premise
stringlengths
12
3.12k
hypothesis
stringlengths
10
236
label
stringclasses
3 values
premise_tptp
stringlengths
51
8k
hypothesis_tptp
stringlengths
41
352
proof_inputs
sequencelengths
0
20
proof
stringlengths
767
76.8k
rule_concentration
float64
0
0.72
Oscar, Everett, Desirae, Jean, Archie are the only persons in the room. If “Everett and Jean are not creative” then “Everett neither is a funny brave generous person nor is not happy”. Everyone in the room is not quiet if they is a wise person and vice versa. Jean is old. Everett neither is a funny brave generous person nor is not happy. Everett is a strong person. If someone is not old then he/she is a funny quiet generous person. Everyone in the room is not generous if and only if they is not humble. Everyone in the room is a curious quiet funny person if they is not humble. Oscar is not brave. If someone is calm then he/she is not kind. Jean is a funny tall person. Everyone in the room who is a tall calm strong person is a tall happy strong person. Desirae is a calm tall humble person. Everyone in the room who is creative is a generous old funny quiet strong person. Everett is not creative, not tall. Everyone in the room who is a calm kind person, is humble and is a patient creative person is not strong. Jean and Everett are respectively wise and funny. Everett is not humble or is not strong, not happy, not humble, not tall or both.
Jean is quiet.
contradiction
room(oscar)&room(everett)&room(desirae)&room(jean)&room(archie)&(![X]:(room(X)=>(X='oscar'|X='everett'|X='desirae'|X='jean'|X='archie')))& ((~creative(everett)&~creative(jean))=>(~((funny(everett)&brave(everett)&generous(everett)&person(everett))|(~happy(everett)))))& (![X]:(room(X)=>(((~quiet(X))<=>(wise(X)&person(X))))))& (old(jean))& (~((funny(everett)&brave(everett)&generous(everett)&person(everett))|(~happy(everett))))& (strong(everett)&person(everett))& ((![X]:((~old(X))=>(funny(X)&quiet(X)&generous(X)&person(X)))))& (![X]:(room(X)=>(((~generous(X))<=>(~humble(X))))))& (![X]:(room(X)=>(((~humble(X))=>(curious(X)&quiet(X)&funny(X)&person(X))))))& (~brave(oscar))& ((![X]:((calm(X))=>(~kind(X)))))& (funny(jean)&tall(jean)&person(jean))& (![X]:(room(X)=>(((tall(X)&calm(X)&strong(X)&person(X))=>(tall(X)&happy(X)&strong(X)&person(X))))))& (calm(desirae)&tall(desirae)&humble(desirae)&person(desirae))& (![X]:(room(X)=>(((creative(X))=>(generous(X)&old(X)&funny(X)&quiet(X)&strong(X)&person(X))))))& (~creative(everett)&~tall(everett))& (![X]:(room(X)=>(((((calm(X)&kind(X)&person(X))&(humble(X))&(patient(X)&creative(X)&person(X))))=>(~strong(X))))))& ((wise(jean))&(funny(everett)))& (((~humble(everett))|(~strong(everett)&~happy(everett)&~humble(everett)&~tall(everett))))
room(oscar)&room(everett)&room(desirae)&room(jean)&room(archie)&(![X]:(room(X)=>(X='oscar'|X='everett'|X='desirae'|X='jean'|X='archie')))& quiet(jean)
[ "p0", "p2", "p11", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 7041787480046901673185282 % SZS output start Proof for 7041787480046901673185282 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => (~quiet(X0) <=> (person(X0) & wise(X0)))) [input p2] 55. person(alice) & tall(alice) & funny(alice) [input p11] 61. funny(paul) & wise(alice) [input p17] 63. quiet(alice) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 72. person(alice) & tall(alice) [pure predicate removal 55] 74. wise(alice) [pure predicate removal 61] 147. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 147] 151. ! [X0] : ((~quiet(X0) <=> (person(X0) & wise(X0))) | ~room(X0)) [ennf transformation 46] 161. quiet(alice) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 63] 162. quiet(alice) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 161] 164. ! [X0] : (((~quiet(X0) | (~person(X0) | ~wise(X0))) & ((person(X0) & wise(X0)) | quiet(X0))) | ~room(X0)) [nnf transformation 151] 165. ! [X0] : (((~quiet(X0) | ~person(X0) | ~wise(X0)) & ((person(X0) & wise(X0)) | quiet(X0))) | ~room(X0)) [flattening 164] 250. room(alice) [cnf transformation 148] 256. ~wise(X0) | ~person(X0) | ~quiet(X0) | ~room(X0) [cnf transformation 165] 269. person(alice) [cnf transformation 72] 285. wise(alice) [cnf transformation 74] 296. quiet(alice) [cnf transformation 162] 414. ~person(alice) | ~quiet(alice) | ~room(alice) [resolution 256,285] 427. ~quiet(alice) | ~room(alice) [subsumption resolution 414,269] 428. ~room(alice) [subsumption resolution 427,296] 429. $false [subsumption resolution 428,250] % SZS output end Proof for 7041787480046901673185282 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.020 s % ------------------------------ % ------------------------------
0.280731
Laura is the only person in the room. “Everyone in the room is a dedicated advocate for digital privacy and encryption or does not own a significant collection of rare gemstones and minerals” if “everyone in the room owns a significant collection of rare gemstones and minerals or does not practice archery” and vice versa. If “everyone in the room does not own a smart tv or does not collect action figures” then “everyone outside the room neither practices archery nor is a dedicated advocate for digital privacy and encryption if they does not own a smart tv”. Laura collects action figures. Laura hosts themed dinner parties featuring gourmet home-cooked meals. Laura practices archery. Everyone in the room who collects action figures owns a smart tv. Laura is a dedicated advocate for digital privacy and encryption.
Laura hosts themed dinner parties featuring gourmet home-cooked meals, practices archery and is a dedicated advocate for digital privacy and encryption.
entailment
room(laura)&(![X]:(room(X)=>(X='laura')))& ((![X]:(room(X)=>(((does_not_practice_archery(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))<=>(![X]:(room(X)=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))& ((![X]:(room(X)=>(((does_not_collect_action_figures(X))|(does_not_own_a_smart_tv(X))))))=>(![X]:(~room(X)=>(((does_not_own_a_smart_tv(X))=>(~((practices_archery(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))))& (collects_action_figures(laura))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(laura))& (practices_archery(laura))& (![X]:(room(X)=>(((collects_action_figures(X))=>(owns_a_smart_tv(X))))))& (![X]:(room(X)=>(((collects_action_figures(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (is_a_dedicated_advocate_for_digital_privacy_and_encryption(laura))& (![X]:(room(X)=>(((does_not_own_a_smart_tv(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (![X]:(room(X)=>(((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(collects_action_figures(X))))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(laura))
room(laura)&(![X]:(room(X)=>(X='laura')))& ((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(laura))&(practices_archery(laura))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(laura)))
[ "p0", "p4", "p5", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 348619530680064262561740 % SZS output start Proof for 348619530680064262561740 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 48. prede(mary) [input p4] 49. preda(mary) [input p5] 52. predb(mary) [input p8] 57. ~(predb(mary) & preda(mary) & prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 132. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 147. ~predb(mary) | ~preda(mary) | ~prede(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 57] 157. ? [X0] : (mary != X0 & room(X0)) => (mary != sK3 & room(sK3)) [choice axiom] 158. ~predb(mary) | ~preda(mary) | ~prede(mary) | (mary != sK3 & room(sK3)) | ~room(mary) [skolemisation 147,157] 239. room(mary) [cnf transformation 132] 240. ~room(X0) | mary = X0 [cnf transformation 132] 254. prede(mary) [cnf transformation 48] 255. preda(mary) [cnf transformation 49] 258. predb(mary) [cnf transformation 52] 264. ~predb(mary) | ~preda(mary) | ~prede(mary) | room(sK3) | ~room(mary) [cnf transformation 158] 265. ~predb(mary) | ~preda(mary) | ~prede(mary) | mary != sK3 | ~room(mary) [cnf transformation 158] 326. ~preda(mary) | ~prede(mary) | mary != sK3 | ~room(mary) [subsumption resolution 265,258] 327. ~prede(mary) | mary != sK3 | ~room(mary) [subsumption resolution 326,255] 328. mary != sK3 | ~room(mary) [subsumption resolution 327,254] 329. mary != sK3 [subsumption resolution 328,239] 330. ~preda(mary) | ~prede(mary) | room(sK3) | ~room(mary) [subsumption resolution 264,258] 331. ~prede(mary) | room(sK3) | ~room(mary) [subsumption resolution 330,255] 332. room(sK3) | ~room(mary) [subsumption resolution 331,254] 333. room(sK3) [subsumption resolution 332,239] 336. mary = sK3 [resolution 240,333] 340. $false [subsumption resolution 336,329] % SZS output end Proof for 348619530680064262561740 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.695992
Mike, Garry are the only persons in the room. If “Mike is a wise person” then “Mike is not a wise person” otherwise “Mike is allergic to anything”. If “everyone outside the room is an active member of a local robotics club or is not an active member of a local robotics club” then “everyone outside the room does not enjoy kayaking and exploring remote waterways or is an active member of a local robotics club”. If “no one in the room is not an active member of a local robotics club or watches fantasy movies” then “no one in the room who is an active member of a local robotics club is a wise person” otherwise “not everyone outside the room is allergic to anything if they neither is a wise person nor is an active member of a local robotics club”. “Mike is allergic to anything” only if “everyone in the room does not watche fantasy movies or does not enjoy kayaking and exploring remote waterways”. Mike who enjoys kayaking and exploring remote waterways is not an active member of a local robotics club. Mike enjoys kayaking and exploring remote waterways. Everyone in the room who enjoys kayaking and exploring remote waterways is wise. If someone is not not not wise then he/she enjoys kayaking and exploring remote waterways. Everyone outside the room enjoys kayaking and exploring remote waterways, is a wise person or is allergic to anything only if they watches fantasy movies.
Mike is allergic to anything.
entailment
room(mike)&room(garry)&(![X]:(room(X)=>(X='mike'|X='garry')))& (((wise(mike)&person(mike))=>(~(wise(mike)&person(mike))))&((~(wise(mike)&person(mike)))=>(is_allergic_to_anything(mike))))& ((![X]:(~room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))|(is_an_active_member_of_a_local_robotics_club(X))))))=>(![X]:(~room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X)))))))& (((~?[X]:(room(X)=>(((watches_fantasy_movies(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))=>(~?[X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(wise(X)&person(X)))))))&((~(~?[X]:(room(X)=>(((watches_fantasy_movies(X))|(is_not_an_active_member_of_a_local_robotics_club(X)))))))=>(~![X]:(~room(X)=>(((~((wise(X)&person(X))|(is_an_active_member_of_a_local_robotics_club(X))))=>(is_allergic_to_anything(X))))))))& ((is_allergic_to_anything(mike))=>(![X]:(room(X)=>(((does_not_enjoy_kayaking_and_exploring_remote_waterways(X))|(does_not_watche_fantasy_movies(X)))))))& ((enjoys_kayaking_and_exploring_remote_waterways(mike))&(is_not_an_active_member_of_a_local_robotics_club(mike)))& (enjoys_kayaking_and_exploring_remote_waterways(mike))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(wise(X))))))& ((![X]:((~~~wise(X))=>(enjoys_kayaking_and_exploring_remote_waterways(X)))))& (![X]:(~room(X)=>(((watches_fantasy_movies(X))<=(((enjoys_kayaking_and_exploring_remote_waterways(X))|(wise(X)&person(X))|(is_allergic_to_anything(X))))))))
room(mike)&room(garry)&(![X]:(room(X)=>(X='mike'|X='garry')))& is_allergic_to_anything(mike)
[ "p0", "p1", "p5", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 1680688662415036795710702 % SZS output start Proof for 1680688662415036795710702 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. (~(person(mary) & wise(mary)) => predr(mary)) & ((person(mary) & wise(mary)) => ~(person(mary) & wise(mary))) [input p1] 49. ~predl(mary) & predu(mary) [input p5] 51. ! [X0] : (room(X0) => (predu(X0) => wise(X0))) [input p7] 54. ~(predr(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 130. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 131. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 130] 132. (predr(mary) | (person(mary) & wise(mary))) & ((~person(mary) | ~wise(mary)) | (~person(mary) | ~wise(mary))) [ennf transformation 45] 133. (predr(mary) | (person(mary) & wise(mary))) & (~person(mary) | ~wise(mary) | ~person(mary) | ~wise(mary)) [flattening 132] 140. ! [X0] : ((wise(X0) | ~predu(X0)) | ~room(X0)) [ennf transformation 51] 141. ! [X0] : (wise(X0) | ~predu(X0) | ~room(X0)) [flattening 140] 145. ~predr(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 54] 146. ~predr(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 145] 160. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 161. ~predr(mary) | (paul != sK4 & mary != sK4 & room(sK4)) | ~room(paul) | ~room(mary) [skolemisation 146,160] 242. room(mary) [cnf transformation 131] 243. room(paul) [cnf transformation 131] 244. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 131] 245. ~person(mary) | ~wise(mary) | ~person(mary) | ~wise(mary) [cnf transformation 133] 247. predr(mary) | person(mary) [cnf transformation 133] 262. predu(mary) [cnf transformation 49] 265. ~predu(X0) | wise(X0) | ~room(X0) [cnf transformation 141] 270. ~predr(mary) | room(sK4) | ~room(paul) | ~room(mary) [cnf transformation 161] 271. ~predr(mary) | mary != sK4 | ~room(paul) | ~room(mary) [cnf transformation 161] 272. ~predr(mary) | paul != sK4 | ~room(paul) | ~room(mary) [cnf transformation 161] 273. ~person(mary) | ~wise(mary) [duplicate literal removal 245] 275. 1 <=> person(mary) [avatar definition] 279. 2 <=> predr(mary) [avatar definition] 282. 1 | 2 [avatar split clause 247,279,275] 284. 3 <=> wise(mary) [avatar definition] 288. ~3 | ~1 [avatar split clause 273,275,284] 365. ~predr(mary) | paul != sK4 | ~room(mary) [subsumption resolution 272,243] 366. ~predr(mary) | paul != sK4 [subsumption resolution 365,242] 368. 21 <=> paul = sK4 [avatar definition] 370. paul != sK4 <- (~21) [avatar component clause 368] 371. ~21 | ~2 [avatar split clause 366,279,368] 372. ~predr(mary) | mary != sK4 | ~room(mary) [subsumption resolution 271,243] 373. ~predr(mary) | mary != sK4 [subsumption resolution 372,242] 375. 22 <=> mary = sK4 [avatar definition] 377. mary != sK4 <- (~22) [avatar component clause 375] 378. ~22 | ~2 [avatar split clause 373,279,375] 379. ~predr(mary) | room(sK4) | ~room(mary) [subsumption resolution 270,243] 380. ~predr(mary) | room(sK4) [subsumption resolution 379,242] 382. 23 <=> room(sK4) [avatar definition] 384. room(sK4) <- (23) [avatar component clause 382] 385. 23 | ~2 [avatar split clause 380,279,382] 386. wise(mary) | ~room(mary) [resolution 265,262] 389. wise(mary) [subsumption resolution 386,242] 390. 3 [avatar split clause 389,284] 409. mary = sK4 | paul = sK4 <- (23) [resolution 244,384] 410. paul = sK4 <- (~22, 23) [subsumption resolution 409,377] 411. $false <- (~21, ~22, 23) [subsumption resolution 410,370] 412. 21 | 22 | ~23 [avatar contradiction clause 411] 413. $false [avatar sat refutation 282,288,371,378,385,390,412] % SZS output end Proof for 1680688662415036795710702 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.046147
Maria, Paula are the only persons in the room. More than one person in the room is liked by Carmen. If someone is not hated by Ludie or is not hated by Carmen or both then he/she is not liked by Ludie and vice versa. Everyone in the room who hates Carmen does not hate Carmen or is liked by Ludie or both. Someone in the room is hated by Ludie. Everyone in the room who does not like Ludie is not liked by Ludie. Everyone in the room is liked by Ludie if they does not like Ludie, is not hated by Carmen and is not liked by Carmen. Everyone anywhere is liked by Carmen or does not like Ludie or both if they is liked by Ludie. Everyone in the room is liked by Carmen or does not like Ludie or both if they is liked by Carmen or does not hate Ludie or both and vice versa.
Maria is liked by Carmen.
entailment
room(maria)&room(paulaa)&(![X]:(room(X)=>(X='maria'|X='paulaa')))& ((?[X,Y]:(room(X)&room(Y)&(like(X,carmen)&like(Y,carmen))&(X!=Y))))& ((![X]:((((~hate(X,ludie))|(~hate(X,carmen))))<=>(~like(X,ludie)))))& (![X]:(room(X)=>(((hate(carmen,X))=>(((~hate(carmen,X))|(like(X,ludie))))))))& (?[X]:(room(X)&(hate(X,ludie))))& (![X]:(room(X)=>(((~like(ludie,X))=>(~like(X,ludie))))))& (![X]:(room(X)=>(((((~like(ludie,X))&(~hate(X,carmen))&(~like(X,carmen))))=>(like(X,ludie))))))& (![X]:(anywhere(X)=>(((like(X,ludie))=>(((like(X,carmen))|(~like(ludie,X))))))))& (![X]:(room(X)=>(((((like(X,carmen))|(~like(ludie,X))))<=>(((like(X,carmen))|(~hate(ludie,X))))))))
room(maria)&room(paulaa)&(![X]:(room(X)=>(X='maria'|X='paulaa')))& like(maria,carmen)
[ "p0", "p1", "hypothesis" ]
% SZS status Unsatisfiable for 6571860240304096036303075 % SZS output start Proof for 6571860240304096036303075 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ? [X0,X1] : (X0 != X1 & like(X1,alice) & like(X0,alice) & room(X1) & room(X0)) [input p1] 53. ~(like(mary,alice) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 127. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 128. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 127] 138. ~like(mary,alice) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 53] 139. ~like(mary,alice) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 138] 141. ? [X0,X1] : (X0 != X1 & like(X1,alice) & like(X0,alice) & room(X1) & room(X0)) => (sK0 != sK1 & like(sK1,alice) & like(sK0,alice) & room(sK1) & room(sK0)) [choice axiom] 142. sK0 != sK1 & like(sK1,alice) & like(sK0,alice) & room(sK1) & room(sK0) [skolemisation 45,141] 149. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 150. ~like(mary,alice) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 139,149] 234. room(mary) [cnf transformation 128] 235. room(paul) [cnf transformation 128] 236. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 128] 237. room(sK0) [cnf transformation 142] 238. room(sK1) [cnf transformation 142] 239. like(sK0,alice) [cnf transformation 142] 240. like(sK1,alice) [cnf transformation 142] 241. sK0 != sK1 [cnf transformation 142] 255. ~like(mary,alice) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 150] 256. ~like(mary,alice) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 150] 257. ~like(mary,alice) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 150] 261. ~like(mary,alice) | paul != sK3 | ~room(mary) [subsumption resolution 257,235] 262. ~like(mary,alice) | paul != sK3 [subsumption resolution 261,234] 264. 1 <=> paul = sK3 [avatar definition] 266. paul != sK3 <- (~1) [avatar component clause 264] 268. 2 <=> like(mary,alice) [avatar definition] 270. ~like(mary,alice) <- (~2) [avatar component clause 268] 271. ~1 | ~2 [avatar split clause 262,268,264] 272. ~like(mary,alice) | mary != sK3 | ~room(mary) [subsumption resolution 256,235] 273. ~like(mary,alice) | mary != sK3 [subsumption resolution 272,234] 275. 3 <=> mary = sK3 [avatar definition] 277. mary != sK3 <- (~3) [avatar component clause 275] 278. ~3 | ~2 [avatar split clause 273,268,275] 279. ~like(mary,alice) | room(sK3) | ~room(mary) [subsumption resolution 255,235] 280. ~like(mary,alice) | room(sK3) [subsumption resolution 279,234] 282. 4 <=> room(sK3) [avatar definition] 284. room(sK3) <- (4) [avatar component clause 282] 285. 4 | ~2 [avatar split clause 280,268,282] 288. mary = sK0 | paul = sK0 [resolution 236,237] 289. mary = sK1 | paul = sK1 [resolution 236,238] 292. 5 <=> paul = sK0 [avatar definition] 296. 6 <=> mary = sK0 [avatar definition] 298. mary = sK0 <- (6) [avatar component clause 296] 299. 5 | 6 [avatar split clause 288,296,292] 301. 7 <=> paul = sK1 [avatar definition] 303. paul = sK1 <- (7) [avatar component clause 301] 305. 8 <=> mary = sK1 [avatar definition] 307. mary = sK1 <- (8) [avatar component clause 305] 308. 7 | 8 [avatar split clause 289,305,301] 322. paul != sK0 <- (7) [backward demodulation 241,303] 323. ~5 | ~7 [avatar split clause 322,301,292] 327. like(mary,alice) <- (6) [backward demodulation 239,298] 328. $false <- (~2, 6) [subsumption resolution 327,270] 329. 2 | ~6 [avatar contradiction clause 328] 332. like(mary,alice) <- (8) [backward demodulation 240,307] 340. 2 | ~8 [avatar split clause 332,305,268] 341. mary = sK3 | paul = sK3 <- (4) [resolution 284,236] 342. paul = sK3 <- (~3, 4) [subsumption resolution 341,277] 343. $false <- (~1, ~3, 4) [subsumption resolution 342,266] 344. 1 | 3 | ~4 [avatar contradiction clause 343] 345. $false [avatar sat refutation 271,278,285,299,308,323,329,340,344] % SZS output end Proof for 6571860240304096036303075 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.054835
Henry, Ester are the only persons in the room. No one anywhere does not enjoy camping and organizing outdoor survival workshops. More than one person in the room does not enjoy camping and organizing outdoor survival workshops or does not play as a goalkeeper for a local amateur soccer team or both.
Ester plays as a goalkeeper for a local amateur soccer team.
contradiction
room(henry)&room(ester)&(![X]:(room(X)=>(X='henry'|X='ester')))& ((![X]:(room(X)=>(does_not_collect_modern_art(X))))=>(![X]:(~room(X)=>(((is_not_a_craft_beer_aficionado(X))|(does_not_enjoy_snowboarding(X))|(does_not_create_augmented_reality_experiences_for_mobile_applications(X)))))))& ((![X]:(anywhere(X)=>(((is_not_a_craft_beer_aficionado(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))<=>(![X]:(room(X)=>(is_not_a_craft_beer_aficionado(X)))))& (![X]:(room(X)=>(((does_not_bake_bread_at_home(X))<~>(does_not_have_a_pet_dog(X))))))& (~?[X]:(anywhere(X)=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))& ((![X]:((((does_not_enjoy_origami(X))|(does_not_bake_bread_at_home(X))))<=>(does_not_enjoy_origami(X)))))& ((![X]:((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))<=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(does_not_bake_bread_at_home(X))|(does_not_host_regular_game_nights_featuring_complex_strategy_games(X)))))))& (![X]:(room(X)=>(does_not_enjoy_origami(X))))& (![X]:(~room(X)=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))& ((?[X,Y]:(room(X)&room(Y)&(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))&((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(Y))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(Y))))&(X!=Y))))& (![X]:(room(X)=>(does_not_have_a_pet_dog(X))))& ((![X]:((((does_not_collect_rare_and_antique_scientific_instruments(X))&(does_not_use_a_Windows_laptop(X))))<=>(does_not_watche_fantasy_movies(X)))))& (![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))&(does_not_practice_kickboxing(X))))))& ((![X]:((does_not_have_a_pet_dog(X))<=>(((does_not_create_augmented_reality_experiences_for_mobile_applications(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))|(does_not_enjoy_skydiving(X)))))))& (![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))|(does_not_collect_rare_and_antique_scientific_instruments(X))))))
room(henry)&room(ester)&(![X]:(room(X)=>(X='henry'|X='ester')))& plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(ester)
[ "p0", "p4", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 4924747750754688104240906 % SZS output start Proof for 4924747750754688104240906 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 48. ~? [X0] : (anywhere(X0) => ~predj(X0)) [input p4] 53. ? [X0,X1] : (X0 != X1 & (~predl(X1) | ~predj(X1)) & (~predl(X0) | ~predj(X0)) & room(X1) & room(X0)) [input p9] 59. predl(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 138. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 139. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 138] 143. ! [X0] : (predj(X0) & anywhere(X0)) [ennf transformation 48] 146. predl(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 59] 147. predl(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 146] 159. ? [X0,X1] : (X0 != X1 & (~predl(X1) | ~predj(X1)) & (~predl(X0) | ~predj(X0)) & room(X1) & room(X0)) => (sK2 != sK3 & (~predl(sK3) | ~predj(sK3)) & (~predl(sK2) | ~predj(sK2)) & room(sK3) & room(sK2)) [choice axiom] 160. sK2 != sK3 & (~predl(sK3) | ~predj(sK3)) & (~predl(sK2) | ~predj(sK2)) & room(sK3) & room(sK2) [skolemisation 53,159] 246. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 139] 255. predj(X0) [cnf transformation 143] 264. room(sK2) [cnf transformation 160] 265. room(sK3) [cnf transformation 160] 266. ~predl(sK2) | ~predj(sK2) [cnf transformation 160] 267. ~predl(sK3) | ~predj(sK3) [cnf transformation 160] 268. sK2 != sK3 [cnf transformation 160] 277. predl(paul) [cnf transformation 147] 309. ~predl(sK3) [subsumption resolution 267,255] 310. ~predl(sK2) [subsumption resolution 266,255] 318. mary = sK2 | paul = sK2 [resolution 246,264] 319. mary = sK3 | paul = sK3 [resolution 246,265] 321. 7 <=> paul = sK2 [avatar definition] 323. paul = sK2 <- (7) [avatar component clause 321] 325. 8 <=> mary = sK2 [avatar definition] 328. 7 | 8 [avatar split clause 318,325,321] 330. 9 <=> paul = sK3 [avatar definition] 332. paul = sK3 <- (9) [avatar component clause 330] 334. 10 <=> mary = sK3 [avatar definition] 336. mary = sK3 <- (10) [avatar component clause 334] 337. 9 | 10 [avatar split clause 319,334,330] 339. ~predl(paul) <- (9) [backward demodulation 309,332] 341. $false <- (9) [subsumption resolution 339,277] 342. ~9 [avatar contradiction clause 341] 345. ~predl(paul) <- (7) [backward demodulation 310,323] 346. $false <- (7) [subsumption resolution 345,277] 347. ~7 [avatar contradiction clause 346] 350. mary != sK2 <- (10) [backward demodulation 268,336] 351. ~8 | ~10 [avatar split clause 350,334,325] 356. $false [avatar sat refutation 328,337,342,347,351] % SZS output end Proof for 4924747750754688104240906 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.326102
There is a room. “Everyone in the room can play the flute, can play the harmonica and has a specialized collection of handmade artisan pottery if they collects historical artifacts related to ancient civilizations and vice versa” if “everyone in the room can play the guitar or cannot play the harmonica”. If “everyone in the room is passionate about collecting and restoring classic cars or does not own a smartwatch” then “not everyone in the room who is passionate about collecting and restoring classic cars either enjoys macrame or plays eSports competitively but not both”. Everyone in the room who can play the flute enjoys camping and organizing outdoor survival workshops. If someone enjoys camping and organizing outdoor survival workshops then he/she owns a smartwatch. Everyone anywhere who has a specialized collection of handmade artisan pottery enjoys camping and organizing outdoor survival workshops. Not everyone in the room who does enjoy trail running is passionate about collecting and restoring classic cars. Not everyone anywhere who is passionate about collecting and restoring classic cars enjoys macrame or owns a smartwatch or both. Everyone in the room enjoys macrame if and only if they can play the guitar. Not everyone in the room who is passionate about collecting and restoring classic cars either enjoys macrame or plays eSports competitively but not both. Everyone in the room is passionate about collecting and restoring classic cars only if they either enjoys camping and organizing outdoor survival workshops or does enjoy trail running but not both. Everyone in the room either enjoys camping and organizing outdoor survival workshops or does enjoy trail running but not both if they enjoys macrame and vice versa. Everyone in the room who enjoys macrame is passionate about collecting and restoring classic cars. Everyone outside the room who is passionate about collecting and restoring classic cars collects historical artifacts related to ancient civilizations. Everyone in the room is passionate about collecting and restoring classic cars or does not play eSports competitively. Everyone in the room plays eSports competitively or cannot play the guitar. Everyone in the room who plays eSports competitively enjoys camping and organizing outdoor survival workshops. Everyone in the room who enjoys camping and organizing outdoor survival workshops can play the flute and enjoys camping and organizing outdoor survival workshops. Everyone in the room who collects historical artifacts related to ancient civilizations enjoys camping and organizing outdoor survival workshops. Someone in the room owns a smartwatch. Everyone outside the room owns a smartwatch if they can play the guitar and vice versa. Not everyone in the room who can play the guitar has a specialized collection of handmade artisan pottery. Everyone in the room who can play the guitar can play the harmonica.
Everyone in the room does not enjoy camping and organizing outdoor survival workshops or does enjoy trail running.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((cannot_play_the_harmonica(X))|(can_play_the_guitar(X))))))=>(![X]:(room(X)=>(((((can_play_the_flute(X))&(can_play_the_harmonica(X))&(has_a_specialized_collection_of_handmade_artisan_pottery(X))))<=>(collects_historical_artifacts_related_to_ancient_civilizations(X)))))))& ((![X]:(room(X)=>(((does_not_own_a_smartwatch(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))=>(~![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(((enjoys_macrame(X))<~>(plays_eSports_competitively(X)))))))))& (![X]:(room(X)=>(((can_play_the_flute(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& ((![X]:((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(owns_a_smartwatch(X)))))& (![X]:(anywhere(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (~![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (~![X]:(anywhere(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(((enjoys_macrame(X))|(owns_a_smartwatch(X))))))))& (![X]:(room(X)=>(((enjoys_macrame(X))<=>(can_play_the_guitar(X))))))& (~![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(((enjoys_macrame(X))<~>(plays_eSports_competitively(X))))))))& (![X]:(room(X)=>(((((enjoys_camping_and_organizing_outdoor_survival_workshops(X))<~>(does_enjoy_trail_running(X))))<=(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((((enjoys_camping_and_organizing_outdoor_survival_workshops(X))<~>(does_enjoy_trail_running(X))))<=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((enjoys_macrame(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(~room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& (![X]:(room(X)=>(((does_not_play_eSports_competitively(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((cannot_play_the_guitar(X))|(plays_eSports_competitively(X))))))& (![X]:(room(X)=>(((plays_eSports_competitively(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(((can_play_the_flute(X))&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))))& (![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (?[X]:(room(X)&(owns_a_smartwatch(X))))& (![X]:(~room(X)=>(((owns_a_smartwatch(X))<=>(can_play_the_guitar(X))))))& (~![X]:(room(X)=>(((can_play_the_guitar(X))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((can_play_the_guitar(X))=>(can_play_the_harmonica(X))))))& (~![X]:(room(X)=>(((can_play_the_harmonica(X))=>(can_play_the_guitar(X))))))& (![X]:(room(X)=>(((owns_a_smartwatch(X))<=(can_play_the_guitar(X))))))& (~![X]:(room(X)=>(((cannot_play_the_harmonica(X))|(can_play_the_flute(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((does_enjoy_trail_running(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X)))))
[ "p8", "p10", "p12", "p15", "p16", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 3410988489454750921429616 % SZS output start Proof for 3410988489454750921429616 52. ! [X0] : (room(X0) => (predh(X0) <=> predk(X0))) [input p8] 54. ! [X0] : (room(X0) => (predi(X0) => (predd(X0) <~> predj(X0)))) [input p10] 56. ! [X0] : (room(X0) => (predh(X0) => predi(X0))) [input p12] 59. ! [X0] : (room(X0) => (predg(X0) | ~predk(X0))) [input p15] 60. ! [X0] : (room(X0) => (predg(X0) => predd(X0))) [input p16] 65. ~! [X0] : (room(X0) => (predk(X0) => preda(X0))) [input p21] 70. ! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room [input hypothesis] 73. ! [X0] : (room(X0) => (~predd(X0) | predj(X0))) [pure predicate removal 70] 159. ! [X0] : ((predh(X0) <=> predk(X0)) | ~room(X0)) [ennf transformation 52] 162. ! [X0] : (((predd(X0) <~> predj(X0)) | ~predi(X0)) | ~room(X0)) [ennf transformation 54] 163. ! [X0] : ((predd(X0) <~> predj(X0)) | ~predi(X0) | ~room(X0)) [flattening 162] 165. ! [X0] : ((predi(X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 56] 166. ! [X0] : (predi(X0) | ~predh(X0) | ~room(X0)) [flattening 165] 171. ! [X0] : ((predg(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 59] 172. ! [X0] : (predg(X0) | ~predk(X0) | ~room(X0)) [flattening 171] 173. ! [X0] : ((predd(X0) | ~predg(X0)) | ~room(X0)) [ennf transformation 60] 174. ! [X0] : (predd(X0) | ~predg(X0) | ~room(X0)) [flattening 173] 180. ? [X0] : ((~preda(X0) & predk(X0)) & room(X0)) [ennf transformation 65] 181. ? [X0] : (~preda(X0) & predk(X0) & room(X0)) [flattening 180] 190. ! [X0] : ((~predd(X0) | predj(X0)) | ~room(X0)) [ennf transformation 73] 191. ! [X0] : (~predd(X0) | predj(X0) | ~room(X0)) [flattening 190] 213. ! [X0] : (((predh(X0) | ~predk(X0)) & (predk(X0) | ~predh(X0))) | ~room(X0)) [nnf transformation 159] 218. ! [X0] : (((~predj(X0) | ~predd(X0)) & (predj(X0) | predd(X0))) | ~predi(X0) | ~room(X0)) [nnf transformation 163] 223. ? [X0] : (~preda(X0) & predk(X0) & room(X0)) => (~preda(sK9) & predk(sK9) & room(sK9)) [choice axiom] 224. ~preda(sK9) & predk(sK9) & room(sK9) [skolemisation 181,223] 335. ~predk(X0) | predh(X0) | ~room(X0) [cnf transformation 213] 341. ~predj(X0) | ~predd(X0) | ~predi(X0) | ~room(X0) [cnf transformation 218] 346. ~predh(X0) | predi(X0) | ~room(X0) [cnf transformation 166] 349. ~predk(X0) | predg(X0) | ~room(X0) [cnf transformation 172] 350. ~predg(X0) | predd(X0) | ~room(X0) [cnf transformation 174] 358. room(sK9) [cnf transformation 224] 359. predk(sK9) [cnf transformation 224] 369. ~predd(X0) | predj(X0) | ~room(X0) [cnf transformation 191] 457. predh(sK9) | ~room(sK9) [resolution 335,359] 458. predh(sK9) [subsumption resolution 457,358] 460. predi(sK9) | ~room(sK9) [resolution 346,458] 461. predi(sK9) [subsumption resolution 460,358] 475. predg(sK9) | ~room(sK9) [resolution 349,359] 476. predg(sK9) [subsumption resolution 475,358] 477. predd(sK9) | ~room(sK9) [resolution 476,350] 479. predd(sK9) [subsumption resolution 477,358] 489. predj(sK9) | ~room(sK9) [resolution 369,479] 490. predj(sK9) [subsumption resolution 489,358] 529. ~predd(sK9) | ~predi(sK9) | ~room(sK9) [resolution 341,490] 530. ~predi(sK9) | ~room(sK9) [subsumption resolution 529,479] 531. ~room(sK9) [subsumption resolution 530,461] 532. $false [subsumption resolution 531,358] % SZS output end Proof for 3410988489454750921429616 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.63289
Claud, Douglas, Mildred, Matt are the only persons in the room. If “Douglas creates augmented reality experiences for mobile applications and is not passionate about collecting and restoring classic cars” then “Douglas uses an ios phone or does not create augmented reality experiences for mobile applications or both” otherwise “if someone does not collect rare minerals then he/she either is an amateur astronomer who builds and uses custom telescopes or is passionate about collecting and restoring classic cars but not both and vice versa”. “Claud collect rare sneakers, knows morse code and has a vast collection of first-edition science fiction novels” unless “Douglas is an amateur astronomer who builds and uses custom telescopes, does not have a saltwater aquarium or does not collect vintage stamps”. Douglas does not create augmented reality experiences for mobile applications. Claud who collects rare and antique scientific instruments does not collect vintage stamps. If someone does not have a saltwater aquarium then he/she collects rare minerals. Douglas collects vintage stamps, collects rare minerals and does not have a vast collection of first-edition science fiction novels. It is true that “if someone does not make intricate hand-cut paper art for exhibitions and does not have a vast collection of first-edition science fiction novels then he/she is not an amateur astronomer who builds and uses custom telescopes and is a tea enthusiast and vice versa”. Claud does not have a vast collection of first-edition science fiction novels. Douglas does not collect rare and antique scientific instruments. Claud is right-handed. Douglas is an amateur astronomer who builds and uses custom telescopes, does not have a saltwater aquarium or does not collect vintage stamps. Claud does not collect vintage stamps. It is not the case that “Claud does not collect rare sneakers”. Douglas does not collect rare sneakers and does not make intricate hand-cut paper art for exhibitions. If someone hosts regular game nights featuring complex strategy games then he/she does not make intricate hand-cut paper art for exhibitions and hosts regular game nights featuring complex strategy games. If someone does not collect rare and antique scientific instruments, has a saltwater aquarium and does not host regular game nights featuring complex strategy games then he/she does not collect vintage stamps. If someone is an amateur astronomer who builds and uses custom telescopes then he/she does not know morse code and vice versa. Only one person in the room does not have a saltwater aquarium. Claud collects rare and antique scientific instruments.
Claud has a saltwater aquarium.
entailment
room(claud)&room(douglas)&room(mildred)&room(matt)&(![X]:(room(X)=>(X='claud'|X='douglas'|X='mildred'|X='matt')))& (((((creates_augmented_reality_experiences_for_mobile_applications(douglas))&(is_not_passionate_about_collecting_and_restoring_classic_cars(douglas))))=>(((uses_an_ios_phone(douglas))|(does_not_create_augmented_reality_experiences_for_mobile_applications(douglas)))))&((~(((creates_augmented_reality_experiences_for_mobile_applications(douglas))&(is_not_passionate_about_collecting_and_restoring_classic_cars(douglas)))))=>((![X]:((does_not_collect_rare_minerals(X))<=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<~>(is_passionate_about_collecting_and_restoring_classic_cars(X)))))))))& (~(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(douglas))|(does_not_have_a_saltwater_aquarium(douglas))|(does_not_collect_vintage_stamps(douglas))))=>(((collect_rare_sneakers(claud))&(knows_morse_code(claud))&(has_a_vast_collection_of_first-edition_science_fiction_novels(claud)))))& (does_not_create_augmented_reality_experiences_for_mobile_applications(douglas))& ((collects_rare_and_antique_scientific_instruments(claud))&(does_not_collect_vintage_stamps(claud)))& ((![X]:((does_not_have_a_saltwater_aquarium(X))=>(collects_rare_minerals(X)))))& (((collects_vintage_stamps(douglas))&(collects_rare_minerals(douglas))&(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(douglas))))& ((![X]:((((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))&(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))<=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))&(is_a_tea_enthusiast(X)))))))& (does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(claud))& (does_not_collect_rare_and_antique_scientific_instruments(douglas))& (is_right-handed(claud))& (((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(douglas))|(does_not_have_a_saltwater_aquarium(douglas))|(does_not_collect_vintage_stamps(douglas))))& (does_not_collect_vintage_stamps(claud))& (~(does_not_collect_rare_sneakers(claud)))& (((does_not_collect_rare_sneakers(douglas))&(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(douglas))))& ((![X]:((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))&(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))))& ((![X]:((((does_not_collect_rare_and_antique_scientific_instruments(X))&(has_a_saltwater_aquarium(X))&(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))=>(does_not_collect_vintage_stamps(X)))))& ((![X]:((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<=>(does_not_know_morse_code(X)))))& (((?[X]:(room(X)&does_not_have_a_saltwater_aquarium(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_have_a_saltwater_aquarium(X))&(does_not_have_a_saltwater_aquarium(Y)))=>(X=Y)))))& (collects_rare_and_antique_scientific_instruments(claud))
room(claud)&room(douglas)&room(mildred)&room(matt)&(![X]:(room(X)=>(X='claud'|X='douglas'|X='mildred'|X='matt')))& has_a_saltwater_aquarium(claud)
[ "b42", "p0", "p6", "p7", "p11", "p14", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 1215788461559203137539612 % SZS output start Proof for 1215788461559203137539612 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 50. ~predf(paul) & predh(paul) & preda(paul) [input p6] 51. ! [X0] : ((~predf(X0) & ~predp(X0)) <=> (predl(X0) & ~predn(X0))) [input p7] 55. ~preda(paul) | ~predk(paul) | predn(paul) [input p11] 58. ~predp(paul) & ~predj(paul) [input p14] 62. ! [X0,X1] : ((~predk(X1) & ~predk(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predk(X0) & room(X0)) [input p18] 64. ~(predk(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 65. ! [X0,X1] : ((~predk(X1) & ~predk(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~predk(X2) & room(X2)) [rectify 62] 140. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 140] 149. ! [X0,X1] : (X0 = X1 | (predk(X1) | predk(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~predk(X2) & room(X2)) [ennf transformation 65] 150. ! [X0,X1] : (X0 = X1 | predk(X1) | predk(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~predk(X2) & room(X2)) [flattening 149] 151. ~predk(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 64] 152. ~predk(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 151] 155. ! [X0] : (((~predf(X0) & ~predp(X0)) | (~predl(X0) | predn(X0))) & ((predl(X0) & ~predn(X0)) | (predf(X0) | predp(X0)))) [nnf transformation 51] 156. ! [X0] : (((~predf(X0) & ~predp(X0)) | ~predl(X0) | predn(X0)) & ((predl(X0) & ~predn(X0)) | predf(X0) | predp(X0))) [flattening 155] 158. ? [X2] : (~predk(X2) & room(X2)) => (~predk(sK0) & room(sK0)) [choice axiom] 159. ! [X0,X1] : (X0 = X1 | predk(X1) | predk(X0) | ~room(X1) | ~room(X0)) & (~predk(sK0) & room(sK0)) [skolemisation 150,158] 160. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 161. ~predk(mary) | (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 152,160] 206. mary != paul [cnf transformation 43] 242. room(mary) [cnf transformation 141] 243. room(paul) [cnf transformation 141] 244. room(fred) [cnf transformation 141] 245. room(alice) [cnf transformation 141] 246. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 141] 262. preda(paul) [cnf transformation 50] 264. ~predf(paul) [cnf transformation 50] 265. ~predn(X0) | predf(X0) | predp(X0) [cnf transformation 156] 271. ~preda(paul) | ~predk(paul) | predn(paul) [cnf transformation 55] 275. ~predp(paul) [cnf transformation 58] 283. ~room(X1) | predk(X1) | predk(X0) | X0 = X1 | ~room(X0) [cnf transformation 159] 285. ~predk(mary) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161] 286. ~predk(mary) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161] 287. ~predk(mary) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161] 288. ~predk(mary) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161] 289. ~predk(mary) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161] 319. 7 <=> predn(paul) [avatar definition] 321. predn(paul) <- (7) [avatar component clause 319] 323. 8 <=> predk(paul) [avatar definition] 325. ~predk(paul) <- (~8) [avatar component clause 323] 327. 9 <=> preda(paul) [avatar definition] 346. 9 [avatar split clause 262,327] 348. 7 | ~8 | ~9 [avatar split clause 271,327,323,319] 350. ~predk(mary) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 289,245] 351. ~predk(mary) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 350,244] 352. ~predk(mary) | alice != sK1 | ~room(mary) [subsumption resolution 351,243] 353. ~predk(mary) | alice != sK1 [subsumption resolution 352,242] 355. 13 <=> alice = sK1 [avatar definition] 357. alice != sK1 <- (~13) [avatar component clause 355] 359. 14 <=> predk(mary) [avatar definition] 361. ~predk(mary) <- (~14) [avatar component clause 359] 362. ~13 | ~14 [avatar split clause 353,359,355] 363. ~predk(mary) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 288,245] 364. ~predk(mary) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 363,244] 365. ~predk(mary) | fred != sK1 | ~room(mary) [subsumption resolution 364,243] 366. ~predk(mary) | fred != sK1 [subsumption resolution 365,242] 368. 15 <=> fred = sK1 [avatar definition] 370. fred != sK1 <- (~15) [avatar component clause 368] 371. ~15 | ~14 [avatar split clause 366,359,368] 372. ~predk(mary) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 287,245] 373. ~predk(mary) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 372,244] 374. ~predk(mary) | paul != sK1 | ~room(mary) [subsumption resolution 373,243] 375. ~predk(mary) | paul != sK1 [subsumption resolution 374,242] 377. 16 <=> paul = sK1 [avatar definition] 379. paul != sK1 <- (~16) [avatar component clause 377] 380. ~16 | ~14 [avatar split clause 375,359,377] 381. ~predk(mary) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 286,245] 382. ~predk(mary) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 381,244] 383. ~predk(mary) | mary != sK1 | ~room(mary) [subsumption resolution 382,243] 384. ~predk(mary) | mary != sK1 [subsumption resolution 383,242] 386. 17 <=> mary = sK1 [avatar definition] 388. mary != sK1 <- (~17) [avatar component clause 386] 389. ~17 | ~14 [avatar split clause 384,359,386] 390. ~predk(mary) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 285,245] 391. ~predk(mary) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 390,244] 392. ~predk(mary) | room(sK1) | ~room(mary) [subsumption resolution 391,243] 393. ~predk(mary) | room(sK1) [subsumption resolution 392,242] 395. 18 <=> room(sK1) [avatar definition] 397. room(sK1) <- (18) [avatar component clause 395] 398. 18 | ~14 [avatar split clause 393,359,395] 470. predk(mary) | predk(X0) | mary = X0 | ~room(X0) [resolution 283,242] 475. ~room(X0) | mary = X0 | predk(X0) <- (~14) [subsumption resolution 470,361] 495. mary = paul | predk(paul) <- (~14) [resolution 475,243] 499. predk(paul) <- (~14) [subsumption resolution 495,206] 500. $false <- (~8, ~14) [subsumption resolution 499,325] 501. 8 | 14 [avatar contradiction clause 500] 539. predf(paul) | predp(paul) <- (7) [resolution 321,265] 543. predp(paul) <- (7) [subsumption resolution 539,264] 544. $false <- (7) [subsumption resolution 543,275] 545. ~7 [avatar contradiction clause 544] 576. fred = sK1 | paul = sK1 | mary = sK1 | alice = sK1 <- (18) [resolution 246,397] 594. paul = sK1 | mary = sK1 | alice = sK1 <- (~15, 18) [subsumption resolution 576,370] 595. mary = sK1 | alice = sK1 <- (~15, ~16, 18) [subsumption resolution 594,379] 596. alice = sK1 <- (~15, ~16, ~17, 18) [subsumption resolution 595,388] 597. $false <- (~13, ~15, ~16, ~17, 18) [subsumption resolution 596,357] 598. 13 | 15 | 16 | 17 | ~18 [avatar contradiction clause 597] 599. $false [avatar sat refutation 346,348,362,371,380,389,398,501,545,598] % SZS output end Proof for 1215788461559203137539612 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.015594
Brendan is the only person in the room. “Brendan owns a high-end gaming PC with custom-built components” only if “it is true that “Brendan does not own a high-end gaming PC with custom-built components””. “Everyone anywhere does not build model airplanes or is an active member of a local robotics club” only if “if someone does practice yoga then he/she does not build model airplanes and vice versa”. “Brendan owns a high-end gaming PC with custom-built components” only if “everyone anywhere who neither is an active member of a local robotics club nor does not build model airplanes is an active member of a local robotics club”. Everyone in the room either owns a high-end gaming PC with custom-built components or builds model airplanes but not both. Brendan owns a telescope. Everyone in the room owns a telescope if they does practice yoga. Everyone in the room does practice yoga if they owns a telescope. Brendan is a drone photographer. Brendan does practice yoga. Everyone in the room does practice yoga or is not an active member of a local robotics club. Everyone in the room is a drone photographer if they does not build model airplanes. Everyone in the room is a drone photographer if and only if they is an active member of a local robotics club. Everyone in the room does not own a high-end gaming PC with custom-built components or is an active member of a local robotics club. Everyone in the room does not own a high-end gaming PC with custom-built components if and only if they owns a telescope.
Not everyone in the room owns a telescope.
contradiction
room(brendan)&(![X]:(room(X)=>(X='brendan')))& ((owns_a_high-end_gaming_PC_with_custom-built_components(brendan))=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(brendan)))& ((![X]:(anywhere(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(does_not_build_model_airplanes(X))))))=>((![X]:((does_practice_yoga(X))<=>(does_not_build_model_airplanes(X))))))& ((owns_a_high-end_gaming_PC_with_custom-built_components(brendan))=>(![X]:(anywhere(X)=>(((~((is_an_active_member_of_a_local_robotics_club(X))|(does_not_build_model_airplanes(X))))=>(is_an_active_member_of_a_local_robotics_club(X)))))))& (![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))<~>(builds_model_airplanes(X))))))& (owns_a_telescope(brendan))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(owns_a_telescope(X))))))& (![X]:(room(X)=>(((owns_a_telescope(X))=>(does_practice_yoga(X))))))& (is_a_drone_photographer(brendan))& (does_practice_yoga(brendan))& (![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))|(does_practice_yoga(X))))))& (![X]:(room(X)=>(((does_not_build_model_airplanes(X))=>(is_a_drone_photographer(X))))))& (![X]:(room(X)=>(((is_a_drone_photographer(X))<=>(is_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(room(X)=>(((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))<=>(owns_a_telescope(X))))))
room(brendan)&(![X]:(room(X)=>(X='brendan')))& ~![X]:(room(X)=>(owns_a_telescope(X)))
[ "p0", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 1084016168147486989330667 % SZS output start Proof for 1084016168147486989330667 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 49. predd(mary) [input p5] 59. ~! [X0] : (room(X0) => predd(X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 61. ~! [X0] : (room(X0) => predd(X0)) & ! [X1] : (room(X1) => mary = X1) & room(mary) [rectify 59] 133. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 152. ? [X0] : (~predd(X0) & room(X0)) & ! [X1] : (mary = X1 | ~room(X1)) & room(mary) [ennf transformation 61] 161. ? [X0] : (~predd(X0) & room(X0)) => (~predd(sK1) & room(sK1)) [choice axiom] 162. (~predd(sK1) & room(sK1)) & ! [X1] : (mary = X1 | ~room(X1)) & room(mary) [skolemisation 152,161] 245. ~room(X0) | mary = X0 [cnf transformation 133] 256. predd(mary) [cnf transformation 49] 270. room(sK1) [cnf transformation 162] 271. ~predd(sK1) [cnf transformation 162] 295. mary = sK1 [resolution 245,270] 297. ~predd(mary) [backward demodulation 271,295] 298. $false [subsumption resolution 297,256] % SZS output end Proof for 1084016168147486989330667 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.053342
David is the only person in the room. If “David is creative” then “if someone practices calligraphy then he/she does not write and illustrates their own graphic novels and vice versa”. If “David is a sibling of James” then “David is liked by Michael”. If “William is a client of David” then “Justin and David hate each other”. David is poorer than James. David is creative. David is not strong. It is not the case that “Justin is a client of David”. David is a curious patient european. David writes and illustrates their own graphic novels. All calm person is quiet. David is liked by Michael. Justin and David hate each other. At least one person in the room practices archery. Someone in the room is younger than Edward. Stephen is older than David.
David is older than Stephen.
contradiction
room(david)&(![X]:(room(X)=>(X='david')))& ((creative(david))=>((![X]:((practices_calligraphy(X))<=>(does_not_write_and_illustrates_their_own_graphic_novels(X))))))& ((sibling(james,david))=>(like(david,michael)))& ((client(david,william))=>((hate(justin,david) & hate(david,justin))))& (poorer(james,david))& (creative(david))& (~strong(david))& (~(client(david,justin)))& (curious(david)&patient(david)&european(david))& (writes_and_illustrates_their_own_graphic_novels(david))& (![X]:(calm(X)=>quiet(X)))& (like(david,michael))& ((hate(justin,david) & hate(david,justin)))& (((?[X]:(room(X)&practices_archery(X)))))& (?[X]:(room(X)&(younger(edward,X))))& (is_a_tea_enthusiast(david))& (older(david,stephen))& (mentors_a_youth_basketball_team_on_weekends(david))& (((?[X]:(room(X)&is_a_chess_master_who_participates_in_national_tournaments(X)))))& (![X]:(humble(X)=>strong(X)))& (is_a_Linux_enthusiast(david))& (~(louder(david,james)))& ((![X]:((patient(X))<=>(younger(justin,X)))))& (((?[X]:(room(X)&quieter(stephen,X)))))
room(david)&(![X]:(room(X)=>(X='david')))& older(stephen,david)
[ "b19", "b42", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 5861586812274922594254989 % SZS output start Proof for 5861586812274922594254989 20. ! [X0,X1] : (X0 != X1 => (older(X0,X1) => ~older(X1,X0))) [input b19] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 60. older(mary,paul) [input p16] 68. older(paul,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 114. ! [X0,X1] : ((~older(X1,X0) | ~older(X0,X1)) | X0 = X1) [ennf transformation 20] 115. ! [X0,X1] : (~older(X1,X0) | ~older(X0,X1) | X0 = X1) [flattening 114] 160. older(paul,mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 68] 188. ~older(X1,X0) | ~older(X0,X1) | X0 = X1 [cnf transformation 115] 217. mary != paul [cnf transformation 43] 268. older(mary,paul) [cnf transformation 60] 276. older(paul,mary) [cnf transformation 160] 321. ~older(paul,mary) | mary = paul [resolution 188,268] 323. mary = paul [subsumption resolution 321,276] 324. $false [subsumption resolution 323,217] % SZS output end Proof for 5861586812274922594254989 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.246464
Betty, Luisa are the only persons in the room. Everyone in the room who practices digital art is passionate about collecting and restoring classic cars. Everyone in the room who does not own a smartwatch is not passionate about collecting and restoring classic cars. Everyone anywhere who is not passionate about collecting and restoring classic cars neither does not regularly contributes to tech forums and online communities nor is not a coffee connoisseur. Everyone in the room is a coffee connoisseur only if they either hosts regular game nights featuring complex strategy games or enjoys logic puzzles but not both. Luisa does not practice digital art. Everyone in the room who owns a smartwatch does not have a vast collection of first-edition science fiction novels. Everyone in the room has a vast collection of first-edition science fiction novels if they does not have a vast collection of first-edition science fiction novels.
It is true that “Betty is passionate about collecting and restoring classic cars”.
contradiction
room(betty)&room(luisa)&(![X]:(room(X)=>(X='betty'|X='luisa')))& (![X]:(room(X)=>(((practices_digital_art(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((does_not_own_a_smartwatch(X))=>(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(anywhere(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))=>(~((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))|(is_not_a_coffee_connoisseur(X))))))))& (![X]:(room(X)=>(((((hosts_regular_game_nights_featuring_complex_strategy_games(X))<~>(enjoys_logic_puzzles(X))))<=(is_a_coffee_connoisseur(X))))))& (does_not_practice_digital_art(luisa))& (![X]:(room(X)=>(((owns_a_smartwatch(X))=>(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (![X]:(room(X)=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (((?[X]:(room(X)&does_not_enjoy_kayaking_and_exploring_remote_waterways(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))&(does_not_enjoy_kayaking_and_exploring_remote_waterways(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(room(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))
room(betty)&room(luisa)&(![X]:(room(X)=>(X='betty'|X='luisa')))& is_passionate_about_collecting_and_restoring_classic_cars(betty)
[ "p0", "p2", "p6", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 1990907697422093532684701 % SZS output start Proof for 1990907697422093532684701 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => (~preda(X0) => ~predn(X0))) [input p2] 50. ! [X0] : (room(X0) => (preda(X0) => ~predm(X0))) [input p6] 51. ! [X0] : (room(X0) => (~predm(X0) => predm(X0))) [input p7] 55. predn(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 133. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 134. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 133] 135. ! [X0] : ((~predn(X0) | preda(X0)) | ~room(X0)) [ennf transformation 46] 136. ! [X0] : (~predn(X0) | preda(X0) | ~room(X0)) [flattening 135] 141. ! [X0] : ((~predm(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 50] 142. ! [X0] : (~predm(X0) | ~preda(X0) | ~room(X0)) [flattening 141] 143. ! [X0] : ((predm(X0) | predm(X0)) | ~room(X0)) [ennf transformation 51] 144. ! [X0] : (predm(X0) | predm(X0) | ~room(X0)) [flattening 143] 147. predn(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 55] 148. predn(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 147] 234. room(mary) [cnf transformation 134] 237. ~predn(X0) | preda(X0) | ~room(X0) [cnf transformation 136] 241. ~predm(X0) | ~preda(X0) | ~room(X0) [cnf transformation 142] 242. predm(X0) | predm(X0) | ~room(X0) [cnf transformation 144] 249. predn(mary) [cnf transformation 148] 250. ~room(X0) | predm(X0) [duplicate literal removal 242] 252. predm(mary) [resolution 250,234] 255. preda(mary) | ~room(mary) [resolution 237,249] 256. preda(mary) [subsumption resolution 255,234] 257. ~preda(mary) | ~room(mary) [resolution 241,252] 259. ~room(mary) [subsumption resolution 257,256] 260. $false [subsumption resolution 259,234] % SZS output end Proof for 1990907697422093532684701 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.657575
Laura, Stephen, James, Travis, John are the only persons in the room. If “everyone in the room does not design and sews custom cosplay costumes for conventions or collects modern art” then “Laura is a chess master who participates in national tournaments”. Either “Laura neither collects comic books nor practices graffiti art” or “it is not the case that “Laura is a chess master who participates in national tournaments”” but not both. “Everyone in the room who collect rare sneakers is a skilled home brewer experimenting with craft beer recipes” unless “everyone in the room streams on Twitch or is not a wine connoisseur with a private cellar of vintage wines”. If “everyone in the room enjoys coding in Python or does not collect comic books” then “everyone in the room does not collect modern art or enjoys coding in Python”. Either “no one in the room is a skilled home brewer experimenting with craft beer recipes or does not have a piercing” or “everyone in the room does not stream on Twitch or collects comic books” but not both. “Laura does not collect modern art” if “Laura develops open-source software projects in their free time” and vice versa. If someone has a tattoo, is not a chess master who participates in national tournaments or is a wine connoisseur with a private cellar of vintage wines then he/she collect rare sneakers. Everyone in the room is a wine connoisseur with a private cellar of vintage wines if they does not own a smart tv. Everyone in the room is a chess master who participates in national tournaments or enjoys coding in Python or both if they practices graffiti art. Laura has a tattoo. Laura does not enjoy coding in Python. Everyone in the room who develops open-source software projects in their free time and enjoys coding in Python has a tattoo. Everyone outside the room streams on Twitch, bakes bread at home or has a piercing if and only if they is a client of Meta. Laura collects modern art. Laura neither collects rare and antique scientific instruments nor owns a smart tv. Laura collect rare sneakers. Everyone anywhere is a wine connoisseur with a private cellar of vintage wines and collects rare and antique scientific instruments if they is a skilled home brewer experimenting with craft beer recipes. Everyone in the room who collects rare and antique scientific instruments owns a smart tv. Laura either owns a smart tv or is a drone photographer but not both.
Laura streams on Twitch.
entailment
room(laura)&room(stephen)&room(james)&room(travis)&room(john)&(![X]:(room(X)=>(X='laura'|X='stephen'|X='james'|X='travis'|X='john')))& ((![X]:(room(X)=>(((collects_modern_art(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))=>(is_a_chess_master_who_participates_in_national_tournaments(laura)))& ((~((collects_comic_books(laura))|(practices_graffiti_art(laura))))<~>(~(is_a_chess_master_who_participates_in_national_tournaments(laura))))& (~(![X]:(room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(streams_on_Twitch(X))))))=>(![X]:(room(X)=>(((collect_rare_sneakers(X))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))& ((![X]:(room(X)=>(((does_not_collect_comic_books(X))|(enjoys_coding_in_Python(X))))))=>(![X]:(room(X)=>(((enjoys_coding_in_Python(X))|(does_not_collect_modern_art(X)))))))& ((~?[X]:(room(X)=>(((does_not_have_a_piercing(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))<~>(![X]:(room(X)=>(((collects_comic_books(X))|(does_not_stream_on_Twitch(X)))))))& ((develops_open-source_software_projects_in_their_free_time(laura))<=>(does_not_collect_modern_art(laura)))& ((![X]:((((has_a_tattoo(X))|(is_not_a_chess_master_who_participates_in_national_tournaments(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))=>(collect_rare_sneakers(X)))))& (![X]:(room(X)=>(((does_not_own_a_smart_tv(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (![X]:(room(X)=>(((practices_graffiti_art(X))=>(((is_a_chess_master_who_participates_in_national_tournaments(X))|(enjoys_coding_in_Python(X))))))))& (has_a_tattoo(laura))& (does_not_enjoy_coding_in_Python(laura))& (![X]:(room(X)=>(((((develops_open-source_software_projects_in_their_free_time(X))&(enjoys_coding_in_Python(X))))=>(has_a_tattoo(X))))))& (![X]:(~room(X)=>(((((streams_on_Twitch(X))|(bakes_bread_at_home(X))|(has_a_piercing(X))))<=>(is_a_client_of_Meta(X))))))& (collects_modern_art(laura))& (~((collects_rare_and_antique_scientific_instruments(laura))|(owns_a_smart_tv(laura))))& (collect_rare_sneakers(laura))& (![X]:(anywhere(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))&(collects_rare_and_antique_scientific_instruments(X))))))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(owns_a_smart_tv(X))))))& (((owns_a_smart_tv(laura))<~>(is_a_drone_photographer(laura))))& (![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))|(has_a_saltwater_aquarium(X))))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(collect_rare_sneakers(X))))))& ((has_a_piercing(laura))&(is_a_client_of_Meta(laura)))
room(laura)&room(stephen)&room(james)&room(travis)&room(john)&(![X]:(room(X)=>(X='laura'|X='stephen'|X='james'|X='travis'|X='john')))& streams_on_Twitch(laura)
[ "b4", "p0", "p3", "p8", "p15", "p16", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 4969334480479083873814417 % SZS output start Proof for 4969334480479083873814417 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. ~! [X0] : (room(X0) => (preda(X0) | ~predf(X0))) => ! [X0] : (room(X0) => (predg(X0) => predd(X0))) [input p3] 52. ! [X0] : (room(X0) => (~predl(X0) => predf(X0))) [input p8] 59. ~(predl(mary) | predb(mary)) [input p15] 60. predg(mary) [input p16] 61. ! [X0] : (anywhere(X0) => (predd(X0) => (predb(X0) & predf(X0)))) [input p17] 67. ~(preda(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 68. ~! [X0] : (room(X0) => (preda(X0) | ~predf(X0))) => ! [X1] : (room(X1) => (predg(X1) => predd(X1))) [rectify 47] 144. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 145. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 144] 148. ! [X1] : ((predd(X1) | ~predg(X1)) | ~room(X1)) | ! [X0] : ((preda(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 68] 149. ! [X1] : (predd(X1) | ~predg(X1) | ~room(X1)) | ! [X0] : (preda(X0) | ~predf(X0) | ~room(X0)) [flattening 148] 155. ! [X0] : ((predf(X0) | predl(X0)) | ~room(X0)) [ennf transformation 52] 156. ! [X0] : (predf(X0) | predl(X0) | ~room(X0)) [flattening 155] 162. ~predl(mary) & ~predb(mary) [ennf transformation 59] 163. ! [X0] : (((predb(X0) & predf(X0)) | ~predd(X0)) | ~anywhere(X0)) [ennf transformation 61] 164. ! [X0] : ((predb(X0) & predf(X0)) | ~predd(X0) | ~anywhere(X0)) [flattening 163] 169. ~preda(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67] 170. ~preda(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 169] 178. ! [X0] : (predd(X0) | ~predg(X0) | ~room(X0)) | ! [X1] : (preda(X1) | ~predf(X1) | ~room(X1)) [rectify 149] 194. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 195. ~preda(mary) | (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 170,194] 196. anywhere(X0) [cnf transformation 5] 277. room(mary) [cnf transformation 145] 278. room(paul) [cnf transformation 145] 279. room(fred) [cnf transformation 145] 280. room(alice) [cnf transformation 145] 281. room(john) [cnf transformation 145] 282. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 145] 288. predd(X0) | ~predg(X0) | ~room(X0) | preda(X1) | ~predf(X1) | ~room(X1) [cnf transformation 178] 305. ~room(X0) | predl(X0) | predf(X0) [cnf transformation 156] 315. ~predb(mary) [cnf transformation 162] 316. ~predl(mary) [cnf transformation 162] 317. predg(mary) [cnf transformation 60] 319. predb(X0) | ~predd(X0) | ~anywhere(X0) [cnf transformation 164] 326. ~preda(mary) | room(sK5) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 327. ~preda(mary) | mary != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 328. ~preda(mary) | paul != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 329. ~preda(mary) | fred != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 330. ~preda(mary) | alice != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 331. ~preda(mary) | john != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 358. 6 <=> ! [X1] : (preda(X1) | ~room(X1) | ~predf(X1)) [avatar definition] 359. ~predf(X1) | ~room(X1) | preda(X1) <- (6) [avatar component clause 358] 361. 7 <=> ! [X0] : (predd(X0) | ~room(X0) | ~predg(X0)) [avatar definition] 362. ~predg(X0) | ~room(X0) | predd(X0) <- (7) [avatar component clause 361] 363. 6 | 7 [avatar split clause 288,361,358] 441. ~predd(X0) | predb(X0) [subsumption resolution 319,196] 444. ~preda(mary) | john != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 331,281] 445. ~preda(mary) | john != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 444,280] 446. ~preda(mary) | john != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 445,279] 447. ~preda(mary) | john != sK5 | ~room(mary) [subsumption resolution 446,278] 448. ~preda(mary) | john != sK5 [subsumption resolution 447,277] 450. 25 <=> john = sK5 [avatar definition] 452. john != sK5 <- (~25) [avatar component clause 450] 454. 26 <=> preda(mary) [avatar definition] 456. ~preda(mary) <- (~26) [avatar component clause 454] 457. ~25 | ~26 [avatar split clause 448,454,450] 458. ~preda(mary) | alice != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 330,281] 459. ~preda(mary) | alice != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 458,280] 460. ~preda(mary) | alice != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 459,279] 461. ~preda(mary) | alice != sK5 | ~room(mary) [subsumption resolution 460,278] 462. ~preda(mary) | alice != sK5 [subsumption resolution 461,277] 464. 27 <=> alice = sK5 [avatar definition] 466. alice != sK5 <- (~27) [avatar component clause 464] 467. ~27 | ~26 [avatar split clause 462,454,464] 468. ~preda(mary) | fred != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 329,281] 469. ~preda(mary) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 468,280] 470. ~preda(mary) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 469,279] 471. ~preda(mary) | fred != sK5 | ~room(mary) [subsumption resolution 470,278] 472. ~preda(mary) | fred != sK5 [subsumption resolution 471,277] 474. 28 <=> fred = sK5 [avatar definition] 476. fred != sK5 <- (~28) [avatar component clause 474] 477. ~28 | ~26 [avatar split clause 472,454,474] 478. ~preda(mary) | paul != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 328,281] 479. ~preda(mary) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 478,280] 480. ~preda(mary) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 479,279] 481. ~preda(mary) | paul != sK5 | ~room(mary) [subsumption resolution 480,278] 482. ~preda(mary) | paul != sK5 [subsumption resolution 481,277] 484. 29 <=> paul = sK5 [avatar definition] 486. paul != sK5 <- (~29) [avatar component clause 484] 487. ~29 | ~26 [avatar split clause 482,454,484] 488. ~preda(mary) | mary != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 327,281] 489. ~preda(mary) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 488,280] 490. ~preda(mary) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 489,279] 491. ~preda(mary) | mary != sK5 | ~room(mary) [subsumption resolution 490,278] 492. ~preda(mary) | mary != sK5 [subsumption resolution 491,277] 494. 30 <=> mary = sK5 [avatar definition] 496. mary != sK5 <- (~30) [avatar component clause 494] 497. ~30 | ~26 [avatar split clause 492,454,494] 498. ~preda(mary) | room(sK5) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 326,281] 499. ~preda(mary) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 498,280] 500. ~preda(mary) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 499,279] 501. ~preda(mary) | room(sK5) | ~room(mary) [subsumption resolution 500,278] 502. ~preda(mary) | room(sK5) [subsumption resolution 501,277] 504. 31 <=> room(sK5) [avatar definition] 506. room(sK5) <- (31) [avatar component clause 504] 507. 31 | ~26 [avatar split clause 502,454,504] 515. predl(mary) | predf(mary) [resolution 305,277] 572. predf(mary) [subsumption resolution 515,316] 607. ~room(mary) | preda(mary) <- (6) [resolution 572,359] 609. preda(mary) <- (6) [subsumption resolution 607,277] 610. $false <- (6, ~26) [subsumption resolution 609,456] 611. ~6 | 26 [avatar contradiction clause 610] 618. ~room(mary) | predd(mary) <- (7) [resolution 362,317] 620. predd(mary) <- (7) [subsumption resolution 618,277] 622. predb(mary) <- (7) [resolution 620,441] 623. $false <- (7) [subsumption resolution 622,315] 624. ~7 [avatar contradiction clause 623] 719. alice = sK5 | fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (31) [resolution 282,506] 911. fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (~27, 31) [subsumption resolution 719,466] 912. paul = sK5 | mary = sK5 | john = sK5 <- (~27, ~28, 31) [subsumption resolution 911,476] 913. mary = sK5 | john = sK5 <- (~27, ~28, ~29, 31) [subsumption resolution 912,486] 914. john = sK5 <- (~27, ~28, ~29, ~30, 31) [subsumption resolution 913,496] 915. $false <- (~25, ~27, ~28, ~29, ~30, 31) [subsumption resolution 914,452] 916. 25 | 27 | 28 | 29 | 30 | ~31 [avatar contradiction clause 915] 943. $false [avatar sat refutation 363,457,467,477,487,497,507,611,624,916] % SZS output end Proof for 4969334480479083873814417 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.044 s % ------------------------------ % ------------------------------
0.025147
Lena, Randall, Malissa, Curtis, Anna are the only persons in the room. Someone in the room is an avid mountain climber who has scaled several peaks only if it is true that no one in the room enjoys landscape photography if they enjoys wildlife photography. It is not the case that Lena owns a telescope only if if someone is a dedicated volunteer for local community service projects then he/she is a dedicated advocate for digital privacy and encryption. If not everyone in the room does not play as a goalkeeper for a local amateur soccer team or enjoys making ceramics then Lena dreamt that if someone enjoys snowboarding then he/she is a skilled home brewer experimenting with craft beer recipes. If someone in the room does not own a telescope then if someone works on fridays then he/she enjoys deep-sea diving and exploring underwater caves or collects foreign coins or both. If everyone anywhere does not regularly goes on multi-day backpacking trips in national parks or is not a dedicated advocate for digital privacy and encryption then someone anywhere regularly goes on multi-day backpacking trips in national parks, is a dedicated advocate for digital privacy and encryption and is not an avid mountain climber who has scaled several peaks. Someone in the room plays as a goalkeeper for a local amateur soccer team. Everyone outside the room who is not a skilled home brewer experimenting with craft beer recipes is an avid mountain climber who has scaled several peaks. It is not the case that someone in the room plays the drums. If someone does not enjoy deep-sea diving and exploring underwater caves then he/she is a dedicated advocate for digital privacy and encryption and vice versa. Everyone in the room is a dedicated volunteer for local community service projects. Not everyone in the room does not regularly goes on multi-day backpacking trips in national parks if they does not collect foreign coins. Everyone anywhere does not own a telescope if they collects foreign coins. It is not the case that someone in the room owns a telescope.
Lena enjoys deep-sea diving and exploring underwater caves.
contradiction
room(lena)&room(randall)&room(malissa)&room(curtis)&room(anna)&(![X]:(room(X)=>(X='lena'|X='randall'|X='malissa'|X='curtis'|X='anna')))& ((?[X]:(room(X)&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))=>(~?[X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(enjoys_landscape_photography(X)))))))& ((~(owns_a_telescope(lena)))=>((![X]:((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& ((~![X]:(room(X)=>(((enjoys_making_ceramics(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>((lena_dream=>((![X]:((enjoys_snowboarding(X))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))))& ((?[X]:(room(X)&(does_not_own_a_telescope(X))))=>((![X]:((works_on_fridays(X))=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(collects_foreign_coins(X))))))))& ((![X]:(anywhere(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))=>(?[X]:(anywhere(X)&(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))))& (?[X]:(room(X)&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))& (![X]:(~room(X)=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (~(?[X]:(room(X)&(plays_the_drums(X)))))& ((![X]:((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))<=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))& (![X]:(room(X)=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))& (~![X]:(room(X)=>(((does_not_collect_foreign_coins(X))=>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (![X]:(anywhere(X)=>(((collects_foreign_coins(X))=>(does_not_own_a_telescope(X))))))& (~(?[X]:(room(X)&(owns_a_telescope(X)))))
room(lena)&room(randall)&room(malissa)&room(curtis)&room(anna)&(![X]:(room(X)=>(X='lena'|X='randall'|X='malissa'|X='curtis'|X='anna')))& enjoys_deep-sea_diving_and_exploring_underwater_caves(lena)
[ "p0", "p2", "p9", "p10", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 6965630662582107309790469 % SZS output start Proof for 6965630662582107309790469 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ~predh(mary) => ! [X0] : (predm(X0) => predc(X0)) [input p2] 53. ! [X0] : (~preda(X0) <=> predc(X0)) [input p9] 54. ! [X0] : (room(X0) => predm(X0)) [input p10] 57. ~? [X0] : (predh(X0) & room(X0)) [input p13] 58. preda(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 63. ! [X0] : (predc(X0) => ~preda(X0)) [unused predicate definition removal 53] 148. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 149. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148] 150. ! [X0] : (predc(X0) | ~predm(X0)) | predh(mary) [ennf transformation 46] 152. ! [X0] : (~preda(X0) | ~predc(X0)) [ennf transformation 63] 153. ! [X0] : (predm(X0) | ~room(X0)) [ennf transformation 54] 155. ! [X0] : (~predh(X0) | ~room(X0)) [ennf transformation 57] 156. preda(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 58] 157. preda(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 156] 247. room(mary) [cnf transformation 149] 253. predc(X0) | ~predm(X0) | predh(mary) [cnf transformation 150] 256. ~preda(X0) | ~predc(X0) [cnf transformation 152] 257. ~room(X0) | predm(X0) [cnf transformation 153] 259. ~predh(X0) | ~room(X0) [cnf transformation 155] 266. preda(mary) [cnf transformation 157] 268. 1 <=> predh(mary) [avatar definition] 270. predh(mary) <- (1) [avatar component clause 268] 272. 2 <=> ! [X0] : (predc(X0) | ~predm(X0)) [avatar definition] 273. ~predm(X0) | predc(X0) <- (2) [avatar component clause 272] 274. 1 | 2 [avatar split clause 253,272,268] 284. ~predc(mary) [resolution 256,266] 285. predm(mary) [resolution 257,247] 292. predc(mary) <- (2) [resolution 273,285] 294. $false <- (2) [subsumption resolution 292,284] 295. ~2 [avatar contradiction clause 294] 296. ~room(mary) <- (1) [resolution 270,259] 297. $false <- (1) [subsumption resolution 296,247] 298. ~1 [avatar contradiction clause 297] 299. $false [avatar sat refutation 274,295,298] % SZS output end Proof for 6965630662582107309790469 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.001316
Maria, Terry, Michael, Judith are the only persons in the room. Everyone anywhere who is humble is a client of Kevin. Michael who is a client of Kevin is not a humble quiet european. “A bird tweets using morse code.” or “A shadow does not appear only at noon.” but not both. Not everyone in the room who does not enjoy logic puzzles is quiet.
Everyone anywhere enjoys logic puzzles.
contradiction
room(maria)&room(terry)&room(michael)&room(judith)&(![X]:(room(X)=>(X='maria'|X='terry'|X='michael'|X='judith')))& (![X]:(anywhere(X)=>(((humble(X))=>(client(kevin,X))))))& ((client(kevin,michael))&(~(humble(michael)&quiet(michael)&european(michael))))& (((A_bird_tweets_using_morse_code.)<~>(A_shadow_does_not_appear_only_at_noon.)))& (client(maria,kevin))& (((?[X]:(room(X)&enjoys_fishing(X)))))& (client(kevin,terry))& (hate(rickey,judith))& (brave(terry)&quiet(terry)&european(terry))& ((![X]:((client(kevin,X))<=>(client(mitchell,X)))))& (![X]:(creative(X)=>happy(X)))& ((like(mitchell,terry) & like(terry,mitchell)))& ((![X]:((client(rickey,X))<=>(watches_fantasy_movies(X)))))& ((![X]:((humble(X))=>(curious(X)&tourist(X)))))& (client(mitchell,maria))& (sibling(kevin,judith))& (![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))|(sibling(kevin,X))))))& (![X]:(room(X)=>(((sibling(kevin,X))=>(client(rickey,X))))))& (![X]:(anywhere(X)=>(((client(rickey,X))=>(does_not_enjoy_logic_puzzles(X))))))& (~![X]:(room(X)=>(((does_not_enjoy_logic_puzzles(X))=>(quiet(X))))))& (sibling(maria,mitchell))& (like(rickey,michael))& (![X]:(room(X)=>(((quiet(X)&tourist(X))=>(quieter(mitchell,X))))))& ((like(maria,rickey) & like(rickey,maria)))
room(maria)&room(terry)&room(michael)&room(judith)&(![X]:(room(X)=>(X='maria'|X='terry'|X='michael'|X='judith')))& ![X]:(anywhere(X)=>(enjoys_logic_puzzles(X)))
[ "b4", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 615048538028336681795731 % SZS output start Proof for 615048538028336681795731 5. ! [X0] : anywhere(X0) [input b4] 63. ~! [X0] : (room(X0) => (~predb(X0) => quiet(X0))) [input p19] 68. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 69. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 68] 159. ? [X0] : ((~quiet(X0) & ~predb(X0)) & room(X0)) [ennf transformation 63] 160. ? [X0] : (~quiet(X0) & ~predb(X0) & room(X0)) [flattening 159] 161. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : ((alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 69] 162. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : (alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 161] 168. ? [X0] : (~quiet(X0) & ~predb(X0) & room(X0)) => (~quiet(sK1) & ~predb(sK1) & room(sK1)) [choice axiom] 169. ~quiet(sK1) & ~predb(sK1) & room(sK1) [skolemisation 160,168] 172. anywhere(X0) [cnf transformation 5] 275. ~predb(sK1) [cnf transformation 169] 286. predb(X0) | ~anywhere(X0) [cnf transformation 162] 298. predb(X0) [subsumption resolution 286,172] 299. $false [resolution 298,275] % SZS output end Proof for 615048538028336681795731 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.489053
David, Vanda are the only persons in the room. Vanda enjoys salsa dancing, collect rare sneakers or has a tattoo. Vanda has lived in exactly three countries. It is not the case that 'David participates in long-distance cycling events across the country'. David makes homemade pastries. It is not the case that 'Vanda has a tattoo, has completed a triathlon or is an avid collector of autographed memorabilia from famous musicians'. Only one person in the room enjoys salsa dancing. Vanda writes and illustrates their own graphic novels. Everyone outside the room is dedicated to sustainable living and zero-waste practices. Vanda enjoys salsa dancing. It is not the case that 'Vanda is an avid collector of autographed memorabilia from famous musicians'. It is not the case that 'Vanda neither is an amateur astronomer who builds and uses custom telescopes nor is a dedicated advocate for digital privacy and encryption'.
Vanda is an avid collector of autographed memorabilia from famous musicians.
contradiction
room(david)&room(vanda)&(![X]:(room(X)=>(X='david'|X='vanda')))& (((enjoys_salsa_dancing(vanda))|(collect_rare_sneakers(vanda))|(has_a_tattoo(vanda))))& (has_lived_in_exactly_three_countries(vanda))& (~(participates_in_long-distance_cycling_events_across_the_country(david)))& (makes_homemade_pastries(david))& (~(((has_a_tattoo(vanda))|(has_completed_a_triathlon(vanda))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(vanda)))))& (((?[X]:(room(X)&enjoys_salsa_dancing(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_salsa_dancing(X))&(enjoys_salsa_dancing(Y)))=>(X=Y)))))& (writes_and_illustrates_their_own_graphic_novels(vanda))& (![X]:(~room(X)=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))& (enjoys_salsa_dancing(vanda))& (~(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(vanda)))& (~(~((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(vanda))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(vanda)))))
room(david)&room(vanda)&(![X]:(room(X)=>(X='david'|X='vanda')))& is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(vanda)
[ "p5", "hypothesis" ]
% SZS status Unsatisfiable for 2147737121937000223376365 % SZS output start Proof for 2147737121937000223376365 49. ~(predo(paul) | predz(paul) | predr(paul)) [input p5] 56. predo(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 62. ~(predo(paul) | predr(paul)) [pure predicate removal 49] 67. ~predo(paul) [pure predicate removal 62] 142. ~predo(paul) [ennf transformation 67] 145. predo(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 56] 146. predo(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 145] 233. ~predo(paul) [cnf transformation 142] 242. predo(paul) [cnf transformation 146] 243. $false [subsumption resolution 242,233] % SZS output end Proof for 2147737121937000223376365 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.139815
Barbara either does not regularly goes on multi-day backpacking trips in national parks or is not a client of Costco but not both. Barbara neither does not frequently participates in hackathons and coding competitions nor does not enjoy spelunking. Barbara neither does not regularly goes on multi-day backpacking trips in national parks nor is not an avid collector of autographed memorabilia from famous musicians. Barbara does not read mystery novels. Barbara neither is not an avid collector of autographed memorabilia from famous musicians nor is not dedicated to sustainable living and zero-waste practices. Barbara either does not enjoy skydiving or does not enjoy mountain biking but not both. Barbara either does not collect action figures or is not a client of LVMH but not both. Barbara does not have a curated collection of mid-century modern furniture.
Everyone in the room does not read mystery novels or has a curated collection of mid-century modern furniture.
neutral
room(barbara)&room(sean)&(![X]:(room(X)=>(X='barbara'|X='sean')))& (((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(barbara))<~>(is_not_a_client_of_Costco(barbara))))& (~((does_not_frequently_participates_in_hackathons_and_coding_competitions(barbara))|(does_not_enjoy_spelunking(barbara))))& (~((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(barbara))|(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(barbara))))& (does_not_read_mystery_novels(barbara))& (~((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(barbara))|(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(barbara))))& (((does_not_enjoy_skydiving(barbara))<~>(does_not_enjoy_mountain_biking(barbara))))& (((does_not_collect_action_figures(barbara))<~>(is_not_a_client_of_LVMH(barbara))))& (does_not_have_a_curated_collection_of_mid-century_modern_furniture(barbara))
room(barbara)&room(sean)&(![X]:(room(X)=>(X='barbara'|X='sean')))& ![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_read_mystery_novels(X)))))
[]
null
0.487407
Derrick, Joseph are the only persons in the room. “Derrick is a generous european” if “it is true that “Joseph and Sarah like each other”” and vice versa. “Derrick is not funny” if “Derrick and Caitlin like each other”. “Derrick is not a night owl” only if “Joseph is quiet”. “Joseph is the least loud in the room” if “Marie and Joseph like each other”. Joseph is not liked by Lois. Joseph who is a calm tourist is an avid collector of autographed memorabilia from famous musicians, reads mystery novels and enjoys kayaking and exploring remote waterways. Marie and Derrick hate each other. If someone is not patient then he/she does not collect historical artifacts related to ancient civilizations. It is not the case that “Mary and Joseph like each other”. Derrick is not a happy european. Derrick is not liked by Sarah. Everyone in the room is not a funny tourist. Joseph is liked by Marie.
Joseph is hated by Marie.
contradiction
room(derrick)&room(joseph)&(![X]:(room(X)=>(X='derrick'|X='joseph')))& (((like(joseph,sarah) & like(sarah,joseph)))<=>(generous(derrick)&european(derrick)))& (((like(derrick,caitlin) & like(caitlin,derrick)))=>(~funny(derrick)))& ((is_not_a_night_owl(derrick))=>(quiet(joseph)))& (((like(marie,joseph) & like(joseph,marie)))=>(![X]:((room(X)&(X!=joseph))=>louder(joseph,X))))& (~like(joseph,lois))& ((calm(joseph)&tourist(joseph))&(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(joseph))&(reads_mystery_novels(joseph))&(enjoys_kayaking_and_exploring_remote_waterways(joseph)))))& ((hate(marie,derrick) & hate(derrick,marie)))& ((![X]:((~patient(X))=>(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X)))))& (~((like(mary,joseph) & like(joseph,mary))))& (~(happy(derrick)&european(derrick)))& (~like(derrick,sarah))& (![X]:(room(X)=>(~(funny(X)&tourist(X)))))& (~(strong(derrick)&european(derrick)))& (~(curious(derrick)&person(derrick)))& (like(joseph,marie))& (does_not_make_homemade_pastries(joseph))& ((quiet(joseph))&(humble(derrick)))& (((?[X]:(~room(X)&is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))& ((hate(derrick,lois) & hate(lois,derrick)))& (does_not_enjoy_stargazing(joseph))
room(derrick)&room(joseph)&(![X]:(room(X)=>(X='derrick'|X='joseph')))& hate(joseph,marie)
[ "b0", "b42", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 9144918828064279367466550 % SZS output start Proof for 9144918828064279367466550 1. ! [X0,X1] : (X0 != X1 => (like(X0,X1) => ~hate(X0,X1))) [input b0] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 59. like(paul,alice) [input p15] 65. hate(paul,alice) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 85. ! [X0,X1] : ((~hate(X0,X1) | ~like(X0,X1)) | X0 = X1) [ennf transformation 1] 86. ! [X0,X1] : (~hate(X0,X1) | ~like(X0,X1) | X0 = X1) [flattening 85] 161. hate(paul,alice) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 65] 162. hate(paul,alice) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 161] 168. ~hate(X0,X1) | ~like(X0,X1) | X0 = X1 [cnf transformation 86] 227. paul != alice [cnf transformation 43] 263. like(paul,alice) [cnf transformation 59] 271. hate(paul,alice) [cnf transformation 162] 297. 6 <=> like(paul,alice) [avatar definition] 298. like(paul,alice) <- (6) [avatar component clause 297] 313. 6 [avatar split clause 263,297] 318. ~like(paul,alice) | paul = alice [resolution 168,271] 323. paul = alice <- (6) [subsumption resolution 318,298] 324. $false <- (6) [subsumption resolution 323,227] 325. ~6 [avatar contradiction clause 324] 328. $false [avatar sat refutation 313,325] % SZS output end Proof for 9144918828064279367466550 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.021 s % ------------------------------ % ------------------------------
0.494838
There is a room. If “everyone in the room does not host themed dinner parties featuring gourmet home-cooked meals or can play the flute” then “everyone in the room who does not host themed dinner parties featuring gourmet home-cooked meals collects first edition books, does not host themed dinner parties featuring gourmet home-cooked meals and practices pilates”. Everyone in the room collects first edition books if they enjoys making ceramics.
Everyone outside the room can play the harmonica.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((can_play_the_flute(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))=>(![X]:(room(X)=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(((collects_first_edition_books(X))&(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(practices_pilates(X)))))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(collects_first_edition_books(X))))))& (![X]:(room(X)=>(((can_play_the_harmonica(X))=>(does_not_practice_urban_gardening(X))))))& (![X]:(~room(X)=>(((enjoys_making_ceramics(X))=>(does_enjoy_mountain_biking(X))))))& (![X]:(~room(X)=>(((does_enjoy_mountain_biking(X))=>(can_play_the_harmonica(X))))))& (![X]:(room(X)=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(can_play_the_flute(X))))))& (![X]:(room(X)=>(((((practices_pilates(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))=>(practices_urban_gardening(X))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(does_not_write_a_travel_blog(X))))))& (~![X]:(room(X)=>(((does_not_write_a_travel_blog(X))=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(anywhere(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(~room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(practices_pilates(X))))
(there_is_a_room)& ![X]:(~room(X)=>(can_play_the_harmonica(X)))
[]
null
0.036254
There is a room. Everyone in the room has a tattoo if they participates in long-distance cycling events across the country. Everyone in the room participates in long-distance cycling events across the country if and only if they either hosts regular game nights featuring complex strategy games or does not host regular game nights featuring complex strategy games but not both. Everyone in the room does not have a tattoo or creates augmented reality experiences for mobile applications. Everyone anywhere hosts regular game nights featuring complex strategy games. If someone hosts regular game nights featuring complex strategy games then he/she does not create augmented reality experiences for mobile applications.
Everyone in the room creates augmented reality experiences for mobile applications.
entailment
(there_is_a_room)& ((~?[X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(does_not_have_a_tattoo(X))))))=>(~![X]:(anywhere(X)=>(((does_not_have_a_tattoo(X))=>(has_a_tattoo(X)))))))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(has_a_tattoo(X))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))<=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))<~>(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))))))& (~![X]:(anywhere(X)=>(((does_not_have_a_tattoo(X))=>(has_a_tattoo(X))))))& (![X]:(room(X)=>(((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))<=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))|(does_not_have_a_tattoo(X))))))& (![X]:(room(X)=>(((does_not_have_a_tattoo(X))=>(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(creates_augmented_reality_experiences_for_mobile_applications(X))&(participates_in_long-distance_cycling_events_across_the_country(X))))=>(has_a_tattoo(X))))))& (![X]:(anywhere(X)=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& ((![X]:((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(does_not_create_augmented_reality_experiences_for_mobile_applications(X)))))
(there_is_a_room)& ![X]:(room(X)=>(creates_augmented_reality_experiences_for_mobile_applications(X)))
[ "b4", "p0", "p2", "p4", "p7", "p10", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 1753329193799724381457735 % SZS output start Proof for 1753329193799724381457735 5. ! [X0] : anywhere(X0) [input b4] 44. there_is_a_room [input p0] 46. ! [X0] : (room(X0) => (predb(X0) => preda(X0))) [input p2] 48. ! [X0] : (room(X0) => (predb(X0) <=> (predd(X0) <~> ~predd(X0)))) [input p4] 51. ! [X0] : (room(X0) => (~preda(X0) | predc(X0))) [input p7] 54. ! [X0] : (anywhere(X0) => predd(X0)) [input p10] 56. ! [X0] : (predd(X0) => ~predc(X0)) [input p12] 57. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 132. ! [X0] : ((preda(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 46] 133. ! [X0] : (preda(X0) | ~predb(X0) | ~room(X0)) [flattening 132] 136. ! [X0] : ((predb(X0) <=> (predd(X0) <~> ~predd(X0))) | ~room(X0)) [ennf transformation 48] 140. ! [X0] : ((~preda(X0) | predc(X0)) | ~room(X0)) [ennf transformation 51] 141. ! [X0] : (~preda(X0) | predc(X0) | ~room(X0)) [flattening 140] 146. ! [X0] : (predd(X0) | ~anywhere(X0)) [ennf transformation 54] 149. ! [X0] : (~predc(X0) | ~predd(X0)) [ennf transformation 56] 150. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 57] 156. ! [X0] : (((predb(X0) | ((predd(X0) | predd(X0)) & (~predd(X0) | ~predd(X0)))) & (((predd(X0) | ~predd(X0)) & (~predd(X0) | predd(X0))) | ~predb(X0))) | ~room(X0)) [nnf transformation 136] 160. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK3) & room(sK3)) [choice axiom] 161. (~predc(sK3) & room(sK3)) | ~there_is_a_room [skolemisation 150,160] 162. anywhere(X0) [cnf transformation 5] 243. there_is_a_room [cnf transformation 44] 247. ~predb(X0) | preda(X0) | ~room(X0) [cnf transformation 133] 251. predb(X0) | ~predd(X0) | ~predd(X0) | ~room(X0) [cnf transformation 156] 252. predb(X0) | predd(X0) | predd(X0) | ~room(X0) [cnf transformation 156] 258. ~preda(X0) | predc(X0) | ~room(X0) [cnf transformation 141] 261. predd(X0) | ~anywhere(X0) [cnf transformation 146] 263. ~predc(X0) | ~predd(X0) [cnf transformation 149] 264. room(sK3) | ~there_is_a_room [cnf transformation 161] 266. predb(X0) | ~predd(X0) | ~room(X0) [duplicate literal removal 251] 267. predb(X0) | predd(X0) | ~room(X0) [duplicate literal removal 252] 286. ~room(X0) | predb(X0) [subsumption resolution 266,267] 287. predd(X0) [subsumption resolution 261,162] 288. ~predc(X0) [subsumption resolution 263,287] 289. room(sK3) [subsumption resolution 264,243] 290. predb(sK3) [resolution 286,289] 291. preda(sK3) | ~room(sK3) [resolution 247,290] 292. preda(sK3) [subsumption resolution 291,289] 295. predc(sK3) | ~room(sK3) [resolution 258,292] 296. ~room(sK3) [subsumption resolution 295,288] 297. $false [subsumption resolution 296,289] % SZS output end Proof for 1753329193799724381457735 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.025 s % ------------------------------ % ------------------------------
0
Sandra, Maria are the only persons in the room. If 'Maria does not host a popular podcast about emerging technologies, is an avid collector of autographed memorabilia from famous musicians and hosts a popular podcast about emerging technologies' then 'Sandra practices and performs acrobatic dance routines'. Either 'Maria is not a night owl or owns an extensive assortment of vintage comic book memorabilia or both' or 'Maria uses an ios phone' but not both. Sandra is not an avid collector of autographed memorabilia from famous musicians. If someone designs and sews custom cosplay costumes for conventions then he/she hosts a popular podcast about emerging technologies. Sandra does not own a smart tv. Maria who hosts themed dinner parties featuring gourmet home-cooked meals owns a smart tv. Only one person in the room is an avid collector of autographed memorabilia from famous musicians. Sandra does not maintain a large, organic vegetable garden year-round.
Everyone in the room does not own a smart tv.
contradiction
room(sandra)&room(maria)&(![X]:(room(X)=>(X='sandra'|X='maria')))& ((((does_not_host_a_popular_podcast_about_emerging_technologies(maria))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(maria))&(hosts_a_popular_podcast_about_emerging_technologies(maria))))=>(practices_and_performs_acrobatic_dance_routines(sandra)))& ((((is_not_a_night_owl(maria))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(maria))))<~>(uses_an_ios_phone(maria)))& (is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(sandra))& ((![X]:((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X)))))& (does_not_own_a_smart_tv(sandra))& ((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(maria))&(owns_a_smart_tv(maria)))& (((?[X]:(room(X)&is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))&(![X,Y]:((room(X)&room(Y)&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(Y)))=>(X=Y)))))& (does_not_maintain_a_large,_organic_vegetable_garden_year-round(sandra))
room(sandra)&room(maria)&(![X]:(room(X)=>(X='sandra'|X='maria')))& ![X]:(room(X)=>(does_not_own_a_smart_tv(X)))
[ "p0", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 6833016107999374695680096 % SZS output start Proof for 6833016107999374695680096 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 50. predh(paul) & predl(paul) [input p6] 53. ! [X0] : (room(X0) => ~predh(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 55. ! [X0] : (room(X0) => ~predh(X0)) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary) [rectify 53] 57. predh(paul) [pure predicate removal 50] 132. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 133. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 132] 136. ! [X0] : (~predh(X0) | ~room(X0)) & ! [X1] : ((paul = X1 | mary = X1) | ~room(X1)) & room(paul) & room(mary) [ennf transformation 55] 137. ! [X0] : (~predh(X0) | ~room(X0)) & ! [X1] : (paul = X1 | mary = X1 | ~room(X1)) & room(paul) & room(mary) [flattening 136] 224. room(paul) [cnf transformation 133] 231. predh(paul) [cnf transformation 57] 238. ~predh(X0) | ~room(X0) [cnf transformation 137] 254. ~room(paul) [resolution 238,231] 255. $false [subsumption resolution 254,224] % SZS output end Proof for 6833016107999374695680096 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.052288
There is a room. No one anywhere is quiet. Everyone in the room is not a tall person. Everyone in the room is a old person. Everyone in the room is a quiet person. Everyone in the room is quiet. All old persons are tall. Everyone in the room neither is not a tall person nor is not quiet.
All tall persons are old.
neutral
(there_is_a_room)& (~?[X]:(anywhere(X)=>(quiet(X))))& (![X]:(room(X)=>(~(tall(X)&person(X)))))& (![X]:(room(X)=>(old(X)&person(X))))& (![X]:(room(X)=>(quiet(X)&person(X))))& (![X]:(room(X)=>(quiet(X))))& (![X]:(old(X)=>tall(X)))& (![X]:(room(X)=>(~((~(tall(X)&person(X)))|(~quiet(X))))))& (![X]:(room(X)=>(((old(X))|(quiet(X)&person(X))))))& (![X]:(room(X)=>(old(X))))
(there_is_a_room)& ![X]:(tall(X)=>old(X))
[]
null
0.341358
Herman, Bert, Donald are the only persons in the room. 'Everyone in the room does practice yoga or does not maintain a large, organic vegetable garden year-round' if 'everyone in the room does not practice yoga or is a sibling of William' and vice versa. Donald is a sibling of William. Everyone in the room is a certified scuba diver with advanced underwater photography skills or does not practice yoga. Herman is not liked by William. If someone does not maintain a large, organic vegetable garden year-round then he/she is a certified scuba diver with advanced underwater photography skills. Everyone in the room who is creative is liked by William. Everyone in the room is not a creative person only if they is a sibling of William. Herman is not a creative person and is a sibling of William. Everyone in the room is a certified scuba diver with advanced underwater photography skills only if they maintains a large, organic vegetable garden year-round. Donald is creative. Everyone in the room who does not like William is a creative person.
Bert does practice yoga.
entailment
room(herman)&room(bert)&room(donald)&(![X]:(room(X)=>(X='herman'|X='bert'|X='donald')))& ((![X]:(room(X)=>(((sibling(william,X))|(does_not_practice_yoga(X))))))<=>(![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(does_practice_yoga(X)))))))& (sibling(william,donald))& (![X]:(room(X)=>(((does_not_practice_yoga(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (~like(herman,william))& ((![X]:((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))& (![X]:(room(X)=>(((creative(X))=>(like(X,william))))))& (![X]:(room(X)=>(((sibling(william,X))<=(~(creative(X)&person(X)))))))& (((~(creative(herman)&person(herman)))&(sibling(william,herman))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))<=(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (creative(donald))& (![X]:(room(X)=>(((~like(william,X))=>(creative(X)&person(X))))))
room(herman)&room(bert)&room(donald)&(![X]:(room(X)=>(X='herman'|X='bert'|X='donald')))& does_practice_yoga(bert)
[ "p0", "p1", "p2", "p5", "p8", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 7868154717752798636680393 % SZS output start Proof for 7868154717752798636680393 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (~predi(X0) | sibling(john,X0))) <=> ! [X0] : (room(X0) => (predi(X0) | ~predz(X0))) [input p1] 46. sibling(john,fred) [input p2] 49. ! [X0] : (~predz(X0) => predb(X0)) [input p5] 52. sibling(john,mary) & ~(person(mary) & creative(mary)) [input p8] 53. ! [X0] : (room(X0) => (predb(X0) => predz(X0))) [input p9] 56. ~(predi(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 57. ! [X0] : (room(X0) => (~predi(X0) | sibling(john,X0))) <=> ! [X1] : (room(X1) => (predi(X1) | ~predz(X1))) [rectify 45] 130. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 131. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 130] 132. ! [X0] : ((~predi(X0) | sibling(john,X0)) | ~room(X0)) <=> ! [X1] : ((predi(X1) | ~predz(X1)) | ~room(X1)) [ennf transformation 57] 133. ! [X0] : (~predi(X0) | sibling(john,X0) | ~room(X0)) <=> ! [X1] : (predi(X1) | ~predz(X1) | ~room(X1)) [flattening 132] 136. ! [X0] : (predb(X0) | predz(X0)) [ennf transformation 49] 141. sibling(john,mary) & (~person(mary) | ~creative(mary)) [ennf transformation 52] 142. ! [X0] : ((predz(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 53] 143. ! [X0] : (predz(X0) | ~predb(X0) | ~room(X0)) [flattening 142] 146. ~predi(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 56] 147. ~predi(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 146] 149. (! [X0] : (~predi(X0) | sibling(john,X0) | ~room(X0)) | ? [X1] : (~predi(X1) & predz(X1) & room(X1))) & (! [X1] : (predi(X1) | ~predz(X1) | ~room(X1)) | ? [X0] : (predi(X0) & ~sibling(john,X0) & room(X0))) [nnf transformation 133] 150. (! [X0] : (~predi(X0) | sibling(john,X0) | ~room(X0)) | ? [X1] : (~predi(X1) & predz(X1) & room(X1))) & (! [X2] : (predi(X2) | ~predz(X2) | ~room(X2)) | ? [X3] : (predi(X3) & ~sibling(john,X3) & room(X3))) [rectify 149] 151. ? [X1] : (~predi(X1) & predz(X1) & room(X1)) => (~predi(sK0) & predz(sK0) & room(sK0)) [choice axiom] 152. ? [X3] : (predi(X3) & ~sibling(john,X3) & room(X3)) => (predi(sK1) & ~sibling(john,sK1) & room(sK1)) [choice axiom] 153. (! [X0] : (~predi(X0) | sibling(john,X0) | ~room(X0)) | (~predi(sK0) & predz(sK0) & room(sK0))) & (! [X2] : (predi(X2) | ~predz(X2) | ~room(X2)) | (predi(sK1) & ~sibling(john,sK1) & room(sK1))) [skolemisation 150,152,151] 154. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 155. ~predi(paul) | (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 147,154] 236. room(mary) [cnf transformation 131] 237. room(paul) [cnf transformation 131] 238. room(fred) [cnf transformation 131] 239. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 131] 240. predi(X2) | ~predz(X2) | ~room(X2) | room(sK1) [cnf transformation 153] 241. predi(X2) | ~predz(X2) | ~room(X2) | ~sibling(john,sK1) [cnf transformation 153] 242. predi(X2) | ~predz(X2) | ~room(X2) | predi(sK1) [cnf transformation 153] 246. sibling(john,fred) [cnf transformation 46] 249. predb(X0) | predz(X0) [cnf transformation 136] 254. sibling(john,mary) [cnf transformation 141] 255. predz(X0) | ~predb(X0) | ~room(X0) [cnf transformation 143] 259. ~predi(paul) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 155] 260. ~predi(paul) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 155] 261. ~predi(paul) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 155] 262. ~predi(paul) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 155] 282. 5 <=> predi(sK1) [avatar definition] 284. predi(sK1) <- (5) [avatar component clause 282] 286. 6 <=> ! [X2] : (predi(X2) | ~room(X2) | ~predz(X2)) [avatar definition] 287. predi(X2) | ~room(X2) | ~predz(X2) <- (6) [avatar component clause 286] 288. 5 | 6 [avatar split clause 242,286,282] 290. 7 <=> sibling(john,sK1) [avatar definition] 292. ~sibling(john,sK1) <- (~7) [avatar component clause 290] 293. ~7 | 6 [avatar split clause 241,286,290] 295. 8 <=> room(sK1) [avatar definition] 297. room(sK1) <- (8) [avatar component clause 295] 298. 8 | 6 [avatar split clause 240,286,295] 308. ~room(X0) | predz(X0) [subsumption resolution 255,249] 309. ~predi(paul) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 262,238] 310. ~predi(paul) | fred != sK2 | ~room(mary) [subsumption resolution 309,237] 311. ~predi(paul) | fred != sK2 [subsumption resolution 310,236] 313. 11 <=> fred = sK2 [avatar definition] 317. 12 <=> predi(paul) [avatar definition] 319. ~predi(paul) <- (~12) [avatar component clause 317] 320. ~11 | ~12 [avatar split clause 311,317,313] 321. ~predi(paul) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 261,238] 322. ~predi(paul) | paul != sK2 | ~room(mary) [subsumption resolution 321,237] 323. ~predi(paul) | paul != sK2 [subsumption resolution 322,236] 325. 13 <=> paul = sK2 [avatar definition] 327. paul != sK2 <- (~13) [avatar component clause 325] 328. ~13 | ~12 [avatar split clause 323,317,325] 329. ~predi(paul) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 260,238] 330. ~predi(paul) | mary != sK2 | ~room(mary) [subsumption resolution 329,237] 331. ~predi(paul) | mary != sK2 [subsumption resolution 330,236] 333. 14 <=> mary = sK2 [avatar definition] 335. mary != sK2 <- (~14) [avatar component clause 333] 336. ~14 | ~12 [avatar split clause 331,317,333] 337. ~predi(paul) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 259,238] 338. ~predi(paul) | room(sK2) | ~room(mary) [subsumption resolution 337,237] 339. ~predi(paul) | room(sK2) [subsumption resolution 338,236] 341. 15 <=> room(sK2) [avatar definition] 343. room(sK2) <- (15) [avatar component clause 341] 344. 15 | ~12 [avatar split clause 339,317,341] 345. ~room(X2) | predi(X2) <- (6) [subsumption resolution 287,308] 351. predi(paul) <- (6) [resolution 345,237] 353. $false <- (6, ~12) [subsumption resolution 351,319] 354. ~6 | 12 [avatar contradiction clause 353] 452. paul = sK2 | mary = sK2 | fred = sK2 <- (15) [resolution 239,343] 453. mary = sK2 | fred = sK2 <- (~13, 15) [subsumption resolution 452,327] 454. fred = sK2 <- (~13, ~14, 15) [subsumption resolution 453,335] 457. 11 | 13 | 14 | ~15 [avatar split clause 454,341,333,325,313] 478. paul = sK1 | mary = sK1 | fred = sK1 <- (8) [resolution 297,239] 481. 22 <=> fred = sK1 [avatar definition] 483. fred = sK1 <- (22) [avatar component clause 481] 485. 23 <=> mary = sK1 [avatar definition] 487. mary = sK1 <- (23) [avatar component clause 485] 489. 24 <=> paul = sK1 [avatar definition] 491. paul = sK1 <- (24) [avatar component clause 489] 492. 22 | 23 | 24 | ~8 [avatar split clause 478,295,489,485,481] 494. ~sibling(john,mary) <- (~7, 23) [backward demodulation 292,487] 502. $false <- (~7, 23) [subsumption resolution 494,254] 503. 7 | ~23 [avatar contradiction clause 502] 507. predi(paul) <- (5, 24) [backward demodulation 284,491] 514. $false <- (5, ~12, 24) [subsumption resolution 507,319] 515. ~5 | 12 | ~24 [avatar contradiction clause 514] 517. ~sibling(john,fred) <- (~7, 22) [backward demodulation 292,483] 523. $false <- (~7, 22) [subsumption resolution 517,246] 524. 7 | ~22 [avatar contradiction clause 523] 525. $false [avatar sat refutation 288,293,298,320,328,336,344,354,457,492,503,515,524] % SZS output end Proof for 7868154717752798636680393 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.237686
There is a room. If someone can play the harmonica then he/she does not bake bread at home. Everyone anywhere enjoys landscape photography only if they enjoys logic puzzles. Everyone outside the room who enjoys logic puzzles neither enjoys logic puzzles nor streams on Twitch. If someone collects first edition books then he/she has a curated collection of mid-century modern furniture. Everyone in the room is a scotch connoisseur only if they can play the harmonica. Everyone in the room can play the harmonica only if they is right-handed, does not enjoy logic puzzles and does not practice urban gardening. Everyone in the room has a tattoo if they is right-handed, does not enjoy logic puzzles and does not practice urban gardening. Everyone in the room is a culinary enthusiast who experiments with international cuisines if they has a tattoo. Not everyone in the room is a culinary enthusiast who experiments with international cuisines if and only if they collects first edition books.
Everyone in the room is not dedicated to sustainable living and zero-waste practices or enjoys bird watching.
neutral
(there_is_a_room)& ((![X]:((can_play_the_harmonica(X))=>(does_not_bake_bread_at_home(X)))))& (![X]:(anywhere(X)=>(((enjoys_logic_puzzles(X))<=(enjoys_landscape_photography(X))))))& (![X]:(~room(X)=>(((enjoys_logic_puzzles(X))=>(~((enjoys_logic_puzzles(X))|(streams_on_Twitch(X))))))))& ((![X]:((collects_first_edition_books(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X)))))& (![X]:(room(X)=>(((can_play_the_harmonica(X))<=(is_a_scotch_connoisseur(X))))))& (![X]:(room(X)=>(((((is_right-handed(X))&(does_not_enjoy_logic_puzzles(X))&(does_not_practice_urban_gardening(X))))<=(can_play_the_harmonica(X))))))& (![X]:(room(X)=>(((((is_right-handed(X))&(does_not_enjoy_logic_puzzles(X))&(does_not_practice_urban_gardening(X))))=>(has_a_tattoo(X))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (~![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))<=>(collects_first_edition_books(X))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(enjoys_landscape_photography(X))))))& (![X]:(room(X)=>(((((enjoys_landscape_photography(X))<~>(practices_urban_gardening(X))))=>(collects_first_edition_books(X))))))& (![X]:(room(X)=>(((collects_first_edition_books(X))=>(does_not_enjoy_stand-up_paddleboarding(X))))))& (![X]:(room(X)=>(((does_not_enjoy_stand-up_paddleboarding(X))=>(enjoys_logic_puzzles(X))))))& (![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(practices_calligraphy(X))))))& ((![X]:((is_a_scotch_connoisseur(X))<=>(can_play_the_harmonica(X)))))& (![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(does_not_have_a_piercing(X))))))& (![X]:(anywhere(X)=>(((does_not_have_a_piercing(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (?[X]:(room(X)&(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))& (![X]:(room(X)=>(((can_play_the_harmonica(X))=>(enjoys_bird_watching(X))))))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(does_not_stream_on_Twitch(X))))))& (![X]:(room(X)=>(((does_not_stream_on_Twitch(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& ((![X]:((competes_in_national_level_swimming_championships(X))=>(enjoys_wildlife_photography(X)))))
(there_is_a_room)& ![X]:(room(X)=>(((enjoys_bird_watching(X))|(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))
[]
null
0.155033
Victor, Richard, Maria are the only persons in the room. "At least one person outside the room is not a creative curious person" if "it is true that "at least one person in the room is not a generous tall quiet person"".
Richard and Victor are not a funny quiet tall generous wise persons.
neutral
room(victor)&room(richard)&room(maria)&(![X]:(room(X)=>(X='victor'|X='richard'|X='maria')))& ((((?[X]:(room(X)&~(generous(X)&tall(X)&quiet(X)&person(X))))))=>(((?[X]:(~room(X)&~(creative(X)&curious(X)&person(X)))))))& ((((?[X]:(room(X)&~(funny(X)&wise(X)&generous(X)&calm(X)&patient(X)&tourist(X))))))=>((![X]:((~(wise(X)&strong(X)&patient(X)&humble(X)&european(X)))=>(((~(kind(X)&european(X)))&(~(funny(X)&person(X)))&(~(old(X)&tourist(X)))))))))& ((((?[X]:(room(X)&~(creative(X)&generous(X)&patient(X)&tourist(X))))))=>((![X]:((~(old(X)&strong(X)&happy(X)&european(X)))=>(~(wise(X)&person(X)))))))& (((?[X]:(room(X)&~(funny(X)&tourist(X))))))& (((?[X]:(room(X)&~(patient(X)&european(X))))&(![X,Y]:((room(X)&room(Y)&(~(patient(X)&european(X)))&(~(patient(Y)&european(Y))))=>(X=Y)))))& (((?[X]:(room(X)&~(generous(X)&kind(X)&tourist(X))))&(![X,Y]:((room(X)&room(Y)&(~(generous(X)&kind(X)&tourist(X)))&(~(generous(Y)&kind(Y)&tourist(Y))))=>(X=Y)))))& (((?[X]:(room(X)&~(funny(X)&calm(X)&strong(X)&tourist(X))))))& ((![X]:((((~(strong(X)&brave(X)&happy(X)&european(X)))&(~(humble(X)&tourist(X)))&(~(generous(X)&quiet(X)&patient(X)&happy(X)&european(X)))))=>(~(old(X)&person(X))))))& ((![X]:((~(curious(X)&european(X)))=>(~(tall(X)&brave(X)&quiet(X)&humble(X)&kind(X)&european(X))))))& ((![X]:((((~(quiet(X)&person(X)))&(~(humble(X)&calm(X)&person(X)))&(~(tall(X)&calm(X)&tourist(X)))))=>(~(generous(X)&brave(X)&calm(X)&tall(X)&happy(X)&creative(X)&person(X))))))& ((![X]:((((~(humble(X)&calm(X)&old(X)&tourist(X)))&(~(kind(X)&happy(X)&tourist(X)))&(~(happy(X)&tourist(X)))))=>(((~(patient(X)&tourist(X)))&(~(patient(X)&funny(X)&european(X)))&(~(tall(X)&creative(X)&european(X))))))))& (((?[X]:(room(X)&~(funny(X)&wise(X)&person(X))))))& (((?[X]:(room(X)&~(wise(X)&person(X))))&(![X,Y]:((room(X)&room(Y)&(~(wise(X)&person(X)))&(~(wise(Y)&person(Y))))=>(X=Y)))))& (((?[X]:(~room(X)&~(kind(X)&european(X))))))& ((![X]:((~(creative(X)&happy(X)&tall(X)&quiet(X)&european(X)))=>(~(funny(X)&tourist(X))))))& ((![X]:((~(quiet(X)&patient(X)&creative(X)&humble(X)&kind(X)&european(X)))=>(~(strong(X)&person(X))))))& (((?[X]:(room(X)&~(strong(X)&brave(X)&tourist(X))))&(![X,Y]:((room(X)&room(Y)&(~(strong(X)&brave(X)&tourist(X)))&(~(strong(Y)&brave(Y)&tourist(Y))))=>(X=Y)))))& (((?[X]:(room(X)&~(funny(X)&person(X))))))& ((![X]:((~(patient(X)&person(X)))=>(~(generous(X)&tourist(X))))))& ((![X]:((~(happy(X)&wise(X)&person(X)))=>(~(funny(X)&humble(X)&brave(X)&tourist(X))))))& (((?[X]:(room(X)&~(happy(X)&kind(X)&tall(X)&tourist(X))))))& ((![X]:((~(tall(X)&old(X)&creative(X)&calm(X)&person(X)))=>(~(generous(X)&brave(X)&european(X))))))& (((?[X]:(room(X)&~(tall(X)&funny(X)&european(X))))&(![X,Y]:((room(X)&room(Y)&(~(tall(X)&funny(X)&european(X)))&(~(tall(Y)&funny(Y)&european(Y))))=>(X=Y)))))& (((?[X]:(room(X)&~(curious(X)&calm(X)&patient(X)&person(X))))))
room(victor)&room(richard)&room(maria)&(![X]:(room(X)=>(X='victor'|X='richard'|X='maria')))& ~(funny(richard)&quiet(richard)&tall(richard)&generous(richard)&wise(richard)&person(richard))&~(funny(victor)&quiet(victor)&tall(victor)&generous(victor)&wise(victor)&person(victor))
[]
null
0.637325
Ronald, Margaret are the only persons in the room. “Everyone in the room is not a creative person” if “no one in the room is not a humble person”.
Margaret is old.
entailment
room(ronald)&room(margaret)&(![X]:(room(X)=>(X='ronald'|X='margaret')))& ((~?[X]:(room(X)=>(~(humble(X)&person(X)))))=>(![X]:(room(X)=>(~(creative(X)&person(X))))))& ((![X]:(room(X)=>(patient(X)&person(X))))=>(![X]:(room(X)=>(~(humble(X)&person(X))))))& (((![X]:(anywhere(X)=>(brave(X)&person(X))))=>(((?[X]:(room(X)&~(brave(X)&person(X)))))))& ((((?[X]:(room(X)&~(brave(X)&person(X))))))=>(![X]:(room(X)=>(~(creative(X)&person(X)))))))& ((~?[X]:(room(X)=>(brave(X)&person(X))))=>(~![X]:(room(X)=>(brave(X)&person(X)))))& ((~![X]:(room(X)=>(old(X)&person(X))))=>(![X]:(room(X)=>(~(generous(X)&person(X))))))& ((![X]:(room(X)=>(~(strong(X)&person(X)))))=>(![X]:(room(X)=>(~(patient(X)&person(X))))))& (~![X]:(room(X)=>(happy(X)&person(X))))& (![X]:(room(X)=>(funny(X)&person(X))))& (![X]:((anywhere(X)&(X!=margaret))=>richer(X,margaret)))& (![X]:(room(X)=>(strong(X)&person(X))))& (![X]:((room(X)&(X!=ronald))=>older(ronald,X)))& (![X]:(room(X)=>(old(X)&person(X))))& (![X]:(~room(X)=>(wise(X)&person(X))))
room(ronald)&room(margaret)&(![X]:(room(X)=>(X='ronald'|X='margaret')))& old(margaret)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 2593776762110226359138026 % SZS output start Proof for 2593776762110226359138026 44. ! [X0] : (~room(X0) => (person(X0) & wise(X0))) & ! [X0] : (room(X0) => (person(X0) & old(X0))) & ! [X0] : ((mary != X0 & room(X0)) => older(mary,X0)) & ! [X0] : (room(X0) => (person(X0) & strong(X0))) & ! [X0] : ((paul != X0 & anywhere(X0)) => richer(X0,paul)) & ! [X0] : (room(X0) => (person(X0) & funny(X0))) & ~! [X0] : (room(X0) => (person(X0) & happy(X0))) & (! [X0] : (room(X0) => ~(person(X0) & strong(X0))) => ! [X0] : (room(X0) => ~(person(X0) & patient(X0)))) & (~! [X0] : (room(X0) => (person(X0) & old(X0))) => ! [X0] : (room(X0) => ~(person(X0) & generous(X0)))) & (~? [X0] : (room(X0) => (person(X0) & brave(X0))) => ~! [X0] : (room(X0) => (person(X0) & brave(X0)))) & (? [X0] : (~(person(X0) & brave(X0)) & room(X0)) => ! [X0] : (room(X0) => ~(person(X0) & creative(X0)))) & (! [X0] : (anywhere(X0) => (person(X0) & brave(X0))) => ? [X0] : (~(person(X0) & brave(X0)) & room(X0))) & (! [X0] : (room(X0) => (person(X0) & patient(X0))) => ! [X0] : (room(X0) => ~(person(X0) & humble(X0)))) & (~? [X0] : (room(X0) => ~(person(X0) & humble(X0))) => ! [X0] : (room(X0) => ~(person(X0) & creative(X0)))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ~(old(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (~room(X0) => (person(X0) & wise(X0))) & ! [X1] : (room(X1) => (person(X1) & old(X1))) & ! [X2] : ((mary != X2 & room(X2)) => older(mary,X2)) & ! [X3] : (room(X3) => (person(X3) & strong(X3))) & ! [X4] : ((paul != X4 & anywhere(X4)) => richer(X4,paul)) & ! [X5] : (room(X5) => (person(X5) & funny(X5))) & ~! [X6] : (room(X6) => (person(X6) & happy(X6))) & (! [X7] : (room(X7) => ~(person(X7) & strong(X7))) => ! [X8] : (room(X8) => ~(person(X8) & patient(X8)))) & (~! [X9] : (room(X9) => (person(X9) & old(X9))) => ! [X10] : (room(X10) => ~(person(X10) & generous(X10)))) & (~? [X11] : (room(X11) => (person(X11) & brave(X11))) => ~! [X12] : (room(X12) => (person(X12) & brave(X12)))) & (? [X13] : (~(person(X13) & brave(X13)) & room(X13)) => ! [X14] : (room(X14) => ~(person(X14) & creative(X14)))) & (! [X15] : (anywhere(X15) => (person(X15) & brave(X15))) => ? [X16] : (~(person(X16) & brave(X16)) & room(X16))) & (! [X17] : (room(X17) => (person(X17) & patient(X17))) => ! [X18] : (room(X18) => ~(person(X18) & humble(X18)))) & (~? [X19] : (room(X19) => ~(person(X19) & humble(X19))) => ! [X20] : (room(X20) => ~(person(X20) & creative(X20)))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (~room(X0) => person(X0)) & ! [X1] : (room(X1) => (person(X1) & old(X1))) & ! [X2] : ((mary != X2 & room(X2)) => older(mary,X2)) & ! [X3] : (room(X3) => (person(X3) & strong(X3))) & ! [X4] : ((paul != X4 & anywhere(X4)) => richer(X4,paul)) & ! [X5] : (room(X5) => (person(X5) & funny(X5))) & ~! [X6] : (room(X6) => (person(X6) & happy(X6))) & (! [X7] : (room(X7) => ~(person(X7) & strong(X7))) => ! [X8] : (room(X8) => ~(person(X8) & patient(X8)))) & (~! [X9] : (room(X9) => (person(X9) & old(X9))) => ! [X10] : (room(X10) => ~(person(X10) & generous(X10)))) & (~? [X11] : (room(X11) => (person(X11) & brave(X11))) => ~! [X12] : (room(X12) => (person(X12) & brave(X12)))) & (? [X13] : (~(person(X13) & brave(X13)) & room(X13)) => ! [X14] : (room(X14) => ~(person(X14) & creative(X14)))) & (! [X15] : (anywhere(X15) => (person(X15) & brave(X15))) => ? [X16] : (~(person(X16) & brave(X16)) & room(X16))) & (! [X17] : (room(X17) => (person(X17) & patient(X17))) => ! [X18] : (room(X18) => ~(person(X18) & humble(X18)))) & (~? [X19] : (room(X19) => ~(person(X19) & humble(X19))) => ! [X20] : (room(X20) => ~(person(X20) & creative(X20)))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X0] : (~room(X0) => person(X0)) & ! [X1] : (room(X1) => (person(X1) & old(X1))) & ! [X2] : ((mary != X2 & room(X2)) => older(mary,X2)) & ! [X3] : (room(X3) => (person(X3) & strong(X3))) & ! [X4] : ((paul != X4 & anywhere(X4)) => richer(X4,paul)) & ! [X5] : (room(X5) => person(X5)) & ~! [X6] : (room(X6) => (person(X6) & happy(X6))) & (! [X7] : (room(X7) => ~(person(X7) & strong(X7))) => ! [X8] : (room(X8) => ~(person(X8) & patient(X8)))) & (~! [X9] : (room(X9) => (person(X9) & old(X9))) => ! [X10] : (room(X10) => ~(person(X10) & generous(X10)))) & (~? [X11] : (room(X11) => (person(X11) & brave(X11))) => ~! [X12] : (room(X12) => (person(X12) & brave(X12)))) & (? [X13] : (~(person(X13) & brave(X13)) & room(X13)) => ! [X14] : (room(X14) => ~(person(X14) & creative(X14)))) & (! [X15] : (anywhere(X15) => (person(X15) & brave(X15))) => ? [X16] : (~(person(X16) & brave(X16)) & room(X16))) & (! [X17] : (room(X17) => (person(X17) & patient(X17))) => ! [X18] : (room(X18) => ~(person(X18) & humble(X18)))) & (~? [X19] : (room(X19) => ~(person(X19) & humble(X19))) => ! [X20] : (room(X20) => ~(person(X20) & creative(X20)))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X0] : (~room(X0) => person(X0)) & ! [X1] : (room(X1) => (person(X1) & old(X1))) & ! [X2] : ((mary != X2 & room(X2)) => older(mary,X2)) & ! [X3] : (room(X3) => (person(X3) & strong(X3))) & ! [X4] : ((paul != X4 & anywhere(X4)) => richer(X4,paul)) & ! [X5] : (room(X5) => person(X5)) & ~! [X6] : ~room(X6) & (! [X7] : (room(X7) => ~(person(X7) & strong(X7))) => ! [X8] : (room(X8) => ~(person(X8) & patient(X8)))) & (~! [X9] : (room(X9) => (person(X9) & old(X9))) => ! [X10] : (room(X10) => ~(person(X10) & generous(X10)))) & (~? [X11] : (room(X11) => (person(X11) & brave(X11))) => ~! [X12] : (room(X12) => (person(X12) & brave(X12)))) & (? [X13] : (~(person(X13) & brave(X13)) & room(X13)) => ! [X14] : (room(X14) => ~(person(X14) & creative(X14)))) & (! [X15] : (anywhere(X15) => (person(X15) & brave(X15))) => ? [X16] : (~(person(X16) & brave(X16)) & room(X16))) & (! [X17] : (room(X17) => (person(X17) & patient(X17))) => ! [X18] : (room(X18) => ~(person(X18) & humble(X18)))) & (~? [X19] : (room(X19) => ~(person(X19) & humble(X19))) => ! [X20] : (room(X20) => ~(person(X20) & creative(X20)))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X0] : (~room(X0) => person(X0)) & ! [X1] : (room(X1) => (person(X1) & old(X1))) & ! [X2] : ((mary != X2 & room(X2)) => older(mary,X2)) & ! [X3] : (room(X3) => person(X3)) & ! [X4] : ((paul != X4 & anywhere(X4)) => richer(X4,paul)) & ! [X5] : (room(X5) => person(X5)) & ~! [X6] : ~room(X6) & (! [X7] : (room(X7) => ~person(X7)) => ! [X8] : (room(X8) => ~(person(X8) & patient(X8)))) & (~! [X9] : (room(X9) => (person(X9) & old(X9))) => ! [X10] : (room(X10) => ~(person(X10) & generous(X10)))) & (~? [X11] : (room(X11) => (person(X11) & brave(X11))) => ~! [X12] : (room(X12) => (person(X12) & brave(X12)))) & (? [X13] : (~(person(X13) & brave(X13)) & room(X13)) => ! [X14] : (room(X14) => ~(person(X14) & creative(X14)))) & (! [X15] : (anywhere(X15) => (person(X15) & brave(X15))) => ? [X16] : (~(person(X16) & brave(X16)) & room(X16))) & (! [X17] : (room(X17) => (person(X17) & patient(X17))) => ! [X18] : (room(X18) => ~(person(X18) & humble(X18)))) & (~? [X19] : (room(X19) => ~(person(X19) & humble(X19))) => ! [X20] : (room(X20) => ~(person(X20) & creative(X20)))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X0] : (~room(X0) => person(X0)) & ! [X1] : (room(X1) => (person(X1) & old(X1))) & ! [X2] : ((mary != X2 & room(X2)) => older(mary,X2)) & ! [X3] : (room(X3) => person(X3)) & ! [X4] : ((paul != X4 & anywhere(X4)) => richer(X4,paul)) & ! [X5] : (room(X5) => person(X5)) & ~! [X6] : ~room(X6) & (! [X7] : (room(X7) => ~person(X7)) => ! [X8] : (room(X8) => ~(person(X8) & patient(X8)))) & (~? [X11] : (room(X11) => (person(X11) & brave(X11))) => ~! [X12] : (room(X12) => (person(X12) & brave(X12)))) & (? [X13] : (~(person(X13) & brave(X13)) & room(X13)) => ! [X14] : (room(X14) => ~(person(X14) & creative(X14)))) & (! [X15] : (anywhere(X15) => (person(X15) & brave(X15))) => ? [X16] : (~(person(X16) & brave(X16)) & room(X16))) & (! [X17] : (room(X17) => (person(X17) & patient(X17))) => ! [X18] : (room(X18) => ~(person(X18) & humble(X18)))) & (~? [X19] : (room(X19) => ~(person(X19) & humble(X19))) => ! [X20] : (room(X20) => ~(person(X20) & creative(X20)))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X0] : (~room(X0) => person(X0)) & ! [X1] : (room(X1) => (person(X1) & old(X1))) & ! [X2] : ((mary != X2 & room(X2)) => older(mary,X2)) & ! [X3] : (room(X3) => person(X3)) & ! [X4] : ((paul != X4 & anywhere(X4)) => richer(X4,paul)) & ! [X5] : (room(X5) => person(X5)) & ~! [X6] : ~room(X6) & (~? [X11] : (room(X11) => (person(X11) & brave(X11))) => ~! [X12] : (room(X12) => (person(X12) & brave(X12)))) & (? [X13] : (~(person(X13) & brave(X13)) & room(X13)) => ! [X14] : (room(X14) => ~(person(X14) & creative(X14)))) & (! [X15] : (anywhere(X15) => (person(X15) & brave(X15))) => ? [X16] : (~(person(X16) & brave(X16)) & room(X16))) & (! [X17] : ~room(X17) => ! [X18] : (room(X18) => ~(person(X18) & humble(X18)))) & (~? [X19] : (room(X19) => ~(person(X19) & humble(X19))) => ! [X20] : (room(X20) => ~(person(X20) & creative(X20)))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X0] : (~room(X0) => person(X0)) & ! [X1] : (room(X1) => (person(X1) & old(X1))) & ! [X2] : ((mary != X2 & room(X2)) => older(mary,X2)) & ! [X3] : (room(X3) => person(X3)) & ! [X4] : ((paul != X4 & anywhere(X4)) => richer(X4,paul)) & ! [X5] : (room(X5) => person(X5)) & ~! [X6] : ~room(X6) & (~? [X11] : (room(X11) => (person(X11) & brave(X11))) => ~! [X12] : (room(X12) => (person(X12) & brave(X12)))) & (! [X15] : (anywhere(X15) => (person(X15) & brave(X15))) => ? [X16] : (~(person(X16) & brave(X16)) & room(X16))) & (! [X17] : ~room(X17) => ! [X18] : (room(X18) => ~(person(X18) & humble(X18)))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 52] 54. ! [X0] : (~room(X0) => person(X0)) & ! [X1] : (room(X1) => (person(X1) & old(X1))) & ! [X2] : ((mary != X2 & room(X2)) => older(mary,X2)) & ! [X3] : (room(X3) => person(X3)) & ! [X4] : ((paul != X4 & anywhere(X4)) => richer(X4,paul)) & ! [X5] : (room(X5) => person(X5)) & ~! [X6] : ~room(X6) & (~? [X11] : (room(X11) => (person(X11) & brave(X11))) => ~! [X12] : (room(X12) => (person(X12) & brave(X12)))) & (! [X15] : (anywhere(X15) => (person(X15) & brave(X15))) => ? [X16] : (~(person(X16) & brave(X16)) & room(X16))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 53] 126. ! [X0] : (person(X0) | room(X0)) & ! [X1] : ((person(X1) & old(X1)) | ~room(X1)) & ! [X2] : (older(mary,X2) | (mary = X2 | ~room(X2))) & ! [X3] : (person(X3) | ~room(X3)) & ! [X4] : (richer(X4,paul) | (paul = X4 | ~anywhere(X4))) & ! [X5] : (person(X5) | ~room(X5)) & ? [X6] : room(X6) & (? [X12] : ((~person(X12) | ~brave(X12)) & room(X12)) | ? [X11] : ((person(X11) & brave(X11)) | ~room(X11))) & (? [X16] : ((~person(X16) | ~brave(X16)) & room(X16)) | ? [X15] : ((~person(X15) | ~brave(X15)) & anywhere(X15))) & ! [X21] : ((paul = X21 | mary = X21) | ~room(X21)) & room(paul) & room(mary) [ennf transformation 54] 127. ! [X0] : (person(X0) | room(X0)) & ! [X1] : ((person(X1) & old(X1)) | ~room(X1)) & ! [X2] : (older(mary,X2) | mary = X2 | ~room(X2)) & ! [X3] : (person(X3) | ~room(X3)) & ! [X4] : (richer(X4,paul) | paul = X4 | ~anywhere(X4)) & ! [X5] : (person(X5) | ~room(X5)) & ? [X6] : room(X6) & (? [X12] : ((~person(X12) | ~brave(X12)) & room(X12)) | ? [X11] : ((person(X11) & brave(X11)) | ~room(X11))) & (? [X16] : ((~person(X16) | ~brave(X16)) & room(X16)) | ? [X15] : ((~person(X15) | ~brave(X15)) & anywhere(X15))) & ! [X21] : (paul = X21 | mary = X21 | ~room(X21)) & room(paul) & room(mary) [flattening 126] 128. ~old(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 45] 129. ~old(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 128] 131. ! [X0] : (person(X0) | room(X0)) & ! [X1] : ((person(X1) & old(X1)) | ~room(X1)) & ! [X2] : (older(mary,X2) | mary = X2 | ~room(X2)) & ! [X3] : (person(X3) | ~room(X3)) & ! [X4] : (richer(X4,paul) | paul = X4 | ~anywhere(X4)) & ! [X5] : (person(X5) | ~room(X5)) & ? [X6] : room(X6) & (? [X7] : ((~person(X7) | ~brave(X7)) & room(X7)) | ? [X8] : ((person(X8) & brave(X8)) | ~room(X8))) & (? [X9] : ((~person(X9) | ~brave(X9)) & room(X9)) | ? [X10] : ((~person(X10) | ~brave(X10)) & anywhere(X10))) & ! [X11] : (paul = X11 | mary = X11 | ~room(X11)) & room(paul) & room(mary) [rectify 127] 132. ? [X6] : room(X6) => room(sK0) [choice axiom] 133. ? [X7] : ((~person(X7) | ~brave(X7)) & room(X7)) => ((~person(sK1) | ~brave(sK1)) & room(sK1)) [choice axiom] 134. ? [X8] : ((person(X8) & brave(X8)) | ~room(X8)) => ((person(sK2) & brave(sK2)) | ~room(sK2)) [choice axiom] 135. ? [X9] : ((~person(X9) | ~brave(X9)) & room(X9)) => ((~person(sK3) | ~brave(sK3)) & room(sK3)) [choice axiom] 136. ? [X10] : ((~person(X10) | ~brave(X10)) & anywhere(X10)) => ((~person(sK4) | ~brave(sK4)) & anywhere(sK4)) [choice axiom] 137. ! [X0] : (person(X0) | room(X0)) & ! [X1] : ((person(X1) & old(X1)) | ~room(X1)) & ! [X2] : (older(mary,X2) | mary = X2 | ~room(X2)) & ! [X3] : (person(X3) | ~room(X3)) & ! [X4] : (richer(X4,paul) | paul = X4 | ~anywhere(X4)) & ! [X5] : (person(X5) | ~room(X5)) & room(sK0) & (((~person(sK1) | ~brave(sK1)) & room(sK1)) | ((person(sK2) & brave(sK2)) | ~room(sK2))) & (((~person(sK3) | ~brave(sK3)) & room(sK3)) | ((~person(sK4) | ~brave(sK4)) & anywhere(sK4))) & ! [X11] : (paul = X11 | mary = X11 | ~room(X11)) & room(paul) & room(mary) [skolemisation 131,136,135,134,133,132] 138. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 139. ~old(paul) | (paul != sK5 & mary != sK5 & room(sK5)) | ~room(paul) | ~room(mary) [skolemisation 129,138] 221. room(mary) [cnf transformation 137] 222. room(paul) [cnf transformation 137] 223. ~room(X11) | mary = X11 | paul = X11 [cnf transformation 137] 237. ~room(X1) | old(X1) [cnf transformation 137] 240. ~old(paul) | room(sK5) | ~room(paul) | ~room(mary) [cnf transformation 139] 241. ~old(paul) | mary != sK5 | ~room(paul) | ~room(mary) [cnf transformation 139] 242. ~old(paul) | paul != sK5 | ~room(paul) | ~room(mary) [cnf transformation 139] 281. ~old(paul) | paul != sK5 | ~room(mary) [subsumption resolution 242,222] 282. ~old(paul) | paul != sK5 [subsumption resolution 281,221] 284. 8 <=> paul = sK5 [avatar definition] 286. paul != sK5 <- (~8) [avatar component clause 284] 288. 9 <=> old(paul) [avatar definition] 291. ~8 | ~9 [avatar split clause 282,288,284] 292. ~old(paul) | mary != sK5 | ~room(mary) [subsumption resolution 241,222] 293. ~old(paul) | mary != sK5 [subsumption resolution 292,221] 295. 10 <=> mary = sK5 [avatar definition] 297. mary != sK5 <- (~10) [avatar component clause 295] 298. ~10 | ~9 [avatar split clause 293,288,295] 299. ~old(paul) | room(sK5) | ~room(mary) [subsumption resolution 240,222] 300. ~old(paul) | room(sK5) [subsumption resolution 299,221] 302. 11 <=> room(sK5) [avatar definition] 304. room(sK5) <- (11) [avatar component clause 302] 305. 11 | ~9 [avatar split clause 300,288,302] 307. old(paul) [resolution 237,222] 311. 9 [avatar split clause 307,288] 319. mary = sK5 | paul = sK5 <- (11) [resolution 223,304] 329. paul = sK5 <- (~10, 11) [subsumption resolution 319,297] 330. $false <- (~8, ~10, 11) [subsumption resolution 329,286] 331. 8 | 10 | ~11 [avatar contradiction clause 330] 332. $false [avatar sat refutation 291,298,305,311,331] % SZS output end Proof for 2593776762110226359138026 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.602264
Laura is the only person in the room. If “it is not the case that “Laura enjoys origami”” then “Laura either enjoys kayaking and exploring remote waterways or creates bespoke furniture pieces from reclaimed wood but not both”. “Laura enjoys origami” unless “Laura participates in citizen science projects related to wildlife monitoring”. Laura composes and performs experimental electronic music. Laura enjoys skydiving. Someone in the room creates YouTube content. Laura neither is dedicated to sustainable living and zero-waste practices nor collects classic novels. Someone anywhere is a culinary enthusiast who experiments with international cuisines. Laura is a culinary enthusiast who experiments with international cuisines. Laura designs and sews custom cosplay costumes for conventions. Laura collects limited-edition art prints from contemporary artists. It is not the case that “Laura is an enthusiastic bird watcher who travels for rare sightings”. Everyone in the room who collects modern art plays video games. Laura collects modern art. Someone in the room collects modern art or enjoys kayaking and exploring remote waterways or both. Laura writes in-depth travel guides for off-the-beaten-path destinations, enjoys skydiving and enjoys stargazing. Only one person in the room collects modern art. Laura enjoys windsurfing.
Laura enjoys origami.
neutral
room(laura)&(![X]:(room(X)=>(X='laura')))& ((~(enjoys_origami(laura)))=>(((enjoys_kayaking_and_exploring_remote_waterways(laura))<~>(creates_bespoke_furniture_pieces_from_reclaimed_wood(laura)))))& (~(participates_in_citizen_science_projects_related_to_wildlife_monitoring(laura))=>(enjoys_origami(laura)))& (composes_and_performs_experimental_electronic_music(laura))& (enjoys_skydiving(laura))& (?[X]:(room(X)&(creates_YouTube_content(X))))& (~((is_dedicated_to_sustainable_living_and_zero-waste_practices(laura))|(collects_classic_novels(laura))))& (?[X]:(anywhere(X)&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(laura))& (designs_and_sews_custom_cosplay_costumes_for_conventions(laura))& (collects_limited-edition_art_prints_from_contemporary_artists(laura))& (~(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(laura)))& (![X]:(room(X)=>(((collects_modern_art(X))=>(plays_video_games(X))))))& (collects_modern_art(laura))& (?[X]:(room(X)&(((collects_modern_art(X))|(enjoys_kayaking_and_exploring_remote_waterways(X))))))& (((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(laura))&(enjoys_skydiving(laura))&(enjoys_stargazing(laura))))& (((?[X]:(room(X)&collects_modern_art(X)))&(![X,Y]:((room(X)&room(Y)&(collects_modern_art(X))&(collects_modern_art(Y)))=>(X=Y)))))& (enjoys_windsurfing(laura))
room(laura)&(![X]:(room(X)=>(X='laura')))& enjoys_origami(laura)
[]
null
0.177576
Debra, Timothy, William, Randy are the only persons in the room. If someone has a curated collection of mid-century modern furniture then he/she plays video games. Everyone in the room creates large-scale murals for public art installations if they hosts regular workshops on creative writing and vice versa. Only one person anywhere creates large-scale murals for public art installations. Everyone in the room who either is a certified yoga instructor teaching classes weekly or collects classic novels but not both makes intricate hand-cut paper art for exhibitions and hosts a YouTube channel dedicated to art tutorials. If someone regularly contributes to tech forums and online communities then he/she hosts regular workshops on creative writing and vice versa.
Everyone anywhere regularly contributes to tech forums and online communities.
contradiction
room(debra)&room(timothy)&room(william)&room(randy)&(![X]:(room(X)=>(X='debra'|X='timothy'|X='william'|X='randy')))& ((![X]:((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(plays_video_games(X)))))& (![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))<=>(hosts_regular_workshops_on_creative_writing(X))))))& (((?[X]:(anywhere(X)&creates_large-scale_murals_for_public_art_installations(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(creates_large-scale_murals_for_public_art_installations(X))&(creates_large-scale_murals_for_public_art_installations(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((((is_a_certified_yoga_instructor_teaching_classes_weekly(X))<~>(collects_classic_novels(X))))=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))))& (![X]:(room(X)=>(((((makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(((does_enjoy_mountain_biking(X))<~>(enjoys_rooftop_gardening(X))))))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))<=(((does_enjoy_mountain_biking(X))<~>(enjoys_rooftop_gardening(X))))))))& (![X]:(room(X)=>(((enjoys_rooftop_gardening(X))=>(creates_large-scale_murals_for_public_art_installations(X))))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))<=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))<~>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))))& (((?[X]:(room(X)&practices_calligraphy(X)))&(![X,Y]:((room(X)&room(Y)&(practices_calligraphy(X))&(practices_calligraphy(Y)))=>(X=Y)))))& (((?[X]:(room(X)&is_a_chess_master_who_participates_in_national_tournaments(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_chess_master_who_participates_in_national_tournaments(X))&(is_a_chess_master_who_participates_in_national_tournaments(Y)))=>(X=Y)))))& (![X]:(~room(X)=>(((collects_classic_novels(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))<=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (![X]:(room(X)=>(((practices_calligraphy(X))=>(practices_kickboxing(X))))))& ((![X]:((regularly_contributes_to_tech_forums_and_online_communities(X))<=>(hosts_regular_workshops_on_creative_writing(X)))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))<=>(collects_classic_novels(X))))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_practice_calligraphy(X))))))
room(debra)&room(timothy)&room(william)&room(randy)&(![X]:(room(X)=>(X='debra'|X='timothy'|X='william'|X='randy')))& ![X]:(anywhere(X)=>(regularly_contributes_to_tech_forums_and_online_communities(X)))
[ "b4", "b42", "p0", "p2", "p3", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 7394959678179229043241538 % SZS output start Proof for 7394959678179229043241538 5. ! [X0] : anywhere(X0) [input b4] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => (predh(X0) <=> predd(X0))) [input p2] 47. ! [X0,X1] : ((predh(X1) & predh(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : (predh(X0) & anywhere(X0)) [input p3] 58. ! [X0] : (predb(X0) <=> predd(X0)) [input p14] 61. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 62. ! [X0,X1] : ((predh(X1) & predh(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predh(X2) & anywhere(X2)) [rectify 47] 65. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 61] 66. ! [X0] : (predb(X0) => predd(X0)) [unused predicate definition removal 58] 140. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 140] 142. ! [X0] : ((predh(X0) <=> predd(X0)) | ~room(X0)) [ennf transformation 46] 143. ! [X0,X1] : (X0 = X1 | (~predh(X1) | ~predh(X0) | ~anywhere(X1) | ~anywhere(X0))) & ? [X2] : (predh(X2) & anywhere(X2)) [ennf transformation 62] 144. ! [X0,X1] : (X0 = X1 | ~predh(X1) | ~predh(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (predh(X2) & anywhere(X2)) [flattening 143] 161. ! [X0] : (predd(X0) | ~predb(X0)) [ennf transformation 66] 165. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : ((alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 65] 166. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : (alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 165] 168. ! [X0] : (((predh(X0) | ~predd(X0)) & (predd(X0) | ~predh(X0))) | ~room(X0)) [nnf transformation 142] 169. ? [X2] : (predh(X2) & anywhere(X2)) => (predh(sK0) & anywhere(sK0)) [choice axiom] 170. ! [X0,X1] : (X0 = X1 | ~predh(X1) | ~predh(X0) | ~anywhere(X1) | ~anywhere(X0)) & (predh(sK0) & anywhere(sK0)) [skolemisation 144,169] 181. anywhere(X0) [cnf transformation 5] 226. mary != paul [cnf transformation 43] 262. room(mary) [cnf transformation 141] 263. room(paul) [cnf transformation 141] 268. ~predd(X0) | predh(X0) | ~room(X0) [cnf transformation 168] 270. predh(sK0) [cnf transformation 170] 271. X0 = X1 | ~predh(X1) | ~predh(X0) | ~anywhere(X1) | ~anywhere(X0) [cnf transformation 170] 294. ~predb(X0) | predd(X0) [cnf transformation 161] 303. predb(X0) | ~anywhere(X0) [cnf transformation 166] 304. X0 = X1 | ~predh(X1) | ~predh(X0) | ~anywhere(X0) [subsumption resolution 271,181] 305. ~predh(X1) | X0 = X1 | ~predh(X0) [subsumption resolution 304,181] 306. predb(X0) [subsumption resolution 303,181] 307. predd(X0) [resolution 294,306] 309. ~room(X0) | predh(X0) [resolution 268,307] 310. predh(mary) [resolution 309,262] 311. predh(paul) [resolution 309,263] 327. ~predh(X4) | sK0 = X4 [resolution 305,270] 331. mary = sK0 [resolution 327,310] 332. paul = sK0 [resolution 327,311] 340. mary = paul [forward demodulation 332,331] 341. $false [subsumption resolution 340,226] % SZS output end Proof for 7394959678179229043241538 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.340468
“Darrell either creates YouTube content or is an avid hiker but not both” unless “Darrell competes in national level swimming championships”. “Darrell is a chess master who participates in national tournaments” unless “Darrell enjoys watercolor painting”. If “Darrell owns a high-end gaming PC with custom-built components” then “Darrell has a curated collection of mid-century modern furniture”. Either “it is not the case that “Darrell collects vintage stamps”” or “it is not the case that “Darrell is a certified yoga instructor teaching classes weekly”” but not both. Darrell is a chess master who participates in national tournaments. Darrell either is an avid hiker or practices tai chi but not both. Darrell collects foreign coins. Darrell writes poetry. Darrell who can play the piano enjoys wildlife photography. Darrell works on fridays. Darrell practices archery. Darrell is a culinary enthusiast who experiments with international cuisines. Darrell is an avid hiker. Darrell enjoys logic puzzles. Darrell enjoys deep-sea diving and exploring underwater caves. Darrell owns a telescope. Darrell dreamt that “Darrell owns a telescope”.
Darrell has a curated collection of mid-century modern furniture.
neutral
room(darrell)&(![X]:(room(X)=>(X='darrell')))& (~(competes_in_national_level_swimming_championships(darrell))=>(((creates_YouTube_content(darrell))<~>(is_an_avid_hiker(darrell)))))& (~(enjoys_watercolor_painting(darrell))=>(is_a_chess_master_who_participates_in_national_tournaments(darrell)))& ((owns_a_high-end_gaming_PC_with_custom-built_components(darrell))=>(has_a_curated_collection_of_mid-century_modern_furniture(darrell)))& ((~(collects_vintage_stamps(darrell)))<~>(~(is_a_certified_yoga_instructor_teaching_classes_weekly(darrell))))& (is_a_chess_master_who_participates_in_national_tournaments(darrell))& (((is_an_avid_hiker(darrell))<~>(practices_tai_chi(darrell))))& (collects_foreign_coins(darrell))& (writes_poetry(darrell))& ((can_play_the_piano(darrell))&(enjoys_wildlife_photography(darrell)))& (works_on_fridays(darrell))& (practices_archery(darrell))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(darrell))& (is_an_avid_hiker(darrell))& (enjoys_logic_puzzles(darrell))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(darrell))& (owns_a_telescope(darrell))& ((darrell_dream=>(owns_a_telescope(darrell))))
room(darrell)&(![X]:(room(X)=>(X='darrell')))& has_a_curated_collection_of_mid-century_modern_furniture(darrell)
[]
null
0.65736
Joeny, Owen, Kristina are the only persons in the room. If “at least one person anywhere is an avid collector of autographed memorabilia from famous musicians” then “if someone has a vast collection of first-edition science fiction novels then he/she enjoys snowboarding and vice versa”. Everyone in the room enjoys snowboarding only if they creates augmented reality experiences for mobile applications. If someone can play the piano then he/she practices digital art and vice versa. Joeny who does not have a saltwater aquarium and does enjoy mountain biking can play the piano. At least one person in the room enjoys virtual reality gaming. Only one person in the room has a vast collection of first-edition science fiction novels and does not enjoy mountain biking. Everyone in the room practices digital art only if they plays as a goalkeeper for a local amateur soccer team. If someone enjoys snowboarding then he/she enjoys virtual reality gaming and vice versa. If someone is an avid collector of autographed memorabilia from famous musicians then he/she creates augmented reality experiences for mobile applications and vice versa. Everyone in the room plays as a goalkeeper for a local amateur soccer team only if they has a vast collection of first-edition science fiction novels and is an avid hiker.
More than one person in the room does not create augmented reality experiences for mobile applications.
contradiction
room(joeny)&room(owen)&room(kristina)&(![X]:(room(X)=>(X='joeny'|X='owen'|X='kristina')))& ((?[X]:(~room(X)&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))=>(![X]:(anywhere(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X)))))))& ((![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))=>((![X]:((enjoys_origami(X))<=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<~>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))))& ((![X]:(room(X)=>(((can_play_the_piano(X))|(does_not_enjoy_snowboarding(X))))))=>(((?[X]:(room(X)&((can_play_the_piano(X))<~>(is_passionate_about_collecting_and_restoring_classic_cars(X)))))&(![X,Y]:((room(X)&room(Y)&(((can_play_the_piano(X))<~>(is_passionate_about_collecting_and_restoring_classic_cars(X))))&(((can_play_the_piano(Y))<~>(is_passionate_about_collecting_and_restoring_classic_cars(Y)))))=>(X=Y))))))& ((~(?[X]:(~room(X)&(((enjoys_snowboarding(X))&(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))))=>(((?[X]:(room(X)&is_an_avid_hiker(X))))))& ((((?[X]:(anywhere(X)&is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))=>((![X]:((has_a_vast_collection_of_first-edition_science_fiction_novels(X))<=>(enjoys_snowboarding(X))))))& ((![X]:(room(X)=>(((can_play_the_piano(X))|(does_not_create_augmented_reality_experiences_for_mobile_applications(X))))))=>(((?[X]:(room(X)&has_a_saltwater_aquarium(X)))&(![X,Y]:((room(X)&room(Y)&(has_a_saltwater_aquarium(X))&(has_a_saltwater_aquarium(Y)))=>(X=Y))))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<=(enjoys_snowboarding(X))))))& ((![X]:((is_passionate_about_collecting_and_restoring_classic_cars(X))<=>(enjoys_snowboarding(X)))))& ((![X]:((can_play_the_piano(X))<=>(practices_digital_art(X)))))& ((![X]:((enjoys_origami(X))<=>(practices_digital_art(X)))))& ((((does_not_have_a_saltwater_aquarium(joeny))&(does_enjoy_mountain_biking(joeny))))&(can_play_the_piano(joeny)))& (?[X]:(~room(X)&(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<~>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (((?[X]:(room(X)&enjoys_virtual_reality_gaming(X)))))& (((?[X]:(room(X)&((has_a_vast_collection_of_first-edition_science_fiction_novels(X))&(does_not_enjoy_mountain_biking(X)))))&(![X,Y]:((room(X)&room(Y)&(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))&(does_not_enjoy_mountain_biking(X))))&(((has_a_vast_collection_of_first-edition_science_fiction_novels(Y))&(does_not_enjoy_mountain_biking(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<=(practices_digital_art(X))))))& ((![X]:((enjoys_snowboarding(X))<=>(enjoys_virtual_reality_gaming(X)))))& ((![X]:((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<=>(creates_augmented_reality_experiences_for_mobile_applications(X)))))& (can_play_the_piano(joeny))& (![X]:(room(X)=>(((((has_a_vast_collection_of_first-edition_science_fiction_novels(X))&(is_an_avid_hiker(X))))<=(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<=(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))&(is_an_avid_hiker(X))))))))& ((![X]:((((enjoys_snowboarding(X))<~>(enjoys_virtual_reality_gaming(X))))<=>(enjoys_bird_watching(X)))))
room(joeny)&room(owen)&room(kristina)&(![X]:(room(X)=>(X='joeny'|X='owen'|X='kristina')))& (?[X,Y]:(room(X)&room(Y)&(does_not_create_augmented_reality_experiences_for_mobile_applications(X)&does_not_create_augmented_reality_experiences_for_mobile_applications(Y))&(X!=Y)))
[ "b4", "p0", "p5", "p7", "p9", "p11", "p13", "p14", "p15", "p16", "p17", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 3708886153831081298136054 % SZS output start Proof for 3708886153831081298136054 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 49. ? [X0] : (predm(X0) & anywhere(X0)) => ! [X0] : (predj(X0) <=> predn(X0)) [input p5] 51. ! [X0] : (room(X0) => (predn(X0) => prede(X0))) [input p7] 53. ! [X0] : (predi(X0) <=> predf(X0)) [input p9] 55. predi(mary) & predc(mary) & ~predp(mary) [input p11] 57. ? [X0] : (predh(X0) & room(X0)) [input p13] 58. ! [X0,X1] : ((~predc(X1) & predj(X1) & ~predc(X0) & predj(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predc(X0) & predj(X0) & room(X0)) [input p14] 59. ! [X0] : (room(X0) => (predf(X0) => predd(X0))) [input p15] 60. ! [X0] : (predn(X0) <=> predh(X0)) [input p16] 61. ! [X0] : (predm(X0) <=> prede(X0)) [input p17] 63. ! [X0] : (room(X0) => (predd(X0) => (predb(X0) & predj(X0)))) [input p19] 66. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 71. ? [X0] : (predm(X0) & anywhere(X0)) => ! [X1] : (predj(X1) <=> predn(X1)) [rectify 49] 73. ! [X0,X1] : ((~predc(X1) & predj(X1) & ~predc(X0) & predj(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~predc(X2) & predj(X2) & room(X2)) [rectify 58] 74. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (fred = X2 | paul = X2 | mary = X2)) & room(fred) & room(paul) & room(mary) [rectify 66] 148. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 149. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 148] 154. ! [X1] : (predj(X1) <=> predn(X1)) | ! [X0] : (~predm(X0) | ~anywhere(X0)) [ennf transformation 71] 157. ! [X0] : ((prede(X0) | ~predn(X0)) | ~room(X0)) [ennf transformation 51] 158. ! [X0] : (prede(X0) | ~predn(X0) | ~room(X0)) [flattening 157] 159. ! [X0,X1] : (X0 = X1 | (predc(X1) | ~predj(X1) | predc(X0) | ~predj(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~predc(X2) & predj(X2) & room(X2)) [ennf transformation 73] 160. ! [X0,X1] : (X0 = X1 | predc(X1) | ~predj(X1) | predc(X0) | ~predj(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~predc(X2) & predj(X2) & room(X2)) [flattening 159] 161. ! [X0] : ((predd(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 59] 162. ! [X0] : (predd(X0) | ~predf(X0) | ~room(X0)) [flattening 161] 163. ! [X0] : (((predb(X0) & predj(X0)) | ~predd(X0)) | ~room(X0)) [ennf transformation 63] 164. ! [X0] : ((predb(X0) & predj(X0)) | ~predd(X0) | ~room(X0)) [flattening 163] 167. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X2] : ((fred = X2 | paul = X2 | mary = X2) | ~room(X2)) & room(fred) & room(paul) & room(mary) [ennf transformation 74] 168. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X2] : (fred = X2 | paul = X2 | mary = X2 | ~room(X2)) & room(fred) & room(paul) & room(mary) [flattening 167] 189. ! [X1] : ((predj(X1) | ~predn(X1)) & (predn(X1) | ~predj(X1))) | ! [X0] : (~predm(X0) | ~anywhere(X0)) [nnf transformation 154] 190. ! [X0] : ((predj(X0) | ~predn(X0)) & (predn(X0) | ~predj(X0))) | ! [X1] : (~predm(X1) | ~anywhere(X1)) [rectify 189] 198. ! [X0] : ((predi(X0) | ~predf(X0)) & (predf(X0) | ~predi(X0))) [nnf transformation 53] 204. ? [X0] : (predh(X0) & room(X0)) => (predh(sK10) & room(sK10)) [choice axiom] 205. predh(sK10) & room(sK10) [skolemisation 57,204] 206. ? [X2] : (~predc(X2) & predj(X2) & room(X2)) => (~predc(sK11) & predj(sK11) & room(sK11)) [choice axiom] 207. ! [X0,X1] : (X0 = X1 | predc(X1) | ~predj(X1) | predc(X0) | ~predj(X0) | ~room(X1) | ~room(X0)) & (~predc(sK11) & predj(sK11) & room(sK11)) [skolemisation 160,206] 208. ! [X0] : ((predn(X0) | ~predh(X0)) & (predh(X0) | ~predn(X0))) [nnf transformation 60] 209. ! [X0] : ((predm(X0) | ~prede(X0)) & (prede(X0) | ~predm(X0))) [nnf transformation 61] 210. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) => (sK12 != sK13 & ~prede(sK13) & ~prede(sK12) & room(sK13) & room(sK12)) [choice axiom] 211. (sK12 != sK13 & ~prede(sK13) & ~prede(sK12) & room(sK13) & room(sK12)) & ! [X2] : (fred = X2 | paul = X2 | mary = X2 | ~room(X2)) & room(fred) & room(paul) & room(mary) [skolemisation 168,210] 212. anywhere(X0) [cnf transformation 5] 293. room(mary) [cnf transformation 149] 296. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 149] 321. predn(X0) | ~predj(X0) | ~predm(X1) | ~anywhere(X1) [cnf transformation 190] 329. ~predn(X0) | prede(X0) | ~room(X0) [cnf transformation 158] 332. ~predi(X0) | predf(X0) [cnf transformation 198] 337. predc(mary) [cnf transformation 55] 338. predi(mary) [cnf transformation 55] 342. room(sK10) [cnf transformation 205] 343. predh(sK10) [cnf transformation 205] 344. room(sK11) [cnf transformation 207] 345. predj(sK11) [cnf transformation 207] 346. ~predc(sK11) [cnf transformation 207] 348. ~predf(X0) | predd(X0) | ~room(X0) [cnf transformation 162] 350. ~predh(X0) | predn(X0) [cnf transformation 208] 352. ~prede(X0) | predm(X0) [cnf transformation 209] 354. ~predd(X0) | predj(X0) | ~room(X0) [cnf transformation 164] 361. room(sK12) [cnf transformation 211] 362. room(sK13) [cnf transformation 211] 363. ~prede(sK12) [cnf transformation 211] 364. ~prede(sK13) [cnf transformation 211] 365. sK12 != sK13 [cnf transformation 211] 469. 22 <=> ! [X1] : ~predm(X1) [avatar definition] 470. ~predm(X1) <- (22) [avatar component clause 469] 475. predn(X0) | ~predj(X0) | ~predm(X1) [subsumption resolution 321,212] 477. 24 <=> ! [X0] : (predn(X0) | ~predj(X0)) [avatar definition] 478. ~predj(X0) | predn(X0) <- (24) [avatar component clause 477] 479. 22 | 24 [avatar split clause 475,477,469] 529. predf(mary) [resolution 332,338] 536. predn(sK10) [resolution 350,343] 552. prede(sK10) | ~room(sK10) [resolution 329,536] 554. prede(sK10) [subsumption resolution 552,342] 557. predd(mary) | ~room(mary) [resolution 348,529] 559. predd(mary) [subsumption resolution 557,293] 576. 36 <=> predm(sK10) [avatar definition] 578. predm(sK10) <- (36) [avatar component clause 576] 638. predm(sK10) [resolution 554,352] 639. 36 [avatar split clause 638,576] 644. predj(mary) | ~room(mary) [resolution 559,354] 646. predj(mary) [subsumption resolution 644,293] 651. $false <- (22, 36) [resolution 578,470] 654. ~22 | ~36 [avatar contradiction clause 651] 658. predn(sK11) <- (24) [resolution 478,345] 664. prede(sK11) | ~room(sK11) <- (24) [resolution 658,329] 668. prede(sK11) <- (24) [subsumption resolution 664,344] 724. predn(mary) <- (24) [resolution 646,478] 759. prede(mary) | ~room(mary) <- (24) [resolution 724,329] 771. prede(mary) <- (24) [subsumption resolution 759,293] 793. paul = sK11 | mary = sK11 | fred = sK11 [resolution 296,344] 794. paul = sK12 | mary = sK12 | fred = sK12 [resolution 296,361] 795. paul = sK13 | mary = sK13 | fred = sK13 [resolution 296,362] 875. 69 <=> fred = sK11 [avatar definition] 877. fred = sK11 <- (69) [avatar component clause 875] 879. 70 <=> mary = sK11 [avatar definition] 881. mary = sK11 <- (70) [avatar component clause 879] 883. 71 <=> paul = sK11 [avatar definition] 885. paul = sK11 <- (71) [avatar component clause 883] 886. 69 | 70 | 71 [avatar split clause 793,883,879,875] 888. 72 <=> fred = sK12 [avatar definition] 890. fred = sK12 <- (72) [avatar component clause 888] 892. 73 <=> mary = sK12 [avatar definition] 894. mary = sK12 <- (73) [avatar component clause 892] 896. 74 <=> paul = sK12 [avatar definition] 898. paul = sK12 <- (74) [avatar component clause 896] 899. 72 | 73 | 74 [avatar split clause 794,896,892,888] 901. 75 <=> fred = sK13 [avatar definition] 903. fred = sK13 <- (75) [avatar component clause 901] 905. 76 <=> mary = sK13 [avatar definition] 907. mary = sK13 <- (76) [avatar component clause 905] 909. 77 <=> paul = sK13 [avatar definition] 911. paul = sK13 <- (77) [avatar component clause 909] 912. 75 | 76 | 77 [avatar split clause 795,909,905,901] 919. ~prede(fred) <- (75) [backward demodulation 364,903] 920. fred != sK12 <- (75) [backward demodulation 365,903] 921. ~72 | ~75 [avatar split clause 920,901,888] 932. prede(fred) <- (24, 69) [backward demodulation 668,877] 933. $false <- (24, 69, 75) [subsumption resolution 932,919] 934. ~24 | ~69 | ~75 [avatar contradiction clause 933] 964. ~prede(mary) <- (73) [backward demodulation 363,894] 965. $false <- (24, 73) [subsumption resolution 964,771] 966. ~24 | ~73 [avatar contradiction clause 965] 970. ~predc(mary) <- (70) [backward demodulation 346,881] 977. $false <- (70) [subsumption resolution 970,337] 978. ~70 [avatar contradiction clause 977] 1010. ~prede(paul) <- (74) [backward demodulation 363,898] 1020. prede(paul) <- (24, 71) [backward demodulation 668,885] 1022. $false <- (24, 71, 74) [subsumption resolution 1020,1010] 1023. ~24 | ~71 | ~74 [avatar contradiction clause 1022] 1033. paul != sK12 <- (77) [backward demodulation 365,911] 1036. ~74 | ~77 [avatar split clause 1033,909,896] 1039. ~prede(fred) <- (72) [backward demodulation 363,890] 1043. ~prede(mary) <- (76) [backward demodulation 364,907] 1045. $false <- (24, 76) [subsumption resolution 1043,771] 1046. ~24 | ~76 [avatar contradiction clause 1045] 1048. ~prede(paul) <- (77) [backward demodulation 364,911] 1050. $false <- (24, 71, 77) [subsumption resolution 1048,1020] 1051. ~24 | ~71 | ~77 [avatar contradiction clause 1050] 1065. prede(fred) <- (24, 69) [backward demodulation 668,877] 1066. $false <- (24, 69, 72) [subsumption resolution 1065,1039] 1067. ~24 | ~69 | ~72 [avatar contradiction clause 1066] 1073. $false [avatar sat refutation 479,639,654,886,899,912,921,934,966,978,1023,1036,1046,1051,1067] % SZS output end Proof for 3708886153831081298136054 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5628 % Time elapsed: 0.044 s % ------------------------------ % ------------------------------
0.126071
Lee, Mimi are the only persons in the room. Mimi is a professional photographer specializing in portrait photography. If someone is a dedicated advocate for digital privacy and encryption then he/she collect rare sneakers and is a culinary enthusiast who experiments with international cuisines. Mimi is a client of LVMH. Everyone in the room who enjoys salsa dancing is not a dedicated advocate for digital privacy and encryption and is a client of LVMH. Mimi is a tea enthusiast and is a dedicated advocate for digital privacy and encryption. If someone practices digital art and regularly contributes to tech forums and online communities then he/she collect rare sneakers and vice versa.
It is true that “Mimi practices digital art”.
entailment
room(lee)&room(mimi)&(![X]:(room(X)=>(X='lee'|X='mimi')))& (is_a_professional_photographer_specializing_in_portrait_photography(mimi))& ((![X]:((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(((collect_rare_sneakers(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))))& (is_a_client_of_LVMH(mimi))& (![X]:(room(X)=>(((enjoys_salsa_dancing(X))=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(is_a_client_of_LVMH(X))))))))& (is_a_professional_photographer_specializing_in_portrait_photography(lee))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))<=>(enjoys_watercolor_painting(X))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(enjoys_salsa_dancing(X))))))& (((is_a_tea_enthusiast(mimi))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(mimi))))& (![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(does_not_volunteer_for_local_environmental_conservation_projects(X))))))& (((enjoys_watercolor_painting(lee))&(mentors_a_youth_basketball_team_on_weekends(lee))&(is_a_professional_photographer_specializing_in_portrait_photography(lee))))& ((![X]:((((practices_digital_art(X))&(regularly_contributes_to_tech_forums_and_online_communities(X))))<=>(collect_rare_sneakers(X)))))& (![X]:(room(X)=>(((~((does_enjoy_trail_running(X))|(enjoys_watercolor_painting(X))))<=(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(enjoys_watercolor_painting(X))))))
room(lee)&room(mimi)&(![X]:(room(X)=>(X='lee'|X='mimi')))& practices_digital_art(mimi)
[ "p0", "p2", "p8", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 1506104773885667951855463 % SZS output start Proof for 1506104773885667951855463 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 46. ! [X0] : (predl(X0) => (prede(X0) & predd(X0))) [input p2] 52. predl(paul) & predf(paul) [input p8] 56. ! [X0] : ((predk(X0) & preda(X0)) <=> predd(X0)) [input p12] 59. ~(preda(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 60. ! [X0] : (predd(X0) => (predk(X0) & preda(X0))) [unused predicate definition removal 56] 65. ! [X0] : (predl(X0) => predd(X0)) [pure predicate removal 46] 67. predl(paul) [pure predicate removal 52] 146. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 147. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 146] 148. ! [X0] : (predd(X0) | ~predl(X0)) [ennf transformation 65] 150. ! [X0] : ((predk(X0) & preda(X0)) | ~predd(X0)) [ennf transformation 60] 151. ~preda(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 59] 152. ~preda(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 151] 155. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK0 & mary != sK0 & room(sK0)) [choice axiom] 156. ~preda(paul) | (paul != sK0 & mary != sK0 & room(sK0)) | ~room(paul) | ~room(mary) [skolemisation 152,155] 237. room(mary) [cnf transformation 147] 238. room(paul) [cnf transformation 147] 239. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 147] 240. ~predl(X0) | predd(X0) [cnf transformation 148] 243. predl(paul) [cnf transformation 67] 245. ~predd(X0) | preda(X0) [cnf transformation 150] 247. ~preda(paul) | room(sK0) | ~room(paul) | ~room(mary) [cnf transformation 156] 248. ~preda(paul) | mary != sK0 | ~room(paul) | ~room(mary) [cnf transformation 156] 249. ~preda(paul) | paul != sK0 | ~room(paul) | ~room(mary) [cnf transformation 156] 250. ~preda(paul) | paul != sK0 | ~room(mary) [subsumption resolution 249,238] 251. ~preda(paul) | paul != sK0 [subsumption resolution 250,237] 253. 1 <=> paul = sK0 [avatar definition] 255. paul != sK0 <- (~1) [avatar component clause 253] 257. 2 <=> preda(paul) [avatar definition] 260. ~1 | ~2 [avatar split clause 251,257,253] 261. ~preda(paul) | mary != sK0 | ~room(mary) [subsumption resolution 248,238] 262. ~preda(paul) | mary != sK0 [subsumption resolution 261,237] 264. 3 <=> mary = sK0 [avatar definition] 266. mary != sK0 <- (~3) [avatar component clause 264] 267. ~3 | ~2 [avatar split clause 262,257,264] 268. ~preda(paul) | room(sK0) | ~room(mary) [subsumption resolution 247,238] 269. ~preda(paul) | room(sK0) [subsumption resolution 268,237] 271. 4 <=> room(sK0) [avatar definition] 273. room(sK0) <- (4) [avatar component clause 271] 274. 4 | ~2 [avatar split clause 269,257,271] 275. predd(paul) [resolution 240,243] 276. preda(paul) [resolution 245,275] 279. 2 [avatar split clause 276,257] 288. mary = sK0 | paul = sK0 <- (4) [resolution 239,273] 289. paul = sK0 <- (~3, 4) [subsumption resolution 288,266] 290. $false <- (~1, ~3, 4) [subsumption resolution 289,255] 291. 1 | 3 | ~4 [avatar contradiction clause 290] 292. $false [avatar sat refutation 260,267,274,279,291] % SZS output end Proof for 1506104773885667951855463 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.127807
Joseph is the only person in the room. It is true that "everyone anywhere who has a piercing is a night owl". Not everyone in the room is a coffee connoisseur. Only one person in the room enjoys landscape photography. Joseph does not write in-depth travel guides for off-the-beaten-path destinations. Joseph practices kickboxing. Everyone in the room who enjoys landscape photography reads mystery novels, is a culinary enthusiast who experiments with international cuisines and owns an Android phone. Joseph does not enjoy stand-up paddleboarding. Everyone in the room has a piercing if they is an enthusiastic bird watcher who travels for rare sightings. Joseph owns an Android phone. Everyone in the room is an enthusiastic bird watcher who travels for rare sightings if they enjoys virtual reality gaming. It is not the case that "at least one person in the room is a tea enthusiast". Joseph is a culinary enthusiast who experiments with international cuisines. Everyone in the room who is a culinary enthusiast who experiments with international cuisines does not play video games.
Joseph plays video games.
contradiction
room(joseph)&(![X]:(room(X)=>(X='joseph')))& (![X]:(anywhere(X)=>(((has_a_piercing(X))=>(is_a_night_owl(X))))))& (~![X]:(room(X)=>(is_a_coffee_connoisseur(X))))& (((?[X]:(room(X)&enjoys_landscape_photography(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_landscape_photography(X))&(enjoys_landscape_photography(Y)))=>(X=Y)))))& (does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(joseph))& (practices_kickboxing(joseph))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(((reads_mystery_novels(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(owns_an_Android_phone(X))))))))& (does_not_enjoy_stand-up_paddleboarding(joseph))& (![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(has_a_piercing(X))))))& (owns_an_Android_phone(joseph))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (~(((?[X]:(room(X)&is_a_tea_enthusiast(X))))))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(joseph))& (is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(joseph))& (~(((enjoys_stargazing(joseph))&(is_a_night_owl(joseph))&(enjoys_salsa_dancing(joseph)))))& (![X]:(room(X)=>(((((enjoys_virtual_reality_gaming(X))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))=>(enjoys_stand-up_paddleboarding(X))))))& (does_not_play_eSports_competitively(joseph))& (does_not_frequently_participates_in_hackathons_and_coding_competitions(joseph))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(does_not_play_video_games(X))))))& (is_a_wine_connoisseur(joseph))& (![X]:(room(X)=>(((is_a_wine_connoisseur(X))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))
room(joseph)&(![X]:(room(X)=>(X='joseph')))& plays_video_games(joseph)
[ "p0", "p12", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 7314472059418364597323799 % SZS output start Proof for 7314472059418364597323799 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 56. predc(mary) [input p12] 62. ! [X0] : (room(X0) => (predc(X0) => ~preda(X0))) [input p18] 65. preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 157. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 163. ! [X0] : ((~preda(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 62] 164. ! [X0] : (~preda(X0) | ~predc(X0) | ~room(X0)) [flattening 163] 165. preda(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 65] 251. room(mary) [cnf transformation 157] 258. predc(mary) [cnf transformation 56] 259. ~preda(X0) | ~predc(X0) | ~room(X0) [cnf transformation 164] 262. preda(mary) [cnf transformation 165] 270. ~predc(mary) | ~room(mary) [resolution 259,262] 271. ~room(mary) [subsumption resolution 270,258] 272. $false [subsumption resolution 271,251] % SZS output end Proof for 7314472059418364597323799 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.577511
David, Thomas, Jessie, Georgenie are the only persons in the room. If at least one person anywhere does not like Carolyn then no funny person is curious. If everyone in the room drives a hybrid car or does not train for and competes in international triathlons then Jessie and Thomas are sibling of Robert. Everyone in the room is a sibling of Carolyn only if they is a client of Robert. Everyone in the room who is a sibling of Carolyn trains for and competes in international triathlons. Thomas and Jessie are client of George. Robert is a sibling of David. Jessie and David are client of Robert. No happy person is curious. Thomas and David are hated by Robert. George is a sibling of Georgenie. All wise persons are funny. David and Georgenie are not not not not creative. Everyone in the room who is a sibling of Robert, is creative or is a client of George is a sibling of Carolyn. Jessie is quiet. George and Thomas hate each other. All old persons are kind. At least one person anywhere does not like Carolyn. Everyone in the room either plays video games or is a client of Robert but not both if and only if they is a client of Carolyn. All tall persons are old. It is not the case that David and Thomas are respectively tall and wise.
Thomas trains for and competes in international triathlons.
entailment
room(david)&room(thomas)&room(jessie)&room(georgenie)&(![X]:(room(X)=>(X='david'|X='thomas'|X='jessie'|X='georgenie')))& ((((?[X]:(anywhere(X)&~like(carolyn,X)))))=>(~?[X]:(funny(X)=>curious(X))))& ((![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))|(drives_a_hybrid_car(X))))))=>(sibling(robert,jessie)&sibling(robert,thomas)))& (![X]:(room(X)=>(((client(robert,X))<=(sibling(carolyn,X))))))& (![X]:(room(X)=>(((sibling(carolyn,X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (client(george,thomas)&client(george,jessie))& (sibling(david,robert))& (client(robert,jessie)&client(robert,david))& (~?[X]:(happy(X)=>curious(X)))& (hate(thomas,robert)&hate(david,robert))& (sibling(georgenie,george))& (![X]:(wise(X)=>funny(X)))& (~~~~creative(david)&~~~~creative(georgenie))& (![X]:(room(X)=>(((((sibling(robert,X))|(creative(X))|(client(george,X))))=>(sibling(carolyn,X))))))& (quiet(jessie))& ((hate(george,thomas) & hate(thomas,george)))& (![X]:(old(X)=>kind(X)))& (((?[X]:(anywhere(X)&~like(carolyn,X)))))& (![X]:(room(X)=>(((((plays_video_games(X))<~>(client(robert,X))))<=>(client(carolyn,X))))))& (![X]:(tall(X)=>old(X)))& (~((tall(david))&(wise(thomas))))
room(david)&room(thomas)&room(jessie)&room(georgenie)&(![X]:(room(X)=>(X='david'|X='thomas'|X='jessie'|X='georgenie')))& trains_for_and_competes_in_international_triathlons(thomas)
[ "p0", "p4", "p5", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 3162161778082735631512831 % SZS output start Proof for 3162161778082735631512831 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => (sibling(lucy,X0) => predp(X0))) [input p4] 49. client(john,fred) & client(john,paul) [input p5] 57. ! [X0] : (room(X0) => ((client(john,X0) | creative(X0) | sibling(susan,X0)) => sibling(lucy,X0))) [input p13] 65. ~(predp(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 152. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 153. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 152] 157. ! [X0] : ((predp(X0) | ~sibling(lucy,X0)) | ~room(X0)) [ennf transformation 48] 158. ! [X0] : (predp(X0) | ~sibling(lucy,X0) | ~room(X0)) [flattening 157] 159. ! [X0] : ((sibling(lucy,X0) | (~client(john,X0) & ~creative(X0) & ~sibling(susan,X0))) | ~room(X0)) [ennf transformation 57] 160. ! [X0] : (sibling(lucy,X0) | (~client(john,X0) & ~creative(X0) & ~sibling(susan,X0)) | ~room(X0)) [flattening 159] 162. ~predp(paul) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 65] 163. ~predp(paul) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 162] 168. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 169. ~predp(paul) | (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 163,168] 250. room(mary) [cnf transformation 153] 251. room(paul) [cnf transformation 153] 252. room(fred) [cnf transformation 153] 253. room(alice) [cnf transformation 153] 254. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 153] 260. ~sibling(lucy,X0) | predp(X0) | ~room(X0) [cnf transformation 158] 261. client(john,paul) [cnf transformation 49] 271. ~client(john,X0) | sibling(lucy,X0) | ~room(X0) [cnf transformation 160] 277. ~predp(paul) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 169] 278. ~predp(paul) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 169] 279. ~predp(paul) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 169] 280. ~predp(paul) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 169] 281. ~predp(paul) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 169] 302. ~predp(paul) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,253] 303. ~predp(paul) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 302,252] 304. ~predp(paul) | alice != sK1 | ~room(mary) [subsumption resolution 303,251] 305. ~predp(paul) | alice != sK1 [subsumption resolution 304,250] 307. 5 <=> alice = sK1 [avatar definition] 309. alice != sK1 <- (~5) [avatar component clause 307] 311. 6 <=> predp(paul) [avatar definition] 313. ~predp(paul) <- (~6) [avatar component clause 311] 314. ~5 | ~6 [avatar split clause 305,311,307] 315. ~predp(paul) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,253] 316. ~predp(paul) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 315,252] 317. ~predp(paul) | fred != sK1 | ~room(mary) [subsumption resolution 316,251] 318. ~predp(paul) | fred != sK1 [subsumption resolution 317,250] 320. 7 <=> fred = sK1 [avatar definition] 322. fred != sK1 <- (~7) [avatar component clause 320] 323. ~7 | ~6 [avatar split clause 318,311,320] 324. ~predp(paul) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,253] 325. ~predp(paul) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 324,252] 326. ~predp(paul) | paul != sK1 | ~room(mary) [subsumption resolution 325,251] 327. ~predp(paul) | paul != sK1 [subsumption resolution 326,250] 329. 8 <=> paul = sK1 [avatar definition] 331. paul != sK1 <- (~8) [avatar component clause 329] 332. ~8 | ~6 [avatar split clause 327,311,329] 333. ~predp(paul) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 278,253] 334. ~predp(paul) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 333,252] 335. ~predp(paul) | mary != sK1 | ~room(mary) [subsumption resolution 334,251] 336. ~predp(paul) | mary != sK1 [subsumption resolution 335,250] 338. 9 <=> mary = sK1 [avatar definition] 340. mary != sK1 <- (~9) [avatar component clause 338] 341. ~9 | ~6 [avatar split clause 336,311,338] 342. ~predp(paul) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,253] 343. ~predp(paul) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 342,252] 344. ~predp(paul) | room(sK1) | ~room(mary) [subsumption resolution 343,251] 345. ~predp(paul) | room(sK1) [subsumption resolution 344,250] 347. 10 <=> room(sK1) [avatar definition] 349. room(sK1) <- (10) [avatar component clause 347] 350. 10 | ~6 [avatar split clause 345,311,347] 363. sibling(lucy,paul) | ~room(paul) [resolution 271,261] 491. fred = sK1 | paul = sK1 | mary = sK1 | alice = sK1 <- (10) [resolution 254,349] 492. paul = sK1 | mary = sK1 | alice = sK1 <- (~7, 10) [subsumption resolution 491,322] 493. mary = sK1 | alice = sK1 <- (~7, ~8, 10) [subsumption resolution 492,331] 494. alice = sK1 <- (~7, ~8, ~9, 10) [subsumption resolution 493,340] 495. $false <- (~5, ~7, ~8, ~9, 10) [subsumption resolution 494,309] 496. 5 | 7 | 8 | 9 | ~10 [avatar contradiction clause 495] 497. sibling(lucy,paul) [subsumption resolution 363,251] 519. predp(paul) | ~room(paul) [resolution 497,260] 522. ~room(paul) <- (~6) [subsumption resolution 519,313] 523. $false <- (~6) [subsumption resolution 522,251] 524. 6 [avatar contradiction clause 523] 526. $false [avatar sat refutation 314,323,332,341,350,496,524] % SZS output end Proof for 3162161778082735631512831 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.011955
Mark, Nancy, Robert are the only persons in the room. Mark does not practice archery. Everyone in the room reads mystery novels. Not everyone in the room is an enthusiastic bird watcher who travels for rare sightings only if they is not a wine connoisseur. Everyone in the room owns a 3D printer or does not read mystery novels. Not everyone in the room either practices archery or owns a 3D printer but not both if they practices graffiti art. Not everyone in the room is a wine connoisseur if they either practices archery or owns a 3D printer but not both. Someone in the room practices archery. Mark owns a 3D printer. Mark reads mystery novels. Mark practices graffiti art. Mark is a wine connoisseur.
Everyone in the room is a wine connoisseur.
contradiction
room(mark)&room(nancy)&room(robert)&(![X]:(room(X)=>(X='mark'|X='nancy'|X='robert')))& (does_not_practice_archery(mark))& (![X]:(room(X)=>(reads_mystery_novels(X))))& (~![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))<=(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (![X]:(room(X)=>(((does_not_read_mystery_novels(X))|(owns_a_3D_printer(X))))))& (~![X]:(room(X)=>(((practices_graffiti_art(X))=>(((practices_archery(X))<~>(owns_a_3D_printer(X))))))))& (~![X]:(room(X)=>(((((practices_archery(X))<~>(owns_a_3D_printer(X))))=>(is_a_wine_connoisseur(X))))))& (?[X]:(room(X)&(practices_archery(X))))& (owns_a_3D_printer(mark))& (reads_mystery_novels(mark))& (practices_graffiti_art(mark))& (is_a_wine_connoisseur(mark))
room(mark)&room(nancy)&room(robert)&(![X]:(room(X)=>(X='mark'|X='nancy'|X='robert')))& ![X]:(room(X)=>(is_a_wine_connoisseur(X)))
[ "p6", "hypothesis" ]
% SZS status Unsatisfiable for 160744708075560848352798 % SZS output start Proof for 160744708075560848352798 50. ~! [X0] : (room(X0) => ((predc(X0) <~> predd(X0)) => preda(X0))) [input p6] 56. ! [X0] : (room(X0) => preda(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 57. ! [X0] : (room(X0) => preda(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary) [rectify 56] 140. ? [X0] : ((~preda(X0) & (predc(X0) <~> predd(X0))) & room(X0)) [ennf transformation 50] 141. ? [X0] : (~preda(X0) & (predc(X0) <~> predd(X0)) & room(X0)) [flattening 140] 142. ! [X0] : (preda(X0) | ~room(X0)) & ! [X1] : ((fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(fred) & room(paul) & room(mary) [ennf transformation 57] 143. ! [X0] : (preda(X0) | ~room(X0)) & ! [X1] : (fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(fred) & room(paul) & room(mary) [flattening 142] 151. ? [X0] : (~preda(X0) & ((~predd(X0) | ~predc(X0)) & (predd(X0) | predc(X0))) & room(X0)) [nnf transformation 141] 152. ? [X0] : (~preda(X0) & (~predd(X0) | ~predc(X0)) & (predd(X0) | predc(X0)) & room(X0)) [flattening 151] 153. ? [X0] : (~preda(X0) & (~predd(X0) | ~predc(X0)) & (predd(X0) | predc(X0)) & room(X0)) => (~preda(sK2) & (~predd(sK2) | ~predc(sK2)) & (predd(sK2) | predc(sK2)) & room(sK2)) [choice axiom] 154. ~preda(sK2) & (~predd(sK2) | ~predc(sK2)) & (predd(sK2) | predc(sK2)) & room(sK2) [skolemisation 152,153] 249. room(sK2) [cnf transformation 154] 252. ~preda(sK2) [cnf transformation 154] 262. ~room(X0) | preda(X0) [cnf transformation 143] 296. preda(sK2) [resolution 262,249] 298. $false [subsumption resolution 296,252] % SZS output end Proof for 160744708075560848352798 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.630995
Sylvia is the only person in the room. Sylvia hates Edward. Sylvia is not a happy tourist. If someone is not happy then he/she is happy. Someone who is a client of Edward is younger than someone who is not a happy tourist. Everyone in the room bakes bread at home if and only if they is allergic to anything. Everyone in the room who is allergic to anything does not collect rare and antique scientific instruments. Everyone in the room who does not collect rare and antique scientific instruments is allergic to anything. If someone is a happy tourist then he/she is allergic to anything and vice versa. Everyone outside the room collects rare and antique scientific instruments only if they is younger than Edward. Everyone in the room bakes bread at home if they is not hated by Edward. Everyone in the room is allergic to anything if they bakes bread at home. Everyone anywhere is happy only if they neither does not collect rare and antique scientific instruments nor is allergic to anything. Everyone anywhere is a client of Edward if they collects rare and antique scientific instruments.
Sylvia is a client of Edward.
entailment
room(sylvia)&(![X]:(room(X)=>(X='sylvia')))& (hate(edward,sylvia))& (~(happy(sylvia)&tourist(sylvia)))& ((![X]:((~happy(X))=>(happy(X)))))& (?[X,Y]:((client(edward,X))&(~(happy(Y)&tourist(Y)))&(younger(X,Y))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))<=>(is_allergic_to_anything(X))))))& (![X]:(room(X)=>(((is_allergic_to_anything(X))=>(does_not_collect_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))=>(is_allergic_to_anything(X))))))& ((![X]:((happy(X)&tourist(X))<=>(is_allergic_to_anything(X)))))& (![X]:(~room(X)=>(((younger(edward,X))<=(collects_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((~hate(X,edward))=>(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))=>(is_allergic_to_anything(X))))))& (![X]:(anywhere(X)=>(((~((does_not_collect_rare_and_antique_scientific_instruments(X))|(is_allergic_to_anything(X))))<=(happy(X))))))& (![X]:(anywhere(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(client(edward,X))))))
room(sylvia)&(![X]:(room(X)=>(X='sylvia')))& client(edward,sylvia)
[ "b4", "p0", "p3", "p12", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 539705336197380205514062 % SZS output start Proof for 539705336197380205514062 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 47. ! [X0] : (~happy(X0) => happy(X0)) [input p3] 56. ! [X0] : (anywhere(X0) => (happy(X0) => ~(predo(X0) | ~preda(X0)))) [input p12] 57. ! [X0] : (anywhere(X0) => (preda(X0) => client(lucy,X0))) [input p13] 58. ~(client(lucy,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 132. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 134. ! [X0] : (happy(X0) | happy(X0)) [ennf transformation 47] 145. ! [X0] : (((~predo(X0) & preda(X0)) | ~happy(X0)) | ~anywhere(X0)) [ennf transformation 56] 146. ! [X0] : ((~predo(X0) & preda(X0)) | ~happy(X0) | ~anywhere(X0)) [flattening 145] 147. ! [X0] : ((client(lucy,X0) | ~preda(X0)) | ~anywhere(X0)) [ennf transformation 57] 148. ! [X0] : (client(lucy,X0) | ~preda(X0) | ~anywhere(X0)) [flattening 147] 149. ~client(lucy,mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 58] 156. ? [X0] : (mary != X0 & room(X0)) => (mary != sK2 & room(sK2)) [choice axiom] 157. ~client(lucy,mary) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 149,156] 158. anywhere(X0) [cnf transformation 5] 239. room(mary) [cnf transformation 132] 240. ~room(X0) | mary = X0 [cnf transformation 132] 242. happy(X0) | happy(X0) [cnf transformation 134] 255. preda(X0) | ~happy(X0) | ~anywhere(X0) [cnf transformation 146] 257. client(lucy,X0) | ~preda(X0) | ~anywhere(X0) [cnf transformation 148] 258. ~client(lucy,mary) | room(sK2) | ~room(mary) [cnf transformation 157] 259. ~client(lucy,mary) | mary != sK2 | ~room(mary) [cnf transformation 157] 260. happy(X0) [duplicate literal removal 242] 274. preda(X0) | ~anywhere(X0) [subsumption resolution 255,260] 275. preda(X0) [subsumption resolution 274,158] 276. client(lucy,X0) | ~anywhere(X0) [subsumption resolution 257,275] 277. client(lucy,X0) [subsumption resolution 276,158] 278. mary != sK2 | ~room(mary) [subsumption resolution 259,277] 279. mary != sK2 [subsumption resolution 278,239] 280. room(sK2) | ~room(mary) [subsumption resolution 258,277] 281. room(sK2) [subsumption resolution 280,239] 285. mary = sK2 [resolution 240,281] 286. $false [subsumption resolution 285,279] % SZS output end Proof for 539705336197380205514062 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.120761
Marcia, David are the only persons in the room. “Everyone in the room cannot play the harmonica or is a professional photographer specializing in portrait photography” only if “only one person in the room plays the drums”. David is a dedicated advocate for digital privacy and encryption. No one anywhere writes poetry if they does not train for and competes in international triathlons.
David trains for and competes in international triathlons.
contradiction
room(marcia)&room(david)&(![X]:(room(X)=>(X='marcia'|X='david')))& ((![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))|(cannot_play_the_harmonica(X))))))=>(((?[X]:(room(X)&plays_the_drums(X)))&(![X,Y]:((room(X)&room(Y)&(plays_the_drums(X))&(plays_the_drums(Y)))=>(X=Y))))))& (is_a_dedicated_advocate_for_digital_privacy_and_encryption(david))& (![X]:(room(X)=>(((does_not_practice_calligraphy(X))<=>(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(room(X)=>(((((does_not_practice_calligraphy(X))<~>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(((practices_calligraphy(X))&(bakes_bread_at_home(X))))))))& (is_a_professional_photographer_specializing_in_portrait_photography(david))& (is_a_member_of_a_local_theater_group_specializing_in_improv(david))& ((does_not_build_model_airplanes(david))&(is_a_member_of_a_local_theater_group_specializing_in_improv(david)))& (![X]:(room(X)=>(((((writes_poetry(X))&(can_play_the_harmonica(X))))=>(practices_calligraphy(X))))))& (does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(david))& (~?[X]:(anywhere(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))=>(writes_poetry(X))))))& (![X]:(room(X)=>(((((does_not_practice_calligraphy(X))|(enjoys_stand-up_paddleboarding(X))))=>(does_not_practice_tai_chi(X))))))& (((?[X]:(room(X)&plays_the_drums(X)))&(![X,Y]:((room(X)&room(Y)&(plays_the_drums(X))&(plays_the_drums(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(does_not_enjoy_stand-up_paddleboarding(X))))))))& (![X]:(room(X)=>(((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(is_allergic_to_anything(X))))=>(((plays_the_drums(X))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))))& (is_not_a_professional_photographer_specializing_in_portrait_photography(marcia))& ((marcia_dream=>((?[X,Y]:(anywhere(X)&anywhere(Y)&(does_not_practice_tai_chi(X)&does_not_practice_tai_chi(Y))&(X!=Y))))))& (~((hosts_a_YouTube_channel_dedicated_to_art_tutorials(david))|(writes_poetry(david))))& (is_allergic_to_anything(david))& (enjoys_stargazing(marcia))& (~![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& ((![X]:((makes_homemade_pastries(X))<=>(does_not_practice_calligraphy(X)))))
room(marcia)&room(david)&(![X]:(room(X)=>(X='marcia'|X='david')))& trains_for_and_competes_in_international_triathlons(david)
[ "p10", "hypothesis" ]
% SZS status Unsatisfiable for 6482784686459557358553637 % SZS output start Proof for 6482784686459557358553637 54. ~? [X0] : (anywhere(X0) => (~predo(X0) => predg(X0))) [input p10] 66. predo(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 75. ~? [X0] : (anywhere(X0) => ~~predo(X0)) [pure predicate removal 54] 85. ~? [X0] : ~~predo(X0) [pure predicate removal 75] 164. ! [X0] : ~predo(X0) [ennf transformation 85] 170. predo(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 66] 171. predo(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 170] 280. ~predo(X0) [cnf transformation 164] 294. predo(paul) [cnf transformation 171] 322. $false [subsumption resolution 294,280] % SZS output end Proof for 6482784686459557358553637 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.04768
There is a room. 'Everyone in the room enjoys camping and organizing outdoor survival workshops or does not know morse code' if 'everyone in the room does not read mystery novels or knows morse code' and vice versa. 'Everyone in the room does not practice digital art or writes a travel blog' if 'at least one person in the room reads mystery novels' and vice versa. 'Everyone outside the room is a Linux enthusiast or is not an enthusiastic bird watcher who travels for rare sightings' if 'everyone in the room reads mystery novels or does not practice pilates' and vice versa. If someone practices pilates then he/she uses a Windows laptop. Only one person in the room either is an enthusiastic bird watcher who travels for rare sightings or owns an extensive assortment of vintage comic book memorabilia but not both. Lillie dreamt that 'if someone is not an enthusiastic bird watcher who travels for rare sightings then he/she owns a microscope'. If someone maintains a large, organic vegetable garden year-round then he/she writes a travel blog or is an enthusiastic bird watcher who travels for rare sightings or both. Everyone in the room who maintains a large, organic vegetable garden year-round is dedicated to sustainable living and zero-waste practices or owns an extensive assortment of vintage comic book memorabilia or both. Everyone in the room owns a microscope if they is a Linux enthusiast. Only one person in the room either is dedicated to sustainable living and zero-waste practices or writes a travel blog but not both. At least one person in the room reads mystery novels. Only one person in the room reads mystery novels. If someone is an enthusiastic bird watcher who travels for rare sightings then he/she owns a microscope. If someone is a culinary enthusiast who experiments with international cuisines then he/she maintains a large, organic vegetable garden year-round. If someone enjoys virtual reality gaming then he/she uses a Windows laptop. Everyone in the room who enjoys virtual reality gaming is a Linux enthusiast. Everyone outside the room is a Linux enthusiast only if they is a culinary enthusiast who experiments with international cuisines. Everyone outside the room is a Linux enthusiast or is not an enthusiastic bird watcher who travels for rare sightings.
Everyone in the room is an enthusiastic bird watcher who travels for rare sightings.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((knows_morse_code(X))|(does_not_read_mystery_novels(X))))))<=>(![X]:(room(X)=>(((does_not_know_morse_code(X))|(enjoys_camping_and_organizing_outdoor_survival_workshops(X)))))))& ((((?[X]:(room(X)&reads_mystery_novels(X)))))<=>(![X]:(room(X)=>(((writes_a_travel_blog(X))|(does_not_practice_digital_art(X)))))))& ((![X]:(room(X)=>(((does_not_practice_pilates(X))|(reads_mystery_novels(X))))))<=>(![X]:(~room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(is_a_Linux_enthusiast(X)))))))& ((![X]:((practices_pilates(X))=>(uses_a_Windows_laptop(X)))))& (((?[X]:(room(X)&((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))<~>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))&(![X,Y]:((room(X)&room(Y)&(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))<~>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))&(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(Y))<~>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(Y)))))=>(X=Y)))))& ((lillie_dream=>((![X]:((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(owns_a_microscope(X)))))))& ((![X]:((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(((writes_a_travel_blog(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(owns_a_microscope(X))))))& (((?[X]:(room(X)&((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))<~>(writes_a_travel_blog(X)))))&(![X,Y]:((room(X)&room(Y)&(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))<~>(writes_a_travel_blog(X))))&(((is_dedicated_to_sustainable_living_and_zero-waste_practices(Y))<~>(writes_a_travel_blog(Y)))))=>(X=Y)))))& (((?[X]:(room(X)&reads_mystery_novels(X)))))& (((?[X]:(room(X)&reads_mystery_novels(X)))&(![X,Y]:((room(X)&room(Y)&(reads_mystery_novels(X))&(reads_mystery_novels(Y)))=>(X=Y)))))& ((![X]:((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(owns_a_microscope(X)))))& ((![X]:((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X)))))& ((![X]:((enjoys_virtual_reality_gaming(X))=>(uses_a_Windows_laptop(X)))))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(is_a_Linux_enthusiast(X))))))& (![X]:(~room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))<=(is_a_Linux_enthusiast(X))))))& (![X]:(~room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(is_a_Linux_enthusiast(X))))))
(there_is_a_room)& ![X]:(room(X)=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))
[]
null
0.435692
Alfred, Melissa are the only persons in the room. “Melissa does not enjoy kayaking and exploring remote waterways” unless “Alfred is a quiet person”. Alfred is a quiet person. Melissa is quieter than Donald or is a quiet person or both. Alfred enjoys kayaking and exploring remote waterways. Melissa and Alfred are quieter than Donald. Melissa is quiet. Melissa does not enjoy kayaking and exploring remote waterways. Melissa is quieter than Donald. It is not the case that “Alfred is not quiet”. At least one person in the room is a quiet person. Melissa enjoys kayaking and exploring remote waterways or is a quiet person or both.
Melissa is quiet.
entailment
room(aldonald)&room(melissa)&(![X]:(room(X)=>(X='aldonald'|X='melissa')))& (~(quiet(aldonald)&person(aldonald))=>(does_not_enjoy_kayaking_and_exploring_remote_waterways(melissa)))& (quiet(aldonald)&person(aldonald))& (((quieter(donald,melissa))|(quiet(melissa)&person(melissa))))& (enjoys_kayaking_and_exploring_remote_waterways(aldonald))& (quieter(donald,melissa)&quieter(donald,aldonald))& (quiet(melissa))& (does_not_enjoy_kayaking_and_exploring_remote_waterways(melissa))& (quieter(donald,melissa))& (~(~quiet(aldonald)))& (((?[X]:(room(X)&quiet(X)&person(X)))))& (((enjoys_kayaking_and_exploring_remote_waterways(aldonald))|(quiet(aldonald)&person(aldonald))))& (?[X]:(room(X)&(((does_not_enjoy_kayaking_and_exploring_remote_waterways(X))&(quiet(X)&person(X))))))& (((enjoys_kayaking_and_exploring_remote_waterways(melissa))|(quiet(melissa)&person(melissa))))& (quieter(donald,aldonald))
room(aldonald)&room(melissa)&(![X]:(room(X)=>(X='aldonald'|X='melissa')))& quiet(melissa)
[ "p0", "p7", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 3847394144875233797806854 % SZS output start Proof for 3847394144875233797806854 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 51. ~predl(paul) [input p7] 57. (person(paul) & quiet(paul)) | predl(paul) [input p13] 59. ~(quiet(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 69. quiet(paul) | predl(paul) [pure predicate removal 57] 139. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 140. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 139] 142. ~quiet(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 59] 143. ~quiet(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 142] 149. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 150. ~quiet(paul) | (paul != sK2 & mary != sK2 & room(sK2)) | ~room(paul) | ~room(mary) [skolemisation 143,149] 231. room(mary) [cnf transformation 140] 232. room(paul) [cnf transformation 140] 233. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 140] 241. ~predl(paul) [cnf transformation 51] 250. quiet(paul) | predl(paul) [cnf transformation 69] 252. ~quiet(paul) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 150] 253. ~quiet(paul) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 150] 254. ~quiet(paul) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 150] 260. 2 <=> predl(paul) [avatar definition] 270. 4 <=> quiet(paul) [avatar definition] 276. ~2 [avatar split clause 241,260] 279. 2 | 4 [avatar split clause 250,270,260] 280. ~quiet(paul) | paul != sK2 | ~room(mary) [subsumption resolution 254,232] 281. ~quiet(paul) | paul != sK2 [subsumption resolution 280,231] 283. 5 <=> paul = sK2 [avatar definition] 285. paul != sK2 <- (~5) [avatar component clause 283] 286. ~5 | ~4 [avatar split clause 281,270,283] 287. ~quiet(paul) | mary != sK2 | ~room(mary) [subsumption resolution 253,232] 288. ~quiet(paul) | mary != sK2 [subsumption resolution 287,231] 290. 6 <=> mary = sK2 [avatar definition] 292. mary != sK2 <- (~6) [avatar component clause 290] 293. ~6 | ~4 [avatar split clause 288,270,290] 294. ~quiet(paul) | room(sK2) | ~room(mary) [subsumption resolution 252,232] 295. ~quiet(paul) | room(sK2) [subsumption resolution 294,231] 297. 7 <=> room(sK2) [avatar definition] 299. room(sK2) <- (7) [avatar component clause 297] 300. 7 | ~4 [avatar split clause 295,270,297] 305. mary = sK2 | paul = sK2 <- (7) [resolution 233,299] 324. paul = sK2 <- (~6, 7) [subsumption resolution 305,292] 325. $false <- (~5, ~6, 7) [subsumption resolution 324,285] 326. 5 | 6 | ~7 [avatar contradiction clause 325] 327. $false [avatar sat refutation 276,279,286,293,300,326] % SZS output end Proof for 3847394144875233797806854 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.010691
Elizabeth, Annette, Celena, Rachael are the only persons in the room. "No one in the room watches fantasy movies or does not enjoy landscape photography or both" if "Elizabeth is a culinary enthusiast who experiments with international cuisines or does not work on fridays or both" and vice versa. Either "everyone in the room is a client of LVMH or does not own a telescope" or "Elizabeth does not practice calligraphy" but not both. Either "not everyone in the room neither practices calligraphy nor practices pilates" or "Elizabeth owns an extensive assortment of vintage comic book memorabilia" but not both. Everyone in the room writes poetry if they owns a telescope. Elizabeth practices calligraphy. Elizabeth owns a telescope.
Elizabeth is a client of LVMH.
entailment
room(elizabeth)&room(annette)&room(celena)&room(rachael)&(![X]:(room(X)=>(X='elizabeth'|X='annette'|X='celena'|X='rachael')))& ((((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(elizabeth))|(does_not_work_on_fridays(elizabeth))))<=>(~?[X]:(room(X)=>(((watches_fantasy_movies(X))|(does_not_enjoy_landscape_photography(X)))))))& ((![X]:(room(X)=>(((does_not_own_a_telescope(X))|(is_a_client_of_LVMH(X))))))<~>(does_not_practice_calligraphy(elizabeth)))& ((~![X]:(room(X)=>(~((practices_calligraphy(X))|(practices_pilates(X))))))<~>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(elizabeth)))& (![X]:(room(X)=>(((owns_a_telescope(X))=>(writes_poetry(X))))))& (practices_calligraphy(elizabeth))& (((owns_a_high-end_gaming_PC_with_custom-built_components(elizabeth))|(enjoys_landscape_photography(elizabeth))|(watches_fantasy_movies(elizabeth))))& (~![X]:(room(X)=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(((owns_a_smartwatch(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))))& (![X]:(~room(X)=>(((does_not_own_a_telescope(X))|(enjoys_coding_in_Python(X))|(streams_on_Twitch(X))))))& (collects_classic_novels(elizabeth))& (enjoys_coding_in_Python(elizabeth))& (owns_a_telescope(elizabeth))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(room(X)=>(((practices_pilates(X))=>(((practices_calligraphy(X))<~>(is_not_an_active_member_of_a_local_robotics_club(X))))))))
room(elizabeth)&room(annette)&room(celena)&room(rachael)&(![X]:(room(X)=>(X='elizabeth'|X='annette'|X='celena'|X='rachael')))& is_a_client_of_LVMH(elizabeth)
[ "p0", "p2", "p5", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 7907948005178763593322042 % SZS output start Proof for 7907948005178763593322042 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => (predo(X0) | ~predd(X0))) <~> ~predi(mary) [input p2] 49. predi(mary) [input p5] 55. predd(mary) [input p11] 58. ~(predo(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 139. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 140. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 139] 143. ! [X0] : ((predo(X0) | ~predd(X0)) | ~room(X0)) <~> ~predi(mary) [ennf transformation 46] 144. ! [X0] : (predo(X0) | ~predd(X0) | ~room(X0)) <~> ~predi(mary) [flattening 143] 149. ~predo(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 58] 150. ~predo(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 149] 157. (predi(mary) | ? [X0] : (~predo(X0) & predd(X0) & room(X0))) & (~predi(mary) | ! [X0] : (predo(X0) | ~predd(X0) | ~room(X0))) [nnf transformation 144] 158. (predi(mary) | ? [X0] : (~predo(X0) & predd(X0) & room(X0))) & (~predi(mary) | ! [X1] : (predo(X1) | ~predd(X1) | ~room(X1))) [rectify 157] 159. ? [X0] : (~predo(X0) & predd(X0) & room(X0)) => (~predo(sK1) & predd(sK1) & room(sK1)) [choice axiom] 160. (predi(mary) | (~predo(sK1) & predd(sK1) & room(sK1))) & (~predi(mary) | ! [X1] : (predo(X1) | ~predd(X1) | ~room(X1))) [skolemisation 158,159] 168. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 169. ~predo(mary) | (alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 150,168] 250. room(mary) [cnf transformation 140] 251. room(paul) [cnf transformation 140] 252. room(fred) [cnf transformation 140] 253. room(alice) [cnf transformation 140] 254. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 140] 262. ~predi(mary) | predo(X1) | ~predd(X1) | ~room(X1) [cnf transformation 160] 270. predi(mary) [cnf transformation 49] 273. predd(mary) [cnf transformation 55] 276. ~predo(mary) | room(sK4) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 169] 277. ~predo(mary) | mary != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 169] 278. ~predo(mary) | paul != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 169] 279. ~predo(mary) | fred != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 169] 280. ~predo(mary) | alice != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 169] 322. 10 <=> predi(mary) [avatar definition] 337. 13 <=> ! [X1] : (predo(X1) | ~room(X1) | ~predd(X1)) [avatar definition] 338. ~predd(X1) | ~room(X1) | predo(X1) <- (13) [avatar component clause 337] 339. 13 | ~10 [avatar split clause 262,322,337] 366. 10 [avatar split clause 270,322] 367. ~predo(mary) | alice != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,253] 368. ~predo(mary) | alice != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 367,252] 369. ~predo(mary) | alice != sK4 | ~room(mary) [subsumption resolution 368,251] 370. ~predo(mary) | alice != sK4 [subsumption resolution 369,250] 372. 20 <=> alice = sK4 [avatar definition] 374. alice != sK4 <- (~20) [avatar component clause 372] 376. 21 <=> predo(mary) [avatar definition] 379. ~20 | ~21 [avatar split clause 370,376,372] 380. ~predo(mary) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,253] 381. ~predo(mary) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 380,252] 382. ~predo(mary) | fred != sK4 | ~room(mary) [subsumption resolution 381,251] 383. ~predo(mary) | fred != sK4 [subsumption resolution 382,250] 385. 22 <=> fred = sK4 [avatar definition] 387. fred != sK4 <- (~22) [avatar component clause 385] 388. ~22 | ~21 [avatar split clause 383,376,385] 389. ~predo(mary) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 278,253] 390. ~predo(mary) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 389,252] 391. ~predo(mary) | paul != sK4 | ~room(mary) [subsumption resolution 390,251] 392. ~predo(mary) | paul != sK4 [subsumption resolution 391,250] 394. 23 <=> paul = sK4 [avatar definition] 396. paul != sK4 <- (~23) [avatar component clause 394] 397. ~23 | ~21 [avatar split clause 392,376,394] 398. ~predo(mary) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,253] 399. ~predo(mary) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 398,252] 400. ~predo(mary) | mary != sK4 | ~room(mary) [subsumption resolution 399,251] 401. ~predo(mary) | mary != sK4 [subsumption resolution 400,250] 403. 24 <=> mary = sK4 [avatar definition] 405. mary != sK4 <- (~24) [avatar component clause 403] 406. ~24 | ~21 [avatar split clause 401,376,403] 407. ~predo(mary) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 276,253] 408. ~predo(mary) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 407,252] 409. ~predo(mary) | room(sK4) | ~room(mary) [subsumption resolution 408,251] 410. ~predo(mary) | room(sK4) [subsumption resolution 409,250] 412. 25 <=> room(sK4) [avatar definition] 414. room(sK4) <- (25) [avatar component clause 412] 415. 25 | ~21 [avatar split clause 410,376,412] 419. ~room(mary) | predo(mary) <- (13) [resolution 338,273] 420. predo(mary) <- (13) [subsumption resolution 419,250] 423. 21 | ~13 [avatar split clause 420,337,376] 472. fred = sK4 | paul = sK4 | mary = sK4 | alice = sK4 <- (25) [resolution 254,414] 507. paul = sK4 | mary = sK4 | alice = sK4 <- (~22, 25) [subsumption resolution 472,387] 508. mary = sK4 | alice = sK4 <- (~22, ~23, 25) [subsumption resolution 507,396] 509. alice = sK4 <- (~22, ~23, ~24, 25) [subsumption resolution 508,405] 510. $false <- (~20, ~22, ~23, ~24, 25) [subsumption resolution 509,374] 511. 20 | 22 | 23 | 24 | ~25 [avatar contradiction clause 510] 512. $false [avatar sat refutation 339,366,379,388,397,406,415,423,511] % SZS output end Proof for 7907948005178763593322042 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.066619
Latanya, Derick, Janet, Blanca are the only persons in the room. If it is not the case that Latanya collects vintage vinyl records then Derick is not a cybersecurity expert. Derick is a cybersecurity expert. If someone owns an extensive assortment of vintage comic book memorabilia and does not enjoy logic puzzles then he/she collects vintage vinyl records and vice versa.
Latanya enjoys logic puzzles.
contradiction
room(latanya)&room(derick)&room(janet)&room(blanca)&(![X]:(room(X)=>(X='latanya'|X='derick'|X='janet'|X='blanca')))& (((is_dedicated_to_sustainable_living_and_zero-waste_practices(janet))=>(own_a_television(latanya)))&((~(is_dedicated_to_sustainable_living_and_zero-waste_practices(janet)))=>(collects_modern_art(latanya))))& ((uses_a_Windows_laptop(latanya))<~>(creates_YouTube_content(janet)))& ((is_passionate_about_collecting_and_restoring_classic_cars(janet))<~>(((practices_graffiti_art(janet))&(practices_zumba(janet)))))& ((enjoys_logic_puzzles(latanya))=>(((collects_modern_art(latanya))&(is_a_cybersecurity_expert(latanya)))))& ((~(collects_vintage_vinyl_records(latanya)))=>(is_not_a_cybersecurity_expert(derick)))& (~(practices_graffiti_art(latanya)))& (~((composes_and_performs_experimental_electronic_music(derick))|(is_passionate_about_collecting_and_restoring_classic_cars(derick))))& (creates_YouTube_content(latanya))& (((?[X]:(room(X)&enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(latanya))& (((?[X]:(anywhere(X)&uses_a_Windows_laptop(X)))))& (((enjoys_watercolor_painting(derick))&(creates_YouTube_content(derick))&(plays_video_games(derick))))& (uses_a_Windows_laptop(latanya))& (is_passionate_about_collecting_and_restoring_classic_cars(latanya))& (((collects_modern_art(latanya))&(practices_zumba(latanya))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))=>(creates_YouTube_content(X))))))& (is_a_cybersecurity_expert(derick))& ((![X]:((practices_graffiti_art(X))<=>(enjoys_windsurfing(X)))))& (((?[X]:(room(X)&((collects_vintage_vinyl_records(X))&(is_right-handed(X)))))))& (uses_an_ios_phone(latanya))& (does_not_enjoy_windsurfing(latanya))& ((![X]:((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(does_not_enjoy_logic_puzzles(X))))<=>(collects_vintage_vinyl_records(X)))))& (![X]:(~room(X)=>(((practices_zumba(X))<=>(creates_YouTube_content(X))))))& (enjoys_logic_puzzles(derick))& (own_a_television(janet))& (plays_video_games(derick))
room(latanya)&room(derick)&room(janet)&room(blanca)&(![X]:(room(X)=>(X='latanya'|X='derick'|X='janet'|X='blanca')))& enjoys_logic_puzzles(latanya)
[ "p5", "p17", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 436301361156350450816454 % SZS output start Proof for 436301361156350450816454 49. ~predl(mary) => ~prede(paul) [input p5] 61. prede(paul) [input p17] 66. ! [X0] : ((~predk(X0) & preds(X0)) <=> predl(X0)) [input p22] 71. predk(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 72. ! [X0] : (predl(X0) => (~predk(X0) & preds(X0))) [unused predicate definition removal 66] 73. ! [X0] : (predl(X0) => ~predk(X0)) [pure predicate removal 72] 164. ~prede(paul) | predl(mary) [ennf transformation 49] 166. ! [X0] : (~predk(X0) | ~predl(X0)) [ennf transformation 73] 168. predk(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 71] 169. predk(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 168] 273. ~prede(paul) | predl(mary) [cnf transformation 164] 283. prede(paul) [cnf transformation 61] 289. ~predl(X0) | ~predk(X0) [cnf transformation 166] 298. predk(mary) [cnf transformation 169] 325. 6 <=> predk(mary) [avatar definition] 326. predk(mary) <- (6) [avatar component clause 325] 334. 8 <=> predl(mary) [avatar definition] 336. predl(mary) <- (8) [avatar component clause 334] 338. 9 <=> prede(paul) [avatar definition] 341. 8 | ~9 [avatar split clause 273,338,334] 343. 9 [avatar split clause 283,338] 344. 6 [avatar split clause 298,325] 348. ~predk(mary) <- (8) [resolution 289,336] 349. $false <- (6, 8) [subsumption resolution 348,326] 350. ~6 | ~8 [avatar contradiction clause 349] 351. $false [avatar sat refutation 341,343,344,350] % SZS output end Proof for 436301361156350450816454 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.110239
Dora is the only person in the room. “William and Dora like each other” only if “someone in the room is a sibling of William”. “Everyone anywhere does not enjoy macrame or is a client of William” only if “Dora does not like William”. Everyone in the room who does not enjoy macrame is a old patient generous tourist. William and Dora like each other. Dora does not host a YouTube channel dedicated to art tutorials. Dora who is a tall humble person uses contact lenses. Dora is a sibling of Karin. Hector and Dora like each other. Dora is not a generous european.
Dora is a sibling of William.
entailment
room(dora)&(![X]:(room(X)=>(X='dora')))& (((like(william,dora) & like(dora,william)))=>(?[X]:(room(X)&(sibling(william,X)))))& ((![X]:(anywhere(X)=>(((client(william,X))|(does_not_enjoy_macrame(X))))))=>(~like(william,dora)))& (![X]:(room(X)=>(((does_not_enjoy_macrame(X))=>(old(X)&patient(X)&generous(X)&tourist(X))))))& ((like(william,dora) & like(dora,william)))& (does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(dora))& ((tall(dora)&humble(dora)&person(dora))&(uses_contact_lenses(dora)))& (sibling(karin,dora))& ((like(hector,dora) & like(dora,hector)))& (~(generous(dora)&european(dora)))
room(dora)&(![X]:(room(X)=>(X='dora')))& sibling(william,dora)
[ "p0", "p1", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 6078517606342073157544197 % SZS output start Proof for 6078517606342073157544197 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. (like(mary,alice) & like(alice,mary)) => ? [X0] : (sibling(alice,X0) & room(X0)) [input p1] 48. like(mary,alice) & like(alice,mary) [input p4] 54. ~(sibling(alice,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 138. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 139. ? [X0] : (sibling(alice,X0) & room(X0)) | (~like(mary,alice) | ~like(alice,mary)) [ennf transformation 45] 140. ? [X0] : (sibling(alice,X0) & room(X0)) | ~like(mary,alice) | ~like(alice,mary) [flattening 139] 141. ~sibling(alice,mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 54] 143. ? [X0] : (sibling(alice,X0) & room(X0)) => (sibling(alice,sK0) & room(sK0)) [choice axiom] 144. (sibling(alice,sK0) & room(sK0)) | ~like(mary,alice) | ~like(alice,mary) [skolemisation 140,143] 145. ? [X0] : (mary != X0 & room(X0)) => (mary != sK1 & room(sK1)) [choice axiom] 146. ~sibling(alice,mary) | (mary != sK1 & room(sK1)) | ~room(mary) [skolemisation 141,145] 227. room(mary) [cnf transformation 138] 228. ~room(X0) | mary = X0 [cnf transformation 138] 229. room(sK0) | ~like(mary,alice) | ~like(alice,mary) [cnf transformation 144] 230. sibling(alice,sK0) | ~like(mary,alice) | ~like(alice,mary) [cnf transformation 144] 231. like(alice,mary) [cnf transformation 48] 232. like(mary,alice) [cnf transformation 48] 236. ~sibling(alice,mary) | room(sK1) | ~room(mary) [cnf transformation 146] 237. ~sibling(alice,mary) | mary != sK1 | ~room(mary) [cnf transformation 146] 239. 1 <=> like(alice,mary) [avatar definition] 243. 2 <=> like(mary,alice) [avatar definition] 247. 3 <=> sibling(alice,sK0) [avatar definition] 249. sibling(alice,sK0) <- (3) [avatar component clause 247] 250. ~1 | ~2 | 3 [avatar split clause 230,247,243,239] 252. 4 <=> room(sK0) [avatar definition] 254. room(sK0) <- (4) [avatar component clause 252] 255. ~1 | ~2 | 4 [avatar split clause 229,252,243,239] 256. 2 [avatar split clause 232,243] 257. 1 [avatar split clause 231,239] 258. ~sibling(alice,mary) | mary != sK1 [subsumption resolution 237,227] 260. 5 <=> mary = sK1 [avatar definition] 262. mary != sK1 <- (~5) [avatar component clause 260] 264. 6 <=> sibling(alice,mary) [avatar definition] 267. ~5 | ~6 [avatar split clause 258,264,260] 268. ~sibling(alice,mary) | room(sK1) [subsumption resolution 236,227] 270. 7 <=> room(sK1) [avatar definition] 272. room(sK1) <- (7) [avatar component clause 270] 273. 7 | ~6 [avatar split clause 268,264,270] 275. mary = sK0 <- (4) [resolution 228,254] 276. sibling(alice,mary) <- (3, 4) [backward demodulation 249,275] 280. 6 | ~3 | ~4 [avatar split clause 276,252,247,264] 281. mary = sK1 <- (7) [resolution 272,228] 282. $false <- (~5, 7) [subsumption resolution 281,262] 283. 5 | ~7 [avatar contradiction clause 282] 284. $false [avatar sat refutation 250,255,256,257,267,273,280,283] % SZS output end Proof for 6078517606342073157544197 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.646351
Roxane, Eric are the only persons in the room. If everyone in the room does not enjoy spelunking or is a scotch connoisseur then someone in the room collects rare and antique scientific instruments. If not everyone outside the room does not collect foreign coins or is an enthusiastic bird watcher who travels for rare sightings then not everyone anywhere does not collect foreign coins only if they enjoys spelunking.
Roxane can play the guitar.
entailment
room(roxane)&room(eric)&(![X]:(room(X)=>(X='roxane'|X='eric')))& ((![X]:(room(X)=>(((is_a_scotch_connoisseur(X))|(does_not_enjoy_spelunking(X))))))=>(?[X]:(room(X)&(collects_rare_and_antique_scientific_instruments(X)))))& ((~![X]:(~room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(does_not_collect_foreign_coins(X))))))=>(~![X]:(anywhere(X)=>(((enjoys_spelunking(X))<=(does_not_collect_foreign_coins(X)))))))& (((![X]:(anywhere(X)=>(((does_practice_yoga(X))|(does_not_enjoy_spelunking(X))))))=>(![X]:(room(X)=>(enjoys_cross-country_skiing(X)))))& ((![X]:(room(X)=>(enjoys_cross-country_skiing(X))))=>((![X]:((is_passionate_about_collecting_and_restoring_classic_cars(X))<=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))))& ((![X]:(room(X)=>(((collects_modern_art(X))|(does_not_collect_modern_art(X))))))=>((![X]:((plays_video_games(X))<=>(enjoys_spelunking(X))))))& ((![X]:(anywhere(X)=>(mentors_a_youth_basketball_team_on_weekends(X))))=>((?[X,Y]:(room(X)&room(Y)&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)&plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(Y))&(X!=Y)))))& ((~![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(does_not_travel_domestically_frequently(X))))))=>((is_a_member_of_a_local_theater_group_specializing_in_improv(roxane))&(own_a_television(roxane))))& (~(![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))=>(![X]:(room(X)=>(((builds_model_airplanes(X))=>(is_a_client_of_Costco(X)))))))& ((~![X]:(~room(X)=>(((builds_model_airplanes(X))|(does_not_play_video_games(X))))))=>(![X]:(room(X)=>(is_passionate_about_collecting_and_restoring_classic_cars(X)))))& (~(~![X]:(~room(X)=>(((collects_modern_art(X))|(is_not_a_client_of_Costco(X))))))=>(![X]:(anywhere(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(collects_rare_and_antique_scientific_instruments(X)))))))& ((![X]:(room(X)=>(((plays_video_games(X))|(cannot_play_the_guitar(X))))))=>(~![X]:(room(X)=>(((cannot_play_the_guitar(X))=>(enjoys_bird_watching(X)))))))& (((![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))=>(![X]:(room(X)=>(((plays_video_games(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X)))))))& ((![X]:(room(X)=>(((plays_video_games(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))))=>((builds_model_airplanes(eric))&(collects_rare_and_antique_scientific_instruments(eric)))))& ((![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))=>(![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(plays_video_games(X)))))))& (![X]:(room(X)=>(((plays_video_games(X))=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(can_play_the_guitar(X))&(has_a_curated_collection_of_mid-century_modern_furniture(X))))))))& (![X]:(room(X)=>(((((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(can_play_the_guitar(X))&(has_a_curated_collection_of_mid-century_modern_furniture(X))))=>(enjoys_bird_watching(X))))))& ((practices_graffiti_art(roxane))&(enjoys_spelunking(roxane)))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(does_practice_yoga(X))))))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(collects_first_edition_books(X))))))& ((collects_modern_art(roxane))&(can_play_the_guitar(roxane)))& (![X]:(room(X)=>(((collects_first_edition_books(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& ((collects_modern_art(eric))&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(eric)))& ((![X]:((builds_model_airplanes(X))<=>(practices_graffiti_art(X)))))& (![X]:(anywhere(X)=>(((((collects_foreign_coins(X))<~>(does_not_travel_domestically_frequently(X))))=>(does_not_collect_modern_art(X))))))& ((![X]:((mentors_a_youth_basketball_team_on_weekends(X))<=>(is_not_a_scotch_connoisseur(X)))))& (![X]:(room(X)=>(((((enjoys_bird_watching(X))<~>(enjoys_spelunking(X))))=>(enjoys_bird_watching(X))))))& (![X]:(anywhere(X)=>(((collects_foreign_coins(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(anywhere(X)=>(((does_practice_yoga(X))|(does_not_enjoy_spelunking(X))))))& (?[X]:(~room(X)&(collects_first_edition_books(X))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(is_a_client_of_Costco(X))))))& (![X]:(room(X)=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))& (![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(plays_video_games(X))))))
room(roxane)&room(eric)&(![X]:(room(X)=>(X='roxane'|X='eric')))& can_play_the_guitar(roxane)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 707040618246288395757532 % SZS output start Proof for 707040618246288395757532 44. ! [X0] : (room(X0) => (~predz(X0) => preda(X0))) & ! [X0] : (room(X0) => predq(X0)) & ! [X0] : (room(X0) => (predz(X0) => predw(X0))) & ? [X0] : (predu(X0) & ~room(X0)) & ! [X0] : (anywhere(X0) => (~predg(X0) | predr(X0))) & ! [X0] : (anywhere(X0) => (predt(X0) => predq(X0))) & ! [X0] : (room(X0) => ((predh(X0) <~> predg(X0)) => predh(X0))) & ! [X0] : (predd(X0) <=> ~predn(X0)) & ! [X0] : (anywhere(X0) => ((predt(X0) <~> ~predm(X0)) => ~predb(X0))) & ! [X0] : (predl(X0) <=> preds(X0)) & predj(paul) & predb(paul) & ! [X0] : (room(X0) => (predu(X0) => predv(X0))) & predx(mary) & predb(mary) & ! [X0] : (room(X0) => (predr(X0) => predu(X0))) & ! [X0] : (room(X0) => (predj(X0) => predr(X0))) & predg(mary) & preds(mary) & ! [X0] : (room(X0) => ((predf(X0) & predx(X0) & predp(X0)) => predh(X0))) & ! [X0] : (room(X0) => (preda(X0) => (predf(X0) & predx(X0) & predp(X0)))) & (! [X0] : (room(X0) => (~predz(X0) | predp(X0))) => ! [X0] : (room(X0) => (~predz(X0) => preda(X0)))) & (! [X0] : (room(X0) => (~predf(X0) | preda(X0))) => (predi(paul) & predl(paul))) & (! [X0] : (room(X0) => (~predq(X0) | ~predz(X0))) => ! [X0] : (room(X0) => (~predf(X0) | preda(X0)))) & (! [X0] : (room(X0) => (~predx(X0) | preda(X0))) => ~! [X0] : (room(X0) => (~predx(X0) => predh(X0)))) & (~~! [X0] : (~room(X0) => (~predw(X0) | predb(X0))) => ! [X0] : (anywhere(X0) => (predq(X0) => predi(X0)))) & (~! [X0] : (~room(X0) => (~preda(X0) | predl(X0))) => ! [X0] : (room(X0) => predq(X0))) & (~! [X0] : (room(X0) => (~predp(X0) | predz(X0))) => ! [X0] : (room(X0) => (predl(X0) => predw(X0)))) & (~! [X0] : (room(X0) => (~predm(X0) | predy(X0))) => (predc(mary) & predy(mary))) & (! [X0] : (anywhere(X0) => predd(X0)) => ? [X0,X1] : (X0 != X1 & predj(X1) & predj(X0) & room(X1) & room(X0))) & (! [X0] : (room(X0) => (~predb(X0) | predb(X0))) => ! [X0] : (preda(X0) <=> predg(X0))) & (! [X0] : (room(X0) => predk(X0)) => ! [X0] : (predq(X0) <=> predp(X0))) & (! [X0] : (anywhere(X0) => (~predg(X0) | predr(X0))) => ! [X0] : (room(X0) => predk(X0))) & (~! [X0] : (~room(X0) => (~predt(X0) | predv(X0))) => ~! [X0] : (anywhere(X0) => (~predt(X0) => predg(X0)))) & (! [X0] : (room(X0) => (~predg(X0) | predn(X0))) => ? [X0] : (predi(X0) & room(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ~(predx(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (room(X0) => (~predz(X0) => preda(X0))) & ! [X1] : (room(X1) => predq(X1)) & ! [X2] : (room(X2) => (predz(X2) => predw(X2))) & ? [X3] : (predu(X3) & ~room(X3)) & ! [X4] : (anywhere(X4) => (~predg(X4) | predr(X4))) & ! [X5] : (anywhere(X5) => (predt(X5) => predq(X5))) & ! [X6] : (room(X6) => ((predh(X6) <~> predg(X6)) => predh(X6))) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (anywhere(X8) => ((predt(X8) <~> ~predm(X8)) => ~predb(X8))) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & ! [X10] : (room(X10) => (predu(X10) => predv(X10))) & predx(mary) & predb(mary) & ! [X11] : (room(X11) => (predr(X11) => predu(X11))) & ! [X12] : (room(X12) => (predj(X12) => predr(X12))) & predg(mary) & preds(mary) & ! [X13] : (room(X13) => ((predf(X13) & predx(X13) & predp(X13)) => predh(X13))) & ! [X14] : (room(X14) => (preda(X14) => (predf(X14) & predx(X14) & predp(X14)))) & (! [X15] : (room(X15) => (~predz(X15) | predp(X15))) => ! [X16] : (room(X16) => (~predz(X16) => preda(X16)))) & (! [X17] : (room(X17) => (~predf(X17) | preda(X17))) => (predi(paul) & predl(paul))) & (! [X18] : (room(X18) => (~predq(X18) | ~predz(X18))) => ! [X19] : (room(X19) => (~predf(X19) | preda(X19)))) & (! [X20] : (room(X20) => (~predx(X20) | preda(X20))) => ~! [X21] : (room(X21) => (~predx(X21) => predh(X21)))) & (~~! [X22] : (~room(X22) => (~predw(X22) | predb(X22))) => ! [X23] : (anywhere(X23) => (predq(X23) => predi(X23)))) & (~! [X24] : (~room(X24) => (~preda(X24) | predl(X24))) => ! [X25] : (room(X25) => predq(X25))) & (~! [X26] : (room(X26) => (~predp(X26) | predz(X26))) => ! [X27] : (room(X27) => (predl(X27) => predw(X27)))) & (~! [X28] : (room(X28) => (~predm(X28) | predy(X28))) => (predc(mary) & predy(mary))) & (! [X29] : (anywhere(X29) => predd(X29)) => ? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30))) & (! [X32] : (room(X32) => (~predb(X32) | predb(X32))) => ! [X33] : (preda(X33) <=> predg(X33))) & (! [X34] : (room(X34) => predk(X34)) => ! [X35] : (predq(X35) <=> predp(X35))) & (! [X36] : (anywhere(X36) => (~predg(X36) | predr(X36))) => ! [X37] : (room(X37) => predk(X37))) & (~! [X38] : (~room(X38) => (~predt(X38) | predv(X38))) => ~! [X39] : (anywhere(X39) => (~predt(X39) => predg(X39)))) & (! [X40] : (room(X40) => (~predg(X40) | predn(X40))) => ? [X41] : (predi(X41) & room(X41))) & ! [X42] : (room(X42) => (paul = X42 | mary = X42)) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (room(X0) => (~predz(X0) => preda(X0))) & ! [X1] : (room(X1) => predq(X1)) & ! [X2] : (room(X2) => (predz(X2) => predw(X2))) & ? [X3] : (predu(X3) & ~room(X3)) & ! [X4] : (anywhere(X4) => (~predg(X4) | predr(X4))) & ! [X5] : (anywhere(X5) => (predt(X5) => predq(X5))) & ! [X6] : (room(X6) => ((predh(X6) <~> predg(X6)) => predh(X6))) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (anywhere(X8) => ((predt(X8) <~> ~predm(X8)) => ~predb(X8))) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & ! [X10] : (room(X10) => (predu(X10) => predv(X10))) & predx(mary) & predb(mary) & ! [X11] : (room(X11) => (predr(X11) => predu(X11))) & ! [X12] : (room(X12) => (predj(X12) => predr(X12))) & predg(mary) & preds(mary) & ! [X13] : (room(X13) => ((predf(X13) & predx(X13) & predp(X13)) => predh(X13))) & ! [X14] : (room(X14) => (preda(X14) => (predf(X14) & predx(X14) & predp(X14)))) & (! [X15] : (room(X15) => (~predz(X15) | predp(X15))) => ! [X16] : (room(X16) => (~predz(X16) => preda(X16)))) & (! [X17] : (room(X17) => (~predf(X17) | preda(X17))) => (predi(paul) & predl(paul))) & (! [X18] : (room(X18) => (~predq(X18) | ~predz(X18))) => ! [X19] : (room(X19) => (~predf(X19) | preda(X19)))) & (! [X20] : (room(X20) => (~predx(X20) | preda(X20))) => ~! [X21] : (room(X21) => (~predx(X21) => predh(X21)))) & (! [X22] : (~room(X22) => (~predw(X22) | predb(X22))) => ! [X23] : (anywhere(X23) => (predq(X23) => predi(X23)))) & (~! [X24] : (~room(X24) => (~preda(X24) | predl(X24))) => ! [X25] : (room(X25) => predq(X25))) & (~! [X26] : (room(X26) => (~predp(X26) | predz(X26))) => ! [X27] : (room(X27) => (predl(X27) => predw(X27)))) & (~! [X28] : (room(X28) => (~predm(X28) | predy(X28))) => (predc(mary) & predy(mary))) & (! [X29] : (anywhere(X29) => predd(X29)) => ? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30))) & (! [X32] : (room(X32) => (~predb(X32) | predb(X32))) => ! [X33] : (preda(X33) <=> predg(X33))) & (! [X34] : (room(X34) => predk(X34)) => ! [X35] : (predq(X35) <=> predp(X35))) & (! [X36] : (anywhere(X36) => (~predg(X36) | predr(X36))) => ! [X37] : (room(X37) => predk(X37))) & (~! [X38] : (~room(X38) => (~predt(X38) | predv(X38))) => ~! [X39] : (anywhere(X39) => (~predt(X39) => predg(X39)))) & (! [X40] : (room(X40) => (~predg(X40) | predn(X40))) => ? [X41] : (predi(X41) & room(X41))) & ! [X42] : (room(X42) => (paul = X42 | mary = X42)) & room(paul) & room(mary) [flattening 46] 48. ! [X0] : (room(X0) => (~predz(X0) => preda(X0))) & ! [X1] : (room(X1) => predq(X1)) & ? [X3] : (predu(X3) & ~room(X3)) & ! [X4] : (anywhere(X4) => (~predg(X4) | predr(X4))) & ! [X5] : (anywhere(X5) => (predt(X5) => predq(X5))) & ! [X6] : (room(X6) => ((predh(X6) <~> predg(X6)) => predh(X6))) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (anywhere(X8) => ((predt(X8) <~> ~predm(X8)) => ~predb(X8))) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & ! [X10] : (room(X10) => (predu(X10) => predv(X10))) & predx(mary) & predb(mary) & ! [X11] : (room(X11) => (predr(X11) => predu(X11))) & ! [X12] : (room(X12) => (predj(X12) => predr(X12))) & predg(mary) & preds(mary) & ! [X13] : (room(X13) => ((predf(X13) & predx(X13) & predp(X13)) => predh(X13))) & ! [X14] : (room(X14) => (preda(X14) => (predf(X14) & predx(X14) & predp(X14)))) & (! [X15] : (room(X15) => (~predz(X15) | predp(X15))) => ! [X16] : (room(X16) => (~predz(X16) => preda(X16)))) & (! [X17] : (room(X17) => (~predf(X17) | preda(X17))) => (predi(paul) & predl(paul))) & (! [X18] : (room(X18) => (~predq(X18) | ~predz(X18))) => ! [X19] : (room(X19) => (~predf(X19) | preda(X19)))) & (! [X20] : (room(X20) => (~predx(X20) | preda(X20))) => ~! [X21] : (room(X21) => (~predx(X21) => predh(X21)))) & (! [X22] : (~room(X22) => predb(X22)) => ! [X23] : (anywhere(X23) => (predq(X23) => predi(X23)))) & (~! [X24] : (~room(X24) => (~preda(X24) | predl(X24))) => ! [X25] : (room(X25) => predq(X25))) & (~! [X28] : (room(X28) => (~predm(X28) | predy(X28))) => (predc(mary) & predy(mary))) & (! [X29] : (anywhere(X29) => predd(X29)) => ? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30))) & (! [X32] : (room(X32) => (~predb(X32) | predb(X32))) => ! [X33] : (preda(X33) <=> predg(X33))) & (! [X34] : (room(X34) => predk(X34)) => ! [X35] : (predq(X35) <=> predp(X35))) & (! [X36] : (anywhere(X36) => (~predg(X36) | predr(X36))) => ! [X37] : (room(X37) => predk(X37))) & (~! [X38] : (~room(X38) => (~predt(X38) | predv(X38))) => ~! [X39] : (anywhere(X39) => (~predt(X39) => predg(X39)))) & (! [X40] : (room(X40) => (~predg(X40) | predn(X40))) => ? [X41] : (predi(X41) & room(X41))) & ! [X42] : (room(X42) => (paul = X42 | mary = X42)) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X1] : (room(X1) => predq(X1)) & ? [X3] : (predu(X3) & ~room(X3)) & ! [X4] : (anywhere(X4) => (~predg(X4) | predr(X4))) & ! [X5] : (anywhere(X5) => (predt(X5) => predq(X5))) & ! [X6] : (room(X6) => ((predh(X6) <~> predg(X6)) => predh(X6))) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (anywhere(X8) => ((predt(X8) <~> ~predm(X8)) => ~predb(X8))) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & ! [X10] : (room(X10) => (predu(X10) => predv(X10))) & predx(mary) & predb(mary) & ! [X11] : (room(X11) => (predr(X11) => predu(X11))) & ! [X12] : (room(X12) => (predj(X12) => predr(X12))) & predg(mary) & preds(mary) & ! [X13] : (room(X13) => ((predf(X13) & predx(X13) & predp(X13)) => predh(X13))) & ! [X14] : (room(X14) => (preda(X14) => (predf(X14) & predx(X14) & predp(X14)))) & (! [X17] : (room(X17) => (~predf(X17) | preda(X17))) => (predi(paul) & predl(paul))) & (! [X18] : (room(X18) => ~predq(X18)) => ! [X19] : (room(X19) => (~predf(X19) | preda(X19)))) & (! [X20] : (room(X20) => (~predx(X20) | preda(X20))) => ~! [X21] : (room(X21) => (~predx(X21) => predh(X21)))) & (! [X22] : (~room(X22) => predb(X22)) => ! [X23] : (anywhere(X23) => (predq(X23) => predi(X23)))) & (~! [X24] : (~room(X24) => (~preda(X24) | predl(X24))) => ! [X25] : (room(X25) => predq(X25))) & (~! [X28] : (room(X28) => (~predm(X28) | predy(X28))) => (predc(mary) & predy(mary))) & (! [X29] : (anywhere(X29) => predd(X29)) => ? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30))) & (! [X32] : (room(X32) => (~predb(X32) | predb(X32))) => ! [X33] : (preda(X33) <=> predg(X33))) & (! [X34] : (room(X34) => predk(X34)) => ! [X35] : (predq(X35) <=> predp(X35))) & (! [X36] : (anywhere(X36) => (~predg(X36) | predr(X36))) => ! [X37] : (room(X37) => predk(X37))) & (~! [X38] : (~room(X38) => (~predt(X38) | predv(X38))) => ~! [X39] : (anywhere(X39) => (~predt(X39) => predg(X39)))) & (! [X40] : (room(X40) => (~predg(X40) | predn(X40))) => ? [X41] : (predi(X41) & room(X41))) & ! [X42] : (room(X42) => (paul = X42 | mary = X42)) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X1] : (room(X1) => predq(X1)) & ? [X3] : (predu(X3) & ~room(X3)) & ! [X4] : (anywhere(X4) => (~predg(X4) | predr(X4))) & ! [X5] : (anywhere(X5) => (predt(X5) => predq(X5))) & ! [X6] : (room(X6) => ((predh(X6) <~> predg(X6)) => predh(X6))) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (anywhere(X8) => ((predt(X8) <~> ~predm(X8)) => ~predb(X8))) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & ! [X10] : (room(X10) => (predu(X10) => predv(X10))) & predx(mary) & predb(mary) & ! [X11] : (room(X11) => (predr(X11) => predu(X11))) & ! [X12] : (room(X12) => (predj(X12) => predr(X12))) & predg(mary) & preds(mary) & ! [X13] : (room(X13) => ((predf(X13) & predx(X13) & predp(X13)) => predh(X13))) & ! [X14] : (room(X14) => (preda(X14) => (predf(X14) & predx(X14) & predp(X14)))) & (! [X17] : (room(X17) => (~predf(X17) | preda(X17))) => (predi(paul) & predl(paul))) & (! [X18] : (room(X18) => ~predq(X18)) => ! [X19] : (room(X19) => (~predf(X19) | preda(X19)))) & (! [X20] : (room(X20) => (~predx(X20) | preda(X20))) => ~! [X21] : (room(X21) => (~predx(X21) => predh(X21)))) & (! [X22] : (~room(X22) => predb(X22)) => ! [X23] : (anywhere(X23) => (predq(X23) => predi(X23)))) & (~! [X24] : (~room(X24) => (~preda(X24) | predl(X24))) => ! [X25] : (room(X25) => predq(X25))) & (~! [X28] : (room(X28) => (~predm(X28) | predy(X28))) => predy(mary)) & (! [X29] : (anywhere(X29) => predd(X29)) => ? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30))) & (! [X32] : (room(X32) => (~predb(X32) | predb(X32))) => ! [X33] : (preda(X33) <=> predg(X33))) & (! [X34] : (room(X34) => predk(X34)) => ! [X35] : (predq(X35) <=> predp(X35))) & (! [X36] : (anywhere(X36) => (~predg(X36) | predr(X36))) => ! [X37] : (room(X37) => predk(X37))) & (~! [X38] : (~room(X38) => (~predt(X38) | predv(X38))) => ~! [X39] : (anywhere(X39) => (~predt(X39) => predg(X39)))) & (! [X40] : (room(X40) => (~predg(X40) | predn(X40))) => ? [X41] : (predi(X41) & room(X41))) & ! [X42] : (room(X42) => (paul = X42 | mary = X42)) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X1] : (room(X1) => predq(X1)) & ? [X3] : (predu(X3) & ~room(X3)) & ! [X4] : (anywhere(X4) => (~predg(X4) | predr(X4))) & ! [X5] : (anywhere(X5) => (predt(X5) => predq(X5))) & ! [X6] : (room(X6) => ((predh(X6) <~> predg(X6)) => predh(X6))) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (anywhere(X8) => ((predt(X8) <~> ~predm(X8)) => ~predb(X8))) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & ! [X10] : (room(X10) => (predu(X10) => predv(X10))) & predx(mary) & predb(mary) & ! [X11] : (room(X11) => (predr(X11) => predu(X11))) & ! [X12] : (room(X12) => (predj(X12) => predr(X12))) & predg(mary) & preds(mary) & ! [X13] : (room(X13) => ((predf(X13) & predx(X13) & predp(X13)) => predh(X13))) & ! [X14] : (room(X14) => (preda(X14) => (predf(X14) & predx(X14) & predp(X14)))) & (! [X17] : (room(X17) => (~predf(X17) | preda(X17))) => (predi(paul) & predl(paul))) & (! [X18] : (room(X18) => ~predq(X18)) => ! [X19] : (room(X19) => (~predf(X19) | preda(X19)))) & (! [X20] : (room(X20) => (~predx(X20) | preda(X20))) => ~! [X21] : (room(X21) => (~predx(X21) => predh(X21)))) & (! [X22] : (~room(X22) => predb(X22)) => ! [X23] : (anywhere(X23) => (predq(X23) => predi(X23)))) & (~! [X24] : (~room(X24) => (~preda(X24) | predl(X24))) => ! [X25] : (room(X25) => predq(X25))) & (! [X29] : (anywhere(X29) => predd(X29)) => ? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30))) & (! [X32] : (room(X32) => (~predb(X32) | predb(X32))) => ! [X33] : (preda(X33) <=> predg(X33))) & (! [X34] : (room(X34) => predk(X34)) => ! [X35] : (predq(X35) <=> predp(X35))) & (! [X36] : (anywhere(X36) => (~predg(X36) | predr(X36))) => ! [X37] : (room(X37) => predk(X37))) & (~! [X38] : (~room(X38) => (~predt(X38) | predv(X38))) => ~! [X39] : (anywhere(X39) => (~predt(X39) => predg(X39)))) & (! [X40] : (room(X40) => (~predg(X40) | predn(X40))) => ? [X41] : (predi(X41) & room(X41))) & ! [X42] : (room(X42) => (paul = X42 | mary = X42)) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X1] : (room(X1) => predq(X1)) & ? [X3] : (predu(X3) & ~room(X3)) & ! [X4] : (anywhere(X4) => (~predg(X4) | predr(X4))) & ! [X5] : (anywhere(X5) => (predt(X5) => predq(X5))) & ! [X6] : (room(X6) => ((predh(X6) <~> predg(X6)) => predh(X6))) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (anywhere(X8) => ((predt(X8) <~> ~predm(X8)) => ~predb(X8))) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & predx(mary) & predb(mary) & ! [X11] : (room(X11) => (predr(X11) => predu(X11))) & ! [X12] : (room(X12) => (predj(X12) => predr(X12))) & predg(mary) & preds(mary) & ! [X13] : (room(X13) => ((predf(X13) & predx(X13) & predp(X13)) => predh(X13))) & ! [X14] : (room(X14) => (preda(X14) => (predf(X14) & predx(X14) & predp(X14)))) & (! [X17] : (room(X17) => (~predf(X17) | preda(X17))) => (predi(paul) & predl(paul))) & (! [X18] : (room(X18) => ~predq(X18)) => ! [X19] : (room(X19) => (~predf(X19) | preda(X19)))) & (! [X20] : (room(X20) => (~predx(X20) | preda(X20))) => ~! [X21] : (room(X21) => (~predx(X21) => predh(X21)))) & (! [X22] : (~room(X22) => predb(X22)) => ! [X23] : (anywhere(X23) => (predq(X23) => predi(X23)))) & (~! [X24] : (~room(X24) => (~preda(X24) | predl(X24))) => ! [X25] : (room(X25) => predq(X25))) & (! [X29] : (anywhere(X29) => predd(X29)) => ? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30))) & (! [X32] : (room(X32) => (~predb(X32) | predb(X32))) => ! [X33] : (preda(X33) <=> predg(X33))) & (! [X34] : (room(X34) => predk(X34)) => ! [X35] : (predq(X35) <=> predp(X35))) & (! [X36] : (anywhere(X36) => (~predg(X36) | predr(X36))) => ! [X37] : (room(X37) => predk(X37))) & (! [X40] : (room(X40) => (~predg(X40) | predn(X40))) => ? [X41] : (predi(X41) & room(X41))) & ! [X42] : (room(X42) => (paul = X42 | mary = X42)) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X1] : (room(X1) => predq(X1)) & ? [X3] : ~room(X3) & ! [X4] : (anywhere(X4) => (~predg(X4) | predr(X4))) & ! [X5] : (anywhere(X5) => (predt(X5) => predq(X5))) & ! [X6] : (room(X6) => ((predh(X6) <~> predg(X6)) => predh(X6))) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (anywhere(X8) => ((predt(X8) <~> ~predm(X8)) => ~predb(X8))) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & predx(mary) & predb(mary) & ! [X12] : (room(X12) => (predj(X12) => predr(X12))) & predg(mary) & preds(mary) & ! [X13] : (room(X13) => ((predf(X13) & predx(X13) & predp(X13)) => predh(X13))) & ! [X14] : (room(X14) => (preda(X14) => (predf(X14) & predx(X14) & predp(X14)))) & (! [X17] : (room(X17) => (~predf(X17) | preda(X17))) => (predi(paul) & predl(paul))) & (! [X18] : (room(X18) => ~predq(X18)) => ! [X19] : (room(X19) => (~predf(X19) | preda(X19)))) & (! [X20] : (room(X20) => (~predx(X20) | preda(X20))) => ~! [X21] : (room(X21) => (~predx(X21) => predh(X21)))) & (! [X22] : (~room(X22) => predb(X22)) => ! [X23] : (anywhere(X23) => (predq(X23) => predi(X23)))) & (~! [X24] : (~room(X24) => (~preda(X24) | predl(X24))) => ! [X25] : (room(X25) => predq(X25))) & (! [X29] : (anywhere(X29) => predd(X29)) => ? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30))) & (! [X32] : (room(X32) => (~predb(X32) | predb(X32))) => ! [X33] : (preda(X33) <=> predg(X33))) & (! [X34] : (room(X34) => predk(X34)) => ! [X35] : (predq(X35) <=> predp(X35))) & (! [X36] : (anywhere(X36) => (~predg(X36) | predr(X36))) => ! [X37] : (room(X37) => predk(X37))) & (! [X40] : (room(X40) => (~predg(X40) | predn(X40))) => ? [X41] : (predi(X41) & room(X41))) & ! [X42] : (room(X42) => (paul = X42 | mary = X42)) & room(paul) & room(mary) [pure predicate removal 52] 54. ! [X1] : (room(X1) => predq(X1)) & ? [X3] : ~room(X3) & ! [X4] : (anywhere(X4) => (~predg(X4) | predr(X4))) & ! [X5] : (anywhere(X5) => (predt(X5) => predq(X5))) & ! [X6] : (room(X6) => ((predh(X6) <~> predg(X6)) => predh(X6))) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (anywhere(X8) => ((predt(X8) <~> ~predm(X8)) => ~predb(X8))) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & predx(mary) & predb(mary) & ! [X12] : (room(X12) => (predj(X12) => predr(X12))) & predg(mary) & preds(mary) & ! [X13] : (room(X13) => ((predf(X13) & predx(X13) & predp(X13)) => predh(X13))) & ! [X14] : (room(X14) => (preda(X14) => (predf(X14) & predx(X14) & predp(X14)))) & (! [X17] : (room(X17) => (~predf(X17) | preda(X17))) => predl(paul)) & (! [X18] : (room(X18) => ~predq(X18)) => ! [X19] : (room(X19) => (~predf(X19) | preda(X19)))) & (! [X20] : (room(X20) => (~predx(X20) | preda(X20))) => ~! [X21] : (room(X21) => (~predx(X21) => predh(X21)))) & (~! [X24] : (~room(X24) => (~preda(X24) | predl(X24))) => ! [X25] : (room(X25) => predq(X25))) & (! [X29] : (anywhere(X29) => predd(X29)) => ? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30))) & (! [X32] : (room(X32) => (~predb(X32) | predb(X32))) => ! [X33] : (preda(X33) <=> predg(X33))) & (! [X34] : (room(X34) => predk(X34)) => ! [X35] : (predq(X35) <=> predp(X35))) & (! [X36] : (anywhere(X36) => (~predg(X36) | predr(X36))) => ! [X37] : (room(X37) => predk(X37))) & (! [X40] : (room(X40) => (~predg(X40) | predn(X40))) => ? [X41] : room(X41)) & ! [X42] : (room(X42) => (paul = X42 | mary = X42)) & room(paul) & room(mary) [pure predicate removal 53] 126. ! [X1] : (predq(X1) | ~room(X1)) & ? [X3] : ~room(X3) & ! [X4] : ((~predg(X4) | predr(X4)) | ~anywhere(X4)) & ! [X5] : ((predq(X5) | ~predt(X5)) | ~anywhere(X5)) & ! [X6] : ((predh(X6) | (predh(X6) <=> predg(X6))) | ~room(X6)) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : ((~predb(X8) | (predt(X8) <=> ~predm(X8))) | ~anywhere(X8)) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & predx(mary) & predb(mary) & ! [X12] : ((predr(X12) | ~predj(X12)) | ~room(X12)) & predg(mary) & preds(mary) & ! [X13] : ((predh(X13) | (~predf(X13) | ~predx(X13) | ~predp(X13))) | ~room(X13)) & ! [X14] : (((predf(X14) & predx(X14) & predp(X14)) | ~preda(X14)) | ~room(X14)) & (predl(paul) | ? [X17] : ((predf(X17) & ~preda(X17)) & room(X17))) & (! [X19] : ((~predf(X19) | preda(X19)) | ~room(X19)) | ? [X18] : (predq(X18) & room(X18))) & (? [X21] : ((~predh(X21) & ~predx(X21)) & room(X21)) | ? [X20] : ((predx(X20) & ~preda(X20)) & room(X20))) & (! [X25] : (predq(X25) | ~room(X25)) | ! [X24] : ((~preda(X24) | predl(X24)) | room(X24))) & (? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30)) | ? [X29] : (~predd(X29) & anywhere(X29))) & (! [X33] : (preda(X33) <=> predg(X33)) | ? [X32] : ((predb(X32) & ~predb(X32)) & room(X32))) & (! [X35] : (predq(X35) <=> predp(X35)) | ? [X34] : (~predk(X34) & room(X34))) & (! [X37] : (predk(X37) | ~room(X37)) | ? [X36] : ((predg(X36) & ~predr(X36)) & anywhere(X36))) & (? [X41] : room(X41) | ? [X40] : ((predg(X40) & ~predn(X40)) & room(X40))) & ! [X42] : ((paul = X42 | mary = X42) | ~room(X42)) & room(paul) & room(mary) [ennf transformation 54] 127. ! [X1] : (predq(X1) | ~room(X1)) & ? [X3] : ~room(X3) & ! [X4] : (~predg(X4) | predr(X4) | ~anywhere(X4)) & ! [X5] : (predq(X5) | ~predt(X5) | ~anywhere(X5)) & ! [X6] : (predh(X6) | (predh(X6) <=> predg(X6)) | ~room(X6)) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (~predb(X8) | (predt(X8) <=> ~predm(X8)) | ~anywhere(X8)) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & predx(mary) & predb(mary) & ! [X12] : (predr(X12) | ~predj(X12) | ~room(X12)) & predg(mary) & preds(mary) & ! [X13] : (predh(X13) | ~predf(X13) | ~predx(X13) | ~predp(X13) | ~room(X13)) & ! [X14] : ((predf(X14) & predx(X14) & predp(X14)) | ~preda(X14) | ~room(X14)) & (predl(paul) | ? [X17] : (predf(X17) & ~preda(X17) & room(X17))) & (! [X19] : (~predf(X19) | preda(X19) | ~room(X19)) | ? [X18] : (predq(X18) & room(X18))) & (? [X21] : (~predh(X21) & ~predx(X21) & room(X21)) | ? [X20] : (predx(X20) & ~preda(X20) & room(X20))) & (! [X25] : (predq(X25) | ~room(X25)) | ! [X24] : (~preda(X24) | predl(X24) | room(X24))) & (? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30)) | ? [X29] : (~predd(X29) & anywhere(X29))) & (! [X33] : (preda(X33) <=> predg(X33)) | ? [X32] : (predb(X32) & ~predb(X32) & room(X32))) & (! [X35] : (predq(X35) <=> predp(X35)) | ? [X34] : (~predk(X34) & room(X34))) & (! [X37] : (predk(X37) | ~room(X37)) | ? [X36] : (predg(X36) & ~predr(X36) & anywhere(X36))) & (? [X41] : room(X41) | ? [X40] : (predg(X40) & ~predn(X40) & room(X40))) & ! [X42] : (paul = X42 | mary = X42 | ~room(X42)) & room(paul) & room(mary) [flattening 126] 128. ~predx(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 45] 129. ~predx(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 128] 130. ? [X30,X31] : (X30 != X31 & predj(X31) & predj(X30) & room(X31) & room(X30)) | ~sP0 [predicate definition introduction] 131. ? [X20] : (predx(X20) & ~preda(X20) & room(X20)) | ~sP1 [predicate definition introduction] 132. ! [X1] : (predq(X1) | ~room(X1)) & ? [X3] : ~room(X3) & ! [X4] : (~predg(X4) | predr(X4) | ~anywhere(X4)) & ! [X5] : (predq(X5) | ~predt(X5) | ~anywhere(X5)) & ! [X6] : (predh(X6) | (predh(X6) <=> predg(X6)) | ~room(X6)) & ! [X7] : (predd(X7) <=> ~predn(X7)) & ! [X8] : (~predb(X8) | (predt(X8) <=> ~predm(X8)) | ~anywhere(X8)) & ! [X9] : (predl(X9) <=> preds(X9)) & predj(paul) & predb(paul) & predx(mary) & predb(mary) & ! [X12] : (predr(X12) | ~predj(X12) | ~room(X12)) & predg(mary) & preds(mary) & ! [X13] : (predh(X13) | ~predf(X13) | ~predx(X13) | ~predp(X13) | ~room(X13)) & ! [X14] : ((predf(X14) & predx(X14) & predp(X14)) | ~preda(X14) | ~room(X14)) & (predl(paul) | ? [X17] : (predf(X17) & ~preda(X17) & room(X17))) & (! [X19] : (~predf(X19) | preda(X19) | ~room(X19)) | ? [X18] : (predq(X18) & room(X18))) & (? [X21] : (~predh(X21) & ~predx(X21) & room(X21)) | sP1) & (! [X25] : (predq(X25) | ~room(X25)) | ! [X24] : (~preda(X24) | predl(X24) | room(X24))) & (sP0 | ? [X29] : (~predd(X29) & anywhere(X29))) & (! [X33] : (preda(X33) <=> predg(X33)) | ? [X32] : (predb(X32) & ~predb(X32) & room(X32))) & (! [X35] : (predq(X35) <=> predp(X35)) | ? [X34] : (~predk(X34) & room(X34))) & (! [X37] : (predk(X37) | ~room(X37)) | ? [X36] : (predg(X36) & ~predr(X36) & anywhere(X36))) & (? [X41] : room(X41) | ? [X40] : (predg(X40) & ~predn(X40) & room(X40))) & ! [X42] : (paul = X42 | mary = X42 | ~room(X42)) & room(paul) & room(mary) [definition folding 127,131,130] 142. ! [X1] : (predq(X1) | ~room(X1)) & ? [X3] : ~room(X3) & ! [X4] : (~predg(X4) | predr(X4) | ~anywhere(X4)) & ! [X5] : (predq(X5) | ~predt(X5) | ~anywhere(X5)) & ! [X6] : (predh(X6) | ((predh(X6) | ~predg(X6)) & (predg(X6) | ~predh(X6))) | ~room(X6)) & ! [X7] : ((predd(X7) | predn(X7)) & (~predn(X7) | ~predd(X7))) & ! [X8] : (~predb(X8) | ((predt(X8) | predm(X8)) & (~predm(X8) | ~predt(X8))) | ~anywhere(X8)) & ! [X9] : ((predl(X9) | ~preds(X9)) & (preds(X9) | ~predl(X9))) & predj(paul) & predb(paul) & predx(mary) & predb(mary) & ! [X12] : (predr(X12) | ~predj(X12) | ~room(X12)) & predg(mary) & preds(mary) & ! [X13] : (predh(X13) | ~predf(X13) | ~predx(X13) | ~predp(X13) | ~room(X13)) & ! [X14] : ((predf(X14) & predx(X14) & predp(X14)) | ~preda(X14) | ~room(X14)) & (predl(paul) | ? [X17] : (predf(X17) & ~preda(X17) & room(X17))) & (! [X19] : (~predf(X19) | preda(X19) | ~room(X19)) | ? [X18] : (predq(X18) & room(X18))) & (? [X21] : (~predh(X21) & ~predx(X21) & room(X21)) | sP1) & (! [X25] : (predq(X25) | ~room(X25)) | ! [X24] : (~preda(X24) | predl(X24) | room(X24))) & (sP0 | ? [X29] : (~predd(X29) & anywhere(X29))) & (! [X33] : ((preda(X33) | ~predg(X33)) & (predg(X33) | ~preda(X33))) | ? [X32] : (predb(X32) & ~predb(X32) & room(X32))) & (! [X35] : ((predq(X35) | ~predp(X35)) & (predp(X35) | ~predq(X35))) | ? [X34] : (~predk(X34) & room(X34))) & (! [X37] : (predk(X37) | ~room(X37)) | ? [X36] : (predg(X36) & ~predr(X36) & anywhere(X36))) & (? [X41] : room(X41) | ? [X40] : (predg(X40) & ~predn(X40) & room(X40))) & ! [X42] : (paul = X42 | mary = X42 | ~room(X42)) & room(paul) & room(mary) [nnf transformation 132] 143. ! [X0] : (predq(X0) | ~room(X0)) & ? [X1] : ~room(X1) & ! [X2] : (~predg(X2) | predr(X2) | ~anywhere(X2)) & ! [X3] : (predq(X3) | ~predt(X3) | ~anywhere(X3)) & ! [X4] : (predh(X4) | ((predh(X4) | ~predg(X4)) & (predg(X4) | ~predh(X4))) | ~room(X4)) & ! [X5] : ((predd(X5) | predn(X5)) & (~predn(X5) | ~predd(X5))) & ! [X6] : (~predb(X6) | ((predt(X6) | predm(X6)) & (~predm(X6) | ~predt(X6))) | ~anywhere(X6)) & ! [X7] : ((predl(X7) | ~preds(X7)) & (preds(X7) | ~predl(X7))) & predj(paul) & predb(paul) & predx(mary) & predb(mary) & ! [X8] : (predr(X8) | ~predj(X8) | ~room(X8)) & predg(mary) & preds(mary) & ! [X9] : (predh(X9) | ~predf(X9) | ~predx(X9) | ~predp(X9) | ~room(X9)) & ! [X10] : ((predf(X10) & predx(X10) & predp(X10)) | ~preda(X10) | ~room(X10)) & (predl(paul) | ? [X11] : (predf(X11) & ~preda(X11) & room(X11))) & (! [X12] : (~predf(X12) | preda(X12) | ~room(X12)) | ? [X13] : (predq(X13) & room(X13))) & (? [X14] : (~predh(X14) & ~predx(X14) & room(X14)) | sP1) & (! [X15] : (predq(X15) | ~room(X15)) | ! [X16] : (~preda(X16) | predl(X16) | room(X16))) & (sP0 | ? [X17] : (~predd(X17) & anywhere(X17))) & (! [X18] : ((preda(X18) | ~predg(X18)) & (predg(X18) | ~preda(X18))) | ? [X19] : (predb(X19) & ~predb(X19) & room(X19))) & (! [X20] : ((predq(X20) | ~predp(X20)) & (predp(X20) | ~predq(X20))) | ? [X21] : (~predk(X21) & room(X21))) & (! [X22] : (predk(X22) | ~room(X22)) | ? [X23] : (predg(X23) & ~predr(X23) & anywhere(X23))) & (? [X24] : room(X24) | ? [X25] : (predg(X25) & ~predn(X25) & room(X25))) & ! [X26] : (paul = X26 | mary = X26 | ~room(X26)) & room(paul) & room(mary) [rectify 142] 144. ? [X1] : ~room(X1) => ~room(sK5) [choice axiom] 145. ? [X11] : (predf(X11) & ~preda(X11) & room(X11)) => (predf(sK6) & ~preda(sK6) & room(sK6)) [choice axiom] 146. ? [X13] : (predq(X13) & room(X13)) => (predq(sK7) & room(sK7)) [choice axiom] 147. ? [X14] : (~predh(X14) & ~predx(X14) & room(X14)) => (~predh(sK8) & ~predx(sK8) & room(sK8)) [choice axiom] 148. ? [X17] : (~predd(X17) & anywhere(X17)) => (~predd(sK9) & anywhere(sK9)) [choice axiom] 149. ? [X19] : (predb(X19) & ~predb(X19) & room(X19)) => (predb(sK10) & ~predb(sK10) & room(sK10)) [choice axiom] 150. ? [X21] : (~predk(X21) & room(X21)) => (~predk(sK11) & room(sK11)) [choice axiom] 151. ? [X23] : (predg(X23) & ~predr(X23) & anywhere(X23)) => (predg(sK12) & ~predr(sK12) & anywhere(sK12)) [choice axiom] 152. ? [X24] : room(X24) => room(sK13) [choice axiom] 153. ? [X25] : (predg(X25) & ~predn(X25) & room(X25)) => (predg(sK14) & ~predn(sK14) & room(sK14)) [choice axiom] 154. ! [X0] : (predq(X0) | ~room(X0)) & ~room(sK5) & ! [X2] : (~predg(X2) | predr(X2) | ~anywhere(X2)) & ! [X3] : (predq(X3) | ~predt(X3) | ~anywhere(X3)) & ! [X4] : (predh(X4) | ((predh(X4) | ~predg(X4)) & (predg(X4) | ~predh(X4))) | ~room(X4)) & ! [X5] : ((predd(X5) | predn(X5)) & (~predn(X5) | ~predd(X5))) & ! [X6] : (~predb(X6) | ((predt(X6) | predm(X6)) & (~predm(X6) | ~predt(X6))) | ~anywhere(X6)) & ! [X7] : ((predl(X7) | ~preds(X7)) & (preds(X7) | ~predl(X7))) & predj(paul) & predb(paul) & predx(mary) & predb(mary) & ! [X8] : (predr(X8) | ~predj(X8) | ~room(X8)) & predg(mary) & preds(mary) & ! [X9] : (predh(X9) | ~predf(X9) | ~predx(X9) | ~predp(X9) | ~room(X9)) & ! [X10] : ((predf(X10) & predx(X10) & predp(X10)) | ~preda(X10) | ~room(X10)) & (predl(paul) | (predf(sK6) & ~preda(sK6) & room(sK6))) & (! [X12] : (~predf(X12) | preda(X12) | ~room(X12)) | (predq(sK7) & room(sK7))) & ((~predh(sK8) & ~predx(sK8) & room(sK8)) | sP1) & (! [X15] : (predq(X15) | ~room(X15)) | ! [X16] : (~preda(X16) | predl(X16) | room(X16))) & (sP0 | (~predd(sK9) & anywhere(sK9))) & (! [X18] : ((preda(X18) | ~predg(X18)) & (predg(X18) | ~preda(X18))) | (predb(sK10) & ~predb(sK10) & room(sK10))) & (! [X20] : ((predq(X20) | ~predp(X20)) & (predp(X20) | ~predq(X20))) | (~predk(sK11) & room(sK11))) & (! [X22] : (predk(X22) | ~room(X22)) | (predg(sK12) & ~predr(sK12) & anywhere(sK12))) & (room(sK13) | (predg(sK14) & ~predn(sK14) & room(sK14))) & ! [X26] : (paul = X26 | mary = X26 | ~room(X26)) & room(paul) & room(mary) [skolemisation 143,153,152,151,150,149,148,147,146,145,144] 155. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK15 & mary != sK15 & room(sK15)) [choice axiom] 156. ~predx(mary) | (paul != sK15 & mary != sK15 & room(sK15)) | ~room(paul) | ~room(mary) [skolemisation 129,155] 246. room(mary) [cnf transformation 154] 247. room(paul) [cnf transformation 154] 248. ~room(X26) | mary = X26 | paul = X26 [cnf transformation 154] 284. predx(mary) [cnf transformation 154] 299. ~predx(mary) | room(sK15) | ~room(paul) | ~room(mary) [cnf transformation 156] 300. ~predx(mary) | mary != sK15 | ~room(paul) | ~room(mary) [cnf transformation 156] 301. ~predx(mary) | paul != sK15 | ~room(paul) | ~room(mary) [cnf transformation 156] 477. paul != sK15 | ~room(paul) | ~room(mary) [subsumption resolution 301,284] 478. paul != sK15 | ~room(mary) [subsumption resolution 477,247] 479. paul != sK15 [subsumption resolution 478,246] 480. mary != sK15 | ~room(paul) | ~room(mary) [subsumption resolution 300,284] 481. mary != sK15 | ~room(mary) [subsumption resolution 480,247] 482. mary != sK15 [subsumption resolution 481,246] 483. room(sK15) | ~room(paul) | ~room(mary) [subsumption resolution 299,284] 484. room(sK15) | ~room(mary) [subsumption resolution 483,247] 485. room(sK15) [subsumption resolution 484,246] 560. mary = sK15 | paul = sK15 [resolution 248,485] 588. paul = sK15 [subsumption resolution 560,482] 589. $false [subsumption resolution 588,479] % SZS output end Proof for 707040618246288395757532 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.365684
Jane, Diane are the only persons in the room. Jane neither practices and performs acrobatic dance routines nor hosts themed dinner parties featuring gourmet home-cooked meals. Jane does not have a tattoo. Jane either does not enjoy snowboarding or has a pet dog but not both. Jane is not an expert in identifying and foraging wild edible plants and does not have a pet dog.
More than one person in the room enjoys snowboarding.
contradiction
room(jane)&room(diane)&(![X]:(room(X)=>(X='jane'|X='diane')))& (~((practices_and_performs_acrobatic_dance_routines(jane))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(jane))))& (does_not_have_a_tattoo(jane))& (![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& (does_not_collect_rare_and_antique_scientific_instruments(jane))& (?[X]:(room(X)&(~((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(does_enjoy_trail_running(X))))))& (does_not_own_a_television(jane))& (((owns_a_telescope(jane))<~>(is_a_dedicated_volunteer_for_local_community_service_projects(jane))))& (is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(jane))& (~![X]:(room(X)=>(~((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(uses_a_Windows_laptop(X))))))& (((does_not_enjoy_snowboarding(jane))<~>(has_a_pet_dog(jane))))& (((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(jane))&(does_not_have_a_pet_dog(jane))))& ((![X]:((~((does_not_create_large-scale_murals_for_public_art_installations(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))<=>(~((own_a_television(X))|(practices_zumba(X)))))))& (![X]:(room(X)=>(((((has_a_vast_collection_of_first-edition_science_fiction_novels(X))&(practices_and_performs_acrobatic_dance_routines(X))))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (((participates_in_long-distance_cycling_events_across_the_country(jane))<~>(does_not_participate_in_long-distance_cycling_events_across_the_country(jane))))& (does_not_create_large-scale_murals_for_public_art_installations(jane))& (((can_play_the_flute(jane))<~>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(jane))))& ((![X]:((~((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))<=>(((does_enjoy_trail_running(X))&(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))&(owns_a_telescope(X)))))))& (![X]:(room(X)=>(((~((does_not_have_a_pet_dog(X))|(enjoys_snowboarding(X))))=>(has_a_tattoo(X))))))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(jane))& (![X]:(anywhere(X)=>(((((does_not_have_a_pet_dog(X))&(does_not_compete_in_national_level_swimming_championships(X))&(owns_a_telescope(X))))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(anywhere(X)=>(~((does_not_stream_on_Twitch(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (![X]:(room(X)=>(((((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))<~>(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))))<=(participates_in_long-distance_cycling_events_across_the_country(X))))))& ((![X]:((has_a_tattoo(X))<=>(~((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(does_not_enjoy_trail_running(X)))))))& (![X]:(room(X)=>(streams_on_Twitch(X))))& (does_not_own_a_telescope(jane))& (?[X]:(room(X)&(((cannot_play_the_flute(X))&(does_not_have_a_pet_dog(X))))))& ((![X]:((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(practices_and_performs_acrobatic_dance_routines(X)))))
room(jane)&room(diane)&(![X]:(room(X)=>(X='jane'|X='diane')))& (?[X,Y]:(room(X)&room(Y)&(enjoys_snowboarding(X)&enjoys_snowboarding(Y))&(X!=Y)))
[ "p0", "p10", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 2017000895248294601668313 % SZS output start Proof for 2017000895248294601668313 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 54. ~predf(mary) <~> preds(mary) [input p10] 55. ~preds(mary) & ~predv(mary) [input p11] 72. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 73. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [rectify 72] 150. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 151. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 150] 169. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : ((paul = X2 | mary = X2) | ~room(X2)) & room(paul) & room(mary) [ennf transformation 73] 170. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [flattening 169] 177. (~preds(mary) | predf(mary)) & (preds(mary) | ~predf(mary)) [nnf transformation 54] 189. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) => (sK3 != sK4 & predf(sK4) & predf(sK3) & room(sK4) & room(sK3)) [choice axiom] 190. (sK3 != sK4 & predf(sK4) & predf(sK3) & room(sK4) & room(sK3)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [skolemisation 170,189] 274. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 151] 287. preds(mary) | ~predf(mary) [cnf transformation 177] 290. ~preds(mary) [cnf transformation 55] 322. room(sK3) [cnf transformation 190] 323. room(sK4) [cnf transformation 190] 324. predf(sK3) [cnf transformation 190] 325. predf(sK4) [cnf transformation 190] 326. sK3 != sK4 [cnf transformation 190] 340. 3 <=> predf(mary) [avatar definition] 341. ~predf(mary) <- (~3) [avatar component clause 340] 344. 4 <=> preds(mary) [avatar definition] 348. ~3 | 4 [avatar split clause 287,344,340] 349. ~4 [avatar split clause 290,344] 379. mary = sK3 | paul = sK3 [resolution 274,322] 380. mary = sK4 | paul = sK4 [resolution 274,323] 409. 11 <=> paul = sK3 [avatar definition] 413. 12 <=> mary = sK3 [avatar definition] 415. mary = sK3 <- (12) [avatar component clause 413] 416. 11 | 12 [avatar split clause 379,413,409] 418. 13 <=> paul = sK4 [avatar definition] 420. paul = sK4 <- (13) [avatar component clause 418] 422. 14 <=> mary = sK4 [avatar definition] 424. mary = sK4 <- (14) [avatar component clause 422] 425. 13 | 14 [avatar split clause 380,422,418] 429. paul != sK3 <- (13) [backward demodulation 326,420] 430. ~11 | ~13 [avatar split clause 429,418,409] 448. predf(mary) <- (12) [backward demodulation 324,415] 449. $false <- (~3, 12) [subsumption resolution 448,341] 450. 3 | ~12 [avatar contradiction clause 449] 458. predf(mary) <- (14) [backward demodulation 325,424] 460. $false <- (~3, 14) [subsumption resolution 458,341] 461. 3 | ~14 [avatar contradiction clause 460] 467. $false [avatar sat refutation 348,349,416,425,430,450,461] % SZS output end Proof for 2017000895248294601668313 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.132698
Maureen, Laura, Timothy are the only persons in the room. If “Timothy does not use contact lenses, uses contact lenses and does enjoy trail running” then “more than one person in the room uses contact lenses”. If “no one in the room does not enjoy trail running or does enjoy trail running” then “Maureen who is an expert in identifying and foraging wild edible plants does enjoy trail running”. If “everyone outside the room is not an expert in identifying and foraging wild edible plants or is an expert in identifying and foraging wild edible plants” then “everyone in the room enjoys deep-sea diving and exploring underwater caves if they is not an expert in identifying and foraging wild edible plants”. If “everyone in the room is not an expert in identifying and foraging wild edible plants or is an expert in identifying and foraging wild edible plants” then “everyone in the room who enjoys deep-sea diving and exploring underwater caves does enjoy trail running”. Everyone in the room either does enjoy trail running or does not enjoy trail running but not both. Everyone in the room who enjoys deep-sea diving and exploring underwater caves does enjoy trail running. Everyone in the room uses contact lenses if they does enjoy trail running. Maureen is an expert in identifying and foraging wild edible plants. At least one person in the room does enjoy trail running and is an expert in identifying and foraging wild edible plants. Timothy who does enjoy trail running is an expert in identifying and foraging wild edible plants.
Maureen uses contact lenses.
neutral
room(maureen)&room(laura)&room(timothy)&(![X]:(room(X)=>(X='maureen'|X='laura'|X='timothy')))& ((((does_not_use_contact_lenses(timothy))&(uses_contact_lenses(timothy))&(does_enjoy_trail_running(timothy))))=>((?[X,Y]:(room(X)&room(Y)&(uses_contact_lenses(X)&uses_contact_lenses(Y))&(X!=Y)))))& ((~?[X]:(room(X)=>(((does_enjoy_trail_running(X))|(does_not_enjoy_trail_running(X))))))=>((is_an_expert_in_identifying_and_foraging_wild_edible_plants(maureen))&(does_enjoy_trail_running(maureen))))& ((![X]:(~room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))=>(![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))))& ((![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))=>(![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(does_enjoy_trail_running(X)))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))<~>(does_not_enjoy_trail_running(X))))))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(does_enjoy_trail_running(X))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(uses_contact_lenses(X))))))& (is_an_expert_in_identifying_and_foraging_wild_edible_plants(maureen))& (((?[X]:(room(X)&((does_enjoy_trail_running(X))&(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))))& ((does_enjoy_trail_running(timothy))&(is_an_expert_in_identifying_and_foraging_wild_edible_plants(timothy)))
room(maureen)&room(laura)&room(timothy)&(![X]:(room(X)=>(X='maureen'|X='laura'|X='timothy')))& uses_contact_lenses(maureen)
[]
null
0.089477
Jay, Frank, Florence are the only persons in the room. If “not everyone outside the room is humble” then “everyone in the room is kind” otherwise “if someone is a generous person then he/she is a creative person”. “Not everyone in the room is a generous person” only if “Florence is not brave”. “Florence is humble” if “everyone in the room is a strong person” and vice versa. If someone is a quiet person and is a calm person then he/she is a curious person and vice versa. Florence and Frank are not a old persons. All generous persons are curious. Jay is not a generous person. Everyone in the room is a strong person or is a old person or both. Florence is humble. Frank is wise. Florence and Frank are respectively funny and curious.
It is not the case that “Frank is a calm person”.
contradiction
room(jay)&room(frank)&room(florence)&(![X]:(room(X)=>(X='jay'|X='frank'|X='florence')))& (((~![X]:(~room(X)=>(humble(X))))=>(![X]:(room(X)=>(kind(X)))))&((~(~![X]:(~room(X)=>(humble(X)))))=>((![X]:((generous(X)&person(X))=>(creative(X)&person(X)))))))& ((~![X]:(room(X)=>(generous(X)&person(X))))=>(~brave(florence)))& ((![X]:(room(X)=>(strong(X)&person(X))))<=>(humble(florence)))& ((![X]:((((quiet(X)&person(X))&(calm(X)&person(X))))<=>(curious(X)&person(X)))))& (~(old(florence)&person(florence))&~(old(frank)&person(frank)))& (![X]:(generous(X)=>curious(X)))& (~(generous(jay)&person(jay)))& (![X]:(room(X)=>(((strong(X)&person(X))|(old(X)&person(X))))))& (humble(florence))& (wise(frank))& ((funny(florence))&(curious(frank)))& (~![X]:(~room(X)=>(~(creative(X)&person(X)))))& ((![X]:((generous(X)&person(X))=>(creative(X)&person(X)))))& (~humble(frank))& (~![X]:(anywhere(X)=>(quiet(X))))
room(jay)&room(frank)&room(florence)&(![X]:(room(X)=>(X='jay'|X='frank'|X='florence')))& ~(calm(frank)&person(frank))
[ "p0", "p4", "p8", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 9041849006873439718741775 % SZS output start Proof for 9041849006873439718741775 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : ((person(X0) & calm(X0) & person(X0) & quiet(X0)) <=> (person(X0) & curious(X0))) [input p4] 52. ! [X0] : (room(X0) => ((person(X0) & old(X0)) | (person(X0) & strong(X0)))) [input p8] 55. curious(paul) & funny(fred) [input p11] 60. ~(person(paul) & calm(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 63. curious(paul) [pure predicate removal 55] 145. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 146. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 145] 149. ! [X0] : (((person(X0) & old(X0)) | (person(X0) & strong(X0))) | ~room(X0)) [ennf transformation 52] 150. ! [X0] : ((person(X0) & old(X0)) | (person(X0) & strong(X0)) | ~room(X0)) [flattening 149] 153. (~person(paul) | ~calm(paul)) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 60] 154. (~person(paul) | ~calm(paul)) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 153] 160. ! [X0] : (((person(X0) & calm(X0) & person(X0) & quiet(X0)) | (~person(X0) | ~curious(X0))) & ((person(X0) & curious(X0)) | (~person(X0) | ~calm(X0) | ~person(X0) | ~quiet(X0)))) [nnf transformation 48] 161. ! [X0] : (((person(X0) & calm(X0) & person(X0) & quiet(X0)) | ~person(X0) | ~curious(X0)) & ((person(X0) & curious(X0)) | ~person(X0) | ~calm(X0) | ~person(X0) | ~quiet(X0))) [flattening 160] 247. room(paul) [cnf transformation 146] 258. ~curious(X0) | ~person(X0) | calm(X0) [cnf transformation 161] 265. person(X0) | person(X0) | ~room(X0) [cnf transformation 150] 267. curious(paul) [cnf transformation 63] 276. ~person(paul) | ~calm(paul) [cnf transformation 154] 277. person(X0) | ~room(X0) [duplicate literal removal 265] 285. 2 <=> ! [X0] : (person(X0) | ~room(X0)) [avatar definition] 286. ~room(X0) | person(X0) <- (2) [avatar component clause 285] 311. 8 <=> person(paul) [avatar definition] 312. person(paul) <- (8) [avatar component clause 311] 324. 2 [avatar split clause 277,285] 327. 11 <=> calm(paul) [avatar definition] 329. ~calm(paul) <- (~11) [avatar component clause 327] 330. ~11 | ~8 [avatar split clause 276,311,327] 332. person(paul) <- (2) [resolution 286,247] 338. 8 | ~2 [avatar split clause 332,285,311] 345. ~person(paul) | calm(paul) [resolution 258,267] 346. calm(paul) <- (8) [subsumption resolution 345,312] 347. $false <- (8, ~11) [subsumption resolution 346,329] 348. ~8 | 11 [avatar contradiction clause 347] 349. $false [avatar sat refutation 324,330,338,348] % SZS output end Proof for 9041849006873439718741775 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.070709
Luther is the only person in the room. Luther maintains a personal blog focused on cybersecurity tips. Luther dreamt that "everyone in the room is funny if they is a sibling of Shirley and vice versa". All brave person is funny. All funny person is brave. At least one person outside the room maintains a personal blog focused on cybersecurity tips. Everyone in the room who is brave or is a sibling of Frank or both maintains a personal blog focused on cybersecurity tips. At least one person in the room is a sibling of Erica, does not enjoy macrame or maintains a personal blog focused on cybersecurity tips. Luther can play the flute. Not everyone in the room does not enjoy macrame or is a sibling of Erica. At least one person outside the room enjoys macrame. Everyone in the room enjoys macrame if they maintains a personal blog focused on cybersecurity tips and vice versa. Someone outside the room maintains a personal blog focused on cybersecurity tips. Someone in the room maintains a personal blog focused on cybersecurity tips. Luther dreamt that "Luther can play the flute".
Erica is a sibling of Luther.
contradiction
room(luther)&(![X]:(room(X)=>(X='luther')))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(luther))& ((luther_dream=>(![X]:(room(X)=>(((funny(X))<=>(sibling(shirley,X))))))))& (![X]:(brave(X)=>funny(X)))& (![X]:(funny(X)=>brave(X)))& (((?[X]:(~room(X)&maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))& (![X]:(room(X)=>(((((brave(X))|(sibling(frank,X))))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (((?[X]:(room(X)&((sibling(erica,X))|(does_not_enjoy_macrame(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))))& (can_play_the_flute(luther))& (~![X]:(room(X)=>(((sibling(erica,X))|(does_not_enjoy_macrame(X))))))& (((?[X]:(~room(X)&enjoys_macrame(X)))))& (![X]:(room(X)=>(((enjoys_macrame(X))<=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (?[X]:(~room(X)&(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))& (?[X]:(room(X)&(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))& ((luther_dream=>(can_play_the_flute(luther))))
room(luther)&(![X]:(room(X)=>(X='luther')))& sibling(luther,erica)
[ "b5", "b42", "p0", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 4877795525545875947622031 % SZS output start Proof for 4877795525545875947622031 6. ! [X0,X1] : (X0 != X1 => (sibling(X0,X1) <=> sibling(X1,X0))) [input b5] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 53. ~! [X0] : (room(X0) => (~predf(X0) | sibling(paul,X0))) [input p9] 59. sibling(mary,paul) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 68. ! [X0,X1] : ((sibling(X0,X1) <=> sibling(X1,X0)) | X0 = X1) [ennf transformation 6] 135. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 140. ? [X0] : ((predf(X0) & ~sibling(paul,X0)) & room(X0)) [ennf transformation 53] 141. ? [X0] : (predf(X0) & ~sibling(paul,X0) & room(X0)) [flattening 140] 143. sibling(mary,paul) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 59] 144. ! [X0,X1] : (((sibling(X0,X1) | ~sibling(X1,X0)) & (sibling(X1,X0) | ~sibling(X0,X1))) | X0 = X1) [nnf transformation 68] 149. ? [X0] : (predf(X0) & ~sibling(paul,X0) & room(X0)) => (predf(sK2) & ~sibling(paul,sK2) & room(sK2)) [choice axiom] 150. predf(sK2) & ~sibling(paul,sK2) & room(sK2) [skolemisation 141,149] 159. ~sibling(X1,X0) | sibling(X0,X1) | X0 = X1 [cnf transformation 144] 202. mary != paul [cnf transformation 43] 239. ~room(X0) | mary = X0 [cnf transformation 135] 249. room(sK2) [cnf transformation 150] 250. ~sibling(paul,sK2) [cnf transformation 150] 262. sibling(mary,paul) [cnf transformation 143] 278. mary = sK2 [resolution 239,249] 283. ~sibling(paul,mary) [backward demodulation 250,278] 296. sibling(paul,mary) | mary = paul [resolution 159,262] 297. mary = paul [subsumption resolution 296,283] 298. $false [subsumption resolution 297,202] % SZS output end Proof for 4877795525545875947622031 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.543512
There is a room. If “everyone in the room bakes bread at home or does not play video games” then “Ronnie dreamt that “not everyone in the room who enjoys macrame enjoys macrame, collects vintage stamps and does not collect rare minerals””. If someone bakes bread at home, is a cybersecurity expert and enjoys landscape photography then he/she neither collects rare minerals nor plays the violin. Everyone in the room uses an ios phone if they plays the violin. Everyone in the room enjoys landscape photography if they uses an ios phone. Everyone in the room who uses an ios phone does not enjoy landscape photography. Everyone in the room who is a drone photographer does not own a television. Not everyone in the room plays video games and can play the harmonica if they own a television. It is true that “everyone in the room collects rare minerals if they plays video games and can play the harmonica”. Everyone in the room who collects rare minerals can play the harmonica. Everyone in the room who can play the harmonica bakes bread at home. It is true that “not everyone in the room who plays video games enjoys snowboarding and does not own a microscope”. Everyone in the room bakes bread at home or does not play video games. Everyone in the room enjoys skydiving if they own a television. Not everyone in the room plays video games if they enjoys skydiving.
Everyone in the room does not own a television or bakes bread at home.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_play_video_games(X))|(bakes_bread_at_home(X))))))=>((ronnie_dream=>(~![X]:(room(X)=>(((enjoys_macrame(X))=>(((enjoys_macrame(X))&(collects_vintage_stamps(X))&(does_not_collect_rare_minerals(X)))))))))))& ((![X]:((((bakes_bread_at_home(X))&(is_a_cybersecurity_expert(X))&(enjoys_landscape_photography(X))))=>(~((collects_rare_minerals(X))|(plays_the_violin(X)))))))& (![X]:(room(X)=>(((plays_the_violin(X))=>(uses_an_ios_phone(X))))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(enjoys_landscape_photography(X))))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(does_not_enjoy_landscape_photography(X))))))& (![X]:(room(X)=>(((is_a_drone_photographer(X))=>(does_not_own_a_television(X))))))& (~![X]:(room(X)=>(((own_a_television(X))=>(((plays_video_games(X))&(can_play_the_harmonica(X))))))))& (![X]:(room(X)=>(((((plays_video_games(X))&(can_play_the_harmonica(X))))=>(collects_rare_minerals(X))))))& (![X]:(room(X)=>(((collects_rare_minerals(X))=>(can_play_the_harmonica(X))))))& (![X]:(room(X)=>(((can_play_the_harmonica(X))=>(bakes_bread_at_home(X))))))& (~![X]:(room(X)=>(((plays_video_games(X))=>(((enjoys_snowboarding(X))&(does_not_own_a_microscope(X))))))))& (![X]:(room(X)=>(((does_not_play_video_games(X))|(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((own_a_television(X))=>(enjoys_skydiving(X))))))& (~![X]:(room(X)=>(((enjoys_skydiving(X))=>(plays_video_games(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((bakes_bread_at_home(X))|(does_not_own_a_television(X)))))
[]
null
0
Laura, Dannie, Martin are the only persons in the room. “All quiet persons are old” if “Laura is old”. Either “everyone in the room is a quiet old person” or “someone in the room is a old person” but not both. Either “Laura is a quiet person” or “Dannie is not a old person” but not both. It is not the case that “Dannie is quiet”. All quiet persons are old. No old person is quiet. If someone is not a tall person then he/she is not a quiet person. Everyone in the room is a tall quiet person if they is a tall person. All quiet persons are tall.
Martin is not quiet.
entailment
room(laura)&room(dannie)&room(martin)&(![X]:(room(X)=>(X='laura'|X='dannie'|X='martin')))& ((old(laura))=>(![X]:(quiet(X)=>old(X))))& ((![X]:(room(X)=>(quiet(X)&old(X)&person(X))))<~>(?[X]:(room(X)&(old(X)&person(X)))))& ((quiet(laura)&person(laura))<~>(~(old(dannie)&person(dannie))))& (~(quiet(dannie)))& (![X]:(quiet(X)=>old(X)))& (~?[X]:(old(X)=>quiet(X)))& ((![X]:((~(tall(X)&person(X)))=>(~(quiet(X)&person(X))))))& (![X]:(room(X)=>(((tall(X)&person(X))=>(tall(X)&quiet(X)&person(X))))))& (![X]:(quiet(X)=>tall(X)))
room(laura)&room(dannie)&room(martin)&(![X]:(room(X)=>(X='laura'|X='dannie'|X='martin')))& ~quiet(martin)
[ "p0", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 1261325198860213870136576 % SZS output start Proof for 1261325198860213870136576 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 50. ~? [X0] : (old(X0) => quiet(X0)) [input p6] 54. ~(~quiet(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 128. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 129. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 128] 134. ! [X0] : (~quiet(X0) & old(X0)) [ennf transformation 50] 140. quiet(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 54] 141. quiet(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 140] 155. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 156. quiet(fred) | (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 141,155] 237. room(mary) [cnf transformation 129] 238. room(paul) [cnf transformation 129] 239. room(fred) [cnf transformation 129] 240. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 129] 258. ~quiet(X0) [cnf transformation 134] 265. quiet(fred) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 156] 266. quiet(fred) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 156] 267. quiet(fred) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 156] 268. quiet(fred) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 156] 352. fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 268,258] 353. fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 352,239] 354. fred != sK3 | ~room(mary) [subsumption resolution 353,238] 355. fred != sK3 [subsumption resolution 354,237] 356. paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 267,258] 357. paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 356,239] 358. paul != sK3 | ~room(mary) [subsumption resolution 357,238] 359. paul != sK3 [subsumption resolution 358,237] 360. mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 266,258] 361. mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 360,239] 362. mary != sK3 | ~room(mary) [subsumption resolution 361,238] 363. mary != sK3 [subsumption resolution 362,237] 364. room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 265,258] 365. room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 364,239] 366. room(sK3) | ~room(mary) [subsumption resolution 365,238] 367. room(sK3) [subsumption resolution 366,237] 415. paul = sK3 | mary = sK3 | fred = sK3 [resolution 240,367] 442. mary = sK3 | fred = sK3 [subsumption resolution 415,359] 443. fred = sK3 [subsumption resolution 442,363] 444. $false [subsumption resolution 443,355] % SZS output end Proof for 1261325198860213870136576 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.64519
Jane is the only person in the room. If “at least one person outside the room is funny” then “if someone is a patient funny person then he/she is older than Woodrow”. “At least one person outside the room is not creative” only if “Jane is the least old in the room”. “At least one person outside the room is richer than Woodrow and is older than Alex” if “at least one person anywhere is a strong person” and vice versa. If “at least one person anywhere is older than Bradley” then “if someone is quieter than Alex then he/she is humble”. “At least one person in the room is quieter than Alex” if “at least one person in the room is quieter than Bradley” and vice versa. “At least one person outside the room is richer than Bradley” only if “at least one person in the room is quieter than Joseph”. “If someone is quieter than Joseph then he/she is richer than Joseph or is quieter than Joseph or both” if “at least one person in the room is a tall kind funny person”. If someone is kind then he/she is quieter than Alex. If someone is a calm person then he/she is a creative tall person. Jane is the least old anywhere.
Jane is older than Woodrow.
contradiction
room(jane)&(![X]:(room(X)=>(X='jane')))& ((((?[X]:(~room(X)&funny(X)))))=>((![X]:((patient(X)&funny(X)&person(X))=>(older(woodrow,X))))))& ((((?[X]:(~room(X)&~creative(X)))))=>(![X]:((room(X)&(X!=jane))=>older(jane,X))))& ((((?[X]:(anywhere(X)&strong(X)&person(X)))))<=>(((?[X]:(~room(X)&((richer(woodrow,X))&(older(alex,X))))))))& ((((?[X]:(anywhere(X)&older(bradley,X)))))=>((![X]:((quieter(alex,X))=>(humble(X))))))& ((((?[X]:(room(X)&quieter(bradley,X)))))<=>(((?[X]:(room(X)&quieter(alex,X))))))& ((((?[X]:(~room(X)&richer(bradley,X)))))=>(((?[X]:(room(X)&quieter(joseph,X))))))& ((((?[X]:(room(X)&tall(X)&kind(X)&funny(X)&person(X)))))=>((![X]:((quieter(joseph,X))=>(((richer(joseph,X))|(quieter(joseph,X))))))))& ((![X]:((kind(X))=>(quieter(alex,X)))))& ((![X]:((calm(X)&person(X))=>(creative(X)&tall(X)&person(X)))))& (((?[X]:(room(X)&patient(X)))))& ((![X]:((funny(X)&calm(X)&old(X)&curious(X)&person(X))=>(~quiet(X)&~creative(X)&~brave(X)))))& (((?[X]:(~room(X)&older(woodrow,X)))))& (((?[X]:(room(X)&quiet(X)&strong(X)&person(X)))))& ((![X]:((strong(X)&person(X))=>(~(old(X)&creative(X)&strong(X)&generous(X)&kind(X)&tall(X)&person(X))))))& ((![X]:((~(kind(X)&strong(X)&person(X)))=>(generous(X)&person(X)))))& (![X]:((room(X)&(X!=jane))=>quieter(jane,X)))& (![X]:((room(X)&(X!=jane))=>older(jane,X)))& (((?[X]:(room(X)&quiet(X)&patient(X)&wise(X)&person(X)))))& (((?[X]:(room(X)&quiet(X)&person(X)))))& (![X]:((anywhere(X)&(X!=jane))=>older(jane,X)))& ((![X]:((generous(X))=>(strong(X)&humble(X)&curious(X)&person(X)))))& ((![X]:((~((wise(X)&funny(X)&person(X))|(older(woodrow,X))))=>(happy(X)))))& (![X]:((~room(X)&(X!=jane))=>older(jane,X)))
room(jane)&(![X]:(room(X)=>(X='jane')))& older(woodrow,jane)
[ "b4", "b19", "b42", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 8976626245625138366440338 % SZS output start Proof for 8976626245625138366440338 5. ! [X0] : anywhere(X0) [input b4] 20. ! [X0,X1] : (X0 != X1 => (older(X0,X1) => ~older(X1,X0))) [input b19] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 64. ! [X0] : ((mary != X0 & anywhere(X0)) => older(mary,X0)) [input p20] 68. older(fred,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 118. ! [X0,X1] : ((~older(X1,X0) | ~older(X0,X1)) | X0 = X1) [ennf transformation 20] 119. ! [X0,X1] : (~older(X1,X0) | ~older(X0,X1) | X0 = X1) [flattening 118] 168. ! [X0] : (older(mary,X0) | (mary = X0 | ~anywhere(X0))) [ennf transformation 64] 169. ! [X0] : (older(mary,X0) | mary = X0 | ~anywhere(X0)) [flattening 168] 173. older(fred,mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 68] 198. anywhere(X0) [cnf transformation 5] 214. ~older(X1,X0) | ~older(X0,X1) | X0 = X1 [cnf transformation 119] 249. mary != fred [cnf transformation 43] 315. older(mary,X0) | mary = X0 | ~anywhere(X0) [cnf transformation 169] 321. older(fred,mary) [cnf transformation 173] 396. older(mary,X0) | mary = X0 [subsumption resolution 315,198] 446. ~older(mary,fred) | mary = fred [resolution 214,321] 459. ~older(mary,fred) [subsumption resolution 446,249] 481. mary = fred [resolution 459,396] 482. $false [subsumption resolution 481,249] % SZS output end Proof for 8976626245625138366440338 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.020 s % ------------------------------ % ------------------------------
0.682727
Marcia, Ava, James, Grover, Florence are the only persons in the room. Everyone anywhere neither does not collect classic novels nor is a client of Meta if they does not enjoy trail running. Everyone in the room enjoys landscape photography. It is not the case that 'Marcia is a professional photographer specializing in portrait photography'. Marcia does not enjoy trail running. Everyone in the room does not collect vintage vinyl records or does not own a telescope. It is not the case that 'Marcia neither own a television nor collects limited-edition art prints from contemporary artists'. Not everyone in the room collects vintage vinyl records only if they does enjoy trail running. Everyone in the room cannot play the guitar if they is a skilled home brewer experimenting with craft beer recipes. Marcia collects modern art or enjoys landscape photography or both. Everyone anywhere enjoys origami if they own a television and vice versa. Marcia hosts a YouTube channel dedicated to art tutorials or is dedicated to sustainable living and zero-waste practices or both. Everyone in the room owns a smartwatch if they is a skilled home brewer experimenting with craft beer recipes. Everyone in the room collects vintage vinyl records or does not write poetry. Marcia does enjoy mountain biking. Everyone in the room enjoys origami if and only if they is dedicated to sustainable living and zero-waste practices. It is true that 'Marcia who owns a telescope does not collect rare minerals'. If someone hosts a YouTube channel dedicated to art tutorials then he/she does enjoy mountain biking and vice versa. Everyone in the room who does not own a television or owns a smartwatch or both does enjoy mountain biking. Marcia can play the guitar.
Marcia writes poetry.
contradiction
room(marcia)&room(ava)&room(james)&room(grover)&room(florence)&(![X]:(room(X)=>(X='marcia'|X='ava'|X='james'|X='grover'|X='florence')))& (![X]:(anywhere(X)=>(((does_not_enjoy_trail_running(X))=>(~((does_not_collect_classic_novels(X))|(is_a_client_of_Meta(X))))))))& (![X]:(room(X)=>(enjoys_landscape_photography(X))))& (~(is_a_professional_photographer_specializing_in_portrait_photography(marcia)))& (does_not_enjoy_trail_running(marcia))& (![X]:(room(X)=>(((does_not_own_a_telescope(X))|(does_not_collect_vintage_vinyl_records(X))))))& (~(~((own_a_television(marcia))|(collects_limited-edition_art_prints_from_contemporary_artists(marcia)))))& (~![X]:(room(X)=>(((does_enjoy_trail_running(X))<=(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(cannot_play_the_guitar(X))))))& (((collects_modern_art(marcia))|(enjoys_landscape_photography(marcia))))& (![X]:(anywhere(X)=>(((enjoys_origami(X))<=>(own_a_television(X))))))& (((hosts_a_YouTube_channel_dedicated_to_art_tutorials(marcia))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(marcia))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(owns_a_smartwatch(X))))))& (![X]:(room(X)=>(((does_not_write_poetry(X))|(collects_vintage_vinyl_records(X))))))& (does_enjoy_mountain_biking(marcia))& (![X]:(room(X)=>(((enjoys_origami(X))<=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& ((owns_a_telescope(marcia))&(does_not_collect_rare_minerals(marcia)))& ((![X]:((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))<=>(does_enjoy_mountain_biking(X)))))& (![X]:(room(X)=>(((((does_not_own_a_television(X))|(owns_a_smartwatch(X))))=>(does_enjoy_mountain_biking(X))))))& (can_play_the_guitar(marcia))
room(marcia)&room(ava)&room(james)&room(grover)&room(florence)&(![X]:(room(X)=>(X='marcia'|X='ava'|X='james'|X='grover'|X='florence')))& writes_poetry(marcia)
[ "p0", "p5", "p13", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 7096338128550612940968600 % SZS output start Proof for 7096338128550612940968600 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. ! [X0] : (room(X0) => (~predp(X0) | ~predx(X0))) [input p5] 57. ! [X0] : (room(X0) => (predp(X0) | ~prede(X0))) [input p13] 60. ~predk(mary) & predx(mary) [input p16] 64. prede(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 72. predx(mary) [pure predicate removal 60] 154. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 155. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 154] 156. ! [X0] : ((~predp(X0) | ~predx(X0)) | ~room(X0)) [ennf transformation 49] 157. ! [X0] : (~predp(X0) | ~predx(X0) | ~room(X0)) [flattening 156] 160. ! [X0] : ((predp(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 57] 161. ! [X0] : (predp(X0) | ~prede(X0) | ~room(X0)) [flattening 160] 163. prede(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 164. prede(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 163] 251. room(mary) [cnf transformation 155] 257. ~predp(X0) | ~predx(X0) | ~room(X0) [cnf transformation 157] 262. ~prede(X0) | predp(X0) | ~room(X0) [cnf transformation 161] 265. predx(mary) [cnf transformation 72] 272. prede(mary) [cnf transformation 164] 277. predp(mary) | ~room(mary) [resolution 262,272] 278. predp(mary) [subsumption resolution 277,251] 279. ~predx(mary) | ~room(mary) [resolution 278,257] 280. ~room(mary) [subsumption resolution 279,265] 281. $false [subsumption resolution 280,251] % SZS output end Proof for 7096338128550612940968600 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.023 s % ------------------------------ % ------------------------------
0.000742
Nicole, Rebecca, Tuyet, Brian, James are the only persons in the room. If "Nicole hosts regular workshops on creative writing" then "only one person in the room is allergic to anything". "Nicole collects vintage vinyl records" if "Nicole hosts regular workshops on creative writing" and vice versa. If "Nicole can play the harmonica" then "if someone is a chess master who participates in national tournaments then he/she collects antique jewelry and hosts regular workshops on creative writing and vice versa". Either "it is not the case that "Nicole hosts regular workshops on creative writing or creates augmented reality experiences for mobile applications or both"" or "it is not the case that "it is not the case that "Nicole neither is a chess master who participates in national tournaments nor hosts a popular podcast about emerging technologies""" but not both. Either "Nicole creates augmented reality experiences for mobile applications" or "Nicole enjoys stargazing" but not both. "Nicole enjoys writing detailed reviews of new and classic board games" if "Nicole composes and performs experimental electronic music". Nicole works as a freelance web developer specializing in e-commerce sites. Nicole neither is allergic to anything nor has completed a triathlon. Nicole collects antique jewelry. It is not the case that "Nicole collects foreign coins". It is not the case that "it is not the case that "Nicole neither is a chess master who participates in national tournaments nor hosts a popular podcast about emerging technologies"". Nicole has a tattoo. Nicole enjoys writing detailed reviews of new and classic board games. More than one person outside the room collects antique jewelry. More than one person in the room is allergic to anything or does enjoy trail running or both. Nicole dreamt that "if someone practices kickboxing then he/she owns an Android phone". Nicole enjoys stargazing.
Nicole can play the harmonica.
contradiction
room(nicole)&room(rebecca)&room(tuyet)&room(brian)&room(james)&(![X]:(room(X)=>(X='nicole'|X='rebecca'|X='tuyet'|X='brian'|X='james')))& ((hosts_regular_workshops_on_creative_writing(nicole))=>(((?[X]:(room(X)&is_allergic_to_anything(X)))&(![X,Y]:((room(X)&room(Y)&(is_allergic_to_anything(X))&(is_allergic_to_anything(Y)))=>(X=Y))))))& ((hosts_regular_workshops_on_creative_writing(nicole))<=>(collects_vintage_vinyl_records(nicole)))& ((can_play_the_harmonica(nicole))=>((![X]:((is_a_chess_master_who_participates_in_national_tournaments(X))<=>(((collects_antique_jewelry(X))&(hosts_regular_workshops_on_creative_writing(X))))))))& ((~(((hosts_regular_workshops_on_creative_writing(nicole))|(creates_augmented_reality_experiences_for_mobile_applications(nicole)))))<~>(~(~(~((is_a_chess_master_who_participates_in_national_tournaments(nicole))|(hosts_a_popular_podcast_about_emerging_technologies(nicole)))))))& ((creates_augmented_reality_experiences_for_mobile_applications(nicole))<~>(enjoys_stargazing(nicole)))& ((composes_and_performs_experimental_electronic_music(nicole))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(nicole)))& (works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(nicole))& (~((is_allergic_to_anything(nicole))|(has_completed_a_triathlon(nicole))))& (collects_antique_jewelry(nicole))& (~(collects_foreign_coins(nicole)))& (~(~(~((is_a_chess_master_who_participates_in_national_tournaments(nicole))|(hosts_a_popular_podcast_about_emerging_technologies(nicole))))))& (has_a_tattoo(nicole))& (enjoys_writing_detailed_reviews_of_new_and_classic_board_games(nicole))& ((?[X,Y]:(~room(X)&~room(Y)&(collects_antique_jewelry(X)&collects_antique_jewelry(Y))&(X!=Y))))& ((?[X,Y]:(room(X)&room(Y)&(((is_allergic_to_anything(X))|(does_enjoy_trail_running(X)))&((is_allergic_to_anything(Y))|(does_enjoy_trail_running(Y))))&(X!=Y))))& ((nicole_dream=>((![X]:((practices_kickboxing(X))=>(owns_an_Android_phone(X)))))))& (enjoys_stargazing(nicole))
room(nicole)&room(rebecca)&room(tuyet)&room(brian)&room(james)&(![X]:(room(X)=>(X='nicole'|X='rebecca'|X='tuyet'|X='brian'|X='james')))& can_play_the_harmonica(nicole)
[ "p3", "p4", "p5", "p9", "p11", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 120060985122360863119073 % SZS output start Proof for 120060985122360863119073 47. predo(mary) => ! [X0] : (preda(X0) <=> (predq(X0) & predp(X0))) [input p3] 48. ~(predc(mary) | predq(mary)) <~> ~~~(predj(mary) | preda(mary)) [input p4] 49. predc(mary) <~> predh(mary) [input p5] 53. predp(mary) [input p9] 55. ~~~(predj(mary) | preda(mary)) [input p11] 61. predh(mary) [input p17] 62. predo(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 64. ~(predc(mary) | predq(mary)) <~> ~(predj(mary) | preda(mary)) [flattening 48] 65. ~(predj(mary) | preda(mary)) [flattening 55] 150. ! [X0] : (preda(X0) <=> (predq(X0) & predp(X0))) | ~predo(mary) [ennf transformation 47] 151. (~predc(mary) & ~predq(mary)) <~> (~predj(mary) & ~preda(mary)) [ennf transformation 64] 153. ~predj(mary) & ~preda(mary) [ennf transformation 65] 154. predo(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 62] 155. predo(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 154] 160. ! [X0] : ((preda(X0) | (~predq(X0) | ~predp(X0))) & ((predq(X0) & predp(X0)) | ~preda(X0))) | ~predo(mary) [nnf transformation 150] 161. ! [X0] : ((preda(X0) | ~predq(X0) | ~predp(X0)) & ((predq(X0) & predp(X0)) | ~preda(X0))) | ~predo(mary) [flattening 160] 162. ((predj(mary) | preda(mary)) | (predc(mary) | predq(mary))) & ((~predj(mary) & ~preda(mary)) | (~predc(mary) & ~predq(mary))) [nnf transformation 151] 163. (predj(mary) | preda(mary) | predc(mary) | predq(mary)) & ((~predj(mary) & ~preda(mary)) | (~predc(mary) & ~predq(mary))) [flattening 162] 164. (~predh(mary) | ~predc(mary)) & (predh(mary) | predc(mary)) [nnf transformation 49] 262. preda(X0) | ~predq(X0) | ~predp(X0) | ~predo(mary) [cnf transformation 161] 267. predj(mary) | preda(mary) | predc(mary) | predq(mary) [cnf transformation 163] 269. ~predh(mary) | ~predc(mary) [cnf transformation 164] 271. predp(mary) [cnf transformation 53] 272. ~preda(mary) [cnf transformation 153] 273. ~predj(mary) [cnf transformation 153] 282. predh(mary) [cnf transformation 61] 289. predo(mary) [cnf transformation 155] 291. 1 <=> predq(mary) [avatar definition] 292. predq(mary) <- (1) [avatar component clause 291] 315. 6 <=> predo(mary) [avatar definition] 319. 7 <=> ! [X0] : (preda(X0) | ~predp(X0) | ~predq(X0)) [avatar definition] 320. ~predp(X0) | preda(X0) | ~predq(X0) <- (7) [avatar component clause 319] 321. ~6 | 7 [avatar split clause 262,319,315] 331. 10 <=> predc(mary) [avatar definition] 335. 11 <=> preda(mary) [avatar definition] 336. ~preda(mary) <- (~11) [avatar component clause 335] 339. 12 <=> predj(mary) [avatar definition] 342. 1 | 10 | 11 | 12 [avatar split clause 267,339,335,331,291] 348. 13 <=> predh(mary) [avatar definition] 351. ~10 | ~13 [avatar split clause 269,348,331] 353. ~12 [avatar split clause 273,339] 354. ~11 [avatar split clause 272,335] 355. 13 [avatar split clause 282,348] 356. 6 [avatar split clause 289,315] 357. preda(mary) | ~predq(mary) <- (7) [resolution 320,271] 360. ~predq(mary) <- (7, ~11) [subsumption resolution 357,336] 361. $false <- (1, 7, ~11) [subsumption resolution 360,292] 362. ~1 | ~7 | 11 [avatar contradiction clause 361] 381. $false [avatar sat refutation 321,342,351,353,354,355,356,362] % SZS output end Proof for 120060985122360863119073 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.366368
Linda is the only person in the room. If “everyone anywhere develops open-source software projects in their free time or does not enjoy snowboarding” then “Linda neither collects antique jewelry nor builds model airplanes”. “Linda is dedicated to sustainable living and zero-waste practices” if “someone in the room owns a smart tv” and vice versa. Everyone anywhere develops open-source software projects in their free time or does not enjoy snowboarding. Everyone in the room who enjoys writing detailed reviews of new and classic board games writes poetry. Everyone in the room who enjoys wildlife photography, collects rare minerals or writes poetry enjoys snowboarding. Linda plays as a goalkeeper for a local amateur soccer team. Everyone in the room who enjoys wildlife photography either builds model airplanes or can play the guitar but not both. Not everyone in the room who either builds model airplanes or can play the guitar but not both collects antique jewelry. It is not the case that “someone in the room collects antique jewelry”. Everyone outside the room who builds model airplanes collects antique jewelry. Someone in the room owns a smart tv. No one anywhere who writes and illustrates their own graphic novels collects rare minerals. Everyone in the room can play the guitar or does not collect antique jewelry. Linda owns a smart tv. Linda develops open-source software projects in their free time. Everyone outside the room who plays as a goalkeeper for a local amateur soccer team is dedicated to sustainable living and zero-waste practices or collects rare minerals or both.
Linda enjoys snowboarding.
neutral
room(linda)&(![X]:(room(X)=>(X='linda')))& ((![X]:(anywhere(X)=>(((does_not_enjoy_snowboarding(X))|(develops_open-source_software_projects_in_their_free_time(X))))))=>(~((collects_antique_jewelry(linda))|(builds_model_airplanes(linda)))))& ((?[X]:(room(X)&(owns_a_smart_tv(X))))<=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(linda)))& (![X]:(anywhere(X)=>(((does_not_enjoy_snowboarding(X))|(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(writes_poetry(X))))))& (![X]:(room(X)=>(((((enjoys_wildlife_photography(X))|(collects_rare_minerals(X))|(writes_poetry(X))))=>(enjoys_snowboarding(X))))))& (plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(linda))& (![X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(((builds_model_airplanes(X))<~>(can_play_the_guitar(X))))))))& (~![X]:(room(X)=>(((((builds_model_airplanes(X))<~>(can_play_the_guitar(X))))=>(collects_antique_jewelry(X))))))& (~(?[X]:(room(X)&(collects_antique_jewelry(X)))))& (![X]:(~room(X)=>(((builds_model_airplanes(X))=>(collects_antique_jewelry(X))))))& (?[X]:(room(X)&(owns_a_smart_tv(X))))& (~?[X]:(anywhere(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(collects_rare_minerals(X))))))& (![X]:(room(X)=>(((does_not_collect_antique_jewelry(X))|(can_play_the_guitar(X))))))& (owns_a_smart_tv(linda))& (develops_open-source_software_projects_in_their_free_time(linda))& (![X]:(~room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(collects_rare_minerals(X))))))))
room(linda)&(![X]:(room(X)=>(X='linda')))& enjoys_snowboarding(linda)
[]
null
0.026654
Patsy, David, Jose, Nancy are the only persons in the room. "Jose is not patient, is not a generous person or is not a calm person" if "Patsy is not curious, not old, not generous, not strong, not tall, not funny". If "David and Jose are not a quiet persons or are not brave or both" then "if someone is not a funny person and is not wise then he/she is not a generous person" otherwise "Patsy is not brave, is not a generous person and is not a brave quiet patient creative person". Jose who neither is not funny nor is not a creative person is not a strong calm person. Only one person anywhere is not wise. Jose and David are respectively kind and strong. Jose is the least rich in the room. Patsy who is not generous, not wise is not a strong patient wise person. If someone is not a curious person then he/she is not old, not calm, not generous, not kind, not patient, is not a strong curious person or is not kind, not creative and vice versa. Jose who is not a humble person is not brave. Someone who is not a calm person or is not a patient happy kind person or both is richer than someone who is not happy, not wise or is not a kind creative person or both. Jose is not a calm person and is not a calm generous tall strong person. Patsy is not a wise humble funny old person. Patsy is not a tall curious kind person. If someone is not a creative happy strong person then he/she is not funny and is not wise and vice versa. Patsy is not a curious person.
David and Patsy are not a kind persons or are kind or both.
entailment
room(patsy)&room(david)&room(jose)&room(nancy)&(![X]:(room(X)=>(X='patsy'|X='david'|X='jose'|X='nancy')))& ((~curious(patsy)&~old(patsy)&~generous(patsy)&~strong(patsy)&~tall(patsy)&~funny(patsy))=>(((~patient(jose))|(~(generous(jose)&person(jose)))|(~(calm(jose)&person(jose))))))& (((((~(quiet(david)&person(david)))|(~brave(david)))&((~(quiet(jose)&person(jose)))|(~brave(jose))))=>((![X]:((((~(funny(X)&person(X)))&(~wise(X))))=>(~(generous(X)&person(X)))))))&((~(((~(quiet(david)&person(david)))|(~brave(david)))&((~(quiet(jose)&person(jose)))|(~brave(jose)))))=>(((~brave(patsy))&(~(generous(patsy)&person(patsy)))&(~(brave(patsy)&quiet(patsy)&patient(patsy)&creative(patsy)&person(patsy)))))))& ((~((~funny(jose))|(~(creative(jose)&person(jose)))))&(~(strong(jose)&calm(jose)&person(jose))))& (((?[X]:(anywhere(X)&~wise(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(~wise(X))&(~wise(Y)))=>(X=Y)))))& ((kind(jose))&(strong(david)))& (![X]:((room(X)&(X!=jose))=>richer(jose,X)))& ((~generous(patsy)&~wise(patsy))&(~(strong(patsy)&patient(patsy)&wise(patsy)&person(patsy))))& ((![X]:((~(curious(X)&person(X)))<=>(((~old(X)&~calm(X)&~generous(X)&~kind(X)&~patient(X))|(~(strong(X)&curious(X)&person(X)))|(~kind(X)&~creative(X)))))))& ((~(humble(jose)&person(jose)))&(~brave(jose)))& (?[X,Y]:((((~(calm(X)&person(X)))|(~(patient(X)&happy(X)&kind(X)&person(X)))))&(((~happy(Y)&~wise(Y))|(~(kind(Y)&creative(Y)&person(Y)))))&(richer(X,Y))))& (((~(calm(jose)&person(jose)))&(~(calm(jose)&generous(jose)&tall(jose)&strong(jose)&person(jose)))))& (~(wise(patsy)&humble(patsy)&funny(patsy)&old(patsy)&person(patsy)))& (~(tall(patsy)&curious(patsy)&kind(patsy)&person(patsy)))& ((![X]:((~(creative(X)&happy(X)&strong(X)&person(X)))<=>(((~funny(X))&(~wise(X)))))))& (~(curious(patsy)&person(patsy)))
room(patsy)&room(david)&room(jose)&room(nancy)&(![X]:(room(X)=>(X='patsy'|X='david'|X='jose'|X='nancy')))& ((~(kind(david)&person(david)))|(kind(david)))&((~(kind(patsy)&person(patsy)))|(kind(patsy)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 1110084136552509063932199 % SZS output start Proof for 1110084136552509063932199 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 60. ~((kind(mary) | ~(person(mary) & kind(mary))) & (kind(paul) | ~(person(paul) & kind(paul))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 135. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 136. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 135] 156. (~kind(mary) & (person(mary) & kind(mary))) | (~kind(paul) & (person(paul) & kind(paul))) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 60] 157. (~kind(mary) & person(mary) & kind(mary)) | (~kind(paul) & person(paul) & kind(paul)) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 156] 165. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP4 [predicate definition introduction] 166. (~kind(paul) & person(paul) & kind(paul)) | ~sP5 [predicate definition introduction] 167. (~kind(mary) & person(mary) & kind(mary)) | sP5 | sP4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 157,166,165] 184. (~kind(paul) & person(paul) & kind(paul)) | ~sP5 [nnf transformation 166] 185. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP4 [nnf transformation 165] 186. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom] 187. (alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~sP4 [skolemisation 185,186] 269. room(mary) [cnf transformation 136] 270. room(paul) [cnf transformation 136] 271. room(fred) [cnf transformation 136] 272. room(alice) [cnf transformation 136] 273. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 136] 336. kind(paul) | ~sP5 [cnf transformation 184] 338. ~kind(paul) | ~sP5 [cnf transformation 184] 339. room(sK9) | ~sP4 [cnf transformation 187] 340. mary != sK9 | ~sP4 [cnf transformation 187] 341. paul != sK9 | ~sP4 [cnf transformation 187] 342. fred != sK9 | ~sP4 [cnf transformation 187] 343. alice != sK9 | ~sP4 [cnf transformation 187] 344. kind(mary) | sP5 | sP4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 346. ~kind(mary) | sP5 | sP4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 515. 36 <=> kind(mary) [avatar definition] 521. 37 <=> sP5 [avatar definition] 525. 38 <=> kind(paul) [avatar definition] 528. ~37 | ~38 [avatar split clause 338,525,521] 530. ~37 | 38 [avatar split clause 336,525,521] 532. 39 <=> sP4 [avatar definition] 536. 40 <=> alice = sK9 [avatar definition] 538. alice != sK9 <- (~40) [avatar component clause 536] 539. ~39 | ~40 [avatar split clause 343,536,532] 541. 41 <=> fred = sK9 [avatar definition] 543. fred != sK9 <- (~41) [avatar component clause 541] 544. ~39 | ~41 [avatar split clause 342,541,532] 546. 42 <=> paul = sK9 [avatar definition] 548. paul != sK9 <- (~42) [avatar component clause 546] 549. ~39 | ~42 [avatar split clause 341,546,532] 551. 43 <=> mary = sK9 [avatar definition] 553. mary != sK9 <- (~43) [avatar component clause 551] 554. ~39 | ~43 [avatar split clause 340,551,532] 556. 44 <=> room(sK9) [avatar definition] 558. room(sK9) <- (44) [avatar component clause 556] 559. ~39 | 44 [avatar split clause 339,556,532] 560. ~kind(mary) | sP5 | sP4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 346,272] 561. ~kind(mary) | sP5 | sP4 | ~room(paul) | ~room(mary) [subsumption resolution 560,271] 562. ~kind(mary) | sP5 | sP4 | ~room(mary) [subsumption resolution 561,270] 563. ~kind(mary) | sP5 | sP4 [subsumption resolution 562,269] 564. 39 | 37 | ~36 [avatar split clause 563,515,521,532] 570. kind(mary) | sP5 | sP4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 344,272] 571. kind(mary) | sP5 | sP4 | ~room(paul) | ~room(mary) [subsumption resolution 570,271] 572. kind(mary) | sP5 | sP4 | ~room(mary) [subsumption resolution 571,270] 573. kind(mary) | sP5 | sP4 [subsumption resolution 572,269] 574. 39 | 37 | 36 [avatar split clause 573,515,521,532] 771. fred = sK9 | paul = sK9 | mary = sK9 | alice = sK9 <- (44) [resolution 273,558] 772. paul = sK9 | mary = sK9 | alice = sK9 <- (~41, 44) [subsumption resolution 771,543] 773. mary = sK9 | alice = sK9 <- (~41, ~42, 44) [subsumption resolution 772,548] 774. alice = sK9 <- (~41, ~42, ~43, 44) [subsumption resolution 773,553] 775. $false <- (~40, ~41, ~42, ~43, 44) [subsumption resolution 774,538] 776. 40 | 41 | 42 | 43 | ~44 [avatar contradiction clause 775] 777. $false [avatar sat refutation 528,530,539,544,549,554,559,564,574,776] % SZS output end Proof for 1110084136552509063932199 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.472283
Chris, Leslie are the only persons in the room. “No one in the room plays as a goalkeeper for a local amateur soccer team or does not collect rare minerals” only if “Leslie does not collect rare minerals”. Everyone anywhere frequently participates in hackathons and coding competitions if they plays as a goalkeeper for a local amateur soccer team. Chris plays as a goalkeeper for a local amateur soccer team.
Everyone in the room does not frequently participates in hackathons and coding competitions.
contradiction
room(chris)&room(leslie)&(![X]:(room(X)=>(X='chris'|X='leslie')))& ((~?[X]:(room(X)=>(((does_not_collect_rare_minerals(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>(does_not_collect_rare_minerals(leslie)))& (![X]:(anywhere(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (designs_and_sews_custom_cosplay_costumes_for_conventions(leslie))& ((![X]:((collects_rare_and_antique_scientific_instruments(X))<=>(knows_morse_code(X)))))& (does_not_host_a_popular_podcast_about_emerging_technologies(leslie))& (plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(chris))& (((does_not_develop_open-source_software_projects_in_their_free_time(leslie))&(does_not_host_a_popular_podcast_about_emerging_technologies(leslie))))& (does_not_develop_open-source_software_projects_in_their_free_time(chris))& (does_not_collect_rare_minerals(chris))& (![X]:(~room(X)=>(is_a_chess_master_who_participates_in_national_tournaments(X))))& (does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(chris))& (((?[X]:(room(X)&enjoys_windsurfing(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_windsurfing(X))&(enjoys_windsurfing(Y)))=>(X=Y)))))& (enjoys_wildlife_photography(leslie))& (does_not_collect_rare_minerals(leslie))& (?[X]:(anywhere(X)&(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))& ((?[X,Y]:(room(X)&room(Y)&(does_not_collect_rare_minerals(X)&does_not_collect_rare_minerals(Y))&(X!=Y))))& (![X]:(room(X)=>(collects_rare_and_antique_scientific_instruments(X))))
room(chris)&room(leslie)&(![X]:(room(X)=>(X='chris'|X='leslie')))& ![X]:(room(X)=>(does_not_frequently_participates_in_hackathons_and_coding_competitions(X)))
[ "b4", "p0", "p2", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 8315198857465002935731256 % SZS output start Proof for 8315198857465002935731256 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 46. ! [X0] : (anywhere(X0) => (prede(X0) => predn(X0))) [input p2] 50. prede(mary) [input p6] 62. ! [X0] : (room(X0) => ~predn(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 64. ! [X0] : (room(X0) => ~predn(X0)) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary) [rectify 62] 152. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 153. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 152] 154. ! [X0] : ((predn(X0) | ~prede(X0)) | ~anywhere(X0)) [ennf transformation 46] 155. ! [X0] : (predn(X0) | ~prede(X0) | ~anywhere(X0)) [flattening 154] 158. ! [X0] : (~predn(X0) | ~room(X0)) & ! [X1] : ((paul = X1 | mary = X1) | ~room(X1)) & room(paul) & room(mary) [ennf transformation 64] 159. ! [X0] : (~predn(X0) | ~room(X0)) & ! [X1] : (paul = X1 | mary = X1 | ~room(X1)) & room(paul) & room(mary) [flattening 158] 167. anywhere(X0) [cnf transformation 5] 248. room(mary) [cnf transformation 153] 251. predn(X0) | ~prede(X0) | ~anywhere(X0) [cnf transformation 155] 252. prede(mary) [cnf transformation 50] 263. ~predn(X0) | ~room(X0) [cnf transformation 159] 264. ~prede(X0) | predn(X0) [subsumption resolution 251,167] 265. predn(mary) [resolution 264,252] 308. ~room(mary) [resolution 265,263] 309. $false [subsumption resolution 308,248] % SZS output end Proof for 8315198857465002935731256 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.026 s % ------------------------------ % ------------------------------
0.005796
Francisco is the only person in the room. If “Francisco enjoys snowboarding” then “it is not the case that “Francisco builds model airplanes””. “It is not the case that “Francisco has a pet dog”” if “Francisco enjoys writing detailed reviews of new and classic board games”. If “Francisco enjoys snowboarding” then “Francisco neither enjoys writing detailed reviews of new and classic board games nor builds model airplanes”. If “Francisco is passionate about collecting and restoring classic cars” then “Francisco who enjoys writing detailed reviews of new and classic board games streams on Twitch”. Francisco owns a microscope. Francisco neither hosts themed dinner parties featuring gourmet home-cooked meals nor builds model airplanes. Francisco collects modern art. Francisco collects foreign coins. If someone is a tea enthusiast then he/she owns a microscope. Francisco has a pet dog, is allergic to anything and is a cybersecurity expert.
Francisco enjoys snowboarding.
neutral
room(francisco)&(![X]:(room(X)=>(X='francisco')))& ((enjoys_snowboarding(francisco))=>(~(builds_model_airplanes(francisco))))& ((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(francisco))=>(~(has_a_pet_dog(francisco))))& ((enjoys_snowboarding(francisco))=>(~((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(francisco))|(builds_model_airplanes(francisco)))))& ((is_passionate_about_collecting_and_restoring_classic_cars(francisco))=>((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(francisco))&(streams_on_Twitch(francisco))))& (owns_a_microscope(francisco))& (~((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(francisco))|(builds_model_airplanes(francisco))))& (collects_modern_art(francisco))& (collects_foreign_coins(francisco))& ((![X]:((is_a_tea_enthusiast(X))=>(owns_a_microscope(X)))))& (((has_a_pet_dog(francisco))&(is_allergic_to_anything(francisco))&(is_a_cybersecurity_expert(francisco))))& ((is_a_tea_enthusiast(francisco))&(collects_first_edition_books(francisco)))
room(francisco)&(![X]:(room(X)=>(X='francisco')))& enjoys_snowboarding(francisco)
[]
null
0.604529
Rose, Franklin are the only persons in the room. 'Not everyone in the room is old and is quiet' unless 'everyone in the room is tall'. Franklin is a kind person. Franklin is a old person. Everyone in the room is tall. Everyone in the room is a kind person. Everyone in the room is a kind person if they is old. Everyone in the room is a old person. Not everyone in the room is old and is quiet. Rose is a kind person. Rose is a old person. All old persons are kind. Rose is not kind, is a kind person or is a old person. Everyone in the room is a tall person. Rose is kind. Everyone outside the room neither is a kind person nor is a tall person if and only if they is a old person or is not a old person or both. Everyone in the room is old and is a quiet person if they neither is a old person nor is a tall person.
Franklin is quiet.
neutral
room(rose)&room(franklin)&(![X]:(room(X)=>(X='rose'|X='franklin')))& (~(![X]:(room(X)=>(tall(X))))=>(~![X]:(room(X)=>(((old(X))&(quiet(X)))))))& (kind(franklin)&person(franklin))& (old(franklin)&person(franklin))& (![X]:(room(X)=>(tall(X))))& (![X]:(room(X)=>(kind(X)&person(X))))& (![X]:(room(X)=>(((old(X))=>(kind(X)&person(X))))))& (![X]:(room(X)=>(old(X)&person(X))))& (~![X]:(room(X)=>(((old(X))&(quiet(X))))))& (kind(rose)&person(rose))& (old(rose)&person(rose))& (![X]:(old(X)=>kind(X)))& (((~kind(rose))|(kind(rose)&person(rose))|(old(rose)&person(rose))))& (![X]:(room(X)=>(tall(X)&person(X))))& (kind(rose))& (![X]:(~room(X)=>(((~((kind(X)&person(X))|(tall(X)&person(X))))<=>(((old(X)&person(X))|(~(old(X)&person(X)))))))))& (![X]:(room(X)=>(((~((old(X)&person(X))|(tall(X)&person(X))))=>(((old(X))&(quiet(X)&person(X))))))))
room(rose)&room(franklin)&(![X]:(room(X)=>(X='rose'|X='franklin')))& quiet(franklin)
[]
null
0.258198
Jerry is the only person in the room. If “Jerry owns a 3D printer” then “everyone in the room is dedicated to sustainable living and zero-waste practices”. Everyone in the room collects rare minerals if they owns a significant collection of rare gemstones and minerals. Everyone in the room owns a 3D printer if they collects rare minerals. At least one person in the room enjoys stand-up paddleboarding. Not everyone anywhere who enjoys stand-up paddleboarding or is a culinary enthusiast who experiments with international cuisines or both collects rare minerals and regularly contributes to tech forums and online communities. Everyone in the room enjoys stand-up paddleboarding or is a culinary enthusiast who experiments with international cuisines or both if they collects rare minerals and regularly contributes to tech forums and online communities. Not everyone in the room who enjoys stand-up paddleboarding or is a culinary enthusiast who experiments with international cuisines or both collects antique jewelry. Everyone in the room owns a 3D printer if they collects antique jewelry. Jerry regularly contributes to tech forums and online communities. Everyone outside the room has a tattoo or does not own a 3D printer. Not everyone in the room has a tattoo if they regularly contributes to tech forums and online communities and vice versa. Everyone in the room is dedicated to sustainable living and zero-waste practices if they regularly contributes to tech forums and online communities. Jerry enjoys stand-up paddleboarding. Everyone in the room owns a significant collection of rare gemstones and minerals only if they enjoys stand-up paddleboarding, is not a culinary enthusiast who experiments with international cuisines or does not regularly contributes to tech forums and online communities.
Jerry collects rare minerals.
neutral
room(jerry)&(![X]:(room(X)=>(X='jerry')))& ((owns_a_3D_printer(jerry))=>(![X]:(room(X)=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(collects_rare_minerals(X))))))& (![X]:(room(X)=>(((collects_rare_minerals(X))=>(owns_a_3D_printer(X))))))& (((?[X]:(room(X)&enjoys_stand-up_paddleboarding(X)))))& (~![X]:(anywhere(X)=>(((((enjoys_stand-up_paddleboarding(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))=>(((collects_rare_minerals(X))&(regularly_contributes_to_tech_forums_and_online_communities(X))))))))& (![X]:(room(X)=>(((((collects_rare_minerals(X))&(regularly_contributes_to_tech_forums_and_online_communities(X))))=>(((enjoys_stand-up_paddleboarding(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))))& (~![X]:(room(X)=>(((((enjoys_stand-up_paddleboarding(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))=>(collects_antique_jewelry(X))))))& (![X]:(room(X)=>(((collects_antique_jewelry(X))=>(owns_a_3D_printer(X))))))& (regularly_contributes_to_tech_forums_and_online_communities(jerry))& (![X]:(~room(X)=>(((does_not_own_a_3D_printer(X))|(has_a_tattoo(X))))))& (~![X]:(room(X)=>(((has_a_tattoo(X))<=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (enjoys_stand-up_paddleboarding(jerry))& (![X]:(room(X)=>(((((enjoys_stand-up_paddleboarding(X))|(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))<=(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))
room(jerry)&(![X]:(room(X)=>(X='jerry')))& collects_rare_minerals(jerry)
[]
null
0
Ruth, Ollie are the only persons in the room. If “someone in the room enjoys kayaking” then “no one in the room enjoys kayaking if they has a tattoo”. If “not everyone outside the room does not collect vintage stamps or creates bespoke furniture pieces from reclaimed wood” then “everyone in the room mentors a youth basketball team on weekends if and only if they creates bespoke furniture pieces from reclaimed wood”. If “everyone in the room does not own a microscope or enjoys origami” then “it is not the case that “someone in the room does not create bespoke furniture pieces from reclaimed wood and does not have a piercing””. “Everyone in the room does not own a microscope or has a piercing” only if “at least one person in the room has a tattoo”. Everyone in the room who does not own a microscope enjoys kayaking. More than one person outside the room practices pilates. Everyone in the room who practices tai chi is an enthusiastic bird watcher who travels for rare sightings. Everyone in the room who owns a microscope creates bespoke furniture pieces from reclaimed wood. Ruth dreamt that “if someone does not practice yoga then he/she mentors a youth basketball team on weekends”. Someone outside the room enjoys fishing.
Ollie creates bespoke furniture pieces from reclaimed wood.
entailment
room(ruth)&room(ollie)&(![X]:(room(X)=>(X='ruth'|X='ollie')))& ((?[X]:(room(X)&(enjoys_kayaking(X))))=>(~?[X]:(room(X)=>(((has_a_tattoo(X))=>(enjoys_kayaking(X)))))))& ((~![X]:(~room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))|(does_not_collect_vintage_stamps(X))))))=>(![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))<=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))))& ((![X]:(room(X)=>(((enjoys_origami(X))|(does_not_own_a_microscope(X))))))=>(~(?[X]:(room(X)&(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))&(does_not_have_a_piercing(X))))))))& ((![X]:(room(X)=>(((has_a_piercing(X))|(does_not_own_a_microscope(X))))))=>(((?[X]:(room(X)&has_a_tattoo(X))))))& (![X]:(room(X)=>(((does_not_own_a_microscope(X))=>(enjoys_kayaking(X))))))& ((?[X,Y]:(~room(X)&~room(Y)&(practices_pilates(X)&practices_pilates(Y))&(X!=Y))))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& ((ruth_dream=>((![X]:((does_not_practice_yoga(X))=>(mentors_a_youth_basketball_team_on_weekends(X)))))))& (?[X]:(~room(X)&(enjoys_fishing(X))))
room(ruth)&room(ollie)&(![X]:(room(X)=>(X='ruth'|X='ollie')))& creates_bespoke_furniture_pieces_from_reclaimed_wood(ollie)
[ "p0", "p1", "p5", "p6", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 5888716382412640626386193 % SZS output start Proof for 5888716382412640626386193 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ? [X0] : (predu(X0) & room(X0)) => ~? [X0] : (room(X0) => (predn(X0) => predu(X0))) [input p1] 49. ! [X0] : (room(X0) => (~preds(X0) => predu(X0))) [input p5] 50. ? [X0,X1] : (X0 != X1 & predq(X1) & predq(X0) & ~room(X1) & ~room(X0)) [input p6] 52. ! [X0] : (room(X0) => (preds(X0) => predo(X0))) [input p8] 55. ~(predo(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 56. ? [X0] : (predu(X0) & room(X0)) => ~? [X1] : (room(X1) => (predn(X1) => predu(X1))) [rectify 45] 63. ? [X0,X1] : (X0 != X1 & ~room(X1) & ~room(X0)) [pure predicate removal 50] 67. ? [X0] : (predu(X0) & room(X0)) => ~? [X1] : (room(X1) => predu(X1)) [pure predicate removal 56] 140. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 140] 142. ! [X1] : (~predu(X1) & room(X1)) | ! [X0] : (~predu(X0) | ~room(X0)) [ennf transformation 67] 146. ! [X0] : ((predu(X0) | preds(X0)) | ~room(X0)) [ennf transformation 49] 147. ! [X0] : (predu(X0) | preds(X0) | ~room(X0)) [flattening 146] 148. ! [X0] : ((predo(X0) | ~preds(X0)) | ~room(X0)) [ennf transformation 52] 149. ! [X0] : (predo(X0) | ~preds(X0) | ~room(X0)) [flattening 148] 150. ~predo(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 55] 151. ~predo(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 150] 153. ! [X0] : (~predu(X0) & room(X0)) | ! [X1] : (~predu(X1) | ~room(X1)) [rectify 142] 161. ? [X0,X1] : (X0 != X1 & ~room(X1) & ~room(X0)) => (sK3 != sK4 & ~room(sK4) & ~room(sK3)) [choice axiom] 162. sK3 != sK4 & ~room(sK4) & ~room(sK3) [skolemisation 63,161] 165. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK6 & mary != sK6 & room(sK6)) [choice axiom] 166. ~predo(paul) | (paul != sK6 & mary != sK6 & room(sK6)) | ~room(paul) | ~room(mary) [skolemisation 151,165] 247. room(mary) [cnf transformation 141] 248. room(paul) [cnf transformation 141] 249. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 141] 250. room(X0) | ~predu(X1) | ~room(X1) [cnf transformation 153] 257. ~room(X0) | preds(X0) | predu(X0) [cnf transformation 147] 258. ~room(sK3) [cnf transformation 162] 261. ~preds(X0) | predo(X0) | ~room(X0) [cnf transformation 149] 263. ~predo(paul) | room(sK6) | ~room(paul) | ~room(mary) [cnf transformation 166] 264. ~predo(paul) | mary != sK6 | ~room(paul) | ~room(mary) [cnf transformation 166] 265. ~predo(paul) | paul != sK6 | ~room(paul) | ~room(mary) [cnf transformation 166] 267. 1 <=> ! [X1] : (~predu(X1) | ~room(X1)) [avatar definition] 268. ~predu(X1) | ~room(X1) <- (1) [avatar component clause 267] 274. 3 <=> ! [X0] : room(X0) [avatar definition] 275. room(X0) <- (3) [avatar component clause 274] 276. 1 | 3 [avatar split clause 250,274,267] 309. ~predo(paul) | paul != sK6 | ~room(mary) [subsumption resolution 265,248] 310. ~predo(paul) | paul != sK6 [subsumption resolution 309,247] 312. 11 <=> paul = sK6 [avatar definition] 314. paul != sK6 <- (~11) [avatar component clause 312] 316. 12 <=> predo(paul) [avatar definition] 318. ~predo(paul) <- (~12) [avatar component clause 316] 319. ~11 | ~12 [avatar split clause 310,316,312] 320. ~predo(paul) | mary != sK6 | ~room(mary) [subsumption resolution 264,248] 321. ~predo(paul) | mary != sK6 [subsumption resolution 320,247] 323. 13 <=> mary = sK6 [avatar definition] 325. mary != sK6 <- (~13) [avatar component clause 323] 326. ~13 | ~12 [avatar split clause 321,316,323] 327. ~predo(paul) | room(sK6) | ~room(mary) [subsumption resolution 263,248] 328. ~predo(paul) | room(sK6) [subsumption resolution 327,247] 330. 14 <=> room(sK6) [avatar definition] 332. room(sK6) <- (14) [avatar component clause 330] 333. 14 | ~12 [avatar split clause 328,316,330] 334. $false <- (3) [resolution 275,258] 339. ~3 [avatar contradiction clause 334] 341. preds(paul) | predu(paul) [resolution 257,248] 379. mary = sK6 | paul = sK6 <- (14) [resolution 249,332] 398. paul = sK6 <- (~13, 14) [subsumption resolution 379,325] 399. $false <- (~11, ~13, 14) [subsumption resolution 398,314] 400. 11 | 13 | ~14 [avatar contradiction clause 399] 402. 21 <=> predu(paul) [avatar definition] 404. predu(paul) <- (21) [avatar component clause 402] 406. 22 <=> preds(paul) [avatar definition] 408. preds(paul) <- (22) [avatar component clause 406] 409. 21 | 22 [avatar split clause 341,406,402] 455. ~room(paul) <- (1, 21) [resolution 404,268] 456. $false <- (1, 21) [subsumption resolution 455,248] 457. ~1 | ~21 [avatar contradiction clause 456] 467. predo(paul) | ~room(paul) <- (22) [resolution 408,261] 468. ~room(paul) <- (~12, 22) [subsumption resolution 467,318] 469. $false <- (~12, 22) [subsumption resolution 468,248] 470. 12 | ~22 [avatar contradiction clause 469] 471. $false [avatar sat refutation 276,319,326,333,339,400,409,457,470] % SZS output end Proof for 5888716382412640626386193 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.541835
There is a room. 'Everyone in the room creates bespoke furniture pieces from reclaimed wood only if they is a tea enthusiast' if 'someone in the room has a specialized collection of handmade artisan pottery'.
Everyone in the room is not an amateur astronomer who builds and uses custom telescopes or is a chess master who participates in national tournaments.
neutral
(there_is_a_room)& ((?[X]:(room(X)&(has_a_specialized_collection_of_handmade_artisan_pottery(X))))=>(![X]:(room(X)=>(((is_a_tea_enthusiast(X))<=(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))))& (~(![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))=>(![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(plays_the_violin(X)))))))& ((![X]:(anywhere(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))=>(((?[X]:(room(X)&has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(writes_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))<=(writes_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))<=(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(anywhere(X)=>(((~((has_a_specialized_collection_of_handmade_artisan_pottery(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))<=>(is_a_chess_master_who_participates_in_national_tournaments(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))|(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))
[]
null
0.444002
Barry is the only person in the room. If “Barry is a creative person” then “no brave person is creative”. If “Barry is a tall humble brave person” then “Barry either is richer than Jennifer or is a tall generous happy brave person but not both”. Barry is quieter than Christopher. Barry is older than Kenisha. Barry is not brave, not curious. Barry is quieter than Bernard. If someone is quieter than Jennifer then he/she is not funny. Barry is a strong funny calm person or is quieter than Jennifer or both. At least one person anywhere neither is a humble person nor is a funny person. It is not the case that “Bernard is quieter than Barry”. If someone is older than Kenisha then he/she is older than Bernard and vice versa. No tall person is brave. Barry is a generous person. Barry is not happy, not patient. At least one person outside the room is a old person. Barry is richer than Bernard. Barry is richer than Kenisha. Barry either is a generous person or is a generous wise person but not both. Barry is older than Bernard. If someone is quieter than Bernard then he/she is older than Christopher.
Barry is happy.
contradiction
room(barry)&(![X]:(room(X)=>(X='barry')))& ((creative(barry)&person(barry))=>(~?[X]:(brave(X)=>creative(X))))& ((tall(barry)&humble(barry)&brave(barry)&person(barry))=>(((richer(jennifer,barry))<~>(tall(barry)&generous(barry)&happy(barry)&brave(barry)&person(barry)))))& (quieter(christopher,barry))& (older(kenisha,barry))& (~brave(barry)&~curious(barry))& (quieter(bernard,barry))& ((![X]:((quieter(jennifer,X))=>(~funny(X)))))& (((strong(barry)&funny(barry)&calm(barry)&person(barry))|(quieter(jennifer,barry))))& (((?[X]:(anywhere(X)&~((humble(X)&person(X))|(funny(X)&person(X)))))))& (~(quieter(barry,bernard)))& ((![X]:((older(kenisha,X))<=>(older(bernard,X)))))& (~?[X]:(tall(X)=>brave(X)))& (generous(barry)&person(barry))& (~happy(barry)&~patient(barry))& (((?[X]:(~room(X)&old(X)&person(X)))))& (richer(bernard,barry))& (richer(kenisha,barry))& (((generous(barry)&person(barry))<~>(generous(barry)&wise(barry)&person(barry))))& (older(bernard,barry))& ((![X]:((quieter(bernard,X))=>(older(christopher,X)))))
room(barry)&(![X]:(room(X)=>(X='barry')))& happy(barry)
[ "p14", "hypothesis" ]
% SZS status Unsatisfiable for 3226506612782169403223963 % SZS output start Proof for 3226506612782169403223963 58. ~patient(mary) & ~happy(mary) [input p14] 65. happy(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 66. ~happy(mary) [pure predicate removal 58] 153. happy(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 65] 256. ~happy(mary) [cnf transformation 66] 273. happy(mary) [cnf transformation 153] 309. $false [subsumption resolution 273,256] % SZS output end Proof for 3226506612782169403223963 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.020 s % ------------------------------ % ------------------------------
0.508924
Kevin, Tiffany, Jeff are the only persons in the room. If 'Jeff drives a hybrid car' then 'Kevin drives a hybrid car'. If 'Kevin drives a hybrid car' then 'Tiffany drives a hybrid car'. Everyone in the room practices tai chi if they either owns an Android phone or drives a hybrid car but not both. Tiffany drives a hybrid car. More than one person in the room owns an Android phone. Everyone in the room does not regularly contributes to tech forums and online communities or is not an enthusiastic bird watcher who travels for rare sightings. Everyone anywhere who does not regularly contributes to tech forums and online communities owns an Android phone. More than one person outside the room owns an Android phone. Everyone in the room regularly contributes to tech forums and online communities if they owns an Android phone. Everyone in the room does not drive a hybrid car or regularly contributes to tech forums and online communities. Everyone anywhere regularly contributes to tech forums and online communities if they practices tai chi. Everyone in the room owns an Android phone if they regularly contributes to tech forums and online communities.
Jeff drives a hybrid car.
neutral
room(kevin)&room(tiffany)&room(jeff)&(![X]:(room(X)=>(X='kevin'|X='tiffany'|X='jeff')))& (((drives_a_hybrid_car(jeff))=>(drives_a_hybrid_car(kevin)))& ((drives_a_hybrid_car(kevin))=>(drives_a_hybrid_car(tiffany))))& (![X]:(room(X)=>(((((owns_an_Android_phone(X))<~>(drives_a_hybrid_car(X))))=>(practices_tai_chi(X))))))& (drives_a_hybrid_car(tiffany))& ((?[X,Y]:(room(X)&room(Y)&(owns_an_Android_phone(X)&owns_an_Android_phone(Y))&(X!=Y))))& (![X]:(room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(anywhere(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))=>(owns_an_Android_phone(X))))))& ((?[X,Y]:(~room(X)&~room(Y)&(owns_an_Android_phone(X)&owns_an_Android_phone(Y))&(X!=Y))))& (![X]:(room(X)=>(((owns_an_Android_phone(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))|(does_not_drive_a_hybrid_car(X))))))& (![X]:(anywhere(X)=>(((practices_tai_chi(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(owns_an_Android_phone(X))))))
room(kevin)&room(tiffany)&room(jeff)&(![X]:(room(X)=>(X='kevin'|X='tiffany'|X='jeff')))& drives_a_hybrid_car(jeff)
[]
null
0.023149
Malinda, William, Kelly, Ruby are the only persons in the room. If “everyone in the room does not enjoy windsurfing or is dedicated to sustainable living and zero-waste practices” then “William practices pilates”. If “Kelly has a tattoo” then “it is not the case that “William owns a smart tv””. If “everyone outside the room owns a smart tv or does not host a popular podcast about emerging technologies” then “everyone in the room who owns a smart tv is dedicated to sustainable living and zero-waste practices”. “William who practices and performs acrobatic dance routines and owns a significant collection of rare gemstones and minerals owns a significant collection of rare gemstones and minerals” if “everyone in the room does not practice zumba or knows morse code”. If “it is not the case that “William practices zumba”” then “at least one person in the room knows morse code”. Everyone in the room who enjoys wildlife photography, knows morse code and practices zumba has a tattoo. Not everyone in the room has a tattoo if they knows morse code and vice versa. William practices zumba. Malinda who practices kickboxing has a tattoo. Everyone in the room who owns a smart tv has a tattoo. Everyone in the room who practices zumba owns a smart tv.
Kelly owns a smart tv.
contradiction
room(malinda)&room(william)&room(kelly)&room(ruby)&(![X]:(room(X)=>(X='malinda'|X='william'|X='kelly'|X='ruby')))& ((![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(does_not_enjoy_windsurfing(X))))))=>(practices_pilates(william)))& ((has_a_tattoo(kelly))=>(~(owns_a_smart_tv(william))))& ((![X]:(~room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(owns_a_smart_tv(X))))))=>(![X]:(room(X)=>(((owns_a_smart_tv(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))))& ((![X]:(room(X)=>(((knows_morse_code(X))|(does_not_practice_zumba(X))))))=>((((practices_and_performs_acrobatic_dance_routines(william))&(owns_a_significant_collection_of_rare_gemstones_and_minerals(william))))&(owns_a_significant_collection_of_rare_gemstones_and_minerals(william))))& ((~(practices_zumba(william)))=>(((?[X]:(room(X)&knows_morse_code(X))))))& (![X]:(room(X)=>(((((enjoys_wildlife_photography(X))&(knows_morse_code(X))&(practices_zumba(X))))=>(has_a_tattoo(X))))))& (~![X]:(room(X)=>(((has_a_tattoo(X))<=>(knows_morse_code(X))))))& (practices_zumba(william))& ((practices_kickboxing(malinda))&(has_a_tattoo(malinda)))& (((knows_morse_code(kelly))|(enjoys_coding_in_Python(kelly))))& ((is_dedicated_to_sustainable_living_and_zero-waste_practices(malinda))&(enjoys_coding_in_Python(malinda)))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(has_a_tattoo(X))))))& ((![X]:((owns_a_smart_tv(X))=>(enjoys_coding_in_Python(X)))))& ((![X]:((is_a_wine_connoisseur(X))<=>(((is_a_chess_master_who_participates_in_national_tournaments(X))|(practices_zumba(X)))))))& (![X]:(room(X)=>(((((practices_kickboxing(X))|(enjoys_coding_in_Python(X))))=>(owns_a_smart_tv(X))))))& (![X]:(room(X)=>(((owns_a_smart_tv(X))=>(has_a_tattoo(X))))))& (~![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(practices_kickboxing(X))))))& (![X]:(room(X)=>(((practices_zumba(X))=>(owns_a_smart_tv(X))))))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(william))& (![X]:(~room(X)=>(((((practices_kickboxing(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))
room(malinda)&room(william)&room(kelly)&room(ruby)&(![X]:(room(X)=>(X='malinda'|X='william'|X='kelly'|X='ruby')))& owns_a_smart_tv(kelly)
[ "p0", "p2", "p8", "p16", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 5754172392766801819682118 % SZS output start Proof for 5754172392766801819682118 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. predf(fred) => ~predl(paul) [input p2] 52. predb(paul) [input p8] 60. ! [X0] : (room(X0) => (predl(X0) => predf(X0))) [input p16] 62. ! [X0] : (room(X0) => (predb(X0) => predl(X0))) [input p18] 65. predl(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 149. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 150. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 149] 151. ~predl(paul) | ~predf(fred) [ennf transformation 46] 157. ! [X0] : ((predf(X0) | ~predl(X0)) | ~room(X0)) [ennf transformation 60] 158. ! [X0] : (predf(X0) | ~predl(X0) | ~room(X0)) [flattening 157] 161. ! [X0] : ((predl(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 62] 162. ! [X0] : (predl(X0) | ~predb(X0) | ~room(X0)) [flattening 161] 163. predl(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 65] 164. predl(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 163] 255. room(paul) [cnf transformation 150] 256. room(fred) [cnf transformation 150] 259. ~predl(paul) | ~predf(fred) [cnf transformation 151] 265. predb(paul) [cnf transformation 52] 273. ~predl(X0) | predf(X0) | ~room(X0) [cnf transformation 158] 277. ~predb(X0) | predl(X0) | ~room(X0) [cnf transformation 162] 283. predl(fred) [cnf transformation 164] 285. 1 <=> predf(fred) [avatar definition] 289. 2 <=> predl(paul) [avatar definition] 291. ~predl(paul) <- (~2) [avatar component clause 289] 292. ~1 | ~2 [avatar split clause 259,289,285] 294. 3 <=> predb(paul) [avatar definition] 296. predb(paul) <- (3) [avatar component clause 294] 317. 3 [avatar split clause 265,294] 337. predf(fred) | ~room(fred) [resolution 273,283] 344. predf(fred) [subsumption resolution 337,256] 345. 1 [avatar split clause 344,285] 346. predl(paul) | ~room(paul) <- (3) [resolution 277,296] 347. ~room(paul) <- (~2, 3) [subsumption resolution 346,291] 348. $false <- (~2, 3) [subsumption resolution 347,255] 349. 2 | ~3 [avatar contradiction clause 348] 350. $false [avatar sat refutation 292,317,345,349] % SZS output end Proof for 5754172392766801819682118 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.055638
“Only one person in the room does not have a vast collection of first-edition science fiction novels or does not enjoy spelunking or both” unless “everyone in the room does not develop open-source software projects in their free time or trains for and competes in international triathlons”. If someone does not enjoy spelunking then he/she does not enjoy windsurfing and vice versa. Everyone in the room does not train for and competes in international triathlons if they has a vast collection of first-edition science fiction novels. Everyone in the room who does not develop open-source software projects in their free time does not enjoy spelunking. Not everyone in the room neither does not train for and competes in international triathlons nor enjoys spelunking. Everyone in the room does not enjoy spelunking if they does not have a vast collection of first-edition science fiction novels.
Everyone in the room enjoys windsurfing.
contradiction
(there_is_a_room)& (~(![X]:(room(X)=>(((does_not_enjoy_spelunking(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))=>(![X]:(room(X)=>(((enjoys_spelunking(X))=>(enjoys_windsurfing(X)))))))& (~(![X]:(room(X)=>(((does_enjoy_trail_running(X))|(does_not_enjoy_windsurfing(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_trail_running(X))=>(does_enjoy_trail_running(X)))))))& (~(![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))=>(((?[X]:(room(X)&((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))|(does_not_enjoy_spelunking(X)))))&(![X,Y]:((room(X)&room(Y)&(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))|(does_not_enjoy_spelunking(X))))&(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(Y))|(does_not_enjoy_spelunking(Y)))))=>(X=Y))))))& (![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))=>(does_not_train_for_and_competes_in_international_triathlons(X))))))& (![X]:(~room(X)=>(((((enjoys_windsurfing(X))<~>(trains_for_and_competes_in_international_triathlons(X))))=>(((does_not_train_for_and_competes_in_international_triathlons(X))|(does_not_enjoy_trail_running(X))))))))& ((![X]:((does_not_enjoy_spelunking(X))<=>(does_not_enjoy_windsurfing(X)))))& (![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(does_not_train_for_and_competes_in_international_triathlons(X))))))& (((?[X]:(room(X)&enjoys_spelunking(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_spelunking(X))&(enjoys_spelunking(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))=>(does_not_enjoy_spelunking(X))))))& (![X]:(~room(X)=>(develops_open-source_software_projects_in_their_free_time(X))))& (![X]:(room(X)=>(((~((does_enjoy_trail_running(X))|(calm(X)&person(X))))=>(enjoys_windsurfing(X))))))& (~![X]:(room(X)=>(~((does_not_train_for_and_competes_in_international_triathlons(X))|(enjoys_spelunking(X))))))& (![X]:(room(X)=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(does_not_enjoy_spelunking(X))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_windsurfing(X)))
[ "p3", "p6", "p7", "p9", "p12", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 5126016585368665179929994 % SZS output start Proof for 5126016585368665179929994 47. ~! [X0] : (room(X0) => (~predb(X0) | predr(X0))) => (! [X0,X1] : (((~prede(X1) | ~predh(X1)) & (~prede(X0) | ~predh(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : ((~prede(X0) | ~predh(X0)) & room(X0))) [input p3] 50. ! [X0] : (~prede(X0) <=> ~predk(X0)) [input p6] 51. ! [X0] : (room(X0) => (predh(X0) => ~predr(X0))) [input p7] 53. ! [X0] : (room(X0) => (~predb(X0) => ~prede(X0))) [input p9] 56. ~! [X0] : (room(X0) => ~(prede(X0) | ~predr(X0))) [input p12] 57. ! [X0] : (room(X0) => (~predh(X0) => ~prede(X0))) [input p13] 58. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis] 61. ~! [X0] : (room(X0) => (~predb(X0) | predr(X0))) => (! [X1,X2] : (((~prede(X2) | ~predh(X2)) & (~prede(X1) | ~predh(X1)) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : ((~prede(X3) | ~predh(X3)) & room(X3))) [rectify 47] 64. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 58] 143. (! [X1,X2] : (X1 = X2 | ((prede(X2) & predh(X2)) | (prede(X1) & predh(X1)) | ~room(X2) | ~room(X1))) & ? [X3] : ((~prede(X3) | ~predh(X3)) & room(X3))) | ! [X0] : ((~predb(X0) | predr(X0)) | ~room(X0)) [ennf transformation 61] 144. (! [X1,X2] : (X1 = X2 | (prede(X2) & predh(X2)) | (prede(X1) & predh(X1)) | ~room(X2) | ~room(X1)) & ? [X3] : ((~prede(X3) | ~predh(X3)) & room(X3))) | ! [X0] : (~predb(X0) | predr(X0) | ~room(X0)) [flattening 143] 149. ! [X0] : ((~predr(X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 51] 150. ! [X0] : (~predr(X0) | ~predh(X0) | ~room(X0)) [flattening 149] 153. ! [X0] : ((~prede(X0) | predb(X0)) | ~room(X0)) [ennf transformation 53] 154. ! [X0] : (~prede(X0) | predb(X0) | ~room(X0)) [flattening 153] 156. ? [X0] : ((prede(X0) | ~predr(X0)) & room(X0)) [ennf transformation 56] 157. ! [X0] : ((~prede(X0) | predh(X0)) | ~room(X0)) [ennf transformation 57] 158. ! [X0] : (~prede(X0) | predh(X0) | ~room(X0)) [flattening 157] 159. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 64] 163. (! [X0,X1] : (X0 = X1 | (prede(X1) & predh(X1)) | (prede(X0) & predh(X0)) | ~room(X1) | ~room(X0)) & ? [X2] : ((~prede(X2) | ~predh(X2)) & room(X2))) | ! [X3] : (~predb(X3) | predr(X3) | ~room(X3)) [rectify 144] 164. ? [X2] : ((~prede(X2) | ~predh(X2)) & room(X2)) => ((~prede(sK0) | ~predh(sK0)) & room(sK0)) [choice axiom] 165. (! [X0,X1] : (X0 = X1 | (prede(X1) & predh(X1)) | (prede(X0) & predh(X0)) | ~room(X1) | ~room(X0)) & ((~prede(sK0) | ~predh(sK0)) & room(sK0))) | ! [X3] : (~predb(X3) | predr(X3) | ~room(X3)) [skolemisation 163,164] 167. ! [X0] : ((~prede(X0) | predk(X0)) & (~predk(X0) | prede(X0))) [nnf transformation 50] 170. ? [X0] : ((prede(X0) | ~predr(X0)) & room(X0)) => ((prede(sK2) | ~predr(sK2)) & room(sK2)) [choice axiom] 171. (prede(sK2) | ~predr(sK2)) & room(sK2) [skolemisation 156,170] 254. room(sK0) | ~predb(X3) | predr(X3) | ~room(X3) [cnf transformation 165] 255. ~prede(sK0) | ~predh(sK0) | ~predb(X3) | predr(X3) | ~room(X3) [cnf transformation 165] 263. ~predk(X0) | prede(X0) [cnf transformation 167] 265. ~predr(X0) | ~predh(X0) | ~room(X0) [cnf transformation 150] 269. ~prede(X0) | predb(X0) | ~room(X0) [cnf transformation 154] 271. room(sK2) [cnf transformation 171] 273. ~prede(X0) | predh(X0) | ~room(X0) [cnf transformation 158] 274. ~room(X0) | predk(X0) [cnf transformation 159] 292. 5 <=> ! [X3] : (~predb(X3) | ~room(X3) | predr(X3)) [avatar definition] 293. ~predb(X3) | ~room(X3) | predr(X3) <- (5) [avatar component clause 292] 308. 9 <=> predh(sK0) [avatar definition] 312. 10 <=> prede(sK0) [avatar definition] 313. prede(sK0) <- (10) [avatar component clause 312] 315. 5 | ~9 | ~10 [avatar split clause 255,312,308,292] 317. 11 <=> room(sK0) [avatar definition] 319. room(sK0) <- (11) [avatar component clause 317] 320. 5 | 11 [avatar split clause 254,317,292] 322. 12 <=> predr(sK2) [avatar definition] 323. predr(sK2) <- (12) [avatar component clause 322] 324. ~predr(sK2) <- (~12) [avatar component clause 322] 326. 13 <=> prede(sK2) [avatar definition] 328. prede(sK2) <- (13) [avatar component clause 326] 335. predk(sK2) [resolution 274,271] 338. prede(sK2) [resolution 335,263] 339. 13 [avatar split clause 338,326] 342. predb(sK2) | ~room(sK2) <- (13) [resolution 269,328] 344. predb(sK2) <- (13) [subsumption resolution 342,271] 346. predh(sK2) | ~room(sK2) <- (13) [resolution 273,328] 348. predh(sK2) <- (13) [subsumption resolution 346,271] 352. ~room(sK2) | predr(sK2) <- (5, 13) [resolution 344,293] 353. predr(sK2) <- (5, 13) [subsumption resolution 352,271] 354. $false <- (5, ~12, 13) [subsumption resolution 353,324] 355. ~5 | 12 | ~13 [avatar contradiction clause 354] 357. predk(sK0) <- (11) [resolution 319,274] 358. prede(sK0) <- (11) [resolution 357,263] 361. 10 | ~11 [avatar split clause 358,317,312] 362. predh(sK0) | ~room(sK0) <- (10) [resolution 313,273] 369. predh(sK0) <- (10, 11) [subsumption resolution 362,319] 370. 9 | ~10 | ~11 [avatar split clause 369,317,312,308] 372. ~predh(sK2) | ~room(sK2) <- (12) [resolution 323,265] 374. ~room(sK2) <- (12, 13) [subsumption resolution 372,348] 375. $false <- (12, 13) [subsumption resolution 374,271] 376. ~12 | ~13 [avatar contradiction clause 375] 377. $false [avatar sat refutation 315,320,339,355,361,370,376] % SZS output end Proof for 5126016585368665179929994 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.052634
Daniel, Tim, Christopher are the only persons in the room. Someone in the room enjoys watercolor painting only if if someone enjoys watercolor painting then he/she collects comic books and vice versa. If it is not the case that someone anywhere plays the violin and practices graffiti art then if someone collects antique jewelry then he/she enjoys cross-country skiing and vice versa. Someone in the room is a night owl if someone in the room writes and illustrates their own graphic novels and vice versa.
Tim neither enjoys cross-country skiing nor designs and sews custom cosplay costumes for conventions.
neutral
room(daniel)&room(tim)&room(christopher)&(![X]:(room(X)=>(X='daniel'|X='tim'|X='christopher')))& ((?[X]:(room(X)&(enjoys_watercolor_painting(X))))=>((![X]:((enjoys_watercolor_painting(X))<=>(collects_comic_books(X))))))& ((~(?[X]:(anywhere(X)&(((plays_the_violin(X))&(practices_graffiti_art(X)))))))=>((![X]:((collects_antique_jewelry(X))<=>(enjoys_cross-country_skiing(X))))))& ((?[X]:(room(X)&(writes_and_illustrates_their_own_graphic_novels(X))))<=>(?[X]:(room(X)&(is_a_night_owl(X)))))& ((((?[X]:(room(X)&((enjoys_cross-country_skiing(X))<~>(collects_antique_jewelry(X)))))))=>(?[X]:(anywhere(X)&(practices_zumba(X)))))& ((~(?[X]:(room(X)&(((enjoys_watercolor_painting(X))&(plays_the_violin(X)))))))=>(?[X]:(room(X)&(enjoys_virtual_reality_gaming(X)))))& ((?[X]:(room(X)&(is_a_night_owl(X))))=>(?[X]:(room(X)&(enjoys_cross-country_skiing(X)))))& ((![X]:((practices_graffiti_art(X))<=>(enjoys_watercolor_painting(X)))))& (?[X]:(room(X)&(enjoys_cross-country_skiing(X))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_watercolor_painting(X)&enjoys_watercolor_painting(Y))&(X!=Y))))& ((![X]:((writes_and_illustrates_their_own_graphic_novels(X))<=>(((enjoys_cross-country_skiing(X))<~>(enjoys_virtual_reality_gaming(X)))))))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(enjoys_cross-country_skiing(X))))))& ((![X]:((((is_a_night_owl(X))&(writes_and_illustrates_their_own_graphic_novels(X))&(practices_graffiti_art(X))))<=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))& (~(?[X]:(room(X)&(collects_antique_jewelry(X)))))& ((![X]:((practices_zumba(X))<=>(enjoys_virtual_reality_gaming(X)))))& (?[X]:(room(X)&(plays_the_violin(X))))& ((![X]:((collects_comic_books(X))<=>(enjoys_virtual_reality_gaming(X)))))& (?[X]:(~room(X)&(practices_graffiti_art(X))))& (?[X]:(~room(X)&(enjoys_virtual_reality_gaming(X))))& (~(?[X]:(room(X)&(writes_and_illustrates_their_own_graphic_novels(X)))))& (?[X]:(room(X)&(collects_comic_books(X))))& ((![X]:((practices_graffiti_art(X))<=>(enjoys_virtual_reality_gaming(X)))))& (~(?[X]:(room(X)&(is_a_night_owl(X)))))& (((?[X]:(room(X)&enjoys_virtual_reality_gaming(X)))))& (?[X]:(~room(X)&(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))&(collects_antique_jewelry(X))))))& (((?[X]:(anywhere(X)&enjoys_virtual_reality_gaming(X)))))
room(daniel)&room(tim)&room(christopher)&(![X]:(room(X)=>(X='daniel'|X='tim'|X='christopher')))& ~((enjoys_cross-country_skiing(tim))|(designs_and_sews_custom_cosplay_costumes_for_conventions(tim)))
[]
null
0.469051
Nancy, April, Donald are the only persons in the room. If “April enjoys bird watching and is a sibling of Alice” then “it is not the case that “Donald and Walter like each other””. If “it is not the case that “Donald and Walter like each other”” then “everyone in the room does not develop open-source software projects in their free time or is not generous, not quiet”. Either “everyone in the room hates Alice or is not a chess master who participates in national tournaments” or “it is true that “everyone anywhere is not a member of a local theater group specializing in improv or is not a funny tourist”” but not both. If “not everyone in the room own a television or does not own a telescope” then “Walter is quieter than Nancy”. “All generous persons are calm” if “someone in the room is poorer than Brenda”. If “everyone outside the room has lived in exactly three countries or does not enjoy mountain biking” then “April is a client of Brenda, own a television and is a skilled home brewer experimenting with craft beer recipes”. April who is a scotch connoisseur either is a strong european or is a coffee connoisseur but not both. No humble person is kind. Everyone in the room is poorer than Walter. Donald is a creative person. April is not a chess master who participates in national tournaments. Nancy and Johana hate each other. All generous persons are calm. April is a scotch connoisseur. April is a client of Brenda, own a television and is a skilled home brewer experimenting with craft beer recipes. Not everyone in the room who likes Brenda is not a calm creative happy tourist. Someone in the room is a wise old person. All patient persons are quiet. Everyone in the room is a client of Alice or is not a coffee connoisseur.
Donald is richer than Walter.
contradiction
room(nancy)&room(april)&room(donald)&(![X]:(room(X)=>(X='nancy'|X='april'|X='donald')))& (((((enjoys_bird_watching(april))&(sibling(alice,april))))=>(~((like(donald,walter) & like(walter,donald)))))& ((~((like(donald,walter) & like(walter,donald))))=>(![X]:(room(X)=>(((~generous(X)&~quiet(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))))& ((![X]:(room(X)=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))|(hate(alice,X))))))<~>(![X]:(anywhere(X)=>(((~(funny(X)&tourist(X)))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X)))))))& ((~![X]:(room(X)=>(((does_not_own_a_telescope(X))|(own_a_television(X))))))=>(quieter(nancy,walter)))& ((?[X]:(room(X)&(poorer(brenda,X))))=>(![X]:(generous(X)=>calm(X))))& ((![X]:(~room(X)=>(((does_not_enjoy_mountain_biking(X))|(has_lived_in_exactly_three_countries(X))))))=>(((client(brenda,april))&(own_a_television(april))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(april)))))& ((is_a_scotch_connoisseur(april))&(((strong(april)&european(april))<~>(is_a_coffee_connoisseur(april)))))& (~?[X]:(humble(X)=>kind(X)))& (![X]:(room(X)=>(poorer(walter,X))))& (creative(donald)&person(donald))& (is_not_a_chess_master_who_participates_in_national_tournaments(april))& ((hate(nancy,johana) & hate(johana,nancy)))& (![X]:(generous(X)=>calm(X)))& (is_a_scotch_connoisseur(april))& (((client(brenda,april))&(own_a_television(april))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(april))))& (~![X]:(room(X)=>(((like(brenda,X))=>(~(calm(X)&creative(X)&happy(X)&tourist(X)))))))& (?[X]:(room(X)&(wise(X)&old(X)&person(X))))& (![X]:(patient(X)=>quiet(X)))& (![X]:(room(X)=>(((is_not_a_coffee_connoisseur(X))|(client(alice,X))))))& (is_a_member_of_a_local_theater_group_specializing_in_improv(nancy))& (![X]:(~room(X)=>(((does_not_enjoy_logic_puzzles(X))|(richer(alice,X))))))& (![X]:(room(X)=>(((richer(alice,X))<=>(is_a_coffee_connoisseur(X))))))& ((like(april,walter) & like(walter,april)))& (enjoys_watercolor_painting(nancy))& (quiet(donald)&european(donald)&quiet(april)&european(april))& (![X]:(room(X)=>(((quiet(X)&happy(X)&person(X))=>(builds_model_airplanes(X))))))
room(nancy)&room(april)&room(donald)&(![X]:(room(X)=>(X='nancy'|X='april'|X='donald')))& richer(walter,donald)
[ "b10", "b25", "b42", "p0", "hypothesis" ]
% SZS status Unsatisfiable for 1860581267687696880575882 % SZS output start Proof for 1860581267687696880575882 11. ! [X0,X1] : (X0 != X1 => (richer(X0,X1) => poorer(X1,X0))) [input b10] 26. ! [X0,X1] : (X0 != X1 => (poorer(X0,X1) => ~poorer(X1,X0))) [input b25] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => ((person(X0) & happy(X0) & quiet(X0)) => predi(X0))) & european(paul) & quiet(paul) & european(fred) & quiet(fred) & predq(mary) & like(john,paul) & like(paul,john) & ! [X0] : (room(X0) => (richer(lucy,X0) <=> predc(X0))) & ! [X0] : (~room(X0) => (richer(lucy,X0) | ~predy(X0))) & predw(mary) & ! [X0] : (room(X0) => (client(lucy,X0) | ~predc(X0))) & ! [X0] : (patient(X0) => quiet(X0)) & ? [X0] : (person(X0) & old(X0) & wise(X0) & room(X0)) & ~! [X0] : (room(X0) => (like(alice,X0) => ~(tourist(X0) & happy(X0) & creative(X0) & calm(X0)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X0] : (generous(X0) => calm(X0)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & person(fred) & creative(fred) & ! [X0] : (room(X0) => poorer(john,X0)) & ~? [X0] : (humble(X0) => kind(X0)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X0] : (~room(X0) => (predt(X0) | ~preds(X0))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X0] : (poorer(alice,X0) & room(X0)) => ! [X0] : (generous(X0) => calm(X0))) & (~! [X0] : (room(X0) => (predl(X0) | ~predg(X0))) => quieter(mary,john)) & (! [X0] : (room(X0) => (hate(lucy,X0) | ~predr(X0))) <~> ! [X0] : (anywhere(X0) => (~predw(X0) | ~(tourist(X0) & funny(X0))))) & (~(like(john,fred) & like(fred,john)) => ! [X0] : (room(X0) => (~predm(X0) | (~quiet(X0) & ~generous(X0))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. richer(john,fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. ! [X0] : (room(X0) => ((person(X0) & happy(X0) & quiet(X0)) => predi(X0))) & european(paul) & quiet(paul) & european(fred) & quiet(fred) & predq(mary) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & ! [X2] : (~room(X2) => (richer(lucy,X2) | ~predy(X2))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ! [X4] : (patient(X4) => quiet(X4)) & ? [X5] : (person(X5) & old(X5) & wise(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & happy(X6) & creative(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & person(fred) & creative(fred) & ! [X8] : (room(X8) => poorer(john,X8)) & ~? [X9] : (humble(X9) => kind(X9)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [rectify 44] 47. european(paul) & quiet(paul) & european(fred) & quiet(fred) & predq(mary) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & ! [X2] : (~room(X2) => (richer(lucy,X2) | ~predy(X2))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ! [X4] : (patient(X4) => quiet(X4)) & ? [X5] : (person(X5) & old(X5) & wise(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & happy(X6) & creative(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & person(fred) & creative(fred) & ! [X8] : (room(X8) => poorer(john,X8)) & ~? [X9] : (humble(X9) => kind(X9)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 49. european(paul) & quiet(paul) & european(fred) & quiet(fred) & predq(mary) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & ! [X2] : (~room(X2) => (richer(lucy,X2) | ~predy(X2))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ! [X4] : (patient(X4) => quiet(X4)) & ? [X5] : (old(X5) & wise(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & happy(X6) & creative(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & creative(fred) & ! [X8] : (room(X8) => poorer(john,X8)) & ~? [X9] : (humble(X9) => kind(X9)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 51. european(paul) & quiet(paul) & european(fred) & quiet(fred) & predq(mary) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & ! [X2] : (~room(X2) => (richer(lucy,X2) | ~predy(X2))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ! [X4] : (patient(X4) => quiet(X4)) & ? [X5] : (old(X5) & wise(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & creative(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & creative(fred) & ! [X8] : (room(X8) => poorer(john,X8)) & ~? [X9] : (humble(X9) => kind(X9)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 52. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & ! [X2] : (~room(X2) => (richer(lucy,X2) | ~predy(X2))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ! [X4] : (patient(X4) => quiet(X4)) & ? [X5] : (old(X5) & wise(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & creative(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & creative(fred) & ! [X8] : (room(X8) => poorer(john,X8)) & ~? [X9] : (humble(X9) => kind(X9)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ! [X4] : (patient(X4) => quiet(X4)) & ? [X5] : (old(X5) & wise(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & creative(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & creative(fred) & ! [X8] : (room(X8) => poorer(john,X8)) & ~? [X9] : (humble(X9) => kind(X9)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ? [X5] : (old(X5) & wise(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & creative(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & creative(fred) & ! [X8] : (room(X8) => poorer(john,X8)) & ~? [X9] : (humble(X9) => kind(X9)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 55. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & creative(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & creative(fred) & ! [X8] : (room(X8) => poorer(john,X8)) & ~? [X9] : (humble(X9) => kind(X9)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 56. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ~? [X9] : (humble(X9) => kind(X9)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 55] 57. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ~? [X9] : ~humble(X9) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 56] 58. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & predp(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & predp(paul) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 57] 59. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & calm(X6)))) & predn(paul) & predl(paul) & client(alice,paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predn(paul) & predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 58] 60. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ! [X3] : (room(X3) => (client(lucy,X3) | ~predc(X3))) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & calm(X6)))) & predl(paul) & client(alice,paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => (predl(paul) & client(alice,paul))) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 59] 61. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & calm(X6)))) & predl(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X10] : (~room(X10) => (predt(X10) | ~preds(X10))) => predl(paul)) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 60] 62. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & calm(X6)))) & predl(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X10] : (~room(X10) => ~preds(X10)) => predl(paul)) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 61] 63. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~(tourist(X6) & calm(X6)))) & predl(paul) & ! [X7] : (generous(X7) => calm(X7)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X10] : ~~room(X10) => predl(paul)) & (? [X11] : (poorer(alice,X11) & room(X11)) => ! [X12] : (generous(X12) => calm(X12))) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 62] 64. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~tourist(X6))) & predl(paul) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X10] : ~~room(X10) => predl(paul)) & (~! [X13] : (room(X13) => (predl(X13) | ~predg(X13))) => quieter(mary,john)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 63] 65. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~tourist(X6))) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & (~(like(john,fred) & like(fred,john)) => ! [X16] : (room(X16) => (~predm(X16) | (~quiet(X16) & ~generous(X16))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 64] 66. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~tourist(X6))) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & ((sibling(lucy,paul) & predj(paul)) => ~(like(john,fred) & like(fred,john))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 65] 67. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (room(X1) => (richer(lucy,X1) <=> predc(X1))) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ~! [X6] : (room(X6) => (like(alice,X6) => ~tourist(X6))) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (room(X8) => poorer(john,X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X14] : (room(X14) => (hate(lucy,X14) | ~predr(X14))) <~> ! [X15] : (anywhere(X15) => (~predw(X15) | ~(tourist(X15) & funny(X15))))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 66] 81. ! [X0,X1] : ((poorer(X1,X0) | ~richer(X0,X1)) | X0 = X1) [ennf transformation 11] 82. ! [X0,X1] : (poorer(X1,X0) | ~richer(X0,X1) | X0 = X1) [flattening 81] 108. ! [X0,X1] : ((~poorer(X1,X0) | ~poorer(X0,X1)) | X0 = X1) [ennf transformation 26] 109. ! [X0,X1] : (~poorer(X1,X0) | ~poorer(X0,X1) | X0 = X1) [flattening 108] 139. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : ((richer(lucy,X1) <=> predc(X1)) | ~room(X1)) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ? [X6] : ((tourist(X6) & like(alice,X6)) & room(X6)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (poorer(john,X8) | ~room(X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X14] : ((hate(lucy,X14) | ~predr(X14)) | ~room(X14)) <~> ! [X15] : ((~predw(X15) | (~tourist(X15) | ~funny(X15))) | ~anywhere(X15))) & ! [X17] : ((fred = X17 | paul = X17 | mary = X17) | ~room(X17)) & room(fred) & room(paul) & room(mary) [ennf transformation 67] 140. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : ((richer(lucy,X1) <=> predc(X1)) | ~room(X1)) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ? [X6] : (tourist(X6) & like(alice,X6) & room(X6)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (poorer(john,X8) | ~room(X8)) & ((european(paul) & strong(paul)) <~> predc(paul)) & (! [X14] : (hate(lucy,X14) | ~predr(X14) | ~room(X14)) <~> ! [X15] : (~predw(X15) | ~tourist(X15) | ~funny(X15) | ~anywhere(X15))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [flattening 139] 141. richer(john,fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 45] 142. richer(john,fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 141] 144. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (((richer(lucy,X1) | ~predc(X1)) & (predc(X1) | ~richer(lucy,X1))) | ~room(X1)) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ? [X6] : (tourist(X6) & like(alice,X6) & room(X6)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (poorer(john,X8) | ~room(X8)) & ((~predc(paul) | (~european(paul) | ~strong(paul))) & (predc(paul) | (european(paul) & strong(paul)))) & ((? [X15] : (predw(X15) & tourist(X15) & funny(X15) & anywhere(X15)) | ? [X14] : (~hate(lucy,X14) & predr(X14) & room(X14))) & (! [X15] : (~predw(X15) | ~tourist(X15) | ~funny(X15) | ~anywhere(X15)) | ! [X14] : (hate(lucy,X14) | ~predr(X14) | ~room(X14)))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [nnf transformation 140] 145. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X1] : (((richer(lucy,X1) | ~predc(X1)) & (predc(X1) | ~richer(lucy,X1))) | ~room(X1)) & predw(mary) & ? [X5] : (old(X5) & room(X5)) & ? [X6] : (tourist(X6) & like(alice,X6) & room(X6)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X8] : (poorer(john,X8) | ~room(X8)) & (~predc(paul) | ~european(paul) | ~strong(paul)) & (predc(paul) | (european(paul) & strong(paul))) & (? [X15] : (predw(X15) & tourist(X15) & funny(X15) & anywhere(X15)) | ? [X14] : (~hate(lucy,X14) & predr(X14) & room(X14))) & (! [X15] : (~predw(X15) | ~tourist(X15) | ~funny(X15) | ~anywhere(X15)) | ! [X14] : (hate(lucy,X14) | ~predr(X14) | ~room(X14))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [flattening 144] 146. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X0] : (((richer(lucy,X0) | ~predc(X0)) & (predc(X0) | ~richer(lucy,X0))) | ~room(X0)) & predw(mary) & ? [X1] : (old(X1) & room(X1)) & ? [X2] : (tourist(X2) & like(alice,X2) & room(X2)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X3] : (poorer(john,X3) | ~room(X3)) & (~predc(paul) | ~european(paul) | ~strong(paul)) & (predc(paul) | (european(paul) & strong(paul))) & (? [X4] : (predw(X4) & tourist(X4) & funny(X4) & anywhere(X4)) | ? [X5] : (~hate(lucy,X5) & predr(X5) & room(X5))) & (! [X6] : (~predw(X6) | ~tourist(X6) | ~funny(X6) | ~anywhere(X6)) | ! [X7] : (hate(lucy,X7) | ~predr(X7) | ~room(X7))) & ! [X8] : (fred = X8 | paul = X8 | mary = X8 | ~room(X8)) & room(fred) & room(paul) & room(mary) [rectify 145] 147. ? [X1] : (old(X1) & room(X1)) => (old(sK0) & room(sK0)) [choice axiom] 148. ? [X2] : (tourist(X2) & like(alice,X2) & room(X2)) => (tourist(sK1) & like(alice,sK1) & room(sK1)) [choice axiom] 149. ? [X4] : (predw(X4) & tourist(X4) & funny(X4) & anywhere(X4)) => (predw(sK2) & tourist(sK2) & funny(sK2) & anywhere(sK2)) [choice axiom] 150. ? [X5] : (~hate(lucy,X5) & predr(X5) & room(X5)) => (~hate(lucy,sK3) & predr(sK3) & room(sK3)) [choice axiom] 151. european(paul) & quiet(paul) & european(fred) & quiet(fred) & like(john,paul) & like(paul,john) & ! [X0] : (((richer(lucy,X0) | ~predc(X0)) & (predc(X0) | ~richer(lucy,X0))) | ~room(X0)) & predw(mary) & (old(sK0) & room(sK0)) & (tourist(sK1) & like(alice,sK1) & room(sK1)) & hate(susan,mary) & hate(mary,susan) & ~predr(paul) & ! [X3] : (poorer(john,X3) | ~room(X3)) & (~predc(paul) | ~european(paul) | ~strong(paul)) & (predc(paul) | (european(paul) & strong(paul))) & ((predw(sK2) & tourist(sK2) & funny(sK2) & anywhere(sK2)) | (~hate(lucy,sK3) & predr(sK3) & room(sK3))) & (! [X6] : (~predw(X6) | ~tourist(X6) | ~funny(X6) | ~anywhere(X6)) | ! [X7] : (hate(lucy,X7) | ~predr(X7) | ~room(X7))) & ! [X8] : (fred = X8 | paul = X8 | mary = X8 | ~room(X8)) & room(fred) & room(paul) & room(mary) [skolemisation 146,150,149,148,147] 161. ~richer(X0,X1) | poorer(X1,X0) | X0 = X1 [cnf transformation 82] 176. ~poorer(X1,X0) | ~poorer(X0,X1) | X0 = X1 [cnf transformation 109] 219. fred != john [cnf transformation 43] 237. room(fred) [cnf transformation 151] 255. poorer(john,X3) | ~room(X3) [cnf transformation 151] 277. richer(john,fred) [cnf transformation 142] 353. poorer(fred,john) | fred = john [resolution 161,277] 355. poorer(fred,john) [subsumption resolution 353,219] 357. ~poorer(john,fred) | fred = john [resolution 176,355] 358. ~poorer(john,fred) [subsumption resolution 357,219] 359. ~room(fred) [resolution 358,255] 360. $false [subsumption resolution 359,237] % SZS output end Proof for 1860581267687696880575882 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.012722
Lisa, Lauryn, Margaret, Alfonso, John are the only persons in the room. 'Lauryn neither does enjoy mountain biking nor does not play video games' only if 'everyone outside the room does not practice kickboxing, owns a microscope or is not a client of Meta'. 'Everyone in the room does not enjoy rooftop gardening or does not enjoy coding in Python' if 'everyone in the room does not travel domestically frequently or does not enjoy stargazing' and vice versa. Margaret does not make homemade pastries. If someone makes homemade pastries, enjoys stargazing and practices archery then he/she is not a client of Meta. Lisa neither plays video games nor does not travel domestically frequently. Everyone in the room does not play video games if they does not collect rare sneakers. Lisa does not own a microscope or does not enjoy coding in Python or both. Everyone in the room does enjoy mountain biking. Margaret does not enjoy rooftop gardening. If someone makes homemade pastries and is not a member of a local theater group specializing in improv then he/she has a specialized collection of handmade artisan pottery. Everyone in the room does not enjoy rooftop gardening or does not enjoy coding in Python. Lisa does not own a microscope. Everyone in the room does enjoy trail running. Everyone in the room does not enjoy rooftop gardening if they does not enjoy mountain biking. Lauryn does not enjoy stargazing. Everyone outside the room is not a certified scuba diver with advanced underwater photography skills, collect rare sneakers or does not make homemade pastries. Everyone in the room does not enjoy rooftop gardening if they plays video games or does not enjoy trail running or both. Everyone in the room neither does not have a specialized collection of handmade artisan pottery nor does not travel domestically frequently. Margaret does not practice kickboxing or has a specialized collection of handmade artisan pottery or both. Everyone in the room does not enjoy coding in Python.
Lisa enjoys stargazing.
contradiction
room(lisa)&room(lauryn)&room(margaret)&room(alfonso)&room(john)&(![X]:(room(X)=>(X='lisa'|X='lauryn'|X='margaret'|X='alfonso'|X='john')))& ((~((does_enjoy_mountain_biking(lauryn))|(does_not_play_video_games(lauryn))))=>(![X]:(~room(X)=>(((does_not_practice_kickboxing(X))|(owns_a_microscope(X))|(is_not_a_client_of_Meta(X)))))))& ((![X]:(room(X)=>(((does_not_enjoy_stargazing(X))|(does_not_travel_domestically_frequently(X))))))<=>(![X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))|(does_not_enjoy_rooftop_gardening(X)))))))& (does_not_make_homemade_pastries(margaret))& ((![X]:((((makes_homemade_pastries(X))&(enjoys_stargazing(X))&(practices_archery(X))))=>(is_not_a_client_of_Meta(X)))))& (~((plays_video_games(lisa))|(does_not_travel_domestically_frequently(lisa))))& (![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))=>(does_not_play_video_games(X))))))& (((does_not_own_a_microscope(lisa))|(does_not_enjoy_coding_in_Python(lisa))))& (![X]:(room(X)=>(does_enjoy_mountain_biking(X))))& (does_not_enjoy_rooftop_gardening(margaret))& ((![X]:((((makes_homemade_pastries(X))&(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X)))))& (![X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))|(does_not_enjoy_rooftop_gardening(X))))))& (does_not_own_a_microscope(lisa))& (![X]:(room(X)=>(does_enjoy_trail_running(X))))& (![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))=>(does_not_enjoy_rooftop_gardening(X))))))& (does_not_enjoy_stargazing(lauryn))& (![X]:(~room(X)=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(collect_rare_sneakers(X))|(does_not_make_homemade_pastries(X))))))& (![X]:(room(X)=>(((((plays_video_games(X))|(does_not_enjoy_trail_running(X))))=>(does_not_enjoy_rooftop_gardening(X))))))& (![X]:(room(X)=>(~((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))|(does_not_travel_domestically_frequently(X))))))& (((does_not_practice_kickboxing(margaret))|(has_a_specialized_collection_of_handmade_artisan_pottery(margaret))))& (![X]:(room(X)=>(collect_rare_sneakers(X))))& (~![X]:(room(X)=>(practices_kickboxing(X))))& (![X]:(~room(X)=>(is_not_a_client_of_Meta(X))))& (![X]:(room(X)=>(does_not_enjoy_coding_in_Python(X))))& (![X]:(room(X)=>(((does_not_enjoy_stargazing(X))|(does_not_practice_archery(X))|(does_not_enjoy_trail_running(X))))))& (((plays_video_games(lauryn))|(does_not_enjoy_trail_running(lauryn))))& ((![X]:((~((does_not_enjoy_rooftop_gardening(X))|(does_not_collect_rare_sneakers(X))))<=>(((practices_kickboxing(X))&(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X)))))))
room(lisa)&room(lauryn)&room(margaret)&room(alfonso)&room(john)&(![X]:(room(X)=>(X='lisa'|X='lauryn'|X='margaret'|X='alfonso'|X='john')))& enjoys_stargazing(lisa)
[ "p0", "p2", "p18", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 7465584927244990192602411 % SZS output start Proof for 7465584927244990192602411 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => (~predo(X0) | ~predc(X0))) <=> ! [X0] : (room(X0) => (~predp(X0) | ~predl(X0))) [input p2] 62. ! [X0] : (room(X0) => ~(~predo(X0) | ~preda(X0))) [input p18] 67. ! [X0] : (room(X0) => ~predl(X0)) [input p23] 71. predc(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 72. ! [X0] : (room(X0) => (~predo(X0) | ~predc(X0))) <=> ! [X1] : (room(X1) => (~predp(X1) | ~predl(X1))) [rectify 46] 75. ! [X0] : (room(X0) => ~~predo(X0)) [pure predicate removal 62] 158. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 159. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 158] 160. ! [X0] : ((~predo(X0) | ~predc(X0)) | ~room(X0)) <=> ! [X1] : ((~predp(X1) | ~predl(X1)) | ~room(X1)) [ennf transformation 72] 161. ! [X0] : (~predo(X0) | ~predc(X0) | ~room(X0)) <=> ! [X1] : (~predp(X1) | ~predl(X1) | ~room(X1)) [flattening 160] 170. ! [X0] : (predo(X0) | ~room(X0)) [ennf transformation 75] 173. ! [X0] : (~predl(X0) | ~room(X0)) [ennf transformation 67] 175. predc(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 71] 176. predc(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 175] 178. (! [X0] : (~predo(X0) | ~predc(X0) | ~room(X0)) | ? [X1] : (predp(X1) & predl(X1) & room(X1))) & (! [X1] : (~predp(X1) | ~predl(X1) | ~room(X1)) | ? [X0] : (predo(X0) & predc(X0) & room(X0))) [nnf transformation 161] 179. (! [X0] : (~predo(X0) | ~predc(X0) | ~room(X0)) | ? [X1] : (predp(X1) & predl(X1) & room(X1))) & (! [X2] : (~predp(X2) | ~predl(X2) | ~room(X2)) | ? [X3] : (predo(X3) & predc(X3) & room(X3))) [rectify 178] 180. ? [X1] : (predp(X1) & predl(X1) & room(X1)) => (predp(sK0) & predl(sK0) & room(sK0)) [choice axiom] 181. ? [X3] : (predo(X3) & predc(X3) & room(X3)) => (predo(sK1) & predc(sK1) & room(sK1)) [choice axiom] 182. (! [X0] : (~predo(X0) | ~predc(X0) | ~room(X0)) | (predp(sK0) & predl(sK0) & room(sK0))) & (! [X2] : (~predp(X2) | ~predl(X2) | ~room(X2)) | (predo(sK1) & predc(sK1) & room(sK1))) [skolemisation 179,181,180] 267. room(mary) [cnf transformation 159] 276. ~predo(X0) | ~predc(X0) | ~room(X0) | room(sK0) [cnf transformation 182] 277. ~predo(X0) | ~predc(X0) | ~room(X0) | predl(sK0) [cnf transformation 182] 288. ~room(X0) | predo(X0) [cnf transformation 170] 292. ~predl(X0) | ~room(X0) [cnf transformation 173] 304. predc(mary) [cnf transformation 176] 310. 2 <=> ! [X0] : (~predo(X0) | ~room(X0) | ~predc(X0)) [avatar definition] 311. ~predo(X0) | ~room(X0) | ~predc(X0) <- (2) [avatar component clause 310] 314. 3 <=> predl(sK0) [avatar definition] 316. predl(sK0) <- (3) [avatar component clause 314] 317. 3 | 2 [avatar split clause 277,310,314] 319. 4 <=> room(sK0) [avatar definition] 321. room(sK0) <- (4) [avatar component clause 319] 322. 4 | 2 [avatar split clause 276,310,319] 351. ~predc(X0) | ~room(X0) <- (2) [subsumption resolution 311,288] 373. ~room(mary) <- (2) [resolution 351,304] 374. $false <- (2) [subsumption resolution 373,267] 375. ~2 [avatar contradiction clause 374] 376. ~room(sK0) <- (3) [resolution 316,292] 377. $false <- (3, 4) [subsumption resolution 376,321] 378. ~3 | ~4 [avatar contradiction clause 377] 379. $false [avatar sat refutation 317,322,375,378] % SZS output end Proof for 7465584927244990192602411 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.430276
Eric, Henry, Frank, Tamika, Stephanie are the only persons in the room. If 'Eric enjoys virtual reality gaming' then 'it is true that 'Eric plays video games''. If 'it is true that 'Eric plays video games'' then 'it is not the case that 'Tamika neither reads mystery novels nor enjoys snowboarding''. If 'Henry collects vintage vinyl records' then 'everyone in the room has completed a triathlon if they does not collect rare and antique scientific instruments'. If 'everyone in the room is a drone photographer' then 'everyone in the room enjoys watercolor painting'. If 'everyone in the room enjoys watercolor painting' then 'everyone in the room maintains a large, organic vegetable garden year-round if they does not enjoy coding in Python'. If 'everyone in the room has completed a triathlon or does not collect rare and antique scientific instruments' then 'everyone in the room does not maintain a personal blog focused on cybersecurity tips or collects vintage vinyl records'. If 'everyone in the room does not maintain a personal blog focused on cybersecurity tips or collects vintage vinyl records' then 'everyone in the room maintains a personal blog focused on cybersecurity tips if they does not maintain a personal blog focused on cybersecurity tips'. If 'everyone in the room does not play video games or does not enjoy coding in Python' then 'no one in the room collects limited-edition art prints from contemporary artists if they does not play video games'. 'Tamika does not host regular game nights featuring complex strategy games' only if 'Frank collects limited-edition art prints from contemporary artists'. If 'everyone in the room does not collect limited-edition art prints from contemporary artists or hosts regular game nights featuring complex strategy games' then 'Eric does not build model airplanes'.
Everyone in the room does not maintain a personal blog focused on cybersecurity tips.
contradiction
room(eric)&room(henry)&room(frank)&room(tamika)&room(stephanie)&(![X]:(room(X)=>(X='eric'|X='henry'|X='frank'|X='tamika'|X='stephanie')))& (((enjoys_virtual_reality_gaming(eric))=>(plays_video_games(eric)))& ((plays_video_games(eric))=>(~(~((reads_mystery_novels(tamika))|(enjoys_snowboarding(tamika)))))))& ((collects_vintage_vinyl_records(henry))=>(![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))=>(has_completed_a_triathlon(X)))))))& (((![X]:(room(X)=>(is_a_drone_photographer(X))))=>(![X]:(room(X)=>(enjoys_watercolor_painting(X)))))& ((![X]:(room(X)=>(enjoys_watercolor_painting(X))))=>(![X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))))& (((![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))|(has_completed_a_triathlon(X))))))=>(![X]:(room(X)=>(((collects_vintage_vinyl_records(X))|(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X)))))))& ((![X]:(room(X)=>(((collects_vintage_vinyl_records(X))|(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))))))=>(![X]:(room(X)=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))))& ((![X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))|(does_not_play_video_games(X))))))=>(~?[X]:(room(X)=>(((does_not_play_video_games(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X)))))))& ((does_not_host_regular_game_nights_featuring_complex_strategy_games(tamika))=>(collects_limited-edition_art_prints_from_contemporary_artists(frank)))& ((![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))=>(does_not_build_model_airplanes(eric)))& (((works_on_fridays(tamika))=>(enjoys_snowboarding(frank)))& ((enjoys_snowboarding(frank))=>(does_not_work_on_fridays(tamika))))& ((![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))|(plays_video_games(X))))))<~>(![X]:(anywhere(X)=>(((works_on_fridays(X))|(is_not_allergic_to_anything(X)))))))& ((![X]:(room(X)=>(((does_not_enjoy_kayaking(X))|(collects_rare_and_antique_scientific_instruments(X))))))=>((?[X,Y]:(room(X)&room(Y)&(does_not_collect_classic_novels(X)&does_not_collect_classic_novels(Y))&(X!=Y)))))& ((![X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))|(is_allergic_to_anything(X))))))=>(![X]:(~room(X)=>(((is_allergic_to_anything(X))=>(~((does_not_enjoy_stargazing(X))|(builds_model_airplanes(X)))))))))& (![X]:(room(X)=>(((~((does_not_enjoy_stargazing(X))|(builds_model_airplanes(X))))=>(is_not_allergic_to_anything(X))))))& (((?[X]:(room(X)&does_not_have_completed_a_triathlon(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_have_completed_a_triathlon(X))&(does_not_have_completed_a_triathlon(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(does_not_work_on_fridays(X))))))& (collects_classic_novels(frank))& (((?[X]:(room(X)&is_not_a_member_of_a_local_theater_group_specializing_in_improv(X)))&(![X,Y]:((room(X)&room(Y)&(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))&(is_not_a_member_of_a_local_theater_group_specializing_in_improv(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))&(maintains_a_large,_organic_vegetable_garden_year-round(X))&(does_not_work_on_fridays(X))))=>(plays_video_games(X))))))& (does_not_collect_rare_and_antique_scientific_instruments(henry))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(eric))& (is_allergic_to_anything(henry))& (![X]:(room(X)=>(((enjoys_spelunking(X))=>(does_not_have_a_piercing(X))))))& (![X]:(room(X)=>(((does_not_enjoy_kayaking(X))=>(does_not_enjoy_virtual_reality_gaming(X))))))& (![X]:(room(X)=>(((enjoys_stargazing(X))=>(collects_antique_jewelry(X))))))& (does_not_enjoy_coding_in_Python(eric))& (![X]:(room(X)=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(collects_antique_jewelry(X))))))& (((?[X]:(room(X)&does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))&(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(Y)))=>(X=Y)))))& (is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(tamika))& (![X]:(room(X)=>(((collects_antique_jewelry(X))=>(builds_model_airplanes(X))))))
room(eric)&room(henry)&room(frank)&room(tamika)&room(stephanie)&(![X]:(room(X)=>(X='eric'|X='henry'|X='frank'|X='tamika'|X='stephanie')))& ![X]:(room(X)=>(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 7955587988224334285797203 % SZS output start Proof for 7955587988224334285797203 44. ! [X0] : (room(X0) => (predy(X0) => predo(X0))) & ~predz(alice) & ! [X0,X1] : ((~predi(X1) & ~predi(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predi(X0) & room(X0)) & ! [X0] : (room(X0) => (~predv(X0) => predy(X0))) & ~predl(mary) & ! [X0] : (room(X0) => (predj(X0) => predy(X0))) & ! [X0] : (room(X0) => (~predh(X0) => ~predu(X0))) & ! [X0] : (room(X0) => (predg(X0) => ~predd(X0))) & predc(paul) & predi(mary) & ~predx(paul) & ! [X0] : (room(X0) => ((~predm(X0) & predq(X0) & ~predt(X0)) => predf(X0))) & ! [X0,X1] : ((~prede(X1) & ~prede(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~prede(X0) & room(X0)) & predk(fred) & ! [X0] : (room(X0) => (predv(X0) => ~predm(X0))) & ! [X0] : (room(X0) => (prede(X0) => predv(X0))) & ! [X0,X1] : ((~predw(X1) & ~predw(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predw(X0) & room(X0)) & ! [X0] : (room(X0) => (~(predo(X0) | ~predj(X0)) => ~predc(X0))) & (! [X0] : (room(X0) => (predc(X0) | ~predl(X0))) => ! [X0] : (~room(X0) => (predc(X0) => ~(predo(X0) | ~predj(X0))))) & (! [X0] : (room(X0) => (predx(X0) | ~predh(X0))) => ? [X0,X1] : (X0 != X1 & ~predk(X1) & ~predk(X0) & room(X1) & room(X0))) & (! [X0] : (room(X0) => (predf(X0) | ~predx(X0))) <~> ! [X0] : (anywhere(X0) => (~predc(X0) | predm(X0)))) & (preds(fred) => ~predm(alice)) & (predm(alice) => preds(fred)) & (! [X0] : (room(X0) => (~preda(X0) | predt(X0))) => ~predo(mary)) & (~predt(alice) => preda(fred)) & (! [X0] : (room(X0) => (~predf(X0) | ~predl(X0))) => ~? [X0] : (room(X0) => (~predf(X0) => preda(X0)))) & (! [X0] : (room(X0) => (~predi(X0) | predb(X0))) => ! [X0] : (room(X0) => (~predi(X0) => predi(X0)))) & (! [X0] : (room(X0) => (predw(X0) | ~predx(X0))) => ! [X0] : (room(X0) => (~predi(X0) | predb(X0)))) & (! [X0] : (room(X0) => predr(X0)) => ! [X0] : (room(X0) => (~predl(X0) => predq(X0)))) & (! [X0] : (room(X0) => predp(X0)) => ! [X0] : (room(X0) => predr(X0))) & (predb(paul) => ! [X0] : (room(X0) => (~predx(X0) => predw(X0)))) & (predf(mary) => ~~(preds(alice) | predn(alice))) & (predu(mary) => predf(mary)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => ~predi(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. ! [X0] : (room(X0) => (predy(X0) => predo(X0))) & ~predz(alice) & ! [X1,X2] : ((~predi(X2) & ~predi(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (room(X4) => (~predv(X4) => predy(X4))) & ~predl(mary) & ! [X5] : (room(X5) => (predj(X5) => predy(X5))) & ! [X6] : (room(X6) => (~predh(X6) => ~predu(X6))) & ! [X7] : (room(X7) => (predg(X7) => ~predd(X7))) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (room(X8) => ((~predm(X8) & predq(X8) & ~predt(X8)) => predf(X8))) & ! [X9,X10] : ((~prede(X10) & ~prede(X9) & room(X10) & room(X9)) => X9 = X10) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (room(X12) => (predv(X12) => ~predm(X12))) & ! [X13] : (room(X13) => (prede(X13) => predv(X13))) & ! [X14,X15] : ((~predw(X15) & ~predw(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (room(X17) => (~(predo(X17) | ~predj(X17)) => ~predc(X17))) & (! [X18] : (room(X18) => (predc(X18) | ~predl(X18))) => ! [X19] : (~room(X19) => (predc(X19) => ~(predo(X19) | ~predj(X19))))) & (! [X20] : (room(X20) => (predx(X20) | ~predh(X20))) => ? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21))) & (! [X23] : (room(X23) => (predf(X23) | ~predx(X23))) <~> ! [X24] : (anywhere(X24) => (~predc(X24) | predm(X24)))) & (preds(fred) => ~predm(alice)) & (predm(alice) => preds(fred)) & (! [X25] : (room(X25) => (~preda(X25) | predt(X25))) => ~predo(mary)) & (~predt(alice) => preda(fred)) & (! [X26] : (room(X26) => (~predf(X26) | ~predl(X26))) => ~? [X27] : (room(X27) => (~predf(X27) => preda(X27)))) & (! [X28] : (room(X28) => (~predi(X28) | predb(X28))) => ! [X29] : (room(X29) => (~predi(X29) => predi(X29)))) & (! [X30] : (room(X30) => (predw(X30) | ~predx(X30))) => ! [X31] : (room(X31) => (~predi(X31) | predb(X31)))) & (! [X32] : (room(X32) => predr(X32)) => ! [X33] : (room(X33) => (~predl(X33) => predq(X33)))) & (! [X34] : (room(X34) => predp(X34)) => ! [X35] : (room(X35) => predr(X35))) & (predb(paul) => ! [X36] : (room(X36) => (~predx(X36) => predw(X36)))) & (predf(mary) => ~~(preds(alice) | predn(alice))) & (predu(mary) => predf(mary)) & ! [X37] : (room(X37) => (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (room(X0) => (predy(X0) => predo(X0))) & ~predz(alice) & ! [X1,X2] : ((~predi(X2) & ~predi(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (room(X4) => (~predv(X4) => predy(X4))) & ~predl(mary) & ! [X5] : (room(X5) => (predj(X5) => predy(X5))) & ! [X6] : (room(X6) => (~predh(X6) => ~predu(X6))) & ! [X7] : (room(X7) => (predg(X7) => ~predd(X7))) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (room(X8) => ((~predm(X8) & predq(X8) & ~predt(X8)) => predf(X8))) & ! [X9,X10] : ((~prede(X10) & ~prede(X9) & room(X10) & room(X9)) => X9 = X10) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (room(X12) => (predv(X12) => ~predm(X12))) & ! [X13] : (room(X13) => (prede(X13) => predv(X13))) & ! [X14,X15] : ((~predw(X15) & ~predw(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (room(X17) => (~(predo(X17) | ~predj(X17)) => ~predc(X17))) & (! [X18] : (room(X18) => (predc(X18) | ~predl(X18))) => ! [X19] : (~room(X19) => (predc(X19) => ~(predo(X19) | ~predj(X19))))) & (! [X20] : (room(X20) => (predx(X20) | ~predh(X20))) => ? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21))) & (! [X23] : (room(X23) => (predf(X23) | ~predx(X23))) <~> ! [X24] : (anywhere(X24) => (~predc(X24) | predm(X24)))) & (preds(fred) => ~predm(alice)) & (predm(alice) => preds(fred)) & (! [X25] : (room(X25) => (~preda(X25) | predt(X25))) => ~predo(mary)) & (~predt(alice) => preda(fred)) & (! [X26] : (room(X26) => (~predf(X26) | ~predl(X26))) => ~? [X27] : (room(X27) => (~predf(X27) => preda(X27)))) & (! [X28] : (room(X28) => (~predi(X28) | predb(X28))) => ! [X29] : (room(X29) => (~predi(X29) => predi(X29)))) & (! [X30] : (room(X30) => (predw(X30) | ~predx(X30))) => ! [X31] : (room(X31) => (~predi(X31) | predb(X31)))) & (! [X32] : (room(X32) => predr(X32)) => ! [X33] : (room(X33) => (~predl(X33) => predq(X33)))) & (! [X34] : (room(X34) => predp(X34)) => ! [X35] : (room(X35) => predr(X35))) & (predb(paul) => ! [X36] : (room(X36) => (~predx(X36) => predw(X36)))) & (predf(mary) => (preds(alice) | predn(alice))) & (predu(mary) => predf(mary)) & ! [X37] : (room(X37) => (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 46] 48. ! [X0] : (room(X0) => ~predi(X0)) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 45] 49. ! [X0] : (room(X0) => (predy(X0) => predo(X0))) & ! [X1,X2] : ((~predi(X2) & ~predi(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (room(X4) => (~predv(X4) => predy(X4))) & ~predl(mary) & ! [X5] : (room(X5) => (predj(X5) => predy(X5))) & ! [X6] : (room(X6) => (~predh(X6) => ~predu(X6))) & ! [X7] : (room(X7) => (predg(X7) => ~predd(X7))) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (room(X8) => ((~predm(X8) & predq(X8) & ~predt(X8)) => predf(X8))) & ! [X9,X10] : ((~prede(X10) & ~prede(X9) & room(X10) & room(X9)) => X9 = X10) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (room(X12) => (predv(X12) => ~predm(X12))) & ! [X13] : (room(X13) => (prede(X13) => predv(X13))) & ! [X14,X15] : ((~predw(X15) & ~predw(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (room(X17) => (~(predo(X17) | ~predj(X17)) => ~predc(X17))) & (! [X18] : (room(X18) => (predc(X18) | ~predl(X18))) => ! [X19] : (~room(X19) => (predc(X19) => ~(predo(X19) | ~predj(X19))))) & (! [X20] : (room(X20) => (predx(X20) | ~predh(X20))) => ? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21))) & (! [X23] : (room(X23) => (predf(X23) | ~predx(X23))) <~> ! [X24] : (anywhere(X24) => (~predc(X24) | predm(X24)))) & (preds(fred) => ~predm(alice)) & (predm(alice) => preds(fred)) & (! [X25] : (room(X25) => (~preda(X25) | predt(X25))) => ~predo(mary)) & (~predt(alice) => preda(fred)) & (! [X26] : (room(X26) => (~predf(X26) | ~predl(X26))) => ~? [X27] : (room(X27) => (~predf(X27) => preda(X27)))) & (! [X28] : (room(X28) => (~predi(X28) | predb(X28))) => ! [X29] : (room(X29) => (~predi(X29) => predi(X29)))) & (! [X30] : (room(X30) => (predw(X30) | ~predx(X30))) => ! [X31] : (room(X31) => (~predi(X31) | predb(X31)))) & (! [X32] : (room(X32) => predr(X32)) => ! [X33] : (room(X33) => (~predl(X33) => predq(X33)))) & (! [X34] : (room(X34) => predp(X34)) => ! [X35] : (room(X35) => predr(X35))) & (predb(paul) => ! [X36] : (room(X36) => (~predx(X36) => predw(X36)))) & (predf(mary) => (preds(alice) | predn(alice))) & (predu(mary) => predf(mary)) & ! [X37] : (room(X37) => (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 50. ! [X0] : (room(X0) => (predy(X0) => predo(X0))) & ! [X1,X2] : ((~predi(X2) & ~predi(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (room(X4) => (~predv(X4) => predy(X4))) & ~predl(mary) & ! [X5] : (room(X5) => (predj(X5) => predy(X5))) & ! [X6] : (room(X6) => (~predh(X6) => ~predu(X6))) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (room(X8) => ((~predm(X8) & predq(X8) & ~predt(X8)) => predf(X8))) & ! [X9,X10] : ((~prede(X10) & ~prede(X9) & room(X10) & room(X9)) => X9 = X10) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (room(X12) => (predv(X12) => ~predm(X12))) & ! [X13] : (room(X13) => (prede(X13) => predv(X13))) & ! [X14,X15] : ((~predw(X15) & ~predw(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (room(X17) => (~(predo(X17) | ~predj(X17)) => ~predc(X17))) & (! [X18] : (room(X18) => (predc(X18) | ~predl(X18))) => ! [X19] : (~room(X19) => (predc(X19) => ~(predo(X19) | ~predj(X19))))) & (! [X20] : (room(X20) => (predx(X20) | ~predh(X20))) => ? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21))) & (! [X23] : (room(X23) => (predf(X23) | ~predx(X23))) <~> ! [X24] : (anywhere(X24) => (~predc(X24) | predm(X24)))) & (preds(fred) => ~predm(alice)) & (predm(alice) => preds(fred)) & (! [X25] : (room(X25) => (~preda(X25) | predt(X25))) => ~predo(mary)) & (~predt(alice) => preda(fred)) & (! [X26] : (room(X26) => (~predf(X26) | ~predl(X26))) => ~? [X27] : (room(X27) => (~predf(X27) => preda(X27)))) & (! [X28] : (room(X28) => (~predi(X28) | predb(X28))) => ! [X29] : (room(X29) => (~predi(X29) => predi(X29)))) & (! [X30] : (room(X30) => (predw(X30) | ~predx(X30))) => ! [X31] : (room(X31) => (~predi(X31) | predb(X31)))) & (! [X32] : (room(X32) => predr(X32)) => ! [X33] : (room(X33) => (~predl(X33) => predq(X33)))) & (! [X34] : (room(X34) => predp(X34)) => ! [X35] : (room(X35) => predr(X35))) & (predb(paul) => ! [X36] : (room(X36) => (~predx(X36) => predw(X36)))) & (predf(mary) => (preds(alice) | predn(alice))) & (predu(mary) => predf(mary)) & ! [X37] : (room(X37) => (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X0] : (room(X0) => (predy(X0) => predo(X0))) & ! [X1,X2] : ((~predi(X2) & ~predi(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (room(X4) => (~predv(X4) => predy(X4))) & ~predl(mary) & ! [X5] : (room(X5) => (predj(X5) => predy(X5))) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (room(X8) => ((~predm(X8) & predq(X8) & ~predt(X8)) => predf(X8))) & ! [X9,X10] : ((~prede(X10) & ~prede(X9) & room(X10) & room(X9)) => X9 = X10) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (room(X12) => (predv(X12) => ~predm(X12))) & ! [X13] : (room(X13) => (prede(X13) => predv(X13))) & ! [X14,X15] : ((~predw(X15) & ~predw(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (room(X17) => (~(predo(X17) | ~predj(X17)) => ~predc(X17))) & (! [X18] : (room(X18) => (predc(X18) | ~predl(X18))) => ! [X19] : (~room(X19) => (predc(X19) => ~(predo(X19) | ~predj(X19))))) & (! [X20] : (room(X20) => predx(X20)) => ? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21))) & (! [X23] : (room(X23) => (predf(X23) | ~predx(X23))) <~> ! [X24] : (anywhere(X24) => (~predc(X24) | predm(X24)))) & (preds(fred) => ~predm(alice)) & (predm(alice) => preds(fred)) & (! [X25] : (room(X25) => (~preda(X25) | predt(X25))) => ~predo(mary)) & (~predt(alice) => preda(fred)) & (! [X26] : (room(X26) => (~predf(X26) | ~predl(X26))) => ~? [X27] : (room(X27) => (~predf(X27) => preda(X27)))) & (! [X28] : (room(X28) => (~predi(X28) | predb(X28))) => ! [X29] : (room(X29) => (~predi(X29) => predi(X29)))) & (! [X30] : (room(X30) => (predw(X30) | ~predx(X30))) => ! [X31] : (room(X31) => (~predi(X31) | predb(X31)))) & (! [X32] : (room(X32) => predr(X32)) => ! [X33] : (room(X33) => (~predl(X33) => predq(X33)))) & (! [X34] : (room(X34) => predp(X34)) => ! [X35] : (room(X35) => predr(X35))) & (predb(paul) => ! [X36] : (room(X36) => (~predx(X36) => predw(X36)))) & (predf(mary) => (preds(alice) | predn(alice))) & (predu(mary) => predf(mary)) & ! [X37] : (room(X37) => (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X0] : (room(X0) => (predy(X0) => predo(X0))) & ! [X1,X2] : ((~predi(X2) & ~predi(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (room(X4) => (~predv(X4) => predy(X4))) & ~predl(mary) & ! [X5] : (room(X5) => (predj(X5) => predy(X5))) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (room(X8) => ((~predm(X8) & predq(X8) & ~predt(X8)) => predf(X8))) & ! [X9,X10] : ((~prede(X10) & ~prede(X9) & room(X10) & room(X9)) => X9 = X10) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (room(X12) => (predv(X12) => ~predm(X12))) & ! [X13] : (room(X13) => (prede(X13) => predv(X13))) & ! [X14,X15] : ((~predw(X15) & ~predw(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (room(X17) => (~(predo(X17) | ~predj(X17)) => ~predc(X17))) & (! [X18] : (room(X18) => (predc(X18) | ~predl(X18))) => ! [X19] : (~room(X19) => (predc(X19) => ~(predo(X19) | ~predj(X19))))) & (! [X20] : (room(X20) => predx(X20)) => ? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21))) & (! [X23] : (room(X23) => (predf(X23) | ~predx(X23))) <~> ! [X24] : (anywhere(X24) => (~predc(X24) | predm(X24)))) & (preds(fred) => ~predm(alice)) & (predm(alice) => preds(fred)) & (! [X25] : (room(X25) => (~preda(X25) | predt(X25))) => ~predo(mary)) & (~predt(alice) => preda(fred)) & (! [X26] : (room(X26) => (~predf(X26) | ~predl(X26))) => ~? [X27] : (room(X27) => (~predf(X27) => preda(X27)))) & (! [X28] : (room(X28) => (~predi(X28) | predb(X28))) => ! [X29] : (room(X29) => (~predi(X29) => predi(X29)))) & (! [X30] : (room(X30) => (predw(X30) | ~predx(X30))) => ! [X31] : (room(X31) => (~predi(X31) | predb(X31)))) & (! [X32] : (room(X32) => predr(X32)) => ! [X33] : (room(X33) => (~predl(X33) => predq(X33)))) & (! [X34] : ~room(X34) => ! [X35] : (room(X35) => predr(X35))) & (predb(paul) => ! [X36] : (room(X36) => (~predx(X36) => predw(X36)))) & (predf(mary) => (preds(alice) | predn(alice))) & (predu(mary) => predf(mary)) & ! [X37] : (room(X37) => (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X0] : (room(X0) => (predy(X0) => predo(X0))) & ! [X1,X2] : ((~predi(X2) & ~predi(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (room(X4) => (~predv(X4) => predy(X4))) & ~predl(mary) & ! [X5] : (room(X5) => (predj(X5) => predy(X5))) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (room(X8) => ((~predm(X8) & predq(X8) & ~predt(X8)) => predf(X8))) & ! [X9,X10] : ((~prede(X10) & ~prede(X9) & room(X10) & room(X9)) => X9 = X10) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (room(X12) => (predv(X12) => ~predm(X12))) & ! [X13] : (room(X13) => (prede(X13) => predv(X13))) & ! [X14,X15] : ((~predw(X15) & ~predw(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (room(X17) => (~(predo(X17) | ~predj(X17)) => ~predc(X17))) & (! [X18] : (room(X18) => (predc(X18) | ~predl(X18))) => ! [X19] : (~room(X19) => (predc(X19) => ~(predo(X19) | ~predj(X19))))) & (! [X20] : (room(X20) => predx(X20)) => ? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21))) & (! [X23] : (room(X23) => (predf(X23) | ~predx(X23))) <~> ! [X24] : (anywhere(X24) => (~predc(X24) | predm(X24)))) & (preds(fred) => ~predm(alice)) & (predm(alice) => preds(fred)) & (! [X25] : (room(X25) => (~preda(X25) | predt(X25))) => ~predo(mary)) & (~predt(alice) => preda(fred)) & (! [X26] : (room(X26) => (~predf(X26) | ~predl(X26))) => ~? [X27] : (room(X27) => (~predf(X27) => preda(X27)))) & (! [X28] : (room(X28) => (~predi(X28) | predb(X28))) => ! [X29] : (room(X29) => (~predi(X29) => predi(X29)))) & (! [X30] : (room(X30) => (predw(X30) | ~predx(X30))) => ! [X31] : (room(X31) => (~predi(X31) | predb(X31)))) & (! [X32] : (room(X32) => predr(X32)) => ! [X33] : (room(X33) => (~predl(X33) => predq(X33)))) & (! [X34] : ~room(X34) => ! [X35] : (room(X35) => predr(X35))) & (predb(paul) => ! [X36] : (room(X36) => (~predx(X36) => predw(X36)))) & (predu(mary) => predf(mary)) & ! [X37] : (room(X37) => (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. ! [X0] : (room(X0) => (predy(X0) => predo(X0))) & ! [X1,X2] : ((~predi(X2) & ~predi(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (room(X4) => (~predv(X4) => predy(X4))) & ~predl(mary) & ! [X5] : (room(X5) => (predj(X5) => predy(X5))) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (room(X8) => ((~predm(X8) & predq(X8) & ~predt(X8)) => predf(X8))) & ! [X9,X10] : ((~prede(X10) & ~prede(X9) & room(X10) & room(X9)) => X9 = X10) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (room(X12) => (predv(X12) => ~predm(X12))) & ! [X13] : (room(X13) => (prede(X13) => predv(X13))) & ! [X14,X15] : ((~predw(X15) & ~predw(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (room(X17) => (~(predo(X17) | ~predj(X17)) => ~predc(X17))) & (! [X18] : (room(X18) => (predc(X18) | ~predl(X18))) => ! [X19] : (~room(X19) => (predc(X19) => ~(predo(X19) | ~predj(X19))))) & (! [X20] : (room(X20) => predx(X20)) => ? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21))) & (! [X23] : (room(X23) => (predf(X23) | ~predx(X23))) <~> ! [X24] : (anywhere(X24) => (~predc(X24) | predm(X24)))) & (preds(fred) => ~predm(alice)) & (predm(alice) => preds(fred)) & (! [X25] : (room(X25) => (~preda(X25) | predt(X25))) => ~predo(mary)) & (~predt(alice) => preda(fred)) & (! [X26] : (room(X26) => (~predf(X26) | ~predl(X26))) => ~? [X27] : (room(X27) => (~predf(X27) => preda(X27)))) & (! [X28] : (room(X28) => (~predi(X28) | predb(X28))) => ! [X29] : (room(X29) => (~predi(X29) => predi(X29)))) & (! [X30] : (room(X30) => (predw(X30) | ~predx(X30))) => ! [X31] : (room(X31) => (~predi(X31) | predb(X31)))) & (! [X32] : (room(X32) => predr(X32)) => ! [X33] : (room(X33) => (~predl(X33) => predq(X33)))) & (! [X34] : ~room(X34) => ! [X35] : (room(X35) => predr(X35))) & (predb(paul) => ! [X36] : (room(X36) => (~predx(X36) => predw(X36)))) & ! [X37] : (room(X37) => (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 126. ! [X0] : ((predo(X0) | ~predy(X0)) | ~room(X0)) & ! [X1,X2] : (X1 = X2 | (predi(X2) | predi(X1) | ~room(X2) | ~room(X1))) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : ((predy(X4) | predv(X4)) | ~room(X4)) & ~predl(mary) & ! [X5] : ((predy(X5) | ~predj(X5)) | ~room(X5)) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : ((predf(X8) | (predm(X8) | ~predq(X8) | predt(X8))) | ~room(X8)) & ! [X9,X10] : (X9 = X10 | (prede(X10) | prede(X9) | ~room(X10) | ~room(X9))) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : ((~predm(X12) | ~predv(X12)) | ~room(X12)) & ! [X13] : ((predv(X13) | ~prede(X13)) | ~room(X13)) & ! [X14,X15] : (X14 = X15 | (predw(X15) | predw(X14) | ~room(X15) | ~room(X14))) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : ((~predc(X17) | (predo(X17) | ~predj(X17))) | ~room(X17)) & (! [X19] : (((~predo(X19) & predj(X19)) | ~predc(X19)) | room(X19)) | ? [X18] : ((~predc(X18) & predl(X18)) & room(X18))) & (? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21)) | ? [X20] : (~predx(X20) & room(X20))) & (! [X23] : ((predf(X23) | ~predx(X23)) | ~room(X23)) <~> ! [X24] : ((~predc(X24) | predm(X24)) | ~anywhere(X24))) & (~predm(alice) | ~preds(fred)) & (preds(fred) | ~predm(alice)) & (~predo(mary) | ? [X25] : ((preda(X25) & ~predt(X25)) & room(X25))) & (preda(fred) | predt(alice)) & (! [X27] : ((~preda(X27) & ~predf(X27)) & room(X27)) | ? [X26] : ((predf(X26) & predl(X26)) & room(X26))) & (! [X29] : ((predi(X29) | predi(X29)) | ~room(X29)) | ? [X28] : ((predi(X28) & ~predb(X28)) & room(X28))) & (! [X31] : ((~predi(X31) | predb(X31)) | ~room(X31)) | ? [X30] : ((~predw(X30) & predx(X30)) & room(X30))) & (! [X33] : ((predq(X33) | predl(X33)) | ~room(X33)) | ? [X32] : (~predr(X32) & room(X32))) & (! [X35] : (predr(X35) | ~room(X35)) | ? [X34] : room(X34)) & (! [X36] : ((predw(X36) | predx(X36)) | ~room(X36)) | ~predb(paul)) & ! [X37] : ((john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37) | ~room(X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 54] 127. ! [X0] : (predo(X0) | ~predy(X0) | ~room(X0)) & ! [X1,X2] : (X1 = X2 | predi(X2) | predi(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (predy(X4) | predv(X4) | ~room(X4)) & ~predl(mary) & ! [X5] : (predy(X5) | ~predj(X5) | ~room(X5)) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (predf(X8) | predm(X8) | ~predq(X8) | predt(X8) | ~room(X8)) & ! [X9,X10] : (X9 = X10 | prede(X10) | prede(X9) | ~room(X10) | ~room(X9)) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (~predm(X12) | ~predv(X12) | ~room(X12)) & ! [X13] : (predv(X13) | ~prede(X13) | ~room(X13)) & ! [X14,X15] : (X14 = X15 | predw(X15) | predw(X14) | ~room(X15) | ~room(X14)) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (~predc(X17) | predo(X17) | ~predj(X17) | ~room(X17)) & (! [X19] : ((~predo(X19) & predj(X19)) | ~predc(X19) | room(X19)) | ? [X18] : (~predc(X18) & predl(X18) & room(X18))) & (? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21)) | ? [X20] : (~predx(X20) & room(X20))) & (! [X23] : (predf(X23) | ~predx(X23) | ~room(X23)) <~> ! [X24] : (~predc(X24) | predm(X24) | ~anywhere(X24))) & (~predm(alice) | ~preds(fred)) & (preds(fred) | ~predm(alice)) & (~predo(mary) | ? [X25] : (preda(X25) & ~predt(X25) & room(X25))) & (preda(fred) | predt(alice)) & (! [X27] : (~preda(X27) & ~predf(X27) & room(X27)) | ? [X26] : (predf(X26) & predl(X26) & room(X26))) & (! [X29] : (predi(X29) | predi(X29) | ~room(X29)) | ? [X28] : (predi(X28) & ~predb(X28) & room(X28))) & (! [X31] : (~predi(X31) | predb(X31) | ~room(X31)) | ? [X30] : (~predw(X30) & predx(X30) & room(X30))) & (! [X33] : (predq(X33) | predl(X33) | ~room(X33)) | ? [X32] : (~predr(X32) & room(X32))) & (! [X35] : (predr(X35) | ~room(X35)) | ? [X34] : room(X34)) & (! [X36] : (predw(X36) | predx(X36) | ~room(X36)) | ~predb(paul)) & ! [X37] : (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37 | ~room(X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 126] 128. ! [X0] : (~predi(X0) | ~room(X0)) & ! [X1] : ((john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 48] 129. ! [X0] : (~predi(X0) | ~room(X0)) & ! [X1] : (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 128] 130. ? [X26] : (predf(X26) & predl(X26) & room(X26)) | ~sP0 [predicate definition introduction] 131. ? [X21,X22] : (X21 != X22 & ~predk(X22) & ~predk(X21) & room(X22) & room(X21)) | ~sP1 [predicate definition introduction] 132. ! [X0] : (predo(X0) | ~predy(X0) | ~room(X0)) & ! [X1,X2] : (X1 = X2 | predi(X2) | predi(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (predy(X4) | predv(X4) | ~room(X4)) & ~predl(mary) & ! [X5] : (predy(X5) | ~predj(X5) | ~room(X5)) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (predf(X8) | predm(X8) | ~predq(X8) | predt(X8) | ~room(X8)) & ! [X9,X10] : (X9 = X10 | prede(X10) | prede(X9) | ~room(X10) | ~room(X9)) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (~predm(X12) | ~predv(X12) | ~room(X12)) & ! [X13] : (predv(X13) | ~prede(X13) | ~room(X13)) & ! [X14,X15] : (X14 = X15 | predw(X15) | predw(X14) | ~room(X15) | ~room(X14)) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (~predc(X17) | predo(X17) | ~predj(X17) | ~room(X17)) & (! [X19] : ((~predo(X19) & predj(X19)) | ~predc(X19) | room(X19)) | ? [X18] : (~predc(X18) & predl(X18) & room(X18))) & (sP1 | ? [X20] : (~predx(X20) & room(X20))) & (! [X23] : (predf(X23) | ~predx(X23) | ~room(X23)) <~> ! [X24] : (~predc(X24) | predm(X24) | ~anywhere(X24))) & (~predm(alice) | ~preds(fred)) & (preds(fred) | ~predm(alice)) & (~predo(mary) | ? [X25] : (preda(X25) & ~predt(X25) & room(X25))) & (preda(fred) | predt(alice)) & (! [X27] : (~preda(X27) & ~predf(X27) & room(X27)) | sP0) & (! [X29] : (predi(X29) | predi(X29) | ~room(X29)) | ? [X28] : (predi(X28) & ~predb(X28) & room(X28))) & (! [X31] : (~predi(X31) | predb(X31) | ~room(X31)) | ? [X30] : (~predw(X30) & predx(X30) & room(X30))) & (! [X33] : (predq(X33) | predl(X33) | ~room(X33)) | ? [X32] : (~predr(X32) & room(X32))) & (! [X35] : (predr(X35) | ~room(X35)) | ? [X34] : room(X34)) & (! [X36] : (predw(X36) | predx(X36) | ~room(X36)) | ~predb(paul)) & ! [X37] : (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37 | ~room(X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [definition folding 127,131,130] 142. ! [X0] : (predo(X0) | ~predy(X0) | ~room(X0)) & ! [X1,X2] : (X1 = X2 | predi(X2) | predi(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (predy(X4) | predv(X4) | ~room(X4)) & ~predl(mary) & ! [X5] : (predy(X5) | ~predj(X5) | ~room(X5)) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (predf(X8) | predm(X8) | ~predq(X8) | predt(X8) | ~room(X8)) & ! [X9,X10] : (X9 = X10 | prede(X10) | prede(X9) | ~room(X10) | ~room(X9)) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (~predm(X12) | ~predv(X12) | ~room(X12)) & ! [X13] : (predv(X13) | ~prede(X13) | ~room(X13)) & ! [X14,X15] : (X14 = X15 | predw(X15) | predw(X14) | ~room(X15) | ~room(X14)) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (~predc(X17) | predo(X17) | ~predj(X17) | ~room(X17)) & (! [X19] : ((~predo(X19) & predj(X19)) | ~predc(X19) | room(X19)) | ? [X18] : (~predc(X18) & predl(X18) & room(X18))) & (sP1 | ? [X20] : (~predx(X20) & room(X20))) & ((? [X24] : (predc(X24) & ~predm(X24) & anywhere(X24)) | ? [X23] : (~predf(X23) & predx(X23) & room(X23))) & (! [X24] : (~predc(X24) | predm(X24) | ~anywhere(X24)) | ! [X23] : (predf(X23) | ~predx(X23) | ~room(X23)))) & (~predm(alice) | ~preds(fred)) & (preds(fred) | ~predm(alice)) & (~predo(mary) | ? [X25] : (preda(X25) & ~predt(X25) & room(X25))) & (preda(fred) | predt(alice)) & (! [X27] : (~preda(X27) & ~predf(X27) & room(X27)) | sP0) & (! [X29] : (predi(X29) | predi(X29) | ~room(X29)) | ? [X28] : (predi(X28) & ~predb(X28) & room(X28))) & (! [X31] : (~predi(X31) | predb(X31) | ~room(X31)) | ? [X30] : (~predw(X30) & predx(X30) & room(X30))) & (! [X33] : (predq(X33) | predl(X33) | ~room(X33)) | ? [X32] : (~predr(X32) & room(X32))) & (! [X35] : (predr(X35) | ~room(X35)) | ? [X34] : room(X34)) & (! [X36] : (predw(X36) | predx(X36) | ~room(X36)) | ~predb(paul)) & ! [X37] : (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37 | ~room(X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 132] 143. ! [X0] : (predo(X0) | ~predy(X0) | ~room(X0)) & ! [X1,X2] : (X1 = X2 | predi(X2) | predi(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (predy(X4) | predv(X4) | ~room(X4)) & ~predl(mary) & ! [X5] : (predy(X5) | ~predj(X5) | ~room(X5)) & predc(paul) & predi(mary) & ~predx(paul) & ! [X8] : (predf(X8) | predm(X8) | ~predq(X8) | predt(X8) | ~room(X8)) & ! [X9,X10] : (X9 = X10 | prede(X10) | prede(X9) | ~room(X10) | ~room(X9)) & ? [X11] : (~prede(X11) & room(X11)) & predk(fred) & ! [X12] : (~predm(X12) | ~predv(X12) | ~room(X12)) & ! [X13] : (predv(X13) | ~prede(X13) | ~room(X13)) & ! [X14,X15] : (X14 = X15 | predw(X15) | predw(X14) | ~room(X15) | ~room(X14)) & ? [X16] : (~predw(X16) & room(X16)) & ! [X17] : (~predc(X17) | predo(X17) | ~predj(X17) | ~room(X17)) & (! [X19] : ((~predo(X19) & predj(X19)) | ~predc(X19) | room(X19)) | ? [X18] : (~predc(X18) & predl(X18) & room(X18))) & (sP1 | ? [X20] : (~predx(X20) & room(X20))) & (? [X24] : (predc(X24) & ~predm(X24) & anywhere(X24)) | ? [X23] : (~predf(X23) & predx(X23) & room(X23))) & (! [X24] : (~predc(X24) | predm(X24) | ~anywhere(X24)) | ! [X23] : (predf(X23) | ~predx(X23) | ~room(X23))) & (~predm(alice) | ~preds(fred)) & (preds(fred) | ~predm(alice)) & (~predo(mary) | ? [X25] : (preda(X25) & ~predt(X25) & room(X25))) & (preda(fred) | predt(alice)) & (! [X27] : (~preda(X27) & ~predf(X27) & room(X27)) | sP0) & (! [X29] : (predi(X29) | predi(X29) | ~room(X29)) | ? [X28] : (predi(X28) & ~predb(X28) & room(X28))) & (! [X31] : (~predi(X31) | predb(X31) | ~room(X31)) | ? [X30] : (~predw(X30) & predx(X30) & room(X30))) & (! [X33] : (predq(X33) | predl(X33) | ~room(X33)) | ? [X32] : (~predr(X32) & room(X32))) & (! [X35] : (predr(X35) | ~room(X35)) | ? [X34] : room(X34)) & (! [X36] : (predw(X36) | predx(X36) | ~room(X36)) | ~predb(paul)) & ! [X37] : (john = X37 | alice = X37 | fred = X37 | paul = X37 | mary = X37 | ~room(X37)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 144. ! [X0] : (predo(X0) | ~predy(X0) | ~room(X0)) & ! [X1,X2] : (X1 = X2 | predi(X2) | predi(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (~predi(X3) & room(X3)) & ! [X4] : (predy(X4) | predv(X4) | ~room(X4)) & ~predl(mary) & ! [X5] : (predy(X5) | ~predj(X5) | ~room(X5)) & predc(paul) & predi(mary) & ~predx(paul) & ! [X6] : (predf(X6) | predm(X6) | ~predq(X6) | predt(X6) | ~room(X6)) & ! [X7,X8] : (X7 = X8 | prede(X8) | prede(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (~prede(X9) & room(X9)) & predk(fred) & ! [X10] : (~predm(X10) | ~predv(X10) | ~room(X10)) & ! [X11] : (predv(X11) | ~prede(X11) | ~room(X11)) & ! [X12,X13] : (X12 = X13 | predw(X13) | predw(X12) | ~room(X13) | ~room(X12)) & ? [X14] : (~predw(X14) & room(X14)) & ! [X15] : (~predc(X15) | predo(X15) | ~predj(X15) | ~room(X15)) & (! [X16] : ((~predo(X16) & predj(X16)) | ~predc(X16) | room(X16)) | ? [X17] : (~predc(X17) & predl(X17) & room(X17))) & (sP1 | ? [X18] : (~predx(X18) & room(X18))) & (? [X19] : (predc(X19) & ~predm(X19) & anywhere(X19)) | ? [X20] : (~predf(X20) & predx(X20) & room(X20))) & (! [X21] : (~predc(X21) | predm(X21) | ~anywhere(X21)) | ! [X22] : (predf(X22) | ~predx(X22) | ~room(X22))) & (~predm(alice) | ~preds(fred)) & (preds(fred) | ~predm(alice)) & (~predo(mary) | ? [X23] : (preda(X23) & ~predt(X23) & room(X23))) & (preda(fred) | predt(alice)) & (! [X24] : (~preda(X24) & ~predf(X24) & room(X24)) | sP0) & (! [X25] : (predi(X25) | predi(X25) | ~room(X25)) | ? [X26] : (predi(X26) & ~predb(X26) & room(X26))) & (! [X27] : (~predi(X27) | predb(X27) | ~room(X27)) | ? [X28] : (~predw(X28) & predx(X28) & room(X28))) & (! [X29] : (predq(X29) | predl(X29) | ~room(X29)) | ? [X30] : (~predr(X30) & room(X30))) & (! [X31] : (predr(X31) | ~room(X31)) | ? [X32] : room(X32)) & (! [X33] : (predw(X33) | predx(X33) | ~room(X33)) | ~predb(paul)) & ! [X34] : (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34 | ~room(X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 143] 145. ? [X3] : (~predi(X3) & room(X3)) => (~predi(sK5) & room(sK5)) [choice axiom] 146. ? [X9] : (~prede(X9) & room(X9)) => (~prede(sK6) & room(sK6)) [choice axiom] 147. ? [X14] : (~predw(X14) & room(X14)) => (~predw(sK7) & room(sK7)) [choice axiom] 148. ? [X17] : (~predc(X17) & predl(X17) & room(X17)) => (~predc(sK8) & predl(sK8) & room(sK8)) [choice axiom] 149. ? [X18] : (~predx(X18) & room(X18)) => (~predx(sK9) & room(sK9)) [choice axiom] 150. ? [X19] : (predc(X19) & ~predm(X19) & anywhere(X19)) => (predc(sK10) & ~predm(sK10) & anywhere(sK10)) [choice axiom] 151. ? [X20] : (~predf(X20) & predx(X20) & room(X20)) => (~predf(sK11) & predx(sK11) & room(sK11)) [choice axiom] 152. ? [X23] : (preda(X23) & ~predt(X23) & room(X23)) => (preda(sK12) & ~predt(sK12) & room(sK12)) [choice axiom] 153. ? [X26] : (predi(X26) & ~predb(X26) & room(X26)) => (predi(sK13) & ~predb(sK13) & room(sK13)) [choice axiom] 154. ? [X28] : (~predw(X28) & predx(X28) & room(X28)) => (~predw(sK14) & predx(sK14) & room(sK14)) [choice axiom] 155. ? [X30] : (~predr(X30) & room(X30)) => (~predr(sK15) & room(sK15)) [choice axiom] 156. ? [X32] : room(X32) => room(sK16) [choice axiom] 157. ! [X0] : (predo(X0) | ~predy(X0) | ~room(X0)) & ! [X1,X2] : (X1 = X2 | predi(X2) | predi(X1) | ~room(X2) | ~room(X1)) & (~predi(sK5) & room(sK5)) & ! [X4] : (predy(X4) | predv(X4) | ~room(X4)) & ~predl(mary) & ! [X5] : (predy(X5) | ~predj(X5) | ~room(X5)) & predc(paul) & predi(mary) & ~predx(paul) & ! [X6] : (predf(X6) | predm(X6) | ~predq(X6) | predt(X6) | ~room(X6)) & ! [X7,X8] : (X7 = X8 | prede(X8) | prede(X7) | ~room(X8) | ~room(X7)) & (~prede(sK6) & room(sK6)) & predk(fred) & ! [X10] : (~predm(X10) | ~predv(X10) | ~room(X10)) & ! [X11] : (predv(X11) | ~prede(X11) | ~room(X11)) & ! [X12,X13] : (X12 = X13 | predw(X13) | predw(X12) | ~room(X13) | ~room(X12)) & (~predw(sK7) & room(sK7)) & ! [X15] : (~predc(X15) | predo(X15) | ~predj(X15) | ~room(X15)) & (! [X16] : ((~predo(X16) & predj(X16)) | ~predc(X16) | room(X16)) | (~predc(sK8) & predl(sK8) & room(sK8))) & (sP1 | (~predx(sK9) & room(sK9))) & ((predc(sK10) & ~predm(sK10) & anywhere(sK10)) | (~predf(sK11) & predx(sK11) & room(sK11))) & (! [X21] : (~predc(X21) | predm(X21) | ~anywhere(X21)) | ! [X22] : (predf(X22) | ~predx(X22) | ~room(X22))) & (~predm(alice) | ~preds(fred)) & (preds(fred) | ~predm(alice)) & (~predo(mary) | (preda(sK12) & ~predt(sK12) & room(sK12))) & (preda(fred) | predt(alice)) & (! [X24] : (~preda(X24) & ~predf(X24) & room(X24)) | sP0) & (! [X25] : (predi(X25) | predi(X25) | ~room(X25)) | (predi(sK13) & ~predb(sK13) & room(sK13))) & (! [X27] : (~predi(X27) | predb(X27) | ~room(X27)) | (~predw(sK14) & predx(sK14) & room(sK14))) & (! [X29] : (predq(X29) | predl(X29) | ~room(X29)) | (~predr(sK15) & room(sK15))) & (! [X31] : (predr(X31) | ~room(X31)) | room(sK16)) & (! [X33] : (predw(X33) | predx(X33) | ~room(X33)) | ~predb(paul)) & ! [X34] : (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34 | ~room(X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 144,156,155,154,153,152,151,150,149,148,147,146,145] 247. room(mary) [cnf transformation 157] 302. predi(mary) [cnf transformation 157] 317. ~predi(X0) | ~room(X0) [cnf transformation 129] 559. ~room(mary) [resolution 317,302] 561. $false [subsumption resolution 559,247] % SZS output end Proof for 7955587988224334285797203 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.545034
Joseph is the only person in the room. If everyone in the room regularly goes on multi-day backpacking trips in national parks or does not write a travel blog then Joseph is an avid collector of autographed memorabilia from famous musicians. If everyone in the room writes a travel blog or does not regularly goes on multi-day backpacking trips in national parks then everyone outside the room writes a travel blog or does not practice zumba. If Joseph either practices zumba or has completed a triathlon but not both then Joseph knows morse code. Everyone in the room is an avid collector of autographed memorabilia from famous musicians only if they either can play the flute or uses an ios phone but not both. Not everyone in the room either can play the flute or uses an ios phone but not both only if they practices zumba, practices kickboxing or can play the harmonica. Joseph has completed a triathlon. Everyone in the room who writes a travel blog practices tai chi. Everyone in the room who collects first edition books can play the harmonica. Everyone in the room can play the harmonica only if they creates bespoke furniture pieces from reclaimed wood. Joseph knows morse code and can play the flute. Someone anywhere can play the harmonica. At least one person anywhere either can play the flute or uses an ios phone but not both. Everyone in the room practices tai chi if and only if they has completed a triathlon. Joseph can play the piano. Joseph regularly contributes to tech forums and online communities. Everyone anywhere has a tattoo or is not a member of a local theater group specializing in improv. Everyone in the room who has a tattoo volunteers for local environmental conservation projects. Everyone anywhere volunteers for local environmental conservation projects if and only if they collects first edition books. It is not the case that someone in the room creates bespoke furniture pieces from reclaimed wood. Joseph does not regularly goes on multi-day backpacking trips in national parks.
Joseph is an avid collector of autographed memorabilia from famous musicians.
neutral
room(joseph)&(![X]:(room(X)=>(X='joseph')))& ((![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(joseph)))& ((![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(writes_a_travel_blog(X))))))=>(![X]:(~room(X)=>(((does_not_practice_zumba(X))|(writes_a_travel_blog(X)))))))& ((((practices_zumba(joseph))<~>(has_completed_a_triathlon(joseph))))=>(knows_morse_code(joseph)))& (![X]:(room(X)=>(((((can_play_the_flute(X))<~>(uses_an_ios_phone(X))))<=(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (~![X]:(room(X)=>(((((practices_zumba(X))|(practices_kickboxing(X))|(can_play_the_harmonica(X))))<=(((can_play_the_flute(X))<~>(uses_an_ios_phone(X))))))))& (has_completed_a_triathlon(joseph))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(practices_tai_chi(X))))))& (![X]:(room(X)=>(((collects_first_edition_books(X))=>(can_play_the_harmonica(X))))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))<=(can_play_the_harmonica(X))))))& (((knows_morse_code(joseph))&(can_play_the_flute(joseph))))& (?[X]:(anywhere(X)&(can_play_the_harmonica(X))))& (((?[X]:(anywhere(X)&((can_play_the_flute(X))<~>(uses_an_ios_phone(X)))))))& (![X]:(room(X)=>(((practices_tai_chi(X))<=>(has_completed_a_triathlon(X))))))& (can_play_the_piano(joseph))& (regularly_contributes_to_tech_forums_and_online_communities(joseph))& (![X]:(anywhere(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))|(has_a_tattoo(X))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (![X]:(anywhere(X)=>(((volunteers_for_local_environmental_conservation_projects(X))<=>(collects_first_edition_books(X))))))& (~(?[X]:(room(X)&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))& (does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(joseph))
room(joseph)&(![X]:(room(X)=>(X='joseph')))& is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(joseph)
[]
null
0.248521
Daniel is the only person in the room. If “it is true that “someone in the room maintains a personal blog focused on cybersecurity tips”” then “someone anywhere practices digital art”. If “it is not the case that “it is not the case that “it is not the case that “someone outside the room cannot play the harmonica”””” then “it is not the case that “someone in the room works on fridays””. If “at least one person in the room enjoys cross-country skiing” then “not everyone in the room enjoys landscape photography only if they can play the harmonica”. If “at least one person in the room creates augmented reality experiences for mobile applications” then “someone in the room enjoys bird watching”. If “it is not the case that “it is not the case that “Daniel collects historical artifacts related to ancient civilizations””” then “Daniel enjoys landscape photography”. If “it is not the case that “it is not the case that “it is not the case that “at least one person in the room enjoys stand-up paddleboarding”””” then “at least one person in the room enjoys landscape photography”. It is not the case that “it is not the case that “someone in the room collects historical artifacts related to ancient civilizations””. At least one person anywhere creates augmented reality experiences for mobile applications. Everyone in the room who is an avid mountain climber who has scaled several peaks is an expert in identifying and foraging wild edible plants. Everyone in the room enjoys cross-country skiing if they is an expert in identifying and foraging wild edible plants. At least one person in the room enjoys landscape photography. At least one person in the room collects historical artifacts related to ancient civilizations.
Daniel collects historical artifacts related to ancient civilizations.
entailment
room(daniel)&(![X]:(room(X)=>(X='daniel')))& ((?[X]:(room(X)&(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))=>(?[X]:(anywhere(X)&(practices_digital_art(X)))))& ((~(~(~(?[X]:(~room(X)&(cannot_play_the_harmonica(X)))))))=>(~(?[X]:(room(X)&(works_on_fridays(X))))))& ((((?[X]:(room(X)&enjoys_cross-country_skiing(X)))))=>(~![X]:(room(X)=>(((can_play_the_harmonica(X))<=(enjoys_landscape_photography(X)))))))& ((((?[X]:(room(X)&creates_augmented_reality_experiences_for_mobile_applications(X)))))=>(?[X]:(room(X)&(enjoys_bird_watching(X)))))& ((~(~(collects_historical_artifacts_related_to_ancient_civilizations(daniel))))=>(enjoys_landscape_photography(daniel)))& ((~(~(~(((?[X]:(room(X)&enjoys_stand-up_paddleboarding(X))))))))=>(((?[X]:(room(X)&enjoys_landscape_photography(X))))))& (~(~(?[X]:(room(X)&(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& (((?[X]:(anywhere(X)&creates_augmented_reality_experiences_for_mobile_applications(X)))))& (![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(enjoys_cross-country_skiing(X))))))& (((?[X]:(room(X)&enjoys_landscape_photography(X)))))& (((?[X]:(room(X)&collects_historical_artifacts_related_to_ancient_civilizations(X)))))& (~?[X]:(anywhere(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(collects_action_figures(X))))))
room(daniel)&(![X]:(room(X)=>(X='daniel')))& collects_historical_artifacts_related_to_ancient_civilizations(daniel)
[ "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 3443573627640698622192520 % SZS output start Proof for 3443573627640698622192520 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 51. ~~? [X0] : (predf(X0) & room(X0)) [input p7] 58. ~(predf(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 66. ? [X0] : (predf(X0) & room(X0)) [flattening 51] 154. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 157. ~predf(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 58] 166. ? [X0] : (predf(X0) & room(X0)) => (predf(sK3) & room(sK3)) [choice axiom] 167. predf(sK3) & room(sK3) [skolemisation 66,166] 174. ? [X0] : (mary != X0 & room(X0)) => (mary != sK7 & room(sK7)) [choice axiom] 175. ~predf(mary) | (mary != sK7 & room(sK7)) | ~room(mary) [skolemisation 157,174] 256. room(mary) [cnf transformation 154] 257. ~room(X0) | mary = X0 [cnf transformation 154] 260. room(sK3) [cnf transformation 167] 261. predf(sK3) [cnf transformation 167] 266. ~predf(mary) | room(sK7) | ~room(mary) [cnf transformation 175] 267. ~predf(mary) | mary != sK7 | ~room(mary) [cnf transformation 175] 285. ~predf(mary) | mary != sK7 [subsumption resolution 267,256] 287. 5 <=> mary = sK7 [avatar definition] 289. mary != sK7 <- (~5) [avatar component clause 287] 291. 6 <=> predf(mary) [avatar definition] 294. ~5 | ~6 [avatar split clause 285,291,287] 295. ~predf(mary) | room(sK7) [subsumption resolution 266,256] 297. 7 <=> room(sK7) [avatar definition] 299. room(sK7) <- (7) [avatar component clause 297] 300. 7 | ~6 [avatar split clause 295,291,297] 304. mary = sK3 [resolution 257,260] 310. predf(mary) [backward demodulation 261,304] 319. 6 [avatar split clause 310,291] 320. mary = sK7 <- (7) [resolution 299,257] 321. $false <- (~5, 7) [subsumption resolution 320,289] 322. 5 | ~7 [avatar contradiction clause 321] 323. $false [avatar sat refutation 294,300,319,322] % SZS output end Proof for 3443573627640698622192520 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.408074
Charles, Daniel, Timothy, Victoria are the only persons in the room. If “it is not the case that “Charles collects rare and antique scientific instruments”” then “Charles collects rare and antique scientific instruments”. Charles volunteers for local environmental conservation projects. Only one person in the room does not collect rare and antique scientific instruments. Charles collects rare and antique scientific instruments. Daniel does not enjoy spelunking.
Daniel enjoys spelunking.
contradiction
room(charles)&room(daniel)&room(timothy)&room(victoria)&(![X]:(room(X)=>(X='charles'|X='daniel'|X='timothy'|X='victoria')))& ((~(collects_rare_and_antique_scientific_instruments(charles)))=>(collects_rare_and_antique_scientific_instruments(charles)))& (volunteers_for_local_environmental_conservation_projects(charles))& (((?[X]:(room(X)&does_not_collect_rare_and_antique_scientific_instruments(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_collect_rare_and_antique_scientific_instruments(X))&(does_not_collect_rare_and_antique_scientific_instruments(Y)))=>(X=Y)))))& (collects_rare_and_antique_scientific_instruments(charles))& (collects_rare_and_antique_scientific_instruments(daniel))& ((![X]:((practices_digital_art(X))=>(volunteers_for_local_environmental_conservation_projects(X)))))& (enjoys_spelunking(charles))& (does_not_enjoy_spelunking(daniel))& (((collects_rare_and_antique_scientific_instruments(charles))|(is_a_client_of_Costco(charles))))& (collects_vintage_stamps(charles))& (practices_digital_art(charles))& (~(is_a_client_of_Costco(charles)))& (collects_vintage_stamps(daniel))
room(charles)&room(daniel)&room(timothy)&room(victoria)&(![X]:(room(X)=>(X='charles'|X='daniel'|X='timothy'|X='victoria')))& enjoys_spelunking(daniel)
[ "p8", "hypothesis" ]
% SZS status Unsatisfiable for 3693470964202163412483584 % SZS output start Proof for 3693470964202163412483584 52. ~predf(paul) [input p8] 58. predf(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 142. predf(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 58] 143. predf(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 239. ~predf(paul) [cnf transformation 52] 247. predf(paul) [cnf transformation 143] 249. $false [subsumption resolution 247,239] % SZS output end Proof for 3693470964202163412483584 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.549264
Chris, Steven, Patricia, George are the only persons in the room. “George mentors a youth basketball team on weekends” unless “everyone in the room does not enjoy bird watching or does not enjoy macrame or both”. “Steven does not have a tattoo” if “George collects action figures and does not own a high-end gaming PC with custom-built components” and vice versa. If “Patricia does not own a 3D printer” then “Steven neither does not participate in long-distance cycling events across the country nor does not own a high-end gaming PC with custom-built components”. “Patricia is a certified yoga instructor teaching classes weekly” if “George is a dedicated volunteer for local community service projects, mentors a youth basketball team on weekends or does not mentor a youth basketball team on weekends” and vice versa. Patricia is a certified yoga instructor teaching classes weekly. Chris who mentors a youth basketball team on weekends does not own a 3D printer. George does not enjoy bird watching. Steven is not a certified yoga instructor teaching classes weekly. Patricia is not a dedicated volunteer for local community service projects. Chris neither does not collect action figures nor does not have a tattoo. George who has a tattoo does not participate in long-distance cycling events across the country. If someone is not a dedicated volunteer for local community service projects then he/she participates in long-distance cycling events across the country and does not collect action figures and vice versa. Patricia has a tattoo or is not a dedicated volunteer for local community service projects or both. George is a certified yoga instructor teaching classes weekly or is not a dedicated volunteer for local community service projects or both. Patricia does not enjoy skydiving. Chris enjoys macrame, does not collect action figures or does not enjoy skydiving. It is true that “someone in the room does not own a 3D printer or does not participate in long-distance cycling events across the country or both”.
It is not the case that “Steven enjoys macrame”.
neutral
room(chris)&room(steven)&room(patricia)&room(george)&(![X]:(room(X)=>(X='chris'|X='steven'|X='patricia'|X='george')))& (~(![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))|(does_not_enjoy_macrame(X))))))=>(mentors_a_youth_basketball_team_on_weekends(george)))& ((((collects_action_figures(george))&(does_not_own_a_high-end_gaming_PC_with_custom-built_components(george))))<=>(does_not_have_a_tattoo(steven)))& ((does_not_own_a_3D_printer(patricia))=>(~((does_not_participate_in_long-distance_cycling_events_across_the_country(steven))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(steven)))))& ((((is_a_dedicated_volunteer_for_local_community_service_projects(george))|(mentors_a_youth_basketball_team_on_weekends(george))|(does_not_mentor_a_youth_basketball_team_on_weekends(george))))<=>(is_a_certified_yoga_instructor_teaching_classes_weekly(patricia)))& (is_a_certified_yoga_instructor_teaching_classes_weekly(patricia))& ((mentors_a_youth_basketball_team_on_weekends(chris))&(does_not_own_a_3D_printer(chris)))& (does_not_enjoy_bird_watching(george))& (is_not_a_certified_yoga_instructor_teaching_classes_weekly(steven))& (is_not_a_dedicated_volunteer_for_local_community_service_projects(patricia))& (~((does_not_collect_action_figures(chris))|(does_not_have_a_tattoo(chris))))& ((has_a_tattoo(george))&(does_not_participate_in_long-distance_cycling_events_across_the_country(george)))& ((![X]:((is_not_a_dedicated_volunteer_for_local_community_service_projects(X))<=>(((participates_in_long-distance_cycling_events_across_the_country(X))&(does_not_collect_action_figures(X)))))))& (((has_a_tattoo(patricia))|(is_not_a_dedicated_volunteer_for_local_community_service_projects(patricia))))& (((is_a_certified_yoga_instructor_teaching_classes_weekly(george))|(is_not_a_dedicated_volunteer_for_local_community_service_projects(george))))& (does_not_enjoy_skydiving(patricia))& (((enjoys_macrame(chris))|(does_not_collect_action_figures(chris))|(does_not_enjoy_skydiving(chris))))& (?[X]:(room(X)&(((does_not_own_a_3D_printer(X))|(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(room(X)=>(((is_not_a_dedicated_volunteer_for_local_community_service_projects(X))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))& (mentors_a_youth_basketball_team_on_weekends(chris))& (mentors_a_youth_basketball_team_on_weekends(george))& (![X]:(room(X)=>(((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_collect_action_figures(X))))))
room(chris)&room(steven)&room(patricia)&room(george)&(![X]:(room(X)=>(X='chris'|X='steven'|X='patricia'|X='george')))& ~(enjoys_macrame(steven))
[]
null
0.000052
Juliet, Jasmine, Mathew, Frances, James are the only persons in the room. 'Everyone in the room does not host a popular podcast about emerging technologies or practices kickboxing' unless 'everyone in the room does not own an extensive assortment of vintage comic book memorabilia or does not have a vast collection of first-edition science fiction novels'. Everyone outside the room owns an extensive assortment of vintage comic book memorabilia if they does not own an extensive assortment of vintage comic book memorabilia. Jasmine frequently participates in hackathons and coding competitions. Everyone in the room who does not collect foreign coins is a certified scuba diver with advanced underwater photography skills. Everyone in the room collects foreign coins if they is a certified scuba diver with advanced underwater photography skills.
Juliet collects foreign coins.
entailment
room(juliet)&room(jasmine)&room(mathew)&room(frances)&room(james)&(![X]:(room(X)=>(X='juliet'|X='jasmine'|X='mathew'|X='frances'|X='james')))& (~(![X]:(room(X)=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))=>(![X]:(room(X)=>(((practices_kickboxing(X))|(does_not_host_a_popular_podcast_about_emerging_technologies(X)))))))& (![X]:(~room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (frequently_participates_in_hackathons_and_coding_competitions(jasmine))& (is_a_client_of_Costco(juliet))& (![X]:(room(X)=>(((is_a_client_of_Costco(X))<=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (![X]:(room(X)=>(((is_a_client_of_Costco(X))=>(((has_a_tattoo(X))<~>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))))& (![X]:(room(X)=>(((((is_a_wine_connoisseur(X))<~>(collects_rare_minerals(X))))<=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))))& (![X]:(anywhere(X)=>(((((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))=>(enjoys_stargazing(X))))))& (((?[X]:(room(X)&maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))&(![X,Y]:((room(X)&room(Y)&(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))&(maintains_a_personal_blog_focused_on_cybersecurity_tips(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_collect_foreign_coins(X))=>(((practices_kickboxing(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))))& (![X]:(room(X)=>(((((practices_kickboxing(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))|(does_not_collect_foreign_coins(X))))))& (![X]:(room(X)=>(((does_not_collect_foreign_coins(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(collects_foreign_coins(X))))))& (![X]:(room(X)=>(((collects_foreign_coins(X))=>(practices_urban_gardening(X))))))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(mathew))& (![X]:(room(X)=>(((practices_calligraphy(X))=>(~((is_not_a_wine_connoisseur(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X))))))))& ((![X]:((has_lived_in_exactly_three_countries(X))<=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))& (?[X]:(room(X)&(hosts_a_popular_podcast_about_emerging_technologies(X))))& (((?[X]:(anywhere(X)&does_not_enjoy_stargazing(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(does_not_enjoy_stargazing(X))&(does_not_enjoy_stargazing(Y)))=>(X=Y)))))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(mathew))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(practices_pilates(X))))))& ((![X]:((((is_a_wine_connoisseur(X))&(plays_video_games(X))))<=>(has_a_tattoo(X)))))
room(juliet)&room(jasmine)&room(mathew)&room(frances)&room(james)&(![X]:(room(X)=>(X='juliet'|X='jasmine'|X='mathew'|X='frances'|X='james')))& collects_foreign_coins(juliet)
[ "p0", "p12", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 8693971489285008751115010 % SZS output start Proof for 8693971489285008751115010 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 56. ! [X0] : (room(X0) => (~preda(X0) => predq(X0))) [input p12] 57. ! [X0] : (room(X0) => (predq(X0) => preda(X0))) [input p13] 67. ~(preda(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 151. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 152. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 151] 161. ! [X0] : ((predq(X0) | preda(X0)) | ~room(X0)) [ennf transformation 56] 162. ! [X0] : (predq(X0) | preda(X0) | ~room(X0)) [flattening 161] 163. ! [X0] : ((preda(X0) | ~predq(X0)) | ~room(X0)) [ennf transformation 57] 164. ! [X0] : (preda(X0) | ~predq(X0) | ~room(X0)) [flattening 163] 167. ~preda(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67] 168. ~preda(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 167] 182. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 183. ~preda(mary) | (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 168,182] 265. room(mary) [cnf transformation 152] 266. room(paul) [cnf transformation 152] 267. room(fred) [cnf transformation 152] 268. room(alice) [cnf transformation 152] 269. room(john) [cnf transformation 152] 270. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 152] 290. ~room(X0) | preda(X0) | predq(X0) [cnf transformation 162] 291. preda(X0) | ~predq(X0) | ~room(X0) [cnf transformation 164] 301. ~preda(mary) | room(sK3) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 302. ~preda(mary) | mary != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 303. ~preda(mary) | paul != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 304. ~preda(mary) | fred != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 305. ~preda(mary) | alice != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 306. ~preda(mary) | john != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 310. ~room(X0) | preda(X0) [subsumption resolution 291,290] 313. ~preda(mary) | john != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 306,269] 314. ~preda(mary) | john != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 313,268] 315. ~preda(mary) | john != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 314,267] 316. ~preda(mary) | john != sK3 | ~room(mary) [subsumption resolution 315,266] 317. ~preda(mary) | john != sK3 [subsumption resolution 316,265] 319. 1 <=> john = sK3 [avatar definition] 321. john != sK3 <- (~1) [avatar component clause 319] 323. 2 <=> preda(mary) [avatar definition] 326. ~1 | ~2 [avatar split clause 317,323,319] 327. ~preda(mary) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 305,269] 328. ~preda(mary) | alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 327,268] 329. ~preda(mary) | alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 328,267] 330. ~preda(mary) | alice != sK3 | ~room(mary) [subsumption resolution 329,266] 331. ~preda(mary) | alice != sK3 [subsumption resolution 330,265] 333. 3 <=> alice = sK3 [avatar definition] 335. alice != sK3 <- (~3) [avatar component clause 333] 336. ~3 | ~2 [avatar split clause 331,323,333] 337. ~preda(mary) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 304,269] 338. ~preda(mary) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 337,268] 339. ~preda(mary) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 338,267] 340. ~preda(mary) | fred != sK3 | ~room(mary) [subsumption resolution 339,266] 341. ~preda(mary) | fred != sK3 [subsumption resolution 340,265] 343. 4 <=> fred = sK3 [avatar definition] 345. fred != sK3 <- (~4) [avatar component clause 343] 346. ~4 | ~2 [avatar split clause 341,323,343] 347. ~preda(mary) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 303,269] 348. ~preda(mary) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 347,268] 349. ~preda(mary) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 348,267] 350. ~preda(mary) | paul != sK3 | ~room(mary) [subsumption resolution 349,266] 351. ~preda(mary) | paul != sK3 [subsumption resolution 350,265] 353. 5 <=> paul = sK3 [avatar definition] 355. paul != sK3 <- (~5) [avatar component clause 353] 356. ~5 | ~2 [avatar split clause 351,323,353] 357. ~preda(mary) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 302,269] 358. ~preda(mary) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 357,268] 359. ~preda(mary) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 358,267] 360. ~preda(mary) | mary != sK3 | ~room(mary) [subsumption resolution 359,266] 361. ~preda(mary) | mary != sK3 [subsumption resolution 360,265] 363. 6 <=> mary = sK3 [avatar definition] 365. mary != sK3 <- (~6) [avatar component clause 363] 366. ~6 | ~2 [avatar split clause 361,323,363] 367. ~preda(mary) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 301,269] 368. ~preda(mary) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 367,268] 369. ~preda(mary) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 368,267] 370. ~preda(mary) | room(sK3) | ~room(mary) [subsumption resolution 369,266] 371. ~preda(mary) | room(sK3) [subsumption resolution 370,265] 373. 7 <=> room(sK3) [avatar definition] 375. room(sK3) <- (7) [avatar component clause 373] 376. 7 | ~2 [avatar split clause 371,323,373] 380. preda(mary) [resolution 310,265] 389. 2 [avatar split clause 380,323] 637. alice = sK3 | fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (7) [resolution 270,375] 659. fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (~3, 7) [subsumption resolution 637,335] 660. paul = sK3 | mary = sK3 | john = sK3 <- (~3, ~4, 7) [subsumption resolution 659,345] 661. mary = sK3 | john = sK3 <- (~3, ~4, ~5, 7) [subsumption resolution 660,355] 662. john = sK3 <- (~3, ~4, ~5, ~6, 7) [subsumption resolution 661,365] 663. $false <- (~1, ~3, ~4, ~5, ~6, 7) [subsumption resolution 662,321] 664. 1 | 3 | 4 | 5 | 6 | ~7 [avatar contradiction clause 663] 665. $false [avatar sat refutation 326,336,346,356,366,376,389,664] % SZS output end Proof for 8693971489285008751115010 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.031 s % ------------------------------ % ------------------------------
0.03536
Deloris, Donald, Jessica are the only persons in the room. If "Deloris and Louvenia like each other" then "at least one person outside the room competes in national level swimming championships". Either "not everyone outside the room is a funny humble quiet tourist or is not passionate about collecting and restoring classic cars" or "Jessica does not have lived in exactly three countries" but not both. Either "someone in the room is a client of Richard" or "Deloris is not a kind person" but not both. Donald is a quiet humble wise calm european or practices tai chi or both. Someone who does not write poetry like someone who is not calm, not tall. Jessica who enjoys salsa dancing writes poetry. Jessica and Lawrence hate each other. Only one person in the room is not generous, not kind, not quiet. Jessica is not a old kind european, is a sibling of Richard or is a client of George.
Donald and Deloris are not a funny quiet tall generous wise persons.
neutral
room(deloris)&room(donald)&room(jessica)&(![X]:(room(X)=>(X='deloris'|X='donald'|X='jessica')))& (((like(deloris,louvenia) & like(louvenia,deloris)))=>(((?[X]:(~room(X)&competes_in_national_level_swimming_championships(X))))))& ((~![X]:(~room(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))|(funny(X)&humble(X)&quiet(X)&tourist(X))))))<~>(does_not_have_lived_in_exactly_three_countries(jessica)))& ((?[X]:(room(X)&(client(richard,X))))<~>(~(kind(deloris)&person(deloris))))& (((quiet(donald)&humble(donald)&wise(donald)&calm(donald)&european(donald))|(practices_tai_chi(donald))))& (?[X,Y]:((does_not_write_poetry(X))&(~calm(Y)&~tall(Y))&(like(X,Y))))& ((enjoys_salsa_dancing(jessica))&(writes_poetry(jessica)))& ((hate(jessica,lawrence) & hate(lawrence,jessica)))& (((?[X]:(room(X)&~generous(X)&~kind(X)&~quiet(X)))&(![X,Y]:((room(X)&room(Y)&(~generous(X)&~kind(X)&~quiet(X))&(~generous(Y)&~kind(Y)&~quiet(Y)))=>(X=Y)))))& (((~(old(jessica)&kind(jessica)&european(jessica)))|(sibling(richard,jessica))|(client(george,jessica))))
room(deloris)&room(donald)&room(jessica)&(![X]:(room(X)=>(X='deloris'|X='donald'|X='jessica')))& ~(funny(donald)&quiet(donald)&tall(donald)&generous(donald)&wise(donald)&person(donald))&~(funny(deloris)&quiet(deloris)&tall(deloris)&generous(deloris)&wise(deloris)&person(deloris))
[]
null
0
Mike, Joseph, Elbert, Rodney are the only persons in the room. If ““A frog sings opera in the swamp at night.” and “A tower leans significantly but never falls.” and “Glass rain falls on a distant planet.”” then “everyone in the room collects vintage vinyl records”. If “everyone in the room collects vintage vinyl records” then “Elbert and Benjamin hate each other”. “Benjamin and Joseph hate each other” if “everyone in the room does not enjoy rooftop gardening or is a generous tourist” and vice versa. If “Elbert and Mary like each other” then “if someone neither is a happy tourist nor is not hated by Benjamin then he/she is strong and vice versa” otherwise “everyone in the room is a kind european”. “Joseph and Mike are not generous” if “at least one person anywhere is a sibling of Benjamin” and vice versa. “Rodney collects historical artifacts related to ancient civilizations” unless “Elbert is a calm european”. Either “Joseph does enjoy trail running” or “everyone in the room enjoys macrame” but not both. Either “Rodney enjoys macrame” or “everyone outside the room does not have a vast collection of first-edition science fiction novels or is a kind person” but not both. “Everyone in the room is not liked by Darlene” only if “Joseph is not a patient person”. “Rodney and Darlene like each other” if ““A frog does not sing opera in the swamp at night.” and “A frog sings opera in the swamp at night.”” and vice versa. “Glass rain falls on a distant planet.” and “A tower does not lean significantly without falling.” and “A pizza does not exist that tastes like ice cream.”. Darlene and Mike hate each other. If someone is a happy tourist then he/she is a old european and vice versa. Everyone in the room is a generous european. Everyone anywhere enjoys deep-sea diving and exploring underwater caves. Everyone in the room is not kind, is a coffee connoisseur or is a tall person.
Joseph is a quiet old person.
contradiction
room(mike)&room(joseph)&room(elbert)&room(rodney)&(![X]:(room(X)=>(X='mike'|X='joseph'|X='elbert'|X='rodney')))& (((((A_frog_sings_opera_in_the_swamp_at_night.)&(A_tower_leans_significantly_but_never_falls.)&(Glass_rain_falls_on_a_distant_planet.)))=>(![X]:(room(X)=>(collects_vintage_vinyl_records(X)))))& ((![X]:(room(X)=>(collects_vintage_vinyl_records(X))))=>((hate(elbert,benjamin) & hate(benjamin,elbert)))))& ((![X]:(room(X)=>(((generous(X)&tourist(X))|(does_not_enjoy_rooftop_gardening(X))))))<=>((hate(benjamin,joseph) & hate(joseph,benjamin))))& ((((like(elbert,mary) & like(mary,elbert)))=>((![X]:((~((happy(X)&tourist(X))|(~hate(X,benjamin))))<=>(strong(X))))))&((~((like(elbert,mary) & like(mary,elbert))))=>(![X]:(room(X)=>(kind(X)&european(X))))))& ((((?[X]:(anywhere(X)&sibling(benjamin,X)))))<=>(~generous(joseph)&~generous(mike)))& (~(calm(elbert)&european(elbert))=>(collects_historical_artifacts_related_to_ancient_civilizations(rodney)))& ((does_enjoy_trail_running(joseph))<~>(![X]:(room(X)=>(enjoys_macrame(X)))))& ((enjoys_macrame(rodney))<~>(![X]:(~room(X)=>(((kind(X)&person(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X)))))))& ((![X]:(room(X)=>(~like(X,darlene))))=>(~(patient(joseph)&person(joseph))))& ((((A_frog_does_not_sing_opera_in_the_swamp_at_night.)&(A_frog_sings_opera_in_the_swamp_at_night.)))<=>((like(rodney,darlene) & like(darlene,rodney))))& (((Glass_rain_falls_on_a_distant_planet.)&(A_tower_does_not_lean_significantly_without_falling.)&(A_pizza_does_not_exist_that_tastes_like_ice_cream.)))& ((hate(darlene,mike) & hate(mike,darlene)))& ((![X]:((happy(X)&tourist(X))<=>(old(X)&european(X)))))& (![X]:(room(X)=>(generous(X)&european(X))))& (![X]:(anywhere(X)=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))& (![X]:(room(X)=>(((~kind(X))|(is_a_coffee_connoisseur(X))|(tall(X)&person(X))))))& (quiet(rodney)&european(rodney)&quiet(mike)&european(mike))& (![X]:(room(X)=>(strong(X)&european(X))))& (~((hate(benjamin,mike) & hate(mike,benjamin))))& (![X]:(room(X)=>(((creative(X)&tourist(X))=>(does_not_collect_antique_jewelry(X))))))& ((![X]:((~((happy(X)&tourist(X))|(~hate(X,benjamin))))<=>(strong(X)))))& (![X]:(generous(X)=>kind(X)))& (~![X]:(room(X)=>(enjoys_macrame(X))))& (![X]:(room(X)=>(is_an_active_member_of_a_local_robotics_club(X))))& (client(mary,rodney))
room(mike)&room(joseph)&room(elbert)&room(rodney)&(![X]:(room(X)=>(X='mike'|X='joseph'|X='elbert'|X='rodney')))& quiet(joseph)&old(joseph)&person(joseph)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 81503040923936243289528 % SZS output start Proof for 81503040923936243289528 44. client(john,alice) & ! [X0] : (room(X0) => predb(X0)) & ~! [X0] : (room(X0) => predh(X0)) & ! [X0] : (generous(X0) => kind(X0)) & ! [X0] : (~(~hate(X0,susan) | (tourist(X0) & happy(X0))) <=> strong(X0)) & ! [X0] : (room(X0) => ((tourist(X0) & creative(X0)) => ~predp(X0))) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X0] : (room(X0) => (european(X0) & strong(X0))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X0] : (room(X0) => ((person(X0) & tall(X0)) | predz(X0) | ~kind(X0))) & ! [X0] : (anywhere(X0) => predj(X0)) & ! [X0] : (room(X0) => (european(X0) & generous(X0))) & ! [X0] : ((tourist(X0) & happy(X0)) <=> (european(X0) & old(X0))) & hate(mary,lucy) & hate(lucy,mary) & ~propositiond & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (! [X0] : (room(X0) => ~like(X0,lucy)) => ~(person(paul) & patient(paul))) & (predh(alice) <~> ! [X0] : (~room(X0) => (~predi(X0) | (person(X0) & kind(X0))))) & (predw(paul) <~> ! [X0] : (room(X0) => predh(X0))) & (~(european(fred) & calm(fred)) => predt(alice)) & (? [X0] : (sibling(susan,X0) & anywhere(X0)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X0] : (room(X0) => (european(X0) & kind(X0)))) & ((like(john,fred) & like(fred,john)) => ! [X0] : (~(~hate(X0,susan) | (tourist(X0) & happy(X0))) <=> strong(X0))) & (! [X0] : (room(X0) => (~predf(X0) | (tourist(X0) & generous(X0)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X0] : (room(X0) => predc(X0)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X0] : (room(X0) => predc(X0))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. person(paul) & old(paul) & quiet(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. client(john,alice) & ! [X0] : (room(X0) => predb(X0)) & ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ! [X4] : (room(X4) => ((tourist(X4) & creative(X4)) => ~predp(X4))) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X6] : (room(X6) => ((person(X6) & tall(X6)) | predz(X6) | ~kind(X6))) & ! [X7] : (anywhere(X7) => predj(X7)) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ~propositiond & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (! [X10] : (room(X10) => ~like(X10,lucy)) => ~(person(paul) & patient(paul))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (~(european(fred) & calm(fred)) => predt(alice)) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X18] : (room(X18) => predc(X18))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (room(X0) => predb(X0)) & ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ! [X4] : (room(X4) => ((tourist(X4) & creative(X4)) => ~predp(X4))) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X6] : (room(X6) => ((person(X6) & tall(X6)) | predz(X6) | ~kind(X6))) & ! [X7] : (anywhere(X7) => predj(X7)) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ~propositiond & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (! [X10] : (room(X10) => ~like(X10,lucy)) => ~(person(paul) & patient(paul))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (~(european(fred) & calm(fred)) => predt(alice)) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X18] : (room(X18) => predc(X18))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ! [X4] : (room(X4) => ((tourist(X4) & creative(X4)) => ~predp(X4))) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X6] : (room(X6) => ((person(X6) & tall(X6)) | predz(X6) | ~kind(X6))) & ! [X7] : (anywhere(X7) => predj(X7)) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ~propositiond & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (! [X10] : (room(X10) => ~like(X10,lucy)) => ~(person(paul) & patient(paul))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (~(european(fred) & calm(fred)) => predt(alice)) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X18] : (room(X18) => predc(X18))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X6] : (room(X6) => ((person(X6) & tall(X6)) | predz(X6) | ~kind(X6))) & ! [X7] : (anywhere(X7) => predj(X7)) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ~propositiond & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (! [X10] : (room(X10) => ~like(X10,lucy)) => ~(person(paul) & patient(paul))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (~(european(fred) & calm(fred)) => predt(alice)) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X18] : (room(X18) => predc(X18))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X6] : (room(X6) => (person(X6) | predz(X6) | ~kind(X6))) & ! [X7] : (anywhere(X7) => predj(X7)) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ~propositiond & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (! [X10] : (room(X10) => ~like(X10,lucy)) => ~(person(paul) & patient(paul))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (~(european(fred) & calm(fred)) => predt(alice)) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X18] : (room(X18) => predc(X18))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X7] : (anywhere(X7) => predj(X7)) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ~propositiond & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (! [X10] : (room(X10) => ~like(X10,lucy)) => ~(person(paul) & patient(paul))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (~(european(fred) & calm(fred)) => predt(alice)) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X18] : (room(X18) => predc(X18))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ~propositiond & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (! [X10] : (room(X10) => ~like(X10,lucy)) => ~(person(paul) & patient(paul))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (~(european(fred) & calm(fred)) => predt(alice)) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X18] : (room(X18) => predc(X18))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (! [X10] : (room(X10) => ~like(X10,lucy)) => ~(person(paul) & patient(paul))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (~(european(fred) & calm(fred)) => predt(alice)) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X18] : (room(X18) => predc(X18))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (~(european(fred) & calm(fred)) => predt(alice)) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X18] : (room(X18) => predc(X18))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 55. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ~propositionb & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ((propositione & propositionb & propositionc) => ! [X18] : (room(X18) => predc(X18))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 56. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : (room(X17) => predc(X17)) => (hate(susan,fred) & hate(fred,susan))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 55] 57. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & propositione & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : ~room(X17) => (hate(susan,fred) & hate(fred,susan))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 56] 58. ~! [X1] : (room(X1) => predh(X1)) & ! [X2] : (generous(X2) => kind(X2)) & ! [X3] : (~(~hate(X3,susan) | (tourist(X3) & happy(X3))) <=> strong(X3)) & ~(hate(mary,susan) & hate(susan,mary)) & ! [X5] : (room(X5) => (european(X5) & strong(X5))) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : (room(X8) => (european(X8) & generous(X8))) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (predh(alice) <~> ! [X11] : (~room(X11) => (~predi(X11) | (person(X11) & kind(X11))))) & (predw(paul) <~> ! [X12] : (room(X12) => predh(X12))) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (~(like(john,fred) & like(fred,john)) => ! [X14] : (room(X14) => (european(X14) & kind(X14)))) & ((like(john,fred) & like(fred,john)) => ! [X15] : (~(~hate(X15,susan) | (tourist(X15) & happy(X15))) <=> strong(X15))) & (! [X16] : (room(X16) => (~predf(X16) | (tourist(X16) & generous(X16)))) <=> (hate(paul,susan) & hate(susan,paul))) & (! [X17] : ~room(X17) => (hate(susan,fred) & hate(fred,susan))) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 57] 132. ? [X1] : (~predh(X1) & room(X1)) & ! [X2] : (kind(X2) | ~generous(X2)) & ! [X3] : ((hate(X3,susan) & (~tourist(X3) | ~happy(X3))) <=> strong(X3)) & (~hate(mary,susan) | ~hate(susan,mary)) & ! [X5] : ((european(X5) & strong(X5)) | ~room(X5)) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : ((european(X8) & generous(X8)) | ~room(X8)) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (predh(alice) <~> ! [X11] : ((~predi(X11) | (person(X11) & kind(X11))) | room(X11))) & (predw(paul) <~> ! [X12] : (predh(X12) | ~room(X12))) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (! [X14] : ((european(X14) & kind(X14)) | ~room(X14)) | (like(john,fred) & like(fred,john))) & (! [X15] : ((hate(X15,susan) & (~tourist(X15) | ~happy(X15))) <=> strong(X15)) | (~like(john,fred) | ~like(fred,john))) & (! [X16] : ((~predf(X16) | (tourist(X16) & generous(X16))) | ~room(X16)) <=> (hate(paul,susan) & hate(susan,paul))) & ((hate(susan,fred) & hate(fred,susan)) | ? [X17] : room(X17)) & ! [X19] : ((alice = X19 | fred = X19 | paul = X19 | mary = X19) | ~room(X19)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 58] 133. ? [X1] : (~predh(X1) & room(X1)) & ! [X2] : (kind(X2) | ~generous(X2)) & ! [X3] : ((hate(X3,susan) & (~tourist(X3) | ~happy(X3))) <=> strong(X3)) & (~hate(mary,susan) | ~hate(susan,mary)) & ! [X5] : ((european(X5) & strong(X5)) | ~room(X5)) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : ((european(X8) & generous(X8)) | ~room(X8)) & ! [X9] : ((tourist(X9) & happy(X9)) <=> (european(X9) & old(X9))) & hate(mary,lucy) & hate(lucy,mary) & ((propositionc & ~propositionc) <=> (like(lucy,alice) & like(alice,lucy))) & (predh(alice) <~> ! [X11] : (~predi(X11) | (person(X11) & kind(X11)) | room(X11))) & (predw(paul) <~> ! [X12] : (predh(X12) | ~room(X12))) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) <=> (~generous(mary) & ~generous(paul))) & (! [X14] : ((european(X14) & kind(X14)) | ~room(X14)) | (like(john,fred) & like(fred,john))) & (! [X15] : ((hate(X15,susan) & (~tourist(X15) | ~happy(X15))) <=> strong(X15)) | ~like(john,fred) | ~like(fred,john)) & (! [X16] : (~predf(X16) | (tourist(X16) & generous(X16)) | ~room(X16)) <=> (hate(paul,susan) & hate(susan,paul))) & ((hate(susan,fred) & hate(fred,susan)) | ? [X17] : room(X17)) & ! [X19] : (alice = X19 | fred = X19 | paul = X19 | mary = X19 | ~room(X19)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 132] 134. person(paul) & old(paul) & quiet(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 45] 135. person(paul) & old(paul) & quiet(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 134] 137. ? [X1] : (~predh(X1) & room(X1)) & ! [X2] : (kind(X2) | ~generous(X2)) & ! [X3] : (((hate(X3,susan) & (~tourist(X3) | ~happy(X3))) | ~strong(X3)) & (strong(X3) | (~hate(X3,susan) | (tourist(X3) & happy(X3))))) & (~hate(mary,susan) | ~hate(susan,mary)) & ! [X5] : ((european(X5) & strong(X5)) | ~room(X5)) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : ((european(X8) & generous(X8)) | ~room(X8)) & ! [X9] : (((tourist(X9) & happy(X9)) | (~european(X9) | ~old(X9))) & ((european(X9) & old(X9)) | (~tourist(X9) | ~happy(X9)))) & hate(mary,lucy) & hate(lucy,mary) & (((propositionc & ~propositionc) | (~like(lucy,alice) | ~like(alice,lucy))) & ((like(lucy,alice) & like(alice,lucy)) | (~propositionc | propositionc))) & ((? [X11] : (predi(X11) & (~person(X11) | ~kind(X11)) & ~room(X11)) | ~predh(alice)) & (! [X11] : (~predi(X11) | (person(X11) & kind(X11)) | room(X11)) | predh(alice))) & ((? [X12] : (~predh(X12) & room(X12)) | ~predw(paul)) & (! [X12] : (predh(X12) | ~room(X12)) | predw(paul))) & ((? [X13] : (sibling(susan,X13) & anywhere(X13)) | (generous(mary) | generous(paul))) & ((~generous(mary) & ~generous(paul)) | ! [X13] : (~sibling(susan,X13) | ~anywhere(X13)))) & (! [X14] : ((european(X14) & kind(X14)) | ~room(X14)) | (like(john,fred) & like(fred,john))) & (! [X15] : (((hate(X15,susan) & (~tourist(X15) | ~happy(X15))) | ~strong(X15)) & (strong(X15) | (~hate(X15,susan) | (tourist(X15) & happy(X15))))) | ~like(john,fred) | ~like(fred,john)) & ((! [X16] : (~predf(X16) | (tourist(X16) & generous(X16)) | ~room(X16)) | (~hate(paul,susan) | ~hate(susan,paul))) & ((hate(paul,susan) & hate(susan,paul)) | ? [X16] : (predf(X16) & (~tourist(X16) | ~generous(X16)) & room(X16)))) & ((hate(susan,fred) & hate(fred,susan)) | ? [X17] : room(X17)) & ! [X19] : (alice = X19 | fred = X19 | paul = X19 | mary = X19 | ~room(X19)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 133] 138. ? [X1] : (~predh(X1) & room(X1)) & ! [X2] : (kind(X2) | ~generous(X2)) & ! [X3] : (((hate(X3,susan) & (~tourist(X3) | ~happy(X3))) | ~strong(X3)) & (strong(X3) | ~hate(X3,susan) | (tourist(X3) & happy(X3)))) & (~hate(mary,susan) | ~hate(susan,mary)) & ! [X5] : ((european(X5) & strong(X5)) | ~room(X5)) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X8] : ((european(X8) & generous(X8)) | ~room(X8)) & ! [X9] : (((tourist(X9) & happy(X9)) | ~european(X9) | ~old(X9)) & ((european(X9) & old(X9)) | ~tourist(X9) | ~happy(X9))) & hate(mary,lucy) & hate(lucy,mary) & ((propositionc & ~propositionc) | ~like(lucy,alice) | ~like(alice,lucy)) & ((like(lucy,alice) & like(alice,lucy)) | ~propositionc | propositionc) & (? [X11] : (predi(X11) & (~person(X11) | ~kind(X11)) & ~room(X11)) | ~predh(alice)) & (! [X11] : (~predi(X11) | (person(X11) & kind(X11)) | room(X11)) | predh(alice)) & (? [X12] : (~predh(X12) & room(X12)) | ~predw(paul)) & (! [X12] : (predh(X12) | ~room(X12)) | predw(paul)) & (? [X13] : (sibling(susan,X13) & anywhere(X13)) | generous(mary) | generous(paul)) & ((~generous(mary) & ~generous(paul)) | ! [X13] : (~sibling(susan,X13) | ~anywhere(X13))) & (! [X14] : ((european(X14) & kind(X14)) | ~room(X14)) | (like(john,fred) & like(fred,john))) & (! [X15] : (((hate(X15,susan) & (~tourist(X15) | ~happy(X15))) | ~strong(X15)) & (strong(X15) | ~hate(X15,susan) | (tourist(X15) & happy(X15)))) | ~like(john,fred) | ~like(fred,john)) & (! [X16] : (~predf(X16) | (tourist(X16) & generous(X16)) | ~room(X16)) | ~hate(paul,susan) | ~hate(susan,paul)) & ((hate(paul,susan) & hate(susan,paul)) | ? [X16] : (predf(X16) & (~tourist(X16) | ~generous(X16)) & room(X16))) & ((hate(susan,fred) & hate(fred,susan)) | ? [X17] : room(X17)) & ! [X19] : (alice = X19 | fred = X19 | paul = X19 | mary = X19 | ~room(X19)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 137] 139. ? [X0] : (~predh(X0) & room(X0)) & ! [X1] : (kind(X1) | ~generous(X1)) & ! [X2] : (((hate(X2,susan) & (~tourist(X2) | ~happy(X2))) | ~strong(X2)) & (strong(X2) | ~hate(X2,susan) | (tourist(X2) & happy(X2)))) & (~hate(mary,susan) | ~hate(susan,mary)) & ! [X3] : ((european(X3) & strong(X3)) | ~room(X3)) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X4] : ((european(X4) & generous(X4)) | ~room(X4)) & ! [X5] : (((tourist(X5) & happy(X5)) | ~european(X5) | ~old(X5)) & ((european(X5) & old(X5)) | ~tourist(X5) | ~happy(X5))) & hate(mary,lucy) & hate(lucy,mary) & ((propositionc & ~propositionc) | ~like(lucy,alice) | ~like(alice,lucy)) & ((like(lucy,alice) & like(alice,lucy)) | ~propositionc | propositionc) & (? [X6] : (predi(X6) & (~person(X6) | ~kind(X6)) & ~room(X6)) | ~predh(alice)) & (! [X7] : (~predi(X7) | (person(X7) & kind(X7)) | room(X7)) | predh(alice)) & (? [X8] : (~predh(X8) & room(X8)) | ~predw(paul)) & (! [X9] : (predh(X9) | ~room(X9)) | predw(paul)) & (? [X10] : (sibling(susan,X10) & anywhere(X10)) | generous(mary) | generous(paul)) & ((~generous(mary) & ~generous(paul)) | ! [X11] : (~sibling(susan,X11) | ~anywhere(X11))) & (! [X12] : ((european(X12) & kind(X12)) | ~room(X12)) | (like(john,fred) & like(fred,john))) & (! [X13] : (((hate(X13,susan) & (~tourist(X13) | ~happy(X13))) | ~strong(X13)) & (strong(X13) | ~hate(X13,susan) | (tourist(X13) & happy(X13)))) | ~like(john,fred) | ~like(fred,john)) & (! [X14] : (~predf(X14) | (tourist(X14) & generous(X14)) | ~room(X14)) | ~hate(paul,susan) | ~hate(susan,paul)) & ((hate(paul,susan) & hate(susan,paul)) | ? [X15] : (predf(X15) & (~tourist(X15) | ~generous(X15)) & room(X15))) & ((hate(susan,fred) & hate(fred,susan)) | ? [X16] : room(X16)) & ! [X17] : (alice = X17 | fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 138] 140. ? [X0] : (~predh(X0) & room(X0)) => (~predh(sK0) & room(sK0)) [choice axiom] 141. ? [X6] : (predi(X6) & (~person(X6) | ~kind(X6)) & ~room(X6)) => (predi(sK1) & (~person(sK1) | ~kind(sK1)) & ~room(sK1)) [choice axiom] 142. ? [X8] : (~predh(X8) & room(X8)) => (~predh(sK2) & room(sK2)) [choice axiom] 143. ? [X10] : (sibling(susan,X10) & anywhere(X10)) => (sibling(susan,sK3) & anywhere(sK3)) [choice axiom] 144. ? [X15] : (predf(X15) & (~tourist(X15) | ~generous(X15)) & room(X15)) => (predf(sK4) & (~tourist(sK4) | ~generous(sK4)) & room(sK4)) [choice axiom] 145. ? [X16] : room(X16) => room(sK5) [choice axiom] 146. (~predh(sK0) & room(sK0)) & ! [X1] : (kind(X1) | ~generous(X1)) & ! [X2] : (((hate(X2,susan) & (~tourist(X2) | ~happy(X2))) | ~strong(X2)) & (strong(X2) | ~hate(X2,susan) | (tourist(X2) & happy(X2)))) & (~hate(mary,susan) | ~hate(susan,mary)) & ! [X3] : ((european(X3) & strong(X3)) | ~room(X3)) & european(mary) & quiet(mary) & european(alice) & quiet(alice) & ! [X4] : ((european(X4) & generous(X4)) | ~room(X4)) & ! [X5] : (((tourist(X5) & happy(X5)) | ~european(X5) | ~old(X5)) & ((european(X5) & old(X5)) | ~tourist(X5) | ~happy(X5))) & hate(mary,lucy) & hate(lucy,mary) & ((propositionc & ~propositionc) | ~like(lucy,alice) | ~like(alice,lucy)) & ((like(lucy,alice) & like(alice,lucy)) | ~propositionc | propositionc) & ((predi(sK1) & (~person(sK1) | ~kind(sK1)) & ~room(sK1)) | ~predh(alice)) & (! [X7] : (~predi(X7) | (person(X7) & kind(X7)) | room(X7)) | predh(alice)) & ((~predh(sK2) & room(sK2)) | ~predw(paul)) & (! [X9] : (predh(X9) | ~room(X9)) | predw(paul)) & ((sibling(susan,sK3) & anywhere(sK3)) | generous(mary) | generous(paul)) & ((~generous(mary) & ~generous(paul)) | ! [X11] : (~sibling(susan,X11) | ~anywhere(X11))) & (! [X12] : ((european(X12) & kind(X12)) | ~room(X12)) | (like(john,fred) & like(fred,john))) & (! [X13] : (((hate(X13,susan) & (~tourist(X13) | ~happy(X13))) | ~strong(X13)) & (strong(X13) | ~hate(X13,susan) | (tourist(X13) & happy(X13)))) | ~like(john,fred) | ~like(fred,john)) & (! [X14] : (~predf(X14) | (tourist(X14) & generous(X14)) | ~room(X14)) | ~hate(paul,susan) | ~hate(susan,paul)) & ((hate(paul,susan) & hate(susan,paul)) | (predf(sK4) & (~tourist(sK4) | ~generous(sK4)) & room(sK4))) & ((hate(susan,fred) & hate(fred,susan)) | room(sK5)) & ! [X17] : (alice = X17 | fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 139,145,144,143,142,141,140] 233. room(paul) [cnf transformation 146] 275. ~old(X5) | ~european(X5) | happy(X5) [cnf transformation 146] 276. ~old(X5) | ~european(X5) | tourist(X5) [cnf transformation 146] 283. ~room(X3) | strong(X3) [cnf transformation 146] 284. ~room(X3) | european(X3) [cnf transformation 146] 288. ~strong(X2) | ~happy(X2) | ~tourist(X2) [cnf transformation 146] 299. old(paul) [cnf transformation 135] 472. strong(paul) [resolution 283,233] 479. european(paul) [resolution 284,233] 499. ~european(paul) | happy(paul) [resolution 275,299] 500. happy(paul) [subsumption resolution 499,479] 501. ~european(paul) | tourist(paul) [resolution 276,299] 502. tourist(paul) [subsumption resolution 501,479] 504. ~happy(paul) | ~tourist(paul) [resolution 288,472] 518. ~tourist(paul) [subsumption resolution 504,500] 519. $false [subsumption resolution 518,502] % SZS output end Proof for 81503040923936243289528 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.291777
Barbara, Rufina are the only persons in the room. 'Not everyone in the room enjoys stargazing if they practices kickboxing' unless 'everyone outside the room enjoys coding in Python or does not travel domestically frequently'. If someone enjoys stargazing then he/she neither enjoys kayaking nor is an avid collector of autographed memorabilia from famous musicians. Not everyone anywhere who practices tai chi enjoys stargazing. Everyone in the room enjoys stargazing only if they practices tai chi. Barbara uses a Windows laptop. Rufina uses a Windows laptop. If someone does not own an Android phone then he/she is a professional photographer specializing in portrait photography and vice versa. Rufina does practice yoga. Rufina enjoys stargazing. Everyone outside the room is a wine connoisseur with a private cellar of vintage wines. Not everyone in the room enjoys stargazing if they practices kickboxing. Barbara reads mystery novels. Barbara does not travel domestically frequently. Rufina neither works as a freelance web developer specializing in e-commerce sites nor owns an Android phone. If someone hosts a popular podcast about emerging technologies then he/she practices kickboxing. Everyone in the room hosts regular game nights featuring complex strategy games only if they does not enjoy kayaking and practices tai chi. If someone works as a freelance web developer specializing in e-commerce sites then he/she practices archery, does not enjoy stargazing and hosts a popular podcast about emerging technologies.
Rufina enjoys kayaking.
contradiction
room(barbara)&room(rufina)&(![X]:(room(X)=>(X='barbara'|X='rufina')))& (~(![X]:(~room(X)=>(((does_not_travel_domestically_frequently(X))|(enjoys_coding_in_Python(X))))))=>(~![X]:(room(X)=>(((practices_kickboxing(X))=>(enjoys_stargazing(X)))))))& ((![X]:((enjoys_stargazing(X))=>(~((enjoys_kayaking(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))))& (~![X]:(anywhere(X)=>(((practices_tai_chi(X))=>(enjoys_stargazing(X))))))& (![X]:(room(X)=>(((practices_tai_chi(X))<=(enjoys_stargazing(X))))))& (uses_a_Windows_laptop(barbara))& (uses_a_Windows_laptop(rufina))& ((![X]:((does_not_own_an_Android_phone(X))<=>(is_a_professional_photographer_specializing_in_portrait_photography(X)))))& (does_practice_yoga(rufina))& (enjoys_stargazing(rufina))& (![X]:(~room(X)=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))& (~![X]:(room(X)=>(((practices_kickboxing(X))=>(enjoys_stargazing(X))))))& (reads_mystery_novels(barbara))& (does_not_travel_domestically_frequently(barbara))& (~((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(rufina))|(owns_an_Android_phone(rufina))))& ((![X]:((hosts_a_popular_podcast_about_emerging_technologies(X))=>(practices_kickboxing(X)))))& (![X]:(room(X)=>(((((does_not_enjoy_kayaking(X))&(practices_tai_chi(X))))<=(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& ((![X]:((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(((practices_archery(X))&(does_not_enjoy_stargazing(X))&(hosts_a_popular_podcast_about_emerging_technologies(X)))))))
room(barbara)&room(rufina)&(![X]:(room(X)=>(X='barbara'|X='rufina')))& enjoys_kayaking(rufina)
[ "p2", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 5107331865055572797645891 % SZS output start Proof for 5107331865055572797645891 46. ! [X0] : (predo(X0) => ~(predd(X0) | predi(X0))) [input p2] 53. predo(paul) [input p9] 62. predi(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 79. ! [X0] : (predo(X0) => ~predi(X0)) [pure predicate removal 46] 159. ! [X0] : (~predi(X0) | ~predo(X0)) [ennf transformation 79] 162. predi(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 62] 163. predi(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 162] 252. ~predi(X0) | ~predo(X0) [cnf transformation 159] 254. predo(paul) [cnf transformation 53] 260. predi(paul) [cnf transformation 163] 261. ~predo(paul) [resolution 252,260] 262. $false [subsumption resolution 261,254] % SZS output end Proof for 5107331865055572797645891 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
Julie, Margaret, Dixie, James, Mary are the only persons in the room. Margaret is a patient european. Everyone in the room has lived in exactly three countries. Margaret is a patient person. Everyone in the room is patient. Dixie who is an active member of a local robotics club, is a patient european and is a patient person is a patient european. Margaret who is patient enjoys logic puzzles or has lived in exactly three countries or both. Not everyone in the room is a member of a local theater group specializing in improv. Everyone outside the room is patient. Everyone outside the room is a patient person, is a patient european or is patient. If someone is not patient then he/she either is a patient european or is an active member of a local robotics club but not both and vice versa. Dixie is a patient person. Dixie is a patient european, is patient or does not have lived in exactly three countries. Everyone in the room is not a member of a local theater group specializing in improv. Margaret is patient or does not enjoy logic puzzles or both. Someone who is not a patient european, is a member of a local theater group specializing in improv or is not a member of a local theater group specializing in improv is richer than someone who has lived in exactly three countries. Dixie is patient or is a patient person or both.
Julie is patient.
entailment
room(julie)&room(margaret)&room(dixie)&room(james)&room(mary)&(![X]:(room(X)=>(X='julie'|X='margaret'|X='dixie'|X='james'|X='mary')))& (patient(margaret)&european(margaret))& (![X]:(room(X)=>(has_lived_in_exactly_three_countries(X))))& (patient(margaret)&person(margaret))& (![X]:(room(X)=>(patient(X))))& ((((is_an_active_member_of_a_local_robotics_club(dixie))&(patient(dixie)&european(dixie))&(patient(dixie)&person(dixie))))&(patient(dixie)&european(dixie)))& ((patient(margaret))&(((enjoys_logic_puzzles(margaret))|(has_lived_in_exactly_three_countries(margaret)))))& (~![X]:(room(X)=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))& (![X]:(~room(X)=>(patient(X))))& (![X]:(~room(X)=>(((patient(X)&person(X))|(patient(X)&european(X))|(patient(X))))))& ((![X]:((~patient(X))<=>(((patient(X)&european(X))<~>(is_an_active_member_of_a_local_robotics_club(X)))))))& (patient(dixie)&person(dixie))& (((patient(dixie)&european(dixie))|(patient(dixie))|(does_not_have_lived_in_exactly_three_countries(dixie))))& (![X]:(room(X)=>(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))& (((patient(margaret))|(does_not_enjoy_logic_puzzles(margaret))))& (?[X,Y]:((((~(patient(X)&european(X)))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))&(has_lived_in_exactly_three_countries(Y))&(richer(X,Y))))& (((patient(dixie))|(patient(dixie)&person(dixie))))
room(julie)&room(margaret)&room(dixie)&room(james)&room(mary)&(![X]:(room(X)=>(X='julie'|X='margaret'|X='dixie'|X='james'|X='mary')))& patient(julie)
[ "p0", "p4", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 8324141551563780202234981 % SZS output start Proof for 8324141551563780202234981 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => patient(X0)) [input p4] 52. ! [X0] : (~room(X0) => patient(X0)) [input p8] 61. ~(patient(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 139. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 140. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 139] 142. ! [X0] : (patient(X0) | ~room(X0)) [ennf transformation 48] 144. ! [X0] : (patient(X0) | room(X0)) [ennf transformation 52] 150. ~patient(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 61] 151. ~patient(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 150] 159. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 160. ~patient(mary) | (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 151,159] 241. room(mary) [cnf transformation 140] 242. room(paul) [cnf transformation 140] 243. room(fred) [cnf transformation 140] 244. room(alice) [cnf transformation 140] 245. room(john) [cnf transformation 140] 246. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 140] 251. ~room(X0) | patient(X0) [cnf transformation 142] 262. patient(X0) | room(X0) [cnf transformation 144] 280. ~patient(mary) | room(sK3) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 281. ~patient(mary) | mary != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 282. ~patient(mary) | paul != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 283. ~patient(mary) | fred != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 284. ~patient(mary) | alice != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 285. ~patient(mary) | john != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 301. patient(X0) [subsumption resolution 262,251] 304. john != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 285,301] 305. john != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 304,245] 306. john != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 305,244] 307. john != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 306,243] 308. john != sK3 | ~room(mary) [subsumption resolution 307,242] 309. john != sK3 [subsumption resolution 308,241] 310. alice != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 284,301] 311. alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 310,245] 312. alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 311,244] 313. alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 312,243] 314. alice != sK3 | ~room(mary) [subsumption resolution 313,242] 315. alice != sK3 [subsumption resolution 314,241] 316. fred != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 283,301] 317. fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 316,245] 318. fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 317,244] 319. fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 318,243] 320. fred != sK3 | ~room(mary) [subsumption resolution 319,242] 321. fred != sK3 [subsumption resolution 320,241] 322. paul != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 282,301] 323. paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 322,245] 324. paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 323,244] 325. paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 324,243] 326. paul != sK3 | ~room(mary) [subsumption resolution 325,242] 327. paul != sK3 [subsumption resolution 326,241] 328. mary != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,301] 329. mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 328,245] 330. mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 329,244] 331. mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 330,243] 332. mary != sK3 | ~room(mary) [subsumption resolution 331,242] 333. mary != sK3 [subsumption resolution 332,241] 334. room(sK3) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,301] 335. room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 334,245] 336. room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 335,244] 337. room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 336,243] 338. room(sK3) | ~room(mary) [subsumption resolution 337,242] 339. room(sK3) [subsumption resolution 338,241] 450. alice = sK3 | fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 [resolution 246,339] 472. fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 [subsumption resolution 450,315] 473. paul = sK3 | mary = sK3 | john = sK3 [subsumption resolution 472,321] 474. mary = sK3 | john = sK3 [subsumption resolution 473,327] 475. john = sK3 [subsumption resolution 474,333] 476. $false [subsumption resolution 475,309] % SZS output end Proof for 8324141551563780202234981 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.621697
There is a room. Either “everyone in the room does not drive a hybrid car or is a scotch connoisseur” or “everyone in the room is a client of Costco or does not collect rare sneakers” but not both. No one in the room has a curated collection of mid-century modern furniture.
Everyone outside the room is a scotch connoisseur.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((is_a_scotch_connoisseur(X))|(does_not_drive_a_hybrid_car(X))))))<~>(![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))|(is_a_client_of_Costco(X)))))))& ((![X]:(room(X)=>(((enjoys_cross-country_skiing(X))|(does_not_bake_bread_at_home(X))))))=>(![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(has_completed_a_triathlon(X)))))))& ((![X]:((((collects_historical_artifacts_related_to_ancient_civilizations(X))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X)))))))& (![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(has_completed_a_triathlon(X))))))& (![X]:(~room(X)=>(((has_completed_a_triathlon(X))=>(collect_rare_sneakers(X))))))& (![X]:(room(X)=>(((does_not_watche_fantasy_movies(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (~?[X]:(room(X)=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))& (![X]:(room(X)=>(((((has_a_curated_collection_of_mid-century_modern_furniture(X))&(collect_rare_sneakers(X))&(practices_calligraphy(X))))=>(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(room(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(anywhere(X)=>(((((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))<~>(collects_limited-edition_art_prints_from_contemporary_artists(X))))=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(volunteers_for_local_environmental_conservation_projects(X))))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<=>(((volunteers_for_local_environmental_conservation_projects(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))|(enjoys_windsurfing(X))))))))& (![X]:(room(X)=>(((((volunteers_for_local_environmental_conservation_projects(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))|(enjoys_windsurfing(X))))=>(((watches_fantasy_movies(X))|(is_a_client_of_Costco(X))))))))& ((![X]:((enjoys_windsurfing(X))=>(practices_calligraphy(X)))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(((volunteers_for_local_environmental_conservation_projects(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))))& (![X]:(room(X)=>(((((volunteers_for_local_environmental_conservation_projects(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))=>(((is_an_active_member_of_a_local_robotics_club(X))|(drives_a_hybrid_car(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))))))))& (![X]:(room(X)=>(((((is_an_active_member_of_a_local_robotics_club(X))|(drives_a_hybrid_car(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))))|(does_not_drive_a_hybrid_car(X))))))& (![X]:(anywhere(X)=>(owns_a_smartwatch(X))))& ((![X]:((volunteers_for_local_environmental_conservation_projects(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X)))))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(((does_practice_yoga(X))&(bakes_bread_at_home(X))))))))& (![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))<=(((does_practice_yoga(X))&(bakes_bread_at_home(X))))))))& (![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))=>(collect_rare_sneakers(X))))))& ((![X]:((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))=>(((does_practice_yoga(X))<~>(does_not_drive_a_hybrid_car(X)))))))& (![X]:(anywhere(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))<=(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (![X]:(~room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(is_a_scotch_connoisseur(X))))))))& (?[X]:(room(X)&(watches_fantasy_movies(X))))
(there_is_a_room)& ![X]:(~room(X)=>(is_a_scotch_connoisseur(X)))
[ "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 4745981764708450139241237 % SZS output start Proof for 4745981764708450139241237 44. there_is_a_room [input p0] 51. ~? [X0] : (room(X0) => predb(X0)) [input p7] 71. ~(! [X0] : (~room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 160. ! [X0] : (~predb(X0) & room(X0)) [ennf transformation 51] 178. ? [X0] : (~predc(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 71] 191. ? [X0] : (~predc(X0) & ~room(X0)) => (~predc(sK3) & ~room(sK3)) [choice axiom] 192. (~predc(sK3) & ~room(sK3)) | ~there_is_a_room [skolemisation 178,191] 274. there_is_a_room [cnf transformation 44] 285. room(X0) [cnf transformation 160] 305. ~room(sK3) | ~there_is_a_room [cnf transformation 192] 362. ~there_is_a_room [subsumption resolution 305,285] 363. $false [subsumption resolution 362,274] % SZS output end Proof for 4745981764708450139241237 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.065801
David, Jeffrey are the only persons in the room. Everyone in the room who does not create YouTube content collects comic books. David collects rare minerals. Everyone in the room does not collect comic books if they collects rare minerals.
David creates YouTube content.
entailment
room(david)&room(jeffrey)&(![X]:(room(X)=>(X='david'|X='jeffrey')))& (![X]:(~room(X)=>(((enjoys_cross-country_skiing(X))=>(does_not_create_YouTube_content(X))))))& (~![X]:(room(X)=>(((collects_rare_minerals(X))=>(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))=>(((cannot_play_the_flute(X))&(uses_contact_lenses(X))))))))& (![X]:(anywhere(X)=>(((practices_graffiti_art(X))&(owns_an_Android_phone(X))))))& (((?[X]:(room(X)&collects_rare_minerals(X)))&(![X,Y]:((room(X)&room(Y)&(collects_rare_minerals(X))&(collects_rare_minerals(Y)))=>(X=Y)))))& (~?[X]:(anywhere(X)=>(((is_not_a_cybersecurity_expert(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(cannot_play_the_flute(X))))))& (![X]:(room(X)=>(((cannot_play_the_flute(X))<=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& ((?[X,Y]:(~room(X)&~room(Y)&(is_a_client_of_Costco(X)&is_a_client_of_Costco(Y))&(X!=Y))))& (?[X]:(~room(X)&(does_not_bake_bread_at_home(X))))& ((?[X,Y]:(room(X)&room(Y)&(is_not_a_cybersecurity_expert(X)&is_not_a_cybersecurity_expert(Y))&(X!=Y))))& (![X]:(room(X)=>(((does_not_create_YouTube_content(X))=>(collects_comic_books(X))))))& ((?[X,Y]:(room(X)&room(Y)&(((is_not_a_client_of_Costco(X))|(does_not_enjoy_macrame(X)))&((is_not_a_client_of_Costco(Y))|(does_not_enjoy_macrame(Y))))&(X!=Y))))& (![X]:(room(X)=>(((does_not_create_YouTube_content(X))=>(((creates_YouTube_content(X))<~>(collects_luxury_watches(X))))))))& (![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))=>(has_completed_a_triathlon(X))))))& ((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(jeffrey))&(((is_a_cybersecurity_expert(jeffrey))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(jeffrey))|(collects_luxury_watches(jeffrey)))))& (![X]:(anywhere(X)=>(((is_a_scotch_connoisseur(X))<=>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (?[X]:(room(X)&(practices_graffiti_art(X))))& (collects_rare_minerals(david))& (![X]:(room(X)=>(((does_not_create_augmented_reality_experiences_for_mobile_applications(X))|(is_not_a_cybersecurity_expert(X))))))& (![X]:(anywhere(X)=>(does_not_use_contact_lenses(X))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((collects_rare_minerals(X))=>(does_not_collect_comic_books(X))))))& (![X]:(~room(X)=>(((bakes_bread_at_home(X))=>(does_not_create_augmented_reality_experiences_for_mobile_applications(X))))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(owns_an_Android_phone(X))))))
room(david)&room(jeffrey)&(![X]:(room(X)=>(X='david'|X='jeffrey')))& creates_YouTube_content(david)
[ "p0", "p12", "p19", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 6250788237136130279736266 % SZS output start Proof for 6250788237136130279736266 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 56. ! [X0] : (room(X0) => (~predq(X0) => predi(X0))) [input p12] 63. predn(mary) [input p19] 67. ! [X0] : (room(X0) => (predn(X0) => ~predi(X0))) [input p23] 70. ~(predq(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 163. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 164. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 163] 170. ! [X0] : ((predi(X0) | predq(X0)) | ~room(X0)) [ennf transformation 56] 171. ! [X0] : (predi(X0) | predq(X0) | ~room(X0)) [flattening 170] 175. ! [X0] : ((~predi(X0) | ~predn(X0)) | ~room(X0)) [ennf transformation 67] 176. ! [X0] : (~predi(X0) | ~predn(X0) | ~room(X0)) [flattening 175] 177. ~predq(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 70] 178. ~predq(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 177] 197. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK10 & mary != sK10 & room(sK10)) [choice axiom] 198. ~predq(mary) | (paul != sK10 & mary != sK10 & room(sK10)) | ~room(paul) | ~room(mary) [skolemisation 178,197] 280. room(mary) [cnf transformation 164] 281. room(paul) [cnf transformation 164] 282. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 164] 298. ~room(X0) | predq(X0) | predi(X0) [cnf transformation 171] 308. predn(mary) [cnf transformation 63] 309. ~predi(X0) | ~predn(X0) | ~room(X0) [cnf transformation 176] 310. ~predq(mary) | room(sK10) | ~room(paul) | ~room(mary) [cnf transformation 198] 311. ~predq(mary) | mary != sK10 | ~room(paul) | ~room(mary) [cnf transformation 198] 312. ~predq(mary) | paul != sK10 | ~room(paul) | ~room(mary) [cnf transformation 198] 316. ~predq(mary) | paul != sK10 | ~room(mary) [subsumption resolution 312,281] 317. ~predq(mary) | paul != sK10 [subsumption resolution 316,280] 319. 1 <=> paul = sK10 [avatar definition] 321. paul != sK10 <- (~1) [avatar component clause 319] 323. 2 <=> predq(mary) [avatar definition] 325. ~predq(mary) <- (~2) [avatar component clause 323] 326. ~1 | ~2 [avatar split clause 317,323,319] 327. ~predq(mary) | mary != sK10 | ~room(mary) [subsumption resolution 311,281] 328. ~predq(mary) | mary != sK10 [subsumption resolution 327,280] 330. 3 <=> mary = sK10 [avatar definition] 332. mary != sK10 <- (~3) [avatar component clause 330] 333. ~3 | ~2 [avatar split clause 328,323,330] 334. ~predq(mary) | room(sK10) | ~room(mary) [subsumption resolution 310,281] 335. ~predq(mary) | room(sK10) [subsumption resolution 334,280] 337. 4 <=> room(sK10) [avatar definition] 339. room(sK10) <- (4) [avatar component clause 337] 340. 4 | ~2 [avatar split clause 335,323,337] 435. predq(mary) | predi(mary) [resolution 298,280] 701. mary = sK10 | paul = sK10 <- (4) [resolution 339,282] 705. paul = sK10 <- (~3, 4) [subsumption resolution 701,332] 706. $false <- (~1, ~3, 4) [subsumption resolution 705,321] 707. 1 | 3 | ~4 [avatar contradiction clause 706] 755. predi(mary) <- (~2) [subsumption resolution 435,325] 775. ~predn(mary) | ~room(mary) <- (~2) [resolution 755,309] 776. ~room(mary) <- (~2) [subsumption resolution 775,308] 777. $false <- (~2) [subsumption resolution 776,280] 778. 2 [avatar contradiction clause 777] 779. $false [avatar sat refutation 326,333,340,707,778] % SZS output end Proof for 6250788237136130279736266 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.059374
David is the only person in the room. "David neither enjoys watercolor painting nor practices and performs acrobatic dance routines" only if "David does not enjoy watercolor painting". Either "it is true that "everyone outside the room can play the piano or cannot play the piano"" or "David practices and performs acrobatic dance routines" but not both. If "someone in the room does not enjoy watercolor painting" then "David can play the piano" otherwise "everyone in the room who does not practice and performs acrobatic dance routines cannot play the piano". David does not practice and performs acrobatic dance routines. David enjoys watercolor painting. Everyone in the room does not practice and performs acrobatic dance routines or cannot play the piano. Everyone in the room enjoys watercolor painting if they does not enjoy watercolor painting.
It is not the case that "it is not the case that "David can play the piano"".
contradiction
room(david)&(![X]:(room(X)=>(X='david')))& ((~((enjoys_watercolor_painting(david))|(practices_and_performs_acrobatic_dance_routines(david))))=>(does_not_enjoy_watercolor_painting(david)))& ((![X]:(~room(X)=>(((cannot_play_the_piano(X))|(can_play_the_piano(X))))))<~>(practices_and_performs_acrobatic_dance_routines(david)))& (((?[X]:(room(X)&(does_not_enjoy_watercolor_painting(X))))=>(can_play_the_piano(david)))&((~(?[X]:(room(X)&(does_not_enjoy_watercolor_painting(X)))))=>(![X]:(room(X)=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))=>(cannot_play_the_piano(X))))))))& (does_not_practice_and_performs_acrobatic_dance_routines(david))& (enjoys_watercolor_painting(david))& (![X]:(room(X)=>(((cannot_play_the_piano(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))& (![X]:(room(X)=>(((does_not_enjoy_watercolor_painting(X))=>(enjoys_watercolor_painting(X))))))
room(david)&(![X]:(room(X)=>(X='david')))& ~(~(can_play_the_piano(david)))
[ "p0", "p3", "p6", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 1378697431473457258649126 % SZS output start Proof for 1378697431473457258649126 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 47. (~? [X0] : (~predb(X0) & room(X0)) => ! [X0] : (room(X0) => (~predc(X0) => ~preda(X0)))) & (? [X0] : (~predb(X0) & room(X0)) => preda(mary)) [input p3] 50. ! [X0] : (room(X0) => (~predc(X0) | ~preda(X0))) [input p6] 51. ! [X0] : (room(X0) => (~predb(X0) => predb(X0))) [input p7] 52. preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 53. (~? [X0] : (~predb(X0) & room(X0)) => ! [X1] : (room(X1) => (~predc(X1) => ~preda(X1)))) & (? [X2] : (~predb(X2) & room(X2)) => preda(mary)) [rectify 47] 126. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 131. (! [X1] : ((~preda(X1) | predc(X1)) | ~room(X1)) | ? [X0] : (~predb(X0) & room(X0))) & (preda(mary) | ! [X2] : (predb(X2) | ~room(X2))) [ennf transformation 53] 132. (! [X1] : (~preda(X1) | predc(X1) | ~room(X1)) | ? [X0] : (~predb(X0) & room(X0))) & (preda(mary) | ! [X2] : (predb(X2) | ~room(X2))) [flattening 131] 133. ! [X0] : ((~predc(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 50] 134. ! [X0] : (~predc(X0) | ~preda(X0) | ~room(X0)) [flattening 133] 135. ! [X0] : ((predb(X0) | predb(X0)) | ~room(X0)) [ennf transformation 51] 136. ! [X0] : (predb(X0) | predb(X0) | ~room(X0)) [flattening 135] 137. preda(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 52] 143. (! [X0] : (~preda(X0) | predc(X0) | ~room(X0)) | ? [X1] : (~predb(X1) & room(X1))) & (preda(mary) | ! [X2] : (predb(X2) | ~room(X2))) [rectify 132] 144. ? [X1] : (~predb(X1) & room(X1)) => (~predb(sK1) & room(sK1)) [choice axiom] 145. (! [X0] : (~preda(X0) | predc(X0) | ~room(X0)) | (~predb(sK1) & room(sK1))) & (preda(mary) | ! [X2] : (predb(X2) | ~room(X2))) [skolemisation 143,144] 226. room(mary) [cnf transformation 126] 234. ~preda(X0) | predc(X0) | ~room(X0) | room(sK1) [cnf transformation 145] 235. ~preda(X0) | predc(X0) | ~room(X0) | ~predb(sK1) [cnf transformation 145] 238. ~predc(X0) | ~preda(X0) | ~room(X0) [cnf transformation 134] 239. predb(X0) | predb(X0) | ~room(X0) [cnf transformation 136] 242. preda(mary) [cnf transformation 137] 243. predb(X0) | ~room(X0) [duplicate literal removal 239] 260. 4 <=> predb(sK1) [avatar definition] 262. ~predb(sK1) <- (~4) [avatar component clause 260] 264. 5 <=> ! [X0] : (~preda(X0) | ~room(X0) | predc(X0)) [avatar definition] 265. ~preda(X0) | ~room(X0) | predc(X0) <- (5) [avatar component clause 264] 266. ~4 | 5 [avatar split clause 235,264,260] 268. 6 <=> room(sK1) [avatar definition] 270. room(sK1) <- (6) [avatar component clause 268] 271. 6 | 5 [avatar split clause 234,264,268] 273. 7 <=> ! [X2] : (predb(X2) | ~room(X2)) [avatar definition] 274. ~room(X2) | predb(X2) <- (7) [avatar component clause 273] 276. 8 <=> preda(mary) [avatar definition] 278. preda(mary) <- (8) [avatar component clause 276] 281. 7 [avatar split clause 243,273] 282. 8 [avatar split clause 242,276] 283. ~preda(X0) | ~room(X0) <- (5) [subsumption resolution 265,238] 285. ~room(mary) <- (5, 8) [resolution 283,278] 286. $false <- (5, 8) [subsumption resolution 285,226] 287. ~5 | ~8 [avatar contradiction clause 286] 288. predb(sK1) <- (6, 7) [resolution 270,274] 289. $false <- (~4, 6, 7) [subsumption resolution 288,262] 290. 4 | ~6 | ~7 [avatar contradiction clause 289] 291. $false [avatar sat refutation 266,271,281,282,287,290] % SZS output end Proof for 1378697431473457258649126 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.560592
There is a room. "No one in the room enjoys writing detailed reviews of new and classic board games or does not enjoy writing detailed reviews of new and classic board games" if "everyone in the room enjoys macrame or does not write and illustrates their own graphic novels" and vice versa. "Everyone in the room writes and illustrates their own graphic novels or does not write and illustrates their own graphic novels" if "no one in the room does not develop open-source software projects in their free time or enjoys writing detailed reviews of new and classic board games" and vice versa. If "no one in the room does not enjoy writing detailed reviews of new and classic board games or writes and illustrates their own graphic novels" then "if someone writes and illustrates their own graphic novels then he/she enjoys writing detailed reviews of new and classic board games and vice versa". Everyone in the room who enjoys macrame writes and illustrates their own graphic novels. Everyone anywhere develops open-source software projects in their free time if they writes and illustrates their own graphic novels. At least one person in the room does not enjoy writing detailed reviews of new and classic board games. Everyone outside the room who does not enjoy macrame, enjoys writing detailed reviews of new and classic board games or develops open-source software projects in their free time develops open-source software projects in their free time and writes and illustrates their own graphic novels. Everyone in the room does not enjoy macrame.
Everyone in the room develops open-source software projects in their free time.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))|(enjoys_macrame(X))))))<=>(~?[X]:(room(X)=>(((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))|(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))))& ((~?[X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))<=>(![X]:(room(X)=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))|(writes_and_illustrates_their_own_graphic_novels(X)))))))& ((~?[X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))))=>((![X]:((writes_and_illustrates_their_own_graphic_novels(X))<=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (![X]:(room(X)=>(((enjoys_macrame(X))=>(writes_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(anywhere(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(develops_open-source_software_projects_in_their_free_time(X))))))& (((?[X]:(room(X)&does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X)))))& (![X]:(~room(X)=>(((((does_not_enjoy_macrame(X))|(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))|(develops_open-source_software_projects_in_their_free_time(X))))=>(((develops_open-source_software_projects_in_their_free_time(X))&(writes_and_illustrates_their_own_graphic_novels(X))))))))& (![X]:(room(X)=>(does_not_enjoy_macrame(X))))
(there_is_a_room)& ![X]:(room(X)=>(develops_open-source_software_projects_in_their_free_time(X)))
[ "p0", "p2", "hypothesis" ]
% SZS status Unsatisfiable for 9065081085977088654930403 % SZS output start Proof for 9065081085977088654930403 44. there_is_a_room [input p0] 46. ~? [X0] : (room(X0) => (~predc(X0) | predd(X0))) <=> ! [X0] : (room(X0) => (preda(X0) | ~preda(X0))) [input p2] 53. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 55. ~? [X0] : (room(X0) => (~predc(X0) | predd(X0))) <=> ! [X1] : (room(X1) => (preda(X1) | ~preda(X1))) [rectify 46] 130. ! [X0] : ((predc(X0) & ~predd(X0)) & room(X0)) <=> ! [X1] : ((preda(X1) | ~preda(X1)) | ~room(X1)) [ennf transformation 55] 131. ! [X0] : (predc(X0) & ~predd(X0) & room(X0)) <=> ! [X1] : (preda(X1) | ~preda(X1) | ~room(X1)) [flattening 130] 141. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 53] 144. sP1 <=> ! [X0] : (predc(X0) & ~predd(X0) & room(X0)) [predicate definition introduction] 145. sP1 <=> ! [X1] : (preda(X1) | ~preda(X1) | ~room(X1)) [definition folding 131,144] 155. (sP1 | ? [X0] : (~predc(X0) | predd(X0) | ~room(X0))) & (! [X0] : (predc(X0) & ~predd(X0) & room(X0)) | ~sP1) [nnf transformation 144] 156. (sP1 | ? [X0] : (~predc(X0) | predd(X0) | ~room(X0))) & (! [X1] : (predc(X1) & ~predd(X1) & room(X1)) | ~sP1) [rectify 155] 157. ? [X0] : (~predc(X0) | predd(X0) | ~room(X0)) => (~predc(sK4) | predd(sK4) | ~room(sK4)) [choice axiom] 158. (sP1 | (~predc(sK4) | predd(sK4) | ~room(sK4))) & (! [X1] : (predc(X1) & ~predd(X1) & room(X1)) | ~sP1) [skolemisation 156,157] 159. (sP1 | ? [X1] : (~preda(X1) & preda(X1) & room(X1))) & (! [X1] : (preda(X1) | ~preda(X1) | ~room(X1)) | ~sP1) [nnf transformation 145] 160. (sP1 | ? [X0] : (~preda(X0) & preda(X0) & room(X0))) & (! [X1] : (preda(X1) | ~preda(X1) | ~room(X1)) | ~sP1) [rectify 159] 161. ? [X0] : (~preda(X0) & preda(X0) & room(X0)) => (~preda(sK5) & preda(sK5) & room(sK5)) [choice axiom] 162. (sP1 | (~preda(sK5) & preda(sK5) & room(sK5))) & (! [X1] : (preda(X1) | ~preda(X1) | ~room(X1)) | ~sP1) [skolemisation 160,161] 169. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK8) & room(sK8)) [choice axiom] 170. (~predc(sK8) & room(sK8)) | ~there_is_a_room [skolemisation 141,169] 252. there_is_a_room [cnf transformation 44] 263. predc(X1) | ~sP1 [cnf transformation 158] 267. sP1 | preda(sK5) [cnf transformation 162] 268. sP1 | ~preda(sK5) [cnf transformation 162] 283. ~predc(sK8) | ~there_is_a_room [cnf transformation 170] 332. 12 <=> sP1 [avatar definition] 337. 13 <=> ! [X1] : predc(X1) [avatar definition] 338. predc(X1) <- (13) [avatar component clause 337] 339. ~12 | 13 [avatar split clause 263,337,332] 343. 14 <=> preda(sK5) [avatar definition] 346. ~14 | 12 [avatar split clause 268,332,343] 347. 14 | 12 [avatar split clause 267,332,343] 374. ~predc(sK8) [subsumption resolution 283,252] 376. $false <- (13) [resolution 374,338] 377. ~13 [avatar contradiction clause 376] 378. $false [avatar sat refutation 339,346,347,377] % SZS output end Proof for 9065081085977088654930403 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0
Devon is the only person in the room. If “at least one person in the room is a certified scuba diver with advanced underwater photography skills” then “everyone in the room enjoys cross-country skiing only if they collects vintage stamps”.
Devon is an active member of a local robotics club.
neutral
room(devon)&(![X]:(room(X)=>(X='devon')))& ((((?[X]:(room(X)&is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))=>(![X]:(room(X)=>(((collects_vintage_stamps(X))<=(enjoys_cross-country_skiing(X)))))))& ((is_an_active_member_of_a_local_robotics_club(devon))=>(![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(travels_domestically_frequently(X)))))))& ((![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))))))=>(![X]:(room(X)=>(((enjoys_cross-country_skiing(X))<=(regularly_contributes_to_tech_forums_and_online_communities(X)))))))& ((![X]:(room(X)=>(((does_not_compete_in_national_level_swimming_championships(X))|(builds_model_airplanes(X))))))=>(has_lived_in_exactly_three_countries(devon)))& ((~?[X]:(room(X)=>(((does_not_collect_vintage_stamps(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))=>(((?[X]:(room(X)&enjoys_origami(X))))))& ((![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))=>(~![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(own_a_television(X)))))))& ((regularly_contributes_to_tech_forums_and_online_communities(devon))=>(hosts_regular_game_nights_featuring_complex_strategy_games(devon)))& ((![X]:(room(X)=>(((does_not_own_a_smartwatch(X))|(has_lived_in_exactly_three_countries(X))))))<~>(~((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(devon))|(competes_in_national_level_swimming_championships(devon)))))& ((![X]:(room(X)=>(((does_not_have_lived_in_exactly_three_countries(X))|(uses_a_Windows_laptop(X))))))=>(![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(((collects_vintage_stamps(X))|(enjoys_origami(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))))))& ((((?[X]:(room(X)&has_lived_in_exactly_three_countries(X)))))=>(![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))))& ((makes_intricate_hand-cut_paper_art_for_exhibitions(devon))=>(enjoys_cross-country_skiing(devon)))& ((~![X]:(anywhere(X)=>(((does_not_collect_vintage_stamps(X))|(owns_a_smartwatch(X))))))=>(~![X]:(~room(X)=>(((owns_a_smartwatch(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))))& (travels_domestically_frequently(devon))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(enjoys_cross-country_skiing(X))))))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (enjoys_watercolor_painting(devon))& (![X]:(~room(X)=>(((uses_a_Windows_laptop(X))<=(~((owns_a_smartwatch(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))))& (enjoys_salsa_dancing(devon))& (builds_model_airplanes(devon))& (enjoys_fishing(devon))& (![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (~![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (((?[X]:(anywhere(X)&is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))& (owns_a_smartwatch(devon))& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (has_lived_in_exactly_three_countries(devon))& (enjoys_kayaking_and_exploring_remote_waterways(devon))
room(devon)&(![X]:(room(X)=>(X='devon')))& is_an_active_member_of_a_local_robotics_club(devon)
[]
null
0.471062
Gilbert, Linda, Sue, Jessie are the only persons in the room. If “Sue and Jessie are not strong” then “Sue and Molly like each other”. If “Jordan is a sibling of Gilbert” then “Linda and William like each other” otherwise “someone in the room does not work as a freelance web developer specializing in e-commerce sites”. If “everyone in the room is a sibling of Jordan or does not use contact lenses” then “Sue is a sibling of Jordan” otherwise “everyone in the room is a client of Jordan if they is not hated by William”. Someone in the room is a client of Jordan. Gilbert who is a client of Molly uses contact lenses. Sue who either is a client of Molly or is not liked by Jordan but not both is a client of William. Jessie does not practice graffiti art. Everyone anywhere who is a client of Jordan works on fridays. Gilbert enjoys virtual reality gaming. Everyone in the room who hates Molly is a client of William. Everyone in the room who enjoys making ceramics is a sibling of Molly. Everyone in the room is a old humble european or is a funny european or both if they either does not have a piercing or enjoys virtual reality gaming but not both. William and Gilbert like each other. Linda and Jordan like each other. Gilbert is humble. Linda is a client of Jordan.
Linda works on fridays.
entailment
room(gilbert)&room(linda)&room(sue)&room(jessie)&(![X]:(room(X)=>(X='gilbert'|X='linda'|X='sue'|X='jessie')))& ((~strong(sue)&~strong(jessie))=>((like(sue,molly) & like(molly,sue))))& (((sibling(gilbert,jordan))=>((like(linda,william) & like(william,linda))))&((~(sibling(gilbert,jordan)))=>(?[X]:(room(X)&(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (((![X]:(room(X)=>(((does_not_use_contact_lenses(X))|(sibling(jordan,X))))))=>(sibling(jordan,sue)))&((~(![X]:(room(X)=>(((does_not_use_contact_lenses(X))|(sibling(jordan,X)))))))=>(![X]:(room(X)=>(((~hate(X,william))=>(client(jordan,X))))))))& (?[X]:(room(X)&(client(jordan,X))))& ((client(molly,gilbert))&(uses_contact_lenses(gilbert)))& ((((client(molly,sue))<~>(~like(sue,jordan))))&(client(william,sue)))& (does_not_practice_graffiti_art(jessie))& (![X]:(anywhere(X)=>(((client(jordan,X))=>(works_on_fridays(X))))))& (enjoys_virtual_reality_gaming(gilbert))& (![X]:(room(X)=>(((hate(molly,X))=>(client(william,X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(sibling(molly,X))))))& (![X]:(room(X)=>(((((does_not_have_a_piercing(X))<~>(enjoys_virtual_reality_gaming(X))))=>(((old(X)&humble(X)&european(X))|(funny(X)&european(X))))))))& ((like(william,gilbert) & like(gilbert,william)))& ((like(linda,jordan) & like(jordan,linda)))& (humble(gilbert))& (client(jordan,linda))
room(gilbert)&room(linda)&room(sue)&room(jessie)&(![X]:(room(X)=>(X='gilbert'|X='linda'|X='sue'|X='jessie')))& works_on_fridays(linda)
[ "b4", "p0", "p8", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 6178895901855948633962542 % SZS output start Proof for 6178895901855948633962542 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 52. ! [X0] : (anywhere(X0) => (client(susan,X0) => predo(X0))) [input p8] 60. client(susan,paul) [input p16] 61. ~(predo(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 145. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 146. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 145] 150. ! [X0] : ((predo(X0) | ~client(susan,X0)) | ~anywhere(X0)) [ennf transformation 52] 151. ! [X0] : (predo(X0) | ~client(susan,X0) | ~anywhere(X0)) [flattening 150] 154. ~predo(paul) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 61] 155. ~predo(paul) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 154] 166. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 167. ~predo(paul) | (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 155,166] 170. anywhere(X0) [cnf transformation 5] 251. room(mary) [cnf transformation 146] 252. room(paul) [cnf transformation 146] 253. room(fred) [cnf transformation 146] 254. room(alice) [cnf transformation 146] 255. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 146] 270. predo(X0) | ~client(susan,X0) | ~anywhere(X0) [cnf transformation 151] 276. client(susan,paul) [cnf transformation 60] 277. ~predo(paul) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 278. ~predo(paul) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 279. ~predo(paul) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 280. ~predo(paul) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 281. ~predo(paul) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 337. ~client(susan,X0) | predo(X0) [subsumption resolution 270,170] 338. ~predo(paul) | alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,254] 339. ~predo(paul) | alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 338,253] 340. ~predo(paul) | alice != sK3 | ~room(mary) [subsumption resolution 339,252] 341. ~predo(paul) | alice != sK3 [subsumption resolution 340,251] 343. 13 <=> alice = sK3 [avatar definition] 345. alice != sK3 <- (~13) [avatar component clause 343] 347. 14 <=> predo(paul) [avatar definition] 350. ~13 | ~14 [avatar split clause 341,347,343] 351. ~predo(paul) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,254] 352. ~predo(paul) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 351,253] 353. ~predo(paul) | fred != sK3 | ~room(mary) [subsumption resolution 352,252] 354. ~predo(paul) | fred != sK3 [subsumption resolution 353,251] 356. 15 <=> fred = sK3 [avatar definition] 358. fred != sK3 <- (~15) [avatar component clause 356] 359. ~15 | ~14 [avatar split clause 354,347,356] 360. ~predo(paul) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,254] 361. ~predo(paul) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 360,253] 362. ~predo(paul) | paul != sK3 | ~room(mary) [subsumption resolution 361,252] 363. ~predo(paul) | paul != sK3 [subsumption resolution 362,251] 365. 16 <=> paul = sK3 [avatar definition] 367. paul != sK3 <- (~16) [avatar component clause 365] 368. ~16 | ~14 [avatar split clause 363,347,365] 369. ~predo(paul) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 278,254] 370. ~predo(paul) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 369,253] 371. ~predo(paul) | mary != sK3 | ~room(mary) [subsumption resolution 370,252] 372. ~predo(paul) | mary != sK3 [subsumption resolution 371,251] 374. 17 <=> mary = sK3 [avatar definition] 376. mary != sK3 <- (~17) [avatar component clause 374] 377. ~17 | ~14 [avatar split clause 372,347,374] 378. ~predo(paul) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,254] 379. ~predo(paul) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 378,253] 380. ~predo(paul) | room(sK3) | ~room(mary) [subsumption resolution 379,252] 381. ~predo(paul) | room(sK3) [subsumption resolution 380,251] 383. 18 <=> room(sK3) [avatar definition] 385. room(sK3) <- (18) [avatar component clause 383] 386. 18 | ~14 [avatar split clause 381,347,383] 388. predo(paul) [resolution 337,276] 391. 14 [avatar split clause 388,347] 465. fred = sK3 | paul = sK3 | mary = sK3 | alice = sK3 <- (18) [resolution 255,385] 500. paul = sK3 | mary = sK3 | alice = sK3 <- (~15, 18) [subsumption resolution 465,358] 501. mary = sK3 | alice = sK3 <- (~15, ~16, 18) [subsumption resolution 500,367] 502. alice = sK3 <- (~15, ~16, ~17, 18) [subsumption resolution 501,376] 503. $false <- (~13, ~15, ~16, ~17, 18) [subsumption resolution 502,345] 504. 13 | 15 | 16 | 17 | ~18 [avatar contradiction clause 503] 505. $false [avatar sat refutation 350,359,368,377,386,391,504] % SZS output end Proof for 6178895901855948633962542 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.032336
Felicia is the only person in the room. “Felicia is a dedicated volunteer for local community service projects” if “it is not the case that “it is not the case that “someone in the room enjoys making ceramics, creates bespoke furniture pieces from reclaimed wood and collect rare sneakers””” and vice versa. “Someone in the room collect rare sneakers” if “it is not the case that “someone in the room does not enjoy making ceramics”” and vice versa. Felicia enjoys making ceramics or practices zumba or both. Felicia enjoys making ceramics. Someone in the room collect rare sneakers. Felicia collect rare sneakers. Someone in the room collect rare sneakers, enjoys making ceramics and practices and performs acrobatic dance routines. Felicia practices zumba. It is not the case that “it is not the case that “Felicia collect rare sneakers””. Someone anywhere collect rare sneakers. Felicia practices and performs acrobatic dance routines or creates bespoke furniture pieces from reclaimed wood or both. It is true that “it is not the case that “it is not the case that “Felicia practices zumba”””. Felicia who creates bespoke furniture pieces from reclaimed wood enjoys making ceramics.
Felicia is a dedicated volunteer for local community service projects.
entailment
room(felicia)&(![X]:(room(X)=>(X='felicia')))& ((~(~(?[X]:(room(X)&(((enjoys_making_ceramics(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))&(collect_rare_sneakers(X))))))))<=>(is_a_dedicated_volunteer_for_local_community_service_projects(felicia)))& ((~(?[X]:(room(X)&(does_not_enjoy_making_ceramics(X)))))<=>(?[X]:(room(X)&(collect_rare_sneakers(X)))))& (((enjoys_making_ceramics(felicia))|(practices_zumba(felicia))))& (enjoys_making_ceramics(felicia))& (?[X]:(room(X)&(collect_rare_sneakers(X))))& (collect_rare_sneakers(felicia))& (?[X]:(room(X)&(((collect_rare_sneakers(X))&(enjoys_making_ceramics(X))&(practices_and_performs_acrobatic_dance_routines(X))))))& (practices_zumba(felicia))& (~(~(collect_rare_sneakers(felicia))))& (?[X]:(anywhere(X)&(collect_rare_sneakers(X))))& (((practices_and_performs_acrobatic_dance_routines(felicia))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(felicia))))& (~(~(practices_zumba(felicia))))& ((creates_bespoke_furniture_pieces_from_reclaimed_wood(felicia))&(enjoys_making_ceramics(felicia)))
room(felicia)&(![X]:(room(X)=>(X='felicia')))& is_a_dedicated_volunteer_for_local_community_service_projects(felicia)
[ "p0", "p1", "p4", "p6", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 1961703280163313572586359 % SZS output start Proof for 1961703280163313572586359 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ~~? [X0] : (predd(X0) & predb(X0) & preda(X0) & room(X0)) <=> predf(mary) [input p1] 48. preda(mary) [input p4] 50. predd(mary) [input p6] 57. preda(mary) & predb(mary) [input p13] 58. ~(predf(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 59. ? [X0] : (predd(X0) & predb(X0) & preda(X0) & room(X0)) <=> predf(mary) [flattening 45] 139. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 141. ~predf(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 58] 143. (? [X0] : (predd(X0) & predb(X0) & preda(X0) & room(X0)) | ~predf(mary)) & (predf(mary) | ! [X0] : (~predd(X0) | ~predb(X0) | ~preda(X0) | ~room(X0))) [nnf transformation 59] 144. (? [X0] : (predd(X0) & predb(X0) & preda(X0) & room(X0)) | ~predf(mary)) & (predf(mary) | ! [X1] : (~predd(X1) | ~predb(X1) | ~preda(X1) | ~room(X1))) [rectify 143] 145. ? [X0] : (predd(X0) & predb(X0) & preda(X0) & room(X0)) => (predd(sK0) & predb(sK0) & preda(sK0) & room(sK0)) [choice axiom] 146. ((predd(sK0) & predb(sK0) & preda(sK0) & room(sK0)) | ~predf(mary)) & (predf(mary) | ! [X1] : (~predd(X1) | ~predb(X1) | ~preda(X1) | ~room(X1))) [skolemisation 144,145] 158. ? [X0] : (mary != X0 & room(X0)) => (mary != sK6 & room(sK6)) [choice axiom] 159. ~predf(mary) | (mary != sK6 & room(sK6)) | ~room(mary) [skolemisation 141,158] 240. room(mary) [cnf transformation 139] 241. ~room(X0) | mary = X0 [cnf transformation 139] 242. predf(mary) | ~predd(X1) | ~predb(X1) | ~preda(X1) | ~room(X1) [cnf transformation 146] 252. preda(mary) [cnf transformation 48] 255. predd(mary) [cnf transformation 50] 261. predb(mary) [cnf transformation 57] 263. ~predf(mary) | room(sK6) | ~room(mary) [cnf transformation 159] 264. ~predf(mary) | mary != sK6 | ~room(mary) [cnf transformation 159] 266. 1 <=> predf(mary) [avatar definition] 290. 6 <=> ! [X1] : (~predd(X1) | ~room(X1) | ~preda(X1) | ~predb(X1)) [avatar definition] 291. ~predd(X1) | ~room(X1) | ~preda(X1) | ~predb(X1) <- (6) [avatar component clause 290] 292. 6 | 1 [avatar split clause 242,266,290] 320. ~predf(mary) | mary != sK6 [subsumption resolution 264,240] 322. 13 <=> mary = sK6 [avatar definition] 324. mary != sK6 <- (~13) [avatar component clause 322] 325. ~13 | ~1 [avatar split clause 320,266,322] 326. ~predf(mary) | room(sK6) [subsumption resolution 263,240] 328. 14 <=> room(sK6) [avatar definition] 330. room(sK6) <- (14) [avatar component clause 328] 331. 14 | ~1 [avatar split clause 326,266,328] 366. ~room(mary) | ~preda(mary) | ~predb(mary) <- (6) [resolution 291,255] 368. ~preda(mary) | ~predb(mary) <- (6) [subsumption resolution 366,240] 369. ~predb(mary) <- (6) [subsumption resolution 368,252] 370. $false <- (6) [subsumption resolution 369,261] 371. ~6 [avatar contradiction clause 370] 389. mary = sK6 <- (14) [resolution 330,241] 391. $false <- (~13, 14) [subsumption resolution 389,324] 392. 13 | ~14 [avatar contradiction clause 391] 393. $false [avatar sat refutation 292,325,331,371,392] % SZS output end Proof for 1961703280163313572586359 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.032 s % ------------------------------ % ------------------------------
0.002351
Tracy is the only person in the room. Either 'Tracy plays the drums' or 'Tracy writes in-depth travel guides for off-the-beaten-path destinations' but not both. Either 'Tracy is a certified yoga instructor teaching classes weekly' or 'Tracy plays the drums' but not both. Either 'Tracy plays the drums' or 'Tracy enjoys windsurfing' but not both. 'Tracy is a skilled home brewer experimenting with craft beer recipes' if 'it is not the case that 'Tracy can play the flute'' and vice versa. Tracy is a skilled home brewer experimenting with craft beer recipes. If someone owns a 3D printer then he/she is a skilled home brewer experimenting with craft beer recipes. Tracy practices tai chi and practices archery. Tracy has completed a triathlon. It is not the case that 'at least one person in the room practices pilates'.
Tracy plays the drums.
neutral
room(tracy)&(![X]:(room(X)=>(X='tracy')))& ((plays_the_drums(tracy))<~>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(tracy)))& ((is_a_certified_yoga_instructor_teaching_classes_weekly(tracy))<~>(plays_the_drums(tracy)))& ((plays_the_drums(tracy))<~>(enjoys_windsurfing(tracy)))& ((~(can_play_the_flute(tracy)))<=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(tracy)))& (is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(tracy))& ((![X]:((owns_a_3D_printer(X))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))& (((practices_tai_chi(tracy))&(practices_archery(tracy))))& (has_completed_a_triathlon(tracy))& (~(((?[X]:(room(X)&practices_pilates(X))))))
room(tracy)&(![X]:(room(X)=>(X='tracy')))& plays_the_drums(tracy)
[]
null
0.52508
There is a room. Only one person anywhere is a tall person. Only one person anywhere is tall. More than one person in the room is not quiet.
Everyone in the room is a tall person.
contradiction
(there_is_a_room)& (((?[X]:(anywhere(X)&tall(X)&person(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(tall(X)&person(X))&(tall(Y)&person(Y)))=>(X=Y)))))& (![X]:(tall(X)=>old(X)))& (((?[X]:(room(X)&~(quiet(X)&person(X))))))& (?[X]:(anywhere(X)&(((~tall(X))|(quiet(X))))))& (![X]:(room(X)=>(((tall(X))=>(((tall(X))|(quiet(X))))))))& (![X]:(old(X)=>tall(X)))& (((?[X]:(anywhere(X)&tall(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(tall(X))&(tall(Y)))=>(X=Y)))))& (~(~(((?[X]:(room(X)&((tall(X)&person(X))|(old(X)&person(X)))))))))& (![X]:(quiet(X)=>tall(X)))& ((?[X,Y]:(room(X)&room(Y)&(~quiet(X)&~quiet(Y))&(X!=Y))))& (![X]:(quiet(X)=>old(X)))
(there_is_a_room)& ![X]:(room(X)=>(tall(X)&person(X)))
[ "b4", "p1", "p7", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 4336376424573403012683937 % SZS output start Proof for 4336376424573403012683937 5. ! [X0] : anywhere(X0) [input b4] 45. ! [X0,X1] : ((person(X1) & tall(X1) & person(X0) & tall(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : (person(X0) & tall(X0) & anywhere(X0)) [input p1] 51. ! [X0,X1] : ((tall(X1) & tall(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : (tall(X0) & anywhere(X0)) [input p7] 54. ? [X0,X1] : (X0 != X1 & ~quiet(X1) & ~quiet(X0) & room(X1) & room(X0)) [input p10] 56. ! [X0] : (room(X0) => (person(X0) & tall(X0))) & there_is_a_room [input hypothesis] 57. ! [X0,X1] : ((person(X1) & tall(X1) & person(X0) & tall(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (person(X2) & tall(X2) & anywhere(X2)) [rectify 45] 58. ! [X0,X1] : ((tall(X1) & tall(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (tall(X2) & anywhere(X2)) [rectify 51] 60. ! [X0] : (room(X0) => (person(X0) & tall(X0))) [pure predicate removal 56] 133. ! [X0,X1] : (X0 = X1 | (~person(X1) | ~tall(X1) | ~person(X0) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0))) & ? [X2] : (person(X2) & tall(X2) & anywhere(X2)) [ennf transformation 57] 134. ! [X0,X1] : (X0 = X1 | ~person(X1) | ~tall(X1) | ~person(X0) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (person(X2) & tall(X2) & anywhere(X2)) [flattening 133] 140. ! [X0,X1] : (X0 = X1 | (~tall(X1) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0))) & ? [X2] : (tall(X2) & anywhere(X2)) [ennf transformation 58] 141. ! [X0,X1] : (X0 = X1 | ~tall(X1) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (tall(X2) & anywhere(X2)) [flattening 140] 144. ! [X0] : ((person(X0) & tall(X0)) | ~room(X0)) [ennf transformation 60] 146. ? [X2] : (person(X2) & tall(X2) & anywhere(X2)) => (person(sK0) & tall(sK0) & anywhere(sK0)) [choice axiom] 147. ! [X0,X1] : (X0 = X1 | ~person(X1) | ~tall(X1) | ~person(X0) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0)) & (person(sK0) & tall(sK0) & anywhere(sK0)) [skolemisation 134,146] 152. ? [X2] : (tall(X2) & anywhere(X2)) => (tall(sK3) & anywhere(sK3)) [choice axiom] 153. ! [X0,X1] : (X0 = X1 | ~tall(X1) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0)) & (tall(sK3) & anywhere(sK3)) [skolemisation 141,152] 156. ? [X0,X1] : (X0 != X1 & ~quiet(X1) & ~quiet(X0) & room(X1) & room(X0)) => (sK5 != sK6 & ~quiet(sK6) & ~quiet(sK5) & room(sK6) & room(sK5)) [choice axiom] 157. sK5 != sK6 & ~quiet(sK6) & ~quiet(sK5) & room(sK6) & room(sK5) [skolemisation 54,156] 158. anywhere(X0) [cnf transformation 5] 240. tall(sK0) [cnf transformation 147] 252. X0 = X1 | ~tall(X1) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0) [cnf transformation 153] 259. room(sK5) [cnf transformation 157] 260. room(sK6) [cnf transformation 157] 263. sK5 != sK6 [cnf transformation 157] 265. ~room(X0) | tall(X0) [cnf transformation 144] 288. X0 = X1 | ~tall(X1) | ~tall(X0) | ~anywhere(X0) [subsumption resolution 252,158] 289. ~tall(X1) | X0 = X1 | ~tall(X0) [subsumption resolution 288,158] 299. tall(sK5) [resolution 265,259] 300. tall(sK6) [resolution 265,260] 306. ~tall(X0) | sK0 = X0 [resolution 289,240] 322. sK0 = sK5 [resolution 306,299] 323. sK0 = sK6 [resolution 306,300] 340. sK0 != sK6 [backward demodulation 263,322] 345. $false [subsumption resolution 323,340] % SZS output end Proof for 4336376424573403012683937 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.1382
Francis, Thomas are the only persons in the room. If “it is true that “someone in the room does not collect rare minerals, does not enjoy coding in Python or is not an avid hiker”” then “everyone anywhere either does not mentor a youth basketball team on weekends or does not travel domestically frequently but not both” otherwise “no one outside the room does not regularly goes on multi-day backpacking trips in national parks and does not volunteer for local environmental conservation projects”. “Everyone anywhere either does not write poetry or does not enjoy fishing but not both” only if “not everyone in the room either does not collect limited-edition art prints from contemporary artists or does not enjoy fishing but not both”. “Everyone in the room does not travel domestically frequently, does not enjoy camping and organizing outdoor survival workshops or does not make homemade pastries” if “everyone in the room does not collect rare minerals and does not write poetry”. “Not everyone in the room is not an avid hiker, does not regularly goes on multi-day backpacking trips in national parks or does not write poetry” only if “everyone in the room is not an amateur astronomer who builds and uses custom telescopes”. If “everyone in the room is not an amateur astronomer who builds and uses custom telescopes, does not mentor a youth basketball team on weekends or does not own a 3D printer” then “everyone in the room does not regularly goes on multi-day backpacking trips in national parks” otherwise “everyone in the room either does not enjoy fishing or does not mentor a youth basketball team on weekends but not both”. “Everyone outside the room is not an amateur astronomer who builds and uses custom telescopes” if “everyone in the room does not collect rare minerals and does not travel domestically frequently”. Everyone in the room either does not collect limited-edition art prints from contemporary artists or does not enjoy camping and organizing outdoor survival workshops but not both. Everyone in the room either does not mentor a youth basketball team on weekends or does not practice zumba but not both. Everyone in the room does not collect rare minerals and does not volunteer for local environmental conservation projects. Everyone in the room does not travel domestically frequently.
It is true that “Thomas mentors a youth basketball team on weekends”.
entailment
room(francis)&room(thomas)&(![X]:(room(X)=>(X='francis'|X='thomas')))& (((?[X]:(room(X)&(((does_not_collect_rare_minerals(X))|(does_not_enjoy_coding_in_Python(X))|(is_not_an_avid_hiker(X))))))=>(![X]:(anywhere(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))<~>(does_not_travel_domestically_frequently(X)))))))&((~(?[X]:(room(X)&(((does_not_collect_rare_minerals(X))|(does_not_enjoy_coding_in_Python(X))|(is_not_an_avid_hiker(X)))))))=>(~?[X]:(~room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))&(does_not_volunteer_for_local_environmental_conservation_projects(X))))))))& ((![X]:(anywhere(X)=>(((does_not_write_poetry(X))<~>(does_not_enjoy_fishing(X))))))=>(~![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))<~>(does_not_enjoy_fishing(X)))))))& ((![X]:(room(X)=>(((does_not_collect_rare_minerals(X))&(does_not_write_poetry(X))))))=>(![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))|(does_not_make_homemade_pastries(X)))))))& ((~![X]:(room(X)=>(((is_not_an_avid_hiker(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_write_poetry(X))))))=>(![X]:(room(X)=>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))& (((![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(does_not_mentor_a_youth_basketball_team_on_weekends(X))|(does_not_own_a_3D_printer(X))))))=>(![X]:(room(X)=>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))&((~(![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(does_not_mentor_a_youth_basketball_team_on_weekends(X))|(does_not_own_a_3D_printer(X)))))))=>(![X]:(room(X)=>(((does_not_enjoy_fishing(X))<~>(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))))& ((![X]:(room(X)=>(((does_not_collect_rare_minerals(X))&(does_not_travel_domestically_frequently(X))))))=>(![X]:(~room(X)=>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))& (![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))<~>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))<~>(does_not_practice_zumba(X))))))& ((![X]:((((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))<~>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))=>(does_not_enjoy_watercolor_painting(X)))))& ((![X]:((is_not_an_avid_hiker(X))<=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))<~>(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))))& (![X]:(room(X)=>(((does_not_have_a_piercing(X))&(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(room(X)=>(((does_not_collect_rare_minerals(X))&(does_not_volunteer_for_local_environmental_conservation_projects(X))))))& (~![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))<~>(does_not_enjoy_watercolor_painting(X))))))& (~![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<~>(does_not_enjoy_watercolor_painting(X))))))& (![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))|(does_not_mentor_a_youth_basketball_team_on_weekends(X))|(does_not_enjoy_watercolor_painting(X))))))& (![X]:(room(X)=>(does_not_volunteer_for_local_environmental_conservation_projects(X))))& (![X]:(room(X)=>(does_not_enjoy_wildlife_photography(X))))& (![X]:(room(X)=>(((does_not_have_a_piercing(X))&(does_not_enjoy_logic_puzzles(X))))))& ((![X]:((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X)))))& (![X]:(room(X)=>(((does_not_enjoy_logic_puzzles(X))|(does_not_practice_zumba(X))|(does_not_write_poetry(X))))))& (![X]:(room(X)=>(((does_not_collect_rare_minerals(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(does_not_enjoy_logic_puzzles(X))))))& ((![X]:((((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))&(is_not_an_avid_hiker(X))))=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(does_not_enjoy_fishing(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X)))))))& (![X]:(room(X)=>(does_not_travel_domestically_frequently(X))))& (![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(is_not_an_avid_hiker(X))))))
room(francis)&room(thomas)&(![X]:(room(X)=>(X='francis'|X='thomas')))& mentors_a_youth_basketball_team_on_weekends(thomas)
[ "b4", "p0", "p1", "p12", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 1775567614039925720862310 % SZS output start Proof for 1775567614039925720862310 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. (~? [X0] : ((~predl(X0) | ~predt(X0) | ~predh(X0)) & room(X0)) => ~? [X0] : (~room(X0) => (~predb(X0) & ~predq(X0)))) & (? [X0] : ((~predl(X0) | ~predt(X0) | ~predh(X0)) & room(X0)) => ! [X0] : (anywhere(X0) => (~preda(X0) <~> ~predf(X0)))) [input p1] 56. ! [X0] : (room(X0) => (~predb(X0) & ~predh(X0))) [input p12] 67. ! [X0] : (room(X0) => ~predf(X0)) [input p23] 69. ~(preda(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 70. (~? [X0] : ((~predl(X0) | ~predt(X0) | ~predh(X0)) & room(X0)) => ~? [X1] : (~room(X1) => (~predb(X1) & ~predq(X1)))) & (? [X2] : ((~predl(X2) | ~predt(X2) | ~predh(X2)) & room(X2)) => ! [X3] : (anywhere(X3) => (~preda(X3) <~> ~predf(X3)))) [rectify 45] 153. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 154. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 153] 155. (! [X1] : ((predb(X1) | predq(X1)) & ~room(X1)) | ? [X0] : ((~predl(X0) | ~predt(X0) | ~predh(X0)) & room(X0))) & (! [X3] : ((~preda(X3) <~> ~predf(X3)) | ~anywhere(X3)) | ! [X2] : ((predl(X2) & predt(X2) & predh(X2)) | ~room(X2))) [ennf transformation 70] 166. ! [X0] : ((~predb(X0) & ~predh(X0)) | ~room(X0)) [ennf transformation 56] 176. ! [X0] : (~predf(X0) | ~room(X0)) [ennf transformation 67] 179. ~preda(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 69] 180. ~preda(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 179] 184. (! [X1] : ((predb(X1) | predq(X1)) & ~room(X1)) | ? [X0] : ((~predl(X0) | ~predt(X0) | ~predh(X0)) & room(X0))) & (! [X3] : (((predf(X3) | preda(X3)) & (~predf(X3) | ~preda(X3))) | ~anywhere(X3)) | ! [X2] : ((predl(X2) & predt(X2) & predh(X2)) | ~room(X2))) [nnf transformation 155] 185. (! [X0] : ((predb(X0) | predq(X0)) & ~room(X0)) | ? [X1] : ((~predl(X1) | ~predt(X1) | ~predh(X1)) & room(X1))) & (! [X2] : (((predf(X2) | preda(X2)) & (~predf(X2) | ~preda(X2))) | ~anywhere(X2)) | ! [X3] : ((predl(X3) & predt(X3) & predh(X3)) | ~room(X3))) [rectify 184] 186. ? [X1] : ((~predl(X1) | ~predt(X1) | ~predh(X1)) & room(X1)) => ((~predl(sK1) | ~predt(sK1) | ~predh(sK1)) & room(sK1)) [choice axiom] 187. (! [X0] : ((predb(X0) | predq(X0)) & ~room(X0)) | ((~predl(sK1) | ~predt(sK1) | ~predh(sK1)) & room(sK1))) & (! [X2] : (((predf(X2) | preda(X2)) & (~predf(X2) | ~preda(X2))) | ~anywhere(X2)) | ! [X3] : ((predl(X3) & predt(X3) & predh(X3)) | ~room(X3))) [skolemisation 185,186] 217. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK8 & mary != sK8 & room(sK8)) [choice axiom] 218. ~preda(paul) | (paul != sK8 & mary != sK8 & room(sK8)) | ~room(paul) | ~room(mary) [skolemisation 180,217] 219. anywhere(X0) [cnf transformation 5] 300. room(mary) [cnf transformation 154] 301. room(paul) [cnf transformation 154] 302. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 154] 306. predf(X2) | preda(X2) | ~anywhere(X2) | predh(X3) | ~room(X3) [cnf transformation 187] 339. ~predh(X0) | ~room(X0) [cnf transformation 166] 352. ~predf(X0) | ~room(X0) [cnf transformation 176] 354. ~preda(paul) | room(sK8) | ~room(paul) | ~room(mary) [cnf transformation 218] 355. ~preda(paul) | mary != sK8 | ~room(paul) | ~room(mary) [cnf transformation 218] 356. ~preda(paul) | paul != sK8 | ~room(paul) | ~room(mary) [cnf transformation 218] 379. 6 <=> ! [X0] : ~room(X0) [avatar definition] 380. ~room(X0) <- (6) [avatar component clause 379] 388. 8 <=> ! [X2] : (predf(X2) | preda(X2)) [avatar definition] 389. predf(X2) | preda(X2) <- (8) [avatar component clause 388] 396. predf(X2) | preda(X2) | predh(X3) | ~room(X3) [subsumption resolution 306,219] 398. 10 <=> ! [X3] : (predh(X3) | ~room(X3)) [avatar definition] 399. predh(X3) | ~room(X3) <- (10) [avatar component clause 398] 400. 10 | 8 [avatar split clause 396,388,398] 517. ~preda(paul) | paul != sK8 | ~room(mary) [subsumption resolution 356,301] 518. ~preda(paul) | paul != sK8 [subsumption resolution 517,300] 520. 36 <=> paul = sK8 [avatar definition] 522. paul != sK8 <- (~36) [avatar component clause 520] 524. 37 <=> preda(paul) [avatar definition] 527. ~36 | ~37 [avatar split clause 518,524,520] 528. ~preda(paul) | mary != sK8 | ~room(mary) [subsumption resolution 355,301] 529. ~preda(paul) | mary != sK8 [subsumption resolution 528,300] 531. 38 <=> mary = sK8 [avatar definition] 533. mary != sK8 <- (~38) [avatar component clause 531] 534. ~38 | ~37 [avatar split clause 529,524,531] 535. ~preda(paul) | room(sK8) | ~room(mary) [subsumption resolution 354,301] 536. ~preda(paul) | room(sK8) [subsumption resolution 535,300] 538. 39 <=> room(sK8) [avatar definition] 540. room(sK8) <- (39) [avatar component clause 538] 541. 39 | ~37 [avatar split clause 536,524,538] 543. ~room(X3) <- (10) [subsumption resolution 399,339] 544. 6 | ~10 [avatar split clause 543,398,379] 545. $false <- (6) [resolution 380,300] 554. ~6 [avatar contradiction clause 545] 561. ~room(X0) | preda(X0) <- (8) [resolution 389,352] 571. preda(paul) <- (8) [resolution 561,301] 577. 37 | ~8 [avatar split clause 571,388,524] 670. mary = sK8 | paul = sK8 <- (39) [resolution 302,540] 698. paul = sK8 <- (~38, 39) [subsumption resolution 670,533] 699. $false <- (~36, ~38, 39) [subsumption resolution 698,522] 700. 36 | 38 | ~39 [avatar contradiction clause 699] 701. $false [avatar sat refutation 400,527,534,541,544,554,577,700] % SZS output end Proof for 1775567614039925720862310 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.031 s % ------------------------------ % ------------------------------
0.161264
Donna, Thomas, James are the only persons in the room. If “everyone in the room cannot play the harmonica or can play the harmonica” then “everyone in the room can play the harmonica”. Either “Thomas enjoys spelunking” or “Donna can play the harmonica” but not both. “Donna is a happy person” only if “all creative persons are happy”. If “Donna enjoys spelunking” then “James can play the harmonica”. James is not creative or cannot play the harmonica or both. All happy persons are creative. Everyone outside the room can play the harmonica if they does not enjoy spelunking.
James is creative.
contradiction
room(donna)&room(thomas)&room(james)&(![X]:(room(X)=>(X='donna'|X='thomas'|X='james')))& ((![X]:(room(X)=>(((can_play_the_harmonica(X))|(cannot_play_the_harmonica(X))))))=>(![X]:(room(X)=>(can_play_the_harmonica(X)))))& ((enjoys_spelunking(thomas))<~>(can_play_the_harmonica(donna)))& ((happy(donna)&person(donna))=>(![X]:(creative(X)=>happy(X))))& ((enjoys_spelunking(donna))=>(can_play_the_harmonica(james)))& (((~creative(james))|(cannot_play_the_harmonica(james))))& (![X]:(happy(X)=>creative(X)))& (![X]:(~room(X)=>(((does_not_enjoy_spelunking(X))=>(can_play_the_harmonica(X))))))
room(donna)&room(thomas)&room(james)&(![X]:(room(X)=>(X='donna'|X='thomas'|X='james')))& creative(james)
[ "p0", "p1", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 1114452321147915192273494 % SZS output start Proof for 1114452321147915192273494 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (~predc(X0) | predc(X0))) => ! [X0] : (room(X0) => predc(X0)) [input p1] 49. ~predc(fred) | ~creative(fred) [input p5] 52. creative(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 53. ! [X0] : (room(X0) => (~predc(X0) | predc(X0))) => ! [X1] : (room(X1) => predc(X1)) [rectify 45] 128. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 129. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 128] 130. ! [X1] : (predc(X1) | ~room(X1)) | ? [X0] : ((predc(X0) & ~predc(X0)) & room(X0)) [ennf transformation 53] 131. ! [X1] : (predc(X1) | ~room(X1)) | ? [X0] : (predc(X0) & ~predc(X0) & room(X0)) [flattening 130] 135. creative(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 52] 136. creative(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 135] 138. ! [X0] : (predc(X0) | ~room(X0)) | ? [X1] : (predc(X1) & ~predc(X1) & room(X1)) [rectify 131] 139. ? [X1] : (predc(X1) & ~predc(X1) & room(X1)) => (predc(sK0) & ~predc(sK0) & room(sK0)) [choice axiom] 140. ! [X0] : (predc(X0) | ~room(X0)) | (predc(sK0) & ~predc(sK0) & room(sK0)) [skolemisation 138,139] 224. room(fred) [cnf transformation 129] 227. predc(X0) | ~room(X0) | ~predc(sK0) [cnf transformation 140] 228. predc(X0) | ~room(X0) | predc(sK0) [cnf transformation 140] 232. ~predc(fred) | ~creative(fred) [cnf transformation 49] 238. creative(fred) [cnf transformation 136] 240. 1 <=> predc(sK0) [avatar definition] 244. 2 <=> ! [X0] : (predc(X0) | ~room(X0)) [avatar definition] 245. ~room(X0) | predc(X0) <- (2) [avatar component clause 244] 246. 1 | 2 [avatar split clause 228,244,240] 247. ~1 | 2 [avatar split clause 227,244,240] 268. 7 <=> predc(fred) [avatar definition] 269. ~predc(fred) <- (~7) [avatar component clause 268] 273. 8 <=> creative(fred) [avatar definition] 276. ~8 | ~7 [avatar split clause 232,268,273] 277. 8 [avatar split clause 238,273] 280. predc(fred) <- (2) [resolution 245,224] 283. $false <- (2, ~7) [subsumption resolution 280,269] 284. ~2 | 7 [avatar contradiction clause 283] 285. $false [avatar sat refutation 246,247,276,277,284] % SZS output end Proof for 1114452321147915192273494 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.030 s % ------------------------------ % ------------------------------
0
Enid, Tabitha, Eric are the only persons in the room. "Enid has a curated collection of mid-century modern furniture" only if "Tabitha is an expert in identifying and foraging wild edible plants". "Only one person in the room enjoys logic puzzles" if "Enid has a saltwater aquarium". Someone who enjoys logic puzzles is louder than someone who is not a brave person. Only one person in the room has a curated collection of mid-century modern furniture. Tabitha has a curated collection of mid-century modern furniture.
Enid has a curated collection of mid-century modern furniture.
contradiction
room(enid)&room(tabitha)&room(eric)&(![X]:(room(X)=>(X='enid'|X='tabitha'|X='eric')))& ((has_a_curated_collection_of_mid-century_modern_furniture(enid))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(tabitha)))& ((has_a_saltwater_aquarium(enid))=>(((?[X]:(room(X)&enjoys_logic_puzzles(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_logic_puzzles(X))&(enjoys_logic_puzzles(Y)))=>(X=Y))))))& (?[X,Y]:((enjoys_logic_puzzles(X))&(~(brave(Y)&person(Y)))&(louder(X,Y))))& (has_a_saltwater_aquarium(enid))& (enjoys_logic_puzzles(tabitha))& (is_not_a_dedicated_volunteer_for_local_community_service_projects(eric))& (has_a_saltwater_aquarium(eric))& (is_an_expert_in_identifying_and_foraging_wild_edible_plants(tabitha))& (~(brave(enid)&person(enid)))& (((~~brave(tabitha))&(enjoys_logic_puzzles(tabitha))))& (enjoys_landscape_photography(enid))& (?[X,Y]:((~brave(X))&(((~brave(Y))|(enjoys_landscape_photography(Y))))&(younger(X,Y))))& (((?[X]:(room(X)&has_a_curated_collection_of_mid-century_modern_furniture(X)))&(![X,Y]:((room(X)&room(Y)&(has_a_curated_collection_of_mid-century_modern_furniture(X))&(has_a_curated_collection_of_mid-century_modern_furniture(Y)))=>(X=Y)))))& (is_a_dedicated_volunteer_for_local_community_service_projects(tabitha))& (has_a_curated_collection_of_mid-century_modern_furniture(tabitha))& (![X]:((room(X)&(X!=enid))=>louder(X,enid)))
room(enid)&room(tabitha)&room(eric)&(![X]:(room(X)=>(X='enid'|X='tabitha'|X='eric')))& has_a_curated_collection_of_mid-century_modern_furniture(enid)
[ "b42", "p0", "p13", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 2972168020164536178682266 % SZS output start Proof for 2972168020164536178682266 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 57. ! [X0,X1] : ((predi(X1) & predi(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predi(X0) & room(X0)) [input p13] 59. predi(paul) [input p15] 61. predi(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 63. ! [X0,X1] : ((predi(X1) & predi(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predi(X2) & room(X2)) [rectify 57] 142. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 142] 146. ! [X0,X1] : (X0 = X1 | (~predi(X1) | ~predi(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predi(X2) & room(X2)) [ennf transformation 63] 147. ! [X0,X1] : (X0 = X1 | ~predi(X1) | ~predi(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predi(X2) & room(X2)) [flattening 146] 150. predi(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 151. predi(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 150] 159. ? [X2] : (predi(X2) & room(X2)) => (predi(sK5) & room(sK5)) [choice axiom] 160. ! [X0,X1] : (X0 = X1 | ~predi(X1) | ~predi(X0) | ~room(X1) | ~room(X0)) & (predi(sK5) & room(sK5)) [skolemisation 147,159] 205. mary != paul [cnf transformation 43] 241. room(mary) [cnf transformation 143] 242. room(paul) [cnf transformation 143] 260. ~predi(X1) | X0 = X1 | ~predi(X0) | ~room(X1) | ~room(X0) [cnf transformation 160] 262. predi(paul) [cnf transformation 59] 268. predi(mary) [cnf transformation 151] 471. mary = X0 | ~predi(X0) | ~room(mary) | ~room(X0) [resolution 260,268] 474. ~predi(X0) | mary = X0 | ~room(X0) [subsumption resolution 471,241] 493. mary = paul | ~room(paul) [resolution 474,262] 495. ~room(paul) [subsumption resolution 493,205] 496. $false [subsumption resolution 495,242] % SZS output end Proof for 2972168020164536178682266 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.676141
Dorothy, Linda are the only persons in the room. It is true that “everyone outside the room who is a patient strong funny person is a funny person”. Linda and Dorothy are respectively strong and patient. Everyone in the room is not a strong funny person, does not have a pet dog or is not strong if they is not a patient strong person and vice versa. Linda is a funny person. Linda is not a strong funny person, does not have a pet dog or is not strong. Not everyone in the room who is not not funny does not have a pet dog.
Dorothy has a pet dog.
entailment
room(dorothy)&room(linda)&(![X]:(room(X)=>(X='dorothy'|X='linda')))& (![X]:(~room(X)=>(((patient(X)&strong(X)&funny(X)&person(X))=>(funny(X)&person(X))))))& ((strong(linda))&(patient(dorothy)))& (![X]:(room(X)=>(((((~(strong(X)&funny(X)&person(X)))|(does_not_have_a_pet_dog(X))|(~strong(X))))<=>(~(patient(X)&strong(X)&person(X)))))))& (funny(linda)&person(linda))& (![X]:(room(X)=>(((funny(X)&person(X))=>(((~patient(X))|(~(funny(X)&patient(X)&person(X)))|(funny(X)&strong(X)&person(X))))))))& (patient(dorothy)&strong(dorothy)&funny(dorothy)&person(dorothy))& (((patient(dorothy)&strong(dorothy)&person(dorothy))|(~(funny(dorothy)&patient(dorothy)&strong(dorothy)&person(dorothy)))))& (((~(strong(linda)&funny(linda)&person(linda)))|(does_not_have_a_pet_dog(linda))|(~strong(linda))))& (![X]:(room(X)=>(((does_not_collect_action_figures(X))=>(~(strong(X)&funny(X)&person(X)))))))& (![X]:(room(X)=>(((~(strong(X)&funny(X)&person(X)))=>(patient(X))))))& (![X]:(room(X)=>(((~(funny(X)&strong(X)&patient(X)&person(X)))=>(~(patient(X)&person(X)))))))& (~![X]:(room(X)=>(((~~funny(X))=>(does_not_have_a_pet_dog(X))))))
room(dorothy)&room(linda)&(![X]:(room(X)=>(X='dorothy'|X='linda')))& has_a_pet_dog(dorothy)
[ "p0", "p2", "p4", "p8", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 2920097869787968464189106 % SZS output start Proof for 2920097869787968464189106 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 46. patient(mary) & strong(paul) [input p2] 48. person(paul) & funny(paul) [input p4] 52. ~strong(paul) | ~predj(paul) | ~(person(paul) & funny(paul) & strong(paul)) [input p8] 56. ~! [X0] : (room(X0) => (funny(X0) => ~predj(X0))) [input p12] 57. ~(predj(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 131. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 132. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 131] 141. ~strong(paul) | ~predj(paul) | (~person(paul) | ~funny(paul) | ~strong(paul)) [ennf transformation 52] 142. ~strong(paul) | ~predj(paul) | ~person(paul) | ~funny(paul) | ~strong(paul) [flattening 141] 147. ? [X0] : ((predj(X0) & funny(X0)) & room(X0)) [ennf transformation 56] 148. ? [X0] : (predj(X0) & funny(X0) & room(X0)) [flattening 147] 149. ~predj(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 57] 150. ~predj(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 149] 154. ? [X0] : (predj(X0) & funny(X0) & room(X0)) => (predj(sK0) & funny(sK0) & room(sK0)) [choice axiom] 155. predj(sK0) & funny(sK0) & room(sK0) [skolemisation 148,154] 156. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 157. ~predj(mary) | (paul != sK1 & mary != sK1 & room(sK1)) | ~room(paul) | ~room(mary) [skolemisation 150,156] 238. room(mary) [cnf transformation 132] 239. room(paul) [cnf transformation 132] 240. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 132] 243. strong(paul) [cnf transformation 46] 253. funny(paul) [cnf transformation 48] 254. person(paul) [cnf transformation 48] 265. ~strong(paul) | ~predj(paul) | ~person(paul) | ~funny(paul) | ~strong(paul) [cnf transformation 142] 273. room(sK0) [cnf transformation 155] 275. predj(sK0) [cnf transformation 155] 276. ~predj(mary) | room(sK1) | ~room(paul) | ~room(mary) [cnf transformation 157] 277. ~predj(mary) | mary != sK1 | ~room(paul) | ~room(mary) [cnf transformation 157] 278. ~predj(mary) | paul != sK1 | ~room(paul) | ~room(mary) [cnf transformation 157] 279. ~strong(paul) | ~predj(paul) | ~person(paul) | ~funny(paul) [duplicate literal removal 265] 286. ~predj(paul) | ~person(paul) | ~funny(paul) [subsumption resolution 279,243] 287. ~predj(paul) | ~funny(paul) [subsumption resolution 286,254] 288. ~predj(paul) [subsumption resolution 287,253] 291. ~predj(mary) | paul != sK1 | ~room(mary) [subsumption resolution 278,239] 292. ~predj(mary) | paul != sK1 [subsumption resolution 291,238] 294. 1 <=> paul = sK1 [avatar definition] 296. paul != sK1 <- (~1) [avatar component clause 294] 298. 2 <=> predj(mary) [avatar definition] 301. ~1 | ~2 [avatar split clause 292,298,294] 302. ~predj(mary) | mary != sK1 | ~room(mary) [subsumption resolution 277,239] 303. ~predj(mary) | mary != sK1 [subsumption resolution 302,238] 305. 3 <=> mary = sK1 [avatar definition] 307. mary != sK1 <- (~3) [avatar component clause 305] 308. ~3 | ~2 [avatar split clause 303,298,305] 309. ~predj(mary) | room(sK1) | ~room(mary) [subsumption resolution 276,239] 310. ~predj(mary) | room(sK1) [subsumption resolution 309,238] 312. 4 <=> room(sK1) [avatar definition] 314. room(sK1) <- (4) [avatar component clause 312] 315. 4 | ~2 [avatar split clause 310,298,312] 347. mary = sK0 | paul = sK0 [resolution 240,273] 349. 8 <=> paul = sK0 [avatar definition] 351. paul = sK0 <- (8) [avatar component clause 349] 353. 9 <=> mary = sK0 [avatar definition] 355. mary = sK0 <- (9) [avatar component clause 353] 356. 8 | 9 [avatar split clause 347,353,349] 361. predj(paul) <- (8) [backward demodulation 275,351] 364. $false <- (8) [subsumption resolution 361,288] 365. ~8 [avatar contradiction clause 364] 370. predj(mary) <- (9) [backward demodulation 275,355] 376. 2 | ~9 [avatar split clause 370,353,298] 379. mary = sK1 | paul = sK1 <- (4) [resolution 314,240] 385. paul = sK1 <- (~3, 4) [subsumption resolution 379,307] 386. $false <- (~1, ~3, 4) [subsumption resolution 385,296] 387. 1 | 3 | ~4 [avatar contradiction clause 386] 409. $false [avatar sat refutation 301,308,315,356,365,376,387] % SZS output end Proof for 2920097869787968464189106 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.378748
Cathy, Ray are the only persons in the room. “At least one person in the room creates bespoke furniture pieces from reclaimed wood” if “it is true that “everyone in the room enjoys landscape photography or does not have lived in exactly three countries””. Everyone in the room neither enjoys macrame nor has lived in exactly three countries. Everyone in the room collects vintage stamps if they does not enjoy macrame and collects vintage stamps. Everyone in the room who collects vintage stamps enjoys landscape photography. Cathy owns a smartwatch. Everyone anywhere collects vintage stamps if and only if they owns a smartwatch. Ray who collects vintage stamps does not enjoy macrame and collects vintage stamps. At least one person in the room creates bespoke furniture pieces from reclaimed wood. Someone in the room creates bespoke furniture pieces from reclaimed wood. If someone collects vintage stamps then he/she owns a smartwatch and vice versa. Everyone in the room creates bespoke furniture pieces from reclaimed wood or does not create bespoke furniture pieces from reclaimed wood. Not everyone anywhere creates bespoke furniture pieces from reclaimed wood only if they enjoys macrame. Cathy either enjoys macrame or owns a smartwatch but not both. Everyone in the room who owns a smartwatch, does not enjoy macrame or collects vintage stamps does not have lived in exactly three countries. It is true that “everyone in the room enjoys landscape photography or does not have lived in exactly three countries”.
Everyone in the room does not collect vintage stamps and does not own a smartwatch.
contradiction
room(cathy)&room(ray)&(![X]:(room(X)=>(X='cathy'|X='ray')))& ((![X]:(room(X)=>(((does_not_have_lived_in_exactly_three_countries(X))|(enjoys_landscape_photography(X))))))=>(((?[X]:(room(X)&creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(~((enjoys_macrame(X))|(has_lived_in_exactly_three_countries(X))))))& (![X]:(room(X)=>(((((does_not_enjoy_macrame(X))&(collects_vintage_stamps(X))))=>(collects_vintage_stamps(X))))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(enjoys_landscape_photography(X))))))& (owns_a_smartwatch(cathy))& (![X]:(anywhere(X)=>(((collects_vintage_stamps(X))<=>(owns_a_smartwatch(X))))))& ((collects_vintage_stamps(ray))&(((does_not_enjoy_macrame(ray))&(collects_vintage_stamps(ray)))))& (((?[X]:(room(X)&creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))& (?[X]:(room(X)&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))& ((![X]:((collects_vintage_stamps(X))<=>(owns_a_smartwatch(X)))))& (![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (~![X]:(anywhere(X)=>(((enjoys_macrame(X))<=(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (((enjoys_macrame(cathy))<~>(owns_a_smartwatch(cathy))))& (![X]:(room(X)=>(((((owns_a_smartwatch(X))|(does_not_enjoy_macrame(X))|(collects_vintage_stamps(X))))=>(does_not_have_lived_in_exactly_three_countries(X))))))& (![X]:(room(X)=>(((does_not_have_lived_in_exactly_three_countries(X))|(enjoys_landscape_photography(X))))))& (collects_vintage_stamps(ray))& (creates_bespoke_furniture_pieces_from_reclaimed_wood(ray))
room(cathy)&room(ray)&(![X]:(room(X)=>(X='cathy'|X='ray')))& ![X]:(room(X)=>(((does_not_collect_vintage_stamps(X))&(does_not_own_a_smartwatch(X)))))
[ "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 4784623765761785285727456 % SZS output start Proof for 4784623765761785285727456 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 51. predd(paul) & ~predf(paul) & predd(paul) [input p7] 62. ! [X0] : (room(X0) => (~preda(X0) & ~predd(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 64. ! [X0] : (room(X0) => (~preda(X0) & ~predd(X0))) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary) [rectify 62] 136. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 137. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 136] 154. ! [X0] : ((~preda(X0) & ~predd(X0)) | ~room(X0)) & ! [X1] : ((paul = X1 | mary = X1) | ~room(X1)) & room(paul) & room(mary) [ennf transformation 64] 155. ! [X0] : ((~preda(X0) & ~predd(X0)) | ~room(X0)) & ! [X1] : (paul = X1 | mary = X1 | ~room(X1)) & room(paul) & room(mary) [flattening 154] 252. room(paul) [cnf transformation 137] 269. predd(paul) [cnf transformation 51] 291. ~predd(X0) | ~room(X0) [cnf transformation 155] 325. ~room(paul) [resolution 291,269] 326. $false [subsumption resolution 325,252] % SZS output end Proof for 4784623765761785285727456 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0
Mark, Gary, Alvin, Victoria are the only persons in the room. “Everyone in the room who collects limited-edition art prints from contemporary artists is an active member of a local robotics club or is a night owl or both” unless “Mark travels domestically frequently”. “Gary does not own a microscope and trains for and competes in international triathlons” only if “everyone anywhere writes in-depth travel guides for off-the-beaten-path destinations and owns a microscope if they is not an active member of a local robotics club”. “At least one person in the room collects limited-edition art prints from contemporary artists” if “Mark does not collect modern art” and vice versa. Gary is a professional photographer specializing in portrait photography. At least one person anywhere collects modern art. Everyone in the room who collects modern art either is not an active member of a local robotics club or owns a microscope but not both. Everyone anywhere writes in-depth travel guides for off-the-beaten-path destinations and owns a microscope if they is not an active member of a local robotics club. Alvin is not an active member of a local robotics club.
Alvin collects modern art.
contradiction
room(mark)&room(gary)&room(alvin)&room(victoria)&(![X]:(room(X)=>(X='mark'|X='gary'|X='alvin'|X='victoria')))& (~(travels_domestically_frequently(mark))=>(![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(((is_an_active_member_of_a_local_robotics_club(X))|(is_a_night_owl(X)))))))))& ((((does_not_own_a_microscope(gary))&(trains_for_and_competes_in_international_triathlons(gary))))=>(![X]:(anywhere(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(owns_a_microscope(X)))))))))& ((does_not_collect_modern_art(mark))<=>(((?[X]:(room(X)&collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (is_a_professional_photographer_specializing_in_portrait_photography(gary))& (((?[X]:(anywhere(X)&collects_modern_art(X)))))& ((![X]:((~((travels_domestically_frequently(X))|(trains_for_and_competes_in_international_triathlons(X))))=>(is_a_night_owl(X)))))& (~![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(collects_modern_art(X))))))& (![X]:(room(X)=>(((collects_modern_art(X))=>(((is_not_an_active_member_of_a_local_robotics_club(X))<~>(owns_a_microscope(X))))))))& (![X]:(anywhere(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(owns_a_microscope(X))))))))& (does_not_collect_limited-edition_art_prints_from_contemporary_artists(mark))& (is_not_an_active_member_of_a_local_robotics_club(alvin))& (does_not_travel_domestically_frequently(mark))& (![X]:(anywhere(X)=>(trains_for_and_competes_in_international_triathlons(X))))& (![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (~![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(collects_modern_art(X))))))
room(mark)&room(gary)&room(alvin)&room(victoria)&(![X]:(room(X)=>(X='mark'|X='gary'|X='alvin'|X='victoria')))& collects_modern_art(alvin)
[ "b4", "p0", "p8", "p9", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 5403686016468628192418655 % SZS output start Proof for 5403686016468628192418655 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 52. ! [X0] : (room(X0) => (prede(X0) => (~predg(X0) <~> predb(X0)))) [input p8] 53. ! [X0] : (anywhere(X0) => (~predg(X0) => (predb(X0) & predd(X0)))) [input p9] 55. ~predg(fred) [input p11] 60. prede(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 63. ! [X0] : (anywhere(X0) => (~predg(X0) => predb(X0))) [pure predicate removal 53] 138. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 139. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 138] 143. ! [X0] : (((~predg(X0) <~> predb(X0)) | ~prede(X0)) | ~room(X0)) [ennf transformation 52] 144. ! [X0] : ((~predg(X0) <~> predb(X0)) | ~prede(X0) | ~room(X0)) [flattening 143] 145. ! [X0] : ((predb(X0) | predg(X0)) | ~anywhere(X0)) [ennf transformation 63] 146. ! [X0] : (predb(X0) | predg(X0) | ~anywhere(X0)) [flattening 145] 152. prede(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 60] 153. prede(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 152] 163. ! [X0] : (((~predb(X0) | predg(X0)) & (predb(X0) | ~predg(X0))) | ~prede(X0) | ~room(X0)) [nnf transformation 144] 166. anywhere(X0) [cnf transformation 5] 249. room(fred) [cnf transformation 139] 262. ~prede(X0) | predg(X0) | ~predb(X0) | ~room(X0) [cnf transformation 163] 263. predb(X0) | predg(X0) | ~anywhere(X0) [cnf transformation 146] 265. ~predg(fred) [cnf transformation 55] 276. prede(fred) [cnf transformation 153] 287. 3 <=> ! [X0] : (predb(X0) | predg(X0)) [avatar definition] 288. predb(X0) | predg(X0) <- (3) [avatar component clause 287] 308. predb(X0) | predg(X0) [subsumption resolution 263,166] 309. 3 [avatar split clause 308,287] 327. predg(fred) | ~predb(fred) | ~room(fred) [resolution 262,276] 328. ~predb(fred) | ~room(fred) [subsumption resolution 327,265] 329. ~predb(fred) [subsumption resolution 328,249] 330. predg(fred) <- (3) [resolution 329,288] 331. $false <- (3) [subsumption resolution 330,265] 332. ~3 [avatar contradiction clause 331] 333. $false [avatar sat refutation 309,332] % SZS output end Proof for 5403686016468628192418655 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.013927
Patricia, Judy, Teresa are the only persons in the room. If “Patricia does not enjoy kayaking” then “Teresa does not enjoy kayaking”. If “everyone in the room does not collect vintage stamps or is a sibling of Lori” then “everyone in the room who enjoys deep-sea diving and exploring underwater caves likes Lori”. If “Teresa is a sibling of Lori” then “Judy is a sibling of Steven”. If “Patricia does not enjoy kayaking” then “Judy enjoys deep-sea diving and exploring underwater caves, enjoys kayaking or is a sibling of Steven”. If “everyone in the room does not enjoy deep-sea diving and exploring underwater caves or is a sibling of Steven” then “Judy and Lori like each other”. Everyone in the room who is a sibling of Steven and enjoys kayaking does not collect vintage stamps. Teresa is a sibling of Lori. If someone is a sibling of Steven then he/she is a calm person and vice versa. Judy is a sibling of Steven. Judy is a sibling of Lori. Everyone outside the room who collects vintage stamps is a sibling of Steven. Everyone in the room who enjoys deep-sea diving and exploring underwater caves enjoys kayaking. Patricia is a sibling of Lori. Everyone in the room who is a sibling of Lori is a sibling of Steven. Judy is a sibling of Steven and enjoys kayaking. Lori is a sibling of Judy. Judy enjoys kayaking. Patricia does not enjoy kayaking. No calm person is kind. Everyone in the room who enjoys deep-sea diving and exploring underwater caves is a sibling of Steven. Everyone in the room is a sibling of Lori if they is a sibling of Steven.
Judy enjoys deep-sea diving and exploring underwater caves.
neutral
room(patricia)&room(judy)&room(teresa)&(![X]:(room(X)=>(X='patricia'|X='judy'|X='teresa')))& ((does_not_enjoy_kayaking(patricia))=>(does_not_enjoy_kayaking(teresa)))& ((![X]:(room(X)=>(((sibling(lori,X))|(does_not_collect_vintage_stamps(X))))))=>(![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(like(lori,X)))))))& ((sibling(lori,teresa))=>(sibling(steven,judy)))& ((does_not_enjoy_kayaking(patricia))=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(judy))|(enjoys_kayaking(judy))|(sibling(steven,judy)))))& ((![X]:(room(X)=>(((sibling(steven,X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))=>((like(judy,lori) & like(lori,judy))))& (![X]:(room(X)=>(((((sibling(steven,X))&(enjoys_kayaking(X))))=>(does_not_collect_vintage_stamps(X))))))& (sibling(lori,teresa))& ((![X]:((sibling(steven,X))<=>(calm(X)&person(X)))))& (sibling(steven,judy))& (sibling(lori,judy))& (![X]:(~room(X)=>(((collects_vintage_stamps(X))=>(sibling(steven,X))))))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(enjoys_kayaking(X))))))& (sibling(lori,patricia))& (![X]:(room(X)=>(((sibling(lori,X))=>(sibling(steven,X))))))& (((sibling(steven,judy))&(enjoys_kayaking(judy))))& (sibling(judy,lori))& (enjoys_kayaking(judy))& (does_not_enjoy_kayaking(patricia))& (~?[X]:(calm(X)=>kind(X)))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(sibling(steven,X))))))& (![X]:(room(X)=>(((sibling(steven,X))=>(sibling(lori,X))))))& (collects_vintage_stamps(teresa))& (sibling(steven,patricia))
room(patricia)&room(judy)&room(teresa)&(![X]:(room(X)=>(X='patricia'|X='judy'|X='teresa')))& enjoys_deep-sea_diving_and_exploring_underwater_caves(judy)
[]
null
0.492052
Gladys is the only person in the room. Everyone in the room who enjoys skydiving enjoys stargazing. Gladys is a professional photographer specializing in portrait photography. Gladys enjoys skydiving. Only one person in the room creates YouTube content. It is not the case that “Gladys uses a Windows laptop”. Gladys enjoys fishing. Everyone in the room who creates YouTube content neither trains for and competes in international triathlons nor owns a smart tv. If someone practices digital art or is a professional photographer specializing in portrait photography or both then he/she can play the piano and vice versa. Not everyone in the room trains for and competes in international triathlons or is not an amateur astronomer who builds and uses custom telescopes. Gladys can play the piano. If someone streams on Twitch then he/she collects comic books and vice versa. Gladys dreamt that “if someone enjoys stargazing then he/she regularly goes on multi-day backpacking trips in national parks and vice versa”. Everyone in the room who enjoys kayaking and exploring remote waterways neither collects comic books nor is a night owl. Gladys streams on Twitch, is an expert in identifying and foraging wild edible plants or practices pilates. Everyone anywhere participates in long-distance cycling events across the country only if they hosts regular game nights featuring complex strategy games, is a dedicated advocate for digital privacy and encryption and participates in long-distance cycling events across the country. Everyone in the room who hosts regular game nights featuring complex strategy games, is a dedicated advocate for digital privacy and encryption and participates in long-distance cycling events across the country uses a Windows laptop. Everyone in the room who either collects comic books or enjoys stargazing but not both is a dedicated advocate for digital privacy and encryption. Everyone in the room who is a dedicated advocate for digital privacy and encryption designs and sews custom cosplay costumes for conventions. Only one person in the room can play the piano. Everyone outside the room who is passionate about collecting and restoring classic cars streams on Twitch. Everyone in the room who enjoys windsurfing enjoys fishing. Everyone in the room is an expert in identifying and foraging wild edible plants or is not a dedicated advocate for digital privacy and encryption. Everyone in the room is an expert in identifying and foraging wild edible plants only if they owns a smart tv.
Gladys participates in long-distance cycling events across the country.
contradiction
room(gladys)&(![X]:(room(X)=>(X='gladys')))& (![X]:(room(X)=>(((enjoys_skydiving(X))=>(enjoys_stargazing(X))))))& (is_a_professional_photographer_specializing_in_portrait_photography(gladys))& (enjoys_skydiving(gladys))& (((?[X]:(room(X)&creates_YouTube_content(X)))&(![X,Y]:((room(X)&room(Y)&(creates_YouTube_content(X))&(creates_YouTube_content(Y)))=>(X=Y)))))& (~(uses_a_Windows_laptop(gladys)))& (enjoys_fishing(gladys))& (![X]:(room(X)=>(((creates_YouTube_content(X))=>(~((trains_for_and_competes_in_international_triathlons(X))|(owns_a_smart_tv(X))))))))& ((![X]:((((practices_digital_art(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))<=>(can_play_the_piano(X)))))& (~![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(trains_for_and_competes_in_international_triathlons(X))))))& (can_play_the_piano(gladys))& ((![X]:((streams_on_Twitch(X))<=>(collects_comic_books(X)))))& ((gladys_dream=>((![X]:((enjoys_stargazing(X))<=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(~((collects_comic_books(X))|(is_a_night_owl(X))))))))& (((streams_on_Twitch(gladys))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(gladys))|(practices_pilates(gladys))))& (![X]:(anywhere(X)=>(((((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(participates_in_long-distance_cycling_events_across_the_country(X))))<=(participates_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(room(X)=>(((((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(participates_in_long-distance_cycling_events_across_the_country(X))))=>(uses_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((((collects_comic_books(X))<~>(enjoys_stargazing(X))))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (((?[X]:(room(X)&can_play_the_piano(X)))&(![X,Y]:((room(X)&room(Y)&(can_play_the_piano(X))&(can_play_the_piano(Y)))=>(X=Y)))))& (![X]:(~room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(streams_on_Twitch(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))=>(enjoys_fishing(X))))))& (![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (![X]:(room(X)=>(((owns_a_smart_tv(X))<=(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))
room(gladys)&(![X]:(room(X)=>(X='gladys')))& participates_in_long-distance_cycling_events_across_the_country(gladys)
[ "b4", "p0", "p4", "p7", "p15", "p22", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 8639792438779034846374116 % SZS output start Proof for 8639792438779034846374116 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 48. ! [X0,X1] : ((preds(X1) & preds(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (preds(X0) & room(X0)) [input p4] 51. ! [X0] : (room(X0) => (preds(X0) => ~(predr(X0) | predf(X0)))) [input p7] 59. ! [X0] : (anywhere(X0) => (predq(X0) => (predq(X0) & predj(X0) & predw(X0)))) [input p15] 66. ! [X0] : (room(X0) => (predu(X0) | ~predj(X0))) [input p22] 67. ! [X0] : (room(X0) => (predu(X0) => predr(X0))) [input p23] 68. predq(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 69. ! [X0,X1] : ((preds(X1) & preds(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (preds(X2) & room(X2)) [rectify 48] 81. ! [X0] : (room(X0) => (preds(X0) => ~predr(X0))) [pure predicate removal 51] 155. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 158. ! [X0,X1] : (X0 = X1 | (~preds(X1) | ~preds(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (preds(X2) & room(X2)) [ennf transformation 69] 159. ! [X0,X1] : (X0 = X1 | ~preds(X1) | ~preds(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (preds(X2) & room(X2)) [flattening 158] 160. ! [X0] : ((~predr(X0) | ~preds(X0)) | ~room(X0)) [ennf transformation 81] 161. ! [X0] : (~predr(X0) | ~preds(X0) | ~room(X0)) [flattening 160] 163. ! [X0] : (((predq(X0) & predj(X0) & predw(X0)) | ~predq(X0)) | ~anywhere(X0)) [ennf transformation 59] 164. ! [X0] : ((predq(X0) & predj(X0) & predw(X0)) | ~predq(X0) | ~anywhere(X0)) [flattening 163] 171. ! [X0] : ((predu(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 66] 172. ! [X0] : (predu(X0) | ~predj(X0) | ~room(X0)) [flattening 171] 173. ! [X0] : ((predr(X0) | ~predu(X0)) | ~room(X0)) [ennf transformation 67] 174. ! [X0] : (predr(X0) | ~predu(X0) | ~room(X0)) [flattening 173] 175. predq(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 68] 177. ? [X2] : (preds(X2) & room(X2)) => (preds(sK0) & room(sK0)) [choice axiom] 178. ! [X0,X1] : (X0 = X1 | ~preds(X1) | ~preds(X0) | ~room(X1) | ~room(X0)) & (preds(sK0) & room(sK0)) [skolemisation 159,177] 186. anywhere(X0) [cnf transformation 5] 267. room(mary) [cnf transformation 155] 268. ~room(X0) | mary = X0 [cnf transformation 155] 272. room(sK0) [cnf transformation 178] 273. preds(sK0) [cnf transformation 178] 276. ~predr(X0) | ~preds(X0) | ~room(X0) [cnf transformation 161] 283. predj(X0) | ~predq(X0) | ~anywhere(X0) [cnf transformation 164] 291. ~predj(X0) | predu(X0) | ~room(X0) [cnf transformation 172] 292. ~predu(X0) | predr(X0) | ~room(X0) [cnf transformation 174] 295. predq(mary) [cnf transformation 175] 296. ~predq(X0) | predj(X0) [subsumption resolution 283,186] 301. predj(mary) [resolution 296,295] 304. mary = sK0 [resolution 268,272] 308. preds(mary) [backward demodulation 273,304] 315. predu(mary) | ~room(mary) [resolution 291,301] 316. predu(mary) [subsumption resolution 315,267] 317. predr(mary) | ~room(mary) [resolution 292,316] 318. predr(mary) [subsumption resolution 317,267] 319. ~preds(mary) | ~room(mary) [resolution 318,276] 320. ~room(mary) [subsumption resolution 319,308] 321. $false [subsumption resolution 320,267] % SZS output end Proof for 8639792438779034846374116 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.028 s % ------------------------------ % ------------------------------
0.278662
Jerry, Jeffrey are the only persons in the room. If “everyone in the room develops open-source software projects in their free time or is not an avid collector of autographed memorabilia from famous musicians” then “everyone in the room enjoys logic puzzles or is a member of a local theater group specializing in improv or both if they either collect rare sneakers or collects comic books but not both”. If “everyone in the room collects action figures or does not enjoy logic puzzles” then “everyone outside the room who collects action figures is a wine connoisseur”. If “everyone in the room collects first edition books, is right-handed and is a member of a local theater group specializing in improv” then “everyone in the room who does not maintain a personal blog focused on cybersecurity tips and is right-handed collects comic books”. If “everyone in the room plays eSports competitively or does not participate in long-distance cycling events across the country” then “not everyone in the room collects comic books if they develops open-source software projects in their free time”. “Jeffrey owns a telescope” only if “someone in the room collect rare sneakers”. Either “not everyone in the room does not collect limited-edition art prints from contemporary artists or does not collect action figures” or “Jeffrey is a professional photographer specializing in portrait photography” but not both. “Jeffrey neither collect rare sneakers nor collects action figures” if “Jeffrey does not enjoy logic puzzles”. Jeffrey maintains a personal blog focused on cybersecurity tips, is a member of a local theater group specializing in improv or develops open-source software projects in their free time. Jeffrey is not an avid collector of autographed memorabilia from famous musicians. Everyone in the room who owns a telescope does not participate in long-distance cycling events across the country. Jerry does not collect comic books. Everyone in the room has a specialized collection of handmade artisan pottery if and only if they is right-handed.
Jeffrey is a professional photographer specializing in portrait photography.
neutral
room(jerry)&room(jeffrey)&(![X]:(room(X)=>(X='jerry'|X='jeffrey')))& ((![X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(develops_open-source_software_projects_in_their_free_time(X))))))=>(![X]:(room(X)=>(((((collect_rare_sneakers(X))<~>(collects_comic_books(X))))=>(((enjoys_logic_puzzles(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X)))))))))& ((![X]:(room(X)=>(((does_not_enjoy_logic_puzzles(X))|(collects_action_figures(X))))))=>(![X]:(~room(X)=>(((collects_action_figures(X))=>(is_a_wine_connoisseur(X)))))))& ((![X]:(room(X)=>(((collects_first_edition_books(X))&(is_right-handed(X))&(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))=>(![X]:(room(X)=>(((((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))&(is_right-handed(X))))=>(collects_comic_books(X)))))))& ((![X]:(room(X)=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))|(plays_eSports_competitively(X))))))=>(~![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(collects_comic_books(X)))))))& ((owns_a_telescope(jeffrey))=>(?[X]:(room(X)&(collect_rare_sneakers(X)))))& ((~![X]:(room(X)=>(((does_not_collect_action_figures(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))<~>(is_a_professional_photographer_specializing_in_portrait_photography(jeffrey)))& ((does_not_enjoy_logic_puzzles(jeffrey))=>(~((collect_rare_sneakers(jeffrey))|(collects_action_figures(jeffrey)))))& (((maintains_a_personal_blog_focused_on_cybersecurity_tips(jeffrey))|(is_a_member_of_a_local_theater_group_specializing_in_improv(jeffrey))|(develops_open-source_software_projects_in_their_free_time(jeffrey))))& (is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(jeffrey))& (![X]:(room(X)=>(((owns_a_telescope(X))=>(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))& (does_not_collect_comic_books(jerry))& (![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))<=>(is_right-handed(X))))))& (![X]:(~room(X)=>(((is_right-handed(X))=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))& (![X]:(room(X)=>(((is_a_wine_connoisseur(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& ((is_right-handed(jerry))&(((practices_urban_gardening(jerry))|(is_an_avid_mountain_climber_who_has_scaled_several_peaks(jerry)))))& (collects_first_edition_books(jerry))& (![X]:(room(X)=>(((does_not_write_poetry(X))=>(practices_urban_gardening(X))))))& ((jerry_dream=>((is_a_professional_photographer_specializing_in_portrait_photography(jerry))&(collects_comic_books(jerry)))))& (~((collect_rare_sneakers(jeffrey))|(collects_action_figures(jeffrey))))& (![X]:(room(X)=>(((((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(is_a_member_of_a_local_theater_group_specializing_in_improv(X))&(writes_poetry(X))))=>(is_right-handed(X))))))
room(jerry)&room(jeffrey)&(![X]:(room(X)=>(X='jerry'|X='jeffrey')))& is_a_professional_photographer_specializing_in_portrait_photography(jeffrey)
[]
null
0.056806
Janie, Frank, Miguel, Ned, Lawrence are the only persons in the room. Everyone in the room enjoys cross-country skiing if and only if they enjoys watercolor painting. Everyone in the room enjoys watercolor painting if they makes homemade pastries and vice versa. Everyone in the room who makes homemade pastries or frequently participates in hackathons and coding competitions or both frequently participates in hackathons and coding competitions. Miguel who enjoys cross-country skiing has lived in exactly three countries.
Miguel does not frequently participates in hackathons and coding competitions and designs and sews custom cosplay costumes for conventions.
contradiction
room(janie)&room(frank)&room(miguel)&room(ned)&room(lawrence)&(![X]:(room(X)=>(X='janie'|X='frank'|X='miguel'|X='ned'|X='lawrence')))& ((![X]:(room(X)=>(((makes_homemade_pastries(X))|(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))=>(~![X]:(room(X)=>(((((makes_homemade_pastries(X))|(owns_a_microscope(X))))=>(((makes_homemade_pastries(X))|(enjoys_virtual_reality_gaming(X)))))))))& ((![X]:(anywhere(X)=>(((makes_homemade_pastries(X))|(does_not_enjoy_virtual_reality_gaming(X))))))=>(~![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(owns_a_microscope(X)))))))& ((![X]:(room(X)=>(((makes_homemade_pastries(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(enjoys_kayaking(X)))))))& ((![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))|(does_not_own_a_microscope(X))))))<=>(![X]:(~room(X)=>(((enjoys_kayaking(X))|(does_not_enjoy_cross-country_skiing(X)))))))& (![X]:(room(X)=>(((((enjoys_virtual_reality_gaming(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))=>(makes_homemade_pastries(X))))))& (![X]:(room(X)=>(((enjoys_cross-country_skiing(X))<=>(enjoys_watercolor_painting(X))))))& (![X]:(room(X)=>(((enjoys_watercolor_painting(X))<=>(makes_homemade_pastries(X))))))& (![X]:(~room(X)=>(((has_lived_in_exactly_three_countries(X))=>(((enjoys_kayaking(X))&(has_lived_in_exactly_three_countries(X))))))))& (![X]:(anywhere(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))))))& (![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))<=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(((makes_homemade_pastries(X))&(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))))& (![X]:(room(X)=>(((((makes_homemade_pastries(X))&(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))=>(enjoys_watercolor_painting(X))))))& ((![X]:((has_lived_in_exactly_three_countries(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))& (![X]:(room(X)=>(((((makes_homemade_pastries(X))|(frequently_participates_in_hackathons_and_coding_competitions(X))))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(enjoys_watercolor_painting(X))))))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(has_lived_in_exactly_three_countries(X))))))& ((enjoys_cross-country_skiing(miguel))&(has_lived_in_exactly_three_countries(miguel)))
room(janie)&room(frank)&room(miguel)&room(ned)&room(lawrence)&(![X]:(room(X)=>(X='janie'|X='frank'|X='miguel'|X='ned'|X='lawrence')))& ((does_not_frequently_participates_in_hackathons_and_coding_competitions(miguel))&(designs_and_sews_custom_cosplay_costumes_for_conventions(miguel)))
[ "p0", "p6", "p7", "p15", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 7163416263049362895181944 % SZS output start Proof for 7163416263049362895181944 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 50. ! [X0] : (room(X0) => (predh(X0) <=> predb(X0))) [input p6] 51. ! [X0] : (room(X0) => (predb(X0) <=> predd(X0))) [input p7] 59. ! [X0] : (room(X0) => ((predk(X0) | predd(X0)) => predk(X0))) [input p15] 63. predc(fred) & predh(fred) [input p19] 64. predf(fred) & ~predk(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 140. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 140] 152. ! [X0] : ((predh(X0) <=> predb(X0)) | ~room(X0)) [ennf transformation 50] 153. ! [X0] : ((predb(X0) <=> predd(X0)) | ~room(X0)) [ennf transformation 51] 166. ! [X0] : ((predk(X0) | (~predk(X0) & ~predd(X0))) | ~room(X0)) [ennf transformation 59] 167. ! [X0] : (predk(X0) | (~predk(X0) & ~predd(X0)) | ~room(X0)) [flattening 166] 174. predf(fred) & ~predk(fred) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 175. predf(fred) & ~predk(fred) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 174] 201. ! [X0] : (((predh(X0) | ~predb(X0)) & (predb(X0) | ~predh(X0))) | ~room(X0)) [nnf transformation 152] 202. ! [X0] : (((predb(X0) | ~predd(X0)) & (predd(X0) | ~predb(X0))) | ~room(X0)) [nnf transformation 153] 287. room(fred) [cnf transformation 141] 315. ~predh(X0) | predb(X0) | ~room(X0) [cnf transformation 201] 317. ~predb(X0) | predd(X0) | ~room(X0) [cnf transformation 202] 329. ~predd(X0) | predk(X0) | ~room(X0) [cnf transformation 167] 334. predh(fred) [cnf transformation 63] 342. ~predk(fred) [cnf transformation 175] 474. predb(fred) | ~room(fred) [resolution 315,334] 476. predb(fred) [subsumption resolution 474,287] 478. predd(fred) | ~room(fred) [resolution 317,476] 479. predd(fred) [subsumption resolution 478,287] 489. predk(fred) | ~room(fred) [resolution 329,479] 490. ~room(fred) [subsumption resolution 489,342] 491. $false [subsumption resolution 490,287] % SZS output end Proof for 7163416263049362895181944 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.309227
Jimmy, Christopher, Katherine, Jennifer, Lawrence are the only persons in the room. Everyone in the room who collects luxury watches regularly goes on multi-day backpacking trips in national parks. Everyone in the room who owns a high-end gaming PC with custom-built components does enjoy trail running. Everyone in the room who does enjoy trail running is a client of Meta. Everyone in the room who is a client of Meta either regularly goes on multi-day backpacking trips in national parks or is a client of Meta but not both. Jimmy owns a high-end gaming PC with custom-built components.
Jimmy collects luxury watches.
contradiction
room(jimmy)&room(christopher)&room(katherine)&room(jennifer)&room(lawrence)&(![X]:(room(X)=>(X='jimmy'|X='christopher'|X='katherine'|X='jennifer'|X='lawrence')))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))<=(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (enjoys_skydiving(christopher))& (![X]:(room(X)=>(((collects_luxury_watches(X))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (![X]:(room(X)=>(((enjoys_kayaking(X))<=(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (((enjoys_kayaking(christopher))<~>(practices_calligraphy(christopher))))& (((trains_for_and_competes_in_international_triathlons(lawrence))<~>(owns_a_microscope(lawrence))))& (does_practice_yoga(katherine))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))<=(collects_foreign_coins(X))))))& (![X]:(room(X)=>(((enjoys_skydiving(X))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_kayaking(X)&enjoys_kayaking(Y))&(X!=Y))))& (![X]:(anywhere(X)=>(((does_practice_yoga(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<=(develops_open-source_software_projects_in_their_free_time(X))))))& (~![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(collects_luxury_watches(X))))))& (![X]:(anywhere(X)=>(((owns_a_microscope(X))<=(collects_luxury_watches(X))))))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(anywhere(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (~![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(does_practice_yoga(X))))))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(does_enjoy_trail_running(X))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(is_a_client_of_Meta(X))))))& (![X]:(room(X)=>(((is_a_client_of_Meta(X))=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<~>(is_a_client_of_Meta(X))))))))& (owns_a_high-end_gaming_PC_with_custom-built_components(jimmy))
room(jimmy)&room(christopher)&room(katherine)&room(jennifer)&room(lawrence)&(![X]:(room(X)=>(X='jimmy'|X='christopher'|X='katherine'|X='jennifer'|X='lawrence')))& collects_luxury_watches(jimmy)
[ "p0", "p3", "p20", "p21", "p22", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 3244213679285787710495520 % SZS output start Proof for 3244213679285787710495520 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. ! [X0] : (room(X0) => (predf(X0) => prede(X0))) [input p3] 64. ! [X0] : (room(X0) => (predn(X0) => preda(X0))) [input p20] 65. ! [X0] : (room(X0) => (preda(X0) => predi(X0))) [input p21] 66. ! [X0] : (room(X0) => (predi(X0) => (prede(X0) <~> predi(X0)))) [input p22] 67. predn(mary) [input p23] 68. predf(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 151. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 152. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 151] 153. ! [X0] : ((prede(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 47] 154. ! [X0] : (prede(X0) | ~predf(X0) | ~room(X0)) [flattening 153] 164. ! [X0] : ((preda(X0) | ~predn(X0)) | ~room(X0)) [ennf transformation 64] 165. ! [X0] : (preda(X0) | ~predn(X0) | ~room(X0)) [flattening 164] 166. ! [X0] : ((predi(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 65] 167. ! [X0] : (predi(X0) | ~preda(X0) | ~room(X0)) [flattening 166] 168. ! [X0] : (((prede(X0) <~> predi(X0)) | ~predi(X0)) | ~room(X0)) [ennf transformation 66] 169. ! [X0] : ((prede(X0) <~> predi(X0)) | ~predi(X0) | ~room(X0)) [flattening 168] 170. predf(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 68] 171. predf(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 170] 181. ! [X0] : (((~predi(X0) | ~prede(X0)) & (predi(X0) | prede(X0))) | ~predi(X0) | ~room(X0)) [nnf transformation 169] 263. room(mary) [cnf transformation 152] 269. ~predf(X0) | prede(X0) | ~room(X0) [cnf transformation 154] 287. ~predn(X0) | preda(X0) | ~room(X0) [cnf transformation 165] 288. ~preda(X0) | predi(X0) | ~room(X0) [cnf transformation 167] 290. ~predi(X0) | ~prede(X0) | ~predi(X0) | ~room(X0) [cnf transformation 181] 291. predn(mary) [cnf transformation 67] 298. predf(mary) [cnf transformation 171] 299. ~predi(X0) | ~prede(X0) | ~room(X0) [duplicate literal removal 290] 322. prede(mary) | ~room(mary) [resolution 269,298] 323. prede(mary) [subsumption resolution 322,263] 330. preda(mary) | ~room(mary) [resolution 287,291] 331. preda(mary) [subsumption resolution 330,263] 332. predi(mary) | ~room(mary) [resolution 288,331] 333. predi(mary) [subsumption resolution 332,263] 334. ~prede(mary) | ~room(mary) [resolution 333,299] 335. ~room(mary) [subsumption resolution 334,323] 336. $false [subsumption resolution 335,263] % SZS output end Proof for 3244213679285787710495520 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.073536
There is a room. “Everyone in the room neither does not hate Elwood nor hates Dominique” only if “everyone outside the room neither is not hated by Agustina nor is not liked by Dominique if they does not hate Dominique, does not hate George and is not liked by Dominique”. If “someone in the room hates Agustina” then “everyone in the room either is not hated by Dominique or does not like Elwood but not both if they hates Elwood”. Everyone in the room either is not hated by Dominique or does not like Elwood but not both only if they is not liked by Dominique, hates Agustina and hates George. Only one person in the room neither is not liked by George nor hates Elwood. If someone likes Daniel then he/she neither is not liked by Daniel nor does not like Daniel. Everyone in the room is not hated by Agustina and is not liked by Elwood if and only if they does not like Elwood. If someone does not hate Agustina then he/she is not hated by Daniel and vice versa. Everyone in the room does not hate George.
Everyone in the room hates Daniel.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(~((~hate(elwood,X))|(hate(dominique,X))))))=>(![X]:(~room(X)=>(((((~hate(dominique,X))&(~hate(george,X))&(~like(X,dominique))))=>(~((~hate(X,agustina))|(~like(X,dominique)))))))))& ((?[X]:(room(X)&(hate(agustina,X))))=>(![X]:(room(X)=>(((hate(elwood,X))=>(((~hate(X,dominique))<~>(~like(elwood,X)))))))))& (![X]:(room(X)=>(((((~like(X,dominique))&(hate(agustina,X))&(hate(george,X))))<=(((~hate(X,dominique))<~>(~like(elwood,X))))))))& (((?[X]:(room(X)&~((~like(X,george))|(hate(elwood,X)))))&(![X,Y]:((room(X)&room(Y)&(~((~like(X,george))|(hate(elwood,X))))&(~((~like(Y,george))|(hate(elwood,Y)))))=>(X=Y)))))& ((![X]:((like(daniel,X))=>(~((~like(X,daniel))|(~like(daniel,X)))))))& (![X]:(room(X)=>(((((~hate(X,agustina))&(~like(X,elwood))))<=>(~like(elwood,X))))))& ((![X]:((~hate(agustina,X))<=>(~hate(X,daniel)))))& (![X]:(room(X)=>(~hate(george,X))))
(there_is_a_room)& ![X]:(room(X)=>(hate(daniel,X)))
[]
null
0.166565
Herman who is a kind person is a happy patient person. Dale who is a tall person is richer than Pablo. It is not the case that “it is not the case that “Herman is patient””. Herman who is a creative person is a brave person.
Herman is creative.
entailment
room(herman)&room(dale)&(![X]:(room(X)=>(X='herman'|X='dale')))& ((kind(herman)&person(herman))&(happy(herman)&patient(herman)&person(herman)))& ((tall(dale)&person(dale))&(richer(pablo,dale)))& (~(~(patient(herman))))& ((creative(herman)&person(herman))&(brave(herman)&person(herman)))
room(herman)&room(dale)&(![X]:(room(X)=>(X='herman'|X='dale')))& creative(herman)
[ "p0", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 8575712859218981128624762 % SZS output start Proof for 8575712859218981128624762 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 48. person(mary) & brave(mary) & person(mary) & creative(mary) [input p4] 49. ~(creative(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 50. person(mary) & person(mary) & creative(mary) [pure predicate removal 48] 58. creative(mary) [pure predicate removal 50] 131. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 132. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 131] 133. ~creative(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 49] 134. ~creative(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 133] 136. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK0 & mary != sK0 & room(sK0)) [choice axiom] 137. ~creative(mary) | (paul != sK0 & mary != sK0 & room(sK0)) | ~room(paul) | ~room(mary) [skolemisation 134,136] 218. room(mary) [cnf transformation 132] 219. room(paul) [cnf transformation 132] 220. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 132] 222. creative(mary) [cnf transformation 58] 223. ~creative(mary) | room(sK0) | ~room(paul) | ~room(mary) [cnf transformation 137] 224. ~creative(mary) | mary != sK0 | ~room(paul) | ~room(mary) [cnf transformation 137] 225. ~creative(mary) | paul != sK0 | ~room(paul) | ~room(mary) [cnf transformation 137] 226. paul != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 225,222] 227. paul != sK0 | ~room(mary) [subsumption resolution 226,219] 228. paul != sK0 [subsumption resolution 227,218] 229. mary != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 224,222] 230. mary != sK0 | ~room(mary) [subsumption resolution 229,219] 231. mary != sK0 [subsumption resolution 230,218] 232. room(sK0) | ~room(paul) | ~room(mary) [subsumption resolution 223,222] 233. room(sK0) | ~room(mary) [subsumption resolution 232,219] 234. room(sK0) [subsumption resolution 233,218] 237. mary = sK0 | paul = sK0 [resolution 220,234] 238. paul = sK0 [subsumption resolution 237,231] 239. $false [subsumption resolution 238,228] % SZS output end Proof for 8575712859218981128624762 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.015477
Douglas, Lyle are the only persons in the room. Either “Lyle is quieter than Edison” or “Lyle is a old quiet kind tall person” but not both. If “Douglas neither is a kind person nor is old” then “no kind person is old”. “Lyle neither is quieter than Edison nor is older than Edison” unless “Lyle and Douglas are respectively kind and old”. If “Lyle is tall” then “everyone in the room is not old only if they is richer than Edison”. If “Douglas is a tall person” then “everyone in the room is older than Edison”. Lyle is not old. All old persons are kind. Lyle is quiet or is old or both. Everyone in the room is not a quiet person if they either is quiet or is a quiet person but not both. Douglas is the least rich outside the room. It is not the case that “Douglas is a old person”. Douglas is the richest in the room.
Douglas is kind.
entailment
room(douglas)&room(lyle)&(![X]:(room(X)=>(X='douglas'|X='lyle')))& ((quieter(edison,lyle))<~>(old(lyle)&quiet(lyle)&kind(lyle)&tall(lyle)&person(lyle)))& ((~((kind(douglas)&person(douglas))|(old(douglas))))=>(~?[X]:(kind(X)=>old(X))))& (~((kind(lyle))&(old(douglas)))=>(~((quieter(edison,lyle))|(older(edison,lyle)))))& ((tall(lyle))=>(![X]:(room(X)=>(((richer(edison,X))<=(~old(X)))))))& ((tall(douglas)&person(douglas))=>(![X]:(room(X)=>(older(edison,X)))))& (~old(lyle))& (![X]:(old(X)=>kind(X)))& (((quiet(lyle))|(old(lyle))))& (![X]:(room(X)=>(((((quiet(X))<~>(quiet(X)&person(X))))=>(~(quiet(X)&person(X)))))))& (![X]:((~room(X)&(X!=douglas))=>richer(douglas,X)))& (~(old(douglas)&person(douglas)))& (![X]:((room(X)&(X!=douglas))=>richer(X,douglas)))
room(douglas)&room(lyle)&(![X]:(room(X)=>(X='douglas'|X='lyle')))& kind(douglas)
[ "p0", "p1", "p3", "p6", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 1183601927638575882286020 % SZS output start Proof for 1183601927638575882286020 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. quieter(fred,paul) <~> (person(paul) & tall(paul) & kind(paul) & quiet(paul) & old(paul)) [input p1] 47. ~(old(mary) & kind(paul)) => ~(older(fred,paul) | quieter(fred,paul)) [input p3] 50. ~old(paul) [input p6] 51. ! [X0] : (old(X0) => kind(X0)) [input p7] 57. ~(kind(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 130. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 131. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 130] 134. (~older(fred,paul) & ~quieter(fred,paul)) | (old(mary) & kind(paul)) [ennf transformation 47] 139. ! [X0] : (kind(X0) | ~old(X0)) [ennf transformation 51] 147. ~kind(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 57] 148. ~kind(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 147] 150. ((~person(paul) | ~tall(paul) | ~kind(paul) | ~quiet(paul) | ~old(paul)) | ~quieter(fred,paul)) & ((person(paul) & tall(paul) & kind(paul) & quiet(paul) & old(paul)) | quieter(fred,paul)) [nnf transformation 45] 151. (~person(paul) | ~tall(paul) | ~kind(paul) | ~quiet(paul) | ~old(paul) | ~quieter(fred,paul)) & ((person(paul) & tall(paul) & kind(paul) & quiet(paul) & old(paul)) | quieter(fred,paul)) [flattening 150] 154. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK0 & mary != sK0 & room(sK0)) [choice axiom] 155. ~kind(mary) | (paul != sK0 & mary != sK0 & room(sK0)) | ~room(paul) | ~room(mary) [skolemisation 148,154] 236. room(mary) [cnf transformation 131] 237. room(paul) [cnf transformation 131] 238. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 131] 239. old(paul) | quieter(fred,paul) [cnf transformation 151] 250. ~quieter(fred,paul) | old(mary) [cnf transformation 134] 255. ~old(paul) [cnf transformation 50] 256. ~old(X0) | kind(X0) [cnf transformation 139] 264. ~kind(mary) | room(sK0) | ~room(paul) | ~room(mary) [cnf transformation 155] 265. ~kind(mary) | mary != sK0 | ~room(paul) | ~room(mary) [cnf transformation 155] 266. ~kind(mary) | paul != sK0 | ~room(paul) | ~room(mary) [cnf transformation 155] 271. 1 <=> quieter(fred,paul) [avatar definition] 275. 2 <=> old(paul) [avatar definition] 299. 1 | 2 [avatar split clause 239,275,271] 305. 8 <=> old(mary) [avatar definition] 307. old(mary) <- (8) [avatar component clause 305] 313. 10 <=> kind(mary) [avatar definition] 328. 8 | ~1 [avatar split clause 250,271,305] 342. ~2 [avatar split clause 255,275] 345. ~kind(mary) | paul != sK0 | ~room(mary) [subsumption resolution 266,237] 346. ~kind(mary) | paul != sK0 [subsumption resolution 345,236] 348. 16 <=> paul = sK0 [avatar definition] 350. paul != sK0 <- (~16) [avatar component clause 348] 351. ~16 | ~10 [avatar split clause 346,313,348] 352. ~kind(mary) | mary != sK0 | ~room(mary) [subsumption resolution 265,237] 353. ~kind(mary) | mary != sK0 [subsumption resolution 352,236] 355. 17 <=> mary = sK0 [avatar definition] 357. mary != sK0 <- (~17) [avatar component clause 355] 358. ~17 | ~10 [avatar split clause 353,313,355] 359. ~kind(mary) | room(sK0) | ~room(mary) [subsumption resolution 264,237] 360. ~kind(mary) | room(sK0) [subsumption resolution 359,236] 362. 18 <=> room(sK0) [avatar definition] 364. room(sK0) <- (18) [avatar component clause 362] 365. 18 | ~10 [avatar split clause 360,313,362] 366. kind(mary) <- (8) [resolution 256,307] 369. 10 | ~8 [avatar split clause 366,305,313] 372. mary = sK0 | paul = sK0 <- (18) [resolution 238,364] 373. paul = sK0 <- (~17, 18) [subsumption resolution 372,357] 374. $false <- (~16, ~17, 18) [subsumption resolution 373,350] 375. 16 | 17 | ~18 [avatar contradiction clause 374] 376. $false [avatar sat refutation 299,328,342,351,358,365,369,375] % SZS output end Proof for 1183601927638575882286020 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0.0104
There is a room. If “everyone in the room enjoys coding in Python or is not an expert in identifying and foraging wild edible plants” then “at least one person in the room hosts a YouTube channel dedicated to art tutorials”. If “at least one person in the room hosts a YouTube channel dedicated to art tutorials” then “everyone in the room who plays as a goalkeeper for a local amateur soccer team hosts a YouTube channel dedicated to art tutorials”. If “everyone in the room does not play as a goalkeeper for a local amateur soccer team or collects limited-edition art prints from contemporary artists” then “if someone enjoys cross-country skiing then he/she is a chess master who participates in national tournaments”. If someone enjoys cross-country skiing then he/she is a chess master who participates in national tournaments. Not everyone in the room does not have lived in exactly three countries. Everyone in the room is passionate about collecting and restoring classic cars or hosts a YouTube channel dedicated to art tutorials or both if they enjoys coding in Python. Everyone in the room does not collect rare minerals if they plays as a goalkeeper for a local amateur soccer team. Not everyone in the room hosts a YouTube channel dedicated to art tutorials if they does not collect rare minerals.
Everyone in the room is not passionate about collecting and restoring classic cars or plays as a goalkeeper for a local amateur soccer team.
neutral
(there_is_a_room)& (((![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(enjoys_coding_in_Python(X))))))=>(((?[X]:(room(X)&hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& ((((?[X]:(room(X)&hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)))))=>(![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))))& ((![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>((![X]:((enjoys_cross-country_skiing(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X))))))& ((![X]:((enjoys_cross-country_skiing(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X)))))& (~![X]:(room(X)=>(does_not_have_lived_in_exactly_three_countries(X))))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(does_not_collect_rare_minerals(X))))))& (~![X]:(room(X)=>(((does_not_collect_rare_minerals(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(((creates_augmented_reality_experiences_for_mobile_applications(X))&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))))& (![X]:(room(X)=>(((((creates_augmented_reality_experiences_for_mobile_applications(X))&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((enjoys_macrame(X))<=>(((is_a_Linux_enthusiast(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))))& (?[X]:(room(X)&(is_a_chess_master_who_participates_in_national_tournaments(X))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))<=(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& ((![X]:((is_a_Linux_enthusiast(X))<=>(((enjoys_windsurfing(X))<~>(does_not_have_completed_a_triathlon(X)))))))
(there_is_a_room)& ![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(is_not_passionate_about_collecting_and_restoring_classic_cars(X)))))
[]
null
0.032386
Jean, Frank, Bessie are the only persons in the room. If everyone in the room designs and sews custom cosplay costumes for conventions or does not practice kickboxing then Jean enjoys kayaking and is a skilled home brewer experimenting with craft beer recipes. If everyone in the room is not a wine connoisseur or practices graffiti art then Jean is a wine connoisseur and practices kickboxing. Everyone in the room has completed a triathlon only if if someone is an enthusiastic bird watcher who travels for rare sightings then he/she has a saltwater aquarium, owns a high-end gaming PC with custom-built components or is a dedicated volunteer for local community service projects. If Jean enjoys deep-sea diving and exploring underwater caves then if someone enjoys kayaking then he/she streams on Twitch and enjoys deep-sea diving and exploring underwater caves and vice versa otherwise Jean does not practice kickboxing. If everyone in the room does not have completed a triathlon or owns a high-end gaming PC with custom-built components then everyone in the room collects action figures if they does not have completed a triathlon. Everyone in the room does not own a high-end gaming PC with custom-built components or composes and performs experimental electronic music only if everyone anywhere streams on Twitch or has completed a triathlon or both only if they either enjoys kayaking or is a dedicated volunteer for local community service projects but not both. Everyone in the room does not own a high-end gaming PC with custom-built components or collects action figures only if not everyone in the room who is a skilled home brewer experimenting with craft beer recipes has a saltwater aquarium. Everyone in the room is not a wine connoisseur or practices kickboxing only if Jean does not practice kickboxing. Everyone in the room is not a wine connoisseur if they has a saltwater aquarium and vice versa. Jean enjoys deep-sea diving and exploring underwater caves. Jean does not practice kickboxing. Jean either enjoys kayaking or has completed a triathlon but not both. Jean has a saltwater aquarium. Jean streams on Twitch. Everyone in the room designs and sews custom cosplay costumes for conventions if and only if they has completed a triathlon, enjoys kayaking or owns a high-end gaming PC with custom-built components.
Jean designs and sews custom cosplay costumes for conventions.
entailment
room(jean)&room(frank)&room(bessie)&(![X]:(room(X)=>(X='jean'|X='frank'|X='bessie')))& ((![X]:(room(X)=>(((does_not_practice_kickboxing(X))|(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))=>(((enjoys_kayaking(jean))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(jean)))))& ((![X]:(room(X)=>(((practices_graffiti_art(X))|(is_not_a_wine_connoisseur(X))))))=>(((is_a_wine_connoisseur(jean))&(practices_kickboxing(jean)))))& ((![X]:(room(X)=>(has_completed_a_triathlon(X))))=>((![X]:((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(((has_a_saltwater_aquarium(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))|(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))))& (((enjoys_deep-sea_diving_and_exploring_underwater_caves(jean))=>((![X]:((enjoys_kayaking(X))<=>(((streams_on_Twitch(X))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))))&((~(enjoys_deep-sea_diving_and_exploring_underwater_caves(jean)))=>(does_not_practice_kickboxing(jean))))& ((![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_have_completed_a_triathlon(X))))))=>(![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))=>(collects_action_figures(X)))))))& ((![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))=>(![X]:(anywhere(X)=>(((((enjoys_kayaking(X))<~>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))<=(((streams_on_Twitch(X))|(has_completed_a_triathlon(X)))))))))& ((![X]:(room(X)=>(((collects_action_figures(X))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))=>(~![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(has_a_saltwater_aquarium(X)))))))& ((![X]:(room(X)=>(((practices_kickboxing(X))|(is_not_a_wine_connoisseur(X))))))=>(does_not_practice_kickboxing(jean)))& (![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))<=>(has_a_saltwater_aquarium(X))))))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(jean))& (does_not_practice_kickboxing(jean))& (((enjoys_kayaking(jean))<~>(has_completed_a_triathlon(jean))))& (has_a_saltwater_aquarium(jean))& (streams_on_Twitch(jean))& (![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=>(((has_completed_a_triathlon(X))|(enjoys_kayaking(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))))
room(jean)&room(frank)&room(bessie)&(![X]:(room(X)=>(X='jean'|X='frank'|X='bessie')))& designs_and_sews_custom_cosplay_costumes_for_conventions(jean)
[ "p0", "p4", "p10", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 2284918269794957460589124 % SZS output start Proof for 2284918269794957460589124 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 48. (~predg(mary) => ~predf(mary)) & (predg(mary) => ! [X0] : (predd(X0) <=> (predg(X0) & predk(X0)))) [input p4] 54. predg(mary) [input p10] 58. predk(mary) [input p14] 59. ! [X0] : (room(X0) => (predj(X0) <=> (predo(X0) | predd(X0) | predi(X0)))) [input p15] 60. ~(predj(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 141. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 141] 146. (~predf(mary) | predg(mary)) & (! [X0] : (predd(X0) <=> (predg(X0) & predk(X0))) | ~predg(mary)) [ennf transformation 48] 156. ! [X0] : ((predj(X0) <=> (predo(X0) | predd(X0) | predi(X0))) | ~room(X0)) [ennf transformation 59] 157. ~predj(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 60] 158. ~predj(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 157] 164. (~predf(mary) | predg(mary)) & (! [X0] : ((predd(X0) | (~predg(X0) | ~predk(X0))) & ((predg(X0) & predk(X0)) | ~predd(X0))) | ~predg(mary)) [nnf transformation 146] 165. (~predf(mary) | predg(mary)) & (! [X0] : ((predd(X0) | ~predg(X0) | ~predk(X0)) & ((predg(X0) & predk(X0)) | ~predd(X0))) | ~predg(mary)) [flattening 164] 181. ! [X0] : (((predj(X0) | (~predo(X0) & ~predd(X0) & ~predi(X0))) & ((predo(X0) | predd(X0) | predi(X0)) | ~predj(X0))) | ~room(X0)) [nnf transformation 156] 182. ! [X0] : (((predj(X0) | (~predo(X0) & ~predd(X0) & ~predi(X0))) & (predo(X0) | predd(X0) | predi(X0) | ~predj(X0))) | ~room(X0)) [flattening 181] 183. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 184. ~predj(mary) | (fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 158,183] 266. room(mary) [cnf transformation 142] 267. room(paul) [cnf transformation 142] 268. room(fred) [cnf transformation 142] 269. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 142] 279. predd(X0) | ~predg(X0) | ~predk(X0) | ~predg(mary) [cnf transformation 165] 303. predg(mary) [cnf transformation 54] 308. predk(mary) [cnf transformation 58] 311. ~predd(X0) | predj(X0) | ~room(X0) [cnf transformation 182] 313. ~predj(mary) | room(sK7) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 314. ~predj(mary) | mary != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 315. ~predj(mary) | paul != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 316. ~predj(mary) | fred != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 322. 2 <=> predd(mary) [avatar definition] 324. predd(mary) <- (2) [avatar component clause 322] 357. 9 <=> predg(mary) [avatar definition] 359. predg(mary) <- (9) [avatar component clause 357] 362. 10 <=> ! [X0] : (predd(X0) | ~predk(X0) | ~predg(X0)) [avatar definition] 363. ~predk(X0) | predd(X0) | ~predg(X0) <- (10) [avatar component clause 362] 364. ~9 | 10 [avatar split clause 279,362,357] 468. 9 [avatar split clause 303,357] 476. ~predj(mary) | fred != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 316,268] 477. ~predj(mary) | fred != sK7 | ~room(mary) [subsumption resolution 476,267] 478. ~predj(mary) | fred != sK7 [subsumption resolution 477,266] 480. 32 <=> fred = sK7 [avatar definition] 482. fred != sK7 <- (~32) [avatar component clause 480] 484. 33 <=> predj(mary) [avatar definition] 487. ~32 | ~33 [avatar split clause 478,484,480] 488. ~predj(mary) | paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 315,268] 489. ~predj(mary) | paul != sK7 | ~room(mary) [subsumption resolution 488,267] 490. ~predj(mary) | paul != sK7 [subsumption resolution 489,266] 492. 34 <=> paul = sK7 [avatar definition] 494. paul != sK7 <- (~34) [avatar component clause 492] 495. ~34 | ~33 [avatar split clause 490,484,492] 496. ~predj(mary) | mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 314,268] 497. ~predj(mary) | mary != sK7 | ~room(mary) [subsumption resolution 496,267] 498. ~predj(mary) | mary != sK7 [subsumption resolution 497,266] 500. 35 <=> mary = sK7 [avatar definition] 502. mary != sK7 <- (~35) [avatar component clause 500] 503. ~35 | ~33 [avatar split clause 498,484,500] 504. ~predj(mary) | room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 313,268] 505. ~predj(mary) | room(sK7) | ~room(mary) [subsumption resolution 504,267] 506. ~predj(mary) | room(sK7) [subsumption resolution 505,266] 508. 36 <=> room(sK7) [avatar definition] 510. room(sK7) <- (36) [avatar component clause 508] 511. 36 | ~33 [avatar split clause 506,484,508] 565. predj(mary) | ~room(mary) <- (2) [resolution 311,324] 569. predj(mary) <- (2) [subsumption resolution 565,266] 570. 33 | ~2 [avatar split clause 569,322,484] 603. predd(mary) | ~predg(mary) <- (10) [resolution 363,308] 668. predd(mary) <- (9, 10) [subsumption resolution 603,359] 669. 2 | ~9 | ~10 [avatar split clause 668,362,357,322] 811. paul = sK7 | mary = sK7 | fred = sK7 <- (36) [resolution 269,510] 877. mary = sK7 | fred = sK7 <- (~34, 36) [subsumption resolution 811,494] 878. fred = sK7 <- (~34, ~35, 36) [subsumption resolution 877,502] 879. $false <- (~32, ~34, ~35, 36) [subsumption resolution 878,482] 880. 32 | 34 | 35 | ~36 [avatar contradiction clause 879] 881. $false [avatar sat refutation 364,468,487,495,503,511,570,669,880] % SZS output end Proof for 2284918269794957460589124 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.382937
Kari, Richard are the only persons in the room. "Not everyone in the room is not a old calm person only if they is not a curious person" if "Kari is not a strong person". "Everyone in the room neither is calm nor is generous" if "Kari is patient". Either "Kari is not creative" or "not everyone anywhere is not a strong person" but not both. Either "everyone in the room is brave" or "everyone in the room is not a patient person" but not both. "Kari is not a tall person" if "Kari is wise" and vice versa. "Everyone outside the room is patient" only if "it is true that "everyone in the room is curious if they is tall"". Either "no one in the room is quiet" or "someone in the room is not a generous person" but not both. Everyone in the room is not humble if and only if they is creative. Kari is the least old outside the room. Everyone in the room is happy. Kari is not a old calm person. Everyone in the room is not a funny person. Everyone in the room is kind. All wise persons are kind.
Kari is not generous.
neutral
room(kari)&room(richard)&(![X]:(room(X)=>(X='kari'|X='richard')))& ((~(strong(kari)&person(kari)))=>(~![X]:(room(X)=>(((~(curious(X)&person(X)))<=(~(old(X)&calm(X)&person(X))))))))& ((patient(kari))=>(![X]:(room(X)=>(~((calm(X))|(generous(X)))))))& ((~creative(kari))<~>(~![X]:(anywhere(X)=>(~(strong(X)&person(X))))))& ((![X]:(room(X)=>(brave(X))))<~>(![X]:(room(X)=>(~(patient(X)&person(X))))))& ((wise(kari))<=>(~(tall(kari)&person(kari))))& ((![X]:(~room(X)=>(patient(X))))=>(![X]:(room(X)=>(((tall(X))=>(curious(X)))))))& ((~?[X]:(room(X)=>(quiet(X))))<~>(?[X]:(room(X)&(~(generous(X)&person(X))))))& (![X]:(room(X)=>(((~humble(X))<=>(creative(X))))))& (![X]:((~room(X)&(X!=kari))=>older(kari,X)))& (![X]:(room(X)=>(happy(X))))& (~(old(kari)&calm(kari)&person(kari)))& (![X]:(room(X)=>(~(funny(X)&person(X)))))& (![X]:(room(X)=>(kind(X))))& (![X]:(wise(X)=>kind(X)))& (![X]:(calm(X)=>funny(X)))& (![X]:(room(X)=>(~quiet(X))))& (![X]:(wise(X)=>brave(X)))& (![X]:(room(X)=>(~calm(X))))& (![X]:(room(X)=>(old(X))))& (![X]:((room(X)&(X!=kari))=>older(kari,X)))& (![X]:(room(X)=>(((kind(X))<=(~(calm(X)&person(X)))))))
room(kari)&room(richard)&(![X]:(room(X)=>(X='kari'|X='richard')))& ~generous(kari)
[]
null
0.0376