predm(X1) & room(X1)) [rectify 145] 174. ? [X1] : (~predv(X1) & predm(X1) & room(X1)) => (~predv(sK0) & predm(sK0) & room(sK0)) [choice axiom] 175. ! [X0] : (predx(X0) | ~predv(X0) | ~room(X0)) | (~predv(sK0) & predm(sK0) & room(sK0)) [skolemisation 173,174] 179. ? [X0] : (~predk(X0) & room(X0)) => (~predk(sK1) & room(sK1)) [choice axiom] 180. (~predk(sK1) & room(sK1)) | ~there_is_a_room [skolemisation 171,179] 181. anywhere(X0) [cnf transformation 5] 262. there_is_a_room [cnf transformation 44] 265. predx(X0) | ~predv(X0) | ~room(X0) | ~predv(sK0) [cnf transformation 175] 267. room(X0) [cnf transformation 149] 268. predv(X0) [cnf transformation 149] 274. predj(X0) | ~predx(X0) | ~room(X0) [cnf transformation 159] 276. predk(X0) | ~predj(X0) | ~anywhere(X0) [cnf transformation 162] 286. ~predk(sK1) | ~there_is_a_room [cnf transformation 180] 288. 1 <=> predv(sK0) [avatar definition] 290. ~predv(sK0) <- (~1) [avatar component clause 288] 292. 2 <=> ! [X0] : (predx(X0) | ~room(X0) | ~predv(X0)) [avatar definition] 293. predx(X0) | ~room(X0) | ~predv(X0) <- (2) [avatar component clause 292] 294. ~1 | 2 [avatar split clause 265,292,288] 308. ~predx(X0) | predj(X0) [subsumption resolution 274,267] 309. ~predj(X0) | predk(X0) [subsumption resolution 276,181] 318. ~predk(sK1) [subsumption resolution 286,262] 319. predx(X0) | ~predv(X0) <- (2) [subsumption resolution 293,267] 320. predx(X0) <- (2) [subsumption resolution 319,268] 321. predj(X0) <- (2) [resolution 308,320] 322. predk(X0) <- (2) [resolution 309,321] 323. $false <- (2) [resolution 322,318] 325. ~2 [avatar contradiction clause 323] 326. $false <- (~1) [subsumption resolution 290,268] 327. 1 [avatar contradiction clause 326] 328. $false [avatar sat refutation 294,325,327] % SZS output end Proof for 779186541073916792024988 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.021 s % ------------------------------ % ------------------------------
0.181692
Mark is the only person in the room. Not everyone outside the room is a tall european if they is allergic to anything. Only one person outside the room is a client of Alan. Kevin and Mark hate each other. Mark enjoys cross-country skiing. Mark is allergic to anything. Rick and Mark like each other. Everyone in the room enjoys bird watching. Mark works as a freelance web developer specializing in e-commerce sites. Mark is wise. All humble person is brave. Mark is a coffee connoisseur. Someone in the room is not a tall tourist. Mark is not not old. Everyone in the room is a quiet tourist. Everyone in the room works as a freelance web developer specializing in e-commerce sites.
Mark enjoys bird watching.
entailment
room(mark)&(![X]:(room(X)=>(X='mark')))& (~![X]:(~room(X)=>(((is_allergic_to_anything(X))=>(tall(X)&european(X))))))& (((?[X]:(~room(X)&client(alan,X)))&(![X,Y]:((~room(X)&~room(Y)&(client(alan,X))&(client(alan,Y)))=>(X=Y)))))& ((hate(kevin,mark) & hate(mark,kevin)))& (enjoys_cross-country_skiing(mark))& (is_allergic_to_anything(mark))& ((like(rick,mark) & like(mark,rick)))& (![X]:(room(X)=>(enjoys_bird_watching(X))))& (works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(mark))& (wise(mark))& (![X]:(humble(X)=>brave(X)))& (is_a_coffee_connoisseur(mark))& (?[X]:(room(X)&(~(tall(X)&tourist(X)))))& (~~old(mark))& (![X]:(room(X)=>(quiet(X)&tourist(X))))& (![X]:(room(X)=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))
room(mark)&(![X]:(room(X)=>(X='mark')))& enjoys_bird_watching(mark)
[ "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 741882520416243341441463 % SZS output start Proof for 741882520416243341441463 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 51. ! [X0] : (room(X0) => predy(X0)) [input p7] 60. ~(predy(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 147. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 151. ! [X0] : (predy(X0) | ~room(X0)) [ennf transformation 51] 153. ~predy(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 60] 161. ? [X0] : (mary != X0 & room(X0)) => (mary != sK3 & room(sK3)) [choice axiom] 162. ~predy(mary) | (mary != sK3 & room(sK3)) | ~room(mary) [skolemisation 153,161] 245. room(mary) [cnf transformation 147] 246. ~room(X0) | mary = X0 [cnf transformation 147] 255. ~room(X0) | predy(X0) [cnf transformation 151] 259. ~predy(mary) | room(sK3) | ~room(mary) [cnf transformation 162] 260. ~predy(mary) | mary != sK3 | ~room(mary) [cnf transformation 162] 261. ~predy(mary) | mary != sK3 [subsumption resolution 260,245] 263. 1 <=> mary = sK3 [avatar definition] 265. mary != sK3 <- (~1) [avatar component clause 263] 267. 2 <=> predy(mary) [avatar definition] 270. ~1 | ~2 [avatar split clause 261,267,263] 271. ~predy(mary) | room(sK3) [subsumption resolution 259,245] 273. 3 <=> room(sK3) [avatar definition] 275. room(sK3) <- (3) [avatar component clause 273] 276. 3 | ~2 [avatar split clause 271,267,273] 277. predy(mary) [resolution 255,245] 281. 2 [avatar split clause 277,267] 288. mary = sK3 <- (3) [resolution 246,275] 292. $false <- (~1, 3) [subsumption resolution 288,265] 293. 1 | ~3 [avatar contradiction clause 292] 294. $false [avatar sat refutation 270,276,281,293] % SZS output end Proof for 741882520416243341441463 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.032 s % ------------------------------ % ------------------------------
0.392437
Francis, Maria, Carol, Margaret are the only persons in the room. If "Carol neither is a culinary enthusiast who experiments with international cuisines nor enjoys virtual reality gaming" then "Francis does not collect classic novels". "Francis streams on Twitch" if "Maria is a coffee connoisseur and is a culinary enthusiast who experiments with international cuisines" and vice versa. At least one person in the room is a culinary enthusiast who experiments with international cuisines. Francis streams on Twitch. Carol neither collects classic novels nor is a coffee connoisseur. Carol creates large-scale murals for public art installations or streams on Twitch or both. If someone creates large-scale murals for public art installations then he/she enjoys virtual reality gaming and vice versa. Francis is a culinary enthusiast who experiments with international cuisines or does not stream on Twitch or both. Francis enjoys skydiving. Francis does not practice calligraphy. Francis does not collect classic novels.
Carol creates large-scale murals for public art installations.
neutral
room(francis)&room(maria)&room(carol)&room(margaret)&(![X]:(room(X)=>(X='francis'|X='maria'|X='carol'|X='margaret')))& ((~((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(carol))|(enjoys_virtual_reality_gaming(carol))))=>(does_not_collect_classic_novels(francis)))& ((((is_a_coffee_connoisseur(maria))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(maria))))<=>(streams_on_Twitch(francis)))& (((?[X]:(room(X)&is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))& (streams_on_Twitch(francis))& (~((collects_classic_novels(carol))|(is_a_coffee_connoisseur(carol))))& (((creates_large-scale_murals_for_public_art_installations(carol))|(streams_on_Twitch(carol))))& ((![X]:((creates_large-scale_murals_for_public_art_installations(X))<=>(enjoys_virtual_reality_gaming(X)))))& (((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(francis))|(does_not_stream_on_Twitch(francis))))& (enjoys_skydiving(francis))& (does_not_practice_calligraphy(francis))& (does_not_collect_classic_novels(francis))& (creates_large-scale_murals_for_public_art_installations(maria))
room(francis)&room(maria)&room(carol)&room(margaret)&(![X]:(room(X)=>(X='francis'|X='maria'|X='carol'|X='margaret')))& creates_large-scale_murals_for_public_art_installations(carol)
[]
null
0.103292
Henry, Sandra, Jim are the only persons in the room. If “Sandra is a kind person” then “Henry is not a generous person”. Henry and Sandra are wise strong persons. No wise person is quiet. Everyone in the room who is not a brave person is a wise patient person. Everyone anywhere who is a wise person is a funny curious person.
Sandra and Jim are curious.
entailment
room(henry)&room(sandra)&room(jim)&(![X]:(room(X)=>(X='henry'|X='sandra'|X='jim')))& ((kind(sandra)&person(sandra))=>(~(generous(henry)&person(henry))))& (![X]:((room(X)&(X!=sandra))=>quieter(X,sandra)))& (![X]:(room(X)=>(((~(creative(X)&generous(X)&patient(X)&humble(X)&person(X)))=>(~kind(X))))))& (![X]:(room(X)=>(((brave(X)&person(X))=>(~tall(X)&~happy(X)&~calm(X)&~old(X)&~humble(X)&~quiet(X))))))& (![X]:(anywhere(X)=>(((~((~old(X))|(old(X)&person(X))))=>(~calm(X))))))& (~(strong(sandra)&happy(sandra)&person(sandra)))& (![X]:((room(X)&(X!=henry))=>older(X,henry)))& (![X]:(room(X)=>(((curious(X)&wise(X)&generous(X)&happy(X)&creative(X)&person(X))=>(((generous(X)&kind(X)&happy(X)&person(X))|(curious(X)&wise(X)&funny(X)&strong(X)&person(X))|(~(kind(X)&person(X)))))))))& (~(generous(henry)&person(henry)))& (wise(henry)&strong(henry)&person(henry)&wise(sandra)&strong(sandra)&person(sandra))& (~?[X]:(wise(X)=>quiet(X)))& (![X]:(~room(X)=>(((creative(X)&person(X))=>(patient(X))))))& (![X]:(creative(X)=>old(X)))& (![X]:((room(X)&(X!=sandra))=>richer(sandra,X)))& (brave(henry)&person(henry))& (((~creative(sandra))|(tall(sandra)&strong(sandra)&curious(sandra)&brave(sandra)&kind(sandra)&happy(sandra)&person(sandra))|(~(strong(sandra)&brave(sandra)&person(sandra)))))& (![X]:(room(X)=>(((~(brave(X)&person(X)))=>(wise(X)&patient(X)&person(X))))))& (![X]:(anywhere(X)=>(((wise(X)&person(X))=>(funny(X)&curious(X)&person(X))))))& (![X]:(curious(X)=>wise(X)))& (![X]:(old(X)=>happy(X)))
room(henry)&room(sandra)&room(jim)&(![X]:(room(X)=>(X='henry'|X='sandra'|X='jim')))& curious(sandra)&curious(jim)
[ "b4", "p0", "p10", "p11", "p17", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 921747877166000319093657 % SZS output start Proof for 921747877166000319093657 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 54. person(paul) & strong(paul) & wise(paul) & person(mary) & strong(mary) & wise(mary) [input p10] 55. ~? [X0] : (wise(X0) => quiet(X0)) [input p11] 61. ! [X0] : (room(X0) => (~(person(X0) & brave(X0)) => (person(X0) & patient(X0) & wise(X0)))) [input p17] 62. ! [X0] : (anywhere(X0) => ((person(X0) & wise(X0)) => (person(X0) & curious(X0) & funny(X0)))) [input p18] 65. ~(curious(fred) & curious(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 66. ! [X0] : (anywhere(X0) => ((person(X0) & wise(X0)) => (person(X0) & curious(X0)))) [pure predicate removal 62] 72. ! [X0] : (room(X0) => (~(person(X0) & brave(X0)) => (person(X0) & wise(X0)))) [pure predicate removal 61] 144. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 145. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 144] 160. ! [X0] : (~quiet(X0) & wise(X0)) [ennf transformation 55] 166. ! [X0] : (((person(X0) & wise(X0)) | (person(X0) & brave(X0))) | ~room(X0)) [ennf transformation 72] 167. ! [X0] : ((person(X0) & wise(X0)) | (person(X0) & brave(X0)) | ~room(X0)) [flattening 166] 168. ! [X0] : (((person(X0) & curious(X0)) | (~person(X0) | ~wise(X0))) | ~anywhere(X0)) [ennf transformation 66] 169. ! [X0] : ((person(X0) & curious(X0)) | ~person(X0) | ~wise(X0) | ~anywhere(X0)) [flattening 168] 172. ~curious(fred) | ~curious(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 65] 173. ~curious(fred) | ~curious(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 172] 178. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 179. ~curious(fred) | ~curious(paul) | (fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 173,178] 180. anywhere(X0) [cnf transformation 5] 261. room(mary) [cnf transformation 145] 262. room(paul) [cnf transformation 145] 263. room(fred) [cnf transformation 145] 264. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 145] 292. person(paul) [cnf transformation 54] 293. wise(X0) [cnf transformation 160] 309. person(X0) | person(X0) | ~room(X0) [cnf transformation 167] 310. curious(X0) | ~person(X0) | ~wise(X0) | ~anywhere(X0) [cnf transformation 169] 314. ~curious(fred) | ~curious(paul) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 179] 315. ~curious(fred) | ~curious(paul) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 179] 316. ~curious(fred) | ~curious(paul) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 179] 317. ~curious(fred) | ~curious(paul) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 179] 318. ~room(X0) | person(X0) [duplicate literal removal 309] 328. 2 <=> person(paul) [avatar definition] 329. person(paul) <- (2) [avatar component clause 328] 353. 2 [avatar split clause 292,328] 368. 9 <=> curious(paul) [avatar definition] 377. curious(X0) | ~person(X0) | ~anywhere(X0) [subsumption resolution 310,293] 378. ~person(X0) | curious(X0) [subsumption resolution 377,180] 379. ~curious(fred) | ~curious(paul) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 317,263] 380. ~curious(fred) | ~curious(paul) | fred != sK1 | ~room(mary) [subsumption resolution 379,262] 381. ~curious(fred) | ~curious(paul) | fred != sK1 [subsumption resolution 380,261] 383. 11 <=> fred = sK1 [avatar definition] 385. fred != sK1 <- (~11) [avatar component clause 383] 387. 12 <=> curious(fred) [avatar definition] 390. ~11 | ~9 | ~12 [avatar split clause 381,387,368,383] 391. ~curious(fred) | ~curious(paul) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 316,263] 392. ~curious(fred) | ~curious(paul) | paul != sK1 | ~room(mary) [subsumption resolution 391,262] 393. ~curious(fred) | ~curious(paul) | paul != sK1 [subsumption resolution 392,261] 395. 13 <=> paul = sK1 [avatar definition] 397. paul != sK1 <- (~13) [avatar component clause 395] 398. ~13 | ~9 | ~12 [avatar split clause 393,387,368,395] 399. ~curious(fred) | ~curious(paul) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 315,263] 400. ~curious(fred) | ~curious(paul) | mary != sK1 | ~room(mary) [subsumption resolution 399,262] 401. ~curious(fred) | ~curious(paul) | mary != sK1 [subsumption resolution 400,261] 403. 14 <=> mary = sK1 [avatar definition] 405. mary != sK1 <- (~14) [avatar component clause 403] 406. ~14 | ~9 | ~12 [avatar split clause 401,387,368,403] 407. ~curious(fred) | ~curious(paul) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 314,263] 408. ~curious(fred) | ~curious(paul) | room(sK1) | ~room(mary) [subsumption resolution 407,262] 409. ~curious(fred) | ~curious(paul) | room(sK1) [subsumption resolution 408,261] 411. 15 <=> room(sK1) [avatar definition] 413. room(sK1) <- (15) [avatar component clause 411] 414. 15 | ~9 | ~12 [avatar split clause 409,387,368,411] 417. person(fred) [resolution 318,263] 418. curious(paul) <- (2) [resolution 378,329] 420. curious(fred) [resolution 378,417] 421. 9 | ~2 [avatar split clause 418,328,368] 424. 12 [avatar split clause 420,387] 574. paul = sK1 | mary = sK1 | fred = sK1 <- (15) [resolution 264,413] 575. mary = sK1 | fred = sK1 <- (~13, 15) [subsumption resolution 574,397] 576. fred = sK1 <- (~13, ~14, 15) [subsumption resolution 575,405] 577. $false <- (~11, ~13, ~14, 15) [subsumption resolution 576,385] 578. 11 | 13 | 14 | ~15 [avatar contradiction clause 577] 579. $false [avatar sat refutation 353,390,398,406,414,421,424,578] % SZS output end Proof for 921747877166000319093657 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
Stanley, Wayne are the only persons in the room. “Stanley writes and illustrates their own graphic novels” if “it is not the case that “Stanley is not a Linux enthusiast”” and vice versa. Wayne owns an Android phone. If someone either owns an Android phone or is a client of LVMH but not both then he/she either plays the violin or is a client of LVMH but not both. It is not the case that “Wayne is a Linux enthusiast”. If someone is a Linux enthusiast then he/she plays the violin. Stanley writes and illustrates their own graphic novels. Wayne plays the violin. Wayne writes and illustrates their own graphic novels.
More than one person in the room owns an Android phone.
neutral
room(stanley)&room(wayne)&(![X]:(room(X)=>(X='stanley'|X='wayne')))& ((~(is_not_a_Linux_enthusiast(stanley)))<=>(writes_and_illustrates_their_own_graphic_novels(stanley)))& (owns_an_Android_phone(wayne))& ((![X]:((((owns_an_Android_phone(X))<~>(is_a_client_of_LVMH(X))))=>(((plays_the_violin(X))<~>(is_a_client_of_LVMH(X)))))))& (~(is_a_Linux_enthusiast(wayne)))& ((![X]:((is_a_Linux_enthusiast(X))=>(plays_the_violin(X)))))& (writes_and_illustrates_their_own_graphic_novels(stanley))& (plays_the_violin(wayne))& (writes_and_illustrates_their_own_graphic_novels(wayne))
room(stanley)&room(wayne)&(![X]:(room(X)=>(X='stanley'|X='wayne')))& (?[X,Y]:(room(X)&room(Y)&(owns_an_Android_phone(X)&owns_an_Android_phone(Y))&(X!=Y)))
[]
null
0.461866
Darrell, Linda, Leslie, Maria are the only persons in the room. “Everyone in the room is not a dedicated advocate for digital privacy and encryption” only if “everyone in the room does not travel domestically frequently”. Everyone anywhere does not mentor a youth basketball team on weekends. At least one person in the room does not travel domestically frequently. At least one person in the room is not an avid collector of autographed memorabilia from famous musicians. Everyone anywhere is not an amateur astronomer who builds and uses custom telescopes. Not everyone anywhere is not an avid collector of autographed memorabilia from famous musicians. Everyone in the room is not an avid collector of autographed memorabilia from famous musicians and does not write and illustrates their own graphic novels. If someone is not an avid collector of autographed memorabilia from famous musicians then he/she does not write and illustrates their own graphic novels and is not a dedicated advocate for digital privacy and encryption. Everyone in the room does not mentor a youth basketball team on weekends. Everyone anywhere does not travel domestically frequently. Everyone in the room does not travel domestically frequently.
Darrell is not an amateur astronomer who builds and uses custom telescopes or writes and illustrates their own graphic novels or both.
entailment
room(darrell)&room(linda)&room(leslie)&room(maria)&(![X]:(room(X)=>(X='darrell'|X='linda'|X='leslie'|X='maria')))& ((![X]:(room(X)=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))=>(![X]:(room(X)=>(does_not_travel_domestically_frequently(X)))))& (![X]:(anywhere(X)=>(does_not_mentor_a_youth_basketball_team_on_weekends(X))))& (((?[X]:(room(X)&does_not_travel_domestically_frequently(X)))))& (((?[X]:(room(X)&is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))& (![X]:(anywhere(X)=>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))& (~![X]:(anywhere(X)=>(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))& (![X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))&(does_not_write_and_illustrates_their_own_graphic_novels(X))))))& ((![X]:((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))&(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))& (![X]:(room(X)=>(does_not_mentor_a_youth_basketball_team_on_weekends(X))))& (![X]:(anywhere(X)=>(does_not_travel_domestically_frequently(X))))& (![X]:(room(X)=>(does_not_travel_domestically_frequently(X))))
room(darrell)&room(linda)&room(leslie)&room(maria)&(![X]:(room(X)=>(X='darrell'|X='linda'|X='leslie'|X='maria')))& ((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(darrell))|(writes_and_illustrates_their_own_graphic_novels(darrell)))
[ "b4", "p0", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 8933918007887686608390761 % SZS output start Proof for 8933918007887686608390761 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. ! [X0] : (anywhere(X0) => ~predf(X0)) [input p5] 56. ~((predd(mary) | ~predf(mary)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 59. ~(~predf(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [pure predicate removal 56] 139. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 140. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 139] 141. ! [X0] : (~predf(X0) | ~anywhere(X0)) [ennf transformation 49] 144. predf(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 59] 145. predf(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 144] 153. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 154. predf(mary) | (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 145,153] 155. anywhere(X0) [cnf transformation 5] 236. room(mary) [cnf transformation 140] 237. room(paul) [cnf transformation 140] 238. room(fred) [cnf transformation 140] 239. room(alice) [cnf transformation 140] 240. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 140] 244. ~predf(X0) | ~anywhere(X0) [cnf transformation 141] 248. predf(mary) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154] 249. predf(mary) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154] 250. predf(mary) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154] 251. predf(mary) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154] 252. predf(mary) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154] 253. ~predf(X0) [subsumption resolution 244,155] 254. alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 252,253] 255. alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 254,239] 256. alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 255,238] 257. alice != sK3 | ~room(mary) [subsumption resolution 256,237] 258. alice != sK3 [subsumption resolution 257,236] 259. fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 251,253] 260. fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 259,239] 261. fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 260,238] 262. fred != sK3 | ~room(mary) [subsumption resolution 261,237] 263. fred != sK3 [subsumption resolution 262,236] 264. paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 250,253] 265. paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 264,239] 266. paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 265,238] 267. paul != sK3 | ~room(mary) [subsumption resolution 266,237] 268. paul != sK3 [subsumption resolution 267,236] 269. mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 249,253] 270. mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 269,239] 271. mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 270,238] 272. mary != sK3 | ~room(mary) [subsumption resolution 271,237] 273. mary != sK3 [subsumption resolution 272,236] 274. room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 248,253] 275. room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 274,239] 276. room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 275,238] 277. room(sK3) | ~room(mary) [subsumption resolution 276,237] 278. room(sK3) [subsumption resolution 277,236] 328. fred = sK3 | paul = sK3 | mary = sK3 | alice = sK3 [resolution 240,278] 363. paul = sK3 | mary = sK3 | alice = sK3 [subsumption resolution 328,263] 364. mary = sK3 | alice = sK3 [subsumption resolution 363,268] 365. alice = sK3 [subsumption resolution 364,273] 366. $false [subsumption resolution 365,258] % SZS output end Proof for 8933918007887686608390761 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.396473
There is a room. If everyone in the room enjoys logic puzzles or does not enjoy logic puzzles then everyone in the room enjoys logic puzzles only if they owns a smart tv. If not everyone anywhere does not own an extensive assortment of vintage comic book memorabilia or owns an extensive assortment of vintage comic book memorabilia then everyone in the room who can play the piano is passionate about collecting and restoring classic cars. If someone in the room is passionate about collecting and restoring classic cars then not everyone in the room does not train for and competes in international triathlons or trains for and competes in international triathlons. If not everyone in the room does not train for and competes in international triathlons or trains for and competes in international triathlons then if someone makes homemade pastries then he/she enjoys logic puzzles. If everyone anywhere does not own an extensive assortment of vintage comic book memorabilia or can play the piano then at least one person in the room neither trains for and competes in international triathlons nor enjoys making ceramics.
Everyone outside the room is an avid mountain climber who has scaled several peaks.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_enjoy_logic_puzzles(X))|(enjoys_logic_puzzles(X))))))=>(![X]:(room(X)=>(((owns_a_smart_tv(X))<=(enjoys_logic_puzzles(X)))))))& ((~![X]:(anywhere(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))=>(![X]:(room(X)=>(((can_play_the_piano(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X)))))))& (((?[X]:(room(X)&(is_passionate_about_collecting_and_restoring_classic_cars(X))))=>(~![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))|(does_not_train_for_and_competes_in_international_triathlons(X)))))))& ((~![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))=>((![X]:((makes_homemade_pastries(X))=>(enjoys_logic_puzzles(X)))))))& ((![X]:(anywhere(X)=>(((can_play_the_piano(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))=>(((?[X]:(room(X)&~((trains_for_and_competes_in_international_triathlons(X))|(enjoys_making_ceramics(X))))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))|(does_not_enjoy_rooftop_gardening(X))))))& (![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (~?[X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(makes_homemade_pastries(X))))))& ((![X]:((owns_a_smart_tv(X))=>(trains_for_and_competes_in_international_triathlons(X)))))& (?[X]:(room(X)&(is_a_professional_photographer_specializing_in_portrait_photography(X))))& (![X]:(room(X)=>(((((is_a_professional_photographer_specializing_in_portrait_photography(X))&(can_play_the_piano(X))))<=(enjoys_making_ceramics(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 1386517973453790031401611 % SZS output start Proof for 1386517973453790031401611 44. ! [X0] : (room(X0) => (predf(X0) => (predg(X0) & predb(X0)))) & ? [X0] : (predb(X0) & room(X0)) & ! [X0] : (predi(X0) => preda(X0)) & ~? [X0] : (room(X0) => (predd(X0) => predh(X0))) & ! [X0] : (room(X0) => (predc(X0) => predb(X0))) & ! [X0] : (room(X0) => (~predj(X0) | predf(X0))) & (! [X0] : (anywhere(X0) => (~predk(X0) | predg(X0))) => ? [X0] : (~(predf(X0) | preda(X0)) & room(X0))) & (~! [X0] : (room(X0) => (~preda(X0) | preda(X0))) => ! [X0] : (predh(X0) => predd(X0))) & (? [X0] : (prede(X0) & room(X0)) => ~! [X0] : (room(X0) => (~preda(X0) | preda(X0)))) & (~! [X0] : (anywhere(X0) => (~predk(X0) | predk(X0))) => ! [X0] : (room(X0) => (predg(X0) => prede(X0)))) & (! [X0] : (room(X0) => (predd(X0) | ~predd(X0))) => ! [X0] : (room(X0) => (predd(X0) => predi(X0)))) & there_is_a_room [input p0] 45. ~(! [X0] : (~room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 46. ! [X0] : (room(X0) => (predf(X0) => (predg(X0) & predb(X0)))) & ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (predi(X2) => preda(X2)) & ~? [X3] : (room(X3) => (predd(X3) => predh(X3))) & ! [X4] : (room(X4) => (predc(X4) => predb(X4))) & ! [X5] : (room(X5) => (~predj(X5) | predf(X5))) & (! [X6] : (anywhere(X6) => (~predk(X6) | predg(X6))) => ? [X7] : (~(predf(X7) | preda(X7)) & room(X7))) & (~! [X8] : (room(X8) => (~preda(X8) | preda(X8))) => ! [X9] : (predh(X9) => predd(X9))) & (? [X10] : (prede(X10) & room(X10)) => ~! [X11] : (room(X11) => (~preda(X11) | preda(X11)))) & (~! [X12] : (anywhere(X12) => (~predk(X12) | predk(X12))) => ! [X13] : (room(X13) => (predg(X13) => prede(X13)))) & (! [X14] : (room(X14) => (predd(X14) | ~predd(X14))) => ! [X15] : (room(X15) => (predd(X15) => predi(X15)))) & there_is_a_room [rectify 44] 47. ! [X0] : (room(X0) => (predf(X0) => predg(X0))) & ? [X1] : room(X1) & ! [X2] : (predi(X2) => preda(X2)) & ~? [X3] : (room(X3) => (predd(X3) => predh(X3))) & ! [X5] : (room(X5) => (~predj(X5) | predf(X5))) & (! [X6] : (anywhere(X6) => (~predk(X6) | predg(X6))) => ? [X7] : (~(predf(X7) | preda(X7)) & room(X7))) & (~! [X8] : (room(X8) => (~preda(X8) | preda(X8))) => ! [X9] : (predh(X9) => predd(X9))) & (? [X10] : (prede(X10) & room(X10)) => ~! [X11] : (room(X11) => (~preda(X11) | preda(X11)))) & (~! [X12] : (anywhere(X12) => (~predk(X12) | predk(X12))) => ! [X13] : (room(X13) => (predg(X13) => prede(X13)))) & (! [X14] : (room(X14) => (predd(X14) | ~predd(X14))) => ! [X15] : (room(X15) => (predd(X15) => predi(X15)))) & there_is_a_room [pure predicate removal 46] 48. ~(! [X0] : ~~room(X0) & there_is_a_room) [pure predicate removal 45] 49. ! [X0] : (room(X0) => (predf(X0) => predg(X0))) & ? [X1] : room(X1) & ! [X2] : (predi(X2) => preda(X2)) & ~? [X3] : (room(X3) => (predd(X3) => predh(X3))) & (! [X6] : (anywhere(X6) => (~predk(X6) | predg(X6))) => ? [X7] : (~(predf(X7) | preda(X7)) & room(X7))) & (~! [X8] : (room(X8) => (~preda(X8) | preda(X8))) => ! [X9] : (predh(X9) => predd(X9))) & (? [X10] : (prede(X10) & room(X10)) => ~! [X11] : (room(X11) => (~preda(X11) | preda(X11)))) & (~! [X12] : (anywhere(X12) => (~predk(X12) | predk(X12))) => ! [X13] : (room(X13) => (predg(X13) => prede(X13)))) & (! [X14] : (room(X14) => (predd(X14) | ~predd(X14))) => ! [X15] : (room(X15) => (predd(X15) => predi(X15)))) & there_is_a_room [pure predicate removal 47] 50. ? [X1] : room(X1) & ! [X2] : (predi(X2) => preda(X2)) & ~? [X3] : (room(X3) => (predd(X3) => predh(X3))) & (! [X6] : (anywhere(X6) => (~predk(X6) | predg(X6))) => ? [X7] : (~preda(X7) & room(X7))) & (~! [X8] : (room(X8) => (~preda(X8) | preda(X8))) => ! [X9] : (predh(X9) => predd(X9))) & (? [X10] : (prede(X10) & room(X10)) => ~! [X11] : (room(X11) => (~preda(X11) | preda(X11)))) & (~! [X12] : (anywhere(X12) => (~predk(X12) | predk(X12))) => ! [X13] : (room(X13) => (predg(X13) => prede(X13)))) & (! [X14] : (room(X14) => (predd(X14) | ~predd(X14))) => ! [X15] : (room(X15) => (predd(X15) => predi(X15)))) & there_is_a_room [pure predicate removal 49] 51. ? [X1] : room(X1) & ! [X2] : (predi(X2) => preda(X2)) & ~? [X3] : (room(X3) => (predd(X3) => predh(X3))) & (! [X6] : (anywhere(X6) => ~predk(X6)) => ? [X7] : (~preda(X7) & room(X7))) & (~! [X8] : (room(X8) => (~preda(X8) | preda(X8))) => ! [X9] : (predh(X9) => predd(X9))) & (? [X10] : (prede(X10) & room(X10)) => ~! [X11] : (room(X11) => (~preda(X11) | preda(X11)))) & (! [X14] : (room(X14) => (predd(X14) | ~predd(X14))) => ! [X15] : (room(X15) => (predd(X15) => predi(X15)))) & there_is_a_room [pure predicate removal 50] 52. ? [X1] : room(X1) & ! [X2] : (predi(X2) => preda(X2)) & ~? [X3] : (room(X3) => (predd(X3) => predh(X3))) & (! [X6] : (anywhere(X6) => ~predk(X6)) => ? [X7] : (~preda(X7) & room(X7))) & (~! [X8] : (room(X8) => (~preda(X8) | preda(X8))) => ! [X9] : (predh(X9) => predd(X9))) & (! [X14] : (room(X14) => (predd(X14) | ~predd(X14))) => ! [X15] : (room(X15) => (predd(X15) => predi(X15)))) & there_is_a_room [pure predicate removal 51] 53. ? [X1] : room(X1) & ! [X2] : (predi(X2) => preda(X2)) & ~? [X3] : (room(X3) => (predd(X3) => predh(X3))) & (! [X6] : ~anywhere(X6) => ? [X7] : (~preda(X7) & room(X7))) & (~! [X8] : (room(X8) => (~preda(X8) | preda(X8))) => ! [X9] : (predh(X9) => predd(X9))) & (! [X14] : (room(X14) => (predd(X14) | ~predd(X14))) => ! [X15] : (room(X15) => (predd(X15) => predi(X15)))) & there_is_a_room [pure predicate removal 52] 54. ? [X1] : room(X1) & ! [X2] : (predi(X2) => preda(X2)) & ~? [X3] : (room(X3) => (predd(X3) => predh(X3))) & (~! [X8] : (room(X8) => (~preda(X8) | preda(X8))) => ! [X9] : (predh(X9) => predd(X9))) & (! [X14] : (room(X14) => (predd(X14) | ~predd(X14))) => ! [X15] : (room(X15) => (predd(X15) => predi(X15)))) & there_is_a_room [pure predicate removal 53] 56. ? [X1] : room(X1) & ! [X2] : (predi(X2) => preda(X2)) & ~? [X3] : (room(X3) => ~predd(X3)) & (! [X14] : (room(X14) => (predd(X14) | ~predd(X14))) => ! [X15] : (room(X15) => (predd(X15) => predi(X15)))) & there_is_a_room [pure predicate removal 54] 57. ? [X1] : room(X1) & ~? [X3] : (room(X3) => ~predd(X3)) & (! [X14] : (room(X14) => (predd(X14) | ~predd(X14))) => ! [X15] : (room(X15) => (predd(X15) => predi(X15)))) & there_is_a_room [pure predicate removal 56] 58. ? [X1] : room(X1) & ~? [X3] : (room(X3) => ~predd(X3)) & there_is_a_room [pure predicate removal 57] 59. ? [X1] : room(X1) & ~? [X3] : ~room(X3) & there_is_a_room [pure predicate removal 58] 131. ? [X1] : room(X1) & ! [X3] : room(X3) & there_is_a_room [ennf transformation 59] 132. ? [X0] : ~room(X0) | ~there_is_a_room [ennf transformation 48] 134. ? [X0] : room(X0) & ! [X1] : room(X1) & there_is_a_room [rectify 131] 135. ? [X0] : room(X0) => room(sK0) [choice axiom] 136. room(sK0) & ! [X1] : room(X1) & there_is_a_room [skolemisation 134,135] 137. ? [X0] : ~room(X0) => ~room(sK1) [choice axiom] 138. ~room(sK1) | ~there_is_a_room [skolemisation 132,137] 219. there_is_a_room [cnf transformation 136] 220. room(X1) [cnf transformation 136] 222. ~room(sK1) | ~there_is_a_room [cnf transformation 138] 223. ~there_is_a_room [subsumption resolution 222,220] 224. $false [subsumption resolution 223,219] % SZS output end Proof for 1386517973453790031401611 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.357716
Sheryl, Robert, Elva, Rita are the only persons in the room. If “everyone in the room does not play eSports competitively or is not a dedicated volunteer for local community service projects” then “Robert plays eSports competitively”. If “everyone in the room is a dedicated volunteer for local community service projects or does not enjoy windsurfing” then “Rita plays eSports competitively”. “Everyone outside the room who enjoys windsurfing does not enjoy windsurfing” unless “Rita plays eSports competitively”. If “Rita is a dedicated volunteer for local community service projects” then “everyone in the room who enjoys windsurfing does not enjoy windsurfing”. “Everyone in the room does not enjoy windsurfing if they is a dedicated volunteer for local community service projects” unless “everyone in the room does not play eSports competitively or enjoys windsurfing”. If “everyone in the room is not a dedicated volunteer for local community service projects or is a dedicated volunteer for local community service projects” then “everyone outside the room is a dedicated volunteer for local community service projects if they is not a dedicated volunteer for local community service projects”. Robert plays eSports competitively. Someone in the room is a dedicated volunteer for local community service projects. Rita plays eSports competitively. Someone in the room enjoys windsurfing. Everyone in the room is not a dedicated volunteer for local community service projects if they plays eSports competitively. At least one person in the room is not a dedicated volunteer for local community service projects. Rita is not a dedicated volunteer for local community service projects. Sheryl plays eSports competitively.
Elva plays eSports competitively.
contradiction
room(sheryl)&room(robert)&room(elva)&room(rita)&(![X]:(room(X)=>(X='sheryl'|X='robert'|X='elva'|X='rita')))& ((![X]:(room(X)=>(((is_not_a_dedicated_volunteer_for_local_community_service_projects(X))|(does_not_play_eSports_competitively(X))))))=>(plays_eSports_competitively(robert)))& ((![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))|(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))=>(plays_eSports_competitively(rita)))& (~(plays_eSports_competitively(rita))=>(![X]:(~room(X)=>(((enjoys_windsurfing(X))=>(does_not_enjoy_windsurfing(X)))))))& ((is_a_dedicated_volunteer_for_local_community_service_projects(rita))=>(![X]:(room(X)=>(((enjoys_windsurfing(X))=>(does_not_enjoy_windsurfing(X)))))))& (~(![X]:(room(X)=>(((enjoys_windsurfing(X))|(does_not_play_eSports_competitively(X))))))=>(![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(does_not_enjoy_windsurfing(X)))))))& ((![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))))))=>(![X]:(~room(X)=>(((is_not_a_dedicated_volunteer_for_local_community_service_projects(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X)))))))& (plays_eSports_competitively(robert))& (?[X]:(room(X)&(is_a_dedicated_volunteer_for_local_community_service_projects(X))))& (plays_eSports_competitively(rita))& (?[X]:(room(X)&(enjoys_windsurfing(X))))& (![X]:(room(X)=>(((plays_eSports_competitively(X))=>(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))))))& (((?[X]:(room(X)&is_not_a_dedicated_volunteer_for_local_community_service_projects(X)))))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(does_not_enjoy_windsurfing(X))))))& (is_not_a_dedicated_volunteer_for_local_community_service_projects(rita))& (plays_eSports_competitively(sheryl))& (enjoys_windsurfing(robert))& (~![X]:(room(X)=>(enjoys_windsurfing(X))))
room(sheryl)&room(robert)&room(elva)&room(rita)&(![X]:(room(X)=>(X='sheryl'|X='robert'|X='elva'|X='rita')))& plays_eSports_competitively(elva)
[ "p0", "p7", "p8", "p11", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 2311135101122441900747290 % SZS output start Proof for 2311135101122441900747290 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 51. predc(paul) [input p7] 52. ? [X0] : (preda(X0) & room(X0)) [input p8] 55. ! [X0] : (room(X0) => (predc(X0) => ~preda(X0))) [input p11] 58. ~preda(alice) [input p14] 59. predc(mary) [input p15] 62. predc(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 137. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 138. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 137] 151. ! [X0] : ((~preda(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 55] 152. ! [X0] : (~preda(X0) | ~predc(X0) | ~room(X0)) [flattening 151] 156. predc(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 62] 157. predc(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 156] 167. ? [X0] : (preda(X0) & room(X0)) => (preda(sK3) & room(sK3)) [choice axiom] 168. preda(sK3) & room(sK3) [skolemisation 52,167] 255. room(mary) [cnf transformation 138] 256. room(paul) [cnf transformation 138] 257. room(fred) [cnf transformation 138] 259. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 138] 272. predc(paul) [cnf transformation 51] 273. room(sK3) [cnf transformation 168] 274. preda(sK3) [cnf transformation 168] 278. ~predc(X0) | ~preda(X0) | ~room(X0) [cnf transformation 152] 282. ~preda(alice) [cnf transformation 58] 283. predc(mary) [cnf transformation 59] 292. predc(fred) [cnf transformation 157] 303. 2 <=> predc(paul) [avatar definition] 305. predc(paul) <- (2) [avatar component clause 303] 341. 10 <=> preda(alice) [avatar definition] 343. ~preda(alice) <- (~10) [avatar component clause 341] 369. 2 [avatar split clause 272,303] 372. ~10 [avatar split clause 282,341] 375. ~preda(mary) | ~room(mary) [resolution 278,283] 376. ~preda(paul) | ~room(paul) <- (2) [resolution 278,305] 377. ~preda(fred) | ~room(fred) [resolution 278,292] 379. ~preda(mary) [subsumption resolution 375,255] 380. ~preda(paul) <- (2) [subsumption resolution 376,256] 381. ~preda(fred) [subsumption resolution 377,257] 435. fred = sK3 | paul = sK3 | mary = sK3 | alice = sK3 [resolution 259,273] 440. 17 <=> alice = sK3 [avatar definition] 442. alice = sK3 <- (17) [avatar component clause 440] 444. 18 <=> mary = sK3 [avatar definition] 446. mary = sK3 <- (18) [avatar component clause 444] 448. 19 <=> paul = sK3 [avatar definition] 450. paul = sK3 <- (19) [avatar component clause 448] 452. 20 <=> fred = sK3 [avatar definition] 454. fred = sK3 <- (20) [avatar component clause 452] 455. 17 | 18 | 19 | 20 [avatar split clause 435,452,448,444,440] 517. preda(alice) <- (17) [backward demodulation 274,442] 518. $false <- (~10, 17) [subsumption resolution 517,343] 519. 10 | ~17 [avatar contradiction clause 518] 525. preda(mary) <- (18) [backward demodulation 274,446] 526. $false <- (18) [subsumption resolution 525,379] 527. ~18 [avatar contradiction clause 526] 530. preda(paul) <- (19) [backward demodulation 274,450] 532. $false <- (2, 19) [subsumption resolution 530,380] 533. ~2 | ~19 [avatar contradiction clause 532] 535. preda(fred) <- (20) [backward demodulation 274,454] 537. $false <- (20) [subsumption resolution 535,381] 538. ~20 [avatar contradiction clause 537] 539. $false [avatar sat refutation 369,372,455,519,527,533,538] % SZS output end Proof for 2311135101122441900747290 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.236478
Elizabeth is the only person in the room. If “not everyone in the room enjoys wildlife photography or does not maintain a personal blog focused on cybersecurity tips” then “everyone anywhere enjoys stand-up paddleboarding if they enjoys wildlife photography”. If “everyone in the room does not maintain a personal blog focused on cybersecurity tips or is right-handed” then “at least one person in the room does not maintain a personal blog focused on cybersecurity tips”. “Someone anywhere collects limited-edition art prints from contemporary artists, is a chess master who participates in national tournaments and participates in citizen science projects related to wildlife monitoring” if “Elizabeth is dedicated to sustainable living and zero-waste practices” and vice versa. “No one anywhere is not an avid mountain climber who has scaled several peaks or collects limited-edition art prints from contemporary artists” if “Elizabeth enjoys kayaking and exploring remote waterways” and vice versa. “Someone in the room is an amateur astronomer who builds and uses custom telescopes” if “everyone in the room cannot play the harmonica or creates bespoke furniture pieces from reclaimed wood” and vice versa. “No one in the room does not read mystery novels only if they participates in long-distance cycling events across the country” if “everyone in the room does not read mystery novels or practices calligraphy”. Elizabeth reads mystery novels. Everyone in the room participates in citizen science projects related to wildlife monitoring if they enjoys making ceramics. Elizabeth collects limited-edition art prints from contemporary artists. Elizabeth who maintains a personal blog focused on cybersecurity tips is not dedicated to sustainable living and zero-waste practices. Everyone in the room neither does not create bespoke furniture pieces from reclaimed wood nor is a skilled home brewer experimenting with craft beer recipes if and only if they hosts themed dinner parties featuring gourmet home-cooked meals. Elizabeth collects rare minerals. Only one person outside the room does not maintain a personal blog focused on cybersecurity tips. Elizabeth has a vast collection of first-edition science fiction novels, does not enjoy making ceramics and participates in citizen science projects related to wildlife monitoring.
Not everyone in the room is a chess master who participates in national tournaments.
entailment
room(elizabeth)&(![X]:(room(X)=>(X='elizabeth')))& ((~![X]:(room(X)=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))|(enjoys_wildlife_photography(X))))))=>(![X]:(anywhere(X)=>(((enjoys_wildlife_photography(X))=>(enjoys_stand-up_paddleboarding(X)))))))& ((![X]:(room(X)=>(((is_right-handed(X))|(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))))))=>(((?[X]:(room(X)&does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))))))& ((is_dedicated_to_sustainable_living_and_zero-waste_practices(elizabeth))<=>(?[X]:(anywhere(X)&(((collects_limited-edition_art_prints_from_contemporary_artists(X))&(is_a_chess_master_who_participates_in_national_tournaments(X))&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))))& ((enjoys_kayaking_and_exploring_remote_waterways(elizabeth))<=>(~?[X]:(anywhere(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))))& ((![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))|(cannot_play_the_harmonica(X))))))<=>(?[X]:(room(X)&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))& ((![X]:(room(X)=>(((practices_calligraphy(X))|(does_not_read_mystery_novels(X))))))=>(~?[X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))<=(does_not_read_mystery_novels(X)))))))& (reads_mystery_novels(elizabeth))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (collects_limited-edition_art_prints_from_contemporary_artists(elizabeth))& ((maintains_a_personal_blog_focused_on_cybersecurity_tips(elizabeth))&(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(elizabeth)))& (![X]:(room(X)=>(((~((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))<=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (collects_rare_minerals(elizabeth))& (((?[X]:(~room(X)&does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X)))&(![X,Y]:((~room(X)&~room(Y)&(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))&(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(Y)))=>(X=Y)))))& (((has_a_vast_collection_of_first-edition_science_fiction_novels(elizabeth))&(does_not_enjoy_making_ceramics(elizabeth))&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(elizabeth))))
room(elizabeth)&(![X]:(room(X)=>(X='elizabeth')))& ~![X]:(room(X)=>(is_a_chess_master_who_participates_in_national_tournaments(X)))
[ "b4", "p0", "p3", "p9", "p10", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 4480098138305820111612684 % SZS output start Proof for 4480098138305820111612684 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 47. predz(mary) <=> ? [X0] : (predk(X0) & predd(X0) & predp(X0) & anywhere(X0)) [input p3] 53. predp(mary) [input p9] 54. ~predz(mary) & predv(mary) [input p10] 58. predk(mary) & ~predi(mary) & predb(mary) [input p14] 59. ~(~! [X0] : (room(X0) => predd(X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 65. ~(~! [X0] : (room(X0) => predd(X0)) & ! [X1] : (room(X1) => mary = X1) & room(mary)) [rectify 59] 66. predk(mary) & ~predi(mary) [pure predicate removal 58] 69. predk(mary) [pure predicate removal 66] 145. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 155. ! [X0] : (predd(X0) | ~room(X0)) | ? [X1] : (mary != X1 & room(X1)) | ~room(mary) [ennf transformation 65] 161. (predz(mary) | ! [X0] : (~predk(X0) | ~predd(X0) | ~predp(X0) | ~anywhere(X0))) & (? [X0] : (predk(X0) & predd(X0) & predp(X0) & anywhere(X0)) | ~predz(mary)) [nnf transformation 47] 162. (predz(mary) | ! [X0] : (~predk(X0) | ~predd(X0) | ~predp(X0) | ~anywhere(X0))) & (? [X1] : (predk(X1) & predd(X1) & predp(X1) & anywhere(X1)) | ~predz(mary)) [rectify 161] 163. ? [X1] : (predk(X1) & predd(X1) & predp(X1) & anywhere(X1)) => (predk(sK2) & predd(sK2) & predp(sK2) & anywhere(sK2)) [choice axiom] 164. (predz(mary) | ! [X0] : (~predk(X0) | ~predd(X0) | ~predp(X0) | ~anywhere(X0))) & ((predk(sK2) & predd(sK2) & predp(sK2) & anywhere(sK2)) | ~predz(mary)) [skolemisation 162,163] 181. ? [X1] : (mary != X1 & room(X1)) => (mary != sK8 & room(sK8)) [choice axiom] 182. ! [X0] : (predd(X0) | ~room(X0)) | (mary != sK8 & room(sK8)) | ~room(mary) [skolemisation 155,181] 183. anywhere(X0) [cnf transformation 5] 264. room(mary) [cnf transformation 145] 265. ~room(X0) | mary = X0 [cnf transformation 145] 274. predz(mary) | ~predk(X0) | ~predd(X0) | ~predp(X0) | ~anywhere(X0) [cnf transformation 164] 291. predp(mary) [cnf transformation 53] 293. ~predz(mary) [cnf transformation 54] 300. predk(mary) [cnf transformation 69] 301. predd(X0) | ~room(X0) | room(sK8) | ~room(mary) [cnf transformation 182] 302. predd(X0) | ~room(X0) | mary != sK8 | ~room(mary) [cnf transformation 182] 323. predz(mary) | ~predk(X0) | ~predd(X0) | ~predp(X0) [subsumption resolution 274,183] 325. 5 <=> ! [X0] : (~predk(X0) | ~predp(X0) | ~predd(X0)) [avatar definition] 326. ~predk(X0) | ~predp(X0) | ~predd(X0) <- (5) [avatar component clause 325] 328. 6 <=> predz(mary) [avatar definition] 331. 5 | 6 [avatar split clause 323,328,325] 420. ~6 [avatar split clause 293,328] 421. predd(X0) | ~room(X0) | mary != sK8 [subsumption resolution 302,264] 423. 26 <=> mary = sK8 [avatar definition] 425. mary != sK8 <- (~26) [avatar component clause 423] 427. 27 <=> ! [X0] : (predd(X0) | ~room(X0)) [avatar definition] 428. ~room(X0) | predd(X0) <- (27) [avatar component clause 427] 429. ~26 | 27 [avatar split clause 421,427,423] 430. predd(X0) | ~room(X0) | room(sK8) [subsumption resolution 301,264] 432. 28 <=> room(sK8) [avatar definition] 434. room(sK8) <- (28) [avatar component clause 432] 435. 28 | 27 [avatar split clause 430,427,432] 436. predd(mary) <- (27) [resolution 428,264] 462. ~predp(mary) | ~predd(mary) <- (5) [resolution 326,300] 463. ~predd(mary) <- (5) [subsumption resolution 462,291] 464. $false <- (5, 27) [subsumption resolution 463,436] 465. ~5 | ~27 [avatar contradiction clause 464] 466. mary = sK8 <- (28) [resolution 434,265] 467. $false <- (~26, 28) [subsumption resolution 466,425] 468. 26 | ~28 [avatar contradiction clause 467] 469. $false [avatar sat refutation 331,420,429,435,465,468] % SZS output end Proof for 4480098138305820111612684 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.091349
There is a room. “Everyone in the room is not a member of a local theater group specializing in improv or practices tai chi” only if “everyone in the room neither owns a smart tv nor does not know morse code”. If “everyone in the room does not play eSports competitively or is not a wine connoisseur” then “everyone anywhere can play the flute, practices tai chi and maintains a personal blog focused on cybersecurity tips if they does not play eSports competitively”. “Everyone in the room does not write a travel blog or does not enjoy fishing” if “everyone outside the room cannot play the flute or maintains a personal blog focused on cybersecurity tips” and vice versa. If “no one in the room is not a professional photographer specializing in portrait photography or maintains a personal blog focused on cybersecurity tips” then “everyone in the room either enjoys logic puzzles or practices and performs acrobatic dance routines but not both if they is not a professional photographer specializing in portrait photography”. If “not everyone in the room does not play eSports competitively or has a pet dog” then “not everyone in the room is not an avid mountain climber who has scaled several peaks if they does not play eSports competitively”. If “no one outside the room does not collect action figures or has a pet dog” then “everyone in the room does not enjoy fishing or has a pet dog”. If “everyone in the room does not enjoy fishing or has a pet dog” then “everyone outside the room is not a wine connoisseur or does not enjoy fishing”. “Everyone in the room neither is an avid mountain climber who has scaled several peaks nor collects action figures only if they enjoys rooftop gardening, does not enjoy logic puzzles and owns a smartwatch” unless “someone anywhere knows morse code or does not own a smart tv or both”.
Everyone outside the room uses a Windows laptop.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((practices_tai_chi(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))))=>(![X]:(room(X)=>(~((owns_a_smart_tv(X))|(does_not_know_morse_code(X)))))))& ((![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))|(does_not_play_eSports_competitively(X))))))=>(![X]:(anywhere(X)=>(((does_not_play_eSports_competitively(X))=>(((can_play_the_flute(X))&(practices_tai_chi(X))&(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))))))& ((![X]:(~room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(cannot_play_the_flute(X))))))<=>(![X]:(room(X)=>(((does_not_enjoy_fishing(X))|(does_not_write_a_travel_blog(X)))))))& ((~?[X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(is_not_a_professional_photographer_specializing_in_portrait_photography(X))))))=>(![X]:(room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))=>(((enjoys_logic_puzzles(X))<~>(practices_and_performs_acrobatic_dance_routines(X)))))))))& ((~![X]:(room(X)=>(((has_a_pet_dog(X))|(does_not_play_eSports_competitively(X))))))=>(~![X]:(room(X)=>(((does_not_play_eSports_competitively(X))=>(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))))& (((~?[X]:(~room(X)=>(((has_a_pet_dog(X))|(does_not_collect_action_figures(X))))))=>(![X]:(room(X)=>(((has_a_pet_dog(X))|(does_not_enjoy_fishing(X)))))))& ((![X]:(room(X)=>(((has_a_pet_dog(X))|(does_not_enjoy_fishing(X))))))=>(![X]:(~room(X)=>(((does_not_enjoy_fishing(X))|(is_not_a_wine_connoisseur(X))))))))& (~(?[X]:(anywhere(X)&(((knows_morse_code(X))|(does_not_own_a_smart_tv(X))))))=>(![X]:(room(X)=>(((((enjoys_rooftop_gardening(X))&(does_not_enjoy_logic_puzzles(X))&(owns_a_smartwatch(X))))<=(~((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(collects_action_figures(X)))))))))& (![X]:(room(X)=>(((((enjoys_rooftop_gardening(X))&(does_not_enjoy_logic_puzzles(X))&(owns_a_smartwatch(X))))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(anywhere(X)=>(((enjoys_rooftop_gardening(X))<=(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(room(X)=>(((enjoys_rooftop_gardening(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (![X]:(room(X)=>(enjoys_rooftop_gardening(X))))& (~?[X]:(room(X)=>(((((creates_large-scale_murals_for_public_art_installations(X))|(collects_action_figures(X))))=>(((creates_large-scale_murals_for_public_art_installations(X))<~>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))))& (![X]:(room(X)=>(practices_tai_chi(X))))& (![X]:(room(X)=>(is_a_wine_connoisseur(X))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))|(does_not_enjoy_fishing(X))))))& (![X]:(room(X)=>(((does_not_enjoy_fishing(X))<=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))<~>(does_not_practice_tai_chi(X))))))))& (![X]:(~room(X)=>(((writes_a_travel_blog(X))<=(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))<~>(does_not_practice_tai_chi(X))))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))<=>(collects_action_figures(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(uses_a_Windows_laptop(X)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 8536135353290247441722300 % SZS output start Proof for 8536135353290247441722300 44. ! [X0] : (room(X0) => (preda(X0) <=> predr(X0))) & ! [X0] : (~room(X0) => ((predu(X0) <~> ~predl(X0)) => preda(X0))) & ! [X0] : (room(X0) => (~predi(X0) <=> (predu(X0) <~> ~predl(X0)))) & ! [X0] : (room(X0) => (~predi(X0) | predc(X0))) & ! [X0] : (room(X0) => predj(X0)) & ! [X0] : (room(X0) => predl(X0)) & ~? [X0] : (room(X0) => ((predr(X0) | predk(X0)) => (predk(X0) <~> predq(X0)))) & ! [X0] : (room(X0) => predo(X0)) & ! [X0] : (room(X0) => (~predq(X0) | predo(X0))) & ! [X0] : (anywhere(X0) => (~predx(X0) => predo(X0))) & ! [X0] : (room(X0) => (~predx(X0) | (predw(X0) & ~predz(X0) & predo(X0)))) & (~? [X0] : ((~predd(X0) | predf(X0)) & anywhere(X0)) => ! [X0] : (room(X0) => (~(predr(X0) | predx(X0)) => (predw(X0) & ~predz(X0) & predo(X0))))) & (! [X0] : (room(X0) => (~predi(X0) | predb(X0))) => ! [X0] : (~room(X0) => (~predj(X0) | ~predi(X0)))) & (~? [X0] : (~room(X0) => (~predr(X0) | predb(X0))) => ! [X0] : (room(X0) => (~predi(X0) | predb(X0)))) & (~! [X0] : (room(X0) => (~predg(X0) | predb(X0))) => ~! [X0] : (room(X0) => (~predg(X0) => ~predx(X0)))) & (~? [X0] : (room(X0) => (~predn(X0) | predu(X0))) => ! [X0] : (room(X0) => (~predn(X0) => (predz(X0) <~> prede(X0))))) & (! [X0] : (~room(X0) => (~predt(X0) | predu(X0))) <=> ! [X0] : (room(X0) => (~preda(X0) | ~predi(X0)))) & (! [X0] : (room(X0) => (~predg(X0) | ~predj(X0))) => ! [X0] : (anywhere(X0) => (~predg(X0) => (predu(X0) & predl(X0) & predt(X0))))) & (! [X0] : (room(X0) => (~predq(X0) | predl(X0))) => ! [X0] : (room(X0) => ~(~predf(X0) | predd(X0)))) & there_is_a_room [input p0] 45. ~(! [X0] : (~room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 46. ! [X0] : (room(X0) => (preda(X0) <=> predr(X0))) & ! [X1] : (~room(X1) => ((predu(X1) <~> ~predl(X1)) => preda(X1))) & ! [X2] : (room(X2) => (~predi(X2) <=> (predu(X2) <~> ~predl(X2)))) & ! [X3] : (room(X3) => (~predi(X3) | predc(X3))) & ! [X4] : (room(X4) => predj(X4)) & ! [X5] : (room(X5) => predl(X5)) & ~? [X6] : (room(X6) => ((predr(X6) | predk(X6)) => (predk(X6) <~> predq(X6)))) & ! [X7] : (room(X7) => predo(X7)) & ! [X8] : (room(X8) => (~predq(X8) | predo(X8))) & ! [X9] : (anywhere(X9) => (~predx(X9) => predo(X9))) & ! [X10] : (room(X10) => (~predx(X10) | (predw(X10) & ~predz(X10) & predo(X10)))) & (~? [X11] : ((~predd(X11) | predf(X11)) & anywhere(X11)) => ! [X12] : (room(X12) => (~(predr(X12) | predx(X12)) => (predw(X12) & ~predz(X12) & predo(X12))))) & (! [X13] : (room(X13) => (~predi(X13) | predb(X13))) => ! [X14] : (~room(X14) => (~predj(X14) | ~predi(X14)))) & (~? [X15] : (~room(X15) => (~predr(X15) | predb(X15))) => ! [X16] : (room(X16) => (~predi(X16) | predb(X16)))) & (~! [X17] : (room(X17) => (~predg(X17) | predb(X17))) => ~! [X18] : (room(X18) => (~predg(X18) => ~predx(X18)))) & (~? [X19] : (room(X19) => (~predn(X19) | predu(X19))) => ! [X20] : (room(X20) => (~predn(X20) => (predz(X20) <~> prede(X20))))) & (! [X21] : (~room(X21) => (~predt(X21) | predu(X21))) <=> ! [X22] : (room(X22) => (~preda(X22) | ~predi(X22)))) & (! [X23] : (room(X23) => (~predg(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) => (predu(X24) & predl(X24) & predt(X24))))) & (! [X25] : (room(X25) => (~predq(X25) | predl(X25))) => ! [X26] : (room(X26) => ~(~predf(X26) | predd(X26)))) & there_is_a_room [rectify 44] 47. ! [X0] : (room(X0) => (preda(X0) <=> predr(X0))) & ! [X1] : (~room(X1) => ((predu(X1) <~> ~predl(X1)) => preda(X1))) & ! [X2] : (room(X2) => (~predi(X2) <=> (predu(X2) <~> ~predl(X2)))) & ! [X3] : (room(X3) => (~predi(X3) | predc(X3))) & ! [X4] : (room(X4) => predj(X4)) & ! [X5] : (room(X5) => predl(X5)) & ~? [X6] : (room(X6) => ((predr(X6) | predk(X6)) => (predk(X6) <~> predq(X6)))) & ! [X7] : (room(X7) => predo(X7)) & ! [X8] : (room(X8) => (~predq(X8) | predo(X8))) & ! [X9] : (anywhere(X9) => (~predx(X9) => predo(X9))) & ! [X10] : (room(X10) => (~predx(X10) | (~predz(X10) & predo(X10)))) & (~? [X11] : ((~predd(X11) | predf(X11)) & anywhere(X11)) => ! [X12] : (room(X12) => (~(predr(X12) | predx(X12)) => (~predz(X12) & predo(X12))))) & (! [X13] : (room(X13) => (~predi(X13) | predb(X13))) => ! [X14] : (~room(X14) => (~predj(X14) | ~predi(X14)))) & (~? [X15] : (~room(X15) => (~predr(X15) | predb(X15))) => ! [X16] : (room(X16) => (~predi(X16) | predb(X16)))) & (~! [X17] : (room(X17) => (~predg(X17) | predb(X17))) => ~! [X18] : (room(X18) => (~predg(X18) => ~predx(X18)))) & (~? [X19] : (room(X19) => (~predn(X19) | predu(X19))) => ! [X20] : (room(X20) => (~predn(X20) => (predz(X20) <~> prede(X20))))) & (! [X21] : (~room(X21) => (~predt(X21) | predu(X21))) <=> ! [X22] : (room(X22) => (~preda(X22) | ~predi(X22)))) & (! [X23] : (room(X23) => (~predg(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) => (predu(X24) & predl(X24) & predt(X24))))) & (! [X25] : (room(X25) => (~predq(X25) | predl(X25))) => ! [X26] : (room(X26) => ~(~predf(X26) | predd(X26)))) & there_is_a_room [pure predicate removal 46] 48. ! [X0] : (room(X0) => (preda(X0) <=> predr(X0))) & ! [X1] : (~room(X1) => ((predu(X1) <~> ~predl(X1)) => preda(X1))) & ! [X2] : (room(X2) => (~predi(X2) <=> (predu(X2) <~> ~predl(X2)))) & ! [X3] : (room(X3) => (~predi(X3) | predc(X3))) & ! [X4] : (room(X4) => predj(X4)) & ! [X5] : (room(X5) => predl(X5)) & ~? [X6] : (room(X6) => ((predr(X6) | predk(X6)) => (predk(X6) <~> predq(X6)))) & ! [X10] : (room(X10) => (~predx(X10) | ~predz(X10))) & (~? [X11] : ((~predd(X11) | predf(X11)) & anywhere(X11)) => ! [X12] : (room(X12) => (~(predr(X12) | predx(X12)) => ~predz(X12)))) & (! [X13] : (room(X13) => (~predi(X13) | predb(X13))) => ! [X14] : (~room(X14) => (~predj(X14) | ~predi(X14)))) & (~? [X15] : (~room(X15) => (~predr(X15) | predb(X15))) => ! [X16] : (room(X16) => (~predi(X16) | predb(X16)))) & (~! [X17] : (room(X17) => (~predg(X17) | predb(X17))) => ~! [X18] : (room(X18) => (~predg(X18) => ~predx(X18)))) & (~? [X19] : (room(X19) => (~predn(X19) | predu(X19))) => ! [X20] : (room(X20) => (~predn(X20) => (predz(X20) <~> prede(X20))))) & (! [X21] : (~room(X21) => (~predt(X21) | predu(X21))) <=> ! [X22] : (room(X22) => (~preda(X22) | ~predi(X22)))) & (! [X23] : (room(X23) => (~predg(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) => (predu(X24) & predl(X24) & predt(X24))))) & (! [X25] : (room(X25) => (~predq(X25) | predl(X25))) => ! [X26] : (room(X26) => ~(~predf(X26) | predd(X26)))) & there_is_a_room [pure predicate removal 47] 49. ! [X0] : (room(X0) => (preda(X0) <=> predr(X0))) & ! [X1] : (~room(X1) => ((predu(X1) <~> ~predl(X1)) => preda(X1))) & ! [X2] : (room(X2) => (~predi(X2) <=> (predu(X2) <~> ~predl(X2)))) & ! [X3] : (room(X3) => (~predi(X3) | predc(X3))) & ! [X4] : (room(X4) => predj(X4)) & ! [X5] : (room(X5) => predl(X5)) & ~? [X6] : (room(X6) => ((predr(X6) | predk(X6)) => (predk(X6) <~> predq(X6)))) & ! [X10] : (room(X10) => (~predx(X10) | ~predz(X10))) & (~? [X11] : anywhere(X11) => ! [X12] : (room(X12) => (~(predr(X12) | predx(X12)) => ~predz(X12)))) & (! [X13] : (room(X13) => (~predi(X13) | predb(X13))) => ! [X14] : (~room(X14) => (~predj(X14) | ~predi(X14)))) & (~? [X15] : (~room(X15) => (~predr(X15) | predb(X15))) => ! [X16] : (room(X16) => (~predi(X16) | predb(X16)))) & (~! [X17] : (room(X17) => (~predg(X17) | predb(X17))) => ~! [X18] : (room(X18) => (~predg(X18) => ~predx(X18)))) & (~? [X19] : (room(X19) => (~predn(X19) | predu(X19))) => ! [X20] : (room(X20) => (~predn(X20) => (predz(X20) <~> prede(X20))))) & (! [X21] : (~room(X21) => (~predt(X21) | predu(X21))) <=> ! [X22] : (room(X22) => (~preda(X22) | ~predi(X22)))) & (! [X23] : (room(X23) => (~predg(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) => (predu(X24) & predl(X24) & predt(X24))))) & (! [X25] : (room(X25) => (~predq(X25) | predl(X25))) => ! [X26] : (room(X26) => ~predd(X26))) & there_is_a_room [pure predicate removal 48] 50. ! [X0] : (room(X0) => (preda(X0) <=> predr(X0))) & ! [X1] : (~room(X1) => ((predu(X1) <~> ~predl(X1)) => preda(X1))) & ! [X2] : (room(X2) => (~predi(X2) <=> (predu(X2) <~> ~predl(X2)))) & ! [X3] : (room(X3) => (~predi(X3) | predc(X3))) & ! [X4] : (room(X4) => predj(X4)) & ! [X5] : (room(X5) => predl(X5)) & ~? [X6] : (room(X6) => ((predr(X6) | predk(X6)) => (predk(X6) <~> predq(X6)))) & ! [X10] : (room(X10) => (~predx(X10) | ~predz(X10))) & (~? [X11] : anywhere(X11) => ! [X12] : (room(X12) => (~(predr(X12) | predx(X12)) => ~predz(X12)))) & (! [X13] : (room(X13) => (~predi(X13) | predb(X13))) => ! [X14] : (~room(X14) => (~predj(X14) | ~predi(X14)))) & (~? [X15] : (~room(X15) => (~predr(X15) | predb(X15))) => ! [X16] : (room(X16) => (~predi(X16) | predb(X16)))) & (~! [X17] : (room(X17) => (~predg(X17) | predb(X17))) => ~! [X18] : (room(X18) => (~predg(X18) => ~predx(X18)))) & (~? [X19] : (room(X19) => (~predn(X19) | predu(X19))) => ! [X20] : (room(X20) => (~predn(X20) => (predz(X20) <~> prede(X20))))) & (! [X21] : (~room(X21) => (~predt(X21) | predu(X21))) <=> ! [X22] : (room(X22) => (~preda(X22) | ~predi(X22)))) & (! [X23] : (room(X23) => (~predg(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) => (predu(X24) & predl(X24) & predt(X24))))) & there_is_a_room [pure predicate removal 49] 122. ! [X0] : ((preda(X0) <=> predr(X0)) | ~room(X0)) & ! [X1] : ((preda(X1) | (predu(X1) <=> ~predl(X1))) | room(X1)) & ! [X2] : ((~predi(X2) <=> (predu(X2) <~> ~predl(X2))) | ~room(X2)) & ! [X3] : ((~predi(X3) | predc(X3)) | ~room(X3)) & ! [X4] : (predj(X4) | ~room(X4)) & ! [X5] : (predl(X5) | ~room(X5)) & ! [X6] : (((predk(X6) <=> predq(X6)) & (predr(X6) | predk(X6))) & room(X6)) & ! [X10] : ((~predx(X10) | ~predz(X10)) | ~room(X10)) & (! [X12] : ((~predz(X12) | (predr(X12) | predx(X12))) | ~room(X12)) | ? [X11] : anywhere(X11)) & (! [X14] : ((~predj(X14) | ~predi(X14)) | room(X14)) | ? [X13] : ((predi(X13) & ~predb(X13)) & room(X13))) & (! [X16] : ((~predi(X16) | predb(X16)) | ~room(X16)) | ? [X15] : ((~predr(X15) | predb(X15)) | room(X15))) & (? [X18] : ((predx(X18) & ~predg(X18)) & room(X18)) | ! [X17] : ((~predg(X17) | predb(X17)) | ~room(X17))) & (! [X20] : (((predz(X20) <~> prede(X20)) | predn(X20)) | ~room(X20)) | ? [X19] : ((~predn(X19) | predu(X19)) | ~room(X19))) & (! [X21] : ((~predt(X21) | predu(X21)) | room(X21)) <=> ! [X22] : ((~preda(X22) | ~predi(X22)) | ~room(X22))) & (! [X24] : (((predu(X24) & predl(X24) & predt(X24)) | predg(X24)) | ~anywhere(X24)) | ? [X23] : ((predg(X23) & predj(X23)) & room(X23))) & there_is_a_room [ennf transformation 50] 123. ! [X0] : ((preda(X0) <=> predr(X0)) | ~room(X0)) & ! [X1] : (preda(X1) | (predu(X1) <=> ~predl(X1)) | room(X1)) & ! [X2] : ((~predi(X2) <=> (predu(X2) <~> ~predl(X2))) | ~room(X2)) & ! [X3] : (~predi(X3) | predc(X3) | ~room(X3)) & ! [X4] : (predj(X4) | ~room(X4)) & ! [X5] : (predl(X5) | ~room(X5)) & ! [X6] : ((predk(X6) <=> predq(X6)) & (predr(X6) | predk(X6)) & room(X6)) & ! [X10] : (~predx(X10) | ~predz(X10) | ~room(X10)) & (! [X12] : (~predz(X12) | predr(X12) | predx(X12) | ~room(X12)) | ? [X11] : anywhere(X11)) & (! [X14] : (~predj(X14) | ~predi(X14) | room(X14)) | ? [X13] : (predi(X13) & ~predb(X13) & room(X13))) & (! [X16] : (~predi(X16) | predb(X16) | ~room(X16)) | ? [X15] : (~predr(X15) | predb(X15) | room(X15))) & (? [X18] : (predx(X18) & ~predg(X18) & room(X18)) | ! [X17] : (~predg(X17) | predb(X17) | ~room(X17))) & (! [X20] : ((predz(X20) <~> prede(X20)) | predn(X20) | ~room(X20)) | ? [X19] : (~predn(X19) | predu(X19) | ~room(X19))) & (! [X21] : (~predt(X21) | predu(X21) | room(X21)) <=> ! [X22] : (~preda(X22) | ~predi(X22) | ~room(X22))) & (! [X24] : ((predu(X24) & predl(X24) & predt(X24)) | predg(X24) | ~anywhere(X24)) | ? [X23] : (predg(X23) & predj(X23) & room(X23))) & there_is_a_room [flattening 122] 124. ? [X0] : (~predc(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 45] 125. ? [X23] : (predg(X23) & predj(X23) & room(X23)) | ~sP0 [predicate definition introduction] 126. ! [X0] : ((preda(X0) <=> predr(X0)) | ~room(X0)) & ! [X1] : (preda(X1) | (predu(X1) <=> ~predl(X1)) | room(X1)) & ! [X2] : ((~predi(X2) <=> (predu(X2) <~> ~predl(X2))) | ~room(X2)) & ! [X3] : (~predi(X3) | predc(X3) | ~room(X3)) & ! [X4] : (predj(X4) | ~room(X4)) & ! [X5] : (predl(X5) | ~room(X5)) & ! [X6] : ((predk(X6) <=> predq(X6)) & (predr(X6) | predk(X6)) & room(X6)) & ! [X10] : (~predx(X10) | ~predz(X10) | ~room(X10)) & (! [X12] : (~predz(X12) | predr(X12) | predx(X12) | ~room(X12)) | ? [X11] : anywhere(X11)) & (! [X14] : (~predj(X14) | ~predi(X14) | room(X14)) | ? [X13] : (predi(X13) & ~predb(X13) & room(X13))) & (! [X16] : (~predi(X16) | predb(X16) | ~room(X16)) | ? [X15] : (~predr(X15) | predb(X15) | room(X15))) & (? [X18] : (predx(X18) & ~predg(X18) & room(X18)) | ! [X17] : (~predg(X17) | predb(X17) | ~room(X17))) & (! [X20] : ((predz(X20) <~> prede(X20)) | predn(X20) | ~room(X20)) | ? [X19] : (~predn(X19) | predu(X19) | ~room(X19))) & (! [X21] : (~predt(X21) | predu(X21) | room(X21)) <=> ! [X22] : (~preda(X22) | ~predi(X22) | ~room(X22))) & (! [X24] : ((predu(X24) & predl(X24) & predt(X24)) | predg(X24) | ~anywhere(X24)) | sP0) & there_is_a_room [definition folding 123,125] 132. ! [X0] : (((preda(X0) | ~predr(X0)) & (predr(X0) | ~preda(X0))) | ~room(X0)) & ! [X1] : (preda(X1) | ((predu(X1) | predl(X1)) & (~predl(X1) | ~predu(X1))) | room(X1)) & ! [X2] : (((~predi(X2) | ((predu(X2) | predl(X2)) & (~predl(X2) | ~predu(X2)))) & (((predl(X2) | ~predu(X2)) & (~predl(X2) | predu(X2))) | predi(X2))) | ~room(X2)) & ! [X3] : (~predi(X3) | predc(X3) | ~room(X3)) & ! [X4] : (predj(X4) | ~room(X4)) & ! [X5] : (predl(X5) | ~room(X5)) & ! [X6] : (((predk(X6) | ~predq(X6)) & (predq(X6) | ~predk(X6))) & (predr(X6) | predk(X6)) & room(X6)) & ! [X10] : (~predx(X10) | ~predz(X10) | ~room(X10)) & (! [X12] : (~predz(X12) | predr(X12) | predx(X12) | ~room(X12)) | ? [X11] : anywhere(X11)) & (! [X14] : (~predj(X14) | ~predi(X14) | room(X14)) | ? [X13] : (predi(X13) & ~predb(X13) & room(X13))) & (! [X16] : (~predi(X16) | predb(X16) | ~room(X16)) | ? [X15] : (~predr(X15) | predb(X15) | room(X15))) & (? [X18] : (predx(X18) & ~predg(X18) & room(X18)) | ! [X17] : (~predg(X17) | predb(X17) | ~room(X17))) & (! [X20] : (((~prede(X20) | ~predz(X20)) & (prede(X20) | predz(X20))) | predn(X20) | ~room(X20)) | ? [X19] : (~predn(X19) | predu(X19) | ~room(X19))) & ((! [X21] : (~predt(X21) | predu(X21) | room(X21)) | ? [X22] : (preda(X22) & predi(X22) & room(X22))) & (! [X22] : (~preda(X22) | ~predi(X22) | ~room(X22)) | ? [X21] : (predt(X21) & ~predu(X21) & ~room(X21)))) & (! [X24] : ((predu(X24) & predl(X24) & predt(X24)) | predg(X24) | ~anywhere(X24)) | sP0) & there_is_a_room [nnf transformation 126] 133. ! [X0] : (((preda(X0) | ~predr(X0)) & (predr(X0) | ~preda(X0))) | ~room(X0)) & ! [X1] : (preda(X1) | ((predu(X1) | predl(X1)) & (~predl(X1) | ~predu(X1))) | room(X1)) & ! [X2] : (((~predi(X2) | ((predu(X2) | predl(X2)) & (~predl(X2) | ~predu(X2)))) & (((predl(X2) | ~predu(X2)) & (~predl(X2) | predu(X2))) | predi(X2))) | ~room(X2)) & ! [X3] : (~predi(X3) | predc(X3) | ~room(X3)) & ! [X4] : (predj(X4) | ~room(X4)) & ! [X5] : (predl(X5) | ~room(X5)) & ! [X6] : ((predk(X6) | ~predq(X6)) & (predq(X6) | ~predk(X6)) & (predr(X6) | predk(X6)) & room(X6)) & ! [X10] : (~predx(X10) | ~predz(X10) | ~room(X10)) & (! [X12] : (~predz(X12) | predr(X12) | predx(X12) | ~room(X12)) | ? [X11] : anywhere(X11)) & (! [X14] : (~predj(X14) | ~predi(X14) | room(X14)) | ? [X13] : (predi(X13) & ~predb(X13) & room(X13))) & (! [X16] : (~predi(X16) | predb(X16) | ~room(X16)) | ? [X15] : (~predr(X15) | predb(X15) | room(X15))) & (? [X18] : (predx(X18) & ~predg(X18) & room(X18)) | ! [X17] : (~predg(X17) | predb(X17) | ~room(X17))) & (! [X20] : (((~prede(X20) | ~predz(X20)) & (prede(X20) | predz(X20))) | predn(X20) | ~room(X20)) | ? [X19] : (~predn(X19) | predu(X19) | ~room(X19))) & (! [X21] : (~predt(X21) | predu(X21) | room(X21)) | ? [X22] : (preda(X22) & predi(X22) & room(X22))) & (! [X22] : (~preda(X22) | ~predi(X22) | ~room(X22)) | ? [X21] : (predt(X21) & ~predu(X21) & ~room(X21))) & (! [X24] : ((predu(X24) & predl(X24) & predt(X24)) | predg(X24) | ~anywhere(X24)) | sP0) & there_is_a_room [flattening 132] 134. ! [X0] : (((preda(X0) | ~predr(X0)) & (predr(X0) | ~preda(X0))) | ~room(X0)) & ! [X1] : (preda(X1) | ((predu(X1) | predl(X1)) & (~predl(X1) | ~predu(X1))) | room(X1)) & ! [X2] : (((~predi(X2) | ((predu(X2) | predl(X2)) & (~predl(X2) | ~predu(X2)))) & (((predl(X2) | ~predu(X2)) & (~predl(X2) | predu(X2))) | predi(X2))) | ~room(X2)) & ! [X3] : (~predi(X3) | predc(X3) | ~room(X3)) & ! [X4] : (predj(X4) | ~room(X4)) & ! [X5] : (predl(X5) | ~room(X5)) & ! [X6] : ((predk(X6) | ~predq(X6)) & (predq(X6) | ~predk(X6)) & (predr(X6) | predk(X6)) & room(X6)) & ! [X7] : (~predx(X7) | ~predz(X7) | ~room(X7)) & (! [X8] : (~predz(X8) | predr(X8) | predx(X8) | ~room(X8)) | ? [X9] : anywhere(X9)) & (! [X10] : (~predj(X10) | ~predi(X10) | room(X10)) | ? [X11] : (predi(X11) & ~predb(X11) & room(X11))) & (! [X12] : (~predi(X12) | predb(X12) | ~room(X12)) | ? [X13] : (~predr(X13) | predb(X13) | room(X13))) & (? [X14] : (predx(X14) & ~predg(X14) & room(X14)) | ! [X15] : (~predg(X15) | predb(X15) | ~room(X15))) & (! [X16] : (((~prede(X16) | ~predz(X16)) & (prede(X16) | predz(X16))) | predn(X16) | ~room(X16)) | ? [X17] : (~predn(X17) | predu(X17) | ~room(X17))) & (! [X18] : (~predt(X18) | predu(X18) | room(X18)) | ? [X19] : (preda(X19) & predi(X19) & room(X19))) & (! [X20] : (~preda(X20) | ~predi(X20) | ~room(X20)) | ? [X21] : (predt(X21) & ~predu(X21) & ~room(X21))) & (! [X22] : ((predu(X22) & predl(X22) & predt(X22)) | predg(X22) | ~anywhere(X22)) | sP0) & there_is_a_room [rectify 133] 135. ? [X9] : anywhere(X9) => anywhere(sK2) [choice axiom] 136. ? [X11] : (predi(X11) & ~predb(X11) & room(X11)) => (predi(sK3) & ~predb(sK3) & room(sK3)) [choice axiom] 137. ? [X13] : (~predr(X13) | predb(X13) | room(X13)) => (~predr(sK4) | predb(sK4) | room(sK4)) [choice axiom] 138. ? [X14] : (predx(X14) & ~predg(X14) & room(X14)) => (predx(sK5) & ~predg(sK5) & room(sK5)) [choice axiom] 139. ? [X17] : (~predn(X17) | predu(X17) | ~room(X17)) => (~predn(sK6) | predu(sK6) | ~room(sK6)) [choice axiom] 140. ? [X19] : (preda(X19) & predi(X19) & room(X19)) => (preda(sK7) & predi(sK7) & room(sK7)) [choice axiom] 141. ? [X21] : (predt(X21) & ~predu(X21) & ~room(X21)) => (predt(sK8) & ~predu(sK8) & ~room(sK8)) [choice axiom] 142. ! [X0] : (((preda(X0) | ~predr(X0)) & (predr(X0) | ~preda(X0))) | ~room(X0)) & ! [X1] : (preda(X1) | ((predu(X1) | predl(X1)) & (~predl(X1) | ~predu(X1))) | room(X1)) & ! [X2] : (((~predi(X2) | ((predu(X2) | predl(X2)) & (~predl(X2) | ~predu(X2)))) & (((predl(X2) | ~predu(X2)) & (~predl(X2) | predu(X2))) | predi(X2))) | ~room(X2)) & ! [X3] : (~predi(X3) | predc(X3) | ~room(X3)) & ! [X4] : (predj(X4) | ~room(X4)) & ! [X5] : (predl(X5) | ~room(X5)) & ! [X6] : ((predk(X6) | ~predq(X6)) & (predq(X6) | ~predk(X6)) & (predr(X6) | predk(X6)) & room(X6)) & ! [X7] : (~predx(X7) | ~predz(X7) | ~room(X7)) & (! [X8] : (~predz(X8) | predr(X8) | predx(X8) | ~room(X8)) | anywhere(sK2)) & (! [X10] : (~predj(X10) | ~predi(X10) | room(X10)) | (predi(sK3) & ~predb(sK3) & room(sK3))) & (! [X12] : (~predi(X12) | predb(X12) | ~room(X12)) | (~predr(sK4) | predb(sK4) | room(sK4))) & ((predx(sK5) & ~predg(sK5) & room(sK5)) | ! [X15] : (~predg(X15) | predb(X15) | ~room(X15))) & (! [X16] : (((~prede(X16) | ~predz(X16)) & (prede(X16) | predz(X16))) | predn(X16) | ~room(X16)) | (~predn(sK6) | predu(sK6) | ~room(sK6))) & (! [X18] : (~predt(X18) | predu(X18) | room(X18)) | (preda(sK7) & predi(sK7) & room(sK7))) & (! [X20] : (~preda(X20) | ~predi(X20) | ~room(X20)) | (predt(sK8) & ~predu(sK8) & ~room(sK8))) & (! [X22] : ((predu(X22) & predl(X22) & predt(X22)) | predg(X22) | ~anywhere(X22)) | sP0) & there_is_a_room [skolemisation 134,141,140,139,138,137,136,135] 143. ? [X0] : (~predc(X0) & ~room(X0)) => (~predc(sK9) & ~room(sK9)) [choice axiom] 144. (~predc(sK9) & ~room(sK9)) | ~there_is_a_room [skolemisation 124,143] 229. there_is_a_room [cnf transformation 142] 250. room(X6) [cnf transformation 142] 265. ~room(sK9) | ~there_is_a_room [cnf transformation 144] 356. ~there_is_a_room [subsumption resolution 265,250] 357. $false [subsumption resolution 356,229] % SZS output end Proof for 8536135353290247441722300 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.227474
Douglas is the only person in the room. Everyone in the room who is a certified yoga instructor teaching classes weekly has a saltwater aquarium. Douglas collects antique jewelry. If someone is a certified yoga instructor teaching classes weekly then he/she practices urban gardening and vice versa. It is not the case that “Douglas is a tea enthusiast”. Douglas composes and performs experimental electronic music. Douglas owns a significant collection of rare gemstones and minerals. Douglas practices kickboxing. Someone in the room enjoys fishing. Douglas is a certified yoga instructor teaching classes weekly. Douglas neither is a coffee connoisseur nor enjoys camping and organizing outdoor survival workshops. Douglas practices urban gardening. Someone in the room enjoys deep-sea diving and exploring underwater caves. It is not the case that “Douglas enjoys bird watching”. Douglas is a wine connoisseur. Everyone in the room has a specialized collection of handmade artisan pottery or is not a night owl. It is not the case that “Douglas enjoys camping and organizing outdoor survival workshops”. Douglas uses contact lenses. Someone outside the room enjoys camping and organizing outdoor survival workshops. Douglas is a night owl. Douglas enjoys watercolor painting. Only one person anywhere is a certified scuba diver with advanced underwater photography skills. Douglas plays the drums. Douglas enjoys macrame.
Douglas is a coffee connoisseur.
contradiction
room(douglas)&(![X]:(room(X)=>(X='douglas')))& (![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(has_a_saltwater_aquarium(X))))))& (collects_antique_jewelry(douglas))& ((![X]:((is_a_certified_yoga_instructor_teaching_classes_weekly(X))<=>(practices_urban_gardening(X)))))& (~(is_a_tea_enthusiast(douglas)))& (composes_and_performs_experimental_electronic_music(douglas))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(douglas))& (practices_kickboxing(douglas))& (?[X]:(room(X)&(enjoys_fishing(X))))& (is_a_certified_yoga_instructor_teaching_classes_weekly(douglas))& (~((is_a_coffee_connoisseur(douglas))|(enjoys_camping_and_organizing_outdoor_survival_workshops(douglas))))& (practices_urban_gardening(douglas))& (?[X]:(room(X)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))& (~(enjoys_bird_watching(douglas)))& (is_a_wine_connoisseur(douglas))& (![X]:(room(X)=>(((is_not_a_night_owl(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (~(enjoys_camping_and_organizing_outdoor_survival_workshops(douglas)))& (uses_contact_lenses(douglas))& (?[X]:(~room(X)&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))& (is_a_night_owl(douglas))& (enjoys_watercolor_painting(douglas))& (((?[X]:(anywhere(X)&is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(Y)))=>(X=Y)))))& (plays_the_drums(douglas))& (enjoys_macrame(douglas))
room(douglas)&(![X]:(room(X)=>(X='douglas')))& is_a_coffee_connoisseur(douglas)
[ "p10", "hypothesis" ]
% SZS status Unsatisfiable for 30726119367246741342851 % SZS output start Proof for 30726119367246741342851 54. ~(predg(mary) | predh(mary)) [input p10] 68. predh(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 162. ~predg(mary) & ~predh(mary) [ennf transformation 54] 165. predh(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 68] 259. ~predh(mary) [cnf transformation 162] 270. predh(mary) [cnf transformation 165] 273. $false [subsumption resolution 270,259] % SZS output end Proof for 30726119367246741342851 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.419735
Joseph is the only person in the room. “Someone in the room neither does not own an Android phone nor collects historical artifacts related to ancient civilizations” only if “only one person in the room practices and performs acrobatic dance routines”. If “everyone in the room owns a significant collection of rare gemstones and minerals or does not own a television” then “Joseph owns a smart tv” otherwise “Joseph does not own a television”. If “Joseph hosts themed dinner parties featuring gourmet home-cooked meals” then “Joseph practices and performs acrobatic dance routines” otherwise “if someone either practices urban gardening or regularly contributes to tech forums and online communities but not both then he/she practices urban gardening and vice versa”. If “everyone in the room does not own a television or is allergic to anything” then “if someone does not practice and performs acrobatic dance routines then he/she does not work as a freelance web developer specializing in e-commerce sites” otherwise “everyone in the room plays eSports competitively”. Joseph who owns an Android phone collects historical artifacts related to ancient civilizations. Joseph is right-handed. If someone neither works as a freelance web developer specializing in e-commerce sites nor is not allergic to anything then he/she collects historical artifacts related to ancient civilizations. Everyone in the room collects first edition books only if they owns a significant collection of rare gemstones and minerals. Joseph dreamt that “Joseph works as a freelance web developer specializing in e-commerce sites”. Not everyone in the room who does not own a television has lived in exactly three countries.
Joseph hosts themed dinner parties featuring gourmet home-cooked meals.
neutral
room(joseph)&(![X]:(room(X)=>(X='joseph')))& ((?[X]:(room(X)&(~((does_not_own_an_Android_phone(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))))=>(((?[X]:(room(X)&practices_and_performs_acrobatic_dance_routines(X)))&(![X,Y]:((room(X)&room(Y)&(practices_and_performs_acrobatic_dance_routines(X))&(practices_and_performs_acrobatic_dance_routines(Y)))=>(X=Y))))))& (((![X]:(room(X)=>(((does_not_own_a_television(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))=>(owns_a_smart_tv(joseph)))&((~(![X]:(room(X)=>(((does_not_own_a_television(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))=>(does_not_own_a_television(joseph))))& (((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(joseph))=>(practices_and_performs_acrobatic_dance_routines(joseph)))&((~(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(joseph)))=>((![X]:((((practices_urban_gardening(X))<~>(regularly_contributes_to_tech_forums_and_online_communities(X))))<=>(practices_urban_gardening(X)))))))& (((![X]:(room(X)=>(((is_allergic_to_anything(X))|(does_not_own_a_television(X))))))=>((![X]:((does_not_practice_and_performs_acrobatic_dance_routines(X))=>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))&((~(![X]:(room(X)=>(((is_allergic_to_anything(X))|(does_not_own_a_television(X)))))))=>(![X]:(room(X)=>(plays_eSports_competitively(X))))))& ((owns_an_Android_phone(joseph))&(collects_historical_artifacts_related_to_ancient_civilizations(joseph)))& (is_right-handed(joseph))& ((![X]:((~((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(is_not_allergic_to_anything(X))))=>(collects_historical_artifacts_related_to_ancient_civilizations(X)))))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))<=(collects_first_edition_books(X))))))& ((joseph_dream=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(joseph))))& (~![X]:(room(X)=>(((does_not_own_a_television(X))=>(has_lived_in_exactly_three_countries(X))))))
room(joseph)&(![X]:(room(X)=>(X='joseph')))& hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(joseph)
[]
null
0
Stephen, Myrna, Kieth, Miranda are the only persons in the room. Myrna is the least quiet in the room. If someone is not calm then he/she is not wise and vice versa. If someone is not a strong curious creative person then he/she is not a strong person and vice versa. Only one person in the room is not a humble tall funny person. Myrna is the least rich outside the room. If someone is not a curious happy person then he/she is not strong and vice versa. Only one person in the room is not patient. Only one person in the room is not a humble tall patient strong person. If someone is not a humble funny tall wise person then he/she is not a quiet brave person and vice versa. Stephen dreamt that “if someone is not a humble person then he/she is not a curious kind strong person and vice versa”. If someone is not a brave generous person then he/she is not a curious person and vice versa. If someone is not brave then he/she is not a calm old person and vice versa. Stephen dreamt that “only one person in the room is not kind”. Only one person in the room is not funny, not humble. Myrna is the least old outside the room. If someone is not a brave patient person then he/she is not a humble person and vice versa. If someone is not a tall calm old person then he/she is not patient and vice versa. If someone is not strong, not wise then he/she is not a brave person and vice versa. Only one person outside the room is not curious. It is true that “Stephen dreamt that “if someone is not a happy person then he/she is not a wise creative tall kind person and vice versa””. It is true that “if someone is not a creative person then he/she is not a tall person and vice versa”. If someone is not a happy person then he/she is not a funny creative curious humble generous tall person and vice versa. Stephen dreamt that “Myrna is the least quiet in the room”. If someone is not a curious funny old person then he/she is not a brave patient wise calm person and vice versa.
Kieth and Miranda are respectively tall and old.
neutral
room(stephen)&room(myrna)&room(kieth)&room(miranda)&(![X]:(room(X)=>(X='stephen'|X='myrna'|X='kieth'|X='miranda')))& (![X]:((room(X)&(X!=myrna))=>quieter(myrna,X)))& ((![X]:((~calm(X))<=>(~wise(X)))))& ((![X]:((~(strong(X)&curious(X)&creative(X)&person(X)))<=>(~(strong(X)&person(X))))))& (((?[X]:(room(X)&~(humble(X)&tall(X)&funny(X)&person(X))))&(![X,Y]:((room(X)&room(Y)&(~(humble(X)&tall(X)&funny(X)&person(X)))&(~(humble(Y)&tall(Y)&funny(Y)&person(Y))))=>(X=Y)))))& (![X]:((~room(X)&(X!=myrna))=>richer(myrna,X)))& ((![X]:((~(curious(X)&happy(X)&person(X)))<=>(~strong(X)))))& (((?[X]:(room(X)&~patient(X)))&(![X,Y]:((room(X)&room(Y)&(~patient(X))&(~patient(Y)))=>(X=Y)))))& (((?[X]:(room(X)&~(humble(X)&tall(X)&patient(X)&strong(X)&person(X))))&(![X,Y]:((room(X)&room(Y)&(~(humble(X)&tall(X)&patient(X)&strong(X)&person(X)))&(~(humble(Y)&tall(Y)&patient(Y)&strong(Y)&person(Y))))=>(X=Y)))))& ((![X]:((~(humble(X)&funny(X)&tall(X)&wise(X)&person(X)))<=>(~(quiet(X)&brave(X)&person(X))))))& ((stephen_dream=>((![X]:((~(humble(X)&person(X)))<=>(~(curious(X)&kind(X)&strong(X)&person(X))))))))& ((![X]:((~(brave(X)&generous(X)&person(X)))<=>(~(curious(X)&person(X))))))& ((![X]:((~brave(X))<=>(~(calm(X)&old(X)&person(X))))))& ((stephen_dream=>(((?[X]:(room(X)&~kind(X)))&(![X,Y]:((room(X)&room(Y)&(~kind(X))&(~kind(Y)))=>(X=Y)))))))& (((?[X]:(room(X)&~funny(X)&~humble(X)))&(![X,Y]:((room(X)&room(Y)&(~funny(X)&~humble(X))&(~funny(Y)&~humble(Y)))=>(X=Y)))))& (![X]:((~room(X)&(X!=myrna))=>older(myrna,X)))& ((![X]:((~(brave(X)&patient(X)&person(X)))<=>(~(humble(X)&person(X))))))& ((![X]:((~(tall(X)&calm(X)&old(X)&person(X)))<=>(~patient(X)))))& ((![X]:((~strong(X)&~wise(X))<=>(~(brave(X)&person(X))))))& (((?[X]:(~room(X)&~curious(X)))&(![X,Y]:((~room(X)&~room(Y)&(~curious(X))&(~curious(Y)))=>(X=Y)))))& ((stephen_dream=>((![X]:((~(happy(X)&person(X)))<=>(~(wise(X)&creative(X)&tall(X)&kind(X)&person(X))))))))& ((![X]:((~(creative(X)&person(X)))<=>(~(tall(X)&person(X))))))& ((![X]:((~(happy(X)&person(X)))<=>(~(funny(X)&creative(X)&curious(X)&humble(X)&generous(X)&tall(X)&person(X))))))& ((stephen_dream=>(![X]:((room(X)&(X!=myrna))=>quieter(myrna,X)))))& ((![X]:((~(curious(X)&funny(X)&old(X)&person(X)))<=>(~(brave(X)&patient(X)&wise(X)&calm(X)&person(X))))))
room(stephen)&room(myrna)&room(kieth)&room(miranda)&(![X]:(room(X)=>(X='stephen'|X='myrna'|X='kieth'|X='miranda')))& (tall(kieth))&(old(miranda))
[]
null
0.621669
There is a room. If “everyone in the room does not practice and performs acrobatic dance routines or does not create YouTube content” then “no one in the room collects rare minerals, collects historical artifacts related to ancient civilizations or regularly contributes to tech forums and online communities if they does not practice and performs acrobatic dance routines”. “Everyone in the room collects action figures” only if “everyone in the room does not play as a goalkeeper for a local amateur soccer team or collects historical artifacts related to ancient civilizations”. “Everyone in the room practices and performs acrobatic dance routines” unless “everyone in the room does not create YouTube content or regularly contributes to tech forums and online communities”. If “everyone in the room does not collect historical artifacts related to ancient civilizations or creates YouTube content” then “everyone in the room does not collect historical artifacts related to ancient civilizations if and only if they is an avid hiker”. Not everyone in the room is passionate about collecting and restoring classic cars if and only if they either does not collect historical artifacts related to ancient civilizations or plays as a goalkeeper for a local amateur soccer team but not both. Everyone in the room is a scotch connoisseur or does not collect rare minerals. Everyone in the room plays as a goalkeeper for a local amateur soccer team or does not create YouTube content. Everyone outside the room who creates YouTube content neither collects historical artifacts related to ancient civilizations nor plays as a goalkeeper for a local amateur soccer team. Everyone in the room plays as a goalkeeper for a local amateur soccer team if they neither collects historical artifacts related to ancient civilizations nor plays as a goalkeeper for a local amateur soccer team. If someone neither is not allergic to anything nor is an avid hiker then he/she collects rare minerals, creates YouTube content or regularly contributes to tech forums and online communities and vice versa.
Everyone in the room does not collect rare minerals or collects action figures.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_create_YouTube_content(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))=>(~?[X]:(room(X)=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))=>(((collects_rare_minerals(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))|(regularly_contributes_to_tech_forums_and_online_communities(X)))))))))& ((![X]:(room(X)=>(collects_action_figures(X))))=>(![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))& (~(![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))|(does_not_create_YouTube_content(X))))))=>(![X]:(room(X)=>(practices_and_performs_acrobatic_dance_routines(X)))))& ((![X]:(room(X)=>(((creates_YouTube_content(X))|(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))))=>(![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))<=>(is_an_avid_hiker(X)))))))& (~![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))<=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))<~>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))))& (![X]:(room(X)=>(((does_not_collect_rare_minerals(X))|(is_a_scotch_connoisseur(X))))))& (![X]:(room(X)=>(((does_not_create_YouTube_content(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(~room(X)=>(((creates_YouTube_content(X))=>(~((collects_historical_artifacts_related_to_ancient_civilizations(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))))& (![X]:(room(X)=>(((~((collects_historical_artifacts_related_to_ancient_civilizations(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& ((![X]:((~((is_not_allergic_to_anything(X))|(is_an_avid_hiker(X))))<=>(((collects_rare_minerals(X))|(creates_YouTube_content(X))|(regularly_contributes_to_tech_forums_and_online_communities(X)))))))
(there_is_a_room)& ![X]:(room(X)=>(((collects_action_figures(X))|(does_not_collect_rare_minerals(X)))))
[]
null
0.093061
Barbara is the only person in the room. If 'Barbara does not play video games' then 'all kind person is creative'. 'Barbara does enjoy trail running' unless 'Barbara practices pilates'. Barbara is a client of James. Barbara writes in-depth travel guides for off-the-beaten-path destinations. All funny person is wise. Barbara reads mystery novels. All tall person is calm. Barbara is a client of Kenneth. If someone is a coffee connoisseur then he/she is quieter than Rodolfo and vice versa. Barbara can play the harmonica. If someone hates James then he/she enjoys coding in Python and vice versa. 'Not all swans in one park are blue.' and 'There is a planet where the oceans are in the sky.'. Only one person in the room plays the drums or does not collect luxury watches or both. Barbara is a sibling of Rodolfo. Barbara can play the harmonica or competes in national level swimming championships or both. Barbara is a client of Costco. Barbara is a sibling of Louis. If someone is quieter than Robert then he/she collects luxury watches and vice versa. Barbara enjoys snowboarding. 'A frog sings opera in the swamp at night.' and 'A tower does not lean significantly without falling.'. Barbara who can play the harmonica is a sibling of Tony. All generous person is quiet. Barbara practices digital art. Barbara is a client of Robert. All quiet person is calm. Barbara competes in national level swimming championships.
Barbara plays video games.
neutral
room(barbara)&(![X]:(room(X)=>(X='barbara')))& ((does_not_play_video_games(barbara))=>(![X]:(kind(X)=>creative(X))))& (~(practices_pilates(barbara))=>(does_enjoy_trail_running(barbara)))& (client(james,barbara))& (writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(barbara))& (![X]:(funny(X)=>wise(X)))& (reads_mystery_novels(barbara))& (![X]:(tall(X)=>calm(X)))& (client(kenneth,barbara))& ((![X]:((is_a_coffee_connoisseur(X))<=>(quieter(rodolfo,X)))))& (can_play_the_harmonica(barbara))& ((![X]:((hate(james,X))<=>(enjoys_coding_in_Python(X)))))& (((Not_all_swans_in_one_park_are_blue.)&(There_is_a_planet_where_the_oceans_are_in_the_sky.)))& (((?[X]:(room(X)&((plays_the_drums(X))|(does_not_collect_luxury_watches(X)))))&(![X,Y]:((room(X)&room(Y)&(((plays_the_drums(X))|(does_not_collect_luxury_watches(X))))&(((plays_the_drums(Y))|(does_not_collect_luxury_watches(Y)))))=>(X=Y)))))& (sibling(rodolfo,barbara))& (((can_play_the_harmonica(barbara))|(competes_in_national_level_swimming_championships(barbara))))& (is_a_client_of_Costco(barbara))& (sibling(louis,barbara))& ((![X]:((quieter(robert,X))<=>(collects_luxury_watches(X)))))& (enjoys_snowboarding(barbara))& (((A_frog_sings_opera_in_the_swamp_at_night.)&(A_tower_does_not_lean_significantly_without_falling.)))& ((can_play_the_harmonica(barbara))&(sibling(tony,barbara)))& (![X]:(generous(X)=>quiet(X)))& (practices_digital_art(barbara))& (client(robert,barbara))& (![X]:(quiet(X)=>calm(X)))& (competes_in_national_level_swimming_championships(barbara))
room(barbara)&(![X]:(room(X)=>(X='barbara')))& plays_video_games(barbara)
[]
null
0.603068
Pedro, Woodrow, Rebecca, Nancy, Teri are the only persons in the room. All wise persons are kind. At least one person in the room is a quiet person. Pedro is the richest in the room. Pedro is tall. Pedro is a quiet person, is old or is creative. Pedro is a kind person. Pedro is a creative person. Pedro is the least old anywhere. Pedro is old and is tall. Pedro is strong. Pedro is happy. Pedro is creative. At least one person in the room is a funny person.
Not everyone in the room is not a old person, is quiet and is not quiet.
entailment
room(pedro)&room(woodrow)&room(rebecca)&room(nancy)&room(teri)&(![X]:(room(X)=>(X='pedro'|X='woodrow'|X='rebecca'|X='nancy'|X='teri')))& (![X]:(wise(X)=>kind(X)))& (((?[X]:(room(X)&quiet(X)&person(X)))))& (![X]:((room(X)&(X!=pedro))=>richer(X,pedro)))& (tall(pedro))& (((quiet(pedro)&person(pedro))|(old(pedro))|(creative(pedro))))& (kind(pedro)&person(pedro))& (creative(pedro)&person(pedro))& (![X]:((anywhere(X)&(X!=pedro))=>older(pedro,X)))& (((old(pedro))&(tall(pedro))))& (strong(pedro))& (happy(pedro))& (creative(pedro))& (((?[X]:(room(X)&funny(X)&person(X)))))
room(pedro)&room(woodrow)&room(rebecca)&room(nancy)&room(teri)&(![X]:(room(X)=>(X='pedro'|X='woodrow'|X='rebecca'|X='nancy'|X='teri')))& ~![X]:(room(X)=>(((~(old(X)&person(X)))&(quiet(X))&(~quiet(X)))))
[ "p0", "p6", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 599114506541901461228067 % SZS output start Proof for 599114506541901461228067 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 50. person(mary) & kind(mary) [input p6] 53. tall(mary) & old(mary) [input p9] 58. ~(~! [X0] : (room(X0) => (~quiet(X0) & quiet(X0) & ~(person(X0) & old(X0)))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 59. ~(~! [X0] : (room(X0) => (~quiet(X0) & quiet(X0) & ~(person(X0) & old(X0)))) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 58] 67. old(mary) [pure predicate removal 53] 68. person(mary) [pure predicate removal 50] 141. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141] 147. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | ? [X1] : ((john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 59] 148. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 147] 149. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 150. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 148,149] 156. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 149] 157. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 156] 158. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 159. (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~sP0 [skolemisation 157,158] 241. room(mary) [cnf transformation 142] 242. room(paul) [cnf transformation 142] 243. room(fred) [cnf transformation 142] 244. room(alice) [cnf transformation 142] 245. room(john) [cnf transformation 142] 246. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 142] 251. person(mary) [cnf transformation 68] 254. old(mary) [cnf transformation 67] 257. room(sK3) | ~sP0 [cnf transformation 159] 258. mary != sK3 | ~sP0 [cnf transformation 159] 259. paul != sK3 | ~sP0 [cnf transformation 159] 260. fred != sK3 | ~sP0 [cnf transformation 159] 261. alice != sK3 | ~sP0 [cnf transformation 159] 262. john != sK3 | ~sP0 [cnf transformation 159] 263. ~person(X0) | ~old(X0) | ~room(X0) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 150] 268. 1 <=> sP0 [avatar definition] 272. 2 <=> john = sK3 [avatar definition] 274. john != sK3 <- (~2) [avatar component clause 272] 275. ~1 | ~2 [avatar split clause 262,272,268] 277. 3 <=> alice = sK3 [avatar definition] 279. alice != sK3 <- (~3) [avatar component clause 277] 280. ~1 | ~3 [avatar split clause 261,277,268] 282. 4 <=> fred = sK3 [avatar definition] 284. fred != sK3 <- (~4) [avatar component clause 282] 285. ~1 | ~4 [avatar split clause 260,282,268] 287. 5 <=> paul = sK3 [avatar definition] 289. paul != sK3 <- (~5) [avatar component clause 287] 290. ~1 | ~5 [avatar split clause 259,287,268] 292. 6 <=> mary = sK3 [avatar definition] 294. mary != sK3 <- (~6) [avatar component clause 292] 295. ~1 | ~6 [avatar split clause 258,292,268] 297. 7 <=> room(sK3) [avatar definition] 299. room(sK3) <- (7) [avatar component clause 297] 300. ~1 | 7 [avatar split clause 257,297,268] 319. ~person(X0) | ~old(X0) | ~room(X0) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,245] 320. ~person(X0) | ~old(X0) | ~room(X0) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 319,244] 321. ~person(X0) | ~old(X0) | ~room(X0) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 320,243] 322. ~person(X0) | ~old(X0) | ~room(X0) | sP0 | ~room(mary) [subsumption resolution 321,242] 323. ~person(X0) | ~old(X0) | ~room(X0) | sP0 [subsumption resolution 322,241] 325. 10 <=> ! [X0] : (~person(X0) | ~room(X0) | ~old(X0)) [avatar definition] 326. ~room(X0) | ~person(X0) | ~old(X0) <- (10) [avatar component clause 325] 327. 1 | 10 [avatar split clause 323,325,268] 353. ~person(mary) | ~old(mary) <- (10) [resolution 326,241] 361. ~old(mary) <- (10) [subsumption resolution 353,251] 362. $false <- (10) [subsumption resolution 361,254] 363. ~10 [avatar contradiction clause 362] 523. alice = sK3 | fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (7) [resolution 246,299] 566. fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (~3, 7) [subsumption resolution 523,279] 567. paul = sK3 | mary = sK3 | john = sK3 <- (~3, ~4, 7) [subsumption resolution 566,284] 568. mary = sK3 | john = sK3 <- (~3, ~4, ~5, 7) [subsumption resolution 567,289] 569. john = sK3 <- (~3, ~4, ~5, ~6, 7) [subsumption resolution 568,294] 570. $false <- (~2, ~3, ~4, ~5, ~6, 7) [subsumption resolution 569,274] 571. 2 | 3 | 4 | 5 | 6 | ~7 [avatar contradiction clause 570] 572. $false [avatar sat refutation 275,280,285,290,295,300,327,363,571] % SZS output end Proof for 599114506541901461228067 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0.238225
There is a room. Everyone in the room is richer than Helen if they is older than Helen. If someone is not a quiet tall person then he/she is a quiet person. Everyone in the room is not a old person, is quieter than Helen and is tall if and only if they is a tall person. Someone who is quiet is quieter than someone who is a old person or is a old tall quiet person or both. Everyone anywhere who is not old neither is richer than Helen nor is quieter than Helen. If someone is quieter than Helen then he/she is richer than Helen. Everyone anywhere either is not quiet or is richer than Helen but not both if they is a tall old quiet person. No one in the room is quieter than Helen.
More than one person anywhere is richer than Helen and is quieter than Helen.
contradiction
(there_is_a_room)& (![X]:(room(X)=>(((older(helen,X))=>(richer(helen,X))))))& ((![X]:((~(quiet(X)&tall(X)&person(X)))=>(quiet(X)&person(X)))))& (![X]:(room(X)=>(((((~(old(X)&person(X)))&(quieter(helen,X))&(tall(X))))<=>(tall(X)&person(X))))))& (?[X,Y]:((quiet(X))&(((old(Y)&person(Y))|(old(Y)&tall(Y)&quiet(Y)&person(Y))))&(quieter(X,Y))))& (![X]:(anywhere(X)=>(((~old(X))=>(~((richer(helen,X))|(quieter(helen,X))))))))& ((![X]:((quieter(helen,X))=>(richer(helen,X)))))& (![X]:(anywhere(X)=>(((tall(X)&old(X)&quiet(X)&person(X))=>(((~quiet(X))<~>(richer(helen,X))))))))& ((![X]:((~(quiet(X)&person(X)))<=>(old(X)&tall(X)&quiet(X)&person(X)))))& (~?[X]:(room(X)=>(quieter(helen,X))))
(there_is_a_room)& (?[X,Y]:(anywhere(X)&anywhere(Y)&(((richer(helen,X))&(quieter(helen,X)))&((richer(helen,Y))&(quieter(helen,Y))))&(X!=Y)))
[ "p9", "hypothesis" ]
% SZS status Unsatisfiable for 1249797612346048926575227 % SZS output start Proof for 1249797612346048926575227 53. ~? [X0] : (room(X0) => quieter(mary,X0)) [input p9] 54. ? [X0,X1] : (X0 != X1 & quieter(mary,X1) & richer(mary,X1) & quieter(mary,X0) & richer(mary,X0) & anywhere(X1) & anywhere(X0)) & there_is_a_room [input hypothesis] 55. ? [X0,X1] : (X0 != X1 & quieter(mary,X1) & richer(mary,X1) & quieter(mary,X0) & richer(mary,X0) & anywhere(X1) & anywhere(X0)) [pure predicate removal 54] 138. ! [X0] : (~quieter(mary,X0) & room(X0)) [ennf transformation 53] 151. ? [X0,X1] : (X0 != X1 & quieter(mary,X1) & richer(mary,X1) & quieter(mary,X0) & richer(mary,X0) & anywhere(X1) & anywhere(X0)) => (sK3 != sK4 & quieter(mary,sK4) & richer(mary,sK4) & quieter(mary,sK3) & richer(mary,sK3) & anywhere(sK4) & anywhere(sK3)) [choice axiom] 152. sK3 != sK4 & quieter(mary,sK4) & richer(mary,sK4) & quieter(mary,sK3) & richer(mary,sK3) & anywhere(sK4) & anywhere(sK3) [skolemisation 55,151] 272. ~quieter(mary,X0) [cnf transformation 138] 278. quieter(mary,sK4) [cnf transformation 152] 308. $false [subsumption resolution 278,272] % SZS output end Proof for 1249797612346048926575227 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.060285
David, Donald, Lucille, Lois, Sam are the only persons in the room. Lucille is a creative person. Lois is the least rich in the room. David is a creative person. Everyone in the room is a generous person. Lucille is quiet. Everyone anywhere is not a strong person.
Donald is strong.
contradiction
room(david)&room(donald)&room(lucille)&room(lois)&room(sam)&(![X]:(room(X)=>(X='david'|X='donald'|X='lucille'|X='lois'|X='sam')))& (creative(lucille)&person(lucille))& (![X]:((room(X)&(X!=lois))=>richer(lois,X)))& (creative(david)&person(david))& (![X]:(room(X)=>(generous(X)&person(X))))& (quiet(lucille))& (![X]:(room(X)=>(((old(X))<~>(humble(X)&person(X))))))& (kind(david)&person(david))& (![X]:(room(X)=>(~tall(X))))& (~?[X]:(humble(X)=>brave(X)))& (![X]:(anywhere(X)=>(~(strong(X)&person(X)))))& ((![X]:((quiet(X)&person(X))<=>(creative(X)))))& (calm(lois)&person(lois))& ((![X]:((~(calm(X)&person(X)))=>(humble(X)))))& (![X]:(room(X)=>(calm(X)&person(X))))& (![X]:(wise(X)=>strong(X)))
room(david)&room(donald)&room(lucille)&room(lois)&room(sam)&(![X]:(room(X)=>(X='david'|X='donald'|X='lucille'|X='lois'|X='sam')))& strong(donald)
[ "b4", "p0", "p4", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 1612296556711151886724289 % SZS output start Proof for 1612296556711151886724289 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => (person(X0) & generous(X0))) [input p4] 54. ! [X0] : (anywhere(X0) => ~(person(X0) & strong(X0))) [input p10] 60. strong(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 69. ! [X0] : (room(X0) => person(X0)) [pure predicate removal 48] 141. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141] 145. ! [X0] : (person(X0) | ~room(X0)) [ennf transformation 69] 148. ! [X0] : ((~person(X0) | ~strong(X0)) | ~anywhere(X0)) [ennf transformation 54] 149. ! [X0] : (~person(X0) | ~strong(X0) | ~anywhere(X0)) [flattening 148] 153. strong(paul) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 60] 154. strong(paul) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 153] 158. anywhere(X0) [cnf transformation 5] 240. room(paul) [cnf transformation 142] 250. ~room(X0) | person(X0) [cnf transformation 145] 257. ~person(X0) | ~strong(X0) | ~anywhere(X0) [cnf transformation 149] 269. strong(paul) [cnf transformation 154] 271. ~strong(X0) | ~person(X0) [subsumption resolution 257,158] 273. person(paul) [resolution 250,240] 281. ~person(paul) [resolution 271,269] 282. $false [subsumption resolution 281,273] % SZS output end Proof for 1612296556711151886724289 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.235188
Jean is the only person in the room. “Everyone anywhere does not collect classic novels or does not work as a freelance web developer specializing in e-commerce sites” if “everyone outside the room does not collect classic novels or collects classic novels” and vice versa. Everyone in the room is not an enthusiastic bird watcher who travels for rare sightings or does not collect classic novels. Everyone in the room who is not right-handed, is a night owl and works as a freelance web developer specializing in e-commerce sites does not collect first edition books. Everyone in the room enjoys landscape photography, collects modern art and does not enjoy landscape photography if they does not collect first edition books. Everyone outside the room who enjoys landscape photography, collects modern art and does not enjoy landscape photography is an enthusiastic bird watcher who travels for rare sightings, works as a freelance web developer specializing in e-commerce sites and is a night owl. Not everyone in the room who is an enthusiastic bird watcher who travels for rare sightings, works as a freelance web developer specializing in e-commerce sites and is a night owl does not enjoy landscape photography. Not everyone outside the room does not enjoy landscape photography if and only if they trains for and competes in international triathlons or works as a freelance web developer specializing in e-commerce sites or both. Everyone anywhere who trains for and competes in international triathlons or works as a freelance web developer specializing in e-commerce sites or both is a chess master who participates in national tournaments, does not collect classic novels and is a scotch connoisseur. Jean does not practice tai chi.
Jean is right-handed.
entailment
room(jean)&(![X]:(room(X)=>(X='jean')))& ((![X]:(~room(X)=>(((collects_classic_novels(X))|(does_not_collect_classic_novels(X))))))<=>(![X]:(anywhere(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(does_not_collect_classic_novels(X)))))))& (![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (![X]:(room(X)=>(((((is_not_right-handed(X))&(is_a_night_owl(X))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))=>(does_not_collect_first_edition_books(X))))))& (![X]:(room(X)=>(((does_not_collect_first_edition_books(X))=>(((enjoys_landscape_photography(X))&(collects_modern_art(X))&(does_not_enjoy_landscape_photography(X))))))))& (![X]:(~room(X)=>(((((enjoys_landscape_photography(X))&(collects_modern_art(X))&(does_not_enjoy_landscape_photography(X))))=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(is_a_night_owl(X))))))))& (~![X]:(room(X)=>(((((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(is_a_night_owl(X))))=>(does_not_enjoy_landscape_photography(X))))))& (~![X]:(~room(X)=>(((does_not_enjoy_landscape_photography(X))<=>(((trains_for_and_competes_in_international_triathlons(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))))& (![X]:(anywhere(X)=>(((((trains_for_and_competes_in_international_triathlons(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))=>(((is_a_chess_master_who_participates_in_national_tournaments(X))&(does_not_collect_classic_novels(X))&(is_a_scotch_connoisseur(X))))))))& (does_not_practice_tai_chi(jean))
room(jean)&(![X]:(room(X)=>(X='jean')))& is_right-handed(jean)
[ "p0", "p3", "p4", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 7934796934820487459950433 % SZS output start Proof for 7934796934820487459950433 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 47. ! [X0] : (room(X0) => ((predb(X0) & predm(X0) & ~predd(X0)) => ~predg(X0))) [input p3] 48. ! [X0] : (room(X0) => (~predg(X0) => (~predp(X0) & predu(X0) & predp(X0)))) [input p4] 50. ~! [X0] : (room(X0) => ((predm(X0) & predb(X0) & predh(X0)) => ~predp(X0))) [input p6] 54. ~(predd(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 130. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 135. ! [X0] : ((~predg(X0) | (~predb(X0) | ~predm(X0) | predd(X0))) | ~room(X0)) [ennf transformation 47] 136. ! [X0] : (~predg(X0) | ~predb(X0) | ~predm(X0) | predd(X0) | ~room(X0)) [flattening 135] 137. ! [X0] : (((~predp(X0) & predu(X0) & predp(X0)) | predg(X0)) | ~room(X0)) [ennf transformation 48] 138. ! [X0] : ((~predp(X0) & predu(X0) & predp(X0)) | predg(X0) | ~room(X0)) [flattening 137] 141. ? [X0] : ((predp(X0) & (predm(X0) & predb(X0) & predh(X0))) & room(X0)) [ennf transformation 50] 142. ? [X0] : (predp(X0) & predm(X0) & predb(X0) & predh(X0) & room(X0)) [flattening 141] 146. ~predd(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 54] 153. ? [X0] : (predp(X0) & predm(X0) & predb(X0) & predh(X0) & room(X0)) => (predp(sK2) & predm(sK2) & predb(sK2) & predh(sK2) & room(sK2)) [choice axiom] 154. predp(sK2) & predm(sK2) & predb(sK2) & predh(sK2) & room(sK2) [skolemisation 142,153] 159. ? [X0] : (mary != X0 & room(X0)) => (mary != sK4 & room(sK4)) [choice axiom] 160. ~predd(mary) | (mary != sK4 & room(sK4)) | ~room(mary) [skolemisation 146,159] 242. room(mary) [cnf transformation 130] 243. ~room(X0) | mary = X0 [cnf transformation 130] 251. ~predg(X0) | ~predb(X0) | ~predm(X0) | predd(X0) | ~room(X0) [cnf transformation 136] 252. predp(X0) | predg(X0) | ~room(X0) [cnf transformation 138] 254. ~predp(X0) | predg(X0) | ~room(X0) [cnf transformation 138] 258. room(sK2) [cnf transformation 154] 260. predb(sK2) [cnf transformation 154] 261. predm(sK2) [cnf transformation 154] 269. ~predd(mary) | room(sK4) | ~room(mary) [cnf transformation 160] 270. ~predd(mary) | mary != sK4 | ~room(mary) [cnf transformation 160] 288. ~room(X0) | predg(X0) [subsumption resolution 252,254] 307. ~predd(mary) | mary != sK4 [subsumption resolution 270,242] 309. 7 <=> mary = sK4 [avatar definition] 311. mary != sK4 <- (~7) [avatar component clause 309] 313. 8 <=> predd(mary) [avatar definition] 316. ~7 | ~8 [avatar split clause 307,313,309] 317. ~predd(mary) | room(sK4) [subsumption resolution 269,242] 319. 9 <=> room(sK4) [avatar definition] 321. room(sK4) <- (9) [avatar component clause 319] 322. 9 | ~8 [avatar split clause 317,313,319] 324. predg(mary) [resolution 288,242] 327. mary = sK2 [resolution 243,258] 330. predb(mary) [backward demodulation 260,327] 331. predm(mary) [backward demodulation 261,327] 375. ~predb(mary) | ~predm(mary) | predd(mary) | ~room(mary) [resolution 251,324] 376. ~predm(mary) | predd(mary) | ~room(mary) [subsumption resolution 375,330] 377. predd(mary) | ~room(mary) [subsumption resolution 376,331] 381. predd(mary) [subsumption resolution 377,242] 382. 8 [avatar split clause 381,313] 384. mary = sK4 <- (9) [resolution 321,243] 395. $false <- (~7, 9) [subsumption resolution 384,311] 396. 7 | ~9 [avatar contradiction clause 395] 398. $false [avatar sat refutation 316,322,382,396] % SZS output end Proof for 7934796934820487459950433 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.183492
Amanda, Robin, Ismael, Virginia are the only persons in the room. All brave persons are generous. Everyone in the room is brave. Someone in the room is not a curious person. Everyone in the room is a strong humble person. Everyone in the room is not a tall person if they is happy and vice versa. Everyone in the room is happy if they is not creative or is not a happy person or both and vice versa.
Robin is tall.
contradiction
room(amanda)&room(robin)&room(ismael)&room(virginia)&(![X]:(room(X)=>(X='amanda'|X='robin'|X='ismael'|X='virginia')))& (![X]:(brave(X)=>generous(X)))& (![X]:(room(X)=>(brave(X))))& (?[X]:(room(X)&(~(curious(X)&person(X)))))& (![X]:(room(X)=>(calm(X))))& (![X]:(humble(X)=>patient(X)))& (((?[X]:(room(X)&quiet(X)))&(![X,Y]:((room(X)&room(Y)&(quiet(X))&(quiet(Y)))=>(X=Y)))))& (![X]:(room(X)=>(strong(X)&humble(X)&person(X))))& (![X]:(room(X)=>(((~patient(X))<=>(~(generous(X)&person(X)))))))& (![X]:(room(X)=>(((~(generous(X)&person(X)))=>(~(humble(X)&brave(X)&person(X)))))))& (![X]:(anywhere(X)=>(brave(X))))& (![X]:(strong(X)=>calm(X)))& (![X]:(room(X)=>(((~(tall(X)&person(X)))<=>(happy(X))))))& (![X]:(room(X)=>(((happy(X))<=>(((~creative(X))|(~(happy(X)&person(X)))))))))& ((![X]:((~calm(X))<=>(curious(X)))))& (![X]:(room(X)=>(((~(kind(X)&person(X)))<=(~curious(X)&~quiet(X))))))& (![X]:(~room(X)=>(((~(old(X)&person(X)))<=(~(generous(X)&funny(X)&humble(X)&person(X)))))))
room(amanda)&room(robin)&room(ismael)&room(virginia)&(![X]:(room(X)=>(X='amanda'|X='robin'|X='ismael'|X='virginia')))& tall(robin)
[ "p0", "p7", "p12", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 112262249344268044447419 % SZS output start Proof for 112262249344268044447419 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 51. ! [X0] : (room(X0) => (person(X0) & humble(X0) & strong(X0))) [input p7] 56. ! [X0] : (room(X0) => (~(person(X0) & tall(X0)) <=> happy(X0))) [input p12] 57. ! [X0] : (room(X0) => (happy(X0) <=> (~(person(X0) & happy(X0)) | ~creative(X0)))) [input p13] 61. tall(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 70. ! [X0] : (room(X0) => (person(X0) & humble(X0))) [pure predicate removal 51] 142. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 149. ! [X0] : ((person(X0) & humble(X0)) | ~room(X0)) [ennf transformation 70] 154. ! [X0] : (((~person(X0) | ~tall(X0)) <=> happy(X0)) | ~room(X0)) [ennf transformation 56] 155. ! [X0] : ((happy(X0) <=> ((~person(X0) | ~happy(X0)) | ~creative(X0))) | ~room(X0)) [ennf transformation 57] 156. ! [X0] : ((happy(X0) <=> (~person(X0) | ~happy(X0) | ~creative(X0))) | ~room(X0)) [flattening 155] 159. tall(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 160. tall(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 159] 168. ! [X0] : ((((~person(X0) | ~tall(X0)) | ~happy(X0)) & (happy(X0) | (person(X0) & tall(X0)))) | ~room(X0)) [nnf transformation 154] 169. ! [X0] : (((~person(X0) | ~tall(X0) | ~happy(X0)) & (happy(X0) | (person(X0) & tall(X0)))) | ~room(X0)) [flattening 168] 170. ! [X0] : (((happy(X0) | (person(X0) & happy(X0) & creative(X0))) & ((~person(X0) | ~happy(X0) | ~creative(X0)) | ~happy(X0))) | ~room(X0)) [nnf transformation 156] 171. ! [X0] : (((happy(X0) | (person(X0) & happy(X0) & creative(X0))) & (~person(X0) | ~happy(X0) | ~creative(X0) | ~happy(X0))) | ~room(X0)) [flattening 170] 254. room(paul) [cnf transformation 143] 266. ~room(X0) | person(X0) [cnf transformation 149] 275. ~person(X0) | ~tall(X0) | ~happy(X0) | ~room(X0) [cnf transformation 169] 278. happy(X0) | happy(X0) | ~room(X0) [cnf transformation 171] 288. tall(paul) [cnf transformation 160] 290. ~room(X0) | happy(X0) [duplicate literal removal 278] 293. ~happy(X0) | ~tall(X0) | ~room(X0) [subsumption resolution 275,266] 318. happy(paul) [resolution 290,254] 337. ~tall(paul) | ~room(paul) [resolution 318,293] 338. ~room(paul) [subsumption resolution 337,288] 339. $false [subsumption resolution 338,254] % SZS output end Proof for 112262249344268044447419 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.018859
Margaret, William, Kimberly are the only persons in the room. If Margaret either watches fantasy movies or builds model airplanes but not both then everyone in the room is a chess master who participates in national tournaments if they is not a chess master who participates in national tournaments. If everyone in the room enjoys windsurfing or does not build model airplanes then everyone in the room builds model airplanes. Everyone in the room watches fantasy movies if they enjoys windsurfing. Everyone outside the room builds model airplanes if they watches fantasy movies. Everyone in the room is a chess master who participates in national tournaments if they enjoys windsurfing. Everyone in the room builds model airplanes if they is a chess master who participates in national tournaments. William does not enjoy windsurfing. Everyone anywhere watches fantasy movies if they enjoys windsurfing.
Margaret neither watches fantasy movies nor is a chess master who participates in national tournaments.
neutral
room(margaret)&room(william)&room(kimberly)&(![X]:(room(X)=>(X='margaret'|X='william'|X='kimberly')))& ((((watches_fantasy_movies(margaret))<~>(builds_model_airplanes(margaret))))=>(![X]:(room(X)=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X)))))))& ((![X]:(room(X)=>(((does_not_build_model_airplanes(X))|(enjoys_windsurfing(X))))))=>(![X]:(room(X)=>(builds_model_airplanes(X)))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))=>(watches_fantasy_movies(X))))))& (![X]:(~room(X)=>(((watches_fantasy_movies(X))=>(builds_model_airplanes(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X))))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(builds_model_airplanes(X))))))& (does_not_enjoy_windsurfing(william))& (![X]:(anywhere(X)=>(((enjoys_windsurfing(X))=>(watches_fantasy_movies(X))))))
room(margaret)&room(william)&room(kimberly)&(![X]:(room(X)=>(X='margaret'|X='william'|X='kimberly')))& ~((watches_fantasy_movies(margaret))|(is_a_chess_master_who_participates_in_national_tournaments(margaret)))
[]
null
0.383256
Roberto, Donna, Margaret, Shaun are the only persons in the room. "Everyone in the room who is old either is tall or is a quiet old person but not both" if "at least one person in the room is old". "Roberto dreamt that "no quiet person is old"" unless "Roberto is tall". Someone in the room is a old person. Everyone outside the room is old if they is not a tall quiet person. Donna is a quiet person. Someone who is not a tall person is quieter than someone who is quiet. Donna is a old person. Donna is quiet. Everyone in the room is a tall person or is quiet or both. Someone who is not a tall quiet person is quieter than someone who is not quiet. Roberto is not a tall person. Roberto is a quiet person, is a quiet tall old person or is old.
Roberto is tall.
neutral
room(roberto)&room(donna)&room(margaret)&room(shaun)&(![X]:(room(X)=>(X='roberto'|X='donna'|X='margaret'|X='shaun')))& ((((?[X]:(room(X)&old(X)))))=>(![X]:(room(X)=>(((old(X))=>(((tall(X))<~>(quiet(X)&old(X)&person(X)))))))))& (~(tall(roberto))=>((roberto_dream=>(~?[X]:(quiet(X)=>old(X))))))& (?[X]:(room(X)&(old(X)&person(X))))& (![X]:(~room(X)=>(((~(tall(X)&quiet(X)&person(X)))=>(old(X))))))& (quiet(donna)&person(donna))& (?[X,Y]:((~(tall(X)&person(X)))&(quiet(Y))&(quieter(X,Y))))& (old(donna)&person(donna))& (quiet(donna))& (![X]:(room(X)=>(((tall(X)&person(X))|(quiet(X))))))& (?[X,Y]:((~(tall(X)&quiet(X)&person(X)))&(~quiet(Y))&(quieter(X,Y))))& (~(tall(roberto)&person(roberto)))& (((quiet(roberto)&person(roberto))|(quiet(roberto)&tall(roberto)&old(roberto)&person(roberto))|(old(roberto))))
room(roberto)&room(donna)&room(margaret)&room(shaun)&(![X]:(room(X)=>(X='roberto'|X='donna'|X='margaret'|X='shaun')))& tall(roberto)
[]
null
0
Latasha, Maria, Donna, Jeanette are the only persons in the room. “Maria does not participate in citizen science projects related to wildlife monitoring” if “someone outside the room is a craft beer aficionado, is a member of a local theater group specializing in improv or practices urban gardening” and vice versa. “Someone in the room is a craft beer aficionado” unless “everyone anywhere does not practice urban gardening or is a client of Costco”. If “everyone in the room does not maintain a large, organic vegetable garden year-round or competes in national level swimming championships” then “Latasha is an avid collector of autographed memorabilia from famous musicians, creates YouTube content and has a piercing”. “Everyone anywhere who is allergic to anything plays as a goalkeeper for a local amateur soccer team” unless “Maria is allergic to anything and is a member of a local theater group specializing in improv”. “Maria is a craft beer aficionado” only if “everyone in the room is a craft beer aficionado if they writes in-depth travel guides for off-the-beaten-path destinations”. “Everyone outside the room collects rare and antique scientific instruments or is not an enthusiastic bird watcher who travels for rare sightings” only if “Maria is a scotch connoisseur and competes in national level swimming championships”. If “it is not the case that “Latasha is a craft beer aficionado”” then “it is true that “Maria participates in citizen science projects related to wildlife monitoring””. “Someone in the room competes in national level swimming championships” if “no one in the room is not a craft beer aficionado or is an avid collector of autographed memorabilia from famous musicians” and vice versa. If “everyone in the room is a culinary enthusiast who experiments with international cuisines or does not write in-depth travel guides for off-the-beaten-path destinations” then “only one person in the room maintains a large, organic vegetable garden year-round”. Only one person in the room maintains a large, organic vegetable garden year-round. Latasha does not maintain a large, organic vegetable garden year-round. Maria is a client of Costco. If someone has a piercing then he/she is allergic to anything and vice versa. Everyone anywhere who is a craft beer aficionado and is a scotch connoisseur plays as a goalkeeper for a local amateur soccer team. Latasha has a piercing and creates YouTube content. Maria is a culinary enthusiast who experiments with international cuisines. Latasha collects comic books.
Jeanette competes in national level swimming championships.
contradiction
room(latasha)&room(maria)&room(donna)&room(jeanette)&(![X]:(room(X)=>(X='latasha'|X='maria'|X='donna'|X='jeanette')))& ((?[X]:(~room(X)&(((is_a_craft_beer_aficionado(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(practices_urban_gardening(X))))))<=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(maria)))& (~(![X]:(anywhere(X)=>(((is_a_client_of_Costco(X))|(does_not_practice_urban_gardening(X))))))=>(?[X]:(room(X)&(is_a_craft_beer_aficionado(X)))))& ((![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(latasha))&(creates_YouTube_content(latasha))&(has_a_piercing(latasha)))))& (~(((is_allergic_to_anything(maria))&(is_a_member_of_a_local_theater_group_specializing_in_improv(maria))))=>(![X]:(anywhere(X)=>(((is_allergic_to_anything(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))& ((is_a_craft_beer_aficionado(maria))=>(![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(is_a_craft_beer_aficionado(X)))))))& ((![X]:(~room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(collects_rare_and_antique_scientific_instruments(X))))))=>(((is_a_scotch_connoisseur(maria))&(competes_in_national_level_swimming_championships(maria)))))& ((~(is_a_craft_beer_aficionado(latasha)))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(maria)))& ((~?[X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(is_not_a_craft_beer_aficionado(X))))))<=>(?[X]:(room(X)&(competes_in_national_level_swimming_championships(X)))))& ((![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))=>(((?[X]:(room(X)&maintains_a_large,_organic_vegetable_garden_year-round(X)))&(![X,Y]:((room(X)&room(Y)&(maintains_a_large,_organic_vegetable_garden_year-round(X))&(maintains_a_large,_organic_vegetable_garden_year-round(Y)))=>(X=Y))))))& (((?[X]:(room(X)&maintains_a_large,_organic_vegetable_garden_year-round(X)))&(![X,Y]:((room(X)&room(Y)&(maintains_a_large,_organic_vegetable_garden_year-round(X))&(maintains_a_large,_organic_vegetable_garden_year-round(Y)))=>(X=Y)))))& (does_not_maintain_a_large,_organic_vegetable_garden_year-round(latasha))& (is_a_client_of_Costco(maria))& ((![X]:((has_a_piercing(X))<=>(is_allergic_to_anything(X)))))& (![X]:(anywhere(X)=>(((((is_a_craft_beer_aficionado(X))&(is_a_scotch_connoisseur(X))))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (((has_a_piercing(latasha))&(creates_YouTube_content(latasha))))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(maria))& (collects_comic_books(latasha))& (~![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(owns_a_smartwatch(X))))))& (writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(maria))
room(latasha)&room(maria)&room(donna)&room(jeanette)&(![X]:(room(X)=>(X='latasha'|X='maria'|X='donna'|X='jeanette')))& competes_in_national_level_swimming_championships(jeanette)
[ "b42", "p0", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 8961372596880646309144827 % SZS output start Proof for 8961372596880646309144827 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 52. ~? [X0] : (room(X0) => (~preds(X0) | predr(X0))) <=> ? [X0] : (predm(X0) & room(X0)) [input p8] 64. predm(alice) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 66. ~? [X0] : (room(X0) => (~preds(X0) | predr(X0))) <=> ? [X1] : (predm(X1) & room(X1)) [rectify 52] 155. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 156. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 155] 163. ! [X0] : ((preds(X0) & ~predr(X0)) & room(X0)) <=> ? [X1] : (predm(X1) & room(X1)) [ennf transformation 66] 164. ! [X0] : (preds(X0) & ~predr(X0) & room(X0)) <=> ? [X1] : (predm(X1) & room(X1)) [flattening 163] 170. predm(alice) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 171. predm(alice) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 170] 183. (! [X0] : (preds(X0) & ~predr(X0) & room(X0)) | ! [X1] : (~predm(X1) | ~room(X1))) & (? [X1] : (predm(X1) & room(X1)) | ? [X0] : (~preds(X0) | predr(X0) | ~room(X0))) [nnf transformation 164] 184. (! [X0] : (preds(X0) & ~predr(X0) & room(X0)) | ! [X1] : (~predm(X1) | ~room(X1))) & (? [X2] : (predm(X2) & room(X2)) | ? [X3] : (~preds(X3) | predr(X3) | ~room(X3))) [rectify 183] 185. ? [X2] : (predm(X2) & room(X2)) => (predm(sK4) & room(sK4)) [choice axiom] 186. ? [X3] : (~preds(X3) | predr(X3) | ~room(X3)) => (~preds(sK5) | predr(sK5) | ~room(sK5)) [choice axiom] 187. (! [X0] : (preds(X0) & ~predr(X0) & room(X0)) | ! [X1] : (~predm(X1) | ~room(X1))) & ((predm(sK4) & room(sK4)) | (~preds(sK5) | predr(sK5) | ~room(sK5))) [skolemisation 184,186,185] 272. mary != lucy [cnf transformation 43] 273. paul != lucy [cnf transformation 43] 274. fred != lucy [cnf transformation 43] 275. alice != lucy [cnf transformation 43] 281. room(alice) [cnf transformation 156] 282. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 156] 297. room(X0) | ~predm(X1) | ~room(X1) [cnf transformation 187] 319. predm(alice) [cnf transformation 171] 401. 19 <=> ! [X1] : (~predm(X1) | ~room(X1)) [avatar definition] 402. ~predm(X1) | ~room(X1) <- (19) [avatar component clause 401] 412. 22 <=> ! [X0] : room(X0) [avatar definition] 413. room(X0) <- (22) [avatar component clause 412] 414. 19 | 22 [avatar split clause 297,412,401] 471. ~room(alice) <- (19) [resolution 402,319] 472. $false <- (19) [subsumption resolution 471,281] 473. ~19 [avatar contradiction clause 472] 535. alice = X0 | paul = X0 | mary = X0 | fred = X0 <- (22) [resolution 282,413] 624. alice != alice | paul = lucy | mary = lucy | fred = lucy <- (22) [superposition 275,535] 642. paul = lucy | mary = lucy | fred = lucy <- (22) [trivial inequality removal 624] 653. mary = lucy | fred = lucy <- (22) [subsumption resolution 642,273] 654. fred = lucy <- (22) [subsumption resolution 653,272] 655. $false <- (22) [subsumption resolution 654,274] 656. ~22 [avatar contradiction clause 655] 745. $false [avatar sat refutation 414,473,656] % SZS output end Proof for 8961372596880646309144827 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0.375057
There is a room. No one in the room who travels domestically frequently writes and illustrates their own graphic novels, practices and performs acrobatic dance routines and works on fridays. Everyone in the room collects comic books. Everyone in the room creates YouTube content or does not collect comic books. Everyone in the room owns an extensive assortment of vintage comic book memorabilia if they creates YouTube content. Everyone in the room who owns an extensive assortment of vintage comic book memorabilia creates large-scale murals for public art installations.
Everyone in the room does not host regular game nights featuring complex strategy games or creates large-scale murals for public art installations.
entailment
(there_is_a_room)& ((![X]:(anywhere(X)=>(((collects_first_edition_books(X))|(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))=>(![X]:(anywhere(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(uses_contact_lenses(X)))))))& (![X]:(room(X)=>(((collects_first_edition_books(X))<=>(((enjoys_stand-up_paddleboarding(X))|(uses_an_ios_phone(X))))))))& (~?[X]:(room(X)=>(((travels_domestically_frequently(X))=>(((writes_and_illustrates_their_own_graphic_novels(X))&(practices_and_performs_acrobatic_dance_routines(X))&(works_on_fridays(X))))))))& (![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))=>(practices_and_performs_acrobatic_dance_routines(X))))))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (?[X]:(room(X)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(((collects_rare_minerals(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))))& (![X]:(room(X)=>(((((collects_rare_minerals(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(creates_YouTube_content(X))))))& (![X]:(room(X)=>(((creates_YouTube_content(X))=>(enjoys_salsa_dancing(X))))))& (![X]:(room(X)=>(collects_comic_books(X))))& (?[X]:(room(X)&(enjoys_salsa_dancing(X))))& (![X]:(room(X)=>(((does_not_collect_comic_books(X))|(creates_YouTube_content(X))))))& (![X]:(room(X)=>(((creates_YouTube_content(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(creates_large-scale_murals_for_public_art_installations(X))))))& (~![X]:(anywhere(X)=>(((does_not_create_YouTube_content(X))|(is_an_active_member_of_a_local_robotics_club(X))))))& (~![X]:(room(X)=>(((uses_contact_lenses(X))=>(does_not_use_contact_lenses(X))))))& (![X]:(room(X)=>(((does_not_use_contact_lenses(X))=>(((collects_comic_books(X))|(travels_domestically_frequently(X))))))))& (![X]:(anywhere(X)=>(((collects_first_edition_books(X))|(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& ((![X]:((develops_open-source_software_projects_in_their_free_time(X))<=>(creates_YouTube_content(X)))))& ((![X]:((works_on_fridays(X))<=>(creates_YouTube_content(X)))))& ((joyce_dream=>(~?[X]:(room(X)=>(((does_not_travel_domestically_frequently(X))=>(travels_domestically_frequently(X))))))))& (![X]:(room(X)=>(((collects_first_edition_books(X))=>(((does_not_work_on_fridays(X))&(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))&(travels_domestically_frequently(X))))))))& (![X]:(anywhere(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(uses_contact_lenses(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))|(does_not_host_regular_game_nights_featuring_complex_strategy_games(X)))))
[ "p0", "p3", "p11", "p13", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 583833995460362863650089 % SZS output start Proof for 583833995460362863650089 44. there_is_a_room [input p0] 47. ~? [X0] : (room(X0) => (predi(X0) => (predh(X0) & predf(X0) & predg(X0)))) [input p3] 55. ! [X0] : (room(X0) => predz(X0)) [input p11] 57. ! [X0] : (room(X0) => (prede(X0) | ~predz(X0))) [input p13] 58. ! [X0] : (room(X0) => (prede(X0) => predo(X0))) [input p14] 59. ! [X0] : (room(X0) => (predo(X0) => predj(X0))) [input p15] 69. ~(! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room) [input hypothesis] 75. ~? [X0] : (room(X0) => (predh(X0) & predf(X0) & predg(X0))) [pure predicate removal 47] 82. ~? [X0] : ~room(X0) [pure predicate removal 75] 159. ! [X0] : room(X0) [ennf transformation 82] 166. ! [X0] : (predz(X0) | ~room(X0)) [ennf transformation 55] 167. ! [X0] : ((prede(X0) | ~predz(X0)) | ~room(X0)) [ennf transformation 57] 168. ! [X0] : (prede(X0) | ~predz(X0) | ~room(X0)) [flattening 167] 169. ! [X0] : ((predo(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 58] 170. ! [X0] : (predo(X0) | ~prede(X0) | ~room(X0)) [flattening 169] 171. ! [X0] : ((predj(X0) | ~predo(X0)) | ~room(X0)) [ennf transformation 59] 172. ! [X0] : (predj(X0) | ~predo(X0) | ~room(X0)) [flattening 171] 180. ? [X0] : ((predd(X0) & ~predj(X0)) & room(X0)) | ~there_is_a_room [ennf transformation 69] 181. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) | ~there_is_a_room [flattening 180] 193. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) => (predd(sK4) & ~predj(sK4) & room(sK4)) [choice axiom] 194. (predd(sK4) & ~predj(sK4) & room(sK4)) | ~there_is_a_room [skolemisation 181,193] 276. there_is_a_room [cnf transformation 44] 280. room(X0) [cnf transformation 159] 286. predz(X0) | ~room(X0) [cnf transformation 166] 288. prede(X0) | ~predz(X0) | ~room(X0) [cnf transformation 168] 289. predo(X0) | ~prede(X0) | ~room(X0) [cnf transformation 170] 290. predj(X0) | ~predo(X0) | ~room(X0) [cnf transformation 172] 298. ~predj(sK4) | ~there_is_a_room [cnf transformation 194] 304. predz(X0) [subsumption resolution 286,280] 305. prede(X0) | ~room(X0) [subsumption resolution 288,304] 306. prede(X0) [subsumption resolution 305,280] 307. predo(X0) | ~room(X0) [subsumption resolution 289,306] 308. predo(X0) [subsumption resolution 307,280] 309. predj(X0) | ~room(X0) [subsumption resolution 290,308] 310. predj(X0) [subsumption resolution 309,280] 316. ~there_is_a_room [subsumption resolution 298,310] 317. $false [subsumption resolution 316,276] % SZS output end Proof for 583833995460362863650089 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.372559
Debra, Sarah are the only persons in the room. Everyone in the room is not liked by Melisa if they does not like Melisa, is liked by Melisa or hates Melisa.
Debra is liked by Melisa.
contradiction
room(debra)&room(sarah)&(![X]:(room(X)=>(X='debra'|X='sarah')))& (((hate(melisa,debra) & hate(debra,melisa)))=>(![X]:(room(X)=>(((~like(melisa,X))&(~hate(X,melisa))&(~like(X,melisa)))))))& (![X]:(room(X)=>(~like(X,melisa))))& (((like(debra,melisa))|(~hate(debra,melisa))|(~hate(melisa,debra))))& (hate(melisa,sarah))& (![X]:(room(X)=>(((((~like(melisa,X))|(like(X,melisa))|(hate(melisa,X))))=>(~like(X,melisa))))))& (![X]:(room(X)=>(((~like(melisa,X))<~>(like(X,melisa))))))& (((~hate(melisa,sarah))|(~like(melisa,sarah))))
room(debra)&room(sarah)&(![X]:(room(X)=>(X='debra'|X='sarah')))& like(debra,melisa)
[ "p0", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 1958791730372787641162638 % SZS output start Proof for 1958791730372787641162638 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. ! [X0] : (room(X0) => ((hate(fred,X0) | like(X0,fred) | ~like(fred,X0)) => ~like(X0,fred))) [input p5] 52. like(mary,fred) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 127. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 128. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 127] 132. ! [X0] : ((~like(X0,fred) | (~hate(fred,X0) & ~like(X0,fred) & like(fred,X0))) | ~room(X0)) [ennf transformation 49] 133. ! [X0] : (~like(X0,fred) | (~hate(fred,X0) & ~like(X0,fred) & like(fred,X0)) | ~room(X0)) [flattening 132] 135. like(mary,fred) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 52] 136. like(mary,fred) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 135] 221. room(mary) [cnf transformation 128] 231. ~like(X0,fred) | ~like(X0,fred) | ~room(X0) [cnf transformation 133] 239. like(mary,fred) [cnf transformation 136] 240. ~like(X0,fred) | ~room(X0) [duplicate literal removal 231] 250. 3 <=> ! [X0] : (~like(X0,fred) | ~room(X0)) [avatar definition] 251. ~like(X0,fred) | ~room(X0) <- (3) [avatar component clause 250] 263. 6 <=> like(mary,fred) [avatar definition] 265. like(mary,fred) <- (6) [avatar component clause 263] 267. 3 [avatar split clause 240,250] 269. 6 [avatar split clause 239,263] 270. ~room(mary) <- (3, 6) [resolution 251,265] 271. $false <- (3, 6) [subsumption resolution 270,221] 272. ~3 | ~6 [avatar contradiction clause 271] 273. $false [avatar sat refutation 267,269,272] % SZS output end Proof for 1958791730372787641162638 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.002123
Cornell, William, Albert are the only persons in the room. “Cornell who is not a culinary enthusiast who experiments with international cuisines is not a wise person” if “William and Cornell are respectively wise and calm”. “Albert and Cornell are respectively wise and calm” if “it is true that “Cornell and Albert are not calm, not wise”” and vice versa. “William and Cornell are respectively wise and calm” if “William and Cornell are respectively calm and wise”. Albert is the least young in the room. Albert and William are respectively wise and calm. Albert is the least young outside the room. Albert who is not a wise person and is not a culinary enthusiast who experiments with international cuisines is not a calm person. Cornell who does not train for and competes in international triathlons is not a calm wise person. William who is not a culinary enthusiast who experiments with international cuisines is not wise. William is the least young outside the room. Albert who is not a wise person is not a wise person and is not a culinary enthusiast who experiments with international cuisines.
It is not the case that “William is a calm person”.
neutral
room(cornell)&room(william)&room(albert)&(![X]:(room(X)=>(X='cornell'|X='william'|X='albert')))& (((wise(william))&(calm(cornell)))=>((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(cornell))&(~(wise(cornell)&person(cornell)))))& ((~calm(cornell)&~wise(cornell)&~calm(albert)&~wise(albert))<=>((wise(albert))&(calm(cornell))))& (((calm(william))&(wise(cornell)))=>((wise(william))&(calm(cornell))))& (![X]:((room(X)&(X!=albert))=>younger(albert,X)))& ((wise(albert))&(calm(william)))& (![X]:((~room(X)&(X!=albert))=>younger(albert,X)))& ((((~(wise(albert)&person(albert)))&(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(albert))))&(~(calm(albert)&person(albert))))& ((does_not_train_for_and_competes_in_international_triathlons(cornell))&(~(calm(cornell)&wise(cornell)&person(cornell))))& ((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(william))&(~wise(william)))& (![X]:((~room(X)&(X!=william))=>younger(william,X)))& ((~(wise(albert)&person(albert)))&(((~(wise(albert)&person(albert)))&(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(albert)))))
room(cornell)&room(william)&room(albert)&(![X]:(room(X)=>(X='cornell'|X='william'|X='albert')))& ~(calm(william)&person(william))
[]
null
0.688126
Melissa, Dana, Crystal, Savanna, Crystal are the only persons in the room. 'Everyone anywhere has a piercing or does not enjoy mountain biking' only if 'Melissa and Savanna are respectively generous and quiet'. 'Everyone in the room does not write and illustrates their own graphic novels or is a sibling of Michael' only if 'everyone in the room who is an enthusiastic bird watcher who travels for rare sightings is not an enthusiastic bird watcher who travels for rare sightings'. If 'at least one person in the room is liked by Ernest' then 'everyone in the room who does not have a saltwater aquarium is a client of Ernest'. 'Someone in the room plays the drums' only if 'Michael and Melissa hate each other'. Ernest and Savanna like each other. Melissa is the least young anywhere. Everyone in the room who is a client of Ernest is quieter than Michael. Dana does practice yoga. Everyone in the room is a sibling of Michael if and only if they does not write and illustrates their own graphic novels. Everyone in the room who is a client of Michael and is liked by Michael has a saltwater aquarium. Everyone in the room who is a sibling of Ernest is happy. Michael and Crystal hate each other. Everyone in the room who is a wine connoisseur and does not enjoy logic puzzles is an enthusiastic bird watcher who travels for rare sightings. Savanna is a sibling of Michael. Crystal is louder than Ernest. Everyone in the room who enjoys logic puzzles and is a client of Michael is a sibling of Michael. Everyone in the room who is curious is a dedicated advocate for digital privacy and encryption. Someone in the room plays the drums. Melissa and Savanna are respectively generous and quiet. Dana enjoys snowboarding. Everyone in the room does not write and illustrates their own graphic novels or is a sibling of Michael.
Melissa is an enthusiastic bird watcher who travels for rare sightings.
contradiction
room(melissa)&room(dana)&room(crystal)&room(savanna)&room(crystal)&(![X]:(room(X)=>(X='melissa'|X='dana'|X='crystal'|X='savanna'|X='crystal')))& ((![X]:(anywhere(X)=>(((does_not_enjoy_mountain_biking(X))|(has_a_piercing(X))))))=>((generous(melissa))&(quiet(savanna))))& ((![X]:(room(X)=>(((sibling(michael,X))|(does_not_write_and_illustrates_their_own_graphic_novels(X))))))=>(![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))))& ((((?[X]:(room(X)&like(X,ernest)))))=>(![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))=>(client(ernest,X)))))))& ((?[X]:(room(X)&(plays_the_drums(X))))=>((hate(michael,melissa) & hate(melissa,michael))))& ((like(ernest,savanna) & like(savanna,ernest)))& (![X]:((anywhere(X)&(X!=melissa))=>younger(melissa,X)))& (![X]:(room(X)=>(((client(ernest,X))=>(quieter(michael,X))))))& (does_practice_yoga(dana))& (![X]:(room(X)=>(((sibling(michael,X))<=>(does_not_write_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(room(X)=>(((((client(michael,X))&(like(X,michael))))=>(has_a_saltwater_aquarium(X))))))& (![X]:(room(X)=>(((sibling(ernest,X))=>(happy(X))))))& ((hate(michael,crystal) & hate(crystal,michael)))& (![X]:(room(X)=>(((((is_a_wine_connoisseur(X))&(does_not_enjoy_logic_puzzles(X))))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (sibling(michael,savanna))& (louder(ernest,crystal))& (![X]:(room(X)=>(((((enjoys_logic_puzzles(X))&(client(michael,X))))=>(sibling(michael,X))))))& (![X]:(room(X)=>(((curious(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (?[X]:(room(X)&(plays_the_drums(X))))& ((generous(melissa))&(quiet(savanna)))& (enjoys_snowboarding(dana))& (![X]:(room(X)=>(((sibling(michael,X))|(does_not_write_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(client(michael,X))))))& (~![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))=>(like(X,ernest))))))& ((hate(michael,melissa) & hate(melissa,michael)))& (does_not_enjoy_snowboarding(melissa))
room(melissa)&room(dana)&room(crystal)&room(savanna)&room(crystal)&(![X]:(room(X)=>(X='melissa'|X='dana'|X='crystal'|X='savanna'|X='crystal')))& is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(melissa)
[ "p0", "p2", "p9", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 2843249295465842927288022 % SZS output start Proof for 2843249295465842927288022 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => (~predo(X0) | sibling(susan,X0))) => ! [X0] : (room(X0) => (predc(X0) => ~predc(X0))) [input p2] 53. ! [X0] : (room(X0) => (sibling(susan,X0) <=> ~predo(X0))) [input p9] 65. ! [X0] : (room(X0) => (~predo(X0) | sibling(susan,X0))) [input p21] 70. predc(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 71. ! [X0] : (room(X0) => (~predo(X0) | sibling(susan,X0))) => ! [X1] : (room(X1) => (predc(X1) => ~predc(X1))) [rectify 46] 160. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 161. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 160] 163. ! [X1] : ((~predc(X1) | ~predc(X1)) | ~room(X1)) | ? [X0] : ((predo(X0) & ~sibling(susan,X0)) & room(X0)) [ennf transformation 71] 164. ! [X1] : (~predc(X1) | ~predc(X1) | ~room(X1)) | ? [X0] : (predo(X0) & ~sibling(susan,X0) & room(X0)) [flattening 163] 168. ! [X0] : ((sibling(susan,X0) <=> ~predo(X0)) | ~room(X0)) [ennf transformation 53] 169. ! [X0] : ((~predo(X0) | sibling(susan,X0)) | ~room(X0)) [ennf transformation 65] 170. ! [X0] : (~predo(X0) | sibling(susan,X0) | ~room(X0)) [flattening 169] 172. predc(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 70] 173. predc(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 172] 177. ! [X0] : (~predc(X0) | ~predc(X0) | ~room(X0)) | ? [X1] : (predo(X1) & ~sibling(susan,X1) & room(X1)) [rectify 164] 178. ? [X1] : (predo(X1) & ~sibling(susan,X1) & room(X1)) => (predo(sK1) & ~sibling(susan,sK1) & room(sK1)) [choice axiom] 179. ! [X0] : (~predc(X0) | ~predc(X0) | ~room(X0)) | (predo(sK1) & ~sibling(susan,sK1) & room(sK1)) [skolemisation 177,178] 180. ! [X0] : (((sibling(susan,X0) | predo(X0)) & (~predo(X0) | ~sibling(susan,X0))) | ~room(X0)) [nnf transformation 168] 268. room(mary) [cnf transformation 161] 275. ~predc(X0) | ~predc(X0) | ~room(X0) | room(sK1) [cnf transformation 179] 276. ~predc(X0) | ~predc(X0) | ~room(X0) | ~sibling(susan,sK1) [cnf transformation 179] 284. sibling(susan,X0) | predo(X0) | ~room(X0) [cnf transformation 180] 293. ~predo(X0) | sibling(susan,X0) | ~room(X0) [cnf transformation 170] 305. predc(mary) [cnf transformation 173] 306. ~predc(X0) | ~room(X0) | room(sK1) [duplicate literal removal 275] 307. ~predc(X0) | ~room(X0) | ~sibling(susan,sK1) [duplicate literal removal 276] 314. 2 <=> ! [X0] : (~predc(X0) | ~room(X0)) [avatar definition] 315. ~predc(X0) | ~room(X0) <- (2) [avatar component clause 314] 318. 3 <=> sibling(susan,sK1) [avatar definition] 320. ~sibling(susan,sK1) <- (~3) [avatar component clause 318] 321. ~3 | 2 [avatar split clause 307,314,318] 323. 4 <=> room(sK1) [avatar definition] 325. room(sK1) <- (4) [avatar component clause 323] 326. 4 | 2 [avatar split clause 306,314,323] 341. sibling(susan,X0) | ~room(X0) [subsumption resolution 293,284] 344. ~room(mary) <- (2) [resolution 315,305] 345. $false <- (2) [subsumption resolution 344,268] 346. ~2 [avatar contradiction clause 345] 347. ~room(sK1) <- (~3) [resolution 341,320] 348. $false <- (~3, 4) [subsumption resolution 347,325] 349. 3 | ~4 [avatar contradiction clause 348] 350. $false [avatar sat refutation 321,326,346,349] % SZS output end Proof for 2843249295465842927288022 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.028 s % ------------------------------ % ------------------------------
0.441273
Christine, Eugene, David are the only persons in the room. If “everyone in the room enjoys spelunking or does not enjoy kayaking” then “no one in the room enjoys spelunking”. Everyone in the room who is an active member of a local robotics club does enjoy mountain biking. Everyone in the room does not enjoy kayaking or does enjoy mountain biking. Everyone outside the room enjoys spelunking. Only one person in the room is a professional photographer specializing in portrait photography. Everyone in the room who enjoys kayaking is an active member of a local robotics club. Christine who is an active member of a local robotics club or enjoys spelunking or both is a professional photographer specializing in portrait photography, is an active member of a local robotics club or does enjoy mountain biking.
Everyone in the room is an active member of a local robotics club.
neutral
room(christine)&room(eugene)&room(david)&(![X]:(room(X)=>(X='christine'|X='eugene'|X='david')))& ((![X]:(room(X)=>(((does_not_enjoy_kayaking(X))|(enjoys_spelunking(X))))))=>(~?[X]:(room(X)=>(enjoys_spelunking(X)))))& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(does_enjoy_mountain_biking(X))))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_enjoy_kayaking(X))))))& (![X]:(~room(X)=>(enjoys_spelunking(X))))& (((?[X]:(room(X)&is_a_professional_photographer_specializing_in_portrait_photography(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_professional_photographer_specializing_in_portrait_photography(X))&(is_a_professional_photographer_specializing_in_portrait_photography(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((enjoys_kayaking(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& ((((is_an_active_member_of_a_local_robotics_club(christine))|(enjoys_spelunking(christine))))&(((is_a_professional_photographer_specializing_in_portrait_photography(christine))|(is_an_active_member_of_a_local_robotics_club(christine))|(does_enjoy_mountain_biking(christine)))))& (![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))=>(does_enjoy_mountain_biking(X))))))
room(christine)&room(eugene)&room(david)&(![X]:(room(X)=>(X='christine'|X='eugene'|X='david')))& ![X]:(room(X)=>(is_an_active_member_of_a_local_robotics_club(X)))
[]
null
0.019445
Nakia, Douglas, Nancy are the only persons in the room. Douglas is the least rich in the room. Everyone outside the room is richer than Jessica, is older than Jessica and is tall if they is older than Jessica. Douglas is older than Jessica. Nancy is older than Jessica. If someone is kind then he/she is not a quiet tall kind old person. All quiet persons are tall. All kind persons are quiet. Nakia who is older than Jessica is a quiet person. All old persons are tall. Douglas is richer than Jessica. Nakia is richer than Jessica. If someone is quieter than Jessica then he/she is a old tall person. Nakia who is older than Jessica is quieter than Jessica and is a old person.
Douglas is old.
neutral
room(nakia)&room(douglas)&room(nancy)&(![X]:(room(X)=>(X='nakia'|X='douglas'|X='nancy')))& (![X]:((room(X)&(X!=douglas))=>richer(douglas,X)))& (![X]:(~room(X)=>(((older(jessica,X))=>(((richer(jessica,X))&(older(jessica,X))&(tall(X))))))))& (older(jessica,douglas))& (older(jessica,nancy))& ((![X]:((kind(X))=>(~(quiet(X)&tall(X)&kind(X)&old(X)&person(X))))))& (![X]:(quiet(X)=>tall(X)))& (![X]:(kind(X)=>quiet(X)))& ((older(jessica,nakia))&(quiet(nakia)&person(nakia)))& (![X]:(old(X)=>tall(X)))& (richer(jessica,douglas))& (richer(jessica,nakia))& ((![X]:((quieter(jessica,X))=>(old(X)&tall(X)&person(X)))))& ((older(jessica,nakia))&(((quieter(jessica,nakia))&(old(nakia)&person(nakia)))))
room(nakia)&room(douglas)&room(nancy)&(![X]:(room(X)=>(X='nakia'|X='douglas'|X='nancy')))& old(douglas)
[]
null
0.394375
Theodore, Annabelle are the only persons in the room. “Everyone outside the room enjoys deep-sea diving and exploring underwater caves or does not have a tattoo” only if “everyone in the room enjoys deep-sea diving and exploring underwater caves if they has a saltwater aquarium and vice versa”. Either “Annabelle plays as a goalkeeper for a local amateur soccer team and enjoys deep-sea diving and exploring underwater caves” or “Annabelle has a saltwater aquarium” but not both. Everyone outside the room enjoys deep-sea diving and exploring underwater caves or does not have a tattoo.
Annabelle enjoys deep-sea diving and exploring underwater caves.
entailment
room(theodore)&room(annabelle)&(![X]:(room(X)=>(X='theodore'|X='annabelle')))& ((![X]:(~room(X)=>(((does_not_have_a_tattoo(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))=>(![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))<=>(has_a_saltwater_aquarium(X)))))))& ((((enjoys_stand-up_paddleboarding(annabelle))|(enjoys_logic_puzzles(annabelle))|(collects_antique_jewelry(annabelle))))<~>(((volunteers_for_local_environmental_conservation_projects(annabelle))|(enjoys_camping_and_organizing_outdoor_survival_workshops(annabelle))|(plays_the_violin(annabelle)))))& (((is_a_dedicated_advocate_for_digital_privacy_and_encryption(theodore))=>(can_play_the_guitar(annabelle)))&((~(is_a_dedicated_advocate_for_digital_privacy_and_encryption(theodore)))=>(((reads_mystery_novels(theodore))|(can_play_the_guitar(theodore))|(enjoys_logic_puzzles(theodore))))))& ((![X]:(room(X)=>(((does_not_enjoy_origami(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))=>(![X]:(room(X)=>(((((enjoys_making_ceramics(X))|(enjoys_windsurfing(X))))=>(((uses_contact_lenses(X))|(collects_modern_art(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))))& ((~?[X]:(room(X)=>(((cannot_play_the_guitar(X))|(does_not_have_lived_in_exactly_three_countries(X))))))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(annabelle)))& ((![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))|(uses_contact_lenses(X))))))=>(can_play_the_guitar(annabelle)))& ((travels_domestically_frequently(annabelle))=>(![X]:(room(X)=>(((~((enjoys_making_ceramics(X))|(does_not_play_the_violin(X))))<=(travels_domestically_frequently(X)))))))& ((((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(annabelle))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(annabelle))))<~>(has_a_saltwater_aquarium(annabelle)))& (![X]:(~room(X)=>(((does_not_have_a_tattoo(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (enjoys_windsurfing(annabelle))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(enjoys_cross-country_skiing(X))))))& (~![X]:(room(X)=>(((does_not_enjoy_cross-country_skiing(X))=>(plays_the_violin(X))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(does_not_enjoy_cross-country_skiing(X))))))& (is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(theodore))
room(theodore)&room(annabelle)&(![X]:(room(X)=>(X='theodore'|X='annabelle')))& enjoys_deep-sea_diving_and_exploring_underwater_caves(annabelle)
[ "p0", "p1", "p8", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 8608134881551528235949360 % SZS output start Proof for 8608134881551528235949360 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ! [X0] : (~room(X0) => (predf(X0) | ~predu(X0))) => ! [X0] : (room(X0) => (predf(X0) <=> predj(X0))) [input p1] 52. (predf(paul) & predn(paul)) <~> predj(paul) [input p8] 53. ! [X0] : (~room(X0) => (predf(X0) | ~predu(X0))) [input p9] 60. ~(predf(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 61. ! [X0] : (~room(X0) => (predf(X0) | ~predu(X0))) => ! [X1] : (room(X1) => (predf(X1) <=> predj(X1))) [rectify 45] 142. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 142] 144. ! [X1] : ((predf(X1) <=> predj(X1)) | ~room(X1)) | ? [X0] : ((~predf(X0) & predu(X0)) & ~room(X0)) [ennf transformation 61] 145. ! [X1] : ((predf(X1) <=> predj(X1)) | ~room(X1)) | ? [X0] : (~predf(X0) & predu(X0) & ~room(X0)) [flattening 144] 146. ! [X0] : ((predf(X0) | ~predu(X0)) | room(X0)) [ennf transformation 53] 147. ! [X0] : (predf(X0) | ~predu(X0) | room(X0)) [flattening 146] 156. ~predf(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 60] 157. ~predf(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 156] 159. ! [X1] : (((predf(X1) | ~predj(X1)) & (predj(X1) | ~predf(X1))) | ~room(X1)) | ? [X0] : (~predf(X0) & predu(X0) & ~room(X0)) [nnf transformation 145] 160. ! [X0] : (((predf(X0) | ~predj(X0)) & (predj(X0) | ~predf(X0))) | ~room(X0)) | ? [X1] : (~predf(X1) & predu(X1) & ~room(X1)) [rectify 159] 161. ? [X1] : (~predf(X1) & predu(X1) & ~room(X1)) => (~predf(sK0) & predu(sK0) & ~room(sK0)) [choice axiom] 162. ! [X0] : (((predf(X0) | ~predj(X0)) & (predj(X0) | ~predf(X0))) | ~room(X0)) | (~predf(sK0) & predu(sK0) & ~room(sK0)) [skolemisation 160,161] 165. (~predj(paul) | (~predf(paul) | ~predn(paul))) & (predj(paul) | (predf(paul) & predn(paul))) [nnf transformation 52] 166. (~predj(paul) | ~predf(paul) | ~predn(paul)) & (predj(paul) | (predf(paul) & predn(paul))) [flattening 165] 169. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 170. ~predf(paul) | (paul != sK2 & mary != sK2 & room(sK2)) | ~room(paul) | ~room(mary) [skolemisation 157,169] 251. room(mary) [cnf transformation 143] 252. room(paul) [cnf transformation 143] 253. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 143] 257. predf(X0) | ~predj(X0) | ~room(X0) | ~room(sK0) [cnf transformation 162] 258. predf(X0) | ~predj(X0) | ~room(X0) | predu(sK0) [cnf transformation 162] 259. predf(X0) | ~predj(X0) | ~room(X0) | ~predf(sK0) [cnf transformation 162] 271. predj(paul) | predf(paul) [cnf transformation 166] 273. ~predu(X0) | predf(X0) | room(X0) [cnf transformation 147] 280. ~predf(paul) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 170] 281. ~predf(paul) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 170] 282. ~predf(paul) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 170] 284. 1 <=> predf(sK0) [avatar definition] 288. 2 <=> ! [X0] : (predf(X0) | ~room(X0) | ~predj(X0)) [avatar definition] 289. ~predj(X0) | ~room(X0) | predf(X0) <- (2) [avatar component clause 288] 290. ~1 | 2 [avatar split clause 259,288,284] 292. 3 <=> predu(sK0) [avatar definition] 294. predu(sK0) <- (3) [avatar component clause 292] 295. 3 | 2 [avatar split clause 258,288,292] 297. 4 <=> room(sK0) [avatar definition] 299. ~room(sK0) <- (~4) [avatar component clause 297] 300. ~4 | 2 [avatar split clause 257,288,297] 346. 13 <=> predf(paul) [avatar definition] 350. 14 <=> predj(paul) [avatar definition] 351. predj(paul) <- (14) [avatar component clause 350] 354. 13 | 14 [avatar split clause 271,350,346] 356. ~predf(paul) | paul != sK2 | ~room(mary) [subsumption resolution 282,252] 357. ~predf(paul) | paul != sK2 [subsumption resolution 356,251] 359. 15 <=> paul = sK2 [avatar definition] 361. paul != sK2 <- (~15) [avatar component clause 359] 362. ~15 | ~13 [avatar split clause 357,346,359] 363. ~predf(paul) | mary != sK2 | ~room(mary) [subsumption resolution 281,252] 364. ~predf(paul) | mary != sK2 [subsumption resolution 363,251] 366. 16 <=> mary = sK2 [avatar definition] 368. mary != sK2 <- (~16) [avatar component clause 366] 369. ~16 | ~13 [avatar split clause 364,346,366] 370. ~predf(paul) | room(sK2) | ~room(mary) [subsumption resolution 280,252] 371. ~predf(paul) | room(sK2) [subsumption resolution 370,251] 373. 17 <=> room(sK2) [avatar definition] 375. room(sK2) <- (17) [avatar component clause 373] 376. 17 | ~13 [avatar split clause 371,346,373] 377. predf(sK0) | room(sK0) <- (3) [resolution 273,294] 381. predf(sK0) <- (3, ~4) [subsumption resolution 377,299] 382. 1 | ~3 | 4 [avatar split clause 381,297,292,284] 404. ~room(paul) | predf(paul) <- (2, 14) [resolution 289,351] 405. predf(paul) <- (2, 14) [subsumption resolution 404,252] 408. 13 | ~2 | ~14 [avatar split clause 405,350,288,346] 426. mary = sK2 | paul = sK2 <- (17) [resolution 253,375] 436. paul = sK2 <- (~16, 17) [subsumption resolution 426,368] 437. $false <- (~15, ~16, 17) [subsumption resolution 436,361] 438. 15 | 16 | ~17 [avatar contradiction clause 437] 439. $false [avatar sat refutation 290,295,300,354,362,369,376,382,408,438] % SZS output end Proof for 8608134881551528235949360 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0.000142
There is a room. If "everyone in the room is not a cybersecurity expert or is an active member of a local robotics club" then "if someone is a Linux enthusiast then he/she does not enjoy mountain biking and vice versa". "Everyone anywhere who is a client of Costco does not collect antique jewelry" unless "everyone in the room is not an active member of a local robotics club, is an avid mountain climber who has scaled several peaks or collects foreign coins". If "everyone in the room hosts a YouTube channel dedicated to art tutorials or is an enthusiastic bird watcher who travels for rare sightings or both" then "everyone in the room does not collect foreign coins if they practices calligraphy". No one in the room does not host a YouTube channel dedicated to art tutorials if they is an enthusiastic bird watcher who travels for rare sightings. Everyone in the room who is an enthusiastic bird watcher who travels for rare sightings collects rare and antique scientific instruments. Everyone in the room who collects rare and antique scientific instruments is an active member of a local robotics club. Everyone in the room is an active member of a local robotics club if and only if they plays video games.
Everyone in the room plays video games.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(is_not_a_cybersecurity_expert(X))))))=>((![X]:((is_a_Linux_enthusiast(X))<=>(does_not_enjoy_mountain_biking(X))))))& (~(![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))|(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(collects_foreign_coins(X))))))=>(![X]:(anywhere(X)=>(((is_a_client_of_Costco(X))=>(does_not_collect_antique_jewelry(X)))))))& ((![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))=>(![X]:(room(X)=>(((practices_calligraphy(X))=>(does_not_collect_foreign_coins(X)))))))& ((((?[X]:(~room(X)&makes_intricate_hand-cut_paper_art_for_exhibitions(X)))))=>(![X]:(room(X)=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))=>(((is_a_client_of_Meta(X))|(is_a_client_of_Costco(X))|(can_play_the_guitar(X)))))))))& (((![X]:(room(X)=>(((collects_antique_jewelry(X))|(does_not_own_a_microscope(X))))))=>(![X]:(room(X)=>(((((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(is_a_Linux_enthusiast(X))))=>(is_a_client_of_Meta(X)))))))&((~(![X]:(room(X)=>(((collects_antique_jewelry(X))|(does_not_own_a_microscope(X)))))))=>(~?[X]:(~room(X)=>(((is_a_client_of_Meta(X))=>(bakes_bread_at_home(X))))))))& ((![X]:(~room(X)=>(((practices_calligraphy(X))|(does_not_collect_antique_jewelry(X))))))=>(![X]:(room(X)=>(((((can_play_the_guitar(X))&(collects_rare_and_antique_scientific_instruments(X))&(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))=>(does_not_have_completed_a_triathlon(X)))))))& ((![X]:(anywhere(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(does_not_enjoy_mountain_biking(X))))))=>(![X]:(~room(X)=>(((does_not_own_an_Android_phone(X))=>(is_an_active_member_of_a_local_robotics_club(X)))))))& ((![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))=>((![X]:((does_not_own_an_Android_phone(X))=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(is_a_cybersecurity_expert(X))))& (~(((?[X]:(room(X)&does_not_bake_bread_at_home(X))))))& ((![X]:((uses_an_ios_phone(X))=>(owns_a_microscope(X)))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(is_a_craft_beer_aficionado(X))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))<=(is_a_craft_beer_aficionado(X))))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))<=(can_play_the_guitar(X))))))& ((![X]:((does_not_own_an_Android_phone(X))=>(has_completed_a_triathlon(X)))))& (![X]:(anywhere(X)=>(((practices_calligraphy(X))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (~?[X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (![X]:(room(X)=>(((((bakes_bread_at_home(X))&(enjoys_bird_watching(X))))=>(owns_a_microscope(X))))))& ((?[X,Y]:(room(X)&room(Y)&(is_a_client_of_Costco(X)&is_a_client_of_Costco(Y))&(X!=Y))))& (![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(((has_completed_a_triathlon(X))|(bakes_bread_at_home(X))|(is_a_Linux_enthusiast(X))))))))& (![X]:(room(X)=>(((((has_completed_a_triathlon(X))|(bakes_bread_at_home(X))|(is_a_Linux_enthusiast(X))))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))<=>(plays_video_games(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(uses_an_ios_phone(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(((enjoys_bird_watching(X))<~>(uses_an_ios_phone(X))))))))& (![X]:(room(X)=>(((((enjoys_bird_watching(X))<~>(uses_an_ios_phone(X))))=>(((does_enjoy_mountain_biking(X))|(builds_model_airplanes(X))|(practices_digital_art(X))))))))
(there_is_a_room)& ![X]:(room(X)=>(plays_video_games(X)))
[ "p0", "p17", "p20", "p21", "p25", "hypothesis" ]
% SZS status Unsatisfiable for 6279402706273522707391964 % SZS output start Proof for 6279402706273522707391964 44. there_is_a_room [input p0] 61. ~? [X0] : (room(X0) => (predy(X0) => ~predo(X0))) [input p17] 64. ! [X0] : (room(X0) => (predy(X0) => predj(X0))) [input p20] 65. ! [X0] : (room(X0) => (predj(X0) => predr(X0))) [input p21] 69. ! [X0] : (room(X0) => (predr(X0) <=> predk(X0))) [input p25] 73. ~(! [X0] : (room(X0) => predk(X0)) & there_is_a_room) [input hypothesis] 93. ~? [X0] : (room(X0) => ~predy(X0)) [pure predicate removal 61] 178. ! [X0] : (predy(X0) & room(X0)) [ennf transformation 93] 179. ! [X0] : ((predj(X0) | ~predy(X0)) | ~room(X0)) [ennf transformation 64] 180. ! [X0] : (predj(X0) | ~predy(X0) | ~room(X0)) [flattening 179] 181. ! [X0] : ((predr(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 65] 182. ! [X0] : (predr(X0) | ~predj(X0) | ~room(X0)) [flattening 181] 189. ! [X0] : ((predr(X0) <=> predk(X0)) | ~room(X0)) [ennf transformation 69] 194. ? [X0] : (~predk(X0) & room(X0)) | ~there_is_a_room [ennf transformation 73] 202. ! [X0] : (((predr(X0) | ~predk(X0)) & (predk(X0) | ~predr(X0))) | ~room(X0)) [nnf transformation 189] 204. ? [X0] : (~predk(X0) & room(X0)) => (~predk(sK3) & room(sK3)) [choice axiom] 205. (~predk(sK3) & room(sK3)) | ~there_is_a_room [skolemisation 194,204] 286. there_is_a_room [cnf transformation 44] 294. room(X0) [cnf transformation 178] 295. predy(X0) [cnf transformation 178] 299. predj(X0) | ~predy(X0) | ~room(X0) [cnf transformation 180] 300. predr(X0) | ~predj(X0) | ~room(X0) [cnf transformation 182] 306. predk(X0) | ~predr(X0) | ~room(X0) [cnf transformation 202] 312. ~predk(sK3) | ~there_is_a_room [cnf transformation 205] 331. predj(X0) | ~room(X0) [subsumption resolution 299,295] 332. predj(X0) [subsumption resolution 331,294] 333. predr(X0) | ~room(X0) [subsumption resolution 300,332] 334. predr(X0) [subsumption resolution 333,294] 338. predk(X0) | ~room(X0) [subsumption resolution 306,334] 339. predk(X0) [subsumption resolution 338,294] 343. ~there_is_a_room [subsumption resolution 312,339] 344. $false [subsumption resolution 343,286] % SZS output end Proof for 6279402706273522707391964 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.033543
Todd, Terry, Judith are the only persons in the room. “Everyone outside the room does not collect vintage vinyl records or does not have a piercing or both” if “everyone in the room does not collect vintage vinyl records” and vice versa. “Everyone in the room is not a certified yoga instructor teaching classes weekly” only if “Todd does not bake bread at home and is not a certified yoga instructor teaching classes weekly”. “Todd collects vintage vinyl records and does not bake bread at home” unless “everyone outside the room neither does not collect vintage vinyl records nor does not bake bread at home”. Either “everyone in the room does not collect vintage vinyl records” or “everyone outside the room does not have a piercing or is not a certified yoga instructor teaching classes weekly” but not both. Terry does not collect vintage vinyl records. Everyone in the room is not a certified yoga instructor teaching classes weekly. Everyone in the room has a piercing. Todd does not collect vintage vinyl records. Terry has a piercing or is not a certified yoga instructor teaching classes weekly or both. If someone does not collect vintage vinyl records, is not a certified yoga instructor teaching classes weekly and is not passionate about collecting and restoring classic cars then he/she is passionate about collecting and restoring classic cars.
Terry is passionate about collecting and restoring classic cars.
entailment
room(todd)&room(terry)&room(judith)&(![X]:(room(X)=>(X='todd'|X='terry'|X='judith')))& ((![X]:(room(X)=>(does_not_collect_vintage_vinyl_records(X))))<=>(![X]:(~room(X)=>(((does_not_collect_vintage_vinyl_records(X))|(does_not_have_a_piercing(X)))))))& ((![X]:(room(X)=>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))=>(((does_not_bake_bread_at_home(todd))&(is_not_a_certified_yoga_instructor_teaching_classes_weekly(todd)))))& (~(![X]:(~room(X)=>(~((does_not_collect_vintage_vinyl_records(X))|(does_not_bake_bread_at_home(X))))))=>(((collects_vintage_vinyl_records(todd))&(does_not_bake_bread_at_home(todd)))))& ((![X]:(room(X)=>(does_not_collect_vintage_vinyl_records(X))))<~>(![X]:(~room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(does_not_have_a_piercing(X)))))))& (does_not_collect_vintage_vinyl_records(terry))& (![X]:(room(X)=>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))& (![X]:(room(X)=>(has_a_piercing(X))))& (does_not_collect_vintage_vinyl_records(todd))& (((has_a_piercing(terry))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(terry))))& ((![X]:((((does_not_collect_vintage_vinyl_records(X))&(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))&(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))=>(is_passionate_about_collecting_and_restoring_classic_cars(X)))))
room(todd)&room(terry)&room(judith)&(![X]:(room(X)=>(X='todd'|X='terry'|X='judith')))& is_passionate_about_collecting_and_restoring_classic_cars(terry)
[ "p0", "p5", "p6", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 8767235191598748828447041 % SZS output start Proof for 8767235191598748828447041 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 49. ~preda(paul) [input p5] 50. ! [X0] : (room(X0) => ~predc(X0)) [input p6] 54. ! [X0] : ((~predb(X0) & ~predc(X0) & ~preda(X0)) => predb(X0)) [input p10] 55. ~(predb(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 130. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 131. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 130] 138. ! [X0] : (~predc(X0) | ~room(X0)) [ennf transformation 50] 140. ! [X0] : (predb(X0) | (predb(X0) | predc(X0) | preda(X0))) [ennf transformation 54] 141. ! [X0] : (predb(X0) | predb(X0) | predc(X0) | preda(X0)) [flattening 140] 142. ~predb(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 55] 143. ~predb(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 142] 157. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 158. ~predb(paul) | (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 143,157] 239. room(mary) [cnf transformation 131] 240. room(paul) [cnf transformation 131] 241. room(fred) [cnf transformation 131] 242. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 131] 263. ~preda(paul) [cnf transformation 49] 264. ~predc(X0) | ~room(X0) [cnf transformation 138] 268. predb(X0) | predb(X0) | predc(X0) | preda(X0) [cnf transformation 141] 269. ~predb(paul) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 270. ~predb(paul) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 271. ~predb(paul) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 272. ~predb(paul) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 273. predb(X0) | predc(X0) | preda(X0) [duplicate literal removal 268] 375. 22 <=> predc(paul) [avatar definition] 376. predc(paul) <- (22) [avatar component clause 375] 377. ~predc(paul) <- (~22) [avatar component clause 375] 379. ~predb(paul) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 272,241] 380. ~predb(paul) | fred != sK5 | ~room(mary) [subsumption resolution 379,240] 381. ~predb(paul) | fred != sK5 [subsumption resolution 380,239] 383. 23 <=> fred = sK5 [avatar definition] 385. fred != sK5 <- (~23) [avatar component clause 383] 387. 24 <=> predb(paul) [avatar definition] 389. ~predb(paul) <- (~24) [avatar component clause 387] 390. ~23 | ~24 [avatar split clause 381,387,383] 391. ~predb(paul) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 271,241] 392. ~predb(paul) | paul != sK5 | ~room(mary) [subsumption resolution 391,240] 393. ~predb(paul) | paul != sK5 [subsumption resolution 392,239] 395. 25 <=> paul = sK5 [avatar definition] 397. paul != sK5 <- (~25) [avatar component clause 395] 398. ~25 | ~24 [avatar split clause 393,387,395] 399. ~predb(paul) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 270,241] 400. ~predb(paul) | mary != sK5 | ~room(mary) [subsumption resolution 399,240] 401. ~predb(paul) | mary != sK5 [subsumption resolution 400,239] 403. 26 <=> mary = sK5 [avatar definition] 405. mary != sK5 <- (~26) [avatar component clause 403] 406. ~26 | ~24 [avatar split clause 401,387,403] 407. ~predb(paul) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 269,241] 408. ~predb(paul) | room(sK5) | ~room(mary) [subsumption resolution 407,240] 409. ~predb(paul) | room(sK5) [subsumption resolution 408,239] 411. 27 <=> room(sK5) [avatar definition] 413. room(sK5) <- (27) [avatar component clause 411] 414. 27 | ~24 [avatar split clause 409,387,411] 454. predc(paul) | preda(paul) <- (~24) [resolution 273,389] 455. preda(paul) <- (~22, ~24) [subsumption resolution 454,377] 456. $false <- (~22, ~24) [subsumption resolution 455,263] 457. 22 | 24 [avatar contradiction clause 456] 501. paul = sK5 | mary = sK5 | fred = sK5 <- (27) [resolution 242,413] 541. mary = sK5 | fred = sK5 <- (~25, 27) [subsumption resolution 501,397] 542. fred = sK5 <- (~25, ~26, 27) [subsumption resolution 541,405] 543. $false <- (~23, ~25, ~26, 27) [subsumption resolution 542,385] 544. 23 | 25 | 26 | ~27 [avatar contradiction clause 543] 570. ~room(paul) <- (22) [resolution 376,264] 573. $false <- (22) [subsumption resolution 570,240] 574. ~22 [avatar contradiction clause 573] 575. $false [avatar sat refutation 390,398,406,414,457,544,574] % SZS output end Proof for 8767235191598748828447041 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.195679
There is a room. If 'it is true that 'at least one person in the room is not liked by Elizabeth'' then 'someone in the room does not like Adam'. 'Someone who is not liked by Elizabeth or does not like Elizabeth or both like someone who does not like Edda' unless 'someone in the room is not liked by Elizabeth or is liked by Elizabeth or both'. If 'it is not the case that 'it is true that 'at least one person in the room does not like Elizabeth''' then 'more than one person anywhere is not liked by Elizabeth and is not liked by Adam'. If 'it is not the case that 'it is true that 'it is not the case that 'someone in the room is liked by Adam and is not liked by Elizabeth'''' then 'at least one person in the room is not liked by Elizabeth'. At least one person in the room does not like Elizabeth and is liked by Edda. Someone who is not liked by Adam like someone who does not like Adam. More than one person anywhere is not liked by Elizabeth and is not liked by Adam. If someone does not like Edda then he/she is not liked by Elizabeth. Someone in the room is not liked by Edda. Someone who is not liked by Edda or is not liked by Adam or both like someone who is liked by Elizabeth. If someone is not liked by Edda and is not liked by Elizabeth then he/she does not like Adam or is not liked by Edda or both.
More than one person in the room is liked by Elizabeth.
neutral
(there_is_a_room)& ((((?[X]:(room(X)&~like(X,elizabeth)))))=>(?[X]:(room(X)&(~like(adam,X)))))& (~(?[X]:(room(X)&(((~like(X,elizabeth))|(like(X,elizabeth))))))=>(?[X,Y]:((((~like(X,elizabeth))|(~like(elizabeth,X))))&(~like(edda,Y))&(like(X,Y)))))& ((~(((?[X]:(room(X)&~like(elizabeth,X))))))=>((?[X,Y]:(anywhere(X)&anywhere(Y)&(((~like(X,elizabeth))&(~like(X,adam)))&((~like(Y,elizabeth))&(~like(Y,adam))))&(X!=Y)))))& ((~(~(?[X]:(room(X)&(((like(X,adam))&(~like(X,elizabeth))))))))=>(((?[X]:(room(X)&~like(X,elizabeth))))))& (((?[X]:(room(X)&((~like(elizabeth,X))&(like(X,edda)))))))& (?[X,Y]:((~like(X,adam))&(~like(adam,Y))&(like(X,Y))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(((~like(X,elizabeth))&(~like(X,adam)))&((~like(Y,elizabeth))&(~like(Y,adam))))&(X!=Y))))& ((![X]:((~like(edda,X))=>(~like(X,elizabeth)))))& (?[X]:(room(X)&(~like(X,edda))))& (?[X,Y]:((((~like(X,edda))|(~like(X,adam))))&(like(Y,elizabeth))&(like(X,Y))))& ((![X]:((((~like(X,edda))&(~like(X,elizabeth))))=>(((~like(adam,X))|(~like(X,edda)))))))& ((?[X,Y]:(room(X)&room(Y)&(~like(adam,X)&~like(adam,Y))&(X!=Y))))& ((![X]:((~like(X,edda))=>(~like(elizabeth,X)))))& ((?[X,Y]:(room(X)&room(Y)&(like(X,adam)&like(Y,adam))&(X!=Y))))& ((![X]:((~like(X,adam))=>(((like(adam,X))|(~like(X,edda)))))))& (?[X,Y]:((like(adam,X))&(~like(Y,elizabeth))&(like(X,Y))))& (?[X]:(room(X)&(~like(adam,X))))& (~((?[X,Y]:(room(X)&room(Y)&(((~like(adam,X))&(like(edda,X)))&((~like(adam,Y))&(like(edda,Y))))&(X!=Y)))))& (?[X,Y]:((((~like(X,adam))|(~like(adam,X))))&(like(Y,elizabeth))&(like(X,Y))))& ((![X]:((~like(X,elizabeth))=>(~like(elizabeth,X)))))& (?[X,Y]:((like(edda,X))&(~like(edda,Y))&(like(X,Y))))& (~(~(?[X]:(room(X)&(((like(X,adam))|(~like(elizabeth,X))))))))& (?[X]:(room(X)&(like(X,elizabeth))))& ((?[X,Y]:(room(X)&room(Y)&(~like(X,elizabeth)&~like(Y,elizabeth))&(X!=Y))))& (?[X]:(room(X)&(like(elizabeth,X))))& (((?[X]:(room(X)&~like(X,elizabeth)))))& (?[X]:(anywhere(X)&(((~like(elizabeth,X))&(~like(edda,X))))))& (?[X]:(room(X)&(~like(X,elizabeth))))& ((?[X,Y]:(room(X)&room(Y)&(((~like(X,adam))&(~like(elizabeth,X)))&((~like(Y,adam))&(~like(elizabeth,Y))))&(X!=Y))))
(there_is_a_room)& (?[X,Y]:(room(X)&room(Y)&(like(X,elizabeth)&like(Y,elizabeth))&(X!=Y)))
[]
null
0.420267
There is a room. If everyone in the room works as a freelance web developer specializing in e-commerce sites or does not compete in national level swimming championships then at least one person in the room does not compete in national level swimming championships. If not everyone in the room has a tattoo or does not read mystery novels then everyone in the room owns a high-end gaming PC with custom-built components if they enjoys windsurfing otherwise everyone in the room reads mystery novels, uses a Windows laptop and enjoys origami if they owns a high-end gaming PC with custom-built components. If no one outside the room makes homemade pastries or does not work as a freelance web developer specializing in e-commerce sites then everyone anywhere who has a curated collection of mid-century modern furniture and watches fantasy movies is a craft beer aficionado otherwise everyone in the room reads mystery novels, does not enjoy origami and uses a Windows laptop if they makes homemade pastries. If everyone in the room does not have a tattoo or is a craft beer aficionado then everyone in the room who does not have a tattoo enjoys origami. If everyone in the room is a certified yoga instructor teaching classes weekly or does not compete in national level swimming championships then everyone in the room watches fantasy movies if they is a certified yoga instructor teaching classes weekly otherwise everyone in the room who watches fantasy movies enjoys windsurfing. Everyone in the room does not enjoy origami or works as a freelance web developer specializing in e-commerce sites if everyone in the room makes homemade pastries or does not use a Windows laptop and vice versa. Everyone in the room has a curated collection of mid-century modern furniture. Everyone in the room reads mystery novels, does not enjoy origami and uses a Windows laptop if they makes homemade pastries. More than one person in the room enjoys origami. No one in the room is a craft beer aficionado only if they enjoys windsurfing.
Everyone in the room makes homemade pastries.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_compete_in_national_level_swimming_championships(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))=>(((?[X]:(room(X)&does_not_compete_in_national_level_swimming_championships(X))))))& (((~![X]:(room(X)=>(((does_not_read_mystery_novels(X))|(has_a_tattoo(X))))))=>(![X]:(room(X)=>(((enjoys_windsurfing(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))))&((~(~![X]:(room(X)=>(((does_not_read_mystery_novels(X))|(has_a_tattoo(X)))))))=>(![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(((reads_mystery_novels(X))&(uses_a_Windows_laptop(X))&(enjoys_origami(X))))))))))& (((~?[X]:(~room(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(makes_homemade_pastries(X))))))=>(![X]:(anywhere(X)=>(((((has_a_curated_collection_of_mid-century_modern_furniture(X))&(watches_fantasy_movies(X))))=>(is_a_craft_beer_aficionado(X)))))))&((~(~?[X]:(~room(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(makes_homemade_pastries(X)))))))=>(![X]:(room(X)=>(((makes_homemade_pastries(X))=>(((reads_mystery_novels(X))&(does_not_enjoy_origami(X))&(uses_a_Windows_laptop(X))))))))))& ((![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))|(does_not_have_a_tattoo(X))))))=>(![X]:(room(X)=>(((does_not_have_a_tattoo(X))=>(enjoys_origami(X)))))))& (((![X]:(room(X)=>(((does_not_compete_in_national_level_swimming_championships(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))=>(![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(watches_fantasy_movies(X)))))))&((~(![X]:(room(X)=>(((does_not_compete_in_national_level_swimming_championships(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))=>(![X]:(room(X)=>(((watches_fantasy_movies(X))=>(enjoys_windsurfing(X))))))))& ((![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))|(makes_homemade_pastries(X))))))<=>(![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(does_not_enjoy_origami(X)))))))& (![X]:(room(X)=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))& (![X]:(room(X)=>(((has_a_piercing(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(~room(X)=>(((((is_allergic_to_anything(X))&(has_a_curated_collection_of_mid-century_modern_furniture(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))=>(is_allergic_to_anything(X))))))& (![X]:(room(X)=>(((makes_homemade_pastries(X))=>(((reads_mystery_novels(X))&(does_not_enjoy_origami(X))&(uses_a_Windows_laptop(X))))))))& (![X]:(~room(X)=>(((is_allergic_to_anything(X))=>(is_a_craft_beer_aficionado(X))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_origami(X)&enjoys_origami(Y))&(X!=Y))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))<=>(watches_fantasy_movies(X))))))& (![X]:(room(X)=>(((does_not_enjoy_origami(X))<=>(has_a_piercing(X))))))& ((?[X,Y]:(room(X)&room(Y)&(is_allergic_to_anything(X)&is_allergic_to_anything(Y))&(X!=Y))))& (![X]:(room(X)=>(enjoys_origami(X))))& (![X]:(room(X)=>(~((uses_a_Windows_laptop(X))|(enjoys_windsurfing(X))))))& (~?[X]:(room(X)=>(((enjoys_windsurfing(X))<=(is_a_craft_beer_aficionado(X))))))
(there_is_a_room)& ![X]:(room(X)=>(makes_homemade_pastries(X)))
[ "p10", "p12", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 1018286478996051470598609 % SZS output start Proof for 1018286478996051470598609 54. ! [X0] : (room(X0) => (predc(X0) => (preda(X0) & ~predl(X0) & predp(X0)))) [input p10] 56. ? [X0,X1] : (X0 != X1 & predl(X1) & predl(X0) & room(X1) & room(X0)) [input p12] 62. ~? [X0] : (room(X0) => (prede(X0) => predj(X0))) [input p18] 63. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 73. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 63] 162. ! [X0] : (((preda(X0) & ~predl(X0) & predp(X0)) | ~predc(X0)) | ~room(X0)) [ennf transformation 54] 163. ! [X0] : ((preda(X0) & ~predl(X0) & predp(X0)) | ~predc(X0) | ~room(X0)) [flattening 162] 170. ! [X0] : ((~predj(X0) & prede(X0)) & room(X0)) [ennf transformation 62] 171. ! [X0] : (~predj(X0) & prede(X0) & room(X0)) [flattening 170] 172. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 73] 201. ? [X0,X1] : (X0 != X1 & predl(X1) & predl(X0) & room(X1) & room(X0)) => (sK10 != sK11 & predl(sK11) & predl(sK10) & room(sK11) & room(sK10)) [choice axiom] 202. sK10 != sK11 & predl(sK11) & predl(sK10) & room(sK11) & room(sK10) [skolemisation 56,201] 325. ~predl(X0) | ~predc(X0) | ~room(X0) [cnf transformation 163] 330. predl(sK10) [cnf transformation 202] 345. room(X0) [cnf transformation 171] 348. predc(X0) | ~room(X0) [cnf transformation 172] 434. 20 <=> ! [X0] : (~predl(X0) | ~room(X0) | ~predc(X0)) [avatar definition] 435. ~predl(X0) | ~room(X0) | ~predc(X0) <- (20) [avatar component clause 434] 538. 20 [avatar split clause 325,434] 541. predc(X0) [subsumption resolution 348,345] 546. ~predl(X0) | ~predc(X0) <- (20) [subsumption resolution 435,345] 547. ~predl(X0) <- (20) [subsumption resolution 546,541] 554. $false <- (20) [resolution 547,330] 557. ~20 [avatar contradiction clause 554] 558. $false [avatar sat refutation 538,557] % SZS output end Proof for 1018286478996051470598609 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.022403
Adam, Bradley, Timothy are the only persons in the room. Virginia is richer than Bradley. Virginia is older than Timothy. Bradley and Timothy are creative persons. Everyone in the room is older than Virginia if they is happy. Only one person in the room is richer than Virginia. Adam and Bradley are calm. Everyone in the room is not a tall person if they is a wise person. Virginia is quieter than Bradley. Everyone anywhere is quieter than Virginia if they is a tall funny person. Bradley who is happy is a quiet kind funny person. Someone who is not a generous person, is a calm quiet person or is a strong person is quieter than someone who is richer than Virginia. It is true that “if someone is curious then he/she is richer than Virginia and vice versa”. Only one person in the room is happy. Everyone in the room is older than Virginia if they is a humble person. All humble persons are calm. It is not the case that “it is not the case that “at least one person anywhere is a kind person””. Someone in the room is quieter than Virginia. More than one person in the room is a patient generous person.
Bradley and Adam are not a funny quiet tall generous wise persons.
entailment
room(adam)&room(bradley)&room(timothy)&(![X]:(room(X)=>(X='adam'|X='bradley'|X='timothy')))& (richer(bradley,virginia))& (older(timothy,virginia))& (creative(bradley)&person(bradley)&creative(timothy)&person(timothy))& (![X]:(room(X)=>(((happy(X))=>(older(virginia,X))))))& (((?[X]:(room(X)&richer(virginia,X)))&(![X,Y]:((room(X)&room(Y)&(richer(virginia,X))&(richer(virginia,Y)))=>(X=Y)))))& (calm(adam)&calm(bradley))& (![X]:(room(X)=>(((wise(X)&person(X))=>(~(tall(X)&person(X)))))))& (quieter(bradley,virginia))& (![X]:(anywhere(X)=>(((tall(X)&funny(X)&person(X))=>(quieter(virginia,X))))))& ((happy(bradley))&(quiet(bradley)&kind(bradley)&funny(bradley)&person(bradley)))& (?[X,Y]:((((~(generous(X)&person(X)))|(calm(X)&quiet(X)&person(X))|(strong(X)&person(X))))&(richer(virginia,Y))&(quieter(X,Y))))& ((![X]:((curious(X))<=>(richer(virginia,X)))))& (((?[X]:(room(X)&happy(X)))&(![X,Y]:((room(X)&room(Y)&(happy(X))&(happy(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((humble(X)&person(X))=>(older(virginia,X))))))& (![X]:(humble(X)=>calm(X)))& (~(~(((?[X]:(anywhere(X)&kind(X)&person(X)))))))& (?[X]:(room(X)&(quieter(virginia,X))))& ((?[X,Y]:(room(X)&room(Y)&(patient(X)&generous(X)&person(X)&patient(Y)&generous(Y)&person(Y))&(X!=Y))))& ((![X]:((~(wise(X)&person(X)))<=>(richer(virginia,X)))))& (~(?[X]:(room(X)&(((~(strong(X)&person(X)))&(humble(X)&funny(X)&person(X))&(~(tall(X)&person(X))))))))& (![X]:(room(X)=>(((funny(X)&person(X))=>(humble(X)&person(X))))))& (![X]:(room(X)=>(((((richer(virginia,X))&(~kind(X)&~wise(X)&~strong(X))&(quieter(virginia,X))))=>(~tall(X))))))& (?[X,Y]:((older(virginia,X))&(old(Y)&person(Y))&(older(X,Y))))
room(adam)&room(bradley)&room(timothy)&(![X]:(room(X)=>(X='adam'|X='bradley'|X='timothy')))& ~(funny(bradley)&quiet(bradley)&tall(bradley)&generous(bradley)&wise(bradley)&person(bradley))&~(funny(adam)&quiet(adam)&tall(adam)&generous(adam)&wise(adam)&person(adam))
[ "p0", "p3", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 684519262959963177195509 % SZS output start Proof for 684519262959963177195509 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 47. person(fred) & creative(fred) & person(paul) & creative(paul) [input p3] 51. ! [X0] : (room(X0) => ((person(X0) & wise(X0)) => ~(person(X0) & tall(X0)))) [input p7] 68. ~(~(person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) & ~(person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 81. person(fred) & person(paul) [pure predicate removal 47] 153. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 154. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 153] 159. ! [X0] : (((~person(X0) | ~tall(X0)) | (~person(X0) | ~wise(X0))) | ~room(X0)) [ennf transformation 51] 160. ! [X0] : (~person(X0) | ~tall(X0) | ~person(X0) | ~wise(X0) | ~room(X0)) [flattening 159] 173. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 68] 174. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 173] 175. (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ~sP0 [predicate definition introduction] 176. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | ~sP1 [predicate definition introduction] 177. sP1 | sP0 | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 174,176,175] 195. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | ~sP1 [nnf transformation 176] 196. (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ~sP0 [nnf transformation 175] 197. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK12 & paul != sK12 & mary != sK12 & room(sK12)) [choice axiom] 198. sP1 | sP0 | (fred != sK12 & paul != sK12 & mary != sK12 & room(sK12)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 177,197] 280. room(mary) [cnf transformation 154] 281. room(paul) [cnf transformation 154] 282. room(fred) [cnf transformation 154] 283. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 154] 286. person(paul) [cnf transformation 81] 292. ~person(X0) | ~tall(X0) | ~person(X0) | ~wise(X0) | ~room(X0) [cnf transformation 160] 331. tall(mary) | ~sP1 [cnf transformation 195] 333. wise(mary) | ~sP1 [cnf transformation 195] 334. person(mary) | ~sP1 [cnf transformation 195] 337. tall(paul) | ~sP0 [cnf transformation 196] 339. wise(paul) | ~sP0 [cnf transformation 196] 341. sP1 | sP0 | room(sK12) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198] 342. sP1 | sP0 | mary != sK12 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198] 343. sP1 | sP0 | paul != sK12 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198] 344. sP1 | sP0 | fred != sK12 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198] 347. ~tall(X0) | ~person(X0) | ~wise(X0) | ~room(X0) [duplicate literal removal 292] 350. 1 <=> sP1 [avatar definition] 354. 2 <=> person(mary) [avatar definition] 357. ~1 | 2 [avatar split clause 334,354,350] 359. 3 <=> wise(mary) [avatar definition] 361. wise(mary) <- (3) [avatar component clause 359] 362. ~1 | 3 [avatar split clause 333,359,350] 369. 5 <=> tall(mary) [avatar definition] 371. tall(mary) <- (5) [avatar component clause 369] 372. ~1 | 5 [avatar split clause 331,369,350] 384. 8 <=> sP0 [avatar definition] 388. 9 <=> wise(paul) [avatar definition] 390. wise(paul) <- (9) [avatar component clause 388] 391. ~8 | 9 [avatar split clause 339,388,384] 398. 11 <=> tall(paul) [avatar definition] 400. tall(paul) <- (11) [avatar component clause 398] 401. ~8 | 11 [avatar split clause 337,398,384] 402. sP1 | sP0 | fred != sK12 | ~room(paul) | ~room(mary) [subsumption resolution 344,282] 403. sP1 | sP0 | fred != sK12 | ~room(mary) [subsumption resolution 402,281] 404. sP1 | sP0 | fred != sK12 [subsumption resolution 403,280] 406. 12 <=> fred = sK12 [avatar definition] 408. fred != sK12 <- (~12) [avatar component clause 406] 409. ~12 | 8 | 1 [avatar split clause 404,350,384,406] 410. sP1 | sP0 | paul != sK12 | ~room(paul) | ~room(mary) [subsumption resolution 343,282] 411. sP1 | sP0 | paul != sK12 | ~room(mary) [subsumption resolution 410,281] 412. sP1 | sP0 | paul != sK12 [subsumption resolution 411,280] 414. 13 <=> paul = sK12 [avatar definition] 416. paul != sK12 <- (~13) [avatar component clause 414] 417. ~13 | 8 | 1 [avatar split clause 412,350,384,414] 418. sP1 | sP0 | mary != sK12 | ~room(paul) | ~room(mary) [subsumption resolution 342,282] 419. sP1 | sP0 | mary != sK12 | ~room(mary) [subsumption resolution 418,281] 420. sP1 | sP0 | mary != sK12 [subsumption resolution 419,280] 422. 14 <=> mary = sK12 [avatar definition] 424. mary != sK12 <- (~14) [avatar component clause 422] 425. ~14 | 8 | 1 [avatar split clause 420,350,384,422] 426. sP1 | sP0 | room(sK12) | ~room(paul) | ~room(mary) [subsumption resolution 341,282] 427. sP1 | sP0 | room(sK12) | ~room(mary) [subsumption resolution 426,281] 428. sP1 | sP0 | room(sK12) [subsumption resolution 427,280] 430. 15 <=> room(sK12) [avatar definition] 432. room(sK12) <- (15) [avatar component clause 430] 433. 15 | 8 | 1 [avatar split clause 428,350,384,430] 459. ~person(paul) | ~wise(paul) | ~room(paul) <- (11) [resolution 347,400] 460. ~wise(paul) | ~room(paul) <- (11) [subsumption resolution 459,286] 461. ~room(paul) <- (9, 11) [subsumption resolution 460,390] 462. $false <- (9, 11) [subsumption resolution 461,281] 463. ~9 | ~11 [avatar contradiction clause 462] 464. ~person(mary) | ~wise(mary) | ~room(mary) <- (5) [resolution 371,347] 469. ~person(mary) | ~room(mary) <- (3, 5) [subsumption resolution 464,361] 470. ~person(mary) <- (3, 5) [subsumption resolution 469,280] 471. ~2 | ~3 | ~5 [avatar split clause 470,369,359,354] 801. paul = sK12 | mary = sK12 | fred = sK12 <- (15) [resolution 283,432] 858. mary = sK12 | fred = sK12 <- (~13, 15) [subsumption resolution 801,416] 859. fred = sK12 <- (~13, ~14, 15) [subsumption resolution 858,424] 860. $false <- (~12, ~13, ~14, 15) [subsumption resolution 859,408] 861. 12 | 13 | 14 | ~15 [avatar contradiction clause 860] 862. $false [avatar sat refutation 357,362,372,391,401,409,417,425,433,463,471,861] % SZS output end Proof for 684519262959963177195509 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.042 s % ------------------------------ % ------------------------------
0.194258
There is a room. Everyone in the room who enjoys logic puzzles enjoys camping and organizing outdoor survival workshops if everyone in the room enjoys logic puzzles or is not a craft beer aficionado. Everyone anywhere is a wine connoisseur with a private cellar of vintage wines only if they owns a high-end gaming PC with custom-built components if everyone in the room does not collect luxury watches or is dedicated to sustainable living and zero-waste practices. Someone in the room practices and performs acrobatic dance routines. Everyone in the room who practices kickboxing is a client of Meta. No one in the room who enjoys logic puzzles is a craft beer aficionado. Everyone in the room who is a craft beer aficionado makes homemade pastries. Everyone outside the room who enjoys stand-up paddleboarding enjoys macrame. Everyone outside the room who owns a 3D printer enjoys camping and organizing outdoor survival workshops. Only one person in the room is right-handed. Everyone in the room is a professional photographer specializing in portrait photography only if they practices kickboxing. Everyone in the room who practices kickboxing either enjoys logic puzzles or collects rare minerals but not both. Everyone in the room who either enjoys logic puzzles or collects rare minerals but not both practices and performs acrobatic dance routines. Everyone in the room practices and performs acrobatic dance routines only if they is dedicated to sustainable living and zero-waste practices. Everyone in the room who enjoys stand-up paddleboarding practices kickboxing. Everyone in the room who is a craft beer aficionado is a professional photographer specializing in portrait photography. Everyone in the room who enjoys macrame and is allergic to anything is dedicated to sustainable living and zero-waste practices.
Everyone outside the room enjoys macrame.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((is_not_a_craft_beer_aficionado(X))|(enjoys_logic_puzzles(X))))))=>(![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X)))))))& ((![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(does_not_collect_luxury_watches(X))))))=>(![X]:(anywhere(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))<=(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))))& (?[X]:(room(X)&(practices_and_performs_acrobatic_dance_routines(X))))& (![X]:(room(X)=>(((practices_kickboxing(X))=>(is_a_client_of_Meta(X))))))& (~?[X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(is_a_craft_beer_aficionado(X))))))& (![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))=>(makes_homemade_pastries(X))))))& (![X]:(~room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(enjoys_macrame(X))))))& (![X]:(~room(X)=>(((owns_a_3D_printer(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (((?[X]:(room(X)&is_right-handed(X)))&(![X,Y]:((room(X)&room(Y)&(is_right-handed(X))&(is_right-handed(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((practices_kickboxing(X))<=(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (![X]:(room(X)=>(((practices_kickboxing(X))=>(((enjoys_logic_puzzles(X))<~>(collects_rare_minerals(X))))))))& (![X]:(room(X)=>(((((enjoys_logic_puzzles(X))<~>(collects_rare_minerals(X))))=>(practices_and_performs_acrobatic_dance_routines(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))<=(practices_and_performs_acrobatic_dance_routines(X))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(practices_kickboxing(X))))))& (![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (![X]:(room(X)=>(((((enjoys_macrame(X))&(is_allergic_to_anything(X))))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (~![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(is_allergic_to_anything(X))))))& (![X]:(room(X)=>(((((enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(enjoys_macrame(X))))<=(is_allergic_to_anything(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(enjoys_macrame(X)))
[ "p0", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 4314199663468464710225417 % SZS output start Proof for 4314199663468464710225417 44. there_is_a_room [input p0] 49. ~? [X0] : (room(X0) => (predr(X0) => predi(X0))) [input p5] 63. ~(! [X0] : (~room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 73. ~(! [X0] : ~~room(X0) & there_is_a_room) [pure predicate removal 63] 84. ~? [X0] : (room(X0) => ~predr(X0)) [pure predicate removal 49] 87. ~? [X0] : ~room(X0) [pure predicate removal 84] 159. ! [X0] : room(X0) [ennf transformation 87] 163. ? [X0] : ~room(X0) | ~there_is_a_room [ennf transformation 73] 171. ? [X0] : ~room(X0) => ~room(sK3) [choice axiom] 172. ~room(sK3) | ~there_is_a_room [skolemisation 163,171] 253. there_is_a_room [cnf transformation 44] 255. room(X0) [cnf transformation 159] 260. ~room(sK3) | ~there_is_a_room [cnf transformation 172] 263. ~there_is_a_room [subsumption resolution 260,255] 264. $false [subsumption resolution 263,253] % SZS output end Proof for 4314199663468464710225417 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.695573
There is a room. “At least one person in the room is an avid mountain climber who has scaled several peaks” if “everyone in the room does not practice tai chi or does not collect rare and antique scientific instruments” and vice versa. “Everyone in the room does not maintain a personal blog focused on cybersecurity tips or maintains a personal blog focused on cybersecurity tips” only if “everyone in the room practices tai chi only if they is a certified scuba diver with advanced underwater photography skills”. If someone neither maintains a personal blog focused on cybersecurity tips nor is a professional photographer specializing in portrait photography then he/she plays eSports competitively. No one in the room knows morse code only if they owns an Android phone. Everyone in the room owns an Android phone only if they designs and sews custom cosplay costumes for conventions. Everyone in the room creates bespoke furniture pieces from reclaimed wood if they owns a microscope. Everyone in the room knows morse code if they neither owns a smartwatch nor does not play eSports competitively. Everyone in the room frequently participates in hackathons and coding competitions. Everyone in the room who does not own an Android phone, designs and sews custom cosplay costumes for conventions or works on fridays does not collect antique jewelry. Everyone in the room who does not collect antique jewelry maintains a personal blog focused on cybersecurity tips, is a professional photographer specializing in portrait photography and owns a microscope. Everyone outside the room who maintains a personal blog focused on cybersecurity tips, is a professional photographer specializing in portrait photography and owns a microscope frequently participates in hackathons and coding competitions or does not create bespoke furniture pieces from reclaimed wood or both. Everyone in the room is a client of Meta, owns a smartwatch or frequently participates in hackathons and coding competitions. Everyone in the room who practices tai chi is allergic to anything. Everyone in the room frequently participates in hackathons and coding competitions if they does not own an Android phone. Someone in the room plays eSports competitively. Everyone in the room who hosts regular workshops on creative writing knows morse code. Everyone in the room hosts regular workshops on creative writing, is not a professional photographer specializing in portrait photography or is a Linux enthusiast if they knows morse code. Everyone in the room creates bespoke furniture pieces from reclaimed wood if they owns a smartwatch and does not know morse code. No one in the room who creates bespoke furniture pieces from reclaimed wood owns a smartwatch. Everyone anywhere collects rare and antique scientific instruments if they owns a smartwatch.
Everyone in the room owns a microscope.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))|(does_not_practice_tai_chi(X))))))<=>(((?[X]:(room(X)&is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& ((![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))))))=>(![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))<=(practices_tai_chi(X)))))))& ((![X]:((~((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))=>(plays_eSports_competitively(X)))))& (~?[X]:(room(X)=>(((owns_an_Android_phone(X))<=(knows_morse_code(X))))))& (![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=(owns_an_Android_phone(X))))))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((~((owns_a_smartwatch(X))|(does_not_play_eSports_competitively(X))))=>(knows_morse_code(X))))))& (![X]:(room(X)=>(frequently_participates_in_hackathons_and_coding_competitions(X))))& (![X]:(room(X)=>(((((does_not_own_an_Android_phone(X))|(designs_and_sews_custom_cosplay_costumes_for_conventions(X))|(works_on_fridays(X))))=>(does_not_collect_antique_jewelry(X))))))& (![X]:(room(X)=>(((does_not_collect_antique_jewelry(X))=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))&(is_a_professional_photographer_specializing_in_portrait_photography(X))&(owns_a_microscope(X))))))))& (![X]:(~room(X)=>(((((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))&(is_a_professional_photographer_specializing_in_portrait_photography(X))&(owns_a_microscope(X))))=>(((frequently_participates_in_hackathons_and_coding_competitions(X))|(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))& (![X]:(room(X)=>(((is_a_client_of_Meta(X))|(owns_a_smartwatch(X))|(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(is_allergic_to_anything(X))))))& (![X]:(room(X)=>(((does_not_own_an_Android_phone(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (?[X]:(room(X)&(plays_eSports_competitively(X))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(knows_morse_code(X))))))& (![X]:(room(X)=>(((knows_morse_code(X))=>(((hosts_regular_workshops_on_creative_writing(X))|(is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(is_a_Linux_enthusiast(X))))))))& (![X]:(room(X)=>(((((owns_a_smartwatch(X))&(does_not_know_morse_code(X))))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (~?[X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(owns_a_smartwatch(X))))))& (![X]:(anywhere(X)=>(((owns_a_smartwatch(X))=>(collects_rare_and_antique_scientific_instruments(X))))))
(there_is_a_room)& ![X]:(room(X)=>(owns_a_microscope(X)))
[ "p0", "p4", "p9", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 4301098394547726848836841 % SZS output start Proof for 4301098394547726848836841 44. there_is_a_room [input p0] 48. ~? [X0] : (room(X0) => (predu(X0) => predt(X0))) [input p4] 53. ! [X0] : (room(X0) => ((predf(X0) | predi(X0) | ~predt(X0)) => ~predm(X0))) [input p9] 54. ! [X0] : (room(X0) => (~predm(X0) => (predk(X0) & predg(X0) & predo(X0)))) [input p10] 65. ~(! [X0] : (room(X0) => predk(X0)) & there_is_a_room) [input hypothesis] 71. ~? [X0] : (room(X0) => predt(X0)) [pure predicate removal 48] 80. ! [X0] : (room(X0) => ((predi(X0) | ~predt(X0)) => ~predm(X0))) [pure predicate removal 53] 86. ! [X0] : (room(X0) => (~predm(X0) => (predk(X0) & predo(X0)))) [pure predicate removal 54] 88. ! [X0] : (room(X0) => (~predm(X0) => predk(X0))) [pure predicate removal 86] 162. ! [X0] : (~predt(X0) & room(X0)) [ennf transformation 71] 165. ! [X0] : ((~predm(X0) | (~predi(X0) & predt(X0))) | ~room(X0)) [ennf transformation 80] 166. ! [X0] : (~predm(X0) | (~predi(X0) & predt(X0)) | ~room(X0)) [flattening 165] 167. ! [X0] : ((predk(X0) | predm(X0)) | ~room(X0)) [ennf transformation 88] 168. ! [X0] : (predk(X0) | predm(X0) | ~room(X0)) [flattening 167] 170. ? [X0] : (~predk(X0) & room(X0)) | ~there_is_a_room [ennf transformation 65] 179. ? [X0] : (~predk(X0) & room(X0)) => (~predk(sK3) & room(sK3)) [choice axiom] 180. (~predk(sK3) & room(sK3)) | ~there_is_a_room [skolemisation 170,179] 261. there_is_a_room [cnf transformation 44] 269. room(X0) [cnf transformation 162] 270. ~predt(X0) [cnf transformation 162] 272. ~predm(X0) | predt(X0) | ~room(X0) [cnf transformation 166] 274. predk(X0) | predm(X0) | ~room(X0) [cnf transformation 168] 278. ~predk(sK3) | ~there_is_a_room [cnf transformation 180] 313. ~predm(X0) | ~room(X0) [subsumption resolution 272,270] 314. ~predm(X0) [subsumption resolution 313,269] 315. predk(X0) | ~room(X0) [subsumption resolution 274,314] 316. predk(X0) [subsumption resolution 315,269] 317. ~there_is_a_room [subsumption resolution 278,316] 318. $false [subsumption resolution 317,261] % SZS output end Proof for 4301098394547726848836841 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0
Bonnie is the only person in the room. If “Bonnie hosts a YouTube channel dedicated to art tutorials” then “only one person in the room does not enjoy camping and organizing outdoor survival workshops”. If “it is not the case that “someone in the room enjoys stand-up paddleboarding”” then “Bonnie who is a chess master who participates in national tournaments enjoys origami”. If “everyone in the room does not enjoy bird watching or is a tea enthusiast” then “if someone is not a client of LVMH then he/she collects vintage stamps, enjoys origami and enjoys camping and organizing outdoor survival workshops and vice versa”. If “someone in the room is not a client of LVMH” then “it is not the case that “someone in the room hosts a YouTube channel dedicated to art tutorials””. If “everyone outside the room is not a chess master who participates in national tournaments or is a member of a local theater group specializing in improv” then “at least one person in the room hosts regular workshops on creative writing”. Everyone in the room does not enjoy bird watching or is a tea enthusiast. Everyone outside the room enjoys origami if they collects vintage vinyl records. Bonnie who does not enjoy stand-up paddleboarding collects rare and antique scientific instruments. Someone in the room is an active member of a local robotics club. If someone is an active member of a local robotics club then he/she collects rare minerals. It is not the case that “someone outside the room collects action figures”. Everyone in the room who collects vintage stamps or enjoys stand-up paddleboarding or both does not collect rare minerals.
Bonnie is a client of LVMH.
entailment
room(bonnie)&(![X]:(room(X)=>(X='bonnie')))& ((hosts_a_YouTube_channel_dedicated_to_art_tutorials(bonnie))=>(((?[X]:(room(X)&does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(Y)))=>(X=Y))))))& ((~(?[X]:(room(X)&(enjoys_stand-up_paddleboarding(X)))))=>((is_a_chess_master_who_participates_in_national_tournaments(bonnie))&(enjoys_origami(bonnie))))& ((![X]:(room(X)=>(((is_a_tea_enthusiast(X))|(does_not_enjoy_bird_watching(X))))))=>((![X]:((is_not_a_client_of_LVMH(X))<=>(((collects_vintage_stamps(X))&(enjoys_origami(X))&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))))& ((?[X]:(room(X)&(is_not_a_client_of_LVMH(X))))=>(~(?[X]:(room(X)&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& ((![X]:(~room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))=>(((?[X]:(room(X)&hosts_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))|(does_not_enjoy_bird_watching(X))))))& (![X]:(~room(X)=>(((collects_vintage_vinyl_records(X))=>(enjoys_origami(X))))))& ((does_not_enjoy_stand-up_paddleboarding(bonnie))&(collects_rare_and_antique_scientific_instruments(bonnie)))& (?[X]:(room(X)&(is_an_active_member_of_a_local_robotics_club(X))))& ((![X]:((is_an_active_member_of_a_local_robotics_club(X))=>(collects_rare_minerals(X)))))& (~(?[X]:(~room(X)&(collects_action_figures(X)))))& (![X]:(room(X)=>(((((collects_vintage_stamps(X))|(enjoys_stand-up_paddleboarding(X))))=>(does_not_collect_rare_minerals(X))))))
room(bonnie)&(![X]:(room(X)=>(X='bonnie')))& is_a_client_of_LVMH(bonnie)
[ "p0", "p3", "p6", "p9", "p10", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 8484530847806087944320485 % SZS output start Proof for 8484530847806087944320485 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 47. ! [X0] : (room(X0) => (~preds(X0) | predl(X0))) => ! [X0] : (~predq(X0) <=> (prede(X0) & predw(X0) & predb(X0))) [input p3] 50. ! [X0] : (room(X0) => (~preds(X0) | predl(X0))) [input p6] 53. ? [X0] : (predy(X0) & room(X0)) [input p9] 54. ! [X0] : (predy(X0) => predc(X0)) [input p10] 56. ! [X0] : (room(X0) => ((predx(X0) | predb(X0)) => ~predc(X0))) [input p12] 57. ~(predq(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 59. ! [X0] : (room(X0) => (~preds(X0) | predl(X0))) => ! [X1] : (~predq(X1) <=> (prede(X1) & predw(X1) & predb(X1))) [rectify 47] 143. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 145. ! [X1] : (~predq(X1) <=> (prede(X1) & predw(X1) & predb(X1))) | ? [X0] : ((preds(X0) & ~predl(X0)) & room(X0)) [ennf transformation 59] 146. ! [X1] : (~predq(X1) <=> (prede(X1) & predw(X1) & predb(X1))) | ? [X0] : (preds(X0) & ~predl(X0) & room(X0)) [flattening 145] 148. ! [X0] : ((~preds(X0) | predl(X0)) | ~room(X0)) [ennf transformation 50] 149. ! [X0] : (~preds(X0) | predl(X0) | ~room(X0)) [flattening 148] 150. ! [X0] : (predc(X0) | ~predy(X0)) [ennf transformation 54] 151. ! [X0] : ((~predc(X0) | (~predx(X0) & ~predb(X0))) | ~room(X0)) [ennf transformation 56] 152. ! [X0] : (~predc(X0) | (~predx(X0) & ~predb(X0)) | ~room(X0)) [flattening 151] 153. ~predq(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 57] 154. ! [X1] : (~predq(X1) <=> (prede(X1) & predw(X1) & predb(X1))) | ~sP0 [predicate definition introduction] 155. sP0 | ? [X0] : (preds(X0) & ~predl(X0) & room(X0)) [definition folding 146,154] 159. ! [X1] : ((~predq(X1) | (~prede(X1) | ~predw(X1) | ~predb(X1))) & ((prede(X1) & predw(X1) & predb(X1)) | predq(X1))) | ~sP0 [nnf transformation 154] 160. ! [X1] : ((~predq(X1) | ~prede(X1) | ~predw(X1) | ~predb(X1)) & ((prede(X1) & predw(X1) & predb(X1)) | predq(X1))) | ~sP0 [flattening 159] 161. ! [X0] : ((~predq(X0) | ~prede(X0) | ~predw(X0) | ~predb(X0)) & ((prede(X0) & predw(X0) & predb(X0)) | predq(X0))) | ~sP0 [rectify 160] 162. ? [X0] : (preds(X0) & ~predl(X0) & room(X0)) => (preds(sK2) & ~predl(sK2) & room(sK2)) [choice axiom] 163. sP0 | (preds(sK2) & ~predl(sK2) & room(sK2)) [skolemisation 155,162] 168. ? [X0] : (predy(X0) & room(X0)) => (predy(sK5) & room(sK5)) [choice axiom] 169. predy(sK5) & room(sK5) [skolemisation 53,168] 170. ? [X0] : (mary != X0 & room(X0)) => (mary != sK6 & room(sK6)) [choice axiom] 171. ~predq(mary) | (mary != sK6 & room(sK6)) | ~room(mary) [skolemisation 153,170] 252. room(mary) [cnf transformation 143] 253. ~room(X0) | mary = X0 [cnf transformation 143] 256. predb(X0) | predq(X0) | ~sP0 [cnf transformation 161] 260. sP0 | room(sK2) [cnf transformation 163] 261. sP0 | ~predl(sK2) [cnf transformation 163] 262. sP0 | preds(sK2) [cnf transformation 163] 264. ~preds(X0) | predl(X0) | ~room(X0) [cnf transformation 149] 266. room(sK5) [cnf transformation 169] 267. predy(sK5) [cnf transformation 169] 268. ~predy(X0) | predc(X0) [cnf transformation 150] 269. ~predc(X0) | ~predb(X0) | ~room(X0) [cnf transformation 152] 271. ~predq(mary) | room(sK6) | ~room(mary) [cnf transformation 171] 272. ~predq(mary) | mary != sK6 | ~room(mary) [cnf transformation 171] 288. 4 <=> sP0 [avatar definition] 304. 8 <=> ! [X0] : (predb(X0) | predq(X0)) [avatar definition] 305. predb(X0) | predq(X0) <- (8) [avatar component clause 304] 306. ~4 | 8 [avatar split clause 256,304,288] 308. 9 <=> preds(sK2) [avatar definition] 310. preds(sK2) <- (9) [avatar component clause 308] 311. 9 | 4 [avatar split clause 262,288,308] 313. 10 <=> predl(sK2) [avatar definition] 315. ~predl(sK2) <- (~10) [avatar component clause 313] 316. ~10 | 4 [avatar split clause 261,288,313] 318. 11 <=> room(sK2) [avatar definition] 321. 11 | 4 [avatar split clause 260,288,318] 331. ~predq(mary) | mary != sK6 [subsumption resolution 272,252] 333. 14 <=> mary = sK6 [avatar definition] 335. mary != sK6 <- (~14) [avatar component clause 333] 337. 15 <=> predq(mary) [avatar definition] 339. ~predq(mary) <- (~15) [avatar component clause 337] 340. ~14 | ~15 [avatar split clause 331,337,333] 341. ~predq(mary) | room(sK6) [subsumption resolution 271,252] 343. 16 <=> room(sK6) [avatar definition] 345. room(sK6) <- (16) [avatar component clause 343] 346. 16 | ~15 [avatar split clause 341,337,343] 347. predc(sK5) [resolution 268,267] 351. mary = sK5 [resolution 253,266] 352. predc(mary) [backward demodulation 347,351] 356. ~predb(mary) | ~room(mary) [resolution 269,352] 357. ~predb(mary) [subsumption resolution 356,252] 358. predq(mary) <- (8) [resolution 357,305] 359. $false <- (8, ~15) [subsumption resolution 358,339] 360. ~8 | 15 [avatar contradiction clause 359] 361. predl(sK2) | ~room(sK2) <- (9) [resolution 310,264] 362. ~room(sK2) <- (9, ~10) [subsumption resolution 361,315] 365. ~11 | ~9 | 10 [avatar split clause 362,313,308,318] 366. mary = sK6 <- (16) [resolution 345,253] 367. $false <- (~14, 16) [subsumption resolution 366,335] 368. 14 | ~16 [avatar contradiction clause 367] 369. $false [avatar sat refutation 306,311,316,321,340,346,360,365,368] % SZS output end Proof for 8484530847806087944320485 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.537376
Candy, Maria, Judy, Beulah are the only persons in the room. "Beulah either is not an amateur astronomer who builds and uses custom telescopes or does not compete in national level swimming championships but not both" if "Maria either does not play the drums or collects antique clocks but not both" and vice versa. "Judy does not develop open-source software projects in their free time, makes intricate hand-cut paper art for exhibitions or does not play the drums" if "Candy has a pet dog" and vice versa. Either "Maria enjoys virtual reality gaming or enjoys origami or both" or "Beulah does not compete in national level swimming championships or enjoys virtual reality gaming or both" but not both. "Beulah is an amateur astronomer who builds and uses custom telescopes, develops open-source software projects in their free time or does not compete in national level swimming championships" if "Judy enjoys logic puzzles or does not have a pet dog or both" and vice versa.
Beulah is an amateur astronomer who builds and uses custom telescopes.
neutral
room(candy)&room(maria)&room(judy)&room(beulah)&(![X]:(room(X)=>(X='candy'|X='maria'|X='judy'|X='beulah')))& ((((does_not_play_the_drums(maria))<~>(collects_antique_clocks(maria))))<=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(beulah))<~>(does_not_compete_in_national_level_swimming_championships(beulah)))))& ((has_a_pet_dog(candy))<=>(((does_not_develop_open-source_software_projects_in_their_free_time(judy))|(makes_intricate_hand-cut_paper_art_for_exhibitions(judy))|(does_not_play_the_drums(judy)))))& ((((enjoys_virtual_reality_gaming(maria))|(enjoys_origami(maria))))<~>(((does_not_compete_in_national_level_swimming_championships(beulah))|(enjoys_virtual_reality_gaming(beulah)))))& ((((enjoys_logic_puzzles(judy))|(does_not_have_a_pet_dog(judy))))<=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(beulah))|(develops_open-source_software_projects_in_their_free_time(beulah))|(does_not_compete_in_national_level_swimming_championships(beulah)))))& ((![X]:((((has_a_pet_dog(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))=>(collects_antique_clocks(X)))))& (?[X]:(room(X)&(((does_not_compete_in_national_level_swimming_championships(X))|(does_not_collect_antique_clocks(X))))))& (?[X]:(room(X)&(((does_not_play_the_drums(X))|(is_not_a_tea_enthusiast(X))))))& (((competes_in_national_level_swimming_championships(beulah))|(is_not_a_professional_photographer_specializing_in_portrait_photography(beulah))))& (((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(beulah))|(develops_open-source_software_projects_in_their_free_time(beulah))|(does_not_compete_in_national_level_swimming_championships(beulah))))& (((does_not_have_a_pet_dog(maria))<~>(competes_in_national_level_swimming_championships(maria))))& (((is_a_tea_enthusiast(judy))|(makes_intricate_hand-cut_paper_art_for_exhibitions(judy))))& (~((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(candy))|(plays_the_drums(candy))))& (does_not_use_a_Windows_laptop(beulah))& ((candy_dream=>(~((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(maria))|(enjoys_logic_puzzles(maria))))))& (((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(beulah))|(does_not_enjoy_virtual_reality_gaming(beulah))))& (((has_a_pet_dog(beulah))<~>(develops_open-source_software_projects_in_their_free_time(beulah))))& (((does_not_develop_open-source_software_projects_in_their_free_time(candy))|(does_not_use_a_Windows_laptop(candy))))
room(candy)&room(maria)&room(judy)&room(beulah)&(![X]:(room(X)=>(X='candy'|X='maria'|X='judy'|X='beulah')))& is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(beulah)
[]
null
0.037935
Linda, Elaine, Dianne are the only persons in the room. “Not everyone in the room does not participate in long-distance cycling events across the country or practices kickboxing” only if “everyone in the room who is a culinary enthusiast who experiments with international cuisines enjoys stand-up paddleboarding”. Either “Elaine is a culinary enthusiast who experiments with international cuisines” or “everyone in the room competes in national level swimming championships or does not practice zumba” but not both. If “Linda is passionate about collecting and restoring classic cars” then “Linda does not regularly goes on multi-day backpacking trips in national parks”. If “Linda collects antique clocks” then “it is not the case that “Linda enjoys stand-up paddleboarding””. “Only one person in the room does not practice zumba” if “everyone in the room writes poetry”. If “everyone in the room enjoys skydiving or is not a culinary enthusiast who experiments with international cuisines” then “Elaine is not a culinary enthusiast who experiments with international cuisines”. Either “Elaine mentors a youth basketball team on weekends” or “Elaine does not practice kickboxing” but not both. Either “Linda competes in national level swimming championships” or “Elaine practices and performs acrobatic dance routines” but not both. Either “everyone in the room mentors a youth basketball team on weekends or does not maintain a personal blog focused on cybersecurity tips” or “Elaine enjoys cross-country skiing” but not both. If “Linda enjoys coding in Python” then “Elaine is a tea enthusiast”. If “Elaine is a tea enthusiast” then “at least one person in the room practices and performs acrobatic dance routines”. If “Linda own a television” then “Elaine own a television”. If “Elaine enjoys skydiving” then “no one anywhere who enjoys coding in Python is not a tea enthusiast”.
Everyone anywhere collects antique clocks.
contradiction
room(linda)&room(elaine)&room(dianne)&(![X]:(room(X)=>(X='linda'|X='elaine'|X='dianne')))& ((~![X]:(room(X)=>(((practices_kickboxing(X))|(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))=>(![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(enjoys_stand-up_paddleboarding(X)))))))& ((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(elaine))<~>(![X]:(room(X)=>(((does_not_practice_zumba(X))|(competes_in_national_level_swimming_championships(X)))))))& ((is_passionate_about_collecting_and_restoring_classic_cars(linda))=>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(linda)))& ((collects_antique_clocks(linda))=>(~(enjoys_stand-up_paddleboarding(linda))))& ((![X]:(room(X)=>(writes_poetry(X))))=>(((?[X]:(room(X)&does_not_practice_zumba(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_practice_zumba(X))&(does_not_practice_zumba(Y)))=>(X=Y))))))& ((![X]:(room(X)=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(enjoys_skydiving(X))))))=>(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(elaine)))& ((mentors_a_youth_basketball_team_on_weekends(elaine))<~>(does_not_practice_kickboxing(elaine)))& ((competes_in_national_level_swimming_championships(linda))<~>(practices_and_performs_acrobatic_dance_routines(elaine)))& ((![X]:(room(X)=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))|(mentors_a_youth_basketball_team_on_weekends(X))))))<~>(enjoys_cross-country_skiing(elaine)))& (((enjoys_coding_in_Python(linda))=>(is_a_tea_enthusiast(elaine)))& ((is_a_tea_enthusiast(elaine))=>(((?[X]:(room(X)&practices_and_performs_acrobatic_dance_routines(X)))))))& ((own_a_television(linda))=>(own_a_television(elaine)))& ((enjoys_skydiving(elaine))=>(~?[X]:(anywhere(X)=>(((enjoys_coding_in_Python(X))=>(is_not_a_tea_enthusiast(X)))))))& (practices_digital_art(elaine))& (does_not_practice_zumba(linda))& (((writes_poetry(linda))&(enjoys_camping_and_organizing_outdoor_survival_workshops(linda))))& (competes_in_national_level_swimming_championships(elaine))& (~(?[X]:(room(X)&(((collects_limited-edition_art_prints_from_contemporary_artists(X))&(enjoys_skydiving(X)))))))& (enjoys_cross-country_skiing(elaine))& (((?[X]:(room(X)&enjoys_coding_in_Python(X)))))& (~![X]:(~room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(collects_antique_clocks(X))))))& (~(practices_kickboxing(elaine)))& (collects_antique_clocks(linda))& (practices_and_performs_acrobatic_dance_routines(elaine))& (is_not_passionate_about_collecting_and_restoring_classic_cars(linda))& (((?[X]:(room(X)&regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))&(![X,Y]:((room(X)&room(Y)&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(Y)))=>(X=Y)))))& (~(((practices_kickboxing(elaine))&(enjoys_camping_and_organizing_outdoor_survival_workshops(elaine)))))& (practices_kickboxing(linda))& (is_passionate_about_collecting_and_restoring_classic_cars(elaine))
room(linda)&room(elaine)&room(dianne)&(![X]:(room(X)=>(X='linda'|X='elaine'|X='dianne')))& ![X]:(anywhere(X)=>(collects_antique_clocks(X)))
[ "b4", "p0", "hypothesis" ]
% SZS status Unsatisfiable for 7210420242161093968919257 % SZS output start Proof for 7210420242161093968919257 5. ! [X0] : anywhere(X0) [input b4] 44. predf(paul) & predq(mary) & ~(predy(paul) & predq(paul)) & ! [X0,X1] : ((predm(X1) & predm(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predm(X0) & room(X0)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & ~! [X0] : (~room(X0) => (preda(X0) => predb(X0))) & ? [X0] : (predu(X0) & room(X0)) & predt(paul) & ~? [X0] : (predz(X0) & predg(X0) & room(X0)) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & predi(paul) & (predz(paul) => ~? [X0] : (anywhere(X0) => (predu(X0) => ~predk(X0)))) & (predj(mary) => predj(paul)) & (predk(paul) => ? [X0] : (predl(X0) & room(X0))) & (predu(mary) => predk(paul)) & (! [X0] : (room(X0) => (predc(X0) | ~preds(X0))) <~> predt(paul)) & (predh(mary) <~> predl(paul)) & (predc(paul) <~> ~predq(paul)) & (! [X0] : (room(X0) => (predz(X0) | ~predr(X0))) => ~predr(paul)) & (! [X0] : (room(X0) => prede(X0)) => (! [X0,X1] : ((~predp(X1) & ~predp(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predp(X0) & room(X0)))) & (predb(mary) => ~predv(mary)) & (predf(mary) => ~predm(mary)) & (predr(paul) <~> ! [X0] : (room(X0) => (predh(X0) | ~predp(X0)))) & (~! [X0] : (room(X0) => (~preda(X0) | predq(X0))) => ! [X0] : (room(X0) => (predr(X0) => predv(X0)))) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. predf(paul) & predq(mary) & ~(predy(paul) & predq(paul)) & ! [X0,X1] : ((predm(X1) & predm(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predm(X2) & room(X2)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & ~! [X3] : (~room(X3) => (preda(X3) => predb(X3))) & ? [X4] : (predu(X4) & room(X4)) & predt(paul) & ~? [X5] : (predz(X5) & predg(X5) & room(X5)) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & predi(paul) & (predz(paul) => ~? [X6] : (anywhere(X6) => (predu(X6) => ~predk(X6)))) & (predj(mary) => predj(paul)) & (predk(paul) => ? [X7] : (predl(X7) & room(X7))) & (predu(mary) => predk(paul)) & (! [X8] : (room(X8) => (predc(X8) | ~preds(X8))) <~> predt(paul)) & (predh(mary) <~> predl(paul)) & (predc(paul) <~> ~predq(paul)) & (! [X9] : (room(X9) => (predz(X9) | ~predr(X9))) => ~predr(paul)) & (! [X10] : (room(X10) => prede(X10)) => (! [X11,X12] : ((~predp(X12) & ~predp(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (~predp(X13) & room(X13)))) & (predb(mary) => ~predv(mary)) & (predf(mary) => ~predm(mary)) & (predr(paul) <~> ! [X14] : (room(X14) => (predh(X14) | ~predp(X14)))) & (~! [X15] : (room(X15) => (~preda(X15) | predq(X15))) => ! [X16] : (room(X16) => (predr(X16) => predv(X16)))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary) [rectify 45] 48. predf(paul) & predq(mary) & ~(predy(paul) & predq(paul)) & ! [X0,X1] : ((predm(X1) & predm(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predm(X2) & room(X2)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & ~! [X3] : (~room(X3) => (preda(X3) => predb(X3))) & ? [X4] : (predu(X4) & room(X4)) & predt(paul) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & predi(paul) & (predz(paul) => ~? [X6] : (anywhere(X6) => (predu(X6) => ~predk(X6)))) & (predj(mary) => predj(paul)) & (predk(paul) => ? [X7] : (predl(X7) & room(X7))) & (predu(mary) => predk(paul)) & (! [X8] : (room(X8) => (predc(X8) | ~preds(X8))) <~> predt(paul)) & (predh(mary) <~> predl(paul)) & (predc(paul) <~> ~predq(paul)) & (! [X9] : (room(X9) => (predz(X9) | ~predr(X9))) => ~predr(paul)) & (! [X10] : (room(X10) => prede(X10)) => (! [X11,X12] : ((~predp(X12) & ~predp(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (~predp(X13) & room(X13)))) & (predb(mary) => ~predv(mary)) & (predf(mary) => ~predm(mary)) & (predr(paul) <~> ! [X14] : (room(X14) => (predh(X14) | ~predp(X14)))) & (~! [X15] : (room(X15) => (~preda(X15) | predq(X15))) => ! [X16] : (room(X16) => (predr(X16) => predv(X16)))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 49. predf(paul) & predq(mary) & ~(predy(paul) & predq(paul)) & ! [X0,X1] : ((predm(X1) & predm(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predm(X2) & room(X2)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & ~! [X3] : (~room(X3) => (preda(X3) => predb(X3))) & ? [X4] : (predu(X4) & room(X4)) & predt(paul) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & (predz(paul) => ~? [X6] : (anywhere(X6) => (predu(X6) => ~predk(X6)))) & (predj(mary) => predj(paul)) & (predk(paul) => ? [X7] : (predl(X7) & room(X7))) & (predu(mary) => predk(paul)) & (! [X8] : (room(X8) => (predc(X8) | ~preds(X8))) <~> predt(paul)) & (predh(mary) <~> predl(paul)) & (predc(paul) <~> ~predq(paul)) & (! [X9] : (room(X9) => (predz(X9) | ~predr(X9))) => ~predr(paul)) & (! [X10] : (room(X10) => prede(X10)) => (! [X11,X12] : ((~predp(X12) & ~predp(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (~predp(X13) & room(X13)))) & (predb(mary) => ~predv(mary)) & (predf(mary) => ~predm(mary)) & (predr(paul) <~> ! [X14] : (room(X14) => (predh(X14) | ~predp(X14)))) & (~! [X15] : (room(X15) => (~preda(X15) | predq(X15))) => ! [X16] : (room(X16) => (predr(X16) => predv(X16)))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. predf(paul) & predq(mary) & ~(predy(paul) & predq(paul)) & ! [X0,X1] : ((predm(X1) & predm(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predm(X2) & room(X2)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & ~! [X3] : (~room(X3) => (preda(X3) => predb(X3))) & ? [X4] : (predu(X4) & room(X4)) & predt(paul) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & (predj(mary) => predj(paul)) & (predk(paul) => ? [X7] : (predl(X7) & room(X7))) & (predu(mary) => predk(paul)) & (! [X8] : (room(X8) => (predc(X8) | ~preds(X8))) <~> predt(paul)) & (predh(mary) <~> predl(paul)) & (predc(paul) <~> ~predq(paul)) & (! [X9] : (room(X9) => ~predr(X9)) => ~predr(paul)) & (! [X10] : (room(X10) => prede(X10)) => (! [X11,X12] : ((~predp(X12) & ~predp(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (~predp(X13) & room(X13)))) & (predb(mary) => ~predv(mary)) & (predf(mary) => ~predm(mary)) & (predr(paul) <~> ! [X14] : (room(X14) => (predh(X14) | ~predp(X14)))) & (~! [X15] : (room(X15) => (~preda(X15) | predq(X15))) => ! [X16] : (room(X16) => (predr(X16) => predv(X16)))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 122. predf(paul) & predq(mary) & (~predy(paul) | ~predq(paul)) & ! [X0,X1] : (X0 = X1 | (~predm(X1) | ~predm(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predm(X2) & room(X2)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & ? [X3] : ((~predb(X3) & preda(X3)) & ~room(X3)) & ? [X4] : (predu(X4) & room(X4)) & predt(paul) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & (predj(paul) | ~predj(mary)) & (? [X7] : (predl(X7) & room(X7)) | ~predk(paul)) & (predk(paul) | ~predu(mary)) & (! [X8] : ((predc(X8) | ~preds(X8)) | ~room(X8)) <~> predt(paul)) & (predh(mary) <~> predl(paul)) & (predc(paul) <~> ~predq(paul)) & (~predr(paul) | ? [X9] : (predr(X9) & room(X9))) & ((! [X11,X12] : (X11 = X12 | (predp(X12) | predp(X11) | ~room(X12) | ~room(X11))) & ? [X13] : (~predp(X13) & room(X13))) | ? [X10] : (~prede(X10) & room(X10))) & (~predv(mary) | ~predb(mary)) & (~predm(mary) | ~predf(mary)) & (predr(paul) <~> ! [X14] : ((predh(X14) | ~predp(X14)) | ~room(X14))) & (! [X16] : ((predv(X16) | ~predr(X16)) | ~room(X16)) | ! [X15] : ((~preda(X15) | predq(X15)) | ~room(X15))) & ! [X17] : ((fred = X17 | paul = X17 | mary = X17) | ~room(X17)) & room(fred) & room(paul) & room(mary) [ennf transformation 50] 123. predf(paul) & predq(mary) & (~predy(paul) | ~predq(paul)) & ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predm(X2) & room(X2)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & ? [X3] : (~predb(X3) & preda(X3) & ~room(X3)) & ? [X4] : (predu(X4) & room(X4)) & predt(paul) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & (predj(paul) | ~predj(mary)) & (? [X7] : (predl(X7) & room(X7)) | ~predk(paul)) & (predk(paul) | ~predu(mary)) & (! [X8] : (predc(X8) | ~preds(X8) | ~room(X8)) <~> predt(paul)) & (predh(mary) <~> predl(paul)) & (predc(paul) <~> ~predq(paul)) & (~predr(paul) | ? [X9] : (predr(X9) & room(X9))) & ((! [X11,X12] : (X11 = X12 | predp(X12) | predp(X11) | ~room(X12) | ~room(X11)) & ? [X13] : (~predp(X13) & room(X13))) | ? [X10] : (~prede(X10) & room(X10))) & (~predv(mary) | ~predb(mary)) & (~predm(mary) | ~predf(mary)) & (predr(paul) <~> ! [X14] : (predh(X14) | ~predp(X14) | ~room(X14))) & (! [X16] : (predv(X16) | ~predr(X16) | ~room(X16)) | ! [X15] : (~preda(X15) | predq(X15) | ~room(X15))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [flattening 122] 124. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : ((fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(fred) & room(paul) & room(mary) [ennf transformation 47] 125. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : (fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(fred) & room(paul) & room(mary) [flattening 124] 127. predf(paul) & predq(mary) & (~predy(paul) | ~predq(paul)) & ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predm(X2) & room(X2)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & ? [X3] : (~predb(X3) & preda(X3) & ~room(X3)) & ? [X4] : (predu(X4) & room(X4)) & predt(paul) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & (predj(paul) | ~predj(mary)) & (? [X7] : (predl(X7) & room(X7)) | ~predk(paul)) & (predk(paul) | ~predu(mary)) & ((~predt(paul) | ? [X8] : (~predc(X8) & preds(X8) & room(X8))) & (predt(paul) | ! [X8] : (predc(X8) | ~preds(X8) | ~room(X8)))) & ((~predl(paul) | ~predh(mary)) & (predl(paul) | predh(mary))) & ((predq(paul) | ~predc(paul)) & (~predq(paul) | predc(paul))) & (~predr(paul) | ? [X9] : (predr(X9) & room(X9))) & ((! [X11,X12] : (X11 = X12 | predp(X12) | predp(X11) | ~room(X12) | ~room(X11)) & ? [X13] : (~predp(X13) & room(X13))) | ? [X10] : (~prede(X10) & room(X10))) & (~predv(mary) | ~predb(mary)) & (~predm(mary) | ~predf(mary)) & ((? [X14] : (~predh(X14) & predp(X14) & room(X14)) | ~predr(paul)) & (! [X14] : (predh(X14) | ~predp(X14) | ~room(X14)) | predr(paul))) & (! [X16] : (predv(X16) | ~predr(X16) | ~room(X16)) | ! [X15] : (~preda(X15) | predq(X15) | ~room(X15))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [nnf transformation 123] 128. predf(paul) & predq(mary) & (~predy(paul) | ~predq(paul)) & ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predm(X2) & room(X2)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & ? [X3] : (~predb(X3) & preda(X3) & ~room(X3)) & ? [X4] : (predu(X4) & room(X4)) & predt(paul) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & (predj(paul) | ~predj(mary)) & (? [X7] : (predl(X7) & room(X7)) | ~predk(paul)) & (predk(paul) | ~predu(mary)) & (~predt(paul) | ? [X8] : (~predc(X8) & preds(X8) & room(X8))) & (predt(paul) | ! [X8] : (predc(X8) | ~preds(X8) | ~room(X8))) & (~predl(paul) | ~predh(mary)) & (predl(paul) | predh(mary)) & (predq(paul) | ~predc(paul)) & (~predq(paul) | predc(paul)) & (~predr(paul) | ? [X9] : (predr(X9) & room(X9))) & ((! [X11,X12] : (X11 = X12 | predp(X12) | predp(X11) | ~room(X12) | ~room(X11)) & ? [X13] : (~predp(X13) & room(X13))) | ? [X10] : (~prede(X10) & room(X10))) & (~predv(mary) | ~predb(mary)) & (~predm(mary) | ~predf(mary)) & (? [X14] : (~predh(X14) & predp(X14) & room(X14)) | ~predr(paul)) & (! [X14] : (predh(X14) | ~predp(X14) | ~room(X14)) | predr(paul)) & (! [X16] : (predv(X16) | ~predr(X16) | ~room(X16)) | ! [X15] : (~preda(X15) | predq(X15) | ~room(X15))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [flattening 127] 129. predf(paul) & predq(mary) & (~predy(paul) | ~predq(paul)) & ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predm(X2) & room(X2)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & ? [X3] : (~predb(X3) & preda(X3) & ~room(X3)) & ? [X4] : (predu(X4) & room(X4)) & predt(paul) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & (predj(paul) | ~predj(mary)) & (? [X5] : (predl(X5) & room(X5)) | ~predk(paul)) & (predk(paul) | ~predu(mary)) & (~predt(paul) | ? [X6] : (~predc(X6) & preds(X6) & room(X6))) & (predt(paul) | ! [X7] : (predc(X7) | ~preds(X7) | ~room(X7))) & (~predl(paul) | ~predh(mary)) & (predl(paul) | predh(mary)) & (predq(paul) | ~predc(paul)) & (~predq(paul) | predc(paul)) & (~predr(paul) | ? [X8] : (predr(X8) & room(X8))) & ((! [X9,X10] : (X9 = X10 | predp(X10) | predp(X9) | ~room(X10) | ~room(X9)) & ? [X11] : (~predp(X11) & room(X11))) | ? [X12] : (~prede(X12) & room(X12))) & (~predv(mary) | ~predb(mary)) & (~predm(mary) | ~predf(mary)) & (? [X13] : (~predh(X13) & predp(X13) & room(X13)) | ~predr(paul)) & (! [X14] : (predh(X14) | ~predp(X14) | ~room(X14)) | predr(paul)) & (! [X15] : (predv(X15) | ~predr(X15) | ~room(X15)) | ! [X16] : (~preda(X16) | predq(X16) | ~room(X16))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [rectify 128] 130. ? [X2] : (predm(X2) & room(X2)) => (predm(sK0) & room(sK0)) [choice axiom] 131. ? [X3] : (~predb(X3) & preda(X3) & ~room(X3)) => (~predb(sK1) & preda(sK1) & ~room(sK1)) [choice axiom] 132. ? [X4] : (predu(X4) & room(X4)) => (predu(sK2) & room(sK2)) [choice axiom] 133. ? [X5] : (predl(X5) & room(X5)) => (predl(sK3) & room(sK3)) [choice axiom] 134. ? [X6] : (~predc(X6) & preds(X6) & room(X6)) => (~predc(sK4) & preds(sK4) & room(sK4)) [choice axiom] 135. ? [X8] : (predr(X8) & room(X8)) => (predr(sK5) & room(sK5)) [choice axiom] 136. ? [X11] : (~predp(X11) & room(X11)) => (~predp(sK6) & room(sK6)) [choice axiom] 137. ? [X12] : (~prede(X12) & room(X12)) => (~prede(sK7) & room(sK7)) [choice axiom] 138. ? [X13] : (~predh(X13) & predp(X13) & room(X13)) => (~predh(sK8) & predp(sK8) & room(sK8)) [choice axiom] 139. predf(paul) & predq(mary) & (~predy(paul) | ~predq(paul)) & ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~room(X1) | ~room(X0)) & (predm(sK0) & room(sK0)) & ~predf(mary) & predl(paul) & predb(mary) & ~predq(paul) & (~predb(sK1) & preda(sK1) & ~room(sK1)) & (predu(sK2) & room(sK2)) & predt(paul) & predh(paul) & predy(mary) & prede(mary) & ~predp(mary) & (predj(paul) | ~predj(mary)) & ((predl(sK3) & room(sK3)) | ~predk(paul)) & (predk(paul) | ~predu(mary)) & (~predt(paul) | (~predc(sK4) & preds(sK4) & room(sK4))) & (predt(paul) | ! [X7] : (predc(X7) | ~preds(X7) | ~room(X7))) & (~predl(paul) | ~predh(mary)) & (predl(paul) | predh(mary)) & (predq(paul) | ~predc(paul)) & (~predq(paul) | predc(paul)) & (~predr(paul) | (predr(sK5) & room(sK5))) & ((! [X9,X10] : (X9 = X10 | predp(X10) | predp(X9) | ~room(X10) | ~room(X9)) & (~predp(sK6) & room(sK6))) | (~prede(sK7) & room(sK7))) & (~predv(mary) | ~predb(mary)) & (~predm(mary) | ~predf(mary)) & ((~predh(sK8) & predp(sK8) & room(sK8)) | ~predr(paul)) & (! [X14] : (predh(X14) | ~predp(X14) | ~room(X14)) | predr(paul)) & (! [X15] : (predv(X15) | ~predr(X15) | ~room(X15)) | ! [X16] : (~preda(X16) | predq(X16) | ~room(X16))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [skolemisation 129,138,137,136,135,134,133,132,131,130] 140. anywhere(X0) [cnf transformation 5] 261. ~predb(sK1) [cnf transformation 139] 276. predb(X0) | ~anywhere(X0) [cnf transformation 125] 391. predb(X0) [subsumption resolution 276,140] 392. $false [resolution 391,261] % SZS output end Proof for 7210420242161093968919257 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.30356
Debra is the only person in the room. “Everyone in the room volunteers for local environmental conservation projects or does not volunteer for local environmental conservation projects” only if “Debra volunteers for local environmental conservation projects”. Only one person in the room enjoys origami.
It is not the case that “Debra enjoys origami”.
contradiction
room(debra)&(![X]:(room(X)=>(X='debra')))& ((![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))|(volunteers_for_local_environmental_conservation_projects(X))))))=>(volunteers_for_local_environmental_conservation_projects(debra)))& ((participates_in_citizen_science_projects_related_to_wildlife_monitoring(debra))<~>(volunteers_for_local_environmental_conservation_projects(debra)))& ((![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(does_not_enjoy_origami(X))))))=>(volunteers_for_local_environmental_conservation_projects(debra)))& (![X]:(room(X)=>(((does_not_enjoy_origami(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (((?[X]:(room(X)&enjoys_origami(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_origami(X))&(enjoys_origami(Y)))=>(X=Y)))))& ((?[X,Y]:(~room(X)&~room(Y)&(enjoys_origami(X)&enjoys_origami(Y))&(X!=Y))))
room(debra)&(![X]:(room(X)=>(X='debra')))& ~(enjoys_origami(debra))
[ "p0", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 436484358212364399211959 % SZS output start Proof for 436484358212364399211959 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 49. ! [X0,X1] : ((preda(X1) & preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (preda(X0) & room(X0)) [input p5] 51. ~preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 52. ! [X0,X1] : ((preda(X1) & preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (preda(X2) & room(X2)) [rectify 49] 125. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 132. ! [X0,X1] : (X0 = X1 | (~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (preda(X2) & room(X2)) [ennf transformation 52] 133. ! [X0,X1] : (X0 = X1 | ~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (preda(X2) & room(X2)) [flattening 132] 134. ~preda(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 51] 141. ? [X2] : (preda(X2) & room(X2)) => (preda(sK2) & room(sK2)) [choice axiom] 142. ! [X0,X1] : (X0 = X1 | ~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0)) & (preda(sK2) & room(sK2)) [skolemisation 133,141] 226. ~room(X0) | mary = X0 [cnf transformation 125] 236. room(sK2) [cnf transformation 142] 237. preda(sK2) [cnf transformation 142] 246. ~preda(mary) [cnf transformation 134] 284. mary = sK2 [resolution 226,236] 286. preda(mary) [backward demodulation 237,284] 287. $false [subsumption resolution 286,246] % SZS output end Proof for 436484358212364399211959 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.06075
Jack, Jose are the only persons in the room. Jose is a quiet old kind person. Jose is richer than James. It is not the case that “Jose and Jack are tall persons”. Jose is richer than Jonathan. At least one person anywhere is a kind person. Jose is quiet, is older than Jonathan and is older than James. Jack neither is a quiet old person nor is richer than Jonathan. Jose is the least old in the room. Jack is older than James. Everyone in the room who is tall is a kind quiet person. All quiet persons are old. Jose is the oldest outside the room. Jack is quiet. Jack is quieter than Jonathan. All quiet persons are kind. Someone who is quieter than James is richer than someone who is richer than Jonathan.
Jose is quiet.
entailment
room(jack)&room(jose)&(![X]:(room(X)=>(X='jack'|X='jose')))& (quiet(jose)&old(jose)&kind(jose)&person(jose))& (richer(james,jose))& (~(tall(jose)&person(jose)&tall(jack)&person(jack)))& (richer(jonathan,jose))& (((?[X]:(anywhere(X)&kind(X)&person(X)))))& (((quiet(jose))&(older(jonathan,jose))&(older(james,jose))))& (~((quiet(jack)&old(jack)&person(jack))|(richer(jonathan,jack))))& (![X]:((room(X)&(X!=jose))=>older(jose,X)))& (older(james,jack))& (![X]:(room(X)=>(((tall(X))=>(kind(X)&quiet(X)&person(X))))))& (![X]:(quiet(X)=>old(X)))& (![X]:((~room(X)&(X!=jose))=>older(X,jose)))& (quiet(jack))& (quieter(jonathan,jack))& (![X]:(quiet(X)=>kind(X)))& (?[X,Y]:((quieter(james,X))&(richer(jonathan,Y))&(richer(X,Y))))
room(jack)&room(jose)&(![X]:(room(X)=>(X='jack'|X='jose')))& quiet(jose)
[ "p0", "p1", "hypothesis" ]
% SZS status Unsatisfiable for 7095449902816431646624833 % SZS output start Proof for 7095449902816431646624833 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. person(paul) & kind(paul) & old(paul) & quiet(paul) [input p1] 61. ~(quiet(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 66. person(paul) & old(paul) & quiet(paul) [pure predicate removal 45] 140. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 140] 148. ~quiet(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 61] 149. ~quiet(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 148] 155. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 156. ~quiet(paul) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 149,155] 237. room(mary) [cnf transformation 141] 238. room(paul) [cnf transformation 141] 239. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 141] 240. quiet(paul) [cnf transformation 66] 260. ~quiet(paul) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 156] 261. ~quiet(paul) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 156] 262. ~quiet(paul) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 156] 277. paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 262,240] 278. paul != sK3 | ~room(mary) [subsumption resolution 277,238] 279. paul != sK3 [subsumption resolution 278,237] 280. mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 261,240] 281. mary != sK3 | ~room(mary) [subsumption resolution 280,238] 282. mary != sK3 [subsumption resolution 281,237] 283. room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 260,240] 284. room(sK3) | ~room(mary) [subsumption resolution 283,238] 285. room(sK3) [subsumption resolution 284,237] 293. mary = sK3 | paul = sK3 [resolution 239,285] 294. paul = sK3 [subsumption resolution 293,282] 295. $false [subsumption resolution 294,279] % SZS output end Proof for 7095449902816431646624833 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.015654
Ana, Linda, Elaine are the only persons in the room. Everyone in the room who enjoys wildlife photography reads mystery novels. Everyone in the room reads mystery novels if and only if they does not practice graffiti art. More than one person in the room enjoys wildlife photography. Everyone in the room reads mystery novels. Elaine who owns a significant collection of rare gemstones and minerals owns a telescope. Everyone in the room owns a significant collection of rare gemstones and minerals if and only if they reads mystery novels. Someone in the room enjoys wildlife photography. Everyone in the room who collect rare sneakers writes a travel blog. Everyone in the room owns a significant collection of rare gemstones and minerals if they writes a travel blog. If someone plays the drums, is not a member of a local theater group specializing in improv and reads mystery novels then he/she volunteers for local environmental conservation projects and vice versa. Everyone in the room owns a telescope. If someone does not write and illustrates their own graphic novels then he/she practices graffiti art. Everyone outside the room writes a travel blog. Everyone in the room does practice yoga if they either owns a significant collection of rare gemstones and minerals or plays the drums but not both. If someone is a member of a local theater group specializing in improv then he/she writes a travel blog. If someone plays the drums then he/she enjoys skydiving, does not write a travel blog and writes a travel blog and vice versa. Everyone in the room does not practice graffiti art. Everyone in the room who does not play the drums does practice yoga. More than one person in the room reads mystery novels. Everyone in the room creates bespoke furniture pieces from reclaimed wood if they plays the violin. Everyone outside the room trains for and competes in international triathlons if they creates bespoke furniture pieces from reclaimed wood.
Everyone in the room owns a significant collection of rare gemstones and minerals.
entailment
room(ana)&room(linda)&room(elaine)&(![X]:(room(X)=>(X='ana'|X='linda'|X='elaine')))& (![X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(reads_mystery_novels(X))))))& (![X]:(room(X)=>(((reads_mystery_novels(X))<=>(does_not_practice_graffiti_art(X))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_wildlife_photography(X)&enjoys_wildlife_photography(Y))&(X!=Y))))& (![X]:(room(X)=>(reads_mystery_novels(X))))& ((owns_a_significant_collection_of_rare_gemstones_and_minerals(elaine))&(owns_a_telescope(elaine)))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))<=>(reads_mystery_novels(X))))))& (?[X]:(room(X)&(enjoys_wildlife_photography(X))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& ((![X]:((((plays_the_drums(X))&(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))&(reads_mystery_novels(X))))<=>(volunteers_for_local_environmental_conservation_projects(X)))))& (![X]:(room(X)=>(owns_a_telescope(X))))& ((![X]:((does_not_write_and_illustrates_their_own_graphic_novels(X))=>(practices_graffiti_art(X)))))& (![X]:(~room(X)=>(writes_a_travel_blog(X))))& (![X]:(room(X)=>(((((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))<~>(plays_the_drums(X))))=>(does_practice_yoga(X))))))& ((![X]:((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(writes_a_travel_blog(X)))))& ((![X]:((plays_the_drums(X))<=>(((enjoys_skydiving(X))&(does_not_write_a_travel_blog(X))&(writes_a_travel_blog(X)))))))& (![X]:(room(X)=>(does_not_practice_graffiti_art(X))))& (![X]:(room(X)=>(((does_not_play_the_drums(X))=>(does_practice_yoga(X))))))& ((?[X,Y]:(room(X)&room(Y)&(reads_mystery_novels(X)&reads_mystery_novels(Y))&(X!=Y))))& (![X]:(room(X)=>(((plays_the_violin(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(~room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(collect_rare_sneakers(X))))))& (![X]:(room(X)=>(((does_not_play_the_drums(X))<=(plays_the_drums(X))))))
room(ana)&room(linda)&room(elaine)&(![X]:(room(X)=>(X='ana'|X='linda'|X='elaine')))& ![X]:(room(X)=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))
[ "p0", "p4", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 8012445813464176341114513 % SZS output start Proof for 8012445813464176341114513 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => predp(X0)) [input p4] 50. ! [X0] : (room(X0) => (preda(X0) <=> predp(X0))) [input p6] 69. ~(! [X0] : (room(X0) => preda(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 70. ~(! [X0] : (room(X0) => preda(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary)) [rectify 69] 157. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 158. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 157] 162. ! [X0] : (predp(X0) | ~room(X0)) [ennf transformation 48] 163. ! [X0] : ((preda(X0) <=> predp(X0)) | ~room(X0)) [ennf transformation 50] 168. ? [X0] : (~preda(X0) & room(X0)) | ? [X1] : ((fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 70] 169. ? [X0] : (~preda(X0) & room(X0)) | ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 168] 174. ! [X0] : (((preda(X0) | ~predp(X0)) & (predp(X0) | ~preda(X0))) | ~room(X0)) [nnf transformation 163] 179. ? [X0] : (~preda(X0) & room(X0)) => (~preda(sK5) & room(sK5)) [choice axiom] 180. ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) => (fred != sK6 & paul != sK6 & mary != sK6 & room(sK6)) [choice axiom] 181. (~preda(sK5) & room(sK5)) | (fred != sK6 & paul != sK6 & mary != sK6 & room(sK6)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 169,180,179] 262. room(mary) [cnf transformation 158] 263. room(paul) [cnf transformation 158] 264. room(fred) [cnf transformation 158] 265. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 158] 274. ~room(X0) | predp(X0) [cnf transformation 162] 277. preda(X0) | ~predp(X0) | ~room(X0) [cnf transformation 174] 288. room(sK5) | room(sK6) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 289. room(sK5) | mary != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 290. room(sK5) | paul != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 291. room(sK5) | fred != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 292. ~preda(sK5) | room(sK6) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 293. ~preda(sK5) | mary != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 294. ~preda(sK5) | paul != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 295. ~preda(sK5) | fred != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 296. ~room(X0) | preda(X0) [subsumption resolution 277,274] 297. ~preda(sK5) | fred != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 295,264] 298. ~preda(sK5) | fred != sK6 | ~room(mary) [subsumption resolution 297,263] 299. ~preda(sK5) | fred != sK6 [subsumption resolution 298,262] 301. 1 <=> fred = sK6 [avatar definition] 303. fred != sK6 <- (~1) [avatar component clause 301] 305. 2 <=> preda(sK5) [avatar definition] 307. ~preda(sK5) <- (~2) [avatar component clause 305] 308. ~1 | ~2 [avatar split clause 299,305,301] 309. ~preda(sK5) | paul != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 294,264] 310. ~preda(sK5) | paul != sK6 | ~room(mary) [subsumption resolution 309,263] 311. ~preda(sK5) | paul != sK6 [subsumption resolution 310,262] 313. 3 <=> paul = sK6 [avatar definition] 315. paul != sK6 <- (~3) [avatar component clause 313] 316. ~3 | ~2 [avatar split clause 311,305,313] 317. ~preda(sK5) | mary != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 293,264] 318. ~preda(sK5) | mary != sK6 | ~room(mary) [subsumption resolution 317,263] 319. ~preda(sK5) | mary != sK6 [subsumption resolution 318,262] 321. 4 <=> mary = sK6 [avatar definition] 323. mary != sK6 <- (~4) [avatar component clause 321] 324. ~4 | ~2 [avatar split clause 319,305,321] 325. ~preda(sK5) | room(sK6) | ~room(paul) | ~room(mary) [subsumption resolution 292,264] 326. ~preda(sK5) | room(sK6) | ~room(mary) [subsumption resolution 325,263] 327. ~preda(sK5) | room(sK6) [subsumption resolution 326,262] 329. 5 <=> room(sK6) [avatar definition] 331. room(sK6) <- (5) [avatar component clause 329] 332. 5 | ~2 [avatar split clause 327,305,329] 333. room(sK5) | fred != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 291,264] 334. room(sK5) | fred != sK6 | ~room(mary) [subsumption resolution 333,263] 335. room(sK5) | fred != sK6 [subsumption resolution 334,262] 337. 6 <=> room(sK5) [avatar definition] 339. room(sK5) <- (6) [avatar component clause 337] 340. ~1 | 6 [avatar split clause 335,337,301] 341. room(sK5) | paul != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 290,264] 342. room(sK5) | paul != sK6 | ~room(mary) [subsumption resolution 341,263] 343. room(sK5) | paul != sK6 [subsumption resolution 342,262] 344. ~3 | 6 [avatar split clause 343,337,313] 345. room(sK5) | mary != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 289,264] 346. room(sK5) | mary != sK6 | ~room(mary) [subsumption resolution 345,263] 347. room(sK5) | mary != sK6 [subsumption resolution 346,262] 348. ~4 | 6 [avatar split clause 347,337,321] 349. room(sK5) | room(sK6) | ~room(paul) | ~room(mary) [subsumption resolution 288,264] 350. room(sK5) | room(sK6) | ~room(mary) [subsumption resolution 349,263] 351. room(sK5) | room(sK6) [subsumption resolution 350,262] 352. 5 | 6 [avatar split clause 351,337,329] 433. paul = sK6 | mary = sK6 | fred = sK6 <- (5) [resolution 265,331] 499. mary = sK6 | fred = sK6 <- (~3, 5) [subsumption resolution 433,315] 500. fred = sK6 <- (~3, ~4, 5) [subsumption resolution 499,323] 501. $false <- (~1, ~3, ~4, 5) [subsumption resolution 500,303] 502. 1 | 3 | 4 | ~5 [avatar contradiction clause 501] 538. preda(sK5) <- (6) [resolution 339,296] 562. $false <- (~2, 6) [subsumption resolution 538,307] 563. 2 | ~6 [avatar contradiction clause 562] 565. $false [avatar sat refutation 308,316,324,332,340,344,348,352,502,563] % SZS output end Proof for 8012445813464176341114513 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.312388
Calvin, Kellie are the only persons in the room. Everyone in the room has a pet dog if they plays as a goalkeeper for a local amateur soccer team or has a pet dog or both. Everyone in the room has a pet dog, does not enjoy writing detailed reviews of new and classic board games or has a specialized collection of handmade artisan pottery. Only one person in the room practices urban gardening. If someone practices urban gardening then he/she has a specialized collection of handmade artisan pottery and builds model airplanes. Everyone in the room has a pet dog and does not build model airplanes only if they has a specialized collection of handmade artisan pottery. Calvin enjoys skydiving. Everyone outside the room does not know morse code if and only if they collect rare sneakers. Everyone in the room does not enjoy writing detailed reviews of new and classic board games or does not collect rare sneakers. If someone builds model airplanes then he/she neither enjoys making ceramics nor does not practice archery and vice versa. If someone volunteers for local environmental conservation projects or enjoys making ceramics or both then he/she enjoys writing detailed reviews of new and classic board games and vice versa. If someone does not know morse code, does not practice archery or enjoys making ceramics then he/she enjoys writing detailed reviews of new and classic board games. More than one person in the room collect rare sneakers. Everyone in the room has a pet dog. Everyone in the room regularly goes on multi-day backpacking trips in national parks. Everyone in the room enjoys writing detailed reviews of new and classic board games if they volunteers for local environmental conservation projects and vice versa. Everyone in the room has a pet dog if they does not regularly goes on multi-day backpacking trips in national parks.
Kellie is allergic to anything.
neutral
room(calvin)&room(kellie)&(![X]:(room(X)=>(X='calvin'|X='kellie')))& (![X]:(room(X)=>(((((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(has_a_pet_dog(X))))=>(has_a_pet_dog(X))))))& (![X]:(room(X)=>(((has_a_pet_dog(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (((?[X]:(room(X)&practices_urban_gardening(X)))&(![X,Y]:((room(X)&room(Y)&(practices_urban_gardening(X))&(practices_urban_gardening(Y)))=>(X=Y)))))& ((![X]:((practices_urban_gardening(X))=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))&(builds_model_airplanes(X)))))))& (![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))<=(((has_a_pet_dog(X))&(does_not_build_model_airplanes(X))))))))& (enjoys_skydiving(calvin))& (![X]:(~room(X)=>(((does_not_know_morse_code(X))<=>(collect_rare_sneakers(X))))))& (![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& ((![X]:((builds_model_airplanes(X))<=>(~((enjoys_making_ceramics(X))|(does_not_practice_archery(X)))))))& ((![X]:((((volunteers_for_local_environmental_conservation_projects(X))|(enjoys_making_ceramics(X))))<=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))& ((![X]:((((does_not_know_morse_code(X))|(does_not_practice_archery(X))|(enjoys_making_ceramics(X))))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))& ((?[X,Y]:(room(X)&room(Y)&(collect_rare_sneakers(X)&collect_rare_sneakers(Y))&(X!=Y))))& (![X]:(room(X)=>(has_a_pet_dog(X))))& (![X]:(room(X)=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))<=>(volunteers_for_local_environmental_conservation_projects(X))))))& (![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(has_a_pet_dog(X))))))& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(writes_a_travel_blog(X))))))& ((![X]:((is_allergic_to_anything(X))<=>(((enjoys_skydiving(X))<~>(is_not_passionate_about_collecting_and_restoring_classic_cars(X)))))))
room(calvin)&room(kellie)&(![X]:(room(X)=>(X='calvin'|X='kellie')))& is_allergic_to_anything(kellie)
[]
null
0
Mildred, Marsha, Thora, William are the only persons in the room. Everyone in the room competes in national level swimming championships if and only if they designs and sews custom cosplay costumes for conventions. William does not design and sews custom cosplay costumes for conventions. Marsha writes poetry. It is not the case that “Mildred neither collects first edition books nor has a curated collection of mid-century modern furniture”. Mildred is not passionate about collecting and restoring classic cars. William has a vast collection of first-edition science fiction novels. If someone has a vast collection of first-edition science fiction novels then he/she is not a tea enthusiast. Everyone in the room either has a curated collection of mid-century modern furniture or has a vast collection of first-edition science fiction novels but not both if they is a tea enthusiast and vice versa. Everyone in the room is not a certified yoga instructor teaching classes weekly if they is a tea enthusiast. Marsha hosts a popular podcast about emerging technologies. Everyone in the room collects vintage vinyl records if they hosts a YouTube channel dedicated to art tutorials and vice versa. Marsha collects vintage vinyl records. William is passionate about collecting and restoring classic cars. Not everyone in the room has a curated collection of mid-century modern furniture or writes poetry or both if they neither collects vintage vinyl records nor collects historical artifacts related to ancient civilizations. Mildred is a tea enthusiast. It is not the case that “William collects vintage vinyl records”.
Thora has a vast collection of first-edition science fiction novels.
contradiction
room(mildred)&room(marsha)&room(thora)&room(william)&(![X]:(room(X)=>(X='mildred'|X='marsha'|X='thora'|X='william')))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))<=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (does_not_design_and_sews_custom_cosplay_costumes_for_conventions(william))& (writes_poetry(marsha))& (~(~((collects_first_edition_books(mildred))|(has_a_curated_collection_of_mid-century_modern_furniture(mildred)))))& (is_not_passionate_about_collecting_and_restoring_classic_cars(mildred))& (has_a_vast_collection_of_first-edition_science_fiction_novels(william))& ((![X]:((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(is_not_a_tea_enthusiast(X)))))& (![X]:(room(X)=>(((((has_a_curated_collection_of_mid-century_modern_furniture(X))<~>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))<=>(is_a_tea_enthusiast(X))))))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))=>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (hosts_a_popular_podcast_about_emerging_technologies(marsha))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))<=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (collects_vintage_vinyl_records(marsha))& (is_passionate_about_collecting_and_restoring_classic_cars(william))& (~![X]:(room(X)=>(((~((collects_vintage_vinyl_records(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))|(writes_poetry(X))))))))& (is_a_tea_enthusiast(mildred))& (~(collects_vintage_vinyl_records(william)))& (competes_in_national_level_swimming_championships(thora))& (is_a_member_of_a_local_theater_group_specializing_in_improv(thora))& (![X]:(room(X)=>(((writes_poetry(X))=>(collects_vintage_vinyl_records(X))))))& (~(hosts_a_YouTube_channel_dedicated_to_art_tutorials(thora)))& (?[X]:(room(X)&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))& (collects_historical_artifacts_related_to_ancient_civilizations(marsha))& (![X]:(room(X)=>(((((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(collects_first_edition_books(X))))=>(((hosts_a_popular_podcast_about_emerging_technologies(X))&(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))))& (?[X]:(~room(X)&(((hosts_a_popular_podcast_about_emerging_technologies(X))|(collects_vintage_vinyl_records(X))))))
room(mildred)&room(marsha)&room(thora)&room(william)&(![X]:(room(X)=>(X='mildred'|X='marsha'|X='thora'|X='william')))& has_a_vast_collection_of_first-edition_science_fiction_novels(thora)
[ "p0", "p3", "p6", "p7", "p8", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 665402862686963247858375 % SZS output start Proof for 665402862686963247858375 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. prede(paul) [input p3] 50. predl(alice) [input p6] 51. ! [X0] : (predl(X0) => ~predb(X0)) [input p7] 52. ! [X0] : (room(X0) => ((predh(X0) <~> predl(X0)) <=> predb(X0))) [input p8] 58. ~! [X0] : (room(X0) => (~(predd(X0) | predk(X0)) => (prede(X0) | predh(X0)))) [input p14] 59. predb(mary) [input p15] 69. predl(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 148. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 149. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148] 151. ! [X0] : (~predb(X0) | ~predl(X0)) [ennf transformation 51] 152. ! [X0] : (((predh(X0) <~> predl(X0)) <=> predb(X0)) | ~room(X0)) [ennf transformation 52] 154. ? [X0] : (((~prede(X0) & ~predh(X0)) & (~predd(X0) & ~predk(X0))) & room(X0)) [ennf transformation 58] 155. ? [X0] : (~prede(X0) & ~predh(X0) & ~predd(X0) & ~predk(X0) & room(X0)) [flattening 154] 160. predl(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 69] 161. predl(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 160] 164. ! [X0] : (((((~predl(X0) | ~predh(X0)) & (predl(X0) | predh(X0))) | ~predb(X0)) & (predb(X0) | ((predh(X0) | ~predl(X0)) & (predl(X0) | ~predh(X0))))) | ~room(X0)) [nnf transformation 152] 166. ? [X0] : (~prede(X0) & ~predh(X0) & ~predd(X0) & ~predk(X0) & room(X0)) => (~prede(sK0) & ~predh(sK0) & ~predd(sK0) & ~predk(sK0) & room(sK0)) [choice axiom] 167. ~prede(sK0) & ~predh(sK0) & ~predd(sK0) & ~predk(sK0) & room(sK0) [skolemisation 155,166] 252. room(mary) [cnf transformation 149] 254. room(fred) [cnf transformation 149] 255. room(alice) [cnf transformation 149] 256. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 149] 260. prede(paul) [cnf transformation 47] 263. predl(alice) [cnf transformation 50] 264. ~predb(X0) | ~predl(X0) [cnf transformation 151] 266. predb(X0) | predh(X0) | ~predl(X0) | ~room(X0) [cnf transformation 164] 267. predl(X0) | predh(X0) | ~predb(X0) | ~room(X0) [cnf transformation 164] 273. room(sK0) [cnf transformation 167] 276. ~predh(sK0) [cnf transformation 167] 277. ~prede(sK0) [cnf transformation 167] 278. predb(mary) [cnf transformation 59] 294. predl(fred) [cnf transformation 161] 300. 2 <=> predh(mary) [avatar definition] 304. ~predb(X0) | predh(X0) | ~room(X0) [subsumption resolution 267,264] 305. ~predl(X0) | predh(X0) | ~room(X0) [subsumption resolution 266,304] 321. predh(mary) | ~room(mary) [resolution 304,278] 323. predh(fred) | ~room(fred) [resolution 305,294] 324. predh(alice) | ~room(alice) [resolution 305,263] 327. predh(fred) [subsumption resolution 323,254] 328. predh(alice) [subsumption resolution 324,255] 375. fred = sK0 | paul = sK0 | mary = sK0 | alice = sK0 [resolution 256,273] 378. 3 <=> alice = sK0 [avatar definition] 380. alice = sK0 <- (3) [avatar component clause 378] 382. 4 <=> mary = sK0 [avatar definition] 384. mary = sK0 <- (4) [avatar component clause 382] 386. 5 <=> paul = sK0 [avatar definition] 388. paul = sK0 <- (5) [avatar component clause 386] 390. 6 <=> fred = sK0 [avatar definition] 392. fred = sK0 <- (6) [avatar component clause 390] 393. 3 | 4 | 5 | 6 [avatar split clause 375,390,386,382,378] 421. ~predh(alice) <- (3) [backward demodulation 276,380] 423. $false <- (3) [subsumption resolution 421,328] 424. ~3 [avatar contradiction clause 423] 436. ~predh(mary) <- (4) [backward demodulation 276,384] 443. ~2 | ~4 [avatar split clause 436,382,300] 444. predh(mary) [subsumption resolution 321,252] 445. 2 [avatar split clause 444,300] 456. ~prede(paul) <- (5) [backward demodulation 277,388] 464. $false <- (5) [subsumption resolution 456,260] 465. ~5 [avatar contradiction clause 464] 469. ~predh(fred) <- (6) [backward demodulation 276,392] 472. $false <- (6) [subsumption resolution 469,327] 473. ~6 [avatar contradiction clause 472] 474. $false [avatar sat refutation 393,424,443,445,465,473] % SZS output end Proof for 665402862686963247858375 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0
Juliet, Janice are the only persons in the room. “Someone in the room is tall” only if “Juliet is the quietest in the room”. “At least one person outside the room is a calm person” if “it is not the case that “Janice and Juliet are respectively old and quiet”” and vice versa. “Janice and Juliet are respectively happy and wise” only if “all generous persons are old”. “Janice and Juliet are respectively patient and tall” only if “only one person in the room is not brave”. Juliet and Janice are respectively happy and curious. Only one person in the room is kind. Only one person in the room is not brave. Juliet and Janice are quiet or are not funny or both. Someone in the room is not old. At least one person outside the room is generous. Juliet and Janice are respectively quiet and funny. Janice who is kind is not patient. Janice and Juliet are respectively funny and old. Janice is the least rich outside the room.
Janice is quiet.
entailment
room(juliet)&room(janice)&(![X]:(room(X)=>(X='juliet'|X='janice')))& ((?[X]:(room(X)&(tall(X))))=>(![X]:((room(X)&(X!=juliet))=>quieter(X,juliet))))& ((~((old(janice))&(quiet(juliet))))<=>(((?[X]:(~room(X)&calm(X)&person(X))))))& (((happy(janice))&(wise(juliet)))=>(![X]:(generous(X)=>old(X))))& (((patient(janice))&(tall(juliet)))=>(((?[X]:(room(X)&~brave(X)))&(![X,Y]:((room(X)&room(Y)&(~brave(X))&(~brave(Y)))=>(X=Y))))))& ((happy(juliet))&(curious(janice)))& (((?[X]:(room(X)&kind(X)))&(![X,Y]:((room(X)&room(Y)&(kind(X))&(kind(Y)))=>(X=Y)))))& (((?[X]:(room(X)&~brave(X)))&(![X,Y]:((room(X)&room(Y)&(~brave(X))&(~brave(Y)))=>(X=Y)))))& (((quiet(juliet))|(~funny(juliet)))&((quiet(janice))|(~funny(janice))))& (?[X]:(room(X)&(~old(X))))& (((?[X]:(~room(X)&generous(X)))))& ((quiet(juliet))&(funny(janice)))& ((kind(janice))&(~patient(janice)))& ((funny(janice))&(old(juliet)))& (![X]:((~room(X)&(X!=janice))=>richer(janice,X)))
room(juliet)&room(janice)&(![X]:(room(X)=>(X='juliet'|X='janice')))& quiet(janice)
[ "p0", "p8", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 1863448497589409548670478 % SZS output start Proof for 1863448497589409548670478 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 52. (~funny(paul) | quiet(paul)) & (~funny(mary) | quiet(mary)) [input p8] 57. old(mary) & funny(paul) [input p13] 59. ~(quiet(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 143. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 144. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 143] 152. ~quiet(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 59] 153. ~quiet(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 152] 168. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 169. ~quiet(paul) | (paul != sK5 & mary != sK5 & room(sK5)) | ~room(paul) | ~room(mary) [skolemisation 153,168] 250. room(mary) [cnf transformation 144] 251. room(paul) [cnf transformation 144] 252. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 144] 267. ~funny(paul) | quiet(paul) [cnf transformation 52] 274. funny(paul) [cnf transformation 57] 277. ~quiet(paul) | room(sK5) | ~room(paul) | ~room(mary) [cnf transformation 169] 278. ~quiet(paul) | mary != sK5 | ~room(paul) | ~room(mary) [cnf transformation 169] 279. ~quiet(paul) | paul != sK5 | ~room(paul) | ~room(mary) [cnf transformation 169] 311. 7 <=> quiet(paul) [avatar definition] 315. 8 <=> funny(paul) [avatar definition] 318. 7 | ~8 [avatar split clause 267,315,311] 326. 8 [avatar split clause 274,315] 327. ~quiet(paul) | paul != sK5 | ~room(mary) [subsumption resolution 279,251] 328. ~quiet(paul) | paul != sK5 [subsumption resolution 327,250] 330. 10 <=> paul = sK5 [avatar definition] 332. paul != sK5 <- (~10) [avatar component clause 330] 333. ~10 | ~7 [avatar split clause 328,311,330] 334. ~quiet(paul) | mary != sK5 | ~room(mary) [subsumption resolution 278,251] 335. ~quiet(paul) | mary != sK5 [subsumption resolution 334,250] 337. 11 <=> mary = sK5 [avatar definition] 339. mary != sK5 <- (~11) [avatar component clause 337] 340. ~11 | ~7 [avatar split clause 335,311,337] 341. ~quiet(paul) | room(sK5) | ~room(mary) [subsumption resolution 277,251] 342. ~quiet(paul) | room(sK5) [subsumption resolution 341,250] 344. 12 <=> room(sK5) [avatar definition] 346. room(sK5) <- (12) [avatar component clause 344] 347. 12 | ~7 [avatar split clause 342,311,344] 353. mary = sK5 | paul = sK5 <- (12) [resolution 252,346] 381. paul = sK5 <- (~11, 12) [subsumption resolution 353,339] 382. $false <- (~10, ~11, 12) [subsumption resolution 381,332] 383. 10 | 11 | ~12 [avatar contradiction clause 382] 384. $false [avatar sat refutation 318,326,333,340,347,383] % SZS output end Proof for 1863448497589409548670478 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.515052
Marva is the only person in the room. "Marva is older than Wallace" if "Marva is quiet" and vice versa. "Someone in the room is quiet" only if "Wallace is quieter than Marva". If someone is old then he/she is quieter than Donald and vice versa. Someone in the room is quiet. All old person is quiet. Marva is not a old quiet person. Marva is quiet. It is not the case that "Marva is quieter than Thomas". Marva is not a quiet old person.
Marva is quieter than Wallace.
contradiction
room(marva)&(![X]:(room(X)=>(X='marva')))& ((quiet(marva))<=>(older(wallace,marva)))& ((?[X]:(room(X)&(quiet(X))))=>(quieter(marva,wallace)))& ((![X]:((old(X))<=>(quieter(donald,X)))))& (?[X]:(room(X)&(quiet(X))))& (![X]:(old(X)=>quiet(X)))& (~(old(marva)&quiet(marva)&person(marva)))& (quiet(marva))& (~(quieter(thomas,marva)))& (~(quiet(marva)&old(marva)&person(marva)))
room(marva)&(![X]:(room(X)=>(X='marva')))& quieter(wallace,marva)
[ "b13", "b42", "p0", "p2", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 64439090685387914663505 % SZS output start Proof for 64439090685387914663505 14. ! [X0,X1] : (X0 != X1 => (quieter(X0,X1) => ~quieter(X1,X0))) [input b13] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 46. ? [X0] : (quiet(X0) & room(X0)) => quieter(mary,alice) [input p2] 51. quiet(mary) [input p7] 54. quieter(alice,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 76. ! [X0,X1] : ((~quieter(X1,X0) | ~quieter(X0,X1)) | X0 = X1) [ennf transformation 14] 77. ! [X0,X1] : (~quieter(X1,X0) | ~quieter(X0,X1) | X0 = X1) [flattening 76] 129. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 130. quieter(mary,alice) | ! [X0] : (~quiet(X0) | ~room(X0)) [ennf transformation 46] 132. quieter(alice,mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 54] 147. ~quieter(X1,X0) | ~quieter(X0,X1) | X0 = X1 [cnf transformation 77] 194. mary != alice [cnf transformation 43] 218. room(mary) [cnf transformation 129] 222. quieter(mary,alice) | ~quiet(X0) | ~room(X0) [cnf transformation 130] 228. quiet(mary) [cnf transformation 51] 232. quieter(alice,mary) [cnf transformation 132] 238. 2 <=> quiet(mary) [avatar definition] 240. quiet(mary) <- (2) [avatar component clause 238] 244. 3 <=> ! [X0] : (~quiet(X0) | ~room(X0)) [avatar definition] 245. ~room(X0) | ~quiet(X0) <- (3) [avatar component clause 244] 247. 4 <=> quieter(mary,alice) [avatar definition] 250. 3 | 4 [avatar split clause 222,247,244] 251. 2 [avatar split clause 228,238] 257. ~quieter(mary,alice) | mary = alice [resolution 147,232] 266. ~quieter(mary,alice) [subsumption resolution 257,194] 267. ~4 [avatar split clause 266,247] 268. ~quiet(mary) <- (3) [resolution 245,218] 269. $false <- (2, 3) [subsumption resolution 268,240] 270. ~2 | ~3 [avatar contradiction clause 269] 271. $false [avatar sat refutation 250,251,267,270] % SZS output end Proof for 64439090685387914663505 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.025 s % ------------------------------ % ------------------------------
0.153813
Sandra, Robert, Christiana, Steven, Jennifer are the only persons in the room. If everyone in the room is passionate about collecting and restoring classic cars or does not practice zumba then if someone enjoys macrame then he/she has a saltwater aquarium and vice versa. Sandra either is passionate about collecting and restoring classic cars or enjoys rooftop gardening but not both. It is not the case that it is not the case that it is not the case that Christiana enjoys stargazing. More than one person anywhere practices graffiti art. Everyone in the room who enjoys stand-up paddleboarding enjoys stargazing. It is true that everyone in the room who enjoys stargazing neither enjoys stargazing nor enjoys bird watching. Everyone in the room writes in-depth travel guides for off-the-beaten-path destinations if they neither enjoys stargazing nor enjoys bird watching. Everyone in the room does enjoy mountain biking. Robert does not play the drums. Not everyone in the room enjoys stargazing if and only if they owns a smartwatch. Everyone anywhere who owns a smartwatch is an active member of a local robotics club. Everyone in the room is passionate about collecting and restoring classic cars or does not practice zumba. If someone hosts themed dinner parties featuring gourmet home-cooked meals then he/she neither is a client of Costco nor collects rare minerals. Everyone in the room either does not enjoy rooftop gardening or enjoys rooftop gardening but not both if and only if they practices graffiti art. Everyone in the room hosts themed dinner parties featuring gourmet home-cooked meals if they practices graffiti art. Someone in the room composes and performs experimental electronic music. If someone enjoys macrame then he/she has a saltwater aquarium and vice versa. It is not the case that Christiana practices zumba or knows morse code or both. Everyone in the room who writes in-depth travel guides for off-the-beaten-path destinations enjoys macrame. Sandra does not enjoy bird watching. Everyone in the room works as a freelance web developer specializing in e-commerce sites if they hosts themed dinner parties featuring gourmet home-cooked meals.
Robert is a client of Costco.
contradiction
room(sandra)&room(robert)&room(christiana)&room(steven)&room(jennifer)&(![X]:(room(X)=>(X='sandra'|X='robert'|X='christiana'|X='steven'|X='jennifer')))& ((![X]:(room(X)=>(((does_not_practice_zumba(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))=>((![X]:((enjoys_macrame(X))<=>(has_a_saltwater_aquarium(X))))))& (((is_passionate_about_collecting_and_restoring_classic_cars(sandra))<~>(enjoys_rooftop_gardening(sandra))))& (~(~(~(enjoys_stargazing(christiana)))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(practices_graffiti_art(X)&practices_graffiti_art(Y))&(X!=Y))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(enjoys_stargazing(X))))))& (![X]:(room(X)=>(((enjoys_stargazing(X))=>(~((enjoys_stargazing(X))|(enjoys_bird_watching(X))))))))& (![X]:(room(X)=>(((~((enjoys_stargazing(X))|(enjoys_bird_watching(X))))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (![X]:(room(X)=>(does_enjoy_mountain_biking(X))))& (does_not_play_the_drums(robert))& (~![X]:(room(X)=>(((enjoys_stargazing(X))<=>(owns_a_smartwatch(X))))))& (![X]:(anywhere(X)=>(((owns_a_smartwatch(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((does_not_practice_zumba(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& ((![X]:((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(~((is_a_client_of_Costco(X))|(collects_rare_minerals(X)))))))& (![X]:(room(X)=>(((((does_not_enjoy_rooftop_gardening(X))<~>(enjoys_rooftop_gardening(X))))<=>(practices_graffiti_art(X))))))& (![X]:(room(X)=>(((practices_graffiti_art(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (?[X]:(room(X)&(composes_and_performs_experimental_electronic_music(X))))& ((![X]:((enjoys_macrame(X))<=>(has_a_saltwater_aquarium(X)))))& (~(((practices_zumba(christiana))|(knows_morse_code(christiana)))))& (![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(enjoys_macrame(X))))))& (does_not_enjoy_bird_watching(sandra))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))
room(sandra)&room(robert)&room(christiana)&room(steven)&room(jennifer)&(![X]:(room(X)=>(X='sandra'|X='robert'|X='christiana'|X='steven'|X='jennifer')))& is_a_client_of_Costco(robert)
[ "p0", "p13", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 9146210225056580602775297 % SZS output start Proof for 9146210225056580602775297 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 57. ! [X0] : (predf(X0) => ~(predn(X0) | predc(X0))) [input p13] 58. ! [X0] : (room(X0) => ((~predv(X0) <~> predv(X0)) <=> predm(X0))) [input p14] 59. ! [X0] : (room(X0) => (predm(X0) => predf(X0))) [input p15] 66. predc(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 71. ! [X0] : (predf(X0) => ~predc(X0)) [pure predicate removal 57] 149. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 150. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 149] 160. ! [X0] : (~predc(X0) | ~predf(X0)) [ennf transformation 71] 161. ! [X0] : (((~predv(X0) <~> predv(X0)) <=> predm(X0)) | ~room(X0)) [ennf transformation 58] 162. ! [X0] : ((predf(X0) | ~predm(X0)) | ~room(X0)) [ennf transformation 59] 163. ! [X0] : (predf(X0) | ~predm(X0) | ~room(X0)) [flattening 162] 167. predc(paul) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 66] 168. predc(paul) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 167] 181. ! [X0] : (((((~predv(X0) | predv(X0)) & (predv(X0) | ~predv(X0))) | ~predm(X0)) & (predm(X0) | ((~predv(X0) | ~predv(X0)) & (predv(X0) | predv(X0))))) | ~room(X0)) [nnf transformation 161] 266. room(paul) [cnf transformation 150] 290. ~predc(X0) | ~predf(X0) [cnf transformation 160] 291. predm(X0) | predv(X0) | predv(X0) | ~room(X0) [cnf transformation 181] 292. predm(X0) | ~predv(X0) | ~predv(X0) | ~room(X0) [cnf transformation 181] 295. predf(X0) | ~predm(X0) | ~room(X0) [cnf transformation 163] 308. predc(paul) [cnf transformation 168] 309. predm(X0) | predv(X0) | ~room(X0) [duplicate literal removal 291] 310. predm(X0) | ~predv(X0) | ~room(X0) [duplicate literal removal 292] 357. ~room(X0) | predm(X0) [subsumption resolution 309,310] 358. ~room(X0) | predf(X0) [subsumption resolution 295,357] 361. ~predf(paul) [resolution 290,308] 373. predf(paul) [resolution 358,266] 379. $false [subsumption resolution 373,361] % SZS output end Proof for 9146210225056580602775297 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0
Ramona is the only person in the room. If Luann and Ramona hate each other then everyone in the room who does not like William does not like Luann. Someone in the room is hated by William. Everyone in the room is not liked by Luann if they is not hated by Thomas and vice versa. Everyone in the room who is not hated by Thomas either does not hate Thomas or is not liked by William but not both. Everyone in the room is not liked by Luann if they either does not hate Thomas or is not liked by William but not both. Everyone anywhere is not liked by Luann only if they does not like William. Everyone in the room who does not like William does not hate William. Everyone in the room who does not hate William is not liked by Luann. Everyone in the room does not hate Luann if they does not hate William.
Ramona likes Thomas.
contradiction
room(ramona)&(![X]:(room(X)=>(X='ramona')))& (((hate(luann,ramona) & hate(ramona,luann)))=>(![X]:(room(X)=>(((~like(william,X))=>(~like(luann,X)))))))& (?[X]:(room(X)&(hate(X,william))))& (![X]:(room(X)=>(((~like(X,luann))<=>(~hate(X,thomas))))))& (![X]:(room(X)=>(((~hate(X,thomas))=>(((~hate(thomas,X))<~>(~like(X,william))))))))& (![X]:(room(X)=>(((((~hate(thomas,X))<~>(~like(X,william))))=>(~like(X,luann))))))& (![X]:(anywhere(X)=>(((~like(william,X))<=(~like(X,luann))))))& (![X]:(room(X)=>(((~like(william,X))=>(~hate(william,X))))))& (![X]:(room(X)=>(((~hate(william,X))=>(~like(X,luann))))))& (![X]:(room(X)=>(((~hate(william,X))=>(~hate(luann,X))))))
room(ramona)&(![X]:(room(X)=>(X='ramona')))& like(thomas,ramona)
[ "b0", "b42", "p0", "p2", "p3", "p4", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 2681822750532841269778537 % SZS output start Proof for 2681822750532841269778537 1. ! [X0,X1] : (X0 != X1 => (like(X0,X1) => ~hate(X0,X1))) [input b0] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 46. ? [X0] : (hate(X0,fred) & room(X0)) [input p2] 47. ! [X0] : (room(X0) => (~like(X0,alice) <=> ~hate(X0,paul))) [input p3] 48. ! [X0] : (room(X0) => (~hate(X0,paul) => (~hate(paul,X0) <~> ~like(X0,fred)))) [input p4] 51. ! [X0] : (room(X0) => (~like(fred,X0) => ~hate(fred,X0))) [input p7] 52. ! [X0] : (room(X0) => (~hate(fred,X0) => ~like(X0,alice))) [input p8] 54. like(paul,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 57. ! [X0,X1] : ((~hate(X0,X1) | ~like(X0,X1)) | X0 = X1) [ennf transformation 1] 58. ! [X0,X1] : (~hate(X0,X1) | ~like(X0,X1) | X0 = X1) [flattening 57] 128. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 131. ! [X0] : ((~like(X0,alice) <=> ~hate(X0,paul)) | ~room(X0)) [ennf transformation 47] 132. ! [X0] : (((~hate(paul,X0) <~> ~like(X0,fred)) | hate(X0,paul)) | ~room(X0)) [ennf transformation 48] 133. ! [X0] : ((~hate(paul,X0) <~> ~like(X0,fred)) | hate(X0,paul) | ~room(X0)) [flattening 132] 138. ! [X0] : ((~hate(fred,X0) | like(fred,X0)) | ~room(X0)) [ennf transformation 51] 139. ! [X0] : (~hate(fred,X0) | like(fred,X0) | ~room(X0)) [flattening 138] 140. ! [X0] : ((~like(X0,alice) | hate(fred,X0)) | ~room(X0)) [ennf transformation 52] 141. ! [X0] : (~like(X0,alice) | hate(fred,X0) | ~room(X0)) [flattening 140] 144. like(paul,mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 54] 146. ? [X0] : (hate(X0,fred) & room(X0)) => (hate(sK0,fred) & room(sK0)) [choice axiom] 147. hate(sK0,fred) & room(sK0) [skolemisation 46,146] 148. ! [X0] : (((~like(X0,alice) | hate(X0,paul)) & (~hate(X0,paul) | like(X0,alice))) | ~room(X0)) [nnf transformation 131] 149. ! [X0] : (((like(X0,fred) | hate(paul,X0)) & (~like(X0,fred) | ~hate(paul,X0))) | hate(X0,paul) | ~room(X0)) [nnf transformation 133] 151. ~hate(X0,X1) | ~like(X0,X1) | X0 = X1 [cnf transformation 58] 198. mary != paul [cnf transformation 43] 204. mary != fred [cnf transformation 43] 234. room(mary) [cnf transformation 128] 235. ~room(X0) | mary = X0 [cnf transformation 128] 237. room(sK0) [cnf transformation 147] 238. hate(sK0,fred) [cnf transformation 147] 239. ~hate(X0,paul) | like(X0,alice) | ~room(X0) [cnf transformation 148] 242. hate(paul,X0) | hate(X0,paul) | like(X0,fred) | ~room(X0) [cnf transformation 149] 246. ~hate(fred,X0) | like(fred,X0) | ~room(X0) [cnf transformation 139] 247. ~like(X0,alice) | hate(fred,X0) | ~room(X0) [cnf transformation 141] 251. like(paul,mary) [cnf transformation 144] 266. mary = sK0 [resolution 235,237] 268. hate(mary,fred) [backward demodulation 238,266] 269. ~like(mary,fred) | mary = fred [resolution 151,268] 270. ~like(mary,fred) [subsumption resolution 269,204] 321. ~like(paul,X1) | like(X1,fred) | ~room(X1) | hate(X1,paul) | paul = X1 [resolution 242,151] 460. like(mary,fred) | ~room(mary) | hate(mary,paul) | mary = paul [resolution 321,251] 461. ~room(mary) | hate(mary,paul) | mary = paul [subsumption resolution 460,270] 462. hate(mary,paul) | mary = paul [subsumption resolution 461,234] 463. hate(mary,paul) [subsumption resolution 462,198] 464. like(mary,alice) | ~room(mary) [resolution 463,239] 466. like(mary,alice) [subsumption resolution 464,234] 469. hate(fred,mary) | ~room(mary) [resolution 466,247] 471. hate(fred,mary) [subsumption resolution 469,234] 480. like(fred,mary) | ~room(mary) [resolution 471,246] 481. ~like(fred,mary) | mary = fred [resolution 471,151] 482. like(fred,mary) [subsumption resolution 480,234] 483. mary = fred [subsumption resolution 481,482] 484. $false [subsumption resolution 483,204] % SZS output end Proof for 2681822750532841269778537 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.236291
Joseph, Glenda are the only persons in the room. If “someone in the room neither does not participate in citizen science projects related to wildlife monitoring nor does not enjoy coding in Python” then “if someone does not collect first edition books or does not enjoy logic puzzles or both then he/she is not a wine connoisseur with a private cellar of vintage wines, does not practice graffiti art or is not a client of LVMH” otherwise “only one person in the room enjoys stargazing”. If “Glenda does not write poetry” then “Glenda practices digital art or creates augmented reality experiences for mobile applications or both”. If “Glenda practices digital art or creates augmented reality experiences for mobile applications or both” then “Joseph is an amateur astronomer who builds and uses custom telescopes, is not right-handed or does not practice digital art”. Glenda practices digital art or creates augmented reality experiences for mobile applications or both. If someone enjoys salsa dancing or plays video games or both then he/she enjoys fishing. If someone does not play video games or does not own a high-end gaming PC with custom-built components or both then he/she enjoys salsa dancing. Joseph does not practice graffiti art or does not participate in citizen science projects related to wildlife monitoring or both. If someone is a wine connoisseur with a private cellar of vintage wines then he/she does not enjoy fishing, participates in citizen science projects related to wildlife monitoring or does not enjoy stargazing. Only one person in the room enjoys stargazing.
Glenda writes poetry.
contradiction
room(joseph)&room(glenda)&(![X]:(room(X)=>(X='joseph'|X='glenda')))& (((?[X]:(room(X)&(~((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(does_not_enjoy_coding_in_Python(X))))))=>((![X]:((((does_not_collect_first_edition_books(X))|(does_not_enjoy_logic_puzzles(X))))=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(does_not_practice_graffiti_art(X))|(is_not_a_client_of_LVMH(X))))))))&((~(?[X]:(room(X)&(~((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(does_not_enjoy_coding_in_Python(X)))))))=>(((?[X]:(room(X)&enjoys_stargazing(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_stargazing(X))&(enjoys_stargazing(Y)))=>(X=Y)))))))& (((does_not_write_poetry(glenda))=>(((practices_digital_art(glenda))|(creates_augmented_reality_experiences_for_mobile_applications(glenda)))))& ((((practices_digital_art(glenda))|(creates_augmented_reality_experiences_for_mobile_applications(glenda))))=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(joseph))|(is_not_right-handed(joseph))|(does_not_practice_digital_art(joseph))))))& (((practices_digital_art(glenda))|(creates_augmented_reality_experiences_for_mobile_applications(glenda))))& ((![X]:((((enjoys_salsa_dancing(X))|(plays_video_games(X))))=>(enjoys_fishing(X)))))& ((![X]:((((does_not_play_video_games(X))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))=>(enjoys_salsa_dancing(X)))))& (((does_not_practice_graffiti_art(joseph))|(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(joseph))))& ((![X]:((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(((does_not_enjoy_fishing(X))|(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(does_not_enjoy_stargazing(X)))))))& (((?[X]:(room(X)&enjoys_stargazing(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_stargazing(X))&(enjoys_stargazing(Y)))=>(X=Y)))))& (does_not_write_poetry(glenda))& (((?[X]:(room(X)&is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))&(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(Y)))=>(X=Y)))))& ((![X]:((((collects_first_edition_books(X))|(does_not_enjoy_stargazing(X))|(does_not_collect_foreign_coins(X))))=>(((enjoys_fishing(X))|(is_not_a_client_of_LVMH(X))|(does_not_write_poetry(X)))))))& ((![X]:((((does_not_enjoy_fishing(X))|(does_not_collect_foreign_coins(X))))=>(((is_not_a_dedicated_volunteer_for_local_community_service_projects(X))|(does_not_play_video_games(X)))))))
room(joseph)&room(glenda)&(![X]:(room(X)=>(X='joseph'|X='glenda')))& writes_poetry(glenda)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 658138442944203158086000 % SZS output start Proof for 658138442944203158086000 44. ! [X0] : ((~predh(X0) | ~preda(X0)) => (~predg(X0) | ~predk(X0))) & ! [X0] : ((~predh(X0) | ~predo(X0) | predq(X0)) => (~predl(X0) | ~predv(X0) | preda(X0))) & ! [X0,X1] : ((preds(X1) & preds(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (preds(X0) & room(X0)) & ~predl(paul) & ! [X0,X1] : ((predo(X1) & predo(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predo(X0) & room(X0)) & ! [X0] : (preds(X0) => (~predo(X0) | predw(X0) | ~preda(X0))) & (~predw(mary) | ~predj(mary)) & ! [X0] : ((~predu(X0) | ~predg(X0)) => predz(X0)) & ! [X0] : ((predg(X0) | predz(X0)) => preda(X0)) & (predb(paul) | predr(paul)) & ((predb(paul) | predr(paul)) => (~predr(mary) | ~predf(mary) | predt(mary))) & (~predl(paul) => (predb(paul) | predr(paul))) & (~? [X0] : (~(~predm(X0) | ~predw(X0)) & room(X0)) => (! [X0,X1] : ((predo(X1) & predo(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predo(X0) & room(X0)))) & (? [X0] : (~(~predm(X0) | ~predw(X0)) & room(X0)) => ! [X0] : ((~predn(X0) | ~predq(X0)) => (~predv(X0) | ~predj(X0) | ~preds(X0)))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. predl(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ! [X0] : ((~predh(X0) | ~preda(X0)) => (~predg(X0) | ~predk(X0))) & ! [X1] : ((~predh(X1) | ~predo(X1) | predq(X1)) => (~predl(X1) | ~predv(X1) | preda(X1))) & ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X8] : (preds(X8) => (~predo(X8) | predw(X8) | ~preda(X8))) & (~predw(mary) | ~predj(mary)) & ! [X9] : ((~predu(X9) | ~predg(X9)) => predz(X9)) & ! [X10] : ((predg(X10) | predz(X10)) => preda(X10)) & (predb(paul) | predr(paul)) & ((predb(paul) | predr(paul)) => (~predr(mary) | ~predf(mary) | predt(mary))) & (~predl(paul) => (predb(paul) | predr(paul))) & (~? [X11] : (~(~predm(X11) | ~predw(X11)) & room(X11)) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & (? [X15] : (~(~predm(X15) | ~predw(X15)) & room(X15)) => ! [X16] : ((~predn(X16) | ~predq(X16)) => (~predv(X16) | ~predj(X16) | ~preds(X16)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [rectify 44] 47. ! [X1] : ((~predh(X1) | ~predo(X1) | predq(X1)) => (~predl(X1) | ~predv(X1) | preda(X1))) & ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X8] : (preds(X8) => (~predo(X8) | predw(X8) | ~preda(X8))) & (~predw(mary) | ~predj(mary)) & ! [X9] : ((~predu(X9) | ~predg(X9)) => predz(X9)) & ! [X10] : ((predg(X10) | predz(X10)) => preda(X10)) & (predb(paul) | predr(paul)) & ((predb(paul) | predr(paul)) => (~predr(mary) | ~predf(mary) | predt(mary))) & (~predl(paul) => (predb(paul) | predr(paul))) & (~? [X11] : (~(~predm(X11) | ~predw(X11)) & room(X11)) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & (? [X15] : (~(~predm(X15) | ~predw(X15)) & room(X15)) => ! [X16] : ((~predn(X16) | ~predq(X16)) => (~predv(X16) | ~predj(X16) | ~preds(X16)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X1] : ((~predo(X1) | predq(X1)) => (~predl(X1) | ~predv(X1) | preda(X1))) & ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X8] : (preds(X8) => (~predo(X8) | predw(X8) | ~preda(X8))) & (~predw(mary) | ~predj(mary)) & ! [X9] : ((~predu(X9) | ~predg(X9)) => predz(X9)) & ! [X10] : ((predg(X10) | predz(X10)) => preda(X10)) & (predb(paul) | predr(paul)) & ((predb(paul) | predr(paul)) => (~predr(mary) | ~predf(mary) | predt(mary))) & (~predl(paul) => (predb(paul) | predr(paul))) & (~? [X11] : (~(~predm(X11) | ~predw(X11)) & room(X11)) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & (? [X15] : (~(~predm(X15) | ~predw(X15)) & room(X15)) => ! [X16] : ((~predn(X16) | ~predq(X16)) => (~predv(X16) | ~predj(X16) | ~preds(X16)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X1] : ((~predo(X1) | predq(X1)) => (~predl(X1) | ~predv(X1) | preda(X1))) & ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X8] : (preds(X8) => (~predo(X8) | predw(X8) | ~preda(X8))) & (~predw(mary) | ~predj(mary)) & ! [X9] : (~predg(X9) => predz(X9)) & ! [X10] : ((predg(X10) | predz(X10)) => preda(X10)) & (predb(paul) | predr(paul)) & ((predb(paul) | predr(paul)) => (~predr(mary) | ~predf(mary) | predt(mary))) & (~predl(paul) => (predb(paul) | predr(paul))) & (~? [X11] : (~(~predm(X11) | ~predw(X11)) & room(X11)) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & (? [X15] : (~(~predm(X15) | ~predw(X15)) & room(X15)) => ! [X16] : ((~predn(X16) | ~predq(X16)) => (~predv(X16) | ~predj(X16) | ~preds(X16)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X1] : ((~predo(X1) | predq(X1)) => (~predl(X1) | ~predv(X1) | preda(X1))) & ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X8] : (preds(X8) => (~predo(X8) | predw(X8) | ~preda(X8))) & (~predw(mary) | ~predj(mary)) & ! [X9] : (~predg(X9) => predz(X9)) & ! [X10] : ((predg(X10) | predz(X10)) => preda(X10)) & (predb(paul) | predr(paul)) & (~predl(paul) => (predb(paul) | predr(paul))) & (~? [X11] : (~(~predm(X11) | ~predw(X11)) & room(X11)) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & (? [X15] : (~(~predm(X15) | ~predw(X15)) & room(X15)) => ! [X16] : ((~predn(X16) | ~predq(X16)) => (~predv(X16) | ~predj(X16) | ~preds(X16)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X1] : ((~predo(X1) | predq(X1)) => (~predl(X1) | ~predv(X1) | preda(X1))) & ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X8] : (preds(X8) => (~predo(X8) | predw(X8) | ~preda(X8))) & (~predw(mary) | ~predj(mary)) & ! [X9] : (~predg(X9) => predz(X9)) & ! [X10] : ((predg(X10) | predz(X10)) => preda(X10)) & (~? [X11] : (~(~predm(X11) | ~predw(X11)) & room(X11)) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & (? [X15] : (~(~predm(X15) | ~predw(X15)) & room(X15)) => ! [X16] : ((~predn(X16) | ~predq(X16)) => (~predv(X16) | ~predj(X16) | ~preds(X16)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X8] : (preds(X8) => (~predo(X8) | predw(X8) | ~preda(X8))) & (~predw(mary) | ~predj(mary)) & ! [X9] : (~predg(X9) => predz(X9)) & ! [X10] : ((predg(X10) | predz(X10)) => preda(X10)) & (~? [X11] : (~(~predm(X11) | ~predw(X11)) & room(X11)) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X8] : (preds(X8) => (~predo(X8) | predw(X8) | ~preda(X8))) & (~predw(mary) | ~predj(mary)) & ! [X9] : (~predg(X9) => predz(X9)) & ! [X10] : ((predg(X10) | predz(X10)) => preda(X10)) & (~? [X11] : (~~predw(X11) & room(X11)) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 52] 54. ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X8] : (preds(X8) => (~predo(X8) | predw(X8) | ~preda(X8))) & ! [X9] : (~predg(X9) => predz(X9)) & ! [X10] : ((predg(X10) | predz(X10)) => preda(X10)) & (~? [X11] : (~~predw(X11) & room(X11)) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 53] 55. ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X9] : (~predg(X9) => predz(X9)) & ! [X10] : ((predg(X10) | predz(X10)) => preda(X10)) & (~? [X11] : room(X11) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 54] 56. ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & ! [X9] : (~predg(X9) => predz(X9)) & (~? [X11] : room(X11) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 55] 57. ! [X2,X3] : ((preds(X3) & preds(X2) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : ((predo(X6) & predo(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predo(X7) & room(X7)) & (~? [X11] : room(X11) => (! [X12,X13] : ((predo(X13) & predo(X12) & room(X13) & room(X12)) => X12 = X13) & ? [X14] : (predo(X14) & room(X14)))) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 56] 130. ! [X2,X3] : (X2 = X3 | (~preds(X3) | ~preds(X2) | ~room(X3) | ~room(X2))) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : (X5 = X6 | (~predo(X6) | ~predo(X5) | ~room(X6) | ~room(X5))) & ? [X7] : (predo(X7) & room(X7)) & ((! [X12,X13] : (X12 = X13 | (~predo(X13) | ~predo(X12) | ~room(X13) | ~room(X12))) & ? [X14] : (predo(X14) & room(X14))) | ? [X11] : room(X11)) & ! [X17] : ((paul = X17 | mary = X17) | ~room(X17)) & room(paul) & room(mary) [ennf transformation 57] 131. ! [X2,X3] : (X2 = X3 | ~preds(X3) | ~preds(X2) | ~room(X3) | ~room(X2)) & ? [X4] : (preds(X4) & room(X4)) & ~predl(paul) & ! [X5,X6] : (X5 = X6 | ~predo(X6) | ~predo(X5) | ~room(X6) | ~room(X5)) & ? [X7] : (predo(X7) & room(X7)) & ((! [X12,X13] : (X12 = X13 | ~predo(X13) | ~predo(X12) | ~room(X13) | ~room(X12)) & ? [X14] : (predo(X14) & room(X14))) | ? [X11] : room(X11)) & ! [X17] : (paul = X17 | mary = X17 | ~room(X17)) & room(paul) & room(mary) [flattening 130] 132. predl(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 133. predl(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 132] 135. ! [X0,X1] : (X0 = X1 | ~preds(X1) | ~preds(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (preds(X2) & room(X2)) & ~predl(paul) & ! [X3,X4] : (X3 = X4 | ~predo(X4) | ~predo(X3) | ~room(X4) | ~room(X3)) & ? [X5] : (predo(X5) & room(X5)) & ((! [X6,X7] : (X6 = X7 | ~predo(X7) | ~predo(X6) | ~room(X7) | ~room(X6)) & ? [X8] : (predo(X8) & room(X8))) | ? [X9] : room(X9)) & ! [X10] : (paul = X10 | mary = X10 | ~room(X10)) & room(paul) & room(mary) [rectify 131] 136. ? [X2] : (preds(X2) & room(X2)) => (preds(sK0) & room(sK0)) [choice axiom] 137. ? [X5] : (predo(X5) & room(X5)) => (predo(sK1) & room(sK1)) [choice axiom] 138. ? [X8] : (predo(X8) & room(X8)) => (predo(sK2) & room(sK2)) [choice axiom] 139. ? [X9] : room(X9) => room(sK3) [choice axiom] 140. ! [X0,X1] : (X0 = X1 | ~preds(X1) | ~preds(X0) | ~room(X1) | ~room(X0)) & (preds(sK0) & room(sK0)) & ~predl(paul) & ! [X3,X4] : (X3 = X4 | ~predo(X4) | ~predo(X3) | ~room(X4) | ~room(X3)) & (predo(sK1) & room(sK1)) & ((! [X6,X7] : (X6 = X7 | ~predo(X7) | ~predo(X6) | ~room(X7) | ~room(X6)) & (predo(sK2) & room(sK2))) | room(sK3)) & ! [X10] : (paul = X10 | mary = X10 | ~room(X10)) & room(paul) & room(mary) [skolemisation 135,139,138,137,136] 230. ~predl(paul) [cnf transformation 140] 237. predl(paul) [cnf transformation 133] 252. $false [subsumption resolution 237,230] % SZS output end Proof for 658138442944203158086000 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.416958
There is a room. If “everyone in the room does not use a Windows laptop or owns a high-end gaming PC with custom-built components” then “everyone in the room who does not use a Windows laptop neither writes poetry nor is a cybersecurity expert” otherwise “someone in the room is a dedicated advocate for digital privacy and encryption and enjoys spelunking”. If “everyone in the room owns a high-end gaming PC with custom-built components or is not a dedicated advocate for digital privacy and encryption” then “only one person in the room collects rare minerals”. No one in the room enjoys windsurfing if they does not use a Windows laptop.
Everyone outside the room does not practice yoga.
entailment
(there_is_a_room)& (((![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_use_a_Windows_laptop(X))))))=>(![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))=>(~((writes_poetry(X))|(is_a_cybersecurity_expert(X)))))))))&((~(![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_use_a_Windows_laptop(X)))))))=>(?[X]:(room(X)&(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(enjoys_spelunking(X))))))))& ((![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))=>(((?[X]:(room(X)&collects_rare_minerals(X)))&(![X,Y]:((room(X)&room(Y)&(collects_rare_minerals(X))&(collects_rare_minerals(Y)))=>(X=Y))))))& ((![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))<~>(does_not_practice_yoga(X))))))=>(![X]:(anywhere(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))<=>(((collects_antique_clocks(X))<~>(plays_the_drums(X)))))))))& ((?[X]:(room(X)&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))=>(![X]:(room(X)=>(((does_practice_yoga(X))|(does_not_use_a_Windows_laptop(X)))))))& (~?[X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))=>(enjoys_windsurfing(X))))))& (~![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(~((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(does_practice_yoga(X))))))))& ((![X]:((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))<=>(is_not_a_wine_connoisseur(X)))))& (![X]:(anywhere(X)=>(((((owns_a_high-end_gaming_PC_with_custom-built_components(X))&(is_not_a_wine_connoisseur(X))&(does_not_enjoy_windsurfing(X))))=>(does_practice_yoga(X))))))& ((![X]:((((enjoys_camping_and_organizing_outdoor_survival_workshops(X))&(is_not_a_wine_connoisseur(X))&(uses_a_Windows_laptop(X))))=>(is_a_wine_connoisseur(X)))))& (![X]:(room(X)=>(((plays_the_drums(X))<=>(enjoys_spelunking(X))))))& (![X]:(room(X)=>(((own_a_television(X))=>(((does_practice_yoga(X))&(enjoys_virtual_reality_gaming(X))))))))& (![X]:(room(X)=>(((enjoys_spelunking(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(anywhere(X)=>(((writes_poetry(X))=>(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))<=>(is_a_drone_photographer(X))))))& (![X]:(room(X)=>(((does_practice_yoga(X))|(does_not_use_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(is_a_drone_photographer(X))))))& (![X]:(anywhere(X)=>(((~((enjoys_kayaking(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))=>(is_a_wine_connoisseur(X))))))& (![X]:(~room(X)=>(((is_a_wine_connoisseur(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (?[X]:(room(X)&(~((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(owns_a_3D_printer(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(does_not_practice_yoga(X)))
[ "p0", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 3991625076924627901601781 % SZS output start Proof for 3991625076924627901601781 44. there_is_a_room [input p0] 49. ~? [X0] : (room(X0) => (~predg(X0) => predc(X0))) [input p5] 64. ~(! [X0] : (~room(X0) => ~preda(X0)) & there_is_a_room) [input hypothesis] 81. ~? [X0] : (room(X0) => predc(X0)) [pure predicate removal 49] 159. ! [X0] : (~predc(X0) & room(X0)) [ennf transformation 81] 169. ? [X0] : (preda(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 64] 191. ? [X0] : (preda(X0) & ~room(X0)) => (preda(sK6) & ~room(sK6)) [choice axiom] 192. (preda(sK6) & ~room(sK6)) | ~there_is_a_room [skolemisation 169,191] 274. there_is_a_room [cnf transformation 44] 288. room(X0) [cnf transformation 159] 305. ~room(sK6) | ~there_is_a_room [cnf transformation 192] 388. ~there_is_a_room [subsumption resolution 305,288] 389. $false [subsumption resolution 388,274] % SZS output end Proof for 3991625076924627901601781 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.027 s % ------------------------------ % ------------------------------
0
There is a room. If "it is not the case that "at least one person anywhere plays as a goalkeeper for a local amateur soccer team"" then "no one in the room knows morse code and practices digital art if and only if they owns a smartwatch" otherwise "everyone in the room who owns a smartwatch knows morse code". Everyone in the room who knows morse code plays as a goalkeeper for a local amateur soccer team. Everyone in the room who hosts themed dinner parties featuring gourmet home-cooked meals owns a significant collection of rare gemstones and minerals. Everyone anywhere who plays as a goalkeeper for a local amateur soccer team neither owns a smartwatch nor hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room who owns a significant collection of rare gemstones and minerals composes and performs experimental electronic music. Everyone in the room who practices digital art, hosts themed dinner parties featuring gourmet home-cooked meals or owns a smartwatch composes and performs experimental electronic music. Not everyone in the room who practices digital art, knows morse code or hosts themed dinner parties featuring gourmet home-cooked meals composes and performs experimental electronic music.
Everyone in the room does not own a smartwatch or designs and sews custom cosplay costumes for conventions.
entailment
(there_is_a_room)& (((~(((?[X]:(anywhere(X)&plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>(~?[X]:(room(X)=>(((((knows_morse_code(X))&(practices_digital_art(X))))<=>(owns_a_smartwatch(X)))))))&((~(~(((?[X]:(anywhere(X)&plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))=>(![X]:(room(X)=>(((owns_a_smartwatch(X))=>(knows_morse_code(X))))))))& (![X]:(room(X)=>(((knows_morse_code(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<=>(knows_morse_code(X))))))& (((?[X]:(~room(X)&((composes_and_performs_experimental_electronic_music(X))<~>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& ((![X]:((knows_morse_code(X))=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(knows_morse_code(X)))))))& (![X]:(anywhere(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(~((owns_a_smartwatch(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(~room(X)=>(((composes_and_performs_experimental_electronic_music(X))=>(practices_digital_art(X))))))& (![X]:(~room(X)=>(((((practices_digital_art(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))|(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))=>(((practices_digital_art(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(owns_a_smartwatch(X))))))))& (![X]:(room(X)=>(((((practices_digital_art(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(owns_a_smartwatch(X))))=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(~room(X)=>(((composes_and_performs_experimental_electronic_music(X))=>(((composes_and_performs_experimental_electronic_music(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(builds_model_airplanes(X))))))))& (![X]:(anywhere(X)=>(((((knows_morse_code(X))|(practices_digital_art(X))|(composes_and_performs_experimental_electronic_music(X))))=>(((watches_fantasy_movies(X))|(practices_digital_art(X))|(knows_morse_code(X))))))))& (((?[X]:(room(X)&builds_model_airplanes(X)))))& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(((practices_digital_art(X))|(knows_morse_code(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))))& (~![X]:(room(X)=>(((((practices_digital_art(X))|(knows_morse_code(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))=>(composes_and_performs_experimental_electronic_music(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))|(does_not_own_a_smartwatch(X)))))
[ "b4", "p0", "p1", "p2", "p6", "p8", "p9", "p12", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 3397124415149983896617720 % SZS output start Proof for 3397124415149983896617720 5. ! [X0] : anywhere(X0) [input b4] 44. there_is_a_room [input p0] 45. (~~? [X0] : (predk(X0) & anywhere(X0)) => ! [X0] : (room(X0) => (predd(X0) => predf(X0)))) & (~? [X0] : (predk(X0) & anywhere(X0)) => ~? [X0] : (room(X0) => ((prede(X0) & predf(X0)) <=> predd(X0)))) [input p1] 46. ! [X0] : (room(X0) => (predf(X0) => predk(X0))) [input p2] 50. ! [X0] : (room(X0) => (preda(X0) => predi(X0))) [input p6] 52. ! [X0] : (anywhere(X0) => (predk(X0) => ~(preda(X0) | predd(X0)))) [input p8] 53. ! [X0] : (room(X0) => (predi(X0) => predc(X0))) [input p9] 56. ! [X0] : (room(X0) => ((predd(X0) | preda(X0) | prede(X0)) => predc(X0))) [input p12] 62. ~! [X0] : (room(X0) => ((preda(X0) | predf(X0) | prede(X0)) => predc(X0))) [input p18] 63. ~(! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room) [input hypothesis] 64. (~~? [X0] : (predk(X0) & anywhere(X0)) => ! [X1] : (room(X1) => (predd(X1) => predf(X1)))) & (~? [X2] : (predk(X2) & anywhere(X2)) => ~? [X3] : (room(X3) => ((prede(X3) & predf(X3)) <=> predd(X3)))) [rectify 45] 65. (? [X0] : (predk(X0) & anywhere(X0)) => ! [X1] : (room(X1) => (predd(X1) => predf(X1)))) & (~? [X2] : (predk(X2) & anywhere(X2)) => ~? [X3] : (room(X3) => ((prede(X3) & predf(X3)) <=> predd(X3)))) [flattening 64] 68. ~(! [X0] : (room(X0) => ~predd(X0)) & there_is_a_room) [pure predicate removal 63] 141. (! [X1] : ((predf(X1) | ~predd(X1)) | ~room(X1)) | ! [X0] : (~predk(X0) | ~anywhere(X0))) & (! [X3] : (((prede(X3) & predf(X3)) <~> predd(X3)) & room(X3)) | ? [X2] : (predk(X2) & anywhere(X2))) [ennf transformation 65] 142. (! [X1] : (predf(X1) | ~predd(X1) | ~room(X1)) | ! [X0] : (~predk(X0) | ~anywhere(X0))) & (! [X3] : (((prede(X3) & predf(X3)) <~> predd(X3)) & room(X3)) | ? [X2] : (predk(X2) & anywhere(X2))) [flattening 141] 143. ! [X0] : ((predk(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 46] 144. ! [X0] : (predk(X0) | ~predf(X0) | ~room(X0)) [flattening 143] 148. ! [X0] : ((predi(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 50] 149. ! [X0] : (predi(X0) | ~preda(X0) | ~room(X0)) [flattening 148] 151. ! [X0] : (((~preda(X0) & ~predd(X0)) | ~predk(X0)) | ~anywhere(X0)) [ennf transformation 52] 152. ! [X0] : ((~preda(X0) & ~predd(X0)) | ~predk(X0) | ~anywhere(X0)) [flattening 151] 153. ! [X0] : ((predc(X0) | ~predi(X0)) | ~room(X0)) [ennf transformation 53] 154. ! [X0] : (predc(X0) | ~predi(X0) | ~room(X0)) [flattening 153] 159. ! [X0] : ((predc(X0) | (~predd(X0) & ~preda(X0) & ~prede(X0))) | ~room(X0)) [ennf transformation 56] 160. ! [X0] : (predc(X0) | (~predd(X0) & ~preda(X0) & ~prede(X0)) | ~room(X0)) [flattening 159] 167. ? [X0] : ((~predc(X0) & (preda(X0) | predf(X0) | prede(X0))) & room(X0)) [ennf transformation 62] 168. ? [X0] : (~predc(X0) & (preda(X0) | predf(X0) | prede(X0)) & room(X0)) [flattening 167] 169. ? [X0] : (predd(X0) & room(X0)) | ~there_is_a_room [ennf transformation 68] 171. (! [X1] : (predf(X1) | ~predd(X1) | ~room(X1)) | ! [X0] : (~predk(X0) | ~anywhere(X0))) & (! [X3] : (((~predd(X3) | (~prede(X3) | ~predf(X3))) & (predd(X3) | (prede(X3) & predf(X3)))) & room(X3)) | ? [X2] : (predk(X2) & anywhere(X2))) [nnf transformation 142] 172. (! [X1] : (predf(X1) | ~predd(X1) | ~room(X1)) | ! [X0] : (~predk(X0) | ~anywhere(X0))) & (! [X3] : ((~predd(X3) | ~prede(X3) | ~predf(X3)) & (predd(X3) | (prede(X3) & predf(X3))) & room(X3)) | ? [X2] : (predk(X2) & anywhere(X2))) [flattening 171] 173. (! [X0] : (predf(X0) | ~predd(X0) | ~room(X0)) | ! [X1] : (~predk(X1) | ~anywhere(X1))) & (! [X2] : ((~predd(X2) | ~prede(X2) | ~predf(X2)) & (predd(X2) | (prede(X2) & predf(X2))) & room(X2)) | ? [X3] : (predk(X3) & anywhere(X3))) [rectify 172] 174. ? [X3] : (predk(X3) & anywhere(X3)) => (predk(sK0) & anywhere(sK0)) [choice axiom] 175. (! [X0] : (predf(X0) | ~predd(X0) | ~room(X0)) | ! [X1] : (~predk(X1) | ~anywhere(X1))) & (! [X2] : ((~predd(X2) | ~prede(X2) | ~predf(X2)) & (predd(X2) | (prede(X2) & predf(X2))) & room(X2)) | (predk(sK0) & anywhere(sK0))) [skolemisation 173,174] 183. ? [X0] : (~predc(X0) & (preda(X0) | predf(X0) | prede(X0)) & room(X0)) => (~predc(sK3) & (preda(sK3) | predf(sK3) | prede(sK3)) & room(sK3)) [choice axiom] 184. ~predc(sK3) & (preda(sK3) | predf(sK3) | prede(sK3)) & room(sK3) [skolemisation 168,183] 185. ? [X0] : (predd(X0) & room(X0)) => (predd(sK4) & room(sK4)) [choice axiom] 186. (predd(sK4) & room(sK4)) | ~there_is_a_room [skolemisation 169,185] 187. anywhere(X0) [cnf transformation 5] 268. there_is_a_room [cnf transformation 44] 277. predf(X0) | ~predd(X0) | ~room(X0) | ~predk(X1) | ~anywhere(X1) [cnf transformation 175] 278. ~predf(X0) | predk(X0) | ~room(X0) [cnf transformation 144] 285. ~preda(X0) | predi(X0) | ~room(X0) [cnf transformation 149] 287. ~predd(X0) | ~predk(X0) | ~anywhere(X0) [cnf transformation 152] 289. ~predi(X0) | predc(X0) | ~room(X0) [cnf transformation 154] 293. ~prede(X0) | predc(X0) | ~room(X0) [cnf transformation 160] 301. room(sK3) [cnf transformation 184] 302. preda(sK3) | predf(sK3) | prede(sK3) [cnf transformation 184] 303. ~predc(sK3) [cnf transformation 184] 304. room(sK4) | ~there_is_a_room [cnf transformation 186] 305. predd(sK4) | ~there_is_a_room [cnf transformation 186] 306. predf(X0) | ~predd(X0) | ~room(X0) | ~predk(X1) [subsumption resolution 277,187] 308. 1 <=> ! [X1] : ~predk(X1) [avatar definition] 309. ~predk(X1) <- (1) [avatar component clause 308] 311. 2 <=> ! [X0] : (predf(X0) | ~room(X0) | ~predd(X0)) [avatar definition] 312. ~predd(X0) | ~room(X0) | predf(X0) <- (2) [avatar component clause 311] 313. 1 | 2 [avatar split clause 306,311,308] 345. ~predd(X0) | ~predk(X0) [subsumption resolution 287,187] 347. 10 <=> prede(sK3) [avatar definition] 349. prede(sK3) <- (10) [avatar component clause 347] 351. 11 <=> predf(sK3) [avatar definition] 353. predf(sK3) <- (11) [avatar component clause 351] 355. 12 <=> preda(sK3) [avatar definition] 357. preda(sK3) <- (12) [avatar component clause 355] 358. 10 | 11 | 12 [avatar split clause 302,355,351,347] 359. predd(sK4) [subsumption resolution 305,268] 360. room(sK4) [subsumption resolution 304,268] 361. ~predk(sK4) [resolution 345,359] 375. 15 <=> predk(sK3) [avatar definition] 376. predk(sK3) <- (15) [avatar component clause 375] 377. ~predk(sK3) <- (~15) [avatar component clause 375] 388. predc(sK3) | ~room(sK3) <- (10) [resolution 293,349] 390. ~room(sK3) <- (10) [subsumption resolution 388,303] 391. $false <- (10) [subsumption resolution 390,301] 392. ~10 [avatar contradiction clause 391] 393. predk(sK3) | ~room(sK3) <- (11) [resolution 353,278] 394. ~room(sK3) <- (11, ~15) [subsumption resolution 393,377] 395. $false <- (11, ~15) [subsumption resolution 394,301] 396. ~11 | 15 [avatar contradiction clause 395] 397. predi(sK3) | ~room(sK3) <- (12) [resolution 357,285] 399. predi(sK3) <- (12) [subsumption resolution 397,301] 400. predc(sK3) | ~room(sK3) <- (12) [resolution 399,289] 401. ~room(sK3) <- (12) [subsumption resolution 400,303] 402. $false <- (12) [subsumption resolution 401,301] 403. ~12 [avatar contradiction clause 402] 411. ~room(sK4) | predf(sK4) <- (2) [resolution 312,359] 412. predf(sK4) <- (2) [subsumption resolution 411,360] 413. predk(sK4) | ~room(sK4) <- (2) [resolution 412,278] 414. ~room(sK4) <- (2) [subsumption resolution 413,361] 415. $false <- (2) [subsumption resolution 414,360] 416. ~2 [avatar contradiction clause 415] 418. $false <- (1, 15) [resolution 309,376] 419. ~1 | ~15 [avatar contradiction clause 418] 421. $false [avatar sat refutation 313,358,392,396,403,416,419] % SZS output end Proof for 3397124415149983896617720 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.61474
Davis, Donald are the only persons in the room. Everyone in the room is a strong person. Davis who is a patient person is not a old person, is a calm person and is a funny person. Everyone in the room is a kind person. Everyone in the room is a tall person. It is true that “everyone in the room is not a patient person only if they is not a calm person”. If someone is a calm funny person then he/she is a wise person and vice versa. Everyone anywhere is wise. Everyone in the room is a curious person only if they is not a curious person. Everyone in the room is a patient person. Davis is the richest in the room. Everyone in the room is not a humble person. Everyone in the room is a wise person. Davis is the least quiet in the room. Everyone in the room is a calm person. Not everyone in the room is a happy person if they is a brave person. Everyone anywhere is a generous person. Everyone in the room is a generous person. Everyone anywhere is a old person if they is a funny person, is not a calm person and is a happy person. Davis is the least quiet outside the room.
All patient persons are humble.
contradiction
room(davis)&room(donald)&(![X]:(room(X)=>(X='davis'|X='donald')))& (![X]:(room(X)=>(strong(X)&person(X))))& ((patient(davis)&person(davis))&(((~(old(davis)&person(davis)))&(calm(davis)&person(davis))&(funny(davis)&person(davis)))))& (![X]:(room(X)=>(kind(X)&person(X))))& (![X]:(room(X)=>(tall(X)&person(X))))& (![X]:(room(X)=>(((~(calm(X)&person(X)))<=(~(patient(X)&person(X)))))))& ((![X]:((calm(X)&funny(X)&person(X))<=>(wise(X)&person(X)))))& (![X]:(anywhere(X)=>(wise(X))))& (![X]:(room(X)=>(((~(curious(X)&person(X)))<=(curious(X)&person(X))))))& (![X]:(room(X)=>(patient(X)&person(X))))& (![X]:((room(X)&(X!=davis))=>richer(X,davis)))& (![X]:(room(X)=>(~(humble(X)&person(X)))))& (![X]:(room(X)=>(wise(X)&person(X))))& (![X]:((room(X)&(X!=davis))=>quieter(davis,X)))& (![X]:(room(X)=>(calm(X)&person(X))))& (~![X]:(room(X)=>(((brave(X)&person(X))=>(happy(X)&person(X))))))& (![X]:(anywhere(X)=>(generous(X)&person(X))))& (![X]:(room(X)=>(generous(X)&person(X))))& (![X]:(anywhere(X)=>(((((funny(X)&person(X))&(~(calm(X)&person(X)))&(happy(X)&person(X))))=>(old(X)&person(X))))))& (![X]:((~room(X)&(X!=davis))=>quieter(davis,X)))
room(davis)&room(donald)&(![X]:(room(X)=>(X='davis'|X='donald')))& ![X]:(patient(X)=>humble(X))
[ "p0", "p1", "p2", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 316450966760253943117545 % SZS output start Proof for 316450966760253943117545 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (person(X0) & strong(X0))) [input p1] 46. person(mary) & funny(mary) & person(mary) & calm(mary) & ~(person(mary) & old(mary)) & person(mary) & patient(mary) [input p2] 55. ! [X0] : (room(X0) => ~(person(X0) & humble(X0))) [input p11] 64. ! [X0] : (patient(X0) => humble(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 65. ! [X0] : (patient(X0) => humble(X0)) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary) [rectify 64] 74. ! [X0] : (room(X0) => person(X0)) [pure predicate removal 45] 146. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 147. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 146] 148. ! [X0] : (person(X0) | ~room(X0)) [ennf transformation 74] 149. person(mary) & funny(mary) & person(mary) & calm(mary) & (~person(mary) | ~old(mary)) & person(mary) & patient(mary) [ennf transformation 46] 158. ! [X0] : ((~person(X0) | ~humble(X0)) | ~room(X0)) [ennf transformation 55] 159. ! [X0] : (~person(X0) | ~humble(X0) | ~room(X0)) [flattening 158] 169. ! [X0] : (humble(X0) | ~patient(X0)) & ! [X1] : ((paul = X1 | mary = X1) | ~room(X1)) & room(paul) & room(mary) [ennf transformation 65] 170. ! [X0] : (humble(X0) | ~patient(X0)) & ! [X1] : (paul = X1 | mary = X1 | ~room(X1)) & room(paul) & room(mary) [flattening 169] 257. room(mary) [cnf transformation 147] 260. ~room(X0) | person(X0) [cnf transformation 148] 261. patient(mary) [cnf transformation 149] 281. ~person(X0) | ~humble(X0) | ~room(X0) [cnf transformation 159] 295. ~patient(X0) | humble(X0) [cnf transformation 170] 299. ~humble(X0) | ~room(X0) [subsumption resolution 281,260] 311. humble(mary) [resolution 295,261] 316. ~room(mary) [resolution 311,299] 317. $false [subsumption resolution 316,257] % SZS output end Proof for 316450966760253943117545 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.022 s % ------------------------------ % ------------------------------
0.438993
Francis, Barry are the only persons in the room. “Someone in the room is a client of Costco” if “Francis collects classic novels” and vice versa. If “Francis can play the flute” then “Francis trains for and competes in international triathlons”. If “it is not the case that “Francis neither owns a significant collection of rare gemstones and minerals nor collects classic novels”” then “Francis can play the flute”. “Francis is a client of Costco” unless “it is not the case that “Francis trains for and competes in international triathlons””. “At least one person in the room practices pilates” if “Francis either regularly contributes to tech forums and online communities or collects historical artifacts related to ancient civilizations but not both” and vice versa. If “Francis collects rare and antique scientific instruments” then “Francis who is a client of Costco collects rare and antique scientific instruments”. “Francis who trains for and competes in international triathlons is a client of Costco” if “Francis does not practice pilates”. Francis regularly contributes to tech forums and online communities. Francis is not a client of Costco. Francis neither is an avid mountain climber who has scaled several peaks nor enjoys virtual reality gaming. More than one person in the room is a client of Costco or does not collect rare and antique scientific instruments or both. Francis hosts regular game nights featuring complex strategy games.
Francis collects classic novels.
contradiction
room(francis)&room(barry)&(![X]:(room(X)=>(X='francis'|X='barry')))& ((collects_classic_novels(francis))<=>(?[X]:(room(X)&(is_a_client_of_Costco(X)))))& ((can_play_the_flute(francis))=>(trains_for_and_competes_in_international_triathlons(francis)))& ((~(~((owns_a_significant_collection_of_rare_gemstones_and_minerals(francis))|(collects_classic_novels(francis)))))=>(can_play_the_flute(francis)))& (~(~(trains_for_and_competes_in_international_triathlons(francis)))=>(is_a_client_of_Costco(francis)))& ((((regularly_contributes_to_tech_forums_and_online_communities(francis))<~>(collects_historical_artifacts_related_to_ancient_civilizations(francis))))<=>(((?[X]:(room(X)&practices_pilates(X))))))& ((collects_rare_and_antique_scientific_instruments(francis))=>((is_a_client_of_Costco(francis))&(collects_rare_and_antique_scientific_instruments(francis))))& ((does_not_practice_pilates(francis))=>((trains_for_and_competes_in_international_triathlons(francis))&(is_a_client_of_Costco(francis))))& (regularly_contributes_to_tech_forums_and_online_communities(francis))& (is_not_a_client_of_Costco(francis))& (~((is_an_avid_mountain_climber_who_has_scaled_several_peaks(francis))|(enjoys_virtual_reality_gaming(francis))))& ((?[X,Y]:(room(X)&room(Y)&(((is_a_client_of_Costco(X))|(does_not_collect_rare_and_antique_scientific_instruments(X)))&((is_a_client_of_Costco(Y))|(does_not_collect_rare_and_antique_scientific_instruments(Y))))&(X!=Y))))& (hosts_regular_game_nights_featuring_complex_strategy_games(francis))
room(francis)&room(barry)&(![X]:(room(X)=>(X='francis'|X='barry')))& collects_classic_novels(francis)
[ "p2", "p3", "p4", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 6622091278473580934200257 % SZS output start Proof for 6622091278473580934200257 46. predb(mary) => predh(mary) [input p2] 47. ~~(preda(mary) | predo(mary)) => predb(mary) [input p3] 48. predh(mary) => predi(mary) [input p4] 53. ~predi(mary) [input p9] 57. preda(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 58. (preda(mary) | predo(mary)) => predb(mary) [flattening 47] 62. preda(mary) => predb(mary) [pure predicate removal 58] 137. predh(mary) | ~predb(mary) [ennf transformation 46] 138. predb(mary) | ~preda(mary) [ennf transformation 62] 139. predi(mary) | ~predh(mary) [ennf transformation 48] 142. preda(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 57] 143. preda(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 142] 241. predh(mary) | ~predb(mary) [cnf transformation 137] 242. predb(mary) | ~preda(mary) [cnf transformation 138] 243. predi(mary) | ~predh(mary) [cnf transformation 139] 255. ~predi(mary) [cnf transformation 53] 264. preda(mary) [cnf transformation 143] 269. 2 <=> preda(mary) [avatar definition] 284. 5 <=> predb(mary) [avatar definition] 288. 6 <=> predh(mary) [avatar definition] 291. ~5 | 6 [avatar split clause 241,288,284] 292. ~2 | 5 [avatar split clause 242,284,269] 294. 7 <=> predi(mary) [avatar definition] 297. ~6 | 7 [avatar split clause 243,294,288] 335. ~7 [avatar split clause 255,294] 354. 2 [avatar split clause 264,269] 355. $false [avatar sat refutation 291,292,297,335,354] % SZS output end Proof for 6622091278473580934200257 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.229024
Amber is the only person in the room. 'Everyone in the room who does not collect luxury watches has a specialized collection of handmade artisan pottery' if 'Amber makes intricate hand-cut paper art for exhibitions'. 'No one in the room who is not a culinary enthusiast who experiments with international cuisines, collects action figures and does not enjoy origami is a culinary enthusiast who experiments with international cuisines' if 'everyone in the room can play the piano or does not host a popular podcast about emerging technologies'. Amber who enjoys kayaking and exploring remote waterways makes intricate hand-cut paper art for exhibitions. Everyone in the room can play the piano if they plays eSports competitively or has a specialized collection of handmade artisan pottery or both.
Amber collects luxury watches.
entailment
room(amber)&(![X]:(room(X)=>(X='amber')))& ((![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))|(does_not_collect_luxury_watches(X))))))<=>(~?[X]:(anywhere(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))& ((makes_intricate_hand-cut_paper_art_for_exhibitions(amber))=>(![X]:(room(X)=>(((does_not_collect_luxury_watches(X))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X)))))))& ((![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(can_play_the_piano(X))))))=>(~?[X]:(room(X)=>(((((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(collects_action_figures(X))&(does_not_enjoy_origami(X))))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))))& (![X]:(room(X)=>(((enjoys_fishing(X))<=(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& ((![X]:((has_completed_a_triathlon(X))<=>(collect_rare_sneakers(X)))))& (![X]:(room(X)=>(((builds_model_airplanes(X))<=(is_a_craft_beer_aficionado(X))))))& ((enjoys_kayaking_and_exploring_remote_waterways(amber))&(makes_intricate_hand-cut_paper_art_for_exhibitions(amber)))& (![X]:(room(X)=>(((((plays_eSports_competitively(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))))=>(can_play_the_piano(X))))))& (![X]:(room(X)=>(((~((hosts_a_popular_podcast_about_emerging_technologies(X))|(collects_classic_novels(X))))<=(can_play_the_piano(X))))))& (creates_YouTube_content(amber))& (~?[X]:(anywhere(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((enjoys_fishing(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (~((enjoys_snowboarding(amber))|(builds_model_airplanes(amber))))& ((![X]:((enjoys_fishing(X))<=>(enjoys_windsurfing(X)))))& ((![X]:((((does_not_enjoy_fishing(X))&(has_a_specialized_collection_of_handmade_artisan_pottery(X))&(does_not_have_completed_a_triathlon(X))))<=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))& ((![X]:((does_not_host_a_popular_podcast_about_emerging_technologies(X))<=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))& ((![X]:((((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(collects_classic_novels(X))))=>(has_completed_a_triathlon(X)))))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(is_a_craft_beer_aficionado(X))))))& (![X]:(room(X)=>(((does_not_play_eSports_competitively(X))|(enjoys_origami(X))))))& (![X]:(room(X)=>(((collects_classic_novels(X))=>(collects_luxury_watches(X))))))& ((![X]:((enjoys_virtual_reality_gaming(X))<=>(collects_action_figures(X)))))
room(amber)&(![X]:(room(X)=>(X='amber')))& collects_luxury_watches(amber)
[ "b42", "p0", "p2", "p3", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 7145329489371897558896120 % SZS output start Proof for 7145329489371897558896120 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 46. predt(mary) => ! [X0] : (room(X0) => (~preds(X0) => predf(X0))) [input p2] 47. ! [X0] : (room(X0) => (predy(X0) | ~prede(X0))) => ~? [X0] : (room(X0) => ((~predh(X0) & predw(X0) & ~predb(X0)) => predb(X0))) [input p3] 51. predt(mary) & predo(mary) [input p7] 52. ! [X0] : (room(X0) => ((predf(X0) | predr(X0)) => predy(X0))) [input p8] 66. ~(preds(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 68. ! [X0] : (room(X0) => (predy(X0) | ~prede(X0))) => ~? [X1] : (room(X1) => ((~predh(X1) & predw(X1) & ~predb(X1)) => predb(X1))) [rectify 47] 75. ! [X0] : (room(X0) => (predy(X0) | ~prede(X0))) => ~? [X1] : (room(X1) => ~(~predh(X1) & predw(X1))) [pure predicate removal 68] 76. ! [X0] : (room(X0) => (predy(X0) | ~prede(X0))) => ~? [X1] : (room(X1) => ~~predh(X1)) [pure predicate removal 75] 84. ! [X0] : (room(X0) => (predf(X0) => predy(X0))) [pure predicate removal 52] 86. ! [X0] : (room(X0) => (predy(X0) | ~prede(X0))) => ~? [X1] : ~room(X1) [pure predicate removal 76] 87. predt(mary) [pure predicate removal 51] 162. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 165. ! [X0] : ((predf(X0) | preds(X0)) | ~room(X0)) | ~predt(mary) [ennf transformation 46] 166. ! [X0] : (predf(X0) | preds(X0) | ~room(X0)) | ~predt(mary) [flattening 165] 167. ! [X1] : room(X1) | ? [X0] : ((~predy(X0) & prede(X0)) & room(X0)) [ennf transformation 86] 168. ! [X1] : room(X1) | ? [X0] : (~predy(X0) & prede(X0) & room(X0)) [flattening 167] 169. ! [X0] : ((predy(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 84] 170. ! [X0] : (predy(X0) | ~predf(X0) | ~room(X0)) [flattening 169] 175. ~preds(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 66] 187. ! [X0] : room(X0) | ? [X1] : (~predy(X1) & prede(X1) & room(X1)) [rectify 168] 188. ? [X1] : (~predy(X1) & prede(X1) & room(X1)) => (~predy(sK3) & prede(sK3) & room(sK3)) [choice axiom] 189. ! [X0] : room(X0) | (~predy(sK3) & prede(sK3) & room(sK3)) [skolemisation 187,188] 191. ? [X0] : (mary != X0 & room(X0)) => (mary != sK4 & room(sK4)) [choice axiom] 192. ~preds(mary) | (mary != sK4 & room(sK4)) | ~room(mary) [skolemisation 175,191] 238. mary != paul [cnf transformation 43] 274. room(mary) [cnf transformation 162] 275. ~room(X0) | mary = X0 [cnf transformation 162] 284. predf(X0) | preds(X0) | ~room(X0) | ~predt(mary) [cnf transformation 166] 285. room(X0) | room(sK3) [cnf transformation 189] 287. room(X0) | ~predy(sK3) [cnf transformation 189] 288. predt(mary) [cnf transformation 87] 289. ~predf(X0) | predy(X0) | ~room(X0) [cnf transformation 170] 296. ~preds(mary) | room(sK4) | ~room(mary) [cnf transformation 192] 297. ~preds(mary) | mary != sK4 | ~room(mary) [cnf transformation 192] 340. 10 <=> predt(mary) [avatar definition] 344. 11 <=> ! [X0] : (predf(X0) | ~room(X0) | preds(X0)) [avatar definition] 345. ~room(X0) | predf(X0) | preds(X0) <- (11) [avatar component clause 344] 346. ~10 | 11 [avatar split clause 284,344,340] 348. 12 <=> predy(sK3) [avatar definition] 350. ~predy(sK3) <- (~12) [avatar component clause 348] 352. 13 <=> ! [X0] : room(X0) [avatar definition] 353. room(X0) <- (13) [avatar component clause 352] 354. ~12 | 13 [avatar split clause 287,352,348] 361. 15 <=> room(sK3) [avatar definition] 363. room(sK3) <- (15) [avatar component clause 361] 364. 15 | 13 [avatar split clause 285,352,361] 365. 10 [avatar split clause 288,340] 368. ~preds(mary) | mary != sK4 [subsumption resolution 297,274] 370. 16 <=> mary = sK4 [avatar definition] 372. mary != sK4 <- (~16) [avatar component clause 370] 374. 17 <=> preds(mary) [avatar definition] 376. ~preds(mary) <- (~17) [avatar component clause 374] 377. ~16 | ~17 [avatar split clause 368,374,370] 378. ~preds(mary) | room(sK4) [subsumption resolution 296,274] 380. 18 <=> room(sK4) [avatar definition] 382. room(sK4) <- (18) [avatar component clause 380] 383. 18 | ~17 [avatar split clause 378,374,380] 388. mary = X0 <- (13) [resolution 275,353] 410. mary != mary <- (13) [superposition 238,388] 426. $false <- (13) [trivial inequality removal 410] 427. ~13 [avatar contradiction clause 426] 428. mary = sK3 <- (15) [resolution 363,275] 429. ~predy(mary) <- (~12, 15) [backward demodulation 350,428] 432. predf(mary) | preds(mary) <- (11) [resolution 345,274] 433. predf(mary) <- (11, ~17) [subsumption resolution 432,376] 434. predy(mary) | ~room(mary) <- (11, ~17) [resolution 433,289] 435. ~room(mary) <- (11, ~12, 15, ~17) [subsumption resolution 434,429] 436. $false <- (11, ~12, 15, ~17) [subsumption resolution 435,274] 437. ~11 | 12 | ~15 | 17 [avatar contradiction clause 436] 445. mary = sK4 <- (18) [resolution 382,275] 455. $false <- (~16, 18) [subsumption resolution 445,372] 456. 16 | ~18 [avatar contradiction clause 455] 457. $false [avatar sat refutation 346,354,364,365,377,383,427,437,456] % SZS output end Proof for 7145329489371897558896120 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.032 s % ------------------------------ % ------------------------------
0
Gloria, Dianne, William, Paul are the only persons in the room. Everyone in the room who either is a client of Costco or is a wine connoisseur with a private cellar of vintage wines but not both enjoys cross-country skiing. Not everyone in the room writes poetry if they enjoys cross-country skiing. Gloria collects foreign coins. Everyone in the room is a client of Costco, is a cybersecurity expert or has completed a triathlon if they collects foreign coins. Everyone in the room collects foreign coins if they is a wine connoisseur with a private cellar of vintage wines. Everyone in the room who collects foreign coins is a cybersecurity expert. Everyone in the room who is a cybersecurity expert enjoys cross-country skiing. Everyone in the room streams on Twitch if they enjoys cross-country skiing. William is a client of Costco.
William streams on Twitch.
entailment
room(gloria)&room(dianne)&room(william)&room(paul)&(![X]:(room(X)=>(X='gloria'|X='dianne'|X='william'|X='paul')))& (![X]:(room(X)=>(((((is_a_client_of_Costco(X))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))=>(enjoys_cross-country_skiing(X))))))& (~![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(writes_poetry(X))))))& (collects_foreign_coins(gloria))& (![X]:(room(X)=>(((collects_foreign_coins(X))=>(((is_a_client_of_Costco(X))|(is_a_cybersecurity_expert(X))|(has_completed_a_triathlon(X))))))))& (((enjoys_bird_watching(gloria))|(writes_poetry(gloria))))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(collects_foreign_coins(X))))))& (![X]:(room(X)=>(((collects_foreign_coins(X))=>(is_a_cybersecurity_expert(X))))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(enjoys_cross-country_skiing(X))))))& (![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(streams_on_Twitch(X))))))& (~![X]:(room(X)=>(((streams_on_Twitch(X))=>(does_not_have_a_tattoo(X))))))& (![X]:(room(X)=>(((cannot_play_the_flute(X))=>(creates_YouTube_content(X))))))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(gloria))& (![X]:(~room(X)=>(((reads_mystery_novels(X))<=>(has_completed_a_triathlon(X))))))& ((![X]:((is_a_cybersecurity_expert(X))=>(drives_a_hybrid_car(X)))))& ((?[X,Y]:(room(X)&room(Y)&(collects_foreign_coins(X)&collects_foreign_coins(Y))&(X!=Y))))& (![X]:(room(X)=>(((does_not_write_poetry(X))=>(knows_morse_code(X))))))& (![X]:(~room(X)=>(((knows_morse_code(X))=>(drives_a_hybrid_car(X))))))& (~![X]:(room(X)=>(((has_a_tattoo(X))=>(is_a_cybersecurity_expert(X))))))& (![X]:(~room(X)=>(((is_a_cybersecurity_expert(X))=>(collects_classic_novels(X))))))& (is_a_client_of_Costco(william))& (![X]:(room(X)=>(((writes_poetry(X))=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (reads_mystery_novels(william))& (enjoys_bird_watching(gloria))
room(gloria)&room(dianne)&room(william)&room(paul)&(![X]:(room(X)=>(X='gloria'|X='dianne'|X='william'|X='paul')))& streams_on_Twitch(william)
[ "p0", "p1", "p6", "p7", "p8", "p9", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 4209567384866329862964282 % SZS output start Proof for 4209567384866329862964282 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => ((prede(X0) <~> preda(X0)) => predn(X0))) [input p1] 50. ! [X0] : (room(X0) => (preda(X0) => predu(X0))) [input p6] 51. ! [X0] : (room(X0) => (predu(X0) => predo(X0))) [input p7] 52. ! [X0] : (room(X0) => (predo(X0) => predn(X0))) [input p8] 53. ! [X0] : (room(X0) => (predn(X0) => predm(X0))) [input p9] 64. prede(fred) [input p20] 68. ~(predm(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 152. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 153. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 152] 154. ! [X0] : ((predn(X0) | (prede(X0) <=> preda(X0))) | ~room(X0)) [ennf transformation 45] 155. ! [X0] : (predn(X0) | (prede(X0) <=> preda(X0)) | ~room(X0)) [flattening 154] 159. ! [X0] : ((predu(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 50] 160. ! [X0] : (predu(X0) | ~preda(X0) | ~room(X0)) [flattening 159] 161. ! [X0] : ((predo(X0) | ~predu(X0)) | ~room(X0)) [ennf transformation 51] 162. ! [X0] : (predo(X0) | ~predu(X0) | ~room(X0)) [flattening 161] 163. ! [X0] : ((predn(X0) | ~predo(X0)) | ~room(X0)) [ennf transformation 52] 164. ! [X0] : (predn(X0) | ~predo(X0) | ~room(X0)) [flattening 163] 165. ! [X0] : ((predm(X0) | ~predn(X0)) | ~room(X0)) [ennf transformation 53] 166. ! [X0] : (predm(X0) | ~predn(X0) | ~room(X0)) [flattening 165] 170. ~predm(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 68] 171. ~predm(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 170] 173. ! [X0] : (predn(X0) | ((prede(X0) | ~preda(X0)) & (preda(X0) | ~prede(X0))) | ~room(X0)) [nnf transformation 155] 183. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 184. ~predm(fred) | (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 171,183] 265. room(mary) [cnf transformation 153] 266. room(paul) [cnf transformation 153] 267. room(fred) [cnf transformation 153] 268. room(alice) [cnf transformation 153] 269. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 153] 270. ~prede(X0) | preda(X0) | predn(X0) | ~room(X0) [cnf transformation 173] 276. ~preda(X0) | predu(X0) | ~room(X0) [cnf transformation 160] 277. ~predu(X0) | predo(X0) | ~room(X0) [cnf transformation 162] 278. ~predo(X0) | predn(X0) | ~room(X0) [cnf transformation 164] 279. ~predn(X0) | predm(X0) | ~room(X0) [cnf transformation 166] 292. prede(fred) [cnf transformation 64] 294. ~predm(fred) | room(sK5) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 295. ~predm(fred) | mary != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 296. ~predm(fred) | paul != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 297. ~predm(fred) | fred != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 298. ~predm(fred) | alice != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 299. ~predm(fred) | alice != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 298,268] 300. ~predm(fred) | alice != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 299,267] 301. ~predm(fred) | alice != sK5 | ~room(mary) [subsumption resolution 300,266] 302. ~predm(fred) | alice != sK5 [subsumption resolution 301,265] 304. 1 <=> alice = sK5 [avatar definition] 308. 2 <=> predm(fred) [avatar definition] 311. ~1 | ~2 [avatar split clause 302,308,304] 312. ~predm(fred) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 297,268] 313. ~predm(fred) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 312,267] 314. ~predm(fred) | fred != sK5 | ~room(mary) [subsumption resolution 313,266] 315. ~predm(fred) | fred != sK5 [subsumption resolution 314,265] 317. 3 <=> fred = sK5 [avatar definition] 319. fred != sK5 <- (~3) [avatar component clause 317] 320. ~3 | ~2 [avatar split clause 315,308,317] 321. ~predm(fred) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 296,268] 322. ~predm(fred) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 321,267] 323. ~predm(fred) | paul != sK5 | ~room(mary) [subsumption resolution 322,266] 324. ~predm(fred) | paul != sK5 [subsumption resolution 323,265] 326. 4 <=> paul = sK5 [avatar definition] 328. paul != sK5 <- (~4) [avatar component clause 326] 329. ~4 | ~2 [avatar split clause 324,308,326] 330. ~predm(fred) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 295,268] 331. ~predm(fred) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 330,267] 332. ~predm(fred) | mary != sK5 | ~room(mary) [subsumption resolution 331,266] 333. ~predm(fred) | mary != sK5 [subsumption resolution 332,265] 335. 5 <=> mary = sK5 [avatar definition] 337. mary != sK5 <- (~5) [avatar component clause 335] 338. ~5 | ~2 [avatar split clause 333,308,335] 339. ~predm(fred) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 294,268] 340. ~predm(fred) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 339,267] 341. ~predm(fred) | room(sK5) | ~room(mary) [subsumption resolution 340,266] 342. ~predm(fred) | room(sK5) [subsumption resolution 341,265] 344. 6 <=> room(sK5) [avatar definition] 346. room(sK5) <- (6) [avatar component clause 344] 347. 6 | ~2 [avatar split clause 342,308,344] 366. preda(fred) | predn(fred) | ~room(fred) [resolution 270,292] 367. preda(fred) | predn(fred) [subsumption resolution 366,267] 369. 7 <=> predn(fred) [avatar definition] 370. ~predn(fred) <- (~7) [avatar component clause 369] 371. predn(fred) <- (7) [avatar component clause 369] 373. 8 <=> preda(fred) [avatar definition] 375. preda(fred) <- (8) [avatar component clause 373] 376. 7 | 8 [avatar split clause 367,373,369] 377. predm(fred) | ~room(fred) <- (7) [resolution 371,279] 381. predm(fred) <- (7) [subsumption resolution 377,267] 382. 2 | ~7 [avatar split clause 381,369,308] 436. fred = sK5 | paul = sK5 | mary = sK5 | alice = sK5 <- (6) [resolution 269,346] 522. paul = sK5 | mary = sK5 | alice = sK5 <- (~3, 6) [subsumption resolution 436,319] 523. mary = sK5 | alice = sK5 <- (~3, ~4, 6) [subsumption resolution 522,328] 524. alice = sK5 <- (~3, ~4, ~5, 6) [subsumption resolution 523,337] 527. 1 | 3 | 4 | 5 | ~6 [avatar split clause 524,344,335,326,317,304] 579. predu(fred) | ~room(fred) <- (8) [resolution 375,276] 580. predu(fred) <- (8) [subsumption resolution 579,267] 592. predo(fred) | ~room(fred) <- (8) [resolution 580,277] 593. predo(fred) <- (8) [subsumption resolution 592,267] 598. predn(fred) | ~room(fred) <- (8) [resolution 593,278] 599. ~room(fred) <- (~7, 8) [subsumption resolution 598,370] 600. $false <- (~7, 8) [subsumption resolution 599,267] 601. 7 | ~8 [avatar contradiction clause 600] 602. $false [avatar sat refutation 311,320,329,338,347,376,382,527,601] % SZS output end Proof for 4209567384866329862964282 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.124067
Blanca, Maris are the only persons in the room. Everyone in the room bakes bread at home if they is a tea enthusiast. Blanca is an enthusiastic bird watcher who travels for rare sightings. Everyone in the room does enjoy mountain biking. If someone neither does not enjoy coding in Python nor practices tai chi then he/she hosts regular game nights featuring complex strategy games. Everyone in the room does not have lived in exactly three countries if they maintains a large, organic vegetable garden year-round. Everyone in the room who does not have lived in exactly three countries creates bespoke furniture pieces from reclaimed wood. If someone neither bakes bread at home nor is a tea enthusiast then he/she is allergic to anything. Someone outside the room enjoys stand-up paddleboarding. If someone enjoys coding in Python then he/she does not create YouTube content. Everyone in the room who is a professional photographer specializing in portrait photography creates augmented reality experiences for mobile applications. Blanca creates YouTube content. Everyone in the room does not create YouTube content or does enjoy mountain biking. Blanca has lived in exactly three countries. Maris is a tea enthusiast. Maris is allergic to anything. Everyone outside the room does not create bespoke furniture pieces from reclaimed wood or has a curated collection of mid-century modern furniture. Maris neither practices and performs acrobatic dance routines nor enjoys stand-up paddleboarding. Everyone in the room collects rare minerals if they enjoys coding in Python. Everyone in the room practices tai chi. Someone in the room is a tea enthusiast, enjoys stand-up paddleboarding and plays the violin. Only one person outside the room bakes bread at home. If someone enjoys coding in Python, is a professional photographer specializing in portrait photography and has lived in exactly three countries then he/she plays the violin. If someone does not have lived in exactly three countries then he/she enjoys coding in Python. Maris is a craft beer aficionado.
Maris either does not enjoy virtual reality gaming or does not create bespoke furniture pieces from reclaimed wood but not both.
neutral
room(blanca)&room(maris)&(![X]:(room(X)=>(X='blanca'|X='maris')))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))=>(bakes_bread_at_home(X))))))& (is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(blanca))& (![X]:(room(X)=>(does_enjoy_mountain_biking(X))))& ((![X]:((~((does_not_enjoy_coding_in_Python(X))|(practices_tai_chi(X))))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(does_not_have_lived_in_exactly_three_countries(X))))))& (![X]:(room(X)=>(((does_not_have_lived_in_exactly_three_countries(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& ((![X]:((~((bakes_bread_at_home(X))|(is_a_tea_enthusiast(X))))=>(is_allergic_to_anything(X)))))& (?[X]:(~room(X)&(enjoys_stand-up_paddleboarding(X))))& ((![X]:((enjoys_coding_in_Python(X))=>(does_not_create_YouTube_content(X)))))& (![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (creates_YouTube_content(blanca))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_create_YouTube_content(X))))))& (has_lived_in_exactly_three_countries(blanca))& (is_a_tea_enthusiast(maris))& (is_allergic_to_anything(maris))& (![X]:(~room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (~((practices_and_performs_acrobatic_dance_routines(maris))|(enjoys_stand-up_paddleboarding(maris))))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(collects_rare_minerals(X))))))& (![X]:(room(X)=>(practices_tai_chi(X))))& (?[X]:(room(X)&(((is_a_tea_enthusiast(X))&(enjoys_stand-up_paddleboarding(X))&(plays_the_violin(X))))))& (((?[X]:(~room(X)&bakes_bread_at_home(X)))&(![X,Y]:((~room(X)&~room(Y)&(bakes_bread_at_home(X))&(bakes_bread_at_home(Y)))=>(X=Y)))))& ((![X]:((((enjoys_coding_in_Python(X))&(is_a_professional_photographer_specializing_in_portrait_photography(X))&(has_lived_in_exactly_three_countries(X))))=>(plays_the_violin(X)))))& ((![X]:((does_not_have_lived_in_exactly_three_countries(X))=>(enjoys_coding_in_Python(X)))))& (is_a_craft_beer_aficionado(maris))& (![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(is_a_craft_beer_aficionado(X))))))& (does_not_practice_urban_gardening(blanca))& (![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))|(enjoys_virtual_reality_gaming(X))))))
room(blanca)&room(maris)&(![X]:(room(X)=>(X='blanca'|X='maris')))& ((does_not_enjoy_virtual_reality_gaming(maris))<~>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(maris)))
[]
null
0.265308
Patricia, Ashley, Keila are the only persons in the room. 'Everyone in the room collects vintage stamps if they uses an ios phone' if 'everyone in the room collects vintage stamps'. 'Keila is not a skilled home brewer experimenting with craft beer recipes or maintains a large, organic vegetable garden year-round or both' only if 'Keila neither practices urban gardening nor travels domestically frequently'. 'At least one person in the room collects vintage vinyl records or practices urban gardening or both' unless 'everyone in the room owns a high-end gaming PC with custom-built components or does not host regular workshops on creative writing'. 'Everyone in the room either is a skilled home brewer experimenting with craft beer recipes or is not a coffee connoisseur but not both if they does not use contact lenses' unless 'someone anywhere uses an ios phone'. If 'not everyone in the room is not a coffee connoisseur or enjoys deep-sea diving and exploring underwater caves' then 'Ashley who is a coffee connoisseur, practices urban gardening and hosts regular workshops on creative writing does not practice calligraphy, collects comic books and uses an ios phone'. If 'not everyone in the room owns a high-end gaming PC with custom-built components' then 'Keila uses an ios phone' otherwise 'Patricia enjoys deep-sea diving and exploring underwater caves'. If 'Ashley uses contact lenses' then 'only one person in the room writes in-depth travel guides for off-the-beaten-path destinations'. If 'Keila collects vintage vinyl records' then 'everyone in the room practices urban gardening if they collects vintage stamps'. It is true that 'Keila maintains a large, organic vegetable garden year-round and does not own a high-end gaming PC with custom-built components'. Everyone in the room collects comic books if they does not write in-depth travel guides for off-the-beaten-path destinations. If someone collects comic books then he/she owns a high-end gaming PC with custom-built components and vice versa.
Keila writes in-depth travel guides for off-the-beaten-path destinations.
entailment
room(patricia)&room(ashley)&room(keila)&(![X]:(room(X)=>(X='patricia'|X='ashley'|X='keila')))& ((![X]:(room(X)=>(collects_vintage_stamps(X))))=>(![X]:(room(X)=>(((uses_an_ios_phone(X))=>(collects_vintage_stamps(X)))))))& ((((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(keila))|(maintains_a_large,_organic_vegetable_garden_year-round(keila))))=>(~((practices_urban_gardening(keila))|(travels_domestically_frequently(keila)))))& (~(![X]:(room(X)=>(((does_not_host_regular_workshops_on_creative_writing(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))=>(((?[X]:(room(X)&((collects_vintage_vinyl_records(X))|(practices_urban_gardening(X))))))))& (~(?[X]:(anywhere(X)&(uses_an_ios_phone(X))))=>(![X]:(room(X)=>(((does_not_use_contact_lenses(X))=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))<~>(is_not_a_coffee_connoisseur(X)))))))))& ((~![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(is_not_a_coffee_connoisseur(X))))))=>((((is_a_coffee_connoisseur(ashley))&(practices_urban_gardening(ashley))&(hosts_regular_workshops_on_creative_writing(ashley))))&(((does_not_practice_calligraphy(ashley))&(collects_comic_books(ashley))&(uses_an_ios_phone(ashley))))))& (((~![X]:(room(X)=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))=>(uses_an_ios_phone(keila)))&((~(~![X]:(room(X)=>(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(patricia))))& ((uses_contact_lenses(ashley))=>(((?[X]:(room(X)&writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))&(![X,Y]:((room(X)&room(Y)&(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(Y)))=>(X=Y))))))& ((collects_vintage_vinyl_records(keila))=>(![X]:(room(X)=>(((collects_vintage_stamps(X))=>(practices_urban_gardening(X)))))))& ((![X]:(room(X)=>(((uses_an_ios_phone(X))|(does_not_travel_domestically_frequently(X))))))<=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(keila)))& (![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))=>(((uses_contact_lenses(X))|(does_not_practice_urban_gardening(X))))))))& (((maintains_a_large,_organic_vegetable_garden_year-round(keila))&(does_not_own_a_high-end_gaming_PC_with_custom-built_components(keila))))& (~![X]:(room(X)=>(((collects_vintage_stamps(X))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))& (![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(collects_comic_books(X))))))& (![X]:(room(X)=>(((collects_comic_books(X))=>(does_not_collect_vintage_vinyl_records(X))))))& ((collects_vintage_stamps(patricia))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(patricia)))& (~?[X]:(anywhere(X)=>(((does_not_travel_domestically_frequently(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(((~((collects_comic_books(X))|(collects_vintage_stamps(X))))=>(collects_vintage_vinyl_records(X))))))& ((![X]:((collects_comic_books(X))<=>(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))& (![X]:(room(X)=>(((practices_calligraphy(X))=>(((collects_vintage_stamps(X))&(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))))& (?[X]:(room(X)&(does_not_practice_urban_gardening(X))))& (~?[X]:(anywhere(X)=>(travels_domestically_frequently(X))))
room(patricia)&room(ashley)&room(keila)&(![X]:(room(X)=>(X='patricia'|X='ashley'|X='keila')))& writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(keila)
[ "p0", "p11", "p13", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 8302226918118463085165854 % SZS output start Proof for 8302226918118463085165854 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 55. ~predb(fred) & predn(fred) [input p11] 57. ! [X0] : (room(X0) => (~predh(X0) => predi(X0))) [input p13] 62. ! [X0] : (predi(X0) <=> predb(X0)) [input p18] 66. ~(predh(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 150. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 151. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 150] 172. ! [X0] : ((predi(X0) | predh(X0)) | ~room(X0)) [ennf transformation 57] 173. ! [X0] : (predi(X0) | predh(X0) | ~room(X0)) [flattening 172] 180. ~predh(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 66] 181. ~predh(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 180] 203. ! [X0] : ((predi(X0) | ~predb(X0)) & (predb(X0) | ~predi(X0))) [nnf transformation 62] 206. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK8 & paul != sK8 & mary != sK8 & room(sK8)) [choice axiom] 207. ~predh(fred) | (fred != sK8 & paul != sK8 & mary != sK8 & room(sK8)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 181,206] 288. room(mary) [cnf transformation 151] 289. room(paul) [cnf transformation 151] 290. room(fred) [cnf transformation 151] 291. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 151] 320. ~predb(fred) [cnf transformation 55] 324. ~room(X0) | predh(X0) | predi(X0) [cnf transformation 173] 331. ~predi(X0) | predb(X0) [cnf transformation 203] 336. ~predh(fred) | room(sK8) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 207] 337. ~predh(fred) | mary != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 207] 338. ~predh(fred) | paul != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 207] 339. ~predh(fred) | fred != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 207] 479. 32 <=> predb(fred) [avatar definition] 480. ~predb(fred) <- (~32) [avatar component clause 479] 501. ~32 [avatar split clause 320,479] 503. ~predh(fred) | fred != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 339,290] 504. ~predh(fred) | fred != sK8 | ~room(mary) [subsumption resolution 503,289] 505. ~predh(fred) | fred != sK8 [subsumption resolution 504,288] 507. 37 <=> fred = sK8 [avatar definition] 509. fred != sK8 <- (~37) [avatar component clause 507] 511. 38 <=> predh(fred) [avatar definition] 513. ~predh(fred) <- (~38) [avatar component clause 511] 514. ~37 | ~38 [avatar split clause 505,511,507] 515. ~predh(fred) | paul != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 338,290] 516. ~predh(fred) | paul != sK8 | ~room(mary) [subsumption resolution 515,289] 517. ~predh(fred) | paul != sK8 [subsumption resolution 516,288] 519. 39 <=> paul = sK8 [avatar definition] 521. paul != sK8 <- (~39) [avatar component clause 519] 522. ~39 | ~38 [avatar split clause 517,511,519] 523. ~predh(fred) | mary != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 337,290] 524. ~predh(fred) | mary != sK8 | ~room(mary) [subsumption resolution 523,289] 525. ~predh(fred) | mary != sK8 [subsumption resolution 524,288] 527. 40 <=> mary = sK8 [avatar definition] 529. mary != sK8 <- (~40) [avatar component clause 527] 530. ~40 | ~38 [avatar split clause 525,511,527] 531. ~predh(fred) | room(sK8) | ~room(paul) | ~room(mary) [subsumption resolution 336,290] 532. ~predh(fred) | room(sK8) | ~room(mary) [subsumption resolution 531,289] 533. ~predh(fred) | room(sK8) [subsumption resolution 532,288] 535. 41 <=> room(sK8) [avatar definition] 537. room(sK8) <- (41) [avatar component clause 535] 538. 41 | ~38 [avatar split clause 533,511,535] 554. predh(fred) | predi(fred) [resolution 324,290] 572. predi(fred) <- (~38) [subsumption resolution 554,513] 607. predb(fred) <- (~38) [resolution 572,331] 608. $false <- (~32, ~38) [subsumption resolution 607,480] 609. 32 | 38 [avatar contradiction clause 608] 721. paul = sK8 | mary = sK8 | fred = sK8 <- (41) [resolution 291,537] 761. mary = sK8 | fred = sK8 <- (~39, 41) [subsumption resolution 721,521] 762. fred = sK8 <- (~39, ~40, 41) [subsumption resolution 761,529] 763. $false <- (~37, ~39, ~40, 41) [subsumption resolution 762,509] 764. 37 | 39 | 40 | ~41 [avatar contradiction clause 763] 765. $false [avatar sat refutation 501,514,522,530,538,609,764] % SZS output end Proof for 8302226918118463085165854 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.024 s % ------------------------------ % ------------------------------
0.01093
William, Ann, Gloria, Christina, Jared are the only persons in the room. If “everyone in the room does not collect antique jewelry or is not tall” then “not everyone in the room does not enjoy landscape photography or does not collect antique jewelry” otherwise “all curious persons are wise”. “William is a client of Regina” unless “not everyone in the room is creative or does not watche fantasy movies”. William is not funny, not generous, not happy. William does not collect modern art. No quiet person is wise. Everyone in the room does not create bespoke furniture pieces from reclaimed wood or is tall. Everyone in the room is not a strong tall european if they collects antique jewelry and vice versa. Christina is not tall. No one anywhere is not not not not calm only if they is not humble, not generous, not quiet, not calm, not creative. Jared does not drive a hybrid car. Christina does not host a popular podcast about emerging technologies. Gloria is not a happy humble patient calm tall tourist. Gloria is not a wine connoisseur. All tall persons are humble. Everyone in the room does not travel domestically frequently or does not mentor a youth basketball team on weekends. Everyone in the room is not a calm brave european or does not enjoy landscape photography or both if they neither does not enjoy windsurfing nor is a member of a local theater group specializing in improv and vice versa. No creative person is kind. Gloria does not host a popular podcast about emerging technologies. Everyone outside the room does not play video games or does not host a popular podcast about emerging technologies.
William is kind.
contradiction
room(william)&room(ann)&room(gloria)&room(christina)&room(jared)&(![X]:(room(X)=>(X='william'|X='ann'|X='gloria'|X='christina'|X='jared')))& (((![X]:(room(X)=>(((~tall(X))|(does_not_collect_antique_jewelry(X))))))=>(~![X]:(room(X)=>(((does_not_collect_antique_jewelry(X))|(does_not_enjoy_landscape_photography(X)))))))&((~(![X]:(room(X)=>(((~tall(X))|(does_not_collect_antique_jewelry(X)))))))=>(![X]:(curious(X)=>wise(X)))))& (~(~![X]:(room(X)=>(((does_not_watche_fantasy_movies(X))|(creative(X))))))=>(client(regina,william)))& (~funny(william)&~generous(william)&~happy(william))& (does_not_collect_modern_art(william))& (~?[X]:(quiet(X)=>wise(X)))& (![X]:(room(X)=>(((tall(X))|(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((~(strong(X)&tall(X)&european(X)))<=>(collects_antique_jewelry(X))))))& (~tall(christina))& (~?[X]:(anywhere(X)=>(((~humble(X)&~generous(X)&~quiet(X)&~calm(X)&~creative(X))<=(~~~~calm(X))))))& (does_not_drive_a_hybrid_car(jared))& (does_not_host_a_popular_podcast_about_emerging_technologies(christina))& (~(happy(gloria)&humble(gloria)&patient(gloria)&calm(gloria)&tall(gloria)&tourist(gloria)))& (is_not_a_wine_connoisseur(gloria))& (![X]:(tall(X)=>humble(X)))& (![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))|(does_not_travel_domestically_frequently(X))))))& (![X]:(room(X)=>(((((~(calm(X)&brave(X)&european(X)))|(does_not_enjoy_landscape_photography(X))))<=>(~((does_not_enjoy_windsurfing(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))))& (~?[X]:(creative(X)=>kind(X)))& (does_not_host_a_popular_podcast_about_emerging_technologies(gloria))& (![X]:(~room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(does_not_play_video_games(X))))))
room(william)&room(ann)&room(gloria)&room(christina)&room(jared)&(![X]:(room(X)=>(X='william'|X='ann'|X='gloria'|X='christina'|X='jared')))& kind(william)
[ "p17", "hypothesis" ]
% SZS status Unsatisfiable for 5525291829024430554932956 % SZS output start Proof for 5525291829024430554932956 61. ~? [X0] : (creative(X0) => kind(X0)) [input p17] 64. kind(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 82. ~? [X0] : kind(X0) [pure predicate removal 61] 167. ! [X0] : ~kind(X0) [ennf transformation 82] 168. kind(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 169. kind(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 168] 295. ~kind(X0) [cnf transformation 167] 302. kind(mary) [cnf transformation 169] 338. $false [subsumption resolution 302,295] % SZS output end Proof for 5525291829024430554932956 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.292234
There is a room. If not everyone anywhere enjoys virtual reality gaming or does not enjoy virtual reality gaming then more than one person in the room either is not a kind person or enjoys virtual reality gaming but not both. If everyone anywhere enjoys virtual reality gaming or does not enjoy virtual reality gaming then everyone in the room who enjoys virtual reality gaming is kind. Everyone in the room who enjoys virtual reality gaming is not kind. Everyone in the room enjoys virtual reality gaming and is a kind wise creative person if they is wise. If someone is a wise person then he/she does not enjoy virtual reality gaming and vice versa. Everyone in the room enjoys virtual reality gaming if they is not a creative kind wise person, is creative and enjoys virtual reality gaming. Everyone in the room neither is a kind person nor is a creative person. Someone anywhere is a kind creative person.
Everyone in the room enjoys virtual reality gaming.
entailment
(there_is_a_room)& ((~![X]:(anywhere(X)=>(((does_not_enjoy_virtual_reality_gaming(X))|(enjoys_virtual_reality_gaming(X))))))=>((?[X,Y]:(room(X)&room(Y)&(((~(kind(X)&person(X)))<~>(enjoys_virtual_reality_gaming(X)))&((~(kind(Y)&person(Y)))<~>(enjoys_virtual_reality_gaming(Y))))&(X!=Y)))))& ((![X]:(anywhere(X)=>(((does_not_enjoy_virtual_reality_gaming(X))|(enjoys_virtual_reality_gaming(X))))))=>(![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(kind(X)))))))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(~kind(X))))))& (![X]:(room(X)=>(((wise(X))=>(((enjoys_virtual_reality_gaming(X))&(kind(X)&wise(X)&creative(X)&person(X))))))))& ((![X]:((wise(X)&person(X))<=>(does_not_enjoy_virtual_reality_gaming(X)))))& (![X]:(room(X)=>(((((~(creative(X)&kind(X)&wise(X)&person(X)))&(creative(X))&(enjoys_virtual_reality_gaming(X))))=>(enjoys_virtual_reality_gaming(X))))))& (![X]:(room(X)=>(~((kind(X)&person(X))|(creative(X)&person(X))))))& (?[X]:(anywhere(X)&(kind(X)&creative(X)&person(X))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_virtual_reality_gaming(X)))
[ "p0", "p2", "p3", "p4", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 6944999828025194631206368 % SZS output start Proof for 6944999828025194631206368 44. there_is_a_room [input p0] 46. ! [X0] : (anywhere(X0) => (predc(X0) | ~predc(X0))) => ! [X0] : (room(X0) => (predc(X0) => kind(X0))) [input p2] 47. ! [X0] : (room(X0) => (predc(X0) => ~kind(X0))) [input p3] 48. ! [X0] : (room(X0) => (wise(X0) => (person(X0) & creative(X0) & wise(X0) & kind(X0) & predc(X0)))) [input p4] 49. ! [X0] : ((person(X0) & wise(X0)) <=> ~predc(X0)) [input p5] 53. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 55. ! [X0] : (anywhere(X0) => (predc(X0) | ~predc(X0))) => ! [X1] : (room(X1) => (predc(X1) => kind(X1))) [rectify 46] 129. ! [X1] : ((kind(X1) | ~predc(X1)) | ~room(X1)) | ? [X0] : ((~predc(X0) & predc(X0)) & anywhere(X0)) [ennf transformation 55] 130. ! [X1] : (kind(X1) | ~predc(X1) | ~room(X1)) | ? [X0] : (~predc(X0) & predc(X0) & anywhere(X0)) [flattening 129] 131. ! [X0] : ((~kind(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 47] 132. ! [X0] : (~kind(X0) | ~predc(X0) | ~room(X0)) [flattening 131] 133. ! [X0] : (((person(X0) & creative(X0) & wise(X0) & kind(X0) & predc(X0)) | ~wise(X0)) | ~room(X0)) [ennf transformation 48] 134. ! [X0] : ((person(X0) & creative(X0) & wise(X0) & kind(X0) & predc(X0)) | ~wise(X0) | ~room(X0)) [flattening 133] 138. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 53] 150. ! [X0] : (kind(X0) | ~predc(X0) | ~room(X0)) | ? [X1] : (~predc(X1) & predc(X1) & anywhere(X1)) [rectify 130] 151. ? [X1] : (~predc(X1) & predc(X1) & anywhere(X1)) => (~predc(sK3) & predc(sK3) & anywhere(sK3)) [choice axiom] 152. ! [X0] : (kind(X0) | ~predc(X0) | ~room(X0)) | (~predc(sK3) & predc(sK3) & anywhere(sK3)) [skolemisation 150,151] 153. ! [X0] : (((person(X0) & wise(X0)) | predc(X0)) & (~predc(X0) | (~person(X0) | ~wise(X0)))) [nnf transformation 49] 154. ! [X0] : (((person(X0) & wise(X0)) | predc(X0)) & (~predc(X0) | ~person(X0) | ~wise(X0))) [flattening 153] 157. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK5) & room(sK5)) [choice axiom] 158. (~predc(sK5) & room(sK5)) | ~there_is_a_room [skolemisation 138,157] 240. there_is_a_room [cnf transformation 44] 252. kind(X0) | ~predc(X0) | ~room(X0) | predc(sK3) [cnf transformation 152] 253. kind(X0) | ~predc(X0) | ~room(X0) | ~predc(sK3) [cnf transformation 152] 254. ~kind(X0) | ~predc(X0) | ~room(X0) [cnf transformation 132] 255. ~wise(X0) | predc(X0) | ~room(X0) [cnf transformation 134] 261. wise(X0) | predc(X0) [cnf transformation 154] 273. room(sK5) | ~there_is_a_room [cnf transformation 158] 276. 1 <=> predc(sK3) [avatar definition] 280. 2 <=> ! [X0] : (kind(X0) | ~room(X0) | ~predc(X0)) [avatar definition] 281. kind(X0) | ~room(X0) | ~predc(X0) <- (2) [avatar component clause 280] 282. ~1 | 2 [avatar split clause 253,280,276] 283. 1 | 2 [avatar split clause 252,280,276] 285. room(sK5) [subsumption resolution 273,240] 286. ~room(X0) | ~predc(X0) <- (2) [subsumption resolution 281,254] 290. predc(X0) | ~room(X0) | predc(X0) [resolution 255,261] 291. predc(X0) | ~room(X0) [duplicate literal removal 290] 292. ~room(X0) <- (2) [subsumption resolution 291,286] 294. $false <- (2) [resolution 292,285] 295. ~2 [avatar contradiction clause 294] 296. $false [avatar sat refutation 282,283,295] % SZS output end Proof for 6944999828025194631206368 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
Mike is the only person in the room. Everyone in the room does not enjoy stand-up paddleboarding or owns a microscope only if everyone in the room does not enjoy stand-up paddleboarding if they is a Linux enthusiast and vice versa. If Mike maintains a personal blog focused on cybersecurity tips then everyone outside the room who is a tea enthusiast is an active member of a local robotics club or plays video games or both. Either everyone in the room competes in national level swimming championships or does not own a microscope or it is not the case that Mike maintains a personal blog focused on cybersecurity tips but not both. If someone has a saltwater aquarium then he/she enjoys landscape photography. Everyone in the room maintains a personal blog focused on cybersecurity tips or cannot play the flute. Mike who maintains a personal blog focused on cybersecurity tips is an avid mountain climber who has scaled several peaks. Mike who plays video games enjoys stand-up paddleboarding and practices urban gardening. Everyone in the room who writes a travel blog, practices and performs acrobatic dance routines and is an active member of a local robotics club is a tea enthusiast. Everyone in the room who is a tea enthusiast owns a 3D printer. Mike maintains a personal blog focused on cybersecurity tips and plays video games. Everyone in the room who practices urban gardening trains for and competes in international triathlons. Mike who owns a microscope is a culinary enthusiast who experiments with international cuisines. Everyone in the room who is a certified yoga instructor teaching classes weekly or practices zumba or both neither is a culinary enthusiast who experiments with international cuisines nor enjoys stand-up paddleboarding. Mike plays as a goalkeeper for a local amateur soccer team. Mike is a tea enthusiast. Everyone in the room competes in national level swimming championships or does not own a microscope. If someone is a tea enthusiast then he/she has a saltwater aquarium. Mike participates in long-distance cycling events across the country and practices and performs acrobatic dance routines. Mike can play the flute. Mike owns a microscope. Mike has completed a triathlon. Everyone in the room competes in national level swimming championships or is not an avid mountain climber who has scaled several peaks. Everyone in the room who practices zumba practices and performs acrobatic dance routines. More than one person outside the room has completed a triathlon.
Mike can play the flute, competes in national level swimming championships and enjoys landscape photography.
entailment
room(mike)&(![X]:(room(X)=>(X='mike')))& ((![X]:(room(X)=>(((owns_a_microscope(X))|(does_not_enjoy_stand-up_paddleboarding(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_stand-up_paddleboarding(X))<=>(is_a_Linux_enthusiast(X)))))))& ((maintains_a_personal_blog_focused_on_cybersecurity_tips(mike))=>(![X]:(~room(X)=>(((is_a_tea_enthusiast(X))=>(((is_an_active_member_of_a_local_robotics_club(X))|(plays_video_games(X)))))))))& ((![X]:(room(X)=>(((does_not_own_a_microscope(X))|(competes_in_national_level_swimming_championships(X))))))<~>(~(maintains_a_personal_blog_focused_on_cybersecurity_tips(mike))))& ((![X]:((has_a_saltwater_aquarium(X))=>(enjoys_landscape_photography(X)))))& (![X]:(room(X)=>(((cannot_play_the_flute(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& ((maintains_a_personal_blog_focused_on_cybersecurity_tips(mike))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(mike)))& ((plays_video_games(mike))&(((enjoys_stand-up_paddleboarding(mike))&(practices_urban_gardening(mike)))))& (![X]:(room(X)=>(((((writes_a_travel_blog(X))&(practices_and_performs_acrobatic_dance_routines(X))&(is_an_active_member_of_a_local_robotics_club(X))))=>(is_a_tea_enthusiast(X))))))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))=>(owns_a_3D_printer(X))))))& (((maintains_a_personal_blog_focused_on_cybersecurity_tips(mike))&(plays_video_games(mike))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& ((owns_a_microscope(mike))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(mike)))& (![X]:(room(X)=>(((((is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(practices_zumba(X))))=>(~((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(enjoys_stand-up_paddleboarding(X))))))))& (plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(mike))& (is_a_tea_enthusiast(mike))& (![X]:(room(X)=>(((does_not_own_a_microscope(X))|(competes_in_national_level_swimming_championships(X))))))& ((![X]:((is_a_tea_enthusiast(X))=>(has_a_saltwater_aquarium(X)))))& (((participates_in_long-distance_cycling_events_across_the_country(mike))&(practices_and_performs_acrobatic_dance_routines(mike))))& (can_play_the_flute(mike))& (owns_a_microscope(mike))& (has_completed_a_triathlon(mike))& (![X]:(room(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((practices_zumba(X))=>(practices_and_performs_acrobatic_dance_routines(X))))))& ((?[X,Y]:(~room(X)&~room(Y)&(has_completed_a_triathlon(X)&has_completed_a_triathlon(Y))&(X!=Y))))
room(mike)&(![X]:(room(X)=>(X='mike')))& ((can_play_the_flute(mike))&(competes_in_national_level_swimming_championships(mike))&(enjoys_landscape_photography(mike)))
[ "p0", "p4", "p6", "p15", "p17", "p19", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 591375243882512076592396 % SZS output start Proof for 591375243882512076592396 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 48. ! [X0] : (predh(X0) => predb(X0)) [input p4] 50. predw(mary) & predn(mary) [input p6] 59. predr(mary) [input p15] 61. ! [X0] : (predr(X0) => predh(X0)) [input p17] 63. prede(mary) [input p19] 66. ! [X0] : (room(X0) => (preda(X0) | ~predw(X0))) [input p22] 69. ~(predb(mary) & preda(mary) & prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 159. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 164. ! [X0] : (predb(X0) | ~predh(X0)) [ennf transformation 48] 169. ! [X0] : (predh(X0) | ~predr(X0)) [ennf transformation 61] 170. ! [X0] : ((preda(X0) | ~predw(X0)) | ~room(X0)) [ennf transformation 66] 171. ! [X0] : (preda(X0) | ~predw(X0) | ~room(X0)) [flattening 170] 172. ~predb(mary) | ~preda(mary) | ~prede(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 69] 184. ? [X0] : (mary != X0 & room(X0)) => (mary != sK4 & room(sK4)) [choice axiom] 185. ~predb(mary) | ~preda(mary) | ~prede(mary) | (mary != sK4 & room(sK4)) | ~room(mary) [skolemisation 172,184] 266. room(mary) [cnf transformation 159] 267. ~room(X0) | mary = X0 [cnf transformation 159] 278. ~predh(X0) | predb(X0) [cnf transformation 164] 281. predw(mary) [cnf transformation 50] 285. predr(mary) [cnf transformation 59] 287. ~predr(X0) | predh(X0) [cnf transformation 169] 288. prede(mary) [cnf transformation 63] 290. ~predw(X0) | preda(X0) | ~room(X0) [cnf transformation 171] 294. ~predb(mary) | ~preda(mary) | ~prede(mary) | room(sK4) | ~room(mary) [cnf transformation 185] 295. ~predb(mary) | ~preda(mary) | ~prede(mary) | mary != sK4 | ~room(mary) [cnf transformation 185] 346. ~predb(mary) | ~preda(mary) | mary != sK4 | ~room(mary) [subsumption resolution 295,288] 347. ~predb(mary) | ~preda(mary) | mary != sK4 [subsumption resolution 346,266] 349. 11 <=> mary = sK4 [avatar definition] 351. mary != sK4 <- (~11) [avatar component clause 349] 353. 12 <=> preda(mary) [avatar definition] 357. 13 <=> predb(mary) [avatar definition] 360. ~11 | ~12 | ~13 [avatar split clause 347,357,353,349] 361. ~predb(mary) | ~preda(mary) | room(sK4) | ~room(mary) [subsumption resolution 294,288] 362. ~predb(mary) | ~preda(mary) | room(sK4) [subsumption resolution 361,266] 364. 14 <=> room(sK4) [avatar definition] 366. room(sK4) <- (14) [avatar component clause 364] 367. 14 | ~12 | ~13 [avatar split clause 362,357,353,364] 368. predh(mary) [resolution 287,285] 370. predb(mary) [resolution 368,278] 371. 13 [avatar split clause 370,357] 373. preda(mary) | ~room(mary) [resolution 290,281] 377. preda(mary) [subsumption resolution 373,266] 378. 12 [avatar split clause 377,353] 379. mary = sK4 <- (14) [resolution 366,267] 380. $false <- (~11, 14) [subsumption resolution 379,351] 381. 11 | ~14 [avatar contradiction clause 380] 382. $false [avatar sat refutation 360,367,371,378,381] % SZS output end Proof for 591375243882512076592396 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.196705
Russell, Elizabeth, Miguel are the only persons in the room. “Russell who owns a smart tv is a certified scuba diver with advanced underwater photography skills” if “everyone in the room is not a certified scuba diver with advanced underwater photography skills or is a certified scuba diver with advanced underwater photography skills”. If “everyone in the room is not a certified scuba diver with advanced underwater photography skills or mentors a youth basketball team on weekends” then “Russell and Chelsea hate each other”. If “not everyone in the room is a certified scuba diver with advanced underwater photography skills or does not have a pet dog” then “Russell owns a smart tv” otherwise “Russell who collects vintage vinyl records is kind”. If “no one anywhere is not a certified scuba diver with advanced underwater photography skills or mentors a youth basketball team on weekends” then “Russell who owns a smart tv and is a certified scuba diver with advanced underwater photography skills is a certified scuba diver with advanced underwater photography skills”. If “Russell and Chelsea hate each other” then “someone in the room has a pet dog”. If someone owns a smart tv then he/she is a certified scuba diver with advanced underwater photography skills. Everyone in the room who collects vintage vinyl records is not a certified scuba diver with advanced underwater photography skills. Elizabeth and Chelsea hate each other. Someone who has a pet dog hate someone who mentors a youth basketball team on weekends. Someone who has a pet dog, is a certified scuba diver with advanced underwater photography skills and owns a smart tv hate someone who hates Chelsea.
Miguel has a pet dog.
neutral
room(russell)&room(elizabeth)&room(miguel)&(![X]:(room(X)=>(X='russell'|X='elizabeth'|X='miguel')))& ((![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))=>((owns_a_smart_tv(russell))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(russell))))& ((![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))=>((hate(russell,chelsea) & hate(chelsea,russell))))& (((~![X]:(room(X)=>(((does_not_have_a_pet_dog(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))=>(owns_a_smart_tv(russell)))&((~(~![X]:(room(X)=>(((does_not_have_a_pet_dog(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))))=>((collects_vintage_vinyl_records(russell))&(kind(russell)))))& ((~?[X]:(anywhere(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))=>((((owns_a_smart_tv(russell))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(russell))))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(russell))))& (((hate(russell,chelsea) & hate(chelsea,russell)))=>(?[X]:(room(X)&(has_a_pet_dog(X)))))& ((![X]:((owns_a_smart_tv(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& ((hate(elizabeth,chelsea) & hate(chelsea,elizabeth)))& (?[X,Y]:((has_a_pet_dog(X))&(mentors_a_youth_basketball_team_on_weekends(Y))&(hate(X,Y))))& (?[X,Y]:((((has_a_pet_dog(X))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))&(owns_a_smart_tv(X))))&(hate(chelsea,Y))&(hate(X,Y))))& (![X]:(room(X)=>(((hate(chelsea,X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (![X]:(room(X)=>(((((collects_vintage_vinyl_records(X))&(has_a_pet_dog(X))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))=>(collects_vintage_vinyl_records(X))))))& (mentors_a_youth_basketball_team_on_weekends(elizabeth))& (?[X]:(room(X)&(mentors_a_youth_basketball_team_on_weekends(X))))& (?[X,Y]:((collects_vintage_vinyl_records(X))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(Y))&(hate(X,Y))))& ((hate(russell,chelsea) & hate(chelsea,russell)))& (![X]:(room(X)=>(((has_a_pet_dog(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(russell))
room(russell)&room(elizabeth)&room(miguel)&(![X]:(room(X)=>(X='russell'|X='elizabeth'|X='miguel')))& has_a_pet_dog(miguel)
[]
null
0.02978
Dennis, Lucinda, Virginia, Lori, Lori are the only persons in the room. “Lucinda either is a wise person or is a tall person but not both” unless “everyone in the room is patient”. “Everyone outside the room either is patient or is a brave person but not both” only if “someone in the room either is a happy person or is a quiet person but not both”. Either “Virginia is a generous person” or “everyone in the room is not a brave person” but not both. Either “everyone in the room neither is a funny person nor is a old person” or “at least one person in the room is a humble person” but not both. Either “at least one person in the room is curious” or “Lucinda is a patient person” but not both. Everyone in the room is a kind person. Everyone in the room is a curious person. All happy persons are kind. Everyone outside the room is a brave person. Everyone in the room is not a tall person. Everyone outside the room is a quiet person. Everyone in the room is happy. Lucinda is a strong person. All funny persons are strong. Virginia is a funny person. At least one person in the room either is a wise person or is happy but not both. At least one person in the room is curious. Someone in the room is a kind person.
All kind persons are funny.
neutral
room(dennis)&room(lucinda)&room(virginia)&room(lori)&room(lori)&(![X]:(room(X)=>(X='dennis'|X='lucinda'|X='virginia'|X='lori'|X='lori')))& (~(![X]:(room(X)=>(patient(X))))=>(((wise(lucinda)&person(lucinda))<~>(tall(lucinda)&person(lucinda)))))& ((![X]:(~room(X)=>(((patient(X))<~>(brave(X)&person(X))))))=>(?[X]:(room(X)&(((happy(X)&person(X))<~>(quiet(X)&person(X)))))))& ((generous(virginia)&person(virginia))<~>(![X]:(room(X)=>(~(brave(X)&person(X))))))& ((![X]:(room(X)=>(~((funny(X)&person(X))|(old(X)&person(X))))))<~>(((?[X]:(room(X)&humble(X)&person(X))))))& ((((?[X]:(room(X)&curious(X)))))<~>(patient(lucinda)&person(lucinda)))& (![X]:(room(X)=>(kind(X)&person(X))))& (![X]:(room(X)=>(curious(X)&person(X))))& (![X]:(happy(X)=>kind(X)))& (![X]:(~room(X)=>(brave(X)&person(X))))& (![X]:(room(X)=>(~(tall(X)&person(X)))))& (![X]:(~room(X)=>(quiet(X)&person(X))))& (![X]:(room(X)=>(happy(X))))& (strong(lucinda)&person(lucinda))& (![X]:(funny(X)=>strong(X)))& (funny(virginia)&person(virginia))& (((?[X]:(room(X)&((wise(X)&person(X))<~>(happy(X)))))))& (((?[X]:(room(X)&curious(X)))))& (?[X]:(room(X)&(kind(X)&person(X))))& (?[X]:(room(X)&(funny(X)&person(X))))& (![X]:(room(X)=>(((wise(X)&person(X))<~>(brave(X)&person(X))))))& (?[X]:(~room(X)&(curious(X)&person(X))))& (quiet(dennis))& (![X]:(room(X)=>(((happy(X))<~>(tall(X)&person(X))))))
room(dennis)&room(lucinda)&room(virginia)&room(lori)&room(lori)&(![X]:(room(X)=>(X='dennis'|X='lucinda'|X='virginia'|X='lori'|X='lori')))& ![X]:(kind(X)=>funny(X))
[]
null
0.382474
Daniel is the only person in the room. “Daniel enjoys salsa dancing, is an amateur astronomer who builds and uses custom telescopes or has a specialized collection of handmade artisan pottery” unless “Daniel has a specialized collection of handmade artisan pottery, travels domestically frequently and has a tattoo”. “Daniel has a tattoo” if “it is not the case that “Daniel neither is an amateur astronomer who builds and uses custom telescopes nor travels domestically frequently”” and vice versa. “Daniel is an amateur astronomer who builds and uses custom telescopes” unless “Daniel travels domestically frequently”. “Daniel has a tattoo” if “Daniel travels domestically frequently”. Daniel travels domestically frequently.
Daniel has a tattoo.
entailment
room(daniel)&(![X]:(room(X)=>(X='daniel')))& (~(((has_a_specialized_collection_of_handmade_artisan_pottery(daniel))&(travels_domestically_frequently(daniel))&(has_a_tattoo(daniel))))=>(((enjoys_salsa_dancing(daniel))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(daniel))|(has_a_specialized_collection_of_handmade_artisan_pottery(daniel)))))& ((~(~((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(daniel))|(travels_domestically_frequently(daniel)))))<=>(has_a_tattoo(daniel)))& (~(travels_domestically_frequently(daniel))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(daniel)))& ((travels_domestically_frequently(daniel))=>(has_a_tattoo(daniel)))& (~(~((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(daniel))|(travels_domestically_frequently(daniel)))))& ((![X]:((enjoys_salsa_dancing(X))<=>(has_a_specialized_collection_of_handmade_artisan_pottery(X)))))& (enjoys_salsa_dancing(daniel))& (has_a_specialized_collection_of_handmade_artisan_pottery(daniel))& (~(~((has_a_specialized_collection_of_handmade_artisan_pottery(daniel))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(daniel)))))& ((enjoys_salsa_dancing(daniel))&(has_a_specialized_collection_of_handmade_artisan_pottery(daniel)))& (travels_domestically_frequently(daniel))& (is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(daniel))& (((?[X]:(~room(X)&~((has_a_tattoo(X))|(travels_domestically_frequently(X)))))&(![X,Y]:((~room(X)&~room(Y)&(~((has_a_tattoo(X))|(travels_domestically_frequently(X))))&(~((has_a_tattoo(Y))|(travels_domestically_frequently(Y)))))=>(X=Y)))))
room(daniel)&(![X]:(room(X)=>(X='daniel')))& has_a_tattoo(daniel)
[ "p0", "p4", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 7592619358088661723908200 % SZS output start Proof for 7592619358088661723908200 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 48. predd(mary) => predc(mary) [input p4] 55. predd(mary) [input p11] 58. ~(predc(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 143. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 145. predc(mary) | ~predd(mary) [ennf transformation 48] 148. ~predc(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 58] 154. ? [X0] : (mary != X0 & room(X0)) => (mary != sK1 & room(sK1)) [choice axiom] 155. ~predc(mary) | (mary != sK1 & room(sK1)) | ~room(mary) [skolemisation 148,154] 236. room(mary) [cnf transformation 143] 237. ~room(X0) | mary = X0 [cnf transformation 143] 242. predc(mary) | ~predd(mary) [cnf transformation 145] 244. predd(mary) [cnf transformation 55] 250. ~predc(mary) | room(sK1) | ~room(mary) [cnf transformation 155] 251. ~predc(mary) | mary != sK1 | ~room(mary) [cnf transformation 155] 253. 1 <=> predc(mary) [avatar definition] 261. 3 <=> predd(mary) [avatar definition] 268. ~3 | 1 [avatar split clause 242,253,261] 270. 3 [avatar split clause 244,261] 272. ~predc(mary) | mary != sK1 [subsumption resolution 251,236] 274. 4 <=> mary = sK1 [avatar definition] 276. mary != sK1 <- (~4) [avatar component clause 274] 277. ~4 | ~1 [avatar split clause 272,253,274] 278. ~predc(mary) | room(sK1) [subsumption resolution 250,236] 280. 5 <=> room(sK1) [avatar definition] 282. room(sK1) <- (5) [avatar component clause 280] 283. 5 | ~1 [avatar split clause 278,253,280] 285. mary = sK1 <- (5) [resolution 237,282] 286. $false <- (~4, 5) [subsumption resolution 285,276] 287. 4 | ~5 [avatar contradiction clause 286] 288. $false [avatar sat refutation 268,270,277,283,287] % SZS output end Proof for 7592619358088661723908200 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.031 s % ------------------------------ % ------------------------------
0.20787
There is a room. “Someone in the room is quiet” if “everyone in the room is a old person” and vice versa. “Everyone in the room is tall” only if “someone who is a kind person and is quiet is older than someone who is not kind”. “Everyone in the room is a quiet person” only if “all kind persons are tall”. All old persons are kind. Everyone in the room is a old person. Darrell dreamt that “all old persons are tall”. If someone is quiet then he/she is kind. Not everyone in the room is a quiet person. Everyone in the room is tall. Someone who is a quiet person is older than someone who is a kind person. Someone who is tall is quieter than someone who is not tall.
All tall persons are old.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(old(X)&person(X))))<=>(?[X]:(room(X)&(quiet(X)))))& ((![X]:(room(X)=>(tall(X))))=>(?[X,Y]:((((kind(X)&person(X))&(quiet(X))))&(~kind(Y))&(older(X,Y)))))& ((![X]:(room(X)=>(quiet(X)&person(X))))=>(![X]:(kind(X)=>tall(X))))& (![X]:(old(X)=>kind(X)))& (![X]:(room(X)=>(old(X)&person(X))))& ((darrell_dream=>(![X]:(old(X)=>tall(X)))))& ((![X]:((quiet(X))=>(kind(X)))))& (~![X]:(room(X)=>(quiet(X)&person(X))))& (![X]:(room(X)=>(tall(X))))& (?[X,Y]:((quiet(X)&person(X))&(kind(Y)&person(Y))&(older(X,Y))))& (?[X,Y]:((tall(X))&(~tall(Y))&(quieter(X,Y))))
(there_is_a_room)& ![X]:(tall(X)=>old(X))
[]
null
0.377475
Jeffrey is the only person in the room. “Everyone in the room does not practice archery or does not write a travel blog” if “everyone in the room does not enjoy watercolor painting or practices archery” and vice versa. “Jeffrey is a client of Tami” if “Jeffrey writes a travel blog”. If “it is true that “Jeffrey is a client of Donald”” then “Jeffrey who writes a travel blog and practices archery is a client of Robert”. Robert is a client of Jeffrey. Jeffrey is a client of Tami. Everyone anywhere is a client of Tami if they writes a travel blog and vice versa. Everyone in the room does not enjoy watercolor painting or is a client of Donald.
Jeffrey either is a client of Robert or is a client of Tami but not both.
neutral
room(jeffrey)&(![X]:(room(X)=>(X='jeffrey')))& ((![X]:(room(X)=>(((practices_archery(X))|(does_not_enjoy_watercolor_painting(X))))))<=>(![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(does_not_practice_archery(X)))))))& ((writes_a_travel_blog(jeffrey))=>(client(tami,jeffrey)))& ((client(donald,jeffrey))=>((((writes_a_travel_blog(jeffrey))&(practices_archery(jeffrey))))&(client(robert,jeffrey))))& (client(jeffrey,robert))& (client(tami,jeffrey))& (![X]:(anywhere(X)=>(((client(tami,X))<=>(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(((client(donald,X))|(does_not_enjoy_watercolor_painting(X))))))
room(jeffrey)&(![X]:(room(X)=>(X='jeffrey')))& ((client(robert,jeffrey))<~>(client(tami,jeffrey)))
[]
null
0
Shane, Kathy, William are the only persons in the room. 'At least one person in the room is a dedicated advocate for digital privacy and encryption' if 'Shane is a member of a local theater group specializing in improv' and vice versa. If 'Shane is a dedicated advocate for digital privacy and encryption' then 'at least one person in the room enjoys bird watching'. Either 'Shane collects antique clocks' or 'Shane owns a significant collection of rare gemstones and minerals' but not both. Shane does enjoy mountain biking. Shane collects comic books. Shane collects foreign coins. Shane owns a smartwatch. More than one person in the room collects luxury watches. Shane neither is a dedicated advocate for digital privacy and encryption nor is an expert in identifying and foraging wild edible plants. Shane owns a significant collection of rare gemstones and minerals. Shane owns a 3D printer or own a television or both. Only one person in the room owns a smartwatch or is a professional photographer specializing in portrait photography or both. Shane volunteers for local environmental conservation projects. Shane enjoys cross-country skiing. At least one person in the room is a dedicated advocate for digital privacy and encryption. Shane has a vast collection of first-edition science fiction novels. Shane works on fridays. Shane enjoys windsurfing.
William is a professional photographer specializing in portrait photography.
contradiction
room(shane)&room(kathy)&room(william)&(![X]:(room(X)=>(X='shane'|X='kathy'|X='william')))& ((is_a_member_of_a_local_theater_group_specializing_in_improv(shane))<=>(((?[X]:(room(X)&is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& ((is_a_dedicated_advocate_for_digital_privacy_and_encryption(shane))=>(((?[X]:(room(X)&enjoys_bird_watching(X))))))& ((collects_antique_clocks(shane))<~>(owns_a_significant_collection_of_rare_gemstones_and_minerals(shane)))& (does_enjoy_mountain_biking(shane))& (collects_comic_books(shane))& (collects_foreign_coins(shane))& (owns_a_smartwatch(shane))& ((?[X,Y]:(room(X)&room(Y)&(collects_luxury_watches(X)&collects_luxury_watches(Y))&(X!=Y))))& (~((is_a_dedicated_advocate_for_digital_privacy_and_encryption(shane))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(shane))))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(shane))& (((owns_a_3D_printer(shane))|(own_a_television(shane))))& (((?[X]:(room(X)&((owns_a_smartwatch(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X)))))&(![X,Y]:((room(X)&room(Y)&(((owns_a_smartwatch(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))&(((owns_a_smartwatch(Y))|(is_a_professional_photographer_specializing_in_portrait_photography(Y)))))=>(X=Y)))))& (volunteers_for_local_environmental_conservation_projects(shane))& (enjoys_cross-country_skiing(shane))& (((?[X]:(room(X)&is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))& (has_a_vast_collection_of_first-edition_science_fiction_novels(shane))& (works_on_fridays(shane))& (enjoys_windsurfing(shane))& (((enjoys_bird_watching(shane))&(does_enjoy_mountain_biking(shane))))& (((collects_luxury_watches(shane))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(shane))))& (enjoys_bird_watching(shane))& (((?[X]:(anywhere(X)&volunteers_for_local_environmental_conservation_projects(X)))))& (((enjoys_windsurfing(shane))|(participates_in_citizen_science_projects_related_to_wildlife_monitoring(shane))))& (is_a_member_of_a_local_theater_group_specializing_in_improv(shane))
room(shane)&room(kathy)&room(william)&(![X]:(room(X)=>(X='shane'|X='kathy'|X='william')))& is_a_professional_photographer_specializing_in_portrait_photography(william)
[ "b42", "p0", "p7", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 8279185365292787614333104 % SZS output start Proof for 8279185365292787614333104 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 51. predv(mary) [input p7] 56. ! [X0,X1] : (((preda(X1) | predv(X1)) & (preda(X0) | predv(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : ((preda(X0) | predv(X0)) & room(X0)) [input p12] 69. preda(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 70. ! [X0,X1] : (((preda(X1) | predv(X1)) & (preda(X0) | predv(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : ((preda(X2) | predv(X2)) & room(X2)) [rectify 56] 162. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 163. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 162] 166. ! [X0,X1] : (X0 = X1 | ((~preda(X1) & ~predv(X1)) | (~preda(X0) & ~predv(X0)) | ~room(X1) | ~room(X0))) & ? [X2] : ((preda(X2) | predv(X2)) & room(X2)) [ennf transformation 70] 167. ! [X0,X1] : (X0 = X1 | (~preda(X1) & ~predv(X1)) | (~preda(X0) & ~predv(X0)) | ~room(X1) | ~room(X0)) & ? [X2] : ((preda(X2) | predv(X2)) & room(X2)) [flattening 166] 168. preda(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 69] 169. preda(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 168] 180. ? [X2] : ((preda(X2) | predv(X2)) & room(X2)) => ((preda(sK4) | predv(sK4)) & room(sK4)) [choice axiom] 181. ! [X0,X1] : (X0 = X1 | (~preda(X1) & ~predv(X1)) | (~preda(X0) & ~predv(X0)) | ~room(X1) | ~room(X0)) & ((preda(sK4) | predv(sK4)) & room(sK4)) [skolemisation 167,180] 234. mary != fred [cnf transformation 43] 264. room(mary) [cnf transformation 163] 266. room(fred) [cnf transformation 163] 274. predv(mary) [cnf transformation 51] 284. ~preda(X1) | X0 = X1 | ~predv(X0) | ~room(X1) | ~room(X0) [cnf transformation 181] 293. preda(fred) [cnf transformation 169] 468. fred = X0 | ~predv(X0) | ~room(fred) | ~room(X0) [resolution 284,293] 480. ~predv(X0) | fred = X0 | ~room(X0) [subsumption resolution 468,266] 491. mary = fred | ~room(mary) [resolution 480,274] 492. ~room(mary) [subsumption resolution 491,234] 493. $false [subsumption resolution 492,264] % SZS output end Proof for 8279185365292787614333104 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.302827
Ronnie, David, Carol, Ida, Nicole are the only persons in the room. Ida is the oldest outside the room. Only one person outside the room is wise. Ronnie is the richest in the room. Everyone in the room is a brave person if they is not a calm person. Ronnie is quiet. No kind person is strong. Carol is the least old in the room. Ronnie either is a calm happy person or is not old but not both. Ronnie is not a calm person. David is not a creative person. Everyone in the room is a funny quiet person if they is not a humble quiet curious person. Not everyone outside the room is not humble. Carol is not patient, not old, not funny. David is not a curious person. Not everyone in the room who is wise is not a brave person. Everyone outside the room is not a tall funny person if they is a brave person.
Ronnie is kind.
entailment
room(ronnie)&room(david)&room(carol)&room(ida)&room(nicole)&(![X]:(room(X)=>(X='ronnie'|X='david'|X='carol'|X='ida'|X='nicole')))& (![X]:((~room(X)&(X!=ida))=>older(X,ida)))& (((?[X]:(~room(X)&wise(X)))&(![X,Y]:((~room(X)&~room(Y)&(wise(X))&(wise(Y)))=>(X=Y)))))& (![X]:((room(X)&(X!=ronnie))=>richer(X,ronnie)))& (![X]:(room(X)=>(((~(calm(X)&person(X)))=>(brave(X)&person(X))))))& (quiet(ronnie))& (~?[X]:(kind(X)=>strong(X)))& (![X]:((room(X)&(X!=carol))=>older(carol,X)))& (((calm(ronnie)&happy(ronnie)&person(ronnie))<~>(~old(ronnie))))& (~(calm(ronnie)&person(ronnie)))& (~(creative(david)&person(david)))& (![X]:(room(X)=>(((~(humble(X)&quiet(X)&curious(X)&person(X)))=>(funny(X)&quiet(X)&person(X))))))& (~![X]:(~room(X)=>(~humble(X))))& (~patient(carol)&~old(carol)&~funny(carol))& (~(curious(david)&person(david)))& (~![X]:(room(X)=>(((wise(X))=>(~(brave(X)&person(X)))))))& (![X]:(~room(X)=>(((brave(X)&person(X))=>(~(tall(X)&funny(X)&person(X)))))))
room(ronnie)&room(david)&room(carol)&room(ida)&room(nicole)&(![X]:(room(X)=>(X='ronnie'|X='david'|X='carol'|X='ida'|X='nicole')))& kind(ronnie)
[ "p0", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 262891035916822626442164 % SZS output start Proof for 262891035916822626442164 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 50. ~? [X0] : (kind(X0) => strong(X0)) [input p6] 61. ~(kind(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 70. ~? [X0] : ~kind(X0) [pure predicate removal 50] 143. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 144. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 143] 153. ! [X0] : kind(X0) [ennf transformation 70] 163. ~kind(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 61] 164. ~kind(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 163] 177. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 178. ~kind(mary) | (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 164,177] 259. room(mary) [cnf transformation 144] 260. room(paul) [cnf transformation 144] 261. room(fred) [cnf transformation 144] 262. room(alice) [cnf transformation 144] 263. room(john) [cnf transformation 144] 264. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 144] 273. kind(X0) [cnf transformation 153] 293. ~kind(mary) | room(sK4) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 178] 294. ~kind(mary) | mary != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 178] 295. ~kind(mary) | paul != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 178] 296. ~kind(mary) | fred != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 178] 297. ~kind(mary) | alice != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 178] 298. ~kind(mary) | john != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 178] 331. john != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 298,273] 332. john != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 331,263] 333. john != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 332,262] 334. john != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 333,261] 335. john != sK4 | ~room(mary) [subsumption resolution 334,260] 336. john != sK4 [subsumption resolution 335,259] 337. alice != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 297,273] 338. alice != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 337,263] 339. alice != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 338,262] 340. alice != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 339,261] 341. alice != sK4 | ~room(mary) [subsumption resolution 340,260] 342. alice != sK4 [subsumption resolution 341,259] 343. fred != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 296,273] 344. fred != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 343,263] 345. fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 344,262] 346. fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 345,261] 347. fred != sK4 | ~room(mary) [subsumption resolution 346,260] 348. fred != sK4 [subsumption resolution 347,259] 349. paul != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 295,273] 350. paul != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 349,263] 351. paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 350,262] 352. paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 351,261] 353. paul != sK4 | ~room(mary) [subsumption resolution 352,260] 354. paul != sK4 [subsumption resolution 353,259] 355. mary != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 294,273] 356. mary != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 355,263] 357. mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 356,262] 358. mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 357,261] 359. mary != sK4 | ~room(mary) [subsumption resolution 358,260] 360. mary != sK4 [subsumption resolution 359,259] 361. room(sK4) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 293,273] 362. room(sK4) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 361,263] 363. room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 362,262] 364. room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 363,261] 365. room(sK4) | ~room(mary) [subsumption resolution 364,260] 366. room(sK4) [subsumption resolution 365,259] 590. alice = sK4 | fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 [resolution 264,366] 612. fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 [subsumption resolution 590,342] 613. paul = sK4 | mary = sK4 | john = sK4 [subsumption resolution 612,348] 614. mary = sK4 | john = sK4 [subsumption resolution 613,354] 615. john = sK4 [subsumption resolution 614,360] 616. $false [subsumption resolution 615,336] % SZS output end Proof for 262891035916822626442164 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.023 s % ------------------------------ % ------------------------------
0.036864
Peggy, Joseph, Gary are the only persons in the room. Either Peggy either is not an active member of a local robotics club or builds model airplanes but not both or Joseph does not participate in citizen science projects related to wildlife monitoring but not both. Peggy collects historical artifacts related to ancient civilizations only if Peggy either is an enthusiastic bird watcher who travels for rare sightings or builds model airplanes but not both. More than one person in the room is an enthusiastic bird watcher who travels for rare sightings and does not participate in citizen science projects related to wildlife monitoring unless Peggy is an active member of a local robotics club, collects historical artifacts related to ancient civilizations and builds model airplanes. Someone in the room is an active member of a local robotics club. Peggy participates in citizen science projects related to wildlife monitoring, builds model airplanes and owns an extensive assortment of vintage comic book memorabilia. Peggy builds model airplanes. Peggy is an enthusiastic bird watcher who travels for rare sightings. Someone in the room participates in citizen science projects related to wildlife monitoring.
Peggy is an active member of a local robotics club.
contradiction
room(peggy)&room(joseph)&room(gary)&(![X]:(room(X)=>(X='peggy'|X='joseph'|X='gary')))& ((((is_not_an_active_member_of_a_local_robotics_club(peggy))<~>(builds_model_airplanes(peggy))))<~>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(joseph)))& ((collects_historical_artifacts_related_to_ancient_civilizations(peggy))=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(peggy))<~>(builds_model_airplanes(peggy)))))& (~(((is_an_active_member_of_a_local_robotics_club(peggy))&(collects_historical_artifacts_related_to_ancient_civilizations(peggy))&(builds_model_airplanes(peggy))))=>((?[X,Y]:(room(X)&room(Y)&(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))&(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X)))&((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(Y))&(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(Y))))&(X!=Y)))))& (?[X]:(room(X)&(is_an_active_member_of_a_local_robotics_club(X))))& (((participates_in_citizen_science_projects_related_to_wildlife_monitoring(peggy))&(builds_model_airplanes(peggy))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(peggy))))& (builds_model_airplanes(peggy))& (is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(peggy))& (?[X]:(room(X)&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))
room(peggy)&room(joseph)&room(gary)&(![X]:(room(X)=>(X='peggy'|X='joseph'|X='gary')))& is_an_active_member_of_a_local_robotics_club(peggy)
[ "p0", "p1", "p2", "p3", "p5", "p6", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 9009455337976210681986282 % SZS output start Proof for 9009455337976210681986282 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. (~predf(mary) <~> preda(mary)) <~> ~prede(paul) [input p1] 46. predd(mary) => (predc(mary) <~> preda(mary)) [input p2] 47. ~(preda(mary) & predd(mary) & predf(mary)) => ? [X0,X1] : (X0 != X1 & ~prede(X1) & predc(X1) & ~prede(X0) & predc(X0) & room(X1) & room(X0)) [input p3] 49. predb(mary) & preda(mary) & prede(mary) [input p5] 50. preda(mary) [input p6] 51. predc(mary) [input p7] 53. predf(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 54. preda(mary) & prede(mary) [pure predicate removal 49] 127. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 128. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 127] 129. (predc(mary) <~> preda(mary)) | ~predd(mary) [ennf transformation 46] 130. ? [X0,X1] : (X0 != X1 & ~prede(X1) & predc(X1) & ~prede(X0) & predc(X0) & room(X1) & room(X0)) | (preda(mary) & predd(mary) & predf(mary)) [ennf transformation 47] 131. predf(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 53] 132. predf(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 131] 133. ? [X0,X1] : (X0 != X1 & ~prede(X1) & predc(X1) & ~prede(X0) & predc(X0) & room(X1) & room(X0)) | ~sP0 [predicate definition introduction] 134. sP0 | (preda(mary) & predd(mary) & predf(mary)) [definition folding 130,133] 136. (prede(paul) | ((~predf(mary) | ~preda(mary)) & (preda(mary) | predf(mary)))) & (~prede(paul) | ((~preda(mary) | predf(mary)) & (preda(mary) | ~predf(mary)))) [nnf transformation 45] 137. ((~preda(mary) | ~predc(mary)) & (preda(mary) | predc(mary))) | ~predd(mary) [nnf transformation 129] 138. ? [X0,X1] : (X0 != X1 & ~prede(X1) & predc(X1) & ~prede(X0) & predc(X0) & room(X1) & room(X0)) | ~sP0 [nnf transformation 133] 139. ? [X0,X1] : (X0 != X1 & ~prede(X1) & predc(X1) & ~prede(X0) & predc(X0) & room(X1) & room(X0)) => (sK1 != sK2 & ~prede(sK2) & predc(sK2) & ~prede(sK1) & predc(sK1) & room(sK2) & room(sK1)) [choice axiom] 140. (sK1 != sK2 & ~prede(sK2) & predc(sK2) & ~prede(sK1) & predc(sK1) & room(sK2) & room(sK1)) | ~sP0 [skolemisation 138,139] 228. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 128] 232. prede(paul) | ~predf(mary) | ~preda(mary) [cnf transformation 136] 234. ~preda(mary) | ~predc(mary) | ~predd(mary) [cnf transformation 137] 235. room(sK1) | ~sP0 [cnf transformation 140] 236. room(sK2) | ~sP0 [cnf transformation 140] 238. ~prede(sK1) | ~sP0 [cnf transformation 140] 240. ~prede(sK2) | ~sP0 [cnf transformation 140] 241. sK1 != sK2 | ~sP0 [cnf transformation 140] 243. sP0 | predd(mary) [cnf transformation 134] 247. prede(mary) [cnf transformation 54] 249. preda(mary) [cnf transformation 50] 250. predc(mary) [cnf transformation 51] 257. predf(mary) [cnf transformation 132] 259. 1 <=> preda(mary) [avatar definition] 263. 2 <=> predf(mary) [avatar definition] 267. 3 <=> prede(paul) [avatar definition] 269. prede(paul) <- (3) [avatar component clause 267] 270. ~1 | ~2 | 3 [avatar split clause 232,267,263,259] 275. 4 <=> predd(mary) [avatar definition] 279. 5 <=> predc(mary) [avatar definition] 282. ~4 | ~5 | ~1 [avatar split clause 234,259,279,275] 285. 6 <=> sP0 [avatar definition] 289. 7 <=> sK1 = sK2 [avatar definition] 291. sK1 != sK2 <- (~7) [avatar component clause 289] 292. ~6 | ~7 [avatar split clause 241,289,285] 294. 8 <=> prede(sK2) [avatar definition] 296. ~prede(sK2) <- (~8) [avatar component clause 294] 297. ~6 | ~8 [avatar split clause 240,294,285] 304. 10 <=> prede(sK1) [avatar definition] 306. ~prede(sK1) <- (~10) [avatar component clause 304] 307. ~6 | ~10 [avatar split clause 238,304,285] 314. 12 <=> room(sK2) [avatar definition] 316. room(sK2) <- (12) [avatar component clause 314] 317. ~6 | 12 [avatar split clause 236,314,285] 319. 13 <=> room(sK1) [avatar definition] 321. room(sK1) <- (13) [avatar component clause 319] 322. ~6 | 13 [avatar split clause 235,319,285] 324. 4 | 6 [avatar split clause 243,285,275] 327. 1 [avatar split clause 249,259] 328. 5 [avatar split clause 250,279] 329. 2 [avatar split clause 257,263] 375. paul = sK1 | mary = sK1 | fred = sK1 <- (13) [resolution 228,321] 376. paul = sK2 | mary = sK2 | fred = sK2 <- (12) [resolution 228,316] 380. 14 <=> fred = sK1 [avatar definition] 384. 15 <=> mary = sK1 [avatar definition] 386. mary = sK1 <- (15) [avatar component clause 384] 388. 16 <=> paul = sK1 [avatar definition] 390. paul = sK1 <- (16) [avatar component clause 388] 391. 14 | 15 | 16 | ~13 [avatar split clause 375,319,388,384,380] 393. 17 <=> fred = sK2 [avatar definition] 395. fred = sK2 <- (17) [avatar component clause 393] 397. 18 <=> mary = sK2 [avatar definition] 399. mary = sK2 <- (18) [avatar component clause 397] 401. 19 <=> paul = sK2 [avatar definition] 403. paul = sK2 <- (19) [avatar component clause 401] 404. 17 | 18 | 19 | ~12 [avatar split clause 376,314,401,397,393] 435. fred != sK1 <- (~7, 17) [backward demodulation 291,395] 439. ~14 | 7 | ~17 [avatar split clause 435,393,289,380] 442. ~prede(mary) <- (~10, 15) [backward demodulation 306,386] 445. $false <- (~10, 15) [subsumption resolution 442,247] 446. 10 | ~15 [avatar contradiction clause 445] 448. ~prede(mary) <- (~8, 18) [backward demodulation 296,399] 452. $false <- (~8, 18) [subsumption resolution 448,247] 453. 8 | ~18 [avatar contradiction clause 452] 455. ~prede(paul) <- (~10, 16) [backward demodulation 306,390] 458. $false <- (3, ~10, 16) [subsumption resolution 455,269] 459. ~3 | 10 | ~16 [avatar contradiction clause 458] 461. ~prede(paul) <- (~8, 19) [backward demodulation 296,403] 466. $false <- (3, ~8, 19) [subsumption resolution 461,269] 467. ~3 | 8 | ~19 [avatar contradiction clause 466] 473. $false [avatar sat refutation 270,282,292,297,307,317,322,324,327,328,329,391,404,439,446,453,459,467] % SZS output end Proof for 9009455337976210681986282 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.030 s % ------------------------------ % ------------------------------
0.257157
Barbara is the only person in the room. Barbara works on fridays, collects classic novels or is a member of a local theater group specializing in improv. Barbara collects classic novels. Barbara is a wine connoisseur with a private cellar of vintage wines. Barbara composes and performs experimental electronic music. Barbara is an avid hiker. Barbara dreamt that if someone owns an extensive assortment of vintage comic book memorabilia then he/she collects first edition books and vice versa. If someone is a night owl then he/she collects antique clocks. Barbara either owns a smartwatch or collects antique clocks but not both. Barbara owns an extensive assortment of vintage comic book memorabilia. Barbara has a specialized collection of handmade artisan pottery. If someone is a client of Costco then he/she either collects first edition books or collects classic novels but not both. Barbara neither collects action figures nor works on fridays.
Barbara collects action figures.
contradiction
room(barbara)&(![X]:(room(X)=>(X='barbara')))& (((works_on_fridays(barbara))|(collects_classic_novels(barbara))|(is_a_member_of_a_local_theater_group_specializing_in_improv(barbara))))& (collects_classic_novels(barbara))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(barbara))& (composes_and_performs_experimental_electronic_music(barbara))& (is_an_avid_hiker(barbara))& ((barbara_dream=>((![X]:((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<=>(collects_first_edition_books(X)))))))& ((![X]:((is_a_night_owl(X))=>(collects_antique_clocks(X)))))& (((owns_a_smartwatch(barbara))<~>(collects_antique_clocks(barbara))))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(barbara))& (has_a_specialized_collection_of_handmade_artisan_pottery(barbara))& ((![X]:((is_a_client_of_Costco(X))=>(((collects_first_edition_books(X))<~>(collects_classic_novels(X)))))))& (hosts_regular_game_nights_featuring_complex_strategy_games(barbara))& (is_a_professional_photographer_specializing_in_portrait_photography(barbara))& (owns_a_smartwatch(barbara))& (uses_an_ios_phone(barbara))& (~(collects_limited-edition_art_prints_from_contemporary_artists(barbara)))& (((?[X]:(room(X)&is_an_avid_hiker(X)))&(![X,Y]:((room(X)&room(Y)&(is_an_avid_hiker(X))&(is_an_avid_hiker(Y)))=>(X=Y)))))& ((barbara_dream=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(barbara))))& (plays_eSports_competitively(barbara))& (enjoys_kayaking(barbara))& (is_a_member_of_a_local_theater_group_specializing_in_improv(barbara))& (~((collects_action_figures(barbara))|(works_on_fridays(barbara))))& ((![X]:((is_a_night_owl(X))=>(plays_eSports_competitively(X)))))& (creates_YouTube_content(barbara))& (writes_and_illustrates_their_own_graphic_novels(barbara))
room(barbara)&(![X]:(room(X)=>(X='barbara')))& collects_action_figures(barbara)
[ "p22", "hypothesis" ]
% SZS status Unsatisfiable for 5190402016219500350674943 % SZS output start Proof for 5190402016219500350674943 66. ~(predr(mary) | predj(mary)) [input p22] 70. predj(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 84. ~predj(mary) [pure predicate removal 66] 168. ~predj(mary) [ennf transformation 84] 169. predj(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 70] 263. ~predj(mary) [cnf transformation 168] 266. predj(mary) [cnf transformation 169] 278. $false [subsumption resolution 266,263] % SZS output end Proof for 5190402016219500350674943 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.212583
There is a room. If “everyone in the room does not enjoy virtual reality gaming or volunteers for local environmental conservation projects” then “everyone in the room collects comic books or does not have a saltwater aquarium”. If “everyone in the room collects comic books or does not have a saltwater aquarium” then “everyone outside the room does enjoy trail running”. If “everyone in the room enjoys virtual reality gaming or does not volunteer for local environmental conservation projects” then “at least one person in the room does enjoy trail running”. If “at least one person in the room does enjoy trail running” then “someone in the room enjoys virtual reality gaming”. Everyone in the room does enjoy trail running if they neither volunteers for local environmental conservation projects nor has a vast collection of first-edition science fiction novels. Someone in the room enjoys virtual reality gaming. Everyone in the room collects comic books if they volunteers for local environmental conservation projects. Everyone in the room has a vast collection of first-edition science fiction novels if they can play the piano, collects comic books and enjoys virtual reality gaming. Everyone in the room volunteers for local environmental conservation projects if they has a vast collection of first-edition science fiction novels. Everyone in the room who does enjoy trail running is passionate about collecting and restoring classic cars. Everyone in the room can play the piano or does not collect comic books or both. Everyone anywhere collects antique clocks if they can play the piano.
Everyone in the room does not have a saltwater aquarium or collects comic books.
neutral
(there_is_a_room)& (((![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))|(does_not_enjoy_virtual_reality_gaming(X))))))=>(![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))|(collects_comic_books(X)))))))& ((![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))|(collects_comic_books(X))))))=>(![X]:(~room(X)=>(does_enjoy_trail_running(X))))))& (((![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))|(enjoys_virtual_reality_gaming(X))))))=>(((?[X]:(room(X)&does_enjoy_trail_running(X))))))& ((((?[X]:(room(X)&does_enjoy_trail_running(X)))))=>(?[X]:(room(X)&(enjoys_virtual_reality_gaming(X))))))& (![X]:(room(X)=>(((~((volunteers_for_local_environmental_conservation_projects(X))|(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))=>(does_enjoy_trail_running(X))))))& (?[X]:(room(X)&(enjoys_virtual_reality_gaming(X))))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(collects_comic_books(X))))))& (![X]:(room(X)=>(((((can_play_the_piano(X))&(collects_comic_books(X))&(enjoys_virtual_reality_gaming(X))))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((can_play_the_piano(X))|(does_not_collect_comic_books(X))))))& (![X]:(anywhere(X)=>(((can_play_the_piano(X))=>(collects_antique_clocks(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((collects_comic_books(X))|(does_not_have_a_saltwater_aquarium(X)))))
[]
null
0.156429
Larry, Joseph are the only persons in the room. Everyone in the room neither travels domestically frequently nor does not enjoy salsa dancing. Not everyone in the room is not an amateur astronomer who builds and uses custom telescopes, is not a cybersecurity expert or is a scotch connoisseur. Everyone in the room does not travel domestically frequently. Everyone in the room is not a scotch connoisseur or is a cybersecurity expert or both. Everyone outside the room does not travel domestically frequently or is an amateur astronomer who builds and uses custom telescopes or both if they does not travel domestically frequently and vice versa. No one anywhere is not an amateur astronomer who builds and uses custom telescopes. Everyone in the room does not enjoy salsa dancing or is not a scotch connoisseur or both if they is not a craft beer aficionado, is not an amateur astronomer who builds and uses custom telescopes or is an amateur astronomer who builds and uses custom telescopes. Everyone outside the room does not enjoy salsa dancing or is not a scotch connoisseur or both if and only if they does not enjoy salsa dancing or does not travel domestically frequently or both. Everyone in the room is not a scotch connoisseur. Everyone in the room is not a craft beer aficionado.
Larry is a cybersecurity expert.
neutral
room(larry)&room(joseph)&(![X]:(room(X)=>(X='larry'|X='joseph')))& (![X]:(room(X)=>(~((travels_domestically_frequently(X))|(does_not_enjoy_salsa_dancing(X))))))& (~![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(is_not_a_cybersecurity_expert(X))|(is_a_scotch_connoisseur(X))))))& (![X]:(room(X)=>(does_not_travel_domestically_frequently(X))))& (![X]:(room(X)=>(((is_not_a_scotch_connoisseur(X))|(is_a_cybersecurity_expert(X))))))& (![X]:(~room(X)=>(((((does_not_travel_domestically_frequently(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))<=>(does_not_travel_domestically_frequently(X))))))& (~?[X]:(anywhere(X)=>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))& (![X]:(room(X)=>(((((is_not_a_craft_beer_aficionado(X))|(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))=>(((does_not_enjoy_salsa_dancing(X))|(is_not_a_scotch_connoisseur(X))))))))& (![X]:(~room(X)=>(((((does_not_enjoy_salsa_dancing(X))|(is_not_a_scotch_connoisseur(X))))<=>(((does_not_enjoy_salsa_dancing(X))|(does_not_travel_domestically_frequently(X))))))))& (![X]:(room(X)=>(is_not_a_scotch_connoisseur(X))))& (![X]:(room(X)=>(is_not_a_craft_beer_aficionado(X))))
room(larry)&room(joseph)&(![X]:(room(X)=>(X='larry'|X='joseph')))& is_a_cybersecurity_expert(larry)
[]
null
0.242914
Dorothy, Lillian, Craig, June are the only persons in the room. "Dorothy has a vast collection of first-edition science fiction novels" unless "Craig collects modern art". Either "June enjoys virtual reality gaming" or "Lillian is a cybersecurity expert" but not both. If "someone in the room does not have a tattoo" then "Lillian is not a cybersecurity expert". If "Lillian is not a cybersecurity expert" then "everyone in the room has a specialized collection of handmade artisan pottery". If "June does not practice digital art" then "someone in the room owns a smartwatch". If "someone in the room owns a smartwatch" then "Dorothy is an avid collector of autographed memorabilia from famous musicians".
Craig has a tattoo.
entailment
room(dorothy)&room(lillian)&room(craig)&room(june)&(![X]:(room(X)=>(X='dorothy'|X='lillian'|X='craig'|X='june')))& (~(collects_modern_art(craig))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(dorothy)))& ((enjoys_virtual_reality_gaming(june))<~>(is_a_cybersecurity_expert(lillian)))& (((?[X]:(room(X)&(does_not_have_a_tattoo(X))))=>(is_not_a_cybersecurity_expert(lillian)))& ((is_not_a_cybersecurity_expert(lillian))=>(![X]:(room(X)=>(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (((does_not_practice_digital_art(june))=>(?[X]:(room(X)&(owns_a_smartwatch(X)))))& ((?[X]:(room(X)&(owns_a_smartwatch(X))))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(dorothy))))& (((~(~(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(june))))=>(((?[X]:(anywhere(X)&((plays_eSports_competitively(X))|(practices_archery(X))|(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X)))))&(![X,Y]:((anywhere(X)&anywhere(Y)&(((plays_eSports_competitively(X))|(practices_archery(X))|(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))&(((plays_eSports_competitively(Y))|(practices_archery(Y))|(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(Y)))))=>(X=Y))))))&((~(~(~(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(june)))))=>(![X]:(anywhere(X)=>(((((regularly_contributes_to_tech_forums_and_online_communities(X))&(streams_on_Twitch(X))))=>(owns_a_microscope(X))))))))& ((((collects_rare_minerals(dorothy))<~>(is_a_tea_enthusiast(dorothy))))<=>(~(owns_a_microscope(june))))& ((enjoys_spelunking(craig))=>(((?[X]:(room(X)&plays_eSports_competitively(X)))&(![X,Y]:((room(X)&room(Y)&(plays_eSports_competitively(X))&(plays_eSports_competitively(Y)))=>(X=Y))))))& ((~(collects_modern_art(lillian)))<~>(is_a_tea_enthusiast(craig)))& (~((enjoys_snowboarding(dorothy))|(enjoys_spelunking(dorothy))))& (![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(plays_eSports_competitively(X))))))& (collects_historical_artifacts_related_to_ancient_civilizations(dorothy))& ((![X]:((collects_modern_art(X))=>(does_not_enjoy_snowboarding(X)))))& (((?[X]:(room(X)&~((is_not_a_cybersecurity_expert(X))|(enjoys_virtual_reality_gaming(X)))))))& (((streams_on_Twitch(lillian))<~>(has_a_specialized_collection_of_handmade_artisan_pottery(lillian))))& ((![X]:((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))& (((?[X]:(room(X)&is_a_cybersecurity_expert(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_cybersecurity_expert(X))&(is_a_cybersecurity_expert(Y)))=>(X=Y)))))& (can_play_the_piano(craig))& (is_not_a_cybersecurity_expert(june))& (((?[X]:(room(X)&is_a_drone_photographer(X)))))& (((?[X]:(room(X)&has_a_specialized_collection_of_handmade_artisan_pottery(X)))&(![X,Y]:((room(X)&room(Y)&(has_a_specialized_collection_of_handmade_artisan_pottery(X))&(has_a_specialized_collection_of_handmade_artisan_pottery(Y)))=>(X=Y)))))& ((![X]:((enjoys_kayaking_and_exploring_remote_waterways(X))=>(does_not_practice_digital_art(X)))))& (~(~(is_a_drone_photographer(craig))))& (![X]:(room(X)=>(((enjoys_snowboarding(X))=>(is_a_tea_enthusiast(X))))))& ((![X]:((enjoys_virtual_reality_gaming(X))=>(practices_digital_art(X)))))& (((?[X]:(room(X)&~((practices_archery(X))|(plays_eSports_competitively(X)))))))& ((?[X,Y]:(room(X)&room(Y)&(does_not_enjoy_spelunking(X)&does_not_enjoy_spelunking(Y))&(X!=Y))))& (enjoys_spelunking(lillian))
room(dorothy)&room(lillian)&room(craig)&room(june)&(![X]:(room(X)=>(X='dorothy'|X='lillian'|X='craig'|X='june')))& has_a_tattoo(craig)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 9088187754971524952286775 % SZS output start Proof for 9088187754971524952286775 44. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X0] : (~(predy(X0) | predg(X0)) & room(X0)) & ! [X0] : (preda(X0) => predq(X0)) & ! [X0] : (room(X0) => (predm(X0) => predz(X0))) & predo(fred) & ! [X0] : (prede(X0) => ~predq(X0)) & ! [X0,X1] : ((predt(X1) & predt(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predt(X0) & room(X0)) & ? [X0] : (predo(X0) & room(X0)) & ~predh(alice) & preds(fred) & ! [X0,X1] : ((predh(X1) & predh(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predh(X0) & room(X0)) & ! [X0] : (predf(X0) => predd(X0)) & (predc(paul) <~> predt(paul)) & ? [X0] : (~(preda(X0) | ~predh(X0)) & room(X0)) & ! [X0] : (predx(X0) => ~predm(X0)) & predl(mary) & ! [X0] : (room(X0) => (predl(X0) => predy(X0))) & ~(predp(mary) | predm(mary)) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X0,X1] : ((predy(X1) & predy(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predy(X0) & room(X0)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predi(alice) => ! [X0] : (anywhere(X0) => ((predc(X0) & predr(X0)) => predn(X0)))) & (predi(alice) => (! [X0,X1] : (((~predt(X1) | predg(X1) | predy(X1)) & (~predt(X0) | predg(X0) | predy(X0)) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : ((~predt(X0) | predg(X0) | predy(X0)) & anywhere(X0)))) & (? [X0] : (predk(X0) & room(X0)) => predi(mary)) & (~predq(alice) => ? [X0] : (predk(X0) & room(X0))) & (~predh(paul) => ! [X0] : (room(X0) => predt(X0))) & (? [X0] : (~predj(X0) & room(X0)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(predj(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~(predy(X2) | predg(X2)) & room(X2)) & ! [X3] : (preda(X3) => predq(X3)) & ! [X4] : (room(X4) => (predm(X4) => predz(X4))) & predo(fred) & ! [X5] : (prede(X5) => ~predq(X5)) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : (predo(X9) & room(X9)) & ~predh(alice) & preds(fred) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & ! [X13] : (predf(X13) => predd(X13)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & ! [X15] : (predx(X15) => ~predm(X15)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~(predp(mary) | predm(mary)) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predi(alice) => ! [X20] : (anywhere(X20) => ((predc(X20) & predr(X20)) => predn(X20)))) & (predi(alice) => (! [X21,X22] : (((~predt(X22) | predg(X22) | predy(X22)) & (~predt(X21) | predg(X21) | predy(X21)) & anywhere(X22) & anywhere(X21)) => X21 = X22) & ? [X23] : ((~predt(X23) | predg(X23) | predy(X23)) & anywhere(X23)))) & (? [X24] : (predk(X24) & room(X24)) => predi(mary)) & (~predq(alice) => ? [X25] : (predk(X25) & room(X25))) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~(predy(X2) | predg(X2)) & room(X2)) & ! [X3] : (preda(X3) => predq(X3)) & ! [X4] : (room(X4) => (predm(X4) => predz(X4))) & predo(fred) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : (predo(X9) & room(X9)) & ~predh(alice) & preds(fred) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & ! [X13] : (predf(X13) => predd(X13)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & ! [X15] : (predx(X15) => ~predm(X15)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~(predp(mary) | predm(mary)) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predi(alice) => ! [X20] : (anywhere(X20) => ((predc(X20) & predr(X20)) => predn(X20)))) & (predi(alice) => (! [X21,X22] : (((~predt(X22) | predg(X22) | predy(X22)) & (~predt(X21) | predg(X21) | predy(X21)) & anywhere(X22) & anywhere(X21)) => X21 = X22) & ? [X23] : ((~predt(X23) | predg(X23) | predy(X23)) & anywhere(X23)))) & (? [X24] : (predk(X24) & room(X24)) => predi(mary)) & (~predq(alice) => ? [X25] : (predk(X25) & room(X25))) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~(predy(X2) | predg(X2)) & room(X2)) & ! [X4] : (room(X4) => (predm(X4) => predz(X4))) & predo(fred) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : (predo(X9) & room(X9)) & ~predh(alice) & preds(fred) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & ! [X13] : (predf(X13) => predd(X13)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & ! [X15] : (predx(X15) => ~predm(X15)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~(predp(mary) | predm(mary)) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predi(alice) => ! [X20] : (anywhere(X20) => ((predc(X20) & predr(X20)) => predn(X20)))) & (predi(alice) => (! [X21,X22] : (((~predt(X22) | predg(X22) | predy(X22)) & (~predt(X21) | predg(X21) | predy(X21)) & anywhere(X22) & anywhere(X21)) => X21 = X22) & ? [X23] : ((~predt(X23) | predg(X23) | predy(X23)) & anywhere(X23)))) & (? [X24] : (predk(X24) & room(X24)) => predi(mary)) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~(predy(X2) | predg(X2)) & room(X2)) & ! [X4] : (room(X4) => (predm(X4) => predz(X4))) & predo(fred) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : (predo(X9) & room(X9)) & ~predh(alice) & preds(fred) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & ! [X13] : (predf(X13) => predd(X13)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & ! [X15] : (predx(X15) => ~predm(X15)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~(predp(mary) | predm(mary)) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predi(alice) => ! [X20] : (anywhere(X20) => ((predc(X20) & predr(X20)) => predn(X20)))) & (predi(alice) => (! [X21,X22] : (((~predt(X22) | predg(X22) | predy(X22)) & (~predt(X21) | predg(X21) | predy(X21)) & anywhere(X22) & anywhere(X21)) => X21 = X22) & ? [X23] : ((~predt(X23) | predg(X23) | predy(X23)) & anywhere(X23)))) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~(predy(X2) | predg(X2)) & room(X2)) & ! [X4] : (room(X4) => (predm(X4) => predz(X4))) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & preds(fred) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & ! [X13] : (predf(X13) => predd(X13)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & ! [X15] : (predx(X15) => ~predm(X15)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~(predp(mary) | predm(mary)) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predi(alice) => ! [X20] : (anywhere(X20) => ((predc(X20) & predr(X20)) => predn(X20)))) & (predi(alice) => (! [X21,X22] : (((~predt(X22) | predg(X22) | predy(X22)) & (~predt(X21) | predg(X21) | predy(X21)) & anywhere(X22) & anywhere(X21)) => X21 = X22) & ? [X23] : ((~predt(X23) | predg(X23) | predy(X23)) & anywhere(X23)))) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~(predy(X2) | predg(X2)) & room(X2)) & ! [X4] : (room(X4) => (predm(X4) => predz(X4))) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & ! [X13] : (predf(X13) => predd(X13)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & ! [X15] : (predx(X15) => ~predm(X15)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~(predp(mary) | predm(mary)) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predi(alice) => ! [X20] : (anywhere(X20) => ((predc(X20) & predr(X20)) => predn(X20)))) & (predi(alice) => (! [X21,X22] : (((~predt(X22) | predg(X22) | predy(X22)) & (~predt(X21) | predg(X21) | predy(X21)) & anywhere(X22) & anywhere(X21)) => X21 = X22) & ? [X23] : ((~predt(X23) | predg(X23) | predy(X23)) & anywhere(X23)))) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~(predy(X2) | predg(X2)) & room(X2)) & ! [X4] : (room(X4) => (predm(X4) => predz(X4))) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & ! [X15] : (predx(X15) => ~predm(X15)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~(predp(mary) | predm(mary)) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predi(alice) => ! [X20] : (anywhere(X20) => ((predc(X20) & predr(X20)) => predn(X20)))) & (predi(alice) => (! [X21,X22] : (((~predt(X22) | predg(X22) | predy(X22)) & (~predt(X21) | predg(X21) | predy(X21)) & anywhere(X22) & anywhere(X21)) => X21 = X22) & ? [X23] : ((~predt(X23) | predg(X23) | predy(X23)) & anywhere(X23)))) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~(predy(X2) | predg(X2)) & room(X2)) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~predp(mary) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predi(alice) => ! [X20] : (anywhere(X20) => ((predc(X20) & predr(X20)) => predn(X20)))) & (predi(alice) => (! [X21,X22] : (((~predt(X22) | predg(X22) | predy(X22)) & (~predt(X21) | predg(X21) | predy(X21)) & anywhere(X22) & anywhere(X21)) => X21 = X22) & ? [X23] : ((~predt(X23) | predg(X23) | predy(X23)) & anywhere(X23)))) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~(predy(X2) | predg(X2)) & room(X2)) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~predp(mary) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (predi(alice) => (! [X21,X22] : (((~predt(X22) | predg(X22) | predy(X22)) & (~predt(X21) | predg(X21) | predy(X21)) & anywhere(X22) & anywhere(X21)) => X21 = X22) & ? [X23] : ((~predt(X23) | predg(X23) | predy(X23)) & anywhere(X23)))) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 55. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~(predy(X2) | predg(X2)) & room(X2)) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~predp(mary) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 57. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~predy(X2) & room(X2)) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~predp(mary) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & (~predx(fred) => predu(mary)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 55] 58. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~predy(X2) & room(X2)) & ! [X6,X7] : ((predt(X7) & predt(X6) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : ((predh(X11) & predh(X10) & room(X11) & room(X10)) => X10 = X11) & ? [X12] : (predh(X12) & room(X12)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~(preda(X14) | ~predh(X14)) & room(X14)) & predl(mary) & ! [X16] : (room(X16) => (predl(X16) => predy(X16))) & ~predp(mary) & (~predx(paul) <~> predz(fred)) & (predp(fred) => (! [X17,X18] : ((predy(X18) & predy(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predy(X19) & room(X19)))) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (~predh(paul) => ! [X26] : (room(X26) => predt(X26))) & (? [X27] : (~predj(X27) & room(X27)) => ~predh(paul)) & (preda(alice) <~> predh(paul)) & ! [X28] : (room(X28) => (alice = X28 | fred = X28 | paul = X28 | mary = X28)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 57] 130. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~predy(X2) & room(X2)) & ! [X6,X7] : (X6 = X7 | (~predt(X7) | ~predt(X6) | ~room(X7) | ~room(X6))) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : (X10 = X11 | (~predh(X11) | ~predh(X10) | ~room(X11) | ~room(X10))) & ? [X12] : (predh(X12) & room(X12)) & (predc(paul) <~> predt(paul)) & ? [X14] : ((~preda(X14) & predh(X14)) & room(X14)) & predl(mary) & ! [X16] : ((predy(X16) | ~predl(X16)) | ~room(X16)) & ~predp(mary) & (~predx(paul) <~> predz(fred)) & ((! [X17,X18] : (X17 = X18 | (~predy(X18) | ~predy(X17) | ~room(X18) | ~room(X17))) & ? [X19] : (predy(X19) & room(X19))) | ~predp(fred)) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (! [X26] : (predt(X26) | ~room(X26)) | predh(paul)) & (~predh(paul) | ! [X27] : (predj(X27) | ~room(X27))) & (preda(alice) <~> predh(paul)) & ! [X28] : ((alice = X28 | fred = X28 | paul = X28 | mary = X28) | ~room(X28)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 58] 131. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~predy(X2) & room(X2)) & ! [X6,X7] : (X6 = X7 | ~predt(X7) | ~predt(X6) | ~room(X7) | ~room(X6)) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : (X10 = X11 | ~predh(X11) | ~predh(X10) | ~room(X11) | ~room(X10)) & ? [X12] : (predh(X12) & room(X12)) & (predc(paul) <~> predt(paul)) & ? [X14] : (~preda(X14) & predh(X14) & room(X14)) & predl(mary) & ! [X16] : (predy(X16) | ~predl(X16) | ~room(X16)) & ~predp(mary) & (~predx(paul) <~> predz(fred)) & ((! [X17,X18] : (X17 = X18 | ~predy(X18) | ~predy(X17) | ~room(X18) | ~room(X17)) & ? [X19] : (predy(X19) & room(X19))) | ~predp(fred)) & ((predv(mary) <~> predz(mary)) <=> ~predn(alice)) & (! [X26] : (predt(X26) | ~room(X26)) | predh(paul)) & (~predh(paul) | ! [X27] : (predj(X27) | ~room(X27))) & (preda(alice) <~> predh(paul)) & ! [X28] : (alice = X28 | fred = X28 | paul = X28 | mary = X28 | ~room(X28)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 130] 132. ~predj(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 133. ~predj(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 132] 135. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~predy(X2) & room(X2)) & ! [X6,X7] : (X6 = X7 | ~predt(X7) | ~predt(X6) | ~room(X7) | ~room(X6)) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : (X10 = X11 | ~predh(X11) | ~predh(X10) | ~room(X11) | ~room(X10)) & ? [X12] : (predh(X12) & room(X12)) & ((~predt(paul) | ~predc(paul)) & (predt(paul) | predc(paul))) & ? [X14] : (~preda(X14) & predh(X14) & room(X14)) & predl(mary) & ! [X16] : (predy(X16) | ~predl(X16) | ~room(X16)) & ~predp(mary) & ((~predz(fred) | predx(paul)) & (predz(fred) | ~predx(paul))) & ((! [X17,X18] : (X17 = X18 | ~predy(X18) | ~predy(X17) | ~room(X18) | ~room(X17)) & ? [X19] : (predy(X19) & room(X19))) | ~predp(fred)) & ((((~predz(mary) | ~predv(mary)) & (predz(mary) | predv(mary))) | predn(alice)) & (~predn(alice) | ((predv(mary) | ~predz(mary)) & (predz(mary) | ~predv(mary))))) & (! [X26] : (predt(X26) | ~room(X26)) | predh(paul)) & (~predh(paul) | ! [X27] : (predj(X27) | ~room(X27))) & ((~predh(paul) | ~preda(alice)) & (predh(paul) | preda(alice))) & ! [X28] : (alice = X28 | fred = X28 | paul = X28 | mary = X28 | ~room(X28)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 131] 136. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~predy(X2) & room(X2)) & ! [X6,X7] : (X6 = X7 | ~predt(X7) | ~predt(X6) | ~room(X7) | ~room(X6)) & ? [X8] : (predt(X8) & room(X8)) & ? [X9] : room(X9) & ~predh(alice) & ! [X10,X11] : (X10 = X11 | ~predh(X11) | ~predh(X10) | ~room(X11) | ~room(X10)) & ? [X12] : (predh(X12) & room(X12)) & (~predt(paul) | ~predc(paul)) & (predt(paul) | predc(paul)) & ? [X14] : (~preda(X14) & predh(X14) & room(X14)) & predl(mary) & ! [X16] : (predy(X16) | ~predl(X16) | ~room(X16)) & ~predp(mary) & (~predz(fred) | predx(paul)) & (predz(fred) | ~predx(paul)) & ((! [X17,X18] : (X17 = X18 | ~predy(X18) | ~predy(X17) | ~room(X18) | ~room(X17)) & ? [X19] : (predy(X19) & room(X19))) | ~predp(fred)) & (((~predz(mary) | ~predv(mary)) & (predz(mary) | predv(mary))) | predn(alice)) & (~predn(alice) | ((predv(mary) | ~predz(mary)) & (predz(mary) | ~predv(mary)))) & (! [X26] : (predt(X26) | ~room(X26)) | predh(paul)) & (~predh(paul) | ! [X27] : (predj(X27) | ~room(X27))) & (~predh(paul) | ~preda(alice)) & (predh(paul) | preda(alice)) & ! [X28] : (alice = X28 | fred = X28 | paul = X28 | mary = X28 | ~room(X28)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 135] 137. predp(paul) & ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) & ? [X2] : (~predy(X2) & room(X2)) & ! [X3,X4] : (X3 = X4 | ~predt(X4) | ~predt(X3) | ~room(X4) | ~room(X3)) & ? [X5] : (predt(X5) & room(X5)) & ? [X6] : room(X6) & ~predh(alice) & ! [X7,X8] : (X7 = X8 | ~predh(X8) | ~predh(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (predh(X9) & room(X9)) & (~predt(paul) | ~predc(paul)) & (predt(paul) | predc(paul)) & ? [X10] : (~preda(X10) & predh(X10) & room(X10)) & predl(mary) & ! [X11] : (predy(X11) | ~predl(X11) | ~room(X11)) & ~predp(mary) & (~predz(fred) | predx(paul)) & (predz(fred) | ~predx(paul)) & ((! [X12,X13] : (X12 = X13 | ~predy(X13) | ~predy(X12) | ~room(X13) | ~room(X12)) & ? [X14] : (predy(X14) & room(X14))) | ~predp(fred)) & (((~predz(mary) | ~predv(mary)) & (predz(mary) | predv(mary))) | predn(alice)) & (~predn(alice) | ((predv(mary) | ~predz(mary)) & (predz(mary) | ~predv(mary)))) & (! [X15] : (predt(X15) | ~room(X15)) | predh(paul)) & (~predh(paul) | ! [X16] : (predj(X16) | ~room(X16))) & (~predh(paul) | ~preda(alice)) & (predh(paul) | preda(alice)) & ! [X17] : (alice = X17 | fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 136] 138. ? [X0,X1] : (X0 != X1 & ~predp(X1) & ~predp(X0) & room(X1) & room(X0)) => (sK0 != sK1 & ~predp(sK1) & ~predp(sK0) & room(sK1) & room(sK0)) [choice axiom] 139. ? [X2] : (~predy(X2) & room(X2)) => (~predy(sK2) & room(sK2)) [choice axiom] 140. ? [X5] : (predt(X5) & room(X5)) => (predt(sK3) & room(sK3)) [choice axiom] 141. ? [X6] : room(X6) => room(sK4) [choice axiom] 142. ? [X9] : (predh(X9) & room(X9)) => (predh(sK5) & room(sK5)) [choice axiom] 143. ? [X10] : (~preda(X10) & predh(X10) & room(X10)) => (~preda(sK6) & predh(sK6) & room(sK6)) [choice axiom] 144. ? [X14] : (predy(X14) & room(X14)) => (predy(sK7) & room(sK7)) [choice axiom] 145. predp(paul) & (sK0 != sK1 & ~predp(sK1) & ~predp(sK0) & room(sK1) & room(sK0)) & (~predy(sK2) & room(sK2)) & ! [X3,X4] : (X3 = X4 | ~predt(X4) | ~predt(X3) | ~room(X4) | ~room(X3)) & (predt(sK3) & room(sK3)) & room(sK4) & ~predh(alice) & ! [X7,X8] : (X7 = X8 | ~predh(X8) | ~predh(X7) | ~room(X8) | ~room(X7)) & (predh(sK5) & room(sK5)) & (~predt(paul) | ~predc(paul)) & (predt(paul) | predc(paul)) & (~preda(sK6) & predh(sK6) & room(sK6)) & predl(mary) & ! [X11] : (predy(X11) | ~predl(X11) | ~room(X11)) & ~predp(mary) & (~predz(fred) | predx(paul)) & (predz(fred) | ~predx(paul)) & ((! [X12,X13] : (X12 = X13 | ~predy(X13) | ~predy(X12) | ~room(X13) | ~room(X12)) & (predy(sK7) & room(sK7))) | ~predp(fred)) & (((~predz(mary) | ~predv(mary)) & (predz(mary) | predv(mary))) | predn(alice)) & (~predn(alice) | ((predv(mary) | ~predz(mary)) & (predz(mary) | ~predv(mary)))) & (! [X15] : (predt(X15) | ~room(X15)) | predh(paul)) & (~predh(paul) | ! [X16] : (predj(X16) | ~room(X16))) & (~predh(paul) | ~preda(alice)) & (predh(paul) | preda(alice)) & ! [X17] : (alice = X17 | fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 137,144,143,142,141,140,139,138] 146. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK8 & fred != sK8 & paul != sK8 & mary != sK8 & room(sK8)) [choice axiom] 147. ~predj(fred) | (alice != sK8 & fred != sK8 & paul != sK8 & mary != sK8 & room(sK8)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 133,146] 228. room(mary) [cnf transformation 145] 229. room(paul) [cnf transformation 145] 230. room(fred) [cnf transformation 145] 231. room(alice) [cnf transformation 145] 232. ~room(X17) | fred = X17 | paul = X17 | mary = X17 | alice = X17 [cnf transformation 145] 235. ~predh(paul) | predj(X16) | ~room(X16) [cnf transformation 145] 236. predt(X15) | ~room(X15) | predh(paul) [cnf transformation 145] 254. room(sK5) [cnf transformation 145] 255. predh(sK5) [cnf transformation 145] 261. ~predt(X4) | X3 = X4 | ~predt(X3) | ~room(X4) | ~room(X3) [cnf transformation 145] 270. ~predj(fred) | room(sK8) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 271. ~predj(fred) | mary != sK8 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 272. ~predj(fred) | paul != sK8 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 273. ~predj(fred) | fred != sK8 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 274. ~predj(fred) | alice != sK8 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 280. 2 <=> predt(paul) [avatar definition] 281. predt(paul) <- (2) [avatar component clause 280] 282. ~predt(paul) <- (~2) [avatar component clause 280] 330. 12 <=> predh(paul) [avatar definition] 331. ~predh(paul) <- (~12) [avatar component clause 330] 334. 13 <=> ! [X15] : (predt(X15) | ~room(X15)) [avatar definition] 335. ~room(X15) | predt(X15) <- (13) [avatar component clause 334] 336. 12 | 13 [avatar split clause 236,334,330] 338. 14 <=> ! [X16] : (predj(X16) | ~room(X16)) [avatar definition] 339. ~room(X16) | predj(X16) <- (14) [avatar component clause 338] 340. 14 | ~12 [avatar split clause 235,330,338] 347. ~predj(fred) | alice != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 274,231] 348. ~predj(fred) | alice != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 347,230] 349. ~predj(fred) | alice != sK8 | ~room(mary) [subsumption resolution 348,229] 350. ~predj(fred) | alice != sK8 [subsumption resolution 349,228] 352. 16 <=> alice = sK8 [avatar definition] 354. alice != sK8 <- (~16) [avatar component clause 352] 356. 17 <=> predj(fred) [avatar definition] 358. ~predj(fred) <- (~17) [avatar component clause 356] 359. ~16 | ~17 [avatar split clause 350,356,352] 360. ~predj(fred) | fred != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 273,231] 361. ~predj(fred) | fred != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 360,230] 362. ~predj(fred) | fred != sK8 | ~room(mary) [subsumption resolution 361,229] 363. ~predj(fred) | fred != sK8 [subsumption resolution 362,228] 365. 18 <=> fred = sK8 [avatar definition] 367. fred != sK8 <- (~18) [avatar component clause 365] 368. ~18 | ~17 [avatar split clause 363,356,365] 369. ~predj(fred) | paul != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 272,231] 370. ~predj(fred) | paul != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 369,230] 371. ~predj(fred) | paul != sK8 | ~room(mary) [subsumption resolution 370,229] 372. ~predj(fred) | paul != sK8 [subsumption resolution 371,228] 374. 19 <=> paul = sK8 [avatar definition] 376. paul != sK8 <- (~19) [avatar component clause 374] 377. ~19 | ~17 [avatar split clause 372,356,374] 378. ~predj(fred) | mary != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 271,231] 379. ~predj(fred) | mary != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 378,230] 380. ~predj(fred) | mary != sK8 | ~room(mary) [subsumption resolution 379,229] 381. ~predj(fred) | mary != sK8 [subsumption resolution 380,228] 383. 20 <=> mary = sK8 [avatar definition] 385. mary != sK8 <- (~20) [avatar component clause 383] 386. ~20 | ~17 [avatar split clause 381,356,383] 387. ~predj(fred) | room(sK8) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 270,231] 388. ~predj(fred) | room(sK8) | ~room(paul) | ~room(mary) [subsumption resolution 387,230] 389. ~predj(fred) | room(sK8) | ~room(mary) [subsumption resolution 388,229] 390. ~predj(fred) | room(sK8) [subsumption resolution 389,228] 392. 21 <=> room(sK8) [avatar definition] 394. room(sK8) <- (21) [avatar component clause 392] 395. 21 | ~17 [avatar split clause 390,356,392] 398. predj(fred) <- (14) [resolution 339,230] 407. $false <- (14, ~17) [subsumption resolution 398,358] 408. ~14 | 17 [avatar contradiction clause 407] 477. paul = X1 | ~predt(X1) | ~room(paul) | ~room(X1) <- (2) [resolution 261,281] 488. paul = X1 | ~predt(X1) | ~room(X1) <- (2) [subsumption resolution 477,229] 489. ~room(X1) | paul = X1 <- (2, 13) [subsumption resolution 488,335] 515. paul = sK5 <- (2, 13) [resolution 489,254] 542. predh(paul) <- (2, 13) [backward demodulation 255,515] 548. $false <- (2, ~12, 13) [subsumption resolution 542,331] 549. ~2 | 12 | ~13 [avatar contradiction clause 548] 575. fred = sK8 | paul = sK8 | mary = sK8 | alice = sK8 <- (21) [resolution 232,394] 678. paul = sK8 | mary = sK8 | alice = sK8 <- (~18, 21) [subsumption resolution 575,367] 679. mary = sK8 | alice = sK8 <- (~18, ~19, 21) [subsumption resolution 678,376] 680. alice = sK8 <- (~18, ~19, ~20, 21) [subsumption resolution 679,385] 681. $false <- (~16, ~18, ~19, ~20, 21) [subsumption resolution 680,354] 682. 16 | 18 | 19 | 20 | ~21 [avatar contradiction clause 681] 715. predt(paul) <- (13) [resolution 335,229] 718. $false <- (~2, 13) [subsumption resolution 715,282] 719. 2 | ~13 [avatar contradiction clause 718] 720. $false [avatar sat refutation 336,340,359,368,377,386,395,408,549,682,719] % SZS output end Proof for 9088187754971524952286775 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.400411
Anna, Roger, Timothy, Ernie are the only persons in the room. “Everyone in the room does not collect first edition books or is not a wine connoisseur or both” if “everyone in the room is not a tea enthusiast”. “Everyone in the room does not own a significant collection of rare gemstones and minerals and is not a wine connoisseur” if “everyone outside the room does not write in-depth travel guides for off-the-beaten-path destinations”. “Not everyone in the room does not enjoy rooftop gardening” if “everyone in the room does not collect luxury watches” and vice versa. “Everyone in the room does not collect comic books” only if “more than one person anywhere does not enjoy windsurfing or does not play as a goalkeeper for a local amateur soccer team or both”. “Everyone anywhere does not make intricate hand-cut paper art for exhibitions” if “everyone in the room either does not collect luxury watches or is not a tea enthusiast but not both” and vice versa. “Everyone in the room does not play as a goalkeeper for a local amateur soccer team and does not enjoy skydiving” if “everyone in the room does not work on fridays” and vice versa. More than one person anywhere does not enjoy skydiving. Everyone in the room does not enjoy skydiving. More than one person in the room does not enjoy wildlife photography and does not collect comic books. Everyone outside the room does not write in-depth travel guides for off-the-beaten-path destinations or does not have completed a triathlon or both. Everyone in the room does not have completed a triathlon. Everyone in the room is not a tea enthusiast and does not enjoy windsurfing. Everyone in the room does not play as a goalkeeper for a local amateur soccer team and does not enjoy skydiving. Everyone in the room does not write poetry. Everyone in the room does not enjoy wildlife photography and does not participate in long-distance cycling events across the country.
Timothy participates in long-distance cycling events across the country.
contradiction
room(anna)&room(roger)&room(timothy)&room(ernie)&(![X]:(room(X)=>(X='anna'|X='roger'|X='timothy'|X='ernie')))& ((![X]:(room(X)=>(is_not_a_tea_enthusiast(X))))=>(![X]:(room(X)=>(((does_not_collect_first_edition_books(X))|(is_not_a_wine_connoisseur(X)))))))& ((![X]:(~room(X)=>(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))=>(![X]:(room(X)=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))&(is_not_a_wine_connoisseur(X)))))))& ((![X]:(room(X)=>(does_not_collect_luxury_watches(X))))<=>(~![X]:(room(X)=>(does_not_enjoy_rooftop_gardening(X)))))& ((![X]:(room(X)=>(does_not_collect_comic_books(X))))=>((?[X,Y]:(anywhere(X)&anywhere(Y)&(((does_not_enjoy_windsurfing(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))&((does_not_enjoy_windsurfing(Y))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(Y))))&(X!=Y)))))& ((![X]:(room(X)=>(((does_not_collect_luxury_watches(X))<~>(is_not_a_tea_enthusiast(X))))))<=>(![X]:(anywhere(X)=>(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X)))))& ((![X]:(room(X)=>(does_not_work_on_fridays(X))))<=>(![X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(does_not_enjoy_skydiving(X)))))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(does_not_enjoy_skydiving(X)&does_not_enjoy_skydiving(Y))&(X!=Y))))& (![X]:(room(X)=>(does_not_enjoy_skydiving(X))))& ((?[X,Y]:(room(X)&room(Y)&(((does_not_enjoy_wildlife_photography(X))&(does_not_collect_comic_books(X)))&((does_not_enjoy_wildlife_photography(Y))&(does_not_collect_comic_books(Y))))&(X!=Y))))& (![X]:(~room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(does_not_have_completed_a_triathlon(X))))))& (![X]:(room(X)=>(does_not_have_completed_a_triathlon(X))))& (![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))&(does_not_enjoy_windsurfing(X))))))& (![X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(does_not_enjoy_skydiving(X))))))& (![X]:(room(X)=>(does_not_write_poetry(X))))& (![X]:(room(X)=>(does_not_enjoy_rooftop_gardening(X))))& (~![X]:(room(X)=>(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))& (![X]:(room(X)=>(does_not_travel_domestically_frequently(X))))& (![X]:(room(X)=>(is_not_a_tea_enthusiast(X))))& (![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))&(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(anywhere(X)=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))& (![X]:(room(X)=>(((does_not_collect_comic_books(X))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))))))& (![X]:(anywhere(X)=>(((does_not_collect_first_edition_books(X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (![X]:(room(X)=>(does_not_work_on_fridays(X))))
room(anna)&room(roger)&room(timothy)&room(ernie)&(![X]:(room(X)=>(X='anna'|X='roger'|X='timothy'|X='ernie')))& participates_in_long-distance_cycling_events_across_the_country(timothy)
[ "p0", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 789040166939060470731638 % SZS output start Proof for 789040166939060470731638 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 63. ! [X0] : (room(X0) => (~predp(X0) & ~predj(X0))) [input p19] 68. predp(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 80. ! [X0] : (room(X0) => ~predp(X0)) [pure predicate removal 63] 160. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 161. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 160] 172. ! [X0] : (~predp(X0) | ~room(X0)) [ennf transformation 80] 175. predp(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 68] 176. predp(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 175] 287. room(fred) [cnf transformation 161] 331. ~predp(X0) | ~room(X0) [cnf transformation 172] 339. predp(fred) [cnf transformation 176] 458. ~room(fred) [resolution 331,339] 459. $false [subsumption resolution 458,287] % SZS output end Proof for 789040166939060470731638 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.695969
James, Rebecca, Patricia are the only persons in the room. Either "Patricia is not generous" or "Rebecca enjoys stand-up paddleboarding" but not both. Either "Patricia and Rebecca are generous" or "Rebecca does not host themed dinner parties featuring gourmet home-cooked meals" but not both. All tall persons are calm. Patricia and James are humble. All funny persons are humble. All funny persons are old. Patricia hosts themed dinner parties featuring gourmet home-cooked meals. Rebecca collects classic novels. All old persons are generous. If someone is quiet then he/she is strong and vice versa. Everyone in the room uses a Windows laptop or does not practice kickboxing. If someone is a skilled home brewer experimenting with craft beer recipes then he/she is a patient strong person. Rebecca and Ted hate each other. Patricia works as a freelance web developer specializing in e-commerce sites. James maintains a large, organic vegetable garden year-round. All quiet persons are happy. Rebecca enjoys stand-up paddleboarding. At least one person in the room creates YouTube content. Rebecca hates Desiree, does not host regular workshops on creative writing and is curious. Everyone in the room is humble or does not maintain a large, organic vegetable garden year-round. Patricia and Erin like each other. Rebecca is the loudest in the room. Not everyone in the room creates YouTube content if and only if they practices urban gardening. James collects classic novels. If someone regularly contributes to tech forums and online communities then he/she is tall. Rebecca practices kickboxing, is an avid collector of autographed memorabilia from famous musicians and does not regularly contributes to tech forums and online communities. Rebecca is a Linux enthusiast. Patricia practices kickboxing.
Rebecca uses a Windows laptop.
entailment
room(james)&room(rebecca)&room(patricia)&(![X]:(room(X)=>(X='james'|X='rebecca'|X='patricia')))& ((~generous(patricia))<~>(enjoys_stand-up_paddleboarding(rebecca)))& ((generous(patricia)&generous(rebecca))<~>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(rebecca)))& (![X]:(tall(X)=>calm(X)))& (humble(patricia)&humble(james))& (![X]:(funny(X)=>humble(X)))& (![X]:(funny(X)=>old(X)))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(patricia))& (collects_classic_novels(rebecca))& (![X]:(old(X)=>generous(X)))& ((![X]:((quiet(X))<=>(strong(X)))))& (![X]:(room(X)=>(((does_not_practice_kickboxing(X))|(uses_a_Windows_laptop(X))))))& ((![X]:((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(patient(X)&strong(X)&person(X)))))& ((hate(rebecca,ted) & hate(ted,rebecca)))& (works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(patricia))& (maintains_a_large,_organic_vegetable_garden_year-round(james))& (![X]:(quiet(X)=>happy(X)))& (enjoys_stand-up_paddleboarding(rebecca))& (((?[X]:(room(X)&creates_YouTube_content(X)))))& (((hate(desiree,rebecca))&(does_not_host_regular_workshops_on_creative_writing(rebecca))&(curious(rebecca))))& (![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(humble(X))))))& ((like(patricia,erin) & like(erin,patricia)))& (![X]:((room(X)&(X!=rebecca))=>louder(X,rebecca)))& (~![X]:(room(X)=>(((creates_YouTube_content(X))<=>(practices_urban_gardening(X))))))& (collects_classic_novels(james))& ((![X]:((regularly_contributes_to_tech_forums_and_online_communities(X))=>(tall(X)))))& (((practices_kickboxing(rebecca))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(rebecca))&(does_not_regularly_contributes_to_tech_forums_and_online_communities(rebecca))))& (is_a_Linux_enthusiast(rebecca))& (practices_kickboxing(patricia))
room(james)&room(rebecca)&room(patricia)&(![X]:(room(X)=>(X='james'|X='rebecca'|X='patricia')))& uses_a_Windows_laptop(rebecca)
[ "p0", "p11", "p26", "hypothesis" ]
% SZS status Unsatisfiable for 5064371980025826364256680 % SZS output start Proof for 5064371980025826364256680 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 55. ! [X0] : (room(X0) => (predi(X0) | ~predn(X0))) [input p11] 70. ~preda(paul) & predb(paul) & predn(paul) [input p26] 73. ~(predi(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 75. ~preda(paul) & predn(paul) [pure predicate removal 70] 77. predn(paul) [pure predicate removal 75] 166. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 167. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 166] 169. ! [X0] : ((predi(X0) | ~predn(X0)) | ~room(X0)) [ennf transformation 55] 170. ! [X0] : (predi(X0) | ~predn(X0) | ~room(X0)) [flattening 169] 174. ~predi(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 73] 175. ~predi(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 174] 187. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 188. ~predi(paul) | (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 175,187] 271. room(mary) [cnf transformation 167] 272. room(paul) [cnf transformation 167] 273. room(fred) [cnf transformation 167] 274. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 167] 284. ~predn(X0) | predi(X0) | ~room(X0) [cnf transformation 170] 297. predn(paul) [cnf transformation 77] 299. ~predi(paul) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 300. ~predi(paul) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 301. ~predi(paul) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 302. ~predi(paul) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 335. ~predi(paul) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 302,273] 336. ~predi(paul) | fred != sK2 | ~room(mary) [subsumption resolution 335,272] 337. ~predi(paul) | fred != sK2 [subsumption resolution 336,271] 339. 7 <=> fred = sK2 [avatar definition] 341. fred != sK2 <- (~7) [avatar component clause 339] 343. 8 <=> predi(paul) [avatar definition] 346. ~7 | ~8 [avatar split clause 337,343,339] 347. ~predi(paul) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 301,273] 348. ~predi(paul) | paul != sK2 | ~room(mary) [subsumption resolution 347,272] 349. ~predi(paul) | paul != sK2 [subsumption resolution 348,271] 351. 9 <=> paul = sK2 [avatar definition] 353. paul != sK2 <- (~9) [avatar component clause 351] 354. ~9 | ~8 [avatar split clause 349,343,351] 355. ~predi(paul) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 300,273] 356. ~predi(paul) | mary != sK2 | ~room(mary) [subsumption resolution 355,272] 357. ~predi(paul) | mary != sK2 [subsumption resolution 356,271] 359. 10 <=> mary = sK2 [avatar definition] 361. mary != sK2 <- (~10) [avatar component clause 359] 362. ~10 | ~8 [avatar split clause 357,343,359] 363. ~predi(paul) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 299,273] 364. ~predi(paul) | room(sK2) | ~room(mary) [subsumption resolution 363,272] 365. ~predi(paul) | room(sK2) [subsumption resolution 364,271] 367. 11 <=> room(sK2) [avatar definition] 369. room(sK2) <- (11) [avatar component clause 367] 370. 11 | ~8 [avatar split clause 365,343,367] 371. predi(paul) | ~room(paul) [resolution 284,297] 377. predi(paul) [subsumption resolution 371,272] 378. 8 [avatar split clause 377,343] 469. paul = sK2 | mary = sK2 | fred = sK2 <- (11) [resolution 274,369] 496. mary = sK2 | fred = sK2 <- (~9, 11) [subsumption resolution 469,353] 497. fred = sK2 <- (~9, ~10, 11) [subsumption resolution 496,361] 498. $false <- (~7, ~9, ~10, 11) [subsumption resolution 497,341] 499. 7 | 9 | 10 | ~11 [avatar contradiction clause 498] 500. $false [avatar sat refutation 346,354,362,370,378,499] % SZS output end Proof for 5064371980025826364256680 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.216557
Barbara, William are the only persons in the room. "Someone in the room is a generous kind humble calm person" if "everyone anywhere is not a wise creative kind person". If "William is older than Louis" then "everyone in the room who neither is a creative person nor is not creative is brave". Everyone in the room who is quieter than Riley is richer than Riley. Everyone in the room who is older than Louis or is not a quiet happy kind person or both is older than Louis. Not everyone in the room who is older than Louis is richer than Louis. Barbara is richer than Riley. Everyone in the room is funny only if they is kind. Everyone outside the room is not a curious person if they is kind. William is richer than Louis. William is richer than Riley. Not everyone in the room who is wise either is richer than Riley or is not humble but not both. Everyone in the room is a quiet happy person. William is older than Louis or is not a quiet happy kind person or both. All tall persons are patient. Someone who is quieter than Louis is quieter than someone who is a patient person. Only one person in the room is quieter than Riley. Not everyone in the room is older than Riley only if they is a generous old person. William is a quiet tall humble person, is richer than Riley or is quieter than Louis. William is a quiet wise person and is not a brave person. Barbara is quieter than Riley. Everyone outside the room who is a tall patient person is a creative person. Everyone anywhere is richer than Riley if they is a creative person. Someone who is older than Louis is richer than someone who is older than Riley. Everyone in the room is a strong person, is quieter than Riley or is richer than Louis if they is richer than Louis. Someone in the room is a generous kind humble calm person.
Louis is older than William.
contradiction
room(barbara)&room(william)&(![X]:(room(X)=>(X='barbara'|X='william')))& ((![X]:(anywhere(X)=>(~(wise(X)&creative(X)&kind(X)&person(X)))))=>(?[X]:(room(X)&(generous(X)&kind(X)&humble(X)&calm(X)&person(X)))))& ((older(louis,william))=>(![X]:(room(X)=>(((~((creative(X)&person(X))|(~creative(X))))=>(brave(X)))))))& (![X]:(room(X)=>(((quieter(riley,X))=>(richer(riley,X))))))& (![X]:(room(X)=>(((((older(louis,X))|(~(quiet(X)&happy(X)&kind(X)&person(X)))))=>(older(louis,X))))))& (~![X]:(room(X)=>(((older(louis,X))=>(richer(louis,X))))))& (richer(riley,barbara))& (![X]:(room(X)=>(((kind(X))<=(funny(X))))))& (![X]:(~room(X)=>(((kind(X))=>(~(curious(X)&person(X)))))))& (richer(louis,william))& (richer(riley,william))& (~![X]:(room(X)=>(((wise(X))=>(((richer(riley,X))<~>(~humble(X))))))))& (![X]:(room(X)=>(quiet(X)&happy(X)&person(X))))& (((older(louis,william))|(~(quiet(william)&happy(william)&kind(william)&person(william)))))& (![X]:(tall(X)=>patient(X)))& (?[X,Y]:((quieter(louis,X))&(patient(Y)&person(Y))&(quieter(X,Y))))& (((?[X]:(room(X)&quieter(riley,X)))&(![X,Y]:((room(X)&room(Y)&(quieter(riley,X))&(quieter(riley,Y)))=>(X=Y)))))& (~![X]:(room(X)=>(((generous(X)&old(X)&person(X))<=(older(riley,X))))))& (((quiet(william)&tall(william)&humble(william)&person(william))|(richer(riley,william))|(quieter(louis,william))))& (((quiet(william)&wise(william)&person(william))&(~(brave(william)&person(william)))))& (quieter(riley,barbara))& (![X]:(~room(X)=>(((tall(X)&patient(X)&person(X))=>(creative(X)&person(X))))))& (![X]:(anywhere(X)=>(((creative(X)&person(X))=>(richer(riley,X))))))& (?[X,Y]:((older(louis,X))&(older(riley,Y))&(richer(X,Y))))& (![X]:(room(X)=>(((richer(louis,X))=>(((strong(X)&person(X))|(quieter(riley,X))|(richer(louis,X))))))))& (?[X]:(room(X)&(generous(X)&kind(X)&humble(X)&calm(X)&person(X))))
room(barbara)&room(william)&(![X]:(room(X)=>(X='barbara'|X='william')))& older(william,louis)
[ "b19", "b42", "p0", "p4", "p12", "p13", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 522408571718909928663106 % SZS output start Proof for 522408571718909928663106 20. ! [X0,X1] : (X0 != X1 => (older(X0,X1) => ~older(X1,X0))) [input b19] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => ((~(person(X0) & kind(X0) & happy(X0) & quiet(X0)) | older(alice,X0)) => older(alice,X0))) [input p4] 56. ! [X0] : (room(X0) => (person(X0) & happy(X0) & quiet(X0))) [input p12] 57. ~(person(paul) & kind(paul) & happy(paul) & quiet(paul)) | older(alice,paul) [input p13] 63. ~(person(paul) & brave(paul)) & person(paul) & wise(paul) & quiet(paul) [input p19] 70. older(paul,alice) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 80. ~(person(paul) & brave(paul)) & person(paul) & quiet(paul) [pure predicate removal 63] 110. ! [X0,X1] : ((~older(X1,X0) | ~older(X0,X1)) | X0 = X1) [ennf transformation 20] 111. ! [X0,X1] : (~older(X1,X0) | ~older(X0,X1) | X0 = X1) [flattening 110] 152. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 153. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 152] 160. ! [X0] : ((older(alice,X0) | ((person(X0) & kind(X0) & happy(X0) & quiet(X0)) & ~older(alice,X0))) | ~room(X0)) [ennf transformation 48] 161. ! [X0] : (older(alice,X0) | (person(X0) & kind(X0) & happy(X0) & quiet(X0) & ~older(alice,X0)) | ~room(X0)) [flattening 160] 165. ! [X0] : ((person(X0) & happy(X0) & quiet(X0)) | ~room(X0)) [ennf transformation 56] 166. (~person(paul) | ~kind(paul) | ~happy(paul) | ~quiet(paul)) | older(alice,paul) [ennf transformation 57] 167. ~person(paul) | ~kind(paul) | ~happy(paul) | ~quiet(paul) | older(alice,paul) [flattening 166] 173. (~person(paul) | ~brave(paul)) & person(paul) & quiet(paul) [ennf transformation 80] 180. older(paul,alice) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 70] 181. older(paul,alice) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 180] 223. ~older(X1,X0) | ~older(X0,X1) | X0 = X1 [cnf transformation 111] 265. paul != alice [cnf transformation 43] 289. room(paul) [cnf transformation 153] 306. older(alice,X0) | kind(X0) | ~room(X0) [cnf transformation 161] 318. ~room(X0) | happy(X0) [cnf transformation 165] 320. ~person(paul) | ~kind(paul) | ~happy(paul) | ~quiet(paul) | older(alice,paul) [cnf transformation 167] 336. quiet(paul) [cnf transformation 173] 337. person(paul) [cnf transformation 173] 355. older(paul,alice) [cnf transformation 181] 401. 10 <=> older(alice,paul) [avatar definition] 402. older(alice,paul) <- (10) [avatar component clause 401] 403. ~older(alice,paul) <- (~10) [avatar component clause 401] 419. 14 <=> quiet(paul) [avatar definition] 423. 15 <=> happy(paul) [avatar definition] 427. 16 <=> kind(paul) [avatar definition] 429. ~kind(paul) <- (~16) [avatar component clause 427] 431. 17 <=> person(paul) [avatar definition] 434. 10 | ~14 | ~15 | ~16 | ~17 [avatar split clause 320,431,427,423,419,401] 453. 17 [avatar split clause 337,431] 454. 14 [avatar split clause 336,419] 465. happy(paul) [resolution 318,289] 473. 15 [avatar split clause 465,423] 486. kind(paul) | ~room(paul) <- (~10) [resolution 306,403] 487. ~room(paul) <- (~10, ~16) [subsumption resolution 486,429] 488. $false <- (~10, ~16) [subsumption resolution 487,289] 489. 10 | 16 [avatar contradiction clause 488] 697. ~older(alice,paul) | paul = alice [resolution 223,355] 721. paul = alice <- (10) [subsumption resolution 697,402] 722. $false <- (10) [subsumption resolution 721,265] 723. ~10 [avatar contradiction clause 722] 724. $false [avatar sat refutation 434,453,454,473,489,723] % SZS output end Proof for 522408571718909928663106 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.042 s % ------------------------------ % ------------------------------
0.056586
David is the only person in the room. If “everyone in the room is a craft beer aficionado or does not drive a hybrid car” then “if someone regularly goes on multi-day backpacking trips in national parks then he/she mentors a youth basketball team on weekends” otherwise “David is a cybersecurity expert, does not enjoy bird watching or is a tea enthusiast”. If “everyone in the room does not travel domestically frequently or does not enjoy macrame” then “not everyone in the room who does not travel domestically frequently neither volunteers for local environmental conservation projects nor practices graffiti art”. If “everyone in the room does not enjoy logic puzzles or is a tea enthusiast” then “everyone in the room who drives a hybrid car does not own a smart tv”. “Everyone outside the room who does practice yoga does enjoy mountain biking” if “David collects vintage stamps or is an expert in identifying and foraging wild edible plants or both”. Not everyone in the room enjoys macrame or is not a scotch connoisseur. Everyone in the room who mentors a youth basketball team on weekends is not a scotch connoisseur.
David mentors a youth basketball team on weekends.
contradiction
room(david)&(![X]:(room(X)=>(X='david')))& (((![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))|(is_a_craft_beer_aficionado(X))))))=>((![X]:((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))&((~(![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))|(is_a_craft_beer_aficionado(X)))))))=>(((is_a_cybersecurity_expert(david))|(does_not_enjoy_bird_watching(david))|(is_a_tea_enthusiast(david))))))& ((![X]:(room(X)=>(((does_not_enjoy_macrame(X))|(does_not_travel_domestically_frequently(X))))))=>(~![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))=>(~((volunteers_for_local_environmental_conservation_projects(X))|(practices_graffiti_art(X)))))))))& ((![X]:(room(X)=>(((is_a_tea_enthusiast(X))|(does_not_enjoy_logic_puzzles(X))))))=>(![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(does_not_own_a_smart_tv(X)))))))& ((((collects_vintage_stamps(david))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(david))))=>(![X]:(~room(X)=>(((does_practice_yoga(X))=>(does_enjoy_mountain_biking(X)))))))& ((?[X]:(anywhere(X)&(((does_not_practice_yoga(X))|(drives_a_hybrid_car(X))))))=>(is_a_cybersecurity_expert(david)))& (((~![X]:(room(X)=>(((is_not_a_scotch_connoisseur(X))|(enjoys_macrame(X))))))=>(?[X]:(room(X)&(enjoys_bird_watching(X)))))&((~(~![X]:(room(X)=>(((is_not_a_scotch_connoisseur(X))|(enjoys_macrame(X)))))))=>(is_a_cybersecurity_expert(david))))& ((practices_graffiti_art(david))<=>(![X]:(anywhere(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(does_not_enjoy_mountain_biking(X)))))))& ((~?[X]:(~room(X)=>(((does_not_enjoy_bird_watching(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))=>(![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(((does_practice_yoga(X))&(mentors_a_youth_basketball_team_on_weekends(X))&(is_a_scotch_connoisseur(X)))))))))& ((![X]:(anywhere(X)=>(((does_not_write_poetry(X))|(writes_poetry(X))))))=>(is_a_cybersecurity_expert(david)))& (~![X]:(room(X)=>(((((is_an_avid_hiker(X))&(enjoys_origami(X))&(practices_calligraphy(X))))<=(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))& (does_not_drive_a_hybrid_car(david))& (![X]:(room(X)=>(((owns_a_smart_tv(X))=>(does_not_drive_a_hybrid_car(X))))))& (~![X]:(room(X)=>(((is_not_a_scotch_connoisseur(X))|(enjoys_macrame(X))))))& (![X]:(~room(X)=>(((((writes_poetry(X))|(does_not_write_poetry(X))))=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<~>(drives_a_hybrid_car(X))))))))& (?[X]:(room(X)&(enjoys_bird_watching(X))))& (![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(is_not_a_scotch_connoisseur(X))))))& (((enjoys_logic_puzzles(david))&(enjoys_bird_watching(david))))
room(david)&(![X]:(room(X)=>(X='david')))& mentors_a_youth_basketball_team_on_weekends(david)
[ "p0", "p13", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 5202696787999751893721160 % SZS output start Proof for 5202696787999751893721160 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 57. ~! [X0] : (room(X0) => (predu(X0) | ~predi(X0))) [input p13] 60. ! [X0] : (room(X0) => (prede(X0) => ~predi(X0))) [input p16] 62. prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 152. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 165. ? [X0] : ((~predu(X0) & predi(X0)) & room(X0)) [ennf transformation 57] 166. ? [X0] : (~predu(X0) & predi(X0) & room(X0)) [flattening 165] 169. ! [X0] : ((~predi(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 60] 170. ! [X0] : (~predi(X0) | ~prede(X0) | ~room(X0)) [flattening 169] 171. prede(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 62] 192. ? [X0] : (~predu(X0) & predi(X0) & room(X0)) => (~predu(sK7) & predi(sK7) & room(sK7)) [choice axiom] 193. ~predu(sK7) & predi(sK7) & room(sK7) [skolemisation 166,192] 278. room(mary) [cnf transformation 152] 279. ~room(X0) | mary = X0 [cnf transformation 152] 300. room(sK7) [cnf transformation 193] 301. predi(sK7) [cnf transformation 193] 309. ~predi(X0) | ~prede(X0) | ~room(X0) [cnf transformation 170] 313. prede(mary) [cnf transformation 171] 422. mary = sK7 [resolution 279,300] 429. predi(mary) [backward demodulation 301,422] 438. ~prede(mary) | ~room(mary) [resolution 309,429] 439. ~room(mary) [subsumption resolution 438,313] 440. $false [subsumption resolution 439,278] % SZS output end Proof for 5202696787999751893721160 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.00341
Edna is the only person in the room. If “Edna regularly contributes to tech forums and online communities, practices urban gardening and does enjoy mountain biking” then “Edna enjoys wildlife photography”. “It is not the case that “Edna is a client of Costco”” if “Edna plays the violin” and vice versa. If “Edna collects vintage vinyl records” then “Edna is an avid collector of autographed memorabilia from famous musicians”. Either “Edna enjoys bird watching” or “Edna collects modern art” but not both. If “Edna enjoys wildlife photography” then “Edna collects vintage vinyl records”. Edna is a client of Costco. Edna dreamt that “everyone in the room is a client of Costco if they frequently participates in hackathons and coding competitions”. Everyone in the room who enjoys bird watching competes in national level swimming championships. Everyone in the room is an avid collector of autographed memorabilia from famous musicians or does not own an Android phone. Everyone outside the room practices urban gardening if they enjoys bird watching. Edna owns an Android phone.
Edna regularly contributes to tech forums and online communities.
neutral
room(edna)&(![X]:(room(X)=>(X='edna')))& ((((regularly_contributes_to_tech_forums_and_online_communities(edna))&(practices_urban_gardening(edna))&(does_enjoy_mountain_biking(edna))))=>(enjoys_wildlife_photography(edna)))& ((plays_the_violin(edna))<=>(~(is_a_client_of_Costco(edna))))& ((collects_vintage_vinyl_records(edna))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(edna)))& ((enjoys_bird_watching(edna))<~>(collects_modern_art(edna)))& ((enjoys_wildlife_photography(edna))=>(collects_vintage_vinyl_records(edna)))& (is_a_client_of_Costco(edna))& ((edna_dream=>(![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(is_a_client_of_Costco(X))))))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))=>(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((does_not_own_an_Android_phone(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(~room(X)=>(((enjoys_bird_watching(X))=>(practices_urban_gardening(X))))))& (owns_an_Android_phone(edna))& (plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(edna))& ((![X]:((enjoys_kayaking(X))=>(((does_enjoy_mountain_biking(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))))& (collects_vintage_vinyl_records(edna))& (practices_kickboxing(edna))
room(edna)&(![X]:(room(X)=>(X='edna')))& regularly_contributes_to_tech_forums_and_online_communities(edna)
[]
null
0.662615
Eric, Denny are the only persons in the room. "Someone in the room likes Virginia" only if "not everyone in the room neither does not like Virginia nor likes Eleanore if they does not like Virginia, does not like Eleanore or is not liked by Frances". If "Denny is liked by Virginia" then "Denny likes Frances, does not like Frances and is not liked by Virginia" otherwise "Eric does not like Virginia, does not like Eleanore or is not liked by Frances". "Everyone in the room either does not like Virginia or does not like Frances but not both only if they is liked by Eleanore" if "Denny is not liked by Virginia". "Everyone in the room who is not liked by Frances or does not like Eleanore or both is not liked by Frances" unless "at least one person in the room is not liked by Frances". If "Eric and Denny do not like Frances" then "Denny does not like Frances". If "Frances and Denny like each other" then "Eric who is not liked by Eleanore either does not like Virginia or does not like Frances but not both" otherwise "someone in the room likes Frances". If "Eric is liked by Frances and does not like Virginia" then "Denny does not like Virginia, does not like Eleanore or is not liked by Frances". "Eric is not liked by Virginia" only if "someone who is not liked by Frances or does not like Eleanore or both like someone who does not like Virginia". Denny neither likes Eleanore nor is not liked by Frances. Everyone in the room is not liked by Frances if they does not like Virginia. Denny neither likes Eleanore nor is not liked by Eleanore.
Eric is not liked by Frances.
entailment
room(eric)&room(denny)&(![X]:(room(X)=>(X='eric'|X='denny')))& ((?[X]:(room(X)&(like(virginia,X))))=>(~![X]:(room(X)=>(((((~like(virginia,X))|(~like(eleanore,X))|(~like(X,frances))))=>(~((~like(virginia,X))|(like(eleanore,X)))))))))& (((like(denny,virginia))=>(((like(frances,denny))&(~like(frances,denny))&(~like(denny,virginia)))))&((~(like(denny,virginia)))=>(((~like(virginia,eric))|(~like(eleanore,eric))|(~like(eric,frances))))))& ((~like(denny,virginia))=>(![X]:(room(X)=>(((like(X,eleanore))<=(((~like(virginia,X))<~>(~like(frances,X)))))))))& (~(((?[X]:(room(X)&~like(X,frances)))))=>(![X]:(room(X)=>(((((~like(X,frances))|(~like(eleanore,X))))=>(~like(X,frances)))))))& ((~like(frances,eric)&~like(frances,denny))=>(~like(frances,denny)))& ((((like(frances,denny) & like(denny,frances)))=>((~like(eric,eleanore))&(((~like(virginia,eric))<~>(~like(frances,eric))))))&((~((like(frances,denny) & like(denny,frances))))=>(?[X]:(room(X)&(like(frances,X))))))& ((((like(eric,frances))&(~like(virginia,eric))))=>(((~like(virginia,denny))|(~like(eleanore,denny))|(~like(denny,frances)))))& ((~like(eric,virginia))=>(?[X,Y]:((((~like(X,frances))|(~like(eleanore,X))))&(~like(virginia,Y))&(like(X,Y)))))& ((((like(virginia,eric) & like(eric,virginia)))=>(like(eleanore,denny)))&((~((like(virginia,eric) & like(eric,virginia))))=>(![X]:(room(X)=>(((((~like(X,eleanore))&(like(X,virginia))))=>(((~like(X,frances))&(~like(frances,X))&(like(virginia,X))))))))))& (~((like(eleanore,denny))|(~like(denny,frances))))& (((?[X]:(room(X)&like(X,eleanore)))))& (![X]:(room(X)=>(((((~like(X,eleanore))&(like(X,virginia))))=>(((~like(X,frances))&(~like(frances,X))&(like(virginia,X))))))))& (![X]:(room(X)=>(((~like(virginia,X))=>(~like(X,frances))))))& (?[X]:(room(X)&(like(X,eleanore))))& (~((like(eleanore,denny))|(~like(denny,eleanore))))
room(eric)&room(denny)&(![X]:(room(X)=>(X='eric'|X='denny')))& ~like(eric,frances)
[ "p0", "p1", "p2", "p10", "p13", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 63355863811545955326457 % SZS output start Proof for 63355863811545955326457 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ? [X0] : (like(john,X0) & room(X0)) => ~! [X0] : (room(X0) => ((~like(X0,fred) | ~like(alice,X0) | ~like(john,X0)) => ~(like(alice,X0) | ~like(john,X0)))) [input p1] 46. (~like(paul,john) => (~like(mary,fred) | ~like(alice,mary) | ~like(john,mary))) & (like(paul,john) => (~like(paul,john) & ~like(fred,paul) & like(fred,paul))) [input p2] 54. ~(~like(paul,fred) | like(alice,paul)) [input p10] 57. ! [X0] : (room(X0) => (~like(john,X0) => ~like(X0,fred))) [input p13] 59. ~(~like(paul,alice) | like(alice,paul)) [input p15] 60. ~(~like(mary,fred) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 61. ? [X0] : (like(john,X0) & room(X0)) => ~! [X1] : (room(X1) => ((~like(X1,fred) | ~like(alice,X1) | ~like(john,X1)) => ~(like(alice,X1) | ~like(john,X1)))) [rectify 45] 135. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 136. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 135] 137. ? [X1] : (((like(alice,X1) | ~like(john,X1)) & (~like(X1,fred) | ~like(alice,X1) | ~like(john,X1))) & room(X1)) | ! [X0] : (~like(john,X0) | ~room(X0)) [ennf transformation 61] 138. ? [X1] : ((like(alice,X1) | ~like(john,X1)) & (~like(X1,fred) | ~like(alice,X1) | ~like(john,X1)) & room(X1)) | ! [X0] : (~like(john,X0) | ~room(X0)) [flattening 137] 139. ((~like(mary,fred) | ~like(alice,mary) | ~like(john,mary)) | like(paul,john)) & ((~like(paul,john) & ~like(fred,paul) & like(fred,paul)) | ~like(paul,john)) [ennf transformation 46] 140. (~like(mary,fred) | ~like(alice,mary) | ~like(john,mary) | like(paul,john)) & ((~like(paul,john) & ~like(fred,paul) & like(fred,paul)) | ~like(paul,john)) [flattening 139] 154. like(paul,fred) & ~like(alice,paul) [ennf transformation 54] 157. ! [X0] : ((~like(X0,fred) | like(john,X0)) | ~room(X0)) [ennf transformation 57] 158. ! [X0] : (~like(X0,fred) | like(john,X0) | ~room(X0)) [flattening 157] 159. like(paul,alice) & ~like(alice,paul) [ennf transformation 59] 160. like(mary,fred) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 60] 161. like(mary,fred) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 160] 163. ? [X0] : ((like(alice,X0) | ~like(john,X0)) & (~like(X0,fred) | ~like(alice,X0) | ~like(john,X0)) & room(X0)) | ! [X1] : (~like(john,X1) | ~room(X1)) [rectify 138] 164. ? [X0] : ((like(alice,X0) | ~like(john,X0)) & (~like(X0,fred) | ~like(alice,X0) | ~like(john,X0)) & room(X0)) => ((like(alice,sK0) | ~like(john,sK0)) & (~like(sK0,fred) | ~like(alice,sK0) | ~like(john,sK0)) & room(sK0)) [choice axiom] 165. ((like(alice,sK0) | ~like(john,sK0)) & (~like(sK0,fred) | ~like(alice,sK0) | ~like(john,sK0)) & room(sK0)) | ! [X1] : (~like(john,X1) | ~room(X1)) [skolemisation 163,164] 180. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 181. like(mary,fred) | (paul != sK7 & mary != sK7 & room(sK7)) | ~room(paul) | ~room(mary) [skolemisation 161,180] 262. room(mary) [cnf transformation 136] 263. room(paul) [cnf transformation 136] 264. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 136] 265. room(sK0) | ~like(john,X1) | ~room(X1) [cnf transformation 165] 267. like(alice,sK0) | ~like(john,sK0) | ~like(john,X1) | ~room(X1) [cnf transformation 165] 270. ~like(paul,john) | ~like(paul,john) [cnf transformation 140] 271. ~like(mary,fred) | ~like(alice,mary) | ~like(john,mary) | like(paul,john) [cnf transformation 140] 298. like(paul,fred) [cnf transformation 154] 304. ~like(X0,fred) | like(john,X0) | ~room(X0) [cnf transformation 158] 307. ~like(alice,paul) [cnf transformation 159] 309. like(mary,fred) | room(sK7) | ~room(paul) | ~room(mary) [cnf transformation 181] 310. like(mary,fred) | mary != sK7 | ~room(paul) | ~room(mary) [cnf transformation 181] 311. like(mary,fred) | paul != sK7 | ~room(paul) | ~room(mary) [cnf transformation 181] 312. ~like(paul,john) [duplicate literal removal 270] 314. 1 <=> ! [X1] : (~like(john,X1) | ~room(X1)) [avatar definition] 315. ~like(john,X1) | ~room(X1) <- (1) [avatar component clause 314] 317. 2 <=> like(john,sK0) [avatar definition] 319. ~like(john,sK0) <- (~2) [avatar component clause 317] 321. 3 <=> like(alice,sK0) [avatar definition] 323. like(alice,sK0) <- (3) [avatar component clause 321] 324. 1 | ~2 | 3 [avatar split clause 267,321,317,314] 331. 5 <=> room(sK0) [avatar definition] 333. room(sK0) <- (5) [avatar component clause 331] 334. 1 | 5 [avatar split clause 265,331,314] 336. 6 <=> like(paul,john) [avatar definition] 340. 7 <=> like(john,mary) [avatar definition] 341. like(john,mary) <- (7) [avatar component clause 340] 344. 8 <=> like(alice,mary) [avatar definition] 346. ~like(alice,mary) <- (~8) [avatar component clause 344] 348. 9 <=> like(mary,fred) [avatar definition] 349. like(mary,fred) <- (9) [avatar component clause 348] 351. 6 | ~7 | ~8 | ~9 [avatar split clause 271,348,344,340,336] 352. ~6 [avatar split clause 312,336] 381. 16 <=> like(paul,fred) [avatar definition] 383. like(paul,fred) <- (16) [avatar component clause 381] 408. 21 <=> like(john,paul) [avatar definition] 409. like(john,paul) <- (21) [avatar component clause 408] 412. 22 <=> like(alice,paul) [avatar definition] 414. ~like(alice,paul) <- (~22) [avatar component clause 412] 455. 16 [avatar split clause 298,381] 460. ~22 [avatar split clause 307,412] 461. like(mary,fred) | paul != sK7 | ~room(mary) [subsumption resolution 311,263] 462. like(mary,fred) | paul != sK7 [subsumption resolution 461,262] 464. 31 <=> paul = sK7 [avatar definition] 466. paul != sK7 <- (~31) [avatar component clause 464] 467. ~31 | 9 [avatar split clause 462,348,464] 468. like(mary,fred) | mary != sK7 | ~room(mary) [subsumption resolution 310,263] 469. like(mary,fred) | mary != sK7 [subsumption resolution 468,262] 471. 32 <=> mary = sK7 [avatar definition] 474. ~32 | 9 [avatar split clause 469,348,471] 475. like(mary,fred) | room(sK7) | ~room(mary) [subsumption resolution 309,263] 476. like(mary,fred) | room(sK7) [subsumption resolution 475,262] 478. 33 <=> room(sK7) [avatar definition] 480. room(sK7) <- (33) [avatar component clause 478] 481. 33 | 9 [avatar split clause 476,348,478] 484. mary = sK0 | paul = sK0 <- (5) [resolution 264,333] 489. 34 <=> paul = sK0 [avatar definition] 491. paul = sK0 <- (34) [avatar component clause 489] 493. 35 <=> mary = sK0 [avatar definition] 495. mary = sK0 <- (35) [avatar component clause 493] 496. 34 | 35 | ~5 [avatar split clause 484,331,493,489] 528. like(john,mary) | ~room(mary) <- (9) [resolution 304,349] 529. like(john,paul) | ~room(paul) <- (16) [resolution 304,383] 533. like(john,paul) <- (16) [subsumption resolution 529,263] 534. 21 | ~16 [avatar split clause 533,381,408] 535. like(john,mary) <- (9) [subsumption resolution 528,262] 536. 7 | ~9 [avatar split clause 535,348,340] 537. ~room(mary) <- (1, 7) [resolution 341,315] 538. $false <- (1, 7) [subsumption resolution 537,262] 539. ~1 | ~7 [avatar contradiction clause 538] 540. mary = sK7 | paul = sK7 <- (33) [resolution 480,264] 544. mary = sK7 <- (~31, 33) [subsumption resolution 540,466] 545. 32 | 31 | ~33 [avatar split clause 544,478,464,471] 546. ~like(john,paul) <- (~2, 34) [backward demodulation 319,491] 547. $false <- (~2, 21, 34) [subsumption resolution 546,409] 548. 2 | ~21 | ~34 [avatar contradiction clause 547] 555. like(alice,paul) <- (3, 34) [forward demodulation 323,491] 556. $false <- (3, ~22, 34) [subsumption resolution 555,414] 557. ~3 | 22 | ~34 [avatar contradiction clause 556] 561. like(alice,mary) <- (3, 35) [backward demodulation 323,495] 565. $false <- (3, ~8, 35) [subsumption resolution 561,346] 566. ~3 | 8 | ~35 [avatar contradiction clause 565] 570. ~like(john,mary) <- (~2, 35) [forward demodulation 319,495] 571. $false <- (~2, 7, 35) [subsumption resolution 570,341] 572. 2 | ~7 | ~35 [avatar contradiction clause 571] 573. $false [avatar sat refutation 324,334,351,352,455,460,467,474,481,496,534,536,539,545,548,557,566,572] % SZS output end Proof for 63355863811545955326457 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0
Carol, Stephen, Anita, Amy, Amy are the only persons in the room. If Amy participates in long-distance cycling events across the country then Amy practices archery otherwise everyone in the room who regularly contributes to tech forums and online communities is a drone photographer. Not everyone in the room hosts regular workshops on creative writing if they writes and illustrates their own graphic novels unless Amy owns a high-end gaming PC with custom-built components. Everyone in the room who does not regularly goes on multi-day backpacking trips in national parks neither is not a cybersecurity expert nor enjoys landscape photography if everyone in the room does not regularly goes on multi-day backpacking trips in national parks or does not make homemade pastries. If Carol owns a smart tv then Carol collects vintage vinyl records. If Carol collects vintage vinyl records then everyone in the room who regularly contributes to tech forums and online communities owns a high-end gaming PC with custom-built components. If Carol neither collects classic novels nor owns a high-end gaming PC with custom-built components then everyone in the room regularly goes on multi-day backpacking trips in national parks or does not collect classic novels. If at least one person in the room regularly goes on multi-day backpacking trips in national parks then not everyone in the room does not own a high-end gaming PC with custom-built components if they owns a high-end gaming PC with custom-built components otherwise Anita regularly contributes to tech forums and online communities. If everyone anywhere is not a coffee connoisseur or does not host regular workshops on creative writing then everyone anywhere hosts regular workshops on creative writing or practices calligraphy or both. If everyone anywhere hosts regular workshops on creative writing or practices calligraphy or both then if someone practices calligraphy then he/she is a coffee connoisseur. If at least one person in the room either does not write in-depth travel guides for off-the-beaten-path destinations or enjoys landscape photography but not both then at least one person in the room travels domestically frequently. If at least one person in the room travels domestically frequently then everyone in the room is a drone photographer if they enjoys kayaking and exploring remote waterways.
Anita does not regularly contributes to tech forums and online communities.
entailment
room(carol)&room(stephen)&room(anita)&room(amy)&room(amy)&(![X]:(room(X)=>(X='carol'|X='stephen'|X='anita'|X='amy'|X='amy')))& (((participates_in_long-distance_cycling_events_across_the_country(amy))=>(practices_archery(amy)))&((~(participates_in_long-distance_cycling_events_across_the_country(amy)))=>(![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(is_a_drone_photographer(X))))))))& (~(owns_a_high-end_gaming_PC_with_custom-built_components(amy))=>(~![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(hosts_regular_workshops_on_creative_writing(X)))))))& ((![X]:(room(X)=>(((does_not_make_homemade_pastries(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))=>(![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(~((is_not_a_cybersecurity_expert(X))|(enjoys_landscape_photography(X)))))))))& (((owns_a_smart_tv(carol))=>(collects_vintage_vinyl_records(carol)))& ((collects_vintage_vinyl_records(carol))=>(![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))))& ((~((collects_classic_novels(carol))|(owns_a_high-end_gaming_PC_with_custom-built_components(carol))))=>(![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))))& (((((?[X]:(room(X)&regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))=>(~![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X)))))))&((~(((?[X]:(room(X)&regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))=>(regularly_contributes_to_tech_forums_and_online_communities(anita))))& (((![X]:(anywhere(X)=>(((does_not_host_regular_workshops_on_creative_writing(X))|(is_not_a_coffee_connoisseur(X))))))=>(![X]:(anywhere(X)=>(((hosts_regular_workshops_on_creative_writing(X))|(practices_calligraphy(X)))))))& ((![X]:(anywhere(X)=>(((hosts_regular_workshops_on_creative_writing(X))|(practices_calligraphy(X))))))=>((![X]:((practices_calligraphy(X))=>(is_a_coffee_connoisseur(X)))))))& (((((?[X]:(room(X)&((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<~>(enjoys_landscape_photography(X)))))))=>(((?[X]:(room(X)&travels_domestically_frequently(X))))))& ((((?[X]:(room(X)&travels_domestically_frequently(X)))))=>(![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(is_a_drone_photographer(X))))))))& (~(owns_a_smart_tv(amy)))& (~((enjoys_landscape_photography(stephen))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(stephen))))& ((regularly_contributes_to_tech_forums_and_online_communities(carol))&(collects_vintage_vinyl_records(carol)))& (![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(((makes_homemade_pastries(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(is_a_drone_photographer(X))))))& (~![X]:(room(X)=>(((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))|(makes_homemade_pastries(X))))))& (~((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(carol))|(writes_and_illustrates_their_own_graphic_novels(carol))))& (does_not_own_a_high-end_gaming_PC_with_custom-built_components(anita))& (![X]:(anywhere(X)=>(((does_not_practice_calligraphy(X))=>(travels_domestically_frequently(X))))))
room(carol)&room(stephen)&room(anita)&room(amy)&room(amy)&(![X]:(room(X)=>(X='carol'|X='stephen'|X='anita'|X='amy'|X='amy')))& does_not_regularly_contributes_to_tech_forums_and_online_communities(anita)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 5609315737568095585435258 % SZS output start Proof for 5609315737568095585435258 44. ! [X0] : (anywhere(X0) => (~predq(X0) => predd(X0))) & ~predw(fred) & ~(predh(mary) | ~predz(mary)) & ~! [X0] : (room(X0) => (predr(X0) | ~predw(X0))) & ! [X0] : (room(X0) => (predp(X0) => predg(X0))) & ! [X0] : (room(X0) => (predk(X0) => (predl(X0) | predc(X0) | predr(X0)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & ~preda(alice) & (? [X0] : (predd(X0) & room(X0)) => ! [X0] : (room(X0) => (predp(X0) => predg(X0)))) & (? [X0] : ((~predl(X0) <~> predb(X0)) & room(X0)) => ? [X0] : (predd(X0) & room(X0))) & (! [X0] : (anywhere(X0) => (predq(X0) | preds(X0))) => ! [X0] : (predq(X0) => predo(X0))) & (! [X0] : (anywhere(X0) => (~predo(X0) | ~preds(X0))) => ! [X0] : (anywhere(X0) => (predq(X0) | preds(X0)))) & (~? [X0] : (predk(X0) & room(X0)) => predc(fred)) & (? [X0] : (predk(X0) & room(X0)) => ~! [X0] : (room(X0) => (predw(X0) => ~predw(X0)))) & (~(predw(mary) | predm(mary)) => ! [X0] : (room(X0) => (predk(X0) | ~predm(X0)))) & (predy(mary) => ! [X0] : (room(X0) => (predc(X0) => predw(X0)))) & (preda(mary) => predy(mary)) & (! [X0] : (room(X0) => (~predk(X0) | ~predr(X0))) => ! [X0] : (room(X0) => (~predk(X0) => ~(predb(X0) | ~predf(X0))))) & (~predw(john) => ~! [X0] : (room(X0) => (predh(X0) => preds(X0)))) & (~predu(alice) => ! [X0] : (room(X0) => (predc(X0) => predg(X0)))) & (predu(alice) => predn(john)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(~predc(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (anywhere(X0) => (~predq(X0) => predd(X0))) & ~predw(fred) & ~(predh(mary) | ~predz(mary)) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X2] : (room(X2) => (predp(X2) => predg(X2))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & ~preda(alice) & (? [X4] : (predd(X4) & room(X4)) => ! [X5] : (room(X5) => (predp(X5) => predg(X5)))) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : (predd(X7) & room(X7))) & (! [X8] : (anywhere(X8) => (predq(X8) | preds(X8))) => ! [X9] : (predq(X9) => predo(X9))) & (! [X10] : (anywhere(X10) => (~predo(X10) | ~preds(X10))) => ! [X11] : (anywhere(X11) => (predq(X11) | preds(X11)))) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (preda(mary) => predy(mary)) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~(predb(X18) | ~predf(X18))))) & (~predw(john) => ~! [X19] : (room(X19) => (predh(X19) => preds(X19)))) & (~predu(alice) => ! [X20] : (room(X20) => (predc(X20) => predg(X20)))) & (predu(alice) => predn(john)) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (anywhere(X0) => (~predq(X0) => predd(X0))) & ~predw(fred) & ~predh(mary) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X2] : (room(X2) => (predp(X2) => predg(X2))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & ~preda(alice) & (? [X4] : (predd(X4) & room(X4)) => ! [X5] : (room(X5) => (predp(X5) => predg(X5)))) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : (predd(X7) & room(X7))) & (! [X8] : (anywhere(X8) => (predq(X8) | preds(X8))) => ! [X9] : (predq(X9) => predo(X9))) & (! [X10] : (anywhere(X10) => (~predo(X10) | ~preds(X10))) => ! [X11] : (anywhere(X11) => (predq(X11) | preds(X11)))) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (preda(mary) => predy(mary)) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~(predb(X18) | ~predf(X18))))) & (~predw(john) => ~! [X19] : (room(X19) => (predh(X19) => preds(X19)))) & (~predu(alice) => ! [X20] : (room(X20) => (predc(X20) => predg(X20)))) & (predu(alice) => predn(john)) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X0] : (anywhere(X0) => (~predq(X0) => predd(X0))) & ~predw(fred) & ~predh(mary) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & ~preda(alice) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : (predd(X7) & room(X7))) & (! [X8] : (anywhere(X8) => (predq(X8) | preds(X8))) => ! [X9] : (predq(X9) => predo(X9))) & (! [X10] : (anywhere(X10) => (~predo(X10) | ~preds(X10))) => ! [X11] : (anywhere(X11) => (predq(X11) | preds(X11)))) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (preda(mary) => predy(mary)) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~(predb(X18) | ~predf(X18))))) & (~predw(john) => ~! [X19] : (room(X19) => (predh(X19) => preds(X19)))) & (~predu(alice) => ! [X20] : (room(X20) => (predc(X20) => predg(X20)))) & (predu(alice) => predn(john)) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ~predw(fred) & ~predh(mary) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & ~preda(alice) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : room(X7)) & (! [X8] : (anywhere(X8) => (predq(X8) | preds(X8))) => ! [X9] : (predq(X9) => predo(X9))) & (! [X10] : (anywhere(X10) => (~predo(X10) | ~preds(X10))) => ! [X11] : (anywhere(X11) => (predq(X11) | preds(X11)))) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (preda(mary) => predy(mary)) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~(predb(X18) | ~predf(X18))))) & (~predw(john) => ~! [X19] : (room(X19) => (predh(X19) => preds(X19)))) & (~predu(alice) => ! [X20] : (room(X20) => (predc(X20) => predg(X20)))) & (predu(alice) => predn(john)) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ~predw(fred) & ~predh(mary) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & ~preda(alice) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : room(X7)) & (! [X10] : (anywhere(X10) => ~preds(X10)) => ! [X11] : (anywhere(X11) => (predq(X11) | preds(X11)))) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (preda(mary) => predy(mary)) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~(predb(X18) | ~predf(X18))))) & (~predw(john) => ~! [X19] : (room(X19) => (predh(X19) => preds(X19)))) & (~predu(alice) => ! [X20] : (room(X20) => (predc(X20) => predg(X20)))) & (predu(alice) => predn(john)) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ~predw(fred) & ~predh(mary) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & ~preda(alice) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : room(X7)) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (preda(mary) => predy(mary)) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~(predb(X18) | ~predf(X18))))) & (~predw(john) => ~! [X19] : (room(X19) => (predh(X19) => preds(X19)))) & (~predu(alice) => ! [X20] : (room(X20) => (predc(X20) => predg(X20)))) & (predu(alice) => predn(john)) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. ~predw(fred) & ~predh(mary) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & ~preda(alice) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : room(X7)) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (preda(mary) => predy(mary)) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~(predb(X18) | ~predf(X18))))) & (~predw(john) => ~! [X19] : (room(X19) => ~predh(X19))) & (~predu(alice) => ! [X20] : (room(X20) => (predc(X20) => predg(X20)))) & (predu(alice) => predn(john)) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 54. ~predw(fred) & ~predh(mary) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : room(X7)) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~(predb(X18) | ~predf(X18))))) & (~predw(john) => ~! [X19] : (room(X19) => ~predh(X19))) & (~predu(alice) => ! [X20] : (room(X20) => (predc(X20) => predg(X20)))) & (predu(alice) => predn(john)) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 55. ~predw(fred) & ~predh(mary) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : room(X7)) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~predb(X18)))) & (~predw(john) => ~! [X19] : (room(X19) => ~predh(X19))) & (~predu(alice) => ! [X20] : (room(X20) => (predc(X20) => predg(X20)))) & (predu(alice) => predn(john)) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 56. ~predw(fred) & ~predh(mary) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : room(X7)) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~predb(X18)))) & (~predw(john) => ~! [X19] : (room(X19) => ~predh(X19))) & (predu(alice) => predn(john)) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 55] 57. ~predw(fred) & ~predh(mary) & ~! [X1] : (room(X1) => (predr(X1) | ~predw(X1))) & ! [X3] : (room(X3) => (predk(X3) => (predl(X3) | predc(X3) | predr(X3)))) & predy(mary) & predc(mary) & ~(predk(paul) | predb(paul)) & (? [X6] : ((~predl(X6) <~> predb(X6)) & room(X6)) => ? [X7] : room(X7)) & (~? [X12] : (predk(X12) & room(X12)) => predc(fred)) & (? [X13] : (predk(X13) & room(X13)) => ~! [X14] : (room(X14) => (predw(X14) => ~predw(X14)))) & (~(predw(mary) | predm(mary)) => ! [X15] : (room(X15) => (predk(X15) | ~predm(X15)))) & (predy(mary) => ! [X16] : (room(X16) => (predc(X16) => predw(X16)))) & (! [X17] : (room(X17) => (~predk(X17) | ~predr(X17))) => ! [X18] : (room(X18) => (~predk(X18) => ~predb(X18)))) & (~predw(john) => ~! [X19] : (room(X19) => ~predh(X19))) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 56] 129. ~predw(fred) & ~predh(mary) & ? [X1] : ((~predr(X1) & predw(X1)) & room(X1)) & ! [X3] : (((predl(X3) | predc(X3) | predr(X3)) | ~predk(X3)) | ~room(X3)) & predy(mary) & predc(mary) & (~predk(paul) & ~predb(paul)) & (? [X7] : room(X7) | ! [X6] : ((~predl(X6) <=> predb(X6)) | ~room(X6))) & (predc(fred) | ? [X12] : (predk(X12) & room(X12))) & (? [X14] : ((predw(X14) & predw(X14)) & room(X14)) | ! [X13] : (~predk(X13) | ~room(X13))) & (! [X15] : ((predk(X15) | ~predm(X15)) | ~room(X15)) | (predw(mary) | predm(mary))) & (! [X16] : ((predw(X16) | ~predc(X16)) | ~room(X16)) | ~predy(mary)) & (! [X18] : ((~predb(X18) | predk(X18)) | ~room(X18)) | ? [X17] : ((predk(X17) & predr(X17)) & room(X17))) & (? [X19] : (predh(X19) & room(X19)) | predw(john)) & ! [X21] : ((john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21) | ~room(X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 57] 130. ~predw(fred) & ~predh(mary) & ? [X1] : (~predr(X1) & predw(X1) & room(X1)) & ! [X3] : (predl(X3) | predc(X3) | predr(X3) | ~predk(X3) | ~room(X3)) & predy(mary) & predc(mary) & ~predk(paul) & ~predb(paul) & (? [X7] : room(X7) | ! [X6] : ((~predl(X6) <=> predb(X6)) | ~room(X6))) & (predc(fred) | ? [X12] : (predk(X12) & room(X12))) & (? [X14] : (predw(X14) & predw(X14) & room(X14)) | ! [X13] : (~predk(X13) | ~room(X13))) & (! [X15] : (predk(X15) | ~predm(X15) | ~room(X15)) | predw(mary) | predm(mary)) & (! [X16] : (predw(X16) | ~predc(X16) | ~room(X16)) | ~predy(mary)) & (! [X18] : (~predb(X18) | predk(X18) | ~room(X18)) | ? [X17] : (predk(X17) & predr(X17) & room(X17))) & (? [X19] : (predh(X19) & room(X19)) | predw(john)) & ! [X21] : (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21 | ~room(X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 129] 131. predc(fred) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 132. predc(fred) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 131] 134. ~predw(fred) & ~predh(mary) & ? [X1] : (~predr(X1) & predw(X1) & room(X1)) & ! [X3] : (predl(X3) | predc(X3) | predr(X3) | ~predk(X3) | ~room(X3)) & predy(mary) & predc(mary) & ~predk(paul) & ~predb(paul) & (? [X7] : room(X7) | ! [X6] : (((~predl(X6) | ~predb(X6)) & (predb(X6) | predl(X6))) | ~room(X6))) & (predc(fred) | ? [X12] : (predk(X12) & room(X12))) & (? [X14] : (predw(X14) & predw(X14) & room(X14)) | ! [X13] : (~predk(X13) | ~room(X13))) & (! [X15] : (predk(X15) | ~predm(X15) | ~room(X15)) | predw(mary) | predm(mary)) & (! [X16] : (predw(X16) | ~predc(X16) | ~room(X16)) | ~predy(mary)) & (! [X18] : (~predb(X18) | predk(X18) | ~room(X18)) | ? [X17] : (predk(X17) & predr(X17) & room(X17))) & (? [X19] : (predh(X19) & room(X19)) | predw(john)) & ! [X21] : (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21 | ~room(X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 130] 135. ~predw(fred) & ~predh(mary) & ? [X0] : (~predr(X0) & predw(X0) & room(X0)) & ! [X1] : (predl(X1) | predc(X1) | predr(X1) | ~predk(X1) | ~room(X1)) & predy(mary) & predc(mary) & ~predk(paul) & ~predb(paul) & (? [X2] : room(X2) | ! [X3] : (((~predl(X3) | ~predb(X3)) & (predb(X3) | predl(X3))) | ~room(X3))) & (predc(fred) | ? [X4] : (predk(X4) & room(X4))) & (? [X5] : (predw(X5) & predw(X5) & room(X5)) | ! [X6] : (~predk(X6) | ~room(X6))) & (! [X7] : (predk(X7) | ~predm(X7) | ~room(X7)) | predw(mary) | predm(mary)) & (! [X8] : (predw(X8) | ~predc(X8) | ~room(X8)) | ~predy(mary)) & (! [X9] : (~predb(X9) | predk(X9) | ~room(X9)) | ? [X10] : (predk(X10) & predr(X10) & room(X10))) & (? [X11] : (predh(X11) & room(X11)) | predw(john)) & ! [X12] : (john = X12 | alice = X12 | fred = X12 | paul = X12 | mary = X12 | ~room(X12)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 134] 136. ? [X0] : (~predr(X0) & predw(X0) & room(X0)) => (~predr(sK0) & predw(sK0) & room(sK0)) [choice axiom] 137. ? [X2] : room(X2) => room(sK1) [choice axiom] 138. ? [X4] : (predk(X4) & room(X4)) => (predk(sK2) & room(sK2)) [choice axiom] 139. ? [X5] : (predw(X5) & predw(X5) & room(X5)) => (predw(sK3) & predw(sK3) & room(sK3)) [choice axiom] 140. ? [X10] : (predk(X10) & predr(X10) & room(X10)) => (predk(sK4) & predr(sK4) & room(sK4)) [choice axiom] 141. ? [X11] : (predh(X11) & room(X11)) => (predh(sK5) & room(sK5)) [choice axiom] 142. ~predw(fred) & ~predh(mary) & (~predr(sK0) & predw(sK0) & room(sK0)) & ! [X1] : (predl(X1) | predc(X1) | predr(X1) | ~predk(X1) | ~room(X1)) & predy(mary) & predc(mary) & ~predk(paul) & ~predb(paul) & (room(sK1) | ! [X3] : (((~predl(X3) | ~predb(X3)) & (predb(X3) | predl(X3))) | ~room(X3))) & (predc(fred) | (predk(sK2) & room(sK2))) & ((predw(sK3) & predw(sK3) & room(sK3)) | ! [X6] : (~predk(X6) | ~room(X6))) & (! [X7] : (predk(X7) | ~predm(X7) | ~room(X7)) | predw(mary) | predm(mary)) & (! [X8] : (predw(X8) | ~predc(X8) | ~room(X8)) | ~predy(mary)) & (! [X9] : (~predb(X9) | predk(X9) | ~room(X9)) | (predk(sK4) & predr(sK4) & room(sK4))) & ((predh(sK5) & room(sK5)) | predw(john)) & ! [X12] : (john = X12 | alice = X12 | fred = X12 | paul = X12 | mary = X12 | ~room(X12)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 135,141,140,139,138,137,136] 143. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK6 & alice != sK6 & fred != sK6 & paul != sK6 & mary != sK6 & room(sK6)) [choice axiom] 144. predc(fred) | (john != sK6 & alice != sK6 & fred != sK6 & paul != sK6 & mary != sK6 & room(sK6)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 132,143] 225. room(mary) [cnf transformation 142] 226. room(paul) [cnf transformation 142] 227. room(fred) [cnf transformation 142] 228. room(alice) [cnf transformation 142] 229. room(john) [cnf transformation 142] 230. ~room(X12) | alice = X12 | fred = X12 | paul = X12 | mary = X12 | john = X12 [cnf transformation 142] 236. predw(X8) | ~predc(X8) | ~room(X8) | ~predy(mary) [cnf transformation 142] 248. predy(mary) [cnf transformation 142] 254. ~predw(fred) [cnf transformation 142] 255. predc(fred) | room(sK6) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 256. predc(fred) | mary != sK6 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 257. predc(fred) | paul != sK6 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 258. predc(fred) | fred != sK6 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 259. predc(fred) | alice != sK6 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 260. predc(fred) | john != sK6 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 278. 5 <=> predc(fred) [avatar definition] 280. predc(fred) <- (5) [avatar component clause 278] 313. ~predc(X8) | predw(X8) | ~room(X8) [subsumption resolution 236,248] 346. predc(fred) | john != sK6 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 260,229] 347. predc(fred) | john != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 346,228] 348. predc(fred) | john != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 347,227] 349. predc(fred) | john != sK6 | ~room(mary) [subsumption resolution 348,226] 350. predc(fred) | john != sK6 [subsumption resolution 349,225] 352. 20 <=> john = sK6 [avatar definition] 354. john != sK6 <- (~20) [avatar component clause 352] 355. ~20 | 5 [avatar split clause 350,278,352] 356. predc(fred) | alice != sK6 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 259,229] 357. predc(fred) | alice != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 356,228] 358. predc(fred) | alice != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 357,227] 359. predc(fred) | alice != sK6 | ~room(mary) [subsumption resolution 358,226] 360. predc(fred) | alice != sK6 [subsumption resolution 359,225] 362. 21 <=> alice = sK6 [avatar definition] 364. alice != sK6 <- (~21) [avatar component clause 362] 365. ~21 | 5 [avatar split clause 360,278,362] 366. predc(fred) | fred != sK6 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 258,229] 367. predc(fred) | fred != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 366,228] 368. predc(fred) | fred != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 367,227] 369. predc(fred) | fred != sK6 | ~room(mary) [subsumption resolution 368,226] 370. predc(fred) | fred != sK6 [subsumption resolution 369,225] 372. 22 <=> fred = sK6 [avatar definition] 374. fred != sK6 <- (~22) [avatar component clause 372] 375. ~22 | 5 [avatar split clause 370,278,372] 376. predc(fred) | paul != sK6 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 257,229] 377. predc(fred) | paul != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 376,228] 378. predc(fred) | paul != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 377,227] 379. predc(fred) | paul != sK6 | ~room(mary) [subsumption resolution 378,226] 380. predc(fred) | paul != sK6 [subsumption resolution 379,225] 382. 23 <=> paul = sK6 [avatar definition] 384. paul != sK6 <- (~23) [avatar component clause 382] 385. ~23 | 5 [avatar split clause 380,278,382] 386. predc(fred) | mary != sK6 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 256,229] 387. predc(fred) | mary != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 386,228] 388. predc(fred) | mary != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 387,227] 389. predc(fred) | mary != sK6 | ~room(mary) [subsumption resolution 388,226] 390. predc(fred) | mary != sK6 [subsumption resolution 389,225] 392. 24 <=> mary = sK6 [avatar definition] 394. mary != sK6 <- (~24) [avatar component clause 392] 395. ~24 | 5 [avatar split clause 390,278,392] 396. predc(fred) | room(sK6) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 255,229] 397. predc(fred) | room(sK6) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 396,228] 398. predc(fred) | room(sK6) | ~room(paul) | ~room(mary) [subsumption resolution 397,227] 399. predc(fred) | room(sK6) | ~room(mary) [subsumption resolution 398,226] 400. predc(fred) | room(sK6) [subsumption resolution 399,225] 402. 25 <=> room(sK6) [avatar definition] 404. room(sK6) <- (25) [avatar component clause 402] 405. 25 | 5 [avatar split clause 400,278,402] 407. predw(fred) | ~room(fred) <- (5) [resolution 313,280] 410. ~room(fred) <- (5) [subsumption resolution 407,254] 411. $false <- (5) [subsumption resolution 410,227] 412. ~5 [avatar contradiction clause 411] 476. alice = sK6 | fred = sK6 | paul = sK6 | mary = sK6 | john = sK6 <- (25) [resolution 230,404] 561. fred = sK6 | paul = sK6 | mary = sK6 | john = sK6 <- (~21, 25) [subsumption resolution 476,364] 562. paul = sK6 | mary = sK6 | john = sK6 <- (~21, ~22, 25) [subsumption resolution 561,374] 563. mary = sK6 | john = sK6 <- (~21, ~22, ~23, 25) [subsumption resolution 562,384] 564. john = sK6 <- (~21, ~22, ~23, ~24, 25) [subsumption resolution 563,394] 565. $false <- (~20, ~21, ~22, ~23, ~24, 25) [subsumption resolution 564,354] 566. 20 | 21 | 22 | 23 | 24 | ~25 [avatar contradiction clause 565] 567. $false [avatar sat refutation 355,365,375,385,395,405,412,566] % SZS output end Proof for 5609315737568095585435258 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.049306
Reba is the only person in the room. Reba plays eSports competitively. Reba writes in-depth travel guides for off-the-beaten-path destinations. Someone anywhere is a cybersecurity expert, enjoys origami and practices zumba. Everyone in the room plays eSports competitively if they enjoys origami, writes in-depth travel guides for off-the-beaten-path destinations and does not write in-depth travel guides for off-the-beaten-path destinations. Reba enjoys origami. Reba practices zumba. Only one person in the room does not enjoy origami, practices zumba or practices graffiti art. Reba is a cybersecurity expert. Everyone in the room who enjoys origami writes in-depth travel guides for off-the-beaten-path destinations. Reba writes in-depth travel guides for off-the-beaten-path destinations or is not a cybersecurity expert or both. Everyone in the room enjoys origami if they plays eSports competitively and vice versa. Someone in the room plays eSports competitively.
Not everyone in the room practices graffiti art.
neutral
room(reba)&(![X]:(room(X)=>(X='reba')))& (plays_eSports_competitively(reba))& (writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(reba))& (?[X]:(anywhere(X)&(((is_a_cybersecurity_expert(X))&(enjoys_origami(X))&(practices_zumba(X))))))& (![X]:(room(X)=>(((((enjoys_origami(X))&(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))=>(plays_eSports_competitively(X))))))& (enjoys_origami(reba))& (practices_zumba(reba))& (((?[X]:(room(X)&((does_not_enjoy_origami(X))|(practices_zumba(X))|(practices_graffiti_art(X)))))&(![X,Y]:((room(X)&room(Y)&(((does_not_enjoy_origami(X))|(practices_zumba(X))|(practices_graffiti_art(X))))&(((does_not_enjoy_origami(Y))|(practices_zumba(Y))|(practices_graffiti_art(Y)))))=>(X=Y)))))& (is_a_cybersecurity_expert(reba))& (![X]:(room(X)=>(((enjoys_origami(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(reba))|(is_not_a_cybersecurity_expert(reba))))& (![X]:(room(X)=>(((enjoys_origami(X))<=>(plays_eSports_competitively(X))))))& (?[X]:(room(X)&(plays_eSports_competitively(X))))
room(reba)&(![X]:(room(X)=>(X='reba')))& ~![X]:(room(X)=>(practices_graffiti_art(X)))
[]
null
0.1671
Joseph, Elizabeth are the only persons in the room. Joseph is a skilled home brewer experimenting with craft beer recipes if it is not the case that Joseph does not collect rare and antique scientific instruments. If it is not the case that Joseph is an enthusiastic bird watcher who travels for rare sightings then Joseph collects rare minerals. If Joseph is a culinary enthusiast who experiments with international cuisines then Joseph is a skilled home brewer experimenting with craft beer recipes. If Joseph practices calligraphy then it is not the case that Joseph does not enjoy stargazing. Joseph enjoys writing detailed reviews of new and classic board games. If someone enjoys making ceramics then he/she is a cybersecurity expert. Joseph collects rare and antique scientific instruments. Joseph is a culinary enthusiast who experiments with international cuisines. Joseph is a skilled home brewer experimenting with craft beer recipes. It is not the case that Joseph enjoys windsurfing.
Joseph collects rare minerals.
neutral
room(joseph)&room(elizabeth)&(![X]:(room(X)=>(X='joseph'|X='elizabeth')))& ((~(does_not_collect_rare_and_antique_scientific_instruments(joseph)))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(joseph)))& ((~(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(joseph)))=>(collects_rare_minerals(joseph)))& ((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(joseph))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(joseph)))& ((practices_calligraphy(joseph))=>(~(does_not_enjoy_stargazing(joseph))))& (enjoys_writing_detailed_reviews_of_new_and_classic_board_games(joseph))& ((![X]:((enjoys_making_ceramics(X))=>(is_a_cybersecurity_expert(X)))))& (collects_rare_and_antique_scientific_instruments(joseph))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(joseph))& (is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(joseph))& (~(enjoys_windsurfing(joseph)))& (practices_kickboxing(joseph))& (enjoys_stand-up_paddleboarding(joseph))& (enjoys_making_ceramics(joseph))& (practices_calligraphy(joseph))& (is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(joseph))
room(joseph)&room(elizabeth)&(![X]:(room(X)=>(X='joseph'|X='elizabeth')))& collects_rare_minerals(joseph)
[]
null
0.528388
Adam is the only person in the room. Everyone in the room owns a telescope. Everyone in the room neither is a night owl nor does not own a 3D printer if they hosts regular game nights featuring complex strategy games. Everyone in the room does not practice urban gardening or hosts a YouTube channel dedicated to art tutorials. If someone owns a smart tv then he/she hosts regular game nights featuring complex strategy games and vice versa. If someone is a Linux enthusiast then he/she owns a microscope. Everyone in the room does not mentor a youth basketball team on weekends. If someone hosts regular game nights featuring complex strategy games then he/she owns a microscope and vice versa. If someone is a tea enthusiast then he/she does enjoy trail running and has a saltwater aquarium and vice versa. Everyone in the room collects vintage stamps. If someone owns a 3D printer then he/she is not a dedicated advocate for digital privacy and encryption. Someone in the room does enjoy trail running.
Not everyone in the room collects vintage stamps.
contradiction
room(adam)&(![X]:(room(X)=>(X='adam')))& (![X]:(room(X)=>(owns_a_telescope(X))))& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(~((is_a_night_owl(X))|(does_not_own_a_3D_printer(X))))))))& (![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(does_not_practice_urban_gardening(X))))))& ((![X]:((owns_a_smart_tv(X))<=>(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))& ((![X]:((is_a_Linux_enthusiast(X))=>(owns_a_microscope(X)))))& (![X]:(room(X)=>(does_not_mentor_a_youth_basketball_team_on_weekends(X))))& ((![X]:((hosts_regular_game_nights_featuring_complex_strategy_games(X))<=>(owns_a_microscope(X)))))& ((![X]:((is_a_tea_enthusiast(X))<=>(((does_enjoy_trail_running(X))&(has_a_saltwater_aquarium(X)))))))& (![X]:(room(X)=>(collects_vintage_stamps(X))))& ((![X]:((owns_a_3D_printer(X))=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))& (?[X]:(room(X)&(does_enjoy_trail_running(X))))
room(adam)&(![X]:(room(X)=>(X='adam')))& ~![X]:(room(X)=>(collects_vintage_stamps(X)))
[ "p9", "hypothesis" ]
% SZS status Unsatisfiable for 386999346085807562512696 % SZS output start Proof for 386999346085807562512696 53. ! [X0] : (room(X0) => predd(X0)) [input p9] 56. ~! [X0] : (room(X0) => predd(X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 57. ~! [X0] : (room(X0) => predd(X0)) & ! [X1] : (room(X1) => mary = X1) & room(mary) [rectify 56] 141. ! [X0] : (predd(X0) | ~room(X0)) [ennf transformation 53] 142. ? [X0] : (~predd(X0) & room(X0)) & ! [X1] : (mary = X1 | ~room(X1)) & room(mary) [ennf transformation 57] 146. ? [X0] : (~predd(X0) & room(X0)) => (~predd(sK1) & room(sK1)) [choice axiom] 147. (~predd(sK1) & room(sK1)) & ! [X1] : (mary = X1 | ~room(X1)) & room(mary) [skolemisation 142,146] 230. ~room(X0) | predd(X0) [cnf transformation 141] 234. room(sK1) [cnf transformation 147] 235. ~predd(sK1) [cnf transformation 147] 238. predd(sK1) [resolution 230,234] 239. $false [subsumption resolution 238,235] % SZS output end Proof for 386999346085807562512696 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.579175
Elizabeth, Cristobal, Frank are the only persons in the room. “Cristobal enjoys virtual reality gaming” if “Cristobal enjoys kayaking and does not enjoy kayaking”. “Elizabeth practices archery and has a piercing” only if “everyone anywhere enjoys virtual reality gaming if they enjoys rooftop gardening and does not own a smartwatch”. Everyone in the room who enjoys virtual reality gaming collect rare sneakers. Everyone in the room who collect rare sneakers enjoys virtual reality gaming. Everyone in the room does not have a piercing or enjoys virtual reality gaming. Everyone in the room enjoys virtual reality gaming or does not work as a freelance web developer specializing in e-commerce sites. At least one person in the room practices archery. Someone anywhere enjoys virtual reality gaming. Everyone anywhere enjoys virtual reality gaming if they enjoys rooftop gardening and does not own a smartwatch. If someone does not collect rare sneakers then he/she works as a freelance web developer specializing in e-commerce sites. Not everyone in the room is a professional photographer specializing in portrait photography if they collect rare sneakers and practices archery. More than one person anywhere is a craft beer aficionado. Cristobal enjoys rooftop gardening and does not own a smartwatch. Everyone in the room who practices archery has a piercing. Everyone in the room enjoys virtual reality gaming if they owns a smartwatch. Everyone in the room enjoys virtual reality gaming only if they is a craft beer aficionado. Everyone outside the room who does not practice yoga works as a freelance web developer specializing in e-commerce sites. Only one person outside the room does practice yoga.
Elizabeth practices archery.
neutral
room(elizabeth)&room(cristobal)&room(frank)&(![X]:(room(X)=>(X='elizabeth'|X='cristobal'|X='frank')))& ((((enjoys_kayaking(cristobal))&(does_not_enjoy_kayaking(cristobal))))=>(enjoys_virtual_reality_gaming(cristobal)))& ((((practices_archery(elizabeth))&(has_a_piercing(elizabeth))))=>(![X]:(anywhere(X)=>(((((enjoys_rooftop_gardening(X))&(does_not_own_a_smartwatch(X))))=>(enjoys_virtual_reality_gaming(X)))))))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(collect_rare_sneakers(X))))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(enjoys_virtual_reality_gaming(X))))))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))|(does_not_have_a_piercing(X))))))& (![X]:(room(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(enjoys_virtual_reality_gaming(X))))))& (((?[X]:(room(X)&practices_archery(X)))))& (?[X]:(anywhere(X)&(enjoys_virtual_reality_gaming(X))))& (![X]:(anywhere(X)=>(((((enjoys_rooftop_gardening(X))&(does_not_own_a_smartwatch(X))))=>(enjoys_virtual_reality_gaming(X))))))& ((![X]:((does_not_collect_rare_sneakers(X))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X)))))& (~![X]:(room(X)=>(((((collect_rare_sneakers(X))&(practices_archery(X))))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(is_a_craft_beer_aficionado(X)&is_a_craft_beer_aficionado(Y))&(X!=Y))))& (((enjoys_rooftop_gardening(cristobal))&(does_not_own_a_smartwatch(cristobal))))& (![X]:(room(X)=>(((practices_archery(X))=>(has_a_piercing(X))))))& (![X]:(room(X)=>(((owns_a_smartwatch(X))=>(enjoys_virtual_reality_gaming(X))))))& (![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))<=(enjoys_virtual_reality_gaming(X))))))& (![X]:(~room(X)=>(((does_not_practice_yoga(X))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (((?[X]:(~room(X)&does_practice_yoga(X)))&(![X,Y]:((~room(X)&~room(Y)&(does_practice_yoga(X))&(does_practice_yoga(Y)))=>(X=Y)))))
room(elizabeth)&room(cristobal)&room(frank)&(![X]:(room(X)=>(X='elizabeth'|X='cristobal'|X='frank')))& practices_archery(elizabeth)
[]
null
0.000541
Julie, Rosemary, Daniel, Kathy are the only persons in the room. If “Julie does not enjoy origami” then “Rosemary either does practice yoga or designs and sews custom cosplay costumes for conventions but not both”. “Everyone in the room is a coffee connoisseur” if “Kathy can play the flute”. If “everyone in the room enjoys origami or does not collect classic novels” then “only one person in the room collects classic novels” otherwise “everyone in the room who plays the drums, practices tai chi or practices urban gardening is a coffee connoisseur”. Everyone anywhere designs and sews custom cosplay costumes for conventions if they is a coffee connoisseur. Rosemary is a coffee connoisseur. Rosemary can play the flute. Everyone in the room who either plays the drums or practices tai chi but not both does practice yoga. Everyone in the room does not collect classic novels if they hosts regular workshops on creative writing. Everyone in the room who does not collect classic novels does not design and sews custom cosplay costumes for conventions. Daniel is an active member of a local robotics club. It is not the case that “Julie is a coffee connoisseur”. Everyone in the room who does practice yoga can play the flute. Rosemary does not own a high-end gaming PC with custom-built components. Julie owns a high-end gaming PC with custom-built components. Everyone in the room who is a scotch connoisseur does not host regular workshops on creative writing.
Kathy does practice yoga.
contradiction
room(julie)&room(rosemary)&room(daniel)&room(kathy)&(![X]:(room(X)=>(X='julie'|X='rosemary'|X='daniel'|X='kathy')))& ((does_not_enjoy_origami(julie))=>(((does_practice_yoga(rosemary))<~>(designs_and_sews_custom_cosplay_costumes_for_conventions(rosemary)))))& ((can_play_the_flute(kathy))=>(![X]:(room(X)=>(is_a_coffee_connoisseur(X)))))& (((![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(enjoys_origami(X))))))=>(((?[X]:(room(X)&collects_classic_novels(X)))&(![X,Y]:((room(X)&room(Y)&(collects_classic_novels(X))&(collects_classic_novels(Y)))=>(X=Y))))))&((~(![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(enjoys_origami(X)))))))=>(![X]:(room(X)=>(((((plays_the_drums(X))|(practices_tai_chi(X))|(practices_urban_gardening(X))))=>(is_a_coffee_connoisseur(X))))))))& (![X]:(anywhere(X)=>(((is_a_coffee_connoisseur(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (is_a_coffee_connoisseur(rosemary))& (can_play_the_flute(rosemary))& (![X]:(room(X)=>(((((plays_the_drums(X))<~>(practices_tai_chi(X))))=>(does_practice_yoga(X))))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(does_not_collect_classic_novels(X))))))& (![X]:(room(X)=>(((does_not_collect_classic_novels(X))=>(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (is_an_active_member_of_a_local_robotics_club(daniel))& (~(is_a_coffee_connoisseur(julie)))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(can_play_the_flute(X))))))& (does_not_own_a_high-end_gaming_PC_with_custom-built_components(rosemary))& (owns_a_high-end_gaming_PC_with_custom-built_components(julie))& (![X]:(room(X)=>(((is_a_scotch_connoisseur(X))=>(does_not_host_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (![X]:(anywhere(X)=>(((is_a_scotch_connoisseur(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))<=>(does_enjoy_mountain_biking(X))))))& (is_a_scotch_connoisseur(julie))& (![X]:(room(X)=>(((((plays_the_drums(X))|(practices_tai_chi(X))|(practices_urban_gardening(X))))=>(is_a_coffee_connoisseur(X))))))
room(julie)&room(rosemary)&room(daniel)&room(kathy)&(![X]:(room(X)=>(X='julie'|X='rosemary'|X='daniel'|X='kathy')))& does_practice_yoga(kathy)
[ "p0", "p2", "p11", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 5297561320045594380363090 % SZS output start Proof for 5297561320045594380363090 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. predm(alice) => ! [X0] : (room(X0) => predi(X0)) [input p2] 55. ~predi(mary) [input p11] 56. ! [X0] : (room(X0) => (predj(X0) => predm(X0))) [input p12] 65. predj(alice) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 143. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 144. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 143] 146. ! [X0] : (predi(X0) | ~room(X0)) | ~predm(alice) [ennf transformation 46] 155. ! [X0] : ((predm(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 56] 156. ! [X0] : (predm(X0) | ~predj(X0) | ~room(X0)) [flattening 155] 164. predj(alice) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 65] 165. predj(alice) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 164] 260. room(mary) [cnf transformation 144] 263. room(alice) [cnf transformation 144] 267. predi(X0) | ~room(X0) | ~predm(alice) [cnf transformation 146] 282. ~predi(mary) [cnf transformation 55] 283. ~predj(X0) | predm(X0) | ~room(X0) [cnf transformation 156] 298. predj(alice) [cnf transformation 165] 314. 4 <=> predm(alice) [avatar definition] 318. 5 <=> ! [X0] : (predi(X0) | ~room(X0)) [avatar definition] 319. ~room(X0) | predi(X0) <- (5) [avatar component clause 318] 320. ~4 | 5 [avatar split clause 267,318,314] 376. predm(alice) | ~room(alice) [resolution 283,298] 381. predm(alice) [subsumption resolution 376,263] 382. 4 [avatar split clause 381,314] 383. predi(mary) <- (5) [resolution 319,260] 388. $false <- (5) [subsumption resolution 383,282] 389. ~5 [avatar contradiction clause 388] 390. $false [avatar sat refutation 320,382,389] % SZS output end Proof for 5297561320045594380363090 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.027 s % ------------------------------ % ------------------------------
0.431244
There is a room. “More than one person in the room is an amateur astronomer who builds and uses custom telescopes” if “everyone in the room does not create YouTube content or practices tai chi”. “Everyone in the room who does not own a 3D printer owns a microscope” if “not everyone anywhere does not own a 3D printer or writes a travel blog”. “At least one person in the room plays the drums” only if “everyone in the room who practices tai chi works on fridays”.
Everyone in the room plays the drums.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((practices_tai_chi(X))|(does_not_create_YouTube_content(X))))))=>((?[X,Y]:(room(X)&room(Y)&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)&is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(Y))&(X!=Y)))))& ((~![X]:(anywhere(X)=>(((writes_a_travel_blog(X))|(does_not_own_a_3D_printer(X))))))=>(![X]:(room(X)=>(((does_not_own_a_3D_printer(X))=>(owns_a_microscope(X)))))))& ((((?[X]:(room(X)&plays_the_drums(X)))))=>(![X]:(room(X)=>(((practices_tai_chi(X))=>(works_on_fridays(X)))))))& ((![X]:(room(X)=>(((does_not_own_a_microscope(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))<~>(![X]:(room(X)=>(((does_not_work_on_fridays(X))|(plays_the_drums(X)))))))& ((~?[X]:(~room(X)=>(((does_not_collect_antique_jewelry(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))=>(![X]:(room(X)=>(((works_on_fridays(X))=>(is_right-handed(X)))))))& ((![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))|(does_not_own_a_3D_printer(X))))))=>((![X]:((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(((enjoys_kayaking(X))<~>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))))& ((~![X]:(room(X)=>(((enjoys_kayaking(X))|(does_not_own_a_3D_printer(X))))))=>(![X]:(room(X)=>(((does_not_own_a_3D_printer(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X)))))))& ((![X]:(anywhere(X)=>(((collects_rare_minerals(X))|(does_not_own_a_3D_printer(X))))))<=>(![X]:(room(X)=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))|(enjoys_kayaking(X)))))))& (![X]:(room(X)=>(((enjoys_watercolor_painting(X))<=(enjoys_kayaking(X))))))& (~?[X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (![X]:(room(X)=>(((does_not_own_a_3D_printer(X))=>(owns_a_microscope(X))))))& (![X]:(~room(X)=>(((collects_rare_minerals(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (~![X]:(room(X)=>(((writes_a_travel_blog(X))=>(collects_antique_jewelry(X))))))& ((tom_dream=>(![X]:(anywhere(X)=>(((collects_antique_jewelry(X))=>(((creates_YouTube_content(X))&(collects_antique_jewelry(X))))))))))& ((![X]:((owns_a_microscope(X))=>(owns_a_3D_printer(X)))))& (![X]:(~room(X)=>(((enjoys_watercolor_painting(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (~(((?[X]:(anywhere(X)&((writes_a_travel_blog(X))<~>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))))& ((![X]:((has_a_vast_collection_of_first-edition_science_fiction_novels(X))<=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X)))))& (![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))
(there_is_a_room)& ![X]:(room(X)=>(plays_the_drums(X)))
[]
null
0.584657
Klara, Elizabeth, Aaron are the only persons in the room. Klara is not quiet. Elizabeth and Aaron are respectively patient and happy. Klara either is older than Paul or is not a curious creative person but not both. Not everyone outside the room is older than Paul if they either is a happy person or is not a old patient creative kind person but not both. Klara who either is a happy person or is not a old patient creative kind person but not both is richer than Paul. Elizabeth is a funny calm person. All kind persons are happy. Aaron is not tall. Elizabeth is not happy. Everyone in the room who is not a kind strong generous person, is not brave and is not a generous old person is older than Paul. If someone is quieter than Paul then he/she is older than Paul, is richer than Paul and is quieter than Paul. Elizabeth is richer than Paul. Everyone in the room who is not a old person is a brave person. It is not the case that “Aaron is a calm person”. Only one person in the room is a patient generous person. Everyone in the room who is a patient person is wise. Everyone in the room is brave or is a tall patient creative person or both only if they is quieter than Paul. If someone is older than Paul then he/she is curious, is richer than Paul and is older than Paul. If someone is patient then he/she is curious. It is not the case that “Klara is older than Paul”. Everyone in the room is curious if they is quieter than Paul. Elizabeth neither is older than Paul nor is quieter than Paul. Only one person anywhere is not a kind strong generous person, is not brave and is not a generous old person. Elizabeth who is not a strong person is a patient wise person. Aaron is richer than Paul. All curious persons are creative.
Elizabeth is tall, is old or is quiet.
entailment
room(klara)&room(elizabeth)&room(aaron)&(![X]:(room(X)=>(X='klara'|X='elizabeth'|X='aaron')))& (~quiet(klara))& ((patient(elizabeth))&(happy(aaron)))& (((older(paul,klara))<~>(~(curious(klara)&creative(klara)&person(klara)))))& (~![X]:(~room(X)=>(((((happy(X)&person(X))<~>(~(old(X)&patient(X)&creative(X)&kind(X)&person(X)))))=>(older(paul,X))))))& ((((happy(klara)&person(klara))<~>(~(old(klara)&patient(klara)&creative(klara)&kind(klara)&person(klara)))))&(richer(paul,klara)))& (funny(elizabeth)&calm(elizabeth)&person(elizabeth))& (![X]:(kind(X)=>happy(X)))& (~tall(aaron))& (~happy(elizabeth))& (![X]:(room(X)=>(((((~(kind(X)&strong(X)&generous(X)&person(X)))&(~brave(X))&(~(generous(X)&old(X)&person(X)))))=>(older(paul,X))))))& ((![X]:((quieter(paul,X))=>(((older(paul,X))&(richer(paul,X))&(quieter(paul,X)))))))& (richer(paul,elizabeth))& (![X]:(room(X)=>(((~(old(X)&person(X)))=>(brave(X)&person(X))))))& (~(calm(aaron)&person(aaron)))& (((?[X]:(room(X)&patient(X)&generous(X)&person(X)))&(![X,Y]:((room(X)&room(Y)&(patient(X)&generous(X)&person(X))&(patient(Y)&generous(Y)&person(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((patient(X)&person(X))=>(wise(X))))))& (![X]:(room(X)=>(((quieter(paul,X))<=(((brave(X))|(tall(X)&patient(X)&creative(X)&person(X))))))))& ((![X]:((older(paul,X))=>(((curious(X))&(richer(paul,X))&(older(paul,X)))))))& ((![X]:((patient(X))=>(curious(X)))))& (~(older(paul,klara)))& (![X]:(room(X)=>(((quieter(paul,X))=>(curious(X))))))& (~((older(paul,elizabeth))|(quieter(paul,elizabeth))))& (((?[X]:(anywhere(X)&((~(kind(X)&strong(X)&generous(X)&person(X)))&(~brave(X))&(~(generous(X)&old(X)&person(X))))))&(![X,Y]:((anywhere(X)&anywhere(Y)&(((~(kind(X)&strong(X)&generous(X)&person(X)))&(~brave(X))&(~(generous(X)&old(X)&person(X)))))&(((~(kind(Y)&strong(Y)&generous(Y)&person(Y)))&(~brave(Y))&(~(generous(Y)&old(Y)&person(Y))))))=>(X=Y)))))& ((~(strong(elizabeth)&person(elizabeth)))&(patient(elizabeth)&wise(elizabeth)&person(elizabeth)))& (richer(paul,aaron))& (![X]:(curious(X)=>creative(X)))
room(klara)&room(elizabeth)&room(aaron)&(![X]:(room(X)=>(X='klara'|X='elizabeth'|X='aaron')))& ((tall(elizabeth))|(old(elizabeth))|(quiet(elizabeth)))
[ "p0", "p13", "p17", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 2039790591945017277591142 % SZS output start Proof for 2039790591945017277591142 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 57. ! [X0] : (room(X0) => (~(person(X0) & old(X0)) => (person(X0) & brave(X0)))) [input p13] 61. ! [X0] : (room(X0) => (((person(X0) & creative(X0) & patient(X0) & tall(X0)) | brave(X0)) => quieter(alice,X0))) [input p17] 66. ~(quieter(alice,paul) | older(alice,paul)) [input p22] 71. ~((quiet(paul) | old(paul) | tall(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 76. ~((quiet(paul) | old(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [pure predicate removal 71] 78. ! [X0] : (room(X0) => (brave(X0) => quieter(alice,X0))) [pure predicate removal 61] 151. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 152. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 151] 161. ! [X0] : (((person(X0) & brave(X0)) | (person(X0) & old(X0))) | ~room(X0)) [ennf transformation 57] 162. ! [X0] : ((person(X0) & brave(X0)) | (person(X0) & old(X0)) | ~room(X0)) [flattening 161] 166. ! [X0] : ((quieter(alice,X0) | ~brave(X0)) | ~room(X0)) [ennf transformation 78] 167. ! [X0] : (quieter(alice,X0) | ~brave(X0) | ~room(X0)) [flattening 166] 172. ~quieter(alice,paul) & ~older(alice,paul) [ennf transformation 66] 177. (~quiet(paul) & ~old(paul)) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 76] 178. (~quiet(paul) & ~old(paul)) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 177] 211. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom] 212. (~quiet(paul) & ~old(paul)) | (fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 178,211] 294. room(mary) [cnf transformation 152] 295. room(paul) [cnf transformation 152] 296. room(fred) [cnf transformation 152] 297. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 152] 341. ~room(X0) | old(X0) | brave(X0) [cnf transformation 162] 351. quieter(alice,X0) | ~brave(X0) | ~room(X0) [cnf transformation 167] 359. ~quieter(alice,paul) [cnf transformation 172] 383. ~old(paul) | room(sK9) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 212] 384. ~old(paul) | mary != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 212] 385. ~old(paul) | paul != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 212] 386. ~old(paul) | fred != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 212] 504. 20 <=> fred = sK9 [avatar definition] 506. fred != sK9 <- (~20) [avatar component clause 504] 516. 22 <=> paul = sK9 [avatar definition] 518. paul != sK9 <- (~22) [avatar component clause 516] 524. 23 <=> mary = sK9 [avatar definition] 526. mary != sK9 <- (~23) [avatar component clause 524] 532. 24 <=> room(sK9) [avatar definition] 534. room(sK9) <- (24) [avatar component clause 532] 536. ~old(paul) | fred != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 386,296] 537. ~old(paul) | fred != sK9 | ~room(mary) [subsumption resolution 536,295] 538. ~old(paul) | fred != sK9 [subsumption resolution 537,294] 540. 25 <=> old(paul) [avatar definition] 543. ~20 | ~25 [avatar split clause 538,540,504] 544. ~old(paul) | paul != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 385,296] 545. ~old(paul) | paul != sK9 | ~room(mary) [subsumption resolution 544,295] 546. ~old(paul) | paul != sK9 [subsumption resolution 545,294] 547. ~22 | ~25 [avatar split clause 546,540,516] 548. ~old(paul) | mary != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 384,296] 549. ~old(paul) | mary != sK9 | ~room(mary) [subsumption resolution 548,295] 550. ~old(paul) | mary != sK9 [subsumption resolution 549,294] 551. ~23 | ~25 [avatar split clause 550,540,524] 552. ~old(paul) | room(sK9) | ~room(paul) | ~room(mary) [subsumption resolution 383,296] 553. ~old(paul) | room(sK9) | ~room(mary) [subsumption resolution 552,295] 554. ~old(paul) | room(sK9) [subsumption resolution 553,294] 555. 24 | ~25 [avatar split clause 554,540,532] 578. old(paul) | brave(paul) [resolution 341,295] 605. ~brave(paul) | ~room(paul) [resolution 351,359] 611. ~brave(paul) [subsumption resolution 605,295] 612. old(paul) [subsumption resolution 578,611] 613. 25 [avatar split clause 612,540] 848. paul = sK9 | mary = sK9 | fred = sK9 <- (24) [resolution 297,534] 862. mary = sK9 | fred = sK9 <- (~22, 24) [subsumption resolution 848,518] 863. fred = sK9 <- (~22, ~23, 24) [subsumption resolution 862,526] 864. $false <- (~20, ~22, ~23, 24) [subsumption resolution 863,506] 865. 20 | 22 | 23 | ~24 [avatar contradiction clause 864] 866. $false [avatar sat refutation 543,547,551,555,613,865] % SZS output end Proof for 2039790591945017277591142 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.136242
Tasha, Irene are the only persons in the room. “No one in the room is not a coffee connoisseur or does not play eSports competitively” only if “Tasha participates in long-distance cycling events across the country”. “Tasha does practice yoga and plays eSports competitively” unless “everyone in the room is a culinary enthusiast who experiments with international cuisines”. Only one person in the room is a culinary enthusiast who experiments with international cuisines. Irene practices kickboxing. Irene owns a high-end gaming PC with custom-built components. Everyone outside the room who designs and sews custom cosplay costumes for conventions watches fantasy movies. Everyone in the room does not play the violin if they watches fantasy movies. It is not the case that “Irene does not compete in national level swimming championships”. Tasha designs and sews custom cosplay costumes for conventions. Irene does not play eSports competitively. Irene practices archery. If someone has a specialized collection of handmade artisan pottery then he/she is a coffee connoisseur and vice versa. Everyone in the room does not enjoy skydiving if they practices kickboxing and enjoys skydiving. If someone plays the violin then he/she drives a hybrid car. Only one person anywhere does not play eSports competitively. Tasha watches fantasy movies. Everyone in the room is a night owl.
Everyone in the room does not practice kickboxing or competes in national level swimming championships.
neutral
room(tasha)&room(irene)&(![X]:(room(X)=>(X='tasha'|X='irene')))& ((~?[X]:(room(X)=>(((does_not_play_eSports_competitively(X))|(is_not_a_coffee_connoisseur(X))))))=>(participates_in_long-distance_cycling_events_across_the_country(tasha)))& (~(![X]:(room(X)=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))=>(((does_practice_yoga(tasha))&(plays_eSports_competitively(tasha)))))& (((?[X]:(room(X)&is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(Y)))=>(X=Y)))))& (practices_kickboxing(irene))& (owns_a_high-end_gaming_PC_with_custom-built_components(irene))& (![X]:(~room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(watches_fantasy_movies(X))))))& (![X]:(room(X)=>(((watches_fantasy_movies(X))=>(does_not_play_the_violin(X))))))& (~(does_not_compete_in_national_level_swimming_championships(irene)))& (designs_and_sews_custom_cosplay_costumes_for_conventions(tasha))& (does_not_play_eSports_competitively(irene))& (practices_archery(irene))& ((![X]:((has_a_specialized_collection_of_handmade_artisan_pottery(X))<=>(is_a_coffee_connoisseur(X)))))& (![X]:(room(X)=>(((((practices_kickboxing(X))&(enjoys_skydiving(X))))=>(does_not_enjoy_skydiving(X))))))& ((![X]:((plays_the_violin(X))=>(drives_a_hybrid_car(X)))))& (((?[X]:(anywhere(X)&does_not_play_eSports_competitively(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(does_not_play_eSports_competitively(X))&(does_not_play_eSports_competitively(Y)))=>(X=Y)))))& (watches_fantasy_movies(tasha))& (![X]:(room(X)=>(is_a_night_owl(X))))& ((![X]:((does_not_mentor_a_youth_basketball_team_on_weekends(X))<=>(does_not_practice_yoga(X)))))& (![X]:(room(X)=>(has_a_specialized_collection_of_handmade_artisan_pottery(X))))& (is_a_night_owl(tasha))& (![X]:(room(X)=>(((((is_a_coffee_connoisseur(X))&(does_not_enjoy_skydiving(X))))=>(practices_archery(X))))))& (is_a_client_of_LVMH(tasha))& (![X]:(room(X)=>(~((enjoys_cross-country_skiing(X))|(enjoys_skydiving(X))))))& (![X]:(room(X)=>(practices_archery(X))))& (~![X]:(room(X)=>(((does_not_watche_fantasy_movies(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(does_practice_yoga(X))))))& (mentors_a_youth_basketball_team_on_weekends(tasha))
room(tasha)&room(irene)&(![X]:(room(X)=>(X='tasha'|X='irene')))& ![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))|(does_not_practice_kickboxing(X)))))
[]
null
0.257736
Stephen, Michael, Theresa, Meghan are the only persons in the room. Someone who is not not not quiet is richer than someone who either is not not not tall or is not not not not kind but not both. Someone in the room either is quiet or is kind but not both. Stephen is the least old in the room. Stephen dreamt that "someone who is not tall, not quiet, not old is quieter than someone who is not tall". Only one person in the room is not quiet, not kind, not old. Only one person in the room is not tall, not old. Someone in the room is not old and is not kind, not tall, not quiet.
Stephen and Theresa are respectively old and quiet.
contradiction
room(stephen)&room(michael)&room(theresa)&room(meghan)&(![X]:(room(X)=>(X='stephen'|X='michael'|X='theresa'|X='meghan')))& (?[X,Y]:((~~~quiet(X))&(((~~~tall(Y))<~>(~~~~kind(Y))))&(richer(X,Y))))& (?[X]:(room(X)&(((quiet(X))<~>(kind(X))))))& (![X]:((room(X)&(X!=stephen))=>older(stephen,X)))& ((stephen_dream=>(?[X,Y]:((~tall(X)&~quiet(X)&~old(X))&(~tall(Y))&(quieter(X,Y))))))& (((?[X]:(room(X)&~quiet(X)&~kind(X)&~old(X)))&(![X,Y]:((room(X)&room(Y)&(~quiet(X)&~kind(X)&~old(X))&(~quiet(Y)&~kind(Y)&~old(Y)))=>(X=Y)))))& (((?[X]:(room(X)&~tall(X)&~old(X)))&(![X,Y]:((room(X)&room(Y)&(~tall(X)&~old(X))&(~tall(Y)&~old(Y)))=>(X=Y)))))& (?[X]:(room(X)&(((~old(X))&(~kind(X)&~tall(X)&~quiet(X))))))
room(stephen)&room(michael)&room(theresa)&room(meghan)&(![X]:(room(X)=>(X='stephen'|X='michael'|X='theresa'|X='meghan')))& (old(stephen))&(quiet(theresa))
[ "b20", "p3", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 2730160368515931440365955 % SZS output start Proof for 2730160368515931440365955 21. ! [X0,X1] : (X0 != X1 => ((old(X0) & older(X0,X1)) => old(X1))) [input b20] 47. ! [X0] : ((mary != X0 & room(X0)) => older(mary,X0)) [input p3] 49. ! [X0,X1] : ((~old(X1) & ~kind(X1) & ~quiet(X1) & ~old(X0) & ~kind(X0) & ~quiet(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~old(X0) & ~kind(X0) & ~quiet(X0) & room(X0)) [input p5] 52. quiet(fred) & old(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 53. ! [X0,X1] : ((~old(X1) & ~kind(X1) & ~quiet(X1) & ~old(X0) & ~kind(X0) & ~quiet(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~old(X2) & ~kind(X2) & ~quiet(X2) & room(X2)) [rectify 49] 88. ! [X0,X1] : ((old(X1) | (~old(X0) | ~older(X0,X1))) | X0 = X1) [ennf transformation 21] 89. ! [X0,X1] : (old(X1) | ~old(X0) | ~older(X0,X1) | X0 = X1) [flattening 88] 130. ! [X0] : (older(mary,X0) | (mary = X0 | ~room(X0))) [ennf transformation 47] 131. ! [X0] : (older(mary,X0) | mary = X0 | ~room(X0)) [flattening 130] 132. ! [X0,X1] : (X0 = X1 | (old(X1) | kind(X1) | quiet(X1) | old(X0) | kind(X0) | quiet(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~old(X2) & ~kind(X2) & ~quiet(X2) & room(X2)) [ennf transformation 53] 133. ! [X0,X1] : (X0 = X1 | old(X1) | kind(X1) | quiet(X1) | old(X0) | kind(X0) | quiet(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~old(X2) & ~kind(X2) & ~quiet(X2) & room(X2)) [flattening 132] 136. quiet(fred) & old(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 52] 137. quiet(fred) & old(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 136] 147. ? [X2] : (~old(X2) & ~kind(X2) & ~quiet(X2) & room(X2)) => (~old(sK3) & ~kind(sK3) & ~quiet(sK3) & room(sK3)) [choice axiom] 148. ! [X0,X1] : (X0 = X1 | old(X1) | kind(X1) | quiet(X1) | old(X0) | kind(X0) | quiet(X0) | ~room(X1) | ~room(X0)) & (~old(sK3) & ~kind(sK3) & ~quiet(sK3) & room(sK3)) [skolemisation 133,147] 169. ~older(X0,X1) | ~old(X0) | old(X1) | X0 = X1 [cnf transformation 89] 245. older(mary,X0) | mary = X0 | ~room(X0) [cnf transformation 131] 246. room(sK3) [cnf transformation 148] 249. ~old(sK3) [cnf transformation 148] 265. old(mary) [cnf transformation 137] 350. ~old(mary) | old(X0) | mary = X0 | mary = X0 | ~room(X0) [resolution 169,245] 351. ~old(mary) | old(X0) | mary = X0 | ~room(X0) [duplicate literal removal 350] 352. ~room(X0) | mary = X0 | old(X0) [subsumption resolution 351,265] 358. mary = sK3 | old(sK3) [resolution 352,246] 373. mary = sK3 [subsumption resolution 358,249] 377. ~old(mary) [backward demodulation 249,373] 378. $false [subsumption resolution 377,265] % SZS output end Proof for 2730160368515931440365955 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.586501
Lester, Jacob, Nancy, Michael are the only persons in the room. If “everyone in the room is not liked by Lillian” then “no funny person is strong” otherwise “Nancy is the least young in the room”. “Everyone in the room does not use a Windows laptop or is an expert in identifying and foraging wild edible plants” if “everyone outside the room is not liked by Mary” and vice versa. If “Nancy and Alan like each other” then “Jacob is the least quiet in the room” otherwise “Lillian and Nancy hate each other”. If “Jacob and Michael are liked by Mary” then “Michael and Nancy are respectively strong and tall” otherwise “Alan and Jacob like each other”. If “Jacob and Alan hate each other” then “Michael and Lillian like each other” otherwise “everyone in the room does not hate Mary”. If “Nancy and Lester are respectively generous and brave” then “Jacob is the least quiet in the room”. “Lillian and Jacob hate each other” if “everyone outside the room is an expert in identifying and foraging wild edible plants” and vice versa. If “everyone in the room is not allergic to anything or is not liked by Alan” then “Michael who is allergic to anything is not patient” otherwise “Lester is the least young outside the room”. Either “everyone in the room is an expert in identifying and foraging wild edible plants” or “everyone in the room is a creative tourist” but not both. Everyone in the room is not liked by Lillian. If someone is not liked by Alan then he/she is not strong. Jacob and Nancy are respectively patient and funny. Nancy is the least rich in the room. More than one person in the room collects vintage stamps and is a tall tourist. Alan and Michael hate each other. Alan and Nancy hate each other. All humble persons are happy.
Everyone in the room is liked by Lillian.
contradiction
room(lester)&room(jacob)&room(nancy)&room(michael)&(![X]:(room(X)=>(X='lester'|X='jacob'|X='nancy'|X='michael')))& (((![X]:(room(X)=>(~like(X,lillian))))=>(~?[X]:(funny(X)=>strong(X))))&((~(![X]:(room(X)=>(~like(X,lillian)))))=>(![X]:((room(X)&(X!=nancy))=>younger(nancy,X)))))& ((![X]:(~room(X)=>(~like(X,mary))))<=>(![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(does_not_use_a_Windows_laptop(X)))))))& ((((like(nancy,alan) & like(alan,nancy)))=>(![X]:((room(X)&(X!=jacob))=>quieter(jacob,X))))&((~((like(nancy,alan) & like(alan,nancy))))=>((hate(lillian,nancy) & hate(nancy,lillian)))))& (((like(jacob,mary)&like(michael,mary))=>((strong(michael))&(tall(nancy))))&((~(like(jacob,mary)&like(michael,mary)))=>((like(alan,jacob) & like(jacob,alan)))))& ((((hate(jacob,alan) & hate(alan,jacob)))=>((like(michael,lillian) & like(lillian,michael))))&((~((hate(jacob,alan) & hate(alan,jacob))))=>(![X]:(room(X)=>(~hate(mary,X))))))& (((generous(nancy))&(brave(lester)))=>(![X]:((room(X)&(X!=jacob))=>quieter(jacob,X))))& ((![X]:(~room(X)=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))<=>((hate(lillian,jacob) & hate(jacob,lillian))))& (((![X]:(room(X)=>(((~like(X,alan))|(is_not_allergic_to_anything(X))))))=>((is_allergic_to_anything(michael))&(~patient(michael))))&((~(![X]:(room(X)=>(((~like(X,alan))|(is_not_allergic_to_anything(X)))))))=>(![X]:((~room(X)&(X!=lester))=>younger(lester,X)))))& ((![X]:(room(X)=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))<~>(![X]:(room(X)=>(creative(X)&tourist(X)))))& (![X]:(room(X)=>(~like(X,lillian))))& ((![X]:((~like(X,alan))=>(~strong(X)))))& ((patient(jacob))&(funny(nancy)))& (![X]:((room(X)&(X!=nancy))=>richer(nancy,X)))& ((?[X,Y]:(room(X)&room(Y)&(((collects_vintage_stamps(X))&(tall(X)&tourist(X)))&((collects_vintage_stamps(Y))&(tall(Y)&tourist(Y))))&(X!=Y))))& ((hate(alan,michael) & hate(michael,alan)))& ((hate(alan,nancy) & hate(nancy,alan)))& (![X]:(humble(X)=>happy(X)))
room(lester)&room(jacob)&room(nancy)&room(michael)&(![X]:(room(X)=>(X='lester'|X='jacob'|X='nancy'|X='michael')))& ![X]:(room(X)=>(like(X,lillian)))
[ "p0", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 448797482074780426563481 % SZS output start Proof for 448797482074780426563481 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 54. ! [X0] : (room(X0) => ~like(X0,john)) [input p10] 62. ! [X0] : (room(X0) => like(X0,john)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 67. ! [X0] : (room(X0) => like(X0,john)) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 62] 149. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 150. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 149] 165. ! [X0] : (~like(X0,john) | ~room(X0)) [ennf transformation 54] 169. ! [X0] : (like(X0,john) | ~room(X0)) & ! [X1] : ((alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 67] 170. ! [X0] : (like(X0,john) | ~room(X0)) & ! [X1] : (alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 169] 277. room(mary) [cnf transformation 150] 322. ~like(X0,john) | ~room(X0) [cnf transformation 165] 340. like(X0,john) | ~room(X0) [cnf transformation 170] 342. 1 <=> ! [X1] : (~like(X1,john) | ~room(X1)) [avatar definition] 343. ~like(X1,john) | ~room(X1) <- (1) [avatar component clause 342] 556. 1 [avatar split clause 322,342] 557. ~room(X1) <- (1) [subsumption resolution 343,340] 558. $false <- (1) [resolution 557,277] 573. ~1 [avatar contradiction clause 558] 574. $false [avatar sat refutation 556,573] % SZS output end Proof for 448797482074780426563481 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.024 s % ------------------------------ % ------------------------------
0.616995
Latonya, Helen, Derek, Trevor, Willie are the only persons in the room. Everyone in the room who is an enthusiastic bird watcher who travels for rare sightings does not collect modern art. If someone knows morse code then he/she practices pilates and vice versa. Everyone outside the room knows morse code and enjoys skydiving if they is a dedicated volunteer for local community service projects. Everyone in the room knows morse code and enjoys skydiving if and only if they collects antique clocks. Not everyone in the room is an enthusiastic bird watcher who travels for rare sightings. Latonya does not enjoy origami. Everyone in the room does not enjoy fishing or plays the violin. Everyone anywhere practices pilates or is not an enthusiastic bird watcher who travels for rare sightings. Everyone anywhere who practices pilates enjoys fishing. Latonya does not play the violin or own a television or both. Everyone in the room enjoys origami, practices zumba or is an enthusiastic bird watcher who travels for rare sightings if they works as a freelance web developer specializing in e-commerce sites. Only one person in the room knows morse code. Everyone in the room who is a dedicated volunteer for local community service projects knows morse code. It is not the case that “Latonya practices and performs acrobatic dance routines”. Everyone in the room who enjoys fishing is a dedicated volunteer for local community service projects. Latonya collects antique clocks.
Derek is a dedicated volunteer for local community service projects.
contradiction
room(latonya)&room(helen)&room(derek)&room(trevor)&room(willie)&(![X]:(room(X)=>(X='latonya'|X='helen'|X='derek'|X='trevor'|X='willie')))& (![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(does_not_collect_modern_art(X))))))& ((![X]:((knows_morse_code(X))<=>(practices_pilates(X)))))& (![X]:(~room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(((knows_morse_code(X))&(enjoys_skydiving(X))))))))& (![X]:(room(X)=>(((((knows_morse_code(X))&(enjoys_skydiving(X))))<=>(collects_antique_clocks(X))))))& (~![X]:(room(X)=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))& (does_not_enjoy_origami(latonya))& (![X]:(room(X)=>(((plays_the_violin(X))|(does_not_enjoy_fishing(X))))))& (![X]:(anywhere(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(practices_pilates(X))))))& (![X]:(anywhere(X)=>(((practices_pilates(X))=>(enjoys_fishing(X))))))& (((does_not_play_the_violin(latonya))|(own_a_television(latonya))))& (![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(((enjoys_origami(X))|(practices_zumba(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))))& (((?[X]:(room(X)&knows_morse_code(X)))&(![X,Y]:((room(X)&room(Y)&(knows_morse_code(X))&(knows_morse_code(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(knows_morse_code(X))))))& (~(practices_and_performs_acrobatic_dance_routines(latonya)))& (![X]:(room(X)=>(((enjoys_fishing(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))& (collects_antique_clocks(latonya))
room(latonya)&room(helen)&room(derek)&room(trevor)&room(willie)&(![X]:(room(X)=>(X='latonya'|X='helen'|X='derek'|X='trevor'|X='willie')))& is_a_dedicated_volunteer_for_local_community_service_projects(derek)
[ "b42", "p0", "p3", "p4", "p12", "p13", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 3463718288629752929889125 % SZS output start Proof for 3463718288629752929889125 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. ! [X0] : (~room(X0) => (predk(X0) => (predl(X0) & predm(X0)))) [input p3] 48. ! [X0] : (room(X0) => ((predl(X0) & predm(X0)) <=> predp(X0))) [input p4] 56. ! [X0,X1] : ((predm(X1) & predm(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predm(X0) & room(X0)) [input p12] 57. ! [X0] : (room(X0) => (predk(X0) => predm(X0))) [input p13] 60. predp(mary) [input p16] 61. predk(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 62. ! [X0,X1] : ((predm(X1) & predm(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predm(X2) & room(X2)) [rectify 56] 142. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 144. ! [X0] : (((predl(X0) & predm(X0)) | ~predk(X0)) | room(X0)) [ennf transformation 47] 145. ! [X0] : ((predl(X0) & predm(X0)) | ~predk(X0) | room(X0)) [flattening 144] 146. ! [X0] : (((predl(X0) & predm(X0)) <=> predp(X0)) | ~room(X0)) [ennf transformation 48] 150. ! [X0,X1] : (X0 = X1 | (~predm(X1) | ~predm(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predm(X2) & room(X2)) [ennf transformation 62] 151. ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predm(X2) & room(X2)) [flattening 150] 152. ! [X0] : ((predm(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 57] 153. ! [X0] : (predm(X0) | ~predk(X0) | ~room(X0)) [flattening 152] 156. predk(fred) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 157. predk(fred) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 156] 160. ! [X0] : ((((predl(X0) & predm(X0)) | ~predp(X0)) & (predp(X0) | (~predl(X0) | ~predm(X0)))) | ~room(X0)) [nnf transformation 146] 161. ! [X0] : ((((predl(X0) & predm(X0)) | ~predp(X0)) & (predp(X0) | ~predl(X0) | ~predm(X0))) | ~room(X0)) [flattening 160] 164. ? [X2] : (predm(X2) & room(X2)) => (predm(sK1) & room(sK1)) [choice axiom] 165. ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~room(X1) | ~room(X0)) & (predm(sK1) & room(sK1)) [skolemisation 151,164] 217. mary != fred [cnf transformation 43] 247. room(mary) [cnf transformation 143] 249. room(fred) [cnf transformation 143] 255. ~predk(X0) | predm(X0) | room(X0) [cnf transformation 145] 258. ~predp(X0) | predm(X0) | ~room(X0) [cnf transformation 161] 262. room(sK1) [cnf transformation 165] 263. predm(sK1) [cnf transformation 165] 264. ~predm(X1) | X0 = X1 | ~predm(X0) | ~room(X1) | ~room(X0) [cnf transformation 165] 265. predm(X0) | ~predk(X0) | ~room(X0) [cnf transformation 153] 267. predp(mary) [cnf transformation 60] 274. predk(fred) [cnf transformation 157] 276. ~predk(X0) | predm(X0) [subsumption resolution 265,255] 280. predm(fred) [resolution 276,274] 286. predm(mary) | ~room(mary) [resolution 258,267] 287. predm(mary) [subsumption resolution 286,247] 341. sK1 = X0 | ~predm(X0) | ~room(sK1) | ~room(X0) [resolution 264,263] 344. ~predm(X0) | sK1 = X0 | ~room(X0) [subsumption resolution 341,262] 348. fred = sK1 | ~room(fred) [resolution 344,280] 349. mary = sK1 | ~room(mary) [resolution 344,287] 350. fred = sK1 [subsumption resolution 348,249] 357. mary = sK1 [subsumption resolution 349,247] 358. mary = fred [backward demodulation 350,357] 359. $false [subsumption resolution 358,217] % SZS output end Proof for 3463718288629752929889125 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0
Alex, Daniel, Timothy, Deborah are the only persons in the room. “Everyone in the room who enjoys kayaking and exploring remote waterways owns a microscope” unless “everyone in the room does not enjoy windsurfing or enjoys windsurfing”. Everyone outside the room does not have a vast collection of first-edition science fiction novels if they enjoys salsa dancing. It is true that “everyone in the room who enjoys stargazing is an expert in identifying and foraging wild edible plants”. Everyone in the room who is an expert in identifying and foraging wild edible plants enjoys salsa dancing. Everyone in the room does not enjoy windsurfing or enjoys windsurfing. Everyone anywhere who has a vast collection of first-edition science fiction novels creates bespoke furniture pieces from reclaimed wood. Everyone in the room who creates bespoke furniture pieces from reclaimed wood is right-handed or enjoys stargazing or both. Everyone in the room is an expert in identifying and foraging wild edible plants if they creates bespoke furniture pieces from reclaimed wood. If someone owns a microscope then he/she has a vast collection of first-edition science fiction novels and vice versa. Everyone in the room who owns a 3D printer is right-handed. If someone enjoys kayaking and exploring remote waterways then he/she is an expert in identifying and foraging wild edible plants. Everyone in the room who does not enjoy windsurfing creates bespoke furniture pieces from reclaimed wood. Everyone in the room is right-handed if they creates bespoke furniture pieces from reclaimed wood. Someone in the room has a vast collection of first-edition science fiction novels. Everyone in the room who has a vast collection of first-edition science fiction novels hosts a YouTube channel dedicated to art tutorials. Everyone in the room who has a vast collection of first-edition science fiction novels enjoys stargazing. Everyone in the room either owns a microscope or enjoys kayaking and exploring remote waterways but not both if they enjoys stargazing. Everyone in the room enjoys windsurfing if they either owns a microscope or enjoys kayaking and exploring remote waterways but not both. Everyone in the room has a vast collection of first-edition science fiction novels if they enjoys windsurfing.
Daniel enjoys kayaking and exploring remote waterways.
contradiction
room(alex)&room(daniel)&room(timothy)&room(deborah)&(![X]:(room(X)=>(X='alex'|X='daniel'|X='timothy'|X='deborah')))& (~(![X]:(room(X)=>(((enjoys_windsurfing(X))|(does_not_enjoy_windsurfing(X))))))=>(![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(owns_a_microscope(X)))))))& (![X]:(~room(X)=>(((enjoys_salsa_dancing(X))=>(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (![X]:(room(X)=>(((enjoys_stargazing(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(enjoys_salsa_dancing(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))|(does_not_enjoy_windsurfing(X))))))& (![X]:(anywhere(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(((is_right-handed(X))|(enjoys_stargazing(X))))))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& ((![X]:((owns_a_microscope(X))<=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X)))))& (![X]:(room(X)=>(((owns_a_3D_printer(X))=>(is_right-handed(X))))))& ((![X]:((enjoys_kayaking_and_exploring_remote_waterways(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))& (![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(is_right-handed(X))))))& (?[X]:(room(X)&(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))& (![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(enjoys_stargazing(X))))))& (![X]:(room(X)=>(((enjoys_stargazing(X))=>(((owns_a_microscope(X))<~>(enjoys_kayaking_and_exploring_remote_waterways(X))))))))& (![X]:(room(X)=>(((((owns_a_microscope(X))<~>(enjoys_kayaking_and_exploring_remote_waterways(X))))=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))
room(alex)&room(daniel)&room(timothy)&room(deborah)&(![X]:(room(X)=>(X='alex'|X='daniel'|X='timothy'|X='deborah')))& enjoys_kayaking_and_exploring_remote_waterways(daniel)
[ "p0", "p9", "p16", "p17", "p18", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 1692136390679687483279688 % SZS output start Proof for 1692136390679687483279688 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 53. ! [X0] : (preda(X0) <=> prede(X0)) [input p9] 60. ! [X0] : (room(X0) => (prede(X0) => predd(X0))) [input p16] 61. ! [X0] : (room(X0) => (predd(X0) => (preda(X0) <~> predn(X0)))) [input p17] 62. ! [X0] : (room(X0) => ((preda(X0) <~> predn(X0)) => predf(X0))) [input p18] 63. ! [X0] : (room(X0) => (predf(X0) => prede(X0))) [input p19] 64. predn(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 141. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141] 160. ! [X0] : ((predd(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 60] 161. ! [X0] : (predd(X0) | ~prede(X0) | ~room(X0)) [flattening 160] 162. ! [X0] : (((preda(X0) <~> predn(X0)) | ~predd(X0)) | ~room(X0)) [ennf transformation 61] 163. ! [X0] : ((preda(X0) <~> predn(X0)) | ~predd(X0) | ~room(X0)) [flattening 162] 164. ! [X0] : ((predf(X0) | (preda(X0) <=> predn(X0))) | ~room(X0)) [ennf transformation 62] 165. ! [X0] : (predf(X0) | (preda(X0) <=> predn(X0)) | ~room(X0)) [flattening 164] 166. ! [X0] : ((prede(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 63] 167. ! [X0] : (prede(X0) | ~predf(X0) | ~room(X0)) [flattening 166] 168. predn(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 169. predn(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 168] 172. ! [X0] : ((preda(X0) | ~prede(X0)) & (prede(X0) | ~preda(X0))) [nnf transformation 53] 175. ! [X0] : (((~predn(X0) | ~preda(X0)) & (predn(X0) | preda(X0))) | ~predd(X0) | ~room(X0)) [nnf transformation 163] 176. ! [X0] : (predf(X0) | ((preda(X0) | ~predn(X0)) & (predn(X0) | ~preda(X0))) | ~room(X0)) [nnf transformation 165] 259. room(paul) [cnf transformation 142] 270. ~preda(X0) | prede(X0) [cnf transformation 172] 271. ~prede(X0) | preda(X0) [cnf transformation 172] 276. ~prede(X0) | predd(X0) | ~room(X0) [cnf transformation 161] 278. ~predd(X0) | ~preda(X0) | ~predn(X0) | ~room(X0) [cnf transformation 175] 280. ~predn(X0) | preda(X0) | predf(X0) | ~room(X0) [cnf transformation 176] 281. ~predf(X0) | prede(X0) | ~room(X0) [cnf transformation 167] 287. predn(paul) [cnf transformation 169] 319. 4 <=> predf(paul) [avatar definition] 321. predf(paul) <- (4) [avatar component clause 319] 364. preda(paul) | predf(paul) | ~room(paul) [resolution 280,287] 365. preda(paul) | predf(paul) [subsumption resolution 364,259] 367. 9 <=> preda(paul) [avatar definition] 369. preda(paul) <- (9) [avatar component clause 367] 370. 4 | 9 [avatar split clause 365,367,319] 373. prede(paul) | ~room(paul) <- (4) [resolution 321,281] 374. prede(paul) <- (4) [subsumption resolution 373,259] 385. preda(paul) <- (4) [resolution 374,271] 387. 9 | ~4 [avatar split clause 385,319,367] 389. prede(paul) <- (9) [resolution 369,270] 416. predd(paul) | ~room(paul) <- (9) [resolution 389,276] 420. predd(paul) <- (9) [subsumption resolution 416,259] 421. ~preda(paul) | ~predn(paul) | ~room(paul) <- (9) [resolution 420,278] 424. ~predn(paul) | ~room(paul) <- (9) [subsumption resolution 421,369] 425. ~room(paul) <- (9) [subsumption resolution 424,287] 426. $false <- (9) [subsumption resolution 425,259] 427. ~9 [avatar contradiction clause 426] 428. $false [avatar sat refutation 370,387,427] % SZS output end Proof for 1692136390679687483279688 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.358799
Herman, Connie, Thomas, Jonathan, Paul are the only persons in the room. If "everyone in the room is not a wine connoisseur or does not host regular workshops on creative writing" then "everyone anywhere makes homemade pastries if they is not a wine connoisseur". "Herman does not host regular workshops on creative writing" if "Herman does practice yoga". If "Herman enjoys fishing and does not mentor a youth basketball team on weekends" then "no one in the room who knows morse code enjoys fishing". If "everyone in the room writes in-depth travel guides for off-the-beaten-path destinations or does not write a travel blog" then "Herman neither trains for and competes in international triathlons nor enjoys fishing". If "Herman neither trains for and competes in international triathlons nor enjoys fishing" then "not everyone in the room practices digital art if and only if they is a wine connoisseur". If "Herman makes homemade pastries" then "Herman does practice yoga". "Herman writes in-depth travel guides for off-the-beaten-path destinations" if "Herman practices graffiti art" and vice versa. Either "everyone in the room does not practice yoga or knows morse code" or "Herman either frequently participates in hackathons and coding competitions or is a wine connoisseur but not both" but not both. Everyone anywhere makes homemade pastries if they is not a wine connoisseur. Someone outside the room writes in-depth travel guides for off-the-beaten-path destinations.
Not everyone in the room hosts regular workshops on creative writing.
entailment
room(herman)&room(connie)&room(thomas)&room(jonathan)&room(paul)&(![X]:(room(X)=>(X='herman'|X='connie'|X='thomas'|X='jonathan'|X='paul')))& ((![X]:(room(X)=>(((does_not_host_regular_workshops_on_creative_writing(X))|(is_not_a_wine_connoisseur(X))))))=>(![X]:(anywhere(X)=>(((is_not_a_wine_connoisseur(X))=>(makes_homemade_pastries(X)))))))& ((does_practice_yoga(herman))=>(does_not_host_regular_workshops_on_creative_writing(herman)))& ((((enjoys_fishing(herman))&(does_not_mentor_a_youth_basketball_team_on_weekends(herman))))=>(~?[X]:(room(X)=>(((knows_morse_code(X))=>(enjoys_fishing(X)))))))& (((![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))=>(~((trains_for_and_competes_in_international_triathlons(herman))|(enjoys_fishing(herman)))))& ((~((trains_for_and_competes_in_international_triathlons(herman))|(enjoys_fishing(herman))))=>(~![X]:(room(X)=>(((practices_digital_art(X))<=>(is_a_wine_connoisseur(X))))))))& ((makes_homemade_pastries(herman))=>(does_practice_yoga(herman)))& ((practices_graffiti_art(herman))<=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(herman)))& ((![X]:(room(X)=>(((knows_morse_code(X))|(does_not_practice_yoga(X))))))<~>(((frequently_participates_in_hackathons_and_coding_competitions(herman))<~>(is_a_wine_connoisseur(herman)))))& (![X]:(anywhere(X)=>(((is_not_a_wine_connoisseur(X))=>(makes_homemade_pastries(X))))))& (?[X]:(~room(X)&(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))& (![X]:(room(X)=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))=>(practices_digital_art(X))))))& (mentors_a_youth_basketball_team_on_weekends(herman))& (![X]:(~room(X)=>(((((frequently_participates_in_hackathons_and_coding_competitions(X))&(enjoys_fishing(X))&(practices_digital_art(X))))=>(plays_the_drums(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(~((practices_graffiti_art(X))|(practices_digital_art(X))))))))& ((has_a_curated_collection_of_mid-century_modern_furniture(herman))&(mentors_a_youth_basketball_team_on_weekends(herman)))& (![X]:(room(X)=>(((does_not_write_a_travel_blog(X))=>(does_practice_yoga(X))))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(plays_the_drums(X))))))& (practices_graffiti_art(herman))& (makes_homemade_pastries(herman))& (knows_morse_code(herman))
room(herman)&room(connie)&room(thomas)&room(jonathan)&room(paul)&(![X]:(room(X)=>(X='herman'|X='connie'|X='thomas'|X='jonathan'|X='paul')))& ~![X]:(room(X)=>(hosts_regular_workshops_on_creative_writing(X)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 4503110291186286022999313 % SZS output start Proof for 4503110291186286022999313 44. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (room(X0) => (predj(X0) => predn(X0))) & ! [X0] : (room(X0) => (~predm(X0) => predp(X0))) & predf(mary) & predl(mary) & ! [X0] : (room(X0) => (predb(X0) => ~(preda(X0) | predc(X0)))) & ! [X0] : (room(X0) => (predn(X0) => predb(X0))) & ! [X0] : (~room(X0) => ((preda(X0) & predk(X0) & predi(X0)) => predn(X0))) & predf(mary) & ! [X0] : (room(X0) => (~predd(X0) => preda(X0))) & ? [X0] : (prede(X0) & ~room(X0)) & ! [X0] : (anywhere(X0) => (~predo(X0) => predg(X0))) & (! [X0] : (room(X0) => (~predp(X0) | predh(X0))) <~> (predi(mary) <~> predo(mary))) & (predc(mary) <=> prede(mary)) & (predg(mary) => predp(mary)) & (~(predk(mary) | predb(mary)) => ~! [X0] : (room(X0) => (preda(X0) <=> predo(X0)))) & (! [X0] : (room(X0) => (prede(X0) | ~predm(X0))) => ~(predk(mary) | predb(mary))) & ((~predf(mary) & predk(mary)) => ~? [X0] : (room(X0) => (predh(X0) => predk(X0)))) & (predp(mary) => ~predj(mary)) & (! [X0] : (room(X0) => (~predo(X0) | ~predj(X0))) => ! [X0] : (anywhere(X0) => (~predo(X0) => predg(X0)))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(~! [X0] : (room(X0) => predj(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (room(X0) => (predj(X0) => predn(X0))) & ! [X1] : (room(X1) => (~predm(X1) => predp(X1))) & predf(mary) & predl(mary) & ! [X2] : (room(X2) => (predb(X2) => ~(preda(X2) | predc(X2)))) & ! [X3] : (room(X3) => (predn(X3) => predb(X3))) & ! [X4] : (~room(X4) => ((preda(X4) & predk(X4) & predi(X4)) => predn(X4))) & predf(mary) & ! [X5] : (room(X5) => (~predd(X5) => preda(X5))) & ? [X6] : (prede(X6) & ~room(X6)) & ! [X7] : (anywhere(X7) => (~predo(X7) => predg(X7))) & (! [X8] : (room(X8) => (~predp(X8) | predh(X8))) <~> (predi(mary) <~> predo(mary))) & (predc(mary) <=> prede(mary)) & (predg(mary) => predp(mary)) & (~(predk(mary) | predb(mary)) => ~! [X9] : (room(X9) => (preda(X9) <=> predo(X9)))) & (! [X10] : (room(X10) => (prede(X10) | ~predm(X10))) => ~(predk(mary) | predb(mary))) & ((~predf(mary) & predk(mary)) => ~? [X11] : (room(X11) => (predh(X11) => predk(X11)))) & (predp(mary) => ~predj(mary)) & (! [X12] : (room(X12) => (~predo(X12) | ~predj(X12))) => ! [X13] : (anywhere(X13) => (~predo(X13) => predg(X13)))) & ! [X14] : (room(X14) => (john = X14 | alice = X14 | fred = X14 | paul = X14 | mary = X14)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ~(~! [X0] : (room(X0) => predj(X0)) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 45] 48. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (room(X0) => (predj(X0) => predn(X0))) & ! [X1] : (room(X1) => (~predm(X1) => predp(X1))) & predf(mary) & ! [X2] : (room(X2) => (predb(X2) => ~(preda(X2) | predc(X2)))) & ! [X3] : (room(X3) => (predn(X3) => predb(X3))) & ! [X4] : (~room(X4) => ((preda(X4) & predk(X4) & predi(X4)) => predn(X4))) & predf(mary) & ! [X5] : (room(X5) => (~predd(X5) => preda(X5))) & ? [X6] : (prede(X6) & ~room(X6)) & ! [X7] : (anywhere(X7) => (~predo(X7) => predg(X7))) & (! [X8] : (room(X8) => (~predp(X8) | predh(X8))) <~> (predi(mary) <~> predo(mary))) & (predc(mary) <=> prede(mary)) & (predg(mary) => predp(mary)) & (~(predk(mary) | predb(mary)) => ~! [X9] : (room(X9) => (preda(X9) <=> predo(X9)))) & (! [X10] : (room(X10) => (prede(X10) | ~predm(X10))) => ~(predk(mary) | predb(mary))) & ((~predf(mary) & predk(mary)) => ~? [X11] : (room(X11) => (predh(X11) => predk(X11)))) & (predp(mary) => ~predj(mary)) & (! [X12] : (room(X12) => (~predo(X12) | ~predj(X12))) => ! [X13] : (anywhere(X13) => (~predo(X13) => predg(X13)))) & ! [X14] : (room(X14) => (john = X14 | alice = X14 | fred = X14 | paul = X14 | mary = X14)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 49. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (room(X0) => (predj(X0) => predn(X0))) & ! [X1] : (room(X1) => (~predm(X1) => predp(X1))) & predf(mary) & ! [X2] : (room(X2) => (predb(X2) => ~(preda(X2) | predc(X2)))) & ! [X3] : (room(X3) => (predn(X3) => predb(X3))) & ! [X4] : (~room(X4) => ((preda(X4) & predk(X4) & predi(X4)) => predn(X4))) & predf(mary) & ? [X6] : (prede(X6) & ~room(X6)) & ! [X7] : (anywhere(X7) => (~predo(X7) => predg(X7))) & (! [X8] : (room(X8) => (~predp(X8) | predh(X8))) <~> (predi(mary) <~> predo(mary))) & (predc(mary) <=> prede(mary)) & (predg(mary) => predp(mary)) & (~(predk(mary) | predb(mary)) => ~! [X9] : (room(X9) => (preda(X9) <=> predo(X9)))) & (! [X10] : (room(X10) => (prede(X10) | ~predm(X10))) => ~(predk(mary) | predb(mary))) & ((~predf(mary) & predk(mary)) => ~? [X11] : (room(X11) => (predh(X11) => predk(X11)))) & (predp(mary) => ~predj(mary)) & (! [X12] : (room(X12) => (~predo(X12) | ~predj(X12))) => ! [X13] : (anywhere(X13) => (~predo(X13) => predg(X13)))) & ! [X14] : (room(X14) => (john = X14 | alice = X14 | fred = X14 | paul = X14 | mary = X14)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (room(X0) => (predj(X0) => predn(X0))) & predf(mary) & ! [X2] : (room(X2) => (predb(X2) => ~(preda(X2) | predc(X2)))) & ! [X3] : (room(X3) => (predn(X3) => predb(X3))) & ! [X4] : (~room(X4) => ((preda(X4) & predk(X4) & predi(X4)) => predn(X4))) & predf(mary) & ? [X6] : (prede(X6) & ~room(X6)) & ! [X7] : (anywhere(X7) => (~predo(X7) => predg(X7))) & (! [X8] : (room(X8) => (~predp(X8) | predh(X8))) <~> (predi(mary) <~> predo(mary))) & (predc(mary) <=> prede(mary)) & (predg(mary) => predp(mary)) & (~(predk(mary) | predb(mary)) => ~! [X9] : (room(X9) => (preda(X9) <=> predo(X9)))) & (! [X10] : (room(X10) => prede(X10)) => ~(predk(mary) | predb(mary))) & ((~predf(mary) & predk(mary)) => ~? [X11] : (room(X11) => (predh(X11) => predk(X11)))) & (predp(mary) => ~predj(mary)) & (! [X12] : (room(X12) => (~predo(X12) | ~predj(X12))) => ! [X13] : (anywhere(X13) => (~predo(X13) => predg(X13)))) & ! [X14] : (room(X14) => (john = X14 | alice = X14 | fred = X14 | paul = X14 | mary = X14)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (room(X0) => (predj(X0) => predn(X0))) & ! [X2] : (room(X2) => (predb(X2) => ~(preda(X2) | predc(X2)))) & ! [X3] : (room(X3) => (predn(X3) => predb(X3))) & ! [X4] : (~room(X4) => ((preda(X4) & predk(X4) & predi(X4)) => predn(X4))) & ? [X6] : (prede(X6) & ~room(X6)) & ! [X7] : (anywhere(X7) => (~predo(X7) => predg(X7))) & (! [X8] : (room(X8) => (~predp(X8) | predh(X8))) <~> (predi(mary) <~> predo(mary))) & (predc(mary) <=> prede(mary)) & (predg(mary) => predp(mary)) & (~(predk(mary) | predb(mary)) => ~! [X9] : (room(X9) => (preda(X9) <=> predo(X9)))) & (! [X10] : (room(X10) => prede(X10)) => ~(predk(mary) | predb(mary))) & (predp(mary) => ~predj(mary)) & (! [X12] : (room(X12) => (~predo(X12) | ~predj(X12))) => ! [X13] : (anywhere(X13) => (~predo(X13) => predg(X13)))) & ! [X14] : (room(X14) => (john = X14 | alice = X14 | fred = X14 | paul = X14 | mary = X14)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 123. predh(mary) & predg(mary) & predc(mary) & ! [X0] : ((predn(X0) | ~predj(X0)) | ~room(X0)) & ! [X2] : (((~preda(X2) & ~predc(X2)) | ~predb(X2)) | ~room(X2)) & ! [X3] : ((predb(X3) | ~predn(X3)) | ~room(X3)) & ! [X4] : ((predn(X4) | (~preda(X4) | ~predk(X4) | ~predi(X4))) | room(X4)) & ? [X6] : (prede(X6) & ~room(X6)) & ! [X7] : ((predg(X7) | predo(X7)) | ~anywhere(X7)) & (! [X8] : ((~predp(X8) | predh(X8)) | ~room(X8)) <~> (predi(mary) <~> predo(mary))) & (predc(mary) <=> prede(mary)) & (predp(mary) | ~predg(mary)) & (? [X9] : ((preda(X9) <~> predo(X9)) & room(X9)) | (predk(mary) | predb(mary))) & ((~predk(mary) & ~predb(mary)) | ? [X10] : (~prede(X10) & room(X10))) & (~predj(mary) | ~predp(mary)) & (! [X13] : ((predg(X13) | predo(X13)) | ~anywhere(X13)) | ? [X12] : ((predo(X12) & predj(X12)) & room(X12))) & ! [X14] : ((john = X14 | alice = X14 | fred = X14 | paul = X14 | mary = X14) | ~room(X14)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 51] 124. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (predn(X0) | ~predj(X0) | ~room(X0)) & ! [X2] : ((~preda(X2) & ~predc(X2)) | ~predb(X2) | ~room(X2)) & ! [X3] : (predb(X3) | ~predn(X3) | ~room(X3)) & ! [X4] : (predn(X4) | ~preda(X4) | ~predk(X4) | ~predi(X4) | room(X4)) & ? [X6] : (prede(X6) & ~room(X6)) & ! [X7] : (predg(X7) | predo(X7) | ~anywhere(X7)) & (! [X8] : (~predp(X8) | predh(X8) | ~room(X8)) <~> (predi(mary) <~> predo(mary))) & (predc(mary) <=> prede(mary)) & (predp(mary) | ~predg(mary)) & (? [X9] : ((preda(X9) <~> predo(X9)) & room(X9)) | predk(mary) | predb(mary)) & ((~predk(mary) & ~predb(mary)) | ? [X10] : (~prede(X10) & room(X10))) & (~predj(mary) | ~predp(mary)) & (! [X13] : (predg(X13) | predo(X13) | ~anywhere(X13)) | ? [X12] : (predo(X12) & predj(X12) & room(X12))) & ! [X14] : (john = X14 | alice = X14 | fred = X14 | paul = X14 | mary = X14 | ~room(X14)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 123] 125. ! [X0] : (predj(X0) | ~room(X0)) | ? [X1] : ((john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 47] 126. ! [X0] : (predj(X0) | ~room(X0)) | ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 125] 128. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (predn(X0) | ~predj(X0) | ~room(X0)) & ! [X2] : ((~preda(X2) & ~predc(X2)) | ~predb(X2) | ~room(X2)) & ! [X3] : (predb(X3) | ~predn(X3) | ~room(X3)) & ! [X4] : (predn(X4) | ~preda(X4) | ~predk(X4) | ~predi(X4) | room(X4)) & ? [X6] : (prede(X6) & ~room(X6)) & ! [X7] : (predg(X7) | predo(X7) | ~anywhere(X7)) & ((((predi(mary) | ~predo(mary)) & (predo(mary) | ~predi(mary))) | ? [X8] : (predp(X8) & ~predh(X8) & room(X8))) & (((~predo(mary) | ~predi(mary)) & (predo(mary) | predi(mary))) | ! [X8] : (~predp(X8) | predh(X8) | ~room(X8)))) & ((predc(mary) | ~prede(mary)) & (prede(mary) | ~predc(mary))) & (predp(mary) | ~predg(mary)) & (? [X9] : (((~predo(X9) | ~preda(X9)) & (predo(X9) | preda(X9))) & room(X9)) | predk(mary) | predb(mary)) & ((~predk(mary) & ~predb(mary)) | ? [X10] : (~prede(X10) & room(X10))) & (~predj(mary) | ~predp(mary)) & (! [X13] : (predg(X13) | predo(X13) | ~anywhere(X13)) | ? [X12] : (predo(X12) & predj(X12) & room(X12))) & ! [X14] : (john = X14 | alice = X14 | fred = X14 | paul = X14 | mary = X14 | ~room(X14)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 124] 129. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (predn(X0) | ~predj(X0) | ~room(X0)) & ! [X2] : ((~preda(X2) & ~predc(X2)) | ~predb(X2) | ~room(X2)) & ! [X3] : (predb(X3) | ~predn(X3) | ~room(X3)) & ! [X4] : (predn(X4) | ~preda(X4) | ~predk(X4) | ~predi(X4) | room(X4)) & ? [X6] : (prede(X6) & ~room(X6)) & ! [X7] : (predg(X7) | predo(X7) | ~anywhere(X7)) & (((predi(mary) | ~predo(mary)) & (predo(mary) | ~predi(mary))) | ? [X8] : (predp(X8) & ~predh(X8) & room(X8))) & (((~predo(mary) | ~predi(mary)) & (predo(mary) | predi(mary))) | ! [X8] : (~predp(X8) | predh(X8) | ~room(X8))) & (predc(mary) | ~prede(mary)) & (prede(mary) | ~predc(mary)) & (predp(mary) | ~predg(mary)) & (? [X9] : ((~predo(X9) | ~preda(X9)) & (predo(X9) | preda(X9)) & room(X9)) | predk(mary) | predb(mary)) & ((~predk(mary) & ~predb(mary)) | ? [X10] : (~prede(X10) & room(X10))) & (~predj(mary) | ~predp(mary)) & (! [X13] : (predg(X13) | predo(X13) | ~anywhere(X13)) | ? [X12] : (predo(X12) & predj(X12) & room(X12))) & ! [X14] : (john = X14 | alice = X14 | fred = X14 | paul = X14 | mary = X14 | ~room(X14)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 128] 130. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (predn(X0) | ~predj(X0) | ~room(X0)) & ! [X1] : ((~preda(X1) & ~predc(X1)) | ~predb(X1) | ~room(X1)) & ! [X2] : (predb(X2) | ~predn(X2) | ~room(X2)) & ! [X3] : (predn(X3) | ~preda(X3) | ~predk(X3) | ~predi(X3) | room(X3)) & ? [X4] : (prede(X4) & ~room(X4)) & ! [X5] : (predg(X5) | predo(X5) | ~anywhere(X5)) & (((predi(mary) | ~predo(mary)) & (predo(mary) | ~predi(mary))) | ? [X6] : (predp(X6) & ~predh(X6) & room(X6))) & (((~predo(mary) | ~predi(mary)) & (predo(mary) | predi(mary))) | ! [X7] : (~predp(X7) | predh(X7) | ~room(X7))) & (predc(mary) | ~prede(mary)) & (prede(mary) | ~predc(mary)) & (predp(mary) | ~predg(mary)) & (? [X8] : ((~predo(X8) | ~preda(X8)) & (predo(X8) | preda(X8)) & room(X8)) | predk(mary) | predb(mary)) & ((~predk(mary) & ~predb(mary)) | ? [X9] : (~prede(X9) & room(X9))) & (~predj(mary) | ~predp(mary)) & (! [X10] : (predg(X10) | predo(X10) | ~anywhere(X10)) | ? [X11] : (predo(X11) & predj(X11) & room(X11))) & ! [X12] : (john = X12 | alice = X12 | fred = X12 | paul = X12 | mary = X12 | ~room(X12)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 129] 131. ? [X4] : (prede(X4) & ~room(X4)) => (prede(sK0) & ~room(sK0)) [choice axiom] 132. ? [X6] : (predp(X6) & ~predh(X6) & room(X6)) => (predp(sK1) & ~predh(sK1) & room(sK1)) [choice axiom] 133. ? [X8] : ((~predo(X8) | ~preda(X8)) & (predo(X8) | preda(X8)) & room(X8)) => ((~predo(sK2) | ~preda(sK2)) & (predo(sK2) | preda(sK2)) & room(sK2)) [choice axiom] 134. ? [X9] : (~prede(X9) & room(X9)) => (~prede(sK3) & room(sK3)) [choice axiom] 135. ? [X11] : (predo(X11) & predj(X11) & room(X11)) => (predo(sK4) & predj(sK4) & room(sK4)) [choice axiom] 136. predh(mary) & predg(mary) & predc(mary) & ! [X0] : (predn(X0) | ~predj(X0) | ~room(X0)) & ! [X1] : ((~preda(X1) & ~predc(X1)) | ~predb(X1) | ~room(X1)) & ! [X2] : (predb(X2) | ~predn(X2) | ~room(X2)) & ! [X3] : (predn(X3) | ~preda(X3) | ~predk(X3) | ~predi(X3) | room(X3)) & (prede(sK0) & ~room(sK0)) & ! [X5] : (predg(X5) | predo(X5) | ~anywhere(X5)) & (((predi(mary) | ~predo(mary)) & (predo(mary) | ~predi(mary))) | (predp(sK1) & ~predh(sK1) & room(sK1))) & (((~predo(mary) | ~predi(mary)) & (predo(mary) | predi(mary))) | ! [X7] : (~predp(X7) | predh(X7) | ~room(X7))) & (predc(mary) | ~prede(mary)) & (prede(mary) | ~predc(mary)) & (predp(mary) | ~predg(mary)) & (((~predo(sK2) | ~preda(sK2)) & (predo(sK2) | preda(sK2)) & room(sK2)) | predk(mary) | predb(mary)) & ((~predk(mary) & ~predb(mary)) | (~prede(sK3) & room(sK3))) & (~predj(mary) | ~predp(mary)) & (! [X10] : (predg(X10) | predo(X10) | ~anywhere(X10)) | (predo(sK4) & predj(sK4) & room(sK4))) & ! [X12] : (john = X12 | alice = X12 | fred = X12 | paul = X12 | mary = X12 | ~room(X12)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 130,135,134,133,132,131] 137. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) => (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 138. ! [X0] : (predj(X0) | ~room(X0)) | (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 126,137] 220. room(mary) [cnf transformation 136] 221. room(paul) [cnf transformation 136] 222. room(fred) [cnf transformation 136] 223. room(alice) [cnf transformation 136] 224. room(john) [cnf transformation 136] 225. ~room(X12) | alice = X12 | fred = X12 | paul = X12 | mary = X12 | john = X12 [cnf transformation 136] 229. ~predj(mary) | ~predp(mary) [cnf transformation 136] 237. predp(mary) | ~predg(mary) [cnf transformation 136] 257. predg(mary) [cnf transformation 136] 259. predj(X0) | ~room(X0) | room(sK5) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 138] 260. predj(X0) | ~room(X0) | mary != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 138] 261. predj(X0) | ~room(X0) | paul != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 138] 262. predj(X0) | ~room(X0) | fred != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 138] 263. predj(X0) | ~room(X0) | alice != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 138] 264. predj(X0) | ~room(X0) | john != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 138] 298. predp(mary) [subsumption resolution 237,257] 334. ~predj(mary) [subsumption resolution 229,298] 335. predj(X0) | ~room(X0) | john != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 264,224] 336. predj(X0) | ~room(X0) | john != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 335,223] 337. predj(X0) | ~room(X0) | john != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 336,222] 338. predj(X0) | ~room(X0) | john != sK5 | ~room(mary) [subsumption resolution 337,221] 339. predj(X0) | ~room(X0) | john != sK5 [subsumption resolution 338,220] 341. 14 <=> john = sK5 [avatar definition] 343. john != sK5 <- (~14) [avatar component clause 341] 345. 15 <=> ! [X0] : (predj(X0) | ~room(X0)) [avatar definition] 346. ~room(X0) | predj(X0) <- (15) [avatar component clause 345] 347. ~14 | 15 [avatar split clause 339,345,341] 348. predj(X0) | ~room(X0) | alice != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,224] 349. predj(X0) | ~room(X0) | alice != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 348,223] 350. predj(X0) | ~room(X0) | alice != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 349,222] 351. predj(X0) | ~room(X0) | alice != sK5 | ~room(mary) [subsumption resolution 350,221] 352. predj(X0) | ~room(X0) | alice != sK5 [subsumption resolution 351,220] 354. 16 <=> alice = sK5 [avatar definition] 356. alice != sK5 <- (~16) [avatar component clause 354] 357. ~16 | 15 [avatar split clause 352,345,354] 358. predj(X0) | ~room(X0) | fred != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 262,224] 359. predj(X0) | ~room(X0) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 358,223] 360. predj(X0) | ~room(X0) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 359,222] 361. predj(X0) | ~room(X0) | fred != sK5 | ~room(mary) [subsumption resolution 360,221] 362. predj(X0) | ~room(X0) | fred != sK5 [subsumption resolution 361,220] 364. 17 <=> fred = sK5 [avatar definition] 366. fred != sK5 <- (~17) [avatar component clause 364] 367. ~17 | 15 [avatar split clause 362,345,364] 368. predj(X0) | ~room(X0) | paul != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 261,224] 369. predj(X0) | ~room(X0) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 368,223] 370. predj(X0) | ~room(X0) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 369,222] 371. predj(X0) | ~room(X0) | paul != sK5 | ~room(mary) [subsumption resolution 370,221] 372. predj(X0) | ~room(X0) | paul != sK5 [subsumption resolution 371,220] 374. 18 <=> paul = sK5 [avatar definition] 376. paul != sK5 <- (~18) [avatar component clause 374] 377. ~18 | 15 [avatar split clause 372,345,374] 378. predj(X0) | ~room(X0) | mary != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 260,224] 379. predj(X0) | ~room(X0) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 378,223] 380. predj(X0) | ~room(X0) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 379,222] 381. predj(X0) | ~room(X0) | mary != sK5 | ~room(mary) [subsumption resolution 380,221] 382. predj(X0) | ~room(X0) | mary != sK5 [subsumption resolution 381,220] 384. 19 <=> mary = sK5 [avatar definition] 386. mary != sK5 <- (~19) [avatar component clause 384] 387. ~19 | 15 [avatar split clause 382,345,384] 388. predj(X0) | ~room(X0) | room(sK5) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 259,224] 389. predj(X0) | ~room(X0) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 388,223] 390. predj(X0) | ~room(X0) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 389,222] 391. predj(X0) | ~room(X0) | room(sK5) | ~room(mary) [subsumption resolution 390,221] 392. predj(X0) | ~room(X0) | room(sK5) [subsumption resolution 391,220] 394. 20 <=> room(sK5) [avatar definition] 396. room(sK5) <- (20) [avatar component clause 394] 397. 20 | 15 [avatar split clause 392,345,394] 398. predj(mary) <- (15) [resolution 346,220] 404. $false <- (15) [subsumption resolution 398,334] 405. ~15 [avatar contradiction clause 404] 458. alice = sK5 | fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (20) [resolution 225,396] 480. fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (~16, 20) [subsumption resolution 458,356] 481. paul = sK5 | mary = sK5 | john = sK5 <- (~16, ~17, 20) [subsumption resolution 480,366] 482. mary = sK5 | john = sK5 <- (~16, ~17, ~18, 20) [subsumption resolution 481,376] 483. john = sK5 <- (~16, ~17, ~18, ~19, 20) [subsumption resolution 482,386] 484. $false <- (~14, ~16, ~17, ~18, ~19, 20) [subsumption resolution 483,343] 485. 14 | 16 | 17 | 18 | 19 | ~20 [avatar contradiction clause 484] 486. $false [avatar sat refutation 347,357,367,377,387,397,405,485] % SZS output end Proof for 4503110291186286022999313 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0
Victor is the only person in the room. If 'no one anywhere does not have a saltwater aquarium or has a saltwater aquarium' then 'Victor collects first edition books'. If 'Victor is a certified scuba diver with advanced underwater photography skills' then 'no one in the room makes intricate hand-cut paper art for exhibitions if they is a coffee connoisseur'. Everyone in the room who makes intricate hand-cut paper art for exhibitions works on fridays. Victor is a coffee connoisseur. Everyone in the room is a coffee connoisseur or is not a certified scuba diver with advanced underwater photography skills. Victor plays the violin. Victor trains for and competes in international triathlons. Everyone in the room plays the violin if they works on fridays.
Victor collects first edition books.
neutral
room(victor)&(![X]:(room(X)=>(X='victor')))& ((~?[X]:(anywhere(X)=>(((has_a_saltwater_aquarium(X))|(does_not_have_a_saltwater_aquarium(X))))))=>(collects_first_edition_books(victor)))& ((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(victor))=>(~?[X]:(room(X)=>(((is_a_coffee_connoisseur(X))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X)))))))& (![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(works_on_fridays(X))))))& (is_a_coffee_connoisseur(victor))& (![X]:(room(X)=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_a_coffee_connoisseur(X))))))& (plays_the_violin(victor))& (trains_for_and_competes_in_international_triathlons(victor))& (![X]:(room(X)=>(((works_on_fridays(X))=>(plays_the_violin(X))))))
room(victor)&(![X]:(room(X)=>(X='victor')))& collects_first_edition_books(victor)
[]
null
0.513615
There is a room. If someone either is not hated by Nancy or does not hate Christy but not both then he/she hates Jane and likes Jane and vice versa. Everyone in the room is not hated by Christy. Everyone in the room is hated by Jane and is not liked by Christy only if they is hated by Christy, hates Christy or likes Christy. Someone in the room is not liked by Jane, is not hated by Christy or likes Christy. Everyone in the room is not hated by Nancy. Everyone in the room either likes Jane or is hated by Nancy but not both. Everyone in the room either is not hated by Nancy or is not liked by Nancy but not both if they is not hated by Jane. Everyone in the room is not hated by Jane if they either is not hated by Nancy or is not liked by Nancy but not both. Everyone in the room likes Nancy and is not hated by Christy.
More than one person in the room is liked by Nancy.
neutral
(there_is_a_room)& ((![X]:((((~hate(X,nancy))<~>(~hate(christy,X))))<=>(((hate(jane,X))&(like(jane,X)))))))& (![X]:(room(X)=>(~hate(X,christy))))& (![X]:(room(X)=>(((((hate(X,christy))|(hate(christy,X))|(like(christy,X))))<=(((hate(X,jane))&(~like(X,christy))))))))& (?[X]:(room(X)&(((~like(X,jane))|(~hate(X,christy))|(like(christy,X))))))& (![X]:(room(X)=>(~hate(X,nancy))))& (![X]:(room(X)=>(((like(jane,X))<~>(hate(X,nancy))))))& (![X]:(room(X)=>(((~hate(X,jane))=>(((~hate(X,nancy))<~>(~like(X,nancy))))))))& (![X]:(room(X)=>(((((~hate(X,nancy))<~>(~like(X,nancy))))=>(~hate(X,jane))))))& (![X]:(room(X)=>(((like(nancy,X))&(~hate(X,christy))))))
(there_is_a_room)& (?[X,Y]:(room(X)&room(Y)&(like(X,nancy)&like(Y,nancy))&(X!=Y)))
[]
null
0.470054
Alberto, Christine are the only persons in the room. If someone is older than Annette then he/she is a quiet person. Christine and Alberto are quiet persons. More than one person in the room is a tall person. More than one person in the room is a old person. It is not the case that 'it is not the case that 'Christine and Alberto are quiet persons''. All quiet persons are tall. It is not the case that 'Annette is quieter than Alberto'. If someone is a tall old quiet person then he/she is not a kind tall person.
Alberto is kind.
contradiction
room(alberto)&room(christine)&(![X]:(room(X)=>(X='alberto'|X='christine')))& ((![X]:((older(annette,X))=>(quiet(X)&person(X)))))& (quiet(christine)&person(christine)&quiet(alberto)&person(alberto))& ((?[X,Y]:(room(X)&room(Y)&(tall(X)&person(X)&tall(Y)&person(Y))&(X!=Y))))& ((?[X,Y]:(room(X)&room(Y)&(old(X)&person(X)&old(Y)&person(Y))&(X!=Y))))& (~(~(quiet(christine)&person(christine)&quiet(alberto)&person(alberto))))& (![X]:(quiet(X)=>tall(X)))& (~(quieter(alberto,annette)))& ((![X]:((tall(X)&old(X)&quiet(X)&person(X))=>(~(kind(X)&tall(X)&person(X))))))
room(alberto)&room(christine)&(![X]:(room(X)=>(X='alberto'|X='christine')))& kind(alberto)
[ "p0", "p2", "p4", "p6", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 433220464457579084549809 % SZS output start Proof for 433220464457579084549809 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 46. person(mary) & quiet(mary) & person(paul) & quiet(paul) [input p2] 48. ? [X0,X1] : (X0 != X1 & person(X1) & old(X1) & person(X0) & old(X0) & room(X1) & room(X0)) [input p4] 50. ! [X0] : (quiet(X0) => tall(X0)) [input p6] 52. ! [X0] : ((person(X0) & quiet(X0) & old(X0) & tall(X0)) => ~(person(X0) & tall(X0) & kind(X0))) [input p8] 53. kind(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 127. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 128. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 127] 130. ! [X0] : (tall(X0) | ~quiet(X0)) [ennf transformation 50] 131. ! [X0] : ((~person(X0) | ~tall(X0) | ~kind(X0)) | (~person(X0) | ~quiet(X0) | ~old(X0) | ~tall(X0))) [ennf transformation 52] 132. ! [X0] : (~person(X0) | ~tall(X0) | ~kind(X0) | ~person(X0) | ~quiet(X0) | ~old(X0) | ~tall(X0)) [flattening 131] 133. kind(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 53] 134. kind(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 133] 138. ? [X0,X1] : (X0 != X1 & person(X1) & old(X1) & person(X0) & old(X0) & room(X1) & room(X0)) => (sK2 != sK3 & person(sK3) & old(sK3) & person(sK2) & old(sK2) & room(sK3) & room(sK2)) [choice axiom] 139. sK2 != sK3 & person(sK3) & old(sK3) & person(sK2) & old(sK2) & room(sK3) & room(sK2) [skolemisation 48,138] 222. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 128] 227. quiet(mary) [cnf transformation 46] 228. person(mary) [cnf transformation 46] 236. room(sK2) [cnf transformation 139] 237. room(sK3) [cnf transformation 139] 238. old(sK2) [cnf transformation 139] 240. old(sK3) [cnf transformation 139] 242. sK2 != sK3 [cnf transformation 139] 247. ~quiet(X0) | tall(X0) [cnf transformation 130] 249. ~person(X0) | ~tall(X0) | ~kind(X0) | ~person(X0) | ~quiet(X0) | ~old(X0) | ~tall(X0) [cnf transformation 132] 253. kind(mary) [cnf transformation 134] 254. ~person(X0) | ~tall(X0) | ~kind(X0) | ~quiet(X0) | ~old(X0) [duplicate literal removal 249] 255. ~kind(X0) | ~person(X0) | ~quiet(X0) | ~old(X0) [subsumption resolution 254,247] 262. mary = sK2 | paul = sK2 [resolution 222,236] 263. mary = sK3 | paul = sK3 [resolution 222,237] 283. 5 <=> paul = sK2 [avatar definition] 287. 6 <=> mary = sK2 [avatar definition] 289. mary = sK2 <- (6) [avatar component clause 287] 290. 5 | 6 [avatar split clause 262,287,283] 292. 7 <=> paul = sK3 [avatar definition] 294. paul = sK3 <- (7) [avatar component clause 292] 296. 8 <=> mary = sK3 [avatar definition] 298. mary = sK3 <- (8) [avatar component clause 296] 299. 7 | 8 [avatar split clause 263,296,292] 303. paul != sK2 <- (7) [backward demodulation 242,294] 304. ~5 | ~7 [avatar split clause 303,292,283] 317. old(mary) <- (6) [backward demodulation 238,289] 321. ~person(mary) | ~quiet(mary) | ~old(mary) [resolution 255,253] 322. ~quiet(mary) | ~old(mary) [subsumption resolution 321,228] 323. ~old(mary) [subsumption resolution 322,227] 324. $false <- (6) [subsumption resolution 323,317] 325. ~6 [avatar contradiction clause 324] 327. old(mary) <- (8) [backward demodulation 240,298] 330. $false <- (8) [subsumption resolution 327,323] 331. ~8 [avatar contradiction clause 330] 337. $false [avatar sat refutation 290,299,304,325,331] % SZS output end Proof for 433220464457579084549809 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.627672
Mark, David are the only persons in the room. 'If someone does not use contact lenses then he/she does not practice and performs acrobatic dance routines' unless 'everyone in the room is not an active member of a local robotics club, is not right-handed or does not practice and performs acrobatic dance routines'. Everyone anywhere cannot play the harmonica, is not right-handed or does not build model airplanes. Everyone in the room does not practice and performs acrobatic dance routines, does not travel domestically frequently or does not play video games. Everyone outside the room cannot play the harmonica, does not enjoy snowboarding or is not an active member of a local robotics club. Everyone in the room does not build model airplanes. Everyone in the room does not own an Android phone. Everyone outside the room either does not enjoy snowboarding or does not write a travel blog but not both. Everyone in the room cannot play the harmonica.
More than one person in the room practices and performs acrobatic dance routines.
neutral
room(mark)&room(david)&(![X]:(room(X)=>(X='mark'|X='david')))& (~(![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))|(is_not_right-handed(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))=>((![X]:((does_not_use_contact_lenses(X))=>(does_not_practice_and_performs_acrobatic_dance_routines(X))))))& (![X]:(anywhere(X)=>(((cannot_play_the_harmonica(X))|(is_not_right-handed(X))|(does_not_build_model_airplanes(X))))))& (![X]:(room(X)=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))|(does_not_travel_domestically_frequently(X))|(does_not_play_video_games(X))))))& (![X]:(~room(X)=>(((cannot_play_the_harmonica(X))|(does_not_enjoy_snowboarding(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(does_not_build_model_airplanes(X))))& (![X]:(room(X)=>(does_not_own_an_Android_phone(X))))& (![X]:(~room(X)=>(((does_not_enjoy_snowboarding(X))<~>(does_not_write_a_travel_blog(X))))))& (![X]:(room(X)=>(cannot_play_the_harmonica(X))))& ((![X]:((((cannot_play_the_harmonica(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))|(does_not_use_contact_lenses(X))))=>(((is_not_right-handed(X))<~>(does_not_write_a_travel_blog(X)))))))& (?[X]:(room(X)&(((does_not_own_a_television(X))&(does_not_own_an_Android_phone(X))&(does_not_practice_archery(X))))))& (![X]:(room(X)=>(does_not_play_video_games(X))))& (![X]:(~room(X)=>(does_not_own_a_television(X))))& ((((does_not_make_homemade_pastries(mark))|(does_not_practice_archery(mark))|(does_not_collect_comic_books(mark))))&(does_not_own_a_television(mark)))& (![X]:(room(X)=>(does_not_collect_comic_books(X))))
room(mark)&room(david)&(![X]:(room(X)=>(X='mark'|X='david')))& (?[X,Y]:(room(X)&room(Y)&(practices_and_performs_acrobatic_dance_routines(X)&practices_and_performs_acrobatic_dance_routines(Y))&(X!=Y)))
[]
null
0.294208
Alfred, David, Mark, Blanca, Deana are the only persons in the room. 'At least one person in the room is strong' only if 'Blanca has lived in exactly three countries'. If 'Mark has lived in exactly three countries' then 'all brave persons are strong'. 'David is not not brave' only if 'David writes in-depth travel guides for off-the-beaten-path destinations'. If 'David and Deana are not a strong persons' then 'at least one person in the room is not a brave person and does not have lived in exactly three countries'. If 'at least one person in the room is not a brave person and does not have lived in exactly three countries' then 'Mark is brave'. 'Alfred and Blanca are strong persons' only if 'all strong persons are brave'. If 'Deana writes in-depth travel guides for off-the-beaten-path destinations' then 'it is not the case that 'Mark and David are strong''. If 'Blanca is brave' then 'only one person in the room neither is a strong person nor is a brave strong person'. Deana writes in-depth travel guides for off-the-beaten-path destinations. It is not the case that 'it is not the case that 'Mark is a strong brave person''. All brave persons are strong. Deana has lived in exactly three countries. Alfred who enjoys deep-sea diving and exploring underwater caves neither is brave nor writes in-depth travel guides for off-the-beaten-path destinations. Everyone in the room who is not strong is not a brave strong person. It is not the case that 'Blanca is brave'. David has lived in exactly three countries. If someone is not a strong person then he/she writes in-depth travel guides for off-the-beaten-path destinations. If someone is not a brave person then he/she enjoys deep-sea diving and exploring underwater caves and vice versa. Blanca has lived in exactly three countries.
Blanca is strong.
neutral
room(almark)&room(david)&room(mark)&room(blanca)&room(deana)&(![X]:(room(X)=>(X='almark'|X='david'|X='mark'|X='blanca'|X='deana')))& ((((?[X]:(room(X)&strong(X)))))=>(has_lived_in_exactly_three_countries(blanca)))& ((has_lived_in_exactly_three_countries(mark))=>(![X]:(brave(X)=>strong(X))))& ((~~brave(david))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(david)))& (((~(strong(david)&person(david))&~(strong(deana)&person(deana)))=>(((?[X]:(room(X)&((~(brave(X)&person(X)))&(does_not_have_lived_in_exactly_three_countries(X))))))))& ((((?[X]:(room(X)&((~(brave(X)&person(X)))&(does_not_have_lived_in_exactly_three_countries(X)))))))=>(brave(mark))))& ((strong(almark)&person(almark)&strong(blanca)&person(blanca))=>(![X]:(strong(X)=>brave(X))))& ((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(deana))=>(~(strong(mark)&strong(david))))& ((brave(blanca))=>(((?[X]:(room(X)&~((strong(X)&person(X))|(brave(X)&strong(X)&person(X)))))&(![X,Y]:((room(X)&room(Y)&(~((strong(X)&person(X))|(brave(X)&strong(X)&person(X))))&(~((strong(Y)&person(Y))|(brave(Y)&strong(Y)&person(Y)))))=>(X=Y))))))& (writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(deana))& (~(~(strong(mark)&brave(mark)&person(mark))))& (![X]:(brave(X)=>strong(X)))& (has_lived_in_exactly_three_countries(deana))& ((enjoys_deep-sea_diving_and_exploring_underwater_caves(almark))&(~((brave(almark))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(almark)))))& (![X]:(room(X)=>(((~strong(X))=>(~(brave(X)&strong(X)&person(X)))))))& (~(brave(blanca)))& (has_lived_in_exactly_three_countries(david))& ((![X]:((~(strong(X)&person(X)))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))))& ((![X]:((~(brave(X)&person(X)))<=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))& (has_lived_in_exactly_three_countries(blanca))
room(almark)&room(david)&room(mark)&room(blanca)&room(deana)&(![X]:(room(X)=>(X='almark'|X='david'|X='mark'|X='blanca'|X='deana')))& strong(blanca)
[]
null
0.196557
Eric, David, Mark, Kenneth, Thelma are the only persons in the room. If 'everyone in the room plays the drums' then 'it is not the case that 'Kenneth hosts regular workshops on creative writing''. If 'everyone in the room hosts regular workshops on creative writing or does not make homemade pastries' then 'it is not the case that 'Eric does not enjoy trail running, does enjoy trail running or hosts regular workshops on creative writing''. Either 'Kenneth does not host regular workshops on creative writing' or 'Mark is a dedicated advocate for digital privacy and encryption, does enjoy trail running and makes homemade pastries' but not both. Everyone in the room makes homemade pastries if they hosts regular workshops on creative writing. Everyone anywhere does enjoy trail running or hosts regular workshops on creative writing or both if they hosts regular workshops on creative writing. Everyone in the room does enjoy trail running if they hosts regular workshops on creative writing. Mark does enjoy trail running. Everyone in the room plays the drums only if they plays the drums, is a dedicated advocate for digital privacy and encryption or does not enjoy trail running.
Mark is a dedicated advocate for digital privacy and encryption.
neutral
room(eric)&room(david)&room(mark)&room(kenneth)&room(thelma)&(![X]:(room(X)=>(X='eric'|X='david'|X='mark'|X='kenneth'|X='thelma')))& ((![X]:(room(X)=>(plays_the_drums(X))))=>(~(hosts_regular_workshops_on_creative_writing(kenneth))))& ((![X]:(room(X)=>(((does_not_make_homemade_pastries(X))|(hosts_regular_workshops_on_creative_writing(X))))))=>(~(((does_not_enjoy_trail_running(eric))|(does_enjoy_trail_running(eric))|(hosts_regular_workshops_on_creative_writing(eric))))))& ((does_not_host_regular_workshops_on_creative_writing(kenneth))<~>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(mark))&(does_enjoy_trail_running(mark))&(makes_homemade_pastries(mark)))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(makes_homemade_pastries(X))))))& (![X]:(anywhere(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(((does_enjoy_trail_running(X))|(hosts_regular_workshops_on_creative_writing(X))))))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(does_enjoy_trail_running(X))))))& (does_enjoy_trail_running(mark))& (![X]:(room(X)=>(((((plays_the_drums(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(does_not_enjoy_trail_running(X))))<=(plays_the_drums(X))))))
room(eric)&room(david)&room(mark)&room(kenneth)&room(thelma)&(![X]:(room(X)=>(X='eric'|X='david'|X='mark'|X='kenneth'|X='thelma')))& is_a_dedicated_advocate_for_digital_privacy_and_encryption(mark)
[]
null
0